
Rule-Based Constraint Propagation

Theory and Applications

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.mr. P.F. van der Heijden

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op vrijdag 3 december 2004, te 14.00 uur

door

Sebastian Brand

geboren te Erfurt, Duitsland.

Promotiecommissie:

Promotor

prof.dr. K. R. Apt

Overige leden

prof.dr. J. F. A. K. van Benthem
prof.dr. M. van Lambalgen
prof.dr. E. Monfroy
prof.dr. M. de Rijke
dr. S. Etalle
dr. Zs. M. Ruttkay
dr. L. Torenvliet

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Copyright c© 2004 by Sebastian Brand

Printed and bound by Ipskamp, Enschede.

ISBN: 90–6196–526–8

Contents

1 Introduction 1

2 Rule-Based Constraint Programming 7
2.1 Constraint Programming . 7

2.1.1 Overview . 7
2.1.2 Constraint Satisfaction Problems 9
2.1.3 Solving CSPs by Search and Propagation 11
2.1.4 Constraint Propagation and Local Consistency 12

2.2 Rule-Based Programming . 15
2.2.1 Rule-Based Constraint Programming 16
2.2.2 Rule-Based Constraint Propagation 18

3 Rule Schedulers 21
3.1 Introduction . 21
3.2 Generic Iteration Algorithm . 22
3.3 Revised Generic Iteration Algorithm 24
3.4 Functions in the Form of Rules 26

3.4.1 Rules over Sets . 27
3.4.2 The R Algorithm . 27

3.5 Recomputing Least Fixpoints . 30
3.6 Concrete Framework . 31

3.6.1 Partial Orderings . 32
3.6.2 Membership Rules . 32

3.7 Implementation . 35
3.7.1 Modelling Membership Rules in CHR 35
3.7.2 Benchmarks . 37
3.7.3 Detecting When a Constraint is Solved 39
3.7.4 Recomputing Least Fixpoints 39

3.8 Final Remarks . 42

iii

4 Redundant Rules 43

4.1 Introduction . 43

4.2 Redundant Functions . 44

4.3 Redundant Rules . 45

4.3.1 Computing Minimal Sets of prop Rules 46

4.3.2 Subsumption . 46

4.4 Implementation and Empirical Evaluation 48

4.4.1 Constraint Propagation Rules 48

4.4.2 Membership Rules . 51

4.5 Discussion . 52

4.5.1 Benefit of Rule Set Minimisation 52

4.5.2 Minimal Rule Sets and the R Scheduler 53

4.6 Final Remarks . 56

5 Incremental Rule Generation 57

5.1 Introduction . 57

5.2 Transforming Sets of Constraint Propagation Rules 59

5.2.1 Subsumption . 59

5.2.2 Derivation . 60

5.3 Transforming Sets of Membership Rules 61

5.3.1 Subsumption . 61

5.3.2 Derivation . 62

5.3.3 Result of the Meta Rule Closure 63

5.3.4 Infeasible Rules . 65

5.4 Cases of Incremental Rule Generation 66

5.4.1 Conjunction of Constraints 66

5.4.2 Constraint Padding . 68

5.4.3 Defining a Constraint by its Non-Solutions 69

5.4.4 Defining a Constraint by its Solutions 70

5.4.5 Enlarging the Base Domain 71

5.4.6 Universal Quantification 72

5.4.7 Existential Quantification 73

5.5 Example: A Composed fulladder Constraint 75

5.6 Implementing the Meta Rule Closure 76

5.6.1 Uniqueness . 76

5.6.2 Relation to the Original Generation Algorithm for Mem-
bership Rules . 78

5.7 Implementation and Empirical Evaluation 79

5.8 Final Remarks . 81

iv

6 Constraint-Based Automatic Test Pattern Generation 83
6.1 Introduction . 83

6.1.1 Combinational Circuits . 84
6.1.2 Sequential Circuits . 86

6.2 Modelling ATPG with Constraints 88
6.2.1 Combinational ATPG . 89
6.2.2 Sequential ATPG . 92
6.2.3 3-valued Model . 94
6.2.4 9-valued Model . 95
6.2.5 11-valued Model . 96

6.3 Implementation . 97
6.3.1 Constraint Propagation . 98
6.3.2 Empirical Evaluation . 99

6.4 Final Remarks . 100

7 Constraint-Based Modal Satisfiability Checking 101
7.1 Introduction . 101
7.2 Propositional Formulas as Constraint Satisfaction Problems . . . 104

7.2.1 Propositions . 104
7.2.2 Partial Assignments . 105

7.3 Modal Formulas as Layers of Constraint Satisfaction Problems . . 106
7.3.1 Modal Formulas as Layers of Propositions 106
7.3.2 K-satisfiability and the k sat Schema 108
7.3.3 The KCSP Algorithm . 109

7.4 Constraint-Based Modelling . 111
7.4.1 Base Modelling . 111
7.4.2 Advanced Modelling . 112

7.5 Implementation and Experimental Assessment 117
7.5.1 Test Environment . 117
7.5.2 Assessment . 119
7.5.3 Results and a Comparison 121

7.6 Final Remarks . 122

8 Array Constraint Propagation 125
8.1 Introduction . 125

8.1.1 Arrays . 127
8.1.2 Array Constraints . 127

8.2 Constraint Propagation . 128
8.2.1 Propagation Rules for Generalised Arc-Consistency 128
8.2.2 Propagation Rules for Bounds-Consistency 130
8.2.3 From Rules to Algorithms 130

8.3 Decomposing Multidimensional Array Constraints 133
8.3.1 Reducing the Array Dimensionality 133

v

8.3.2 Decomposition . 134

8.3.3 Propagation . 135

8.4 Implementation . 136

8.5 Final Remarks . 136

9 Constraint-Based Qualitative Spatial Reasoning 139

9.1 Introduction . 139

9.2 Topological Reasoning with RCC-8 141

9.2.1 Composition . 142

9.2.2 Converse Relation . 142

9.3 Modelling QSR with Constraints 142

9.3.1 Relations as Constraints 142

9.3.2 Relations as Variables . 144

9.3.3 Discussion . 145

9.4 Relation Variables in Use . 146

9.4.1 Combining Topology and Size 146

9.4.2 Combining Cardinal Directions and Topology 149

9.4.3 Cyclic Ordering of Orientations 151

9.4.4 Combining Cardinal Direction with Relative Orientation . 153

9.4.5 Object Variables and Array Constraints 154

9.5 Implementation . 154

9.6 Final Remarks . 155

10 Qualitative Simulation 157

10.1 Introduction . 157

10.2 Simulation Constraints . 157

10.2.1 Intra-state Constraints . 157

10.2.2 Inter-state Constraints . 159

10.2.3 Examples for Inter-state Constraints 161

10.3 Temporal Formulas as Constraints 164

10.3.1 Unfolding Translation . 165

10.3.2 Array Translation . 166

10.3.3 Quantification over Objects 169

10.4 Simulations . 169

10.5 Implementation and Case Studies 172

10.5.1 Piano Movers Problem . 172

10.5.2 Phagocytosis . 173

10.6 Final Remarks . 175

11 Final Remarks 177

11.1 Summary . 177

11.2 Outlook . 179

vi

Bibliography 181

Index 193

vii

Chapter 1

Introduction

The notion of the constraint satisfaction problem (CSP) provides a general frame-
work for formulating problems. In this framework, a problem solution corresponds
to a variable assignment. The problem context is formalised by stating the range
of values the variables can assume, and by specifying for some subsets of the vari-
ables which combinations of their values are acceptable — in other words, which
constraints must be met.

A large variety of problems can be modelled as CSPs, and in many cases
the models are very natural. Consider the graph colouring problem: we wish to
colour the vertices of a graph in such a way that connected vertices differ in their
colour. In a straightforward formulation as a CSP, each vertex corresponds to a
variable ranging over the colours, and two connected vertices give rise to a dise-
quality constraint on the respective variables. The term unification problem can
be viewed as a CSP in which the variables range over a term universe and are con-
strained by equalities. A propositional formula in conjunctive normal form can be
seen as a CSP by regarding each clause as a constraint on its Boolean variables.
More generally, the CSP framework is applicable to problems in many areas, in-
cluding Artificial Intelligence (temporal and spatial reasoning, computer vision,
planning, computational logic), Operations Research (scheduling, time-tabling,
resource allocation), and Bio-informatics (protein structure reconstruction, se-
quence alignment).

The expressiveness of the CSP framework has consequences for the solving
algorithms. Solving CSPs with finite variable domains is NP-complete in general,
and one should therefore not expect computationally tractable algorithms. A
general method to find solutions of a CSP consists of search, that is, the CSP
is split into subproblems which are considered separately. For instance, every
assignment of a variable to a domain value induces a subproblem.

In the constraint programming approach to solving CSPs, search is combined
with constraint propagation to reduce the search space. The principle of constraint
propagation is controlled inference: from the available constraints and domains,

1

2 Chapter 1. Introduction

certain new constraints or smaller domains are inferred. In this way, a CSP
is transformed by making selected implicit information explicit. Usually, the
result of propagation is characterised as a form of local consistency. Constraint
propagation is often a very cost-effective method to reduce the problem solving
time, insofar as more time is saved in search than spent on propagation.

The question that arises is how constraint propagation can be described
and implemented. Conventionally, this is done by generic or specialised con-
straint propagation algorithms, implemented in an imperative programming style.
Generic algorithms, by definition, do not take into account the structure of specific
constraints. Constraint-specific algorithms, on the other hand, typically require
considerable expertise in the development of constraint propagation algorithm
and are hard to understand or verify.

In this thesis, we advocate a rule-based view on constraint propagation.

Rule-Based Constraint Propagation

Rule-based programming means the formulation of programs in terms of rules,
i. e. premise–conclusion pairs. Such programs are executed by a repeated appli-
cation of the rules. Hence, rule-based programming is declarative: the program
logic is separated from the control of the execution. The interest in rule-based
computation goes back at least to the 1970s, when production rule systems were
extensively studied in Artificial Intelligence.

We apply the rule-based paradigm to constraint propagation and consequently
consider constraint propagation rules. Our notion of a constraint propagation rule
is very basic:

A → B

is a constraint propagation rule if A,B are sets of constraints. Here are some
examples of such rules:

x > y, y > z → x > z (r1)

and(x, y, z), or(y, z, w), w = 1 → y = 1, x = z (r2)

rcc8(x, y, z), x ∈ {disjoint, inside}, z ∈ {contains, equal} → y 6= covers (r3)

The rule r1 captures transitivity of the ordering relation > viewed as a constraint.
r2 propagates a fact about the constraints and and or which model the respec-
tive logical operators. Spatial knowledge is expressed in rule r3: x, y, z are the
topological relations of the region pairs (A,B), (B,C), (A,C), respectively.

The formulation of constraint propagation in terms of rules offers several ad-
vantages. Since propagation rules are declarative, the correctness of the constraint
propagation step represented by a rule can be verified directly and per rule with
the definitions of the involved constraints. Rules represent directed knowledge,
and in that way they control inference. The local consistency established by a set
of rules can be examined independently of the concrete rule scheduling algorithm.

3

Contributions and Overview

We argue in this dissertation that a rule-based approach to constraint propagation
is useful for both explaining and implementing it. We do so by paying attention
to theoretical aspects of rule-based constraint propagation as well as to appli-
cations in constraint programs. When discussing the applications, in line with
the constraint programming approach to problem solving, we focus especially on
modelling declaratively. In detail, we discuss the following topics.

The three chapters following the introductory Chapter 2 on rule-based con-
straint programming are devoted to problem-independent issues involving con-
straint propagation rules. In all cases, we discuss in detail a class of constraint
propagation rules of particular interest, the membership rules.

Schedulers for constraint propagation rules. In Chapter 3, we consider the
problem of computing with constraint propagation rules. We start from the
completely general view of constraint propagation as fixpoint computation
of functions, and review a corresponding generic iteration algorithm.

We revise this algorithm with a dynamic modification of the set of iterated
functions. Specifically, we provide conditions for the removal of functions
from this set, so as to improve convergence of the fixpoint computation.
The benefit of this technique is multiplied if one deals with sequences of
fixpoint computations, as is the case in constraint programming in which
constraint propagation is executed repeatedly. A dynamic reduction in the
function set then helps convergence in all later computations.

By implementing the revised iteration algorithm for concrete sets of mem-
bership rules, we demonstrate the viability of this way of performing con-
straint propagation. Furthermore, by an empirical evaluation we find that
the revised rule scheduler performs very well in comparison with the generic
scheduler as well as with the scheduler used in an implementation of CHR,
a language specifically designed for rule-based constraint propagation.

This chapter is based on a collaboration with Krzysztof Apt, which appeared
as [Apt and Brand, 2003]. A combination with the following chapter will
appear as [Brand and Apt, 2005].

Redundancy in constraint propagation rule sets. In Chapter 4, we turn to
the question whether each propagation rule in a set of rules is needed for the
result of propagation. A natural characterisation of the local consistency
established by a set of rules is based on their common fixpoints (where rules
are viewed as functions in an abstract setting). Consequently, we formu-
late the notion of redundancy of a rule with respect to a rule set as follows:
removing a redundant rule from the set does not change the common fix-
points. This leads to the notion of a minimal rule set, which contains no
redundant rules.

4 Chapter 1. Introduction

We also investigate rule redundancy empirically, with the help of an imple-
mentation of minimisation. In recent years, a number of methods for the
automatic generation of classes of constraint propagation rules have been
published. While all of these rule generation methods strive to generate rule
sets that are minimal in a sense, they fall short on rigour or generality. By
processing a number of concrete rule sets generated by such methods, we
find that many of the sets are not minimal. We provide here a redundancy
notion that is theoretically well-founded, comprehensive, and feasible.

This chapter is an extended version of [Brand, 2003].

Incremental generation of constraint propagation rules. In Chapter 5,
we approach the problem of generating propagation rules incrementally.
By this, we mean automatic rule generation as transformations of rule sets
into rule sets. One example is the combination of two rules to a new rule:
c1 → B and c2 → B leads to c1 ∨ c2 → B. The crucial requirement is that
the disjunctive constraint c1 ∨ c2 must be representable in the underlying
language of the considered constraint propagation rules.

We then study incremental rule generation for the specific language of the
membership rules. We regard rule sets associated with constraints, and
consider the following question: suppose it is known how some given con-
straints relate to each other, then how do their associated rule sets relate
to each other? The relations of constraints we are interested in are incre-
mental constraint definitions, for example, separate constraints versus their
conjunction.

For various such incremental constraint definitions, we explain how the asso-
ciated membership rule sets are incrementally obtained. A natural question
concerns the propagation associated with the respective rule sets. We give
conditions on the input rule sets that allow us a characterisation of the
propagation of the result rule set.

The usability of incremental rule generation for membership rules is demon-
strated by an implementation and examples.

The material in this chapter is based on joint work with Eric Monfroy. It
appeared as [Brand and Monfroy, 2003],

We then consider practical applications that we solve by constraint programming
and rule-based constraint propagation.

Test pattern generation for sequential circuits. In Chapter 6, we consider
a problem from electrical engineering. Since the production process of mod-
ern digital circuits is not error-free, it is necessary to verify produced circuits
against their specifications. This comparison must be behavioural as the
internal circuit structure is inaccessible. Therefore, test patterns, sequences

5

of input data, are used to verify the circuit function by comparing observed
and expected output. The test pattern generation problem concerns the
generation of such tests for specific circuit faults.

We consider the case of sequential circuits, which have an internal state
and for which test generation is thus substantially more complex than for
combinational (stateless) circuits. While propositional logic seems natural
in this domain, our modelling approach is based on multi-valued logics.
The extra values are used for approximating the original problem and for
carrying heuristic information.

We develop three different multi-valued logics and compare them by means
of standard benchmarks, using our constraint-based implementation. The
constraint propagation in our implementation is based on membership rules,
and we apply the techniques introduced in the preceding chapters.

This chapter contains a completely rewritten version of [Brand, 2001b].

Modal satisfiability checking. Chapter 7 presents a constraint-based ap-
proach for deciding the satisfiability of modal logic formulas. One approach
to solving this problem consists of reformulating it into sequences of propo-
sitional satisfiability problems. We extend it by employing a three-valued
logic in the subproblems instead; the extra value reflects structural informa-
tion that is lost in the propositional translation. The resulting subproblems
are thus non-Boolean, and we view them as CSPs.

We describe a corresponding implementation, which relies on several forms
of rule-based constraint propagation. We evaluate the approach and im-
plementation using standard benchmarks. The results show that the three-
valued constraint-based approach is competitive with, and in some instances
superior to, the purely propositional approach. This shows the interest
of a refined modelling made possible by the expressiveness of the CSP-
framework.

This chapter reflects joint work with Rosella Gennari and Maarten de Rijke.
It appeared as [Brand et al., 2004], but has been adapted for this disserta-
tion.

We then return to an application-independent topic.

Array constraints. In Chapter 8, we consider constraints that naturally arise
when information is arranged in arrays (matrices). We study two forms
of constraint propagation for such array constraints. Starting from generic
template rules that capture the desired local consistency, we derive spe-
cialised constraint propagation rules. We then design algorithms that em-
body the rules and their correctness conditions. The results are systemati-
cally developed constraint propagation algorithms for array constraints.

6 Chapter 1. Introduction

This chapter contains a fully revised and substantially extended version of
[Brand, 2001a].

In the next two chapters, we study a domain in which information is naturally
structured in array form.

Qualitative spatial reasoning with relation variables. In Chapter 9, we
discuss an alternative constraint-based approach to qualitative spatial rea-
soning. In contrast to the standard approach, in which qualitative relations
are viewed as constraints, we model relations as variables. These relation
variables are arranged in an array.

This approach is particularly suitable for qualitative spatial reasoning since
space has many aspects (topology, size, direction, etc.). The advantage of
this view is that the properties of one spatial aspect as well as the integration
of different spatial aspects are expressed as plain constraints on the relation
variables. This makes specialised consistency algorithms redundant by a
reduction to generic constraint propagation techniques, which we realise by
rules.

This chapter appeared as [Brand, 2004].

Qualitative simulation. Chapter 10 reports our approach to qualitative rea-
soning involving change, based on constraints over relation variables. We
use temporal logic to describe dynamic system behaviour, which allows con-
cise statements of complex circumstances.

The temporal logic formulas are translated into constraints over the rela-
tion variables. We give one translation that simply unfolds the temporal
and logical operators, and a second translation that retains the underlying
structure by using the array constraints introduced in Chapter 8. This array
translation leads to particularly compact CSPs and is much more amenable
to constraint propagation.

We describe an implementation and discuss case studies.

This chapter reports joint and on-going work with Krzysztof Apt.

In Chapter 11, we summarise and contemplate future research issues.

Chapter 2

Rule-Based Constraint Programming

Rule-based constraint programming means the adoption of a rule-based approach
to solving constraint satisfaction problems. In this chapter, we first introduce
constraint programming and then discuss rule-based programming. We proceed
by discussing the application of this paradigm to constraint programming, be-
fore coming to what we regard as its most relevant aspect, namely rule-based
constraint propagation.

2.1 Constraint Programming

2.1.1 Overview

Constraint programming is an alternative approach to programming in which a
problem is first modelled declaratively and then solved by general or domain-
specific methods. See [Tsang, 1993, Marriot and Stuckey, 1998, Apt, 2003,
Dechter, 2003, Frühwirth and Abdennadher, 2003], for instance.

We begin with an overview; the formal framework is introduced in the follow-
ing sections.

Modelling. A problem model in constraint programming consists of require-
ments — constraints — on variables so that acceptable variable assignments cor-
respond to solutions to the problem. The variables have domains, i. e. sets of
possible values. A constraint is a relation that specifies which combination of
domain values is acceptable; it can be defined extensionally or intensionally. A
problem formulated in this way is called a constraint satisfaction problem (CSP).

The CSP framework is expressive; many computationally intractable problems
can immediately be formulated as CSPs. In a 3-SAT problem, each clause con-
strains three propositional variables. In graph colouring, where different colours
must be assigned to connected vertices, the constraints are simple disequalities.
Combinatorial problems often have simple formulations as CSP. A strength of

7

8 Chapter 2. Rule-Based Constraint Programming

modelling with constraints is its flexibility due to the compositional nature of
CSPs: individual constraints can be changed, added or removed disregarding the
rest of the problem.

Furthermore, problems exist that do not directly correspond to CSPs but
contain CSPs as subproblems. For instance, optimisation problems can often
be naturally decomposed into constraints describing what a solution is, and an
objective function rating the quality of a solution. This leads to the concept of
a constraint optimisation problem. In other situations, a problem gives rise to
a sequence of CSPs. An example of this is planning. The problem whether a
plan of a given length exists transforming one state into another can typically be
represented as a CSP. Shortest plans can be found by searching for fixed-length
plans and iteratively increasing the plan length, which means repeatedly trying
to solve a CSP.

Solving. For some specific CSP classes, specialised solution methods exist. A
system of linear equations induces a CSP in which every equation is a constraint,
and which can be solved well by Gaussian Elimination, for example. Term uni-
fication can be viewed as a CSP in which the variables range over some term
universe; a unification algorithm solves such a problem.

A general method to find solutions of CSPs is systematic search: splitting
the problem into more specific subproblems that are examined separately. Back-
tracking is a commonly used algorithm for this purpose.

The search space can be reduced by constraint propagation. The principle
of constraint propagation is the controlled deduction of new constraints. The
derived constraints are added to the problem so as to make its solutions more
explicit without changing them. The options for constraint propagation include,
on the one hand, which or how many currently explicit constraints to consider
at a time, and on the other hand, what constraints to deduce. The identifica-
tion of the types of constraint propagation that are both useful and have accept-
able computational cost and the development of corresponding efficient constraint
propagation algorithms are important issues in constraint programming research.

The result of complete constraint propagation is typically characterised by a
local consistency notion. Generally, a local consistency only approximates global
consistency (concerning the entire CSP), and usually the two are incomparable
in the sense that none entails the other.

Since a CSP model of a problem does not prescribe the solution method,
alternatives to systematic search are possible. Notably, local search turns out
to perform very well on some types of CSPs. In local search, a total variable
assignment — a solution candidate — is considered. If not all constraints are
satisfied, the assignment is modified, and the process is repeated. The changes
to the assignment are mostly local and controlled by heuristics. For instance, a
variable is selected whose assigned value violates a constraint, and the assigned

2.1. Constraint Programming 9

value is replaced.
In contrast to systematic search, local search is incomplete: it is not ensured

that all possible assignments (i. e. the complete search space) are visited. Hence,
local search is unusable for proving unsatisfiability, nor is it guaranteed to find a
solution of a satisfiable problem.

A brief history. Constraint programming has its roots in the field of con-
straint satisfaction in Artificial Intelligence in the 1970s; see for example
[Montanari, 1974, Kumar, 1992]. In the 1980s, these techniques were connected
with the declarative problem solving approach of logic programming, which re-
sulted in constraint logic programming [Jaffar and Maher, 1994]. More recently
and on-going, a fruitful import of techniques notably from Operations Research
has broadened the scope of the field. Applications of constraint programming
include various problems in Artificial Intelligence (temporal reasoning, various
forms of spatial reasoning) and Combinatorial Optimisation (scheduling, resource
allocation, configuration, planning). Industrial interest in constraint program-
ming techniques continues to provide a significant impetus.

2.1.2 Constraint Satisfaction Problems

We now introduce constraint programming formally.

Constraints

Consider a finite sequence of different variables

X = x1, . . . , xm

with respective domains

D1, . . . , Dm,

so each xi takes its value from the set Di. A constraint C on X is a pair

〈CR, X〉.

CR is an m-ary relation and a subset of the Cartesian product of the domains,

CR ⊆ D1 × · · · ×Dm.

The elements of CR are the solutions of the constraint, and m is its arity. Nothing
more is stipulated about CR; in particular, it can be defined intensionally and it
can be infinite.

It is useful to mention two special cases of constraints. In the true constraint,
we find CR = D1 × · · · ×Dm, while CR = ∅ in the false constraint. These are the
only two cases in which we admit m = 0, whereas we generally require m > 1.

We sometimes write C(X) for the constraint and often identify C with CR.

10 Chapter 2. Rule-Based Constraint Programming

2.1.1. Example. Here are some constraints and their variables.

〈 {〈A,B〉, 〈C,A〉, 〈B,C〉}, 〈x, y〉 〉, x, y ∈ {A,B,C};

〈 { 〈a, b, c, n〉 ∈ N4 | an + bn = cn }, 〈x, y, z, u〉 〉, x, y, z, u ∈ N;

〈 { 〈p1, . . . , pm〉 ∈ {0, 1}m | ∃k. pk = 1 }, 〈x1, . . . , xm〉 〉, xi ∈ {0, 1} for all i.

N is the set of natural numbers. �

Constraint Satisfaction Problems

A constraint satisfaction problem , in short CSP, consists of a finite sequence
of variables X = x1, . . . , xn with respective domains D = D1, . . . , Dn, and a finite
set C of constraints, each on a subsequence of X. A CSP can thus be viewed as
a triple

〈C, X,D〉.

We use also the notational variant 〈C; x1 ∈ D1, . . . , xn ∈ Dn〉.

Solutions

Consider some variable sequence X = x1, . . . , xn and an element d = d1, . . . , dn

of the product of variable domains D1 × · · · ×Dn. By the projection of d on a
subsequence Y = xi(1), . . . , xi(`) of X, we mean the sequence di(1), . . . , di(`) which
we denote by d[Y]. In particular, we have d[xk] = dk. Lifting this notion to
constraints, we write C[Y] for the set { d[Y] | d ∈ CR } where C = 〈CR, X〉.

By a solution to the CSP 〈C, X,D〉 we mean an element d ∈ D1 × · · · ×Dn

such that for each constraint C ∈ C on a sequence of variables Y we have d[Y] ∈ C.
We call a CSP consistent if it has a solution. The set of all solutions of a CSP
P is denoted by Sol(P).

2.1.2. Example. Consider the CSP

P = 〈{fermat(x, y, z, n), even(y)}; x, y, z, n ∈ N〉.

The constraint fermat(x, y, z, n) is xn + yn = zn, and even is the set of even
integers. P is consistent: the tuple d = 〈3, 4, 5, 2〉 is a solution. Indeed, we have

d[x, y, z, n] = 〈3, 4, 5, 2〉 ∈ fermat,

d[y] = 4 ∈ even.

A variation of P is P ′ = 〈{fermat(x, y, z, 2), even(y)}; x, y, z ∈ {1, . . . , 10}〉. We
find

Sol(P ′) = {〈3, 4, 5〉, 〈6, 8, 10〉, 〈8, 6, 10〉}

as the solution set of P ′. �

From now on, we use the interval expression [a..b] with integers a, b to denote
the integer set { e | a 6 e 6 b }.

2.1. Constraint Programming 11

2.1.3 Solving CSPs by Search and Propagation

Equivalence

We view the search for solutions to a CSP as a process of transforming CSPs. This
makes it necessary to relate CSPs to each other disregarding their representation.
Instead, we use their solution sets, and accordingly define a notion of equivalence.

A natural definition for two CSPs on the same variables is to say that they
are equivalent if they have exactly the same solutions. We extend this notion to
sets of CSPs.

2.1.3. Definition. Assume a CSP P and CSPs Qi, i ∈ [1..m], that are all on
the same sequence of variable. If

Sol(P) =
⋃

i∈[1..m]

Sol(Qi)

then we say that P is equivalent to the union of Q1, . . . ,Qk. �

2.1.4. Example. The CSP P = 〈C; X; D〉 is equivalent to the union of

Q1 = 〈C ∪ {even(x)}; X; D〉,

Q2 = 〈C ∪ {odd(x), y 6 10}; X; D〉,

Q3 = 〈C ∪ {odd(x), y > 10}; X; D〉,

where x, y ∈ X and odd has the expected meaning. �

Solving Algorithm Schema

We are now in a position to give a basic algorithm schema for finding solutions of
CSPs using depth-first search ; see Fig. 2.1. Three procedures are used. Solve is
the main control procedure, Split generates two sub-CSPs from a given CSP, and
Propagate performs constraint propagation. Both Split and Propagate maintain
equivalence. This means that Solve is correct and complete in the sense that it
returns successfully with a solution if and only if one exists — if the computation
terminates.

Here are some instances of the Split procedure. We consider the simple case
of splitting the CSP P into just two subproblems P1 and P2.

• Domain splitting is a commonly used method. P,P1,P2 differ only in
the domain of some variable x. In P, it is Dx.
Domain partitioning: Dx = Dx,1 ∪̇Dx,2 is a partitioning. In P1 the domain

of x is Dx,1 while in P2 it is Dx,2.
Enumeration is a special case: we have Dx,1 = {e} and Dx,2 = Dx − {e},

for some value e ∈ Dx.

12 Chapter 2. Rule-Based Constraint Programming

Solve : CSP P 7−→ 〈solution sol ,Boolean success〉

P := Propagate(P)

if solution sol detected in P then

return 〈sol , true〉

else if inconsistency detected in P then

return 〈∅, false〉

else

PS := Split(P)
repeat

choose and remove P from PS
〈sol , success〉 := Solve(P)

until success or PS = ∅
return 〈sol , success〉

end

Split : CSP P 7−→ 〈CSPs P1, . . . ,Pn〉

// P is equivalent to the union of P1, . . . ,Pn, n > 2

Propagate : CSP P 7−→ CSP P ′

// P ′ is equivalent to P but possibly “simpler”

Figure 2.1: CSP solver schema with depth-first search and propagation

• Constraint splitting: Some constraints have an obvious disjunctive
form, which affords splitting. Suppose |x| = y occurs in P. We can obtain
the CSPs P1,P2 by replacing |x| = y in P with x = y and −x = y, resp.

The choices that are made when splitting generally have great influence on the
solving performance. Consequently, heuristics have been developed to guide the
splitting process. In the case of enumeration, one needs to decide which variable
to enumerate, and in which order the domain values are tried. The general first-
fail heuristic often performs well: it chooses the variable that is most constrained,
e. g., has a smallest domain [Haralick and Elliott, 1980]. Specialised heuristics are
used in many application domains.

2.1.4 Constraint Propagation and Local Consistency

The Propagate procedure of Fig. 2.1 is the most interesting one for us. Constraint
propagation aims at transforming the CSP into an equivalent one that can be
solved easier. Constraint propagation can thus be viewed as deduction, and

2.1. Constraint Programming 13

the task is to control it in such a way that the computational cost is low but
the inferred knowledge – in the form of constraints – is useful for subsequent
propagation or search.

Constraint propagation is generally characterised by the properties of the re-
sulting CSP. Local consistency notions are used for this purpose. The term
‘local’ reflects the observation that constraint propagation usually does not es-
tablish global consistency.

The most important local consistency notions in this work are generalised
arc-consistency, bounds-consistency, and path-consistency. We define them now.

Generalised Arc-Consistency

Constraint propagation takes place for one constraint at a time in this case. The
aim is to obtain the ‘smallest possible’ variable domains; in other words, to derive
all variable-value disequality constraints. (Throughout this work, we use the term
“disequality” for 6= and “inequality” for >,>,6 and <.)

2.1.5. Definition. The constraint C(x1, . . . , xn) is generalised arc-
consistent (GAC) if

for all xi, i ∈ [1..n], and all e ∈ Di we have e ∈ C[xi].

Recall that C[xi] stands for { d[xi] | d ∈ C }. A CSP is generalised arc-consistent
if each of its constraints is [Mohr and Masini, 1988]. �

In short, every domain value must participate in a local solution. The atomic
step leading to GAC is: if there is some e ∈ Di for some xi such that e /∈ C[xi],
then the domain is reduced by Di := Di − {e}.

2.1.6. Example. Consider the CSP

P = 〈{x2 + y2 = z2, even(y)}; x, y, z ∈ [1..10]〉.

P is not generalised arc-consistent, since for the variable y and 9 ∈ Dy we find
9 /∈ even[y]. GAC-enforcing propagation of the constraint even must thus infer
the constraint y 6= 9, or equivalently reduce the domain of y by Dy := Dy − {9}.
In fact, propagating the constraint even(y) leads to y ∈ {2, 4, 6, 8, 10}.

Complete GAC-enforcing constraint propagation in P results in

P ′ = 〈{x2 + y2 = z2, even(y)}; x ∈ {3, 6, 8}, y ∈ {4, 6, 8}, z ∈ {5, 10}〉,

which is equivalent to P but makes the solutions more explicit. �

14 Chapter 2. Rule-Based Constraint Programming

GAC on Conjunctive Constraints. Here is a fact about generalised arc-
consistency that is useful in several of the following chapters.

2.1.7. Lemma. Consider two constraints C1, C2 that share at most one variable.
If C1 and C2 are generalised arc-consistent individually, then the conjunctive con-
straint C = C1 ∧ C2 is generalised arc-consistent.

Proof. Suppose C1(X1, y) and C2(X2, y), sharing only the variable y, are gen-
eralised arc-consistent. Clearly, for each value in Dy there is a solution d1 of
C1 and d2 of C2, respectively. We can form a solution d of C by just requiring
d[X1] = d1 and d[X2] = d2, since X1 and X2 are disjoint. So every value in Dy

can be extended to a solution of C. The remaining cases are straightforward. �

Generalised arc-consistency is a strong local consistency notion. It may also be
computationally expensive: in general, the cost of establishing it on a constraint
is exponential in the arity of the constraint. Sometimes computationally cheaper
constraint propagation toward a weaker local consistency is more useful.

Bounds-Consistency

The following local consistency notion just checks the bounds of a domain, instead
of every contained value.

2.1.8. Definition. Assume that C(x1, . . . , xn) is a constraint such that each of
its variables xi has a totally ordered domain in which min(Di) and max(Di) are
defined accordingly. C is bounds-consistent (BC) if

for all xi we have min(Di) ∈ C[xi] and max(Di) ∈ C[xi].

�

2.1.9. Example. Consider again

P = 〈{x2 + y2 = z2, even(y)}; x, y, z ∈ [1..10]〉.

The equivalent CSP

P ′ = 〈{x2 + y2 = z2, even(y)}; x ∈ {3..8}, y ∈ {4..8}, z ∈ {5..10}〉,

is bounds-consistent. �

Bounds-consistency is entailed by generalised arc-consistency, but is usually
cheaper to establish. A significant representational benefit of using BC instead of
GAC is that interval domains remain intervals: establishing BC cannot result in
‘holes’ in the domains. Intervals require little space to be represented, in contrast
to unrestricted sets.

2.2. Rule-Based Programming 15

Path-Consistency

Finally, we introduce a local consistency notion considering multiple constraints
at a time.

2.1.10. Definition. A CSP of only binary constraints is path-consistent
(PC) [Montanari, 1974] if for every triple of variables x, y, z we have

C(x, z) = { (a, c) | b exists s.t. (a, b) ∈ C(x, y) and (b, c) ∈ C(y, z) }.

It is assumed here that a unique constraint C(u,w) for each pair of variables u,w
exists, and that C(u,w) = C−1(w, u). By C−1 we mean the inverse relation of
the binary relation C. �

In contrast to the cases of generalised arc-consistency and bounds-consistency,
establishing path-consistency may require modification of the constraints, while
the variable domains remain the same.

2.1.11. Example. Consider a simple graph-colouring problem. The corner
points of a rectangle are to be coloured in red or green; connected corners must
have different colours. In our CSP formulation we have a variable for each vertex,
ranging over the colours, and disequality constraints for connected vertices:

P = 〈C; v1, . . . , v4 ∈ D〉,

D = {red, green},

C = {v1 6= v2, v2 6= v3, v3 6= v4, v4 6= v1}.

We kept implicit the true constraints between the two unconnected vertices,
namely 〈D2, 〈v1, v3〉〉 and 〈D2, 〈v2, v4〉〉. P is not path-consistent. Replacing C
in P by

C ′ = C ∪ {v1 = v3, v2 = v4},

we obtain a CSP P ′ that is equivalent to P and path-consistent. �

Path-consistency plays a central role in the view on qualitative temporal and
spatial reasoning in which binary qualitative relations are represented as con-
straints.

2.2 Rule-Based Programming

When a program is a set of rules and the computation process consists of a
repeated application of the rules, we speak of rule-based programming. By a rule
we understand a premise–conclusion pair.

16 Chapter 2. Rule-Based Constraint Programming

Rules can be found in various places in computer science. Automata in the-
oretical computer science are based on transition functions, which we can view
as sets of rules in the form s1, a → s2 where s1, s2 are states and a is an input
symbol. Reasoning systems in computational logic are quite naturally rule-based,
being based on logical calculi that consist of rules over logic formulas. In the field
of term rewriting, rules are used to implement directed equational reasoning.

As a concrete programming paradigm, the rule-based approach received much
attention in the 1970s with the rise of production systems in Artificial Intel-
ligence. A production rule operates on the elements of the working memory of a
production system and describes how they are changed. This development led to
the general-purpose language OPS5 [Forgy, 1981] used for programming expert
systems.

Logic Programming is a second rule-based formalism from that time (see e. g.
[Lloyd, 1987]). It is realised in the Prolog language. A rule (clause) in a logic
program relates an atomic formula in the conclusion (the clause head) with a
sequence of atomic formulas in the premise (the clause body). The rules in a pro-
gram are used to prove a goal, and compute a result in the form of a substitution
in the process.

Interestingly, term unification , which is at the core of logic programming
systems, is itself amenable to a rule-based view. The Martelli-Montanari unifi-
cation algorithm comprises six rules that can be used to decide whether a set of
term equations has a unifying substitution. In the affirmative case, the algorithm
yields a most general such substitution [Martelli and Montanari, 1982].

It is instructive to note the classification of rule-based systems with respect to
forward chaining and backward chaining approaches. In a forward chain-
ing system, of which production systems are an instance, inference adds derived
information to simplify the problem. In a backward chaining system, such as
Prolog, the reasoning starts from the goal and, via the rules, attempts to find
facts supporting a proof. The rules embody a case distinction, and backtracking
is used to explore the cases.

2.2.1 Rule-Based Constraint Programming

Constraint logic programming (CLP) originated from logic programming
in the 1980s [Jaffar and Maher, 1994]. Hence, also CLP languages as such are
rule-based. The observation that the unification operation in logic program-
ming is just a special case of constraint solving led to the CLP(X) scheme
[Jaffar and Lassez, 1987], in which X represents the domain of constraint solv-
ing (term equalities, arithmetic constraints over reals, finite domain constraints,
ect.). In this light, the Martelli-Montanari unification algorithm which solves
term equations is the first rule-based constraint solving method.

Another path to rule-based constraint programming originated in the area
of term rewriting. The language ELAN [Borovanský et al., 1998] implements an

2.2. Rule-Based Programming 17

approach to computation and deduction based on conditional rewrite rules and
controlled by strategies. Its application to constraint programming is described
in [Kirchner and Ringeissen, 1998] and [Castro, 1998].

The hybrid language CLAIRE integrates rules and search into an imperative
(resp. object-oriented) language [Caseau et al., 2002]. Its use of logic rules enables
declarative programming of the type useful for constraint propagation.

In this context, we also mention [Apt, 1998] in which an account of constraint
programming from a proof-theoretic perspective is given. Two classes of proof
rules are distinguished, ‘deterministic’ rules formalising constraint propagation,
and ‘splitting’ rules, which correspond precisely to the procedures Propagate and
Split, resp., of the general CSP solution algorithm in Fig. 2.1. In this proof-
theoretic view, solving a CSP is regarded as proving it from its solutions.

Concurrent constraint programming (CCP) situates the interaction
and synchronisation of agents in constraint logic programming [Saraswat, 1993].
Agents use Ask and Tell operations to publish and query partial information in
the form of constraints on shared variables. The constraints are managed in the
constraint store, which is a set of constraints. AKL [Carlson et al., 1995] and
subsequently the Oz language [Smolka, 1995] and the associated Mozart system
embody this approach.

Another realisation of the CCP paradigm is the Constraint Handling
Rules (CHR) language. CHR is a declarative high-level language specifically de-
signed for rule-based constraint programming [Frühwirth, 1998]. It is imple-
mented as a language extension that is compiled to the underlying host lan-
guage; implementations exist in different systems, including the Prolog-based
SICStus [M. Carlsson et al., 2004] and Java [Abdennadher et al., 2002]. CHR uses
a committed-choice, forward-chaining approach and is intended for constraint
propagation. It relies on the host language to provide the search mechanism
needed for full constraint solving. In the logic programming approach to con-
straint programming, CHR is the language of choice to write constraint solvers.

As CHR is closest to our view of rule-based constraint programming, we present
it in some detail. CHR supports two principal types of rules:

propagation rules H1, . . . , Hk ⇒ G1, . . . , Gl | B1, . . . , Bm,

and simplification rules H1, . . . , Hk ⇔ G1, . . . , Gl | B1, . . . , Bm.

All atomic rule elements can be viewed as constraints, but a distinction is made
between defined and primitive constraints:

• the atoms H1, . . . , Hk (k > 1) of the rule head are defined constraints,

• the atoms G1, . . . , Gl (l > 0) of the rule guard are built-in constraints,

• the atoms B1, . . . , Bm (m > 1) of the rule body are arbitrary constraints.

18 Chapter 2. Rule-Based Constraint Programming

Built-in constraints are provided by the host language (and can also be procedure
calls). Defined constraints are managed by the CHR runtime system in the CHR

constraint store. Their definition is, in fact, given by the rules.
A CHR rule is executed by first matching its head atoms against constraints in

the constraint store. If a match is found, the guard atoms are tested. In case of
success, the body atoms are imposed as constraints. If the rule is a simplification
rule, additionally the head atoms are removed from the CHR constraint store. This
process is repeated until no rule matches with successful guards.

The availability of simplification rules makes CHR very expressive. Propagation
rules just add implied constraints to the constraint store, while simplification rules
facilitate non-monotonic updating, so the constraint store can be freely managed.
This, and the additionally available host language, makes CHR very suitable for
high-level design and prototyping of constraint propagation algorithms.

An important issue entailed by the non-monotonicity of simplification rules
is that the user must pay attention to confluence and termination of the induced
rewriting system.

2.2.2 Rule-Based Constraint Propagation

We now formally introduce our notion of constraint propagation rule.

2.2.1. Definition. Assume that A and B are sequences of constraints such that
the constraints in A and B are on the variablesX with domains D. The expression

A → B

is a constraint propagation rule . We call A the condition and B the body
of the rule. Rules act as functions on CSPs. The application of a rule to a CSP
with the variables X is given by

(A → B)(〈C, X,D〉) :=

{

〈C ∪ B, X,D〉 if A ⊆ C,

〈C, X,D〉 otherwise.

The rule A → B is correct if

Sol(〈A, X,D〉) ⊆ Sol(〈B, X,D〉).

In words, a solution of A is always one of B as well. �

We capture constraint propagation by such rules. It is easy to verify that the
application of a correct rule to a CSP yields an equivalent CSP. The aim is to
find useful rules, that is, those whose body makes the solutions of a CSP more
explicit.

2.2. Rule-Based Programming 19

2.2.2. Example.

x < y, y < z → x < z

is a constraint propagation rule. Since all solutions of 〈{x < y, y < z}, 〈x, y, z〉,D〉
are solutions of 〈{x < z}, 〈x, y, z〉,D〉 as well, the rule is correct. �

Local Consistency by Rules

The result of constraint propagation is typically characterised by the established
local consistency. We now take the inverse view and give simple rule-based charac-
terisations of some local consistency notions, notably generalised arc-consistency
and bounds-consistency.

Let us from now on understand y 6= a with the variable y and the constant a as
a unary constraint and equally as the domain reduction operationDy := Dy \ {a}.
That is, we assume that node consistency is maintained. Node consistency
[Mackworth, 1977] is the local consistency requiring for a unary constraint 〈CR, x〉
with x ∈ Dx that CR = Dx, whereas generally we only have CR ⊆ Dx.

2.2.3. Fact. Suppose C is a constraint on X = x1, . . . , xn.

• Generalised arc-consistency (Def. 2.1.5) on the constraint C is established
if all correct rules of the form

C(X) → xi 6= e

are applied exhaustively. A rule of this form is correct exactly if e /∈ C[xi].

• Bounds-consistency (Def. 2.1.8) on the constraint C is established if all
correct rules of the form

C(X) → xi 6= e where e ∈ {min(Dxi
),max(Dxi

)}

are applied exhaustively. A rule of this form is correct exactly if e /∈ C[xi].

Alternatively we can formulate that bounds-consistency on C is established
if all correct rules of the form

C(X) → xi < e or

C(X) → xi > e

are applied exhaustively.
�

It is not difficult to see how these characterisations follow directly from the re-
spective definitions.

It is instructive to point out here how constraint propagation can be viewed in
terms of the constraint language used in the rules: GAC is obtained by stating all
variable-value disequalities, while BC is enforced by variable-value inequalities.
[Maher, 2002b] studies this topic in detail.

20 Chapter 2. Rule-Based Constraint Programming

Membership Rules

A specific class of constraint propagation rules are the membership rules, in-
troduced in [Apt and Monfroy, 2001]. These propagation rules have the form

C(x1, . . . , xn, y1, . . . , ym), x1 ∈ S1, . . . , xn ∈ Sn → y1 6= a1, . . . , ym 6= am,

where each Si is a set of constants, and each ai is a constant. An expression xi ∈ Si

is a unary constraint on xi, but in the presence of node consistency it can also
be viewed as the simple check Di ⊆ Si on the current domain of xi. We require
Si 6= ∅ for all i ∈ [1..n]. We also assume that the variables x1, . . . , xn, y1, . . . , ym

are pairwise distinct. We call C the constraint associated with the rule.
In the following, the constraint associated with a rule is usually clear from

the context or irrelevant; we then omit it from the notation. If an Si is equal to
the variable base domain, then the (always satisfied) condition xi ∈ Si is often
omitted as well. When each set Si in a membership rule is a singleton set, we call
the rule an equality rule .

2.2.4. Example. Consider the constraint C = {(0, 0), (0, 1), (1, 1)} on the vari-
ables x, y with the base domain D = {0, 1}. The rules

y ∈ {0} → x 6= 1,

x ∈ {1} → y 6= 0,

associated with C, are correct. �

The relevance of membership rules for constraint satisfaction problems with
finite domains stems from the following observations [Apt and Monfroy, 2001]:

• constraint propagation can be achieved naturally by repeated application
of membership rules;

• in particular, the notion of generalised arc-consistency can be characterised
in terms of membership rules;

• for constraints explicitly defined on small finite domains, all correct mem-
bership rules can be automatically generated;

• many rules used in specific constraint solvers written in the CHR (Constraint
Handling Rules) language are in fact membership rules.

2.2.5. Example. Reconsider the constraint and the rules of Example 2.2.4. The
two rules establish GAC on their associated constraint. �

Membership rules and the template of a GAC-enforcing rule stated in
Fact 2.2.3 are clearly connected. Namely, the correctness condition in Fact 2.2.3
is inserted into the condition of the rule. Moreover, the form of this correctness
condition changes from a test on the constraint into tests on the variable domains.
This has practical benefits since the constraint definition is irrelevant.

Chapter 3

Rule Schedulers

3.1 Introduction

In the rule-based approach to constraint programming, the computation process
is limited to a repeated application of the propagation rules intertwined with
splitting (labelling). The viability of this approach crucially depends on the
availability of efficient schedulers for such rules. This motivates the work reported
here. We provide an abstract framework for such schedulers and instantiate it for
a case of constraint propagation rules, the membership rules. This leads to an
implementation that yields a considerably better performance for these rules than
the execution of their standard representation as rules in CHR [Frühwirth, 1998].

More precisely, we study schedulers for a generic class of rules which we call
prop rules. Our approach is explained by the fact that constraint propagation
rules, and hence membership rules, are instances of this class. To obtain appro-
priate schedulers for the prop rules we use the generic approach to constraint
propagation algorithms introduced in [Apt, 1999] and [Apt, 2000]. In this frame-
work one proceeds in two steps. First, a generic iteration algorithm on partial
orderings is introduced and proved correct in an abstract setting. Then it is
instantiated with specific partial orderings and functions to obtain specific con-
straint propagation algorithms. In this chapter, as in [Apt, 2000], we take into
account information about the scheduled functions, which are here the prop rules.
This yields a specific scheduler in the form of an algorithm called R.

We then show by means of an implementation how this abstract framework
can be used to obtain a scheduler for membership rules. The implementation is
provided as a program in ECLiPSe [Wallace et al., 1997] that accepts a set of
membership rules as input and constructs an ECLiPSeprogram that is the in-
stantiation of the R algorithm for this set of rules. Since membership rules can
be naturally represented as CHR propagation rules, one can assess this implemen-
tation by comparing it with the performance of the standard implementation of
membership rules in the CHR language. By means of several benchmarks we found

21

22 Chapter 3. Rule Schedulers

that our implementation is considerably faster than CHR.
It is important to stress that this implementation is obtained by starting from

“first principles” in the form of a generic iteration algorithm on an arbitrary
partial ordering. This shows the practical benefits of studying the constraint
propagation process on an abstract level.

3.1.1. Example. To see the kind of information we use, consider the member-
ship rule

x ∈ {3, 4, 8}, y ∈ {1, 2} → z 6= 2.

Recall that, informally, it should be read as follows: if the domain of x is included
in {3, 4, 8} and the domain of y is included in {1,2}, then 2 is removed from the
domain of z.

In the computations of constraint programs, the variable domains gradually
shrink. Thus, if the domain of x is included in {3, 4, 8}, then it will remain so
during the computation. In turn, if 2 is removed from the domain of z, then
this removal operation does not need to be repeated. The concept of a prop rule
generalises these observations to conditions on the rule premise and body. �

Constraint Handling Rules. The runtime system of the CHR language pro-
vides a rule scheduler. To make CHR usable, it is important that its implementa-
tion does not incur too much overhead; and indeed, a great deal of effort was spent
on implementing CHR efficiently. For an account of the most recent implementa-
tion see [Holzbaur et al., 2001]. Since, as already mentioned, many CHR rules are
membership rules, our approach provides a better implementation of a subset of
CHR. This, hopefully, may lead to new insights into a design and implementation
of languages appropriate for writing constraint solvers.

An important novelty in our approach is the expanded, ‘semantic’ preprocess-
ing phase during which we analyse the mutual dependencies between the rules.
This allows us to remove permanently some rules during the iteration process.
This permanent removal of the scheduled rules is particularly beneficial in the
context of constraint programming where it leads to accumulated savings when
constraint propagation is intertwined with splitting.

3.2 Generic Iteration Algorithm

We begin by recalling the generic algorithm of [Apt, 2000]. We slightly adjust
the presentation to our purposes by assuming that the considered partial ordering
also has a greatest element >. So we consider a partial ordering (D,v) with least
element ⊥ and greatest element >, and a set of functions F = {f1, . . . , fk} on D.
We are interested in functions that satisfy the following two properties.

3.2. Generic Iteration Algorithm 23

GI : function set F 7−→ least common fixpoint

d := ⊥
G := F
while G 6= ∅ and d 6= > do

choose g ∈ G
G := G− {g}
G := G ∪ update(G, g, d)
d := g(d)

end

return d

Figure 3.1: Generic Iteration Algorithm GI

3.2.1. Definition.

• f is called inflationary if x v f(x) for all x.

• f is called monotonic if x v y implies f(x) v f(y) for all x, y.

�

The GI algorithm in Fig. 3.1 is used to compute the least common fixpoint
of the functions from F . We assume that for all G, g, d the set of functions
update(G, g, d) from F is such that

A. { f ∈ F −G | f(d) = d ∧ f(g(d)) 6= g(d) } ⊆ update(G, g, d),

B. g(d) = d implies that update(G, g, d) = ∅,

C. g(g(d)) 6= g(d) implies that g ∈ update(G, g, d).

(3.1)

Intuitively, assumption A states that update(G, g, d) contains at least all the
functions from F − G for which the “old value”, d, is a fixpoint but the “new
value”, g(d), is not. So at each loop iteration such functions are added to the set
G. In turn, assumption B states that no functions are added to G in case the
value of d did not change. Assumption C provides information when g is to be
added back to G as this information is not provided by A. On the whole, the idea
is to keep in G at least those functions f for which the current value of d is not
a fixpoint.

The use of the condition d 6= >, absent in the original presentation [Apt, 2000],
allows us to leave the while loop earlier.

Our interest in the GI algorithm is clarified by the following result.

3.2.2. Theorem (Correctness). Suppose that all functions in F are infla-
tionary and monotonic and that (D,v) is finite and has least element ⊥ and
greatest element >. Then every execution of the GI algorithm terminates and
computes in d the least common fixpoint of the functions from F .

24 Chapter 3. Rule Schedulers

Proof. Consider the predicate I defined by:

∀f ∈ F −G. f(d) = d ∧ ∀f ∈ F. f(>) = >. (I)

Note that I is established by the assignment G := F . Moreover, it is easy to
check that predicate I is preserved by each while loop iteration, by virtue of
the assumptions A, B and C. Thus, I is an invariant of the while loop of the
algorithm. So upon its termination

(G = ∅ ∨ d = >) ∧ I

holds, which implies

∀f ∈ F. f(d) = d.

This means that the algorithm computes in d a common fixpoint of the func-
tions from F . The rest of the proof is the same as in [Apt, 2000]. So the fact that
d is the least common fixpoint follows from the assumption that all functions are
monotonic.

Termination is established by considering the lexicographic ordering of the
strict partial orderings (D,A) and (N, <), defined on the elements of D × N by

(d1, n1) <lex (d2, n2) if d1 A d2 or (d1 = d2 and n1 < n2).

With each while loop iteration of the algorithm, the pair (d, |G|) strictly decreases
in the well-founded ordering <lex . �

3.3 Revised Generic Iteration Algorithm

We now revise the GI algorithm by modifying dynamically the set of functions that
are being scheduled. The idea is that, whenever possible, we remove functions
from the set F . This will allow us to exit the loop earlier and can also simplify
the update operations, which speeds up the execution of the algorithm.

To this end, we assume that for each function g ∈ F and each element d ∈ D,
two sequences1 of functions from F are given, friends(g, d) and obviated(g, d), to
be instantiated below. We modify the GI algorithm in such a way that each appli-
cation of g to d will be immediately followed by the applications of all functions
from friends(g, d) and by a removal of the functions from friends(g, d) and from
obviated(g, d) from F and G. The modified algorithm is called RGI; see Fig. 3.2.

We now formalise the condition that ensures correctness of this scheduling
strategy, that is, under which the Correctness Theorem 3.2.2 holds with the GI

1We need in it sequences instead of sets since the considered functions will be applied in a
specific order. For simplicity, we regard these sequences as sets in some places.

3.3. Revised Generic Iteration Algorithm 25

RGI : set of functions F 7−→ their least common fixpoint

d := ⊥
G := F
while G 6= ∅ and d 6= > do

choose g ∈ G
G := G− {g}

let Del = friends(g, d) ∪ obviated(g, d)
let h = g ◦ g1 ◦ · · · ◦ gk where friends(g, d) = 〈g1, . . . , gk〉

F := F − Del
G := G− Del
G := G ∪ update(G, h, d)
d := h(d)

end

return d

Figure 3.2: Revised Generic Iteration Algorithm RGI

algorithm replaced by the RGI algorithm. Informally, this condition states that
after an application of all the functions from friends(g, d) the functions from
friends(g, d) and from obviated(g, d) will never change subsequent values of d.
We use the notion of stability.

3.3.1. Definition. Suppose f ∈ F and d ∈ D.

• We say that f is stable above d if d v e implies f(e) = e.

• We say that f is stable if it is stable above f(d) for all d ∈ D.

�

That is, f is stable if for all d and e, f(d) v e implies f(e) = e. Hence, stability
implies idempotence, which means that f(f(d)) = f(d), for all d. Moreover, if
d and f(d) are comparable for all d, then stability also implies inflationarity.
Indeed, if d v f(d), then the claim holds vacuously. If f(d) v d, then by stability
f(d) = d.

Consider now the condition

∀d. ∀e w h(d). ∀f ∈ friends(g, d) ∪ obviated(g, d). f(e) = e

where h = g ◦ g1 ◦ · · · ◦ gk and friends(g, d) = 〈g1, . . . , gk〉.
(3.2)

That is, for all elements d, each function f in friends(g, d)∪obviated(g, d) is stable
above g ◦ g1 ◦ · · · ◦ gk(d). The following result holds.

26 Chapter 3. Rule Schedulers

3.3.2. Theorem. Suppose that all functions in F are inflationary and mono-
tonic and that (D,v) is finite and has the least element ⊥ and the greatest el-
ement >. Additionally, suppose that for each function g ∈ F and d ∈ D two
sequences of functions from F are given, friends(g, d) and obviated(g, d), such
that condition (3.2) holds.

Then the Correctness Theorem 3.2.2 holds with the GI algorithm replaced by
the RGI algorithm.

Proof. Denote by F0 the initial value of F . In view of condition (3.2), the
following statement is an invariant of the while loop:

∀f ∈ F −G. f(d) = d ∧

∀f ∈ F. f(>) = > ∧

∀f ∈ F0 − F. ∀e w d. f(e) = e.

(3.3)

Hence, upon termination of the algorithm, the conjunction of this invariant with
the negation of the loop condition, i. e.,

G = ∅ ∨ d = >

holds, which implies that ∀f ∈ F0. f(d) = d. The rest of the proof is the same. �

3.4 Functions in the Form of Rules

In what follows we consider the situation when the scheduled functions are of a
specific form b→ g, where b is a condition and g a function, which we call a body.
We call such functions rules.

First, we explain how rules are applied. Given an element d of D, a condition
b is evaluated in d. The outcome is either true, which we denote by holds(b, d),
or false. Given a rule b→ g we define its application to d by

(b→ g)(d) =

{

g(d) if holds(b, d),

d otherwise.

We are interested in a specific type of conditions and rules.

3.4.1. Definition. Consider a partial ordering (D,v).

• We say that a condition b is monotonic if for all d, e we have that, if d v e
then holds(b, d) implies holds(b, e).

• We say that a condition b is precise if the least d exists such that holds(b, d).
We call then d the witness for b.

• We call a rule b→ g a prop rule if b is monotonic and precise and g is stable.

�

3.4. Functions in the Form of Rules 27

3.4.1 Rules over Sets

To see how natural this class of rules is consider the following case. Take a set A
and consider the partial ordering

(P(A),⊆).

In this ordering the empty set ∅ is the least element and A is the greatest element.
We consider rules of the form

B → G,

where B,G ⊆ A.
To clarify how they are applied to subsets of A we first stipulate for E ⊆ A

that

holds(B,E) if B ⊆ E.

Then we view a set G as a function on P(A) by stipulating

G(E) = G ∪ E.

This determines the application of B → G.
It is straightforward to see that such rules are prop rules. In particular, the

element B of P(A) is the witness for the condition B. For the stability of G, take
E ⊆ A and suppose G(E) ⊆ F . Then G(E) = G ∪ E, so G ∪ E ⊆ F , which
implies G ∪ F = F , i. e., G(F) = F .

Such rules can be instantiated to many situations. For example, we can view
the elements of the set A as constraints and obtain constraint propagation rules
in this way. Alternatively, we can view A as a set of some atomic formulas and
each rule B → G as a proof rule, usually written as

B

G
.

The minor difference with the usual proof-theoretic framework is that rules have
then a single conclusion. An axiom is a rule with the empty set ∅ as the condition.
A closure under such a set of rules is the set of all (atomic) theorems that can be
proved using them.

The algorithm presented below can in particular be used to compute efficiently
the closure under such proof rules given a finite set of atomic formulas A.

3.4.2 The R Algorithm

We now modify the RGI algorithm for the case of prop rules. In the R algorithm
in Fig. 3.3 below, we take into account that an application of a rule is a two

28 Chapter 3. Rule Schedulers

R : set of rules F 7−→ their least common fixpoint

d := ⊥
G := F
while G 6= ∅ and d 6= > do

choose (b→ g) ∈ G
G := G− {b→ g}

if holds(b, d) then

let Del = friends(b→ g) ∪ obviated(b→ g)
let h = g ◦ g1 ◦ · · · ◦ gk

where friends(b→ g) = 〈(b1 → g1), . . . , (bk → gk)〉

F := F − Del
G := G− Del
G := G ∪ update(G, h, d)
d := h(d)

else if ∀e w d. ¬holds(b, e) then

F := F − {b→ g}
end

end

return d

Figure 3.3: Rule scheduling algorithm R

step process: testing of the condition followed by a conditional application of the
body. This allows us to drop the parameter d from the sequences friends(g, d) and
obviated(g, d) and consequently to construct such sequences before the execution
of the algorithm. The sequence friends(g) will be constructed in such a way that
we shall not need to evaluate the conditions of its rules: they will all hold. The
specific construction of the sequences friends(g) and obviated(g) is provided in a
second algorithm below, the Friends and Obviated Algorithm.

Again, we are interested in identifying conditions under which the Correctness
Theorem 3.2.2 holds with the GI algorithm replaced by the R algorithm. To this
end, given a rule b→ g in F and d ∈ D, define as follows:

friends(b→ g, d) =

{

friends(b→ g) if holds(b, d),

〈〉 otherwise,
(3.4)

and

obviated(b→ g, d) =

obviated(b→ g) if holds(b, d),

〈b→ g〉 if ∀e w d ¬holds(b, e),

〈〉 otherwise.

(3.5)

3.4. Functions in the Form of Rules 29

We obtain the following counterpart of the Correctness Theorem 3.2.2.

3.4.2. Theorem (Correctness). Suppose that all functions in F are prop
rules of the form b→ g, where g is inflationary and monotonic, and that (D,v)
is finite and has the least element ⊥ and the greatest element >. Further, assume
that for each rule b → g the sequences friends(b → g, d) and obviated(b → g, d),
defined as above, satisfy condition (3.2) and the following condition:

∀d.
(
b′ → g′ ∈ friends(b→ g)∧ holds(b, d) → ∀e w g(d). holds(b′, e)

)
. (3.6)

Then the Correctness Theorem 3.2.2 holds with the GI algorithm replaced by the
R algorithm.

Proof. It suffices to show that the R algorithm is an instance of the RGI al-
gorithm. On account of condition (3.6) and the fact that the rule bodies are
inflationary functions, holds(b, d) implies that

(
(b→ g) ◦ (b1 → g1) ◦ · · · ◦ (bk → gk)

)
(d) = (g ◦ g1 ◦ · · · ◦ gk)(d),

where friends(b → g) = 〈(b1 → g1), . . . , (bk → gk)〉. This takes care of the
situation in which holds(b, d) is true.

In turn, the definition of friends(b → g, d) and obviated(b → g, d) and as-
sumption B take care of the situation when ¬holds(b, d). When the condition b
fails for all e w d we can conclude that for all such e we have (b → g)(e) = e.
This allows us to remove at that point of the execution the rule b → g from the
set F . This amounts to adding b → g to the set obviated(b → g, d) at runtime.
Note that condition (3.2) is then satisfied. �

We now provide an explicit construction of the sequences friends and obviated
for a rule b → g in the form of the F & O algorithm in Fig. 3.4. GI(F, e) stands
there for the GI algorithm invoked with ⊥ replaced by e. We call a rule r relevant
in an execution of GI(F, e) if at some point in this execution r(d) 6= d holds after
the “choose r ∈ G” action.

The F & O algorithm needs the witness of the rule condition b, that is, the
least d for which holds(b, d). For the rules we are interested in most, the witness
can be easily extracted from the condition; see Section 3.4.1 for rules over sets
and Section 3.6.2 for membership rules.

Note that the rule r = b → g itself is not in friends(r) as it is a prop rule. It
is contained in obviated(r), however, since g(d) = d holds by the stability of g.
In Section 3.6.2, we give a concrete example for the sequences friends, obviated
using membership rules.

The following observation shows the adequacy of the F & O algorithm for our
purposes.

30 Chapter 3. Rule Schedulers

F&O : rule r in rule set F 7−→ 〈friends(r), obviated(r)〉

let r = b→ g
let w be the witness of b

d := GI(F, g(w))
friends := sequence of the relevant rules h ∈ F in the

preceding execution of GI

obviated := 〈〉
for each (b′ → g′) ∈ F − friends do

if g′(d) = d or ∀e w d. ¬holds(b′, e) then

obviated := (b′ → g′), obviated
end

end

return 〈friends, obviated〉

Figure 3.4: Friends and Obviated Algorithm F & O

3.4.3. Note. Upon termination of the F & O algorithm, conditions (3.2) and
(3.6) hold, where the sequences friends(b → g, d) and obviated(b → g, d) are
defined as in Equations (3.4) and (3.5). �

Let us summarise the findings of this section that culminated in the R algo-
rithm. Assume that all functions are in the form of rules satisfying the conditions
of the Correctness Theorem 3.4.2. Then in the R algorithm, each time the eval-
uation of the condition b of the selected rule b→ g succeeds,

• the rules in the sequence friends(b→ g) are applied directly without testing
the value of their conditions,

• the rules in friends(b → g) ∪ obviated(b → g) are permanently removed
from the currently active set of functions G and from F .

3.5 Recomputing Least Fixpoints

Another substantial benefit of the sequences friends(b→ g) and obviated(b→ g)
surfaces when the R algorithm is repeatedly applied to compute the least fixpoint.
More specifically, consider the following sequence of actions:

• we compute the least common fixpoint d of the functions from F ,

• we move from d to an element e such that d v e,

• we compute the least common fixpoint above e of the functions from F .

3.6. Concrete Framework 31

Such a sequence of actions typically arises in the framework of CSPs, further
studied in Section 3.6. There, the computation of the least common fixpoint d
of the functions from F corresponds to the constraint propagation process for a
constraint C. The move from d to e such that d v e corresponds to splitting
or constraint propagation involving another constraint, and the computation of
the least common fixpoint above e of the functions from F corresponds to a
subsequent round of constraint propagation for C.

Suppose now that we computed the least common fixpoint d of the functions
from F using the RGI algorithm or its modification R for the rules. During
its execution we permanently removed some functions from the set F . These
functions are then not needed for computing the least common fixpoint above
e of the functions from F . The precise statement is provided in the following
simple, yet crucial, theorem.

3.5.1. Theorem. Suppose that all functions in F are inflationary and mono-
tonic and that (D,v) is finite. Suppose that the least common fixpoint d0 of the
functions from F is computed by means of the RGI or R algorithm. Let Ffin be
the final value of the variable F upon termination of the RGI or R algorithm.

Suppose now that d0 v e. Then the least common fixpoint e0 above e of the
functions from F coincides with the least common fixpoint above e of the functions
from Ffin .

Proof. Take a common fixpoint e1 of the functions from Ffin such that e v e1.
It suffices to prove that e1 is a common fixpoint of the functions from F .

So take f ∈ F − Ffin . Since condition (3.3) is an invariant of the main while

loop of the RGI algorithm and of the R algorithm, it holds upon termination, and
consequently f is stable above d0. But d0 v e and e v e1, so we conclude that
f(e1) = e1. �

Intuitively, this result means that, if after splitting we relaunch the same
constraint propagation process, we can disregard the removed functions. We
illustrate this important effect with a concrete example in Section 3.7.4.

3.6 Concrete Framework

We now proceed with our main goal, namely an instantiation of the scheduler
algorithm framework for the case of membership rules. We have indicated in
Section 3.4.1 a possible instantiation of the prop rule framework to constraint
propagation rules, of which membership rules are a special case. We set up a
different instantiation for these rules now, however. This specialised instantiation
is more natural as it is based on domains, and membership rules essentially deal
only with domains.

32 Chapter 3. Rule Schedulers

3.6.1 Partial Orderings

With each CSP P = 〈C;x1 ∈ D1, . . . , xn ∈ Dn〉 we associate now a specific par-
tial ordering. Initially we take the Cartesian product of the partial orderings
(P(D1),⊇), . . . , (P(Dn),⊇). So this ordering is of the form

(P(D1) × · · · × P(Dn),⊇)

where we interpret ⊇ as the Cartesian product of the reversed subset ordering.
The elements of this partial ordering are sequences (E1, . . . , En) of respective
subsets of (D1, . . . , Dn) ordered by the component-wise reversed subset ordering.
Note that (D1, . . . , Dn) is the least element in this ordering while

(∅, . . . ,∅)
︸ ︷︷ ︸

n times

is the greatest element. However, we would like to identify with the greatest
element all sequences that contain the empty set as an element. So we divide the
above partial ordering by an equivalence relation R � according to which

(E1, . . . , En) R � (F1, . . . , Fn) if (E1, . . . , En) = (F1, . . . , Fn)
or
∃i. Ei = ∅ and ∃j. Fj = ∅.

It is straightforward to see that R � is indeed an equivalence relation. In the
resulting quotient ordering there are two types of elements:

• the sequences (E1, . . . , En) that do not contain the empty set as an element,
and which we continue to present in the usual way with the understanding
that now each of the listed sets is non-empty;

• one special element equal to the equivalence class consisting of all sequences
that contain the empty set as an element. This equivalence class is the
greatest element in the resulting ordering, so we denote it by >.

In what follows we denote this partial ordering by (DP ,v).

3.6.2 Membership Rules

Fix a specific CSP P = 〈C;x1 ∈ D1, . . . , xn ∈ Dn〉 with finite domains. Let C be
one of its constraints on the variables y1, . . . , yk, z1, . . . , zm. We recall the notion
of membership rule from Section 2.2.2. The rule

C, y1 ∈ S1, . . . , yk ∈ Sk → z1 6= a1, . . . , zm 6= am

3.6. Concrete Framework 33

is a membership rule associated with C. a1, . . . , am are constants, and S1, . . . , Sk

are constant subsets of the respective variable domains, We drop here the condi-
tion that the sequences y1, . . . , yk and z1, . . . , zm have no variable in common so
that we can combine membership rules.

Let us reformulate the interpretation of such rules so as to fit the framework
considered in the previous section. To this end, we need to clarify how to

• evaluate the condition of a membership rule in an element of the considered
partial ordering,

• interpret the conclusion of a membership rule as a function on the considered
partial ordering.

Let us start with the first item.

3.6.1. Definition. Given a variable y with the domain Dy and E ∈ P(Dy) we
define

holds(y ∈ S,E) if E ⊆ S,

and extend the definition to the elements of the ordering (DP ,v) by putting

holds(y ∈ S, (E1, . . . , En)) if Ek ⊆ S, where we assumed that y is xk,

and

holds(y ∈ S,>).

Furthermore we interpret a sequence of conditions as a conjunction, by putting

holds((y1 ∈ S1, . . . , yk ∈ Sk), (E1, . . . , En))

if holds(yi ∈ Si, (E1, . . . , En)) for i ∈ [1..k].

�

It is not difficult to see what the witness of a membership rule condition is.
Consider the CSP 〈C;x1 ∈ D1, . . . , xn ∈ Dn〉 and its associated partial ordering.
The witness of y1 ∈ S1, . . . , yk ∈ Sk is (E1, . . . , En) where Ei = Sk if xi = yk, and
Ei = Dk if xi does not occur in the condition.

Concerning the second item we proceed as follows.

3.6.2. Definition. Given a variable z with the domain Dz we interpret the
atomic formula z 6= a as a function on P(Dz), defined by:

(z 6= a)(E) = E − {a}.

Then we extend this function to the elements of the considered ordering
(DP ,v) as follows:

34 Chapter 3. Rule Schedulers

• on the elements of the form (E1, . . . , En) we put

(z 6= a)(E1, . . . , En) = (E ′1, . . . , E
′
n),

where

E ′i =

{

Ei − {a} if z ≡ xi,

Ei otherwise.

If the resulting sequence (E ′1, . . . , E
′
n) contains the empty set, then we re-

place it by >,

• on the element > we put (z 6= a)(>) = >.

Finally, we interpret a sequence z1 6= a1, . . . , zm 6= am of atomic formulas by
interpreting each of them in turn. �

3.6.3. Example. Take the CSP 〈C; x1, . . . , x4 ∈ {a, b, c}〉 and consider the mem-
bership rule

x1 ∈ {a, b}, x2 ∈ {b} → x3 6= a, x3 6= b, x4 6= a. (r)

Then we have

r({a}, {b}, {a, b, c}, {a, b}) = ({a}, {b}, {c}, {b}),

r({a, b, c}, {b}, {a, b, c}, {a, b}) = ({a, b, c}, {b}, {a, b, c}, {a, b}),

r({a, b}, {b}, {a, b}, {a, b}) = >.

The witness of r is ({a, b}, {b}, {a, b, c}, {a, b, c}). �

In view of the Correctness Theorem 3.4.2, the following observation allows us
to apply the R algorithm when each function is a membership rule and when for
each rule b→ g the sequences friends(b→ g) and obviated(b→ g) are constructed
by the F & O algorithm.

3.6.4. Note. Consider the partial ordering (DP ,v).

1. Each membership rule is a prop rule.

2. Each function z1 6= a1, . . . , zm 6= am on DP is

• inflationary,

• monotonic.

�

3.7. Implementation 35

To be able to instantiate the R algorithm with the membership rules, we
still need to define the set update(G, g, d). In our implementation we chose the
following simple definition:

update(G, g, d) =

{

F −G if g(d) 6= d,

∅ otherwise.

Note that assumptions A, B, C in (3.1) hold.

3.6.5. Example. Let us illustrate the intuition behind the use of the sequences
friends(b → g) and obviated(b → g). Take again 〈C; x1, . . . , x4 ∈ {a, b, c}〉 and
consider the membership rules

x1 ∈ {a, b} → x2 6= a, x4 6= b, (r1)

x1 ∈ {a, b}, x2 ∈ {b, c} → x3 6= a, (r2)

x2 ∈ {b} → x3 6= a, x4 6= b, (r3)

x2 ∈ {a} → x1 6= a. (r4)

Upon application of rule r1, rule r2 can be applied without evaluating its condi-
tion. Subsequently, rule r3 can be deleted without applying it since its body has
become irrelevant; the same holds for r1 itself. Finally, rule r4 can be deleted
since its condition can now never succeed. Hence, we can have

friends(r1) = 〈r2〉, and

obviated(r1) = 〈r1, r3, r4〉,

which is in fact what the F & O algorithm computes. �

3.7 Implementation

In this section we discuss the implementation of the R algorithm for the mem-
bership rules and compare it by means of several benchmarks with the CHR im-
plementation in the ECLiPSe system.

3.7.1 Modelling Membership Rules in CHR

Following [Apt and Monfroy, 2001], membership rules are represented as CHR

propagation rules with a single head. Recall from Section 2.2.1 that the latter
ones are of the form

H ⇒ G1, . . . , Gl | B1, . . . , Bm

where the atom H of the rule head is a defined constraint, the atoms G1, . . . , Gl

of the rule guard are built-in constraints, and the atoms B1, . . . , Bm of the rule
body are arbitrary constraints.

36 Chapter 3. Rule Schedulers

Let us also review how CHR propagation rules with one head are executed.
First, given a query (that represents a CSP) the variables of the rule are renamed
to avoid variable clashes. Then an attempt is made to match the head of the
rule against the first atom of the query. If it is successful and all guards of the
instantiated version of the rule succeed, the instantiated version of the body of
the rule is executed. Otherwise the next rule is tried.

Finally, let us recall the representation of a membership rule as a CHR propa-
gation rule from [Apt and Monfroy, 2001]. We assume that the host language is
ECLiPSe . Consider the membership rule

y1 ∈ S1, . . . , yk ∈ Sk → z1 6= a1, . . . , zm 6= am

associated with the defined constraint c on the variables X1, . . . , Xn. We represent
its condition by starting initially with the atom c(X1, . . . , Xn) as the head. Each
atomic condition of the form yi ∈ {a} is processed by replacing in the atom
c(X1, . . . , Xn) the variable yi by a. In turn, each atomic condition of the form
yi ∈ Si, where Si is not a singleton, is processed by adding the atom in(yi, LSi)
to the guard of the propagation rule. The in/2 predicate is defined by

in(X, L) :- dom(X, D), subset(D, L).

So in(X,L) holds if the current domain of the variable X (yielded by the built-in
dom of ECLiPSe) is included in the list L. In turn, LSi is a list representation of
the set Si.

Finally, each atomic conclusion zi 6= ai translates to the atom zi ## ai of the
body of the propagation rule.

As an example consider the membership rule

X ∈ {0}, Y ∈ {1, 2} → Z 6= 2

associated with a constraint c on the variables X,Y, Z. It is represented by the
following CHR propagation rule:

c(0,Y,Z) ==> in(Y, [1,2]) | Z ## 2.

In ECLiPSe , variables with singleton domains are automatically instantiated.
So, assuming that the variable domains are non-empty, the condition of this
membership rule holds if and only if the head of the renamed version of the
above propagation rule matches the atom c(0,Y,Z) and the current domain of
the variable Y is included in [1,2]. Further, in both cases the execution of the
body leads to the removal of the value 2 from the domain of Z. So the execution
of both rules has the same effect when the variable domains are non-empty.

3.7. Implementation 37

Execution of CHR

In general, the application of a membership rule as defined in Section 3.6 and the
execution of its representation as a CHR propagation rules coincide. Moreover,
by the semantics of CHR, the CHR rules are repeatedly applied until a fixpoint is
reached. So a repeated application of a finite set of membership rules coincides
with the execution of the CHR program formed by the representations of these
membership rules as propagation rules. An important point concerning the stan-
dard execution of a CHR program is that, in contrast to the R algorithm, every
change in the variable domains of a constraint causes the computation to restart.

3.7.2 Benchmarks

In our approach, the repeated application of a finite set of membership rules is
realised by means of the R algorithm of Section 3.3 implemented in ECLiPSe .
The compiler consists of about 1500 lines of code. It accepts as input a set of
membership rules, each represented as a CHR propagation rule, and constructs
an ECLiPSe program that is the instantiation of the R algorithm for this set of
rules. As in CHR, for each constraint the set of rules that refer to it is scheduled
separately.

In the benchmarks below, we used for each considered CSP the sets of
all subsumption-free valid membership and equality rules for the ‘base’ con-
straints. These rule sets were automatically generated using a program discussed
in [Apt and Monfroy, 2001]. In the first phase, the compiler constructs for each
rule g the sequences friends(g) and obviated(g). Time spent on this construc-
tion is comparable with the time needed for the generation of the equality and
membership rules for a given constraint. For example, the medium-sized mem-
bership rule set for the rcc8 constraint, containing 912 rules, was generated in
166 seconds while the construction of all friends and obviated sequences took 142
seconds time. It is important to note that generating the rules and the sequences
friends, obviated takes place once, at compile-time, while the resulting constraint
propagation procedure is typically used many times; hence fast generation is not
a critical issue.

To see the impact of the accumulated savings obtained by permanent removal
of the rules during the iteration process, we chose benchmarks that embody sev-
eral successive propagation steps, i. e., propagation interleaved with search (do-
main splitting or labelling).

In Table 3.1, we list the results for selected single constraints. For each con-
straint, say C on the variables x1, . . . , xn with respective domains D1, . . . , Dn, we
consider the CSP 〈C;x1 ∈ D1, . . . , xn ∈ Dn〉 together with randomised labelling;
i. e., the choices of variable, value, and action (assigning or removing the value),
are all random. The computation of simply one or all solutions yields insignifi-
cant times, so the benchmark program computes and records also all intermediate

38 Chapter 3. Rule Schedulers

Constr. rcc8 fork and3 and9 and11

Mem

rel. 37% / 22% 58% / 46% 66% / 49% 26% / 15% 57% / 25%

abs. 147/396/686 0.36/0.62/0.78 0.27/0.41/0.55 449/1727/2940 1874/3321/7615

Equ

rel. 97% / 100% 98% / 94% 92% / 59% 95% / 100% 96% / 101%

abs. 359/368/359 21.6/21.9/22.9 0.36/0.39/0.61 386/407/385 342/355/338

Table 3.1: Randomised search trees for single constraints

Logic 3-valued 9-valued 11-valued
membership

relative 61% / 44% 65% / 29% 73% / 29%

absolute 1.37/2.23/3.09 111/172/385 713/982/2495

equality

relative 63% / 29% 40% / 57% 36% / 51%

absolute 0.77/1.22/2.70 2.56/6.39/4.50 13.8/38.7/26.7

Table 3.2: CSPs formalising sequential ATPG

non-solution fixpoints. Backtracking occurs if a recorded fixpoint is encountered
again. In essence, all possible search trees are traversed. In some cases, this takes
too much time; we then limit the number of visited nodes.

In Table 3.2, we list the results for practically motivated CSPs. We chose here
CSPs that formalise the problem of automatic test pattern generation for sequen-
tial digital circuits (ATPG), to be discussed in Chapter 6. These are large CSPs
that employ the andN constraints of Table 3.1 and a number of other constraints,
almost all of which are implemented by rules. The constraint andN (x, y, z) ex-
presses the conjunction x ∧ y = z in an N -valued logic.

We measured the execution times for three rule schedulers: the standard CHR

representation of the rules, the generic chaotic iteration algorithm GI, and its
improved derivative R. The codes of both the latter two algorithms are produced
by our compiler and are thus structurally very similar, which allows a direct
assessment of the improvements embodied in R.

In the tables, we provide for each constraint or CSP the ratio of the execution
times between, first, R and GI, and second, R and CHR. This is followed by the
absolute times in seconds in the order R / GI / CHR.

3.7. Implementation 39

The platform for all benchmarks was a Sun Enterprise 450 with four
UltraSPARC-II 400 MHz processors and 2 GB memory under Solaris, and
ECLiPSe 5.5 (in single processor mode).

We find a substantial speedup in many cases when using R, both comparing
R and GI, and R and CHR.

Possibilities for Improving the Implementation

We examined some of the various ways of optimising our implementation of the
R algorithm in ECLiPSe . In particular, we considered a better embedding into
the constraint-handling mechanism of ECLiPSe , for instance by finer control of
the waking conditions and a joint removal of the elements from the same variable
domain instead of several disequality constraints resulting from larger sequences
friends. Using such techniques, we succeeded in achieving an additional average
speed-up by a factor of 4.

This open-ended work indicates that further improvements are possible. For
example, an unrealised improvement with a plausible gain in efficiency is a better
choice of the data structures for handling the rule sets F and G. We use lists
(plain lists and Prolog difference lists), in which, e. g., element finding has linear
cost, while in a balanced tree this cost is only logarithmic.

3.7.3 Detecting When a Constraint is Solved

An important point in the implementations is the question of when to remove
solved constraints from the constraint store. The standard CHR representation of
membership rules as generated by the algorithm of [Apt and Monfroy, 2001] does
so by containing, beside the propagation rules, one CHR simplification rule for
each tuple in the constraint definition. Once its variables are assigned values that
correspond to a solution, the constraint is solved, and removed from the store by
the corresponding simplification rule. This ‘solved’ test takes place interleaved
with executing the propagation rules.

The implementations of GI and R, on the other hand, check after closure under
the propagation rules. The constraint is considered solved if all its variables are
fixed (necessarily to a solution), or, in the case of R, if the set F of remaining rules
is empty; this is discussed in the following subsection. Interestingly, comparing
CHR and GI, the additional simplification rules sometimes constitute a substantial
overhead while at other times their presence allows earlier termination.

3.7.4 Recomputing Least Fixpoints

Let us finally illustrate the impact of the permanent removal of rules during the
least fixpoint computation, achieved here by the use of the sequences friends(r)
and obviated(r).

40 Chapter 3. Rule Schedulers

3.7.1. Definition. Given a set F of rules, we call a rule g ∈ F solving if
friends(g) ∪ obviated(g) = F . �

Take as an example the ternary equivalence relation ≡ from the three-valued
logic of [Kleene, 1952, p. 334] that consists of the values, 0 (true), 1 (false) and u

(unknown). For instance, we have ≡(1, u, u). The full definition is given by the
following truth table:

≡ 1 0 u

1 1 0 u

0 0 1 u

u u u u

The program of [Apt and Monfroy, 2001] generates 26 minimal valid membership
rules for the ≡ constraint. Out of them, 12 are solving rules. For the remaining
rules the sizes of the set friends ∪ obviated are: 17 (for 8 rules), 14 (for 4 rules),
and 6 (for 2 rules).

In the R algorithm, a selection of a solving rule leads directly to termination,
G = ∅, and to a reduction of the set F to ∅. For other rules, a considerable
simplification in the computation takes place. For example,

x ∈ {0}, z ∈ {0, u} → y 6= 0 (r)

is one of the 8 rules of which the set friends(r) ∪ obviated(r) has size 17.
Consider now the CSP

〈≡ (x, y, z) ; x ∈ {0}, y ∈ {0, 1, u}, z ∈ {0, u}〉 .

In the R algorithm, the selection of r is followed by the application of the rules
from friends(r) and the removal of the rules from friends(r) ∪ obviated(r). This
brings the number of the considered rules down to 26− 17 = 9. The R algorithm
subsequently discovers that none of these rules is applicable at this point. So the
nine rules remain upon termination.

In a subsequent constraint propagation phase, launched after splitting or after
constraint propagation involving another constraint, the fixpoint computation by
means of the R algorithm involves only these nine rules instead of the initial 26!

For solving rules, this fixpoint computation terminates immediately.

Solving Rules

Interestingly, as Table 3.3 shows, solving rules occur quite frequently for equal-
ity rules, bot less often so for non-equality membership rules. We list for each
constraint and each type of rules the number of solving rules divided (/) by the
total number of rules, followed in a new line by the average number of rules in

3.7. Implementation 41

Constraints and2 and3 and9 and11 fork rcc8 allen

equality 6/6 13/16 113/134 129/153 9/12 183/183 498/498
6 14 130 148 11 183 498

membership 6/6 4/13 72/1294 196/4656 0/24 0/912 n.a./26446
6 7 810 3156 9 556 n.a.

Table 3.3: Solving rules

the set friends(r) ∪ obviated(r). The rule sets were computed using the program
of [Apt and Monfroy, 2001].

The fork constraint is taken from the Waltz language for the analysis of poly-
hedral scenes. The rcc8 constraint represents the composition table of the Re-
gion Connection Calculus with 8 relations from [Egenhofer, 1991] (which we re-
visit in Chapter 9). It is remarkable that all its 183 equality rules are solving.
While none of the 912 membership rule for rcc8 is solving, on average the set
friends(r) ∪ obviated(r) contains 556 membership rules. Also all 498 equality
rules for the allen constraint, which represents the composition table of Allen’s
thirteen qualitative temporal relations [Allen, 1983], are solving. The number of
membership rules exceeds 26 000 and consequently they are too costly to analyse.

CHR Simplification Rules

The CHR language supports besides propagation rules also so-called simplification
rules. Using such rules, one can remove constraints from the constraint store,
so one can freely affect its form. In [Abdennadher and Rigotti, 2001], a method
is discussed that allows one to automatically transform CHR propagation rules
into simplification rules such that the semantics of the rule set is respected. The
method is based on identifying or constructing propagation rules that are solving.

In contrast, our method captures the degree to which a rule is solving. We
define

solving degree of r ∈ R =
|friends(r) ∪ obviated(r)|

|R|
.

If this ratio is 1 then r is a solving rule. More typically, the ratio will be less
than 1. Consider Figure 3.5 for the distribution of the solving degree of the rules
for and9. Only 72 rules have degree 1 and correspond thus to simplification rules.

Let Del abbreviate friends(r) ∪ obviated(r). Consider now two non-solving
rules r1, r2, that is, such that Del(r1) 6= R and Del(r2) 6= R. But let also
Del(r1) ∪ Del(r2) = R. Suppose that during a fixpoint computation the condi-
tions of both rules have succeeded, and their bodies have been applied. The
R algorithm detects immediately that the constraint is solved, and terminates

42 Chapter 3. Rule Schedulers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

S
ol

vi
ng

 d
eg

re
e

Rule

1294 rules

Figure 3.5: Membership rules for and9: Solving degree

consequently. CHR, for which r1 and r2 are ordinary propagation rules, cannot de-
tect this possibility for immediate termination. In R, we observe an accumulated
effect of removing rules from the fixpoint computation.

We revisit the issue of the relevance of solving rules for the R scheduler in
Section 4.6 of the following chapter.

3.8 Final Remarks

We studied the problem of efficient scheduling of constraint propagation rules.
Starting from a generic iteration algorithm for functions, we obtained the R sched-
uler by step-wise refinement. The central observation exploited in the R algorithm
is that an application of some constraint propagation rule in which its condition
succeeds may provide the justification to immediately apply other rules without
testing their condition, or to remove other rules from the iteration. Removing a
rule in the R algorithm is ultimate in the sense that a removed rule need not be
reconsidered in subsequent propagation rounds, which can therefore be expected
to be faster. This is important, as a constraint propagation algorithm is typically
executed repeatedly, interleaved both with other propagation and search.

We described an implementation of the R scheduler for membership rules,
and we gave experimental evidence for the value of the efficiency improvements
by comparing the R scheduler with a generic iteration algorithm and a CHR im-
plementation by way of benchmarks. We found substantial speedups in many
cases. Finally, we argued that the increase in efficiency is not due to implicitly
distinguishing solving rules from non-solving rules, but by accumulating the effect
of removing rules.

Chapter 4

Redundant Rules

4.1 Introduction

Given a set of constraint propagation rules, a natural question is whether each
rule is needed for the desired constraint propagation. It may be that the effect
of applying some rule r can also be obtained by applying one or several other
rules. In this case, removing rule r from the rule set does not affect the result of
constraint propagation associated with the rule set.

4.1.1. Example. Consider the set R = {r1, . . . , r4} of constraint propagation
rules, given as follows:

a, b → c, (r1)

b → c, (r2)

c → d, (r3)

b → d. (r4)

Rule r1 is unneeded in presence of rule r2. Indeed, whenever r1 can add the
constraint c then also r2 can. Nor is rule r4 needed: its effect can always be
obtained by applying two rules, r2 followed by r3.

Hence, the rule set {r2, r3} propagates as much as R. �

Constraint propagation rules are employed in fixpoint computation algo-
rithms. An ideal algorithm would schedule the rules in such a way that the
induced derivation becomes shortest. Practical algorithms, such as GI and its
derivatives studied in the previous chapter, try to keep derivations short, but
generally the cost of a fixpoint computation rises with the number of rules in-
volved. This explains the interest in small rule sets. One way to obtain small sets
is to identify rules that are unneeded for computing the common fixpoints.

We examine here the issue of redundancy with respect to fixpoint computation
for sets of functions that are in the form of rules. Specifically, we deal with prop

43

44 Chapter 4. Redundant Rules

rules, introduced in the previous chapter; see Definition 3.4.1. The concept of
redundancy is formalised in a “semantic” sense that takes into account the type
of computations performed by means of the considered rules. We provide a simple
test for redundancy that leads to a natural way of computing minimal rules sets
in an appropriate sense.

Redundancy in rule-based programs in the CHR language is examined in
[Abdennadher and Frühwirth, 2002]. Since CHR is very expressive, the proposed
redundancy test is necessarily quite abstract, relying on termination, confluence,
and operational equivalence of original and reduced program. The test is also
computationally more expensive than our test for the case of prop rules.

The issue of identifying redundant rules is highly relevant for the automatic
generation of constraint propagation rules. Two significant such methods are de-
scribed in [Apt and Monfroy, 2001] and [Abdennadher and Rigotti, 2004]. Both
approaches employ notions of redundancy and avoid generating such rules. How-
ever, these redundancy notions are not general enough or only informally defined.
We show that they are subsumed by our comprehensive and rigourous approach.
According to our notion, the mentioned rule generation methods may produce
rules that are (in part) unneeded for computing common fixpoints of the respec-
tive rule sets.

To show relevance and feasibility of our approach, we discuss an ECLiPSe

implementation of the computation of minimal rule sets by redundancy removal.
We report the outcome of applying the minimisation technique to several sets of
specific constraint propagation rules stemming from the rule generation methods
mentioned above, and we assess by benchmarks the effect that using the smaller
rule sets has on propagation performance.

4.2 Redundant Functions

We start again with arbitrary functions before moving on to prop rules. In the
following, for brevity, we drop the word “common” when referring to common
fixpoints of a set of functions.

4.2.1. Definition.

• Consider a set F ∪ {f} of functions on a partial ordering. A function f is
called redundant with respect to F if the sets of fixpoints of F and F ∪ {f}
are equal.

• A set of functions F is called minimal with respect to redundancy (or simply
minimal) if no function f ∈ F is redundant with respect to F − {f}.

�

Equivalently, we can say that a function f is redundant w. r. t. F if every fixpoint
of F is also a fixpoint of f .

4.3. Redundant Rules 45

4.3 Redundant Rules

We focus now on the subject of redundancy of prop rules, and formulate the
following simple criterion.

4.3.1. Theorem. Consider a set F of prop rules and a prop rule r = (b → g)
with the witness w for b. Let e be the least fixpoint of F greater than or equal to
w. If and only if g(e) = e, then the rule r is redundant with respect to F .

Proof. We show first that g(e) = e implies that an arbitrary fixpoint d of F
is also a fixpoint of r. We make a case distinction on the condition.

b holds for d: So r(d) = g(d). We have w v d since w is the witness for b. Also,
w v e v d since e is the least fixpoint of F greater than or equal to w.
From e v d, g(e) = e, and the stability of g we conclude g(d) = d. Hence
r(d) = g(d) = d.

b does not hold for d: Then r(d) = (b→ g)(d) = d.

The “only if” part is proved by showing that g(e) 6= e implies that F and
F ∪ {r} have different fixpoints. This is the case: consider e. �

This test is of interest to us since it requires to compute only one fixpoint of
F instead of all fixpoints. It is effective if

• the witness can be computed,

• the equality g(e) = e can be determined, and

• the fixpoint computations are effective.

Partial Redundancy

For the sake of fixpoint computations, a rule r = (b → g) with the body
g = g1, . . . , gn describing the function composition g1 ◦ · · · ◦ gn, such that any
two different functions gi, gj commute, can be identified with the collection
(b→ g1), . . . , (b→ gn) of rules, and vice versa. Indeed, the respective fixpoints
and the rule properties are maintained. We consider here these two representa-
tions as largely equivalent.

If a rule with such a ‘compound’ body is not redundant then it might still be
so in part. That is, some part of its body might be redundant or, in other words,
some sub-rules of its decomposition might be. In that case we say that the rule
is partially redundant.

We argue in Section 4.5.2 below that eliminating partial redundancy improves
the performance of fixpoint computations with the R algorithm, introduced in
Section 3.4.2.

46 Chapter 4. Redundant Rules

MinRuleSet : rule set F 7−→ a corresponding minimal rule set

for each r ∈ F , in some order do

if Redundant(r, F − {r}) then F := F − {r}
end

Redundant : rule b→ g, rule set F 7−→ true/false

w := witness for b
e := CommonFixpoint(F,w)
if g(e) = e then return true else return false

Figure 4.1: Rule set minimisation

4.3.1 Computing Minimal Sets of prop Rules

Rule set minimisation can be achieved by a simple bounded loop (Fig. 4.1). It is
important to observe that several minimal rule sets correspond to a given non-
minimal set in general. The obtained minimal set depends on the selection order
for testing (see Example 4.3.3 further down).

A reasonable strategy is to test first those rules that are undesirable, hoping
that they are redundant and thus expendable. The criterion in our implemen-
tation processing constraint propagation rules is that a rule is comparatively
undesirable if its condition is expensive to test (because it consists of many con-
straints), and its body is weakly constraining (because it consists of few con-
straints). We also apply minimisation in two phases: first, only fully redundant
rules are eliminated, then, every partially redundant rule is reduced. In this way,
we hope to obtain a set of rules for which fixpoint computations are generally
fast.

4.3.2 Subsumption

We highlight a common special case of redundancy, involving only two rules.
Informally, a rule subsumes another if its condition is at least as weak and its body
is at least as strong. For example, c1 → c3, c4 subsumes c1, c2 → c3. We adopt the
term ‘subsumption’ from automated reasoning where it denotes a similar concept.

4.3.2. Corollary. Consider a set F of prop rules and two rules r1 = (b1 → g1)
and r2 = (b2 → g2) such that r1 ∈ F and r2 /∈ F . Assume that g2 is inflationary
and that, for all d,

holds(b2, d) implies holds(b1, d), and g2(d) v g1(d).

Then the rule r2 is redundant with respect to F .

4.3. Redundant Rules 47

c(x, y, z, 0) → x 6= 0, y 6= 0, z 6= 0 (1)

c(x, y, 1, u) → u 6= 1, x 6= 0, y 6= 0 (2)

c(0, y, z, u) → u 6= 0, y 6= 0, z 6= 1 (3)

c(x, 0, z, u) → u 6= 0, x 6= 0, z 6= 1 (4)

c(x, y, z, 1) → z 6= 1 (5)

c(x, y, 0, u) → u 6= 0 (6)

c(1, 1, z, u) → u 6= 1, z 6= 0 (7)

c(x, 1, 0, u) → x 6= 1 (8)

c(x, 1, z, 1) → x 6= 1 (9)

c(1, y, 0, u) → y 6= 1 (10)

c(1, y, z, 1) → y 6= 1 (11)

Figure 4.2: Membership rules for the constraint c

Proof. Let e be the least fixpoint of F greater than or equal to the witness w2

of b2. We show that g2(e) = e, which entails the desired result by Theorem 4.3.1.
We have holds(b2, w), so by monotonicity of b2 also holds(b2, e). The first

requirement above implies holds(b1, e). We know for the fixpoint e that e = r1(e),
and with holds(b1, e) also e = g1(e). By the second requirement we conclude
g2(e) v e = g1(e), but g2 is also inflationary: e v g2(e). Hence, g2(e) = e. �

4.3.3. Example. Let us illustrate a number of issues with respect to redundant
rules by means of an example. Consider the constraint c(x, y, z, u) defined by

x y z u
0 1 0 1
1 0 0 1
1 1 1 0

The underlying domain for all its variables is {0, 1}. The induced corresponding
partial order is

({ (A,B,C,D) | A,B,C,D ⊆ {0, 1} }, ⊇),

following the formalisation in Section 3.6.1. The rule generation algorithm of
[Apt and Monfroy, 2001] generates eleven membership rules, listed in Fig. 4.2
(since the rule conditions are only equality tests, we use an alternative, compact
notation).

48 Chapter 4. Redundant Rules

Suppose we are interested in computing the smallest fixpoint greater than or
equal to E1 = {1} × {0, 1} × {0, 1} × {1}. Suppose rule (11) is considered. Its
application yields E2 = {1} × {0} × {0, 1} × {1} from where rule (4) leads to
E3 = {1} × {0} × {0} × {1}. This indeed is a fixpoint since for each rule either
its condition does not apply or the application of its body results again in E3.

A second possible iteration from E1 that stabilises in E3 is by rule (5) followed
by rule (10). Rule (11) can be applied at this point but its body does not change
E3. Indeed, E3 is a fixpoint of all rules including rule (11). From the fact that E1

is the witness of the condition of rule (11), we conclude that rule (11) is redundant
— in fact, we just performed the test of Theorem 4.3.1.

The process of identifying redundant rules can then be continued for the rule
set {(1), . . . , (10)}. One possible outcome is depicted in Figure 4.2, where redun-
dant parts of rule bodies are underlined. 7 out of the total of 20 initial atomic
conclusions are deleted, so we find here a redundancy ratio of 35%.

Consider now the justification for the redundancy of rule (11), and observe
that rule (11) has no effect since rule (10), which has the same body, was applied
before. Suppose now that the process of redundancy identification is started with
rule (10) instead of rule (11). This strategy results in rule (10) being identified
as redundant, with a relevant application of rule (11).

Note moreover that one of the rules (10), (11) must be present in any minimal
set since their common body y 6= 1 occurs in no other rule. This suggests that
sometimes several equally useful minimal sets exist that correspond to a given
non-minimal set.

4.4 Implementation and Empirical Evaluation

We implemented in ECLiPSe the MinRuleSet algorithm in two instantiations, one
for a specific class of automatically generated constraint propagation rules and
one for membership rules.

4.4.1 Constraint Propagation Rules

Constraint propagation rules with conditions and bodies consisting of various
multiple constraints can be automatically generated using the RuleMiner algo-
rithm of [Abdennadher and Rigotti, 2004].

In RuleMiner, several criteria are used to identify an undesired rule. The
single most important one is called lhs-cover. A rule C1 → C2 is called lhs-covered
by C3 → C4 if C1 ⊇ C3 and C2 ⊆ C4, where the Ci are sets of constraints. This
requirement is implied by the condition of Corollary 4.3.2, which can be seen if we
abstract constraint propagation rules to prop rules as in Section 3.4.1. The notion
of lhs-covering is a special case of subsumption and, in turn, general redundancy.

4.4. Implementation and Empirical Evaluation 49

and or xor andor andxor orxor andor+ andxor+ orxor+

total 19 19 28 138 207 199 176 254 246

redundant
total – – – – – – – – –
partial 7 7 1 83 82 77 135 192 184

redundancy
ratio 24% 24% 3% 38% 21% 21% 61% 54% 54%

Table 4.1: Redundancy in RuleMiner rule sets

The authors of the RuleMiner algorithm [Abdennadher and Rigotti, 2004]
kindly provided us with several generated rule sets for the constraints and, or, xor,
which correspond to the logical operators in a 6-valued logic. The rules are
used in the automatic generation of test patterns for digital circuits, an electrical
engineering problem which we discuss in Chapter 6. For the semantics of the
6-valued logic, see specifically Section 6.2.1. The constraint and(x, y, z) captures
x ∧ y = z in the corresponding logic.

The given RuleMiner rules capture propagation from single constraints and
pairs of constraints. In both cases, additional atomic equality constraints between
two variables, or a variable and a constant, may occur in a rule condition. The
body of a rule consists of equality and disequality constraints.

Here are two example rules, using the original compact notation:

and(x, x, z) → x 6= d, x 6= d, x = z, (1)

and(x, y, z), or(z, y, 1) → z 6= d, z 6= d, x = z, y = 1. (2)

The rules can be rewritten so as to fit the format of abstract propagation rules,
by introducing new variables and equalities in the rule conditions. For example,

and(x, y, z), or(z, y, 1) is and(x, y, z), or(u, v, w), z = u, y = v, w = 1.

We assume appropriate rules for equality constraints, i. e., expressing transitivity
and symmetry. These rules are considered part of the rule set to be minimised
but are excluded from being tested for redundancy themselves.

The results for some test rule sets are in Table 4.1. We provide the size of
the original rule set, the number of redundant and partially redundant rules, and
the redundancy ratio, which is the percentage of atomic constraints that were
removed from rule bodies.

The first three columns in Table 4.1 describe the results for rule sets corre-
sponding to the single logical constraints, that is, rules such as (1). The three
centre columns contain the results for rule sets for pairs of logical constraints,

50 Chapter 4. Redundant Rules

and or xor andor andxor orxor andor+ andxor+ orxor+

total 19 19 28 138 207 199 176 254 246

redundant
total – – – 6 – – 18 12 12
partial 7 7 1 77 86 81 117 180 172

redundancy
ratio 24% 24% 3% 39% 22% 21% 63% 55% 55%

Table 4.2: Redundancy in RuleMiner rule sets, with domain information

i. e., rules such as (2). Finally, the last three columns correspond to the union
of the rule sets for a pair of logical constraints and its respective two individual
constraints, i. e., rules as (1) and (2) together. This configuration corresponds to
the intended use.

The tested RuleMiner rule sets contained partial redundancies, but they
did not contain any (totally) redundant rules. This observation may surprise
since lhs-covering is not a very strong redundancy notion. However, additional
redundancy criteria are employed in the RuleMiner system. In particular, an
ad-hoc minimisation is conducted. It takes place during rule generation: the
redundancy of a rule is checked directly after its generation. This means that the
subsequently generated rules are not taken into account.

Adding domain information. From a semantical point of view, one piece
of information that is not available in our example RuleMiner rules are the
variable domains. The central constraints represent logical operators and, or, . . .
in a 6-valued logic. Using the rules as intended implies that the constrained
variables have the corresponding 6-valued domain; let us call it D6 = {0, 1, d, . . .}.
This means that in this case one can augment the condition of each rule by unary
domain constraints v ∈ D6 for all variables v occurring in the rule. So rule (1)
could then be written as

and(x, x, z), x ∈ D6, z ∈ D6 → x 6= d, x 6= d, x = z. (1′)

This additional information, which is available to the RuleMiner generator,
is relevant for redundancy minimisation as it changes the witness of the rule
condition. To see the effect, consider a situation in which some variable v is
involved in five disequality constraints with different constants. Then, v ∈ D6

entails that v is equal to the remaining 6th value.

Table 4.2 reports the rule set sizes and redundancy ratios for the RuleMiner
rules augmented with domain information. Some of the rules are redundant.

4.4. Implementation and Empirical Evaluation 51

and11M and11E and3M equ3M fula2E forkE forkM

total 4656 153 18 26 52 12 24

redundant
total 4263 – 5 8 24 – 6
partial 2 6 – – – 9 6

redundancy
ratio 81% 4% 30% 26% 35% 35% 40%

Table 4.3: Minimising rule sets

4.4.2 Membership Rules

The algorithm described in [Apt and Monfroy, 2001], which we call RGA (and
quote in Fig. 5.1 in the following chaper), can be used to generate a set of mem-
bership rules from a constraint definition. Its only redundancy concept is that of
extension. In our notation, the membership rule r2 = (b2 → g2) extends the rule
r1 = (b1 → g1) if holds(b2, d) implies holds(b1, d) and g1 = g2. Rule r2 extending
r1 is redundant w. r. t. r1.

The concept of extension is a special case of our notion of subsumption, Corol-
lary 4.3.2. This suggests that the RGA algorithm of [Apt and Monfroy, 2001] may
still generate rules that are redundant according to our wider criterion.

This is indeed the case. We applied rule set minimisation according to The-
orem 4.3.1 to some generated benchmark membership rule sets. The results are
listed in Table 4.3. The constraints are taken from the experiments reported in
Table 3.1 of the previous chapter. Additionally, a 5-ary constraint fulladder (ab-
breviated to fula) is analysed. It captures the addition of two bits with additional
input and output carry bits.

For each rule set, it is indicated by the respective subscript M or E whether it
was generated as a set of equality rules or a set of membership rules (sufficient to
enforce GAC on the constraint). The numeric suffix to logical constraints states
the size of the logic.

We observe redundancy in all examined rule sets of Table 4.3. In the case of
the ternary and11M constraint, which expresses the conjunction x ∧ y = z in an
11-valued logic, minimising the original rule set results in an enormous reduction
to just 393 rules. In Section 4.5.2, we report experiments in which the rules are
used for propagation (for example, using the minimised rule set for propagating
and11M speeds up the computations by a factor of 10).

52 Chapter 4. Redundant Rules

4.5 Discussion

For the complete CHR language, the issue of redundancy is examined in
[Abdennadher and Frühwirth, 2002], using an approach based on term rewrit-
ing concepts (see, e. g., [Baader and Nipkow, 1998] for an introduction). The
class of CHR rule-based programs is strictly more expressive than the class of
prop rules. The central difference is the presence of simplification rules, which
remove constraints from the constraint store. CHR rules are thus generally neither
monotonic nor inflationary. Consequently, the proposed redundancy test needs to
be more abstract than ours, relying on termination, confluence, and operational
equivalence of original and reduced rule sets instead.

For prop rules viewed as a term rewriting system, termination and confluence
are guaranteed, and Theorem 4.3.1 constitutes a concrete test of operational
equivalence. Benefiting from inflationarity and monotonicity, we can do with only
one fixpoint computation per candidate rule, whereas, if the rules are viewed as
a CHR program, two computations are needed, with and without the candidate.

Completion in Term Rewriting Systems

A link exists between redundancy and the completion of term rewriting systems.
Completion adds rules to a rule set so as to make it confluent, that is, to pre-
vent the existence of some point from which two iterations stabilise in different
fixpoints. In such a case, a new rule is introduced that joins both iterations,
effectively removing one fixpoint. So the new rule enables an alternative iteration
that leads to the same remaining fixpoint.

Redundancy removal, in contrast, tries to minimise the number of alternative
iterations leading to the same fixpoint, while maintaining the total set fixpoints.
This is done by removing a rule that occurs in one possible iteration but not in
all of them.

4.5.1 Benefit of Rule Set Minimisation

It is difficult to argue generally that minimising rule sets is useful when the
rule sets are used for computing common fixpoints. While it seems obvious that
discarding a larger number of redundant rules accelerates fixpoint computation,
this is not so clear when removing one single rule.

A redundant rule can also be viewed as a short-cut, which typically requires
several other rules to simulate if removed. For an appropriate choice of scheduling
strategy, rule set, and starting point of the fixpoint computation, the effect of
redundancy removal on the computation time may consequently be adverse.

This issue is even more relevant for the case of a partially redundant rule.
Therefore, we can not state that reducing redundancy is always useful (although

4.5. Discussion 53

in our experiments that was the case). However, observe that partial redundancy
can easily be reintroduced.

4.5.2 Minimal Rule Sets and the R Scheduler

The R scheduler, Section 3.4.2, uses sets of rules friends(r) and obviated(r) for
each rule r. After an application of r in which its condition held, the rules in both
sets become irrelevant for the remainder of the computation. These rule become
‘locally’ redundant. No trivial connection between redundancy and the rule sets
friends(r) and obviated(r) exists, however.

4.5.1. Note. Let F be a set of rules used in the R scheduler, and abbreviate

Del(r) = friends(r) ∪ obviated(r)

for each rule r ∈ F .

• It is not the case that a rule is redundant w. r. t. F if it is contained in
Del(r) of every rule r ∈ F .

• Nor is a redundant rule necessarily contained in Del(r) of every rule r ∈ F .

�

Here are the counter examples.

4.5.2. Example. Recall the rule set F = {(1), . . . , (11)} of Fig. 4.2. We find

Del(r) =

{(1), (2), (5), (6)} if r = (5) or r = (6),

F otherwise,

for rules r ∈ F .
Observe that rule (5) is contained in the set Del(r) for all rules r. However,

rule (5) is not redundant with respect to F . On the other hand, rule (11) is
redundant with respect to F , but it is not contained in each set Del(r). �

Partial Redundancy Removal for the R Scheduler

It is useful to remove partial redundancies when the R scheduler is used. The
reason is that the set Del(r) for rules r ∈ F to be scheduled can sometimes be
larger if partially redundant rules are reduced. Note that partial redundancies
removed from a rule are not lost but reassociated with it by the set friends(r) of
the R scheduler. Informally and slightly simplified, friends(r) collects those rules
whose condition necessarily succeeds after a relevant application of r.

54 Chapter 4. Redundant Rules

4.5.3. Example. We consider the logical and constraint in the three-valued logic
of [Kleene, 1952, p. 334]. The program of [Apt and Monfroy, 2001] generates for
it a set of 22 membership rules, which shrinks to a set of 13 rules by removing
redundancies. Three rules from the obtained minimal rule set, which we call F ,
associated with and(x, y, z) are

x ∈ {0, u} → z 6= 1 (r1)

y ∈ {1, u}, z ∈ {0} → x 6= 1 (r2)

y ∈ {1, u}, z ∈ {0, 1} → x 6= u (r3)

We can have r2 ∈ obviated(r1), since the body x 6= 1 of r2 is irrelevant once r2
has fired, which requires x ∈ {0, u}. Furthermore, we may have r3 ∈ friends(r2)
since the condition of r3 is implied by the condition of r2.

Let us modify r2 by composing it with r3. So we redefine r2 as the partially
redundant rule

y ∈ {1, u}, z ∈ {0} → x 6= 1, x 6= u.

This change does not affect the common fixpoints of F , nor does it make any rule
in F fully redundant. It does, however, change the set obviated(r1), of which r2
can not be a member now. In the R scheduler, slower convergence results. �

Benchmarks

To see what effect the absence of redundancy on the relative performance of the
R scheduler has, we reran the benchmarks reported in Tables 3.1 and 3.2 of the
previous chapter. All involved rule sets were subjected to a redundancy removal,
and subsequently, recomputations of the respective sets friends(r) and obviated(r)
for each rule r were performed. The results are shown in Tables 4.4 and 4.5. The
rule sets of rcc8 were already minimal; therefore this constraint is omitted.

When comparing the redundancy and non-redundancy benchmark versions,
we observe that the absolute execution times are enormously reduced in the case
of the constraints on higher-valued logics, by a factor of rougly 10 in the case of
and11M , for example. This is in line with the much smaller sizes of the reduced
rule sets. The ratios of the execution times, however, are much less affected.
Judging from these observations, the type of scheduler and minimality w. r. t. re-
dundancy appear to be orthogonal issues. Hence, both optimisation opportunities
are relevant and should be exploited.

Distribution of the Solving Degree

It is interesting to examine in one case the distribution of the solving degrees,
i. e., the ratios of the sizes of friends(r) ∪ obviated(r) and the full rule set, for a
rule r. Recall that a ratio of 1 means that the constraint is solved once the rule

4.5. Discussion 55

Constraint fork and3 and9 and11

membership
relative 60% / 46% 69% / 48% 28% / 18% 50% / 29%
absolute 0.32/0.53/0.70 0.27/0.39/0.56 167/589/924 157/316/543

equality

relative 97% / 93% 97% / 64% 96% / 101% 96% / 101%
absolute 21.6/22.2/23.2 0.37/0.38/0.58 386/404/384 341/353/339

Table 4.4: Randomised search trees for single constraints (no redundant rules)

Logic 3-valued 9-valued 11-valued

membership
relative 66% / 46% 62% / 33% 68% / 35%
absolute 1.32/2.00/3.05 37/59/114 70/103/199

equality
relative 61% / 26% 40% / 58% 33% / 48%
absolute 0.72/1.18/2.73 2.57/6.41/4.46 13.8/41.0/28.6

Table 4.5: CSPs formalising sequential ATPG (no redundant rules)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

S
ol

vi
ng

 d
eg

re
e

Rule

1294 rules, some redundant

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350

S
ol

vi
ng

 d
eg

re
e

Rule

385 nonredundant rules

Table 4.6: and9M : Solving degree and redundancy

56 Chapter 4. Redundant Rules

body has been executed. Such a rule could be represented as a simplification rule
in CHR (see Section 3.7.4).

In Table 4.6 two membership rule sets for the constraint and9 are compared.
One set contains redundant rules, the other set is minimal w. r. t. redundancy.
The rules in the minimal set are solving to a lesser degree; in particular, none is a
proper solving rule. The good performance of the R algorithm in the benchmarks
of Tables 4.4, 4.5 can thus not be attributed to distinguishing solving (simplifi-
cation) rules and non-solving propagation rules, but is due to the accumulated
effect of removing rules from the fixpoint computation.

4.6 Final Remarks

We studied the issue of redundancy in sets of constraint propagation rules. A
rule in a rule set is redundant if removing it from the set does not weaken the
propagagation associated with the set. Our redundancy notion is simple, com-
prehensive, and generalises several notions described, sometimes informally, in
the literature. We gave an algorithm to minimise rule sets with respect to redun-
dancy. Redundancy removal is an indispensable technique in the automatic gen-
eration of constraint propagation rules. We showed experimentally that several
rule generation methods produce redundant rules. Moreover, we demonstrated
that removing redundancy can result in substantial speedups when using the rule
sets for constraint propagation. Finally, we showed that redundancy removal is
orthogonal to the improvements embodied in the R scheduler, which entails that
both techniques should be used together.

One open question results from the fact that the rule selection strategy dur-
ing minimisation generally has an effect on the obtained minimal rule set: what
criterion should be used to compare two minimal sets, and what strategy is ap-
propriate to find preferred minimal sets.

Chapter 5

Incremental Rule Generation

5.1 Introduction

While constraint propagation rules capturing the desired propagation of one or
some constraints can be devised manually, in doing so, several issues arise. De-
signing appropriate rules requires expertise; their correctness must be guaran-
teed, and for more complex constraints, it may not even realistically be possi-
ble. In response to these difficulties, the issue of an automatic generation of
rule-based constraint propagation algorithms has received considerable atten-
tion in recent years. [Apt and Monfroy, 2001] considers the generation of mem-
bership rules; [Ringeissen and Monfroy, 2000] examines a parameterised variant
of them. [Abdennadher and Rigotti, 2002, Abdennadher and Rigotti, 2004] deal
with more general constraint propagation rules. The latter approaches aim par-
ticularly at the CHR language and also discuss methods to generate CHR simpli-
fication rules allowing the deletion of constraints from the constraint store (see
Section 2.2.1). In [Dao et al., 2002], the issue of automatic generation of solvers
based on indexicals [Codognet and Diaz, 1996] is examined.

Common to most of these approaches is their paradigm that is essentially
generate-and-test. Successively, candidate rules for constraint propagation are
enumerated. A rule candidate is kept if it passes the correctness test against the
constraint definition. In the deviating method of [Ringeissen and Monfroy, 2000],
a conclusion is derived from a candidate premise, which itself comes from a syntac-
tic enumeration process, however. [Abdennadher and Frühwirth, 2003] examines
how to merge solvers written in the CHR language. Due to the expressiveness of
CHR, the main aspects are termination and confluence. Here we concern ourselves
only with constraint propagation rules where these two properties are no issues,
which lets us focus on the constraint propagation.

In contrast to the generate-and-test approaches, we explore the idea of rule
generation by incrementally modifying previously constructed rule sets. The key
feature is that the input to the solver generation algorithm is already a set of rules.

57

58 Chapter 5. Incremental Rule Generation

The generation process consists in transforming the rule set into one that possesses
desirable properties with respect to the associated constraints, such as the ability
to establish a local consistency. An explicit definition of the constraints, for
instance extensionally as the set of solutions, is unnecessary. The rule set is
processed according to declarative transformation steps, meta rules, leading to
the introduction of new rules or removal of existing rules. A number of benefits
arise from this approach:

• First, the description of rule generation as an incremental process provides
a new perspective on the origins of rule-based constraint solvers. This helps
us to better understand such solvers and their propagation.

• Second, incremental solver generation reuses previously constructed rule
sets. It also potentially increases the level of constraint propagation.

• Third, the incremental method can also be used as a universal rule genera-
tion method, by accompanying it with a pre-process that turns a constraint
definition not based on rules into a set of simple initial rules.

While we first discuss incremental rule generation in general, the main part
of this chapter deals with a specific type of rule, the membership rules. Our
motivation for this focus is, on the one hand, that few useful statements can
be made without fixing a specific language of constraint propagation rule (we
elaborate on this issue below), and on the other hand, the relevance of membership
rules.

We examine a variety of cases of incrementally generating sets of membership
rules. In a justified sense, the central case is constructing a rule set R(C1 ∧ C2)
for the conjunctive constraint C1 ∧ C2 from the rule sets R(C1) and R(C2) of its
constituent constraints. The simple union R(C1)∪R(C2) generally does not max-
imally propagate the conjunction C1 ∧C2. Take the following rules, for example.

C1, x ∈ { 1 } → C ′ (r1)

C2, x ∈ { 2 } → C ′ (r2)

C1 ∧ C2, x ∈ {1, 2} → C ′ (r3)

In presence of the conjunctive constraints C1 ∧ C2 and x ∈ {1, 2}, none of the
rules r1, r2 of the constituent constraints C1, C2 lets us obtain C ′. This shows
why we would like to derive stronger rules such as r3.

Furthermore, we discuss the cases of existential and universal quantification.
If a constraint C is on a variable x then both ∃x.C and ∀x.C are constraints on the
remaining variables of C, and we explain how to construct the rule sets R(∃x.C)
and R(∀x.C) based on R(C). We also discuss the auxiliary cases of extending
the scope of a constraint to a new variable, and of extending the underlying
domain by a new element, which means adding certain new solutions to the

5.2. Transforming Sets of Constraint Propagation Rules 59

constraint. A method of obtaining rules for a constraint from its extensional
definition, alternatively as a set of solutions or non-solutions, makes incremental
membership rule generation as capable as competing membership rule generation
methods.

In all instances of membership rule generation, we focus on their most relevant
feature, namely the relation to generalised arc-consistency.

5.2 Transforming Sets of Constraint Propaga-

tion Rules

A transformation of a rule set is a sequence of atomic steps introducing or re-
moving single rules. We describe the admissible steps by meta rules with side
conditions, applied to sets of constraint propagation rules. We write

R

R ∪ {r}
(introduce)

R

R \ {r}
(remove)

where R is a rule set and r is a rule.

We consider two meta rules: subsumption, which deletes a rule, and deriva-
tion, which introduces a rule, based on the given rules.

5.2.1 Subsumption

Subsumption is a special case of redundancy of a rule with respect to a rule set,
for the purpose of computing common fixpoints; see Section 4.3.2. We restrict
ourselves here to a simple case and consider only propagation rules with the same
body.

As a meta rule, we have

R ∪ {A → C, B → C}

R ∪ {A → C}
if (5.1) (gen-subsume)

where the constraints in A,B are on the variables X with domains D, and the
side condition is

Sol(〈A, X,D〉) ⊇ Sol(〈B, X,D〉) (5.1)

Recall that Sol(P) is the set of solutions of the CSP P, so (5.1) expresses that A
is implied by B.

We say that a rule is subsumed by a set of rules if it is subsumed by some
rule in the set. So x < y → C is subsumed by R ∪ {x 6 y → C}.

60 Chapter 5. Incremental Rule Generation

5.2.2 Derivation

Two rules with identical body give rise to a new rule if the disjunction of their
conditions, or something more restrictive, can be expressed in the underlying
constraint language. Formally,

R ∪ {A1 → C, A2 → C}

R ∪ {A1 → C, A2 → C,B → C}
if (5.2) and (5.3) (gen-derive)

where the constraints in A1,A2,B are on the variables X with domains D, and
the side condition is

Sol(〈B, X,D〉) ⊆ Sol(〈A1, X,D〉) ∪ Sol(〈A2, X,D〉). (5.2)

The idea of this transformation step is to compose the ancestor rules, at best
into a descendant that in turn subsumes one or both ancestors. It is not difficult
to show that correctness is preserved: if each rule in the original rule set is correct
then so is each rule in the obtained rule set. However, note that the respective
common fixpoints of the rule sets generally change!

While not needed for preservation of correctness, it is useful to require addi-
tionally

Sol(〈B, X,D〉) 6⊆ Sol(〈Ai, X,D〉) for i = 1 and i = 2 (5.3)

as otherwise the descendant rule would simply be subsumed.

5.2.1. Example. Suppose we know that the two rules

x 6= y, y 6= z, z 6 w → C,

x 6= z, z > w → C

are correct. Also let us assume that alldifferent, a constraint requiring pair-wise
difference of its variables, is in the constraint language. By (gen-derive) we obtain
the new rule

alldifferent(x, y, z) → C,

whose condition does not imply, or is implied by, those of the ancestor rules. �

Generally, several possible candidates for the derived condition B in
(gen-derive) exist, and they depend on the constraint language. Ideally, a suitable
B can be constructed directly from A1,A2. This is the case for membership rules.

5.3. Transforming Sets of Membership Rules 61

5.3 Transforming Sets of Membership Rules

We specialise the generic meta rules here for the language of membership rules.
We refine the meta rules for subsumption and derivation, which allows us to
characterise in terms of local consistencies a membership rule set closed under
these meta rules.

While according to the definition of a membership rule the body of a rule
can consist of multiple inequality constraints, for the purpose of this chapter we
can assume that such a rule is decomposed into several membership rules with
a single body constraints. So membership rules here are constraint propagation
rules in the form

C(x1, . . . , xn, y), x1 ∈ S1, . . . , xn ∈ Sn → y 6= a,

where each Si is a set of constants, and a is a constant. In the following, C, the
constraint associated with the rule, is often irrelevant or clear from the context,
and we omit it then from the notation. With the understanding that

X = x1, . . . , xn and S = S1 × · · · × Sn

we write the above membership rule concisely as

X ∈ S → y 6= a.

We proceed by specialising the subsumption and derivation transformations.
Subsequently, we describe the rule set resulting from a stabilising derivation of
such transformations. We show that if certain conditions on the source rule set
are met then the resulting rule set enforces GAC.

5.3.1 Subsumption

A membership rule can be removed when another one performing the same do-
main reduction but with wider bounds on the variables is available:

R ∪ {X ∈ S → y 6= a, X ∈ P → y 6= a}

R ∪ {X ∈ S → y 6= a}
if P ⊆ S (subsume)

It is easy to see that (subsume) is an instance of (gen-subsume): if P ⊆ S, then
every solution of the constraints X ∈ P is a solution of the constraints X ∈ S.

5.3.1. Example. x ∈ {2} → y 6= 1 is subsumed by x ∈ {2, 3} → y 6= 1. �

62 Chapter 5. Incremental Rule Generation

5.3.2 Derivation

Two membership rules can sometimes be combined to form another one that
allows the same domain reduction in new situations.

R ∪ {X ∈ S → y 6= a,X ∈ P → y 6= a}

R ∪ {X ∈ S → y 6= a,X ∈ P → y 6= a,X ∈ Q→ y 6= a}
if (5.4) (derivek)

(a) Qi = Si ∩ Pi for all i ∈ [1..n], i 6= k,

(b) Qk = Sk ∪ Pk,

(c) Qk ⊃ Sk and Qk ⊃ Pk,

(d) Qi 6= ∅ for all i ∈ [1..n].

(5.4)

These four side conditions guarantee that the derived rule

• inherits correctness from its ancestor rules, (5.4.a) and (5.4.b), where one
notices that every solution of X ∈ Q is a solution of X ∈ S or X ∈ P
(compare with (gen-derive)),

• is not subsumed by any ancestor rule, (5.4.c),

• is a valid membership rule, (5.4.d).

It is useful to point out how we have used the constraint language underlying the
membership rules. The disjunctive constraint “xk ∈ Sk or xk ∈ Pk” can directly
be represented in this language, namely as xk ∈ Qk.

A (derivek) step depends on k, and for two ancestor rules there may be sev-
eral appropriate indices k, satisfying (5.4). Note however, that no derived rule
subsumes another with a different k. In the following, when k is not relevant we
write just (derive) instead of (derivek).

5.3.2. Example. From

x1 ∈ {1, 2}, x2 ∈ {1, 3} → y 6= 2,
x1 ∈ {2, 3}, x2 ∈ {2, 3} → y 6= 2

we obtain

x1 ∈ {1, 2, 3}, x2 ∈ {3} → y 6= 2 with k = 1,
x1 ∈ {2}, x2 ∈ {1, 2, 3} → y 6= 2 with k = 2

by (derivek). �

5.3. Transforming Sets of Membership Rules 63

5.3.3 Result of the Meta Rule Closure

We examine now the properties of exhaustive applications, i. e., closures, of the
meta rules (derive), (subsume) for membership rule sets. We proceed in two steps.
First, we link the source rule set to the meta rule closure with respect to all correct
membership rules associated with the constraint. Subsequently, we characterise
the constraint propagation that a closed rule set achieves.

Atomic Rules

5.3.3. Definition. The membership rule C(X, y), X ∈ S → y 6= a is atomic if
each Si is a singleton set. �

The following note establishes an important 1–1 correspondence between an
atomic rule and a non-solution of its associated constraint.

5.3.4. Note. The atomic rule C(X, y), X ∈ S → y 6= a in which the variables
X, y have the domains D is correct if and only if the tuple d ∈ D with {d[X]} = S
and d[y] = a is not a solution of C. �

5.3.5. Example. The tuple (1, 1, 0) is not a solution of the constraint and(x, y, z)
expressing the conjunction x ∧ y = z. It corresponds to the correct atomic rules

and(x, y, z), x ∈ {1}, y ∈ {1} → z 6= 0,
and(x, y, z), x ∈ {1}, z ∈ {0} → y 6= 1,
and(x, y, z), y ∈ {1}, z ∈ {0} → x 6= 1.

�

We denote by closure(R) the rule set that results from applying
(derive), (subsume) exhaustively. Here is the first observation: all ‘interesting’
rules are obtained by computing the closure of all atomic rules.

5.3.6. Lemma. Let R be a set of membership rules, all associated with the con-
straint C. If R subsumes every atomic membership rule correct for C then
closure(R) subsumes every membership rule correct for C.

Proof. We argue by contradiction: Let us say that r = (X ∈ S → y 6= a)
is correct for C but not subsumed by closure(R). Without loss of generality
we can assume that r is a most specific such rule, in the sense that all other
rules X ∈ S ′ → y 6= a with S ′ ⊂ S, i. e., subsumed by r, are also subsumed by
closure(R).

Observe first that r is not atomic. Take then from the condition X ∈ S some
Sk that is not a singleton, and partition it into Sk = Pk ∪ Qk where neither Pk

nor Qk is empty. Construct new rule conditions X ∈ P,X ∈ Q by just defining
Pi = Qi = Si at the remaining indices i 6= k.

64 Chapter 5. Incremental Rule Generation

Since r is a correct rule, so are the rules X ∈ P → y 6= a and X ∈ Q→ y 6= a.
Furthermore, both these rules are strictly subsumed by r, which means they are
also subsumed by closure(R).

Thus, for each of the two rules, a subsuming rule contained in closure(R)
exists. Enter these two subsuming rules into (derive). The resulting new rule
must subsume r, which contradicts our assumption.

With regard to (subsume), we remark that subsumption is a transitive relation.
Therefore, if a rule is subsumed by a rule set then this is still the case after an
application of (subsume) to the set. �

We know now which ‘seed rules’ are necessary so that after closure there are
rules for all correct propagations. Next, we establish the local consistency notion
achieved by these propagations.

5.3.7. Lemma. Let R be a set of membership rules correct for their associated
constraint C. Let R subsume every rule correct for C. Then the constraint C is
closed under R if and only if C is generalised arc-consistent.

Proof. For the ‘if’ direction, suppose that the constraint C is closed under
R but not under some correct rule r /∈ R. We show that C is not generalised
arc-consistent. Let r = (X ∈ S → y 6= a). We have thus C[X] ⊆ S and a ∈ C[y].

Since r is a correct rule, we know that for all d in the product of the variable
domains we have that d[X] ∈ S implies d[y] 6= a. The counter position is that
d[y] = a implies d[X] 6∈ S, and in turn d[X] 6∈ C[X], for all d.

In other words, the partial instantiation {y 7→ a} can not be extended to a
solution of C, so C is not GAC.

For the reverse direction, suppose that {y 7→ a} can not be extended to a
solution of the constraint C. So no d exist with d[y] = a and d[X] ∈ C[X]. Then
x1 ∈ C[x1], . . . , xn ∈ C[xn] → y 6= a is a correct rule; and as such is subsumed by
R. The subsuming rule in R, however, is applicable to C. �

From Atomic Rules to GAC

5.3.8. Definition. Let R be a set of correct membership rules all associated
with a constraint C. R is called atomically complete with respect to C if R
contains or subsumes every correct atomic rule associated with C. �

Here we have the important consequence of Lemmas 5.3.6 and 5.3.7.

5.3.9. Theorem. Assume that R is atomically complete w. r. t. a constraint C
and let Rcl = closure(R). Rcl is sufficient for enforcing GAC on C; that is, the
constraint C is generalised arc-consistent if and only if C is closed under Rcl . �

5.3. Transforming Sets of Membership Rules 65

5.3.4 Infeasible Rules

It is useful to characterise a rule by the following property of its condition.

5.3.10. Definition. A constraint propagation rule is called feasible if its con-
dition is satisfiable:

A → C is feasible if Sol(A, X,D) 6= ∅,

where the constraints in A are on the variables X with domains D. �

For membership rules we find

C(X, y), X ∈ S → y 6= a is feasible exactly if S ∩ C[X] 6= ∅.

Note that an infeasible rule is trivially correct. It is also often redundant.

The notion of membership rules stems from [Apt and Monfroy, 2001] where
also the first algorithm for automatically generating such rules is described. We
call this generation algorithm RGA here and revisit it in Section 5.6.2.

Since a rule set generated by RGA does not contain infeasible rules but does
suffice to establish GAC, one may suspect that infeasible rules are without use.
This is not the case, as we see now.

5.3.11. Example. The closure-based approach to membership rule generation,
unlike RGA, may yield infeasible rules. It may also generate ‘partially infeasible’
rules. Define the constraint C on the variables x, y with domain {1, 2, 3} as
in the following table. The RGA algorithm generates the GAC-enforcing rules
R = {r1, . . . , r4}.

x y
1 1
3 1
3 3

y ∈ {3} → x 6= 1 (r1)

y ∈ {1, 2, 3} → x 6= 2 (r2)

x ∈ {1, 2, 3} → y 6= 2 (r3)

x ∈ {1} → y 6= 3 (r4)

R is a minimal rule set in the sense of the strong redundancy notion in Chap-
ter 4. Consider now the rule

y ∈ {2} → x 6= 1. (r5)

It is correct, but infeasible and redundant with respect to R. While R is closed
under (derive), (subsume), we can, however, apply (derive) to R∪{r5}, and obtain

y ∈ {2, 3} → x 6= 1, (r6)

66 Chapter 5. Incremental Rule Generation

which subsumes both r1 and r6. Completing the meta rule closure, we obtain
the rule set R′ = R − {r1} ∪ {r6}, which is minimal with respect to redundancy
and enforces GAC, just as the original R. However, for constraint propagation,
the rule r6 is preferable to r1 since its condition is weaker, and R′ is therefore
preferable to R! �

Including infeasible rules in rule generation by the closure method lets us
obtain rules that are more useful for constraint propagation. It is also generally
unavoidable for completeness, Theorem 5.3.9, since some atomic rules may be
infeasible (as r5 above).

5.4 Cases of Incremental Rule Generation

We discuss now various useful instances of incremental rule generation, based
on the meta rule closure. In each case, we assume that some source constraints
C1, . . . , Cm with associated rule sets R1, . . . , Rm are given. We explain how a new
constraint Cnew is related to the input constraints, i. e.,

Cnew = fC(C1, . . . , Cm),

and are interested in obtaining a membership rule set for Cnew based on the rules
for the source constraints,

Rnew = fR(R1, . . . , Rm).

We study the requirements for Rnew to be atomically complete w. r. t. Cnew , since
if that is the case, closureRnew is sufficient for enforcing GAC on the constraint
Cnew .

5.4.1 Conjunction of Constraints

Consider two constraints C1, C2 on the same variables X to which are associated
the rule sets R1, R2, resp. We are interested in the conjunctive constraint

C∧ = C1 ∧ C2

and a rule set R∧ associated with it. In precise notation, we examine the con-
straint

C∧ = 〈C1R ∩ C2R, X〉 based on C1 = 〈C1R, X〉 and C2 = 〈C2R, X〉.

The simple rule set union R1 ∪ R2 does generally not propagate sufficiently
to enforce GAC on C∧, even if Ri enforces GAC on Ci for both i = 1, 2. For
example, consider (x 6= y) ∧ (x = y) constraining the variables x, y ∈ {0, 1}. It is

5.4. Cases of Incremental Rule Generation 67

closed under any rules correct for the one of the constraints 6= and = individually
yet it is inconsistent, which GAC-enforcing rules for the conjunctive constraint
(6=) ∧ (=) do detect.

Observe that any atomic rule correct for C∧ must also be correct for one or
both of C1, C2. We define

R∧ = closure(R1 ∪R2),

and employ Theorem 5.3.9.

5.4.1. Fact. R∧ is atomically complete w. r. t. C∧ if Ri is atomically complete
w. r. t. Ci for both i = 1, 2. �

Relational (1,m)-Consistency

The generalisation to conjunctions of m constraints is

C∧ =
m∧

i=1

Ci and R∧ = closure

(
m⋃

i=1

Ri

)

.

From the view of the set of the constituent constraints Ci, all on the same
set of variables, the local consistency enforced is relational (1,m)-consistency
[Dechter and van Beek, 1997]. Since we enforce GAC on the conjunctive con-
straint, an instantiation of any one variable can be extended to a solution of it,
which is also a solution of each of the constituent constraints.

Enforcing GAC on the constituent constraints separately is equivalent to re-
lational (1, 1)-consistency, a strictly weaker local consistency.

5.4.2. Example. Consider the constraints and(x, y, z) and or(x, y, z), represent-
ing the logical operators, and their conjunction c(x, y, z) = and(x, y, z)∧or(x, y, z).
It has exactly the two solutions {(0, 0, 0), (1, 1, 1)}. In the union of the rule sets
for and, or (such that atomic rules are subsumed as required) we find

z ∈ {1} → y 6= 0 for and,

x ∈ {1}, z ∈ {0} → y 6= 0 for or (infeasible rule),

which allow to generate the expected rule

x ∈ {1} → y 6= 0 for and ∧ or

by one step of (derive). �

To generate GAC-enforcing rules for constraints that do not share all variables
as required in this section, we need constraint padding.

68 Chapter 5. Incremental Rule Generation

5.4.2 Constraint Padding

In order to construct the rules for a conjunctive constraint, the participating con-
straints must be on the same set of variables. This can be achieved by essentially
syntactically extending the individual constraints to new variables, without actu-
ally constraining them. We call such a modification padding. Extending the rules
accordingly is slightly more complicated, due to newly arising infeasible rules.

So we examine Cp(X, v) such that Cp[X] = C and v ∈ Dv. Formally

Cp = 〈CR×Dv; X, v〉 based on C = 〈CR, X〉 where v not in X and v ∈ Dv.

If R is the set of rules associated with C then the rules Rp associated with Cp

are found by

Rp = closure(R1 ∪R2),

where

R1 = {X ∈ S, v ∈ Dv → y 6= a | (X ∈ S → y 6= a) ∈ R },

R2 = {X ∈ S, y ∈ {a} → v 6= b | (X ∈ S → y 6= a) ∈ R ∧ b ∈ Dv }.

The set R1 pads the input rules by simply adding the redundant test v ∈ Dv.
All correct atomic rules with bodies on the variables X of C are constructed in
this way. R1 is closed under (derive), (subsume) if R is.

The set R2 consists of rules that disallow values for the new variable v. Since v
is not actually constrained, no such rule can exist that is both correct and feasible,
however. Therefore, all rules in R2 are infeasible, since they are correct. Moreover,
observe that every correct, atomic, infeasible rule with a body disequality on v is
subsumed by R2.

In conclusion, R1 ∪ R2 is atomically complete w. r. t. Cp if R is atomically
complete w. r. t. C.

5.4.3. Fact. Rp is atomically complete w. r. t. Cp if R is atomically complete
w. r. t. C. �

The pre-closure processing is linear in the size of the set R.

5.4.4. Example. We pad the Boolean constraint not(x, y) with the extra vari-
able z ∈ {0, 1} to not′(x, y, z).

not(x, y), y ∈ {0} → x 6= 0 not′(x, y, z), y ∈ {0}, z ∈ D → x 6= 0

...
...

not′(x, y, z), x ∈ {0}, y ∈ {0} → z 6= 0

not′(x, y, z), x ∈ {0}, y ∈ {0} → z 6= 1

�

5.4. Cases of Incremental Rule Generation 69

Multi-Constraint Membership Rules

We are now in the position to deal with conjunctions of constraints that do
not share all variables. To obtain rules for the conjunction from rules of the
constraints participating in the conjunction, find the union of all their variables,
extend the constraints and their rules by appropriate padding to these variables,
and close the union of the resulting rule sets under the meta rules.

This insight enables us to derive multi-constraint membership rules.

5.4.5. Example. Let us examine the interaction of the two logic constraints
and(x, y, z) and not(x, y) in the conjunction and(x, y, z) ∧ not(x, y).

Given appropriate rule sets Rand, Rnot for the constituent constraints, we pro-
ceed by first padding Rnot by the extra variable z to Rnot′ , as done in Exam-
ple 5.4.4. Subsequently, Rand not is found as closure(Rand ∪Rnot′). It contains the
rule x ∈ {0, 1}, y ∈ {0, 1} → z 6= 1 for the conjunction of and, not. More precisely,
we have derived

and(x, y, z), not(x, y), x ∈ {0, 1}, y ∈ {0, 1} → z 6= 1,

a multi-constraint membership rule. �

In [Abdennadher and Rigotti, 2004], a propagation rule generation method is
presented that is capable of producing multi-headed propagation rules directly.
The method is based on a generate-and-test approach. Its purpose is the gen-
eration of rules for the interaction of constraints. For example, one can apply
it to and(x, y, z) and not(u, v) to generate all rules with these constraints and
additional equality constraints between variables from {x, y, z} and {u, v} in the
rule condition.

We can generate equivalent (membership) rules describing all interaction pat-
terns between constraints, by performing the corresponding rule set constructions
for each pattern.

Enforcing GAC on conjunctions of constraints instead of just on the participat-
ing constraints individually can increase search efficiency, despite the additional
propagation cost. That is the case especially when the participating constraints
share many variables [Katsirelos and Bacchus, 2001].

5.4.3 Defining a Constraint by its Non-Solutions

While constraints are often defined positively by stating their solutions, some-
times it is more natural to define a constraint negatively by stating tuples that
are not solutions. Suppose that 〈Neg , X〉 is a set of tuples associated with vari-
ables X, and define the constraint CN(X) by

CN = 〈Dn − Neg , X〉 where n = |X| and X ∈ Dn.

70 Chapter 5. Incremental Rule Generation

A rule set that is atomically complete w. r. t. CN can be obtained in a partic-
ularly simple way. In fact, we can precisely construct the correct atomic rules,
by Note 5.3.4 which states the correspondence between an atomic rule and a
non-solution. Abbreviate

lhs(X, t, i) = x1 ∈ {t[x1]}, . . . , xi−1 ∈ {t[xi−1]}, xi+1 ∈ {t[xi+1]}, . . . , xn ∈ {t[xn]}

and define

RNeg,i = { lhs(X, t, i) → xi 6= t[xi] | t ∈ Neg }

RNeg =
⋃

i∈[1..n]

RNeg,i
(5.5)

The construction of RNeg is linear in the size of Neg : precisely n · |Neg | atomic
rules are produced.

We finally have

RN = closure(RNeg).

5.4.6. Fact. RN is atomically complete w. r. t. CN . �

5.4.7. Example. Define a constraint over the variable sequence x, y, z ∈ [1..10]
such that they do not represent an increasing sequence x, y, z of prime numbers.
The 4 non-solutions are (2, 3, 5), (2, 3, 7), (2, 5, 7), (3, 5, 7). The respective rules:

12 atomic rules:

x ∈ {2}, y ∈ {3} → z 6= 5

y ∈ {3}, z ∈ {5} → x 6= 2

...

y ∈ {5}, z ∈ {7} → x 6= 3

8 rules after closure:

x ∈ {2, 3}, y ∈ {5} → z 6= 7

x ∈ {2}, y ∈ {3, 5} → z 6= 7

...

y ∈ {3, 5}, z ∈ {7} → x 6= 2

�

5.4.4 Defining a Constraint by its Solutions

When the constraint is defined positively by an explicit set of solutions (or a
procedure that enumerates them), the incremental closure method can be used
as well, by first converting the positive definition into a corresponding negative
one. The method based on non-solutions, described in the previous section, then
becomes applicable.

5.4. Cases of Incremental Rule Generation 71

5.4.8. Example. Let C be defined as the Boolean binary constraint
{(0, 1), (1, 0)}. Its non-solutions are Neg = {(0, 0), (1, 1)}. View C to be de-
fined as {0, 1}2 − Neg and generate the rules from the negative definition. �

In this way, we have a procedure that corresponds in input and output to
the RGA generation algorithm of [Apt and Monfroy, 2001]. We compare the two
algorithms in detail in Section 5.6.2.

5.4.5 Enlarging the Base Domain

The following observation explains what it means to extend the variable domains
by a new value. We redefine the constraint in such a way that an associated rule
set needs not be modified. Assume

C = 〈CR, X〉 with X ∈ Dn.

We extend the domain by the value e not previously present. Let De = D ∪ {e},
and define

Ce = 〈CR ∪Dn
e −Dn, X〉 with X ∈ Dn

e .

So a tuple t ∈ Dn
e is a solution of Ce either

– if it is already a solution of C, or

– if it uses the new value: t[x] = e for some variable x.

The non-solutions of Ce are exactly the non-solutions of C. Note 5.3.4 entails the
following link.

5.4.9. Fact. A given rule set is atomically complete w. r. t. Ce if and only if it
is atomically complete w. r. t. C.

Additional Modifications of the New Solution Set

A domain enlargement can be combined well with the addition of solutions or non-
solutions that use the new value. The case of adding some non-solutions Neg e

reduces straightforwardly to some known methods. How the non-solutions Neg e

give rise to a constraint is explained in Section 5.4.3. In turn, this constraint is
combined with the domain-extended constraint Ce into a conjunctive constraint,
following Section 5.4.1. The case of adding some new solutions Pos e can be
reduced to the previous one: the solutions are turned into non-solutions by

Nege = Dn
e −Dn − Pose.

Note that the solutions of C are irrelevant.

72 Chapter 5. Incremental Rule Generation

5.4.10. Example. We construct rules for the constraint or3, that represents
disjunction in the three-valued logic 0, 1, u [Kleene, 1952]. We base the rule gen-
eration on the rules Ror for the conventional Boolean constraint or, and we use
the fact that we can define or3 alternatively as

or3 = or ∪ Posu

Posu = {(0, u, u), (u, 0, u), (1, u, 1), (u, 1, 1), (u, u, u)}.

So Posu defines the value u here. Consider now the constraint or′ defined by

or′ = or ∪ { (x, y, z) | {u} ⊆ {x, y, z} and x, y, z ∈ {0, 1, u} },

that is, or′ permits as a solution any tuple containing u at some position. We
have extended the or constraint by enlarging the domain by u. If Ror is atomically
complete w. r. t. or then it is so w. r. t. or′ as well; we can write Ror′ = Ror.

Next, we compute the tuples

Negu = {0, 1, u}3 − {0, 1}3 − Posu

that use the value u and are unacceptable as solutions of or3. We find the cor-
responding atomic rules in RNegu

as in (5.5) of Section 5.4.3. Finally, we obtain
Ror3 = closure(Ror′ ∪ RNegu

). The rule set Ror3 is atomically complete w. r. t. the
constraint or3. �

5.4.6 Universal Quantification

Assume a constraint C one some variable sequence that includes x. We examine
the constraint that results from universally quantifying x.

Let

C = 〈CR; X〉 and X ∈ Dn and X = Y, x.

We define a constraint on the same variables except x by

C∀ = ∀x.C = 〈C∀R; Y 〉 and Y ∈ Dn−1

such that

CR = { t, a | t ∈ C∀R and a ∈ D }.

So whenever the (n − 1)-tuple t is a solution of C∀ then for all values a in the
domain of the quantified variable x we have that the n-tuple t, a is a solution to
the source constraint C.

Surprisingly, we can obtain rules R∀ for C∀ from rules R for C by simply
eliminating all references to x:

R∀ = closure({Z ∈ S → y 6= a | (Z ∈ S, x ∈ Sx → y 6= a) ∈ R }).

5.4.11. Fact. R∀ is atomically complete w. r. t. C∀ if R is atomically complete
w. r. t. C. �

5.4. Cases of Incremental Rule Generation 73

Proof. Consider a rule in R associated with C, and the corresponding non-
solution d (Note 5.3.4).

The partial solution d[Y] can clearly not be extended to a full solution by each
assignments {x 7→ a} with a ∈ D; the counter example is a = d[x].

So d[Y] is a non-solution of C∀. This means that we can indeed correctly cut
the rules of C down to rules for C∀.

It remains to consider completeness, that is, whether all correct, atomic rules
for C∀ are subsumed. Let Z ∈ S → y 6= a be such a rule. But then some rule
Z ∈ S, x ∈ Sx → y 6= a must be subsumed by R. For, otherwise all d with
{d[Z]} = S, d[y] = a were solutions, meaning that x could be all-quantified. �

5.4.12. Example. We take the Boolean constraint or(x, y, z), and quantify uni-
versally on x. So we consider

or′(y, z) = ∀x. or(x, y, z).

The only solution is (1, 1). Indeed, both (0, 1, 1) and (1, 1, 1) satisfy or.
Two correct rules associated with or are

or(x, y, z), x ∈ {0}, z ∈ {1} → y 6= 0,

or(x, y, z), x ∈ {1}, z ∈ {0} → y 6= 0.

They lead to

or′(y, z), z ∈ {1} → y 6= 0,

or′(y, z), z ∈ {0} → y 6= 0,

from which by meta rule closure

or′(y, z), z ∈ {0, 1} → y 6= 0

is derived. �

The problem of enforcing GAC on all-quantified constraints is studied in
[Bordeaux and Monfroy, 2002]. The authors discuss a number of Boolean con-
straints and associated rules for enforcing GAC, and point out the need for au-
tomatic rule generation for quantified constraints

5.4.7 Existential Quantification

Existential quantification (projection) is the dual to the introduction of variables
(padding), Section 5.4.2.

Assume a constraint C one some variable sequence that includes x. We ex-
amine the constraint that results from existentially quantifying x.

74 Chapter 5. Incremental Rule Generation

Presume

C = 〈CR; X〉 and X ∈ Dn and X = Y, x.

We define a constraint on the same variables except x by

C∃ = ∃x.C = 〈C∃R; Y 〉 and Y ∈ Dn−1

such that

C∃R = { d[Y] | d ∈ CR }.

So whenever d is a solution of C∃ then a value a in the domain of the quantified
variable x exists such that the n-tuple t, a is a solution to the source constraint
C.

The construction of rules R∃ for C∃ is inverse to the case of all-quantification
in the sense that it requires closure prior to the modification of the rules:

R∃ = {Z ∈ S → y 6= a | (Z ∈ S, x ∈ D → y 6= a) ∈ closure(R) }.

5.4.13. Fact. R∃ is atomically complete w. r. t. C∃ if R is atomically complete
w. r. t. C. Moreover, R∃ is closed under the meta rules (derive), (subsume). �

Proof. Consider a rule of the form Z ∈ S, x ∈ D → y 6= a from the set
closure(R). It states that it is correct to conclude y 6= a from Z ∈ S, independent
of the value of x. Clearly, the rule Z ∈ S → y 6= a is correct for C∃.

Conversely, consider some correct, atomic rule Z ∈ S → y 6= a associated
with C∃. We can conclude from it that no solution d of C exist with {d[Z]} = S
and d[y] = a. So the rule Z ∈ S, x ∈ D → y 6= a is correct when associated with
C, and consequently it must be subsumed by closure(R).

Finally, notice that R∃ is closed under (derive), (subsume), since any transfor-
mation possible in R∃ would have been possible in R, which is closed, using the
corresponding ancestor rules. �

5.4.14. Example. We take once more the Boolean constraint or(x, y, z), and
quantify now existentially on x, to obtain

or′(y, z) = ∃x. or(x, y, z).

The three solutions of or′ are {(0, 0), (0, 1), (1, 1)}. Each can be extended to a
solution of or by some x in {0, 1}.

The only two rules contained in the closure of all atomic rules correct for or

and with x ∈ D in their condition are

or(x, y, z), x ∈ D, y ∈ {1} → z 6= 0,

or(x, y, z), x ∈ D, z ∈ {0} → y 6= 1.

5.5. Example: A Composed fulladder Constraint 75

We obtain

or′(y, z), y ∈ {1} → z 6= 0,

or′(y, z), z ∈ {0} → y 6= 1.

These two are also the only correct rules for or′. Indeed, the only non-solution
(1, 0) of or′(y, z) corresponds to the two rules (Note 5.3.4).

No further (derive) or (subsume) is possible on the rule pair. �

5.5 Example: A Composed fulladder Constraint

In this section we demonstrate how a rule-based GAC-enforcing solver (i. e., a set
of membership rules establishing GAC) for a complex constraint can be assembled
from the solvers of some base constraints. We use for this the fulladder constraint.
It captures the relation linking the binary variables x, y, z, s, c in such a way that
the sum of x, y, z is s with the carry bit in c, i. e.,

x+ y + z = c s = 2c+ s with x, y, z, s, c ∈ {0, 1}.

The conventional definition using the basic constraints and, or, xor is

fulladder(x, y, z, s, c) ≡ ∃ c1, c2, s1. xor(x, y, s1) ∧

and(x, y, c1) ∧

and(z, s1, c2) ∧

or(c1, c2, c) ∧

xor(z, s1, s).

It can be used straightforwardly to construct a rule set for fulladder from rule sets
for and, or, xor. These, in turn, can be constructed from the corresponding posi-
tive or negative definition. We sketch a possible sequence of operations, using the
straightforward language in Figure 5.2 (variables are handled informally for sim-
plicity of presentation). The input to this incremental generation are 5 rule sets:
one copy of a rule set describing the or constraint on the variables (c1, c2, c), and
2 times 2 copies describing xor, and, on (x, y, s1), (z, s1, s) and (x, y, c1), (z, s1, c2),
resp.

1. We begin with the first two constraints inside the conjunctive definition of
fulladder. Let Rxor and Rand be the corresponding rule sets for (x, y, s1) and
(x, y, c1), resp. To construct the rules for the conjunctive constraint

aux 1(x, y, s1, c1) := xor(x, y, s1) ∧ and(x, y, c1)

it is necessary to pad the constraints to

xor′(x, y, s1, c1) ∧ and′(x, y, s1, c1)

76 Chapter 5. Incremental Rule Generation

and accordingly their rules. We compute

Rxor′ := pad(c1, Rxor)

Rand
′ := pad(s1, Rand)

and subsequently

Raux 1 := union(Rxor′, Rand′)

In other words, we obtain Raux 1 = Rxor′ ∪ Rand′.

2. This pattern of padding and union-building is repeated. Let us denote the
result by Raux 2 associated with the constraint aux 2(x, y, z, s, c, s1, c1, c2).

3. It remains to eliminate the auxiliary variables s1, c1, c2 by existential quan-
tification; see Section 5.4.7. The set Raux 2 must be closed before the ap-
propriate rules can be selected. We obtain

Rfulladder := exists({s1, c1, c2}, closure(Raux 2))

By this process, 94 membership rules for fulladder are constructed from
2 · 12 rules for both occurrences of xor and 3 · 9 rules for the two occur-
rences of and and the single occurrence of or. These input rule are the clo-
sure of all correct, atomic rules for their respective constraints, therefore the
constructed rule set enforces GAC on fulladder. This in turn means strictly
more propagation than GAC on the 5 individual constraints. The CSP
〈fulladder(x, y, z, s, c) ; x, z, c ∈ {0, 1}, y ∈ {1}, s ∈ {0}〉 is closed under the sub-
constraint rules – there is no constraint and thus no rule linking y, s directly. In
contrast, one rule constructed for fulladder is y ∈ {1}, s ∈ {0} → c 6= 0 which
allows to propagate to c ∈ {1}.

5.6 Implementing the Meta Rule Closure

5.6.1 Uniqueness

To show that the meta rule application strategy has no influence on the result
of the closure, we view (derive), (subsume) as a rewrite system. For the relevant
background we refer to [Baader and Nipkow, 1998].

5.6.1. Lemma. The closure of a membership rule set under (derive), (subsume)
exists and is unique.

5.6. Implementing the Meta Rule Closure 77

Proof. If the number of variables and the size of their base domains is finite,
then there are only finitely many syntactically correct rules. Any closure algo-
rithm that applies (derivek), (subsume) at most once to any pair of rules and a
specific k in the input rule set R terminates.

The meta rule system is confluent. We prove this by showing that every
critical pair is joinable. The rule sets R1, R2 in a critical pair 〈R1, R2〉 are the
respective results of applying two meta rules to the same source rule set.

Joinability of critical pairs is easy to verify for pairs stemming
from (subsume)+(subsume) and (derive)+(derive). For the meta rules
(subsume)+(derive), the interesting case is the critical pair arising from the source
rule set R ∪ {ra, rb, rc} and where ra subsumes rb, and rb, rc have a descendant
rule rd. An application of the subsumption meta rule can here prevent a subse-
quent application of the derivation meta rule. We find the two possible initial
derivations

R ∪ {ra, rb, rc}

R ∪ {ra, rc}
(subsume) on ra, rb

R ∪ {ra, rb, rc}

R ∪ {ra, rb, rc, rd}
(derive) on rb, rc

so the critical pair is 〈R ∪ {ra, rc}, R ∪ {ra, rb, rc, rd}〉. We show this pair to be
joinable by a case distinction on whether ra subsumes rd.

ra subsumes rd. The two derivations (continuing the ones above)

R ∪ {ra, rc}
R ∪ {ra, rb, rc, rd}

R ∪ {ra, rc, rd}

R ∪ {ra, rc}
(subsume) on ra, rd

(subsume) on ra, rb

show that R ∪ {ra, rc} and R ∪ {ra, rb, rc, rd} are joinable.

ra does not subsume rd. In this case, from ra and rc a descendant re can be
derived. In turn, re subsumes rd. For the critical pair, we have the following
two continuations of the above derivations:

R ∪ {ra, rc}

R ∪ {ra, rc, re}
(derive) on ra, rc

R ∪ {ra, rb, rc, rd}

R ∪ {ra, rc, rd}

R ∪ {ra, rc, rd, re}

R ∪ {ra, rc, re}
(subsume) on re, rd

(derive) on ra, rc

(subsume) on ra, rb

So R ∪ {ra, rc} and R ∪ {ra, rb, rc, rd} are joinable in R ∪ {ra, rc, re}.

Since the rewrite system (derive), (subsume) is terminating and confluent, the
closure of a rule set under these meta rules exists and is unique. �

Lemma 5.6.1 allows us to apply the (subsume) meta rule eagerly when com-
puting the closure, which improves convergence.

78 Chapter 5. Incremental Rule Generation

RGA : constraint C ⊆ Dn on X 7−→ rule set enforcing GAC on C

R := ∅
for each V ⊂ X in increasing order do

for each S ⊆ D|V | in decreasing order,
where Si ⊆ C[vi] and S ∩ C[V] 6= ∅, do

for each y ∈ X − V and each d ∈ D do

let r be the rule C(X), V ∈ S → y 6= d
if r is correct and not subsumed by R then

R := R ∪ {r}
end

end

end

end

return R

Figure 5.1: Original rule generation algorithm RGA [Apt and Monfroy, 2001]

5.6.2 Relation to the Original Generation Algorithm for

Membership Rules

We have already seen in Section 5.3.4 that RGA sometimes does not find every
‘interesting’ rule. We inspect here in detail its relation to the closure-based ap-
proach to rule generation, which can be used in the same way as RGA to generate
rules, by the method described in Section 5.4.4.

RGA implements essentially a generate-and-test approach, where the rule can-
didates are ordered by subsumption such that the output rule set grows steadily
as unsubsumed rules are added. We quote RGA in Figure 5.1.

5.6.2. Lemma. For a given constraint C, denote by RRGA the rule set that RGA

generates. Let Rcl be a set of correct rules associated with C such that every atomic
rule correct for C is subsumed, and Rcl is closed under (derive), (subsume). Then

• every rule in RRGA is subsumed by some rule in Rcl, and

• every feasible rule in Rcl subsumes some rule in RRGA.

Proof. RGA enumerates all correct, feasible rules, discarding those that are
subsumed. In turn, Rcl subsumes all correct rules, by Theorem 5.3.9.

Inversely, each feasible rule in Rcl is correct, and not subsumed by a different
correct rule. This means that it is either contained in RRGA, or subsumes a rule
therein. The latter case arises due to infeasible rules and (derive). �

5.7. Implementation and Empirical Evaluation 79

rule-set ::= positive definition(〈tuple-set〉)

| negative definition(〈tuple-set〉)

| pad(〈new-variable〉, 〈rule-set〉)

| enlarge domain(〈new-value〉, 〈rule-set〉)

| exists(〈variable〉, 〈rule-set〉)

| for all(〈variable〉, 〈rule-set〉)

| union(〈rule-set〉, 〈rule-set〉)

| closure(〈rule-set〉)

Figure 5.2: A language for incremental membership rule generation

5.7 Implementation and Empirical Evaluation

We implemented a prototype of incremental rule generation in the ECLiPSe sys-
tem. The program accepts rule generation requests in the language described in
Fig. 5.2 (where, for simplicity, domain and variable handling is omitted). The
rule set closure is computed by the algorithm shown in Fig. 5.3. We argue for
its correctness briefly and informally by stating that R in the algorithm remains
always closed under (derive), (subsume), and that any possible (derive) between
two rules of R is collected (stage-wise) in D. Since upon termination D has been
emptied into R by addition or subsumption, we then have that R is closed under
(derive), (subsume) and that all rules of the input rule set are subsumed by R.

Benchmarks

We examined the behaviour of the closure algorithm for the generation of rule sets
from positive, extensional constraint definitions. This enables a direct comparison
with the RGA algorithm of [Apt and Monfroy, 2001].

We used random constraints with uniformly distributed solutions. We varied
the tightness of the constraint, i. e. the proportion of non-solutions (a small tight-
ness means many solutions), and we examined varying arity and domain size. Our
random constraint generator is based on the program [Bessière, 1996] which was
adapted so as to generate a single, n-ary constraint definition. Per data point
we used 5 random constraints and 3 repetitions for each (we found only small
variances in the measured times).

The results, summarily reported in Fig. 5.4, indicate that the closure-based
rule generation approach is more efficient than RGA by orders of magnitudes when
the constraint arity or the tightness is small.

80 Chapter 5. Incremental Rule Generation

closure : rule set R 7−→ closure(R)

return
⋃

∀y,∀a closure split({ r ∈ R | r = (h→ y 6= a) for some h })

closure split : rule set R 7−→ closure(R)

assumes that all rules have the same body

if R = ∅ then return ∅
else

choose r ∈ R
return closure add(R− {r}, {r})

end

closure add : rule sets A, R 7−→ closure(A ∪R)
assumes that R is closed

if A = ∅ then return R
else

D := ∅
for each r ∈ A not subsumed by R do

〈Dr, R〉 := closure add one(r, R)
D := D ∪Dr

end

return closure add(D, R)
end

closure add one : rule r, rule set R 7−→ rule set pair 〈D, R′〉
D is the set of descendants between r and R, and

R′ is R updated with r; always considering subsumption

delete from R all rules subsumed by r
D := all (derive) descendants of r and any rule in R
if some r′ ∈ D subsumes r then

return closure add one(r′, R)
else

delete from R all rules subsumed by D
return 〈D, R ∪ {r}〉

end

Figure 5.3: Algorithm to close a membership rule set under (derive), (subsume)

5.8. Final Remarks 81

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

C
P

U
 s

ec
. (

lo
gs

ca
le

)

tightness

arity=2, domsize=14

RGA
closure

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1
tightness

arity=3, domsize=8

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1
tightness

arity=6, domsize=3

Figure 5.4: Rule generation from positive random constraint definitions

5.8 Final Remarks

We presented an incremental approach to the automatic generation of constraint
propagation rules; and we examined it in depth for the case of membership rules.
The closure of a rule set under two meta rules constitutes the core of this method.
We showed that various ways of defining a constraint incrementally have a cor-
responding rule generation method. We could also demonstrate the efficiency of
this method. That, and the description by meta rules, may make it possible to
include it as a source-to-source transformation process during the compilation of
CHR rules [Holzbaur, 2002].

An important contribution of this work is that it helps to further explain
rule-based constraint propagation. For the class of membership rules, the close
connection between an atomic unit of the constraint definition, i. e. a single non-
solution, and a GAC-enforcing rule application is visible. Evidence for the impor-
tance of the explanatory aspect of the rule-based view on constraint propagation
is the recent work [Choi et al., 2003], in which propagation rules are employed
as a means to argue for operational relevance or redundancy of constraints in
dual-model CSPs.

While a complete meta rule closure of a rule set subsuming all correct, atomic
rules is necessary to obtain a GAC-enforcing propagation operator for a con-
straint, compromising on these conditions (except for correctness) does not im-
pede correctness of the corresponding propagation. Situations are conceivable in
which it is useful to enter only some of the atomic rules into the closure, or in
which the closure is executed incompletely. The resulting solver generally propa-
gates to a local consistency weaker than GAC, but it may consist of less, simpler
rules and may therefore be faster to execute – a common trade-off in constraint
programming.

Finally we note that dynamic updating of solvers may be of interest in “open-
world” constraint satisfaction [Faltings and Macho-Gonzalez, 2002], where gath-
ering the constituents of a CSP, e. g. the tuples defining a constraint, is part of the
problem solving process. This is the case, for example, when a CSP is represented
in a distributed way on several internet sites.

Chapter 6

Constraint-Based Automatic Test
Pattern Generation

6.1 Introduction

As a demonstration of using membership rules for constraint propagation, we
consider the problem of automatic test pattern generation for sequential circuits.

The production process of modern electronic integrated circuits is very com-
plex. As a consequence, in practice defective circuits are produced. Subsequent
testing is used to filter them out. Since it is impossible to test circuits completely,
only some types of faults are targeted. The most common fault model for digital
circuits is called stuck-at fault. A circuit given in its decomposition into primitive
logical gates has a single stuck-at fault if it behaves as if one input or output line
of gate was cut and replaced by a permanent value 0 or 1. This fault model covers
many other faults occurring in digital circuits.

Testing for stuck-at faults consists in setting the circuit input to defined values
and checking if the observed output coincides with the output expected from the
circuit specification. Automatic test pattern generation (ATPG) is the
problem of constructing an exhaustive set of test input patterns for the possible
stuck-at faults in a circuit, given its specification. A problem introduction and
extensive survey of solution algorithms is provided by [Cheng, 1996]. A general
introduction to digital electronic circuits is [Shiva, 1988], for example.

For combinational circuits, which have no internal state, constraint-based ap-
proaches to ATPG [Simonis, 1989, Hentenryck et al., 1992] and related problems
[Azevedo, 2003] exist. Sequential (stateful) circuits have a strictly more complex
structure, however, and while some ideas carry over, the mentioned combina-
tional approaches as such are not applicable. One point of increased difficulty is
the description of the constraint propagation. We show how rule-based methods,
in particular the automatic generation of membership rules, can be used.

We introduce ATPG first in detail for combinational circuits, and move then
to sequential circuits, before discussing constraint-based methods.

83

84 Chapter 6. Constraint-Based Automatic Test Pattern Generation

A

B

C

K

Y

NOT

NOT

NOR

NOR

NOR

NOR

NOR

NAND

X

F

H

I

G

E

D

Figure 6.1: Combinational circuit C in gate-level detail

6.1.1 Combinational Circuits

A combinational circuit can be viewed as a function that maps tuples of Booleans
representing the input signals of the circuit to tuples of Booleans representing the
output signals:

O = circuit(I) where I = 〈I1, . . . , Inin
〉 and O = 〈O1, . . . , Onout

〉,

and Ii, Oj ∈ {0, 1} for all indices i, j. The function circuit is composed of the basic
Boolean connectives and, or, not, nand, nor, with auxiliary variables to represent
internal circuit signal lines. This decomposition corresponds to the gate-level
specification of the circuit. For simplicity, we assume gates with two inputs from
now on.

6.1.1. Example. Consider the circuit C in Fig. 6.1, adapted from [Muth, 1976].
It corresponds to the function

〈X,Y 〉 = circuitC(A,B,C,K).

As its decomposition we have the set of atomic operations

E = not(B), G = nor(D,B), X = nor(H, I),

F = nor(D,E), H = nor(K,G), Y = nand(K,F),

D = not(A), I = nor(D,C).

�

Faults and Tests

A stuck-at-X fault in a circuit is a signal line that does not pass through its
incoming value but instead the constant value X, which is either 0 or 1. The
short-cuts sa0 and sa1 are often used. In terms of the decomposition, the fault

6.1. Introduction 85

A

B

C
Y

X

1

K

Figure 6.2: Stuck-at-1 fault at line D in circuit C

saX occurring at the input or output line of gate can be explained by the following
modification.

Replace O = gate(I1, . . . , Ik)

by O = gate(I1, . . . , Ii−1, X, Ii+1, . . . , Ik) if input Ik faulty,

or by O = X, if output faulty.

(6.1)

Given a circuit and its version with a specific stuck-at fault, represented re-
spectively by the functions

OG = circuit(I) and OF = faulty circuit(I),

a test pattern is a Boolean vector tp = 〈tp1, . . . , tpnin
〉 such that

circuit(tp) 6= faulty circuit(tp).

So the test pattern makes the fault observable at the output. Locating the fault
is not required.

Two stuck-at faults can correspond to each other; for example, an sa0 fault
at an input line of an and gate cannot be distinguished by any test input from
sa0 at the gate output. These correspondences can be pre-computed, and testing
needs only take place for the collapsed fault set. A stuck-at fault can also be such
that no test input at all exists that makes it observable. Such faults are often
called redundant in the literature; this is to distinguish them from undetectable
faults, for which the concrete test generation method at hand finds no test (i. e.,
it is incomplete).

While a single test cannot uncover all stuck-at faults in a circuit, it often can
test for more than one fault. Hence, the objective of test pattern generation is to
generate a small set of test patterns covering as many faults as possible.

86 Chapter 6. Constraint-Based Automatic Test Pattern Generation

6.1.2. Example. Fig. 6.2 shows circuit C with a stuck-at-1 fault introduced at
line D. The circuit decomposition corresponds here to

E = not(B), G = nor(D,B), X = nor(H, I),

F = nor(D,E), H = nor(K,G), Y = nand(K,F),

Dfaulty = not(A), I = nor(D,C),

D = 1.

The tuple 〈1, 1, 1, 1〉 is a test pattern for this fault. We find

circuitC(1, 1, 1, 1) = 〈1,0〉, but

faulty circuitC(1, 1, 1, 1) = 〈1,1〉.

�

Complexity. Test pattern generation for combinational circuits is computa-
tionally costly; it is an NP-complete problem. It is not difficult to see that the
SAT problem can be reduced to it [Papadimitriou, 1994]. A SAT instance, i. e. a
set of propositional variables and a formula in CNF with clauses (disjunctions)
over them, can be viewed as a circuit whose inputs correspond to the variables,
and whose single output reflects the truth of the formula. Satisfiability corre-
sponds to the existence of a test pattern for a stuck-at-0 fault at the circuit
output. To see membership in NP, assume that a test pattern for a specific fault
is given. The output of the correct circuit with the test pattern as its input can
be computed in time polynomial in the size of the circuit decomposition. The
same holds for the faulty circuit, which differs only in one place from the correct
circuit. A comparison of both output vectors takes time linear in their size.

6.1.2 Sequential Circuits

Sequential circuits are based on combinational ones but additionally have inacces-
sible internal memory elements and feedback loops. The output of such a circuit
is a function of its input and its current state, and the next state is a function of
the input and the current state. We consider here synchronous sequential circuits,
whose behaviour depends on the signal values at discrete time points, controlled
by a clock tick. Roughly, the output signals are valid at the clock ticks, and the
computation and the memory update take place between clock ticks.

So a sequential circuit computes a time-dependent function O = seq circuit(I)
that is recursively defined. We can describe it by a combinational circuit

〈O,M ′〉 = circuit(I,M)

where M = 〈M1, . . . ,Mnmem
〉 is the state, that is, the contents of the memory

elements, at the current clock tick. M ′ is the state at the following clock tick.

6.1. Introduction 87

A

B

C
Y

NOT

NOT

NOR

NOR

NOR

NOR

NOR

NAND

F

H

I

G

E

D

Memory
K

K’

Figure 6.3: Sequential circuit S

M , M ′ are referred to as the pseudo-inputs and pseudo-outputs, resp.,
indicating that they cannot be controlled or observed directly.

6.1.3. Example. Consider circuit S in Fig. 6.3, taken from [Muth, 1976]. Its
underlying combinational circuit is C from the previous examples. The sequential
circuit S corresponds to the functions

〈Y 〉 = seq circuitS(A,B,C), and 〈Y,K ′〉 = circuitS(A,B,C,K),

respectively. The decomposition of S is

E = not(B), G = nor(D,B), K ′ = nor(H, I),

F = nor(D,E), H = nor(K,G), Y = nand(K ′, F),

D = not(A), I = nor(D,C).

�

Faults and Tests

A stuck-at fault in a sequential circuit corresponds to a stuck-fault in its un-
derlying combinational circuit. Sequential circuit testing, however, differs from
combinational testing in that only the proper output signals can be observed, not
the internal state. Moreover, one is interested also in faults that need several
clock cycles to manifest themselves at an output line. Consequently, a test for
a sequential circuit consists of a sequence of input vectors, which propagate the
fault effect to an output line step by step independently of the initial state.

Let us make this formal. We make the internal state M explicit in seq circuit,
and we extend it to a function on input sequences:

seq circuit(〈I〉,M) = O where circuit(I,M) = 〈O,M ′〉,

seq circuit(〈I1, I2, . . . , Ik〉,M) = seq circuit(I2, . . . , Ik,M
′)

where circuit(I1,M) = 〈O1,M
′〉.

88 Chapter 6. Constraint-Based Automatic Test Pattern Generation

input output time

A B C K Y K ′

1 0 1 ? 1 1/? 1

1 1 1 1/? 0/1 1/? 2

Table 6.1: Testing for sa1 at D in circuit S

circuit denotes the combinational portion of seq circuit.

A test pattern (for a specific fault) is now a finite sequence T of input vectors
that makes the fault observable independently of the initial internal state:

∀m ∈ {0, 1}nmem. seq circuit(T,m) 6= faulty seq circuit(T,m).

(Recall that nmem is the number of internal memory elements.) faulty seq circuit

is a variant of seq circuit with a stuck-at fault in its combinational portion. Note
that we are faced with repeated fault effects since the fault is present at every
clock tick.

6.1.4. Example. Take circuit S in Fig. 6.3 of Example 6.1.3, and assume a stuck-
at-1 fault at line D (so the underlying combinational circuit is as in Fig. 6.2).
The test pattern 〈〈1, 0, 1〉, 〈1, 0, 1〉〉 consisting of two input vectors makes sa1

observable at D.

The behaviour of the circuit is indicated in Table 6.1. We denote uncertain
values, such as the initial state, by ‘?’. When the signal values in correct (G) and
faulty (F) circuit deviate, we use the notation G/F .

After the input 〈1, 1, 1〉 in the second step, the output Y is 0 for the correct
circuit but 1 for the faulty one, making the fault observable. It is remarkable that
initialising the memory element K to a known value is not needed in each case;
it suffices to do so in the correct circuit. �

6.2 Modelling ATPG with Constraints

Test pattern generation can be formulated in terms of constraint satisfaction prob-
lems. For combinational circuits this work has been done; we begin by reviewing
these approaches. After that we present several models for sequential circuits.

We assume that the input to a test generation procedure is a circuit defined
by its decomposition, and the location and type of a single stuck-at fault. The
desired output is a test pattern for this fault.

6.2. Modelling ATPG with Constraints 89

or4 0 1 d d

0 0 1 d d

1 1 1 1 1

d d 1 d 1

d d 1 1 d

Table 6.2: Disjunction in the 4-valued logic

6.2.1 Combinational ATPG

The 4-valued Model

Correct and faulty circuit are structurally almost identical. This important ob-
servation is used in the model underlying the D-Algorithm of [Roth, 1966], where
both circuit models are overlapped. Every gate common to both circuits and
defined on the Booleans is lifted to the Cartesian product of the Booleans. In
the notation G/F where G is the value of the correct (‘good’) circuit and F the
value of the faulty circuit, a gate in this 4-valued model is thus defined by

gate4(XG/XF , YG/YF , ZG/ZF) = gate(XG, YG, ZG) and gate(XF , YF , ZF).

The notation of the combined values is conventionally simplified by

0/0 = 0, 1/0 = d,

1/1 = 1, 0/1 = d.

So we deal with operations over the domain D4 = {0, 1, d, d}. The definition
of the or-gate in this 4-valued logic, for example, is given in Table 6.2. We
use combined circuit to describe the function of the correct and faulty circuit
considered together in the 4-valued logic. A test pattern tp is now such that

combined circuit(tp) = 〈o1, . . . , onout
〉 with oi ∈ D4

and

ok = d or ok = d

for some k.

Modelling as a CSP. Test pattern generation can be expressed as a constraint
satisfaction problem with the 4-valued logic. The first approach is reported in
[Simonis, 1989], but it is too restrictive; see the critique in [Azevedo, 2003, p. 32].

Here is an alternative modelling of ATPG as a CSP.

Variables. Every input, output and internal signal of the circuit corresponds to
a single variable.

90 Chapter 6. Constraint-Based Automatic Test Pattern Generation

d

d
d

d

1

1

1

1

1

0

0

0

d

1

0

Figure 6.4: Testing for stuck-at-1 with the 4-valued logic

Domains. Input variables have the domain {0, 1}, all other variables range over
D4 = {0, 1, d, d}.

Constraints.

• Every circuit gate is represented by the corresponding constraint in
the 4-valued logic.

• The gate with the fault at its input or output is modified as explained
in (6.1) of Section 6.1.1, but with X is replaced by d if the fault is
stuck-at-0, and by d if the fault is stuck-at-1.

• The output variables are constrained to show the fault: at least one
variable must take the value d or d.

6.2.1. Example. Fig. 6.4 shows circuit C with a stuck-at-1 fault at line D. The
values at the signal lines show the situation that is obtained by the test pattern
〈1, 1, 1, 1〉, using the 4-valued logic. �

6-valued Model

Considering the distribution of the values in the circuit for a test pattern, one
can observe that the fault effect traces a path from the fault site to some circuit
output. In the circuit C of Figures 6.1 and 6.4, the fault effect travels from D = d

via F = d to Y = d, for instance. There can be several such paths as the fault
effect can multiply via a signal line entering several gates. However, one path
must exist. Conversely, a fault effect can also ‘disappear’ at a gate; take for
instance or(d, 1) = 1 that prevents d from being observable at the output.

These observations, the necessary existence of a fault effect path and the
possibility of disappearing fault effects, led to a refined model. The idea of
[Hentenryck et al., 1992] is to distinguish two pairs of fault effect values,

• d, d for the single necessary fault effect path, and

• e, e for ‘expendable’ fault effects, which may disappear.

6.2. Modelling ATPG with Constraints 91

or6 0 1 e e d d

0 0 1 e e d d

1 1 1 1 1

e e 1 e 1 d

e e 1 1 e d

d d d

d d d

fanout

0 0 0

1 1 1

e e e

e e e

d d e

d e d

d d e

d e d

Table 6.3: Disjunction and fan-out in the 6-valued logic

e

d

d
e

d

d

1

1

1

1

1

0

0

0

d

1

0

Figure 6.5: Testing for stuck-at-1 with the 6-valued logic

The resulting logic is 6-valued. Table 6.3 shows the or constraint, viewed as
a function. It is not a total function anymore: not all input combinations with
d-values (d or d) are permitted. A d-value is forced to the output, and at most
one d-value is expected at the input. The result is a single fault effect path from
input to output.

A new concern is the distribution of the fault effect through fan-out points.
For example, in the example circuit, the line D enters three nor gates. A special
fan-out constraint is introduced for this purpose. Consider a line used as an input
to two gates. This situation is modelled by the line variable O and the two input
variables I1, I2, constrained by

fanout(O, I1, I2).

The definition is given in Table 6.3. It forces the non-expendable fault effect d, d
to take exactly one path, passing it on as an expendable fault effect on the other.
All other values are simply distributed. The fan-out constraint and the 6-valued
logic constraints force existence of a single fault effect path from input to output.

6.2.2. Example. Fig. 6.5 shows test generation with the 6-valued logic (the

92 Chapter 6. Constraint-Based Automatic Test Pattern Generation

M

M

time t time t+1 time t+2

Figure 6.6: Unfolding a sequential circuit into time-frames

two fan-out points are left implicit). Note the single path of d-values, and the
disappearing e-values. �

6.2.2 Sequential ATPG

Sequential circuits add two new issues to test pattern generation. Recall that a
test pattern is a sequence T = 〈t1, . . . , tntp

〉 of input vectors ti such that

∀m ∈ {0, 1}nmem. seq circuit(T,m) 6= faulty seq circuit(T,m) (6.2)

where nmem is the number of internal memory elements.
So a sequence of a priori unknown length must be found, and the problem

statement contains universal quantifications. We deal with these issues separately.

Sequences of Input Vectors

A test sequence of shortest length can be found by iteratively searching over se-
quences of specific length, starting with length one and increasing it in successive
rounds.

The subproblem of finding a test sequence of specific length can be dealt
with by unfolding the sequential circuit into the sequence of its combinational
portions, usually called time-frames; see Fig. 6.6. The memory elements are
replaced by new lines linking adjacent time-frames. These new lines connect
the pseudo-inputs and pseudo-outputs left after removing the memory elements.
Unfolding is a general technique of the algorithms surveyed in [Cheng, 1996].

A test pattern assigns the inputs of each time-frame. Some output of the last
time-frame shows the fault effect. The fault effect traces a path to the output in
this setting as well. Since the fault occurs in each time-frame, there is a specific
time-frame at whose fault site the fault effect path starts. This time-frame is not
necessarily the first one; some initial test input vectors may be needed to activate
the fault, e. g., to propagate a signal 1 to a stuck-at-0 fault site. The observation
that such a fault-activating time frame exists, can be used to guide the iterative
search over test patterns of fixed length. For example, the fault can be activated

6.2. Modelling ATPG with Constraints 93

or3 0 1 u

0 0 1 u

1 1 1 1
u u 1 u

Table 6.4: Disjunction in the 3-valued logic

in the initial time-frame and new time-frames can be added forward or backward
in time, up to the current maximum number of time-frames.

An obvious desirable property of a sequence of test input vectors is that state
repetition is avoided, that is, the induced individual states should be pair-wise
different. A state repetition in a test implies that an equivalent but shorter test
exists; the intermediate input sequence is redundant and can be extracted.

By unfolding a sequential circuit into time-frames we can thus transform Prob-
lem (6.2) into sequences of problems of the form

∀m ∈ {0, 1}nmem. unfolded circuit(T,m) 6= unfolded faulty circuit(T,m) (6.3)

where the sequence of test input vectors T is of fixed length, and the unfolded
circuits are combinational.

Universal Quantification

Since the decompositions of the unfolded circuits in Problem (6.3) are Boolean
formulas, Problem (6.3) can be viewed as a quantified Boolean formula (QBF).
The satisfiability problem of QB formulas (QSAT) is strictly more complex than
SAT; it is PSPACE-complete [Papadimitriou, 1994]. Due to the sizes of modern
VLSI circuits, already the complexity of the propositional sub-problem is enor-
mous. Therefore, all sequential ATPG approaches I am aware of do not deal
with (6.3) as a QB formula, but restrict and simplify the problem. The common
principle is to eliminate the quantifier from a variable and instead mark it with
a specific non-Boolean value u:

remove ∀mi ∈ {0, 1} and add mi = u.

The meaning of u is as in [Kleene, 1952, p. 334]. i. e., that of an unknown. As
an example, Table 6.4 gives the definition of or in the resulting 3-valued logic. In
this way, we reduce Problem 6.3 to

m = 〈

nmem
︷ ︸︸ ︷
u, . . . , u〉, unfolded circuit(T,m) 6= unfolded faulty circuit(T,m), (6.4)

which consists of a fixed number of unquantified variables.
Clearly, information is lost when eliminating quantifiers in this way: some

valid tests cannot be found in the modified model. Here is an illustration.

94 Chapter 6. Constraint-Based Automatic Test Pattern Generation

6.2.3. Example. Consider the fragment

∀M ∈ {0, 1}.
(
not(M) = N, xor(M,N) = O

)
.

Just considering the gates, we find that the value ofO is necessarily 1, independent
of the value of M . In contrast, using the 3-valued logic and M = u one only gets
O = u. So we cannot find a test for a stuck-at-0 fault at O, using the 3-valued
approach. �

We proceed now by giving in detail several models of Problem 6.4 as a con-
straint satisfaction problem. We assume that the sequential circuit is given by
the gate decomposition of its underlying combinational circuit. The goal is to
find a test pattern T = 〈t1, . . . , tntp

〉 of fixed length ntp.

6.2.3 3-valued Model

We can use the 3-valued logic for a direct translation of the decompositions of
both the correct and the defect circuit into separate constraints.

Each of the ntp time-frames contributes the following:

Variables. For every proper input signal, there is one variable. For every output
and internal signal, and for every pseudo-input and pseudo-output, there
are two variables, one for the correct and one for the faulty circuit.

Domains. Proper input variables range over {0, 1}. All other variables (includ-
ing the pseudo-inputs) have the domain D3 = {0, 1, u}.

Constraints.

• Every circuit gate is represented two times by the corresponding con-
straint in the 3-valued logic; once for the correct and once for the faulty
circuit.

• In the faulty circuit, the gate with the fault at its input or output is
modified by the procedure (6.1) in Section 6.1.1.

The output variables of the final time-frame are constrained to show the fault.
That means, two variables from correct and faulty circuit corresponding to the
same output must exist that have different Boolean values.

The ntp resulting sub-CSPs for the separate combinational circuit copies, i. e.
time-frames, must also be linked, by equating the corresponding pseudo-outputs
and pseudo-inputs of adjacent time-frames.

Additionally, to help find short test patterns fast, state repetitions can be
prevented. The corresponding constraint can be seen as an alldifferent constraint
on the states. A state is given by the pair of the pseudo-output vectors (correct
and faulty circuit), which represents the next circuit state.

6.2. Modelling ATPG with Constraints 95

0/0 = 0, 1/0 = d, u/0 = u0

0/1 = d 1/1 = 1, u/1 = u1

0/u = 0u 1/u = 1u u/u = u

Figure 6.7: The elements of the 9-valued logic

faultsite sa19

In faulty 0 1 d d u 0u 1u u0 u1

Out faulty d 1 1 d u1 d 1 u1 u1

Table 6.5: Fault site constraint for the 9-valued logic

The advantage of this model is that the involved gate constraints are simple
(consult Table 6.2 for or3), and hence constraint propagation is fast. Disadvan-
tages exist, however. Two almost equal circuit copies are dealt with in paral-
lel. Since the input values are shared, much of the information computed and
stored in the two circuit variants is the same. Furthermore, information split
over two variable domains is less precise: necessary equality {〈0, 0〉, 〈1, 1〉}, or
necessary disequality {〈0, 1〉, 〈1, 0〉}, cannot be represented as a Cartesian prod-
uct Domcorrect × Dom faulty with Domcorrect,Dom faulty ⊆ {0, 1}.

6.2.4 9-valued Model

The 4-valued logic useful for combinational test pattern generation, Section 6.2.1,
can be lifted to the sequential case. The underlying principle remains the com-
bined treatment of the signal values in correct and faulty circuit, but instead of
|{0, 1} × {0, 1}| = 4 values we deal now with |{0, 1, u} × {0, 1, u}| = 9 values;
listed in Fig. 6.7. The first report on the use of this 9-valued model for ATPG
(but not constrained-based) is [Muth, 1976].

The definition of the gate constraints is straightforwardly based on the two
combined gates. For instance, we have

or9 = { 〈d, 0u, 1u〉, 〈u0, 0u, u〉, 〈d, u, 1u〉, . . . } (81 tuples).

Here is the CSP model based on the 9-valued logic. Each of the ntp time-
frames contributes the following:

Variables. For every input, output and internal signal, and for every pseudo-
input and pseudo-output, there is one variable.

Domains. Proper input variables range over {0, 1}. All other variables (includ-
ing the pseudo-inputs) have the domain D9 = {0, 1, d, d, u, u0, u1, 0u, 1u}.

Constraints.

96 Chapter 6. Constraint-Based Automatic Test Pattern Generation

0/0 = 0, 1/0 = d = e, u/0 = u0

0/1 = d = e 1/1 = 1, u/1 = u1

0/u = 0u 1/u = 1u u/u = u

Figure 6.8: The elements of the 11-valued logic

• Every circuit gate is represented by the corresponding constraint in
the 9-valued logic.

• The variable If representing the faulty line is replaced by a fresh vari-
able Of wherever it is used as an input variable (we include here the
case that If is a circuit output). The variables If , Of are constrained
by the appropriate fault site constraint. For the stuck-at-1 fault, Ta-
ble 6.5 shows this constraint.

The output variables of the final time-frame are constrained to show the fault:
one variable must exist that takes the value d or d.

The reason for a specific fault site constraint is that we cannot inject a fault
value d, d at each fault site. Only one time-frame is needed in which the fault is
activated and starts the fault effect path to the final output. The fault sites at
other time frames, while existent, may or may not have an effect.

The 9-valued logic clearly provides much more precise information per variable
domain. Necessary equality is represented by the {0, 1}, a necessary fault effect
is given by {d, d}. The price is much more complex constraints: or9 is defined by
81 tuples, in contrast to or3 with only nine.

6.2.5 11-valued Model

Also the 6-valued logic of Section 6.2.1, used in combinational test pattern gen-
eration, can be lifted to the sequential case. So we integrate the u-value, the
combined treatment of correct and faulty circuit, and fault effect distinction into
required and expendable. The idea is to carry over the heuristic concerning the
fault effect path (d-values versus e-values) to sequential ATPG. The resulting 11
values are listed in Fig. 6.8.

The definition of the gate constraints is straightforwardly based on the two
combined gates. For instance, we have

or11 = { 〈e, 0u, 1u〉, 〈d, e, d〉, 〈d, u, 1u〉, . . . } (93 tuples),

but for example 〈d, 0u, 1u〉 is not in or11, since d-values must not disappear.
The CSP model follows. Each of the ntp time-frames contributes the following.

Variables. For every input, output and internal signal, and for every pseudo-
input and pseudo-output, there is one variable.

6.3. Implementation 97

faultsite sa111

In faulty 0 0 1 e e e u 0u 0u 1u u0 u1

Out faulty d e 1 1 d e u1 d e 1 u1 u1

Table 6.6: Fault site constraint for the 11-valued logic

Domains. Proper input variables range over {0, 1}. All other variables have the
domain D11 = {0, 1, d, d, e, e, u, u0, u1, 0u, 1u}.

Constraints.

• Every circuit gate is represented by the corresponding constraint in
the 9-valued logic.

• The variable If representing the faulty line is replaced by a fresh vari-
able Of wherever it is used as an input variable (we include here the
case that If is a circuit output). The variables If , Of are constrained
by the appropriate fault site constraint. Table 6.6 shows this constraint
for the stuck-at-1 fault.

• Fan-out points are modelled by constraints, not by multiple variable
occurrences. The constraint is the straightforward extension of the
fan-out constraint from the 6-valued logic, Table 6.3, by the 5 new
values using u, which are simply copied to both outputs.

As usual, the output variables of the final time-frame are constrained to show the
fault, this time we can require that exactly one variable must exist that takes the
value d or d.

6.3 Implementation

We have implemented sequential ATPG as described in the preceding sections.
Fig 6.9 gives the model-independent algorithm schema. The CSP P is constructed
according to the respective model of 3, 9, or 11 values. P is solved by first acti-
vating the fault in a chosen time-frame, and then searching through the variable
assignments of first the ‘future’ and then the ‘past’ time-frames. In the ‘fu-
ture’ time-frames, variables along a potential fault effect path (where correct line
and faulty line can still differ) are preferred by the search heuristic. In case of
failure, a different fault-activating time-frame is tried. Search otherwise takes
place per time-frame. Within a time-frame, the first-fail heuristic is applied,
that is, from all variables one with a smallest domain is chosen and instantiated
[Haralick and Elliott, 1980].

The implementation of this control algorithm is realised in ECLiPSe

[Wallace et al., 1997] and consists of about 5000 lines of source code.

98 Chapter 6. Constraint-Based Automatic Test Pattern Generation

ATPG : circuit 7−→ test pattern set

TP := ∅
for each circuit line L and fault type saX do

TP := TP ∪ ATPG fault(circuit, L/saX, 1)
end

return TP

ATPG fault : circuit, fault, ntp 7−→ test pattern

P := sequence of ntp time-frames with inputs tp as a CSP
if solving P is successful then return {tp}
else return ATPG fault(circuit, fault, ntp + 1)

Figure 6.9: Algorithm schema for sequential ATPG

6.3.1 Constraint Propagation

Almost all constraints in the presented ATPG constraint models represent gates,
which are operators in the chosen logic (of 3, 9, or 11 values). All these constraints
are defined by an explicit set of solutions. The constraint propagation of these
constraints can therefore be conducted by membership rules.

We are interested in membership rule sets sufficient to establish the local
consistency notion of generalised arc-consistency (GAC). Additionally we look at
sets of equality rules [Apt and Monfroy, 2001]. Recall that an equality rule is a
specific membership rule whose condition constraints x ∈ S are such that S is
either a singleton set S = {a} or the complete variable base domain S = D.
In other words, either x is instantiated or its current domain is irrelevant. This
feature leads to faster testing of the rule condition. On the other hand, equality
rules enforce a local consistency weaker than GAC.

In the remainder of this section we always mean GAC-enforcing membership
rules when we write ‘membership rules’.

Automatic Generation of Propagation Rules

For the generation of membership rules, we proceed as explained in Section 5.4.4.
For equality rules, we use the program of [Apt and Monfroy, 2001] (kindly pro-
vided to us by the authors). In both cases, we then remove redundant rules as
described in Section 4.3.1. Finally, for each constraint, the rule scheduler R of
Section 3.4.2 is instantiated with the corresponding rule set. The final result is
thus an ECLiPSe source code file that provides handling and propagation of the
associated constraint.

We report in the following some details of the specific rule generation pro-
cesses.

6.3. Implementation 99

3-valued logic. We require rules for the constraints and3, or3, and3, or3, and
not3 (see 6.4 for the definition of or3). Their definitions are small: the binary
operators have 9 solutions and not3 has just 3 rules. This leads to few rules: 13
membership rules and 16 equality rules are generated for the binary operators,
and 6 membership rules and as many equality rules for not3. Generation took
place in not more than one second per rule set.

9-valued logic. The number of solutions for the constraints representing binary
operators is here 81; the corresponding membership rule sets are of size 385, while
only 134 equality rules are obtained. Rule generation took about one minute for
the membership rules, and less than a second for equality rules. Additionally to
the logical operator constraints, we also have the fault-site constraints; see, e. g.,
Table 6.5. The 9 solutions lead to 7 membership and 13 equality rules (in both
the cases sa0, sa1).

11-valued logic. The constraints for the binary operators have 93 solutions,
393 membership rules, and 153 equality rules. Membership rule generation took
about 4 minutes, and redundancy removal another 10 minutes. Beside the logical
constraints, there are the fault-site constraints and the fan-out constraint. The
latter has 13 solutions, 33 membership rules, and 39 equality rules.

6.3.2 Empirical Evaluation

We verify the applicability of our approach to sequential ATPG by way of bench-
marking. Table 6.7 shows the test generation times for some circuits. Test pat-
terns for every possible fault are generated, i. e., every line and every stuck-at
fault (0,1) is considered separately. We set a maximum test pattern length of 5,
and a time limit of 20 seconds per fault.

Circuit S is our example circuit, Fig. 6.3, taken from [Muth, 1976]. The
remaining circuits are ISCAS’89 circuits. The ISCAS’89 benchmark is a publicly
available set of specifications of 31 sequential circuits [Brglez et al., 1989].

We give in Table 6.7 the results for the three models, and for equality rules
and GAC-enforcing membership rules. The circuit features are the number of
inputs, outputs, logic gates + not-gates, and memory elements. (The number of
logic gates counts the original gates that sometimes have more than 2 inputs.)

We can observe that generally equality rules are the better choice for the
smaller circuits. An explanation for this may be that search and propagation in
the induced small CSPs leads often directly to variable instantiations as opposed
to mere domain reductions, and equality rules cannot cause constraint propaga-
tion from non-singleton domains.

Next, we notice that the 3-valued logic performs best most of the time. This
can be explained by the simpler constraints (and smaller rule sets), compared with

100 Chapter 6. Constraint-Based Automatic Test Pattern Generation

3-valued 9-valued 11-valued Circuit features

mem equ mem equ mem equ I O G+N M

S 0.03 0.02 0.47 0.05 0.79 0.08 3 1 6 + 2 1

s27 0.07 0.12 1.34 0.24 1.75 0.98 4 1 8 + 2 3

s298 1288 3589 2591 4584 2825 4924 3 6 75 + 44 14

s344 681 6964 2458 7036 3090 7007 9 11 101 + 59 15

s641 3550 10831 2186 12171 2814 13028 35 24 107 + 272 19

Table 6.7: Results for benchmark circuits (times in seconds)

the other models. The advantage of the 3-valued model decreases as the circuits
become more complex, however. So the more precise signal representation that
is possible in the higher-valued logics may become more relevant then.

Finally, the extra domain knowledge that is built into the 11-valued model by
the additional e-values essentially does not pay off in our examples.

6.4 Final Remarks

We showed the viability of a constraint-based approach to ATPG for sequential
circuits. We started with a systematic treatment of constraint-based models for
combinational ATPG, and extended them subsequently to the sequential case by
our method of quantifier elimination and the unfolding technique.

Of particular interest in our approach is how we implement the constraint
propagation. Once the logics and correspondingly the constraints are defined,
which is part of modelling, the generation of constraint propagation rules (GAC-
enforcing membership and equality rules) is completely automatic.

In [Simonis, 1989] as well as in [Hentenryck et al., 1992], the constraint propa-
gation is described in rule form. All rules are manually constructed from the con-
straint definitions. While this is feasible for small constraints and few rules (the
logics have 4 and 6 values), that is clearly not the case when one deals with larger
logics leading to hundreds of rules. Furthermore, we consider redundancy in rule
sets, an issue not mentioned in [Simonis, 1989] nor in [Hentenryck et al., 1992].

A constraint-based approach to combinational ATPG with the 6-valued model
is discussed in [Abdennadher and Rigotti, 2004] in the context of automatic gen-
eration of constraint propagation rules. We show such rules in Section 4.4.1.

The automatic generation of constraint propagation rules is also applicable
to several of the specific multi-valued logics presented in [Azevedo, 2003], where
topics related to combinational ATPG, including differential diagnosis and test
pattern optimisation, are extensively studied from a constraint-based perspective.

Chapter 7

Constraint-Based Modal Satisfiability
Checking

7.1 Introduction

Relational structures, such as trees, graphs, transition systems, often pro-
vide a natural way to model evolving systems. One may have to deal with
such relational structures for a variety of reasons, e. g. to evaluate queries,
to check requirements, or to make implicit information explicit. Modal and
modal-like logics such as temporal logic and description logic provide a conve-
nient and computationally well-behaved formalism to represent such reasoning
[Blackburn et al., 2001, Halpern et al., 2001].

A wide range of initiatives aimed at developing and refining algorithms for
solving the satisfiability problem of basic modal logic has taken place in the past
decade, driven by an increased computational usage of modal-like logics. These
efforts have resulted in a series of implementations. Some implement special-
purpose algorithms for modal logic, others exploit existing tools for example for
propositional or first-order logic through some encoding. We follow here the
second approach. The modal satisfiability problem is modelled and solved as a
sequence of constraint satisfaction problems.

Specifically, we stratify a modal satisfiability problem (PSPACE-complete),
into layers of constraint satisfaction problems (individually NP-complete). We
refine the model substantially by exploiting the restricted syntactic nature of
modal problems and the expressive power of constraints — in particular, we use
not only the Boolean values. The resulting constraint satisfaction problems can
be solved by a moderately expressive constraint solving system. Most of the
constraints in our model are simple ones (e. g., at most one) for which propaga-
tion algorithms are part of many current constraint solving systems. Hence we
can solve the modal satisfiability problem essentially by controlling a standard
constraint solver. We demonstrate this point by an implementation in the con-
straint solving platform ECLiPSe system [Wallace et al., 1997]. While it cannot

101

102 Chapter 7. Constraint-Based Modal Satisfiability Checking

yet fully compete with today’s highly optimised modal provers, our experimental
evaluations suggest that the approach is very promising in general. Moreover, it
is excellent in some cases.

The main contributions of our work derive from our modelling of modal sat-
isfiability problems: modal formulas are translated into layers of finite constraint
problems that have non-Boolean domains, i. e. with further values than 0 or 1,
together with appropriate constraints to reason about these values. We show
that our modelling has a number of benefits over existing encodings of modal
formulas into sets of propositions. For instance, the extended domains together
with appropriate constraints give us a better control over the modal search proce-
dure. They allow us to set strategies on the variables to split on in the constraint
solver in a compact way. Specifically, by means of appropriate constraints for
our model, we can obtain satisfying partial Boolean assignments instead of total
assignments.

Background

We have a broad view of what modal logic is. In this view, modal logic encom-
passes such formalisms as temporal logic, description logic, feature logic, dynamic
logic. . . . While originating from philosophy, for the past three decades the main
innovations in the area of modal logic have come from computer science and ar-
tificial intelligence. The modern, computationally motivated view of modal logic
is one that takes modal logics to be expressive, yet computationally well-behaved
fragments of first-order or second-order logic. Other computer science influences
on modal logic include the introduction of many new formalisms, new algorithms
for deciding reasoning tasks, and, overall, a strong focus on the interplay between
expressive power and computational complexity. We now give some examples of
modern computational uses of modal-like logics.

We start with a brief look at the use of modal-like logics in the area of for-
mal specification and verification; a comprehensive introduction is provided by
[Huth and Ryan, 1999]. Requirements such as “the system is always dead-lock
free” or “the system eventually waits for a signal” can be compactly expressed in
the basic modal logic by augmenting propositional logic with two operators: � for
the guarded universal quantifier over states (commonly read as always, meaning
“in all the reachable states”), and for its existential counterpart (commonly
read as eventually, meaning “in some reachable state”). If we formalise the state-
ment “the system is dead-lock free” with the proposition s free, and “the system
waits for a signal” with s wait, then the two requirements mentioned above cor-
respond to the modal formulas �s free and s wait, respectively.

Multi-modal logics are popular in the agent-based community, see e. g.
[Rao and Georgeff, 1998]. Each agent is endowed with beliefs and knowledge,
and with goals that it needs to meet. The beliefs and knowledge can be ex-
pressed by means of multi-modal operators: �b

A for “agent A believes” and b
B

7.1. Introduction 103

for “agent B disbelieves”; �k
B for “agent B knows” and k

A for “agent A ignores”.
More complex modal formulas involving until operators or path quantifiers are
used to reason about plans of agents, in particular to express and verify speci-
fications on plans, see e. g. [Bacchus and Kabanza, 2000], or extended goals; see
[Pistore and Traverso, 2001] for example.

Description logics are a family of modal-like logics that are used to represent
knowledge in a highly structured form, using (mostly) unary and binary relations
on a domain of objects [Baader et al., 2003]. Knowledge is organised in termino-
logical information (capturing definitions and structural aspects of the relations)
and assertional information (capturing facts about objects in the domain being
modelled). For instance, an object satisfies RA if it is R-related to some object
satisfying A. In the area of description logic, a range of algorithms for a wide
variety of reasoning tasks has been developed.

Many more areas exist in which modal-like logics are currently
being used, including semi-structured data [Marx, 2004], game theory
[Harrenstein et al., 2002], or mobile systems [Cardelli and Gordon, 2000]. What
all of these computational applications of modal-like logics have in common is
that they use relational structures of one kind or another to model a problem or
domain of interest, and that a modal-like logic is used to reason about these struc-
tures. For many of the applications mentioned here, modal satisfiability checking
— does a given modal formula have a model (an assignment to the variables) —
is the appropriate reasoning task.

Related work

The past decade has seen a wide range of initiatives aimed at develop-
ing, refining, and optimising algorithms for solving the satisfiability problem
of basic modal logic. Some of these implement special purpose algorithms
for modal logic, such as DLP [Patel-Schneider, 2002], FaCT [Horrocks, 2002],
RACER [Haarslev and Möller, 2002], ∗SAT [Tacchella, 1999], while others exploit
existing tools or provers for first-order logic, e. g. MSPASS [MSPASS, 2001],
or propositional logic, for instance KSAT [Giunchiglia and Sebastiani, 2000],
KBDD [Pan et al., 2002], through some encoding. In this work we follow the lat-
ter approach: we propose to model and solve modal satisfiability problems as
constraint problems.

The starting-points of our work are [Giunchiglia and Sebastiani, 2000]
and [Areces et al., 2000]. In [Giunchiglia and Sebastiani, 2000], modal formulas
are modelled as sets of propositions (i. e. Boolean formulas) stratified into lay-
ers. The propositions are processed starting from the top layer in a depth-first
left-most way, and solved by a propositional solver.

We add a refinement that builds on ideas due to [Areces et al., 2000]. There,
an improvement of an existing encoding of modal formulas into first-order formu-
las was introduced. It enables one to re-use existing first-order theorem provers

104 Chapter 7. Constraint-Based Modal Satisfiability Checking

for deciding modal satisfiability, and, at the same time, to inform the prover about
the restricted syntactic nature of first-order translations of modal formulas. This
technique resulted in a significant improvement in performance.

We build on this insight. We improve on the modelling of modal formulas with
respect to [Giunchiglia and Sebastiani, 2000] so as to be able to make efficient use
of existing constraint solvers to decide modal satisfiability. Specifically, modal
formulas are translated into layers of finite constraint satisfaction problems that
have domains with non-Boolean values together with appropriate constraints.

While the well-known DPLL algorithm can also return partial Boolean as-
signments for propositions, there are two key add-ons of our modelling in this
respect. First, the use of extended domains and constraints allows more control
over the partial assignments returned by the constraint solver than unit propa-
gation allows in DPLL. Second, we can run any constraint solver on top of our
modelling to obtain partial assignments. It is by modelling that we obtain partial
assignments, and not by modifying existing constraint solvers nor by choosing a
specialised solver.

7.2 Propositional Formulas as Constraint Satis-

faction Problems

We begin by making a relation between propositional logic formulas and con-
straints.

7.2.1 Propositions

A propositional formula φ is a term constructed from propositional (Boolean)
variables (i. e., variables with domain {0, 1}) and the propositional connectives
such as ¬,∧,∨,→, with the usual interpretation. A positive literal is a proposi-
tional variable, a negative literal is a negated variable. When a Boolean-valued
assignment µ satisfies a propositional formula φ, we write µ |= φ. We denote by
CNF (φ) the result of ordering the propositional variables in φ and transforming φ
into conjunctive normal form (CNF): i. e., a conjunction of disjunctions of literals
without repeated occurrences. A clause of φ is a conjunct of CNF (φ).

Propositions as CSPs

It is straightforward to transform a propositional formula into a CSP that is
satisfiable exactly if the formula is. First the formula is transformed to CNF.
Then each resulting clause is viewed as a constraint. For example, the CNF
formula

φ = (¬x ∨ y ∨ z) ∧ (x ∨ ¬y) (7.1)

7.2. Propositional Formulas as Constraint Satisfaction Problems 105

corresponds to the CSP

Pφ = 〈C1(x, y, z), C2(x, y) ; x, y, z ∈ {0, 1}〉

in which the constraint C1 forbids the assignment {x 7→ 1, y 7→ 0, z 7→ 0}; and the
constraint C2 disallows the assignment {x 7→ 0, y 7→ 1}. The relation of proposi-
tional formulas and CSPs is studied extensively in [Walsh, 2000].

7.2.2 Partial Assignments

A constraint solver presented with a formula encoded as a CSP will return a total
assignment to the propositional variables. In contrast, we are here interested in
partial propositional assignments to the variables. For example, the assignment

{x 7→ 1, z 7→ 1}

satisfies the formula φ in (7.1) but is silent about the variable y.
One way to get such partial but satisfying propositional assignments, without

modifying the underlying constraint solver, is to encode the propositional formula
into a CSP with an extra value beside the Boolean 0 and 1. We use the additional
value “u” to mark those propositional variables that are not required in an as-
signment satisfying the encoded propositional formula. So we encode proposition
φ from (7.1) into a CSP Pφ in such a way that

{x 7→ 1, y 7→ u, z 7→ 1}

is a solution to Pφ, from which in turn we obtain the desired partial satisfying
assignment above.

Let us give a precise definition of the new encoding. We assume from now on
an implicit total order on the propositional variables; it lets us ignore the order of
occurrence of variables in a clause, (e. g., we do not distinguish x ∨ y and y ∨ x).

7.2.1. Definition. Given a propositional formula ψ, we denote by CSP(ψ) the
CSP 〈C;X ∈ D〉 associated with it. It is defined as follows:

1. X is the ordered sequence of propositional variables occurring in ψ.

2. A domain Di = {0, 1, u} is associated with each xi in X.

3. For each clause θ in CNF (ψ), a constraint Cθ exists that is on the variables
Y = y1, . . . , ym occurring in θ. A tuple d = d1, . . . , dm from the product of
the domains of Y satisfies Cθ if some variable yk exists such that

– d[yk] = 1 if yk occurs positively in θ,

– d[yk] = 0 if yk occurs negatively in θ.

106 Chapter 7. Constraint-Based Modal Satisfiability Checking

�

We give no further requirements in this definition on how constraints are
represented and implemented; on purpose, as such detail is not necessary for the
theoretical results concerning the modal satisfiability solver. Nevertheless, some
modelling choices and implementation details are discussed in Section 7.4 below.

The modelling of propositional formulas as in Definition 7.2.1 allows us to
make any complete solver for finite CSPs return a partial Boolean assignment
that satisfies a propositional formula ψ if ψ is satisfiable.

We denote by µ|Bool the Boolean sub-assignment of µ, that is, the set
{x 7→ b | (x 7→ b) ∈ µ and b ∈ {0, 1} }.

7.2.2. Theorem. Consider a propositional formula ψ and let X be its ordered
sequence of variables.

1. a total assignment µ for CSP(ψ) satisfies CSP(ψ) if and only if µ|Bool

satisfies ψ;

2. ψ is satisfiable if and only if a complete constraint solver returns a total
assignment µ for CSP(ψ) such that µ|Bool satisfies ψ.

Proof. First notice that a proposition and its CNF are equivalent: a Boolean
assignment satisfies one exactly if it satisfies the other. Item 1 follows from this
fact, Definition 7.2.1, and the following property of CNF formulas: a partial
Boolean assignment µ satisfies CNF (ψ) exactly if, for each clause φ of CNF (ψ),
µ assigns 1 to at least one positive literal in φ, or 0 to at least one negative literal
in φ. Item 2 follows from the former. �

It is sufficient that each domain Di of CSP(ψ) contains the Boolean values
0 and 1 for the above result to hold. Thus, one could have values other than u

(and 0 and 1) in the CSP modelling to mark some variables with different ‘levels
of relevance’ for deciding the satisfiability of a formula. The choice for just one
non-Boolean value as in Definition 7.2.1 suffices for our purposes.

7.3 Modal Formulas as Layers of Constraint

Satisfaction Problems

In this section we recall the basics of modal logic and provide a link between
solving modal satisfiability and CSPs.

7.3.1 Modal Formulas as Layers of Propositions

We refer to [Blackburn et al., 2001] for extensive details on modal logic. To sim-
plify matters, we will focus on the basic mono-modal logic K, although our ap-
proach can easily be generalised to a multi-modal version.

7.3. Modal Formulas as Layers of Constraint Satisfaction Problems 107

Modal formulas. K-formulas are defined as follows. Let P be a finite set of
propositional variables. Then K-formulas over P are produced by the rule

φ ::= p | ¬φ | φ ∧ φ | �φ

where p ∈ P . The formula p abbreviates ¬�¬p, and the other Boolean connec-
tives are defined in terms of ¬,∧ as usual. A formula of the form �φ is called a
box formula.

Here and in the remainder, we always assume that P is implicitly ordered to
avoid modal formulas only differing in the order of their propositional variables.
Furthermore, standard propositional simplifications such as the removal of double
occurrences of ¬ are implicitly performed on modal formulas.

Modal Layers and Propositional Approximations

The satisfiability procedure for K-formulas that we develop in this section revolves
around two main ideas:

• the stratification of a modal formula into layers of formulas of decreasing
modal depth;

• the approximation and solving of such formulas as propositions.

Let us make these ideas precise, starting with the former. In words, the modal
depth of a formula measures the maximum number of nested boxes. Formally,
the modal depth of a formula φ is defined by

modal depth(p) = 0,

modal depth(¬φ) = modal depth(φ),

modal depth(φ1 ∧ φ2) = max (modal depth(φ1),modal depth(φ2)),

modal depth(�φ) = modal depth(φ) + 1.

For instance, we have modal depth(�p ∨ �¬q) = 2.
Testing if a modal formula is satisfiable involves stratifying it into layers of

subformulas (or Boolean combinations of these) of decreasing modal depth. At
each such layer, modal formulas are approximated and solved as propositions.
Formally, the propositional approximation Prop(φ) of a formula φ is the proposi-
tional formula defined inductively by

Prop(p) = p

Prop(¬φ) = ¬Prop(φ)

Prop(φ1 ∧ φ2) = Prop(φ1) ∧ Prop(φ2)

Prop(�φ) = x[�φ].

108 Chapter 7. Constraint-Based Modal Satisfiability Checking

We denote here by x[�φ] a fresh propositional variable that is associated with one
specific occurrence of �φ. Different occurrences of �φ lead to different variables
which are distinguished by an index.

For instance, the formula φ = p ∧ �q ∨ ¬�q is approximated by the propo-
sitional formula Prop(φ) = p ∧ x1[�q] ∨ ¬x2[�q]. The variables of φ are {p, q}
while the variables of Prop(φ) are {p, x1[�q], x2[�q]}.

7.3.2 K-satisfiability and the k sat Schema

We formalise here K-satisfiability, and present the general algorithm schema
k sat for deciding the satisfiability of K-formulas. It is given in Fig. 7.1.
The k sat algorithm schema is the base of the KSAT algorithm of
[Giunchiglia and Sebastiani, 2000].

K-satisfiability

At this point we have to make a choice between a standard characterisation
of the semantics of K-formulas, and one closer to the semantics of the solving
algorithm. We choose for the latter as this allows us to come more quickly and
concisely to the matter of interest. For the standard characterisation we refer to
[Blackburn et al., 2001], for example.

7.3.1. Definition. The K-formula φ is K-satisfiable if

• a Boolean assignment µ exists that satisfies Prop(φ),

• for every variable x[�λ] of Prop(φ) such that x[�λ] 7→ 0 is in µ,
the K-formula

¬λ ∧
∧

{ θ | µ(x[�θ]) = 1 }

is K-satisfiable.

�

We use here, and from now on, a simpler notation for the conjunction of the
elements of a set, namely we write

∧

S to abbreviate
∧

e∈S

and do so analogously for a disjunction.

7.3. Modal Formulas as Layers of Constraint Satisfaction Problems 109

sat : propositional formula 7−→ satisfying assignment or failure

If the formula is propositionally satisfiable, then return a

Boolean assignment. Return alternatives on backtracking.

k sat : modal formula ψ 7−→ succeeds if ψ satisfiable

µ := sat(Prop(ψ)) // create a choice point

B+ := { θ | x[�θ] 7→ 1 is in µ }
B− := {λ | x[�λ] 7→ 0 is in µ }

Θ :=
∧
B+

for each λ ∈ B− do

ksat(Θ ∧ ¬λ) // backtrack if this fails

end

Figure 7.1: The k sat algorithm schema.

The k sat Algorithm Schema

In the k sat schema, provided in Fig. 7.1, the sat procedure determines the satis-
fiability of the propositional approximation of φ by returning a Boolean assign-
ment µ as in Definition 7.3.1. Alternative satisfying assignments are generated
upon backtracking. If there is no alternative assignment, then the call to k sat

fails at this level and backtracking takes place, unless it is the top level in which
case it is reported that the formula is unsatisfiable.

In this way, the modal search space gets stratified into modal formulas of
decreasing modal depth and explored depth-first. A variable of the form x[�λ]
to which µ assigns 0 means that we must “open the box” and check λ against all
the formulas θ that come with variables of the form x[�θ] to which µ assigns 1.
Exactly one proposition is so created and tested satisfiable.

7.3.2. Theorem. In the k sat algorithm schema given in Figure 7.1, if sat is
a complete solver for Boolean formulas, then k sat is a decision procedure for
K-satisfiability.

Proof. Correctness and completeness of k sat is entailed by the characterisa-
tion of K-satisfiability in Definition 7.3.1. k sat terminates since the modal depth
and the number of propositional variables of a modal formula are bounded. �

7.3.3 The KCSP Algorithm

We now devise a modal decision procedure based on the k sat schema, parame-
terised by a constraint solver as the underlying propositional solver sat. We first

110 Chapter 7. Constraint-Based Modal Satisfiability Checking

provide the intuition by an example.

7.3.3. Example. Consider the modal formula

φ = ¬�(p ∨ ⊥) ∧ (�r ∨ �p).

(The symbol ⊥ abbreviates the ‘always false’ formula and could be defined as
p′ ∧ ¬p′ for some arbitrary p′ ∈ P .) The propositional approximation Prop(φ) of
φ, can be turned into a CSP according to Def. 7.2.1. We obtain

• three variables x[�(p ∨ ⊥)], x[�r], and x[�p], each with domain {0, 1, u},

• two constraints,

– one for �(p ∨ ⊥), forcing the assignment 0 to x[�p ∨ ⊥],

– one for (�r ∨ �p), requiring 1 to be assigned to x[�r] or x[�p].

Assigning the value u to a variable means not committing to any decision con-
cerning its Boolean values, 0 and 1. This CSP is given to the constraint solver,
which may return the assignment

µ1 = { x[�(p ∨ ⊥)] 7→ 0,
x[�r] 7→ u,
x[�p] 7→ 1 }.

Then, for all the variables x[� . . .] to which µ1 assigns 1 (in this case only x[�p]),
the formulas within the scope of � are joined in a conjunction Θ. So we have

Θ = p. (UT)

Then all the box variables to which µ1 assigns 0 are considered, in this case only
x[�(p ∨ ⊥)]. Thus, the formula p ∨ ⊥ is negated, simplified (translated in CNF
when needed), and we obtain

¬λ = ¬p. (ET)

The conjunction Θ∧¬λ is given to the sat solver. In this case, the clause passed
on is p ∧ ¬p. It is translated into a new CSP and given to the constraint solver,
which results in failure due to its inconsistency.

On the subsequent backtracking, we may obtain the alternative assignment

µ2 = { x[�(p ∨ ⊥)] 7→ 0,
x[�r] 7→ 1,
x[�p] 7→ u }.

This assignment leads to Θ = r, and thus to the formula r ∧¬p which is success-
fully tested satisfiable. In turn, satisfiability of φ is concluded. �

7.4. Constraint-Based Modelling 111

Notice the key points about (UT) and (ET): we only consider the box variables
x[� . . .] to which a Boolean value, 0 or 1, is assigned. The box variables to which
u is assigned are disregarded, safely so because of Theorem 7.2.2. We show in the
following section that the availability of values other than 0 and 1 has a number
of advantages.

7.3.4. Definition. The KCSP algorithm is defined as follows. In the k sat

schema, the sat function whose input is a formula φ, is instantiated with a com-
plete solver for finite CSPs whose input is CSP(Prop(φ)). �

We can state the following by Theorems 7.2.2 and 7.3.2.

7.3.5. Corollary. KCSP is a decision procedure for K-satisfiability. �

7.4 Constraint-Based Modelling

In this section we discuss the constraints into which we translate a modal formula.
We begin with a base modelling, and proceed to an improved modelling that
possesses some desirable properties.

When modelling a problem as a CSP for solving it in a propagation & search-
based solver, one generally has two options for the user-defined constraints. Ei-
ther one implements a custom-built constraint propagation procedure for such a
constraint, or one rewrites it into constraints for which propagation algorithms
are available. Obviously the latter approach is preferable, all other things being
equal. We follow it here.

7.4.1 Base Modelling

The input to KCSP is a formula in conjunctive normal form. We translate it into
a CSP clause-wise, each clause contributing one constraint

Aspect 1: Clauses as Constraints

We distinguish four disjoint sets of variables in a clause: propositional variables
and variables representing box formulas, and both subdivided according to po-
larity. We denote these sets P+, P−, B+, B−, resp. Therefore, a clause can be
written as

∨
{ p | p ∈ P+} ∨

∨
{ ¬p | p ∈ P−} ∨

∨
{ x[�φ] | x[�φ] ∈ B+} ∨

∨
{ ¬x[�φ] | x[�φ] ∈ B−}

Such a clause is now viewed as a constraint on the variables in the four sets,

clause constraint(P+, P−, B+, B−).

112 Chapter 7. Constraint-Based Modal Satisfiability Checking

It holds if at least one variable in the set P+∪B+ is assigned a 1, or one variable in
P−∪B− is assigned a 0; recall Definition 7.2.1. We decompose this constraint now
in terms of a simpler constraint at least one, which is defined on a set of variables
and parameterised by a constant, and which requires the latter to occur in the
variable set. This constraint, or a related one, is available in many constraint
programming systems. The constraint library of ECLiPSe contains a predefined
constraint with the meaning of at most one, which can be employed to imitate
at least one.

Thus, as the first step to obtain a method for propagation of clause constraints,
we reformulate clause constraint as the disjunctive constraint

at least one(P+ ∪B+, 1) ∨ at least one(P− ∪ B−, 0).

Aspect 2: Disjunctions as Conjunctions

Propagating disjunctive constraints, if supported at all, is generally difficult for
constraint solvers. It is therefore preferable to avoid them when modelling, and in
our situation that can be done rather elegantly. The disjunctive clause constraint
is transformed into a conjunction with the help of a single auxiliary link variable.
We obtain

at least one(P+ ∪B+ ∪ {`}, 1) ∧ at least one(P− ∪B− ∪ {`}, 0).

The link variable ` ∈ {0, 1} selects implicitly which of the two constraints must
hold. For example, observe that ` = 0 selects the constraint on the left: it forces
at least one(P+ ∪B+, 1) and satisfies at least one(P− ∪B− ∪ {0}, 0).

It is useful to remark that this way of rewriting the clause constraint does
not hinder constraint propagation in the sense that if GAC is established on
the two at least one constraints separately then the clause constraint is GAC; by
Lemma 2.1.7 and since the two conjuncts share no variables except `.

7.4.2 Advanced Modelling

We extend the base constraint model so as to generate partial assignments, avoid
CNF conversion, and take into account multiple occurrences of box formulas.

Aspect 3: Partial Assignments by Constraints

While any solution of the CSP induced by a formula at some layer satisfies the
formula at that layer, it is useful to obtain satisfying partial Boolean assignments
that mark as irrelevant as many box formulas in this layer as possible. This causes
fewer subformulas to enter the propositions generated for the subsequent layer.
We use the extra value u to mark irrelevant variables.

7.4. Constraint-Based Modelling 113

7.4.1. Example. Take the clause p∨¬q ∨�r ∨¬�s. The corresponding clause
constraint is on the four groups of variables P+ = {p}, P− = {q}, B+ = {x[�r]},
and B− = {x[�s]}, that is (in simpler notation),

clause constraint(p, q, x[�r], x[�s]).

Some solutions to this constraint are better than others. For instance,

µ1 = {p 7→ 1, q 7→ 0, x[�r] 7→ u, x[�s] 7→ u},

µ2 = {p 7→ 1, q 7→ 1, x[�r] 7→ u, x[�s] 7→ u},

µ3 = {p 7→ 0, q 7→ 0, x[�r] 7→ u, x[�s] 7→ u},

µ4 = {p 7→ 0, q 7→ 1, x[�r] 7→ 1, x[�s] 7→ u},

µ5 = {p 7→ 0, q 7→ 1, x[�r] 7→ u, x[�s] 7→ 0},

are ‘good’ solutions since they assign a Boolean value to as few variables rep-
resenting box formulas as possible. Note that, within these five assignments,
µ1, µ2, µ3 are preferable, but since p, q may also be constrained by other clauses,
we must admit µ5, µ6 as well.

In contrast, for example

µ6 = {p 7→ 1, q 7→ 0, x[�r] 7→ 0, x[�s] 7→ u},

µ7 = {p 7→ 0, q 7→ 1, x[�r] 7→ 1, x[�s] 7→ 0}.

are undesirable, as box formulas are unnecessarily marked to be considered in the
next layer. �

We formalise this observation.

7.4.2. Fact. Consider a CSP containing a clause constraint C on the propo-
sitional variables P = P+ ∪ P− and the variables representing box formulas
B = B+ ∪ B−. Suppose µ is a partial assignment that is not on the variables
P ∪B.

• The assignment µ′ = µ ∪ {p 7→ 1} ∪ {x � 7→ u | x � ∈ B }, where p ∈ P+,
satisfies C. (Analogously for p ∈ P−.)

• The assignment µ′ = µ ∪ {x � 7→ 1} ∪ {x′� 7→ u | x′� ∈ B − {x � } }, where
x � ∈ B+, satisfies C. (Analogously for x � ∈ B−.)

If µ can be extended to a total assignment satisfying the CSP than also µ′ can
be so extended. �

Note that the variables in B are constrained only by C, and recall Theorem 7.2.2.

In other words, if satisfying the propositional part of a clause suffices to satisfy
the whole clause, then all box formulas in it can be marked irrelevant. Otherwise,
all box formulas except one can be marked irrelevant.

Let us transfer this observation into a clause constraint model. First, we
rewrite the base model so as to

114 Chapter 7. Constraint-Based Modal Satisfiability Checking

• separate the groups of variables (in propositional and box variables),

• and convert the resulting disjunctions into conjunctions, again with the help
of extra linking variables.

Next, we replace the at least one constraint for variables representing box formulas
by an exactly one constraint. This simple constraint is commonly available as well;
ECLiPSe offers the more general occurrences constraint, which forces a certain
number of variables in a set to be assigned to a specific value. We obtain

clause constraint(P+, P−, B+, B−) =

at least one(P+ ∪ {`+P}, 1) ∧ exactly one(B+ ∪ {`+B}, 1) ∧

at least one(P− ∪ {`−P}, 0) ∧ exactly one(B− ∪ {`−B}, 0) ∧

clause link(`+P , `
−
P , `

+
B, `

−
B)

The variable domains are: p ∈ {0, 1} for p ∈ P , next x � ∈ {1, u} for x � ∈ B+,
and x � ∈ {0, u} for x � ∈ B−.

The essential four linking variables are constrained as in the following logical
formula or the equivalent table.

clause link(`+P , `
−
P , `

+
B, `

−
B) =

(`+P = 1 ∧ `−P = 0) ↔ (`−B = u ∨ `+B = u)

∧

`+B = 1 ∨ `−B = 0

`+P `−P `+B `−B
1 0 1 u

1 0 u 0
0 0 1 0
0 1 1 0
1 1 1 0

Observe that the 5 tuples in the table correspond to the situations that we wish
to permit — the clause is satisfied by either a positive or a negative box formula
(but not both at the same time) or a positive or a negative propositional variable
(maybe both at the same time). Compare also with µ1..6 in Example 7.4.1.

ECLiPSe can accept the linking constraint in logical-operator form, in which
case it is internally rewritten into several arithmetic constraints. Alternatively,
we can compile the defining table into a set of membership rules, for instance by
the method described in Section 5.4.4. Examples for the generated rules are

`+P = 0 → `+B 6= u, `−B 6= u,

`−P = 0, `+B = 1, `−B = 0 → `+P 6= 1.

We found in our experiments that the linking constraint, among all con-
straints, is the one whose propagation is executed most often. Hence propagating
it efficiently is particularly relevant. Using the generated membership rules and
the corresponding scheduler (Chapter 3.4.2) proved to be the fastest way of prop-
agating the linking constraint of several methods we tested.

7.4. Constraint-Based Modelling 115

Aspect 4: A Negated-CNF Constraint

Except for the initial input formula to KCSP which is in conjunctive normal form,
the input to an intermediate call to the sat function of KCSP (see the algorithm
in Figure 7.1) has the form Θ ∧ ¬λ where both Θ and λ are formulas in CNF. A
naive transformation of ¬λ into CNF will result in an exponential increase in the
size of the formula. We deal with this problem by treating ¬λ as a constraint.
The following holds.

7.4.3. Fact. The constraint ¬λ is satisfiable if and only if λ (which is a con-
junction of clauses) has at least one unsatisfiable clause. �

We formulate the constraint corresponding to ¬λ consequently as a disjunctive
constraint, each disjunct standing for a negated clause. This disjunctive con-
straint is converted into a conjunction using a set L = {`1, . . . , `m} of linking
variables, one for each of the m disjuncts. Every `i ranges over {1, u}. The case
`i = 1 means the ith disjunct holds, i. e., the ith clause in λ is unsatisfied. Instead
of imposing at least one(L, 1) to select one disjunct to hold, however, we require
exactly one(L, 1), in line with our goal of obtaining minimal partial Boolean as-
signments. `i = u means the ith disjunct (clause) is irrelevant. We then forcibly
mark all box formulas by u, but ignore the propositional variables.

The definition of the negated-clause constraint on the variables in P+, P−,
B+, and B−, and the linking variable `i in logical form is

negated clause(P+, P−, B+, B−, `i) =

`i = 1 → (∀p ∈ P+. p = 0 ∧ ∀p ∈ P−. p = 1) (NC 1)

∧

`i = 1 ↔ (∀b ∈ B+. b = 0 ∧ ∀b ∈ B−. b = 1) (NC 2a)

∧

`i = u ↔ (∀b ∈ B+. b = u ∧ ∀b ∈ B−. b = u). (NC 2b)

Constraint Propagation

Let us sketch the process of developing a constraint propagation procedure for
negated clause as an example for a specialised constraint. Notice first that
negated clause consists of conjuncts NC 1 and NC 2. We discuss them separately.

From NC 1, we can immediately read off the membership rule

`i = 1 → p 6= 1

where p ∈ P+ or p ∈ P−. The domain of p is {0, 1}.
A membership rule as r1 that is atomic (has just equalities in the condition)

corresponds to a non-solution of the associated constraint; recall Note 5.3.4. If

116 Chapter 7. Constraint-Based Modal Satisfiability Checking

we wish to obtain all correct atomic membership rules for a constraint, we can
construct each atomic membership rule from each non-solution, and combine the
rules. See the treatment of this issue in the context of incremental rule generation,
in particular Section 5.4.3.

The (partial) non-solution 〈1, 1〉 for 〈`, p〉 in NC 1, which underlies the rule r1,
admits exactly one other rule, namely

p = 1 → `i 6= 1

No other correct membership rule is possible for conjunct NC 1.
Propagating the conjunct NC 2 is substantially simplified by the constraint

propagation rule

NC 2 → b1 = b2

for all b1, b2 ∈ B+, or b1, b2 ∈ B−. In presence of equality constraint propagation,
we need thus only deal with two representative variables b+k ∈ B+, b−k ∈ B−,
which are constrained with the linking variable by

〈`i, b
+
k , b

−
k 〉 ∈ { 〈1, 0, 1〉, 〈u, u, u〉 }.

This restriction is just a simple extensionally defined constraint. Membership
rules for it can be generated as described in Section 5.4.4, for example.

The thus developed propagation rules reflect the propagation algorithm for
the negated clause constraint as implemented in KCSP. It establishes generalised
arc-consistency.

Aspect 5: A Constraint for Factoring

In our base model, we have treated and constrained the ith occurrence of a
box formula �φ as a distinct propositional variable xi[�φ]. For instance, the
two occurrences of �p in the formula �p ∧ ¬�p are treated as the two distinct
propositional variables x1[�p] and x2[�p] in our base model.

We consider here the case that a box formula occurs several times, in sev-
eral clauses, in any polarity. We prevent assigning conflicting values to different
occurrences, by a suitable constraint.

Let us collect in the set B � φ all variables xi[�φ] representing the formula �φ
in the entire CSP. Recall that their domain is {0, 1, u}. We state as a constraint
that

∀x1, x2 ∈ B � φ.
(
¬(x1 = 1 ∧ x2 = 0) ∧ ¬(x1 = 0 ∧ x2 = 1)

)
.

To see the effect, suppose there is a pair x1, x2 ∈ B � φ such that x1 7→ 1,
x2 7→ 0 in a solution to the CSP without this factoring constraint. This means we
obtain both �φ 7→ 1 and �φ 7→ 0 in the assignment returned, which results in an

7.5. Implementation and Experimental Assessment 117

unsatisfiable proposition φ∧¬φ∧. . . being generated. The factoring constraint just
detects such failures earlier. The straightforward modelling idea, namely using
one unique variable for representing a box formula in all clauses (‘factoring out’
the formula), clashes with the assumption made for the other partial-assignment
constraints that each box formula variable is unique.

Propagation rules for the factoring constraint can be derived in a similar way
as for negated clause, and lead to an implementation that establishes GAC.

7.5 Implementation and Experimental Assess-

ment

Theoretical studies often do not provide sufficient information about the ef-
fectiveness and behaviour of complex systems such as satisfiability solvers and
their optimisations. Empirical evaluations must then be used. In this sec-
tion we provide an experimental comparison of our advanced modelling (Sec-
tion 7.4.2) against the base model (Section 7.4.1), using the test developed in
[Heuerding and Schwendimann, 1996].

We find that, no matter what other models and search strategies we commit
to, we always get the best results by using constraints for partial assignments as in
Section 7.4.2, Aspect 3. In the remainder of this paper, these are referred to as the
assignment-minimising, or simply minimising, constraints. We show below how
these minimising constraints allow us to better direct the modal search procedure.

We conclude this section by comparing the version of KCSP that features the
advanced modelling with KSAT. The constraint solver that we use as the sat

function in KCSP is a conventional one, based on search with chronological back-
tracking and constraint propagation. The propagation algorithms are specialised
for their respective constraints and enforce generalised arc-consistency on them,
as discussed in Section 7.4 above.

7.5.1 Test Environment

State of the Art

In the area of propositional satisfiability checking there is a large and rapidly
expanding body of experimental knowledge; see, e. g. [Gent et al., 2000]. In
contrast, empirical aspects of modal satisfiability checking have only re-
cently drawn the attention of researchers. We now have a number of test
sets, some of which have been evaluated extensively [Baader et al., 1992,
Heuerding and Schwendimann, 1996, Giunchiglia and Sebastiani, 2000,
Hustadt and Schmidt, 1997, Horrocks et al., 2000]. In addition, we also
have a clear set of guidelines for performing empirical testing in the setting
of modal logic [Heuerding and Schwendimann, 1996, Horrocks et al., 2000].

118 Chapter 7. Constraint-Based Modal Satisfiability Checking

Currently, there are three main test methodologies for modal satisfiability
solvers, one based on hand-crafted formulas, the other two based on randomly
generated problems.

To understand on what kinds of problems a particular prover does or does not
do well, it helps to work with test formulas whose meaning can (to some extent) be
understood. For this reason we opted to carry out our tests using the Heuerding
and Schwendimann (HS) test set [Heuerding and Schwendimann, 1996], which
was used at the TANCS ’98 comparison of systems for non-classical logics
[TANCS, 2000].

The HS Test Set

The HS test set consists of several classes of formulas for K and other modal
logics that we do not consider here. Some problem classes for K are based on the
pigeon-hole principle (ph) and a two-colouring problem on polygons (poly). We
consider the classes branch, d4, dum, grz , lin, path, ph, poly, t4.

Each class is generated from a parameterised logical formula. This formula
is either a K-theorem, which is thus provable, or only K-satisfiable, which is not
provable. So the generated class contains either provable formulas or non-provable
formulas, and is labelled accordingly by a suffix p or n.

Some of these parameterised formulas are made harder by hiding their struc-
ture or adding extra material. The parameter allows for the creation of modal
formulas in the same class but of differing difficulty. Specifically, the formulas in
a class are constructed in such a way that the difficulty of proving them should be
exponential in the parameter. It is hoped that this kind of increase in difficulty
makes differences in the speed of the machines used to run the benchmarks less
significant.

Benchmark Methodology

The benchmark methodology is to test formulas from each class starting with the
easiest instance (controlled by the parameter), until the provability status of a
formula can not be correctly determined within 100 CPU seconds. The test result
of this class is the parameter of the largest formula that can be solved within this
time limit. The parameter ranges from 1 (easiest) to 21 (hardest).

Implementation

We implemented the KCSP algorithm as a prototype in the constraint program-
ming system ECLiPSe . The HS formulas are negated, reduced to CNF and
translated into the format of KCSP.

We add heuristics to KCSP with minimising constraints in an attempt to re-
duce the depth of the KCSP search tree. The value u is preferred for box formulas,
and among them for positively occurring ones. Furthermore, the instantiation

7.5. Implementation and Experimental Assessment 119

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

C
P

U
 s

ec
on

ds

branch_n

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

C
P

U
 s

ec
on

ds

branch_p

Formula parameter

Figure 7.2: KCSP with (�) and without (♦) assignment minimisation.

ordering of variables representing box formulas is along their increasing modal
depth, e. g., x[�p] is instantiated before x[��p].

7.5.2 Assessment

In this subsection we evaluate the contributions of the various aspects of our
advanced modelling.

Aspect 3: Partial assignments by constraints. Do minimising constraints
make a difference in practice? To address this question, we focus here on the
branch formulas in the HS test set. This class of formulas is specifically rele-
vant for automated modal theorem proving. Its non-provable variant branch n is
recognised as the hardest class of “truly modal formulas” for today’s modal the-
orem provers [Horrocks et al., 2000]. They are the so-called Halpern and Moses
branching formulas that “have an exponentially large counter-model but no dis-
junction [. . .] and systems that will try to store the entire model at once will find
these formulae even more difficult” [Horrocks et al., 2000].

Figure 7.2 plots the run times of KCSP on branch formulas, with and without
minimising constraints. There is clearly a difference. KCSP with assignment-
minimising constraints manages to solve 13 instances of branch n and all 21 of
branch p (in less than 2 seconds). Without minimisation, in both cases only 2
instances are solved.

To understand the reasons for the good performance of KCSP with minimising
constraints, consider branch p(3), unsolved by KCSP with total assignments. In
KCSP with minimising constraints, there are two choices for box formulas at
the root layer and none at the subsequent layer of modal formulas obtained by
“opening” a box. This small factor results in a modal search tree of just two
branches.

120 Chapter 7. Constraint-Based Modal Satisfiability Checking

In contrast, with total assignments there are 6 extra box formulas at the root
layer. The implied extra branching factor is 26 = 64 at the root of the modal
search tree only. All 6 box formulas are always carried over to subsequent layers,
positively or negatively, adding to the work to be done there.

More generally, the superiority of KCSP with minimising constraints can be
explained as follows: the tree-like model that the solver implicitly attempts to
construct while trying to satisfy a formula is kept as small as possible by the
minimising constraints. In this sense, constraints allow us better control over the
modal search than, for instance, unit propagation allows for in DPLL.

Notice finally that the results of KCSP with minimising constraints on the
branch class are competitive on the this class with the best optimised modal
theorem provers such as ?SAT and DLP.

Aspect 4: Negated-CNF constraint. In all the HS formula classes, using
constraints in place of CNF conversions leaves equal or increases the number
of decided formulas. Avoiding CNF conversion by means of negated-CNF con-
straints has a substantial effect for example in the case of ph n(4), an instance
of the pigeon-hole problem, which is solved in a few seconds. In contrast, by
requiring CNF conversion (even with minimising constraints), the execution of
KCSP is terminated pre-emptively due to memory exhaustion.

However, the CNF conversion at the root level remains necessary, and prevents
formulas ph(k) with k > 4 in KCSP for lack of memory.

Aspect 5: Factoring constraint. This constraint avoids simple contradic-
tory occurrences of a formula in the layers subsequent to the current one. We
remark that this consideration of multiple occurrences of a subformula does not
always provide a globally minimal number of box formulas with a Boolean value.
Nevertheless, it is beneficial for formulas with the same variables hidden and re-
peated inside boxes. It proved useful in the cases grz , d4, dum p, path p, t4 p. In
the remaining cases the contribution of factoring with constraints is insignificant,
except for path n where searching for candidate formulas to be factored slightly
slowed down the search.

Formula simplifications. As a preprocess to KCSP, the top-level input for-
mula can be simplified to a logically equivalent formula. We use standard simpli-
fication rules for propositional formulas, at all layers, in a bottom-up fashion. In
the same way, some modal equivalences such as ¬�> ≡ ⊥ are used.

Simplification in KCSP plays a relevant role in the case of lin formulas. With-
out simplifications and minimising constraints, KCSP takes longer than 5 minutes
to return an answer for lin n(3). With simplifications and minimising constraints,
the runtime is reduced to less than 0.4 seconds. By also adding factoring, KCSP

solves the most difficult formula of lin n in 0.06 sec, that of lin p in 0.01 sec.

7.5. Implementation and Experimental Assessment 121

branch d4 dum grz lin path ph poly t4
n p n p n p n p n p n p n p n p n p

KSAT 8 8 5 8 > 11 > 17 3 > 8 4 5 5 12 13 18 10

KCSP 13 > 6 9 19 12 > 13 > > 11 4 4 4 16 10 7 10

KCSP/sp 11 > 6 8 17 11 > 10 > > 9 4 4 4 16 9 6 8

Table 7.1: Results on the HS Benchmark

7.5.3 Results and a Comparison

We compare the performances of KSAT and KCSP on the HS test set in Table 7.1.
Each column lists a formula class and the number of the most difficult formula
decided within 100 CPU seconds per prover. We write > when all 21 formulas in
the test set are solved within this time limit.

First row: KSAT. The results for KSAT are taken from [Horrocks et al., 2000].
They reflect a run of a C++ implementation of KSAT with the HS test set on a
350 MHz Pentium II with 128 MB of main memory.

Second row: KCSP. We used KCSP with all advanced aspects considered;
i. e., partial assignments by constraints, negated-CNF constraints, factoring con-
straints, and formula simplifications. In the remainder, we refer to this as KCSP.
The time taken by the translator from the HS format into that of KCSP is in-
significant. The worst case among those in Table 7.1 took less than 1 second (and
these timings are taken into account for the table entries). We ran our experi-
ments on a 1.2 GHz AMD Athlon Processor with 512 MB RAM, under Red Hat
Linux 8 and ECLiPSe 5.5.

Third row: KCSP/sp. To account partially for the different platforms used
to run KSAT and KCSP on, we scaled the measured times of KCSP by a factor
350/1200, the ratio of the respective processor speeds. The results are reported
in the line KCSP/sp, and italicized where different from KCSP.

Result Analysis

Some interesting similarities and differences in performance between KSAT and
KCSP can be observed. For some formula classes, KCSP clearly outperforms
KSAT, for some it is the other way round, and for others the differences do not
seem to be significant.

For instance, KCSP performs better in the case of lin and branch formulas. As
pointed out in Subsection 7.5.2, branch n is the hardest “truly modal test class”
for current modal provers, and KCSP with partial assignments performs well on
this class. Now, similar to KCSP, KSAT features partial assignments in that its

122 Chapter 7. Constraint-Based Modal Satisfiability Checking

underlying propositional solver is DPLL-based. The differences in performance
are then due to our modelling. In more general terms:

• Extended domains and constraints allows for better control over the par-
tial assignments to be returned by the adopted constraint solver than unit
propagation allows for in DPLL.

• Constraints allow a compact representation of certain requirements such as
that of reducing the number of variables representing box formulas to which
a Boolean value is assigned.

The models that KCSP (implicitly) tries to generate when attempting to satisfy a
formula remain very small. In the case of branch, searching for partial assignments
with minimising constraints yields other benefits per se: the smaller the number
of box formulas to which a Boolean value is assigned at the current layer, the
smaller the number of propositions in the subsequent layer. In this way, fewer
choice points and therefore fewer search tree branches are created. Thereby, the
addition of constraints to limit the number of box formulas to reason on, while
still exploring fully the purely propositional search space, seems to be a useful
idea on the branch class.

In the cases of grz and t4, on the other hand, KSAT is superior to KCSP.
KSAT features a number of optimisations (heuristics) for early modal pruning
that are absent in KCSP, and these may be responsible for the better behaviour
of KSAT on these classes.

We remark finally that KSAT is compiled C++ code while KCSP is interpreted
ECLiPSe (Prolog) code. This makes it interesting to see that KCSP competes
well with KSAT.

7.6 Final Remarks

We described here a constraint-based approach to modal satisfiability testing.
The reasoning process is split into sequences of propositional problems which are
solved as separate constraint satisfaction problems. We showed the feasibility of
our ideas by discussing an implementation and benchmark results.

Taking advantage of the expressiveness that constraint modelling affords, we
integrate control knowledge when translating the propositions into CSPs. In par-
ticular, we observed that partial solutions to the propositional subproblems suffice
and that some solutions are preferable to others. By using an extra non-Boolean
domain value and additional constraints, we obtain preferred partial solutions by
modelling instead of by modifying the solver. Such partial propositional assign-
ments reduce substantially the branching factor in the tree-model that our solver
implicitly tries to construct. The resulting reduction in search time is significant,
as we found empirically.

7.6. Final Remarks 123

The generated CSPs use several standard constraints, for which current con-
straint programming systems provide propagation algorithms. For some spe-
cialised constraints we implemented specific propagation algorithms that establish
generalised arc-consistency. The underlying propagation mechanisms are derived
elegantly as constraint propagation rules.

We conclude by pointing out some possible and interesting extensions.
The current modelling of propositional formulas is clause-based, assuming ei-

ther CNF or negated-CNF format. A direct mapping to constraints of formulas
in any format, i. e., using any Boolean operators, is certainly feasible, and would
remove the initial CNF conversion required now. Achieving small partial assign-
ments in this situation appears to be more involved, however.

Simple chronological backtracking to traverse the propositional (and thus also
the modal) search tree is probably not the optimal choice. Efficiency can be
expected to increase by learning, that is, by remembering previously failed sub-
propositions (nogood recording, intelligent backtracking), and also successfully
solved sub-problems (lemma caching).

Finally, we mention many-valued modal logics [Fitting, 1992]. These logics
allow for propositional variables to have further values than the Boolean 0 and 1.
Our approach to modal logics via constraint satisfaction appears to be particularly
suitable to be naturally extended to deal with finitely-valued modal logics.

Chapter 8

Array Constraint Propagation

8.1 Introduction

Many problems can be modelled advantageously using look-up functionality: as-
sociate each item in a group of items with a unique identifier, or index, and make
items directly accessible by their respective index. In mathematics, indices on
variables are ubiquitous, and functions are used to uniquely map arguments to
values. In programming languages, the corresponding construct is usually called
array. In an imperative language such as C, we might define an array of integer
variables by integer a[3], or an array of constants by a[] = {5, 7, 9}; we
can then access the element at position i by writing a[i].

In such languages, the condition for these look-up expressions to be valid is
that the index is known when the expression is evaluated. It is in the spirit of
constraint programming to relax this restriction. We view x and y as variables
constrained by the equality x = a[y] which involves an array a.

A corresponding binary constraint named element was originally developed
within the CHIP system, one of the earliest constraint programming systems,
[Dincbas et al., 1988]. element proved to be very useful in modelling; many prob-
lems (scheduling, resource allocation, etc.) formulated as CSPs make use of it, and
most contemporary constraint programming systems provide it now. Sometimes
it is generalised so as to allow the one-dimensional array to consist of variables
instead of constants. Array constraints and element are examples of so-called
‘global’ constraints [Beldiceanu and Contejean, 1994, Beldiceanu, 2000a].

Another point motivating the study of array constraints lies in the on-going
development in constraint programming research to lift the notion of a constrained
variable from the conventional numeric or simple finite-domain variable to higher-
structured objects, such as vectors, sets [Gervet, 1997], multisets [Walsh, 2003].
Arrays connect to the notion of a function variable [Hnich, 2003]. In this view,
an array mapping the indices in I to variables ranging over A is itself a single
variable whose domain is the set of functions from I to A.

125

126 Chapter 8. Array Constraint Propagation

1

2

×

Figure 8.1: Crossing entries in a crossword puzzle

Let us demonstrate the use of arrays in modelling.

8.1.1. Example. We formulate the problem of crossword puzzle generation us-
ing array constraints [Beacham et al., 2001]. Given a list of words and an empty
crossword puzzle grid, the task is to fill the horizontal and vertical entries in
the grid with words of appropriate length such that crossing entries agree on the
letter at the crossing position. Figure 8.1 shows such a crossing.

We view the entries as variables wi. Their domain is the respective set of
words of appropriate size, i. e., the domain of w1 in the figure is the set of 5-letter
words.

We use a constant two-dimensional array letter to associate words with their
letters. The first index denotes the word, the second denotes the position of a let-
ter in that word, e. g., letter [sail, 2] = a. Every crossing of two entries contributes
an array constraint. For example,

letter [w1, 4] = letter [w2, 2]

captures the crossing of Fig. 8.1.
Solely establishing GAC on the array constraints solves some instances of the

crossword problem without any search; see [Hentenryck, 1989, p. 140], in which
an equivalent special constraint for crossing entries is used. �

8.1.2. Example. In Chapter 9, we discuss qualitative spatial reasoning using an
array-based model. In this approach, we map tuples of objects to their spatial
relation. For example, the relative orientation of point triples is represented as
a three-dimensional array OrRel indexed by points pi. The set of qualitative
relations {between, behind, in front, left, . . .} is the domain of the array elements.
We specify by OrRel [a, b, c] = in front that the continuation of the directed line
−→
ab passes through the point c. The constraint

OrRel [forwardA, defenderB, goalB] = in front,

defenderB ∈ TeamB

in a football context formalises the suboptimal situation for a forward player of
team A who is in possession of the ball that some player of team B prevents a
direct goal shot. �

8.1. Introduction 127

We study here constraint propagation for array constraints. Arrays can be
multidimensional and they can consist of variables, the indices in an array ex-
pression can be variables, and the array expression is equated with a variable.
We consider propagation establishing generalised arc-consistency and bounds-
consistency. We also discuss nested array expressions. Furthermore, we examine
a method to transform a multidimensional array constraint into an equivalent
one-dimensional array constraint and an auxiliary constraint. Such a transforma-
tion is acceptable if GAC is the local consistency to be established by constraint
propagation. If BC is to be established, we argue that this is not the case; prop-
agating the original array constraint is then preferable.

8.1.1 Arrays

An array is a representation of a total function. Given a Cartesian product
I = I1 × · · · × In and a set A for the function domain and range, respectively,
an array a is a set of atomic mappings that satisfies

for every b ∈ I some e ∈ A exists such that (b 7→ e) ∈ a.

We use conventional array notation and write

a[b] = e if (b 7→ e) ∈ a.

The length n of I = I1 × · · · × In is the dimensionality of the array. We assume
that all Ii are finite.

8.1.2 Array Constraints

We use arrays in array expressions a[b] and simple array equations e = a[b], where
b ∈ I, e ∈ A. We lift array equations to array constraints of the form

x = a[y1, . . . , yn]

by allowing variables instead of constants, as follows:

• result variable x with domain Dx = A,

• index variables y1, . . . , yn = y with domains Dyi
= Ii,

• array variables a[b] for b ∈ I with domains Da[b] = A.

So such an array constraint is a constraint on the sequence of variables

X = x, y1, . . . , yn, 〈a[b] | b ∈ I〉. (8.1)

It is of arity 1 + n+
∏n

i=1 |Ii|, and therefore highly non-binary.
We assume from now on that all the variables in the sequence X are pair-wise

different. We say that a is an array of constants if all 〈a[b] | b ∈ I〉 are constants,
otherwise we call it an array of variables.

128 Chapter 8. Array Constraint Propagation

8.2 Constraint Propagation

8.2.1 Propagation Rules for Generalised Arc-Consistency

Simple Array Constraints

We derive GAC-establishing constraint propagation rules for array constraints
from the generic rule of Fact 2.2.3. So we are interested in all correct rules of the
form

C(x1, . . . , xn) → xi 6= e

for an array constraint C. Correctness follows from e /∈ C[xi].
The variables in an array constraint x = a[y1, . . . , yn] split in three groups,

see Statement (8.1). We examine the correctness condition separately for a rep-
resentative of each group.

Variable x. We require e /∈ C[x], or equivalently e 6= a[y1, . . . , yn]. That is the
case exactly if

@b ∈ Dy1
× · · · ×Dyn

. e ∈ Da[b] (8.2)

holds for the domains.

Variable yk. The correctness condition is bk /∈ C[yk]. We find in this case

Dy|k = Dy1
× · · · ×Dyk−1

× {bk} ×Dyk+1
× · · · ×Dyn

,

@b ∈ Dy|k. ∃e ∈ Dx ∩Da[b].
(8.3)

Variable a[b1, . . . , bn]. We need a circumstance in which e /∈ C[a[b1, . . . , bn]].
That is only the case once the index is fixed to (b1, . . . , bn); then, all other
variables a[b′1, . . . , b

′
n] are unconstrained. We have thus

{(b1, . . . , bn)} = Dy1
× · · · ×Dyn

∧ e /∈ Dx. (8.4)

We now instantiate the generic GAC-establishing rule for each variable type and
obtain the following three rules:

x = a[y1, . . . , yn] → x 6= e if (8.2), (arr gacx)

x = a[y1, . . . , yn] → yk 6= bk if (8.3), (arr gacy)

x = a[y1, . . . , yn] → a[b1, . . . , bn] 6= e if (8.4). (arr gaca)

8.2.1. Theorem. The rules (arr gacx), (arr gacy), (arr gaca) establish gener-
alised arc-consistency on the array constraint x = a[y1, . . . , yn].

8.2. Constraint Propagation 129

Proof. Fact 2.2.3, and the preceding derivations of the respective correctness
conditions. �

Pair-wise Variable Difference Requirement

It is indeed necessary to restrict variables to occur just once. Consider the array
xor = {〈0, 0〉 7→0, 〈0, 1〉 7→1, 〈1, 0〉 7→1, 〈1, 1〉 7→0} and the constraint x = xor [y, y]
with x ∈ {0}, y ∈ {0, 1}. It is inconsistent but stable under the rules (arr gacx),
(arr gacy), (arr gaca).

Compound Array Constraints

We have only admitted array constraints in the simple form x = a[y1, . . . , yn]
so far. It can sometimes be easier, however, to use several arrays in one con-
straint, such as in a1[y1, . . . , yn] = a2[z1, . . . , zm] or in the nested expression
x = a3[a1[y1, . . . , yp], a2[z1, . . . , zq]].

Establishing GAC on such array constraints is generally hard if variables are
used in multiple places. If variables occur just once then the compound expres-
sions can simply be decomposed, using fresh auxiliary variables. Lemma 2.1.7
states that GAC on the constraints of the decomposition corresponds to GAC on
the compound constraint.

So, for example, the constraint letter [w1, 4] = letter [w2, 2] from the crossword
example 8.1.1 can be decomposed into the two constraints letter [w1, 4] = `1,2 and
letter [w2, 2] = `1,2 without affecting propagation.

Domain Reduction vs. Constraint Transformation

As instances of the generic GAC-establishing rule in Fact 2.2.3, the rules
(arr gacx), (arr gacy), (arr gaca) are domain reduction rules by type. In pres-
ence of GAC-establishing constraint propagation rules or algorithms for basic
constant/variable equality constraints v1 = v2, we can replace the domain reduc-
tion rule (arr gaca) by a constraint propagation rule that does not reduce domains
but imposes the entailed equality constraint. Such equality constraints are gener-
ally provided in constraint logic programming systems, which implemented them
through unification extended with domain intersection.

So we extract just

{(b1, . . . , bn)} = Dy1
× . . .×Dyn

(8.5)

from correctness condition (8.4), and state the rule

x = a[y1, . . . , yn] → x = a[b1, . . . , bn] if (8.5). (arr gaca,=)

Propagation of the new equality constraint x = a[b1, . . . , bn] reduces then the
domains of the variables x and a[b1, . . . , bn] in the same way as (arr gacx),
(arr gaca).

130 Chapter 8. Array Constraint Propagation

8.2.2. Note. In presence of constraint propagation mechanisms for variable
equality constraints, the rules (arr gacx), (arr gacy), (arr gaca,=) establish GAC
on the array constraint x = a[y1, . . . , yn].

Moreover, observe that, as long as the domains Dx, Da[b1,...,bn] are non-empty,
also the rule (arr gacy) is redundant (more precisely: it has no correct instances).
So, once (arr gaca,=) has fired, the original constraint x = a[y1, . . . , yn] and all
its propagation rules can be eliminated from the constraint solver.

8.2.2 Propagation Rules for Bounds-Consistency

Generalised arc-consistency is a strong but often also a computationally expensive
local consistency. Depending on the problem, it can be more efficient to propa-
gate less. Bounds-consistency (Def. 2.1.8) is a good candidate for a weaker local
consistency notion. Recall that it checks and modifies only the domain bounds
of variables. The significant implication for the representation of domains is that
domains that are intervals remain intervals, which reduces the space complexity
substantially.

For array constraints we obtain propagation rules for bounds-consistency from
the rules establishing GAC, see Fact 2.2.3. We restrict correctness condition to
domain bounds, i. e.,

(arr gacx) in which e ∈ {min(Dx),max(Dx)} (arr bcx)

(arr gacy) in which bk ∈ {min(Dyk
),max(Dyk

)} (arr bcy)

(arr gaca) in which e ∈ {min(Da[b1,...,bn]),max(Da[b1,...,bn])} (arr bca)

8.2.3. Theorem. The rules (arr bcx), (arr bcy), (arr bca) establish bounds-
consistency on the array constraint x = a[y1, . . . , yn]. �

8.2.3 From Rules to Algorithms

A naive iteration algorithm of the propagation rules establishing BC or GAC
is computationally expensive, due to a repetitive access to the same variable
domains in the process of verifying the correctness conditions (8.2), (8.3), (8.4).

In Figure 8.2, we give propagation algorithms for BC and GAC which imple-
ment the rule iteration process. The principle is to start with sets of values e that
are candidates for removal in a body xi 6= e of an array constraint propagation
rule. The algorithm core loop array prop deletes all those values for which the
corresponding propagation rule is incorrect. Subsequently, the remaining values
can correctly be removed from the respective variable domains.

We presume that basic equality constraints are provided by the underlying
constraint programming platform, and pose an equality constraint as soon as
correct by condition (8.5), instead of reducing domains; see Section 8.2.1.

8.2. Constraint Propagation 131

array gac : array constraint 7−→ equivalent GAC-reduced constraint

〈XU ,YU 1..n〉 = array prop(Dx, Dy1
, . . . , Dyn

)
Dx := Dx − XU
Dyi

:= Dyi
− YU i, for all i ∈ [1..n]

if {(b1, . . . , bn)} = Dy1
× · · · ×Dyn

then constrain x = a[b1, . . . , bn]

array bc : array constraint 7−→ equivalent BC-reduced constraint

let bds(D) = {min(D),max(D)}

XS := ∅ // supported values

YS i := ∅, for all i ∈ [1..n]

repeat

XT := bds(Dx) \ XS // values to be tested

YT i := bds(Dy1
) \ YS i, for all i ∈ [1..n]

〈XU ,YU 1..n〉 = array prop(XT ,YT 1..n) // unsupported values

XS := XS ∪ (XT − XU)
YS i := YS i ∪ (YT i − YU i), for all i ∈ [1..n]

Dx := Dx − XU
Dyi

:= Dyi
− YU i, for all i ∈ [1..n]

until XU = ∅ and YU i = ∅, for all i ∈ [1..n]

if {(b1, . . . , bn)} = Dy1
× · · · ×Dyn

then constrain x = a[b1, . . . , bn]

array prop : domain values XU ,YU 1..n 7−→ unsupported domain values

B := Dy1
× · · · ×Dyn

while B 6= ∅ and YU k 6= ∅ for some k ∈ [1..n] do

choose (b1, . . . , bn) ∈ B such that bk ∈ YU k for some k ∈ [1..n]
remove (b1, . . . , bn) from B
if Dx ∩Da[b1,...,bn] 6= ∅ then YU i := YU i\{bi}, for all i ∈ [1..n]
XU := XU \Da[b1,...,bn]

end

while B 6= ∅ and XU 6= ∅ do

choose and remove (b1, . . . , bn) from B
XU := XU \Da[b1,...,bn]

end

return 〈XU ,YU 1..n〉

Figure 8.2: Propagation for array constraints

132 Chapter 8. Array Constraint Propagation

8.2.4. Note. Algorithm array gac establishes GAC, and algorithm array bc es-
tablishes BC, on the array constraint x = a[b1, . . . , bn]. �

Let us examine the working of the GAC-enforcing propagation.

8.2.5. Example. Consider x ∈ {B,C,D} and y1 ∈ {1, 2}, y2 ∈ {1, 2, 3} in the
constraint x = a[y1, y2], and let a be defined as the array of constants

a[y1, y2] 1 2 3
1 A B C

2 D E F

The constraint x = a[y1, y2] is GAC, which array gac verifies by calling array prop

with XU = {B,C,D} and YU = ({1, 2}, {1, 2, 3}).
Initially, the set of indices B is {1, 2}×{1, 2, 3}. We iterate through B (choose

statement) from lexicographically small to large indices.

1. Da[1,1] = {A} is evaluated, but no changes to XU , YU result.

2. Da[1,2] = {B} follows. We have XU = {C,D} and YU = ({2}, {1, 3}).

3. Da[1,3] = {C} is read, which results in XU = {D} and YU = ({2}, {1}).

4. Only (2, 1) remains in B, so Da[2,1] = {D} is looked up. XU = ∅ and
YU = (∅,∅) remain.

Only one incomplete run is needed; the indices (2, 2), (2, 3) permissible by the
domains of y1, y2 are skipped.

Observe that an alternative iteration strategy with less steps exists in this
case. Suppose (2, 1) had been chosen first, then only (1, 2) and (1, 3) could be
chosen next, and (1, 1), (2, 2), (2, 3) had been skipped. �

For GAC, the correctness-checking procedure array prop iterates through all
possible indices b1, . . . , bn in the domains of y1, . . . , yn in the worst case. This
situation occurs, for instance, with the constraint and initial domains of Exam-
ple 8.2.5 except for x ∈ {F}, and if array prop iterates through B from small to
large indices.

In the best case, the number of iteration steps is the size of the largest domain
Dyi

. Take Example 8.2.5, but with x ∈ {A,E,F}. The algorithm iterates through
(1, 1), (2, 2), (2, 3) in three steps, corresponding to |Dy2

| = 3.

8.2.6. Note. The number of iteration steps in array prop has an upper bound of
O(dn) and a lower bound of O(d), where d is the size of the largest input set of
values. �

8.3. Decomposing Multidimensional Array Constraints 133

In the case of array gac, the input sets are the complete variable domains. In the
case of array bc only the currently unchecked domain bounds are examined by one
call to array prop. If subsequently some bounds are reduced, the process needs
to be repeated for the new bounds. Generally, the cost of checking the domain
bounds by array bc will be lower than the cost of checking every domain element
by array gac.

It is useful to remark that the set B in the procedure array prop need not be
represented extensionally with the resulting high space cost. Instead, a compact
iterator/pointer can be maintained that marks the lexicographically next tuple.

8.3 Decomposing Multidimensional Array Con-

straints

Interestingly, a constraint language with one-dimensional array constraints and
integer arithmetic constraints is already expressive enough to support multidimen-
sional arrays. We discuss now a method to translate a multidimensional array
constraint into a one-dimensional array constraint and an additional constraint.
The interest of such a translation lies in the greater simplicity of a propagation
algorithm for only one-dimensional array constraints.

We show that decomposing is an acceptable technique when the desired result
of propagation is GAC. We argue that this is not the case, however, when we
wish to enforce only BC.

8.3.1 Reducing the Array Dimensionality

Let the n-dimensional array a represent a total function from the Cartesian prod-
uct I1 × · · ·×In = I to the set A. Assume that every component set is a (finite)
integer interval, so

Ii = [0 .. (mi − 1)] for all i ∈ [1..n].

We can do so for our purposes without substantial loss of generality, as any finite
set can be mapped to such an interval. We define a mapping f from I to the
interval [0 .. (

∏n

i=0mi − 1)], by

b = f(b1, . . . , bn) =

n∑

i=1

(

bi ·

i−1∏

j=0

mi

)

(8.6)

(we define m0 = 1 for convenience).

8.3.1. Example. We map car number plates labels to numbers. Let us assume
that a number plate consists of a sequence of six symbols: two letters, two digits,

134 Chapter 8. Array Constraint Propagation

and again two letters, e. g., RB-18-GH. A letter is taken from the Latin alphabet of
26 letters; we translate it implicitly to a number in the interval [0..25]. A number
plate p ∈ [0..25]2 × [0..9]2 × [0..25]2 with p = (p1, . . . , p6) can thus be mapped to
a number between 0 and 264 · 102 − 1 by

p = f(p) = p1 + 26p2 + 262p3 + 10 · 262p4 + 102 · 262p5 + 102 · 263p6.

This means f(R,B, 1, 8,G,H) = 12763599. �

We associate the multidimensional array a with a new one-dimensional array a
by

a = { f(b) 7→ e | (b 7→ e) ∈ a },

which means that

a[f(b1, . . . , bn)] = a[b1, . . . , bn].

Informally speaking, we ‘linearise’ a.

8.3.2 Decomposition

We deal now with array constraints (possibly on a multidimensional array) by
replacing them by a new array constraint on a one-dimensional array, and an ap-
propriate linear constraint derived from (8.6), linking the respective array indices.

8.3.2. Example. Consider the two-dimensional array a defined by

a[y1, y2] 0 1 2
0 15 16 17
1 1 2 3

We set up a new one-dimensional array a as follows:

a[y] 0 1 2 3 4 5
15 1 16 2 17 3

We can then replace the constraint

x = a[y1, y2]

by the two constraints

x = a[y] and y = y1 + 2y2.

where y is a new variable. �

8.3. Decomposing Multidimensional Array Constraints 135

8.3.3 Propagation

Generalised Arc-consistency

Enforcing GAC on the two constraints of the decomposition is equivalent to en-
forcing GAC on the original array constraint. This is by Lemma 2.1.7, and since
the two decomposition constraints share only the new auxiliary index variable.
The cost of propagation is, however, not reduced by decomposing array con-
straints.

8.3.3. Fact. The complexity of establishing GAC on a linear arithmetic equality
constraint in n variables is in O(dn), where d is the size of the largest variable
domain. �

So we have the same worst-case cost for propagation via the decomposition con-
straints as for propagation by the array gac algorithm.

Bounds-Consistency

If we choose bounds-consistency as the desired local consistency notion, we ob-
serve that enforcing it on the decomposition is strictly weaker than bounds-
consistency on the original array constraint. The problem occurs due to the loss
of information exchange between the two constraints, if only bounds-consistency
is enforced.

8.3.4. Example. Reconsider the two-dimensional array a from Example 8.3.2
and its linearised peer a. Consider the variables

x ∈ [1..3], y1 ∈ [0..1], y2 ∈ [0..2].

The constraint x = a[y1, y2] is clearly not bounds-consistent: for that, we must
reduce the domain of y1 to the singleton interval [1..1] since y1 = 0 does not occur
in any solution. In contrast, the two decomposition constraints

x = a[y] and y = y1 + 2y2 with y ∈ [1..5]

are bounds-consistent. �

In conclusion, if we wish to enforce bounds-consistency on a multidimensional
array constraint, we should choose the array bc algorithm instead of decomposing
the constraint.

136 Chapter 8. Array Constraint Propagation

8.4 Implementation

We implemented the algorithms array gac and array bc, see Fig. 8.2, in the con-
straint programming system ECLiPSe [Wallace et al., 1997], using its finite do-
main constraints library. The propagation algorithm is provided in a library
together with several other array-related functions, consisting of about 600 lines
of source code in total.

A specific side effect of the array propagation algorithm can be exploited in an
ECLiPSe implementations. ECLiPSe controls the execution order of constraint
propagation algorithms based on changes to the constrained variables, such as a
domain reduction. Propagation algorithms ‘watching’ a variable are scheduled to
execute once this variable has changed.

The array prop procedure allows to extract useful variables to watch, namely
the variables a[b1, . . . , bn] for which Dx ∩ Da[b1,...,bn] 6= ∅. The domains of these
watched variables provide support for domain values of other variables. Hence,
changes to the watched variables require a repeated propagation round.

Array constraints and the implementation of propagation algorithms are
reused in the Chapters 9 and 10 on qualitative reasoning.

8.5 Final Remarks

Related Work

The established precursor of array constraints is the element constraint of CHIP
[Dincbas et al., 1988], now available in many constraint programming languages.
It is the one-dimensional specialisation, and usually requires the array to be
constant.

Algorithms for propagation in the one-dimensional case have been published,
for example, [Carlson et al., 1994] describes an AKL(FD) implementation of ele-

ment using indexicals [Codognet and Diaz, 1996], in which the array can consist
of variables. I am not aware of a published algorithm for the multidimensional
case.

Array constraints in the constraint programming language OPL

[Hentenryck et al., 1999] can be multidimensional and use arrays of vari-
ables. It is unclear what form of constraint propagation takes place, but in
[Hentenryck et al., 1999, p. 100] it is stated that the reduction for an index
variable in a multidimensional array constraint depends on its position. We
found experimentally in the OPL implementation available to us that the
propagation is weaker than GAC (and BC). For all three cases treated by the
rules (arr gacx), (arr gacy), (arr gaca), we could construct simple examples
using small 2-dimensional arrays in which reduction of domains is possible but
not performed by OPL Studio 3 [ILOG, 2000], see Fig. 8.3.

8.5. Final Remarks 137

enum Dz { i, j };

enum Dy { k, l, m };

enum Da { p, q, r };

Da a[Dz, Dy] = #[i: #[k:p, l:q, m:r]#,

j: #[k:p, l:q, m:r]#]#;

var Da x;

var Dz z,u;

var Dy y,v;

solve { v <> l; // OPL Studio GAC

a[u, v] = x; // x in { p, q, r } { p, r }

//

a[z, y] = q; // y in { k, l, m } { l }

};

enum Dy { i, j, k };

enum Da { p, q, r };

var Da a[Dy];

var Da x;

var Dy y;

solve { y = j;

x <> q; // OPL Studio GAC

x = a[y]; // a[j] in { p, q, r } { p, r }

};

Figure 8.3: OPL programs exhibiting weak propagation in ILOG’s OPL Studio

138 Chapter 8. Array Constraint Propagation

In [Beldiceanu, 2000b] a constraint called case is proposed that subsumes mul-
tidimensional array constraints with constant arrays. No algorithm is given. In
[Hooker et al., 2000] on combining operations research techniques and constraint
satisfaction methods, a continuous relaxation of element using a cutting-planes ap-
proach is studied. The element constraint there corresponds to a one-dimensional
array of variables with continuous domains.

Conclusions

We studied here constraint propagation for array constraints. There is ample
evidence suggesting that arrays are useful for modelling constraint satisfaction
problems. Indices on objects are ubiquitous in mathematics. Arrays with multi-
ple dimensions have long been present in programming languages. The element

constraint is supported by many constraint systems.
Practical experience shows that the most advantageous notion of local con-

sistency depends on the considered problem. Sometimes a weaker notion such as
bounds-consistency may suffice, perhaps just applied in the early stages of search
and later replaced by full generalised arc-consistency. We derived constraint prop-
agation rules to achieve generalised arc-consistency and bounds-consistency, and
we gave algorithms implementing the rules.

We also examined the option of decomposing a multidimensional array con-
straint into one with just a one-dimensional array and a linear constraint. We
argued that when we wish to establish GAC on array constraints, the composed
and the decomposed behave similarly with respect to runtime, while this is not
the case when we require only BC. We showed that decomposing a multidimen-
sional array constraint results in a loss of information when just BC is enforced on
the sub-constraints of the decomposition. In this case, it is more appropriate to
use a BC algorithm, such as the one we propose, on the original non-decomposed
array constraint.

Chapter 9

Constraint-Based Qualitative Spatial
Reasoning

9.1 Introduction

Qualitative reasoning was introduced in AI to abstract from the numeric quanti-
ties, such as the precise time of an event, or the concrete location or velocity of
an object, and to reason instead on the level of appropriate abstractions.

In the literature two different forms of qualitative reasoning were studied. The
first one is concerned with reasoning about continuous change in physical systems,
monitoring streams of observations and simulating behaviours, to name a few
applications. The main techniques used are qualitative differential equations,
constraint propagation and discrete state graphs. For a thorough introduction
see [Kuipers, 1994].

The second one aims at reasoning about contingencies such as time, space,
shape, size, directions, etc. through an abstraction of the quantitative information
into a finite set of qualitative relations. One then relies on complete knowledge
about the interrelationship between these qualitative relations. This approach is
exemplified by temporal reasoning due to [Allen, 1983], spatial reasoning intro-
duced in [Egenhofer, 1991] and [Randell et al., 1992a], reasoning about cardinal
directions (such as North, Northwest, etc), see, e. g., [Ligozat, 1998], etc.

A recent and comprehensive overview of the qualitative spatial reasoning
(QSR) field is provided by [Cohn and Hazarika, 2001].

Constraint-Based Models

Qualitative spatial representation and reasoning problems lend themselves well to
modelling by constraints. In the standard modelling approach, a spatial object,
such as a region, is described by a variable, and the qualitative relation between
spatial objects, such as the topological relation between two regions, contributes
a constraint.

139

140 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

For many QSR calculi it is known how, in a semantical respect, global feasibil-
ity of a spatial specification corresponds to local feasibility. In the case of a fully
specified topological scenario, for instance, if for all three objects the respective
three binary topological relations are compositionally consistent, then the entire
scenario is consistent. In the standard model with relations as constraints, this
condition corresponds to path-consistency (PC, Def 2.1.10).

If the qualitative relation between two objects is not fully specified, the corre-
sponding constraint is a disjunction of basic constraints. By establishing PC, such
a disjunctive constraint is refined in view of the constraints with which it shares
a variable. A combination of PC with search over the disjunctive constraints
decides the consistency of indefinite scene descriptions.

We examine here an alternative constraint-based formulation of QSR. In this
approach, a spatial object is a constant, and the relation between spatial objects
is a variable. We call this the relation variable approach, in contrast to the
conventional relation constraint approach.

Although the use of relation variables is not original, see [Tsang, 1987] where
relation variables are proposed for qualitative temporal reasoning, it is mentioned
very rarely in the QSR literature. This fact surprises in view of the advantages of
this approach. In particular, the following important issues are tackled success-
fully:

Aspect integration. Space has several aspects that can be characterised qual-
itatively, such as topology, size, shape, relative and absolute orientation.
These aspects are interdependent, but no convenient canonical representa-
tion exists that provides a link. This is in contrast to temporal reasoning, in
which concepts such as periods and durations are defined in terms of time
points.

Context embedding. Spatial reasoning problems are not likely to occur in pure
form in practice. They are embedded into a non-spatial context or contain
application-specific side constraints. For example, we consider below evo-
lutions of spatial scenarios over time.

Systems. The usual relation constraint approach is not declarative in a strict
sense: knowledge is stated in algorithmic or at best meta constraint form.
However, typical current constraint solving systems focus on domain reduc-
tion, and rarely provide facilities to easily access and modify the constraint
network, which is required for enforcing PC. Custom-built reasoning sys-
tems are needed.

QSR with relation variables responds to these points. Aspect integration is
facilitated by stating additional inter-aspect constraints. These constraints are
dealt with on the same level and by the same constraint propagation algorithms
as the intra-aspect constraints. Similarly, a spatial reasoning problem can be

9.2. Topological Reasoning with RCC-8 141

A
B

A

B

A

B

A
B

A

B

A
B

disjoint(A,B) meet(A,B) equal(A,B)

covers(A,B)
coveredby(B,A)

contains(A,B)
inside(B,A) overlap(A,B)

Figure 9.1: RCC-8 relations (2D example)

embedded or extended by viewing it as a set of subconstraints in a larger con-
straint satisfaction problem. We demonstrate this point by an extensive study of
qualitative spatial simulation in Chapter 10.

Finally, the relation variable approach results in a conceptually plain, single-
level constraint satisfaction problem. Checking satisfiability corresponds directly
to searching a solution. The problem constraints, which are extensionally de-
fined, can be propagated by any chosen method; generalised arc-consistency
(GAC, Def. 2.1.5) can be established with membership rules, for example. In
fact, any sufficiently expressive constraint solving method can be applied, a
search&propagation-based solver is just one option.

9.2 Topological Reasoning with RCC-8

Reasoning about topology is one of the best-known cases of spatial reasoning.
It was introduced by [Egenhofer, 1991] and [Randell et al., 1992b]. The latter in
particular studied the Region Connection Calculus with 8 relations (RCC-8). We
use it in the following to illustrate a number of concepts in QSR.

In RCC-8 one distinguishes eight topological relations between two regions.
We denote the eight topological relations between two regions that are distin-
guishes in RCC-8 by disjoint,meet, overlap, equal, covers, coveredby, contains, inside;
their meaning is indicated in Fig. 9.1. We call the resulting set RCC8. These
relations are jointly exhaustive and pairwise disjoint : any two spatial regions are
in one and exactly one of the RCC-8 relations to each other.

A spatial topological scenario consists of a set of region names and restrictions
on the topological relation for pairs of regions. A scenario is fully specified if
exactly one topological relation is given for each region pair.

142 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

9.2.1 Composition

Considering the triple Ra,b, Rb,c, Ra,c of relations between some regions a, b, c, one
finds that not all triples of RCC-8 relations are semantically feasible. The 193
consistent triples are collected in the so-called composition table, see Figure 9.2
(the entry RCC8 abbreviates the full list). For instance, the 〈inside,meet, disjoint〉
means that if region a is inside region b and b ‘touches’ region c then it is con-
sistent with the topological semantics that region a is disjoint of c.

The significance of the composition table comes from the fact that composi-
tional consistency entails global consistency. This was proved in [Bennett, 1998].
If, in a fully specified topological scenario, for all triples of regions the relations be-
tween them respect the composition table then the scenario is consistent. Global
semantic consistency can hence be established by local reasoning.

9.2.2 Converse Relation

In analogy to the composition table, it is helpful to think of a converse relation
table consisting of the eight pairs 〈R,RI〉 of RCC-8 relations such that RI is the
converse of R. It is printed in Fig. 9.3.

If equal is agreed upon as the relation of a region with itself then the converse
relation table follows from the composition table.

9.3 Modelling QSR with Constraints

We examine now how spatial scenarios can be modelled as constraint satisfaction
problems. We continue using RCC-8 as an example, but most of the concepts
below are immediately transferable to other spatial aspects.

The set of region names in a topological scenario is from now on denoted by
Regions.

9.3.1 Relations as Constraints

In this conventional approach, Regions is considered to be a set of region vari-
ables. Their domain is the set of all spatial regions in the underlying topological
space. For example, if we model 2D space then a region variable represents a
set of points in the plane; so the domain may be infinite. Information about the
topological relation between two regions is expressed as a binary constraint Rel
that corresponds to a subset of RCC8. One usually writes this in infix notation
as

constraint x Rel y where Rel ⊆ RCC8 and x, y ∈ Regions.

9.3. Modelling QSR with Constraints 143

disjoint meet equal inside coveredby contains covers overlap

disjoint RCC8 disjoint disjoint disjoint disjoint disjoint disjoint disjoint

meet meet meet meet

inside inside inside inside

coveredby coveredby coveredby coveredby

overlap overlap overlap overlap

meet disjoint disjoint meet inside meet disjoint disjoint disjoint

meet meet coveredby inside meet meet

contains equal overlap inside

covers coveredby coveredby

overlap covers overlap

overlap

equal disjoint meet equal inside coveredby contains covers overlap

inside disjoint disjoint inside inside inside RCC8 disjoint disjoint

meet meet

inside inside

coveredby coveredby

overlap overlap

coveredby disjoint disjoint coveredby inside inside disjoint disjoint disjoint

meet coveredby meet meet meet

contains equal overlap

covers coveredby coveredby

overlap covers overlap

overlap

contains disjoint contains contains equal contains contains contains contains

meet covers inside covers covers

contains overlap coveredby overlap overlap

covers contains

overlap covers

overlap

covers disjoint meet covers inside equal contains contains contains

meet contains coveredby coveredby covers covers

contains covers overlap covers overlap

covers overlap overlap

overlap

overlap disjoint disjoint overlap inside inside disjoint disjoint RCC8

meet meet coveredby coveredby meet meet

contains contains overlap overlap contains contains

covers covers covers covers

overlap overlap overlap overlap

Figure 9.2: The composition table for the RCC-8 relations

144 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

disjoint disjoint

meet meet

equal equal

covers coveredby

coveredby covers

contains inside

inside contains

overlap overlap

Figure 9.3: The converse relations for the RCC-8 relations

Such a CSP describes a possibly partially specified scenario. Whether a
corresponding fully specified and satisfiable scenario exists is checked by path-
consistency and search over the relations. A PC-establishing algorithm revises
the constraints between regions according to the converse relation and composi-
tion tables of RCC-8, and search branches over disjunctive constraints.

When establishing satisfiability of a scenario, only the constraints are pro-
cessed, for compositional consistency. The variables remain unassigned.

9.3.2 Relations as Variables

Here we interpret every element of Regions as a constant. The topological relation
between two regions is a variable with a subset of RCC8 as its domain. Such a
relation variable exists for each ordered pair of regions, and we collect all these
variables in an array Rel . We write an individual relation as

variable Rel [a, b] where Rel [a, b] ⊆ RCC8 and a, b ∈ Regions.

Integrity Constraints

Relation converse and composition in this setting are captured at the constraint
level. The binary constraint conv represents the converse relation table:

conv(Rel [a, b], Rel [b, a]) for all {a, b} ⊆ Regions.

The composition table is represented by the ternary constraint comp, with

comp(Rel [a, b], Rel [b, c], Rel [a, c]) for all {a, b, c} ⊆ Regions.

In presence of

Rel [a, a] = equal for all a ∈ Regions

and a conv constraint for all pairs of different regions, one comp constraint per
three different regions suffices.

9.3. Modelling QSR with Constraints 145

9.3.3 Discussion

By modelling the items of interest as variables and static information as con-
straints, the relation variable approach yields plain finite-domain CSPs in which
the solutions (i. e., assignments) are relevant. There is a straightforward corre-
spondence between a solution and a fully specified, consistent scenario. Obtaining
the latter from a partially specified scenario amounts to the standard task of solv-
ing a finite-domain CSP.

Constructing a relation variable model means finding integrity constraints
that embody the intended semantics. Once that has been accomplished, the
origin or meaning of the constraints plays no role. It is irrelevant for a constraint
solver whether comp represents the composition operation in a relation algebra.
We discuss examples below in which other restrictions on the relations must be
satisfied. There is thus a clear distinction between specification and execution.
The relation variable approach is declarative in a strict sense.

Constraint Propagation

The relation variable approach is independent of the particular constraint solving
method. We can, however, choose a solver based on search and propagation, and
furthermore we could choose a GAC-establishing propagation algorithm.

Path consistency in the relation constraint approach and generalised arc-
consistency in the relation variable approach simulate each other. This can be
seen by analysing, in both approaches, the removal of one topological relation from
the disjunctive constraint a Rel b, or from the domain of the variable Rel [a, b],
respectively. The reason in both cases must be the lack of supporting relations
between a, c and b, c, for some third region c; that is, compositional consistency.

Time Complexity

It is perhaps not surprising but useful to mention that establishing the respective
local consistency in either approach, i. e., PC for the relation constraint approach
and GAC for the relation variable approach, requires the same computational
effort.

Enforcing PC by an algorithm as the one given in [Mackworth, 1977] requires
time in O(n3) [Mackworth and Freuder, 1985], where n is the number of regions.
It is assumed there that one PC step, restricting a Rel c by a Rel b and b Rel c,
takes constant time.

Analogue reasoning entails that GAC can be enforced in constant time on a
single comp(Rel [a, b],Rel [b, c],Rel [a, c]) constraint — observe that the three vari-
ables have domains of size at most eight. In this way, the overall time complexity
depends only on the number

(
n

3

)
of such constraints; and it is thus in O(n3) as

well.

146 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

Related Work

In [Tsang, 1987] the relation variable approach is described for qualitative tem-
poral reasoning, a field similar to QSR. The idea appears not to have caught on,
however. One reason is probably that integration in temporal reasoning is simpler
because the canonical representation of time points on the real line exists. By
referring to its end points, a time interval can directly be related to its duration
or another time interval. Space, in contrast, has no such convenient canonical
representation — but many aspects to be integrated.

In QSR, the possibility of the relation variable approach is mentioned occa-
sionally in passing, but without examining its potential. For actually modelling
and solving QSR problems using relation variables I am only aware of [Apt, 2003,
pages 30-33], which deals with a single aspect only.

From the perspective of constraint logic programming, relation variables are
discussed in [Lamma et al., 1999]. It is studied there how binary relational reason-
ing can be embedded into CLP(FD), and how relational (qualitative) information
can be combined with quantitative information by constraints.

Finally, it is important to point out that the elaborate heuristics developed
for qualitative spatial reasoning, such as those reported in [Renz and Nebel, 2001]
for RCC-8 and in [Ligozat, 1998] for the cardinal directions, can be easily inte-
grated into a relation variable constraint solver. In this view, these heuristics are
customary variable and value ordering heuristics by type.

9.4 Relation Variables in Use

An essential advantage of the relation variable approach is that the relevant in-
formation is available in variables. This means that linking pieces of information
reduces to merely stating additional constraints on the variables. In that way,
embedding a QSR problem into an application context or adding side restrictions,
for example, can be dealt with easily and declaratively.

We now illustrate the use of relation variables. We consider the issue of com-
posite models with several cases of aspect integration. Furthermore, we discuss
cases in which a qualitative relation is not atomic but is best represented as a
set of atoms. This view leads to the use of set variables and constraints, which
are well established in constraint programming. Finally, we show how one can
elegantly constrain objects, not only qualitative relations, with relation variables
and array constraints of Chapter 8.

9.4.1 Combining Topology and Size

Following [Gerevini and Renz, 2002], we study scenarios combining topological
and size information. We collect information about both these aspects and their
link in one CSP.

9.4. Relation Variables in Use 147

From now on, n denotes the number of regions.

Topological Aspect

As in Section 9.3.2, the

n× n array TopoRel

of RCC-8 relation variables stores the topological relation between two regions.
The integrity constraints convRCC8, compRCC8 need to hold.

Size Aspect

Relative size of regions is captured by one of relations {<,=, >}, as in
[Gerevini and Renz, 2002]. The

n× n array SizeRel

of variables stores the relative sizes of region pairs. The converse relation and
composition tables are straightforward; the integrity constraints are

convSize = { (<,>), (=,=), (>,<) }, and

compSize = { (<,<,<), (<,=, <), . . .} (13 triples).

Linking the Aspects

The topological relation between two regions is dependent on their relative size.
A table with this information is given in [Gerevini and Renz, 2002], it contains
rules such as the following:

TopoRel [a, b] = inside implies SizeRel [a, b] = (<),

SizeRel [a, b] = (=) implies TopoRel [a, b] ∈ {disjoint,meet, overlap, equal}.

In [Gerevini and Renz, 2002], these rules represent a meta constraint ; they are
used within an algorithm that modifies constraints. Here, we infer instead a
proper constraint, linking both aspects. We define linkTopo&Size by the set

{ (inside, <), (disjoint, =), . . . } (14 pairs)

and state it as

linkTopo&Size(TopoRel [a, b], SizeRel [a, b])

for all regions a, b.

148 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

9.4.1. Example. Let us pick up the combined scenario from
[Gerevini and Renz, 2002, p. 14]. Five regions, numbered 0, . . . , 4, are con-
strained by

TopoRel [0, 2] ∈ {coveredby, equal},

TopoRel [1, 0] ∈ {coveredby, equal, overlap}, SizeRel [0, 2] ∈ {<},

TopoRel [1, 2] ∈ {coveredby, equal}, SizeRel [3, 1] ∈ {<,=},

TopoRel [4, 3] ∈ {coveredby, equal}, SizeRel [2, 4] ∈ {<,=}.

Independently, the topological and the size scenarios are consistent while the
combined scenario is not. It is pointed out in [Gerevini and Renz, 2002] that
naive propagation scheduling schemes (first one aspect, then the other; etc.) do
not suffice to detect inconsistency.

A formulation of this scenario as a combined topological & size CSP in the
relation variable approach is straightforward. The resulting CSP can be solved by
a typical constraint programming platform that supports user-defined constraint
propagation algorithms, such as the ECLiPSe system [Wallace et al., 1997].
ECLiPSe is focused on search and domain-reducing propagation; and it also pro-
vides generic GAC-enforcing propagation algorithm for user-defined constraints.

Alternatively, we can use membership rules to enforce GAC. We can compute
such rule sets for convSize and compSize from their respective definitions, by the
method described in Section 5.4.4 followed by removing redundant rules (Sec-
tion 4.3.1). We obtain for example the membership rules

compSize(x, y, z), x ∈ {<,=}, y ∈ {<,=} → z 6= (>),

compSize(x, y, z), x ∈ {<}, y ∈ {<,=} → z 6= (=).

The definition of the linking constraint linkTopo&Size is already provided in
terms of rules by [Gerevini and Renz, 2002]. The rules are not membership rules
but each is equivalent to one. For example, the rule “TopoRel [x, y] = inside

implies SizeRel [x, y] = (<)” mentioned earlier is equivalent to

linkTopo&Size(x, y), x = inside → y 6= (>), y 6= (=). (r)

While these rules fully define the linkTopo&Size constraint, they do not propagate it
sufficiently to establish GAC. From these rules we can, however, compute stronger
rules that do enforce GAC, as described in Section 5.3.3. Doing so, we obtain,
for example, the membership rules

linkTopo&Size(x, y), x ∈ {equal, coveredby, inside} → y 6= (>),

linkTopo&Size(x, y), x ∈ {contains, covers, coveredby, inside} → y 6= (=)

to which rule (r) contributed.

9.4. Relation Variables in Use 149

Given the above CSP and a constraint propagation method to enforce GAC
on the five involved types of constraints, we verified with the help of an ECLiPSe

implementation that solely executing GAC-propagation for all constraints (i. e.,
no search) yields failure, which proves that this CSP is inconsistent. �

Aspect Integration with Relation Constraints

For the purpose of aspect integration but within the relation constraint approach,
in [Gerevini and Renz, 2002] a new algorithm called Bipath-consistency is
proposed. Its principle is the computation of path-consistency for both types of
relations in an interleaved fashion while taking into account the interdependency.
The linkTopo&Size constraint is in essence treated as a meta constraint on the al-
gorithm level. Moreover, the Bipath-consistency algorithm fixes in part the
order of propagation.

The relation variable method, on the other hand, is declarative; all information
is in the five types of constraints. They are handled by repeated, interleaved calls
to the same GAC-enforcing algorithm. The actual propagation order is irrelevant
for the result.

Bipath-consistency is restricted to combining two types of relations (e. g.,
two aspects of space). In contrast, the relation variable approach is compositional
in the sense that adding a third aspect, such as morphology [Cristani, 1999] or
orientation, is straightforward. It amounts to formulating integrity constraints
such as conv and comp, linking constraints to each of the already present aspects,
and a constraint linking all three aspects. Some of these constraints may be
logically redundant.

9.4.2 Combining Cardinal Directions and Topology

Reasoning about orientation, another important aspect of space, is the study of
the relation of two objects, the primary and the reference object, with respect
to a frame of reference. Orientation requires thus inherently a ternary relation.
However, by agreeing on the frame of reference, a binary relation is obtained.

Absolute Orientation

The binary relation approach is realised in the cardinal direction model
[Frank, 1992], based on the geographic (compass) directions. Points as well as
regions have been studied as the objects to be oriented. The point-based mod-
els can be cast in the relation variable approach analogously to topology, Sec-
tion 9.3.2. For instance, Frank [Frank, 1992] distinguishes for pairs of points the
jointly exhaustive and pairwise disjoint relations N,NW,W, . . ., denoting North,
Northwest, West, etc. Ligozat [Ligozat, 1998] gives a composition table.

150 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

Figure 9.4: Locating South America from within Ecuador

Orienting Regions

In [Goyal and Egenhofer, 1997] and [Skiadopoulos and Koubarakis, 2001] a more
expressive model is studied, The oriented objects in this model are regions. The
exact shape of the primary region is taken into account, and a ninth atomic
relation B exists, describing overlap of the primary region and the axes-parallel
minimum bounding box of the reference region. Sets of the atomic relations are
then used to describe directional information.

In this way, for example, the position of South America for an observer lo-
cated in Ecuador can be fully described by the (set of) directions ‘here’, north,
northeast, east, southeast, south; see Fig. 9.4.

Relation variables for such directional information of regions are thus naturally
set variables. They take their value from a set of sets of constants, unlike the
relation variables for topology and size whose domain is a set of atomic constants.

For each pair a, b of regions, the direction is a relation variable

DirRel [a, b] ∈ P(Dir) with Dir = {B,N,NW, . . . ,NE}

(to be read as “region a seen from region b is in . . . ”). P denotes the power set
function. So we have for example

DirRel [south america, ecuador] = {B,N,NE,E, SE, S}, and

DirRel [ecuador, south america] = {B}.

Integrity Constraints

A specific restriction on the set values that DirRel [a, b] can take, arises if a, b are
internally connected regions, which is often assumed. Only 218 of the 512 subsets
of Dir are then semantically possible. This knowledge can be represented in a
unary integrity constraint

connected(Rel [a, b]) for all {a, b} ⊆ Regions.

9.4. Relation Variables in Use 151

For example, connected allows {N,NW,W} but excludes {N, S}.
The constraints comp and conv can be derived from studies of composition

[Skiadopoulos and Koubarakis, 2001] and converse [Cicerone and Felice, 2004] (it
is outside of our focus whether these are the only integrity constraints needed).

Integration with Topology

Let us consider linking directional information to topology. The relevant knowl-
edge could be expressed by rules such as

TopoRel [a, b] ∈ {equal, inside, coveredby} implies DirRel [a, b] = {B},

TopoRel [a, b] ∈ {contains, covers} implies DirRel [a, b] ⊇ {B}.

These rules define a linking constraint linkTopo&Dir, to be stated as

linkTopo&Dir(TopoRel [a, b], DirRel [a, b])

for all regions a, b. We now have some components of a combined cardinal direc-
tions & topology model. It can be given to any sufficiently expressive constraint
solver, which in particular would provide constraints on set variables.

Constraint solving with set variables is an established subject in research on
constraint programming; it is discussed in [Gervet, 1997], for example. Many
contemporary constraint programming systems support set variables.

9.4.3 Cyclic Ordering of Orientations

From the several formalisations of orientation information with an explicit frame
of reference, let us examine the approach to cyclic ordering of 2D orientations
of [Isli and Cohn, 2000]. Here, the spatial objects are orientations, i. e. directed
lines. At the root of the framework is the qualitative classification of the angle
^(a, b) between the two orientations a and b by

Or(^(a, b)) =

e (equal) if α = 0,

l (left) if 0 < α < π,

o (opposite) if α = π,

r (right) if π < α < 2π

into the jointly exhaustive and pairwise disjoint relations e, l, o, r; see Fig. 9.5 for
an illustration. For three orientations a, b, c, we now consider the triple

〈 Or(^(b, a)), Or(^(c, b)), Or(^(c, a)) 〉.

Of all 43 triples over {e, l, o, r}, only 24 combinations are geometrically possible;
we denote this set by Cyc; Fig. 9.6 shows three of its elements.

152 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

a
b

a

b

a

b

a

b

Figure 9.5: The relations e, l, o, r of a pair of orientations

a

b

c

a
b

c

a

b

c

Figure 9.6: The Cyc relations lrl, lel, and rol of a triple of orientations

Such cyclic ordering information can be expressed within the relation variable
approach in an array CycRel that in particular is ternary. We have thus a relation
variable

CycRel [a, b, c] ∈ Cyc with Cyc = {lrl, orl, . . . , rle}

for every three orientations a, b, c. The integrity constraints here are

conv(CycRel [a, b, c], CycRel [a, c, b]),

comp(CycRel [a, b, c], CycRel [a, c, d], CycRel [a, b, d]),

and a new constraint

rotate(CycRel [a, b, c], CycRel [c, a, b]).

Details and definitions can be found in [Isli and Cohn, 2000].
Working within the relation constraint approach, Isli and Cohn construct

a new algorithm called s4c that enforces 4-consistency [Freuder, 1978] on the
ternary relation constraints that correspond to CycRel . They are able to prove
that this algorithm decides consistency, i. e., 2D geometric feasibility, of fully spec-
ified scenarios. The s4c algorithm uses exactly the information that we represent
in the conv, comp and rotation constraints. Consequently, we can conclude that
in our relation variable model these constraints guarantee geometric consistency.

We hypothesise further that s4c in the relation constraint model propagates
at most as much information as a GAC-enforcing algorithm does in our relation
variable model. Intuitively, this should be clear: every possible reduction of a
disjunctive constraint in the relation constraint model corresponds to a domain
reduction of a relation variable in our model.

9.4. Relation Variables in Use 153

9.4.4 Combining Cardinal Direction with Relative Orien-

tation

The exchange of information between a cardinal direction model for pairs of points
as mentioned in Section 9.4.2 and a relative orientation model for triples of points
derived from the formalisation in [Freksa and Zimmermann, 1992] is studied in
[Isli, 2003, Isli, 2004]. A rough example for the kind of reasoning that should be
facilitated is the following. Suppose the points a, b, c in the plane are such that

• c is to the left of the directed line ab, and

• b is north of a,

then c is south-west, west, or north-west of a and b
This integration task is quite analogous to the case of combining topology and

size (Section 9.4.1), and so is the solution. Isli, working with relation constraints,
proposes a new algorithm for this integration issue.

We formulate a relation variable model. The cardinal direction subproblem
can straightforwardly be expressed in this approach; we omit the obvious details
here. The relative orientation subproblem leads to a model similar to that of
orientations in the preceding section; in particular, it is based on a ternary array.
The arrays in the combined model are

CDirRel , which is an n× n array, and
ROrientRel , which is an n× n× n array,

if we assume n points.
For linking the two models, independent functions for both directions of the

information transfer are described in [Isli, 2004]. They can be transformed into
the two constraints

linkCD→RO(CDirRel [a, b], CDirRel [b, c], ROrientRel [a, b, c]),

linkCD←RO(ROrientRel [a, b, c], CDirRel [a, b], CDirRel [b, c], CDirRel [a, c])

on triples of points a, b, c.
In the relation constraint approach it is necessary to treat the information in

linkCD→RO and linkCD←RO as meta constraints. An embedding algorithm is given
in [Isli, 2004]. This algorithm moreover integrates a variant of the s4c algorithm
of [Isli and Cohn, 2000] and a path-consistency algorithm.

Using relation variables, it suffices to state the constraints and provide a
generic GAC-enforcing algorithm. Also, by taking into account the semantics,
for a given triple of points, the first constraint linkCD→RO should just be the
restriction of the second constraint linkCD←RO in which the variable CDirRel [a, c]
is projected away. The former constraint is then redundant, and we end up with
one linking constraint

linkCD&RO(ROrientRel [a, b, c], CDirRel [a, b], CDirRel [b, c], CDirRel [a, c]).

154 Chapter 9. Constraint-Based Qualitative Spatial Reasoning

On the grounds that both the relation variable and the relation constraint
approach are based on the same semantic information, for one embedded in an
algorithm, for the other in constraints, we conclude that both accept exactly the
same point configuration scenarios.

9.4.5 Object Variables and Array Constraints

In the relation variable model, spatial objects are denoted by constants. An object
variable, whose domain is the set of object constants, has thus a different meaning
here than in the relation constraint approach. This issue is best demonstrated
by an example. Suppose we wish to identify two regions among all given regions
such that

• the first is smaller than the second, and

• they are disconnected or externally connected.

We use topological and size information as formalised as in Section 9.4.1, so we
have arrays SizeRel and TopoRel recording the qualitative relations. Let Regions
be the set of the n region constants. We define

region variables x1, x2

whose domain is the set Regions. They are constrained by

SizeRel [x1, x2] = (<), (C)

TopoRel [x1, x2] ∈ {DC,EC}.

C is a constraint on the variables x1, x2 and on all size relation variables in the
array SizeRel . Namely, region constants r1, r2 ∈ Regions must be assigned to
x1, x2 such that the selected relation variable SizeRel [r1, r2] is assigned a ‘<’.
This constraint is an array constraint, which we study in Chapter 8.

9.5 Implementation

To examine the feasibility of the relation variable approach, we implemented
it in ECLiPSe . Specifically, we deal with topology, size, their integration, and
the cardinal directions. Constraint propagation of all constraints is realised by
membership rules that establish generalised arc-consistency.

The implementation also incorporates the specialised heuristics for reasoning
with RCC-8 [Ligozat, 1998] and the cardinal directions [Renz and Nebel, 2001].
Note that these techniques are heuristics, not decision procedures, in our context.
With relation variables, they fall into the customary class of variable and value

9.6. Final Remarks 155

ordering heuristics in constraint programming search. Our experience is that the
use of these heuristics massively reduces the solving time.

The implementation is used in Example 9.4.1; it is also the basis of the im-
plementation of dynamic spatial reasoning which we discuss in Chapter 10.

9.6 Final Remarks

We discussed here an alternative formulation of qualitative spatial reasoning prob-
lems as constraint satisfaction problems. Contrary to the conventional approach,
we model qualitative relations as variables. Uncertain relational information is
naturally expressed by variables with domains; consistency of this information is
naturally expressed by static constraints. The propagation of these constraints is
a well-understood issue in constraint programming; corresponding generic algo-
rithms are provided by many constraint solving systems; also membership rules
can be used to that end.

While the principle of the relation variable approach has been described ear-
lier, for instance for modelling qualitative temporal reasoning, the advantages
of applying it to QSR, especially for integration tasks, have so far very rarely
been realised. We argued that several algorithms that are custom-designed
for integrating spatial aspects become redundant if a relation variable model
and a generic GAC-establishing constraint propagation algorithm is used: the
Bipath-consistency algorithm of [Gerevini and Renz, 2002], the s4c algorithm
of [Isli and Cohn, 2000], the algorithm combining s4c and a path-consistency al-
gorithm of [Isli, 2004].

We showed how the relation variable approach can accommodate com-
posite qualitative relations as investigated in [Cicerone and Felice, 2004,
Skiadopoulos and Koubarakis, 2001] with the help of set variables and con-
straints. Extending or combining a relation variable model often consists only
in defining appropriate constraints, contrary to what is the case in the relation
constraint approach where new algorithms must be designed.

Finally, let us remark that the strictly declarative model obtained within
the relation variable approach can be solved by any sufficiently expressive CSP
solver. This includes typical CP systems based on search and propagation, but
for instance also solvers based on local search.

Chapter 10

Qualitative Simulation

10.1 Introduction

Qualitative simulation deals with the reasoning about possible evolutions in time
of the models capturing qualitative information. One assumes that time is dis-
crete and that at each stage only changes adhering to some desired format can
occur. [Kuipers, 2001] discusses qualitative simulation in the first framework,
while qualitative spatial simulation is considered in [Cui et al., 1992].

The aim of this chapter is to show how qualitative simulation in the second
approach to qualitative reasoning (exemplified by qualitative temporal and spatial
reasoning) can be naturally captured by means of temporal logic and constraint
satisfaction problems modelled according to the relation variable approach. The
resulting framework allows us to describe various complex forms of behaviour, for
example a simulation of a throw of a ball into a box, a simulation of the movements
of a discus thrower, or a solution to a piano movers problem. The relevant
constraints are formulated using a variant of linear temporal logic with both past
and future temporal operators. Once such temporal formulas are translated into
the customary constraints, standard techniques of constraint programming can be
used to generate the appropriate simulations and to answer various queries about
them. To support this claim, we implemented this approach in the ECLiPSe

programming system and discuss here experiments.

10.2 Simulation Constraints

10.2.1 Intra-state Constraints

To describe formally qualitative simulations, we define first intra-state and inter-
state constraints. A qualitative simulation is then a CSP that consists of ‘stages’
that all satisfy the intra-state constraints. Moreover, this CSP satisfies the inter-
state constraints that link variables appearing in various stages.

157

158 Chapter 10. Qualitative Simulation

a

b

disjoint

a

b

meet

a

b

overlap

a equalb

a b

coveredby

a b

covers

a b

inside

a b

contains

Figure 10.1: The neighbourhood relation for the RCC-8 relations

For presentational reasons, we restrict ourselves from now on to simple binary
qualitative relations (e. g., topology, size). This is no fundamental limitation;
the principles we outline extend easily to the non-binary case (e. g., the ternary
orientation relation).

We assume that we have at our disposal

• a finite set of qualitative relations Q, with a special element denoting the
relation of an object to itself,

• the integrity constraints in a relation variable model, such as a ternary
composition relation comp and a binary converse relation conv,

• a neighbourhood relation neighbour between the elements of Q that describes
which ‘atomic’ changes in the qualitative relations are admissible.

10.2.1. Example. Take the qualitative spatial reasoning with topology intro-
duced in [Egenhofer, 1991] and [Cui et al., 1992], and discussed in Section 9.2.
The set of qualitative relations is the set RCC8, i. e.,

Q = {disjoint,meet, equal, covers, coveredby, contains, inside, overlap}.

The composition and converse relations are given in Figures 9.2 and 9.3.
The neighbourhood relation is depicted in Figure 10.1. We assume here that

during the simulation the objects can change their size. If we wish to disallow
this possibility, then the pairs (equal, coveredby), (equal, covers), (equal, inside),
(equal, contains) and their converses should be excluded from the above neigh-
bourhood relation. �

We fix now a sequence O of objects of interest. By a qualitative array we
mean a two-dimensional array Q on O ×O such that

10.2. Simulation Constraints 159

• for each pair of objects A, B ∈ O, Q[A, B] is a variable with the domain
included in Q,

• the integrity constraints hold on Q, so for each triple of objects A, B, C the
following intra-state constraints are satisfied:

– reflexivity : Q[A, A] = equal,

– transposition: conv(Q[A, B], Q[B, A]),

– composition: comp(Q[A, B], Q[B, C], Q[A, C]).

Each qualitative array determines a unique CSP. Its variables are Q[A, B], with
A and B ranging over the sequence of the assumed objects O. The domains of
these variables are appropriate subsets of Q. In what follows we represent each
stage t of a simulation by a CSP Pt uniquely determined by a qualitative array
Qt. Here t is a variable ranging over the set of natural numbers that represents
discrete time. Instead of Qt[A, B] we write Q[A, B, t], which reflects that, in fact,
we deal with a ternary array.

10.2.2 Inter-state Constraints

To describe the inter-state constraints we use as atomic formulas statements of
the form

Q[A, B] ? q,

where ? ∈ {=, 6=} and q ∈ Q, and ‘true’, and employ a temporal logic with four
temporal operators,

(next time),
(eventually),

� (from now on), and
U (until),

and their ‘past’ counterparts, −1, −1, �−1 and S (since). While it is known
that past time operators can be eliminated, their use results in more succinct
(and in our case more intuitive) specifications, see, e. g., [Markey et al., 2002].

We use as inter-state constraints formulas of the form φ→ ψ, where φ con-
tains only the past time operators and ψ contains only the future time operators.
Both φ and ψ are built out of atomic formulas using propositional connectives,
and temporal operators of the appropriate kind. Intuitively, at each time instance
t, each interstate constraint φ → ψ links the ‘past’ CSP

⋃t

i=0 Pi with the ‘fu-
ture’ CSP

⋃tmax

i=t+1 Pi, where tmax is the fixed maximum length of the simulation.
So we interpret φ in the interval [0..t], and ψ in the interval [t+ 1 .. tmax].

We explain the meaning of a past or future temporal formula φ with respect
to the underlying spatial array Q in an interval [s..t], for which we stipulate s 6 t.
We write |=[s..t] φ to express that φ holds in the interval.

160 Chapter 10. Qualitative Simulation

Propositional connectives. These are defined as expected, in particular in-
dependently of the ‘past’ or ‘future’ aspect of the formula.

|=[s..t] true true,
|=[s..t] ¬φ if not |=[s..t] φ,
|=[s..t] φ1 ∨ φ2 if |=[s..t] φ1 or |=[s..t] φ2.

Conjunction φ1 ∧ φ2 and implication φ1 → φ2 are defined analogously.

Future formulas. Intuitively, we are at the lower bound of the time interval
and move only forward in time.

|=[s..t] Q[A,B] ? c if Q[A,B, s] ? c where ? ∈ {=, 6=},

|=[s..t] φ if |=[r..t] φ and r = s+ 1, r 6 t,
|=[s..t] �φ if |=[r..t] φ for all r ∈ [s..t],
|=[s..t] φ if |=[r..t] φ for some r ∈ [s..t],
|=[s..t] χ U φ if |=[r..t] φ for some r ∈ [s..t]

and |=[u..t] χ for all u ∈ [s .. r − 1].

Past formulas. We are here at the upper bound of the time interval and move
backward.

|=[s..t] Q[A,B] ? c if Q[A,B, t] ? c where ? ∈ {=, 6=},

|=[s..t]
−1φ if |=[s..r] φ and r = t− 1, s 6 r,

|=[s..t] �−1φ if |=[s..r] φ for all r ∈ [s..t],
|=[s..t]

−1φ if |=[s..r] φ for some r ∈ [s..t],
|=[s..t] χ S φ if |=[s..r] φ for some r ∈ [s..t]

and |=[u..t] χ for all u ∈ [r + 1 .. t].

Observe here that the formula Q[A, B]?q is interpreted in two ways, depending
on whether it is in the ‘past’ or in the ‘future’.

We also use the following abbreviations,

Q[A, B] ∈ {q1, . . . , qk} for (Q[A, B] = q1) ∨ . . . ∨ (Q[A, B] = qk),

and

Q[A, B] /∈ {q1, . . . , qk} for (Q[A, B] 6= q1) ∧ . . . ∧ (Q[A, B] 6= qk).

Furthermore, we use bounded quantification to abbreviate the following cases of
disjunctions and conjunctions, i. e.,

∀A ∈ {o1, . . . , ok}. φ(A) for φ(o1) ∧ . . . ∧ φ(ok),

and

∃A ∈ {o1, . . . , ok}. φ(A) for φ(o1) ∨ . . . ∨ φ(ok).

As usual, in φ(A), A denotes a placeholder (free variable), and φ(oi) is obtained
by replacing A in all its occurrences by oi.

10.2. Simulation Constraints 161

10.2.3 Examples for Inter-state Constraints

Let us now illustrate the syntax of inter-state constraints by examples. We begin
with some ‘domain independent’ inter-state constraints.

Atomic changes. In each transition only ‘atomic’ changes can occur. Given
an element q of Q, we define

neighbour(q) = { a | (q, a) ∈ neighbour }.

So neighbour(q) is the set of the qualitative relations that are in the conceptual
neighbourhood of relation q. The above inter-state constraint is then formalised
as the set of formulas

Q[A, B] = q → Q[A, B] ∈ {q} ∪ neighbour(q),

with A, B ranging over the sequence O of considered objects, and q ranging over
the set of relations Q.

Non-circularity. No looping happens during the simulation. This is formalised
as the set of the following formulas

(
∀A, B ∈ O. Q[A, B] = q(A, B)

)
→ �∃A, B ∈ O. Q[A, B] 6= q(A, B),

where q is a mapping of the pairs A, B to Q. If we drop � here, we formalise
the perpetual change inter-state constraint stating that in each transition some
change takes place.

Next, we provide examples of ‘domain dependent’ inter-state constraints.

Phagocytosis. (Taken from [Cui et al., 1992].) As soon as an amoeba has
absorbed a food particle, the food remains inside the amoeba. This inter-state
constraint is formalised as:

Q[food, amoeba] = coveredby → �Q[food, amoeba] 6= overlap.

Note that in presence of the intra-state neighbourhood relation depicted in
Fig. 10.2 and used when the objects do not change the size, it is sufficient to
postulate that

Q[food, amoeba] = coveredby → Q[food, amoeba] 6= overlap.

Indeed, by the form of this neighbourhood relation, if for some t we have
Q[food, amoeba, t] = coveredby, then the situation Q[food, amoeba, t′] = overlap

for some t′ > t could only happen if Q[food, amoeba, t′ − 1] = coveredby.
We consider a model of phagocytosis in detail in Section 10.5.2.

162 Chapter 10. Qualitative Simulation

a

b

disjoint

a

b

meet

a

b

overlap

a equalb

a b

coveredby

a b

covers

a b

inside

a b

contains

Figure 10.2: An alternative neighbourhood relation for the RCC-8 relations

Ball in a box. Suppose we wish to model that, if some ball is outside some
box, it will eventually be inside the box (i. e., inside or coveredby). Afterwards it
will remain in the box, though may change its shape. This can be described by
the following formulas:

Q[ball, box] = disjoint → Q[ball, box] ∈ {inside, coveredby},

Q[ball, box] ∈ {inside, coveredby} →

�Q[ball, box] ∈ {inside, coveredby, equal}.

As in the previous example, if we assume that the objects do not change their
size, that is, use the neighbourhood relation defined in Figure 10.2, then we can
replace the second formula by a simpler one,

Q[ball, box] ∈ {inside, coveredby} → Q[ball, box] 6= overlap.

Rotations. As soon as an object A starts moving around B, it continues to
move in the same direction (either clockwise or counterclockwise). To formalise
this constraint, we use qualitative reasoning about the cardinal directions

Dir = {N,NE,E, SE, S, SW,W,NW,EQ}

with the obvious meaning (EQ is the identity relation). [Ligozat, 1998] provides
the composition table for this form of qualitative reasoning. We introduce a
relation moveCW (move clockwise):

moveCW = { (N,NE)(NE,E), (E, SE), (SE, S),
(S, SW), (SW,W), (W,NW), (NW,N) },

and use neighbour′ = moveCW ∪ move−1
CW as the neighbourhood relation (where

move−1
CW describes counterclockwise moves). The above inter-state constraint is

10.2. Simulation Constraints 163

now formalised by the set of formulas

φP ∧
−1
(
¬φP S (φQ ∧

−1φP)
)

→ φP U φQ,

where φRel denotes Q[A,B] = Rel and (P, Q) ranges over neighbour′.

Navigation. A ship is required to navigate around three buoys along a specified
course. The position of the buoys are fixed (Fig. 10.3). We have the permanent
invariants

Q(buoya, buoyc) = NW,

Q(buoya, buoyb) = SW,

Q(buoyb, buoyc) = NW.

Objects occupy different spaces

∀A, B ∈ O. A 6= B → Q(A, B) 6= EQ.

The initial position of the ship is south of buoya,

Q(ship, buoya) = S.

The ship is required to follow a path around the buoys. We specify

(Q[ship, buoyA] = W ∧

(Q[ship, buoyB] = N ∧

(Q[ship, buoyC] = E ∧

(Q[ship, buoyC] = S)))),

to hold at the interval [0 .. tmax]. A tour of 14 steps exists; in Fig. 10.3, the
positions required to be visited are marked with bold circles.

Discus thrower. A discus thrower (T) makes three full rotations before releas-
ing the disc (D) in northern direction. To specify this behaviour we use spatial
reasoning combined with the reasoning about the cardinal directions, see Sec-
tion 9.4.2. We model it here as follows. For each pair of objects A, B we assume
that Q[A, B] ⊆ RCC8×Dir, and adopt the Cartesian products of the corresponding
neighbourhood and composition tables. To these intra-state constraints, we add
the necessary aspect-linking constraints. Next, given the formulas φ and χ we
define by induction a sequence of formulas ρi as follows:

ρ0 = φ ∧ −1�−1χ,

ρk+1 = φ ∧ −1(χ S ρk).

164 Chapter 10. Qualitative Simulation

a

b

c

123

4

5

6

7 8 9

10

11

12

13

Figure 10.3: Navigation path

Note that when χ implies ¬φ, the formula ρk implies that φ is true now and has
been true precisely at k time instances in the past. So we can formalise the above
requirement using the formula

ρ3 → (φ U ψ),

where

φ ≡ Q[T,D] = 〈meet,N〉,

χ ≡ Q[T,D] ∈ { 〈meet, d〉 | d ∈ Dir − {N} }, and

ψ ≡ Q[T,D] = 〈disjoint,N〉.

10.3 Temporal Formulas as Constraints

We need to explain how a temporal formula is imposed as a constraint on the
sequence of CSPs that represent the spatial arrays at consecutive times. We re-
duce the formula (inter-state constraint) into a conjunction of simple constraints,
eliminating the temporal operators in the process.

To be more precise, let us assume a temporal formula φ→ ψ. Recall that φ
contains only ‘past’ time operators and ψ contains only ‘future’ time operators.
Given a CSP

⋃t

i=s Pi, we show how the past temporal logic formula φ translates to
a constraint cons−([s..t], φ), and how a future temporal logic formula ψ translates
to a constraint cons+([s..t], ψ), both on the variables of

⋃t

i=s Pi.

We give first a simple translation based on unfolding, and then an alternative
translation that employs array constraints.

10.3. Temporal Formulas as Constraints 165

10.3.1 Unfolding Translation

To deal with disjunctive formulas in a target constraint language of only conjunc-
tions of constraints, which is the typical case, we assume that the language has
Boolean constraints and reified versions of some simple comparison and arith-
metic constraints. For example, (x = y) ≡ b is a reified equality constraint. b is
a Boolean variable reflecting the truth of the constraint x = y.

We denote by cons([s..t], φ) ≡ b the sequence of constraints representing that
the formula φ has truth value b at interval [s..t]. The ‘past’ or ‘future’ aspect of
a formula is indicated by a marker − or +, resp., when relevant. The translation
of φ is initiated by the call cons([s..t], φ) ≡ 1 (where s 6 t), and we proceed by
induction as follows.

Translation for ‘future’ formulas.

cons+([s..t], true) ≡ b is b = 1,

cons+([s..t],¬φ) ≡ b is b′ = ¬b,
cons+([s..t], φ) ≡ b′,

cons+([s..t], φ1 ∨ φ2) ≡ b is (b1 ∨ b2) ≡ b,
cons+([s..t], φ1) ≡ b1,
cons+([s..t], φ2) ≡ b2,

cons+([s..t], Q[A,B] ? c) ≡ b is (Q[A,B, s] ? c) ≡ b where ? ∈ {=, 6=},

cons+([s..t], φ) ≡ b is (b1 ∧ b2) ≡ b,
(s+ 1 6 t) ≡ b1,
(s+ 1 = r) ≡ b1,
cons+([r..t], φ) ≡ b2,

cons+([s..t],�φ) ≡ b is (
∧

r∈s..t br) ≡ b,
cons+([r..t], φ) ≡ br for all r ∈ [s..t],

cons+([s..t], φ) ≡ b is (
∨

r∈s..t br) ≡ b,
cons+([r..t], φ) ≡ br for all r ∈ [s..t],

cons+([s..t], χ U φ) ≡ b is cons+([r..t], φ ∨ χ ∧ (χ U φ)) ≡ br.

Translation for ‘past’ formulas. The definition of cons−([s..t], φ) ≡ b is en-
tirely symmetric to that of cons+([s..t], φ) ≡ b except for the backward perspec-
tive. So we have

cons−([s..t], Q[A,B] ? c) ≡ b is (Q[A,B, t] ? c) ≡ b where ? ∈ {=, 6=},

cons−([s..t], −1φ) ≡ b is (b1 ∧ b2) ≡ b,
(s 6 t− 1) ≡ b1,
(r = t− 1) ≡ b1,
cons−([s..r], φ) ≡ b2.

166 Chapter 10. Qualitative Simulation

The remaining cases are defined analogously, and we omit them here.

Observe that the interval bounds s, t in cons([s..t], φ) ≡ b are always constants
with s 6 t. The formula χ U φ is unfolded into an equivalent disjunction, by

χ U φ ≡ φ ∨ χ ∧ (χ U φ).

We do not deal specially with the bounded quantifiers ∀,∃. They are simply
expanded into conjunctions and disjunctions.

10.3.2 Array Translation

This alternative translation avoids the potentially large disjunctive constraints
caused by the and U operators. The idea is to push disjunctive information
into variable domains. Take the example

Q[A,B] = q

at the interval [r..s]. It can be translated into a single array constraint

Q[A,B, x] = q

with the fresh variable x whose domain is the set of time points [r..s]. We study
propagation of such array constraints in Chapter 8.

A complication arises when negation is used: just negating the associated
truth value is now incorrect. Consider ¬ Q[A,B] = q whose translation would
be that an x ∈ [r..s] exists such that φ does not hold. We therefore avoid nega-
tion. A formula is first transformed into negation normal form (NNF). NNF
can be obtained by using some identities, in particular the following on temporal
operators.

10.3.1. Fact.

¬ φ = �¬φ, (10.1)

¬�φ = ¬φ, (10.2)

¬ φ = true → ¬φ, (10.3)

¬(χ U φ) = (¬φ) U (¬χ ∧ ¬φ) ∨ �¬φ. (10.4)

Proof. Identities (10.1) and (10.2) are trivial. For (10.3), note that ¬ φ is al-
ways true in the unit interval [s..s] independent of φ. The construction true → ψ
requires then ψ only on intervals s..t with s < t.

For (10.4), see the proof given in [Huth and Ryan, 1999, p. 197] of an equiv-
alent identity between formulas in the temporal logic LTL. While the temporal
logic that we employ here is not LTL (one essential difference being the interpre-
tation of the operator at unit intervals), the structure of the proof carries over
directly in this instance. �

10.3. Temporal Formulas as Constraints 167

Here is the array translation of NNF formulas. Only the cases different from
the unfolding translation are presented, except for negation which is deleted. We
only present the translation of ‘future’ formulas; the case of ‘past’ formulas is
analogous.

cons+([s..t],�φ) ≡ b is cons+([s..t], φ ∧ (> → �φ) ≡ b,

cons+([s..t], φ) ≡ b is s 6 r, r 6 t,
cons+([r..t], φ) ≡ b,

cons+([s..t], χ U φ) ≡ b is (b1 ∧ (b2 ∨ b3)) ≡ b,
s 6 r, r 6 t,
cons+([r..t], φ) ≡ b1,
(s = r) ≡ b2,
s 6 u, u 6 r,
(u = r − 1) ≡ b3,
cons+([s..u],�χ) ≡ b3.

The interval end points s, t in cons([s..t], φ) are now variables. But observe
that the invariant s 6 t is always maintained. �φ is unfolded into the formula
φ ∧ (true → �φ).

10.3.2. Example. Let us compare the alternative translations using a simplified
version of a formula from the earlier navigation domain (p. 163), namely

φ ≡
(
Q[ship, buoy] = E ∧ Q[ship, buoy] = S

)
.

We consider for both translations the sequence of constraints cons+([1..n], φ), for
a constant n. To add readability, we abbreviate

φ1 ≡ (Q[ship, buoy] = E),

φ2 ≡ (Q[ship, buoy] = S);

so we inspect cons+([1..n], (φ1 ∧ φ2)).

Unfolding translation. We obtain in the first translation step

b1 ∨ . . . ∨ bn,
cons+([1..n], φ1 ∧ φ2) ≡ b1,
...
cons+([n..n], φ1 ∧ φ2) ≡ bn.

168 Chapter 10. Qualitative Simulation

Eventually, this becomes

b1 ∨ . . . ∨ bn,

(Q[ship, buoy , 1] = E) ≡ b1,
b1 = b11 ∨ . . . ∨ b2n,

(Q[ship, buoy , 1] = S) ≡ b11,
...
(Q[ship, buoy , n] = S) ≡ b1n,

...
(Q[ship, buoy , n− 1] = E) ≡ bn−1,
bn−1 = bn−1,n−1 ∨ bn−1,n,

(Q[ship, buoy , n− 1] = S) ≡ bn−1,n−1,
(Q[ship, buoy , n] = S) ≡ bn−1,n,

(Q[ship, buoy , n] = E) ≡ bn,
bn = bnn,

(Q[ship, buoy , n] = S) ≡ bnn.

There are n +
∑n

i=1 i = n(n + 3)/2 new Boolean variables, and as many reified
equality constraints.

Array translation. We have first

1 6 r1, r1 6 n, cons([r1..n], φ1 ∧ φ2),

and

1 6 r1, r1 6 n, Q[ship, buoy , r1] = E, r1 6 r2, r2 6 n, cons([r2..n], φ)

in the next step. Finally, the result is

1 6 r1, r1 6 n, Q[ship, buoy , r1] = E,

r1 6 r2, r2 6 n, Q[ship, buoy , r2] = S,

hence two new variables r1, r2, two array constraints, and one inequality con-
straint (if we view unary inequality constraints such as 1 6 r1 as simple domain
reductions).

As anecdotal evidence that the array translation can lead to substantially
better performance, reconsider the full navigation example from Section 10.2.3,
page 163. The runtimes in our implementation (to be detailed below) are 2.6 sec
with the unfolding translation and 0.4 sec with the array translation, so we ob-
serve a speedup roughly of factor 6 in this case. �

10.4. Simulations 169

10.3.3 Quantification over Objects

The principle of using a variable index in an array constraint instead of an unfold-
ing disjunctive translation can be applied to bounded existential quantification
as well. Recall that we defined

∃A ∈ O′. φ(A) to abbreviate
∨

o∈O′

φ(o).

Instead of unfolding, we translate this using a new variable, i. e.,

cons+([s..t],∃A ∈ O′.φ(A)) ≡ b is xA ∈ O′, cons+([s..t], φ(xA)) ≡ b.

xA is a fresh object variable ranging over O′.

10.3.3. Example. Consider again the naval navigation domain, this time with
a set S of ships. Let us specify that a state exists in which at least one ship is
positioned south-east of the buoy. We formalise

∃s ∈ S. Q[s, buoy] = SE.

The translation at [1..n] into array constraints is the single constraint

Q[s, buoy, r] = SE,

over two newly introduced variables s ∈ S and r ∈ [1..n]. The unfolding transla-
tion, in contrast, produces n · |S| reified constraints. �

10.4 Simulations

By a qualitative simulation we mean a finite or infinite sequence

PS = 〈P0,P1, . . .〉

of CSPs such that for each chosen inter-state constraint φ→ ψ we have

– if PS is finite with u elements, for all t0 ∈ [0 .. u− 1], t = tmax

– if PS is infinite, for all t0 > 0, t > t0 + 1

the constraint

cons([0 .. t0], φ) → cons([t0 + 1 .. t], ψ)

is satisfied by the CSP
⋃t

i=0 Pi. So at each stage of the qualitative simulation we
relate its past (and presence) to its future using the chosen inter-state constraints.

Consider an initial situation I = P0 and a final situation Fx determined by
a qualitative array of the form Qx, where x is a variable ranging over the set of
natural numbers (possible time instances). We are interested then in a number
of problems. First, we would like to find whether a simulation exists that starts
in I and reaches Ft, where t is the number of steps. If one exists, then we may
be interested in computing a shortest one, or in computing all such simulations.

170 Chapter 10. Qualitative Simulation

Simulate : spatial array Q, state constraints, tmax 7−→ solution

t := 0
PS := 〈〉
while t < tmax do

Pt := create CSP from Qt and impose intra-state constraints
PS := append Pt to PS and impose inter-state constraints

〈PS, failure〉 := prop(PS)
if not failure then

PS ′ := PS with final state constraint imposed on Pt

〈solution, success〉 := solve(PS ′)
if success then return solution

end

t := t+ 1
end

return ∅ // indicating failure

Figure 10.4: The simulation algorithm

Simulation algorithm. The algorithm given in Figure 10.4 provides a solution
to the first two problems in presence of the non-circularity constraint. We employ
here four auxiliary procedures, i. e., create, append, prop and solve, that are used
as follows.

• The call to create sets up a new CSP Pt uniquely determined by the qualita-
tive array Qt, in which for all objects A,B the domain of the variable Qt[A,B]
equals the set of relations Q. The intra-state constraints are imposed.

• The call to append attaches a CSP to the end of a sequence of CSPs.
For each inter-state constraint φ → ψ and s ∈ [0..t] the constraint
cons−([0..s], φ) → cons+([s+ 1..t], ψ) is generated.

• The call prop(PS) for a sequence of CSPs PS = P0, . . . ,Pt performs prop-
agation of the intra-state and inter-state constraints

If the outcome of the constraint propagation is an inconsistent CSP, the
value false is returned in failure. An inconsistency can arise if for some
value of t the inter-state constraints are unsatisfiable.

• The call solve(PS) for a sequence of CSPs of the form Pi checks if there is
a solution to the CSP formed by their union on which the assumed inter-
state constraints are imposed. If so, a solution, i. e., an instantiation of the
variables of the listed CSPs, and true is returned, otherwise 〈∅, false〉.

10.4. Simulations 171

P

T

B

C

S

L

Figure 10.5: A piano movers problem

We use the constant tmax equal to the number of different qualitative arrays, i. e.,
tmax = |O| · (|O|−1) ·2|Q|−1. If the desired simulation exists, the above algorithm
finds a shortest one and outputs it in the variable solution.

10.4.1. Example. Consider the following version of the piano movers problem.

There are three rooms, the living room (L), the study room (S) and
the bedroom (B), and the corridor (C). Inside the study room there
is a piano (P) and inside the living room a table (T); see Figure 10.5.
Move the piano to the living room and the table to the study room
assuming that none of the rooms and the corridor are large enough
to contain at the same time the piano and the table. Additionally,
ensure that the piano and the table at no time will touch each other.

To formalise this problem we first describe the initial situation by means of
the following formulas:

φ0 ≡ Q[B,L] = disjoint ∧ Q[B,S] = disjoint ∧ Q[L,S] = disjoint,

φ1 ≡ Q[C,B] = meet ∧ Q[C,L] = meet ∧ Q[C,S] = meet,

φ2 ≡ Q[P,S] = inside ∧ Q[T,L] = inside.

We assume that initially φ0, φ1, and φ2 hold, i. e., the constraints
cons−([0 .. 0], φ0), cons−([0 ..0], φ1) and cons−([0 ..0], φ2) are present in the initial
situation I.

Below, given a formula φ, by an invariant built out of φ we mean the formula
φ → �φ. Further, we call a room or a corridor a ‘space’ and abbreviate the
subset of objects {B, C, L, S} to S. We now stipulate as the inter-state constraints
the invariants built out of the following formulas:

• the relations between the rooms, and between the rooms and the corridor,
do not change:

φ0 ∧ φ1,

172 Chapter 10. Qualitative Simulation

• at all times, the piano and the table do not fill completely any space:

∀s ∈ S. (Q[P, s] 6= equal ∧ Q[T, s] 6= equal) ,

• together, the piano and the table do not fit into any space. More precisely,
at each time, at most one of these two objects can be within any space:

∀s ∈ S. ¬ (Q[P, s] ∈ {inside, coveredby} ∧Q[T, s] ∈ {inside, coveredby}) ,

• at all time instances the piano and the table do not touch each other:

Q[P, T] = disjoint.

The final situation is simply captured by the following constraint:

Q[P,L] = inside ∧ Q[T,S] = inside.
�

10.5 Implementation and Case Studies

We produced an implementation of the simulation algorithm in Fig. 10.4 and
the two translations of temporal formulas to constraints given in Section 10.3. It
consists of about 1500 lines of ECLiPSe code. To test its usefulness we conducted
several case studies, of which we report two in the following sections. In both
cases, the solutions were found in a few seconds.

10.5.1 Piano Movers Problem

The first report concerns the piano movers problem as formalised in Exam-
ple 10.4.1. Remarkably, the interaction with our program revealed in the first
place that our initial formalisation was incomplete. For example, the program
also generated solutions in which the piano is moved not through the corridor but
‘through the walls’, as it were.

To avoid such solutions we added to the original intra-state constraints the
following ones (recall that S stands for the set {B, C, L, S}):

• each space is too small to be ‘touched’ (met) or ‘overlapped’ by the piano
and the table at the same time:

∀s ∈ S. ¬ (Q[s, P] ∈ {overlap,meet} ∧Q[s, T] ∈ {overlap,meet}) ,

• if the piano or the table overlaps with one space s, then it also overlaps
with some other space s′, such that s and s′ touch each other:

∀s ∈ S. ∀o ∈ {P, T}.

(Q[s, o] = overlap → ∃s′ ∈ S. (Q[s′, o] = overlap ∧Q[s, s′] = meet)),

10.5. Implementation and Case Studies 173

• if the piano overlaps with one space, then it does not touch any space, and
equally the table:

∀s ∈ S. ∀o ∈ {P, T}. (Q[s, o] = overlap → ∀s′ ∈ S. Q[s′, o] 6= meet) ,

• both the piano and the table can touch at most one space at a time:

∀s, s′ ∈ S. ∀o ∈ {P, T}.

(Q[s, o] = meet ∧Q[s′, o] = meet → Q[s, s′] = equal) .

After these additions, our program generated the shortest solution in the form
of a simulation of length 12. In this solution the bedroom is used as a temporary
storage for the table. Interestingly, the table is not moved completely into the
bedroom: at a certain moment it only overlaps with the bedroom.

10.5.2 Phagocytosis

The second example deals with the simulation of phagocytosis; specifically, an
amoeba absorbing a food particle. This problem is discussed in [Cui et al., 1992].
We quote:

Each amoeba is credited with vacuoles (being fluid spaces) containing
either enzymes or food which the animal has digested. The enzymes
are used by the amoeba to break down the food into nutrient and
waste. This is done by routing the enzymes to the food vacuole.
Upon contact the enzyme and food vacuoles fuse together and the
enzymes merge into the fluid containing the food. After breaking
down the food into nutrient and waste, the nutrient is absorbed into
the amoeba’s protoplasm, leaving the waste material in the vacuole
ready to be expelled. The waste vacuole passes to the exterior of the
protozoan’s (i. e., amoeba’s) body, which opens up, letting the waste
material pass out of the amoeba and into its environment.

To fit it into our framework, we slightly simplified the problem representation
in our approach by not allowing for objects to be added or removed during the
simulation.

In this problem, we have six objects, amoeba, nucleus, enzyme, vacuole,
nutrient and waste. The initial situation is described by means of the follow-
ing constraints:

Q[amoeba, nutrient] = disjoint,

Q[amoeba,waste] = disjoint,

Q[nutrient,waste] = equal.

174 Chapter 10. Qualitative Simulation

Further, we have the intra-state constraints

Q[enzyme, amoeba] = inside,

Q[vacuole, amoeba] ∈ {inside, coveredby},

Q[vacuole, enzyme] ∈ {disjoint,meet, overlap, covers},

Q[nucleus, vacuole] ∈ {disjoint,meet},

Q[nucleus, enzyme] ∈ {disjoint,meet},

Q[nucleus, amoeba] = inside,

and the inter-state constraints,

Q[nutrient, amoeba] = meet → Q[nutrient, amoeba] = overlap,

Q[nutrient, amoeba] ∈ {inside, coveredby, overlap} →

Q[nutrient, amoeba] ∈ {inside, coveredby}.

We model the splitting up of the food into nutrient and waste material by

Q[nutrient,waste] = equal

→̇

Q[nutrient, vacuole] = inside ∧
Q[enzyme, nutrient] = overlap ∧
Q[enzyme,waste] = overlap

→̇
Q[nutrient,waste] = overlap

∨̇
Q[nutrient,waste] = equal

∨̇

Q[nutrient,waste] 6= equal.

We use here the dotted operators to express if-then-else, i. e.

a →̇ b ∨̇ c ≡ (a→ b) ∧ (¬a→ c).

The final situation is described by means of the constraints

Q[amoeba,waste] = disjoint,

Q[amoeba, nutrient] ∈ {contains, covers}.

Our program generated a solution that consists of 9 steps.

10.6. Final Remarks 175

10.6 Final Remarks

The most common approach to qualitative simulation is the one discussed in
[Kuipers, 1994, chapter 5]. For a recent overview see [Kuipers, 2001]. It is based
on a qualitative differential equation model (QDE) in which one abstracts from
the usual differential equations by reasoning about a finite set of symbolic values
(called landmark values). The resulting algorithm, called QSIM, constructs the
tree of possible evolutions by repeatedly constructing the successor states. During
this process, CSPs are generated and solved.

This approach is best suited to simulate evolution of physical systems. A
standard example is a simulation of the behaviour of a bath tub with an open
drain and constant input flow. The resulting constraints are usually equations
between the relevant variables and lend themselves naturally to a formalisation us-
ing CLP(FD), see [Bratko, 2001, chapter 20] and [Bandelj et al., 2002]. The lim-
ited expressiveness of this approach was overcome in [Brajnik and Clancy, 1998],
where branching time temporal logic was used to describe the relevant constraints
on the possible evolutions (called ‘trajectories’ there). This leads to a modified
version of the QSIM algorithm in which model checking is repeatedly used.

Our approach is inspired by the qualitative spatial simulation studied in
[Cui et al., 1992], the main features of which are captured by the composition
table and the neighbourhood relation discussed in Example 10.2.1. The distinc-
tion between the intra- and inter-state constraints is introduced there, however
the latter only link the consecutive states in the simulation. The simulation
algorithm of [Cui et al., 1992] generates a complete tree of all ‘evolutions’.

In contrast to [Cui et al., 1992], our approach is constraint-based. This al-
lows us to repeatedly use constraint propagation to prune the search space in the
simulation algorithm. Further, by using more complex inter-state constraints,
defined by means of temporal logic, we can express substantially more sophisti-
cated forms of behaviour. Our approach can be easily implemented on top of a
constraint programming system, using a relation variable model.

Simulation in our approach subsumes a form of planning. In this context, we
mention the related work [Lopez and Bacchus, 2003] in the area of planning which
shows the benefits of encoding planning problems as CSPs and the potential with
respect to solving efficiency. Also related is the TLplan system where planning
domain knowledge is described in temporal logic [Bacchus and Kabanza, 2000].
The planning system is based on incremental forward-search, so temporal formu-
las are just unfolded a step at a time, in contrast to the translation into constraints
in our constraint-based system.

Finally, [Faltings, 2000] discusses how a qualitative version of the piano movers
problem can be solved using an approach to qualitative reasoning based on topo-
logical inference and graph-theoretic algorithms. Our approach is simpler in that
it does not rely on any results on topology apart of a justification of the compo-
sition table given in Figure 9.2.

Chapter 11

Final Remarks

11.1 Summary

One ideal of constraint programming is to be declarative: modelling the problem
should be independent of the solution algorithm. The rule-based approach to
constraint propagation which we examined in this thesis is entirely within this
line; rules express constraint propagation declaratively.

Propagation by rules. In the three chapters following the introductory part,
we dealt with generic issues concerning rule-based propagation. We developed
theoretically well-founded techniques and implemented them as concrete tools.

We started with showing how a generic fixpoint computation algorithm can be
instantiated to the improved scheduling algorithm R for constraint propagation
rules. The central observation is this: the information that the condition of a rule
succeeds entails more than just that it is now correct to apply the rule body. It
also may state something about other rules: truth of their conditions, or relevance
of their body. Such information can be used to accelerate the fixpoint compu-
tation, in particular by shrinking the set of participating rules. Most usefully,
these connections can be pre-computed. Moreover, since fixpoint computations
for the purpose of constraint propagation are called in successive rounds, rules
removed in one round need not be reconsidered in subsequent rounds. The set of
propagation rules shrinks as search and propagation progresses.

The removal of a rule during a fixpoint computation in the way just described
indicates a ‘local redundancy’. Rather similarly, a rule can also be (globally)
redundant. This is the case if the common fixpoints of a rule set do not change
if the rule is removed. Surprisingly, the relation between redundancy and what
we call ’local redundancy’ here is not straightforward: a redundant rule is not
always ’locally redundant’, nor does the inverse statement hold true.

Empirical examinations of the two techniques, i. e., using the R rule scheduler
that dynamically reduces the set of involved functions, and removing redundant

177

178 Chapter 11. Final Remarks

rules from a rule set as a pre-process, showed that both can be very useful. They
also appear to be orthogonal as far as improving the efficiency is concerned. Both
techniques are thus of relevance for efficient rule-based constraint propagation.

We also dealt with the origin of constraint propagation rules. In contrast
to existing automatic rule generation methods, we considered incremental rule
generation, based on modifying and combining rules instead of relying on the
constraint definition. For a concrete rule type, the membership rules, we exam-
ined various cases of incremental rule generation, with a focus on the associated
propagation.

Applications. The usefulness of these techniques was evaluated in concrete
applications. Our study of the automatic test pattern generation problem led
to three models with different multi-valued logics. These logics naturally cap-
ture structural properties of the problem. In turn, the constraints arising from
these models were directly applicable to the rule-based propagation techniques
we developed.

Our approach to modal satisfiability checking was similar in the sense that
we also applied a non-Boolean logic to express structural and heuristic infor-
mation. Constraint propagation could in part be dealt with by the techniques
mentioned above such as the R algorithm and redundancy removal during pre-
processing. However, several complex constraints required manually designed and
implemented propagation rules. The resulting constraint-based modal-SAT solver
exhibited a performance competitive with an approach relying on an advanced,
purely propositional solver.

Array constraints are not directly amenable to rule-based propagation as dis-
cussed above. However, the problem of their propagation can be tackled with a
rule-based design approach. For two local consistencies, we derived concrete rules
from generic rule templates embodying the desired propagation, and turned them
subsequently into propagation algorithms.

In the area of qualitative spatial representation and reasoning, information
is naturally organised in arrays. We discussed an alternative to the standard
constraint-based model of qualitative space, and we argued for its advantages,
which eminently lie in the ease of modelling several spatial aspects. Such models
use simple constraints to which our rule-based propagation techniques are directly
applicable.

Our approach to constraint-based qualitative simulation builds on the alter-
native model for (static) qualitative spatial reasoning, and in this way shows its
flexibility. We used temporal logic formulas to represent knowledge about change,
which yielded compact formalisations. We provided translations of such formulas
into constraints, which allows to link them by propagation.

11.2. Outlook 179

11.2 Outlook

We gather some future research issues involving rule-based propagation.

One question concerning propagation rules for simple constraints is how suc-
cinct this approach generally is. Consider membership rules, for example. While
it is in principle possible to generate all GAC-enforcing membership rules for any
given constraint, clearly their number will often be large. An intuitive argument
for this is that the same atomic piece of information, a non-solution, occurs mul-
tiple times in different rules. It would be useful to better understand how the
number of GAC-enforcing membership rules, with and without redundancy re-
moval, depends on the number of solutions or also the structure of the constraint.

An alternative, interesting road for rule-based propagation is indicated in
Sections 7.4.2 (p. 115) and 8.2.1, where we manually derived rules for complex,
‘global’ constraints from intensional definitions. It would be instructive to for-
malise in detail what derivation steps were taken, in order to ultimately automate
these rule derivations. Such an approach could be based on a constraint definition
in the shape of a logical formula, from which logical implications are derived that
in turn are viewed as constraint propagation rules.

A further question regards the issue of control. In the R scheduler, we left
open in which order rules are chosen and applied. The rule selection strategy
clearly influences the length of the computation, however.

Finally, we must raise the issue of how efficient, in terms of complexity, prop-
agation algorithms based on constraint propagation rules can in principle be. In-
stead of the localised view on a problem taken by each rule individually, a global
view may afford more useful structuring of the information [Maher, 2002a]. This
point comes to mind, for example, when one regards ‘global’ constraints whose
propagation algorithms rely on graph-theoretic methods and of which the under-
lying propagation rules are not directly obvious.

Such observations may suggest a necessary departure from the concept of a
constraint propagation rule in the pure sense of Def. 2.2.1. It may not neces-
sarily require us to leave the rule-based paradigm, however; for example, see
[Ganzinger and McAllester, 2002] where classical algorithms with optimal com-
plexity are described in rule form.

To conclude this dissertation: in our view the rule-based paradigm provides a
useful and elegant approach to constraint propagation, and, while much remains
to be explored, we think it has great potential.

Bibliography

[Abdennadher and Frühwirth, 2002] Abdennadher, S. and Frühwirth, T. (2002).
Using program analysis for integration and optimization of rule-based con-
straint solvers. In Proc. of Journées Francophones de Progr. Logique et Progr.
par Contraintes (JFPLC’02).

[Abdennadher and Frühwirth, 2003] Abdennadher, S. and Frühwirth, T. (2003).
Integration and optimization of rule-based constraint solvers. In International
Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’03).

[Abdennadher et al., 2002] Abdennadher, S., Krämer, E., Saft, M., and
Schmauss, M. (2002). JACK: A Java constraint kit. In Proc. of 11th
International Workshop on Functional and (Constraint) Logic Programming
(WFLP’01), volume 64 of ENTCS. Elsevier.

[Abdennadher and Rigotti, 2001] Abdennadher, S. and Rigotti, C. (2001). Us-
ing confluence to generate rule-based constraint solvers. In Proc. of 3rd In-
ternational Conference on Principles and Practice of Declarative Programming
(PPDP’01), pages 127–135. ACM.

[Abdennadher and Rigotti, 2002] Abdennadher, S. and Rigotti, C. (2002). Au-
tomatic generation of rule-based solvers for intentionally defined constraints.
International Journal on Artificial Intelligence Tools, 11(2):283–302.

[Abdennadher and Rigotti, 2004] Abdennadher, S. and Rigotti, C. (2004). Au-
tomatic generation of rule-based constraint solvers over finite domains. ACM
Transactions on Computational Logic, 5(2):177–205.

[Allen, 1983] Allen, J. F. (1983). Maintaining knowledge about temporal inter-
vals. Communications of the ACM, 26(11):832–843.

181

182 Bibliography

[Apt, 1998] Apt, K. R. (1998). A proof theoretic view of constraint programming.
Fundamenta Informaticae, 34(3):295–321.

[Apt, 1999] Apt, K. R. (1999). The essence of constraint propagation. Theoretical
Computer Science, 221(1-2):179–210.

[Apt, 2000] Apt, K. R. (2000). The role of commutativity in constraint propaga-
tion algorithms. ACM Transactions on Programming Languages and Systems,
22(6):1002–1036.

[Apt, 2003] Apt, K. R. (2003). Principles of Constraint Programming. Cambridge
University Press.

[Apt and Brand, 2003] Apt, K. R. and Brand, S. (2003). Schedulers for rule-
based constraint programming. In Proc. of ACM Symposium on Applied Com-
puting (SAC’03), pages 14–21. ACM Press.

[Apt and Monfroy, 2001] Apt, K. R. and Monfroy, E. (2001). Constraint pro-
gramming viewed as rule-based programming. Theory and Practice of Logic
Programming, 1(6):713–750.

[Areces et al., 2000] Areces, C., Gennari, R., Heguiabehere, J., and de Rijke, M.
(2000). Tree-based heuristics in modal theorem proving. In Proc. of 14th
European Conference on Artificial Intelligence (ECAI’00), pages 199–203. IOS
Press.

[Azevedo, 2003] Azevedo, F. (2003). Constraint Solving over Multi-valued Logics
– Application to Digital Circuits, volume 91 of Frontiers of Artificial Intelli-
gence and Applications. IOS Press.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P., editors (2003). The Description Logic HandBook. Cam-
bridge University Press.

[Baader et al., 1992] Baader, F., Franconi, E., Hollunder, B., Nebel, B., and Prof-
itlich, H.-J. (1992). An empirical analysis of optimization techniques for termi-
nological representation systems, or making KRIS get a move on. In Proc. of
3rd International Conference on Principles of Knowledge Representation and
Reasoning (KR’92), pages 270–281.

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998). Term Rewriting
and All That. Cambridge University Press.

[Bacchus and Kabanza, 2000] Bacchus, F. and Kabanza, F. (2000). Using tem-
poral logics to express search control knowledge for planning. Artificial Intel-
ligence, 116.

Bibliography 183

[Bandelj et al., 2002] Bandelj, A., Bratko, I., and Suc, D. (2002). Qualitative
simulation with CLP. In Proc. of 16th International Workshop on Qualitative
Reasoning (QR’02).

[Beacham et al., 2001] Beacham, A., Chen, X., Sillito, J., and van Beek, P.
(2001). Constraint programming lessons learned from crossword puzzles. In
Proc. of 14th Canadian Conference on Artificial Intelligence, pages 78–87.

[Beldiceanu, 2000a] Beldiceanu, N. (2000a). Global constraints as graph prop-
erties on a structured network of elementary constaints of the same type. In
[Dechter, 2000], pages 52–66.

[Beldiceanu, 2000b] Beldiceanu, N. (2000b). Global constraints as graph proper-
ties on a structured network of elementary constaints of the same type. Tech-
nical report, Swedish Institute of Computer Science.

[Beldiceanu and Contejean, 1994] Beldiceanu, N. and Contejean, E. (1994). In-
troducing global constraints in CHIP. Journal of Mathematical and Computer
Modelling, 20(12):97–123.

[Bennett, 1998] Bennett, B. (1998). Determining consistency of topological rela-
tions. Constraints, 2:213–225.

[Bessière, 1996] Bessière, C. (1996). Random uniform CSP generator. Available
at www.lirmm.fr/∼bessiere/generator.html,.

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001).
Modal Logic. Cambridge University Press.

[Bordeaux and Monfroy, 2002] Bordeaux, L. and Monfroy, E. (2002). Beyond
NP: Arc-consistency for quantified constraints. In [Hentenryck, 2002], pages
371–386.

[Borovanský et al., 1998] Borovanský, P., Kirchner, C., Kirchner, H., Moreau,
P.-E., and Ringeissen, C. (1998). An overview of ELAN. In Kirchner, C. and
Kirchner, H., editors, Proc. of 2nd International Workshop on Rewriting Logic
and its Applications, volume 15 of ENTCS. Elsevier.

[Brajnik and Clancy, 1998] Brajnik, G. and Clancy, D. (1998). Focusing qual-
itative simulation using temporal logic: theoretical foundations. Annals of
Mathematics and Artificial Intelligence, 22:59–86.

[Brand, 2001a] Brand, S. (2001a). Constraint propagation in presence of arrays.
Joint Bulletin of the Novosibirsk Computing Center and Institute of Informat-
ics Systems, 16:99–110.

184 Bibliography

[Brand, 2001b] Brand, S. (2001b). Sequential automatic test pattern generation
by constraint programming. In CP’01 Post Conference Workshop Modelling
and Problem Formulation (FORMUL’01).

[Brand, 2003] Brand, S. (2003). A note on redundant rules in rule-based con-
straint programming. In O’Sullivan, B., editor, Recent Advances in Constraints,
volume 2627 of LNAI, pages 109–120. Springer.

[Brand, 2004] Brand, S. (2004). Relation variables in qualitative spatial reason-
ing. In Proc. of 20th German Annual Conference on Artificial Intelligence
(KI’04), LNAI. Springer. Accepted for publication.

[Brand and Apt, 2005] Brand, S. and Apt, K. (2005). Schedulers and redun-
dancy for rule-based constraint programming. Theory and Practice of Logic
Programming. To appear.

[Brand et al., 2004] Brand, S., Gennari, R., and de Rijke, M. (2004). Constraint
methods for modal satisfiability. In Apt, K. R., Fages, F., Rossi, F., Szeredi,
P., and Váncza, J., editors, Recent Advances in Constraints, volume 3010 of
LNAI, pages 66–86. Springer.

[Brand and Monfroy, 2003] Brand, S. and Monfroy, E. (2003). Deductive gen-
eration of constraint propagation rules. In Giavitto, J.-L. and Moreau, P.-E.,
editors, Electronic Notes in Theoretical Computer Science, volume 86. Elsevier.

[Bratko, 2001] Bratko, I. (2001). PROLOG Programming for Artificial Intelli-
gence. International Computer Science Series. Addison-Wesley, third edition.

[Brglez et al., 1989] Brglez, F., Bryan, D., and Kozminski, K. (1989). Com-
binational profiles of sequential benchmark circuits. In Proc. of IEEE Int.
Symposium on Circuits and Systems, pages 1929–1934. ISCAS’89 Benchmark
available at www.cbl.ncsu.edu/CBL_Docs/iscas89.html.

[Cardelli and Gordon, 2000] Cardelli, L. and Gordon, A. D. (2000). Anytime,
anywhere. modal logics for mobile ambients. In Proc. of 27th ACM Symposium
on Principles of Programming Languages. ACM Press.

[Carlson et al., 1995] Carlson, B., Carlsson, M., and Janson, S. (1995). The im-
plementation of AKL(FD). In Lloyd, J. W., editor, Proc. of International
Symposium on Logic Programming (ILPS’95), pages 227–241. MIT Press.

[Carlson et al., 1994] Carlson, B., Haridi, S., and Janson, S. (1994). AKL(FD) –
A concurrent language for FD programming. In Bruynooghe, M., editor, Proc.
of International Symposium on Logic Programming (ILPS’94), pages 521–538.
MIT Press.

Bibliography 185

[Caseau et al., 2002] Caseau, Y., Josset, F.-X., and Laburthe, F. (2002).
CLAIRE: Combining sets, search and rules to better express algorithms. The-
ory and Practice of Logic Programming, 2(6).

[Castro, 1998] Castro, C. (1998). Building constraint satisfaction problem solvers
using rewrite rules and strategies. Fundamenta Informaticae, 34(3):263–293.

[Cheng, 1996] Cheng, K. T. (1996). Gate-level test generation for sequential
circuits. ACM Transactions on Design Automation of Electronic Systems,
1(4):405–442.

[Choi et al., 2003] Choi, C. W., Lee, J. H. M., and Stuckey, P. J. (2003). Propa-
gation redundancy in redundant modelling. In [Rossi, 2003], pages 229–243.

[Cicerone and Felice, 2004] Cicerone, S. and Felice, P. D. (2004). Cardinal direc-
tions between spatial objects: the pairwise-consistency problem. Information
Sciences, 164:165–188.

[Codognet and Diaz, 1996] Codognet, P. and Diaz, D. (1996). Compiling con-
straints in clp(FD). Journal of Logic Programming, 27(3):185–226.

[Cohn and Hazarika, 2001] Cohn, A. G. and Hazarika, S. M. (2001). Qualitative
spatial representation and reasoning: An overview. Fundamenta Informaticae,
46(1-2):1–29.

[Cristani, 1999] Cristani, M. (1999). The complexity of reasoning about spatial
congruence. Journal of Artificial Intelligence Research, 11:361–390.

[Cui et al., 1992] Cui, Z., Cohn, A. G., and Randell, D. A. (1992). Qualitative
simulation based on a logical formalism of space and time. In Rosenbloom,
P. and Szolovits, P., editors, Proc. of 10th National Conference on Artificial
Intelligence (AAAI’92), pages 679–684. AAAI Press.

[Dao et al., 2002] Dao, T.-B.-H., Lallouet, A., Legtchenko, A., and Martin, L.
(2002). Indexical-based solver learning. In [Hentenryck, 2002], pages 541–555.

[Dechter, 2000] Dechter, R., editor (2000). Proc. of 6th International Conference
on Principles and Practice of Constraint Programming (CP’00), volume 1894
of LNCS. Springer.

[Dechter, 2003] Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

[Dechter and van Beek, 1997] Dechter, R. and van Beek, P. (1997). Local and
global relational consistency. Theoretical Computer Science, 173(1):283–308.

186 Bibliography

[Dincbas et al., 1988] Dincbas, M., Hentenryck, P. V., Simonis, H., Aggoun, A.,
Graf, T., and Berthier, F. (1988). The constraint logic programming language
CHIP. In for New Generation Computer Technology (ICOT), I., editor, Proc.
of International Conference on Fifth Generation Computer Systems, volume 2,
pages 693–702. Springer.

[Egenhofer, 1991] Egenhofer, M. J. (1991). Reasoning about binary topological
relations. In Günther, O. and Schek, H.-J., editors, Proc. of 2nd International
Symposium on Large Spatial Databases (SSD’91), volume 525 of LNCS, pages
143–160. Springer.

[Faltings, 2000] Faltings, B. (2000). Using topology for spatial reasoning. In
Proc. of 8th International Symposium on Artificial Intelligence and Mathemat-
ics (AI&M’00).

[Faltings and Macho-Gonzalez, 2002] Faltings, B. and Macho-Gonzalez, S.
(2002). Open constraint satisfaction. In [Hentenryck, 2002], pages 356–370.

[Fitting, 1992] Fitting, M. C. (1992). Many-valued modal logics II. Fundamenta
Informaticae, XVII:55–74.

[Forgy, 1981] Forgy, C. L. (1981). OPS5 user’s manual. Technical Report CMU-
CS-81-135, Carnegie Mellon University, Dept. of Computer Science.

[Frank, 1992] Frank, A. U. (1992). Qualitative spatial reasoning about distance
and directions in geographic space. Journal of Visual Languages and Comput-
ing, 3:343–373.

[Freksa and Zimmermann, 1992] Freksa, C. and Zimmermann, K. (1992). On the
utilization of spatial structures for cognitively plausible and efficient reasoning.
In Proc. of IEEE International Conference on Systems, Man, and Cybernetics,
pages 18–21. IEEE.

[Freuder, 1978] Freuder, E. C. (1978). Synthesizing constraint expressions. Com-
munications of the ACM, 21(11):958–966.

[Frühwirth, 1998] Frühwirth, T. (1998). Theory and practice of Constraint Han-
dling Rules. Journal of Logic Programming, 37(1-3):95–138.

[Frühwirth and Abdennadher, 2003] Frühwirth, T. and Abdennadher, S. (2003).
Essentials of Constraint Programming. Springer.

[Ganzinger and McAllester, 2002] Ganzinger, H. and McAllester, D. (2002). Log-
ical algorithms. In [Hentenryck, 2002], pages 148–162.

Bibliography 187

[Gent et al., 2000] Gent, I., van Maaren, H., and Walsh, T., editors (2000). SAT
2000. Highlights of Satisfiability Research in the Year 2000., volume 63 of Fron-
tiers in Artificial Intelligence and Applications. IOS Press.

[Gerevini and Renz, 2002] Gerevini, A. and Renz, J. (2002). Combining topo-
logical and size constraints for spatial reasoning. Artificial Intelligence, 137(1-
2):1–42.

[Gervet, 1997] Gervet, C. (1997). Interval propagation to reason about sets: Def-
inition and implementation of a practical language. Constraints, 1(3):191–244.

[Giunchiglia and Sebastiani, 2000] Giunchiglia, F. and Sebastiani, R. (2000).
Building decision procedures for modal logics from propositional decision pro-
cedures. the case study of modal K(m). Information and Computation, 162(1-
2):158–178.

[Goyal and Egenhofer, 1997] Goyal, R. K. and Egenhofer, M. J. (1997). The
direction-relation matrix: A representation of direction relations for extended
spatial objects. In Proc. of UCGIS Annual Assembly and Summer Retreat.

[Haarslev and Möller, 2002] Haarslev, V. and Möller, R. (2002). RACER. Ac-
cessed via kogs-www.informatik.uni-hamburg.de/∼race/.

[Halpern et al., 2001] Halpern, J. Y., Harper, R., Immerman, N., Kolaitis, P. G.,
Vardi, M. Y., and Vianu, V. (2001). On the unusual effectiveness of logic in
computer science. The Bulletin of Symbolic Logic, 7:213–236.

[Haralick and Elliott, 1980] Haralick, R. M. and Elliott, G. L. (1980). Increasing
tree search efficiency for constraint satisfaction problems. Artificial Intelligence,
14:263–313.

[Harrenstein et al., 2002] Harrenstein, B. P., van der Hoek, W., Meyer, J.-J. C.,
and Witteveen, C. (2002). On modal logic interpretations of games. In Proc.
of 15th European Conference on Artificial Intelligence (ECAI’02).

[Hentenryck, 1989] Hentenryck, P. V. (1989). Constraint Satisfaction in Logic
Programming. MIT Press.

[Hentenryck, 2002] Hentenryck, P. V., editor (2002). Proc. of 8th International
Conference on Principles and Practice of Constraint Programming (CP’02),
volume 2470 of LNCS. Springer.

[Hentenryck et al., 1999] Hentenryck, P. V., Lustig, I., Michel, L., and Puget,
J.-F. (1999). The OPL optimization programming language. MIT Press.

188 Bibliography

[Hentenryck et al., 1992] Hentenryck, P. V., Simonis, H., and Dincbas, M. (1992).
Constraint satisfaction using constraint logic programming. Artificial Intelli-
gence, 58(1-3):113–159.

[Heuerding and Schwendimann, 1996] Heuerding, A. and Schwendimann, S.
(1996). A benchmark method for the propositional modal logics K, KT, S4.
Technical Report IAM-96-015, University of Bern.

[Hnich, 2003] Hnich, B. (2003). Function Variables for Constraint Programming.
PhD thesis, Dept. of CS, Uppsala University.

[Holzbaur, 2002] Holzbaur, C. (2002). Source-to-source transformation for con-
straint handling rules. In Proc. of Workshop on Functional and Logic Program-
ming (WFLP’02).

[Holzbaur et al., 2001] Holzbaur, C., de la Banda, M. J. G., Jeffery, D., and
Stuckey, P. J. (2001). Optimizing compilation of Constraint Handling Rules.
In Codognet, P., editor, Proc. of 17th International Conference on Logic Pro-
gramming (ICLP’01), volume 2237 of LNCS, pages 74–89. Springer.

[Hooker et al., 2000] Hooker, J. N., Ottosson, G., Thorsteinsson, E. S., and Kim,
H.-J. (2000). A scheme for unifying optimization and constraint satisfaction
methods. Knowledge Engineering Review, Special Issue on Artifical Intelligence
and Operations Research, 15(1):11–30.

[Horrocks, 2002] Horrocks, I. (2002). FaCT. Accessed via
www.cs.man.ac.uk/∼horrocks/FaCT/.

[Horrocks et al., 2000] Horrocks, I., Patel-Schneider, P., and Sebastiani, R.
(2000). An analysis of empirical testing for modal decision procedures. Logic
Journal of the IGPL, 8(3):293–323.

[Hustadt and Schmidt, 1997] Hustadt, U. and Schmidt, R. A. (1997). On evalu-
ating decision procedures for modal logic. In Proc. of IJCAI-97, pages 202–207.

[Huth and Ryan, 1999] Huth, M. R. A. and Ryan, M. D. (1999). Logic in Com-
puter Science: Modelling and Reasoning About Systems. Cambridge University
Press.

[ILOG, 2000] ILOG (2000). OPL Studio 3. ILOG S.A.

[Isli, 2003] Isli, A. (2003). Combining cardinal direction relations and relative ori-
entation relations in qualitative spatial reasoning. Technical report, University
of Hamburg, Dept. of Informatics.

Bibliography 189

[Isli, 2004] Isli, A. (2004). Combining cardinal direction relations and other orien-
tation relations in QSR. In Proc. of 8th International Symposium on Artificial
Intelligence and Mathematics (AI&M’04).

[Isli and Cohn, 2000] Isli, A. and Cohn, A. G. (2000). A new approach to cyclic
ordering of 2D orientations using ternary relation algebras. Artificial Intelli-
gence, 122(1-2):137–187.

[Jaffar and Lassez, 1987] Jaffar, J. and Lassez, J.-L. (1987). Constraint logic
programming. In Proc. of 14th Annual ACM Symposium on Principles of
Programming Languages (POPL’87).

[Jaffar and Maher, 1994] Jaffar, J. and Maher, M. J. (1994). Constraint logic
programming: A survey. Journal of Logic Programming, 19 & 20:503–582.

[Katsirelos and Bacchus, 2001] Katsirelos, G. and Bacchus, F. (2001). GAC on
conjunctions of constraints. In Walsh, T., editor, Proc. of 7th International
Conference on Principles and Practice of Constraint Programming (CP’01),
volume 2239 of LNCS, pages 610–614. Springer.

[Kirchner and Ringeissen, 1998] Kirchner, C. and Ringeissen, C. (1998). Rule-
based constraint programming. Fundamenta Informaticae, 34(3):225–262.

[Kleene, 1952] Kleene, S. C. (1952). Introduction to Metamathematics. Van Nos-
trand, New York.

[Kuipers, 1994] Kuipers, B. (1994). Qualitative reasoning: modeling and simula-
tion with incomplete knowledge. MIT Press.

[Kuipers, 2001] Kuipers, B. (2001). Encyclopedia of Physical Science and Tech-
nology, chapter Qualitative simulation, pages 287–300. Academic Press, third
edition.

[Kumar, 1992] Kumar, V. (1992). Algorithms for constraint satisfaction prob-
lems: A survey. AI Magazine, 13(1):32–44.

[Lamma et al., 1999] Lamma, E., Milano, M., and Mello, P. (1999). Reasoning
on constraints in CLP(FD). Journal of Logic Programming, 38(1):93–110.

[Ligozat, 1998] Ligozat, G. (1998). Reasoning about cardinal directions. Journal
of Visual Languages and Computing, 9(1):23–44.

[Lloyd, 1987] Lloyd, J. (1987). Foundations of Logic Programming. Springer, 2nd
extended edition.

[Lopez and Bacchus, 2003] Lopez, A. and Bacchus, F. (2003). Generalizing
GraphPlan by formulating planning as a CSP. In Proc. of International Joint
Conference on Artificial Intelligence (IJCAI’03).

190 Bibliography

[M. Carlsson et al., 2004] M. Carlsson et al. (2004). SICStus Prolog User’s Man-
ual. Swedish Institute of Computer Science.

[Mackworth, 1977] Mackworth, A. K. (1977). Consistency in networks of rela-
tions. Artificial Intelligence, 8(1):118–126.

[Mackworth and Freuder, 1985] Mackworth, A. K. and Freuder, E. C. (1985).
The complexity of some polynomial network algorithms for constraint satisfac-
tion problems. Artificial Intelligence, 25:65–74.

[Maher, 2002a] Maher, M. J. (2002a). Analysis of a global contiguity constraint.
In Proc. of 4th Workshop on Rule-based Constraint Reasoning and Program-
ming (RCoRP’02).

[Maher, 2002b] Maher, M. J. (2002b). Propagation completeness of reactive con-
straints. In Stuckey, P. J., editor, Proc. of 18th International Conference on
Logic Programming (ICLP’02), volume 2401 of LNCS, pages 148–162. Springer.

[Markey et al., 2002] Markey, N., Laroussinie, F., and Schnoebelen, P. (2002).
Temporal logic with forgettable past. In Proc. of 17th IEEE Symposium on
Logic in Computer Science (LICS’02), pages 383–392.

[Marriot and Stuckey, 1998] Marriot, K. and Stuckey, P. J. (1998). Programming
with Constraints. MIT Press.

[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982). An ef-
ficient unification algorithm. ACM Transactions on Programming Languages
and Systems, 4(2):258–282.

[Marx, 2004] Marx, M. (2004). XPath with conditional axis relations. In Proc.
of International Conference on Extending Database Technology.

[Mohr and Masini, 1988] Mohr, R. and Masini, G. (1988). Good old discrete
relaxation. In Kodratoff, Y., editor, Proc. of European Conference on Artificial
Intelligence (ECAI’88), pages 651–656. Pitman publishers.

[Montanari, 1974] Montanari, U. (1974). Networks of constraints: Fundamental
properties and applications to picture processing. Information Science, 7:95–
132.

[MSPASS, 2001] MSPASS (2001). MSPASS v. 1.0.0t.1.2.a. Accessed via
www.cs.man.ac.uk/∼schmidt/mspass/.

[Muth, 1976] Muth, P. (1976). A nine-valued circuit model for test generation.
IEEE Transactions on Computers, 25(6):630–636.

Bibliography 191

[Pan et al., 2002] Pan, G., Sattler, U., and Vardi, M. Y. (2002). BDD-based
decision procedures for K. In Proc. of 18th Conference on Automated Deduction
(CADE’02), pages 16–30. Springer.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational complexity.
Addison Wesley Longman.

[Patel-Schneider, 2002] Patel-Schneider, P. F. (2002). DLP. Accessed via
www.bell-labs.com.user/pfps/dlp/.

[Pistore and Traverso, 2001] Pistore, M. and Traverso, P. (2001). Planning as
model checking for extended goals in non-deterministic domains. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI’01).

[Randell et al., 1992a] Randell, D. A., Cohn, A. G., and Cui, Z. (1992a). Com-
puting transitivity tables: A challenge for automated theorem provers. In Proc.
of 11th Conference on Automated Deduction (CADE’92), volume 607 of LNAI.
Springer.

[Randell et al., 1992b] Randell, D. A., Cui, Z., and Cohn, A. G. (1992b). A
spatial logic based on regions and connection. In Nebel, B., Rich, C., and
Swartout, W. R., editors, Proc. of 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR’92), pages 165–176. Morgan
Kaufmann.

[Rao and Georgeff, 1998] Rao, A. and Georgeff, M. (1998). Decision procedures
for BDI logics. Journal of Logic and Computation, 8:293–342.

[Renz and Nebel, 2001] Renz, J. and Nebel, B. (2001). Efficient methods for qual-
itative spatial reasoning. Journal of Artificial Intelligence Research, 15:289–
318.

[Ringeissen and Monfroy, 2000] Ringeissen, C. and Monfroy, E. (2000). Gener-
ating propagation rules for finite domains via unification in finite algebras. In
Apt, K. R., Kakas, A. C., Monfroy, E., and Rossi, F., editors, New Trends in
Constraints, volume 1865 of LNAI, pages 150–172. Springer.

[Rossi, 2003] Rossi, F., editor (2003). Proc. of 9th International Conference on
Principles and Practice of Constraint Programming (CP’03), volume 2833 of
LNCS. Springer.

[Roth, 1966] Roth, J. P. (1966). Diagnosis of automata failure: A calculus and a
method. IBM Journal of Research and Development, 10(4):278–291.

[Saraswat, 1993] Saraswat, V. A. (1993). Concurrent Constraint Programming.
MIT Press.

192 Bibliography

[Shiva, 1988] Shiva, S. G. (1988). Introduction to logic design. Scott, Fores-
man/Little.

[Simonis, 1989] Simonis, H. (1989). Test generation using the constraint logic
programming language CHIP. In Levi, G. and Martelli, M., editors, Proc. of
6th International Conference on Logic Programming (ICLP’89), pages 101–112.
MIT Press.

[Skiadopoulos and Koubarakis, 2001] Skiadopoulos, S. and Koubarakis, M.
(2001). Composing cardinal direction relations. In Jensen, C., Schneider, M.,
Seeger, B., and Tsotras, V., editors, Proc. of 7th International Symposium
on Advances in Spatial and Temporal Databases (SSTD’01), volume 2121 of
LNCS, pages 371–386. Springer.

[Smolka, 1995] Smolka, G. (1995). The Oz programming model. In van Leeuwen,
J., editor, Computer Science Today, volume 1000 of LNCS, pages 324–343.
Springer.

[Tacchella, 1999] Tacchella, A. (1999). ∗SAT system description. In Collected
Papers from the International Description Logics Workshop, CEUR.

[TANCS, 2000] TANCS (2000). TANCS: Tableaux non-classical systems com-
parison. Accessed via www.dis.uniroma1.it/∼tancs/.

[Tsang, 1993] Tsang, E. (1993). Foundations of Constraint Satisfaction. Aca-
demic Press.

[Tsang, 1987] Tsang, E. P. K. (1987). The consistent labeling problem in tem-
poral reasoning. In Forbus, K. S. H., editor, Proc. of 6th National Conference
on Artificial Intelligence (AAAI’87), pages 251–255. AAAI Press.

[Wallace et al., 1997] Wallace, M. G., Novello, S., and Schimpf, J. (1997).
ECLiPSe: A platform for constraint logic programming. ICL Systems Journal,
12(1):159–200.

[Walsh, 2000] Walsh, T. (2000). SAT v CSP. In [Dechter, 2000], pages 441–456.

[Walsh, 2003] Walsh, T. (2003). Consistency and propagation with multiset con-
straints: A formal viewpoint. In [Rossi, 2003], pages 724–738.

Index

array (expression, constraint), 127
array translation, 166
atomic rule, 63
atomically complete rule set, 64
ATPG, 83

backward chaining, 16
BC, 14
bounds-consistency, 14

CHR, 17
closure, 63
closure under meta rules, 63
CNF, 104
combinational circuit, 84
composition, 159
conjunctive normal form, 104
consistent CSP, 10
constraint, 9

associated with a rule, 20
Constraint Handling Rules, 17
constraint propagation, 12
constraint propagation rule, 18
constraint satisfaction problem, 10
constraint splitting, 12
constraint store, 17
correct rule, 18
CSP, 10

depth-first search, 11

disjunctive constraint, 12, 62, 112,
166

domain partitioning, 11
domain splitting, 11

element constraint, 125, 136
enumeration, 11
equality rule, 20
equivalent CSPs, 11

factoring constraint, 116
(in)feasible rule, 65
first-fail heuristic, 12
F & O algorithm, 30
forward chaining, 16
friends, 24

GAC, 13
generalised arc-consistency, 13
generic iteration algorithm, 22
GI algorithm, 23

holds, 26

idempotent function, 25
inflationary function, 23
integrity constraint, 144
inter-state constraint, 159
interval

domain, 14
expression, 10

193

194 Index

intra-state constraint, 157

K-satisfiable, 108
KCSP, 109
k sat algorithm schema, 109

local consistency, 13

membership rule, 20
memory element, 86
meta rule, 59
minimal set, 44
modal depth, 107
monotonic

condition, 26
function, 23

multi-constraint membership rule, 69

node consistency, 19
non-solution, 63

obviated , 24

partial ordering, 22, 32
partially redundant rule, 45
path-consistency, 15
PC, 15
precise condition, 26
projection, 10
prop rule, 26
propositional formula, 104
pseudo input and output, 86

qualitative reasoning, 139
qualitative simulation, 157

R algorithm, 28
RCC-8, 141
redundancy ratio, 49
redundant rule, 45
reflexivity, 159
Region Connection Calculus, 141
relation

constraint, 142
variable, 144

relational (1,m)-consistency, 67
RGA algorithm, 78
rule-based programming, 15

scenario, 141
sequential circuit, 86
simplification rule, 17
solution, 10
solving degree, 41, 54
solving rule, 40
splitting, 11
stable function, 25
stratification, 107
stuck-at fault, 84
subsumed rule, 46, 59

temporal formula (past and future),
159

test pattern, 85
time-frame, 92
translation

array ∼, 166
unfolding ∼, 165

transposition, 159

unfolding translation, 165
unification, 16

witness of a rule, 26

