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like to thank all the current and past hallway inhabitants for the interesting
discussions—scientific and otherwise—we’ve had over the years: Rudi Cilibrasi,

xi



Mart de Graaf, Hartmut Klauck, Steven de Rooij, John Tromp, Paul Vitányi,
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Chapter 1

Preface

This thesis consists of two parts, the first on Kolmogorov complexity, and the
second on formula size lower bounds. Kolmogorov complexity is an elegant way
to mathematically define the concept of randomness, taking the definition that
a random string is one which has no shorter description than the length of the
string itself. Formulas are circuits composed out of AND, OR, and NOT gates,
where each gate has exactly one outgoing wire. They are interesting to study
because they are a reasonably powerful model of computation for which we are
still able to prove nontrivial lower bounds.

These two parts are motivated by two of the grand open problems in theo-
retical computer science. The first of these is the power of randomness, and the
question of whether or not we can always efficiently simulate algorithms which
base their decisions on the flip of a coin by more impoverished algorithms which
have no coin to flip. The second problem is the question of whether or not P = NP,
where P is the set of problems which can be efficiently solved, and NP is the set
of problems whose solution can be efficiently verified given the solution. Most
researchers currently believe that P 6= NP, and to do this one seemingly needs
to show a problem in NP which requires superpolynomial time to solve. Showing
lower bounds on a weaker model like formula size can be seen as a modest step
towards this goal.

Interestingly enough, these two problems—that of the power of randomness
and that of proving lower bounds—turn out to be intricately related by the beau-
tiful theory of hardness versus randomness tradeoffs, which we will encounter in
Chapter 4. This theory says that to show randomized algorithms can be simulated
deterministically, it suffices to show lower bounds in a model closely related for-
mulas, that of circuits [NW94]. More recent work shows that in fact proving lower
bounds is necessary in order to simulate randomized algorithms deterministically
[KI03].

We begin the thesis with the words of Herman Melville: “But no more of this
blubbering now, we are going a-whaling, and there is plenty of that yet to come.”

1
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Chapter 2

Kolmogorov Complexity

When is a sequence of events random? In daily life, the word random is often
invoked to describe tomorrow’s weather, the flip of a coin, or the shuffle function of
a music player. Despite this familiarity, or perhaps because of it, mathematicians
struggled for centuries to come up with a satisfactory definition of randomness.

The earliest attempts at defining randomness were directly inspired by intu-
itions from gambling. Let us think of a device commonly thought of as having
random outcomes, say a roulette wheel. What justification do we have for think-
ing the spin of the roulette wheel is a random event? One reason is that, after
centuries of trying, no one has yet found a gambling strategy for predicting where
the ball will land and consistently winning money.

Following this intuition, let us take the preliminary definition that a sequence
of events is random if there is no successful gambling strategy for predicting its
outcomes. This “Law of Excluded Gambling Strategy” approach to randomness
was taken by von Mises in 1919 [vM19]. Let us explore for a moment what
implications such a definition has. It is generally assumed that the outcomes of a
coin flip are random with equal probability of being heads or tails—for interesting
discussions on the validity of this assumption in practice see [Kel86] and [DHM04].
Under this assumption, a bookmaker would place the odds on heads at 1:1. If you
bet one forint, the currency of combinatorics [Lov93], on heads and are correct
then you win one forint, otherwise you lose it.

Let us first examine the fate of a very simple strategy—always bet heads.
This strategy should not make us money. That means that the probability of
heads can be at most 1/2. Symmetrically, as the strategy “always bet tails” does
not make us money either, we find the probability of heads is the same as that of
tails and equal to 1/2.

Let us now look at a slightly more complicated strategy—on odd numbered
flips we bet heads and on even numbered flips we bet tails. Again this strategy
should not make us money. This tells us that the probability of consecutive coin
flips coming up heads–tails is at most 1/4. Similarly, we find that all four possible

3



4 Chapter 2. Kolmogorov Complexity

outcomes for two flips of a coin have probability equal to 1/4.
We can already see that this simple definition has implications which agree

with our intuitions. More properties of a sequence of coin flips can be derived
by considering more sophisticated strategies. We now arrive at a crucial point:
Exactly what gambling strategies do we allow?

At one extreme, we could allow all possible strategies, that is any function from
the natural numbers into the set of coin flip outcomes {0, 1}, with 0 representing
tails and 1 heads. If we allowed all functions, however, then no sequence of coin
flips would be random, as there is always a function which exactly predicts its
outcomes!

At the other extreme, we could only consider strategies of the simple form
given as examples earlier. That is, we could take some finite string x ∈ {0, 1}n of
length n, and in the ith coin flip we predict the outcome to be letter in position
i mod n of x. Strategies of this form will not be able to win any money betting
against the number 0.(0)(1)(10)(11)(100)(101)(110)(111) . . ., known as Champer-
nowne’s binary constant. This number is formed by consecutively concatenating
all natural numbers written in binary. The reason that no such strategy would win
money against Champernowne’s binary constant is that the frequency any k-bit
sequence occurs in Champernowne’s binary constant is 2−k. Numbers satisfying
this property are known as normal. We certainly would not consider Champer-
nowne’s constant to be random, however, as there is still a very simple gambling
strategy which would make our fortune.

A very different approach to randomness was taken, independently and within
a few years of each other, by Solomonoff, Kolmogorov, and Chaitin. See the
history and references section of Chapter 1 of [LV97] for more background. The
intuition behind their approach is that a random sequence is one which has no
easily discernible patterns, no structure which we could take advantage of to
shortly describe the string. A random sequence, then, is defined as one which has
no shorter description than the the length of the sequence itself. To formalize this
definition, we are again faced with a question similar to that of what gambling
strategies do we allow, namely, what types of descriptions do we allow?

Both of these approaches seem to call for some notion of computation. Indeed
it was the theory of computation developed by Turing and others in the 1930’s
that both of these approaches adopted for their formalization. We should men-
tion that the “Law of Excluded Gambling Strategy Approach”, when excluding
all Turing computable strategies, still does not lead to a satisfactory definition
of randomness. The approach based on descriptions, on the other hand, when
taking the set of descriptions to be programs on a Turing machine, does lead to
a definition of randomness which agrees with our intuitions.

Turing’s theory of computation is remarkably robust and some 70 years after
its formulation has resisted all challenges to remain the standard definition of
what is in principle computable. As computers became a reality, however, interest
shifted from what could be computed in principle, to what could be computed
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efficiently. Thus the field of computational complexity was born. With it were
born a multitude of complexity classes capturing the hardness of computational
problems around us. Salient among these complexity classes are two which will
play a major role in this thesis: NP the class of problems which have solutions
which can be efficiently verified, and BPP, the class of problems whose solutions
can be found with high probability with the help of flipping a coin.

These new notions of computation freshly raised questions about the definition
of randomness. After all, what looks random to a computationally restricted
observer will be different than for a Turing machine. To illustrate this point,
let us once again enter the casino in a thought experiment inspired by Oded
Goldreich [Gol01]. The roulette wheel spins in front of us, a whirl of red and
black labelled with the numbers 0 to 36. Unfortunately, we don’t have much time
to make our fortune, and thus we are betting only on the numbers 0–36 where the
big payoff lies. The probability that the wheel lands on any number we choose is
1/37, but the casino gives itself some advantage in setting the odds at 35:1. We
are allowed to place our bets even after the ball has been set in motion— it is
still random to us, right?

Imagine we enter the casino covertly carrying a stopwatch. We clock the
period of the ball as it makes its turn, and, knowing the radius of the wheel,
determine how fast the ball is moving. Would the casino still bet that we cannot
predict the outcome with probability better than 1/36? Say we now also enter
the casino with a tiny computer which we feed the speed of the ball, and also the
speed of the rotating wheel, and the computer then, knowing approximately the
coefficient of friction on a regulation roulette wheel from the one we practiced
with at home, computes the deceleration of the ball and at what point it will
fall into the inner part of the wheel. Will the casino make the same bet against
us with all this information? Can this hi-tech observer now predict the outcome
with probability better than chance?

Casinos would certainly not be willing to make the same bet to such an ob-
server, illustrated by the fact that no such electronic devices are allowed in the
casino, and anyone caught using one will be promptly thrown out, or worse if we
believe the movies. Predicting the outcome of a roulette wheel in such a fash-
ion has been put successfully into practice at least once, by a group of physics
graduate students. See [Bas00] for their entertaining story.

As the rolls of the wheel might be predictable by a more sophisticated player
but not by a normal one, similarly a sequence which is not random with respect
to a Turing machine might still appear random to a less sophisticated polynomial
time algorithm. This is the basic idea behind the theory of “pseudorandomness”.

The main object of study in pseudorandomness are probability distributions.
Like the “Law of Excluded Gambling Strategy” approach to randomness, pseu-
dorandomness is defined in terms of a predictor. Namely, a distribution X on
n-bit strings is called pseudorandom if there is no efficient algorithm A and which
can, on seeing the first i bits of a string drawn from X, predict the i+ 1 bit with
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advantage, on average. More precisely, X is pseudorandom if for every efficient
algorithm A

|Pr[A(x1x2 . . . xi) = xi+1]− 1/2| ≤ ε

where x is chosen according to the distribution X and i is chosen uniformly
between 0 and n− 1. Here ε should be thought of as a negligibly small number.
To return to the casino, this means that if the truly random roulette wheel were
replaced instead with the pseudorandom source X, we would still not be able to
predict the outcomes of the wheel with probability much better than chance.

In the first part of this thesis, we will be looking a different approach to pseu-
dorandomness obtained by scaling down the theory of Kolmogorov complexity
into the efficient domain. We will often refer to this as resource bounded Kol-
mogorov complexity. This theory is interesting in its own right, and is related to
the prediction approach to pseudorandomness via the rich theory of “hardness vs.
randomness” tradeoffs—this tradeoff gives a procedure to convert a string which
is random in the sense of Kolmogorov complexity, that is a “hard” string, into
a distribution which is pseudorandom. Not surprisingly, “hardness vs. random-
ness” tradeoffs will play a key role in our results. Before we get into the details of
resource bounded Kolmogorov complexity, however, we first review the classical
theory.

2.1 Turing Machines

In trying to model how an idealized mathematician works, Turing came up with
an idea that forms the foundation of modern day complexity theory—the Turing
machine. Turing imagined a mathematician with an infinite one dimensional
piece of paper, divided into squares like a child’s arithmetic book. In each step,
the mathematician writes one of a finite number of symbols in a square of the
paper, reads a symbol written on a square of the paper, moves to an adjacent
square, or does nothing.

Thus a Turing machine is a computing device which has a number k of one-
way infinite one-dimensional pieces of paper, known as tapes, divided into squares
called cells. The first of these tapes is known as the input tape, where the problem
is written, and the last of the tapes is known as the output tape, where the result
is written. The other k−2 tapes can be thought of as the mathematician’s scratch
paper. The cells of the tapes can be blank or contain a symbol from some finite
alphabet Σ. We will always assume the alphabet is just {0, 1}. On each tape
the Turing machine has what is called a head. This can be thought of as the tip
of the mathematician’s pencil. At any one time, a head sits on a particular cell
and can read the symbol which is written on that cell, write a symbol onto that
cell, move to the left or right or stay put. The behavior of the Turing machine
is governed by a fixed finite program which directs the actions of the heads in
response to what is written on the cells the head is reading.
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Initially, a finite string is given on the input tape, and the worktape and
output tape are blank with their heads sitting on the leftmost cells. The string
initially written on the input tape will be called the input. The output of the
machine is what is written on the output tape when the machine enters a special
state called the final or halting state.

Given an input, the behavior of a Turing machine is completely described
by its program. Thus we will identify a Turing machine with its program. A
program is simply a binary string, thus we can further identify programs with
binary strings and therefore natural numbers. Notice that a valid program may
have a particular form, thus not all natural numbers will encode valid programs.
As we will often make reference to the correspondence of binary strings and
natural numbers, we now fix the bijection we use which associates a string with
its index in a lexicographical ordering of strings.

(ε, 0), (0, 1), (00, 2), (01, 3), (10, 4), (11, 5), . . . . (2.1)

Here ε denotes the empty string. Notice in this way, the number n is encoded by
a string of length blog n+ 1c. We take this opportunity to say that the length of
a string x will be written `(x).

A simple observation with deep consequences is that there is a Turing machine
which given input a natural number n can decode this number into a program
and decide if it is formatted as a valid program or not. This leads to what is
called an effective enumeration of Turing machines. We can enumerate Turing
machines as T1, T2, T3, . . . where the program of machine Ti is the ith valid program
in lexicographical order. As we shall now see it is this effective enumeration of
Turing machines which forms the foundation of Kolmogorov complexity.

2.2 Kolmogorov complexity

We have informally stated the Kolmogorov complexity of a string x as the length
of a shortest description of x. As in the case of gambling strategies, to formalize
this definition we need to specify exactly what we mean by a “description”. Most
generally, a description can be thought of as a partial function f : N → N. We
would then define the Kolmogorov complexity with respect to f to be

Cf (x) = min
p

({l(p) : f(p) = x} ∪ {∞}) .

It is also interesting to consider a conditional version of Kolmogorov complexity,
where we are given some “advice” string y to use for free in our description of x.
Before we define conditional complexity, we first define the very useful notion of
a pairing function:

2.2.1. Definition (Pairing function). We define a pairing function 〈·, ·〉 :
N × N → N. We want such a pairing function to be easily computable and
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easily invertible. Given x, y ∈ {0, 1}∗ we define 〈x, y〉 = 0l(x)1xy. To decode this
function, we first count the number of zeros before the first one. We then know
the length of x, and can therefore separate the subsequent concatenation of x and
y.

Conditional complexity is now defined as before, with the function also given the
advice string in the input.

Cf (x | y) = min
p

({l(p) : f(〈p, y〉) = x} ∪ {∞}) .

Notice that Cf (x) is simply Cf (x | ε), where ε is the empty string.
To have a meaningful theory we would like to define the complexity of a

string with respect to a class of description methods, such as the set of all C
programs, rather than just a single function f . There is a standard method to
construct a Kolmogorov measure for a class of description methods. We describe
this procedure in a rather general fashion so that we can later directly apply it
the various forms of resource-bounded Kolmogorov complexity we define.

Let F ⊆ NN be a countable set of partial functions f : N → N. The way
we move from talking about complexity with respect to a single function to talk-
ing about the complexity with respect to a class of functions is to construct a
Kolmogorov minimal element for the class.

2.2.2. Definition (Kolmogorov minimal element). We say that F has a
Kolmogorov minimal element if there is some f such that

• f ∈ F

• for all f ′ ∈ F there is a constant c such that for all x, y ∈ N

Cf (x | y) ≤ Cf ′(x | y) + c.

The existence of a Kolmogorov minimal element for F makes it asymptoti-
cally meaningful to talk about Kolmogorov complexity relative to the class F .
Namely, we fix one Kolmogorov minimal element f for the class F , and define the
Kolmogorov complexity relative to the class F to be the complexity with respect
to f . The choice of which particular Kolmogorov minimal element we take will
affect our results by at most a constant. This is what [LV97] call the invariance
theorem.

We now make this discussion more concrete by instantiating it for the set of
partial recursive functions.

2.2.3. Theorem. There is a Kolmogorov minimal element for the class of partial
recursive functions.
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Proof: The crucial property we need is that there is a recursive enumeration
φ1, φ2, φ3, . . . of partial recursive functions. With this enumeration in hand, we
can construct a Kolmogorov minimal element φ as follows: φ interprets its input
as a triple 〈i, p, y〉, generates φi via our recursive enumeration, and simulates the
running of φi(〈p, y〉). Thus the output of φ(〈i, p, y〉) is φi(〈p, y〉).

Let ψ be a partial recursive function. Then ψ appears somewhere in our
enumeration of partial recursive functions, say ψ = φi. If φi(〈p, y〉) = x then
φ(〈i, p, y〉) = x. Thus there is a constant c, which we can take to be c = 2blog i+
1c+ 1 such that

Cφ(x | y) ≤ Cψ(x | y) + c

for all x, y. 2

We now fix such a Kolmogorov minimal element φ, and define the Kolmogorov
complexity to be C(x | y) = Cφ(x | y). Which particular minimal element we take
only matters up to an additive constant in our definition.

In other words, up to an additive constant, it does not matter if we define
our complexity with respect to C programs or Java programs. Either way, we
can write for example a compiler for Java programs in C and therefore use any
Java program at only a fixed constant size penalty in description size, namely the
length of the compiler.

2.2.1 Prefix-free complexity

Thus far, our discussion has focused on randomness and the problem of how to
define when a binary sequence is random. What we have arrived at, however,
gives us a way of telling not only when a sequence is random, but also a way of
quantifying the amount of information in an individual string. Such a theory has
further reaching implications than our initial purpose.

One such application is the potential to formalize intuitive statements about
simplicity and complexity. One such statement is Occam’s razor: “if presented
with a choice between indifferent alternatives, then one ought to select the sim-
plest one”. Occam’s razor slices through a thicket of theories to select the simplest
one compatible with observations. If a theory is simple in any recognizable way
it will have low Kolmogorov complexity, thus we now have a way to make this
statement precise.

According to Occam’s razor, if we are completely ignorant, that is all theories
appear indifferent to us, then we would like to bias simple theories by giving
them a higher probability of being selected. A natural way to do this would be to
give theory x initial probability 2−C(x). A problem with this is that 2−C(x) is not
actually a probability distribution as

∑
x 2−C(x) diverges. Indeed, consider only

strings of the form xn = 0n. Each of these strings can be described by log n + c
many bits for some constant c. Thus

∑
xn

2−C(xn) ≥ c′
∑

n 1/n which diverges.
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This problem can be remedied by considering prefix-free codes. A set C ⊆
{0, 1}∗ is called prefix-free if for all x, y ∈ C there is no nonempty string z such that
x = yz. Imagine a binary tree whose nodes are labelled from {0, 1}∗ according
to the path taken from the root to that node with “left” denoted 0 and “right”
denoted 1. If a set C is prefix-free this means that if an element of C labels a node
of the tree, then no element of the set C can label a descendant of this node.

An important property of prefix-free codes is what is known as the Kraft
Inequality.

2.2.4. Theorem (Kraft). Let C ⊆ {0, 1}∗ be a prefix-free set. Then∑
x∈C

2−l(x) ≤ 1.

Proof: We can identify a binary string x with a real number ωx in the interval
[0, 1] where ωx =

∑
i xi2

−i. Associate to each x ∈ C the interval Ix = [ωx, ωx +
2−l(x)). Then the interval Ix is of length 2−l(x), and by the prefix-free property of
C the intervals Ix, Iy are disjoint for distinct x, y ∈ C. The result now follows as
all the intervals lie in [0, 1]. 2

To define prefix-free complexity, we restrict ourselves to work with partial
recursive functions which are prefix-free.

2.2.5. Definition (prefix-free partial recursive function). A partial re-
cursive function φ is called prefix free if whenever φ(p) <∞ and φ(q) <∞ then
p is not a proper prefix of q.

Although it is undecidable to determine if a given partial recursive function
φ is prefix-free, we are able to construct a recursive enumeration which includes
all prefix-free partial recursive functions, and such that every function in the
enumeration is prefix free. One way to do this is to use our enumeration of
partial recursive functions φ1, φ2, φ3, . . ., but modify each φ into a function ψ
such that ψ is prefix-free and if φ was already prefix free, then ψ = φ.

Before we describe our enumeration of prefix-free function, we first define a
very useful concept called dovetailing.

2.2.6. Definition (Dovetail). Say that we are given a Turing machine T , and
we wish to find a halting program of T , if one exists. Dovetailing is a procedure
to do this. In the first stage we run the empty program on T for one time step.
In stage k we run all programs of length i for j time steps where i+ j = k, with
i, j nonnegative. If T has a halting program this procedure will eventually find it.

Given a partial recursive function φ, we dovetail the running of all programs
on φ. Initially we set ψ to be undefined for all inputs. We then construct ψ
inductively.
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• Stage 1: Dovetail the running of φ on all programs. Say that p is the first
program which halts in this process. Set ψ(p) = φ(p). This is the end of
stage 1. If p is the empty program, our construction of ψ is done. Otherwise,
we go on to stage 2.

• Stage k: Say that in previous stages we have seen the programs p1, . . . , pk
halt in our dovetailing of φ. We continue dovetailing φ until a we see new
program pk+1 halt. If pk+1 is a prefix of some pi for 1 ≤ i ≤ k then we leave
ψ(pk+1) undefined, and our construction of ψ is done. Otherwise, we set
ψ(pk+1) = φ(pk+1) and go on to stage k + 1.

It is clear from this construction that every ψ is prefix-free and if φ is already
prefix free then ψ = φ.

2.2.7. Theorem. There is a prefix-free partial recursive function ψ such that for
any prefix-free partial recursive function ψ′ there is a constant c such that for all
x, y

Cψ(x | y) ≤ Cψ′(x | y) + c.

Proof: Now that we have an enumeration ψ1, ψ2, ψ3, . . . of prefix-free partial
recursive functions, we can define a minimal element for the prefix-free partial
recursive functions in the same way as before. Define

ψ(〈i, p, y〉) = ψi(〈p, y〉).

As the function ψ′ is a prefix-free partial recursive function it appears somewhere
in our enumeration, ψ′ = ψi for some i. As before, we can take the constant c to
be c = 2blog i+ 1c+ 1. 2

As before we now take a Kolmogorov minimal element for the prefix-free
partial recursive functions ψ and define K(x | y) = Cψ(x | y). We use the notation
K to distinguish from the plain Kolmogorov complexity denoted with C.

We now discuss an alternative way of defining prefix-free complexity in terms
of self-delimiting Turing machines. In some sense this approach is more intuitive
as we can physically enforce the condition that the set of halting programs is
prefix-free by modifying the behavior of Turing machines and the definition of
halting programs.

The head on the input tape of a self-delimiting Turing machine is restricted
to only move from left to right and not the other way around. We change the
definition of a halting program to be only those programs where the machine
halts while reading the last marked cell of the input, the cell before the blank.
Alternatively, we can imagine that the machine is always given an infinite string
as input and define a halting program to be the finite prefix which the machine
has read when it halts. It is clear that both of these modifications enforce the
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condition that if p is a halting program and q is a halting program, then p is not
a proper prefix of q.

We can enumerate self-delimiting Turing machines just as in our enumeration
of regular Turing machines, and so define a Kolmogorov minimal element in the
standard fashion. We now see that this definition in terms of self-delimiting
Turing machines is equivalent to the definition in terms of prefix-free partial
recursive functions. For this argument, let K1(x | y) be the complexity of x given
y with respect to the definition in terms of prefix-free partial recursive functions,
and let K2(x | y) be the complexity with respect to the definition in terms of self-
delimiting Turing machines. As each self-delimiting Turing machine computes
a prefix-free function, it appears somewhere in our enumeration ψ1, ψ2, ψ3, . . . of
prefix-free functions, thus it follows from the existence of a Kolmogorov minimal
element for prefix-free functions that there is a constant c such that K1(x | y) ≤
K2(x, y) + c.

Now for the other direction, we show how to simulate the behavior of a prefix
free function on a self-delimiting Turing machine. Let φ be a prefix-free function,
and let T be a Turing machine which computes φ. Say that we wish to evaluate
T (p) on a self-delimiting machine M .

• Step 1: Before M reads any bit of the input it begins running all programs
on T in a dovetail fashion. If T first halts on the empty program, then M
halts with the output of T (ε) without having read any of the input, and
the simulation is finished. Otherwise, if T halts on some other program q
not equal to the empty program, then M reads the first bit of the input p1

of p and moves on to step 2.

• Step k: Suppose that M has now read p1 . . . pk−1 the first k − 1 bits of p.
M now runs in dovetail fashion all programs on T with prefix p1 . . . pk−1. If
p1 . . . pk−1 is the first program to halt, then M outputs T (p1 . . . pk−1) and
the simulation terminates. Otherwise, if T first halts on some program
p1 . . . pk−1q with q not the empty string, then M reads the next bit pk of p
and moves to step k + 1.

Thus, in particular, we can simulate the behavior a Kolmogorov minimal prefix-
free function by a self-delimiting Turing machine and so K2(x | y) ≤ K1(x | y)+ c.

Now that we have laid out the foundations of Kolmogorov complexity, we
are ready to begin building up the theory. Central to the construction of the
theory are four fundamental theorems with widespread application, both within
Kolmogorov complexity and more generally in theoretical computer science. We
refer to these four fundamental theorems as the four pillars.
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2.3 Four pillars of Kolmogorov complexity

We identify four “pillars” of Kolmogorov complexity. These are fundamental
theorems of Kolmogorov complexity which are widely applied to other areas of
computer science and to more advanced theorems of Kolmogorov complexity. A
main goal of this thesis will be to see what, if any, analogues of these theorems
hold as we move to the resource bounded setting and to the study of Kolmogorov
complexity with error.

2.3.1 First pillar: existence of incompressible strings

2.3.1. Theorem. For every length n and any string z ∈ {0, 1}∗ there exists
x ∈ {0, 1}n such that C(x | z) ≥ n.

Proof: The proof is by simple counting. There are 2n strings of length n and
only 2n − 1 many potential programs of length less than n. Thus at least one
string x ∈ {0, 1}n must require a program of length at least n, even given z. 2

This theorem is surprisingly useful for its simplicity. It is the basic principle
behind what is known as the incompressibility method. The incompressibility
method shows the existence of an object with a certain property by considering
a Kolmogorov random object which is incompressible. If this random object did
not possess the desired property the argument then shows that the object could
be given a shorter description, thus arriving at a contradiction.

As a demonstration of the first pillar in action, we give a simple example of the
incompressibility method to what is known as Ramsey theory. Loosely speaking,
the thesis of Ramsey theory is that any large object necessarily possesses patterns.
Recall that in a graph a clique is a set of vertices which are all mutually connected
by edges, and an independent set is a set of vertices with no edges between
them. The hallmark theorem of Ramsey theory, shown in 1929 by Frank Ramsey
[Ram29], is that for any k there is some finite n such that all graphs with at least
n vertices contains either a clique of size k or an independent set of size k. For
example, in any group of six people at least three people all know each other or
all do not know each other. The following theorem, originally proved in 1947 by
Erdős using the probabilistic method, lower bounds how large a graph must be
before we are sure it contains either a clique or independent set of a certain size.

2.3.2. Theorem (Erdős). For every n, there exists a graph G on n vertices
such that G has neither a clique nor an independent set of size larger than
2blog n+ 1c+ 1.

Proof: We identify graphs on n vertices with strings of length
(
n
2

)
in the natural

way, letting the string represent the characteristic sequence of the
(
n
2

)
possible
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edges in the graph. Let k = 2blog n+ 1c+ 1, and let p be a fixed program which
describes the procedure given below for reconstructing a graph. Let G be a graph
on n vertices satisfying C(G | k, n, p) ≥

(
n
2

)
which we know exists by the first

pillar. We show that if G has a clique or independent set of size k then we can
compress G, a contradiction to its definition.

Suppose that G has a clique or independent set of size k. We use one bit of
description to say which one is the case, and then describe G as follows. We give
a listing of the k vertices of the clique or independent set. Using the bijection
given in Equation (2.1), this costs kblog n + 1c bits. We further explicitly give
the adjacency listing for the remaining n(n− 1)/2− k(k − 1)/2 edges. Thus our
total description is of length

n(n− 1)− k(k − 1)

2
+ kblog n+ 1c+ 1.

This length cannot be smaller than n(n− 1)/2 by definition of G, thus we find

k ≤ 2blog n+ 1c+ 1.

2

The incompressibility method is a nonconstructive proof technique—although
we have shown the existence of a graph with no large clique or independent set,
and this proof can be easily modified to show that most graphs have no large clique
or independent set, we have not provided an efficient algorithm for constructing
such a graph. Finding explicit constructions of graphs whose existence is given
by Theorem 2.3.2 remains a major open problem of Ramsey theory.

2.3.2 Second pillar: language compression theorem

2.3.3. Theorem. For every recursively enumerable set A, C(x) ≤ log |A=n| +
O(log n) for all x ∈ A of length n.

Proof: Fix n. Let M be a machine which enumerates A. We dovetail the
running of M over all strings x ∈ {0, 1}n. For each string x ∈ A the machine
M will eventually halt and say ‘accept’. Furthermore, these computations will
halt in a definite order. We therefore can describe each x ∈ A=n by an index
i ∈ [|A=n|] saying that x is the ith string of length n that M will accept when
run in dovetail fashion on strings of length n. The description requires log |A=n|
bits to specify the index, and O(log n) bits to describe n and the machine M . 2

We now give an example of an application of the language compression theo-
rem.

2.3.4. Theorem (Adleman [Adl78]). BPP ⊆ P/poly
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Proof: Let L be a language in BPP. Then there is a polynomial time machine M
such that if x ∈ L then Prr[M(x, r) = 1] ≥ 2/3 and if x 6∈ L then Prr[M(x, r) =
1] ≤ 1/3, where the probability is taken over strings r ∈ {0, 1}p(n) for a polynomial
p. We can amplify the success probability by on input x outputting the majority
vote of n2 independent runs of M . Call the machine which does this M ′. We then
have by a Chernoff bound that for large enough n, if x ∈ L then Prr[M

′(x, r) =
1] ≥ 1−2−2n and if x 6∈ L then Prr[M(x, r) = 1] ≤ 2−2n where now the probability
is taken over strings r of length n2p(n). Take r ∈ {0, 1}n2p(n) satisfying C(r) ≥
n2p(n). We claim that for all x ∈ {0, 1}n the string r gives the “right” answer,
that is, that M(x, r) = 1 if and only if x ∈ L.

Suppose for contradiction that r gives the wrong answer for some x. For
concreteness, say that x ∈ L and M(x, r) = 0. This means that r belongs to
a “small” set, a set of size 2n

2p(n)−2n, the set of random strings which give the
wrong answer. Furthermore, given x membership in this set can be checked in
polynomial time—we just run M(x, r) for polynomially many steps and see if
M(x, r) = 0. Thus by the language compression theorem, C(r |x) ≤ n2p(n) −
2n + O(log n). As we can explicitly give x with n bits, this means C(r) ≤
n2p(n)− n+O(log n), a contradiction. 2

2.3.3 Third pillar: source compression theorem

The previous theorem addressed the compression of languages. We now look at
the compression of probability distributions. The goal now becomes to give ele-
ments with large probability short descriptions, in particular we wish to give an
element with probability p a description of length about − log p. The next the-
orem states that this is indeed possible for enumerable distributions. To explain
what we mean by enumerable, we first develop some terminology.

2.3.5. Definition. A real function f : N → R is said to be enumerable (from
below) if there is a recursive function g : N×N → Q such that limk→∞ g(x, k) =
f(x), and g is nondecreasing in k. A real function f : N → R is said to be recursive
if there is a recursive function g : N× N → Q such that |f(x)− g(x, k)| < 1/k.

Now we have defined what it means for a function with domain {0, 1}∗ to be
enumerable, but what we are ultimately interested in are probability distributions
which have domain subsets of {0, 1}∗. The notion of cylinders gives a simple way
to extend the definition of enumerability to probability distributions. For a finite
string x ∈ {0, 1}∗ the cylinder Γx ⊆ {0, 1}∗ is defined as

Γx = {ω ∈ {0, 1}∗ : ω1:l(x) = x}

where ω1:l(x) denotes the first l(x) many bits of ω. We identify a function µ
defined on cylinders, such as a probability distribution, with a function µ′ defined
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on {0, 1}∗ by µ(Γx) = µ′(x). If µ′ is enumerable then we say µ is enumerable. We
will now systematically use this shorthand and drop the subscript.

2.3.6. Definition. A function µ : {0, 1}∗ → R is a semi-probability distribution
if and only if

• µ(ε) ≤ 1

• µ(x) ≥ µ(x0) + µ(x1).

If µ satisfies the first item with equality then we call µ a probability distribution.

2.3.7. Theorem (Levin). Let µ be an enumerable semi-probability distribution.
Then there is a constant c such that for all x,

K(x) ≤ − log µ(x) + c.

Proof: For clarity we will first describe the encoding assuming that µ is recursive.
We will then show how to modify this construction for µ enumerable.

The basic idea is to associate with every element of the support of µ an interval
of [0, 1) such that the intervals are disjoint and the interval corresponding to x has
length µ(x). The encoding of x will be the left endpoint of the interval associated
with x given to − log µ(x) many bits of precision.

More formally let the interval of [0, 1) corresponding to x be

Ix =

[∑
y<x

µ(y),
∑
y≤x

µ(y)

)
.

We can do this as µ is a semi-probability distribution and so
∑

y µ(y) ≤ 1. We
would like to describe x by the left endpoint of Ix and as our goal is to give x a
description of length about − log µ(x) we would like to specify the left endpoint
to only this many bits of precision. We now run into a problem as in general
truncating the endpoint to this precision could cause our intervals to overlap,
and therefore we would lose the desired prefix-free quality of the encodings.

A solution to this problem is to find a subinterval of Ix of a particularly nice
form, a so-called binary interval. This interval is completely specified by a binary
string z. It is of the form Jz = {0.ω : ω ∈ {0, 1}∗ and ω1:l(z) = z}. Notice that
the length of this interval is 2−l(z).

Thus let Jz ⊆ Ix be the longest binary interval contained in Ix. For uniqueness,
we take Jz to be the leftmost such interval. It is easy to see that Jz is of length
at least 1/4 that of Ix. Our encoding of x will be z, the left endpoint of Jz, which
has length at most − log µ(x) + 2.
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Let g(·, ·) be a recursive function witnessing the recursiveness of µ. Given z
which is the encoding for x, we design the following test which accepts y if and
only if x = y. By cycling through all y we can then find and print x.

Given input y, we choose k such that |µ(y)− g(y, k)| < µ(y)/16 and∣∣∣∣∣∑
y′<y

g(y′, k)− µ(y′)

∣∣∣∣∣ < µ(y)/16. (2.2)

Clearly we can find such a k. We accept y if and only if∑
y′<y

g(y′, k) < 0.z + 2−l(z)−1 and
∑
y′≤y

g(y′, k) > 0.z + 2−l(z)−1.

Notice the reason that the we need the factor of 1/16 is because we are only
assured that the length of the binary interval corresponding to z is µ(x)/4.

We now deal with the complication that the semi-probability distribution µ is
not recursive but only enumerable. Let g(·, ·) be a recursive function witnessing
the enumerability of µ. That is, g(x, k) ≤ g(x, k + 1) and limk→∞ g(x, k) = µ(x).
Let g′(x, k) be such that

g′(x, k) = max{2−` : 2−` ≤ g(x, k)}.

Now let g′′(x, k) be the partial recursive function which enumerates the range of
g′(x, k) without repetition. We now see that g′′(x, k) is not too far from being a
semi-probability distribution:∑

x,k

g′′(x, k) =
∑
x

∑
k

g′′(x, k)

≤
∑
x

2µ(x) ≤ 2.

We can thus apply the above coding construction to g′′(x, k)/2, chopping
off intervals Ix,k of length g′′(x, k)/2 and finding the leftmost binary interval
contained in each Ix,k. As g′′(x, k) is recursive, constructing these intervals can
be done recursively. For some k it holds that g′′(x, k) ≥ µ(x)/2, and thus for
this k the length of Ix,k will be at least µ(x)/4. Thus there is a binary interval
Γx,k ⊆ Ix,k with length at least µ(x)/16. We encode x by giving the left endpoint
of Γx,k which has length − log µ(x)+4, and a constant number of bits to describe
the above procedure. 2

This theorem has many interesting implications. Perhaps most importantly, it
says that the distribution 2−K(x) dominates any other enumerable semi-probability
distribution in the sense that for any enumerable probability distribution P there
is a positive constant cP such that 2−K(x) ≥ cPP (x), for all x. In other words,
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2−K(x) gives at least as much probability to each x as any other enumerable prob-
ability distribution, up to a constant multiplicative factor. Furthermore, notice
that the distribution 2−K(x) is itself enumerable—define the recursive function
g(x, k) which dovetails the running of programs, running program i for j steps
where i + j = k. If p is a shortest program which halts with output x at step
k, then the output of g(x, k) is 2−l(p). This function is recursive, nondecreasing,
and converges to 2−K(x). As 2−K(x) dominates all enumerable semi-probability
distributions and is itself an enumerable semi-probability distribution, we will
say that it is universal for the class of enumerable semi-probability distributions.

The universal a priori probability distribution Q(x) is

Q(x) =
∑

p:U(p)=x

2−l(p),

where U is a Kolmogorov minimal element for self-delimiting Turing machines.
The reason that this distribution is called the a priori probability is that if we
know nothing then one natural way to generate a number is to flip a random
program p and run the machine on p and see what it outputs. Q(x) tells us the
probability that we get x in this process. Another application of Theorem 2.3.7
tells us that Q(x) and 2−K(x) agree up to a constant factor.

2.3.8. Theorem (Levin). There is a constant c such that for every x

2−K(x) =
∑

p:U(p)=x

2−l(p),

where equality holds up to a multiplicative factor c.

Proof: It is clear that 2−K(x) ≤
∑

p:U(p)=x 2−l(p) as the latter sum in particular

includes a shortest program for x of length K(x).
For the other direction, we observe that Q(x) =

∑
p:U(p)=x 2−l(p) is an enumer-

able semi-probability distribution and apply Theorem 2.3.7. To see that Q(x) is
enumerable: at stage k we approximate Q(x) by running all programs 1 ≤ j ≤ k
for i many steps, where j+i = k, and tallying the contributions to

∑
p:U(p)=x 2−l(p)

from any of these programs which halt with output x. 2

This theorem has the pleasing implication that if a string has many long
programs, then it must also have a short one.

2.3.4 Fourth pillar: symmetry of information

One of the most beautiful theorems in Kolmogorov complexity is the principle of
symmetry of information. Roughly speaking, this theorem says the information
contained in x about y is equal to the information contained in y about x, up to
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Figure 2.1: The “line” of 2k many y with C(y |x∗) ≤ m.

a small additive factor. This theorem has seen numerous applications in diverse
areas of theoretical computer science, often where the problem does not suggest
any use of Kolmogorov complexity at all. A prime example of such an applica-
tion is the result of Jiang, Seiferas, and Vitányi [JSV97] who use symmetry of
information to show that a Turing machine with one tape and two heads can do
things that a two tape machine with one head on each tape cannot. This solved
a longstanding open problem, and no alternative proof is known.

We now look at this principle in more detail.

2.3.9. Theorem. For all x, y ∈ {0, 1}n, C(x, y) = C(x) + C(y |x) +O(log n).

Proof: It is easy to see that C(x, y) ≤ C(x) + C(y |x) + O(log n). Given a
program for x and a program for y given x, and a way to tell the programs apart,
we can first run the program for x to produce x, and then run the program for y
given x and output the pair.

The other direction is more interesting. Fix x∗, y∗ ∈ {0, 1}n, and say that
C(x∗, y∗) = m. Consider the set of strings A = {(x, y) : C(x, y) ≤ m}. This
set is recursively enumerable given m— we dovetail running of all programs of
length ≤ m; if the pair (x, y) is in this set then eventually one of these programs
will halt having printed (x, y). Also notice that the size of this set is less than
2m+1 by counting the number of short programs. As shown in Figure 2.1 consider
the vertical line through x∗ intersecting the set A. That is, consider the set
Ax∗ = {y : C(x∗, y) ≤ m}. Notice that y∗ is an element of this set, and this set
is recursively enumerable given x∗ and m. Therefore, by Theorem 2.3.3, we have
C(y∗ |x∗) ≤ log |Ax∗|+O(log n). Let k be such that 2k ≤ |Ax∗| < 2k+1.

Now consider the set Bk = {x : ∃≥2k
y : C(x, y) ≤ m}. This is the set of x with

“long lines” in A, see Figure 2.2. Notice that x∗ is a member of this set, that this
set is recursively enumerable given m and k, and that the size of this set is less
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Figure 2.2: The set of x which have “long lines” is small

than 2m−k+1 since the size of A is less than 2m+1. Thus applying Theorem 2.3.3
again we have C(x∗) ≤ m− k + 1 +O(log n).

Putting the two together, we now have C(x∗) + C(y∗ |x∗) ≤ m + O(log n) ≤
C(x∗, y∗) +O(log n). 2

2.3.5 Resource Bounded Kolmogorov Complexity

The four pillars of Kolmogorov complexity have had numerous applications in
complexity theory. This is perhaps best illustrated by an example. Take the
second pillar of Kolmogorov complexity, the language compression theorem. We
have seen how the language compression theorem can be used to show BPP ⊆
P/poly. This shows that randomness can be simulated deterministically with
nonuniformity or advice. The use of Kolmogorov complexity in this application
is in some sense overkill— the “bad” random strings, those which lead to a wrong
answer, are actually in a small set which is decidable in polynomial time, far
below the recursively enumerable sets which the language compression theorem
can handle. If we could somehow take advantage of this, we could potentially get
a much stronger result.

This is exactly the approach taken by Sipser in a beautiful paper showing
that BPP is in the polynomial hierarchy [Sip83]. He looks at a version of poly-
nomial time Kolmogorov complexity and shows a language compression theorem
for languages in P with respect to this measure. He then shows that one can
find a string with high complexity with respect to this measure in the polynomial
hierarchy; then we can run the BPP algorithm using this high complexity string,
which must give the right answer. We will discuss Sipser’s result in more detail
in Chapter 4.
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Sipser’s result is the main motivating factor for the results in the first part
of this thesis. We look for resource-bounded versions of all the four pillars, in
the hopes that that such theorems will lead to even more applications of the
four pillars in complexity theory. Before we state in more detail the results we
obtain, we lay the groundwork for the theory of resource bounded Kolmogorov
complexity. As in the resource unbounded case, our first order of business in
resource bounded Kolmogorov complexity will be to establish the existence of a
Kolmogorov minimal element.

For technical reasons we will always make use of nice time bounds.

2.3.10. Definition (Nice time bounds). We will call a function t : N → N
a nice time bound if there is a Turing machine T which on input n halts with
output t(n) in exactly t(n) many steps.

Let φt(n)(p) be the result, if any, of the computation of φ on input p after t(n)
time steps. We define time-bounded Kolmogorov complexity as follows:

2.3.11. Definition. Let t(n) ≥ n be a nice time bound, and φ a partial recursive
function. For x, y with n = l(〈x, y〉) we define

C
t(n)
φ (x | y) = min

p

(
{l(p) : φt(n)(〈p, y〉) = x} ∪ {∞}

)
.

As usual we set C
t(n)
φ (x) = C

t(n)
φ (x | ε). It is important to remember that the

running time is a function of the length of 〈x, y〉 and not the length of the input
program p.

For a nice time bound t(n) ≥ n we wish to construct a Kolmogorov minimal
element for the set {φt1, φt2, φt3, . . .}, where φ1, φ2, φ3, . . . is the same recursive
enumeration of partial recursive functions used above. We try to construct a
Kolmogorov element for this class of functions in the same way as before: we
construct φ such that on input 〈i, p, y〉,

φ(〈i, p, y〉) = φi(〈p, y〉).

Now, however, we would also like φ to produce the output of φ
t(n)
i (〈p, y〉) in t(n)

steps. While we are not able to do this, we can show that φ is able to simulate
φi without too much blowup in time.

There are two sources of overhead which the machine φ encounters in simu-
lating the computation of φi. First, the machine φ must generate the description
of φi from its index i via the recursive enumeration. This could take a long time,
but this time only depends on i and is independent of x, y. Secondly, the machine
φ has some fixed number k of worktapes. In our enumeration, however, there are
machines which have an arbitrary number of worktapes. Thus this machine φi
could have 100k worktapes. Luckily, a simulation due to Hennie and Stearns
shows that a Turing machine with 2 worktapes can simulate the workings of a
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Turing machine with an arbitrary number of worktapes with a c log t multiplica-
tive factor blowup in time [HS66]. Thus we obtain the following weaker version
of a minimal element for the set F t as the function is not actually itself a member
of F t but rather some slightly larger class.

2.3.12. Theorem. There is a partial recursive function φ such that for any par-
tial recursive function ψ there are constants c1, c2, c3 such that

Cc1t log t+c2
φ (x | y) ≤ Ct

ψ(x | y) + c3.

2.3.6 Time-bounded prefix-free complexity

It turns out it is easier to define time bounded prefix-free complexity in terms of
self-delimiting Turing machines than in terms of prefix-free partial recursive func-
tions. Let M1,M2,M3, . . . be our enumeration of self-delimiting Turing machines,
and let M

t(n)
i (p) be the result, if any, of Mi on input p after t(n) steps. As before,

we define a self-delimiting machine M which on input 〈i, y, p〉 first decodes the
index i, which can be done as i is presented in a self-delimited way, and then
simulates the running of Mi(〈y, p〉). As before, by the simulation of Hennie and
Stearns [HS66] we obtain that there are constants c1, c2, c3 such that

Cc1t log t+c2
M (x | y) ≤ Ct

Mi
(x | y) + c3

for all x, y.
We can also define time bounded prefix-free complexity via partial recursive

prefix-free functions. In the time bounded case, however, the correspondence
between this definition and that by self-delimiting Turing machines is not as
tight as in the time unbounded case. We first define what it means for a function
to be time t prefix-free.

2.3.13. Definition (time bounded prefix-free functions). Let t(n) be a
nice time bound. We say that a Turing machine T is time t(n) prefix-free if
whenever T (p) halts in t(n) steps and T (q) halts in t(n) steps then p is not a
proper prefix of q. Notice that a T can be time t bounded prefix-free and not
prefix-free.

Now we wish to find a minimal element for the set of time bounded prefix-free
partial recursive functions. To do this we need a more efficient enumeration than
that described for prefix-free partial functions. Fortunately this is made easier as
we know in advance that we only have to run each machine for t(n) time steps.
Given a partial recursive function φ we modify it into a time t prefix-free function
ψ as follows:

• Step 0: Initially, ψ is undefined for all inputs. Run φ on the empty input
for t time steps. If φ halts then set ψ(ε) = φ(ε) and the construction of ψ
is finished. Otherwise, ψ(ε) remains undefined and we move on to step 1.
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• Step k: In turn run φ on all programs of length k for t time steps. If φ halts
in t time steps on a program p and has not in a previous stage halted on a
proper prefix of p, then we set ψ(p) = φ(p). Otherwise, if φ has halted on
a proper prefix of p then ψ(p) remains undefined. Go to step k + 1.

In this way, ψ will be a time t prefix-free function, and if φ was time t prefix-
free then ψ = φ. Furthermore, this construction is fairly efficient in the sense
that given φ, to evaluate ψ on a program p of length m, we need only run φ for
t time steps on each of the m + 1 prefixes of p. This fact allows us, with some
overhead in time, to construct a Kolmogorov minimal element for the set of time
t prefix-free functions. As usual we set ψ(〈i, p, y〉) = ψti(〈p, y〉), where ψi is the ith

function in our enumeration of time t prefix free functions. We need to check how
long it takes ψ to evaluate ψti(〈p, y〉). By the simulation of Hennie and Stearns,
ψ can simulate the running of t steps of ψi in time ct log t. To evaluate ψi(p),
we simulate the running of φi on all of the at most 2n prefixes of p (as p is of
length less than 2n) to see if any of them halt in t steps. If any of them halt, then
we know that φi(〈p, y〉) is undefined. Otherwise, if none of these halt, then we
output φi(〈p, y〉). This whole simulation will take at most cnt log t steps, for some
constant c. Thus we obtain a somewhat weaker theorem about the existence of a
minimal element for time bounded prefix free functions.

2.3.14. Theorem. There is a function ψ such that for any time t prefix function
ψi there are constants c1, c2, c3 such that

Cc1nt log t+c2
ψ (x | y) ≤ Ct

ψi
(x | y) + c3.

for any x, y with n = l(〈x, y〉).
Let us now see the equivalence between these two definitions. Let the defini-

tion in terms of time t prefix-free functions be K1 and the definition in terms of
self-delimiting Turing machines be K2. How are these quantities related?

First of all, notice that a time t bounded self-delimiting Turing machine com-
putes a prefix-free function, and thus appears somewhere in our enumeration
ψ1, ψ2, ψ3, . . . of time t prefix-free functions. Thus our minimal element for prefix-
free partial functions implies

Kctn log t
1 (x | y) ≤ Kt

2(x | y) + c.

Now for the other direction. We show how to simulate the running of a prefix-
free function on a self-delimiting machine. Say we wish to simulate a machine
T on input p. We do the following. Let p0 = ε, p1, p2, . . . , pm = p be the m + 1
prefixes of p. In sequence we run T on pi for t time steps. If any of these
programs halt for i < m then we do not output anything. Otherwise, if none
of these programs halt, then we output the output of T (p). In this way we can
simulate on a self-delimiting machine the running of any prefix-free function, and
in particular, the universal prefix-free function constructed above. This implies

Kctn log t
2 (x | y) ≤ Kt

1(x | y) + c.
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2.4 Summary of our results

In the first part of this thesis, we will look for analogues of the four pillars of
Kolmogorov complexity in the resource bounded setting. Our first observation is
a simple one: adding a time bound cannot make Kolmogorov complexity decrease.
That is, Ct(x | y) ≥ C(x | y) for any time bound t. This means that the first pillar
of Kolmogorov complexity holds unchanged in the resource-bounded case.

For the other three pillars, however, the resource bounded situation becomes
quite interesting and all sorts of difficulties arise which we did not face in the un-
bounded setting. In fact, one benefit of looking at these theorems under the finer
lens of the resource bounded setting is that we also obtain a better understanding
of the essence of these theorems in the resource unbounded case. In particular,
our results will show the fundamental role that compression plays in all of the
pillars. The language compression theorem and the source compression theorem
are clearly results about compression of different types of sets; we will see that the
principle of symmetry of information is also fundamentally a compression result,
which in some sense uses both compression of sets and probability distributions.

We will start in Chapter 4 by discussing the Language Compression Theo-
rem in the resource bounded case. Our main lemma, the Compression Lemma
Lemma 4.3.1, uses the theory of hardness vs. randomness tradeoffs to show that
a string with high resource bounded Kolmogorov complexity can be used to gen-
erate a pseudorandom distribution. This lemma will be used several times, for
both positive and negative results, throughout the first part of the thesis.

With the compression lemma in hand we go looking for resources needed for
a language compression theorem. We show lower bounds that with polynomial
time, even with randomness, no analogue of the language compression theorem
exists. Thus we continue our search armed with more resources, and finally see
that with nondeterminism we can prove an analog of the language compression
theorem which asymptotically achieves the information theoretic lower bound of
log |A| bits to describe any element of A. With the power of nondeterminism
and randomness we are able to show an even tighter version of the language
compression theorem which differs from the information theoretic optimal only
by an additive factor of log3 n.

Next, in Chapter 5 we turn our attention to a resource-bounded analog of
the source compression theorem, the third pillar of Kolmogorov complexity. The
analog of enumerable probability distributions in the polynomial time setting are
known as samplable sources. These are probability distributions which can be
efficiently simulated by a probabilistic polynomial time algorithm. Unlike the case
with language compression, there do not seem to be any unlikely consequences
from being able to nearly optimally compress samplable sources in deterministic
polynomial time. We show, however, that such compression would imply that
BPP 6= EXP. This statement, while believed to be true, is also believed to be
difficult to prove. Thus this result suggests to try to compress samplable sources
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assuming some derandomization hypothesis. Recently, Luis Antunes and Lance
Fortnow [AF05] have indeed been able to show that deterministic compression of
samplable sources is possible under a derandomization assumption.

We also see that our Compression lemma can be applied to the case of compres-
sion of samplable sources. This allows us to show unconditionally near optimal
compression of samplable sources by compression schemes using nondeterminism
and randomness.

The fourth pillar of Kolmogorov complexity, the principle of symmetry of
information seems to be the most difficult pillar to find an analogue of in the
resource bounded case. First of all, the standard proof of symmetry of information
uses both language compression and the compression of probability distributions.
Secondly, in the resource bounded case, we miss a “closure property” which is
present in the resource unbounded case. Although we can show that the set
of strings which have low polynomial time printing complexity are in NP, they
are unlikely to be in P. In this way, we end up with an unbalanced version
of symmetry of information, where more resources are used on one side of the
inequality than the other.

As with nondeterminism and randomness we are able to show analogues of
both language compression and compression of probability distribution, we are
able to show such an unbalanced principle of symmetry of information result for
so-called AM complexity. We also use our compression results to construct an
oracle where symmetry of information fails in a strong way for polynomial time
printing complexity and nondeterministic complexity.

Resource bounded Kolmogorov complexity is one way to bring the theory of
Kolmogorov complexity closer to the real world setting of data compression. A
current trend in data compression is so-called lossy compression which trades
some fidelity to the original data in exchange for a shorter compressed length. In
other words, when decompressed, we will not get our original data back but only
something “close” to our original data. In Chapter 7 we propose a variation of
Kolmogorov complexity to model lossy compression, which we call Kolmogorov
complexity with error. We are again interested in the behavior of this measure
with respect to the pillars. The first pillar now becomes more interesting in this
setting —we give tight bounds for the maximal complexity of strings with error in
both the resource bounded and unbounded cases. We also give an example which
shows that symmetry of information does not in general hold for complexity with
error.





Chapter 3

Complexity Classes and Kolmogorov
Measures

Before we get started talking about complexity classes, we first lay out some basic
notation. The length of a string x will be denoted l(x). We use ε for the empty
string. The cardinality of a set A is denoted |A|. The notation A=n is the set of
elements of A which have length n. All logarithms are base 2.

3.1 Complexity classes

Complexity theory studies the amount of resources necessary and sufficient to
solve computational problems. Common resources which are looked at are time,
space (memory), randomness, and nondeterminism. One can then, of course,
look at various combinations of all these resources put together. Perhaps the
most basic resource is time, thus we start there.

3.1.1 Time

DTIME(f(n)): This is the class of languages recognized by a Turing machine M
whose running time on inputs of length n is bounded by f(n).

P: Polynomial time.

P = ∪∞i=1DTIME(ni).

EXP: Exponential time.

EXP = ∪∞i=1DTIME(2n
i

).

It is known from the time hierarchy theorem that P 6= EXP [HS65].

27
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3.1.2 Randomness

BPP: Bounded error probabilistic polynomial time. A language L is in this class
if there is a polynomial time algorithm A and polynomial p(·) such that

• for all x ∈ L : Prr∈{0,1}p(l(x)) [A(x, r) = 1] ≥ 2/3

• for all x 6∈ L : Prr∈{0,1}p(l(x)) [A(x, r) = 1] ≤ 1/3

RP: Randomized polynomial time. This is a one-sided error version of BPP. A
language L ∈ RP if there is a polynomial time algorithm A and polynomial p(·)
such that

• for all x ∈ L : Prr∈{0,1}p(l(x)) [A(x, r) = 1] ≥ 2/3

• for all x 6∈ L : Prr∈{0,1}p(l(x)) [A(x, r) = 1] = 0

3.1.3 Nondeterminism

NP: Nondeterministic polynomial time. A language L is in this class if there is a
polynomial time algorithm A and polynomial p(·) such that

• for all x ∈ L : Prr∈{0,1}p(l(x)) [A(x, r) = 1] > 0

• for all x 6∈ L : Prr∈{0,1}p(l(x)) [A(x, r) = 1] = 0

It is clear from the definitions that RP ⊆ NP. A discussion of NP is not complete
without mentioning NP completeness. A language L is NP-complete if L ∈ NP
and it is “as hard” as any problem in NP. More formally this means that for any
language L′ ∈ NP there is a polynomial time computable function f(·) such that
x ∈ L′ ⇐⇒ f(x) ∈ L. The archetypal NP-complete problem is satisfiability:
given a formula over variables x1, . . . , xn, is there a setting of the variables which
makes the formula true?

PH: The polynomial hierarchy. Let Σp
2 = NPNP be the set of languages which

can be solved by a nondeterministic machine which has an oracle for an NP-
complete problem like satisfiability. This means that on any computation path,
the NP machine can write satisfiability queries on a special oracle tape, and in a
single time step the oracle will provide the answer to this query. One can then
define inductively Σp

k = (Σp
k−1)

NP. The polynomial hierarchy is then PH = ∪kΣp
k.

Sipser first showed that BPP is in the polynomial hierarchy [Sip83]. It is not
known whether the polynomial hierarchy is infinite.

UP: Unique nondeterministic polynomial time. This class is like NP with the
additional restriction that there is a unique witness to an element being in the
language. More formally, a language L ∈ UP if there is a polynomial time
algorithm A and polynomial p(·) such that
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• for all x ∈ L there is exactly one r ∈ {0, 1}p(l(x)) such that A(x, r) = 1.

• for all x 6∈ L : Prr∈{0,1}p(l(x)) [A(x, r) = 1] = 0

It is clear from the definition that UP ⊆ NP. The other direction is an open
question. A famous result shedding some light on the relationship between NP
and UP is the Valiant–Vazirani isolation lemma [VV86]. Consider the NP com-
plete problem SAT. Given a formula φ, Valiant and Vazirani give a randomized
procedure which given a formula φ on n variables outputs formulas φ1, . . . , φ2n

such that

• If φ is satisfiable, then the probability that at least one of the φi is satisfiable
with exactly one satisfying assignment is greater than 1/8.

• If φ is not satisfiable, then every φi is not satisfiable.

⊕P: Parity polynomial time. A language L ∈ ⊕P if there is a polynomial time
algorithm A and a polynomial p(·) such that

• for all x ∈ L there are an odd number of r ∈ {0, 1}p(l(x)) with A(x, r) = 1.

• for all x 6∈ L there are an even number of r ∈ {0, 1}p(l(x)) with A(x, r) = 1.

The Valiant–Vazirani procedure described above implies that NP ⊆ RP⊕P.

3.1.4 Circuit Models

NC1: A formula is a binary tree with interior nodes labelled by AND and OR
gates and leaves labelled by literals—that is, a variable or its negation. The depth
of a formula is the length of a longest path from leaf to root, and the size of a
formula is its number of leaves. NC1 is the class of decision problems for which
instances of length n can be solved by a formula of depth c · log n for some fixed
constant c. A nontrivial theorem of Spira [Spi71] shows that every formula can
be converted into an equivalent formula whose depth is logarithmic in its size.
Thus NC1 is equivalently the set of problems which can be solved by polynomial
size formulas.

P/poly: This is the class of polynomial time algorithms which take advice. The
key feature of the advice is that it depends only on the input length, and cannot
be tailored to each individual instance x. More formally, a language L is in P/poly
if there is a polynomial p(·) and language L′ ∈ P such that for every n there is
an advice string sn with l(sn) ≤ p(n) and (x, sn) ∈ L′. The set of languages
computed by polynomial size circuits coincides with P/poly.
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3.1.5 Other classes

AM: Arthur–Merlin games. AM combines randomness and nondeterminism, and
is the favorite complexity class of this author. The name Arthur–Merlin comes
from the following scenario: imagine Merlin to be an all powerful wizard and
Arthur a distrustful king who is willing to believe probabilistic evidence. Arthur
flips some coins and based on these outcomes issues a challenge to Merlin. Merlin
then has to provide a witness which answers this challenge and such that Arthur
can, in his own polynomial time way, verify that this witness does indeed answer
his challenge. A language L is in AM if for every x ∈ LMerlin can answer Arthur’s
challenge successfully with high probability, and for every x 6∈ L no matter what
Merlin does he cannot satisfy Arthur’s challenge with high probability. We now
give the definition more formally:

A language L ∈ AM if there is a polynomial time algorithm A and polynomial
p(·) such that

• for every x ∈ L : Prr∈{0,1}p(l(x)) [∃y ∈ {0, 1}p(l(x)) : A(x, y, r) = 1] ≥ 2/3

• for every x 6∈ L : Prr∈{0,1}p(l(x)) [∃y ∈ {0, 1}p(l(x)) : A(x, y, r) = 1] ≤ 1/3

The results of [FGM+89] show that we can actually assume that the probabil-
ity in the first item is one—that is AM has perfect completeness. In his original
paper defining AM, Babai [Bab85] also showed that a game with a constant num-
ber of rounds between Arthur and Merlin can be simulated by a game of just two
rounds.

AM has a claim to be the natural randomized version of NP in the following
sense. For a complexity class C, let

almost-C = {L : Pr
R

[L ∈ CR] = 1}.

In the same way that BPP = almost-P [BG81, Kur87], it also holds that AM =
almost-NP [NW94].

An important algorithmic property of AM is its ability to do “approximate
lower bound counting” [Bab85]. This means that given a set A ∈ P there is an
AM algorithm which accepts with high probability if |A=n| ≥ 2k+1 and rejects
with high probability if |A=n| ≤ 2k−1. A formal statement and proof of this result
can be found in Appendix A.

SZK: Statistical Zero Knowledge. Statistical Zero Knowledge can again be seen
as a game between Arthur and Merlin. This time, as Arthur and Merlin converse
about whether or not a string x is in a language L, we wish that Arthur learns no
information from Merlin other than the membership of x in L. This seemingly
hard to capture notion is made formal in the following way. Consider the two
distributions:

• The interaction of Arthur and Merlin as seen by Arthur
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• The output of a probabilistic polynomial time machine not interacting with
anyone on input x. This is called the simulator.

A language L has a statistical zero knowledge proof if whenever x ∈ L there
is a simulator such that the distribution of the output of the simulator and the
distribution of Arthur’s messages have small statistical difference.

Goldreich and Vadhan [GV99] showed a natural complete problem for SZK
which we will make use of later: Given a Boolean circuit C : {0, 1}n → {0, 1}m,
estimate the entropy of the distribution C(Un).

3.2 Kolmogorov measures

We take the liberal view in this thesis that for every complexity class one can de-
fine an associated Kolmogorov measure. In this section, we describe the different
Kolmogorov measures we will use.

3.2.1 Deterministic printing complexity

For easy reference we reproduce the definitions developed in Chapter 2 here.
For a nice time boundt satisfying t(n) ≥ n, the conditional time bounded

printing complexity is defined as

Ct(x | y) = min
p
{l(p) : U(p, y) = x in at most t(l(x) + l(y)) steps}

where U is a Turing machine which can efficiently simulate the running of any
other Turing machine. We set Ct(x) = Ct(x | ε) where ε denotes the empty string.
For reasons of space, we only write t in the superscript, but the reader should keep
in mind that the time bound is t(l(x) + l(y)). Thus note that the running time
depends not on the length of the input p, but rather the length of the output x
and the given string y. When no superscript is indicated, as in C(x | y), we mean
the above definition with no time bound restriction.

We will also use a time bounded version of prefix-free complexity.

Kt(x | y) = min
p
{l(p) : U(p, y) = x in at most t(l(x) + l(y)) steps}.

Here U denotes a self-delimiting Turing machine which is able to efficiently sim-
ulate the running of any other self-delimiting Turing machine.

3.2.2 Randomized printing complexity

We consider a randomized version of printing complexity, CBP. Let U be a Turing
machine which can efficiently simulate the running of any other Turing machine.
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3.2.1. Definition. CBPt(x | y) is the length of a shortest program p such that

1. Prr∈{0,1}t [U(p, y, r) outputs x] > 2/3

2. U(p, y, r) runs in ≤ t(l(x) + l(y)) steps for all r ∈ {0, 1}t

We set CBPt(x) = CBPt(x | ε).

3.2.3 Distinguishing complexity

Sipser defined a relaxation of printing complexity called distinguishing complexity.
The time t distinguishing complexity of x given y, denoted CDt(x | y), is the length
of a shortest program which runs in time t(l(x)+ l(y)) and accepts only the string
x. We will also use a randomized version of distinguishing complexity.

3.2.2. Definition. CBPDt(x | y) is the length of a shortest program p such that

1. Prr∈{0,1}t [U(p, x, y, r) = 1] > 2/3

2. Prr∈{0,1}t [U(p, z, y, r) = 0] > 2/3 for all z 6= x

3. U(p, z, y, r) runs in ≤ t(l(z) + l(y)) steps for all z ∈ {0, 1}∗

We set CBPDt(x) = CBPDt(x | ε).

3.2.4 Nondeterministic printing complexity

We associate to the class NP the Kolmogorov complexity measure CN. Let Un
be a nondeterministic Turing machine able to efficiently simulate the running of
any other nondeterministic machine.

3.2.3. Definition. CNt(x | y) is defined as the length of a shortest program p
such that

1. Un(p, y) has at least one accepting path

2. Un(p, y) outputs x on every accepting path

3. Un(p, y) runs in ≤ t(l(x) + l(y)) steps.

We set CNt(x) = CNt(x | ε).

In the literature, another version of nondeterministic complexity is defined
in [BFL02], called CND. This is a distinguishing version of nondeterministic
complexity, defined as follows:

3.2.4. Definition. Nondeterministic distinguishing complexity CNDt(y |x) is
defined as the minimal length of a program p such that
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1. Un(p, x, y) accepts,

2. Un(p, x, z) rejects for all z 6= y,

3. Un(p, x, z) runs in at most t(l(x) + l(z)) steps.

It can be seen that the measures CND and CN essentially coincide, up to
additive logarithmic terms in program length and constant factor blow up in
time.

3.2.5. Proposition. For any nice time bound t(n) ≥ l(n) and for all x

• CNDt+O(l(x))(x) ≤ CNt(x)

• CNt+O(l(x))(x) ≤ CNDt(x) +O(log l(x)).

Proof: The first item is clear: given a CN program we can convert it into a CND
program which at the end of any accepting path checks that the string printed
on this path is equal to the input. This takes an extra amount of time at most
O(l(x)).

To see CNt+O(l(x))(x) ≤ CNDt(x) +O(log l(x)): if p is a nondeterministic dis-
tinguishing program for x, a nondeterministic machine given p and l(x) can guess
a string of length l(x) which is accepted by p and output this string. By the
nature of p, the new nondeterministic machine has at least one accepting com-
putation path and outputs x on every accepting computation path. As Un(p, x)
runs in time t, the whole procedure will take time at most t+O(l(x)). 2

Because of this equivalence, in the sequel we will refer only to CN complexity.

3.2.5 Arthur–Merlin complexity

Let Un be a nondeterministic Turing machine able to efficiently simulate the
running of any other nondeterministic Turing machine.

3.2.6. Definition. CAMt(y |x) is defined as the minimal length of a program
p such that

1. Prr[Un(p, x, y, r) accepts] > 2/3,

2. Prr[Un(p, x, z, r) accepts] < 1/3 for all z 6= y,

3. Un(p, x, z, r) runs in at most t(l(x) + l(z)) steps.

The probabilities above are taken over all t(l(x) + l(y)) bit strings r.

As usual, we let CAMt(x) = CAMt(x | ε).
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3.2.6 Oracles

We will often use relativized versions of these complexity measures, allowing the
decompression program to make queries to some set A at unit cost. We will always
write the oracle as a superscript next to the time bound. Thus for example for
time bounded printing complexity we have

Ct,A(x | y) = min
p
{l(p) : UA(p, y) = x in at most t(l(x) + l(y)) steps}

where the machine U is given access to the oracle A. The relativized versions of
the other complexity measures are similarly defined.



Chapter 4

Language Compression

This chapter is based on the paper:

• H. Buhrman, T. Lee, and D. van Melkebeek. Language compression and
pseudorandom generators. Computational Complexity, 14:247–274, 2005.
Special issue of selected papers from the 19th Annual IEEE Conference on
Computational Complexity.

4.1 Introduction

In this chapter, we investigate the second pillar of Kolmogorov complexity, the
language compression theorem, in the resource bounded setting. Remember that
in the setting of the language compression theorem, we are given a set A and wish
to encode the elements of A using as few bits as possible. By simple counting, we
have that some element of A must require a description of size at least log |A|,
which we refer to as the information theoretic limit. The language compression
theorem states that if the set A is recursively enumerable, then we can achieve
the information theoretic limit, up to an additive factor of O(log n), where n is
the length of the strings in A.

A drawback of the language compression theorem is that while we know that
every string in A can be given a description of size about log |A|, we do not
know how long it might take to recreate a string x ∈ A from this description.
In the resource bounded setting, we move closer to the problem of real world
data compression in that we ask that x ∈ A be generated from its description
efficiently. Generally we will look for schemes which work in polynomial time.
Our setting differs from the task of real world data compression in that we stay
within the paradigm of Kolmogorov complexity—that is, we only require the
decoding algorithm to be efficient, and place no restrictions on the encoding
algorithm.

35
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4.1.1 Language Compression Problem

It is instructive to first imagine what sort of language compression theorem should
hold in the resource bounded setting. Perhaps the most direct analogy with
Theorem 2.3.9 would be the following:

4.1.1. Hypothesis. For every set A ∈ P there is a polynomial p(·) such that for
every x ∈ A=n

Cp(x) ≤ log |A=n|+O(log n).

This hypothesis, however, is unlikely to be true as it implies NP = RP. Notice
that the set of witnesses to a formula φ are a set in P . Thus given the hypothesis,
and a formula φ with a unique satisfying assignment we could then find the wit-
ness to φ. The implication then follows by the Valiant-Vazirani isolation lemma
[VV86].

In its relativized form, we know that Hypothesis 4.1.1 does not hold. We can
state the following folklore theorem:

4.1.2. Theorem (Folklore). For every time bound t = t(n), and 0 ≤ k < n,
there is a set A ⊆ {0, 1}n with |A| = 2k such that for all x ∈ A=n,

Ct,A(x) ≥ n− log t− 1

Proof: Consider all programs p of length less than `. We will run all these
programs for t time steps with access to the empty oracle. That is, for every
question, is x in the oracle? the answer is ‘no’. During this time, these programs
can in total query or print at most t2` strings. We take our set A of size 2k to be
disjoint from this set. This can be done as long as 2k + t2` ≤ 2n. 2

Thus it seems that if we want to prove a resource bounded language compres-
sion theorem, we need to lessen our demands. Sipser did just that in defining
a relaxation of printing complexity called distinguishing complexity. He then
was able to prove a form of the language compression theorem for distinguishing
complexity, and used this to give the first proof that BPP is in the polynomial
hierarchy.

The distinguishing complexity of a string x given advice s, denoted CD(x | s),
is the length of a shortest polynomial time program which on input 〈y, s〉 accepts
if and only if y = x. Sipser shows there is an advice string s of length polynomial
in n, and a polynomial time bound p(n) such that for all x ∈ A=n,

CDp,A(x | s) ≤ log |A=n|+O(log n).
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In fact, Sipser argues that most advice strings s of the appropriate length work
for all x ∈ A=n.

While this theorem is essentially optimal in terms of program length, it has
the drawback of requiring a polynomial sized advice string. Buhrman, Fortnow,
and Laplante [BFL02] eliminate this advice string at the expense of adding a
factor of 2 to the program size.

4.1.3. Theorem (Buhrman-Fortnow-Laplante). There is a polynomial p(n)
such that for any set A and for all x ∈ A=n,

CDp,A(x) ≤ 2 log |A=n|+O(log n).

Furthermore, there is a program that achieves this bound and only queries the
oracle A on its input, rejecting immediately if the answer is negative.

Buhrman, Laplante, and Miltersen [BLM00] demonstrate a set A with |A| =
2Ω(n) such that the factor of 2 in the description length is necessary. Thus,
Theorem 4.1.3 is essentially optimal for the deterministic distinguishing version
of the language compression problem. The authors of [BLM00] further ask if
the factor of 2 is also necessary for the nondeterministic variant of distinguishing
complexity, that is the length of a shortest nondeterministic polynomial time
program which accepts x ∈ A=n and only x when given oracle access to A.

4.1.2 Our Results

We answer this question and show that the factor of 2 is not necessary. In fact,
we show that we can asymptotically achieve the optimal factor of 1:

4.1.4. Theorem. There is a polynomial p(n) such that for any set A and for all
x ∈ A=n,

CNp,A(x) ≤ log |A=n|+O(
√

log |A=n| log n).

Furthermore, there is a program that achieves this bound and only queries the
oracle at length n, rejecting immediately on any path where an answer is negative.

This bound is a slight improvement over that given in [BLvM05], where the
excess term is O(

√
log |A=n| log n + log2 n). The improvement comes from a

better analysis of Lemma 4.3.1. The notation CNp,A(x) in Theorem 4.1.4 refers
to the length of a shortest nondeterministic program that runs in time p(l(x)) and,
when given oracle access to A, outputs x on every accepting computation path,
of which there is at least one. Note that the distinction between distinguishing
complexity and printing complexity disappears in a nondeterministic context since
the printing program can exploit its nondeterminism to guess the unique input
accepted by the distinguishing program. In particular, CN essentially coincides
with nondeterministic distinguishing complexity.
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Although the bound in Theorem 4.1.4 is asymptotically optimal, the excess
term of O(

√
|A=n| log n) is larger than one might hope. By allowing the printing

program to use randomness as well as nondeterminism, we can reduce the excess
term to O(log3 n). The printing procedure can be cast as an Arthur-Merlin game
– Merlin can help Arthur to produce the correct string x with high probability
by answering a question Arthur asks and, no matter what Merlin does, he cannot
trick Arthur into outputting a string different from x except with small probabil-
ity. We use the notation CAMp,A(x) for the description length of a shortest such
Arthur-Merlin protocol for x that runs in time p(l(x)) and in which Arthur has
oracle access to A.

4.1.5. Theorem. There is a polynomial p(n) such that for any set A and for all
x ∈ A=n,

CAMp,A(x) ≤ log |A=n|+O(log3 n).

Furthermore, there is a program that achieves this bound and only queries the
oracle at length n, rejecting immediately on any path where an answer is negative.

Furthermore, we look at the question of deterministic compression. Although
now we cannot achieve something close to the information theoretic lower bound,
we can show a matching upper bound to Theorem 4.1.2, up to a O(

√
|A=n| log n)

additive factor in description length, and a polynomial multiplicative factor in
time. More precisely, we show the following:

4.1.6. Theorem. Let A be a set. For all x ∈ A=n,

Ct,A(x) ≤ log |A=n|+O(
√

log |A=n| log n)

for a time bound t = poly(n)2n−log |A=n|.

Finally, we address the question whether randomness alone, without nonde-
terminism, is able to achieve the same compression ratio. We show that this is
not the case in a strong sense. We show that there are sets A such that the length
of efficient randomized generating programs for any string x ∈ A=n cannot even
reach the same ballpark as the information theoretic lower bound of log |A=n|.

4.1.7. Theorem. For all integers n, k, and t such that 0 ≤ k ≤ n, there exists
a set A such that log |A=n| = k and for every x ∈ A=n,

CBPt,A(x) ≥ n− log |A=n| − log t− 5.

Here, CBPt,A(x) denotes the minimum length of a randomized program p that
runs in time t and outputs x with probability at least 2/3 when given oracle
access to A.

Even for the randomized version of distinguishing of complexity, CBPD, the
length of an optimal program can be up to a factor of 2 away from the information
theoretic lower bound:
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4.1.8. Theorem. There exist positive constants c1, c2, and c3 such that for all
integers n, k, and t satisfying k ≤ c1n−c2 log t there exists a set A with log |A=n| =
k and a string x ∈ A=n such that

CBPDt,A(x) ≥ 2 log |A=n| − c3.

Note that Theorem 4.1.3 implies that CBPDp,A(x) ≤ 2k + O(log n) for some
polynomial p and every x ∈ A=n. Theorem 4.1.8 shows that the upper bound on
CBPD implied by Theorem 4.1.3 is tight up to an additive term of O(log n).

Theorem 4.1.8 contrasts Sipser’s result on CD complexity, where he showed
that a random piece of information does allow us to achieve the optimal compres-
sion ratio. The distinguishing program in Sipser’s result depends on the random
choice, though, whereas CBPD complexity is based on a fixed program that can
flip coins.

4.1.3 Our Technique

We use the hardness versus randomness tradeoffs based on the Nisan-Wigderson
pseudorandom generator construction [NW94]. Given the truth-table x ∈ {0, 1}n
of a Boolean function, these tradeoffs define a pseudorandom generator Gx :
{0, 1}d → {0, 1}m with seed length d much less than the output length m that
has the following property: If the pseudorandom distributionGx(Ud) lands in a set
B ⊆ {0, 1}m with significantly different probability than the uniform distribution
Um over {0, 1}m, then x has a succinct description with respect to B and can be
efficiently recovered from that description given oracle access to B [KvM02].

We apply the hardness versus randomness tradeoffs in the following way. Con-
sider a set A and let k = log |A=n|. If we set B equal to the union of the range
of Gx over all x ∈ A=n and set m to be slightly larger than k + d, then for every
string x in A=n the pseudorandom distribution Gx(Ud) lands in B with 100% cer-
tainty whereas the uniform distribution Um lands in B with significantly smaller
probability. We conclude that every x ∈ A=n can be efficiently constructed from a
succinct description given oracle access to B. Moreover, the set B can be decided
efficiently by a nondeterministic machine that has oracle access to A. This allows
us to replace the oracle queries to B by nondeterminism and oracle queries to A,
which is what we need for Theorem 4.1.4.

A similar (but simpler) reconstructive argument underlies the analysis of re-
cent extractor constructions à la Trevisan (see [Sha02] for an excellent survey).
Trevisan [Tre01] viewed the above hardness versus randomness tradeoffs as a
transformation

TR : {0, 1}n × {0, 1}d → {0, 1}m

that takes two inputs, namely a truth-table x ∈ {0, 1}n and a seed y ∈ {0, 1}d,
and outputs the pseudorandom string Gx(y). He observed that TR defines an
extractor: For every distribution X on {0, 1}n with sufficient minentropy k, the
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distribution TR(X,Ud) behaves very similar to the uniform distribution Um with
respect to every possible set B. The argument goes as follows: For a given set
B, let us call a string x ∈ {0, 1}n “bad” if TR(x, Ud) and Um land in B with
probabilities that are more than ε apart (where ε is some parameter). Since bad
strings x with respect to B can be reconstructed from a short description, say of
length `(m, ε), and each individual string x has probability at most 2−k in a source
of minentropy k, the extracted distribution lands in B with the same probability
as the uniform distribution up to an error term of no more than ε+ 2`(m,ε)−k. So,
in order to extract as much of the minentropy of the source as possible, one needs
to minimize the description length `(m, ε). This is exactly what we need for our
compression result of Theorem 4.1.4. Thus, our goals run parallel to those for
designing “reconstructive” extractors that extract almost all of the minentropy
of the source. We employ similar tools (such as weak designs [RRV02]) but need
to deal with a few additional complications:

• In the extractor setting, it is sufficient to argue that a nonnegligible fraction
of the bad strings x have a short description. In particular, the averaging
argument in the standard analysis only shows that a fraction Θ(ε/m) of the
bad strings x has a short description. This slack in the analysis increases the
error bound for the extractor only from ε+ 2`(m,ε)−k to ε+ Θ(m/ε)2`(m,ε)−k.
In our setting, however, we cannot afford to miss any string because we
need a short description for every string in A=n with respect to a single
oracle B.

• As a result, our descriptions need to include more information than in
the extractor setting. There are two main components in the description,
namely one depending on the weak designs underlying the Nisan-Wigderson
pseudorandom generator, and one specifying O(m) random bits used in the
averaging argument. The latter component is the one which is needed in
our setting but not in the extractor context. Balancing the two contribu-
tions optimally leads to the descriptions of length m + O(

√
m log n) from

Theorem 4.1.4. By allowing the describing program not only the power of
nondeterminism but also the power of randomness, we can, in some sense,
mimic the averaging argument from the extractor setting and eliminate the
need for the second component. This results in the shorter descriptions of
length about m used in Theorem 4.1.5.

• Our descriptions need to be efficient – an element x ∈ A=n can be computed
in polynomial time from its description and access to an oracle for B. This
implies a return from the information theoretic setting to the computational
setting which formed the starting point for Trevisan’s and later extractors
based on the reconstructive argument. Our efficiency requirements are not
as strict as in the pseudorandom generator context, though, where each bit
of x can be reconstructed in randomized time (log n)O(1). We can afford
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reconstruction times of the order nO(1) but the process typically needs to
be deterministic.

In the above argument, the Nisan-Wigderson construction may be replaced
by the recent pseudorandom generators or reconstructive extractors based on
multivariate polynomials [TSZS01, SU01]. However, although the latter lead to
optimal hardness versus randomness tradeoffs in some sense [Uma03], they yield
worse parameters than the Nisan-Wigderson construction in our context.

4.2 Preliminaries

4.2.1 Combinatorial Designs

A key ingredient of the Nisan-Wigderson generator is a collection of sets with
small pairwise intersection. Following [NW94], a set system S = S1, . . . , Sm ⊆ [d]
is called a (`, ρ) design if for all i, |Si| = ` and for all i 6= j the intersection
|Si ∩ Sj| ≤ log ρ .

Raz, Reingold, and Vadhan [RRV02] observe that a weaker property on the set
system S suffices for the construction of the Nisan-Wigderson generator. Namely,
the quantity essentially used in the analysis of the generator is a bound on∑

j<i 2
|Si∩Sj |. Set systems with this sum bounded by ρ · (m − 1) for all i are

called (`, ρ) weak designs. Unlike the case with designs, there exist weak designs
where the universe size d does not depend on the number of sets m.

For our purposes, we need to draw another distinction in design terminology.
We need a bound on

∑
j<i 2

|Si∩Sj | in terms of i. Such designs were already con-
structed in [RRV02] but went unnamed. As the distinction will be important
later, we give them their own name, referring to them as uniform weak designs.

4.2.1. Definition. Let S = (S1, S2, . . . , Sm) be a family of sets where for all i,
Si ⊆ [d] and |Si| = `.

1. S is a weak (`, ρ) design if
∑

j<i 2
|Si∩Sj | ≤ ρ · (m− 1) for all i.

2. S is a uniform weak (`, ρ) design if
∑

j<i 2
|Si∩Sj | ≤ ρ · (i− 1) for all i.

Raz, Reingold, and Vadhan show the following lemma [RRV02]:

4.2.2. Lemma. For every `,m and ρ = ρ(`,m) > 1 there exists a set system
S = (S1, S2, . . . , Sm) ⊆ [d] constructible in poly(m, d) time, with either of the
following properties:

1. S is a weak (`, 1) design with d = O(`2 logm).

2. S is a uniform weak (`, ρ) design with d = O(`2/ log ρ).
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It is worth noting that [RRV02] also show a matching lower bound, up to
constant multiplicative factors, to the above construction of uniform weak designs.
In particular, this means that (`, 1) weak designs cannot be made uniform with
the parameters given in item 1 [RRV02, Remark 19].

4.2.2 Error-Correcting Codes

The benefits of composing the Nisan-Wigderson generator with a good list-decodable
code are well demonstrated [Tre01, STV01]. We will use a concatenation of a
Reed-Solomon code with an Hadamard code. The combinatorial list-decoding
properties of this code suffice for our main theorems; however, using additionally
the fact that this code has efficient list-decoding [Sud97, KS99] allows us to prove
a stronger form of our main lemma, the Compression Lemma (Lemma 4.3.1).
The properties we need are summarized in the next two lemmata.

4.2.3. Lemma. For every integer n ≥ 0 and 0 < δ = δ(n) ≤ 1/2, there is a code
LDCn,δ : {0, 1}n → {0, 1}n̄ where n̄ = poly(n/δ) with the following properties:

1. LDCn,δ can be evaluated in time poly(n/δ).

2. Given any string ŷ ∈ {0, 1}n̄, the list of all strings x ∈ {0, 1}n such that
x̂ = LDCn,δ(x) and ŷ agree in at least a 1/2 + δ fraction of the positions
can be generated in time poly(n/δ).

4.2.4. Lemma. Let LDCn,δ be as above and x̂ = LDCn,δ(x). For every rational
0 < δ = δ(n) ≤ 1/2 there is a time bound t = poly(n/δ) such that for any
ŷ ∈ {0, 1}n̄ which agrees with x̂ on a 1/2 + δ fraction of positions,

Ct(x | ŷ) ≤ Ct/2(δ) +O(log(n/δ)).

Proof: With Ct/2(δ) + O(log n) bits we can describe δ, n, and the code LDCn,δ

being used. Given ŷ, n, δ, we can print the poly(n/δ) codewords which agree with
ŷ on more than a 1/2 + δ fraction of positions. By further specifying the index
i of x̂ in this list we can identify x̂ and decode it to print x. This index i can
be given with O(log(n/δ)) bits. As LDCn,δ is efficiently list decodable there is a
function t = poly(n/δ) bounding the running time of the above procedure. 2

4.3 Compression Lemma

In this section, we translate some of the recent progress on extractors back into
the pseudorandom generator setting, resulting in the main tool for our upper
bound results, the Compression Lemma. We first describe the function underlying
Trevisan’s and later extractors, hereafter referred to as Trevisan’s function.
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Let P : {0, 1}` → {0, 1} be any Boolean function, and let S = (S1, . . . , Sm)
be a collection of subsets of [d] where |Si| = `. For a string y ∈ {0, 1}d let y|Si

be
the string in {0, 1}` obtained by projecting y onto the coordinates specified by
Si. Then the Nisan-Wigderson generator NWS,P is defined as

NWS,P (y) = P (y|S1) · · ·P (y|Sm).

Given an input length n, an output length m, a quality parameter δ = δ(m),
and a design parameter ρ = ρ(m) > 1, we define the following function after
Trevisan. Our definition will differ slightly from Trevisan’s original definition in
the use of weak designs instead of designs and that we use the “strong” form of
Trevisan’s function, where the seed of the generator is prepended to the output.
It is in using this strong form of Trevisan’s function that we are able to obtain
a better bound in the Compression Lemma than that given in [BLvM05]. Let
LDCn,δ be as in Lemma 4.2.3 and let ` = log n̄. For u ∈ {0, 1}n, we view LDC(u)
as a Boolean function û : {0, 1}` → {0, 1}. Let S be a (`, ρ) uniform weak design.
Now we define TRδ,ρ : {0, 1}n × {0, 1}d → {0, 1}d × {0, 1}m as

TRδ,ρ(u, y) = (y,NWS,û(y)) = (y, û(y|S1) · · · û(y|Sm)),

Note that while n,m are arbitrary, we need to take the auxiliary input length d
so as to satisfy the conditions of the uniform weak design.

The property of Trevisan’s function that is crucial for extractor constructions
and for our results is the following lemma. It is a refinement of similar statements
[NW94, Tre01, RRV02], where the result was stated for circuit size in [NW94] and
(nonuniform) description size in [Tre01, RRV02]. The new feature of our version
of the lemma is the combination of completeness, succinctness, and efficiency
of the descriptions: every “bad” string with respect to B has a very succinct
description from which it can be efficiently recovered given oracle access to B.

4.3.1. Lemma (Compression Lemma). Let B : {0, 1}m+d → {0, 1}. Given
ε = ε(m) > 0, let δ = ε/m. If

|Pr[B(TRδ,ρ(u, Ud) = 1)]− Pr[B(Um) = 1]| ≥ ε

then for a time bound t = poly(n/ε), we have

Ct,B(u) ≤ ρ ·m+ d+ Ct/2(ε) +O(log(m/ε)).

Furthermore, there is a program that achieves this bound and only makes non-
adaptive queries to B.

Proof: We follow the by now standard proof [NW94, Tre01, RRV02]. The idea
is to use the distinction from the uniform distribution that can be seen with B
to find a bit of the output of TR which can be predicted with advantage – with
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this advantage we can then approximate û and give u a short printing program
using Lemma 4.2.4.

Finding a bit of the output which can be predicted with advantage can be
done using the hybrid argument of [GM84]. We define m + d + 1 distributions,
D0, . . . , Dm+d, where the first i bits of Di are distributed according to the first
i bits of TR(u, Ud), and the last m + d − i bits of Di are distributed according
to the last m + d − i bits of Um. Thus note that D0, and in fact Di for all
0 ≤ i ≤ d are distributed as Um+d, and Dm+d is distributed as TR(u, Ud). As
|Pr[B(Dm+d)]−Pr[B(D0)]| ≥ ε, and all Di are identically distributed for 0 ≤ i ≤
d, for some i > d it must be the case that |Pr[B(Di)]−Pr[B(Di−1)]| ≥ ε/m. For
convenience we remove the absolute value sign by choosing b0 ∈ {0, 1} such that
Pr[B′(Di)]− Pr[B′(Di−1)] ≥ ε/m, where B′(x) = b0 ⊕B(x).

Writing the distributions Di−1, Di out explicitly, we now have:

Pr
y

ri,...,rm

[B′(y, û(y|S1) · · · û(y|Si−1
)û(y|Si

)ri+1 . . . rm)]

− Pr
y

ri,...,rm

[B′(y, û(y|S1) · · · û(y|Si−1
)riri+1 . . . rm)] > ε/m

By an averaging argument, we can fix the bits of y outside of Si to some
value y0 and fix ri+1, . . . , rm to some values ci+1, . . . , cm, while preserving the
above difference. We rename y|Si

as x, and assume without loss of generality that
Si = {1, . . . , `}. Thus we will write the seed y, which now depends only on x, as
y = xy0. Note that x varies uniformly over {0, 1}`, while û(y|Sj

) for j 6= i, is now
a function ûj which depends only on |Si ∩ Sj| bits of x. That is,

Pr
x,b

[B′(xy0, û1(x) · · · ûi−1(x)û(x)ci+1 · · · cm)]

− Pr
x,b

[B′(xy0, û1(x) · · · ûi−1(x)bci+1 · · · cm)] > ε/m (4.1)

Let F (x, b) = (xy0, û1(x) · · · ûi−1(x)bci+1 · · · cm). Our program to approximate
û does the following. On input x, b it evaluates B′(F (x, b)) and outputs b if this
is one and 1− b otherwise. Let gb(x) denote the outcome of this process. We now
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estimate the probability that gb(x) agrees with û(x) over the choice of x, b:

Pr
x,b

[gb(x) = û(x)] = Pr
x,b

[gb(x) = û(x)|b = û(x)] Pr
x,b

[b = û(x)]

+ Pr
x,b

[gb(x) = û(x)|b 6= û(x)] Pr
x,b

[b 6= û(x)]

=
1

2
Pr
x,b

[B′(F (x, b)) = 1|b = û(x)]

+
1

2
Pr
x,b

[B′(F (x, b)) = 0|b 6= û(x)]

=
1

2
+

1

2

(
Pr
x,b

[B′(F (x, b)) = 1|b = û(x)]

− Pr
x,b

[B′(F (x, b)) = 1|b 6= û(x)]

)
=

1

2
+

1

2

(
Pr
x

[B′(F (x, û(x))) = 1]

− Pr
x

[B′(F (x, 1− û(x))) = 1]

)
=

1

2
+ Pr

x,b
[B′(F (x, û(x)) = 1]− Pr

x,b
[B′(F (x, b)) = 1]

≥ 1

2
+

ε

m

By an averaging argument there is a bit b1 ∈ {0, 1} such that gb1(x) agrees with
û(x) on at least a 1/2+ ε/m fraction of x. The queries to B′ are nonadaptive and
that the running time of the approximation is 2O(`) = n̄O(1) = poly(n/ε).

To optimize the description size of the above program, it will be useful to
separate its contributions into three parts:

1. the index i, the bits b0, b1 and O(logm) bits to make the entire description
prefix free.

2. the fixed portion y0 of the seed of size d− `.

3. the bits ci+1, . . . , cm and a description of the functions û1, . . . , ûi−1.

Clearly the first item costs O(logm) bits and the second at most d. We now focus
on item three.

Each function ûj is a function on |Sj ∩Si| bits, thus we can completely specify
it by its truth table with 2|Si∩Sj | bits. Hence we can describe all the functions
û1, . . . , ûi−1 with

∑i−1
j=1 2|Sj∩Si| bits, by concatenating their truth functions. We

can compute the set system S in polynomial time and given the value of i, we
can compute the sizes of |Sj ∩Si| and uniquely decode each function ûj. Thus as
S is a (`, ρ) uniform weak design, we can describe all the functions û1, . . . , ûi−1
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in ρ · (i− 1) bits. Now adding m− i bits to describe ci+1, . . . , cm we see that item
(3) will cost less than ρ · (m− 1) bits.

Putting these three items together, we conclude there is a string ŷ which agrees
with û on a 1/2+ε/m fraction of positions and with Cp,B(ŷ) ≤ ρ·m+d+O(logm).
Now applying Lemma 4.2.4, we obtain the statement of the lemma. 2

Substituting the uniform weak design parameters from Lemma 4.2.2 into the
Compression Lemma, and optimizing with respect to ρ, we find the minimum is
achieved when ρ = 1+`/

√
m. For future reference, we record this in the following

corollary.

4.3.2. Corollary. Let B, ε, δ be as in Lemma 4.3.1, and let ρ = 1 + `/
√
m. If

|Pr[B(TRδ,ρ(u, Ud) = 1)]− Pr[B(Ud+m) = 1]| ≥ ε

then for a time bound t = poly(n/ε), we have

Ct,B(u) ≤ m+ Ct/2(ε) +O(
√
m log(n/ε)).

Furthermore, there is a program that achieves this bound and only makes non-
adaptive queries to B.

4.4 Language Compression by Nondeterminism

In this section, we exhibit the power of nondeterminism in the context of the
language compression problem. We show that Trevisan’s function leads to com-
pression close to the information-theoretic lower bound such that the compressed
string can be recovered from its description by an efficient nondeterministic pro-
gram that has oracle access to the containing language A.

The proof is an application of the Compression Lemma. In order to give short
CN programs relative to A, it suffices to find a set B such that:

• Queries to B can be efficiently answered with an oracle for A and nonde-
terminism.

• For any x ∈ A, the distribution TR(x, Ud) lands in B with significantly
different probability than the uniform distribution Um.

Letting B be the set containing all strings of the form TR(x, e) where x ranges
over A and e over all seeds of the appropriate length d, the first item will be
satisfied. By taking the output length to be slightly larger than log |A| + d,
that is taking it to be “too long”, we can also ensure that the second item is
satisfied. We say “too long” as for this setting of m, Trevisan’s function will not
be an extractor for sources of min-entropy log |A|, see also [TSUZ01]. We now go
through the details.
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4.1.4. Theorem (Restatement). There is a polynomial p(n) such that for any
set A and for all x ∈ A=n,

CNp,A(x) ≤ log |A=n|+O(
√

log |A=n| log n).

Furthermore, there is a program that achieves this bound making nonadaptive
queries to the oracle at length n.

Proof: Fix n and let k = log |A=n|. Let TRδ,ρ : {0, 1}n × {0, 1}d → {0, 1}m+d be
Trevisan’s function with m = k + 1. The parameters δ, ρ will be fixed later.

Define B ⊆ {0, 1}m+d to be the image of A=n × {0, 1}d under the function
TR. That is, B = {(e, y) : ∃x ∈ A=n : TR(x, e) = (e, y)}.

By the choice of m it is clear that Pr[B(Um+d)] ≤ 1/2. For any element
x ∈ A=n, however, Pr[B(TR(x, Ud))] = 1. Thus applying Lemma 4.3.1 with
ε = 1/2 and ρ = 1 + `/

√
k we obtain Cp,B(x) ≤ (1 + `/

√
k)(k+ 1) + d+O(log n).

As ` = O(log n) and d = O(
√
k log n) with this choice of ρ, simplifying gives

Cp,B(x) ≤ k +O(
√
k log n).

We now show how an oracle for B can be replaced by a nondeterministic
program with an oracle for A. By Lemma 4.3.1 we may assume that the queries
to B are nonadaptive. It is clear the “yes” answers of the oracle B can be answered
nondeterministically with an oracle for A. As the queries to B are nonadaptive,
by additionally telling the program the number q of yes answers, the program
can guess the q element subset of the queries which are “yes” answers and verify
them. On any path where the incorrect q element subset has been guessed, at
least one “yes” answer will not be verified and thus this path will reject. The
description of q will only increase the program size by O(log n) bits. 2

The positive use of the oracle in Theorem 4.1.4 also allows us to state the
following corollary about the CN complexity of strings from an NP language.

4.4.1. Corollary. For any set A ∈ NP there is a polynomial p(n) such that
for all x ∈ A=n,

CNp(x) ≤ log |A=n|+O(
√

log |A=n| log n).

Proof: Consider the nondeterministic program with oracle access to A given by
Theorem 4.1.4. Replace the oracle queries by guessing a membership witness and
verifying it, rejecting whenever the verification fails. This gives the nondetermin-
istic generating program we need. 2
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4.5 Language Compression By Nondeterminism

and Randomness

In this section, we show that if we allow the decompression algorithm both the
power of nondeterminism and randomness, then we can reduce the excess in the
description length over the information theoretic lower bound from O(

√
k log n)

to O(log3 n).
In the proof of the Compression Lemma, we included as part of the descrip-

tion of u ∈ A a setting of the random bits ci+1, . . . , cm fixed after position i.
Including a setting of these bits in our description seems wasteful – the averaging
argument of Lemma 4.3.1 shows that a θ(ε/m) fraction of all m − i bit strings
would work equally well to describe u. In spite of this, we do not see how to avoid
specifying them with nondeterminism only. However, if we allow randomization
in our nondeterministic programs, or more precisely, if we consider Arthur-Merlin
generating programs, then we can replace giving a fixed setting of random bits
after position i, by sampling over a polynomial number of possible settings of
these bits. The main benefit of not including these bits is that now, as in the
extractor setting, we can use weak designs instead of uniform weak designs, and
by the first part of Lemma 4.2.2, use designs with the optimal parameter ρ = 1.

One difficulty we need to address is that the number of positive oracle calls
to the oracle B from Section 4.4 depends on the sequence of m − i random bits
ci+1, ci+2, . . . , cm chosen. In the proof of Theorem 4.1.4, we included that number
in the description of elements from A because this allowed us to replace oracle
calls to B by oracle calls to A. When Arthur randomly picks s(n) = poly(n)
such sequences r1, r2, . . . , rs, we cannot include the number of positive oracle
calls to B for every possible choice of r in the description. Instead, we include
the average number of acceptances ā over all possible values of r. With high
probability, the total number of acceptances for the strings r1, . . . , rs will be
within a bounded range of s · ā. If the total number of acceptances for the strings
r1, . . . , rs is indeed within this range, then Merlin will have limited leeway in
his choice of demonstrating particular acceptances. Hence we can show that a
nonnegligible fraction of r1, . . . , rs will give approximations to û, or else we will
catch Merlin cheating. The leeway Merlin has can lead to approximations of
encodings v̂ different from û. However, only a small number of strings v̂ can
occur with probability comparable to that of û or better. We can thus specify
û by distinguishing it from the other high likelihood encodings v̂ with a small
additional number of bits by the method of Theorem 4.1.3.

The technique of providing approximations to the average number of positive
NP queries to limit Merlin’s ability to cheat has been exploited before, e.g., in the
context of random selfreducibility [FF93] and more recently in hardness-versus-
randomness tradeoffs for nondeterministic circuits [SU01].

4.1.5. Theorem (Restatement). There is a polynomial p(n) such that for any
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set A and for all x ∈ A=n,

CAMp,A(x) ≤ log |A=n|+O(log3 n).

Furthermore, there is a program which achieves this bound making nonadaptive
queries to the oracle at length n.

Proof: We follow the proof of Theorem 4.1.4. Fix n and let k = log |A=n|.
Because of the averaging argument, we will need to recover from more errors in
the list decodable code and now take δ = 1

8m
. We will use Trevisan’s function

where the underlying set system S is a (`, 1) weak design. Thus let TRδ,ρ :
{0, 1}n × {0, 1}d → {0, 1}m+d be Trevisan’s function with m = k + 1.

As in the previous proof, we let the set B ⊆ {0, 1}m be the image of A×{0, 1}d
under the function TR. By the choice of m, for any u ∈ A=n,

Pr[B(TR(u, Ud))]− Pr[B(Um)] ≥ 1/2.

By the hybrid argument, there is an i ∈ [m], and a setting of the bits of y outside
of Si such that

Pr
x∈{0,1}`,b

r∈{0,1}m−i

[B(û1(x) · · · ûi−1(x)û(x)r)]− Pr
x∈{0,1}`,b

r∈{0,1}m−i

[B(û1(x) · · · ûi−1(x)br)] ≥
1

2m
.

(4.2)
For convenience in what follows, let F (x, b, r) = û1(x) · · · ûi−1(x)br.

Consider the following approach of approximating û: On input x, pick a
random b ∈ {0, 1} and r ∈ {0, 1}m−i and compute B(F (x, b, r)); if this evaluates
to 1, then output b, otherwise output 1−b. Let gb(x, r) be the function computing
this operation. As in the argument after Equation (4.1), from Equation (4.2) it
follows that Prx,b,r[û(x) = gb(x, r)] ≥ 1/2 + 1

2m
. We set b to a value b1 ∈ {0, 1}

which preserves this prediction advantage. This value b1 will be included as part
of our description. Arthur cannot compute the function gb1(x, r) himself as he
needs Merlin to demonstrate witnesses for acceptance in B. We now show how
to approximate the computation of gb1(x, r) with an Arthur-Merlin protocol.

We say that r gives a α-approximation to û if Prx[gb1(x, r) = û(x)] ≥ α. For
fixed r, we identify gb1(x, r) with the string zb1,r where zb1,r has bit b1 in position x
if and only if gb1(x, r) = 1. For convenience we assume without loss of generality
that b1 = 1 and drop the subscript. Note that with this choice the number of ones
in zr is the number of strings x for which B accepts û1(x) · · · ûi−1(x)b1r. With
w(z) we denote the number of ones in a string z.

Arthur randomly selects strings r1, . . . , rs, each of length m− i, for a polyno-
mial s = s(n). Whereas in the proof of Theorem 4.1.4 we included in the descrip-
tion the number of acceptances by B for a particular setting of bits ci+1, . . . , cm,
we now include the average ā = 2i−m

∑
x,r gb1(x, r) number of acceptances over

all r ∈ {0, 1}m−i. To limit Merlin’s freedom in providing these acceptances, we
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want the number of acceptances by B over the strings r1, . . . , rs to be close to the
expected s · ā.

The next claim shows that with high probability the strings r1, . . . , rs will
satisfy our requirements.

4.5.1. Claim. For any γ = γ(m, n̄) > 0, there exists s = O(n̄2/γ2) such that
with probability at least 3/4 over Arthur’s choice of r1, . . . , rs the following two
things will simultaneously happen:

1. A 1
8m

fraction of r1, . . . , rs will give 1
2

+ 1
4m

approximations to û.

2. The total number of acceptances by B over the strings r1, . . . , rs will be
within γs of the expected. That is,

|
s∑
j=1

w(zrj)− sā| ≤ γs.

Proof: To lower bound the probability that both of these events happen, we
upper bound the probability that each event individually does not happen and
use a union bound.
Item (i): Notice that for a given r, if

Pr
x,b

[B(û1(x) · · · ûi−1(x)û(x)r)]− Pr
x,b

[B(û1(x) · · · ûi−1(x)br)] ≥
1

4m

then r gives a 1
2
+ 1

4m
-approximation of û. We will say that r is bad if it does not

yield a 1
2

+ 1
4m

approximation to û. By Equation (4.2) and Markov’s inequality,

Pr
r

[r ∈ bad] ≤
1− 1

2m

1− 1
4m

< 1− 1

4m
.

By a Chernoff bound, for some constant c1 > 0,

Pr
r1,...,rs

[|bad| ≥
(

1− 1

8m

)
s] ≤ exp(−c1s/m2).

Item (ii): By a Chernoff bound, for some constant c2 > 0,

Pr[|(1/s)
s∑
j=1

w(zrj)− ā| ≥ γ] ≤ 2 exp(−c2γ2s/n̄2).

By taking s = c3n̄
2/γ2 for a sufficiently large constant c3, the probability of

each item will be less than 1/8, and the claim follows. 2
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After choosing the strings r1, . . . , rs, Arthur requests Merlin to provide sā−sγ
many witnesses for acceptances in B. Arthur verifies these witnesses and rejects
if any of them fail. From the acceptances provided by Merlin, Arthur constructs
the strings z′r1 , . . . , z

′
rs , where position x of the string zrj has a one if and only if

Merlin provided a witness for B(F (x, b1, rj)) = 1. We now show that, with high
probability, no matter which acceptances Merlin chooses to demonstrate, at least
a 1

16m
fraction of z′r1 , . . . , z

′
rs will give 1

2
+ 1

8m
approximations of û.

4.5.2. Claim. If r1, . . . , rs satisfy the two conditions of the previous claim with
γ = n̄

256m2 , then for any demonstration of acceptances by Merlin at least a 1
16m

fraction of z′r1 , . . . , z
′
rs will be 1

2
+ 1

8m
approximations to û.

Proof: By assumption, the number of acceptances for the strings r1, . . . , rs is
between sā− sγ and sā + sγ. Since Merlin has to provide witnesses for sā− sγ
acceptances and can never fool Arthur in providing an invalid witness, Merlin
has at most 2sγ acceptances to play with. Consider them as Merlin’s potential
to fool Arthur.

How can zrj and z′rj differ? As Arthur verifies the witnesses provided by
Merlin, wherever z′rj has a one, zrj must also have a one. Thus, if zrj and z′rj
differ in t positions, then Merlin has to spend at least t units of his potential on
rj. Since Merlin’s total potential is bounded by 2sγ, we have that the number of
rj’s such that zrj and z′rj differ in t or more positions is bounded by 2sγ/t.

Under the conditions of the claim, a 1
8m

fraction of the zrj are 1
2
+ 1

4m
approx-

imations of û. Setting t = n̄
8m

and γ = n̄
256m2 , we have that a fraction a least

1
8m
− 2γ

t
= 1

16m
of the z′rj ’s are approximations that agree with û in a fraction at

least 1
2

+ 1
4m
− 1

8m
= 1

2
+ 1

8m
of the positions. 2

Now putting these claims together, and taking s to be a sufficiently large
polynomial, say s = ω(m4), we have that with probability 3/4 over Arthur’s
choice of r1, . . . , rs, at least a 1

16m
fraction of these settings will give 1

2
+ 1

8m

approximations to û. A particular rj can give a 1
2
+ 1

8m
approximation to at most

the number of codewords that agree with it on a fraction at least 1
2

+ 1
8m

of the
positions. By Lemma 4.2.3, this number is bounded by a polynomial q(m).

Let us say that v̂ ∈ LIKELY if at least a 1
32m

fraction of r give a 1
2

+ 1
8m

approximation of v̂. Note that the size of the set LIKELY is at most 32mq. By
Theorem 4.1.3, there is a distinguishing program p1 of length 2 log(32mq) such
that p1(û) accepts and p1(v̂) rejects for any û 6= v̂ ∈ LIKELY.

We make a list of all codewords v̂ which agree with any of z′r1 , . . . , z
′
rs on at

least a 1
2
+ 1

8m
fraction of positions. We then remove all elements of this list which

occur fewer than s
16m

times. With probability more than 2/3, û is on this list and
all elements v̂ on the list are in LIKELY. In that case, from the elements on the
list, the distinguishing program p1 will accept û and û only. As the list is explicit,
the distinguishing program p1 does not need to make any oracle calls.
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To carry out the above procedure, we need the following information:

1. the index i, the bit b1, the average number of acceptances ā to high enough
precision, and the distinguishing program p1, and

2. a description of the functions û1, . . . , ûi−1.

Note that O(log n) bits of precision is enough to encode ā. Thus, the first item
costs O(log n) bits. As we took S to be a (`, 1) weak design, the second item
costs less than m = log |A=n|+O(log3 n) bits.

With probability more than 2/3, Merlin can make Arthur accept, and when-
ever Arthur accepts he produces u as output. Moreover, Arthur only queries the
oracle A on strings of length n = l(u), and rejects whenever an oracle query is
answered negatively. 2

As in the case of nondeterministic language compression, the positive use
of the oracle in Theorem 4.1.5 implies that with a small O(log n) increase in
description size, sets A ∈ AM can be compressed by an Arthur-Merlin protocol
without reference to an oracle for the set A. It turns out, however, that a more
general class of sets which we refer to as AM gap sets, can be compressed by AM
protocols.

A gap set A is defined by an AM algorithm in the sense that for all x ∈ A we
are guaranteed that the algorithm will accept x with high probability. It could
be the case, however, that there are strings x 6∈ A which are also accepted with
reasonable probability. The next theorem shows that, as far as compression goes,
the only thing that matters is the number of strings which are accepted by the
protocol with probability greater than 1/3. The compression of these AM gap
sets will be very useful in Chapter 6 when we study symmetry of information.

4.5.3. Theorem. Let A be a set and suppose there is a polynomial time bound
q(n), and predicate Q such that

• for all u ∈ A=n,Prr∈{0,1}q(n) [∃y Q(u, y, r) = 1] ≥ 2/3

• ‖{u ∈ {0, 1}n : Prr∈{0,1}q(n) [∃y Q(u, y, r) = 1] > 1/3}‖ ≤ 2k,

and for all u, y, r the predicate Q(u, y, r) can be computed in time q(n). Then there
is a polynomial time bound p(n) such that for all u ∈ A=n, we have CAMp(u) ≤
k +O(log3 n).

Proof: By amplification and the results of [FGM+89], we can transform the
predicate Q into a predicate Q′ taking random strings of length a polynomial
q′(n) and with the property

• if u ∈ A=n then Prr[∃y Q′(u, y, r) = 1] = 1
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• ‖{u : Prr[∃y Q′(u, y, r) = 1] ≥ 2−n−2}‖ ≤ 2k

for r chosen uniformly over {0, 1}q′(n). Let L = {u : Prr[∃y Q′(u, y, r) = 1] ≥
2−n−2}.

For each r ∈ {0, 1}q′(n) we define a subset of {0, 1}m+d by

Br = {(e, z) : ∃u ∈ {0, 1}n,∃y TR(u, e) = (e, z) ∧Q′(u, y, r) = 1}
In the sequel we denote by Br(z) the predicate z ∈ Br.

Clearly if u ∈ A=n, then Pre[Br(TR(u, e))] = 1, for any r ∈ {0, 1}q′(n). Now
for a randomly chosen z ∈ {0, 1}m+d and randomly chosen r ∈ {0, 1}q′(n), we
calculate the probability that z ∈ Br. As for a binary variable the probability of
being 1 is equal to the expectation of the variable, we have

Pr
r,z

[z ∈ Br] = Er,z[Br(z)].

By linearity of expectation, we can divide the latter into two contributions, that
from elements (e, z) ∈ {0, 1}m+d for which ∃u ∈ L and such that TR(u, e) = (e, z),
and those (e, z) for which this is not the case.

Er,z[Br(z)] =
∑

(e,z)=TR(u,e)
u∈L

E[Br(z)] +
∑

(e,z) 6=TR(u,e)
u∈L

E[Br(z)]

By taking m = k + 2 the first term can be bounded by 1/4. The second term is
bounded by 2m2−n−2 ≤ 1/4. Going back to probability notation, we have for any
u ∈ A=n

Pr
r,e

[Br(TR(u, e))]− Pr
r,z

[Br(z)] ≥ 1/2.

It follows by the hybrid argument that there is an i ∈ [m] and a setting of the
bits of e outside of the set Si such that

Pr
x,r,r′

[Br(û1(x) . . . ûi−1(x)ûi(x)r
′]− Pr

x,r,r′,b
[Br(û1(x) . . . ûi−1(x)br

′)] ≥ 1

2m
. (4.3)

When the bits of e outside of Si are fixed, all the functions ûi only depend on the
bits inside of Si, thus the variable x in the above ranges uniformly over ‖Si‖ bit
strings.

Let F (x, b, r′) = û1(x) . . . ûi−1(x)br
′. Our algorithm to approximate ûi will

do the following: on input x, choose uniformly at random b, r, r′ and evaluate
Br(F (x, b, r′)); if this evaluates to 1, then output b, otherwise output 1− b. Call
the output of this algorithm gb(e, r, r

′). The probability that gb(e, r, r
′) agrees

with ui(x) can be estimated as in the argument following Equation (4.1) as

Pr
x,r,r′,b

[gb(x, r, r
′) = û(x)] ≥ 1

2
+

1

2m

The rest of the argument now proceeds with minor modifications as in the
proof of Theorem 4.1.5 to show that the computation of gb(x, r, r

′) can be ap-
proximated by an AM algorithm. 2
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4.6 Deterministic Language Compression

In this section we see that the compression lemma can also be useful even if we
have neither the power of nondeterminism nor randomness. Although we can no
longer get close to the information theoretic lower bound of log |A|, we can show
a tight upper bound to the lower bound of Theorem 4.1.2, again up to an additive
O(
√

log |A|) factor in description size and a multiplicative polynomial factor in
running time. This result again shows the wide applicability of the compression
lemma.

Very little is known about language compression in the deterministic setting.
The seminal paper of Goldberg and Sipser [GS91] asks the question of whether
dense sets, that is sets containing a 1/poly fraction of all strings at a given
length, can be optimally compressed in polynomial time. They give a randomized
algorithm based on approximate arithmetic encoding which runs in polynomial
time and has an expected worst case compression length O(log n) larger than the
optimal.

A natural question is whether the same the same bound can be achieved de-
terministically. Vadhan, Trevisan, and Zuckerman [TVZ04] take up this question
and show using extractors that one can deterministically achieve expected com-
pression length slightly larger than optimal for dense sets in polynomial time.
This result improves over Goldberg and Sipser in that both the encoding and the
decoding can be done in deterministic polynomial time, and the expected com-
pression length is slightly better. But the result of [TVZ04] is weaker than that
of Goldberg and Sipser in that they consider expected compression length instead
of worst case—in fact, in the scheme of Vadhan, Trevisan, and Zuckerman some
strings are encoded with the identity coding of n bits.

Our result is again incomparable to the previous two. We achieve efficient
deterministic decoding (but not also encoding as [TVZ04]) with respect to worst
case description length. The main drawback to our result is that we suffer an
excess term of O(

√
log |A|) in our description length.

4.1.6. Theorem (Restatement). For any set A and all x ∈ A=n,

Ct,A(x) ≤ log |A|+O(
√

log |A=n| log n)

for a time bound t = poly(n)2n−log |A=n|.

Proof: Fix n and let k = log |A=n|. Let TRδ,ρ : {0, 1}n × {0, 1}d → {0, 1}m+d be
Trevisan’s function with m = k + 1. The parameters δ, ρ will be fixed later.

We wish to find a set B such that for every x ∈ A the probability over y that
TR(x, y) lands in B is bounded away from the probability an m + d bit string
chosen uniformly at random lands in B. Furthermore, given an m+ d bit string
z we wish to be able to decide the question z ∈ B in time about 2n−k. Towards
this aim, we first define two auxiliary sets B′ and B′′.
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Let B′ = {z ∈ {0, 1}m+d : ∃x ∈ A, y,TR(x, y) = z}. Further let B′′ = {z ∈
{0, 1}m+d : there are at least 2n−k+1 many (x, y) such that TR(x, y) = z}. B′′ is
the set of “heavy elements” which have at least 4 times the average degree. Now
we set B = B′ ∪B′′. Let us check that B has the desired properties.

• By construction, Pry[TR(x, y) ∈ B] = 1 for any x ∈ A=n

• Now we check the probability a random string lands in B. The cardinality
of B′ is at most 2k+d = 2m+d−1. For a fixed string y, at most 1/4 many m bit
strings can have 4 times the average degree, thus |B′′| ≤ 2m+d−2. In total,
by a union bound, we have |B| ≤ (3/4)2m which implies Prz[z ∈ B] ≤ 3/4.

• Now we see how to decide if a given string z is in B. The key idea is to
determine the number of solutions in x of the equation TR(x, y) = z, for
fixed z (and therefore also fixed y as y is the first d bits of z). If this number
of solutions is large then we know that z ∈ B′′. If it is not too large, then
we can afford to enumerate all the solutions x and check if any of them is
in A.

For a fixed y, Trevisan’s function TRy(x) = TR(x, y) is a linear transforma-
tion over GF (2). In fact we can view TRy as the product of two matrices:
the matrix describing the error-correcting code, and the matrix describing
the restrictions of y in the design system. This latter matrix will have ex-
actly one one in each row. To decide if z ∈ B we first determine through
Gaussian elimination if the matrix equation TRyx = z has a solution over
GF (2), where y is the first d bits of z. This can be done in polynomial
time. If it does not have a solution, then we answer “no”. If it does have
a solution, then there are 2n−rk(TRy) many solutions where rk(TRy) is the
rank of the matrix TRy over GF (2).. Again rk(TRy) is something we can
compute in polynomial time. If this value is larger than 2n−k+1 then we
answer z ∈ B. Otherwise, we enumerate solutions to TRy(x) = z. For each
solution we query x ∈ A and answer z ∈ B if ever the answer is yes. This
will take time at most poly(n)2n−k. Thus the total running time will be
poly(n)2n−k.

Applying the Compression Lemma with ε = 1/8 and the optimal value of ρ as
given in Corollary 4.3.2 we find that Ct,B(x) ≤ k+

√
k log n for any x ∈ A=n and

a polynomial time bound t. The theorem now follows as we as we can answer
each oracle query to B in time poly(n)2n−k, and there are at most poly(n) many
queries. 2
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4.7 Lower Bounds

In this section we will see some lower bounds on language compression in the
resource bounded setting. All these bounds will be stated given the set as an
oracle.

First, we argue that randomness barely helps to efficiently generate a string
from a short description. In fact, the following result proves that there are sets
A of size 2k such that no string in A can be generated with probability at least
2/3 by an efficient randomized program of size a bit less than n− k. Recall that
achieving the information-theoretic bound would require programs of size k.

4.1.7. Theorem. For all integers n, k, and t such that 0 ≤ k ≤ n, there exists
a set A such that log |A=n| = k and for every x ∈ A=n,

CBPt,A(x) ≥ n− log |A=n| − log t− 5.

Proof: We will argue that there are many strings x of length n that (i) are not
generated with high probability by a randomized program p of small size with
access to the empty oracle and (ii) have a small probability of being queried by
any program p of small size that runs in time t and has access to the empty oracle.
Putting 2k such strings in the oracle A does not affect the output distribution of
any of these programs p by much, so they still cannot generate any of the strings
x we put in A.

Let’s call a randomized program p small if its length is less than some integer
` which we’ll determine later. Let Bi denote the set of inputs x of length n for
which there exists a small program p that outputs x with probability at least 1/2
on the empty oracle. Since every program can induce at most two elements in Bi

and there are less than 2` small programs, we have that |Bi| ≤ 2`+1.
Consider the set of strings y such that p queries y with probability at least

2−s on the empty oracle, where s is another integer we’ll set later. If p runs in
time t, the size of this set is bounded by 2st. Let Bq denote the set of all queries
y of length n that are asked with probability at least 2−s by at least one small
program p on the empty oracle. We have that |Bq| ≤ 2`+st.

Let A be a set of 2k strings of length n that are neither in Bi nor in Bq. Such
a set exists provided

2k ≤ 2n − 2`+s+1t. (4.4)

Now, consider any small program p with access to oracle A. Since A does not
contain any string in Bq, the probability that p outputs something different on
the empty oracle and on oracle A is no more than 2k−s. Thus, for any string x
outside of Bi, the probability that p outputs x on oracle A is less than 1

2
+ 2k−s.

Setting s = k+log 6 and using the fact that every string in A is outside of Bi, we
have that no string in A can be generated by p with probability at least 1

2
+ 1

6
= 2

3

on oracle A. Setting ` = n − k − log t − 5 satisfies Equation (4.4), and thereby



4.7. Lower Bounds 57

finishes the proof. 2

In the absence of nondeterminism, the distinction between generating pro-
grams and distinguishing programs becomes relevant. Indeed, Theorem 4.1.3
implies that randomized distinguishing programs can do much better than the
randomized generating programs from Theorem Theorem 4.1.7: We can realize
an upper bound of roughly 2 log |A=n| in the case of distinguishing programs,
even for deterministic ones. [BLM00] proved that the factor of 2 is tight in the
deterministic setting. We now extend that result to the randomized setting, i.e.,
we exhibit a set A that contains an exponential number 2k of strings of length
n such that at least one of these strings cannot be distinguished from the other
strings in A by a randomized program of length a little bit less than 2k with
oracle access to A.

As in [BLM00], the core of the argument is a combinatorial result on cover
free set systems. A family F of sets is called K-cover free if for any different sets
F0, . . . , Fk ∈ F , F0 6⊆ ∪Kj=1Fj. The combinatorial result we use states that K-
cover free families of more than K3 sets need a universe of at least K2 elements.

4.7.1. Lemma ([DR82]). If F is a K-cover free family containing M sets over

a universe of L element universe, and M > K3 then L ≥ K2 logM
2 logK+c

for some
constant c.

The connection between distinguishing programs and cover free families is the
following. Recall that for a given string x and oracle A, a randomized distin-
guishing program accepts x with probability at least 2/3 on oracle A, and rejects
every other string with probability at least 2/3 on oracle A. Let FA

x denote the
set of randomized programs of length less than ` that accept x with probability
more than 1/2 on oracle A. If every string in A has a randomized distinguishing
program of size less than ` on oracle A, then the family {FA

x : x ∈ A=n} is
K-cover free for K = |A=n| − 1.

The size of this family is only M = K + 1. In order to obtain a larger family,
we argue that if all strings in A are of length n and Kolmogorov random with
respect to the other strings in A, then no short efficient program p on input x ∈ A
has a noticeable probability of querying a string in A other than x. Thus, pA(x)
and p{x}(x) behave essentially the same. Notice that p{x}(x) does not depend
on A. This allows us to consider a larger set B containing M > K3 strings x
of length n that are Kolmogorov random with respect to the other strings in B.
Assuming every subset A of B of size 2k = K − 1 has an efficient randomized
distinguishing program of size less than ` when given oracle access to A, we have
that the family

F = {F {x}
x : x ∈ B} (4.5)

is a K-cover free family of size M > K3. Lemma 4.7.1 then implies that ` ≥
2k −O(1).
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We now fill in the details of the proof.

4.1.8. Theorem (Restatement). There exist positive constants c1, c2, and c3
such that for all integers n, k, and t satisfying k ≤ c1n− c2 log t there exists a set
A with log |A=n| = k and a string x ∈ A=n such that

CBPDt,A(x) ≥ 2 log |A=n| − c3.

Proof: Let z be a string of length Mn such that C(z) ≥ l(z), where M = 2m will
be determined later. Let B consist of the strings of length n obtained by chopping
up z into M pieces of equal size. All M strings are guaranteed to be different as
long as m ≤ n/2 − O(log n); otherwise, we could obtain a short description of z
by describing one of its length n segments as a copy of another one.

A key observation is the following:

4.7.2. Claim. For every subset A of B, every x ∈ A, and every randomized
program p of length less than ` running in time t,

|Pr[pA(x) accepts]− Pr[p{x}(x) accepts]| < 1/6,

provided n > `+ c(m+ log(t+ n)), where c is some universal constant.

Proof: We will argue that every random bit sequence that leads to a different
outcome for pA(x) and p{x}(x), has a short description with respect to z. Since
there can only be few random bit sequences with a short description, this implies
the claim.

Let us denote the outcome of p on input x, oracle O, and random bit sequence
r ∈ {0, 1}t by pO(x, r). If pA(x, r) 6= p{x}(x, r), then p{x}(x, r) must query some
string y ∈ A. We can describe this y with p, x, r, and an index of size log t
indicating the time when the query takes place. By adding the remaining parts
of z, the indices of x and y in z, and making everything prefix free, we obtain a
description of 〈z, r〉. This shows

C(〈z, r〉) ≤ l(z) + l(r)− n+ `+ 2m+O(log(t+ n)).

Symmetry of information tells us that

C(〈z, r〉) ≥ C(z) + C(r | z)−O(m+ log(t+ n)).

Since C(z) = l(z), we conclude that

C(r | z) ≤ l(r)− n+ `+O(m+ log(t+ n)).

We can make the fraction of random bit strings r that have such a short descrip-
tion less than 1/6 by choosing n > `+ c(m+log(t+n)) for some sufficiently large
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constant c. The claim follows. 2

Now, suppose that for every subset A of B of size 2k, every string x ∈ A
satisfies CBPDt,A(x) < `, where k, t, and ` are some integers. Then the family
F defined by Equation (4.5) is K-cover free for K = 2k − 1. Indeed, consider
any subset A of B containing the 2k different strings x0, x1, . . . , xK from B. Let
p be a randomized program of length less than ` that runs in time t, such that
pA(x0) accepts with probability at least 2/3, and pA(xi) rejects with probability

at least 2/3 for 1 ≤ i ≤ K. Claim 4.7.2 implies that p ∈ F
{x0}
x0 and p 6∈ F

{xi}
xi

for any 1 ≤ i ≤ K. Thus, F
{x0}
x0 is not covered by the union of the K sets F

{xi}
xi ,

1 ≤ i ≤ K.
Since the family F is of size M = 2m, Lemma 4.7.1 implies that ` ≥ 2k − c3

for some constant c3, provided M > K3. All size conditions can be met for values
of k up to c1n− c2 log t for some positive constants c1 and c2. 2

Recall that [BLM00] established the same lower bound as in Theorem 4.1.8
for CD complexity instead of CBPD complexity. They also extended their result
to CD complexity with access to an oracle in NP ∩ coNP. Similar to the for-
mulation of Theorem 4.1.8, their extension can be phrased as follows: For every
robust (NP ∩ coNP) machine M , there exist constants c1, c2, and c3 such that
for all integers n, k, and t satisfying k ≤ c1n− c2 log t, there exists a set A with
log |A=n| = k and a string x ∈ A such that

CDt,MA

(x) ≥ 2 log |A=n| − c3.

The robustness condition is implicit in the proof in [BLM00]. By a robust (NP∩
coNP) machine M , we mean an oracle machine M such that for every oracle B,
MB behaves like an (NP ∩ coNP) machine. Note, though, that Theorem 4.1.4
implies the existence of a promise-(NP ∩ coNP) machine M and a polynomial p
such that for any set A and every x ∈ A,

CDp,MA

(x) ≤ log |A=n|+O(δ(n)),

where δ(n) =
√

log |A=n| log n.
In a similar way, we can extend Theorem 4.1.8 as follows: For every robust

(AM ∩ coAM) machine M , there exist constants c1, c2, and c3 such that for
all integers n, k, and t satisfying k ≤ c1n − c2 log t, there exists a set A with
log |A=n| = k and a string x ∈ A such that

CDt,MA

(x) ≥ 2 log |A=n| − c3.

However, without the robustness requirement, Theorem 4.1.5 implies the exis-
tence of a promise-(AM ∩ coAM) machine M and a polynomial p such that for
any set A and every x ∈ A,

CDp,MA

(x) ≤ log |A=n|+O(log3 n).





Chapter 5

Samplable Sources and Time Limited
Universal Distributions

In the last chapter, we went hunting for the resources that would allow near
optimal compression of languages. We saw that such compression was possible
in polynomial time using nondeterminism; we also saw lower bounds that in the
oracle setting compression near the information theoretic limit is not possible by
randomized printing or distinguishing programs that work in polynomial time.

Unfortunately, it is unlikely that nondeterministic compression schemes will
be available for desktop computers anytime soon. In a quest for a theory of com-
pression more practically relevant, in this chapter we ask the question: what is
the largest class of sources which can be compressed in deterministic polynomial
time? That is, instead of focusing on compressing languages and varying the
resources available to the compressor, we now insist on polynomial time compres-
sion schemes and vary the type of sources we try to compress. As is our wont, we
look for classes of sources which are computationally defined.

Samplable sources are a general class of sources proposed and investigated
with this question in mind by Trevisan, Vadhan, and Zuckerman [TVZ04]. A
probability distribution is called samplable if it can be efficiently simulated by
a probabilistic algorithm. Samplable sources are interesting for a couple of rea-
sons. First of all, they are a natural polynomial time analog of the enumerable
probability distributions we discussed in the third pillar on compression of prob-
ability distributions. Secondly, unlike the case with languages, there does not
seem to be any immediate reason why, in the setting of Kolmogorov complexity,
the compression of such sources should not be possible.

Thus far, most results concerning compression of samplable sources have
dealt with a more demanding model of compression than that of Kolmogorov
complexity. In this model of compression, one asks for two efficiently com-
putable functions, called encoding Enc and decoding Dec, with the property that
Dec(Enc(x)) = x and where l(Enc(x)) is the compressed length of x. Remem-
ber that in resource-bounded Kolmogorov complexity we only demand that the

61
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decoding function be efficiently computable.
We will first review the results about compression of samplable sources in this

stronger model of compression, and then discuss the implications of the com-
pression of samplable sources in the setting of Kolmogorov complexity. We will
see that the question of compression of samplable sources, as in the resource un-
bounded counterpart, is intimately related to time limited universal distributions.
We will also see that the compression of samplable sources implies derandomiza-
tion, namely that BPP 6= EXP. This should not be taken as an indication that
compression of samplable sources is not possible in the Kolmogorov setting as it is
widely believed that BPP 6= EXP. Indeed, recently Antunes and Fortnow [AF05]
have shown that compression of samplable sources is possible in the Kolmogorov
setting under a derandomization assumption, though they need an assumption
stronger than BPP 6= EXP.

5.1 Preliminaries

5.1.1. Definition. For a probability distribution X, we will let sup(X) denote
the support of X, that is the set of elements x for which Pr[X = x] > 0.

5.1.2. Definition. Let Xn be a probability distribution over {0, 1}n. We say
that Xn is samplable if there is a probabilistic polynomial time algorithm A such
that Prr[A(0n, r) = x] = Pr[Xn = x], for all x ∈ {0, 1}n.

The following two examples show some of the differences between languages
and samplable sources.

5.1.3. Example. An interesting example of a set which is samplable in poly-
nomial time and not known to have a polynomial time membership algorithm is
the set of strings with low polynomial time printing complexity. Let t(n) be a
polynomial and consider the set Sn = {x ∈ {0, 1}≤n : Ct(x) ≤ m}. There is a
sampling algorithm A whose support is the set Sn and furthermore which gives
every element in S probability at least 2−m−1. On input 0n this algorithm chooses
at random a program p of length at most m and then runs U(p) for t time steps.
If U(p) halts in at most t steps with output a string of length n, then A outputs
this string. Otherwise, it outputs 0n.

5.1.4. Example. An example of a set which has a polynomial time membership
algorithm but which is unlikely to be samplable is the set of satisfying assignments
for a formula φ. Given a formula φ and assignment a, we can decide in polynomial
time if a satisfies φ. If there were an algorithm to sample the witnesses of φ,
however, we could simply run this algorithm on the all zero string to obtain a
witness to the formula and verify it is satisfiable, implying P = NP.
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In this chapter we will also discuss a stronger notion of compression which
requires both the encoding and decoding algorithms to be efficient. Remember
that in resource bounded Kolmogorov complexity we only require the decoding
algorithm to be efficient. As the demands on the compressor are stronger, we
relax the notion of compressibility in this model to consider average compressed
length rather than worst-case compressed length.

5.1.5. Definition. We say that Xn is compressible to length m if there exists
polynomial time computable functions Enc,Dec such that Dec(Enc(x)) = x for
every x ∈ sup(Xn) and E(l(Enc(x))) ≤ m, the expected compressed length is at
most m.

5.2 Time limited universal distribution

A universal recursively enumerable probability distribution is one which gives as
much probability to every element x as any other recursively enumerable distri-
bution, up to a constant multiplicative factor. As an application of the third
pillar of Kolmogorov complexity, we have seen in Chapter 2 that 2−K(x) and
Q(x) =

∑
p:U(p)=x 2−l(p) are examples of universal recursively enumerable proba-

bility distributions.
Universal distributions have had many interesting applications, for example

to the relationship between worst-case and average case complexity [LV92b] and
to learning theory [LV92a]. A drawback of the universal distribution 2−K(x),
however, is that it is uncomputable. We are thus again motivated to look at
universal distributions in the time bounded domain in the hope of finding more
applications where the uncomputability of 2−K(x) might pose a problem. Many
questions still remain about time bounded universal distributions, for example
it is not known if 2−K

t(x) and Qt(x) =
∑

p:Ut(p)=x 2−l(p) agree as in the time
unbounded case. Here we see that this question is equivalent to the compression
of samplable sources.

5.2.1. Theorem. The following are equivalent:

1. For any samplable source Xn there is a polynomial t(n) such that for all
x ∈ sup(Xn)

Kt(x) ≤ − log Pr[Xn = x] +O(log n)

2. For every polynomial t(n) there is a polynomial t′(n) such that Qt(x) ≤
2−K

t′ (x)+O(logn)

Proof: (1 ⇒ 2) : Fix a polynomial t = t(n). We define a sampling algorithm A
over n bit strings as follows. We first choose a string p of length at most t(n) under
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the distribution where a string of length k is given probability 2−k/t(n). We then
run U(p) for t(n) time steps. If U(p) halts with output a string x of length n within
this time, then we output x; otherwise, we output 0n. If

∑
p:Ut(p)=x 2−l(p) = γ,

then our sampling algorithm A will output x with probability at least γ/t(n).
Notice that no program of length longer than t(n) factors into this sum as in t(n)
the machine U would not have time to read the entire program. Now applying

the hypothesis gives that there exists a polynomial t′(n) such that 2−K
t′ (x) ≥

γ2−O(log t′(n)).
(2 ⇒ 1) : Fix a polynomial t(n) and suppose that Xn is samplable in time t

by an algorithm A. Let x ∈ sup(Xn) with Pr[Xn = x] = γ. With some overhead
in time and space, a prefix free description of A, 0n, r forms a prefix free program
for x on the universal machine U , for each r where A(0n, r) = x. Thus for some
polynomial t′(n) we have

∑
p:Ut′ (p)=x 2−l(p) ≥ γ2−O(logn). Thus by hypothesis, for

some polynomial t′′(n) we have Kt′′(x) ≤ − log γ +O(log t′′(n)). 2

In the rest of this chapter we state our results in terms of compression of
samplable sources. Of course, because of Theorem 5.2.1 the same results also

hold with respect to Qt(x) ≤ 2−K
t′ (x)+O(log t′(n).

5.3 Compression of samplable sources

We first review previous negative results on the compression of samplable sources
in the model stronger than Kolmogorov complexity which demands efficient en-
coding and decoding functions.

The following theorem is attributed to Levin by Goldberg and Sipser [GS89].

5.3.1. Theorem (Levin). Assume that there exists a one-way function. Then
there is a samplable source X with entropy nε which is not compressible to length
n− 3.

Proof: By the results of H̊astad et al. [HILL99], the existence of a one-way
function implies the construction of a pseudorandom generator G : {0, 1}nε →
{0, 1}n with the property: for any set C ∈ P

|Pr[G(Unε) ∈ C]− Pr[Un ∈ C]| ≤ 1/n.

Let Xn = ∪r∈{0,1}nεG(r). Xn is the support of a samplable source, as witnessed
by the algorithm which on input 0n flips a random string r ∈ {0, 1}nε

and outputs
G(r). Now assume that Xn can be compressed. Then we design a set C ∈ P
which the generator does not fool, as follows:

x ∈ C if and only if Dec(Enc(x)) = x and l(Enc(x)) ≤ n− 3.
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As the Enc,Dec can be computed in polynomial time, the set C is decidable in
polynomial time. By the assumption that Xn is compressible to length n− 3 we
have C(x) = 1 for every x ∈ Xn. On the other hand |{x : C(x) = 1}| ≤ 2n−2,
and so Pr[Un ∈ C] ≤ 1/4, thus we have a contradiction. 2

5.3.2. Theorem (Trevisan, Vadhan, Zuckerman). If BPP 6= SZK then
there is a samplable source Xn which is not compressible to length H(Xn) + n1−α

for any constant α > 0.

Proof:[sketch] The proof combines two ideas. The first is that the problem
of estimating the entropy of a general polynomial time samplable source Xn is
complete for SZK [GV99].

The second idea is that if Xn is compressible, then we can obtain a good esti-
mate of the entropy of Xn. In particular, all that we need to estimate the entropy
of Xn is the encoding algorithm. Say that A is a sampling algorithm for Xn. Then
our algorithm to estimate the entropy of Xn on input n randomly chooses poly-
nomially many strings r1, . . . , rm and outputs the average of l(Enc(A(0n, ri))).
With high probability, this will give a good estimate of the entropy of X. 2

Notice Theorem 5.3.2 only relied on the fact that the source Xn had an effi-
cient encoding algorithm. We will now return to the setting of resource bounded
Kolmogorov complexity and see the consequences of a source having only an ef-
ficient decoding algorithm. We will see that this implies BPP 6= EXP. We first
need the following lemma.

5.3.3. Lemma. Suppose the following hold:

• NP ⊆ BPP, and

• For every polynomial q there exists a polynomial p such that for all x,
Cp(x) ≤ CBPq(x) +O(log l(x)).

Then P = NP.

Proof: By the results of Ko [Ko82], the first item implies PH ⊆ BPP and
NP = RP. Thus to show P=NP it suffices to derandomize RP. Let L ∈ RP
witnessed by a machine M running in polynomial time and using m = m(n)
random bits on an input x of length n. We shall assume that m > n.

By standard amplification we transform M into a machine M ′, which uses
m(n)3 random bits and for which the probability that M ′(x, r) rejects when x ∈ L
is less than 2−m

2
. As the set of random strings r ∈ {0, 1}m3

which give the ‘wrong’
answer is in P given x, we can apply Theorem 4.1.4 to give that for a polynomial
time bound q′, CNq′(r |x) ≤ l(r) − m2 + O(δ(m)), for any such ‘bad’ r, where
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δ(m) = m3/2 logm. In particular, this means that if CNq′(r) = l(r) = m3 then
M ′(x, r) must accept.

We now claim that for a given length n we can construct a string of length
m′ = (m(n))3 with high CNq′ complexity in the polynomial hierarchy. Indeed,
checking that a string has maximal CN complexity can be done with a Σp

2 oracle.
Thus the lexicographically first string of length m′ with maximal CN complexity,
call it r∗, can be found with a Σp

3 oracle by doing a prefix search. This means
that Cq′,Σp

3(r∗) = O(log n). As the hypothesis of the theorem implies PH ⊆ BPP,
by following the proof that BPPBPP = BPP we obtain CBPq′′(r∗) = O(log n) for
some polynomial q′′. Finally applying the second hypothesis of the theorem we
have Cp(r∗) = O(log n) for some polynomial p.

Thus to decide if x ∈ L we evaluate M ′(x, U(p)) for all programs p of length
d log n for some constant d. We reject if and only if M ′ rejects on all these
computations. U will output r∗ for one of these programs p and by the above
argument, if x ∈ L then M ′(x, r∗) must accept. 2

5.3.4. Theorem. Suppose that for every polynomial time samplable source Xn,
and every x ∈ Xn it holds that Ct(x) ≤ − log Pr[Xn = x] + O(log n), for some
polynomial time bound t(·). Then BPP 6= EXP.

Proof: Suppose for contradiction that BPP = EXP. Then NP ⊆ BPP, and
so the first condition of Lemma 5.3.3 is satisfied. We now show that under the
hypothesis of the theorem the second condition of Lemma 5.3.3 is also satisfied.
This will conclude the proof as then applying Lemma 5.3.3 we have EXP ⊆
BPP ⊆ NPNP = P, a contradiction to the time hierarchy theorem.

To show that the hypothesis of the theorem implies the second condition of
Lemma 5.3.3, we continue with the idea in Example 5.1.3. Now we consider the set
of strings which have short randomized programs. Consider a string x ∈ {0, 1}n
and suppose that CBPt(x) = m. Consider the following sampling algorithm A.
On input 0n, the algorithm A chooses a random string p of length ≤ m, and a
random string r of length t(n), and outputs U(p, r). This sampling algorithm will
output x with probability at least 2−m−O(logm). Thus by the assumption we have
Ct′(x) ≤ m+O(log n) for some polynomial t′. 2

5.4 Compression of samplable sources with non-

determinism and randomness

Finally, we mention that the techniques developed in Chapter 4 for language
compression can also work to show near optimal compression of samplable source
using nondeterminism and randomness.
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5.4.1. Theorem. Let Xn be a samplable source. There is a polynomial time
bound q(n) such that for any x ∈ sup(Xn),

CAMq(x) ≤ − log Pr[Xn = x] +O(log3 n)

Proof: Let x ∈ sup(Xn) and suppose that 2−k ≤ Pr[Xn = x] < 2−k+1. By
the AM approximate lower bound counting algorithm of Babai [Bab85] (see Ap-
pendix A), there is an AM algorithm which accepts any element in the support
of Xn which has probability at least 2−k and rejects with high probability any
element from the support of Xn which has probability less than 2−k−1. This
algorithm leads to exactly the kind of ‘AM gap sets’ which we saw could be com-
pressed in Theorem 4.5.3. The number of elements which will be accepted with
probability greater than 1/3 is at most the number of elements in the support
of Xn with probability greater than 2−k−1. By counting, the number of such
elements is at most 2k+1. The theorem now follows from Theorem 4.5.3. 2





Chapter 6

Symmetry of Information

This chapter is based on the paper:

• T. Lee and A. Romashchenko. Resource bounded Kolmogorov complex-
ity revisited. Theoretical Computer Science, 245:2-3, pages 386–405, 2005.
Special issue of selected papers from the 29th International Symposium on
the Mathematical Foundations of Computer Science, 2004.

6.1 Introduction

We now turn our attention to the fourth pillar of Kolmogorov complexity, the
principle of symmetry of information. Besides being one of the most beautiful
theorems of Kolmogorov complexity, the principle of symmetry of information
has also seen applications in diverse areas of theoretical computer science, for
example in [ABK+02, JSV97, VV04b]. The paper of Jiang, Seiferas, and Vitányi
is particularly interesting in this respect as it uses symmetry of information to
prove a result—that a Turing machine with one tape and two heads can do things
that a two tape machine with one head on each tape cannot—which seemingly has
nothing to do with Kolmogorov complexity, and for which no alternative proof is
known.

A main motivation to studying symmetry of information in the resource
bounded case is that a resource bounded symmetry of information theorem could
find even wider applicability within complexity theory. This was realized early
on in the theory of Kolmogorov complexity, and as early as 1967 Kolmogorov
suggested time-bounded versions of symmetry of information as an interesting
avenue of research. The argument of Kolmogorov-Levin [ZL70] which we saw in
the introduction can be used without modification to show that symmetry of in-
formation holds for programs using exponential time or polynomial space [LM93];
for polynomial time bounds the situation becomes much more subtle. A more
detailed survey and open problems can be found in Section 7.1 of [LV97].

69
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The main contributions to the problem of polynomial time symmetry of in-
formation appear in the series of works [LM93, LW95] which show, in particular,
the following:

• If P=NP then polynomial time symmetry of information holds [LW95].

• If cryptographic one-way functions exist, then polynomial time symmetry
of information does not hold up to a O(log n) factor [LM93, LW95].

The intuition behind the second result is, if f is a polynomial time computable
one-way function, and f(x) = y, then y is simple given x. On the other hand, if
x is simple in polynomial time given y then this would provide a way to invert
the function, by cycling through all small programs.

These works leave open several interesting questions:

• Can polynomial time symmetry of information hold up to a factor larger
than O(log n)? The same argument sketched above shows that if symmetry
of information holds up to a factor of δ(n) then there do not exist polynomial
time computable cryptographic functions which cannot be inverted in time
2δ(n). On the other hand, it can easily be seen that 2C(x, y) ≥ C(x) +
C(y |x). Could we show (2− ε)C(x, y) ≥ C(x) + C(y |x) for some ε > 0?

• We have seen many different versions of polynomial time Kolmogorov com-
plexity in this thesis, such as distinguishing complexity and nondetermin-
istic complexity. Could symmetry of information hold for these measures?
The connection between symmetry of information and invertibility of one-
way functions shown by [LM93, LW95] seems to no longer apply in the case
of distinguishing complexity or nondeterministic complexity. Now if f is
a polynomial time computable one-way permutation and f(x) = y, then
CDpoly(x | y) is constant, as with a description of f , on input z we accept if
and only if f(z) = y.

• Is there an assumption weaker than P=NP which implies polynomial time
symmetry of information?

Addressing the first two questions, we show relativized worlds where symmetry
of information fails in a strong way for CDpoly and CNpoly (the existence of such
worlds was claimed in [BF95], though without a complete proof). On the other
hand, we show that for any set A ∈ NP symmetry of information holds for most
pairs of strings 〈x, y〉 ∈ A with respect to the measure CAMpoly. We also uncon-
ditionally show that Cpoly(x, y) ≥ CAMpoly(x)+CAMpoly(y |x). This implies that
symmetry of information holds under the condition Cpoly(x | y) ≤ CAMpoly(x | y).
We show that this statement, however, is equivalent to P=NP. The main tool
in both our positive and negative results are the language compression theorems
from Chapter 2.
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Another interesting approach to the definition of time-bounded Kolmogorov
complexity is L. Levin’s Kt complexity introduced in [Lev73]. Recently D. Ron-
neburger proved that symmetry of information does not hold for Kt complexity
in a very strong sense [Ron04].

6.2 Symmetry of Information Properties

Denote by Cpoly a version of polynomial time-bounded Kolmogorov complexity,
which can be Cpoly, CDpoly, CNpoly, or CAMpoly. To formulate the problem of
symmetry of information more precisely, we isolate three associated properties.
The first is the Easy Direction of Symmetry of Information:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(n)(x, y) ≤ Cp(n)(x) + Cp(n)(y |x) +O(log(n)),
where n = l(x) + l(y).

(EDSI)

It is easy to verify that (EDSI) holds for any of the above complexity measures.
Next is the Hard Direction of Symmetry of Information:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(n)(x) + Cq(n)(y |x) ≤ Cp(n)(x, y) +O(log(n)),
where n = l(x) + l(y).

(HDSI)

Finally we also consider the property of Symmetry of Mutual Information:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(x) + Cq(y |x) ≤ Cp(y) + Cp(x | y) +O(log n)

(SMI)

Notice that if both (EDSI) and (HDSI) hold for a complexity measure C, then
also (SMI) holds for C. The converse is not necessarily true.

6.3 On CAM complexity

In this section we study symmetry of information under the CAM complexity
measure. In contrast to the case of CD and CN complexity, with the power of
nondeterminism and randomness we can prove some positive results, showing that
some weaker versions of (HDSI) hold for CAM.

Our proof will follow the proof in the resource unbounded case as given in
[ZL70]. We first review this proof to see how it can be used in our case. Let α, β
be two strings such that l(α)+l(β) = n, and suppose that C(α, β) = m. We define
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the set Ax,m = {y : C(x, y) ≤ m}. Notice that |Ax,m| ≤ 2m+1 and that given x and
m the set Ax,m is recursively enumerable. Thus as β ∈ Aα,m by the Language
Compression Theorem (Theorem 2.3.3), C(β |α) ≤ log |Aα,m| + O(log n). Let
k∗ be such that 2k

∗ ≤ |Aα,m| < 2k
∗+1. Then the above says that C(β |α) ≤

k∗ +O(log n).

Now consider the set Bm,k = {x : |Ax,m| ≥ 2k}. Notice that the size of Bm,k

is less than 2m−k+1, and that α ∈ Bm,k∗ . The set Bm,k is recursively enumerable
given m, k, thus by the Language Compression Theorem, C(α) ≤ m − k∗ +
O(log n). And so

C(α) + C(β |α) ≤ m− k∗ + k∗ +O(log n)

≤ C(α, β) +O(log n)

If we substitute polynomial time printing complexity in the above argument,
then the set Ax,m is in NP. Further, by the approximate lower bound counting
property of AM [Bab85], detailed in Appendix A, there is an AM algorithm which
accepts with high probability for x ∈ Bm,k and rejects with high probability for
x 6∈ Bm,k−1. This algorithm defines exactly the type of “AM gap set” that we
saw could be compressed in Theorem 4.5.3. This allows us to show the following.

6.3.1. Theorem. There is a polynomial p(n) such that for any set A ⊂ {0, 1}∗×
{0, 1}∗ and all 〈x, y〉 ∈ A=n

log |A=n| ≥ CAMp,A=n

(x) + CAMp,A=n

(y |x)−O(log3 n).

Furthermore, if A ∈ NP then there is a polynomial q(n) such that

log |A=n| ≥ CAMq(x) + CAMq(y |x)−O(log3 n).

Proof: Fix n and 〈α, β〉 ∈ A=n. Denote m = log |A=n| and Ax = {y : (x, y) ∈
A=n}. Membership in the set Ax can be decided in polynomial time given x and
the oracle A=n. As β ∈ Aα it follows from Theorem 4.1.5 that CAMq,A=n

(β |α) ≤
log |Aα|+O(log3 n).

Now consider the set Bk = {x : |Ax| ≥ 2k}. Let k∗ be such that 2k
∗ ≤ |Aα| <

2k
∗+1. Then α ∈ Bk∗ . By the approximate lower bound counting property of AM

[Bab85], there is a predicate Q (computable in polynomial time given the oracle
A=n) such that

• If x ∈ Bk then Prr[∃yQ(x, y, r) = 1] ≥ 2/3

• If x 6∈ Bk−1 then Prr[∃yQ(x, y, r) = 1] ≤ 1/3
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Thus if Prr[∃y Q(x, y, r) = 1] > 1/3 then x ∈ Bk−1. However |A=n| = 2m

implies that |Bk−1| ≤ 2m−k+1. Now by Theorem 4.5.3 we obtain CAMq,A=n

(α) ≤
m− k∗ +O(log3 n).

Putting the above together we have

CAMq,A=n

(α) + CAMq,A=n

(β |α) ≤ m− k∗ + k∗ +O(log3 n) ≤ m+O(log3 n)

which gives the first statement of the theorem.
To prove the “furthermore”, note that approximate lower bound counting of

NP sets can be done in AM [Bab85], and apply Theorem 4.5.3 to give the bound
on (unrelativized) CAM complexity of NP sets. 2

6.3.2. Corollary. For any set A ⊂ {0, 1}∗ × {0, 1}∗ and any polynomial p(n)
there is a polynomial q such that for all but at most a 1/n fraction of 〈x, y〉 ∈ A=n,

CAMp(n),A=n

(x, y) ≥ CAMq(n),A=n

(x) + CAMq(n),A=n

(y |x)−O(log3 n).

Furthermore, if A ∈ NP then

CAMp(n)(x, y) ≥ CAMq(n)(x) + CAMq(n)(y |x)−O(log3 n).

Proof: For all but at most a 1/n fraction of 〈x, y〉 ∈ A=n we have

CAMp(n),A=n

(x, y) ≥ log |A=n| −O(log n).

Applying Theorem 6.3.1 we get the first statement of the corollary. Applying the
“furthermore” of Theorem 6.3.1 gives the furthermore here. 2

6.3.3. Theorem. For any strings x, y ∈ {0, 1}n, and polynomial p(n) there is a
polynomial q(n) such that Cp(x, y) ≥ CAMq(x) + CAMq(y |x)−O(log3 n).

Proof: Fix a pair of strings 〈α, β〉. Let n = l(α) + l(β), and suppose that
Cp(α, β) = m. Consider the set A = {〈x, y〉 : Cp(x, y) ≤ m}. As membership
in A can be decided in nondeterministic polynomial time, we may invoke the
“furthermore” of Theorem 6.3.1 to give log |A| ≥ CAMq(α) + CAMq(β |α) −
O(log3 n) for some polynomial q. On the other hand, |A| ≤ 2m+1, and the theorem
is proved. 2

From Theorem 6.3.3 we obtain as a corollary a result of [LW95], up to an
additive O(log3(n)) factor: if P = NP then

Cp(x, y) ≥ Cq(x) + Cq(y |x)−O(log3 n).

More generally, the following corollary holds.
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6.3.4. Corollary. Suppose that for any polynomial p = p(n) there is a polyno-
mial q = q(n) such that for any x, y, Cq(x | y) ≤ CAMp(x | y) + O(log3 n). Then
(HDSI) holds for polynomial time printing complexity, up to an O(log3 n) additive
factor.

We will see in Section 6.6, however, that the assumption Cq(x | y) ≤ CAMp(x | y)+
O(log n) is in fact equivalent to P = NP.

6.4 On CD complexity

In this section we show a relativized world where the inequalities (SMI) and,
hence, (HDSI) fail in a strong way for CDpoly complexity. The proof of the next
proposition follows the idea outlined in [BF95]:

6.4.1. Proposition. There exists an oracle A and a polynomial p(n) satisfying
the following condition. For any ε > 0 and large enough n there exists a pair
〈x, y〉 ∈ {0, 1}n × {0, 1}n such that

• CD2εn,A=2n

(y) > (1− ε)n−O(log n),

• CDp(n),A=2n

(x) = O(1),

• CDp(n),A=2n

(y |x) = O(1) and even Cp(n),A=2n
(y |x) = O(1),

i.e., CDp(n),A=2n

(x)+CDp(n),A=2n

(y |x) � CD2εn,A=2n

(y)+CD2εn,A=2n

(x | y). Thus,
(SMI) does not hold with the oracle A.

Proof: Fix n and choose an incompressible pair 〈xn, yn〉 ∈ {0, 1}n × {0, 1}n.
Define a mapping fn : Bn → Bn as follows:

• fn(xn) = yn,

• fn(z) = z for all z 6= xn.

Now we define A=2n. At first define two auxiliary oracles Bn and Cn: let Bn

contain the graph of the function fn (on input 〈z, i〉 the oracle Bn returns the
ith bit of y = fn(z)) and Cn contain a single string xn (on input z ∈ {0, 1}n the
oracle Cn returns 1 if and only if z = xn). A query to Bn consists of (n + log n)
bits, and a query to Cn consists of n bits. So a query to Bn⊕Cn can be encoded
as a strings of length (n + log n + 1), which is less than 2n. Thus, we may set
A=2n = Bn ⊕ Cn.

Obviously, for some polynomial p(n) we have CDp(n),A=2n

(xn) = O(1) (it is
enough to query Cn to distinguish x from other stings) and Cp(n),A=2n

(yn |xn) =
O(1) (it is enough to query from Bn the value fn(xn)).
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On the other hand, CD2εn,A=2n

(yn) ≥ (1 − ε)n − O(log n). Really, let s be a
shortest CD2εn

program for y, and assume

l(s) ≤ (1− ε)n−D log n

for a large enough constant D. If this program queries at some step t ≤ 2εn the
point xn from the oracle Cn or any point 〈xn, i〉 from the oracle Bn, then

C(xn | yn) ≤ l(s) + log t+O(log n),

and
C(xn, yn) ≤ l(yn) + l(s) + log t+O(log n) < 2n.

We get a contradiction, as the pair 〈xn, yn〉 is incompressible. Hence, s does not
query any ‘interesting’ points from the oracle. Thus, it can work with a trivial
oracle B′

n ⊕ C ′
n (B′

n returns the ith bit of z for any pair 〈z, i〉, and C ′
n returns 0

for any string z). This means that

C(yn) ≤ l(s) +O(1) � n,

and we again get a contradiction. So, we have l(s) ≥ (1− ε)n−O(log n). 2

6.5 On CN complexity

In this section we prove that (HDSI) and (SMI) are not true for a relativized
version of polynomial time bounded CN complexity. Our proof is based on the
Language Compression Theorem for CN complexity, Theorem 4.1.4.

6.5.1. Theorem. Let m = m(n), s = s(n), t = t(n) be functions such that

2s(n) + 2m(n) < 2n

and
t(n)2m(n) ≤ 2n−3.

Then there is a polynomial p(n), and sets A,X such that

• X=n ⊂ {0, 1}n, |X=n| = 2s(n),

• A=2n ⊂ {0, 1}n × {0, 1}n,

• |{y : (x, y) ∈ A=2n}| ≥ 7/8 · 2n for any x ∈ X=n,

• |
⋃
x 6∈X

{y : (x, y) ∈ A=2n}| ≤ 1/8 · 2n,
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and for large enough n, for all x ∈ X=n, for at least 3/4 · 2n strings y ∈ {0, 1}n
the following conditions hold: 〈x, y〉 ∈ A=2n,

CNp,A=2n

(x | y) ≤ s(n) +O(δ(n)),

CNt(n),A=2n

(x) ≥ m(n)−O(1),

CNt(n),A=2n

(y |x) ≥ n−O(1),

where δ(n) =
√
n log(n).

Note that the term δ(n) =
√
n log(n) comes from Theorem 4.1.4.

6.5.2. Corollary. There exists an oracle A such that a CNpoly version of (HDSI)
and (SMI) do not hold. Moreover, for any ε ∈ (0, 1) there exists a polynomial p
such that for any polynomial q for large enough n

(2− ε)CNp,A=2n

(x, y) < CNq,A=2n

(x) + CNq,A=2n

(y |x)

and
CNp,A=2n

(y) + CNp,A=2n

(x | y) � CNq,A=2n

(x) + CNq,A=2n

(y |x)
for most 〈x, y〉 ∈ A=2n.

Proof: It follows from Theorem 6.5.1 for s(n) = εn/3, m(n) = (1 − ε/3)n,
t(n) = 2εn/6. 2

The bound (2− ε) in the first inequality of Corollary 6.5.2 is tight. This can be

easily seen as,
CNpoly,A=2n

(x, y) ≥ CNpoly,A=2n

(x)−O(1)

and
CNpoly,A=2n

(x, y) ≥ CNpoly,A=2n

(y |x)−O(1).

Hence for any oracle A

2CNp,A=2n

(x, y) ≥ CNq,A=2n

(x) + CNq,A=2n

(y |x)−O(1).

Proof: (Theorem 6.5.1) Fix an integer n > 0. We denote by F the characteristic
function of A=2n, i.e., F (〈x, y〉) = 1 if 〈x, y〉 ∈ A=2n and F (x, y) = 0 other-
wise. We define this function in a few stages: construct a sequence of functions
F0, F1, . . . , F2m(n)−1,

Fi : {0, 1}n × {0, 1}n → {0, 1, undef}.

For i < j the function Fj should be an extension of Fi, i.e.,

∀〈a, b〉 if Fi(a, b) 6= undef then Fj(a, b) = Fi(a, b).

The initial function is trivial: F0(a, b) = undef for all 〈a, b〉. In the sequel we
shall define F as an extension of F2m(n)−1.
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Let us introduce some notation. We say that a set B ⊂ {0, 1}n × {0, 1}n
respects a function Fi if {

Fi(a, b) = 1 ⇒ 〈a, b〉 ∈ B,
Fi(a, b) = 0 ⇒ 〈a, b〉 6∈ B.

Let s1, . . . , s2m(n)−1 be the list of all CN-programs of length less than m(n).
We suppose each program sj can access an oracle O (the oracle is not fixed in
advance). Also we suppose that each sj is clocked and runs at most t(n) steps.
We say that sj is a well defined CN program for an oracle O if sOj accepts exactly
one string x.

Further define Fi by induction. Let the functions F0, . . . , Fk−1 be already
defined. We must construct a function Fk which is an extension of Fk−1. Consider
the program sk. There are two possibilities:

1. for any B ⊂ {0, 1}n×{0, 1}n that respects Fk−1, the program sk is not well
defined for the oracle B;

2. there exists at least one set B ⊂ {0, 1}n × {0, 1}n that respects Fk−1, and
the program sk is well defined for the oracle B.

The first case is trivial: we set Fk(x, y) = Fk−1(x, y) for all 〈x, y〉. In the second
case there exists a set B and a string x such that sBk accepts x in time T (B, x),
which is at most t(n), and rejects all other strings. If there is more than one such
set, we choose a set B with the minimal possible T (B, x). Denote by xk the fixed
string x. Let the list of all queries of the program sBk (xk) to the oracle (for one
of the shortest path, i.e., for an accepting path of length T (B, x)) be

〈a0, b0〉, 〈a1, b1〉, . . . , 〈ar, br〉,

r < t(n). We include all these pairs in the oracle. More precisely, define Fk as
follows:

Fk(a, b) = Fk−1(a, b) if Fk−1(a, b) 6= undef,
Fk(aj, bj) = 1 if 〈aj, bj〉 ∈ B, j = 0, . . . , r,
Fk(aj, bj) = 0 if 〈aj, bj〉 6∈ B, j = 0, . . . , r,
Fk(a, b) = undef if Fk−1(a, b) = undef and 〈a, b〉 6= 〈aj, bj〉.

For any set R that respects Fk, the program sRk accepts the string xk in time
T (B, x). Note that for a time bound t0 ≥ T (B, x) the CN program sRk may
accept also a few other strings except xk. But for any t0 < T (B, x) the program
sRk does not accept in time t0 any string, because we chose xk that provides
minimum to the value T (B, x). Thus, if for a time bound t0 ≤ t(n) the program
sRk accepts at least one string, it must accept also xk. In other words, it cannot
distinguish any string except xk.
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We have described an inductive procedure, which defines the functions F0, . . .,
F2m(n)−1. At each step i we set Fi(a, b) 6= Fi−1(a, b) for at most t(n) values 〈a, b〉.
Hence the function F2m(n)−1 is equal to undef for all values in {0, 1}n × {0, 1}n
except for at most t(n)2m(n) values.

Besides we get the list L of strings xi which can be possibly accepted by
distinguishing programs sRi if a set R respects F2m(n)−1. This set is rather small:
|L| < 2m(n).

Further we choose an arbitrary set

X=n ⊂ {0, 1}n \ L

of size 2s(n). Now define the function F as follows:

F (x, y) = F2m(n)−1(x, y) if F2m(n)−1(x, y) 6= undef,
F (x, y) = 1 if F2m(n)−1(x, y) = undef and x ∈ X,
F (x, y) = 0 if F2m(n)−1(x, y) = undef and x 6∈ X.

The characteristic function F defines the oracle A=2n and the construction is
finished. Note that for any x ∈ X=n

|{y : (x, y) ∈ A=2n}| ≥ 7/8 · 2n,

and
|
⋃

x 6∈X=n

{y : (x, y) ∈ A=2n}| < 1/8 · 2n.

Now fix any string x0 ∈ X. Obviously, CNt(n),A=2n

(x0) ≥ m(n) because
x0 6∈ L. Further, there are at least

2n − 2m(n)t(n)− 2n−3 > 3/4 · 2n

strings y such that

• (x0, y) ∈ A=2n,

• (x, y) 6∈ A=2n for any x 6∈ X=n, and

• CA=2n
(y |x0) ≥ n− 3.

Denote by y0 any of these strings. From the conditions above it follows that

• CNt(n),A=2n

(y0 |x0) > n − O(1) since resource bounded complexity is not
less than plain complexity;

• CNp(n),A=2n

(x0 | y0) ≤ log |{x : (x, y0) ∈ A=2n}|+O(δ(n)) ≤ s(n) +O(δ(n))
from Theorem 4.1.4.

2
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6.6 What Implies Symmetry of Information?

Is there an assumption weaker than P=NP which would imply symmetry of in-
formation? Corollary 6.3.4 shows that symmetry of information (up to a log3 n
factor) follows from the assumption:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(x | y) ≤ CAMp(x | y) +O(log(n)),
where n = l(x) + l(y).

(6.1)

It is easily seen that this property follows from P = NP. We now see that it is in
fact equivalent to P = NP.

6.6.1. Theorem. Property 6.1 implies P = NP.

Proof: Two consequences follow from Property 6.1

• Cp(x | y) ≤ CBPq(x | y) +O(log n)

• Cp(x | y) ≤ CNq(x | y) +O(log n)

The second item is shown in [FK96] to imply NP = RP. This fact can be
proved as follows. If φ if a formula with exactly one satisfying assignment a
then CNq(a |φ) = O(1), and thus by assumption Cp(a |φ) = O(log n). Thus
to evaluate a formula φ for satisfiability, we do the Valiant-Vazirani reduction
[VV86] to obtain a polynomial size list of formulas {φ1, . . . , φk}. If the original
formula was not satisfiable then none of these formulas will be satisfiable, and if
the original formula was satisfiable, then with reasonable probability one of the
formulas φi will have exactly one satisfying assignment. Then for each i in turn
we evaluate Up(s, φi) for all short programs s of length less than c log n for some
constant c. If φi has one satisfying assignment, then some short program will
produce this assignment, by the assumption. Thus we obtain NP = RP.

We can now apply the Lemma 5.3.3 to obtain P = NP. 2

Similar to the proof of Theorem 5.3.4, we can also show that if polynomial
time symmetry of information holds then BPP 6= EXP.

6.6.2. Theorem. If (SMI) holds for polynomial time printing complexity then
BPP 6= EXP.

Proof: We first show that the hypothesis of the theorem implies that for every
polynomial q there is a polynomial p such that for all x, Cp(x) ≤ CBPq(x) +
O(log l(x)). This means that the second hypothesis of Lemma 5.3.3 holds, and
we can then apply that Lemma to obtain the statement of the theorem.
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Suppose that CBPq(x) = k. This means there is a program p of length k such
that U(p, r) = x for at least 2/3 of the strings r ∈ {0, 1}q(n). By counting, it must
be the case that C(r |x) ≥ l(r)−O(1) for one of these strings r, call it r∗. Using
(SMI), there is a polynomial p for which

Cq(r∗) + Cq(x | r∗) ≥ Cp(x) + Cp(r∗ |x)−O(log n).

As Cq(r∗) = Cp(r∗ |x) +O(1) this implies Cp(x) ≤ k +O(log n).
We now finish the proof of the theorem. Suppose for contradiction that EXP ⊆

BPP. This implies that NP ⊆ BPP and thus with the above we now have both
of the hypothesis of Lemma 5.3.3. Applying this lemma gives that P = NP and
so EXP ⊆ BPP ⊆ NPNP = P, a contradiction to the time hierarchy theorem. 2

We now turn to relativizations to help us find a good candidate hypothesis,
weaker than P = NP, which would imply symmetry of information. As we know
that symmetry of information implies the nonexistence of cryptographic one-way
functions, it is natural to ask if the converse holds. This is a tantalizing hypothesis
as it is known that the nonexistence of one-way functions does imply a strong
compression result [Wee04, Theorem 6.3]. We show that this implication does
not hold in every relativized world. That is, we show there is an oracle A such
that PA = UPA yet symmetry of information does not hold relative to A.

6.6.3. Theorem. There is an oracle A such that PA = UPA yet symmetry of
information property (SMI) does not hold relative to A.

Proof: An oracle A is constructed by Beigel, Buhrman, and Fortnow [BBF98]
where

1. PA = ⊕PA, and

2. NPA 6= EXPA.

As UPB ⊆ ⊕PB for any oracle B, item (1) implies that PA = UPA. By Valiant–
Vazirani [VV86] we have that NP ⊆ RP⊕P, and thus the first item also implies
NPA = RPA. As the proof of Theorem 6.6.2 relativizes, the assumption that
symmetry of information holds implies BPPA 6= EXPA. This, however, contra-
dicts the fact that RPA = NPA and NPA = EXPA from item (2). 2



Chapter 7

Kolmogorov Complexity with Error

This chapter is based on the paper:

• L. Fortnow, T. Lee, and N. Vereshchagin. Kolmogorov complexity with er-
ror. To appear in Symposium on Theoretical Aspects of Computer Science,
2006.

7.1 Introduction

Thus far we have studied one modification of Kolmogorov complexity to bring it
closer to real world data compression—namely by placing efficiency requirements
on the decompression program which prints a string from its description.

Besides having little time, in the real world we also inevitably have to deal with
errors. Suppose that we receive a string over a noisy or corrupted channel. Such a
channel could change random bits of a string, possibly increasing its Kolmogorov
complexity without adding any real information.

In some applications of data compression it is not essential that we maintain
an exact copy of the data—in fact, sometimes it is preferable to trade some
fidelity to the original data for the benefit of a more concise description. Such a
compression scheme where some, less important we hope, information about the
original data is lost is known as lossy compression. An important question in this
setting is: what is the cheapest approximation of the data within our tolerance
of distortion?

Intuitively, the scenarios of data corrupted over a noisy channel and lossy
compression are in some sense complementary to one another: we expect that
if we lossy compress a string received over a corrupted channel with our level of
tolerance equal to the number of expected errors then the cheapest string within
the level of tolerance will be the one with the high complexity noise removed.
Ideally, that is, we would get back our original string. For certain compression
schemes and models of noise this intuition can be made precise [Nat95].

81
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In this chapter we explore a variation of Kolmogorov complexity designed
to help us measure information in these settings. We define the Kolmogorov
complexity of a string x with error a as the length of a smallest program generating
a string x′ that differs from x in at most a bits. We give tight bounds (up to
logarithmic factors) on the maximum complexity of such strings and also look at
time-bounded variations.

We also look at conditional Kolmogorov complexity with errors. Traditional
conditional Kolmogorov complexity looks at the smallest program that converts
a string y to a string x. In our context both x and y could be corrupted. We
want the smallest program that converts a string close to y to a string close to x.
We consider two variations of this definition, a uniform version where we have a
single program that that converts any y′ close to y to a string x′ close to x and
a nonuniform version where the program can depend on y′. We show examples
giving a large separation between the uniform and nonuniform definitions.

Finally we consider symmetry of information for Kolmogorov complexity with
error. Traditionally the complexity of the concatenation of strings x, y is roughly
equal to the sum of the complexity of x and the complexity of y given x. We
show that for any values of d and a the complexity of xy with error d is at most
the sum of the complexity of x with error a and the complexity of converting a
string y with d−a error given x with a bits of error. We show the other direction
fails in a strong sense, we do not get equality for any a.

7.2 Preliminaries

We use dH(x, y) to denote the Hamming distance between two binary strings x, y,
that is the number of bits on which they differ. For x ∈ {0, 1}n we let Bn(x,R)
denote the set of n-bit strings within Hamming distance R from x, and V (n,R) =∑R

i=1

(
n
i

)
denote the volume of a Hamming ball of radius R over n-bit strings.

For a real number 0 < λ ≤ 1/2 we write H(λ) = −λ log λ − (1 − λ) log(1 − λ)
for the binary entropy function. The binary entropy is useful in the following
approximation of V (n,R), which can be found in [CHLL97]:

7.2.1. Lemma. Suppose that 0 < λ ≤ 1/2 and λn is an integer. Then

2nH(λ)√
8nλ(1− λ)

≤ V (n, λn) ≤ 2nH(λ).

7.3 Definitions

We consider several possible ways of defining Kolmogorov complexity with error.
In this section we present these alternatives in order to evaluate their relative
merits in the coming sections.
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7.3.1. Definition. Let d : ({0, 1}n)2 → R be a metric, and a ∈ R. The com-
plexity of x with error a, denoted Ca(x) is Ca(x) = minx′{C(x′) : d(x′, x) ≤ a}.

Although we give the definition for a general metric, in this chapter we will only
consider the Hamming distance metric.

We will also consider a time bounded version of this definition, Ct
a(x) =

minx′{Ct(x′) : d(x, x′) ≤ a}, where Ct(x | y) is the length of a shortest program p
such that U(p, y) prints x in less than t time steps.

A relative version of Kolmogorov complexity with error is defined by Im-
pagliazzo, Shaltiel and Wigderson [ISW00]. That is, they use the definition
Cδ(x) = min{C(y) : dH(x, y) ≤ δl(x)}. We prefer using absolute distance
here as it behaves better with respect to concatenations of strings—using rel-
ative distance has the disadvantage of severe nonmonotonicity over prefixes.
Take, for example, x ∈ {0, 1}n satisfying C(x) ≥ n. Let y = 02n. Then
C1/3(x) ≥ n− log V (n, n/3) while C1/3(xy) ≤ log n+ O(1). Using absolute error
we have that Ca(xy) ≥ Ca(x)− O(log n), that is it only suffers from logarithmic
dips as with standard definition.

Defining conditional complexity with error is somewhat more subtle. We
introduce both uniform and nonuniform versions of conditional complexity with
error.

7.3.2. Definition. For a Turing machine T , the uniform conditional complexity,
denoted (Cu

a,b)T (x | y), is the length of a shortest program p such that, for all y′

satisfying d(y, y′) ≤ b it holds that T (p, y′) outputs a string whose distance from
x is less than a.

The invariance theorem remains true: there is a universal machine U such that
for any other Turing machine T , there is a constant cT such that (Cu

a,b)U(x | y) ≤
(Cu

a,b)T (x | y) + cT , for all x, y, a, b. We fix such a U and drop the subscript.

7.3.3. Definition. Nonuniform conditional complexity, denoted Ca,b(x | y) is
defined as Ca,b(x | y) = maxy′ minx′{C(x′ | y′) : d(x′, x) ≤ a and d(y′, y) ≤ b}.

In Section 7.6 we study the difference between these two measures.

7.4 Strings of Maximal Complexity

One of the most famous applications of Kolmogorov complexity is the incom-
pressibility method (see [LV97], Chapter 6). To prove there exists an object with
a certain property, we consider an object with maximal Kolmogorov complexity
and show that it could be compressed if it did not possess this property. We
have seen an example of this type of proof in Chapter 1 to prove lower bound on
Ramsey numbers.
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This method relies on the first pillar of Kolmogorov complexity: for every
length n, there is a string x of complexity at least n. It is also easy to see
that, up to an additive constant, every string has complexity at most its length.
What is the behavior of maximal complexity strings in the error case? For this
discussion, we restrict ourselves to the Hamming distance case.

Again by a counting argument, we see that for every n there is an x of length
n with Ca(x) ≥ log 2n/V (n, a) = n− log V (n, a). Upper bounding the complexity
of strings in the error case requires a bit more work, and has a close connection
with the construction of covering codes. A covering code C of radius a is a set
of strings such that for every x ∈ {0, 1}n there is an element y ∈ C such that
dH(x, y) ≤ a. Thus an upper bound on the maximum complexity strings will be
given by the existence of covering codes of small size. The following Lemma is
well known in the covering code literature, (see [CHLL97] or [KSV03]).

7.4.1. Lemma. For any n and integer R ≤ n, there exists a set C ⊆ {0, 1}n with
the following properties:

1. |C| ≤ n2n/V (n,R)

2. for every x ∈ {0, 1}n, there exists c ∈ C with dH(x, c) ≤ R

3. The set C can be computed in time poly(2n)

Proof: For the first two items we argue by the probabilistic method. The third
item will be obtained by derandomizing this argument with the method of con-
ditional probabilities.

Fix a point x ∈ {0, 1}n. We uniformly at random choose k elements x1, . . . , xk
of {0, 1}n. The probability Px that x is not contained in ∪ki=1B(xi, R) is precisely

Px = (1− V (n,R)/2n)k ≤ e−kV (n,R)/2n

For the inequality we have used the fact that ez ≥ 1+z for any z. Taking k to be
n2n/V (n,R) makes this probability strictly less than 2−n. Thus the probability
of the union of the events Px over x ∈ {0, 1}n is, by the union bound, less than
1 and there exists a set of n2n/V (n,R) centers which cover {0, 1}n. This gives
items 1 and 2.

For item 3 we now derandomize this argument using the method of conditional
probabilities. Let t = n2n/V (n,R) be the desired size of our covering. We now
define successively x1, . . . , xt so that the following invariant is true for all k ≤ t:∑

x

Pr[x is not contained in ∪ki=1 B(xi, R) ∪ ∪t−ki=1B(yi, R)] < 1. (7.1)

The probability is taken over randomly chosen y1, . . . , yt−i and the sum is over
all strings x of length n.



7.4. Strings of Maximal Complexity 85

For k = 0 the invariant is true as shown above. Assume now that x1, . . . , xk−1

are already defined so that Equation (7.1) is true for k − 1. We claim that there
is xk such that Equation (7.1) is true for k. Note that for all x the probability
p(x) that x is not contained in ∪k−1

i=1B(xi, R)∪∪t−k+1
i=1 B(yi, R) is the average over

xk of the the probability that x is not contained in ∪ki=1B(xi, R) ∪ ∪t−ki=1B(yi, R).
This applies for the sum in Equation (7.1) as well hence there is xk satisfying the
invariant.

For every given xk the value of the left hand side of Equation (7.1) can be
calculated in time poly(2n), since the probability p(x) that x is not contained in
a set A∪∪t−ki=1B(yi, R) is equal to 0 if x 6∈ A and to (1−V (n,R)/2n)t−k otherwise.
The number of different xk is 2n. Therefore an appropriate xk can be found in
time poly(2n).

As the probability p(x) depends only on whether x is in ∪k−1
i=1B(xi, R) or not,

we just choose the string xk that maximizes the cardinality of the set ∪ki=1B(xi, R).
So our algorithm is a greedy one: each time it chooses a ball that covers maximal
number of non-covered elements. 2

Actually, there is a general theorem on the quality of the greedy algorithm to
choose subcoverings.

7.4.2. Theorem (Corollary 37.5 in [CLR90]). For any set X and covering
S1, . . . , SN of X, the greedy algorithm chooses a sub-covering of S1, . . . , SN that
has at most ln |X|+ 1 times more sets than the minimal sub-covering.

From this theorem we can derive item 3 of Lemma 7.4.1 with a slightly weaker
bound |C| ≤ O(n22n/V (n,R)).

7.4.3. Theorem. For every n, a and x ∈ {0, 1}n, Ca(x) ≤ n − log V (n, a) +
O(log n).

Proof: By Lemma 7.4.1 we know that a covering code with radius a of cardinality
less than n2n/V (n, a) exists. Let C be the lexicographically first such covering.
Such a covering can be described by saying “look for the lexicographically first
covering over {0, 1}n of radius a”, and thus has a description of size O(log n).
For any x ∈ {0, 1}n there is an element c ∈ C such that dH(x, c) ≤ a. Once we
know the covering, this element c can be described by its index in the covering, of
size n+ log n− log V (n, a). Thus the total description is of size n− log V (n, a) +
O(log n). 2

One nice property of covering codes is that they behave very well under con-
catenation. Let C1 be a covering code of {0, 1}n1 of radius R1 and C2 be a covering
code of {0, 1}n2 of radius R2. Now let C = {cc′ : c ∈ C1, c

′ ∈ C2} be the set of all
ordered concatenations of codewords from C1 with codewords from C2. Then C is
a covering code over {0, 1}n1+n2 of radius R1 +R2.
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We can use this idea in combination with item 3 of Lemma 7.4.1 to efficiently
construct near-optimal covering codes. This construction has already been used
for a complexity-theoretic application in [DGHS00].

7.4.4. Theorem. There is a polynomial time bound p(n) such that C
p(n)
d (x) ≤

n− log V (n, d) +O(n log log n/ log n) for every x ∈ {0, 1}n and every d.

Proof: We construct a covering code over {0, 1}n with radius d such that the ith
element of the covering can be generated in time polynomial in n. Let ` = log n
and divide n into n/` blocks of length `. Let r = (d/n)`. Now by item 3 of
Lemma 7.4.1 we can in time polynomial in n construct a covering code over
{0, 1}` of radius r and of cardinality `2`/V (`, r). Call this covering C`. Our
covering code C over {0, 1}n will be the set of codewords {c1c2 · · · cn/` : ci ∈ C`}.
The size of this code will be:

|C| ≤ (2`−log V (`,r)+log `)n/` = (2`−`H(d/n)+O(log `))n/`

= 2n−nH(d/n)+O(n log `/`) = 2n−log V (n,d)+O(n log `/`).
(7.2)

The second and the last inequalities hold by Lemma 7.2.1.
In this proof we assumed that all numbers log n, n/ log n, and d log n/n are

integer. In the general case we can let ` = blog nc, m = dn/`e and r = bd/mc.
We divide n into m blocks of length ` or `−1. We will need two covering codes: of
lengths ` and `−1, both of radius r. Both codes can be found in time polynomial
in n. It is easy to verify that the inequalities Equation (7.2) remain true up to
an error term O(n log `/`) in the exponent. 2

7.5 Dependence of Complexity on the Number

of Allowed Errors

Both the uniform and the non-uniform conditional complexities Cu
a,b and Ca,b

are decreasing functions in a and increasing in b. Indeed, if b decreases and a
increases then the number of y′’s decreases and the number of x′’s increases, thus
the problem to transform every y′ to some x′ becomes easier. What is the maximal
possible rate of this decrease/increase? For the uniform complexity, we have no
non-trivial bounds. For the non-uniform complexity, we have the following

7.5.1. Theorem. For all x, y of length n and all a ≤ a′, b′ ≤ b it holds

Ca,b(x | y) ≤ Ca′,b′(x | y)+log(V (n, a)/V (n, a′))+log(V (n, b′)/V (n, b))+O(log n).

Proof: Let y′ be a string at distance b from y. We need to find a short program
mapping it to a string at distance a from x. To this end we need the following
lemma from [VV04a].
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7.5.2. Lemma. For all d ≤ d′ ≤ n having the form i/n every Hamming ball
of radius d′ in the set of binary strings of length n can be covered by at most
O(n4V (n, d′)/V (n, d)) Hamming balls of radius d.

Apply the lemma to d′ = b, d = b′ and to the ball of radius b centered at y′.
Let B1, . . . , BN , where N = O(n4V (n, b)/V (n, b′)), be the covering balls. Let Bi

be a ball containing the string y and let y′′ be its center. There is a program,
call it p, of length at most Ca′,b′(x | y) mapping y′′ to a string at distance a′

from x. Again apply the lemma to d = a, d′ = a′ and to the ball of radius
d′ centered at x′. Let C1, . . . , CM , where M = O(n4V (n, a′)/V (n, a)), be the
covering balls. Let Cj be a ball containing the string x and let x′′ be its center.
Thus x′′ is at distance a from x and can be found from y′, p, i, j. This implies
that K(x′′ | y′) ≤ l(p) + logN + logM +O(log n) (extra O(log n) bits are needed
to separate p, i and j). 2

In the above proof, it is essential that we allow the program mapping y′ to a
string close to x depend on y′. Indeed, the program is basically the triple (p, i, j)
where both i and j depend on y′. Thus the proof is not valid for the uniform
conditional complexity. And we do not know whether the statement itself is true
for the uniform complexity.

A similar inequality holds for time bounded complexity.

7.5.3. Theorem. There is a polynomial p such that for all x, y of length n and
all a ≤ a′, b′ ≤ b, and all t it holds

C
p(n,t)
a,b (x | y) ≤ Ct

a′,b′(x | y) + log(V (n, a)/V (n, a′)) + log(V (n, b′)/V (n, b))

+ O(n log log n/ log n).

Proof: The proof is entirely similar. We just need the following time bounded
version of Lemma 7.5.2:

7.5.4. Lemma. For all d ≤ d′ ≤ n having the form i/n every Hamming ball of
radius d′ in the set of binary strings of length n can be covered in time O(2n) by
at most O(n5V (n, d′)/V (n, d)) Hamming balls of radius d.

This lemma follows immediately from Lemma 7.5.2 and Theorem 7.4.2. Us-
ing the method of conditional probabilities we can prove a slightly better bound
O(n4V (n, d′)/V (n, d)) but this needs going into details of the proof of Lemma 7.5.2.
2
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7.6 Uniform vs. Nonuniform Conditional Com-

plexity

In this section we show an example where the uniform version of conditional
complexity can be exponentially larger than the nonuniform one. Our example
will be for C0,b(x |x). Notice that this example is the error correction problem.
Given some x′ such that dH(x, x′) ≤ b, we want to recover x exactly. The intuition
behind the proof is the following: say we have some computable family S of
Hamming balls of radius b, and let x be the center of one of these balls. Given
any x′ such that dH(x, x′) ≤ b, there may be other centers of the family S which
are also less than distance b from x′. Say there are k of them. Then x has a
nonuniform description of size about log k by giving the index of x in the k balls
which are of distance less than b from x′.

In the uniform case, on the other hand, our program can no longer be tailored
for a particular x′, it must work for any x′ such that dH(x, x′) ≤ b. That is,
intuitively, the program must be able to distinguish the ball of x from any other
ball intersecting the ball of x. To create a large difference between the nonuniform
and uniform conditional complexity measures, therefore, we wish to construct a
large family of Hamming balls, every two of which intersect, yet that no single
point is contained in the intersection of too many balls. Moreover, we want
C0,b(x |x) be much larger than even Cu

a,b(x |x) for a non-negligible a. Thus we
want the contractions of every two balls to radius a be disjoint. The next lemma
shows the existence of such a family.

7.6.1. Lemma. For every length m of strings and a, b, and N satisfying the in-
equalities

N2V (m, 2a) ≤ 2m−1, N2V (m,m− 2b) ≤ 2m−1, NV (m, b) ≥ m2m+1 (7.3)

there are strings x1, . . . , xN such that the balls of radius a centered at x1, . . . , xN
are pairwise disjoint, and the balls of radius b centered at x1, . . . , xN are pairwise
intersecting but no string belongs to more than NV (m, b)21−m of them.

Proof: The proof is by probabilistic arguments. Take N independent random
strings x1, . . . , xN . We will prove that with high probability they satisfy the
statement.

First we estimate the probability that there are two intersecting balls of radius
a. The probability that two fixed balls intersect is equal to V (m, 2a)/2m. The
number of pairs of balls is less than N2/2, and by a union bound, there are two
intersecting balls of radius a with probability at most N2V (m, 2a)/2m+1 ≤ 1/4
(use the first inequality in Equation (7.3)).

Let us estimate now the probability that there are two disjoint balls of radius
b. If the balls of radius b centered at xj and xi are disjoint then xj is at distance
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at most m − 2b from the string x̄i, that is obtained from xi by flipping all bits.
Therefore the probability that for a fixed pair (i, j) the balls are disjoint is at
most V (m,m−2b)/2m. By the second inequality in Equation (7.3), there are two
disjoint balls with probability at most 1/4.

It remains to estimate the probability that there is a string that belongs to
more than NV (m, b)21−m balls of radius b. Fix x. For every i the probability
that x lands in Bi, the ball of radius b centered at xi, is equal to p = |Bi|/2m =
V (m, b)/2m. So the average number of i with x ∈ Bi is pN = NV (m, b)/2m. By
Chernoff inequality the probability that the number of i such that x lands in Bi

exceeds twice the average is at most

exp(−pN/2) = exp(−NV (m, b)/2m+1) ≤ exp(−m) � 2−m

(use the third inequality in Equation (7.3)). Thus even after multiplying it by 2m

the number of different x’s we get a number close to 0. 2

Using this lemma we find x with exponential gap between C0,b(x |x) and
Cu

0,b(x |x) and even between C0,b(x |x) and Cu
a,b(x |x) for a, b linear in the length

n of x. Namely fix some rational constants α, β, γ satisfying

0 < α < 1/4 < β < 1/2, 2H(β) > 1+H(2α), 2H(β) > 1+H(1−2β), γ ≥ 1.
(7.4)

Note that if β is close to 1/2 and α is close to 0 then the inequalities Equation (7.4)
are fulfilled.

7.6.2. Theorem. For all sufficiently large m there is a string x of length n = γm
with C0,βm(x |x) = O(logm) while Cu

αm,βm(x |x) ≥ m(1−H(β))−O(logm).

Proof: Givenm let a = αm, b = βm andN = m2m+1/V (m, b). Let us verify that
for large enoughm the inequalities Equation (7.3) in the condition of Lemma 7.6.1
are fulfilled. Taking the logarithm of the first inequality Equation (7.3) and
ignoring all terms of order O(logm) we obtain

2(m−mH(β)) +mH(2α) < m

This is true by the second inequality in Equation (7.4). Here we used that
log V (m, b) = mH(β) and log V (m, 2a) = mH(2α) (ignoring logarithmic terms),
as both β, 2α are less than 1/2. Taking the logarithm of the second inequality
Equation (7.3) we obtain

2(m−mH(β)) +mH(1− 2β) < m.

This is implied by the third inequality in Equation (7.4). Finally, the last in-
equality Equation (7.3) holds by the choice of N .
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Find the first sequence x1, . . . , xN satisfying the lemma. This sequence has
complexity at most C(m) = O(logm). Append 0n−m to all strings x1, . . . , xN .
Obviously the resulting sequence also satisfies the lemma. For each string xi we
have C0,b(xi |xi) = O(logm), as given any x′ at distance at most b from xi we
can specify xi by specifying its index among centers of the balls in the family
containing x′ in log(NV (m, b)21−m) = log 4m bits and specifying the family itself
in O(logm) bits.

It remains to show that there is xi with Cu
a,b(xi |xi) ≥ logN . Assume the

contrary and choose for every xi a program pi of length less than logN such that
U(p, x′) is at distance a from xi for every x′ at distance at most b from xi. As
N is strictly greater than the number of strings of length less than logN , by
the Pigeon Hole Principle there are different xi, xj with pi = pj. However the
balls of radius b with centers xi, xj intersect and there is x′ at distance at most
b both from xi, xj. Hence U(p, x′) is at distance at most a both from xi, xj, a
contradiction. 2

Again, at the expense of replacing O(logm) by O(m log logm/ logm) we can
prove an analog of Theorem 7.6.2 for time bounded complexity.

7.6.3. Theorem. There is a polynomial p such that for all sufficiently large m
there is a string x of length n = γm with C

p(n)
0,βm(x |x) = O(m log logm/ logm)

while Cu
αm,βm(x |x) ≥ m(1 − H(β)) − O(m log logm/ logm). (Note that Cu has

no time bound; this makes the statement stronger.)

Proof: We use a similar code concatenation argument as in Theorem 7.4.4. First
we need to derandomize Lemma 7.6.1. We claim that a list of strings x1, . . . , xN
satisfying Lemma 7.6.1 can be found in time poly(2n). This again can be done
using the method of conditional probabilities. We define successively x1, . . . , xk
so that the following invariant is true: the sum Sk = A + B + C is less than 1.
Here: A is the sum over all i < j ≤ N of the probability that the balls of radius a
centered at xi and xj intersect; B is the sum over all i < j ≤ N of the probability
that the balls of radius b centered at xi and xj are disjoint; C is the sum over all
x of the probability that the string x belongs to more than NV (m, b)21−m balls of
radius b centered at x1, . . . , xN . The strings xk+1, . . . , xN are chosen at random.

To make the induction step, given x1, . . . , xk−1 such that Sk−1 < 1 we need to
find xk satisfying Sk < 1. The sum Sk−1 can be considered as the average over
all choices of xk of the sum Sk. Therefore there is xk such that Sk < 1. We just
look through all xk until we find xk with Sk < 1. The key observation allowing to
do this in time poly(2n) is that all three sums A, B, C are rational numbers with
denominator 2mN that can be calculated exactly in time poly(2n) given x1, . . . , xk.
This is easy for A and B: for fixed i, j the corresponding probability in the sum
A is equal either to 0/1 (when i, j ≤ k) or to V (m, a)/2m. The same argument
applies to the sum B.
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The sum C. Fix x and let l be the number of balls with indices among 1, . . . , k
the string x belongs to. We need to calculate the probability that x belongs to
more than R = NV (m, b)21−m − l balls of radius b centered at x1, . . . , xN . The
probability that among N−k independent trials with probability p = V (m, b)2−m

of success there are at least R successful trials is equal to the sum

N−k∑
i=R

(
N − k

i

)
pi(1− p)N−k−i.

As p is a rational with denominator 2m, this probability is a rational with denom-
inator 2m(N−k) and can be calculated exactly in time poly(N − k,m) = poly(2n).

To finish the proof we need to verify that the statement in the conclusion
of Lemma 7.6.1 behaves well under the concatenation of codes. Apply (the de-
randomized version of) Lemma 7.6.1 to m′ = logm, a′ = a/k, b′ = b/k where
k = m/ logm and N ′ = m′2m

′+1/V (m′, b′). Let C = {x1, . . . , xN ′} be the resulting
code, which can be found in time poly(2m

′
) = poly(m). Let Ck = {x1, . . . , xN}

be the product code, where N = (N ′)k = (m′2m
′+1/V (m′, b′)))k. Then the balls

of radius a centered at strings x1, . . . , xN are pairwise disjoint, the balls of radius
b centered at strings x1, . . . , xN are pairwise intersecting, and no string belongs
to more than (N ′V (m′, b′)21−m′

)k = (4m′)k of them. The latter implies that

C
poly(m)
0,b (x |x) ≤ k log(4m′) +O(logm) = O(m log logm/ logm).

To lower bound Cu
αm,βm(x |x) we need to lower bound N . We have

logN = k logN ′ = k(m′ −m′H(β) +O(logm′))

= m−mH(β) +O(m log logm/ logm),

which implies the lower bound

Cu
αm,βm(x |x) ≥ m(1−H(β))−O(m log logm/ logm).

2

7.7 Symmetry of Information

In this section, we investigate how the fourth pillar of Kolmogorov complexity,
symmetry of information, stands in the setting with errors.

We see that the easy direction of symmetry of information is again easy: The
inequality Cd(xy) ≤ Ca(x) +Cd−a,a(y |x) +O(log n) holds for any a — let p be a
program of length Ca(x) which prints a string x∗ within Hamming distance a of
x. Let q be a shortest program which, given x∗, prints a string y∗ within Ham-
ming distance d − a of y. By definition, Cd−a,a(y |x) = maxx′ miny′ C(y′ |x′) ≥
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miny′ C(y′ |x∗) = l(q). Now given p and q and a way to tell them apart, we can
print the string xy within d errors.

For the converse direction we would like to have the statement

For every d, x, y there exists a such that
Cd(xy) ≥ Ca(x) + Cd−a,a(y |x)−O(log n).

(7.5)

We do not expect this statement to hold for every a, as the shortest program for
xy will have a particular pattern of errors which might have to be respected in the
programs for x and y given x. We now show, however, that even the Property 7.5
is too much to ask.

7.7.1. Theorem. For every n and all d ≤ n/4 there exist x, y ∈ {0, 1}n such
that for all a ≤ d the difference

∆(a) = (Ca(y) + Cd−a,a(x | y))− Cd(xy)

is more than both

log V (n, d)− log V (n, a), log V (n, d+ a)− log V (n, d− a)− log V (n, a),

up to an additive error term of the order O(log n).

Before proving the theorem let us show that in the case, say, d = n/4 it implies
that for some positive ε we have ∆(a) ≥ εn for all a. Let α < 1/4 be the solution
to the equation

H(1/4) = H(1/4 + α)−H(1/4− α).

Note that the function in the right hand side increases from 0 to 1 as α increases
from 0 to 1/4. Thus this equation has the unique solution.

7.7.2. Corollary. Let d = n/4 and let x, y be the strings existing by Theo-
rem 7.7.1. Then we have ∆(a) ≥ n(H(1/4)−H(α))−O(log n) for all a.

Proof: Let z = a/n. Up to an additive error term of the order O(log n) the first
lower bound for ∆(a) in Theorem 7.7.1 is equal to n(H(1/4) − H(z)) and the
second one to n(H(1/4 + z)−H(1/4− z)−H(z)). Thus we need to prove that
for all z ≤ 1/4 at least on of the two functions

H(1/4)−H(z), H(1/4 + z)−H(1/4− z)−H(z)

exceeds H(1/4)−H(α). Note that α is chosen so that in the point z = α these two
functions coincide. Therefore it is enough to show that on the interval [0, α] the
first function decreases, and on the segment [α, 1/4] the second function increases.
The former assertion is easy: the function H(1/4)−H(z) is decreasing z on the
segment [0, 1/2], which includes [α, 1/4].
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Let us prove that the function H(1/4 + z) − H(1/4 − z) − H(z) increases
on the interval [α, 1/4]. As the derivative of H(z) decreases on [0, 1/2], the
function −H(1/4 − z) − H(z) (and hence H(1/4 + z) − H(1/4 − z) − H(z))
increases on the interval [1/8, 1/4]. Thus it suffices to prove that 1/8 ≤ α, that is,
H(1/4)+H(1/4−1/8) < H(1/4+1/8). This is implied by the general inequality
H(a + b) +H(a + c) ≤ H(a + b + c) +H(a) (let a = 0, b = 1/4, c = 1/8). This
inequality holds for every function with non-positive second derivative, for all a
and all non-negative b, c. Indeed, let say b ≥ c. Then by Lagrange’s theorem we
have

H(a+ b+ c)−H(a+ b) = H ′(θ) · c ≤ H ′(η) · c = H(a+ c)−H(a),

where θ is a point in the segment [a+ b, a+ b+ c] and η is a point in the segment
[a, a+ c]. The middle inequality is true, as the interval [a+ b, a+ b+ c] is to the
right of the interval [a; a+ c]. The case c ≥ b is entirely similar. 2

Proof:[of Theorem 7.7.1] Coverings will again play an important role in the proof.
Let C be the lexicographically first minimal size covering of radius d. Choose y
of length n with C(y) ≥ n, and let x be the lexicographically least element
of the covering within distance d of y. Notice that Cd(xy) ≤ n − log V (n, d),
as the string xx is within distance d of xy, and can be described by giving a
shortest program for x and a constant many more bits saying “repeat.” (In the
whole proof we neglect additive terms of order O(log n)). Let us prove first that
C(x) = n− log V (n, d) and C(y |x) = log V (n, d1) = log V (n, d), where d1 stands
for the Hamming distance between x and y. Indeed,

n ≤ C(y) ≤ C(x) + C(y |x) ≤ n− log V (n, d) + C(y |x)
≤ n− log V (n, d) + log V (n, d1) ≤ n.

Thus all inequalities here are equalities, hence C(x) = n−log V (n, d) and C(y |x) =
log V (n, d1) = log V (n, d).

Let us prove now the first lower bound for ∆(a). As y has maximal complexity,
for any 0 ≤ a ≤ d we have Ca(y) ≥ n− log V (n, a). Summing the inequalities

−Cd(xy) ≥ −n+ log V (n, d),

Ca(y) ≥ n− log V (n, a),

Cd−a,a(x | y) ≥ 0,

we obtain the lower bound ∆(a) ≥ log V (n, d)− log V (n, a). To prove the second
lower bound of the theorem, we need to show that

Cd−a,a(x | y) ≥ log V (n, d+ a)− log V (n, d− a)− log V (n, d). (7.6)

To prove that Cd−a,a(x | y) exceeds a certain value v we need to find a y′ at
distance at most a from y such that C(x′ | y′) ≥ v for all x′ at distance at most
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d − a from x. Let y′ be obtained from y by changing a random set of a bits on
which x and y agree. This means that C(y′ | y, x) ≥ log V (n − d1, a). It suffices
to show that

C(x | y′) ≥ log V (n, d+ a)− log V (n, d).

Indeed, then for all x′ at distance at most d− a from x we will have

C(x′ | y′) + log V (n, d− a) ≥ C(x | y′)

(knowing x′ we can specify x by its index in the ball of radius d− a centered at
x′). Summing these inequalities will yield Equation (7.6).

We use symmetry of information in the non-error case to turn the task of
lower bounding C(x | y′) into the task of lower bounding C(y′ |x) and C(x). This
works as follows: by symmetry of information,

C(xy′) = C(x) + C(y′ |x) = C(y′) + C(x | y′).

As C(y′) is at most n, using the second part of the equality we have C(x | y′) ≥
C(x) + C(y′ |x) − n. Recall that C(x) = n − log V (n, d). Thus to complete the
proof we need to show the inequality C(y′ |x) ≥ log V (n, d + a) , that is, y′ is
a random point in the Hamming ball of radius d + a with the center at x. To
this end we first note that log V (n, d + a) = log V (n, d1 + a) (up to a O(log n)
error term). Indeed, as a + d ≤ n/2 we have log V (n, d + a) = log

(
n
d+a

)
and

log V (n, d) = log
(
n
d

)
. The same holds with d1 in place of d. Now we will show that

log V (n, d)−log V (n, d1) = O(log n) implies that log V (n, d+a)−log V (n, d1+a) =
O(log n). It is easy to see that

(
n
d+1

)
/
(

n
d1+1

)
≤
(
n
d

)
/
(
n
d1

)
provided d1 ≤ d. Using

the induction we obtain
(
n
d+a

)
/
(

n
d1+a

)
≤
(
n
d

)
/
(
n
d1

)
.

Thus we have

log V (n, d+ a)− log V (n, d1 + a) = log
(( n

d+ a

)
/

(
n

d1 + a

))
≤ log

((n
d

)
/

(
n

d1

))
= log V (n, d)− log V (n, d1) = O(log n).

Again we use (the conditional form of) symmetry of information:

C(y′y |x) = C(y |x) + C(y′ | y, x) = C(y′ |x) + C(y | y′, x).

The string y differs from y′ on a bits out of the d1 + a bits on which y′ and x
differ. Thus C(y | y′, x) ≤ log

(
d1+a
a

)
. Now using the second part of the equality

we have

C(y′ |x) = C(y |x) + C(y′ | y, x)− C(y | y′, x)

≥ log V (n, d1) + log V (n− d1, a)−
(
d1 + a

a

)
.
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We have used that log V (n− d1, a) = log
(
n−d1
a

)
, as a ≤ (n− d1)/2. Hence,

C(y′ |x) ≥ log

(
n

d1

)
+ log

(
n− d1

a

)
− log

(
d1 + a

a

)
= log

(
n

d1 + a

)
= log V (n, d+ a).

2

Again, at the expense of replacing O(log n) by O(n log log n/ log n) we can
prove an analog of Theorem 7.7.1 for time bounded complexity:

7.7.3. Theorem. There is a polynomial p such that for every n and all d ≤ n/4
there exist x, y ∈ {0, 1}n such that for all a ≤ d the difference

∆(a) = (Ca(y) + Cd−a,a(x | y))− C
p(n)
d (xy)

is larger than both values

log V (n, d)− log V (n, a), log V (n, d+ a)− log V (n, d− a)− log V (n, a),

up to an additive error term of the order O(n log log n/ log n). Note that there is
no time bound in Ca(y) + Cd−a,a(x | y). This makes the statement stronger.

Proof: Use the code C from the proof to Theorem 7.4.4. 2
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Chapter 8

Formula Size Lower Bounds

8.1 Introduction

In this part of the thesis we turn to the problem of proving lower bounds. The
task of proving bounds is quite daunting—to show that a problem can be solved
within a certain resource bound we just have to exhibit a single algorithm which
works; to show a lower bound on the resources to solve a problem, we have to
show that any conceivable algorithm using those resources cannot do the trick.
For this reason, proving lower bounds is a notoriously difficult task. Many turning
points in mathematics were the result of proving lower bounds:

• Around 1843 Galois showed that in general the roots of a fifth degree poly-
nomial are not expressible in terms of the coefficients of the polynomial,
the arithmetic operations addition, subtraction, multiplication, and divi-
sion, and the application of radicals. This remarkable result also gave lower
bounds on that complexity class of antiquity, constructions with a straight-
edge and compass.

• In 1851, Liouville showed that there is a real number which is not expressible
as the root of a polynomial equation with integer coefficients. Perhaps more
importantly for complexity, in 1874 Cantor showed that almost all real
numbers are not so expressible. The technique he used, diagonalization, is
still one of the best ways to prove lower bounds in complexity theory.

• In 1931 Gödel showed his famous Incompleteness Theorem—there are state-
ments which can be formulated in arithmetic but can neither be proved nor
disproved within the theory.

The current frontier of lower bounds is the P versus NP question. Gödel was
again one of the first to realize the significance of this problem. In a letter to von
Neumann in March of 1956, he says:

99
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“Man kann offenbar leicht eine Turingmaschine konstruieren, welche
von jeder Formel F des engeren Funktionenkalküls u. jeder natürl.
Zahl n zu entscheiden gestattet, ob F einen Beweis der Länge n hat
(Länge = Anzahl der Symbole). Sei ψ(F, n) die Anzahl der Schritte,
die die Maschine dazu benötigt u. sei φ(n) = maxF ψ(F, n). Die Frage
ist, wie rasch φ(n) für eine optimale Maschine wächst. Man kann
zeigen φ(n) ≥ k · n. Wenn es wirklich eine Maschine mit φ(n) ∼ k · n
(oder auch nur ∼ k ·n2) gäbe, hätte das Folgerungen von der grössten
Tragweite.”

[“One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural number
n, allows one to decide if there is a proof of F of length n (length =
number of symbols). Let ψ(F, n) be the number of steps the machine
requires for this and let φ(n) = maxF ψ(F, n). The question is how fast
φ(n) grows for an optimal machine. One can show that φ(n) ≥ k · n.
If there really were a machine with φ(n) ∼ k · n (or even ∼ k · n2),
this would have consequences of the greatest importance.”]

Although later in the same letter Gödel says that it is “within the realm of
possibility” that φ(n) grows like n2, which would in particular imply P = NP,
the current consensus among researchers is that P 6= NP.

One approach to proving P 6= NP has focused on proving lower bounds for
circuits. It is still a major open problem to even prove a superlinear circuit
size lower bound for a function in NP—the current best bound is 5n − o(n)
[LR01, IM02]. As proving lower bounds for circuits still seems excruciatingly
difficult, we will focus in this part of the thesis on the weaker model of formula
size. A formula is a binary tree with internal nodes labelled by AND and OR
gates, and leaves labelled by literals, that is a variable or its negation. A crucial
difference between a formula and a circuit is that in a formula every gate has
fan-out exactly one, whereas a circuit can have larger fan-out. This restriction is
the key property which allows us to prove larger lower bounds for formulas than
for circuits.

A good example to illustrate the difference between circuits and formulas is
the PARITY function which evaluates to 1 on input a binary string x if and only
if the number of ones in x is odd. Assuming for simplicity that the input length is
n = 2`, a natural construction for PARITY which comes to mind is a binary tree
with XOR gates labelling all the internal nodes, where an XOR gate computes
the parity of 2 bits. When we expand a single XOR gate into a formula with
AND and OR gates and negations, we find that in order to keep fan-out 1 we
end up with a formula of size 4. This blow-up continues as we expand the XOR
gates in the binary tree so that at the end we have a formula of size 4` = n2.
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Khrapchenko was the first to show that this formula construction for PARITY
is essentially optimal by showing an Ω(n2) lower bound on the size of formulas
which compute PARITY. In contrast, in a circuit using fan-out larger than one
we can expand these XOR gates into AND and OR gates and negations while
keeping the number of gates in the circuit linear.

Besides being a testing grounds for circuit techniques, proving lower bounds
on formula size also has complexity theoretic consequences as the class NC1

corresponds to the set of languages computable by polynomial size formulas.
The current best formula size lower bound for an explicit function is n3−o(1) by
H̊astad [H̊as98].

In this chapter, we give a fairly complete overview of known techniques for
proving formula size lower bounds. In the next chapter, we develop a new frame-
work for proving formula size lower bounds, and more generally lower bounds on
communication complexity, using spectral methods. With this technique we do
not break the n3 formula size barrier. We are able, however, to generalize several
methods from the literature, in some cases doing provably better, and provide a
common framework for viewing some seemingly very different techniques. Per-
haps most interestingly, our results indicate a connection between the formula
size of a function and its complexity in a very different model, quantum query
complexity. In particular, our results give some support to the provocative con-
jecture that the square of the quantum query complexity of a function f lower
bounds its formula size.

8.2 Preliminaries

8.2.1 Deterministic and probabilistic formulae

A Boolean formula over the standard basis {∨,∧,¬} is a binary tree where each
internal node is labelled with ∨ or ∧, and each leaf is labelled with a literal, that
is, a Boolean variable or its negation. The size of a formula is its number of
leaves. The depth of a formula is the length of the longest path from a leaf to
the root. We naturally identify a formula with the function it computes.

8.2.1. Definition. Let f : {0, 1}n → {0, 1} be a Boolean function. The formula
size of f , denoted L(f), is the size of the smallest formula which computes f . The
formula depth of f , denoted d(f) is the minimum depth of a formula computing f .

It is clear that L(f) ≤ 2d(f); that in fact the opposite inequality d(f) ≤ O(log L(f))
also holds is a nontrivial result due to Spira [Spi71].

We will also consider probabilistic formulae, which we take as a probability
distribution over deterministic formulae. We consider a worst-case notion of the
size of a probabilistic formula. This model of probabilistic formulae has been
studied in the series of works [Val84, Bop89, DZ97] which investigate constructing
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efficient deterministic monotone formulae for the majority function by amplifying
the success probability of probabilistic formulae. The interested reader can also
compare our definition with two different models of probabilistic formula size
considered by [Kla04].

8.2.2. Definition. Let S ⊆ {0, 1}n and {fj}j∈J be a set of functions with fj :
S → {0, 1} for each j ∈ J . For a function f : S → {0, 1}, we say that f is
ε-approximated by {fj}j∈J if there is a probability distribution α = {αj}j∈J over
J such that for every x ∈ S,

Pr
α

[f(x) = fj(x)] ≥ 1− ε.

In particular, if maxj L(fj) ≤ s, then we say that f is ε-approximated by formulas
of size s, denoted Lε(f) ≤ s.

Note that even if a function depends on all its variables, it is possible that
the probabilistic formula size is less than the number of variables. For example,
the OR function on n variables can be computed with error ε by a probabilistic
formula of size (1− ε)n. We simply take a uniform distribution over all formulas
which compute the OR of a subset of (1− ε)n many variables. It is clear that the
formula is always correct if the input contains no ones. On the other hand say
that xi = 1. Then our success probability is the probability that i is included in
a random subset of n of size (1− ε)n, which is 1− ε.

8.2.2 Complexity measures of Boolean functions

We use standard complexity measures of Boolean functions, such as sensitivity
and certificate complexity (see [BW02] for a survey).

8.2.3. Definition (Sensitivity). Let S ⊆ {0, 1}n and f : S → {0, 1} be a
Boolean function. For an input x ∈ S the sensitivity of f on x is the number of
strings y which differ from x in exactly one position and such that f(x) 6= f(y).
The zero-sensitivity of f , written s0(f) is the maximum over all x ∈ f−1(0) of the
sensitivity of f on x. The one-sensitivity, written s1(f), is defined analogously.
Finally, the sensitivity of f , written s(f) is the maximum of s0(f), s1(f).

8.2.4. Definition (Certificate Complexity). Let f be as above. A certifi-
cate for f on input x ∈ S is a subset I ⊆ [n] such that for any y satisfying yi = xi
for all i ∈ I it must be the case that f(y) = f(x). The certificate size of f on input
x is the size of a smallest certificate for f on x. The zero-certificate complexity
of f , written C0(f) is the maximum over all x ∈ f−1(0) of the certificate size of
f on x. The one-certificate complexity of f , is defined analogously. Finally, the
certificate complexity of f , written C(f), is the maximum of C0(f), C1(f).
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8.2.3 Linear Algebra

We will make extensive use of linear algebra in this part of the thesis. Notation
and definitions are given in Appendix B.

8.3 Shrinkage Exponent of Boolean Formulae

We first review the source of the best currently known formula size lower bounds.
Take a formula φ over the basis {∧,∨,¬}. A random restriction with probability
p leaves each variable xi free with probability p and sets it to 0 or 1 each with
probability (1 − p)/2. How much do we expect φ to shrink after we hit it with
such a random restriction and simplify the resulting formula? An obvious answer
is that the formula will shrink by a factor of at least p. Subbotovskaya was the
first to notice that formulae actually shrink more [Sub61]. She observed that
if the original formula size was L, the expected formula size after the random
restriction is O(p1.5L+1). The shrinkage exponent Γ is defined as the least upper
bound which can replace 1.5 in the previous expression. As the PARITY function
shrinks by a factor θ(p2), it follows that Γ ≤ 2.

The shrinkage exponent can be used to prove lower bounds on formula size
in the following way. Suppose that we have a formula φ and we know that after
hitting φ with a random restriction with probability p, the resulting formula φ′

still computes with high probability a function requiring formula size L. Well,
then the original formula φ must have been of size at least L/pΓ.

Along these lines, Andreev [And87] defined a function f : {0, 1}2n → {0, 1}
whose formula size depends on the shrinkage exponent. On input x, interpret the
first n bits of x as the truth table of a function g : {0, 1}logn → {0, 1}. Divide
the second half of x into log n many blocks y1, . . . , ylogn each of length n/ log n.
Then f(x) = g(⊕y1, . . . ,⊕ylogn).

We can show that f requires large formula size as follows. Fix the first half
of the input to some hard function g requiring formula size Ω(n/ log n) which we
know to exist by a counting argument. Fixing the function f in this way may
decrease its formula size, so say it now has formula size L. Now hit the second
half of the input with a random restriction with p = logn log logn

n
. Say the formula

size after this restriction is L′. With this choice of p, with high probability there
will be one variable which is not fixed in each of the log n blocks and thus in
particular the resulting formula must still compute g. Thus L′ ≥ n/ log n. Now
we can lower bound the size of L as L′ ≤ pΓL, which implies L ≥ n1+Γ−o(1).

H̊astad shows that the shrinkage exponent is 2, and thus obtains an n3−o(1)

formula size lower bound for an explicit function [H̊as98]. This proof is quite
technical, and we will not pretend to survey it here. We will, however, isolate one
key lemma from H̊astad’s proof which we will see later is in fact a special case of
our techniques.
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8.3.1. Definition. For any function f : {0, 1}n → {0, 1},

1. A restriction is a string in {0, 1, ?}n where ? means the variable is left free,
and 0 or 1 mean the variable is set to the constant 0 or 1, respectively.

2. The restricted function f |ρ is the function that remains after the non-?
variables in ρ are fixed.

3. Rp is the distribution on random restrictions to the variables of f obtained
by setting each variable, independently, to ? with probability p, and to 0
or 1 each with probability (1−p)

2
.

4. A filter ∆ is a set of restrictions which has the property that if ρ ∈ ∆, then
every ρ′ obtained by fixing one of the ?s to a constant is also in ∆.

5. When p is known from the context, and for any event E, and any filter ∆,
we write Pr[E|∆] to mean Prρ∈Rp [E|ρ ∈ ∆].

8.3.2. Theorem (Håstad, Lemma 4.1). Let f : {0, 1}n → {0, 1}. Let A be
the event that a random restriction in Rp reduces f to the constant 0, B be the
event that a random restriction in Rp reduces f to the constant 1, and let C be
the event that a random restriction ρ ∈ Rp is such that f |ρ is a single literal.
Furthermore, let ∆ be any filter. Then

L(f) ≥ Pr[C|∆]2

Pr[A|∆] Pr[B|∆]

(
1− p

2p

)2

8.4 Hamming distance one methods

We now discuss two methods, the methods of Khrapchenko and Koutsoupias
which relate the formula size of f to the number of (x, y) pairs where f(x) 6= f(y)
and x, y have Hamming distance one. We will see in the next chapter that our
technique generalizes these methods in a natural way to the case where (x, y) do
not necessarily have Hamming distance one.

8.4.1 Khrapchenko’s method

Khrapchenko developed a method to give the first tight lower bound of Ω(n2) for
the parity function [Khr71]. The method works as follows. Let f be a Boolean
function, and let X be the set of inputs for which f evaluates to 0, and Y be the
set of inputs for which f evaluates to 1. Now think of a bipartite graph with left
hand side X, and right hand side Y , and connect two vertices (x, y) by an edge
if they have Hamming distance one. The theorem of Khrapchenko says that the
product of the average degree of the left hand side in this graph and the average
degree of the right hand side is a lower bound on formula size. It is easy to see
that for parity every vertex has degree n, thus we get the n2 lower bound.



8.5. Communication Complexity 105

8.4.1. Theorem (Khrapchenko). Let S ⊆ {0, 1}n and f : S → {0, 1}. Let
A ⊆ f−1(0) and B ⊆ f−1(1). Let C be the set of pairs (x, y) ∈ A×B with
Hamming distance one, that is C = {(x, y) ∈ A×B : dH(x, y) = 1}. Then

L(f) ≥ |C|2
|A||B| .

8.4.2 Koutsoupias’ Method

Koutsoupias extended Khrapchenko’s method with a spectral technique [Kou93].
This technique is still restricted to look at pairs which disagree on the function
and have Hamming distance one.

8.4.2. Theorem (Koutsoupias). Let f : {0, 1}n → {0, 1}, and let X = f−1(0),
and Y = f−1(1). Let C = {(x, y) ∈ A×B : dH(x, y) = 1}. Let Q be a |X|×|Y |
matrix Q[x, y] = C(x, y) where C is identified with its characteristic function.
Then L(f) ≥ ‖Q‖2.

8.5 Communication Complexity

8.5.1 Karchmer–Wigderson Game

Karchmer and Wigderson [KW88] give an equivalent formulation of the formula
size of f in terms of the communication complexity of a relation associated with
f . Since this seminal paper, most results about formula size have been cast in the
more general setting of communication complexity. This turns out to have several
advantages, in particular, access to the combinatorial view of communication
complexity based on rectangles.

Let X, Y, Z be finite sets, and R ⊆ X×Y×Z. In the communication game
for the relation R, Alice is given some x ∈ X, Bob is given some y ∈ Y and
their goal is to find some z ∈ Z such that (x, y, z) ∈ R, if such a z exists. A
communication protocol is a binary tree where each internal node v is labelled by
a function av : X → {0, 1} or bv : Y → {0, 1} describing either Alice’s or Bob’s
message at that node, and where each leaf is labelled with an element z ∈ Z. A
communication protocol computes R if for all (x, y) ∈ X×Y walking down the
tree according to av, bv leads to a leaf labelled with z such that (x, y, z) ∈ R,
provided such a z exists. The communication cost D(R) of R is the depth of the
smallest communication protocol computing R. The communication matrix of
R is the matrix MR[x, y] = {z : R(x, y, z)}. A rectangle X ′×Y ′ with X ′ ⊆ X
and Y ′ ⊆ Y is monochromatic if

⋂
x∈X′,y∈Y ′ MR[x, y] 6= ∅. The protocol partition

number CP (R) is the number of leaves in the smallest communication protocol
computing R, and the rectangle partition number CD(R) is the smallest number
of disjoint monochromatic rectangles required to cover X×Y . We will often
informally refer to CD(R) as the “rectangle bound”.
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8.5.1. Definition. Let S ⊆ {0, 1}n and f : S → {0, 1}. We associate with f a
relation Rf = {(x, y, i) : f(x) = 0, f(y) = 1, xi 6= yi}.

8.5.2. Theorem (Karchmer-Wigderson). Let S ⊆ {0, 1}n and f : S →
{0, 1} be a Boolean function. Then L(f) = CP (Rf ).

Proof: We first see the direction CP (Rf ) ≤ L(f). Let φ be a formula for f
of size L(f), and assume without loss of generality that φ only has negations at
its leaves. We use φ to define our communication protocol. Say that Alice has
x ∈ f−1(0) and Bob has y ∈ f−1(1). Initially, φ(x) = 0 and φ(y) = 1. We
move down the formula tree choosing subformulas which continue to satisfy these
conditions. Thus for example if node v is labelled by an AND gate, say the AND
of subformulas φv0, φv1, then Alice will speak according to the rule av(x) = 0
if φv0(x) = 0 and av(x) = 1 otherwise. Continuing in this manner with Alice
speaking at the AND gates and Bob speaking at the OR gates, we will eventually
arrive at a leaf labeled by a single literal `i such that `i(x) 6= `i(y). Thus it must
be the case that xi 6= yi, and so we label this leaf with index i. It is clear that the
number of leaves of the communication protocol so defined is simply L(f), and
the communication cost is the depth of the formula.

Now for the direction L(f) ≤ CP (Rf ). We prove by induction on the size of
the communication protocol. If the communication protocol for Rf has size 1
then there exists some index i such that xi 6= yi for all x ∈ X and y ∈ Y . There
is similarly a size 1 formula for f , namely either xi or ¬xi.

For the induction step, suppose that the statement holds for all relations with
protocols of size t, and consider the relation Rf with protocol size t + 1. One
player speaks first in the protocol, suppose it is Alice. The other case follows
similarly. Let X0 be the set of inputs for which Alice first says 0, and let X1 be
the set of inputs for which Alice first says 1. Let fj be such that Xj ⊆ f−1

j (0) and

Y ⊆ f−1
j (1) for j ∈ {0, 1}. Now inputs from the sets X0 × Y and X1 × Y can be

solved with by protocols of size t or less, and so by the induction hypothesis there
are functions fj for j ∈ {0, 1} with Xj ⊆ f−1

j (0) and Y ⊆ f−1
j (1), and which have

formula size t or less. We now set the formula for f to be f0 ∧ f1. 2

8.6 Rectangle Based Methods

Using the Karchmer–Wigderson game, we can turn the problem of lower bounding
formula size into lower bounding communication complexity, and thus have at
our disposal the well-developed framework for proving communication complexity
lower bounds.

One of the most basic facts about communication complexity is that a deter-
ministic protocol for a relation R ⊆ X × Y ×Z partitions X × Y into monochro-
matic rectangles. This means that, if CD(R) is the size of the smallest partition
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of R into monochromatic rectangles, then CD(R) is a lower bound on CP (R). We
now give a proof of this important fact.

8.6.1. Theorem. CD(R) ≤ CP (R)

Proof: For a node v in the protocol tree, let Sv ⊆ X × Y be the set of inputs
which reach v during the protocol. We prove by induction that Sv is a rectangle.

If v is the root, then Sv is all of X × Y and so a rectangle. Otherwise, let w
be the parent of v and suppose, without loss of generality, that v is the left son
of w and that Alice speaks at v. By the induction hypothesis, the set of inputs
reaching w form a rectangle Xw × Yw. The set of inputs which reach v then is
the set

(Xw ∩ {x ∈ Xw : aw(x) = 0})× Yw

which is a rectangle.
Thus we have shown that the set of inputs reaching any node in the proto-

col form a rectangle, thus in particular the inputs reaching a leaf node form a
rectangle. Now let v be a leaf node, and suppose that the output at v is z ∈ Z.
Notice that if the protocol is correct, then it must be the case that (x, y, z) ∈ R
for all (x, y) ∈ Sv, and so v is monochromatic. Thus each leaf is a monochromatic
rectangle.

Furthermore, as each node of the protocol is labelled by a function, and each
(x, y) pair lies in some leaf, the leaves form a disjoint covering of X × Y by
monochromatic rectangles.

Now, as the protocol partitions X × Y into R-monochromatic rectangles in
a particular way, it will in turn be lower bounded by the size of the smallest
R-monochromatic partition of X × Y , which is CD(R). 2

We have now seen that the rectangle bound can be used to lower bound the
size of a smallest communication protocol for a relation R. We now see that this
lower bound is never too bad.

8.6.2. Theorem ([KKN95] following [AUY83]). For any relation R,

CD(R) ≤ CP (R) ≤ 2O(log2 CD(R))

Proof: Let R ⊆ X × Y × Z be a relation, and R be a rectangle partition of R
of size CD(R). Using the partition R, we design a protocol with communication
complexity O(log2CD(R)).

Initially, there are at most CD(R) many rectangles which are “alive”, that is
which could contain (x, y). The protocol will proceed in phases, where in each
phase Alice and Bob communicate logCD(R)+O(1) bits and reduce the number
of alive rectangles by a factor of 2. Thus after at most logCD(R) many phases,
they have reduced the number of alive rectangles to 1, and output the color of
this rectangle.
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The crucial fact we use is that two disjoint rectangles cannot intersect in both
rows and columns. This means that if we look at the rectangle S containing
(x, y) then the rectangles which are still alive and intersect S in columns must
be distinct from the rectangles which are still alive and intersect S in rows. This
gives a way to reduce the number of alive rectangles under consideration in half.
We now describe in more detail the content of each phase:

1. Alice considers all the rectangles which are still alive. If there is only 1
rectangle still alive, then she outputs the color of this rectangle. Otherwise,
she searches for a rectangle S which intersects x and which intersects in rows
with at most half of the rectangles still alive. If she finds such a rectangle
she tells Bob its name and the phase is completed. Otherwise, she tells Bob
no such rectangle exists.

2. Bob searches for a rectangle which is still alive, contains the column y, and
intersects in columns with at most half of the rectangles still alive. By the
reasoning above, such a rectangle must exist. Bob sends its name to Alice
and the phase is completed.

We see that each phase requires at most logCD(R) + O(1) many bits and
reduces the number of alive rectangles in half. Thus the total communication
complexity is O(log2CD(R)). 2

8.6.1 Rank Method

Razborov proposed a method for proving formula size lower bounds based on
matrix rank. The key property underlying this method is that matrix rank is
subadditive, that is rk(A + B) ≤ rk(A) + rk(B). One disadvantage with the
rectangle bound is that one has to evaluate a minimum over all monochromatic
rectangle partitions, which can be an doubly exponentially large set, in terms
of the input length n of the function. For proving formula size lower bounds,
Razborov gets around this problem by noticing there is a small set of n rectangles,
which he calls the canonical cover, such that every monochromatic rectangle is
contained in some rectangle from the canonical cover.

8.6.3. Definition. Let R ⊆ X × Y × Z be a relation. The canonical cover of
R is the set system {Sz}z∈Z , where

Sz = {(x, y) : x ∈ X, y ∈ Y, (x, y, z) ∈ R}.

For a matrix A with rows labelled from a set X and columns labelled from a
set Y , and a set S ⊆ X × Y , let AS be the matrix A with all entries not in the
set S set to 0.
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8.6.4. Theorem (Razborov).

CD(R) ≥ max
A6=0

rk(A)

maxz rk(ASz)

Proof: Let R be a monochromatic partition of R such that CD(R) = |R|. Let
A 6= 0 be a matrix over X × Y . By subadditivity of rank, we have rk(A) ≤∑

S∈R rk(AS) ≤ CD(R) maxS∈R rk(AS). Now notice that for any S ∈ R, as S is
monochromatic it must be a subset of an element of the canonical cover Sz for
some z. As S is a rectangle, it now follows that rk(AS) ≤ rk(ASz), as a set of
independent vectors for AS will remain independent by adding entries which are
disjoint from S in either rows or columns. This gives the theorem. 2

Razborov shows that his method cannot prove lower bounds larger than O(n)
for formula size. For monotone formula size, however, he uses this technique to
prove nΩ(logn) lower bounds.

8.6.2 Rectangle Size Technique

Say we are looking at a monochromatic rectangle partition of a set X × Y . An
obvious lower bound on the size of such a partition is

|X||Y |
maxS |S|

where S ranges over all monochromatic rectangles. One can generalize this bound
by considering instead probability distributions over X × Y .

8.6.5. Definition. Let R ⊆ X×Y ×Z be a relation, and let µ be a probability
distribution on X × Y . Define

N∗(R) = max
µ 6=0

1/max
S

µ(S)

where S ranges over all monochromatic rectangles ofR, and µ(S) =
∑

(x,y)∈S µ(x, y).

It is clear that N∗(R) ≤ CD(R) ≤ CP (R). Thus far, we have talked about the
smallest monochromatic rectangle partition of a relation. One can also consider
the smallest monochromatic rectangle covering, denoted CN(R). We use this
notation as logCN(R) is equal to the nondeterministic communication complexity
of R. Karchmer, Kushilevitz, and Nisan [KKN95] show that in turn logN∗(R)
characterizes nondeterministic communication complexity:

8.6.6. Theorem ([KKN95]).

logN∗(R) ≤ logCN(R) ≤ logN∗(R) + log n+O(1)
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8.6.3 Linear programming bound

In the same paper, Karchmer, Kushilevitz, and Nisan [KKN95] introduce another
technique based on a linear programming approximation of the rectangle bound.
We will refer to this as the KKN bound. They first observe that the rectangle
bound can be written as a 0-1 integer program. Let R be a relation, and S be
the set of all rectangles which are monochromatic with respect to R. Consider
the matrix A with rows labelled by elements of X × Y and columns labelled by
rectangles from S. Then the rectangle bound is exactly equal to the following
optimization problem:

minimize
∑

i xi
such that Ax = 1 and xi ∈ {0, 1} for all i.

We can relax this into a linear program as follows:

minimize
∑

i xi
such that Ax = 1 and x ≥ 0.

The bound of the KKN technique is then the optimum of this program. More
useful for proving formula size lower bounds is the dual of this program:

maximize
∑

x,y w(x, y)

such that
∑

x,y∈S w(x, y) ≤ 1 for every S ∈ S.

Notice that the essential difference between this method and the rectangle
size technique is that here the weight function can be negative. KKN use this
technique to reprove Khrapchenko’s result that the formula size of PARITY is
Θ(n2). They also show, however, that this technique cannot prove lower bounds
larger than n2.

8.7 Nečiporuk

Nečiporuk’s method [Neč66] is somewhat different from the aforementioned meth-
ods. For one, it works over any basis of fan-in 2 functions, not just {∧,∨,¬}.
Klauck has shown a close connection between the Nečiporuk method and one-way
communication complexity [Kla04].

Let f be a function on the n Boolean variables X = {x1, . . . , xn}. Let S ⊆ X.
An S-subfunction of f is the function obtained by fixing the variables in X − S
to some value.

8.7.1. Theorem (Nečiporuk). Let f be a function on n variables and S1, . . . , Sk
be a partition of the variables. Say that f has si many distinct Si-subfunctions.
Then

L(f) ≥ 1

4

k∑
i=1

log si.
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The largest lower bounds provable with Nečiporuk’s method are of the order
Θ(n2/ log n).

8.8 Summary of our Results

We have now seen nearly all of the general techniques which have been developed
to prove formula size lower bounds. In Chapter 9, we develop a new algebraic
method for proving formula size lower bounds based on matrix spectra. To prove
that our method lower bounds formula size we use the Karchmer–Wigderson
characterization of formula size as a communication complexity game, as seen in
Section 8.5.1. This allows us to show that our method can in general be used to
lower bound CD(R), the size of the smallest monochromatic rectangle partition
of the relation R, and thus also communication complexity.

Our spectral methods can be seen as a general framework which encompasses
all of the Hamming distance one methods discussed in Section 8.4, and also the
rectangle size technique discussed in Section 8.6.2. In Chapter 10, we look at a
special case of our method in detail. This method has orgins from the so-called
quantum adversary method, one of two main techniques used to prove lower
bounds on quantum query complexity. We show that the square of the quantum
adversary method gives a lower bound on formula size. In this case, we are able
to give concrete examples of functions where our new method gives provably
stronger bounds than the Hamming distance one methods of Khrapchenko and
Koustsoupias, and the lemma of H̊astad, Theorem 8.3.2.





Chapter 9

Spectral Methods for Formula Size
Lower Bounds

9.1 Introduction

In this chapter, we develop a new technique for proving formula size lower bounds
based on spectral methods. To introduce this technique, we first recall from the
previous chapter the probability on rectangles method of [KKN95]. For a relation
R ⊆ X × Y × Z, one puts a probability distribution µ on X × Y and the bound
given is

max
µ 6=0

1

maxS µ(S)
(9.1)

where S ranges over all monochromatic rectangles of R.
Now let us take a look at Equation (9.1) from a different point of view. Recall

that the Frobenius norm of a matrix A, written ‖A‖F , is
√∑

ij |A[i, j]|2. One

can easily verify that the Equation (9.1) is equivalent to

max
A6=0

‖A‖2
F

maxS ‖AS‖2
F

where again S ranges over all monochromatic rectangles of R and AS is the matrix
A with entries outside of S set to 0.

We now further rewrite this expression. First we need a bit of notation. For
a square n × n matrix A, let λ1(A) ≥ . . . ≥ λn(A) be the eigenvalues of A. For
an arbitrary matrix A, let σi(A) =

√
λi(A∗A), be the ith singular value of A.

Now notice that
∑

ij |A[i, j]|2 = Tr(A∗A) =
∑n

i=1 σ
2
i (A). Thus Equation (9.1) is

equivalent to

max
A6=0

∑n
i=1 σ

2
i (A)

maxS
∑n

i=1 σ
2
i (AS)

.

We show that this is only the beginning of spectral based bounds in commu-
nication complexity:

113
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9.1.1. Theorem. Let R ⊆ X × Y × Z, and let N = min{|X|, |Y |}. Then for
any 1 ≤ k ≤ N

CP (R) ≥ max
A6=0

∑k
i=1 σ

2
i (A)

maxS
∑k

i=1 σ
2
i (AS)

.

where S ranges over all rectangles monochromatic with respect to R.

Of particular interest is the case k = 1. In this case, Theorem 9.1.1 is related
to the square of the so-called quantum adversary method, a method developed
for proving lower bounds on quantum query complexity which has been given
many alternative formulations [Amb02, Amb03, BSS03, LM04, Zha05] which all
turn out to be equivalent [ŠS05].

In this chapter we prove Theorem 9.1.1, and keep our discussion at a somewhat
abstract level; in the following chapter, we analyze in detail applications of this
theorem in the case k = 1. We will see that this method subsumes the Hamming
distance one methods discussed earlier, and also look at the application of this
method in some concrete cases.

9.2 The proof

To prove Theorem 9.1.1 we first formulate a lemma which says that the sum of
the squares of the first k singular values is subadditive on matrices B,C if B and
C are disjoint on rows. We actually state the lemma in a bit more generality—we
feel this is justified as it highlights exactly the condition which is needed in the
proof.

9.2.1. Definition. We say that two matrices B,C are orthogonal to each other
if Bx and Cx are orthogonal as vectors for all vectors x.

9.2.2. Lemma. Let A be a m× n matrix with n ≤ m. Let B,C be orthogonal to
each other such that A = B + C. Then for all 1 ≤ k ≤ n,

k∑
i=1

σ2
i (A) ≤

k∑
i=1

σ2
i (B) + σ2

i (C).

The main difficulty of the lemma is obtaining the proper characterization of
the sum of the first k singular values. To this end, we need the following theorem
of Ky Fan [Fan49]. We give a new proof of this theorem here which seems simpler
than the original proof of Ky Fan, or the “simplified” proof given by [OW92].
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9.2.3. Theorem (Ky Fan). Let A be a n × n Hermitian matrix, and let λ1 ≥
· · · ≥ λn be the eigenvalues of A. Then for all 1 ≤ k ≤ n,

k∑
i=1

λi = max
X:X∗X=I

Tr(X∗AX) (9.2)

where X ranges over n× k matrices.

Proof: One direction of the inequality is clear: Let the columns ofX be orthonor-
mal eigenvectors corresponding to λ1, . . . , λk, respectively. Then Tr(X∗AX) =∑

i λi and so the right hand side of Equation (9.2) is larger than the left hand
side.

The other direction takes a bit more work. As A is Hermitian, there is a
unitary matrix U and a diagonal matrix Λ = diag[λ1, . . . , λn] such that A =
U∗ΛU . We now have:

max
X:X∗X=I

Tr(X∗AX) = max
X:X∗X=I

Tr(X∗U∗ΛUX)

= max
X:X∗X=I

Tr((UX)∗Λ(UX))

= max
X:X∗X=I

Tr(X∗ΛX)

= max
X:X∗X=I

k∑
i=1

n∑
j=1

λj|X[i, j]|2

= max
X:X∗X=I

n∑
j=1

λj

k∑
i=1

|X[i, j]|2.

To complete the proof, we now show that
∑k

i=1 |X[i, j]|2 ≤ 1 for every j. To
see this, extend X to a n × n unitary matrix Y whose first k columns are the
same as those of X. It then follows that

∑k
i=1 |X[i, j]|2 ≤ (Y Y ∗)[j, j] = 1. Let

αj =
∑k

i=1 |X[i, j]|2 be the “weight” on λj. Notice that the weight on each λj is
at most 1, that is αj ≤ 1, and in total we have k units of weight to distribute,
that is

∑n
j=1 αj = k. We now find

max
X:X∗X=I

n∑
j=1

λj

k∑
i=1

|X[i, j]|2 =
n∑
j=1

αjλj (9.3)

As we have k units of weight to distribute, it is best to concentrate them on the
first k largest eigenvalues. Further, as each eigenvalue can receive at most one
unit of weight the best we can do is to let αi = 1 for each 1 ≤ i ≤ k. Here we
achieve the value

∑k
i=1 λi. 2
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Proof: [of Lemma 9.2.2] Notice thatA∗A is a Hermitian matrix and that λi(A
∗A) =

σ2
i (A). Thus by the Ky Fan theorem we have

k∑
i=1

σ2
i (A) = max

X:X∗X=I
Tr(X∗A∗AX)

= max
X:X∗X=I

k∑
i=1

‖AXi‖2

where Xi is the ith column of X. With this characterization in hand, the proof
is now easy:

k∑
i=1

σ2
i (A) = max

X:X∗X=I

k∑
i=1

‖AXi‖2

= max
X:X∗X=I

k∑
i=1

‖BXi + CXi‖2

= max
X:X∗X=I

k∑
i=1

‖BXi‖2 + ‖CXi‖2

≤ max
X:X∗X=I

k∑
i=1

‖BXi‖2 + max
X:X∗X=I

k∑
i=1

‖CXi‖2

=
k∑
i=1

σ2
i (B) + σ2

i (C).

where in the third line we used the fact that B,C are orthogonal to each other.
2

We now extract a sufficient condition for a matrix function to lower bound
communication complexity.

9.2.4. Lemma. Let µ be a function from matrices to nonnegative real numbers.
Suppose that µ satisfies the following three conditions:

1. µ(A) = 0 if and only if A = 0.

2. If A = B + C and B,C are disjoint on rows, then µ(A) ≤ µ(B) + µ(C).

3. If A = B+C and B,C are disjoint on columns, then µ(A) ≤ µ(B)+µ(C).

4. if S is a rectangle, and S ⊆ S ′ then µ(AS) ≤ µ(AS′).
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Then for any relation R ⊆ X × Y × Z

CP (R) ≥ max
A6=0

µ(A)

maxS µ(AS)

where S ranges over all the monochromatic rectangles of R.

Proof: Fix a matrix A 6= 0. Let P be a protocol for R whose size is CP (R). For
a node v in the protocol tree, let Sv ⊆ X × Y be the set of elements which reach
v in the protocol. We will abuse notation by writing Av for ASv .

We prove by induction on the depth of the protocol the following statement:

µ(A) ≤
∑

leaves `

µ(A`).

Say that Alice speaks first (and that Alice’s inputs label the rows). Let A0

consist of those rows of A labeled by inputs where Alice says 0 and A1 consist
of those rows of A where Alice says 1. Then A = A0 + A1, and by the second
property of the µ, we have µ(A) ≤ µ(A0) + µ(A1). If instead Bob speaks first,
then similarly we can define A0 and A1 which are disjoint on columns, and then
use the third property.

Now suppose the statement is true up to depth k, that is

µ(A) ≤
∑
v

µ(Av).

where the sum is over all nodes at depth k. Consider now some node v at depth
k, and suppose that Alice speaks at this node. Then notice that Av = Av0 +Av1
and that Av0 and Av1 are disjoint on rows. Thus by property 2, the sum does not
decrease by this subdivision. The other case follows similarly using property 3.

It thus follows that

µ(A) ≤
∑

leaves `

µ(A`) ≤ CP (R) max
`
µ(A`). (9.4)

We know that in a successful protocol each leaf ` is a monochromatic rectangle,
thus by property 3 and the fact that A 6= 0 was arbitrary, we obtain the statement
of the lemma. 2

We would like to highlight the role of property 4 in this proof. Notice that we
did not use property 4 in arriving to Equation (9.4). Evaluating this equation,
however, would require knowing the structure of the optimal protocol. If this
were known, we would not be messing around with µ in trying to prove lower
bounds. We use property 4, therefore, to go from a lower bound which requires
knowledge of the optimal protocol for R to one which relies only on properties of
R itself, namely its structure of monochromatic rectangles.
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Proof:[of Theorem 9.1.1] We only need to verify that
∑k

i=1 σ
2
i (A) satisfies the

four properties of Lemma 9.2.4. The first property is clear. The second property
is given by Lemma 9.2.2. The third property follows by applying Lemma 9.2.2 and
the fact that A∗A and AA∗ have the same nonzero eigenvalues (see Chapter B)
and so

∑k
i=1 σ

2
i (A) =

∑k
i=1 σ

2
i (A

∗).
Property 4 deserves more comment. Recall that Property 4 states: If S is a

rectangle and S ⊆ S ′ then µ(AS) ≤ µ(AS′). This property follows from the inter-
lacing theorem for singular values which can be found in [HJ99], Theorem 7.3.9:

9.2.5. Theorem. Let A be a m-by-n matrix and let Â be the matrix obtained by
deleting any one column from A.

• If m ≥ n then

σ1(A) ≥ σ1(Â) ≥ σ2(A) ≥ σ2(Â) ≥ . . . ≥ σn−1(Â) ≥ σn(A) ≥ 0.

• If m < n then

σ1(A) ≥ σ1(Â) ≥ σ2(A) ≥ σ2(Â) ≥ . . . ≥ σm(A) ≥ σm(Â) ≥ 0.

As S is a rectangle, we can obtain AS by deleting rows and columns from AS′
and by the interlacing property we have that the singular values of AS′ will be
componentwise larger than those of AS.

It is crucial here that S be a rectangle—the statement is not true for general
sets S. 2

9.3 Discussion

An immediate question which arises is, what other matrix functions satisfy the
conditions of Lemma 9.2.4? We have already seen another example in matrix
rank. Searching for others, a natural place to look is amongst the matrix norms.
An interesting class of matrix norms are those induced by vector norms. A vector
norm ‖ · ‖ induces a matrix norm by

‖A‖ = max
x:‖x‖=1

‖Ax‖.

For example, consider the matrix norm ‖A‖p induced by the `p vector norm. One
can easily see that if B,C are row disjoint matrices, then ‖B+C‖pp ≤ ‖B‖pp+‖C‖pp,
thus property 2 also holds for these matrix p-norms to the pth power. The problem
is that property 3 does not hold for these matrix p-norms.

A further question to ask is if we have gained something by allowing the
maximum over all matrices A 6= 0 in Theorem 9.1.1 instead of just nonnegative
matrices. Are there examples where this gives a provably stronger bound?



Chapter 10

Quantum Adversary Method and
Formula Size Lower Bounds

This chapter is based on the paper:

• S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and
classical formula size lower bounds. In Proceedings of the 20th Annual IEEE
Conference on Computational Complexity, pages 76–90, 2005. Invited to the
Computational Complexity special issue of selected papers from CCC 2005.

10.1 Introduction

In this chapter we study in depth a special case of the spectral techniques devel-
oped in the last chapter. This is the case where k = 1 and the bound becomes

max
A6=0

‖A‖2

maxS ‖AS‖2
.

This bound is especially interesting as it is related to the so-called quantum
adversary method, a technique developed for proving lower bounds on quantum
query complexity. We see that this bound generalizes the Hamming distance one
techniques discussed in Chapter 8 and we look at a concrete example where this
bound gives something provably better than these other methods. We also look
at one attempt to extend this bound to give stronger results, and the limitations
of these approaches.

10.2 Quantum Adversary Method

The roots of the quantum adversary argument can be traced to the hybrid argu-
ment of [BBBV97], who use it to show a Ω(

√
n) lower bound on quantum search.

Ambainis developed a more sophisticated adversary argument [Amb02] and later

119
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improved this method to the full-strength quantum adversary argument [Amb03].
Further generalizations include Barnum, Saks, and Szegedy [BSS03] with their
spectral method and Zhang [Zha05] with his strong adversary method. Laplante
and Magniez [LM04] use Kolmogorov complexity to capture the adversary argu-
ment in terms of a minimization problem. This line of research culminates in
recent work of Špalek and Szegedy [ŠS05] who show that in fact all the methods
of [Amb03, BSS03, Zha05, LM04] are equivalent.

10.2.1 Quantum query complexity

As with the classical counterpart, in the quantum query model we wish to com-
pute some function f : S → {0, 1}, where S ⊆ Σn, and we access the input
through queries. The complexity of f is the number of queries needed to compute
f . Unlike the classical case, however, we can now make queries in superposition.
Formally, a query O corresponds to the unitary transformation

O : |i, b, z〉 7→ |i, b⊕ xi, z〉

where i ∈ [n], b ∈ {0, 1}, and z represents the workspace. A t-query quantum
algorithm A has the form A = UtOUt−1O · · ·OU1OU0, where the Uk are fixed
unitary transformations independent of the input x. The computation begins
in the state |0〉, and the result of the computation A is the observation of the
rightmost bit of A|0〉. We say that A ε-approximates f if the observation of the
rightmost bit of A|0〉 is equal to f(x) with probability at least 1 − ε, for every
x. We denote by Qε(f) the minimum query complexity of a quantum query
algorithm which ε-approximates f .

10.2.2 Adversary formulations

In this section we present some of the various formulations of the adversary
method which have been given. Having these different characterizations on hand
will make it very convenient to show that the adversary technique subsumes sev-
eral different methods for proving formula size lower bounds, namely the Ham-
ming distance one techniques discussed in Section 8.4.

We give the primal characterization as our principal definition of sumPI.

10.2.1. Definition (sumPI). Let S ⊆ {0, 1}n and f : S → {0, 1} be a Boolean
function. For every x ∈ S let px : [n] → R be a probability distribution, that is,
px(i) ≥ 0 and

∑
i px(i) = 1. Let p = {px : x ∈ S}. We define the sum probability

of indices to be

sumPI(f) = min
p

max
x,y

f(x) 6=f(y)

1∑
i

xi 6=yi

√
px(i)py(i)
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The name sumPI, short for “sum over probability of indices”, is taken from this
formulation. By the above mentioned series of works it follows that

Qε(f) =
(
1− 2

√
ε(1− ε)

)
sumPI(f).

We will also use two versions of the dual method, both a weight scheme
and the spectral formulation. The most convenient weight scheme for us is the
“probability scheme”, given in Lemma 4 of [LM04].

10.2.2. Definition (Probability Scheme). Let S ⊆ {0, 1}n and f : S →
{0, 1} be a Boolean function, and X = f−1(0), Y = f−1(1). Let q be a probability
distribution on X×Y , and pA, pB be probability distributions on X, Y respectively.
Finally let {p′x,i : x ∈ X, i ∈ [n]} and {p′y,i : y ∈ Y, i ∈ [n]} be families of probabil-
ity distributions on Y,X respectively. Assume that q(x, y) = 0 when f(x) = f(y).
Let P range over all possible tuples (q, pA, pB, {p′x,i}x,i) of distributions as above.
Then

PA(f) = max
P

min
x,y,i

f(x) 6=f(y),xi 6=yi

√
pA(x)pB(y)p′x,i(y)p

′
y,i(x)

q(x, y)

We will also use the spectral adversary method.

10.2.3. Definition (Spectral Adversary). Let S ⊆ {0, 1}n and f : S →
{0, 1} be a Boolean function. Let X = f−1(0), Y = f−1(1). Let A 6= 0 be an
arbitrary |X|×|Y | nonnegative matrix. For i ∈ [n], let Ai be the matrix:

Ai[x, y] =

{
0 if xi = yi
A[x, y] if xi 6= yi

Then

SA(f) = max
A6=0

‖A‖
maxi ‖Ai‖

The spectral adversary method was initially defined in [BSS03] for symmetric
matrices over X ∪ Y . The above definition is equivalent: if A is a X ∪ Y matrix
satisfying the constraint that A[x, y] = 0 when f(x) = f(y) then A is of the form

A =

[
0 B
BT 0

]
, for some matrix B over X×Y . Then the spectral norm of A is

equal to that of B. Similarly, for any X×Y matrix A we can form a symmetrized
version of A as above preserving the spectral norm.

We will often use the following theorem implicitly in taking the method most
convenient for the particular bound we wish to demonstrate.

10.2.4. Theorem (Špalek-Szegedy). Let n ≥ 1 be an integer, S ⊆ {0, 1}n
and f : S → {0, 1}. Then

sumPI(f) = SA(f) = PA(f)
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10.2.3 Properties of sumPI

Besides having such a robust definition, the measure sumPI behaves very nicely
under composition. We are able to give both upper and lower bounds on the
sumPI measure of a composed function in terms of the sumPI measures of its
component functions.

10.2.5. Lemma. Let g1, . . . , gn be Boolean functions, and h be a function, h :
{0, 1}n → {0, 1}. If sumPI(gj) ≤ a for 1 ≤ j ≤ n and sumPI(h) ≤ b, then for
f = h(g1, . . . , gn), sumPI(f) ≤ ab.

Proof: Let p be an optimal family of distribution functions associated with h
and pj be optimal families of distribution functions associated with gj. Define
the distribution function

qx(i) =
∑
j∈[n]

pg(x)(j)pj,x(i).

Assume that for x, y ∈ S we have f(x) 6= f(y). It is enough to show that∑
i: xi 6=yi

√∑
j∈[n]

pg(x)(j)pj,x(i)

√∑
j∈[n]

pg(y)(j)pj,y(i)

≥ 1

ab
. (10.1)

By Cauchy–Schwarz, the left hand side of Equation (10.1) is greater than or
equal to ∑

i:xi 6=yi

∑
j∈[n]

√
pg(x)(j)pj,x(i)

√
pg(y)(j)pj,y(i)

=
∑
j∈[n]

(√
pg(x)(j)pg(y)(j)

∑
i:xi 6=yi

√
pj,x(i)pj,y(i)

)
. (10.2)

By the definition of pj, we have
∑

i:xi 6=yi

√
pj,x(i)pj,y(i) ≥ 1/a as long as

gj(x) 6= gj(y). Thus we can estimate the expression in Equation (10.2) from
below by:

1

a

∑
j:gj(x) 6=gj(y)

√
pg(x)(j)pg(y)(j).

By the definition of p we can estimate the sum (without the 1/a coefficient)
in the above expression from below by 1/b, which finishes the proof. 2

The following powerful lemma of Ambainis [Amb03] makes it easy to lower
bound the sumPI complexity of iterated functions.
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10.2.6. Definition. Let f : {0, 1}n → {0, 1} be any Boolean function. We
define the dth iteration of f , written fd : {0, 1}nd → {0, 1}, inductively as f 1(x) =
f(x) and

fd+1(x) = f(fd(x1, . . . , xnd), fd(xnd+1, . . . , x2nd), . . . ,

fd(x(n−1)nd+1, . . . , xnd+1))

10.2.7. Lemma (Ambainis). Let f be any Boolean function and fd the dth it-
eration of f . Then sumPI(fd) ≥ (sumPI(f))d.

Combining this with Lemma 10.2.5, we get:

10.2.8. Corollary. Let f be any Boolean function and fd the dth iteration of
f . Then sumPI(fd) = (sumPI(f))d.

10.3 Key Combinatorial Lemma

As in the previous chapter, the key to our results is a combinatorial lemma
relating the square of the spectral norm of a matrix to the sum of the squares of
the spectral norms of its submatrices. In the case of the spectral norm, we are able
to prove a stronger result than that given in the previous chapter, namely that
the spectral norm squared is subadditive with respect to an arbitrary rectangle
decomposition, not just a treelike decomposition.

10.3.1. Lemma. Let A be an arbitrary |X|×|Y | matrix, and R a partition of
X×Y . Then ‖A‖2 ≤

∑
R∈R ‖AR‖2

Proof: By Fact B.6.3, ‖A‖ = maxu,v |u∗Av|, where the maximum is taken over
all unit vectors u, v. Let u, v be unit vectors realizing this maximum. Then we
have

‖A‖ = |u∗Av| =

∣∣∣∣∣u∗
(∑
R∈R

AR

)
v

∣∣∣∣∣ =

∣∣∣∣∣∑
R∈R

u∗ARv

∣∣∣∣∣ .
Let u∗R be the portion of u∗ corresponding to the rows of R, and vR be the portion
of v corresponding to the columns of R. Notice that {uR}R∈R do not in general
form a partition of u. We now have

‖A‖ =

∣∣∣∣∣∑
R∈R

u∗RARvR

∣∣∣∣∣ ≤∑
R∈R

|u∗RARvR|

≤
∑
R∈R

‖AR‖‖uR‖‖vR‖



124 Chapter 10. Quantum Adversary Method and Formula Size Lower Bounds

by Fact B.6.3. Applying the Cauchy–Schwarz inequality, we obtain

‖A‖ ≤

(∑
R∈R

‖AR‖2

)1/2(∑
R∈R

‖uR‖2‖vR‖2

)1/2

.

Now it simply remains to observe that∑
R∈R

‖uR‖2‖vR‖2 =
∑
R∈R

∑
(x,y)∈R

u[x]2v[y]2 = ‖u‖2‖v‖2 = 1,

as R is a partition of X×Y . 2

10.4 Formula Size Lower Bounds

10.4.1 Deterministic Formulae

With this lemma in hand, it is now easy to show that sumPI(f)2 lower bounds
the formula complexity of f . In fact, as this lemma works with respect to an
arbitrary rectangle decomposition, we can even show that sumPI(f)2 lower bounds
the rectangle bound, CD(Rf ).

Again, we do not want our final expression to make reference to the structure
of monochromatic rectangles in the optimal rectangle partition. Fortunately, in
the case of the relation Rf which arises in formula size, there is a very natural
covering we can use, together with a monotonicity condition, to get around this.
Razborov [Raz90] takes the same path in the rank method, and refers to this
covering as the canonical covering. The canonical covering consists of the n sets
Si for i ∈ [n], where Si = {(x, y) : f(x) = 0, f(y) = 1, xi 6= yi}. Now any rectangle
which is monochromatic with respect to the relation will be monochromatic for
some color i and so will be contained in Si. Razborov’s definition of the canonical
covering is slightly different than ours, as he takes care to make the elements of
the covering rectangles; this is not needed for our application.

10.4.1. Theorem.

sumPI2(f) ≤ CD(Rf ) ≤ L(f)

Proof: We have seen that CD(Rf ) ≤ L(f), thus we focus on the inequality
sumPI2(f) ≤ CD(Rf ).

Let R be a monochromatic rectangle partition of Rf such that |R| = CD(Rf ),
and let A be an arbitrary |X|×|Y | matrix with nonnegative real entries.
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By Lemma 10.3.1 we have

‖A‖2 ≤
∑
S∈R

‖AS‖2 ≤ CD(Rf ) max
S∈R

‖AS‖2.

As each S ∈ R is monochromatic, it follows that S ⊆ Si for some i. It is evident
from the definition of spectral norm given in Fact B.6.3 that ‖AS‖ ≤ ‖ASi

‖. As
S is a rectangle,

‖ASi
‖ = max

x,y:‖x‖=‖y‖=1
|x∗ASi

y| ≥ max
xS ,yS :‖xS‖=‖yS‖=1

|x∗SASi
yS|

= ‖AS‖,

where xS, yS are restricted to have nonzero entries only in the rows and columns
of S respectively. This monotonicity condition would hold even if the matrix A
were allowed to have negative entries. 2

10.4.2 Probabilistic Formulae

The properties of sumPI allow us to show that it can be used to lower bound the
probabilistic formula size.

10.4.2. Lemma. Let ε < 1/2. If f : S → {0, 1} is ε-approximated by functions
{fj}j∈J with sumPI(fj) ≤ s for every j ∈ J , then sumPI(f) ≤ s/(1− 2ε).

Proof: By assumption there is a probability distribution α = {αj}j∈J such
that Pr[f(x) = fj(x)] ≥ 1 − ε. Thus for a fixed x ∈ S, letting Jx = {j ∈
J : f(x) = fj(x)}, we have

∑
j∈Jx

αj ≥ 1 − ε. Hence for any x, y ∈ S we have∑
j∈Jx∩Jy

αj ≥ 1−2ε. For convenience, we write Jx,y for Jx∩Jy. As sumPI(fj) ≤ s

there is a family of probability distributions pj such that whenever fj(x) 6= fj(y)

∑
i

xi 6=yi

√
pj,x(i)pj,y(i) ≥ 1/s.
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Define px(i) =
∑

j∈J αjpj,x(i). Let x, y be such that f(x) 6= f(y).∑
i

xi 6=yi

√
px(i)py(i)

=
∑

i
xi 6=yi

√∑
j∈J

αjpj,x(i)

√∑
j∈J

αjpj,y(i))

≥
∑

i
xi 6=yi

√∑
j∈Jx,y

αjpj,x(i)

√∑
j∈Jx,y

αjpj,y(i)

≥
∑

i
xi 6=yi

∑
j∈Jx,y

√
αjpj,x(i)

√
αjpj,y(i)

=
∑
j∈Jx,y

αj ∑
i

xi 6=yi

√
pj,x(i)pj,y(i)


≥ 1− 2ε

s
,

where for the third step we have used the Cauchy–Schwarz Inequality. 2

This lemma immediately shows that the sumPI method can give lower bounds
on probabilistic formula size.

10.4.3. Theorem. Let S ⊆ {0, 1}n and f : S → {0, 1}. Then

Lε(f) ≥ ((1− 2ε)sumPI(f))2

for any ε < 1/2.

Proof: Suppose that {fj}j∈J gives an ε-approximation to f . By Lemma 10.4.2
there is some j ∈ J with sumPI(fj) ≥ (1 − 2ε)sumPI(f). Theorem 10.4.1 then
implies L(fj) ≥ ((1− 2ε)sumPI(f))2 which gives the statement of the theorem. 2

10.5 Beyond the Adversary Method

We have thus far investigated the measure sumPI. This measure is quite natural,
and we have seen that it possesses several nice properties. If we are willing to do
more work in finding out the structure of the monochromatic rectangles of the
relation Rf , then we can apply Lemma 10.3.1 in a stronger way to obtain larger
formula size bounds. We present one such approach here, which we call maxPI.
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We feel obliged to remark at the outset that while sumPI can be computed in
time polynomial in the size of the truth table of f by reduction to semidefinite
programming, we do not know how to compute maxPI in less than exponential
time.

We define maxPI in its primal form:

10.5.1. Definition.

maxPI(f) = min
p

max
x,y

f(x) 6=f(y)

1

maxi:xi 6=yi

√
px(i)py(i)

.

Notice that the difference between maxPI and sumPI is that here we take the
maximum over the indices instead of the sum. This is why we call this technique
“maximum probability of indices”. As the maximum over the indices will be less
than the sum over indices, it is obvious that sumPI(f) ≤ maxPI(f). In the re-
mainder of this section we will show that (maxPI(f))2 also lower bounds CD(Rf ).
Later we give an example of a partial function which shows that maxPI(f) is not
in general a lower bound on the quantum query complexity of f and we show
that for total functions sumPI(f) and maxPI(f) are polynomially related.

To show that (maxPI(f))2 is a lower bound on CD(Rf ), we first partially dual-
ize the expression maxPI. The final expression remains a minimization problem,
but we minimize over discrete index selection functions, instead of families of
probability distributions, which makes it much more tractable.

10.5.2. Definition (Index selection functions). Let f : {0, 1}n → {0, 1}
be a Boolean function, X=f−1(0), and Y=f−1(1). For i ∈ [n] let Di be an
|X|×|Y | matrix defined by Di[x, y] = 1 − δxi,yi

. We call the set of n Boolean
(0− 1) matrices {Pi}i∈n index selection functions if

1.
∑

i Pi = E, where E[x, y] = 1 for every x ∈ X, y ∈ Y . (informally: for
every x ∈ X, y ∈ Y we select a unique index)

2. Pi ≤ Di (informally: for every x ∈ X, y ∈ Y the index we select is an i
such that xi 6= yi).

Notice that index selection functions correspond to partitioning X×Y , in such
a way that if x, y are in the ith part, then xi 6= yi.

10.5.3. Theorem (Spectral adversary version of maxPI). Let f,X, Y be
as in the previous definition. Let A be an arbitrary |X|×|Y | nonnegative matrix
satisfying A[x, y] = 0 whenever f(x) = f(y). Then

maxPI(f) = min
{Pi}i

max
A

‖A‖
maxi ‖A ◦ Pi‖

,

where {Pi}i runs through all index selection functions.
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Proof: For a fixed family of probability distributions p = {px}, and for the
expression

max
x,y

f(x) 6=f(y)

1

maxi:xi 6=yi

√
px(i)py(i)

, (10.3)

let us define the index selection function Pi[x, y] = 1 if i = argmaxi:xi 6=yi

√
px(i)py(i)

and 0 otherwise. (Argmax is the smallest argument for which the expression at-
tains its maximal value.) Then the denominator in Equation (10.3) becomes equal
to
∑

i:xi 6=yi

√
px(i)py(i)Pi[x, y]. If we replace the above system of Pis with any

other choice of index selection function the value of
∑

i:xi 6=yi

√
px(i)py(i)Pi[x, y]

will not increase. Thus we can rewrite Equation (10.3) as

max
x,y

f(x) 6=f(y)

1

max{Pi}i

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]

,

where here Pi[x, y] runs through all index selection functions. Thus:

maxPI(f) =

1

/
max
p

min
x,y

f(x) 6=f(y)

max
{Pi}i

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y]. (10.4)

Notice that in Equation (10.4) the minimum is interchangeable with the sec-
ond maximum. The reason for this is that for a fixed p there is a fixed {Pi[x, y]}i
system that maximizes

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y] for all x, y : f(x) 6= f(y).

Thus:
maxPI(f) =

1

/
max
{Pi}i

max
p

min
x,y

f(x) 6=f(y)

∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y].

Following the proof of the main theorem of Špalek and Szegedy [ŠS05] we can cre-
ate the semidefinite version of the above expression. The difference here, however,
is that we have to treat {Pi}i (the index selection functions) as a “parameter” of
the semidefinite system over which we have to maximize. Unfortunately it also
appears in the final expression.

Semidefinite version of maxPI: For fixed {Pi}i let µ′max be the solution of the
following semidefinite program:

maximize µ′

subject to (∀i) Ri � 0,∑
iRi ◦ I = I,∑
iRi ◦ Pi ≥ µ′F.

Define µmax as the maximum of µ′max, where Pi (1 ≤ i ≤ n) run through all index
selection functions. Then maxPI = 1/µmax.
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To see how to create a solution to the semidefinite program from probability
distributions {px, py}: let Ri[x, y] =

√
px(i)py(i). Then

∑
Ri ◦ I = I follows

as the {px} are probability distributions. Furthermore, the {Ri} are positive
semidefinite as they are rank one matrices with nonnegative entries. Finally, if
f(x) 6= f(y) then ∑

i

Ri ◦ Pi =
∑
i:xi 6=yi

√
px(i)py(i)Pi[x, y].

For the other direction, let {Ri} be a solution to the semidefinite program
which realize the bound 1/µ. We show how to change this into a rank one
solution whose bound is as good. As each Ri is positive semidefinite, we can take
a Cholesky decomposition where Ri = XiX

T
i . Define a column vector qi[x] =√∑

j Xi[x, j]2. Let R′
i be the rank one matrix defined as R′

i = qiq
T
i . That∑

iR
′
i = I follows from the same property of {Ri}. By the Cauchy-Schwarz

inequality,

Ri[x, y] =
∑
j

X[x, j]X[j, y] ≤
√∑

j

X[x, j]2
√∑

j

X[j, y]2 = qi[x]qi[y] = R′
i[x, y].

This implies that
∑

iR
′
i[x, y]Pi[x, y] ≥ Ri[x, y]Pi[x, y] ≥ µ and so thus the bound

of the original definition of maxPI is less than that given by the semidefinite
formulation.

To conclude the proof, we can now dualize the semidefinite version of maxPI
and simplify it in same way as was done in Špalek and Szegedy for the case of
sumPI. The only change is that Di needs to be replaced with Pi, and we have to
minimize over all choices of {Pi}i. 2

10.5.4. Theorem.

sumPI2(f) ≤ maxPI2(f) ≤ CD(Rf ) ≤ L(f)

Proof: The only inequality we have not seen is maxPI2(f) ≤ CD(Rf ).
Let R be a monochromatic rectangle partition of Rf such that |R| = CD(Rf ),

and let A be an arbitrary |X|×|Y | matrix with nonnegative real entries. For
S ∈ R let color(S) be the least index c such that xc 6= yc holds for all (x, y) ∈ S.
By assumption each S is monochromatic, thus such a color exists. Define

Sc = ∪ color (R)=c
R.

Then it is clear that if S ∈ R then S ⊆ Sc where c = color(S). By the same
argument as in Theorem 10.4.1 we have ‖AS‖ ≤ ‖ASc‖, and so

‖A‖2 ≤
∑
S∈R

‖AS‖2 ≤ CD(Rf ) max
c∈[n]

‖Sc‖2
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It thus follows that

max
A6=0

‖A‖2

maxc∈[n] ‖ASc‖2
≤ CD(Rf ).

We have exhibited a particular index selection function, the {Sc}c, for which this
inequality holds, thus it also holds for maxPI2(f) which is the minimum over all
index selection functions. 2

10.6 Comparison with Previous Methods

In this section we compare some of the formula size methods discussed in Chap-
ter 8 with our methods. We see that the sumPI2 measure generalizes all of the
Hamming distance 1 methods discussed there.

10.6.1 Khrapchenko’s method

We see that Khrapchenko’s method is a special case of the probability scheme.

10.6.1. Theorem. Let S ⊆ {0, 1}n and f : S → {0, 1}. Let A ⊆ f−1(0) and
B ⊆ f−1(1). Let C be the set of pairs (x, y) ∈ A×B with Hamming distance 1,

that is C = {(x, y) ∈ A×B : dH(x, y) = 1}. Then sumPI(f)2 ≥ |C|2
|A||B| .

Letting A,B,C be as in the statement of the theorem, we set up our proba-
bility distributions as follows:

• pA(x)=1/|A| for all x∈A, pA(x)=0 otherwise

• pB(x)=1/|B| for all x∈B, pB(x)=0 otherwise

• q(x, y)=1/|C| for all (x, y)∈C, q(x, y)=0 otherwise

• px,i(y)=1 if (x, y)∈C and xi 6= yi, 0 otherwise. Note that this is a probability
distribution as for every x there is only one y such that (x, y)∈C and xi 6= yi.

10.6.2 The Koutsoupias bound

The Koutsoupias bound is a Hamming distance 1 version of the spectral version
of sumPI2.

10.6.2. Theorem. Let f : {0, 1}n → {0, 1}, and let A ⊆ f−1(0), and B ⊆
f−1(1). Let C = {(x, y) ∈ A×B : dH(x, y) = 1}. Let Q be a |A|×|B| matrix
Q[x, y] = C(x, y) where C is identified with its characteristic function. Then
sumPI(f)2 ≥ ‖Q‖2.
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Proof: The bound follows easily from the the spectral version of sumPI. Let Q be
as in the statement of the theorem. Notice that since we only consider pairs with
Hamming distance 1, for every row and column of Qi there is at most one nonzero
entry, which is at most 1. Thus by Fact B.6.4 we have ‖Qi‖2 ≤ ‖Q‖1‖Q‖∞ ≤ 1.
2

10.6.3 H̊astad’s method

10.6.3. Theorem. Let f : {0, 1}n → {0, 1}. Let A be the event that a random
restriction in Rp reduces f to the constant 0, B be the event that a random
restriction in Rp reduces f to the constant 1, and let C be the event that a random
restriction ρ ∈ Rp is such that f |ρ is a single literal. Then

sumPI(f)2 ≥ Pr[C|∆]2

Pr[A|∆]Pr[B|∆]

(
1− p

2p

)2

Proof: We see that H̊astad’s lemma follows from the probability scheme. In this
proof we only consider restrictions obtained from Rp that are in the filter ∆. We
also abuse notation and use A and B to mean the sets of restrictions in ∆ which
contribute with non-zero probability to the events A and B respectively.

Implicit in H̊astad’s proof is the following relation between restrictions in A
and B. For every ρ ∈ C, f |ρ reduces to a single literal, that is, for every ρ ∈ C,
there is an i such that f |ρ = xi (or ¬xi if the variable is negated). Define ρb to be
ρ where xi is set to b, for b ∈ {0, 1} (set xi to 1−b if the variable is negated). To
fit into the framework of the probability scheme, let ρb be ρb where all remaining
?s are set to 1. This doesn’t change the value of the function, because it is already
constant on ρb. Then we say that ρ0, ρ1 are in the relation.

We set pA(σ) = Pr[σ]
Pr[A|∆]

for any σ ∈ A, and pB(τ) = Pr[τ ]
Pr[B|∆]

for any τ ∈ B, and

for every pair ρ0, ρ1 in the relation, where ρ ∈ C, f |ρ = xi or ¬xi, let

p′
ρ0,i

(ρ1) = 1

p′
ρ1,i

(ρ0) = 1

q(ρ0, ρ1) =
Pr[ρ]

Pr[C|∆]

The probabilities are 0 on all other inputs. We can easily verify that the proba-
bilities sum to 1. For p′, notice that the Hamming distance between ρ0 and ρ1 is
1, so when ρb and i are fixed, there is only a single ρ1−b with probability 1.
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By Theorem 10.2.4 and Theorem 10.4.1,

L(f) ≥
pA(x)pB(y)p′y,i(x)p

′
x,i(y)

q(x, y)2

=
Pr[ρ0]

Pr[A|∆]

Pr[ρ1]

Pr[B|∆]

(
Pr[C|∆]

Pr[ρ]

)2

Finally, notice that Pr[ρ] = 2p
1−pPr[ρ

b]. 2

Remark H̊astad actually defines f |ρ to be the result of reducing the formula for
f (not the function) by applying a sequence of reduction rules, for each restricted
variable. So there is a subtlety here about whether f |ρ denotes the reduced
formula, or the reduced function, and the probabilities might be different if we
are in one setting or the other. However both in his proof and ours, the only
thing that is used about the reduction is that if the formula or function reduces
to a single literal, then fixing this literal to 0 or to 1 reduces the function to a
constant. Therefore, both proofs go through for both settings.

10.7 Limitations

10.7.1 Hamming distance 1 techniques

We show that the bounds for a function f given by Khrapchenko’s and Koutsou-
pias’ method, and by H̊astad’s lemma are upper bounded by the product of the
zero sensitivity and the one sensitivity of f . We will later use this bound to show
a function on n bits for which the best lower bound given by these methods is n
and for which an ≈ n1.32 bound is provable by sumPI2.

10.7.1. Lemma. The bound given by the Khrapchenko method (Theorem 10.6.1),
Koutsoupias’ method (Theorem 10.6.2), and H̊astad’s Lemma (Theorem 10.6.3)
for a function f are at most s0(f)s1(f) ≤ s2(f).

Proof: Let A be a nonnegative matrix, with nonzero entries only in positions
(x, y) where f(x) = 0, f(y) = 1 and the Hamming distance between x, y is one.
We first show that

max
A

‖A‖2

maxi ‖Ai‖2
≤ s0(f)s1(f). (10.5)

Let amax be the largest entry in A. A can have at most s0(f) many nonzero
entries in any row, and at most s1(f) many nonzero entries in any column, thus
by Fact B.6.4,

‖A‖2 ≤ ‖A‖1‖A‖∞ ≤ a2
maxs0(f)s1(f).
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On the other hand, for some i, the entry amax appears in Ai, and so by Fact B.6.3,
‖Ai‖2 ≥ a2

max. Equation (10.5) follows.
Now we see that the left hand side of Equation (10.5) is larger than the

three methods in the statement of the theorem. That it is more general than
Koutsoupias method is clear. To see that it is more general than the proba-
bility schemes method where q(x, y) is only positive if the Hamming distance
between x, y is one: given the probability distributions q, pX , pY , define the ma-
trix A[x, y] = q(x, y)/

√
pX(x)pY (y). By Fact B.6.3, ‖A‖ ≥ 1, witnessed by the

unit vectors u[x] =
√
pX(x) and v[y] =

√
pY (y). As each reduced matrix Ai has

at most one nonzero entry in each row and column, by Fact B.6.4 we have

max
i
‖Ai‖2 ≤ max

x,y

q2(x, y)

pX(x)pY (y)
.

Thus we have shown

max
A

‖A‖2

maxi ‖Ai‖2
≥ max

pX ,pY ,q
min
x,y

pX(x)pY (y)

q2(x, y)
.

2

The only reference to the limitations of these methods we are aware of is
Schürfeld [Sch83], who shows that Khrapchenko’s method cannot prove bounds
greater than C0(f)C1(f).

10.7.2 Limitations of sumPI and maxPI

The limitations of the adversary method are well known [Amb02, LM04, Sze03,
Zha05, ŠS05]. Špalek and Szegedy, in unifying the adversary methods, also give
the most elegant proof of their collective limitation. The same proof also shows
the same limitations hold for the maxPI measure.

10.7.2. Lemma. Let f : {0, 1}n → {0, 1} be any partial or total Boolean function.
If f is total (respectively, partial) then maxPI(f) ≤

√
C0(f)C1(f) (respectively,

min{
√
nC0(f),

√
nC1(f)}).

Proof: Assume that f is total. Take x, y such that f(x) = 0 and f(y) = 1. We
choose any 0-certificate B0 for x with |B0| = C0(f) and any 1-certificate B1 for y
with |B1| = C1(f) and let px(i) = 1/C0(f) for all i ∈ B0 and py(i) = 1/C1(f) for
all i ∈ B1. As f is total, we have B0 ∩ B1 6= ∅, thus let j ∈ B0 ∩ B1. For this j
we have px(j)py(j) ≥ 1/ (C0(f)C1(f)), thus mini 1/px(i)py(i) ≤ C0(f)C1(f).

The case where f is partial follows similarly. As we no longer know that
B0 ∩ B1 6= ∅, we put a uniform distribution over a 0-certificate of x and the
uniform distribution over [n] on y or vice versa. 2

This lemma implies that sumPI and maxPI are polynomially related for total f .
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10.7.3. Corollary. Let f be a total Boolean function. Then

maxPI(f) ≤ sumPI4(f).

Proof: By [Amb02, Thm. 5.2] we know that
√
bs(f) ≤ sumPI(f). As f is total,

by the above lemma we know that maxPI(f) ≤
√
C0(f)C1(f). This in turn is

smaller than bs(f)2 as C(f) ≤ s(f)bs(f) [Nis91]. The statement follows. 2

Besides the certificate complexity barrier, another serious limitation of the
sumPI method occurs for partial functions where every positive input is far in
Hamming distance from every negative input. Thus for example, if for any pair
x, y where f(x) = 1 and f(y) = 0 we have dH(x, y) ≥ εn, then by putting the
uniform distribution over all input bits it follows that sumPI(f) ≤ 1/ε. The
measure maxPI does not face this limitation as there we still only have one term
in the denominator.

Following this line of thinking, we can give an example of a partial function
f where maxPI(f) � sumPI(f). Such an example is the Collision problem (see
Section 10.8.3), as here any positive and negative input must differ on at least
n/2 positions. Another family of examples comes from property testing, where
the promise is that the input either has some property, or that it is ε-far from
having the property.

10.8 Concrete lower bounds

The quantum adversary argument has been used to prove lower bounds for a
variety of problems. Naturally, all of these lower bounds carry over to formula
size lower bounds. In this section we present some new lower bounds, in order to
highlight the strengths and weaknesses of maxPI and sumPI.

10.8.1 Recursive majorities

As an example of applying sumPI, we look at the recursive majority of three
function. We let R−MAJh3 : {0, 1}3h → {0, 1} be the function computed by
a complete ternary tree of depth h where every internal node is labeled by a
majority gate and the input is given at the leaves.

Recursive majority of three has been studied before in various contexts. It is
a monotone function which is very sensitive to noise [MO03], making it useful for
hardness amplification in NP [O’D02]. Jayram, Kumar, and Sivakumar [JKS03]
give nontrivial lower and upper bounds on the randomized decision tree com-
plexity of recursive majority of three. They show a lower bound of (7/3)h on
the randomized decision tree complexity. As far as we know, the quantum query
complexity of recursive majority of three has not yet been investigated. We show
a lower bound of 2h on the quantum query complexity.
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10.8.1. Lemma. sumPI(R−MAJh3) = maxPI(R−MAJh3) = 2h

Proof: To see that maxPI(R−MAJh3) ≤ 2h, observe that

C0(R−MAJh3) = C1(R−MAJh3) = 2h.

The result then follows from Lemma 10.7.2.

We now turn to the lower bound. We will first show a lower bound for
R−MAJ1

3, the majority of three function, and then apply Lemma 10.2.7. Con-
sider the following table, where the rows are indexed by negative instances x, the
columns by positive instances y, and 1’s indicate when dH(x, y) = 1.

110 101 011
001 0 1 1
010 1 0 1
100 1 1 0

Interpreting this table as the adjacency matrix of a graph, it is clear that every
vertex has degree 2. Thus Khrapchenko’s method gives a bound of 4 for the
base function. By Theorem 10.6.1 we have sumPI(R−MAJ1

3) ≥ 2. Now applying
Lemma 10.2.7 gives the lemma. 2

From Lemma 10.8.1 we immediately obtain quantum query complexity and
formula size lower bounds:

10.8.2. Theorem. Let R−MAJh3 be the recursive majority of three function of
height h. Then Qε(R−MAJh3) ≥ (1−2

√
ε(1− ε))2h and Lε(R−MAJh3) ≥ (1−2ε)4h.

The best upper bound on the formula size of R−MAJh3 is 5h. For this bound,
we will use the following simple proposition about the formula size of iterated
functions.

10.8.3. Proposition. Let S ⊆ {0, 1}n and f : S → {0, 1}. If L(f) ≤ s then
L(fd) ≤ sd, where fd is the dth iteration of f .

10.8.4. Proposition. L(R−MAJh3) ≤ 5h.

Proof: The formula (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) computes R−MAJ1
3 and has 5

leaves. Using Proposition 10.8.3 gives L(R−MAJh3) ≤ 5h. 2
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10.8.2 Ambainis’ function

We define a function fA : {0, 1}4 → {0, 1} after Ambainis [Amb03]. This function
evaluates to 1 on the following values: 0000, 0001, 0011, 0111, 1111, 1110, 1100,
1000. That is, f(x) = 1 when x1 ≤ x2 ≤ x3 ≤ x4 or x1 ≥ x2 ≥ x3 ≥ x4. To
obtain this formulation from Ambainis’ original definition, exchange x1 and x3,
and take the negation of the resulting function. There are a few things to notice
about this function. The sensitivity of fA is 2 on every input. Also on an input
x = x1x2x3x4 the value of fA(x) changes if both bits sensitive to x are flipped
simultaneously, and if both bits insensitive for x are flipped simultaneously.

We will be looking at iterations of the base function fA as in Definition 10.2.6.
Notice that the sensitivity of fA

d is 2d on every input x ∈ {0, 1}4d
.

10.8.5. Lemma. sumPI(fA
d) = 2.5d.

Proof: Ambainis has already shown that sumPI(fA
d) ≥ 2.5d [Amb03].

We now show the upper bound. We will show an upper bound for the base
function fA and then use the composition Lemma 10.2.5. Every input x1x2x3x4

has two sensitive variables and two insensitive variables. For any x ∈ {0, 1}4 we
set px(i) = 2/5 if i is sensitive for x and px(i) = 1/10 if i is insensitive for x.
The claim follows from the following observation: for any x, y ∈ {0, 1}4 such that
f(x) 6= f(y) at least one of the following holds

• x and y differ on a position i which is sensitive for both x and y. Thus∑
i

√
px(i)py(i) ≥ 2/5

• x and y differ on at least 2 positions, each of these positions being sensitive
for at least one of x, y. Thus

∑
i

√
px(i)py(i) ≥ 2

√
1/25 = 2/5

2

This lemma gives us a bound of 6.25d ≈ N1.32 on the formula size of fA
d.

Since the sensitivity of fA
d is 2d, by Lemma 10.7.1, the best bound provable by

Khrapchenko’s method, Koutsoupias’ method, and H̊astad’s lemma is 4d = N .
It is natural to ask how tight this formula size bound is. The best upper

bound we can show on the formula size of fA
d is 10d.

10.8.6. Proposition. L(fA
d) ≤ 10d

Proof: It can be easily verified that the following formula of size 10 computes
the base function fA:

(¬x1 ∨ x3 ∨ ¬x4) ∧ ((¬x1 ∧ x3 ∧ x4) ∨ ((x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3))) . (10.6)

This formula was found by computer search. The claim now follows from Propo-
sition 10.8.3. 2
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10.8.3 Collision problem

In this section we look at the collision function, fC. This is a partial function,
where for an alphabet Σ the defined inputs x = x1x2 . . . xn ∈ Σn satisfy one of
the following conditions:

• All xi are different

• For each i there exists exactly one j 6= i such that xi = xj.

Those inputs satisfying the first condition are positive inputs and those satisfying
the second condition are negative. An optimal lower bound for the quantum query
complexity of Ω(n1/3) has been given by Aaronson and Shi [AS04]. We now show
that the quantum adversary method cannot give better than a constant bound
for this problem.

10.8.7. Lemma. sumPI(fC) ≤ 2

Proof: We demonstrate a set of probability distributions px such that for any
positive instance x and negative instance y we have∑

i
xi 6=yi

√
px(i)py(i) ≥ 1/2.

The upper bound then follows.
Our probability distribution is very simple: for every x, let px(i) be the uni-

form distribution over [n]. Any positive and negative instance must disagree in
at least n/2 positions, thus

∑
i

xi 6=yi

√
px(i)py(i) ≥

n

2

√
1

n

1

n
=

1

2
.

2

On the other hand, maxPI(fC) ≥
√
n/2. As there is an upper bound for the

collision problem of O(n1/3) by Brassard, Høyer, Tapp [BHT97], this also shows
that in general maxPI(f) is not a lower bound on the quantum query complexity
of f .

10.8.8. Lemma. maxPI(fC) = Θ(
√
n)

Proof: For the upper bound: On every positive instance x, where all xi are
different, we put the uniform distribution over i ∈ [n]; for a negative instance y
we put probability 1/2 on the first position, and probability 1/2 on the position
j such that y1 = yj. As y1 = yj, any positive instance x must differ from y
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on position 1 or position j (or both). Thus maxi,xi 6=yi
px(i)py(i) ≥ 1/2n and

maxPI(fC) ≤
√

2n.
Now for the lower bound. Fix a set of probability distributions px. Let

x be any positive instance. There must be at least n/2 positions i satisfying
px(i) ≤ 2/n. Call this set of positions I. Now consider a negative instance y of
where yj = xj for all j 6∈ I, and y is assigned values in I in an arbitrary way so as to

make it a negative instance. For this pair x, y we have maxi
√
px(i)py(i) ≤

√
2/n,

thus maxPI(fC) ≥
√
n/2. 2

The following table summarizes the bounds from this section.

Function Input sum Qε max L s0s1

size PI PI

R−MAJh
3 N 2h ≈ Ω(N0.63) N0.63 Ω(N1.26), N1.26

= 3h N0.63
O(N1.46)

fA
h N 2.5h≈ Ω(N0.66) ≤3h≈ Ω(N1.32), N

= 4h N0.66 [Amb03] N0.69 O(N1.66)

fC N 2 Θ(N1/3) Θ(
√
N)

10.9 Conclusions

An outstanding open problem is whether the square of the quantum query com-
plexity lower bounds the formula size. We have given some support to this con-
jecture by showing it is true for one of the two main techniques of proving lower
bounds on quantum query complexity. It would also be interesting to investigate
if the same is true of approximate polynomial degree, the other main lower bound
technique for quantum query complexity.

We have seen that while in the spectral version of the adversary method the
maximum is restricted to nonnegative matrices, its square remains a bound on
formula size when the maximum is taken over arbitrary matrices. Can we take
advantage of this to prove larger lower bounds? In particular, the equivalence
between the spectral version and the min max formulation appears to break
down when the spectral version is quantified over arbitrary matrices. Thus we
can also ask: do the same certificate complexity limitations still apply to the
spectral adversary method taking the maximum over arbitrary matrices?

Finally, notice that for the case of the spectral norm we were able to prove
a stronger lemma, with respect to arbitrary rectangle partitions, than we were
able to do in Chapter 9. We would conjecture, however, that this case should
work as well with respect to arbitrary rectangle decompositions. More formally,
we conjecture the following:

10.9.1. Conjecture. Let A be a matrix over X × Y with n = min{|X|, |Y |}
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and let R be a rectangle partition of X × Y . Then for any 1 ≤ k ≤ n

k∑
i=1

σ2
i (A) ≤

∑
R∈R

k∑
i=1

σ2
i (AR)

It would also be quite interesting if this conjecture were not the case because
then we would have a method which lower bounds communication complexity,
but not the rectangle bound. As we have seen, practically all of the generic
techniques available actually lower bound the rectangle bound, and there are very
few examples known of separations between these two measures. Currently, the
largest separation between communication complexity and the log of the rectangle
bound is a square, shown by [KLO96].





Appendix A

Approximate Lower Bound Counting
with Arthur–Merlin Games

A.1 Approximate lower bound counting

A.1.1. Definition. We call A ⊆ {0, 1}∗ × {0, 1}∗ an NP-relation if

• A is polynomial time decidable

• There is a polynomial p(·) such that `(y) ≤ p(`(x)) for every (x, y) ∈ A.

We will let Ax = {y : (x, y) ∈ A}.

A.1.2. Theorem (Babai). Let A be an NP-relation. There is an AM algorithm
LBcount such that

• If |Ax| ≥ 2k+1 then Prr[LBcount(x, r) = 1] = 1

• If |Ax| ≤ 2k−1 then Prr[LBcount(x, r) = 1] ≤ 1/3

Proof: Fix x ∈ {0, 1}n and say that Ax ⊆ {0, 1}n′ . Notice that by considering
the direct product Ax × . . . × Ax of Ax with itself d times, we can amplify the
gap between the two cases we have to distinguish from 4 to 4d. We will do this
for d = log n′ + 1. As n′ is polynomial in n, the resulting direct product remains
an NP relation. Thus without loss of generality we can assume we have a NP
relation B with Bx ⊆ {0, 1}m and we must show

• If |Bx| ≥ 2k+2 logm then Prr[LBcount(x, r) = 1] = 1

• If |Ax| ≤ 2k−1 then Prr[LBcount(x, r) = 1] ≤ 1/3

The Arthur–Merlin algorithm is as follows:
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• Arthur chooses at random 2m many k-by-m matrices M1, . . . ,M2m with
entries from {0, 1}. Notice that m is polynomial in the input length n as B
is an NP-relation.

• Merlin returns 2m+ 1 strings to Arthur, labelled y and yi for each 1 ≤ i ≤
2m.

• If y, yi ∈ Bx and Miy = Miyi for each 1 ≤ i ≤ 2m then Arthur accepts.
Otherwise, he rejects.

We will prove the completeness and the soundness of the algorithm separately
in the next two claims:

A.1.3. Claim (Completeness). If |Bx| ≥ 2k+2 logm then ∃y, y1, . . . , y2m ∈ Bx

with Miy = Miyi for all i ∈ [2m] and any set of k-by-n′ matrices {Mi}.

Proof: We argue the first item by Kolmogorov complexity. Fix M1, . . . ,M2m.
By the first pillar of Kolmogorov complexity, there is an element y ∈ Bx with
C(y |Bx,M1, . . . ,M2m) ≥ k + 2 logm. Suppose for contradiction that for some i
there is no yi in Bx with Miy = Miyi. Then given M1, . . . ,M2m we can describe
y by giving the index i, the string z = Miy, and a constant number of bits to
say “y is the unique solution to Miv = z in Ax”. This description is of length
k + logm+O(1), a contradiction. 2

A.1.4. Claim (Soundness). If |Bx| ≤ 2k−1 then

Pr
M1,...,M2m

[∃y, y1, . . . , y2m : M1y = M1y1 ∧ . . . ∧M2my = M2my2m] ≤ 2−m.

Proof: The second item can be argued as follows: fix y and y′ 6= y. Notice that
the probability that the ith entry of My and My′ agree under a random matrix M
is 1/2. Thus by independence of the entries ofM we have PrM [My = My′] = 2−m.
It then follows by a union bound that

Pr
M

[∃y′ : My = My′] ≤ 2k−m ≤ 1/2.

As Arthur chooses the Mi independently, we have

Pr
M1,...,M2m

[∃y1, . . . , y2m : M1y = M1y1 ∧ . . . ∧M2my = M2my2m] ≤ 2−2m

Now again by a union bound we have

Pr
M1,...,M2m

[∃y, y1, . . . , y2m : My = My1 ∧ . . . ∧My = My2m] ≤ 2−m.

2

2



Appendix B

Linear Algebra

B.1 Terminology

In this thesis we will always work over the field of real numbers R or complex num-
bers C. For definiteness in this appendix, we will work over C—the modifications
needed for R are generally straightforward.

We consider a m × n matrix A as a m-by-n array of scalars from C. We
think of a vector of dimension m as a m-by-1 matrix. Let A[i, j] denote the (i, j)
entry of A. For a vector v we will usually use the shorthand v[i] = v[i, 1]. A
special matrix is the identity matrix of size n, written In, which has In[i, i] = 1
for 1 ≤ i ≤ n and all other entries equal to zero. When the dimension is clear
from the context we will omit the subscript.

The transpose of A, written AT is defined as AT [i, j] = A[j, i]. We will also
make use of the conjugate transpose of A, written A∗. Remember that for a
complex number z = a + bi ∈ C the complex conjugate of z is z = a − bi.
Thus A∗[i, j] = A[j, i]. A matrix is called Hermitian if A = A∗. Note that
(AB)∗ = B∗A∗. The matrix A is called invertible if there exists a matrix B such
that AB = I. If it exists then this matrix is unique and will be called the inverse
of A, denoted A−1. Besides the usual product of matrices, we will also make use
of the Hadamard product, written A ◦B, where (A ◦B)[i, j] = A[i, j]B[i, j].

For an n-dimensional vectors u, v note that u∗v and uv∗ are very different
creatures—the first is a scalar and the second is an n-by-n matrix. The quantity
u∗v is known as the inner product of u, v. Two vectors are called orthogonal if
u∗v = 0. We will make frequent use of the `2 vector norm, defined as ‖v‖ =

√
v∗v.

A set of vectors v1, . . . , vm will be called an orthonormal set if vi, vj are orthogonal
for i 6= j and each vi has `2 norm one.

A set of vectors v1, . . . vm is called linearly independent if the only solution
to
∑

i αivi = (0, . . . , 0) is to set αi = 0 for all 1 ≤ i ≤ m. Written in matrix
notation, this says that if A is the matrix whose ith column is vi, the only solution
to Au = 0 is u = (0, . . . , 0). The span of a set of vectors v1, . . . , vm is the set {w :
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w =
∑

i αivi, αi ∈ C}. The Cauchy–Schwarz inequality says that |u∗v| ≤ ‖u‖‖v‖.

B.2 Matrix and Vector Norms

In this section we look at ways to measure the “size” of a matrix—norms. By
ignoring the array-like structure of a m × n matrix A, we can also think of it
as a vector of dimension mn. In this way, all notions which apply to vectors, in
particular vector norms, can directly be applied to matrices.

B.2.1. Definition. A function ‖ · ‖ : Cd → R is called a vector norm if for all
x, y ∈ V and scalars c ∈ C:

1. ‖x‖ ≥ 0

2. ‖x‖ = 0 if and only if x = 0

3. ‖cx‖ = |c|‖x‖

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

B.2.2. Example. Examples of vector norms include the `p norms for 1 ≤ p <∞.

‖v‖p =

(∑
i

|v[i]|p
)1/p

.

Taking the limit as p goes to ∞ we have the `∞ norm:

‖v‖∞ = max
i
|v[i]|.

Matrices possess a natural multiplication operation which is lost when they
are considered simply as vectors. Thus we are led to the definition of a matrix
norm which also takes into account matrix multiplication.

B.2.3. Definition. A function ‖ · ‖ : Mn → R is called a matrix norm if for all
A,B ∈Mn and scalars c:

1. ‖A‖ ≥ 0

2. ‖A‖ = 0 if and only if A = 0

3. ‖cA‖ = |c|‖A‖

4. ‖A+B‖ ≤ ‖A‖+ ‖B‖

5. ‖AB‖ ≤ ‖A‖‖B‖
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The `2 vector norm of a matrix turns out to also be a matrix norm. In the
context of matrices, this is referred to as the Frobenius norm, and is denoted
‖A‖F . To see that this is a norm it is clear that we only have to check is property
5. Letting Ai denote the ith row of A, and similarly for B we find:

‖AB‖2
F =

∑
i,j

|A∗iBj|2

≤
∑
i,j

‖Ai‖2‖Bj‖2 = ‖A‖2
F‖B‖2

F .

There is a general way to define a matrix norm from a vector norm. For a
vector norm ‖ · ‖ we call the matrix function

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

the matrix norm induced by the vector norm ‖ · ‖. Again the only case which
does not directly follow from the fact that ‖ · ‖ is a vector norm is property 5. To
check this, notice that

‖A‖‖B‖ = max
y 6=0

‖Ay‖
‖y‖

max
x 6=0

‖Bx‖
‖x‖

≥ max
x 6=0,Bx6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖

= max
x 6=0

‖ABx‖
‖x‖

= ‖AB‖.

An example of a vector induced matrix norm is the spectral norm, which is
induced by the `2 vector norm. The spectral norm plays an important role in this
thesis and we will study it in more detail in the sequel.

Two other matrix norms we will use in this thesis are the maximum absolute
row sum norm and the maximum absolute column sum norm.

B.2.4. Definition. Let A be an arbitrary m-by-n matrix. Then

‖A‖1 = max
j

m∑
i=1

|A[i, j]|

‖A‖∞ = max
i

n∑
j=1

|A[i, j]|

B.3 Rank

One of the most basic quantities associated with a matrix is its rank. The rank
of a matrix A, written rk(A), is the size of a largest set of linearly independent
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columns of A. Whether we take columns or rows here is not important as the
number of linearly independent rows and columns is the same. Similarly, it can
be shown that rk(A) = rk(A∗).

Suppose that A is an m-by-n matrix with m ≥ n and rank n. As the columns
of A are linear independent, the only solution to the equation Av = 0 is v = ~0.
This implies that A is injective as if Au = Av for some u 6= v then A(u− v) = 0
and u − v 6= ~0, a contradiction. If m = n then A is also surjective and thus
invertible.

This reasoning can be extended to show that if A is an m-by-n matrix with
m ≥ n and rank k, then the set {v : Av = 0} is spanned by a set of n−k vectors.

B.4 Unitary Matrices and Orthonormal Sets

An orthonormal set of vectors is nice to work with as it has such a clear structure.
The Gram–Schmidt process gives a way to construct from any set of linearly
independent vectors a set of orthonormal vectors with the same span.

B.4.1. Fact (Gram–Schmidt orthonormalization). Let S = {u1, . . . , um}
be a set of linearly independent vectors. There exists an orthonormal set v1, . . . , vm
with the same span as S.

Proof: We prove by induction. Let v1 = u1/‖u1‖. Then it is clear that v1 has
unit length and has the same span as u1.

Now suppose that the orthonormal set v1, . . . , vk−1 has been constructed and
has the same span as u1, . . . , uk−1. Let

v′k = uk −
k−1∑
i=1

(u∗kvi)vi.

In this way, v′k is orthogonal to each vi with i < k. We now set vk = v′k/‖v′k‖.
Thus v1, . . . , vk form an orthonormal with the same span as u1, . . . , uk, as vk was
formed from a linear combination of u1, . . . , uk. 2

An important class of matrices are those whose columns form an orthonormal
set. These are known as unitary matrices.

B.4.2. Definition. A matrix U is called unitary if U∗U = I

A nice property of unitary matrices is that they preserve inner product.

B.4.3. Fact. Let U be unitary. Then (Uv)∗Uw = v∗w for all v, w.

Proof: Notice that (Uv)∗Uw = v∗U∗Uw = v∗w. 2
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B.5 Eigenvalues

For an n-by-n matrix A, if λ ∈ C and 0 6= v ∈ Cn satisfy Av = λv then λ is
called an eigenvalue of A, and similarly v is called an eigenvector. We will write
the eigenvalues of A in nonincreasing order, λ1 ≥ . . . ≥ λn. We will also make
use of a functional notation where λi(A) denotes the ith largest eigenvalue of A.

When do two matrices A and B have the same eigenvalues? A sufficient,
but not necessary, condition for this to hold is for A and B to be similar. Two
matrices A,B are called similar if there exists an invertible matrix S such that
A = S−1BS. Notice that if A and B are similar and Av = λv then BS = λSv,
and so they have the same eigenvalues.

The concept of similarity is important for the following fact:

B.5.1. Fact. Let A be a m-byn matrix and B be a n-by-m matrix with m ≤ n.
Then BA has the same eigenvalues as AB with an additional n−m eigenvalues
equal to zero.

Proof: The proof is easy if m = n and at least one of A,B is invertible. For
if A is invertible, then A−1ABA = BA and thus A and B are similar and have
the same eigenvalues. We now reduce the general case to this simple case by
enlarging to m+ n square matrices. Notice the following identities(

AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)
(
I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)

Now as the m+ n-by-m+ n matrix(
I A
0 I

)
is nonsingular—it has all eigenvalues equal to +1—these identities imply that the
two square m+ n matrices

C1 =

(
AB 0
B 0

)
and C2 =

(
0 0
B BA

)
are similar and thus have the same eigenvalues. Notice that the eigenvalues of C1

are those of AB together with n zeros and the eigenvalues of C2 are those of BA
together with m zeros. The assertion follows. 2

A diagonal matrix D has a particularly simple form, satisfying D[i, j] = 0 if
i 6= j. Notice that the eigenvalues of a diagonal matrix are simply its diagonal
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entries. We call a matrix diagonalizable if it is similar to a diagonal matrix.
Notice that a n-by-n matrix A is diagonalizable if and only if it has a set of n
linearly independent eigenvectors. Letting S be the matrix with these eigenvectors
as its columns we see that AS = DS where D is a diagonal matrix with the
eigenvalues of A on its diagonal. The invertibility of S is assured as its columns
are linear independent, thus we have A = S−1DS. It is particularly nice if a
matrix is diagonalizable by a unitary matrix, as then it has an orthonormal set
of eigenvectors. We note the class of matrices which have this property:

B.5.2. Fact. The following are equivalent:

1. A is diagonalizable by a unitary matrix

2. A∗A = AA∗. We call such a matrix normal.

B.6 Singular Values

In this thesis we will quite frequently deal with nonsquare matrices. As this
might not be as familiar to the reader as the square case, we review some things
one should be careful of in dealing with nonsquare matrices. The first of these
is that the concept of eigenvalue no longer makes sense when working with non-
square matrices. A natural way to extend the concept of eigenvalues to nonsquare
matrices is through what are called singular values.

B.6.1. Definition. For a matrix A, not necessarily square, we define the ith

singular value of A to be:
σi(A) =

√
λi(A∗A).

B.6.2. Remark. By Fact B.5.1 A∗A and AA∗ have the same nonzero eigen-
values, thus is not crucial in this definition that we take A∗A instead of AA∗.
Fact B.5.1 also has the consequence that for a m-by-n matrix A with m ≤ n that
σi(A) = σi(A

∗) for all 1 ≤ i ≤ m.

Notice that if A is Hermitian then A∗A is simply A2 and so the singular values
and eigenvalues of A agree, up to sign. This is not the case in general as can be

seen by the matrix

(
1 1
0 0

)
which has eigenvalues 1 and 0 and singular values

√
2 and 0.
We now look at some alternative characterizations of the spectral norm. The

first of these says that the spectral norm of A is the largest singular value of A.

B.6.3. Fact. The following are equivalent:

1. ‖A‖ = max{
√
λ : λ is an eigenvalue of A∗A}
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2. ‖A‖ = maxx 6=0 ‖Ax‖/‖x‖

3. ‖A‖ = maxx,y 6=0 |y∗Ax|/‖x‖‖y‖

Proof: (1) ≤ (2): Let v1 be an eigenvector of unit length corresponding to the
largest eigenvalue λ1 of A∗A. Then

‖Av1‖2 = v∗A∗Av = λ1.

(1) ≥ (2): We show that λ1(A
∗A) ≥ maxx ‖Ax‖2. As A∗A is normal, it

has an orthonormal set of eigenvectors v1, . . . , vn corresponding to eigenvalues
λ1 ≥ . . . λn. Let v be an arbitrary vector with unit `2 norm. We can express v as
v =

∑
i αivi where

∑
i |αi|2 = 1. Now

‖Av‖2 = v∗A∗Av =
∑
i

λi|αi|2 ≤ λ1.

(2) ≤ (3): Let x maximize ‖Ax‖. Set y = Ax. Then we have

y∗Ax = x∗A∗Ax/‖Ax‖ = ‖Ax‖

(3) ≤ (2): By the Cauchy–Schwarz inequality, |y∗Ax| ≤ ‖y‖‖Ax‖. 2

Finally, we will make use of the following upper bound on the spectral norm.

B.6.4. Fact. Let A be an arbitrary m-by-n matrix.

‖A‖2 ≤ ‖A‖1‖A‖∞.
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Samenvatting

Deel I: Kolmogorov Complexiteit

Toeval is iets waar iedereen kennis van heeft in het dagelijkse leven. De veran-
dering van het weer, de worp van een muntje, de shuffle functie op een muziek
speler—“toeval” is vaak te gebruiken in verband met deze dingen. Ondanks deze
intuitieve kennis, of misschien juist daarom, hebben wiskundigen pas in de tweede
helft van de twintigste eeuw een precieze definitie voor toeval gegeven.

In het begin van de jaren zestig, hebben drie onderzoekers Solomonoff, Kol-
mogorov en Chaitin onafhankelijk van elkaar een elegante wiskundig manier on-
twikkeld om te zeggen wanneer een serie van gebeurtenissen (gezien als een rijtje
nullen en enen) willekeurig is. Ze zeiden dat de complexiteit van een woord de
grootte is van een kortste beschrijving voor het woord. Men kan hier denken aan
een beschrijving in de vorm van een computerprogramma. Dit noemen we de
Kolmogorov complexiteit van een woord en schrijven we C(x | y) voor de grootte
van een kortste programma voor x dat het woord y als invoer kan gebruiken. Men
kan zien dat terwijl het woord

01010101010101010101010101010101010101010101010101

een lengte van 50 bits heeft, er een hele korte beschrijving voor dit woord is,
namelijk “schrijf 25 keer 01”. Aan de andere kant, een geheel willekeurig woord
heeft geen structuur die gebruikt kan worden om het een korte beschrijving te
geven. Dus noemen we een woord willekeurig als de kortste beschrijving van het
woord minstens zo lang is als het woord zelf.

Meer dan enkel een definitie voor willekeurigheid, is Kolmogorov complexiteit
geworden tot een algemeen hulpmiddel dat veel wordt gebruikt in de informatica.
Bijna alle applicaties van Kolmogorov complexiteit maken gebruik van een van
de volgende vier stellingen die we de ‘vier pilaren’ van Kolmogorov complexiteit
noemen:

• Incompressibility: Voor elke n bestaat er een willekeurig woord van lengte
n.
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• Verzameling compressie: Elk lid van een berekenbare verzameling A heeft
een beschrijving van lengte log |A|

• Bron compressie: Elk woord x met positieve kans onder een berekenbare
distributie P heeft een beschrijving van lengte − logP (x)

• Symmetrie van informatie: De hoeveelheid infomatie in het woord x over
het woord y is hetzelfde als de hoeveelheid informatie in het woord y over
x. Met andere woorden, C(x)− C(x | y) = C(y)− C(y |x).

Een nadeel van de Kolmogorov complexiteitstheorie is dat er geen algoritme
bestaat die, gegeven een woord x, de complexiteit van x kan berekenen. Om dit
probleem te omzeilen, ontwikkelde men resource begrensde Kolmogorov complex-
iteitstheorie. Bijvoorbeld, de polynomiale tijd Kolmogorov complexiteit van x
is de lengte van een kortste programma dat x afdrukt in tijd polynomiaal in de
lengte van x. Het doel van het eerste deel van dit proefschrift is het beantwoorden
van de vraag: wat gebeurt er met de vier bovengenoemde pilaren in de resource
begrensde variant?

De eerste pilaar werkt onveranderd in de resource begrensde variant, want het
is moeilijker een woord te beschrijven in beperkte tijd dan zonder een tijd grens.

De resource begrensde variant wordt veel interssanter met de tweede pilaar.
Een natuurlijke formulering van de tweede pilaar is: elk lid x van een verzamel-
ing A die in polynomiale tijd kan worden herkend, heeft een beschrijving van
log |A| die x afdrukt in tijd polynomiaal in de lengte van x. Dit vermoeden is
waarschijnlijk niet waar aangezien het de ineenstorting van de polynomiale hier-
archie tot gevolg heeft, wat de meeste onderzoekers onvoorstelbaar achten. Maar
een stap hoger in de polynomiaal hierarchie geldt het vermoeden wel: We laten
zien dat elk lid x van een verzameling A die in niet-deterministisch polynomiale
tijd kan worden herkend, een beschrijving heeft van lengte log |A| die x afdrukt
in niet-deterministisch polynomiale tijd.

Een natuurlijk analogon van de derde pilaar in de resource begrensde vari-
ant zegt: elk woord x met positieve kans onder een polynomiale tijd berekenbare
distributie P heeft een beschrijving van lengte − logP (x) die x afdrukt in polyno-
miale tijd. We bewijzen dat dit vermoeden als gevolg heeft dat gerandomiseerde
algoritmen (die hun keuzes kunnen laten afhangen van muntworpen) efficient
gesimuleerd kunnen worden door deterministische algoritmes (die geen muntjes
kunnen werpen). Met andere woorden, BPP 6= EXP. Onlangs lieten Antunes
and Fortnow zien dat de omgekeerde implicatie ongeveer geldt. Hiermee hebben
we een bijna compleet beeld van de derde pilaar in de resource begrensde variant.

Ten slotte laten we zien hoe het principe van symmetrie van informatie uit-
pakt in de resource begrensde variant. Dit principe wordt heel moeilijk want
het standaard bewijs maakt gebruik van zowel verzameling compressie als bron
compressie. We laten een zwakkere vorm van symmetrie van informatie zien die
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zegt: de polynomiale tijd complexiteit van het paar (x, y) is groter dan de geran-
domiseerde niet-deterministische complexiteit van x plus de gerandomiseerde niet-
deterministische complexiteit van y met x als invoer. Dit resultaat kan niet ver-
betered worden zonder zogeheten niet-relativerende technieken. We laten een
orakel zien waarvan de niet-deterministische complexiteit van het paar (x, y) bi-
jna twee keer groter is dan de niet-deterministische complexiteit van x plus de
niet-deterministische complexiteit van y met x als invoer.

Deel II: Formulegrootte

Een van de meest beroemde, belangrijke en moeilijke problemen binnen de com-
putationele complexiteitstheorie betreft de vraag of P even krachtig is als NP.
P is de klasse van problemen die opgelost kunnen worden in tijd polynomiaal in
de lengte van de probleembeschrijving; NP is de klasse van problemen waarvan
in polynomiale tijd gecontroleerd kan worden of een oplossing correct is. Tegen-
woordig geloven de meeste onderzoekers dat P en NP niet gelijk zijn. Om dit
te bewijzen, moet men laten zien dat er een probleem bestaat in NP dat niet in
polynomiale tijd kan worden opgelost. Dit werd vaak onderzocht door het prob-
leem te representeren als een circuit dat bestaat uit AND, OR en NOT poorten.
De grootte van het circuit geeft vervolgens een ondergrens voor de benodigde
rekentijd. Het beste huidige resultaat laat zien dat er een probleem is in NP
dat niet kan worden opgelost met een circuit van grootte kleiner dan 5n, waar n
de grootte van de probleembeschrijving is. Een hogere ondergrens op de grootte
van het circuit blijkt erg moeilijk te bewijzen. Om die reden beperken wij ons
tot circuits waarvan de poorten slechts één uitgang hebben. Een dergelijk circuit
wordt een formule genoemd. De hoogst bekende ondergrens op de grootte van
een formule voor een functie in NP is n3.

We geven een nieuwe algebraische methode om de formulegrootte van on-
deren te begrenzen. Met deze methode kunnen we de n3-ondergrens niet ver-
beteren, maar wij generaliseren verschillende methoden die in de literatuur wor-
den beschreven en we demonstreren hoe die methoden met elkaar in verband
staan. We geven ook een voorbeeld waar onze methoden een sterkere ondergrens
kunnen geven dan andere methoden. Het meest interessante gevolg van ons werk
is misschien het verrassende verband tussen de formulegrootte van een functie en
de complexiteit van die functie in een heel ander model, namelijk de quantum
query-complexiteit. Onze resultaten geven aanleiding tot het vermoeden dat het
kwadraat van de quantum query complexiteit van een functie een ondergrens is
voor de formulegrootte.





Abstract

Part I: Kolmogorov Complexity

Randomness is a concept familiar to all of us in our daily lives. From changing
weather, to the flip of a coin, to the shuffle function on a music player—random
is frequently used to describe the behavior of things around us. Despite this
familiarity, or perhaps because of it, randomness eluded a precise mathematical
definition until the second half of the twentieth century.

In the early 1960’s, independently and within a few years of each other,
Solomonoff, Kolmogorov, and Chaitin all developed an elegant way to capture
when a sequence of events (viewed as a string with letters 0 and 1) is random.
They proposed the following definition: the complexity of a string is the length
of a shortest description of that string. Here a description can be thought of
as a computer program. We will refer to this measure as the Kolmogorov com-
plexity of the string, and write C(x | y) for the length of a shortest program
for x which is allowed to make use of the advice string y. While the string
01010101010101010101010101010101010101010101010101 has 50 symbols, it has
a much shorter description saying “write 25 times the string 01”. On the other
hand, a random string will have no structure which would allow a description of
length shorter than the length of the string itself. Thus we call a string random
if its Kolmogorov complexity is at least as large as its length.

Far beyond its initial purpose, Kolmogorov complexity has become an impor-
tant tool in theoretical computer science, witnessing many diverse applications.
Almost all of the applications use at least one of the following four fundamental
theorems, which we call the ‘four pillars’ of Kolmogorov complexity:

• Incompressibility: There is a random string of length n, for each n.

• Language compression: Any element from a computable set A can be given
a description of size about log |A|.
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• Source compression: Any element x in the support of a computable proba-
bility distribution P can be given a description of size about − logP (x).

• Symmetry of information: The information which a string x contains about
a string y is about the same as that which y contains about x. In symbols:
C(x)− C(x | y) = C(y)− C(y |x).

A drawback to Kolmogorov complexity is that it is uncomputable, and this
sometimes limits its range of applicability in computational complexity. One way
to scale down the theory into the feasible domain is to require that the program
which prints the string x does so in time which is polynomial in the length of x.
The main goal of the first part of this thesis is to see what analogues, if any, of
the four pillars hold in this resource bounded setting.

The first pillar holds unchanged in the resource bounded setting, as adding
restrictions to a program can only make it harder to describe a string.

Things get much more interesting beginning with the second pillar. The most
natural resource bounded analog of the second pillar is the statement: every
element x in a set A decidable in polynomial time has a description of length
log |A| from which x can be generated in polynomial time. This statement is
unlikely to hold, however, as it implies the polynomial hierarchy collapses. We
show that going up one step higher in the polynomial hierarchy, however, we can
find an analog of the second pillar. That is, we are able to show every element
x in a set A which can be decided in nondeterministic polynomial time can be
given a description of length about log |A| from which x can be generated in
nondeterministic polynomial time.

The most natural analogue of the third pillar would be: any element in the
support of a polynomial time computable probability distribution P can be given
a description of length about − logP (x). We show that such a statement implies
that randomized algorithms (those which can make decisions based on the out-
come of a coin flip) can be simulated by deterministic algorithms (which cannot
flip coins). Precisely, we show this implies BPP 6= EXP. Recently, Antunes and
Fortnow were able to prove a weak converse to this statement: under a derandom-
ization assumption the polynomial time version of the third pillar holds. With
these results we have a fairly complete picture of the third pillar in the resource
bounded setting.

Finally, we turn to symmetry of information which is perhaps the most tricky
of the four pillars in the resource bounded domain. To prove symmetry of infor-
mation seems to require the ability to do both language compression and source
compression. We are only able to prove a weaker version of symmetry of in-
formation which says that the polynomial time complexity of the pair (x, y) is
larger than the randomized nondeterministic complexity of x plus the random-
ized nondeterministic complexity of y given x. This result is tight with respect to
relativizing techniques—we give an oracle where even the nondeterministic com-
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plexity of (x, y) is nearly twice as large as the nondeterministic complexity of x
plus the nondeterministic complexity of y given x.

Part II: Formula Size Lower Bounds

One of the most famous, important, and yes, most difficult problems in complexity
theory is the question of whether or not P is equal to NP. P is the set of all
problems that can be solved in time polynomial in the length of the problem
description; NP is the set of problems which can be efficiently verified, meaning
that if someone gives you the solution to the problem you can indeed check that
it is a proper solution in polynomial time. Currently, it is widely believed that P
is not equal to NP. To prove this one must show a lower bound, that is give an
example of a problem in NP that requires more than polynomial time to solve. A
well-studied approach to doing this is through circuit complexity, where a circuit
consists of AND, OR, and NOT gates. The current best lower bound on the
size of a circuit required to compute a function in NP is 5n. As the task of
proving larger circuit lower bounds seems extremely difficult, we look instead at
the weaker model of formula size, where a formula is simply a circuit where every
gate has exactly one outgoing wire. The current best lower bound for formula
size is n3.

We give a new algebraic approach to proving formula size lower bounds. We
are not able to improve on the best n3 lower bound; we are, however, able to
simultaneously generalize several techniques from the literature and show them
as part of an overarching theory. We also give some concrete examples of functions
for which our new method is able to provably do better than previous methods.
Perhaps the most interesting consequence of our results, however, is that it gives
evidence for a connection between the formula size of a function and its complexity
in a very different model, namely its quantum query complexity. In fact, our
results can be taken as evidence for the provocative conjecture that the square of
the quantum query complexity of a function lower bounds its formula size.
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