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Promotiecommissie:

Promotor:
Prof.dr. J.F.A.K. van Benthem

Co-promotor:
Prof.dr. M.V.B.P.M. van Hees

Overige leden:
Prof. dr. M. Bratman
Prof. dr. R. Bradley
Prof. dr. K. R. Apt
Prof. dr. F. Veltman

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The investigations were supported by the Fond Québécois de la Recherche sur la
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and Paul Egré, also dear friends and colleagues. Mikaël Cozic, especially for
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floor” over the years: René, Joost, Brian, Reut, Aline, Yoav, Clemens, Marco,
Khalil, Sara, Joel, Chantal, Fabrice, Michael, Tikitu, Hartmut, Daisuke, Andreas,
Nina, Jakub, Levan, Jacob, Olivia, Yurii, Amélie, Raul, Anouk, Alessandra, Lena,
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Chapter 1

Introduction

Practical reasoning is generally seen as the “human capacity for resolving, through
reflection, the question of what one is to do.” [Wallace, 2003b] It is the process
through which agents balance reasons for actions and eventually make their deci-
sions. Among the many theories of practical reasoning, very few have such a long
history as that of instrumental rationality , which goes back at least to Aristotle1,
and is still one of the most prominent modes in theoretical economics, especially
in decision and game theory2. Practical reasoning, from the instrumental point
of view, is a matter of finding the best means to achieve one’s ends. In modern
vocabulary, it is a matter of determining the actions which have the best expected
consequences in terms of one’s preferences.

Contemporary approaches to rational decision making have shed new light on
this very ancient notion. Work on the foundations of decision theory, for instance,
has given precision to the conditions under which one can view the choices of
an agent in uncertain situations as instrumentally rational. Similarly, recent
results in what is called the epistemic program in game theory3 have highlighted
the importance of mutual expectations in understanding rational behaviour in
strategic interaction.

Arguably, much of this progress has been achieved thanks to increasing interest
in the decision maker’s information. In most contemporary analyses, knowledge
and belief occupy just as important a place as preferences, to the extent that
some decision and game theorists now hold that any adequate description of a
decision situation should include a model of the agent’s information. The devel-
opment of these models, in turn, owes much to contemporary dynamic epistemic

1See Nichomachean Ethics [III, 1112b, 10].
2von Neumann and Morgenstern [1944], Savage [1954] and Jeffrey [1965] are classics in

these fields and have inspired much of the work in this thesis. More contemporary textbooks
include Myerson [1991], Osborne and Rubinstein [1994], Binmore [2005] and Osborne [2004].

3For more references on the topic see [Aumann, 1999], de Bruin [2004], Brandenburger [2007]
and Bonanno [2007].
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2 Chapter 1. Introduction

logic4. This extensive analytical toolbox, at the intersection of philosophical logic
and theoretical computer science, was designed precisely to analyse reasoning
about information, higher-order information - viz., information about one’s own
or others’ information - and information change.

In short, modern theories of instrumental rationality rest on two pillars: pref-
erences and information. As such they offer quite a different picture from the one
displayed in contemporary philosophy of action5, where great emphasis is laid
on the fact that intentions are as important as preferences and information in
practical reasoning.

Historically, intentions have been seen as outputs of deliberation. As Broome
[2002, p.1] puts it, “intending to act is as close to acting as reasoning alone can
get us.” From this point of view, practical reasoning is “reasoning that concludes
in an intention.” Many philosophers of action, in contrast, have emphasised
that intentions are also active inputs to deliberation, on a par with preferences
and information, and irreducible to them. They stress that human agents are
not only rational but also planning agents, that is agents who deliberate and
form intentions in advance, before the time for action comes. For such agents,
future-directed intentions foster coordination, “filter” the set of admissible options
into new deliberations and steer practical reasoning towards “relevant” means.
In short, contemporary theories of intentions conceive practical reasoning as a
matter of weighting options, against a background of future-directed intentions.

In this thesis I propose a theory that does justice to this idea but at the same
time capitalizes on the resources of contemporary theories of instrumental ratio-
nality and dynamic epistemic logic in order to obtain a more all-encompassing
picture of practical reasoning for planning agents. I show that such a broad ap-
proach genuinely enriches existing models of rational decision making, as well as
the philosophical theory of intentions.

To develop this theory I draw on the contemporary paradigms of reasoning just
mentioned: decision and game theory from theoretical economics, the planning
theory of intentions from philosophy of action and dynamic epistemic logic from
philosophy and computer science. In the following pages I briefly introduce them
in an informal manner. What is important for now is to grasp the main ideas
and intuitions. The formal details will come later, as needed in the subsequent
chapters.

4Hintikka [1962] is the classic reference in epistemic logic. Fagin et al. [1995] presents a
more up to date overview of the topic. For dynamic epistemic logic see Plaza [1989], Gerbrandy
[1999], Baltag et al. [1998] and van Ditmarsch et al. [2007]. On the dynamic of information in
games, see van Benthem [1999, 2001, 2005, 2006b] and van Benthem et al. [2005].

5Key references here are Davidson [1980], Harman [1976], Bratman [1987, 1999, 2006a]
Velleman [2003] and Wallace [2006]. A good survey is available in the form of the reader on
philosophy of action edited by Mele [1997].
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1.1 Instrumental rationality, decision and game

theory

Decision and game theory are two branches of theoretical economics which, as
stated, conceive rational decision making as instrumental rationality. That is,
they model practical reasoning as the process of discovering which actions are the
best means to achieve one’s ends.

1.1.1 Decision theory: rational decision making under un-
certainty

Decision theory models individual decision makers who have to choose between
a series of options, usually thought of as actions, plans or strategies. These
decision makers are assumed to have some ranking over the set of options, which
is usually represented as a comparison relation or a choice function6. This ranking
is supposed to reflect the way the agents would choose if they were offered a choice
between pairs or sets of options. For example, if action A and action B are options
for the agent, then to say that action A is ranked above action B means that the
agent would choose A if he had to decide between doing A and doing B.

When there is no uncertainty, it is quite clear when such choices are instrumen-
tally rational. Provided that each action yields a certain outcome, about which
the agent has some preferences, being instrumentally rational is just chosing the
actions which yield a most preferred outcome. That is, an agent is instrumen-
tally rational when he chooses action A over B whenever he prefers the outcome
A yields to the outcome yielded by B.

Representation results in decision theory give conditions under which one can
view the agent’s choices as if they were those of an instrumentally rational deci-
sion maker. These results show how to construct or extract a preference relation
over the set of outcomes from the ranking of actions, usually in terms of payoffs or
utilities, in such a way that the agent chooses an action if and only if it yields an
outcome that is most preferred. In more “behaviouristic” terms, a representation
result shows how to reconstruct the agent’s preferences over outcomes, which are
essentially internal mental states, on an external or observable basis, namely his
choices7.

For decision situations without uncertainty it is clear how this construction
should proceed. The most interesting situations, though, at least from a decision-
theoretic point of view, are those with uncertainty. Two kinds of uncertainty are

6In this thesis I work only with relations. For more references on choice functions Sen [2002,
chap.3].

7This behaviouristic stance is especially clear in Savage [1954, p.17] : “I think it of great
importance that preference, and indifference, [...] be determined, at least in principle, by
decision between acts and not by response to introspective questions.”
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considered in decision theory: exogenous and endogenous.
Situations of exogenous uncertainty are situations in which the results of the

agent’s actions depend on random or non-deterministic occurrences in the envi-
ronment. Exogenous uncertainty is thus the result of objective non-determinacy,
external to the decision maker. Buying a lottery ticket is a typical example.
Someone cannot simply choose to buy “the” winning ticket. All one can do is
pick one and wait for the drawing to determine whether it is a winner. In models
of decision making under exogenous uncertainly, the options become “lotteries”
or simply probability distributions over the set of outcomes. Buying a lottery
ticket, for instance, would then be represented as an action which gives the agent
a certain probability of winning.

Situations of endogenous uncertainty, on the other hand, are situations in
which the outcomes of the agent’s decisions depend on the actual state of the
world, about which he has only partial information. The following is a classical
example8. Imagine an agent who is making an omelet. Suppose he has already
broken five eggs into the bowl and he is about to break the sixth and last one.
Whether this will result in a good omelet depends on the state of this last egg,
which can be rotten or not. The agent, however, does not know whether the
egg is rotten. In slightly more technical jargon, he lacks information about the
actual state of the egg, and this makes the outcome of his decision uncertain.
Note the contrast with buying a lottery ticket. There is no chance or randomness
involved here. The egg is rotten or it is not. What matters is that the agent does
not know the state of the egg. Decision theoretic models, for example the one
proposed by Anscombe and Aumann [1963], usually represent such situations by
adding a set of possible states to the model. In the omelet example there would
be two states, “the egg is rotten” and “the egg is not rotten”. The uncertainty
over these states is represented either qualitatively, by an epistemic accessibility
relation, or quantitatively, by a probability distribution.

In uncertain situations it is less clear what the instrumentally rational choices
are, because each decision has many possible consequences which the agent might
value differently. Maximization of expected payoffs is the most widely accepted
expression of instrumental rationality in such contexts9. The expected payoff
of an action is the sum of the payoffs of all its possible outcomes, weighted by
their respective (objective and/or subjective) probability. To be instrumentally
rational, in the decision theoretic sense, is to choose the action, or one of the
actions, which maximizes this sum. In other words, the agent is instrumentally
rational when he chooses an action which gives the best prospect over outcomes.

Representation results for decision making under uncertainty provide condi-

8This example comes from Savage [1954, p.14].
9Rationality as maximization is not the only criterion for rational choice or instrumental

rationality in decision theory. The maximin or minimax rules are other well known alternatives.
The interested reader can consult any classical decision theory textbook, such as [Luce and
Raiffa, 1957]. In what follows, however, I shall stick to rationality as maximization.
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tions under which the agent’s choices can be seen as the expressions of instru-
mental rationality, in this sense. They show that if the agent’s choices of action
satisfy certain stated conditions, then one can interpret the agent’s decisions as
a maximization of expected payoff. I shall not go into the details of these condi-
tions here; they would lead us too far afield10. The point is that decision theory
is a theory of instrumental rationality. It explains the conditions under which the
choices of an individual decision maker facing uncertain options can be regarded
as instrumentally rational.

1.1.2 Game theory: reasoning with mutual expectations

Game theory is also a theory of instrumental rationality, but now in contexts of
strategic interaction, i.e., when the outcome of a decision situation is determined
by the decision, not of one but of many rational decision makers. Game theory is
usually divided into cooperative and non-cooperative branches. Here I am inter-
ested mostly in the non-cooperative side, although I briefly revisit the cooperative
branch in Chapter 3. Nor do I address the “evolutionary” branch of game theory
here, either.

The basic ingredients of a situation of strategic interaction, or simply of a
game, are rather similar to those in decision theory. Each agent chooses among
various actions, plans or strategies, the outcomes of which are uncertain. The
crucial difference from decision-theoretic contexts is that this uncertainty now
comes from the choices of other rational decision makers11. Indeed, outcomes in
games are determined by a combination of the choices of all agents.

For reason that will soon become clear, most game-theoretic modelling by-
passes the “representation” step12. The agent’s preferences over the set of out-
comes are just taken as givens, rather than being extracted from the choice be-
haviour. It is also assumed that the agents are instrumentally rational, i.e. that
they choose in order to maximize their expected payoffs. The whole difficulty
is now to specify what are the expected payoffs of an action, when its outcome
depends on the actions of others.

The fact is that agents might not be able to anticipate the choices of others.
This can happen, first, because they are uncertain about each other’s preferences.
These are situations of incomplete information13. In this thesis I examine only
cases of complete information, that is, games in which the agents know each
others’ preferences. Even in such cases the agents might not know each others’

10See von Neumann and Morgenstern [1944], Savage [1954], Anscombe and Aumann [1963]
and Jeffrey [1965] for details.

11Nothing precludes the introduction of exogenous uncertainty in games, too. See e.g. My-
erson [1991, p.38-46].

12The work of La Mura and Shoham [1998] is a notable exception.
13Games with incomplete information have been introduced by Harsanyi [1967-68]. See also

Myerson [1991, p.67-73] for a general overview.
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choices, because the structure of the game prevents them from doing so14 or be-
cause they are choosing simultaneously. These are cases of imperfect information.

In games with imperfect information each agent forms expectations about the
others’ decisions before making his own. That is, each agent bases his choices
on what he expects the others to do. Here the contrast with decision theory is
quite instructive. In decision situations under exogenous uncertainly the deci-
sion maker’s expectations are fixed by the probability distribution induced by the
objective random event. Similarly, in decision situations under endogenous un-
certainty the decision maker’s expectations are fixed by the (partial) information
he has about the state of the world. These expectations are fixed in the sense
that they do not depend on the agent’s preferences and possible choices. The
situation is fundamentally different in games. Each agent tries to anticipate what
the others will do before making his decision. But each agent also knows that
the other will do the same. This means that an agent’s expectations about the
others’ actions take into account the fact that the others choose on the basis of
what they think he will do. But theses choices are, in turn, made after taking
into account the fact that he takes the choices of others into account. The bulk of
modern game theory, which stems mostly from von Neumann and Morgenstern
[1944] and Nash [1950], is precisely aimed at understanding what maximization
of expected payoffs means with such a “circular” or potentially infinite regress of
mutual expectations.

The solution of this problem is obviously less clear-cut than that for single-
agent decision making. There is nothing in game theory like the strong decision
theoretic consensus around “one” expression of instrumental rationality. Rather,
expected payoff maximization in games is multifaceted, as witnessed by the great
variety of solution concepts , the most well known of which are probably iterated
elimination of dominated strategies and Nash equilibrium. Each different solution
concept has corresponding, different expectations, which epistemic characteriza-
tions make explicit15. The strategies which are iteratively not dominated, for
example, can be shown to be strategies which rational agents play when it is
common knowledge that all agents are rational. That is, when all agents expect
the others to be rational and to have reciprocal expectations. More generally,
epistemic characterization results explain game-theoretical solution concepts in
terms of the agents’ mutual information, i.e. first-order knowledge and beliefs
about each others’ preferences and choices and higher-order knowledge and beliefs
about the knowledge and beliefs of others.

Arguably, mutual expectations are to games what choices of uncertain actions
are to decision theory. They provide the raw material in which the various concep-
tions of instrumental rationality are phrased. From that point of view, epistemic

14Consider, for example, the game “Battleship”, in which neither player can see how the
other has positioned his/her fleet on the game board.

15I return to epistemic characterizations of solution concepts, with more references, in Chapter
3.
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characterizations of solution concepts can been seen as the natural game-theoretic
counterparts of the decision theoretical representation results.

Decision and game theory are thus two theories of instrumental rationality.
The first helps to understand conditions under which a single decision maker
can be seen as instrumentally rational when he chooses among uncertain options.
The second also provides conditions for seeing a decision maker as instrumentally
rational, but this time as a function of how his expectations interlock with those
of other rational agents. There is nothing, in both cases, which precludes one
from seeing decision making as resulting in future-directed intentions. In the
process of decision making, though, such intentions play no role. The “background
of deliberation” in decision and game theory is constituted by preferences and
information. There are no previously adopted intentions there, at least not of the
kind which have been studied in philosophy of action.

1.2 Intentions and planning agency

In contemporary philosophy of action, the work of M. Bratman [1987, 1999, 2006a]
is probably the most coherent and complete theory of intentions. Furthermore,
even though it is not formal, Bratman’s precise style of analysis has fostered
dialogue with more formal approaches, especially in AI and computer science16.
For these two reasons, most of the presentation here draws from his work.

For a long time, the dominant philosophical theories of intentions were reduc-
tionist and most attention was directed towards intentions in action . Intentions
in action are the “mental components” [O’Shaughnessy, 1973] of intentional ac-
tion, they are “what is left over [when] I subtract the fact that my arm goes up
from the fact that I raise my arm” [Wittgenstein, 2001, § 621]. This distinguishes
intentions in action from future-directed intentions, which are intentions to do
something or to achieve some state of affairs later. Future-directed intentions es-
sentially precede intentional actions, while intentions in action accompany them.
Reductionist theories deny that intention, whether in action or future-directed, is
a basic kind of mental state. Rather, they see intentions as compounds of more
basic states, generally beliefs and desires17. To act with some intention, or to
have the intention to do something later is, from that point of view, to have the
appropriate belief-desire pair concerning that present or future action.

Bratman’s [1987] proposal is non-reductionist and gives priority to future-
directed intentions. It is built on the assumption that human agents are not only
rational decision makers but also planning agents. Planning agents are agents who
can “settle in advance on more or less complex plans concerning the future, and

16See for example Cohen and Levesque [1990] and Bratman et al. [1991].
17D. Davidson [1980] has been very influential in this tradition. See also Velleman [2003]

and Setiya [2007].
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then [let] these plans guide [their] later conduct.” [idem, p.2] In short, planning
agents are agents who can form future-directed intentions.

Most work on the planning theory of intention, including Bratman’s, is func-
tionalist . Future-directed intentions are described in terms of the regularities
“which connect [them] with each others, with associated psychological processes
and activities, and with characteristic “inputs” and “outputs.” [idem, p.9]. Fol-
lowing a similar distinction proposed by Schwitzgebel [2006] for beliefs, these
regularities can be divided into backward and forward looking.

The backward-looking ones concern the way intentions are “formed, revised
and extinguished” [Shah and Velleman, forthcoming]. On this issue, I take the
planning theory to be roughly in line with the traditional view of intentions:
they are typically formed as the upshot of practical reasoning18. Future-directed
intentions are states the agent gets into once he has settled on a particular course
of action. Similarly, intentions are revised or given up on the basis of further
deliberations. This makes them relatively stable, especially in comparison with
desires. Preferences or desires change quite often and, more importantly, these
changes need not be based on deliberations. An agent who made the decision
to act in a certain way seems, on the other hand, to be committed to sticking
to this decision by the reasons which led to it, unless counterbalancing reasons
appear and trigger further deliberations. In other words, intentions are relatively
resistant to reconsiderations .

The adjective “relative” is very important here. An agent should not con-
stantly reconsider all his previous decisions, but neither should he stick to them
at any cost. Rational intentions should be open to revision. But how open is a
delicate—and crucial—question for the planning theory. I shall not go into detail
on this issue. Intention revision occupies a relatively minor place in this thesis19.
Most of the considerations are rather focused on the forward-looking characteri-
zation of intentions, which concerns their place in practical reasoning. Intentions
influence this process by two forms of commitment that they carry: the volitive
and the reasoning-centered commitment.

To say that intentions carry a volitive commitment is to say that they have
some motivational force. Just like desires, they are metal states which push the
agent to act, which trigger action. They are “conduct controlling” [Bratman,
1987, p.16]. An important part of the non-reductionist argument in the plan-
ning theory rests on this volitive commitment. Future-directed intentions carry a
stronger motivational force than desires. An agent can have the desire to accom-
plish a certain action without ever enacting it. But if he genuinely intends to act
in a certain way and does not revise this intention, he will normally do it in due

18I say “roughly” here because some authors argue that it is important to distinguish the
result of a choice or a decision from the formation of a full-blown intention. See e.g. Bratman
[1987, p.155-163].

19See the extensive discussion in [Bratman, 1987, chap.4-5-6 ], Harman [1986] and van der
Hoek et al. [2007].
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course.

It is a central claim in the planning theory that, because of their relative sta-
bility and their motivational force, intentions anchor personal and inter-personal
coordination. Personal coordination is a matter of anticipating one’s own deci-
sions and actions, and of planning accordingly. An agent who, for example, has
decided to pursue a PhD abroad for the next couple of years will probably take
this future-directed intention into account while planning his next summer vaca-
tion. Maybe he will consider spending his vacation at home, something he would
otherwise have not considered. But if intentions would normally not translate
into action, or would most of the time be abandoned before their achievement,
it would not be very useful for the agent to plan on the assumption that he will
be abroad next year. The volitive commitment and the relative stability of in-
tentions, from that point of view, provide a solid basis for temporally extended
planning20. These considerations apply with even greater strength in interaction.
Planning agents who are aware of each other’s intentions are better capable of
coordinating their actions, because they can rely on each other to do what they
intend.

The volitive commitment of intentions already makes them valuable addi-
tions to the background of deliberations. In the words of Wallace [2006, p.105],
they “resolve practical questions about my own agency,” thus allowing planning
agents to include them as “facts” into further planning. But previously adopted
intentions are not confined to such a background appearance in practical reason-
ing. They also constrain and trigger deliberations, and by doing so they carry
a reasoning-centered commitment. This second function stems from norms of
consistency and coherence that apply to intentions.

Intentions are, first, required to be means-end coherent. This idea is very
old, going back at least to Kant’s hypothetical imperative21. Intentions about
ends should be supplemented, at some point, with intentions regarding what
the agent believes are necessary means to achieve these ends. An agent who
intends to obtain his PhD in the next four years should at some point form more
precise intentions on how he is going to make this happen. If he never forms
such intentions, and does not even plan to “think about it”, he is means-end
incoherent.

Means-end coherence “poses problem for further deliberation” [Bratman, 1987,
p.33]. It puts pressure on planning agents to deliberate about means to achieve
what they intend. This is the first manifestation of the reasoning-centered com-
mitment: intentions focus and even trigger new deliberations to find relevant
means for their achievement.

20They also provide solid anchors for action in situations of temporary preference changes.
In the words of McClennen [1990], they make planning agents more “resolute”. By the same
token, intentions also help to “break ties” between equally desirable options. I write more on
this last point in Chapter 2.

21See Johnson [2004] or the original [Kant, 1785].
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There is a second aspect of reasoning-centered commitment, which comes from
the following three norms of consistency: internal consistency , strong belief con-
sistency and agglomerativity . Agents have internally consistent intentions when
they do not intend plain contradictions. Their intentions are strongly consistent
with their beliefs22 provided these intentions would be realizable in a world where
the agent’s beliefs are true. In other words, intentions are strongly belief consis-
tent when they are capable of achievement, given what the agent believes. One
can, finally, distinguish two understandings of agglomerativity. First, one can
require the intentions of an agent to be closed under conjunction: if the agent
intends to do A and intends to do B, then he should also intends to do A and B.
Some authors find this requirement too strong, however. They argue instead that
it should be possible to agglomerate intentions without violating other norms of
consistency. That means, first, that if the agent intends to do A and intends
to do B, then A and B should not be contradictory. Their conjunction would
generate an internally inconsistent intention. Similarly, doing A and B should be
consistent with the agent’s beliefs.

Because of these norms of consistency, previously adopted intentions impose
a “filter of admissibility” [Bratman, 1987, p.33] on the options that are to be
considered in practical reasoning. The agent should be able to decide in favour
of either of these options without generating, maybe after agglomeration, (belief)
inconsistent intentions. Intentions simply rule out of deliberation such options as
do not meet this requirement23.

Before going any further, I should write a few words about the notion of “plan”.
The planning theory conceives of plans as sets of intentions with particular fea-
tures24. In accordance with the means-end coherence requirement, plans are
assumed to have a hierarchical structure. For whatever general intention a plan
might contain, for example the intention to go to Paris, one should be able to
find in the plan some subordinated means-intentions, for example going by train,
depart at 9.15, and so on. The intentions at the bottom of this hierarchy, the
most detailed ones, need not, however, settle every detail of the achievement of
the plan. It is arguably even counterintuitive to suppose that they would, es-
pecially for agents with limited time and memory. Plans are typically partial,
and planning agents fill them as needed. In the words of Savage, planning agents
“cross the bridge when [they] come to it.” [1954, p.16]

The functional characterization of intentions extends to plans. First, plans
are formed, revised and abandoned as the upshot of practical reasoning. They

22The appellation “strong” comes from Bratman [1987]. Even though the name might suggest
such, there is to my knowledge no “weak” version of this norm in the planning theory.

23It should be clear that I do not consider intention revision here. When discovering poten-
tially inconsistent options, a planning agent might reconsider his intentions instead of simply
ruling out these options.

24In this thesis, most of the time I simply use “intentions sets” rather than plans.
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are also relatively resistant to reconsideration and commit the agent to their
accomplishment. In virtue of being so they anchor personal and inter-personal
coordination. Finally, they take part in further practical reasoning by triggering
and focusing deliberations on means, and by imposing a filter of admissibility on
the options to be considered.

1.3 Dynamic epistemic logic

I have already stressed many times the importance of information in the decision-
and game-theoretic analyses of instrumental rationality. In each case rational
choices are conditional on the agents’ expectations, which are in turn very de-
pendent on what they know and believe about the decision situation. Although
I have put less emphasis on this aspect, information is also of great importance
in the theory of intentions, especially for intentions in situations of interaction.
When many agents are involved, what they know and believe about the intentions
of others makes a crucial difference to what they intend and how these intentions
influence further practical reasoning.

In that context, modern dynamic epistemic logic appears to be the natural
environment for developing a theory of practical reasoning for rational planning
agents. It is indeed a general theory of reasoning about information and infor-
mation changes. It has already proved quite helpful in investigating the flow
of information in games25, and its tools and insights are readily applicable to
questions of rational planning agency.

Modern dynamic epistemic logic is a branch of modal logic26, a general frame-
work devised to “talk”, using formal languages, about some structures or models.
As we shall see in the course of this thesis, decision and game-theoretic representa-
tions of decision situations are typical kinds of structures which modal languages
can talk about.

Logical languages are connected to the structures that they are intended to
describe via a semantics , which provides the conditions for the statements of the
language to be true or satisfied in a structure. Semantics also allows one to isolate
formulas that are valid in certain class of structures. These formulas are of special
importance because they correspond , in modal terms, to general properties of the
intended class of structures.

Alongside the semantic part, modal languages usually come with a deductive
apparatus, called a proof systems . These allow explicit representation of the
reasoning which can be done in a given formal language. These proof systems
come in many forms, but in this thesis I use only axiomatic ones. These are

25See the references in the footnote on page 2.
26Blackburn et al. [2001] is a clear and up-to-date textbook on the topic. See also Blackburn

et al. [2006].
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constituted by sets of axioms, which are simply formulas in the language, and
inference rules, with which one can syntactically derive theorems.

The semantic and deductive components are usually connected via soundness
and completeness results. The first are intended to show that all axioms and
derivable theorems are valid formulas in a given class of structure, and the second
are intended to show that all the valid formulas in a given class of structure are
either axioms or derivable from the axioms in the deductive system. If one can
show that a given proof system is sound and complete with respect to a certain
class of structure, one has shown that the deductive and the semantic component
of the logical analysis exactly match. All valid principles about these structures
are derivable, and all derivable statements are valid principles. As such, soundness
and completeness results are extremely powerful analytical tools. With them, one
can go back and forth between semantic and syntactic or deductive analysis. Any
new valid formula that one finds has some corresponding deduction or reasoning
in the proof system, and vice-versa. All formulas that one derives in the proof
system are certain to be a valid principles describing general properties of the
intended class of structures.

Epistemic logic uses these modal resources in order to study reasoning about
information. Its formal language typically includes knowledge and belief oper-
ators, allowing one to form statements like “agent i knows that p” or “if agent
i knows that p then agent j knows that q”. Furthermore, by combining these
operators epistemic languages can talk about higher -order information, that is
knowledge and beliefs of agents about their own information, or the information
of others.

The structures that epistemic logic talks about are usually called epistemic
models, and they are very close to the qualitative models for endogenous uncer-
tainty in decision and game theory. Roughly, they encode the agents’ information
using a given set of states, interconnected by some relations. These relations con-
nect to a given state all the states that agents are not able to distinguish from
the current one. In other words, they connect all the states that the agents
consider possible. With such simple representation, when provided with some
semantic definitions, modal languages are able to talk about surprisingly intri-
cate epistemic conditions, involving arbitrarily high (finite) orders of knowledge
and beliefs. What is more, they can establish a clear connection between con-
ditions on the underlying relations and “properties” of the epistemic operators.
Transitivity—which says that if state w is related to w′ and w′ to w′′, then w is
related to w′′—can be shown, for instance, to correspond to “positive introspec-
tion” of the knowledge operator: if an agent knows that p then he knows that he
knows that p. In other words, one can link the properties of an intended class of
epistemic models with important valid principles about the agents’ information
in the epistemic language.

Epistemic logic also comes with well-known, sound and complete axiom sys-
tems for various classes of models and diverse epistemic operators. These allow
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one to neatly capture reasoning about information and higher-order information,
and to connect it with valid principles. That it can do so in such a perspicuous
manner is, arguably, the greatest asset of epistemic logic and what makes it so
relevant to the analysis of practical reasoning.

Dynamic epistemic logic has been developed as an extension of epistemic logic
to talk about information changes. More precisely, it is designed to talk about
the consequences of “epistemic actions” on the information that agents have in
a given situation. An epistemic action is simply an event which affects what
the agents know, believe and consider possible. Dynamic epistemic logic has
analyzed a whole variety of such actions, from simple public announcement of
facts to hidden messages and encrypted communication.

These actions are usually represented by various operations which transform
epistemic models, by removing states, by adding new ones or by changing the
relations. Dynamic epistemic languages are extensions of epistemic languages,
with operators corresponding to these operations. Again, if one is provided with
a semantics, the properties of these operations can be shown to correspond to
valid principles in the dynamic language27. In other words, general properties of
information changes in epistemic models can be translated into valid principles
about epistemic actions.

As for its epistemic base, dynamic epistemic logic comes with known, sound
and complete proof systems in which one can study reasoning about information
changes. These proofs systems are of special interest because most of them show
how to analyze in a compositional way valid principles about information change
in terms of principles about (static) information and higher-order information28.
In other words, they show how to understand the effects of epistemic actions in
terms of what the agents know and believe about each other in a given epistemic
model.

In view of this, dynamic epistemic logic appears to be the natural environ-
ment to develop a theory of practical reasoning for rational planning agents. For
one thing, the importance of information and higher-order information for ratio-
nal decision making in itself justifies the use of epistemic languages and models.
But, as I mentioned in Section 1.2, intentions bring in a key dynamic component,
because they carry a reasoning-centered commitment through which agents trans-
form their decision problems. As we shall see in Chapter 5, dynamic epistemic
languages can readily be adapted to talk about this aspect of planning agency,
and especially to study how intentions-based transformation of decision problems
affects the agents’ information in strategic games.

In this section I have focused on epistemic languages, that is, on modal lan-

27Studies on this correspondence are relatively recent in the field. See van Benthem and Liu
[2004] and van Benthem [2007, Manuscript] for more details.

28A notable exception is the work of Gerbrandy et al. [2007].
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guages which talk about information and information changes. But at this point
it is worth mentioning that dynamic modal languages have also proved quite use-
ful in the study of reasoning about preferences and preferences changes29, which
are also crucial ingredients in practical reasoning of rational agents. In Chap-
ter 5 I make extensive use of these languages for preferences. This shows even
more powefully how natural the choice of dynamic epistemic logic or, more gen-
erally, dynamic modal logic is as a framework for the development of a theory of
intention-based practical reasoning.

1.4 Outline of the thesis

I start in Chapter 2 by showing that the introduction of future-directed inten-
tions does indeed broaden the explanatory scope of decision-theoretic models,
i.e. of models of individual decision making under uncertainty. As the planning
theory claims, the volitive commitment of future-directed intentions allows one
to go beyond traditional decision-theoretic reasoning by “breaking ties” between
equally desirable options, and thus provides a straightforward anchor for personal
coordination.

Chapter 2 also serves as launching pad for the rest of the thesis. I intro-
duce there the formal framework and fix important methodological boundaries.
I explain, for instance, why I bracket questions of resource-boundedness, crucial
for “real-world” agents, and also why I do not consider intentions with counter-
factual consequences. The reason is, in short, that by leaving these issues aside
one can work in a much simplified decision theoretic environment while never-
theless highlighting important contributions of intentions to practical reasoning.
Furthermore, these simple models generalize naturally to situations of strategic
interaction, which occupy most of the investigation.

Coordination is the first aspect of intention-based strategic interaction that I
consider (Chapter 3). It is a natural point for the theory of intentions to meet
the theory of games. The first makes strong claims about coordination, and
the topic has attracted much attention in the second. I mostly look at “Hi-Lo”
games, which have become a standard benchmark for game-theoretic accounts
of coordination. I show that intentions do indeed anchor coordination in these
games, in a way that naturally generalizes their “tie-breaking” effect in single
agent contexts. I also show that this intention-based account offers a plausible
alternative to another proposal in the game-theoretical literature. I leave Hi-Lo
games only by the end of the chapter, where I look at how intentions can anchor
coordination in the general case. This allows us to revisit important claims in the
planning theory concerning “shared agency”, and in particular to circumscribe
better the extent of this phenomenon.

29See e.g. van Benthem et al. [2005], van Benthem et al. [Forthcoming], de Jongh and Liu
[2006], Liu [2008] and Girard [2008].
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All of this concerns the volitive commitment of intentions, and how they “ap-
pear” in the background of practical reasoning. In Chapter 4 I turn to the more
“active” role of future-directed intentions, namely the two facets of the reasoning-
centered commitment: the filtering of options and the focus on means. I show
that they can be studied by means of two simple operations which transform
decision- and game-theoretic models. These operations become especially inter-
esting in contexts of strategic interaction, where they acquire an important social
character that has not yet been studied in the planning theory.

In Chapter 5 I use dynamic epistemic logic to bring the considerations of
the previous chapters under a single umbrella. This provides a unifying theory
of rational deliberation for a planning agent. Not only does it encompass both
the volitive and the reasoning-centered commitment of intentions, it also allows
one to study how these two functions interact. I show, for instance, that an
important aspect of the volitive commitment used to account for coordination
with intentions has an echo in the filtering of options that I define in Chapter 4.
This observation triggers a natural generalization of the idea of filtering, which
takes into account the information that agents have about their own intentions
and the intentions of others. By the end of the chapter I explore two other issues
at the intersection of planning agency and instrumental rationality, namely the
condition under which intention-based transformations of decision problems foster
coordination and become “enabled” by the elimination of dominated strategies.

The framework I develop in Chapter 5 is also, literally, a theory of practical
reasoning of planning agents. Axiomatic proof systems for dynamic epistemic
logic are well known. By adapting them to the framework of games with inten-
tions, one gives a concrete deductive character to the theory. The findings about
the various conditions for coordination, and about how they relate to transfor-
mations of decision problem, can be turned into reasoning or proofs in these
axiomatic systems. In short, dynamic epistemic logic brings the present proposal
closer to a fully-fledged theory of intention-based, rational deliberation.

In Chapter 6 I look back at this theory from a philosophical point of view, and
investigate the question of how the norms of consistency and coherence which ap-
ply to intentions can be explained. In contemporary philosophy of action there are
two main takes on this issue, called the “cognitivist” and “agency” approaches.
Here I explore an alternative one, hybrid pragmatism, which stands half-way be-
tween cognitivism and the agency approach. It is based on the notion of “accep-
tance in deliberation”, a cognitive state which has so far attracted little attention.
I argue that hybrid pragmatism is a plausible alternative to the two main con-
temporary approaches, and that its use of acceptances provides a more complete
picture of how future-directed intentions make their way into practical reasoning.
Looking at hybrid pragmatism and acceptances in deliberation also brings this
thesis to a natural conclusion. On the one hand, they supply a solid philosophical
basis to the theory of rational planning agency. On the other, they open new,
exiting research directions, both from the philosophical and the formal point of
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view.

All in all, this thesis is an attempt to capture, in a single framework, three
important takes on practical reasoning. First, the considerations of instrumental
rationality that have been extensively studied within decision and game theory.
Secondly, the idea that intentions partake in most deliberations for planning
agents, that they provide anchors for personal and inter-personal coordination,
focus deliberations on relevant means, and filter options. Thirdly, the importance
of mutual, higher-order and changing information in deliberation. In short, I pro-
pose here a framework for rational planning agency in which decisions, driven by
the demands of instrumental rationality, are nevertheless made against a back-
ground of previously adopted intentions. This perspective, I believe, not only
widens the scope of decision and game theory, but also unveils new issues for the
philosophy of action.



Chapter 2

Intentions and individual decision
making

This chapter has two aims. First and foremost I investigate intention-based indi-
vidual decision making. That is, I look at how individual decision makers can take
into account both considerations of instrumental rationality and future-directed
intentions in their deliberations. Second, the chapter introduces the formal frame-
work that I use throughout the thesis. The results on intention-based rational
decision making are thus interspersed with many methodological remarks on the
formal approach.

In Section 2.1 I introduce extensive representations of decision problems.
These models allow a fine-grained representation of future-directed intentions,
in which one can distinguish intentions to act from intentions to reach outcomes.
In Section 2.2 I show that this framework permits a precise formulation of the
norms of consistency and coherence which apply to intentions, and allows us to
to study their interrelations. Moreover, one can account for the fact that plan-
ning agents can “break ties” between equally desirable options, and thus that the
agents can use their intentions to coordinate their own decisions through time.
In Sections 2.3 and 2.4 I set two important methodological boundaries on the
investigation. I do not, first of all, consider intentions with “counterfactual” con-
sequences, nor do I consider resource-bounded agents. As I show in Section 2.5,
this allows one to work with very simple models, strategic decision problems with
intentions, where one can really “zoom in” on phenomena at the intersection of
the planning agency and instrumental rationality. These models, moreover, gen-
eralize easily to the multi-agent case, and thus provide a natural opening into the
subsequent chapters.

17
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2.1 Extensive decision problems

Decision theory is about rational decision making in the face of uncertainty. It
offers a plethora of models, all more or less inspired by the pioneer works of
Ramsey [1926], von Neumann and Morgenstern [1944], Savage [1954] and Jeffrey
[1965]. Here I work with perfect information, extensive decision problems with
exogenous uncertainty1. Just as in Figure 2.1, extensive decision problems can
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Figure 2.1: A simple decision problem

be seen as trees. Each path in the tree, called a history, is a sequence of “moves”
or “actions”. I put these terms in quotes because some of these actions are not
performed by the agent, but are random occurrences in his environment. In more
multi-agent terms, in these trees the agent is playing against Nature. He has no
control over Nature’s choices, which are the source of exogenous uncertainties2.
In figures the white dots are choices or decision points while the black ones are
the random occurrences or “Nature’s moves”. So, in Figure 2.1, the first node is
a choice point while the one that follows action Go up is a coin toss, i.e. a chance
node.

The sequential order of nodes in the tree, starting from the root and finishing
at the leaves, represents the temporal succession of decisions. When the agent
reaches a leaf, also called a terminal history or an outcome, he collects his payoff,

1Recall the distinction I made in the introduction, Section 1.1.1, between endogenous and
exogenous uncertainty. In this chapter I do not consider endogenous uncertainty. It does,
however, play an important role in Chapter 3, in the context of strategic games. See [Osborne
and Rubinstein, 1994, Section III] for more on extensive decision problems with endogenous
uncertainty.

2To push this idea a bit further, one could say that in decision trees without endogenous
uncertainty, the agent “knows” Nature’s (mixed, see the footnote on page 36) strategy. As I just
mentioned, I do not look at cases of endogenous uncertainty, which would arguably include cases
where the agent is uncertain about Nature’s strategy, i.e. about the probability distributions
associated with random events.
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which I represent here as real numbers. The higher the payoff the better off the
agent is. In Figure 2.1, if the agent reaches the terminal history Go down, that
is if he chooses to go down at his first decision point, he collects a payoff of 40.
He definitely would prefer to get 100, but this is not something he can enforce
by himself. It depends on the result of the coin toss, an exogenously uncertain
process over which he has no control.

Rational decision making in the face of such exogenous uncertainty is a matter
of maximizing expected payoff. That is, a matter of maximizing the sum of the
payoffs of all outcomes reachable by a sequence of choices, weighted by their
respective probability. At this point it is useful to look at more formal definitions.

2.1.1. Definition. [Decision trees - Osborne and Rubinstein 1994] A decision
tree T is a set of finite sequences of actions called histories such that:

• The empty sequence ∅, the root of the tree, is in T .

• T is closed under sub-sequences: if (a1, . . . , an, an+1) ∈ T then (a1, . . . , an) ∈
T .

Given a history h = (a1, . . . , an), the history (a1, . . . , an, a), h followed by the
action a, is denoted ha. A history h is terminal in T whenever it is the sub-
sequence of no other history h′ ∈ T . Z denotes the set of terminal histories in
T .

2.1.2. Definition. [Chance and choice moves] The set of non-terminal history
in a decision tree T is partitioned into two subsets, the choice moves and the
chance moves . If h is a choice move, then the elements of A(h) = {a : ha ∈ T} are
called the actions available at h. If h is a chance move, then there is a probability
distribution δ on A(h), the elements of which are now called alternatives at h.

2.1.3. Definition. [Strategies and plans of action]

• A strategy s is a function that gives, for every choice move h, an action
a ∈ A(h). Equivalently, strategies are described as vectors of actions3.

– A node h′ is reachable or not excluded by the strategy s from h if the
agent can reach h′ by choosing according to s from h. That is, h′

is reachable by s from h if h′ = (h, s(h), s(s(h)), ...) for some (finite)
application of s.

• A plan of action is a function that assigns to each choice node h that it
does not itself exclude an action a ∈ A(h). A partial plan of action is a
partial function p′ from the set of choice nodes to the set of actions which

3In Figure 2.1, for instance, there are four strategies: (Go down, Go Up), (Go down, Go
Down ), (Flip a coin, Go Up), (Flip a coin, Go Down).
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coincides with a full plan of action4. A plan p coincides with a (perhaps
partial) plan p′ whenever p′ ⊆ p.

A strategy tells the agent what to do at all choice points in the tree, even at
those which are excluded by the strategy itself. In the example of Figure 2.1,
(Go down, Go Down) is a strategy, even though by going down at the first node
the agent would never reach the second or the third one. Plans of action, on the
other hand, specify what to do only at choice nodes that are not excluded by the
plan itself. Again in the figure above, (Flip a coin, Go Down) is the plan of first
flipping the coin and then, if the coin lands tails, going down. Observe that many
strategies can be compatible with a single plan of action. Going down at the first
move in the example above excludes all other moves, and so (Go down) is a full
plan of action compatible with both strategies (Go down, Go Up) and (Go down,
Go Down). Partial plans are sets of decisions which could be extended to a full
plan. In Figure 2.1 there are four partial plans: Go down, Flip a coin, Go Up
and Go Down. The set of decisions {Go down, Go Down} is not a partial plan
in this sense. Going down at the first node excludes reaching the second choice
point, and so there is no way to extend {Go down, Go Down} to a full plan of
action.

2.1.4. Definition. [Payoffs, reachable outcomes and expected payoffs]

• A payoff or outcome function π for a given decision tree T is a function that
assigns a real number to each terminal history. In what follows it is assumed
that every decision tree T comes with a finite set X of real numbers, where
π takes its values.

• The set of reachable outcomes by a strategy s, or a full plan of action p,
is the set of the π(h) for all terminal histories reachable from the root by
s (or p). The set of outcome reachable by a partial plan of action p is the
union of the outcomes reachable by all the plans of actions p′ that coincide
with it5.

4I should mention here an alternative way to define partial plans, used by van Benthem
[2002]. Instead of defining them as partial functions, partial plans can be seen as total functions
assigning sets of actions to each choice node. Partial plans, as I define them, boil down to
functions that assign, at every history h, either a singleton {ha}—corresponding to cases where
the partial function is defined—or the whole set A(h)—corresponding to cases where the partial
function is not defined. This approach is truly more general, allowing “intermediate” cases where
an agent has decided not to accomplish certain actions at a node, but has not yet made up his
mind on which action, precisely, he will take. That is, cases were p(h) is not a singleton but yet
a strict subset of A(h). The considerations in Section 2.2 would surely profit from this more
general approach. I stick to partial plans as partial function, partly to keep things simple and
partly to keep the presentation uniform with the notions of full plans and strategies.

5For convenience, I slightly abuse the notation and denote these sets by π(s) or π(p).
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• The expected value or the expected payoff of a strategy s at the history h,
denoted EV (h, s), is defined inductively.

EV (h, s) =


π(h) If h is a terminal history.

Σa∈A(h)δ(a)EV (ha, s) If h is a chance node.

EV (hs(h), s) If h is a choice node.

One can readily calculate that, in the example of Figure 2.1, the expected payoffs
of the strategies (Go down, Go Up), (Go down, Go Down ), (Flip a coin, Go Up),
(Flip a coin, Go Down) are respectively 40, 40, 0 and 50. The expected value
of a plan of action is computed similarly. Observe that, given Definition 2.1.4,
a plan has exactly the same expected value at the root as all the strategies that
coincide with it. The expected value of (Go down), for example, is the same as
(Go down, Go Up), (Go down, Go Down ).

I can now define more precisely what it means to be instrumentally rational
at a node. It is simply to choose according to a strategy which expected value at
that node is at least as high as that of any other strategy.

2.1.5. Definition. [Rationality] A strategy s is rational at a node h if and only
if, for all strategies s′: EV (h, s) ≥ EV (h, s′). A strategy s is rational for the
whole decision problem T if it is rational at the root of T .

The rational strategy of the decision problem in Figure 2.1 is thus (Flip a coin,
Go Down).

Before introducing future directed intentions in these extensive representa-
tions, I should mention that, in this chapter, I am mostly concerned with plans
of action and very little with strategies6. The latter are very important in multi-
agent decision problems. The information they carry about “off-path” behaviour
is crucial in Kreps and Wilson’s [1982] sequential equilibrium, for instance. But
in single agent scenarios, what the individual would do were he to deviate from
his own plan of action has usually little or no consequence, at least as long as we
are talking about ideal agents7.

2.2 Actions- and outcomes-intentions in exten-

sive decision problems

In this thesis I am mostly interested in cases where agents make their decisions
against a background of previously adopted intentions. I thus do not consider

6With the exception of Section 2.3.
7I come back to the notion of ideal agent in Section 2.4. The reader might have already

noticed that, in fact, I define rationality in a way that allows strategies to be rational even
though they prescribe irrational moves at choice nodes that they exclude. In other words, the
definition of what it is for a strategy to be rational in a decision problem already ignores the
“off-path” prescriptions.



22 Chapter 2. Intentions and individual decision making

explicitly the process of intention formation8, but rather focusing on cases where
the agent comes to a decision problem with intentions that he has adopted be-
forehand.

An agent can come to a decision problem with both intentions to accomplish
certain actions and intentions to reach certain outcomes . Let me call the first ac-
tions-intentions and the second outcomes-intentions. Extensive decision problems
allow for a straightforward representation of both kinds of intentions.

2.2.1. Definition. [Intention sets] Given a decision tree T and a finite set of
outcomes X, an intention structure I is a tuple 〈IO, IA〉 where IO is a finite
collection of sets of outcomes and IA is a finite collection of (maybe partial) plans
of action.

The elements in IO are sets of outcomes. These are the outcome-intentions
of the agent, intentions to achieve some of the outcome they contain. If, for
example, outcomes x and y are outcomes where the agent gets more than 100
euros, then if {x, y} is in IO I will say that the agent intends to obtain more than
100 euros.

With this set-theoretical structure one can talk about various Boolean com-
binations of intentions. For instance, if A is a set of outcomes in which the agent
is attending a concert, and B is a set of outcomes in which the agent is in Paris,
then when both A and B are in IO the agent intends to watch a concert and
intends to be in Paris. If the intersection A ∩ B is in IO then the agent intends
to watch a concert and to be in Paris. Similarly, if A∪B is in IO then he intends
to watch a concert or to be in Paris. If, finally, the relative complement of A in
X, noted X − A, is in IO then the agent intends not to watch a concert. Note
that this is different from the agent not intending to watch a concert, which is
represented as A 6∈ IO.

The set IA is the set of action-intentions of the agent. If, for instance, the
agent comes to the decision problem of Figure 2.1 with Go Down in his intention
set, this means that he has already formed the intention to choose down if he
reaches the second choice point.

So far there is no constraint on either IA or IO. It could be, for example,
that IO contains two mutually exclusive sets A and B. This would boil down
to the agents having two contradictory intentions, since the achievement of one
precludes the achievement of the other. Nor is there a relation between actions-
and outcomes-intentions. An agent could intend to achieve outcome x without
having any action-intention which would make him reach this outcome.

These are cases where the agent seems to violate one of the normative re-
quirements on rational intentions. Recall that, for many philosophers of action,

8Introducing explicitly intention-formation points in decision trees also brings in important
conceptual difficulties, mostly related to cases like G. Kavka’s [1983] “Toxin Puzzle”. I do not
consider them in this thesis. M. van Hees and I have considered these questions in [2007b],
using a model similar to the one of Verbeek [2002].
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rational intentions should be internally consistent, consistent with what the agent
believes, agglomerative and means-end coherent. With the exception of belief
consistency, one can straightforwardly translate these norms in terms of intention
structures9.

2.2.2. Definition. [Internal consistency of outcomes-intentions] A set of out-
comes-intentions IO is internally consistent whenever ∅ 6∈ IO and IO 6= ∅.

If IO contains the empty set the agent intends to achieve something utterly im-
possible, for example a plain contradiction. If, on the other hand, IO = ∅ then
the agent does not intend anything. Observe that this is different from intending
no outcome in particular, which boils down to stating that IO contains only the
full set of outcomes, i.e. IO = {X}.

2.2.3. Definition. [Agglomerativity of outcomes-intentions] The outcomes-inten-
tions of the agent are agglomerative if A∩B ∈ IO whenever A ∈ IO and B ∈ IO.

This notion is essentially what I called agglomerativity as closure in the intro-
duction (Section 1.2). Recall that I distinguished it from a another variant,
agglomerativity against potential irrationality, according to which it should be
possible to agglomerate the intentions of an agent without generating inconsisten-
cies. In the present framework this alternative understanding of agglomerativity
is a consequence of Definitions 2.2.2 and 2.2.3. Under the assumption that X and
IO are finite, internally consistent and agglomerative sets of outcomes-intentions
always have a “smallest” element, which is never empty. In technical terms,⋂
X∈IO X ∈ IO and

⋂
X∈IO X 6= ∅. I use a special notation for this intersection,

the most precise outcomes-intention of the agent: ↓IO.
For many of the technical details, it is convenient to assume that IO is a filter,

which means that it is not only internally consistent and agglomerative, but also
closed under supersets: if A is in IO and A ⊆ B then B is also in IO. Recalling
the Boolean point of view on outcome-intentions, this closure under supersets is
a closure under implication. If the agent intends to go to a Bob Dylan concert,
then he intends to go to a concert. This is indeed a strong requirement, but it
turns out to simplify the formal analysis10.

Interestingly, closure under supersets has a completely different meaning with
respect to the set of actions-intentions IA. It rather expresses agglomerativity,
both as closure and against potential irrationality.

9Recall that I work with perfect information decision trees. At each node the agent has cer-
tain and truthful information about his situation. His intentions, as long as they are achievable,
are thus by default belief consistent. I work with imperfect information, for strategic games, in
Chapter 3 and 5.

10Very few of the results, however, rest crucially on this assumption, as the reader will be in
position to judge as I go along.
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2.2.4. Definition. [Agglomerativity of actions-intentions] The actions-intentions
of the agent are agglomerative if p, p′ ∈MA implies that p ∪ p′ ∈ IA.

To see this, recall that all elements of IA are plans of action, either full or partial.
But then to require p ∪ p′ to be an element of IA, whenever p and p′ are, is to
require this union also to be a plan of action. This means that p and p′ should not
each exclude the achievement of the other. Observe that, given agglomerativity,
actions-intentions also contain a “most precise” element,

⋃
p∈IA p, which can,

however, still be partial. I use ↑IA to denote this.
Internal consistency could similarly be imposed on IA as a separate require-

ment. But internal consistency can be imposed on actions-intentions in a less
direct way. There is so far no connection between IO and IA. If, however, we
view the latter as the set of means the agent intends to take in order to achieve
his ends, i.e. his outcome-intentions, then there should be such a connection,
namely a form of means-end coherence.

2.2.5. Definition. [Means-end coherence] The intention structure I is means-
end coherent if there is a p ∈ IA such that π(p) ⊆ ↓IO.

An intention structure is thus means-end coherent when there is a plan of ac-
tion among the agent’s actions-intentions which can, for sure yield an intended
outcome. In other words, the agent’s intention structure is means-end coherent
whenever he can enforce the achievement of his outcomes-intentions by enacting
his actions-intentions.

This condition not only constrains IA in terms of IO, it also precludes the
agent from intending outcomes that he cannot secure. Consider a variation of
the decision problem presented in Figure 2.1, in which π(Flip a coin, tail, Go
down) = 200 instead of 100. In this case the agent has a clear favourite outcome.
He cannot, however, intend to realize it and be means-end coherent at the same
time. That is, all intention structures in which ↓ IO = {200} are means-end
incoherent. There is no (partial) plan of action for the agent in which he would
be able to secure this outcome. To do so the agent would have to have the power
to reach (flip a coin, tail) by his own will. But he can get there only if the coin
lands tails up, and he has no control over that.

In connection with the other requirements, means-end coherence has inter-
esting consequences. First, it is notable that internal consistency of actions-
intentions follows from internal consistency of outcomes-intentions in the pres-
ence of means-end coherence. In other words, IA is never empty for means-end
coherent intention structures with internally consistent outcome-intentions. Fur-
thermore, if IA is agglomerative then the most precise action-intention ↑IA itself
enforces an intended outcome.

2.2.6. Fact. For any means-end coherent intention structure I, if IA is agglom-
erative then, π(↑IA) ⊆ ↓IO.
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Proof. Take any such I. Observe that for any (perhaps partial) plans of action
p and p′, p ⊆ p′ implies that π(p′) ⊆ π(p). Now, because IA is agglomerative we
know that for all p ∈ IA, p ⊆ ↑IA. But then, by means-end coherence, we know
that there is a p ∈ IA such that π(p) ⊆ ↓IO, and thus that π(↑IA) ⊆ ↓IO. �

As a direct corollary, we obtain that means-end coherence and agglomera-
tivity of the actions-intentions together enforce that all actions-intentions are
“consistent” with the most precise outcome-intention ↓IO.

2.2.7. Corollary. For any means-end coherent intention structure I, if IA is
agglomerative then π(p) ∩ ↓IO 6= ∅, for all p ∈ IA.

Observe, however, that even if all the above conditions are met, ↑IA can still
be a partial plan. This is quite in line with an important idea in the philosophy
of action, namely that plans are typically incomplete. Means-end consistency
“only” requires one to secure some intended outcomes, and this can leave many
choice nodes undecided. Once the outcomes-intentions are within reach, actions-
intentions can remain silent.

Means-end coherence nevertheless establishes a strong connection between the
intentions of the agent and the structure of the decision tree. It constrains the
intention structure to fit the agent’s powers, keeping him within the limits of what
he can enforce11. But one might also require the agent’s intentions somehow to
match another important component of decision problems, his preferences. That
is, one might want to make sure that the agent’s intentions will not lead him into
choices that would otherwise be irrational. This can be ensured by the following.

2.2.8. Definition. [Payoff-compatible actions-intentions] The actions-intentions
IA are payoff-compatible whenever for any full plans of action p and p′ such that
EV (∅, p) > EV (∅, p′): if ↑IA 6⊆ p, then ↑IA 6⊆ p′.

2.2.9. Fact. For any decision tree T and means-end coherent intention structure
I where IO is agglomerative and internally consistent and where IA is agglomer-
ative and payoff-compatible, there is a rational plan that coincides with ↑IA.

Proof. Simple unpacking of the definitions. �

With this in hand we can already see that intentions extend the analysis of stan-
dard rational decision making under uncertainty. In cases where there is more
than one maximizer of expected value, traditional decision theoretic agents have
no criterion to decide. To put the matter somewhat dramatically, they are like
Buridan’s ass who, the story goes, starved to death because he could not decide
between two equally desirable stacks of hay. As Bratman [1987, p.11] stresses,

11This condition, the “own action condition” [Bratman, 1999, p.148], will become very im-
portant in multi-agent scenarios. I discuss it in more detail at the beginning of Chapter 3.
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planning agents can get out of cases like this, and Fact 2.2.9 is in line with this
idea. When there is more than one rational plan in a decision problem solu-
tion, IA can at most contain one of them, thus “focusing” traditional rationality.
Moreover, when ↓ IA is not a full plan of action, payoff-compatible intentions
can still get the agent out of Buridan cases, by providing anchors for personal
coordination. When there is more than one maximizer of expected value, some
of which are not compatible with the agent’s most precise action-intention, even
if it is partial, a combination of traditional decision making and intention-based
reasoning will help the agent to make a decision.

Intentions thus supplement traditional decision making under uncertainty, in a
way that nevertheless does not fundamentally change the structure of the model.
Actions- and outcomes-intentions are, after all, collections of entities that are
“normal denizens” of extensive representations. This is an important asset of the
present framework. By keeping the underlying decision-theoretic model intact,
one can use the tools and insights from classical decision theory to gain a better
picture of rational decision making with intentions. In other words, the current
framework allows one to study intention-based rational deliberation in a way that
does justice both to traditional views of instrumental rationality and the theory
of intentions.

This essentially motivates the two methodological assumptions that I present
in the following sections. Considering intentions with counterfactual consequences
and resource-bounded agents introduces complications that lead us outside the
core intersection of planning agency and instrumental rationality. These are in-
teresting topics, but their investigation can surely profit from first looking at the
“simple” case of rational deliberations against a background of future-directed
intentions.

2.3 Intentions with counterfactual consequences

Consider the following example, in which the counterfactual consequences of in-
tentions influence the payoffs12.

Both Terror Bomber and Strategic Bomber have the goal of promoting
the war effort against Enemy. Each intends to pursue this goal by
weakening the Enemy, and each intends to do that by dropping bombs.
Terror Bomber’s plan is to bomb the school in Enemy’s territory,
thereby killing children and terrorizing Enemy’s population. Strategic
Bomber’s plan is [...] to bomb Enemy’s munitions plant. [He] also
knows, however, that next to the munitions plant is a school, and
that when he bombs the plant he will also destroy the school, killing
the children inside. [Bratman, 1987, p.139]

12In the literature such intentions are also called intentions with “double effects”.
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Let me assume that Strategic Bomber does not have the intention to kill the
children, and try to draw the decision tree. If we make the standard assumption—
as I have thus far—that a plan of action describes the available moves, then the
tree is very simple (see Figure 2.2). There are only two possible plans—and also
only two strategies—namely bomb and not bomb. But the consequences of bomb
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Figure 2.2: The Bombing Problem

may be different if this history is chosen with the intention to kill the children
than if it is chosen without this intention. For instance, Terror Bomber may be
prosecuted for war crimes if it was indeed his intention to kill the children, whereas
such prosecution may be less likely for Strategic Bomber. In this scenario, the
payoffs thus not only depend on which terminal history is reached but also on the
intention with which it is reached.

In the model of the previous section, one cannot distinguish reaching bomb
with the intention to kill the children from reaching the same history with a
different intention. In both cases the agent has the same most precise actions-
intention ↑IA = {bomb}, and the value of π(bomb) is the same, despite the fact
that these intentions and payoffs should be different.

Bratman argues, in essence, that Strategic Bomber does not have the intention
to kill the children because, in contrast to Terror Bomber, he would not adopt
a new plan of action if the children were moved somewhere else, far from the
munitions plant. That is, Bratman suggests that a counterfactual extension of
the decision problem would reveal the intentions. One such extension is depicted
in Figure 2.3. The first node is now a chance node which determines whether the
school is deserted or not. If not, the agent faces the original decision problem,
otherwise the counterfactual scenario arises. Considering this extended tree, one
can assume that the plans of action of Terror and Strategic Bomber will differ.
Terror Bomber’s ↑IA will be the plan “Only bomb when children are at school”
whereas for Strategic Bomber it will be “Always bomb”. Following Bratman’s
suggestion, we can use the counterfactual information carried by these plans to
assign the payoff to the terminal histories.

2.3.1. Definition. [Refined payoff functions] A refined payoff function ρ is a
function that assigns a real-valued payoff to pairs (h, s) where s is a strategy and
h a terminal history.
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Figure 2.3: A counter-factual extension of the bombing problem

Dealing with refined payoff functions brings strategies back into full relevance.
What the agent would choose were he to deviate from his own path, that is in
counterfactual situations, suddenly has a direct impact on his payoffs. For that
reason I will assume, for the moment, that actions-intentions can also contain
strategies, with the corresponding modifications of Definitions 2.2.1 and 2.2.4.

2.3.2. Definition. [Intentions with counterfactual consequences] An actions-
intention or a strategy s has counterfactual consequences when, ρ(h, s) 6= ρ(h, s′)
for a terminal history h and another strategy s′.

In the Bombers example intentions have counterfactual consequences. The value
of ρ is different if Children in school, bomb is reached with the strategy Always
bomb than if it is reached with the strategy Only bomb when children are at school.
Dropping bombs with the intention to kill the children has different consequences
than dropping bombs without this intention.

The counterfactual consequences of acting with a certain intention can be
taken into account when the agent chooses his strategy, with the following refine-
ment of the notion of expected value.

2.3.3. Definition. [Refined expected value] For all pairs (h, s):

EV ′(h, s) =


ρ(h, s) If h is a terminal history.

Σa∈A(h)δ(a)EV
′(ha, s) If h is a chance node.

EV ′(hs(h), s) If h is a choice node.

Refined payoff functions are indeed generalizations of the standard payoff func-
tions π. The latter are just refined functions for which the value at a terminal
history is not dependent on the strategy with which it is reached. That is, any
standard payoff function π can be emulated by a refined payoff function ρ for
which ρ(h, s) = ρ(h, s′) for all terminal histories h and strategies s and s′.
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However useful, refined payoff functions are not part of the standard decision-
theoretic machinery. Two crucial questions remain open about them. First, I am
not aware of any representation result that would ground a theory of instrumen-
tal rationality in uncertain situations, using these refined payoff functions. In
other words, one still has to find the conditions under which choices of actions
can be represented by such real-valued refined payoff functions on outcomes13.
Second, one must understand better what kind of transformation would lead to
the “correct” or “appropriate” counterfactual extension of a given decision tree.
The use of refined payoff functions should come hand-in-hand with a systematic
theory of decision problem transformations.

I do no purse these matters here. They are very interesting, but they bring in
cases where intention-based practical reasoning forces one to reconsider the very
building blocks of the theory of instrumental rationality. As we have already seen,
even in “classical” decision-theoretic models intentions give rise to phenomena
that are worth looking at, and to which I give priority.

2.4 Ideal and resources-bounded agents

So far I have considered examples where it is easy to find a rational plan. But
this is not always so easy. If there are numerous choice nodes, interlaced with
chance nodes, representing the decision tree or calculating its solution might be
very tedious. Most decision-theoretic analyses abstract from such difficulties by
making two assumptions about the agent: ideal intelligence and ideal rationality.

The first assumption concerns the agent’s representational and computational
capacities. An agent “is intelligent if he knows everything that we [the modeler]
know about the [problem] and he can make any inferences about the situation
that we can make.” [Myerson, 1991, p.4] In other words, if a decision problem
is representable at all and its solution computable, in any sensible sense of these
terms, then the agent is assumed to be capable of representing it and computing
its solution. The time and energy costs of these computations are simply ignored.

The rationality assumption splits into two components. First, the choices of
the agent over strategies are assumed to satisfy certain “coherence” requirements,
such as transitivity, totality and what Savage [1954] calls the “sure-thing princi-
ple”.14 These, together with a few others, are sufficient conditions to represent the
agent’s strategy choices as a maximization of expected value15. Decision-theoretic

13I briefly introduced representation results in the Introduction (Section 1.1.1).
14Transitivity states that if x is ranked above y, and y is ranked above z, then x is ranked

above z. Totality states that, for any x and y, either x is ranked above y, or y above x. Finally,
the sure-thing principle stipulates that if A and B produce the same consequences whenever
some event E occurs, then the agent’s choice between A and B should only depend on the
consequences of these two actions in the case E does not occur. See Joyce [2004] for details.

15See the references in the footnote on page 29. In Definition 2.1.1, I directly introduced
preferences in these terms.
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agents are also assumed to be constant and flawless maximizers, meaning that at
every choice point they choose according to a rational strategy, and that they do
not make mistakes, i.e. make irrational decisions.

Ideal decision theoretic agents are thus perfectly rational agents who can rep-
resent any decision problem, however big, and find a rational plan without effort.
These are indeed extremely strong idealizations, and most of them are explicitly
made as simplifying hypotheses16.

Decision models for non-ideal or resources-bounded agents have been studied,
for instance, by Simon [1982], Rubinstein [1998] or Gigerenzer and Selten [2002].
It is also an important claim in philosophy of action that intentions are useful
for agents with limited capacity, because they filter the set of options and focus
deliberation on relevant means. By doing so, it is claimed, they reduce the num-
ber of options to be considered, leaving the other decisions for later. In short,
intentions simplify deliberation, so that the agents can “cross the bridge when
they come to it”.17

But for ideal agents there is no need to wait until they come to the bridge.
They are capable of computing in advance, for any decision problem, a maximally
detailed plan. Furthermore, it is assumed that their preferences satisfy the above
coherence requirements, and so that they will not want to change their plan along
the way through the decision tree18. They are perfectly capable of pushing to its
extreme the “look before you leap” approach:

Making an extreme idealization, [...] a person has only one decision
to make in his whole life. He must, namely, decide how to life, and he
might in principle do once and for all. [Savage, 1954, p.83]

This idealization bears consequences for the representation of intentions, too.
Ideal agents have little to do with partial plans. To put it in the words of von
Neumann and Morgenstern [1944, p.79], the only assumption needed for agents
to be able to choose (and intend) full plans of action “is the intellectual one
to be prepared with a rule for behavior for all eventuality.” This, they say, “is
an innocent assumption within the confines of a mathematical analysis,” that is
under ideal decision-theoretic conditions.

Whether or not one agrees with the “innocent” character of this assumption,
the point remains. For ideal agents, there is nothing that stands in the way of
choosing beforehand a full plan of action. In other words, for ideal agents one
can safely assume that ↑IA is a full plan.

16See for example the remarks of Savage [1954, p.30] about the computation costs.
17To formally assess the importance of future-directed intentions for resource-bounded agents

one would also need to introduce considerations of computational complexity, which I do not
do in this thesis.

18The argument for this last point rests crucially on the “representation” results that I men-
tioned earlier.
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This has important consequences for the present analysis. First of all, it makes
intentions even more powerful tools to get planning agents out of Buridan cases.
If an agent’s most precise actions-intention is a full plan, which happens to be
payoff compatible, then this intention breaks any possible tie.

But this idealization also has methodological advantages. As I now show, it
allows one to move to from extensive decision problems to the simpler strate-
gic representations, without losing track of the important effects of previously
adopted intentions in planning agency.

2.5 From extensive to strategic representations

Led by the observation that ideal agents can decide in advance on a full plan of
action, von Neumann and Morgenstern [1944, p.79-84] proposed what they called
the final simplification of decision problems, namely the strategic form or normal
representation. Here is R. Myerson’s [1991, p.50] account of von Neumann and
Morgenstern’s idea, phrased in game-theoretic terms.

If the players in the game are intelligent, then each player should be
able to [...] determine his rational plan of action before the game
begins. Thus [...] the actual play of the game is just a mechanistic
process of implementing these strategies and determining the outcome
[...]. That is, we can assume that all players make all substantive
decisions [...] at the beginning of the game, [...] [which] is exactly
described by the normal representations.

In short, strategic representations of extensive decision problems “ignore all ques-
tions of timing.” [idem, p.47]. The whole apparatus of decision trees and histories
is replaced by a simple set of options, the elements of which represent plans of ac-
tion. The preferences are simplified accordingly. Instead of being computed from
the payoffs on terminal histories, they are directly aligned to expected value.

2.5.1. Definition. [Strategic version of extensive decision problems] Given a
decision tree T and a payoff function π, its strategic version GT is a tuple
〈S,X ′, π,�〉 such that :

• S is the set of plans of action in T .

• X ′, the set of outcomes, is defined as {π(p) : p ∈ S}.

• � is a preference relation on X such that:

π(p) � π(p′) iff EV (∅, p) ≥ EV (∅, p′)

In the same spirit, one can transfer intention structures for extensive decision
problems to intention structures for strategic versions.
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2.5.2. Definition. [Strategic version of intention structures] Given an intention
structure I for a decision tree T , its strategic version ι = 〈ιA, ιX〉 is defined as
ιA =↑IA and ιX = {Y ⊆ X : π(↑IA) ⊆ Y }.

The new actions-intention ιA is defined by taking the most precise actions-intention
in the extensive decision problem. Recall that if we work with ideal agents, we
can assume that ↑IA is a full plan, which ensures that there is a p in the set S of
plans in the strategic version which corresponds to the new ιA. The new outcome-
intentions set ιX is, in turn, defined by taking the filter generated by the set of
outcomes reachable by the most precise actions-intention ↑IA. From Fact 2.2.9,
we know that this set is a subset of the most precise outcomes-intention in the
original extensive decision problem. By taking the filter generated by ↑IA, it is
thus certain that ↓ IX will be an element of ιX . In fact, this ensures that all
elements of IX are in ιX .19 What is more, defining the new intention structure in
this way naturally preserves means-end coherence20. This transfer from extensive
to strategic forms also retains the tie-breaking effect of intentions. If the actions-
intentions of the agent are payoff-compatible and ↑IA is a full plan of action then
ιA is one of the maximal elements in the strategic preference ordering �. That
is, for all p ∈ S we know that ιA � p.

We thus have a simpler way to represent decision problems, strategic versions,
where intentions can also break ties between equally desirable outcomes. This
simplification can be pushed one step further, by abstracting from the extensive
representations altogether.

2.5.3. Definition. [Decision problems in strategic forms] A decision problem in
strategic form G is a tuple 〈S,X, π,�〉 such that :

• S is a finite set of plans or strategies.

• X is a finite set of outcomes.

• π : S → X is an outcome function that assigns to every action an outcome
x ∈ X.

• �i is a reflexive, transitive and total21 preference relation on X. Its strict
sub-relation � is defined as x � y iff x � y but y 6� x.

These are the strategic decision problems that I use in the coming chapters.
Clearly, strategic versions of extensive decision problems are decision problems in
strategic form. The preference relation induced by the expected value is indeed

19There might, of course, be more outcomes-intentions in ιX than in IX , if π(↑IA) ⊂↓IX .
20Observe that it also preserves internal consistency and agglomerativity - the latter trivially,

because I take the filter generated by π(↑IA).
21I defined totality and transitivity in the Footnote on page 29. Reflexivity simply means

that x � x for all outcome x ∈ X.
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reflexive, transitive and total. The converse is no longer true, however. The
difficulty lies in the preferences. One can transfer � from outcomes to plans, in
the obvious way. But is not the case that any such preferences on plans, even if
transitive, reflexive and total, can be represented by a numerical payoff function
π on outcomes in an extensive game such that p � p′ if and only if the expected
value of p is greater than or equal to the expected value of p′.

This looser connection with extensive decision problems is compensated by a
gain in generality. Strategic decision problems naturally extend to multi-agent
interactive situations, on which I concentrate in the following chapters. Further-
more, by moving to decision problems in strategic form one can do away with the
actions-/outcomes-intentions distinction, thus simplifying the formal apparatus
even further.

2.5.4. Definition. [Intentions in strategic decision problems] An intention set
ι for a strategic decision problem G is a set of subsets of X. The intention set ι
is:

• internally consistent if ι 6= ∅ and ∅ 6∈ ι.

• agglomerative if A ∈ ι and B ∈ ι implies that A ∩B ∈ ι.

• a consistent filter if it is internally consistent, agglomerative and closed
under supersets.

Observe that by the finiteness of X, we automatically get that if ι is a consistent
filter then ↓ ι, defined as for ↓IO, is not empty and an element of ι. Actions-
intentions are not completely lost in this new definition. The agent can be seen
as intending the plans which lead to outcomes in his most precise intention22.

Because of the looser connection with extensive decision problems, payoff-
compatibility can no longer be phrased in terms of expected value. To keep
intentions within the boundaries of classical rationality I have to reformulate this
criterion. Here I use a formulation which, I think, is fairly intuitive. The agent
will be said to have payoff-compatible intentions if, when all the elements of a set
of outcome B are strictly better than all the elements of another set of outcome
A, if he still does not intend B, then he does not intend A ∪ B either. In plain
English, if the agent prefers Holland to France as a holiday destination, but does
not intend to holiday in Holland, then he does not intend to holiday in France or
in Holland.

22Supposing that a given strategic decision problem can be translated back into an extensive
one, this definition of actions-intentions would however violate agglomerativity in most cases.
There will be in general more than one plan of action which will lead to intended outcomes. By
putting them all in the actions-intention set, their union will clearly not be a plan of action.
One should look in more detail at the question of “reconstructing” intentions for an extensive
decision problem from intentions in a strategic one. Since I work with strategic representation
from now on, I leave this issue aside.
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2.5.5. Definition. [Payoff-compatible intentions] The intention set ι is payoff-
compatible whenever for for any A,B ⊆ X, if A ∪ B ∈ ι and for all x ∈ A and
y ∈ B, x � y then A ∈ ι.

This new version of payoff-compatibility characterizes precisely the intention sets
↓ι the elements of which are among the most preferred outcomes.

2.5.6. Proposition. For any strategic decision problem G and intention set ι
which is a consistent filter, the following are equivalent.

1. ι is payoff-compatible.

2. For all x ∈↓ι and y ∈ X, x � y.

Proof. The proof is obvious from (2) to (1). From (1) to (2), let C(�) = {x ∈
X : x � y for all y ∈ X}. I show that C(�) ∈ ι. This will be enough because ι
is a consistent filter. Take A = C(�) and B = X − A. Observe that A ∪B = X
which means, that X ∈ ι. By definition of C(�), we know that x � y for all
x ∈ C(�) and y 6∈ C(�), that is, for all y ∈ B. We can thus conclude that
C(�) ∈ ι from payoff-compatibility. �

This means that, just as in extensive representations, intentions in strategic de-
cision problems can break ties between equally desirable options, thus genuinely
adding to the standard decision-theoretic apparatus.

2.6 Conclusion

This last result exemplifies well the kind of analysis I carry out in this thesis.
It highlights the effects of previously adopted intentions in practical reasoning
of rational agents, without moving away from the underlying classical notion of
instrumental rationality. In particular, it shows that one can study the effects
of intentions even in the extremely simplified environment of strategic decision
problems. Even if we assume ideal agency and leave aside intentions with counter-
factual consequences, it is insightful to introduce intentions in decision-theoretic
models.

Of course, I could have carried the analysis further using extensive decision
problems, especially by introducing endogenous uncertainties or imperfect infor-
mation. But in the coming chapter I rather move to interaction situations. We
shall see that, on the one hand, the intentions bring with them insights into the
study of coordination, and thus contribute to the general understanding of ratio-
nal interaction. Interactive situations and game theory, on the other hand, also
shed light on the theory of intentions by unveiling important issues about the
reasoning-centered commitment.



Chapter 3

Intentions and coordination in strategic
games

This chapter describes how intentions can foster coordination. More precisely, I
investigate how agents in strategic interactions can successfully coordinate their
actions by taking into account what they intend and what they know about the
others’ intentions, choices and preferences.

The bulk of the chapter (Sections 3.2 to 3.5) focuses on coordination in a
very specific type of strategic interaction, namely Hi-Lo games. Such games
provide a simple setting within which to “test” the ability of intentions to foster
coordination. What is more, these games have become a benchmark in the study
of coordination in game theory. By showing that agents can coordinate in Hi-Lo
games on the basis of their intentions, I will thus be able to situate the planning
theory better in relation to other game-theoretical accounts of coordination.

Before looking at Hi-Lo games, however, in Section 3.1 I tackle a fundamental
issue concerning the very content of intentions in interactive situations. The
difficulty is that, in such contexts, the agents’ powers are limited. What results
from an agent’s decision depends in general on what the others decide. If we
allow the agents to form intentions about any outcome, they will more often than
not have intentions that they cannot achieve on their own.

Reflections on whether agents can form such intentions lead to issues con-
cerning the volitive commitment carried by intentions and the information that
the agents involved in games have about each other. To capture these ideas I
use, in Section 3.4, 3.5 and 3.7, epistemic models for games. They provide a
natural environment within which one can unfold the intention-based account
of coordination in Hi-Lo games, in much the same fashion as game-theoretical
epistemic characterizations of solution concepts1. This sheds new light on the
Stackelberg heuristic, another explanation of coordination proposed by Colman
and Bacharach [1997].

1I briefly introduced epistemic characterizations of solution concepts in the Introduction
(Section 1.1.2).

35
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Hi-Lo games are left behind in the last section of this chapter, where I use
ideas from Bratman [1999, chap.5] to provide an intention-based account of coor-
dination that does not rest on the specific structure of Hi-Lo games. This allows
for a more general perspective on sufficient conditions for coordination in strate-
gic contexts, permitting coordination to be compared with “shared cooperative
activity.”

3.1 Intentions in strategic interactions

In single-agent contexts without uncertainty the choices of the decision maker
suffice to determine a unique outcome. In other words, the agent is able to
realize any outcome he wants or intends. In decision problems with uncertainty
the situation is not fundamentally different. The agent’s choices do not determine
a unique outcome, but rather a probability distribution on the set of outcomes.
This probability distribution, however, reflects the agent’s uncertainty about facts
that are independent of what he believes, prefers or intends. The agent’s capacity
to realize what he wants or intends is thus bounded only by his own uncertainty
and by randomness in his environment.

This crucially distinguishes single-agent decision problems from situations of
strategic interaction, or games, where the choices of all agents determine the
outcome2. What results from the decision of an individual in games depends
greatly on something he cannot control: the choices of others. This can be
captured by the following generalization of the single-agent strategic decision
problems that I introduced at the end of the previous chapter3.

3.1.1. Definition. [Strategic games] A strategic game G is a tuple 〈I, Si, X,
π,�i〉 such that :

• I is a finite set of agents.

• Si is a finite set of actions or strategies for i. A strategy profile σ ∈ Πi∈ISi
is a vector of strategies, one for each agent in I. The strategy si which i
plays in the profile σ is noted σ(i).

• X is a finite set of outcomes.

• π : Πi∈ISi → X is an outcome function that assigns to every strategy
profile σ ∈ Πi∈ISi an outcome x ∈ X. For convenience I use π(si) to
denote the set of outcomes that can result from the choice of si. Formally:
π(si) = {x : x = π(si, σj 6=i) for some σj 6=i ∈ Πj 6=iSj}.

2As I mentioned in the Introduction, this is so for games without exogenous uncertainty.
See the remarks in the footnote on page 5.

3In this thesis I leave mixed or probabilistic strategies aside. A pure strategy is just an
element of a set Si for one agent i. A mixed strategy is a probability distribution on Si.
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• �i is a reflexive, transitive and total preference relation on X.

The definition of the outcome function π captures the idea that outcomes are
determined by the choices of all agents. It does not take single strategies or plans
as argument but rather strategy profiles that is, combinations of choices4. It is
this crucial difference which makes it necessary to reconsider what it means, in
games, to have intentions to achieve outcomes.

It is a very common intuition, which also recurs frequently in philosophy of
action5, that agents can only intend what they have the power to achieve. If one
allows agents to have arbitrary outcomes-intentions in games, one quickly runs
into examples that clash with this idea.

Cinema Restaurant
Cinema together alone

Restaurant alone together

Table 3.1: A coordination game.

Consider the coordination game of Table 3.1. There are two agents, the row
and the column agent, which I call 1 and 2. They have agreed to meet but they
have forgotten where. Each agent can either go to the cinema or the restaurant.
It doesn’t matter to either of them where they meet, as long as they succeed in
coordinating their actions, that is as long as they end up together at the cinema
or together at the restaurant.

Suppose now that 1 intends to achieve (Cinema-Cinema). That is, he intends
that he and his friend choose to go to the cinema, even though he cannot settle
the matter himself. Following the intuition that agents can only form intentions
that they can realize, one would say that 1 wishes or hopes that 2 will choose the
cinema, but not that he has a genuine intention involving the choice of his friend.
In other words, if we assume that agents can only intend outcomes that they can
achieve by themselves, such intentions would have to be ruled out.

By following this line, though—restricting the set of intentions that an agent
can form in strategic games—we would turn away from an interesting aspect of
interactive intention-based practical reasoning. In a series of papers, Bratman
[1999, chap.5 to 8] argued that intentions of the form “I intend that we do A”
are the building blocks of “shared cooperative agency.” Intentions about specific
outcomes have precisely this form. In the example above, for 1 to intend (Cinema-
Cinema) is for him to intend something like “we—1 and 2—meet at the movie

4It should be clear that the single-agent strategic decision problems from the previous chapter
are particular cases of strategic games, where I contains only one agent.

5See the discussion in Bratman [1999, pp. 148-150], Baier [1970] and Velleman [1997]. The
idea is even present in Aristotle, who wrote “we choose only what we believe might be attained
through our own agency.”Nichomachean Ethics [III, 1111b, 25].
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theatre.” More generally, for agents in strategic games to form intentions about
arbitrary outcomes instead of only about their own strategies is for them to
intend that they, together with others, act in a certain way. We shall see shortly
that these intentions are at the heart of intention-based coordination in strategic
games.

Intentions of the form “I intend that we. . . ” introduce an explicit social or
even cooperative aspect to strategic reasoning. They thus seems to spur the anal-
ysis towards more cooperative scenarios6. It is important to realise, however, that
even if such intentions are carrying commitments that involve others, they are
not binding agreements on others. Nothing precludes an agent from forming an
intention that he cannot achieve by himself in a totally solipsistic manner, that is
without agreeing with those involved in the “we” to play their part. Intentions of
the form “I intend that we” are still individual intentions, even if they have a plu-
ral content. They are intentions that agents can form and hold alone. As such,
they contrast with genuine we-intentions7 and, to repeat, with genuine agree-
ments. An agent cannot reach an agreement in isolation, but he can alone form
an intention, the content of which involves action by others. Introducing such
intentions, even though it brings some obvious social aspects into the analysis,
does not turn non-cooperative scenarios into cooperative ones.

The achievement of such intention is of course seriously threatened if those
included in the “we” do not intend to play their part. But this does not mean
that the agent cannot form such an intention. This is highlighted by the fact
that some authors, chiefly Bratman [1999, chap.8] and Velleman [1997], have put
forward conditions under which an agent is justified in forming such an individual
intention with a plural content. For them, an agent should not, even though he
can, form such an intention without taking care of what the others intend. They
argue that the agent must know that the others would also form the corresponding
intention if they were to know that he has this intention. Conversely, they argue
that an agent is not justified in forming an intention to do something together
with others if he is not certain that learning about his intention is sufficient for
the others to intend to play their part.

Suppose now that the issue of whether we paint together is one that
is obviously salient to both of us. [...] I know you would settle on
this course of action if only you were confident about my appropriate
attitude. I infer that if you knew that I intend that we paint, then
you would intend that we paint, and we would then go on to paint
together. Given this prediction, I form the intention that we paint
[...]. [idem, p.155, my emphasis]

On this account, intentions of the form “I intend that we. . . ” should be
supported by a background knowledge of interdependent intentions. An agent is

6For more on cooperative games, see Myerson [1991, Sections 8-10].
7These are intentions of the form “we intend that ...”. See Searle [1995] and Tuomela [1995].
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justified in forming such an intention if he knows that the others would also adopt
the same intention, if they knew that he so intends. In the context of strategic
games, this means that an outcomes-intention that cannot be achieved by an
agent alone is legitimate whenever its bearer knows that his co-players would also
have this intention, if they knew he has it.

Mutual knowledge is the cornerstone of this account. In view of this, there
is no need to restrict the analysis to actions-intentions in strategic games, as
long as one complements it with an epistemic analysis. This is the route I take
in this chapter. I incorporate outcomes-intentions in strategic games as in Def-
inition 3.1.2, without imposing further constraints on the intention sets than
those I imposed in Chapter 2. I then show how such intentions anchor coor-
dination in strategic games, starting with the “easy” case of Hi-Lo games and
then generalizing to arbitrary strategic contexts. Along the way I introduce epis-
temic models to capture the relevant knowledge conditions that are attached to
outcome-intentions.

3.1.2. Definition. [Intentions in strategic games] Given a strategic game G, an
intention set ιi ⊆ P(X) for agent i ∈ I is a set of sets of outcomes that is:

• Internally consistent : ∅ 6∈ ιi and ιi 6= ∅

• Agglomerative: If A,B ∈ ιi, then A ∩B ∈ ιi.

• Closed under supersets : If A ∈ ιi, and A ⊆ B then B ∈ ιi.

The set A ∈ ιi such that A ⊆ B for all B ∈ ιi is denoted ↓ιi. The intention set ιi
is said to be generated by ↓ιi. An intention profile ι is a vector of intention sets,
one for each agent.

3.2 Coordination in Hi-Lo games

Hi-Lo games have become a benchmark for theories of inter-personal coordina-
tion. In these games the payoff structure counterbalances the uncertainty that
usually hampers coordination. One coordination profile is obviously better for
all players, and in experiments agents indeed massively choose it8. Standard
game-theoretical arguments, however, are not able to pinpoint this profile as the
only solution of Hi-Lo games. For that reason, most theories that claim to ac-
count for coordination start by showing that they can do it in the “easy” case of
Hi-Lo games. As I show shortly, intention-based explanation indeed meets this
benchmark.

8See Bacharach [2006, p.42-44] for references on experimental results. The presentation
in this section is heavily based on Bacharach’s extremely illuminating chapter on the “Hi-Lo
paradox.”
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Hi Lo
Hi 2, 2 0, 0
Lo 0, 0 1, 1

Table 3.2: A Hi-Lo game.

Let me first introduce Hi-Lo games in more detail. They are a particular
kind of coordination game, in which there is a strictly Pareto-optimal pure Nash
equilibrium9.

3.2.1. Definition. [Coordination Games] A coordination game is a strategic
game G such that:

• Si = Sj for all i, j ∈ I

• π(σ) �i π(σ′) for all σ such that σ(i) = σ(j) for all i, j ∈ I and σ′ such that
σ′(i) 6= σ′(j) for some i and j.

Coordination games thus have a simple structure. Just as in the simple exam-
ple of Table 3.1, one can view them as matrices where the “coordination profiles”,
the profiles where all agents play the same strategy, lie on the diagonal. As I men-
tioned, Hi-Lo games are coordination games where one coordination point, the
Hi−Hi profile in Table 3.2, is strictly Pareto-optimal10.

3.2.2. Definition. [Weak and strict Pareto optimality] Given a strategic game
G, a strategy profile σ is strictly Pareto-optimal when π(σ) �i π(σ′) for all agents
i ∈ I and profiles σ′ 6= σ. It is weakly Pareto-optimal when π(σ) �i π(σ′).

3.2.3. Definition. [Hi-Lo games] A Hi-Lo game is a coordination game in which
one of the profiles σ such that σ(i) = σ(j) for all i, j ∈ I is strictly Pareto-optimal.

The problem with Hi-Lo games is that no game-theoretic argument can single
out the Pareto-optimal profile as the only rational solution. Agents cannot be
sure, from game-theoretical reasoning alone, that their opponents will choose the
strategy that leads to this profile. To see this, observe that all strategies might
lead to coordination, and that all coordination points σ are pure Nash equilibria.

9See the Appendix to this chapter for the formal definition of Nash equilibrium and iterated
removal of dominated strategies.

10The definition of Pareto optimality I use here comes from Colman and Bacharach [1997]. It
is stronger than the standard game-theoretic notion. Myerson [1991, p.97], for instance, defines
it as follows—he uses “outcomes” for what I here call “profiles”: “An outcome of a game is
(weakly) Pareto efficient iff no other outcome would make all players better off.” One finds a
similar definition in Osborne and Rubinstein [1994, p.7]. The definition of Pareto optimality I
use states that no other outcome would make any player better off. I use this one because it
makes it easier to draw the connection with Colman & Bacharach’s work.
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That is, for all i and si 6= σ(i), we have that π(σ) �i π(si, σj 6=i). This means
that, for all agents, all strategies are compatible with playing a Nash equilibrium.
What is more, no strategy is weakly dominated.

Here lies the whole “paradox” of Hi-Lo games. Despite strong intuitions that
the only rational thing to choose in this game is Hi, and despite overwhelming
empirical evidences that agents actually do choose Hi, standard game-theoretic
arguments, in the words of Bacharach [2006, p.46], “fail to exclude” the sub-
optimal profiles from the set of rationally plausible solutions.

To account for rational coordination in Hi-Lo games is thus to give an expla-
nation of why the agents would choose Hi. There are many such explanations
in the literature, but the details of most of them are rather tangential to my
present concern. Instead of reviewing them, I briefly go over a very illuminating
classification proposed by Bacharach [2006], in which we will be able to situate
the intention-based account better.

To Bacharach, accounts of coordination in Hi-Lo games are either re-specifi-
cation theories, bounded rationality theories or revisionist theories. The first type
re-describe the Hi-Lo game in such a way that the Pareto-optimal profile becomes
the only rational one, according to standard game-theoretical arguments. That
is, re-specification theories try to show that the agents are in fact not facing the
game as specified in Table 3.2, for instance, but another game in which Hi is
the only rational choice. Along these lines, one can view coordination on Hi-Hi
as the result of pre-play signals, as in [Aumann, 1987], or of repeated plays, as
in [Aumann and Sorin, 1989].

Re-specification theories are often criticized because they, literally, play a dif-
ferent game. What they explain is not coordination in Hi-Lo per se, but rather in
some other scenario. But, the argument goes, our intuition about the rationality
of choosing Hi does not rest on any change of context. It seems as if choosing Hi
is the only right thing to do, even in “pure” Hi-Lo games.

The accounts of the second type, bounded rationality theories, do stay within
the limit of the original Hi-Lo story. To them “real” agents successfully coordinate
because they do not reason as ideal game-theoretical agents would. A good
example of such an alternative mode of reasoning is the Stackelberg heuristic
of Colman and Bacharach [1997]. To them agents coordinate because they reason
as if their opponents could read their mind. That is, they choose their strategy
under the assumption that their opponents are able to anticipate this decision,
whatever it is, and reply accordingly. If all agents reason this way one can show
that they end up playing the Pareto optimal profile in Hi-Lo games.

I shall come back to this account in greater detail later, because it turns out
to be closely related to the first intention-based account that I present. For now
what is important is that, following Bacharach [2006], agents who reason this
way are making an ungrounded assumption about their opponents’ anticipation
capacities. Indeed, they have no ground for believing that if they choose Hi
their opponent will be able to anticipate this decision. As we saw, both Hi and
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Lo are plausible choices in standard game-theoretical terms. As such, agents
who follow the Stackelberg heuristic are not “fully” rational, as least in standard
game-theoretical terms.

This type of bounded rationality account is also unsatisfying. In essence it
argues that agents manage to coordinate because of some dubious or incomplete
reasoning. But this, again, runs counter to a strong intuition about Hi-Lo games,
namely that there is nothing wrong with choosing Hi. Quite the contrary, this
seems like the only sensible thing to do, and a fortiori for agents who would
reason correctly.

The third way of accounting for coordination keeps the Hi-Lo story intact, and
does not look for reasoning mistakes or limitations. Rather, it tries to account for
coordination by revising the very notion of rational choice. This is the approach
championed, for instance, by Sugden [2003] and Bacharach [2006]. To them there
are unavoidable “team” or “group” aspects to rational choice, and in Hi-Lo games
they spur the agents toward the Hi-Hi solution.

The intention-based account that I explore in the following sections can also
be seen as revisionist. Instead of invoking teams or groups, it rests on the idea
that rational decision making for planning agents should take previously adopted
intentions into account. That is, a rational choice in a strategic game with inten-
tion is not only one that is rational in the classical game-theoretical sense, but
also one in which the agents follow the intentions they might have formed before
playing the game, and in which they take into account what they know about
each others’ intentions.

3.3 Intentions and rational expectations

We saw in the previous chapter that intentions can break ties between equally
desirable options, provided they are payoff-compatible. This can already be seen
as a vector for coordination, at the personal level. It provides agents with an
additional criterion to discriminate future courses of action. They can better
anticipate their own choices and make further decisions on that basis. By gen-
eralizing the notion of payoff-compatibility to contexts of strategic interactions,
this tie-breaking effect turns into an anchor for inter -personal coordination, at
least in Hi-Lo games.

One has, however, to be careful in defining what payoff-compatible intentions
are in strategic interaction. If we directly use the single-agent version of this
requirement, intention-based reasoning quickly runs up against standard game
theoretical rationality.

Consider, for example, the game in Table 3.3. Agents who would have payoff-
compatible intentions, in the sense of Chapter 2, would be at odds with ba-
sic game-theoretic assumptions. Recall that for an intention set to be payoff-
compatible is the same as stating that its smallest element ↓ιi has to contain only
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A B
a 0, 0 0, 7
b 7, 0 1, 1

Table 3.3: A game where parametric payoff-compatible intentions go against
standard game-theoretical reasoning.

outcomes that are most preferred. Since each agent has a unique most preferred
outcome in this game—here I directly take the profiles as outcomes—there is only
one intention set per agent that is payoff-compatible, namely the one generated
by {(b, A)} for 1 and the one generated by {(a,B)} for 2. But observe that a is
a strictly dominated strategy for the first agent, and so is A for the second. This
means that, to achieve his intention, each agent needs the other to play a strictly
dominated strategy11.

This should not come as a surprise. Payoff-compatibility of intentions is tai-
lored for single-agent contexts, where one does not base his decision on what
he expects other rational agents to do. But if we want an account of coor-
dination that does not fall into the “bounded rationality” category, in which
the agents’ reasoning violates standard game-theoretical assumptions, we have
to adjust intention-based reasoning to mutual expectations12. Rational choice
in strategic games is, in other words, a matter of maximizing expected payoffs
given what the agents expect each other to do. Any account of coordination that
builds on the traditional standard of rationality in games has to take these mutual
expectations into account.

In the parametric setting we had a relatively uncontroversial criterion for
rational choice, namely maximization of expected utility. In interactive contexts
the mutual dependencies of expectations has yielded a whole array of solution
concepts. For instance, Nash equilibrium and strong dominance each isolate a
different set Γ of rationally plausible strategy profiles. To accommodate this
plurality I make payoff-compatibility relative to solution concepts.

3.3.1. Definition. [Feasible outcomes] Given a solution concept Γ ⊆ Πi∈ISi, an
outcome x is said to be feasible according to Γ, or Γ-feasible iff there is a profile
σ ∈ Γ such that π(σ) = x.

3.3.2. Definition. [Payoff-compatible intentions - the general case] Let A∗ and
B∗ denote the sets consisting of all Γ-feasible elements of A and B, respectively.

11This is even more problematic given that these intentions are of the form “I intend that
we. . . ”—i.e. that the agents cannot realize them unilaterally. But this problem concerns the
theory of intentions more than the clash between these intentions and game-theoretic rationality.
I shall return to more intention-based criteria in a moment.

12Recall the remarks about mutual expectations in the Introduction (Section 1.1.2).
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An intention set ιi is said to be payoff-compatible whenever A ∈ ιi if A ∪ B ∈ ιi,
A∗ 6= ∅ and x �i y for all x ∈ A∗ and y ∈ B∗.

It is easy to check that if we consider “games” where there is only one agent and
where Γ is the set of most preferred outcomes, this new condition boils down to
the one I introduced in the previous chapter (Definition 2.5.5). Recall that the
agent was said to have payoff-compatible intentions when, given the fact that
he does not intend B, all the elements of which are strictly better than all the
elements of another set of outcomes A, we could conclude that he does not intend
A ∪ B either. The idea here is essentially the same, except that it is adapted
to rational expectation. An agent has payoff-compatible intentions when, given
the fact that he does not intend B, all the feasible elements of which are strictly
better than all the feasible elements, if any, of another set of outcomes A, we can
conclude that he does not intend A∪B either. In other words, if all the outcomes
that the agent can expect in a set B are strictly better than all the outcomes he
can expect in a set A, and yet he does not intend B, then he does not intend
A∪B either. Not surprisingly, we get a characterization of the payoff-compatible
intentions that is analogous to the one we saw in the previous chapter.

3.3.3. Fact. Let Γ be a solution concept and Γ�i be the set of most preferred
Γ-feasible outcomes for agent i. For all i and ιi as in Definition 3.1.2, ιi is payoff-
compatible if and only if there is a non-empty A ⊆ Γ�i such that ιi = {B| A ⊆ B}.

Proof. Essentially the same as for Fact 2.2.9, adapted to feasible sets. �

Generalized payoff-compatibility thus ensures that agents intend to realize
some of their most preferred feasible outcomes. That is, if an agent is not indif-
ferent between the outcomes he can rationally expect, his intentions “pick” some
of those he prefers most. This is exactly what happens in Hi-Lo games.

3.3.4. Corollary (Intention overlap in Hi-Lo games). For any agent i
in a Hi-Lo game, ↓ιi = {π(σ∗)}, where σ∗ is the strictly Pareto-optimal profile.

Agents with payoff-compatible intentions are thus bound to agree on what
they intend to realize in Hi-Lo games. But this only explains why planning agents
intend to realize the outcome of this profile, and not why they would actually
coordinate. To coordinate successfully on the basis of such overlapping intentions
they still need to act on them. That is, these intentions must somehow translate
into action or, in the words of Bratman [1987] be “conduct controlling.” Observe,
furthermore, that both these intentions are of the form “I intend that we achieve
the Pareto-optimal solution.” As I mentioned at the end of Section 3.1, there
are arguably cases where the agents are not justified in having such intentions,
because they lack some required information about the intentions of others. The
use of payoff-compatible intentions thus requires one to spell out more explicitly
the volitive commitment that comes with intentions and the epistemic conditions
under which Hi-Lo games are played.
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3.4 Epistemic models for games with intentions

At least since the work of Harsanyi [1967-68] and Aumann [1976], epistemic
models have been used within the epistemic programme in game theory to un-
derstand how rational agents base their choices on what they know and believe
about their opponents’ preferences, rationality and expectations13. The epistemic
characterization of the elimination of strongly dominated strategies is a classical
example of what can be shown with these epistemic models. Brandenburger and
Denkel [1987] showed that if, in an epistemic model, all agents are rational and
commonly believe that all others are rational, then they do not play a strategy
that is strictly dominated. In other words, rationality and common belief in
rationality are sufficient conditions for agents to choose strategies that are not
strictly dominated. In this section I follow a similar line: by building epistemic
models for games with intentions, I spell out sufficient conditions for coordination
with payoff-compatible intentions, and at the same time make more explicit the
background knowledge that supports individual intentions with a “we” content.

An epistemic model of a given game G is a structure that represents what the
agents might know, believe and prefer in diverse scenarios or plays of that game.
Two main types of models have been used in the literature: type spaces and
the so-called Aumann- or Kripke-structures . Both represent the possible plays
of the game as states, where each agent chooses a particular strategy and has
information about the others. Type spaces and Aumann structures differ in the
way they represent this information. The first represent the agent’s information
probabilistically, while the second use partitions or “accessibility relations”. As
noticed by Brandenburger [2007], these two modelling paradigms have given rise
to different styles of epistemic analysis. The probabilistic nature of type spaces
have naturally led towards belief -based characterizations. Aumann or Kripke
structures, on the other hand, have mostly provided knowledge-based characteri-
zations14. In what follows I use the latter, and provide a knowledge-based analysis
in which the conditions for “I intend that we” are easily spelled out.

Let me first give the formal definition of an epistemic model.

3.4.1. Definition. An epistemic model M of the game G is a tuple 〈W, f,
{∼i}∈I〉 such that:

• W is a set of states.

• Let F(X) be the set of all filters over the set of outcomes X in G. Then
f : W → Πi∈ISi × Πi∈IF(X) is a function that assigns to each w ∈ W a
pair (σ, ι) of strategy and intention profile. From convenience I write σ(w)

13For references see the footnote on page 1.
14The work of Baltag and Smets [Unpublished manuscript] and Mihalache [2007] are notable

exceptions.
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and ι(w) for the σ (alternatively the ι) such that f(w) = (σ, ι), and fi(w),
σi(w) and ιi(w) for the ith component of these (pairs or) profiles.

• ∼i in an equivalence relation on W such that if w ∼i w
′ then fi(w) = fi(w

′).
I write [w]i for {w′ : w ∼i w

′}.

A pointed model M, w is an epistemic model for the game G together with a
distinguished state w, the actual play of G.

This is essentially an extension to strategic games with intentions of the mod-
els proposed by Aumann [1994]. As I wrote above, each state w represents a
possible play of the game. At each of them the agents are making a particular
strategy choice, σi(w), and have some intentions, ιi(w). A set of states E ⊆ W
is called an event. It is the set of states where the event E takes place.

The information of each agent is represented as in Kripke models for epistemic
logic15. The accessibility relation ∼i connects a state w to all the states that i
cannot distinguish from it or, in other words, to all the states that i considers
possible at w. As just mentioned, I use here a “knowledge-based” representation,
which boils down to assuming that information is veridical, i.e. agents always
consider that the current state is possible, and strongly introspective, i.e. agents
are always aware of what they consider possible and what they do not. In technical
terms, this means that ∼i is an equivalence relation, i.e. that it is reflexive,
transitive and symmetric.

In these models it is generally assumed that i knows that E at w whenever
E takes place in all states w′ that i considers possible, i.e. whenever [w]i ⊆ E.
To paraphrase Cozic [2005, p.290], to know that an event takes place in these
models is to exclude that it might not take place. Following common practice in
the literature, I denote by Ki(E) the set of states where i knows that E takes
place. An event E is considered possible at a state w whenever there is a w′ that
i considers possible at w in which E takes place.

With this in hand, one can see more clearly the conditions that are imposed on
∼i. As already mentioned, reflexivity, transitivity and symmetry of this relation
make information in game models veridical and strongly introspective. Reflex-
ivity ensures truthfulness: if i knows that E at some state then E takes place
at that state. In formal terms, Ki(E) ⊆ E. Transitivity ensures “positive” in-
trospection: whenever an agent knows that E takes place he also knows that he
knows. Symmetry ensures “negative” introspection: if an agent does not know
that E takes place he at least knows that he does not know16.

These are classical assumptions that make K a “knowledge” operator. In the
literature as well as in the above definition, it is also assumed that agents know
their strategy choice at each state. Similarly, I assume that agents know their

15See the references in the footnote on page 2.
16In our models these two conditions boil down to Ki(Ki(E)) ⊆ Ki(E), and Ki(W −KiE) ⊆

W −KiE, where W −A is the complement of A in W .
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own intentions. If we take IiA to be the set of states where A is in the intention
set of i and si the set of states where i chooses si, that is IiA = {w : A ∈ ιi(w)}
and si = {w : σi(w) = si}, one can check that the condition “fi(w) = fi(w

′)
if w ∼i w

′” ensures that Ki(IiA) ⊆ IiA and Ki(si) ⊆ si. That is, at all the
states w′ that the agent i considers possible at a state w, he plays the same
strategy (σi(w) = σi(w

′)) and has the same intentions (ιi(w) = ιi(w
′))17. What

i might be uncertain about is the strategy choices and intentions of the other
players. In cases where w′ ∼i w if and only if σi(w) = σi(w

′), for instance, he
considers possible all combinations of actions of the other agents. But he might
be better informed about the current state, and thus not consider all choices of
others possible. Agent i might know, for instance, that j does not play strictly
dominated strategies, and thus that i does not consider the state w′ possible
because j plays such a strategy in that state.

It might be helpful at this point to look at an example. Consider again the
Hi-Lo game of Table 3.2, and assume that the set of outcomes is the set of profiles
itself. One of its possible models is depicted in Figure 3.1. It has four states,
which are in one-to-one correspondence with the strategy profiles of the game.
The players are as uninformed as they can be. At each state, they consider all
choices of their opponent possible. Agent 1, for example, considers at Hi − Hi
that 2 might play Hi as well as Lo. But 1 knows what he plays at Hi−Hi. In
all states that he considers possible, he plays Hi.

Hi-Hi Hi-Lo

M

Lo-Hi Lo-Lo

2 2

1

1

Figure 3.1: Epistemic model for the Hi-Lo game of Table 3.2. The arrows repre-
sent the relation ∼i for each player.

This model can be completed by many different assignments of intentions
to the states. It might be, for example, that at Hi − Hi both agents have
payoff-compatible intentions. As we saw in the last section, for Γ the pure Nash
equilibrium solution concept, this means that ιi(Hi−Hi) = {Hi−Hi} for both
agents. Given that the agents know what they intend, that would mean that

17These conditions are illustrated in Figures 5.1 and 5.2, on page 94 and 95.
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ι1(Hi−Lo) must also be {Hi−Hi}, and the same for 2 at Lo−Hi. But 1 could
very well have a different intention at this state. He might play Lo at Lo − Hi
because he in fact intends Lo − Lo, i.e. ι1(Lo −Hi) = {Lo − Lo}. That would
mean that at Hi−Hi agent 2 is uncertain of 1’s intention. As far as he knows,
1 might intend Hi−Hi as well as Lo− Lo.

It is worth stressing that this is just one possible completion of the set of
states Figure 3.1. There might be other models with more states, such as the
one on page 50, or other models with the same number of states but different
assignments of intentions and strategy at each states. It might be, for instance,
that in Figure 3.1 agent 1’s intentions are payoff-compatible in all states. That
is, it might be that ι1(w) = {Hi−Hi} for all states w ∈ W . In this case agent 2
knows agent 1’s intentions at Hi −Hi. In all states that 2 considers possible, 1
intends to achieve the Pareto-optimal profile.

This second completion of the set of states Figure 3.1 features a notable dis-
crepancy between what 1 intends, chooses and knows at Lo −Hi. At this state
he plays Lo even though he intends to achieve Hi−Hi. What is more, he does
not even consider it possible to achieve this intention. At Lo −Hi he does not,
in a very strong sense, act on his intention to achieve Hi−Hi.

As I hinted at the end of Section 3.3, this idea of “acting on one’s own inten-
tion” is one of the key ingredients of an intention-based account of coordination.
Thanks to epistemic models, it can be made precise.

3.4.2. Definition. [Intention-Rationality] A player i is said to be intention ra-
tional at a pointed model M, w if and only if and

π(σi(w)) ∩ ↓ιi(w) 6= ∅

The set of states where i is intention rational is noted IRi. Formally, IRi = {w : i
is intention-rational at M, w }

An agent is thus intention-rational at a state when he chooses an action by which
he can achieve at least one outcome he intends. Put as a contrapositive, what
this means is that an agent is intention-irrational at a state w when he excludes
by his own decision the achievement of his intentions. In other words, an agent
is intention-irrational when he is not doing anything to achieve what he intends.

3.5 Coordination with payoff-compatible inten-

tions

We already know that if all agents have payoff-compatible intentions in Hi-Lo
games, then their intentions will “overlap” on the Pareto-optimal profile. If, fur-
thermore, each agent is intention-rational, that is if they act on these intentions,
then they successfully coordinate.
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3.5.1. Fact. For any Hi-Lo game the following holds:

1. For any of its pointed models M, w , if both agents are intention-rational,
have payoff-compatible intentions and Γ is the pure Nash equilibrium so-
lution concept then σ(w) is the Pareto-optimal strategy profile σ∗ of that
game.

2. If σ∗ is the Pareto-optimal strategy profile of that game, then we can
construct a pointed model M, w of such that σ(w) = σ∗, all agents are
intention-rational and their intention are payoff-compatible.

Proof.

1. Let x be π(σ∗). For any agent i, we know from Fact 3.3.3 that, because
he has payoff-compatible intentions, ↓ιi(w) = {x}. Now, because i is also
intention-rational, we also know that π(σi(w)) ∩ ↓ιi 6= ∅, which is just to say
that x ∈ π(σi(w)), which means that there is a σ′ such that σ′(i) = σi(w)
and π(σ′) = x. But observe that by the very definition of Hi-Lo games,
there can be no other σ′ such that π(σ′) = x. This means that σ′ can only
be σ∗, and so we conclude that σi(w) = σ∗(i). Since we took an arbitrary
i, this is also the case for all i, and thus σ(w) = σ∗.

2. Just fix σ(w) = σ∗ and ↓ιi(w) = {π(σ∗)}, for all i.

�

Part 1 of this result is our first intention-based account of coordination.
Intention-rationality and payoff-compatible intentions are sufficient for coordi-
nation in Hi-Lo games. The second part of the result means that one can always
look at coordination on the Pareto-optimal profile from an intention-based per-
spective. That is, we can always model the agents as if they coordinate on the
basis of their intentions18.

It is important to appreciate that this result is not epistemically loaded. It
can be that agents successfully coordinate even though they consider it possible
that the others will not enact their intentions or that they do not have payoff-
consistent intentions.

18The “as if” is important here. One can always construct epistemic models for Hi-Lo games
in which the agents coordinate on the Pareto-optimal profile against all odds, so to speak. At
a state w where σ(w) is the Pareto-optimal profile, it can very well be that none of the agents
are intention-rational or have payoff-compatible intentions, and that the relations [w]i are such
that the agents are completely uncertain about what the others do and intend. Epistemic
characterizations, even of standard solution concepts, cannot rule out such cases. Coordination
can just happen from sheer luck, after all. To draw a parallel with decision theory, it might
well be that the decision maker’s choices happen to maximize expected value, even if his overall
choice behaviour is not representable by a payoff function on outcomes. The “as if” in a game-
theoretic epistemic characterization, as in a decision-theoretic representation, just means that
when coordination occurs there is a possible explanation for it using the condition stated in the
result.



50 Chapter 3. Intentions and coordination in strategic games

Hi-Hi

Hi-Lo*

Hi-Lo

M

Lo-Hi Lo-Lo

2

1
1

2

1

1

Figure 3.2: Another epistemic model for the Hi-Lo game of Table 3.2.

Look for example at the state Hi − Hi in the model of Figure 3.2. Assume
that at every state the agents have payoff-consistent intentions, except at the
additional Hi − Lo∗ state where 2 intends Lo − Lo. At Hi − Hi, agent 1 has
doubts about 2’s intentions. As far as he knows, 2 might as well be intention-
irrational or have payoff-incompatible intentions.

Fact 3.5.1 thus leaves plenty of room for cases of coordination in Hi-Lo where
the agents are uncertain about the others’ intentions. In a way, this shows how
“easy” it is to coordinate in these games. The Pareto-optimal profile leaves no
room for agents with payoff-compatible intentions to intend anything else. This
is indeed not particular to Hi-Lo games. Intention overlap in the context of
payoff-compatibility is closely related to the existence of such an outcome.

3.5.2. Fact. [Coordination and Weak Pareto-optimality] For any strategic game
G the following are equivalent.

1. There is a weakly Pareto-optimal profile σ∗.

2. There is an epistemic pointed model M, w for G such that at w all agents
have payoff-compatible intentions, taking Γ = Πi∈ISi, and

⋂
i ↓ιi 6= ∅.

Proof. From (2) to (1). Take such an epistemic model and look at any x ∈
⋂
i ↓ιi.

Assuming that Γ = Πi∈ISi, Fact 3.3.2 directly gives us that there is a profile σ
such that π(σ) = x and that for all i and all profile σ′, x �i π(σ′).

From (1) to (2), take any such π(σ∗). Any pointed model M, w built according
to Definition 5.2.1 in which ↓ιi = {π(σ∗)} for all i at w will do. �

This result shows that payoff-compatible intentions are especially suited to
drive coordination in games where the agents’ preferences converge towards a
most preferred outcome. But the reader should also appreciate that in most
cases agents will not be able to achieve these intentions by themselves. That is,
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whenever the set of unanimously preferred outcomes is “small enough”, payoff-
compatible intentions turn into intentions of the form “I intend that we reach the
outcome that we all most prefer.”

This kind of intention, as I mentioned at the end of Section 3.1, should ar-
guably be supported by some information about the intentions of others. Namely,
an agent who has intentions of the form “I intend that we. . . ” should know that
if the others—those included in the we—knew he has this intention, they would
also go on and adopt the same intention. Given that intentions are generally
taken as conduct controlling, I will assume that this last clause means “adopt the
same intention and act on it.” The formal counterpart of this condition is thus
the following.

3.5.3. Definition. [Epistemic support] The intention of i to achieve A at w is
said to be epistemically supported whenever, for all j 6= i, and all w′ ∼i w, if
w′′ ∈ (IRi ∩ IiA) for all w′′ ∼j w

′, then w′ ∈ IRj ∩ IjA.

The reader can check that this actually corresponds to the fact that i knows
that if j knows that i is intention-rational and intends to achieve A, then j is also
intention-rational and intends to achieve A.

As might be suspected, at Hi−Hi in the model of Figure 3.2 the intention of
1 to achieve Hi−Hi is not epistemically supported. Indeed, 2 knows at Hi−Lo∗
both that 1 is intention-rational and that 1 intends to achieve Hi − Hi. He
(2) does not, however, intend Hi − Hi. This means that, at Hi − Hi, agent 1
considers it possible that 2 will still not play his part in achieving Hi−Hi even
though 2 recognizes that this is what 1 intends.

Epistemic support is thus not necessary for successful coordination in Hi-Lo
games. Because of its conditional content, it is not sufficient either. Look for
example at the set of states of Figure 3.1, completed with the intentions specified
in Table 3.4. At both Hi − Hi and Hi − Lo agent 2 does not know whether 1
intends Hi−Hi. But this means that at Hi− Lo, in all states that 1 considers
possible the implication “if 2 knows that 1’s is intention-rational and intends
Hi−Hi then 2 also intends Hi−Hi” is trivially true. In other words, at Hi−Lo
agent 1’s intention to achieve Hi − Hi is epistemically supported. A similar
argument, this time because 2 is not intention-rational at Hi−Lo, shows that 2’s
intention to achieve Hi − Hi is also epistemically supported. Both agents thus
intend Hi−Hi with the required epistemic support, and yet at Hi−Lo they fail
to coordinate.

Of course, one could object that in such a case the agents do not have a
“genuine” epistemic support for their intention to Hi−Hi. In no state that they
consider possible is the antecedent of the epistemic support condition met. To
avoid such cases one can strengthen this condition.

3.5.4. Definition. [Strong epistemic support] The intention of i to achieve A
at w is strongly epistemically supported whenever, for all j 6= i, w′ ∈ IRj ∩ IjA
for all w′ ∼i w and w′′ ∈ (IRi ∩ IiA) for all w′′ ∼j w

′.
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State ↓ι1(w) ↓ι2(w)
Hi−Hi Hi−Hi Hi−Hi
Hi− Lo Hi−Hi Hi−Hi
Lo−Hi Lo− Lo Hi−Hi
Lo− Lo Lo− Lo Lo− Lo

Table 3.4: The intentions for the model in Figure 3.1.

In two-agents cases this boils down to saying that 1 knows that 2 knows that 1
is intention-rational and intends to achieve A, and that 2 has the corresponding
intention. Strongly epistemically supported intentions that Hi−Hi are sufficient
for successful coordination.

3.5.5. Fact. [Second account of intention-based coordination] For any Hi-Lo
game the following holds:

1. For any of its pointed models M, w, if all agents have strongly epistemically
supported intentions to achieve {π(σ∗)}, then σ(w) is the Pareto-optimal
strategy profile σ∗ of that game.

2. If σ∗ is the Pareto-optimal profile of that game, then we can construct
a pointed model M, w such that σ(w) = σ∗ and all agents have strongly
epistemically supported intentions that {π(σ∗)}.

Proof. The second part follows the same step as in the proof of fact 3.5.1. For
the first part, observe that it follows directly from Ki(E) ⊆ E that, at any state
w where both agents have strongly epistemically supported intentions to achieve
{σ∗}, they are intention-rational and their most precise intention is {σ∗}. This,
we know from Fact 3.5.1, ensures that σ(w) = σ∗. �

This result rests essentially on the fact that knowledge is veridical in models
for games with intentions. If 1 knows that 2 knows that 1 intends Hi − Hi
and is intention-rational, then 1 does so intend. In fact, one can bypass this
embedded knowledge condition. Mutual knowledge of intention-rationality and
payoff-compatibility is also sufficient for coordination.

3.5.6. Fact. [Third account of intention-based coordination] Let IPCi be the
set of states w of an epistemic model for games with intentions where ιi(w) is
payoff-compatible, and Γ be the set of pure Nash equilibria. Then for any Hi-Lo
game the following holds:

1. For any of its pointed model M, w , if w ∈ Ki(IRj ∩ IPCj) for all i, j ∈ I
then σ(w) is the Pareto-optimal strategy profile σ∗ of that game.
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2. If σ∗ is the Pareto-optimal profile of that game, then we can construct
a pointed model M, w such that σ(w) = σ∗ and all agents have strongly
epistemically supported intentions that {π(σ∗)}.

Proof. Again, the second part is obvious and the first is a direct consequence of
Ki(E) ⊆ E and Fact 3.5.1. �

This characterization of coordination situates more explicitly the accounts
based on payoff-compatible intentions with respect to standard game-theoretical
reasoning in strategic games. The Hi-Hi profile is a pure Nash equilibrium of that
game. Such profiles have been characterized by Aumann and Brandenburger
[1995] in terms of rationality and mutual knowledge of strategy choice. More
precisely, they have shown that at any pointed model M, w for a strategic game
with two players, if both are rational and know the strategy choice of the other,
then they play a Nash equilibrium at w. These two conditions are more or
less explicitly at work in Fact 3.5.6. First, all agents can “deduce” the other’s
strategy choice, and thus meet Aumann and Brandenburger’s mutual knowledge
requirement, from the fact that they know that the others are intention-rational
and have payoff-compatible intentions19. Second, the notion of feasibility, built-
in in payoff-compatibility, secures the rationality requirement20. Recall that, in
Section 3.3, I introduced the idea of a feasible outcome precisely to keep the
intention-based account within the bounds of standard game-theoretical reasoning
or rational expectations. Payoff-compatibility of intentions just gives the extra
push for the agents to go beyond these standard assumptions, and by the same
token to ensure coordination.

In other words, with this third characterization of coordination we can see
better how the intention-based account, with payoff-compatible intentions, falls
into the revisionist category. It preserves, on the one hand, the Hi-Lo game sce-
nario and respects standard game-theoretical reasoning. What it provides, on the
other hand, is a new criterion for rational decision, one which takes seriously the
ability of planning agents to form intentions and with it the volitive commitment
that these intentions carry. It supplements the traditional notion of instrumental
rationality with considerations regarding intentions in interactive contexts.

This intention-based account is of course “socially” oriented, in comparison
with more purely competitive ones like the Stackelberg heuristic which I present
in the next section. In two of the characterizations of coordination, the agents

19This, it should be stressed, is a direct consequence of the fact that there is only one most
preferred feasible outcome in these games. In general, knowing that an agent is intention-
rational and hasve payoff-compatible intentions is not enough for another agent to know which
strategy the first plays. This third account of coordination thus show how agents can combine
their knowledge of the others’ intentions with their knowledge of the structure of the game to
make their decision.

20It is not essential for now to go into details of what “rationality” means in Aumann &
Brandenburger’s characterization. I come back to it in Chapter 5.
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explicitly take the intentions of others into account. But, as we shall see in
Section 3.7, reasoning with payoff-compatible intentions remains a broadly indi-
vidualistic process. The intention-based account of coordination in Hi-Lo games
is thus not fully cooperative, but nor is it purely competitive either.

3.6 Stackelberg heuristic and intention-based co-

ordination

Intention-based coordination with payoff compatibility also provides an alterna-
tive to another account of coordination, which is not revisionist but rather a
bounded rationality account. This account, the Stackelberg heuristic, is a mode
of strategic reasoning proposed by Colman and Bacharach [1997]. The basic idea
is that players reason as if their deliberation was “transparent” to the others.
That is, they make their decisions under the assumption that, whatever they
decide, the others will be able to anticipate their decisions and react accordingly.

It is important to realize that this assumption is much stronger than standard
game-theoretic ones. Recall from the previous chapter that ideal game-theoretical
agents are assumed to be “intelligent”, in the sense that they can reach any con-
clusion the modeller is able to reach. If, for example, we conclude that agent
i will not play his strategy si because it is strictly dominated, then all agents
in the game can also reach this conclusion and react accordingly. But in many
games, as in Hi-Lo, the agents are not able to anticipate the others’ choices with
game-theoretical reasoning alone. If an agent chooses Hi he must do so for rea-
sons that are not, strictly speaking, game-theoretical. The assumption behind
the Stackelberg heuristic is that other agents can “see” this reason, whatever it
is. Paraphrasing Colman and Bacharach [1997, p.13], the agents reason as if the
others can read their mind, and react accordingly. Another way to look at the
Stackelberg heuristic is that agents reason as if they were not, in fact, playing a
strategic game. Rather, they think of themselves as moving first in an extensive
game with perfect information21. The others, they think, can witness this move
and reply accordingly. Put that way, the principle behind the Stackelberg heuris-
tic indeed looks like what Bacharach [2006, p.50-51] calls “magical thinking”. On
game-theoretical grounds alone, the players are absolutely not justified in reason-
ing that way. They have no reason to think that the others can anticipate all
their decisions.

Formally, to define the Stackelberg solution of a strategic game G with two
agents we need a few preliminary notions.

3.6.1. Definition. [Best response and Stackelberg Payoffs]

21The reference to H. F. von Stackelberg (1905-1946) comes from this idea. A Stackelberg
model is a model where two firms choose sequentially the output price of some good. See
Osborne [2004, p.187-189] for more details.
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• Given a strategy si of i in a strategic game G with two agents, a best response
for j, noted βj(si), is a strategy sj such that for all s′j, π(sj, si) �j π(s′j, si).

• A Stackelberg outcome h1(s1) of player 1 from the strategy s1 a x such
that x = π(s1, β2(s1)), and similarly for player 2: h2(s2) is any x such that
x = π(β1(s2), s2).

In other words, a Stackelberg outcome of agent i’s strategy si is an outcome
he would get if his opponent were to play a best response against si. This is
indeed what would happen if i were to choose si first in an extensive game of
perfect information. The Stackelberg solution of a game, if it exists, is a profile
where both players achieve a most preferred Stackelberg outcome.

3.6.2. Definition. [Stackelberg solubility and Stackelberg solutions] Let shi be
a strategy of i that yields a most preferred Stackelberg outcome. A two-agent
strategic game G is Stackelberg soluble if there is a σh such that σh(i) = shi for
all i ∈ I. σh is called a Stackelberg solution of that game.

It is easy to see that whenever a Stackelberg solution exists it is a Nash
equilibrium. Colman and Bacharach have restricted their analysis to strategic
games where, for both players i ∈ I, there is a unique shi . Under this assumption,
the next fact follows straightforwardly.

3.6.3. Fact. [Colman and Bacharach, 1997] In every 2 player game with more
than one Nash equilibrium, σ is the Stackelberg solution iff it is the strictly
Pareto-optimal outcome.

As a direct corollary we obtain that Hi − Hi is also the Stackelberg solution
in two-player Hi-Lo games, and so that the Stackelberg heuristic accounts for
coordination in these contexts.

This result rests heavily on the simple structure of Hi-Lo games. Just as with
payoff-compatible intentions, if all agents reason with the Stackelberg heuristic
the Pareto-optimal profile is all that is left for them to choose. This similarity is
not a coincidence. In games like Hi-Lo, where there is a unique most preferred
Stackelberg outcome for each agent, the existence of a Stackelberg solution ensures
overlap of intentions on it, and vice-versa.

3.6.4. Fact. The following are equivalent for any two-agent strategic game G
with intentions in which shi is unique, ιi is payoff-compatible for both agents, and
Γ is the set of pure Nash equilibria.

• G is Stackelberg soluble with σh.

•
⋂
i∈I ↓ιi = {π(σh)}.
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Proof. G is Stackelberg soluble with σh iff σh is a Nash equilibrium, thus iff π(σh)
is a Γ-feasible outcome. Now, observe that because shi is unique for both i there
can be no other Nash equilibrium σ′ = (s′1, s

′
2) such that π(σ′) �i π(σh). Indeed,

if there were such a σ′, in virtue of it being a pure Nash equilibrium we would
have (s′1, β(s′1)) = (β(s′2), s

′
2). But this would contradict our assumption, since sh1

is the unique strategy that yields the most preferred Stackelberg outcome, and
similarly for player 2. This means that G is Stackelberg soluble with σh iff π(σh)
is the unique most preferred feasible outcome, both for 1 and 2. This, in turn,
by Fact 3.3.3, happens iff ιi = {π(σh)} for both players. �

The Stackelberg heuristic and the payoff-compatibility condition thus yield
the same conclusions about what the agents should choose or intend in games
like Hi-Lo. But they are doing so on different bases. In the case of Stackelberg
reasoning the agents reason under the assumption that the others will anticipate
their choices. Even though it serves well in Hi-Lo games, this assumption is never-
theless not grounded in any game-theoretic reasons. To repeat, agents reasoning
with the Stackelberg heuristic are not “fully” rational. They are making assump-
tions that ideal game-theoretic agents would not make. With payoff-compatible
intentions, on the other hand, the agents are fully intention-rational, not in the
technical sense of Definition 3.4.2, but in the sense that they are taking seri-
ously their capacity to form an intention. Here, this capacity is constrained by
a policy of intending the outcomes that they prefer the most among those they
can rationally expect. The result above thus shows that, in games where there
is a unique most preferred Stackelberg outcome for each agent, one can account
for coordination by revising in a natural way what “rational” means, instead of
attributing ungrounded assumptions to the agents.

3.7 Limits of payoff-compatibility of intentions

The Stackelberg heuristic and the three accounts of coordination that I presented
in Section 3.5 rest heavily on the simple structure of Hi-Lo games. As we saw
in Fact 3.5.2, payoff-compatibility of intention ensures coordination when there
is a weakly Pareto-optimal profile. Fact 3.6.4 tells us that is no different for the
Stackelberg heuristic.

This dependence on the existence of Pareto-optimal profiles is a double-edged
sword for both accounts. It provides, on the one hand, a simple explanation of
coordination in games like Hi-Lo. But in games where the preferences of the
agents over the set of feasible outcomes diverge, payoff-compatible intention can
lead the agents out of the feasible set. Look for example at the Battle of the
Sexes , displayed in Figure 3.5. Here two agents, whom Luce and Raiffa [1957,
p.90-91] described as husband and wife, have to decide whether they will go to a
boxing match or to the ballet. They both prefer being together than being alone,
but the husband prefers the boxing match while his wife prefers the ballet.
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Boxing Ballet
Boxing (2,1) (0,0)
Ballet (0,0) (1,2)

Table 3.5: The Battle of the Sexes.

3.7.1. Fact. [Non-coordination in the Battle of the Sexe] Take the game of Fig-
ure 3.2 and assume that X = Πi∈ISi. Then for any pointed model M, w of that
game if both agents have payoff-compatible intentions and are intention-rational
at w then σ(w) = Boxing − ballet.

Proof. The only intention sets that are payoff-compatible are generated by
{Boxing−Boxing} for 1 and {Ballet−Ballet} for 2. Agent 1 can thus only be
intention-rational at states w where σ(w) is either Boxing−Boxing or Boxing−
Ballet. Similarly, 2 can only be intention-rational at states w where σ(w) is either
Ballet−Ballet or Boxing−Ballet. They can thus only be intention-rational with
payoff-compatible intentions together at a state w if σ(w) = Boxing−Ballet. �

To put it the other way around, this result shows that there cannot be
intention-based coordination in the Battle of the Sexes if intentions are payoff-
compatible. This is clearly due to the individualistic character of payoff-compati-
bility. It makes each agent intend to realise one or more of his best feasible
outcomes, irrespective of what the others’ intentions are. Intuitively, a more
general account of intention-based coordination, one that does not rest on the
specific structure of Hi-Lo games, will have to make the intentions of the agents
more dependent on one another.

3.8 A general account of intention-based coor-

dination

Mutual dependence of each others’ intentions is the cornerstone of Bratman’s
sufficient conditions for “shared cooperative activity” [Bratman, 1999, p.105]. For
my present purposes it is not necessary to go into his account in detail. Intention-
based coordination is not necessarily a shared cooperative activity, as we shall
see, but some of these requirements provide obvious anchors for coordination.

To start with, Bratman has emphasized the importance of meshing sub-plans .
For him, “individual sub-plans concerning our [action] mesh just in case there is
some way we could [do this action] that would not violate either of our sub-plans
but would, rather, involve successful execution of those sub-plans.”[Bratman,
1999, p.99] This is, in part, what goes wrong in the Battle of the Sexes. The agents
have similar intentions, to achieve their most preferred feasible outcome, but their
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sub-plans—here their most precise intention—do not mesh. One excludes the
other. Formally, the meshing sub-plans condition can be spelled out as follows22:

3.8.1. Definition. [Meshing sub-plans] The sub-plans of i ∈ G ⊆ I mesh at a
state w whenever

⋂
i∈G ↓ιi(w) 6= ∅.

In other words, the sub-plans of agents in a group G mesh whenever they can
be achieved together. Now, another important aspect of Bratman’s account of
shared cooperative activity is, indeed, that the agents involved have the intention
to play their part.

3.8.2. Definition. [Intention agreement on A] The intentions of i ∈ G ⊆ I
agree on A ⊆ X at w if A ∈ ιi(w) iff A ∈ ιj(w) for all i, j ∈ G.

Agents who agree on the intention to achieve A and whose sub-plans mesh already
have “convergent” intentions. I shall write that these are “effectively” convergent
whenever they do suffice to enforce an outcome in A.

3.8.3. Definition. [Effective intention convergence] The intentions of the agents
i ∈ G ⊆ I are effectively convergent at a state w in a given game model M if
π(σ(w)) ∈ A whenever all i ∈ G ⊆ I agree on A and their sub-plans mesh at w.

Effective intention-convergence is just another way to say that agents who agree
on achieving A by way of meshing sub-plans can do so. For an arbitrary strategic
game G, if C is the set of coordination points then agents whose intentions effec-
tively converge on C are in principle able to coordinate. In other words, if the
agents agree on the intention to coordinate, have meshing sub-plans to realise this
intention and are effectively convergent, then we are sure they can coordinate.
Before showing that precisely, it is important to see that intention-agreement,
meshing sub-plans and effective convergence are all independent conditions.

3.8.4. Fact. [Independence (I)] There is a game G and a pointed model M, w
of it where all agents have meshing sub-plans and their intentions agree on A,
but they are not effectively convergent.

Proof. Take any game where each agent has two strategies and where X =
Πi∈ISi. Take a model of it as in Figure 3.3, where W = Πi∈ISi. Fix A = {σ2}
and ↓ιi(σ1) = A for all i ∈ I. Then at σ1 the intentions of all agents agree on A,
their sub-plans mesh but they are not effectively convergent. �

3.8.5. Fact. [Independence (II)] There is a game G and a pointed model M, w
of it where all the intentions are effectively convergent, the agents have meshing
sub-plans but they do not agree on A.

22The idea of meshing sub-plans is of course more fit for extensive games, where one can
make explicit the various plans of actions that each agent intends. The one I propose here is a
transposition of this idea to the simpler structure of strategic games.
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σ1 σ2

σ4σ3

M

2 2

1

1

Figure 3.3: The model for the independence proofs.

Proof. Take the same set of states as in the previous proof. For one i, fix
↓ιi(σ1) = W and ↓ιj(σ1) = A for the other. We get that at σ1 all agents have
meshing sub-plans but they do not agree on A. The intentions then trivially
satisfy effective convergence. �

3.8.6. Fact. [Independence (III)] There is a game G and a pointed model M, w
of it where all the intentions are effectively convergent, they agree on A but their
sub-plan do not mesh.

Proof. Take the same game and set of states as in the previous proof, except that
now take A to be {σ1, σ4}. For one i, fix ↓ιi(σ1) = {σ4} and fix ↓ιj(σ1) = {σ1}
for the other. Then the intentions of all agents agree on A but their sub-plans do
not mesh. Again, this means that they trivially satisfy effective convergence. �

Taken together, meshing sub-plans, intention agreement and effective convergence
are indeed sufficient for coordination.

3.8.7. Fact. [Intention-based coordination - the general case] Let G be a game
let C ⊂ Πi∈ISi be the non-empty set of coordination profiles.

• For any epistemic model M for G and any w ∈ W , if at w all agents’
intentions agree on π(C) = {x : ∃σ ∈ C such that π(σ) = x}, have meshing
sub-plans and are effectively convergent, then σ(w) ∈ C.

• If σ 6∈ C then we can construct a model M and a state w such that σ(w) = σ
and the above condition fails at w.

Proof. The first part is just unpacking the definitions. The models needed for
the second part are easily adapted from the proofs of Facts 3.8.4, 3.8.5 and 3.8.6.
�
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Fact 3.8.7 encompasses the three that we saw in Section 3.5. An easy check reveals
that in each case the agents agree on the outcome of the Pareto-optimal profile,
have meshing sub-plans and are effectively convergent. But, as one may have
noticed, this does not ensure that the agents will enact their intentions. Mesh-
ing sub-plans, intention-agreement and effective convergence are independent of
intention-rationality.

3.8.8. Fact. [Independence (IV)] There is a game G and a pointed model M, w
where the intentions of all agents agree on A, are effectively convergent and are
sub-plans meshing but some agents are intention irrational.

Proof. Take the same game and set of states as in the independence proofs
above. Fix A as {σ1, σ4} and set the intentions of all i ∈ I to ↓ιi(σ1) = {σ4}. We
get that the intentions of all agents agree on A, are effectively convergent and are
sub-plans meshing but none of the agents is intention-rational. �

This general account of coordination does not require the agent to know any-
thing about the others’ intentions. In fact, they do not even have to know that
the three conditions hold or that they are at a coordination point. Coordination
can thus occur in strategic game unbeknown to the agents. We already knew that
from Fact 3.5.1, the first account of coordination in Hi-Lo games. This general,
non-epistemic account of coordination shows that this can be the case for any
game.

Just as I did in the case of Hi-Lo games, one can use Fact 3.8.7 as a starting
point and strengthen it with various epistemic conditions. For example, mutual
knowledge of intention agreement, meshing sub-plans and effective convergence
are clearly enough to ensure coordination. Along these lines, it is interesting to
see how “weak” are the sufficient conditions for coordination stated in Fact 3.8.7,
in comparison with the conditions for shared cooperative activity that [Bratman,
1999, p.105] proposes. Among other things, he requires common knowledge of
various conditions on intentions. This is a much stronger requirement than any
epistemic conditions that we have encountered so far23. This does not mean
that Bratman’s condition are too strong, but rather that most cases of success-
ful intention-based coordination in strategic games are not “shared cooperative
activity” in his sense. In other words, intentions are indeed “all-purpose means”
[Bratman, 2006a, p.275] for coordination. They can foster coordination not only
in full-blown, cooperative, shared agency, but also in a very wide array of contexts.

23Once again it is not necessary to go into details of the definition of common knowledge.
The interested reader can consult Fagin et al. [1995] and Aumann [1999] and van Ditmarsch
et al. [2007] for details.
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3.9 Conclusion

In this chapter we have seen that the theory of intention can legitimately claim
a place among the theories that account for coordination in games. Using epis-
temic models, we have seen that intentions and mutual knowledge of intentions
can foster coordination in the benchmark case of Hi-Lo games. Intention-based
coordination, however, is not constrained to this particular class of strategic inter-
action. As we saw in the last section, one can easily spell out general conditions
under which intentions anchor coordination in strategic games.

It should be observed that this last account of coordination can diverge from
“standard” game-theoretical solutions. In Fact 3.8.7 I defined coordination pro-
files abstractly, without worrying whether these could be game-theoretically ra-
tionalized. But one could clearly impose further restrictions on the coordination
points, as I did with payoff-compatibility, in order to make them fit other ratio-
nality requirements.

Along these lines, it is worth recalling Sen’s [2005] famous claim that inten-
tions (or more generally commitments) are of interest mainly when they do not
coincide with standard rationality. The results of section 3.5 show that intentions
can be of interest even when they coincide with classical notions of rationality.
The general account of Section 3.7, however, allows for cases that are in line with
Sen’s view, that is cases where intentions do not coincide with standard rational-
ity. I have not looked at such cases in detail here, but they surely deserve more
scrutiny.

There is also much more to be explored on the connection between intention-
based coordination and other accounts in the game-theoretic literature. Here
I have only examined one such, the Stackelberg Heuristic, because of its obvi-
ous connection with payoff-compatibility of intentions, but the intention-based
account should be compared with other proposals such as Bacharach’s [2006]
group-oriented reasoning or the more classically correlated beliefs of Aumann
[1987]. The latter is especially interesting, in view of the general account of co-
ordination of Section 3.7. It would be illuminating to see whether knowledge
of intention agreement, for example, could serve as a basis for correlated belief
systems in strategic games.

This, of course, would lead towards a more belief-based analysis, which would
surely deepen our understanding of intention-based reasoning in games. But the
results we have so far already show that intentions, even in a knowledge-based
perspective, can foster coordination in games. This is in itself valuable both
from the point of view of the theory of intentions and from a game-theoretical
perspective. In the next chapter I turn to another important role of intentions in
practical reasoning, the reasoning-centered commitment.
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3.10 Appendix - Solution concepts

As mentioned in the Section 1.1.2 of the introduction, in game theory there are
many ways to understand instrumental rationality. Different solution concepts
encapsulate these different understandings. Here I present the formal definitions
for the two that I use in the body of the text. For further explanations of them
see Myerson [1991].

3.10.1. Definition. [Dominated strategy] In a given strategic game G, a strat-
egy si ∈ Si is strictly dominated by s′i ∈ Si iff (s′i, σj 6=i) �i (si, σj 6=i) for all σj 6=i.
It is weakly dominated by s′i iff (s′i, σj 6=i) �i (si, σj 6=i) for all σj 6=i but there is one
σ′j 6=i such that (s′i, σj 6=i) �i (si, σj 6=i).

3.10.2. Definition. [Removal of strictly dominated strategies] The game SD(G)
which results after elimination of strictly dominated strategies from G is defined
as follows24:

• SD(Si) = {si : si is not strictly dominated by some other s′i ∈ Si}.

• XSD = {x ∈ X : x = π(si) for some si ∈ SD(Si)}.

• πSD is the restriction of π to SD(Si).

• �SD
i is the restriction of �i to XSD.

The game SDω(G) which results after iterated removal from G of strictly domi-
nated strategies is inductively defined as follows: SDω(G) =

⋂
n<ω SD

n(G) where
SD0(G) = G and SDn+1(G) = SDn(G).

The “rational” strategies according to this solution concept are those which
survive iterated removal, i.e. those si ∈ SDω(Si). For an in-depth investigation
of the formal properties of this solution concept, and many others, see Apt [2007].

3.10.3. Definition. [Pure Nash equilibrium] A strategy profile σ is a pure Nash
equilibrium iff (σ(i), σj 6=i) �i (s′i, σj 6=i) for all i ∈ I and s′i ∈ Si.

A Nash equilibrium is a profile where all players play their best response, see
Section 3.6, given the strategy choices of the others. Osborne and Rubinstein
[1994] offer a formal review of the properties of Nash equilibria. See also Myerson
[1991].

24Removal of weakly dominated strategies is more tricky to define. See Myerson [1991, p.90].



Chapter 4

Intentions and transformations of
strategic games

We saw in the previous chapter how intentions, by committing agents to action,
can anchor coordination. Planning agents can better anticipate their own choices
as well as those of others. From this point of view intentions play a passive
but nevertheless crucial role in practical reasoning. They are facts that planning
agents use as the basis for their deliberations. But the planning theory has it
that intentions also play a more active part in deliberation. They shape decision
problems. To quote Bratman [1987, p.33, emphasis in original]:

My prior intentions and plans [...] pose problems for deliberation,
thereby establishing standards for relevance for options considered in
deliberation. And they constrain solutions to these problems, pro-
viding a filter of admissibility for options. They narrow the scope of
the deliberation to a limited set of options. And they help answer
a question that tends to remain unasked within traditional decision
theory, namely: where do decision problems come from?

Intentions influence the way agents look at decision problems by imposing a “stan-
dard for relevance” and a “filter of admissibility” on options. The latter comes
from the consistency requirements I presented in the Introduction (Section 1.2).
It should be possible to choose an option without contradicting what the agent
already intends. Intentions rule out such contradictory options, hence the idea of
a filter of admissibility. The standard of relevance stems, on the other hand, from
the norm of means-end coherence. Intentions spur practical reasoning towards
deliberation on means. They “pose problems for further deliberations,” where
“relevant” options are those that foster intended goals.

This influence on the very content of decision problems, the reasoning-centered
commitment of intentions, is the subject of this chapter. Section 4.1 is about
ruling out options that are inadmissible in view of previously adopted intentions,
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and Section 4.2 is about means-end coherence and its standard for relevance. In
Section 4.3 I connect these two ways to transform decision problems.

I am mainly interested in reasoning-centered commitment for agents in situa-
tions of strategic interaction. The benefits of the reasoning-centered commitment
for (resource-bounded) individuals have been made explicit by Bratman et al.
[1991], Pollack [1992] and Horty and Pollack [2001]. Briefly, intentions simplify
and focus deliberation, avoiding strenuous pondering. Very little attention has
been paid, however, to reasoning-centered commitment in the context of games.
As we shall see, interactive contexts unveil a new dimension to this function of
intentions. It is no longer a matter of “simply” fitting one’s options with what one
intends. The presence of other planning agents forces one to take their intentions
into account, even in games where there is at first sight no incentive to do so.
Bringing in reasoning-centered commitment at the level of games thus poses new
problems about rational interaction. To paraphrase Bratman [1987, p.33], these
problems are generally left unaddressed in both game theory and the theory of
intentions.

In what follows I use the same definitions of strategic games and intention
sets as in the previous chapter1. I now examine how intentions can transform
strategic games and their various components, namely strategies, outcomes and
preferences. I do not, however, look at how these transformations affect what
agents might know about each other in games. That is, I do not look at trans-
formations of epistemic models for games, which will have to wait until Chapter
5, where logical methods are introduced that facilitate the analysis.

4.1 Ruling out options

As just mentioned, by “ruling out options” I mean imposing the filter of ad-
missibility which stems from the consistency requirements on intentions. In
single-agent decision problems, to rule out options is just to remove inadmis-
sible strategies, viz., those that do not yield any intended outcome. One can
define admissibility in many ways in multi-agent contexts, though. An agent i
may or may not take into account the fact that he is interacting with other plan-
ning agents while filtering his set of options. He may also be more or less willing
to run the risk of not reaching an intended outcome. Let me therefore start with
a generic definition of filtering, to which I attach different notions of admissibility
and compare their respective behaviour.

4.1.1. Definition. [Cleaned strategy set] The cleaned version cl(Si) of a strat-
egy set Si is defined as:

cl(Si) = {si | si is admissible for deliberation for i}
1Strategic games and intentions sets are defined on page 36 and 33, respectively.
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4.1.2. Definition. [Cleaning of strategic games] The cleaned version of a game
G with intention profile ι is the tuple cl(G) = 〈I,Xcl, {cl(Si),�cl

i }i∈I , πcl〉 such
that:

• Xcl = π(Πi∈Icl(Si)) = {x |x = π(σ) for some σ ∈ Πi∈Icl(Si)}.

• �cl
i is the restriction of �i to Xcl.

• πcl is π with the restricted domain Πi∈Icl(Si).

The cleaned version ιcli of the intention set ιi for agent i is the filter generated by
↓ιi ∩Xcl.

The cleaned version of a strategic game is thus the game that results from looking
only at admissible strategy profiles, whatever “admissible” means. The outcome
set is reduced accordingly, i.e. to the outcomes that can result from admissible
profiles. The preference relations are, in turn, reduced to the cleaned outcome
set.

In this definition, cleaning also modifies the intentions of the agents. The
cleaned ιcli is the restriction of ιi to the outcomes that survive the cleaning. The
idea here is that the agents adapt their intentions to the new decision problem
they face after cleaning, in a very down-to-earth manner. They simply give up on
achieving the outcomes that are no longer achievable in the reduced game. The
consequences of such a way of adapting one’s intentions depend heavily on how
admissibility is defined.

Intention rationality, introduced in the previous chapter for epistemic models,
provides a natural starting point to think about this notion2. Recall that an agent
is intention-rational when he plays a strategy si which could yield at least some
outcome in his intention set ιi. Conversely, the choice of si is intention-irrational
if it makes all intended outcomes impossible. This idea is easily conveyed from
strategy choices to admissibility of strategies.

4.1.3. Definition. [Individualistic admissibility] A strategy si of agent i is indi-
vidualistically admissible with respect to his intention set ιi when π(si)∩ ↓ιi 6= ∅.

In other words, a strategy is individualistically admissible for deliberation when
choosing it could yield at least one outcome x ∈↓ιi. I call this notion “individu-
alistic” because it is related only to the agent’s own intentions3.

2I show in Chapter 5 that there is in fact a formal connection between intention-rationality
and cleaning with “altruistic admissibility”, which I introduce shortly. The second is so to
speak the dynamic expression of the first and, vice-versa, the first is the static counterpart of
the second.

3I should stress that the claim here is not that cleaning with individualistic admissibility
exactly captures what Bratman meant by “filter of admissibility” in the quote at the beginning
of the chapter. The operation I study here, as well as those that follow in this chapter, are at
best intended to represent various dimensions of the reasoning-centered commitment.
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Even in the single agent case, cleaning with individualistic admissibility has
interesting consequences when it is coupled with the intention adaptation mecha-
nism from Definition 4.1.2. Observe that, in general, not all outcomes need to be
realizable by a strategy profile in a given strategic game. There can be outcomes
x ∈ X for which there is no profile σ such that π(σ) = x. But the intention sets
are defined only with respect to the set of outcomes X. Nothing thus precludes
an agent i from having some unrealizable outcomes in his most precise intention
↓ιi4. In that case, cleaning with individualistic admissibility brings the agent in
tune with reality, so to speak. It eliminates the unrealizable outcomes from his
intention set.

It can happen, however, that an agent i has only unrealizable outcomes in ↓ιi.
In that case cleaning leaves no admissible strategy to choose. Cleaning thus
means that agents can be confronted with the unrealistic character of their own
intentions. Intuitively, in these cases the agents would have to revise their inten-
tions. I do not, however, venture into the realm of intention revision here. The
issue returns in a different guise in Chapter 5, where I use a minimal revision
policy. For the present I will rather focus on “ex ante” conditions on intended
outcomes.

For single agent decision problems, these conditions are easy to pinpoint.
Cleaning makes a decision problem empty if and only if the agent does not intend
any realizable outcomes. But in interactive situations, agents who clean individ-
ualistically can, by ruling out some of their own strategies, cause the outcomes
that others intend to be unrealizable. Consider, for example, Table 4.1, with the
numbers in the cells representing which outcomes are in ↓ιi for the corresponding
agent. Here the only admissible strategy for agent 2 is t1, because he intends
the outcome of (s2, t1). But observe that this very outcome gets ruled out by 1’s
cleaning. From his point of view, s2 is not an admissible strategy, because he
only intends to achieve the outcome of (s1, t1). After one round of cleaning, there
is thus no way in which agent 2 can achieve his original intention. Following the
intention adaptation rule from Definition 4.1.1, he thus ends up with an empty
↓ιcli , which means that his intention set is not internally consistent.

G t1 t2
s1 1
s2 2

cl(G) t1
s1 1

Table 4.1: A game which an empty cleaning.

4I ignored the possibility of unrealizable outcomes in the previous chapter because most
of the intention sets contained, by definition, realizable outcomes. The reference to feasible
outcome in the definition of payoff-compatible intentions, for example, ensured realizability.
Similarly, effective intention convergence had realizability built in.
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Cleaning, in such cases, makes the game5 empty because, after sufficient
rounds, there is an agent i such that cl(Si) = ∅. In the example above, the
game becomes empty at the second step of cleaning, because after the first step
agent 2 ends up with internally inconsistent intentions. This holds in general.

4.1.4. Fact. [Empty cleaning and internally inconsistent intention sets] For all
strategic game G and intention profile ι the following are equivalent with indi-
vidualistic cleaning.

• cl(G) is empty.

• There is an agent i such that for all x ∈↓ιi, x is not realizable in G.

Proof. Let X∗ be the set of realizable outcomes in G. Observe that for any
agents i,

⋃
si∈Si π(si) = X∗. The equivalence follows directly from this fact:

cl(G) is empty iff there is a i such that cl(Si) = ∅, which by definition happens
iff for all si ∈ Si we have π(si)∩ ιi = ∅. This, by the above observation, happens
iff no x ∈ ιi is in X∗. �

This means that, as in the example above, if all agents have intentions that
are realizable in the original game then cleaning needs at least two steps to reach
an empty point. In fact, in most cases cleaning needs more than one step to reach
a sub-game which does not reduce any further. Of course, not all strategic games
become empty after cleaning. To take another example, consider Table 4.2. In
the original game, the leftmost table, only 2 has an individualistically inadmis-
sible strategy, namely t2. But by ruling out this strategy he also excludes the
only outcome that makes s2 admissible for agent 1. Adapting his intention set
accordingly, 1 no longer considers s2 admissible after the first round of cleaning
(the centre matrix). One more cleaning round thus results in the rightmost table,
where all strategies are admissible.

G t1 t2
s1 1, 2
s2 1

cl(G) t1
s1 1, 2
s2

cl(cl(G)) t1
s1 1, 2

Table 4.2: A game where individualistic cleaning stops after two steps.

The last examples feature two crucial aspects of cleaning with individualistic
admissibility, namely the notion of a fixed-point and the possibility of empty

5Here I slightly abuse the terminology, because by definition for a structure to be a strategic
game all Si should be non-empty.
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cleaning. To study these phenomena in full generality, let me introduce some
more notation6.

4.1.5. Definition. [Iterated cleaning] Given a strategic game G, let clk(G) =
〈I,Xclk , {clk(Si),�clk

i }i∈I , πcl
k〉 be the strategic game that results after k itera-

tions of the cleaning of G. That is, cl1(G) = cl(G) and clk+1(G) = cl(clk(G)).
The smallest7 cleaning fixed-point cl#(G) of G is defined as clk(G) for the smallest
k such that clk(G) = clk+1(G).

Obviously, every game has a unique cleaning fixed point with individualistic
cleaning. This follows directly from the fact that, first, I work with finite games,
second, that the cleaned version of a strategic game is always one of its sub-games,
and finally, that each game has a unique cleaned version8. More interestingly,
games have non-empty cleaning fixed points whenever the agents’ intentions are
sufficiently entangled.

4.1.6. Definition. [Cleaning core] The cleaning core of a strategic game G is
the set of strategy profile S∗ inductively defined as follows, with πS

n
(si) = π(si) ∩

{π(σ′) : σ′ ∈ Sn}.

• S0 = Πi∈ISi.

• Sn+1 = Sn − {σ : there is an i such that πS
n
(σ(i))∩ ↓ιi = ∅}.

• S∗ =
⋂
n≤ω S

n.

From the perspective of each agent, the cleaning core is a set of strategies
S∗i ⊆ Si that are very tightly connected to what the other agents intend. For
each strategy si and profile σ in the cleaning core such that σ(i) = si, there
is at least one agent j for whom strategy σ(j) is admissible, by looking only at
what can result from the profiles in the core. Furthermore, it follows from this
definition that there has to be at least one of these σ that yields an outcome
that i himself intends. Unsurprisingly, S∗ is not empty for a given strategic game
precisely when this game has a non-empty cleaning fixed point.

6The process of iteration that I define here is quite similar in structure to the one of iterated
elimination of dominated strategies (see Chapter 3, Appendix and van Benthem [2003]). I
do not investigate the connection between the two processes. For example it might be that
iterated elimination of dominated strategies could be reproduced using the cleaning operation
and a notion of admissibility which is sensitive to preferences. I do, however, look more carefully
at how the two operations interact in Chapter 5, Section 5.3.3.

7In most of what follows I will ignore the “smallest” and only write about the fixed point.
8This observation, as well as many others in this chapter, are direct consequences of the

underlying mathematical properties of cleaning and what I later call clustering. As pointed out
by Apt [2007], monotonicity of these two operations ensures, for instance, the existence of a
fixed point. See Fact 5.3.16 in Chapter 5 for the definition of monotonicity. My focus here is
rather on the existence of non-empty fixed points.
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4.1.7. Fact. [Non-empty fixed points] For any strategic game G and intention
profile ι, the following are equivalent.

1. S∗ 6= ∅.

2. cl#(G) is not empty.

Proof. By Definition 4.1.6, (1) is the same as saying that we can find a σ ∈ S∗

such that for all i, πS
∗
(σ(i))∩ ↓ιi 6= ∅. I show by induction that π(Sk) = Xclk ,

for all k. This is enough to show the equivalence, for then we know that Xcl#∩ ↓
ιi 6= ∅, which we know is the same as cl#(G) being non-empty, from Fact 4.1.4.
The basic case of the induction, k = 0, is trivial. For the induction step, assume
the claim is proved for k. We have that x ∈ π(Sk+1) iff there is a σ ∈ Sk+1 such
that π(σ) = x. This in turns happens iff πS

k
(σ(i)) ∩ ιi 6= ∅, for all i. But by our

inductive hypothesis this is just to say that π(σ(i)) ∩Xclk ∩ ιi 6= ∅, which is just
the definition of x being in Xx+1. �

Fact 4.1.7 tells us that the individualistic character of admissibility must be com-
pensated by an interlocking web of intentions and strategies if cleaning is not
to make the game empty. Indeed, each strategy in the cleaning core is tightly
connected with what all agents intend. Or, conversely, intentions which yield
a non-empty cleaning core closely fit the admissible strategies of all agents. By
intending outcomes that are realizable in the cleaning core, an agent somehow
acknowledges that he interacts with other planning agents who, like him, clean
inadmissible options from their strategy set9.This can be appreciated even better
by considering an alternative form of admissibility, which I call altruistic.

4.1.8. Definition. [Altruistic admissibility] A strategy si of agent i is altruis-
tically admissible with respect to his intention set ιi when there is a j ∈ I such
that π(si)∩ ↓ιj 6= ∅.

Following this alternative criterion, a strategy of agent i is admissible whenever
it can yield an outcome that some agent, not necessarily i, intends. Agents here
clean their strategy sets with an explicit concern for their co-players. This turns
out to be enough to prevent empty cleanings, because it can no longer happen that
agents make some outcomes intended by others unrealizable. After one round of
cleaning all strategies are altruistically admissible.

4.1.9. Fact. [Fixed point for altruistic admissibility] For G an arbitrary strategic
game, cl#(G) = cl(G) for cleaning with altruistic admissibility.

9In the absence of an epistemic analysis of non-empty cleaning, this claim is bound to remain
vague, hence my use of “somehow”. Intuitively, however, it seems quite clear that for agents
to acknowledge or to take into account the intentions of other they would have to have some
information, i.e. knowledge or beliefs, about them. This is precisely what an epistemic analysis
could provide.
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Proof. I show that cl(cl(G)) = cl(G). Given the definition of the cleaning
operation, it is enough to show that cl(cl(Si)) = cl(Si) for all i. It should be
clear that cl(cl(Si)) ⊆ cl(Si). It remains to show the converse. So assume that
si ∈ cl(Si). Since cleaning is done with altruistic admissibility, this means that
there is a σ such that σ(i) = si and a j ∈ I such that π(σ) ∈↓ιj. But then σ(i′) ∈
cl(Si′) for all i′ ∈ I, and so σ ∈ Πi∈Icl(Si). This means that π(σ) ∈ Xcl, which in
turns implies that πcl(σ) ∈↓ιclj . We thus know that there is a σ ∈ Πi∈Icl(Si) such
that σ(i) = si and a j such that πcl(σ) ∈↓ιclj , which means that si ∈ cl(cl(Si)).
�

4.1.10. Fact. [Non-empty cleaning with altruistic admissibility] For any strate-
gic game G and intention profile ι, the following are equivalent for cleaning with
altruistic admissibility.

• For all i, there is a realizable x ∈↓ιi.

• cl#(G) is not empty.

Proof. There is a realizable x ∈ ιi for all i iff for all i there is a σ such that
π(σ) ∈ ↓ιi. But this is this same as to say that for all j there is a strategy sj
such that σ(j) = sj and an i such that π(σ) ∈↓ιi which, by Facts 4.1.7 and 4.1.9,
means that cl#(G) is not empty. �

This shows even more clearly how crucial it is for agents to take the others’
intentions into account when ruling out options in strategic games. If, on the
one hand, agents rule out options without taking care of what the others intend,
they run the risk of ending up with no strategy at all, unless their intentions are
already attuned to those of their co-players. If, on the other hand, their intentions
do not fit so well with those of others, then they should at least take heed of what
the others intend when ruling out options.

As I mentioned at the beginning of this section, there are many other ways to
define admissibility. Here I have looked at two variants in which the agents care
to a different extent about the intentions of others. In both cases a strategy is ad-
missible if in some scenario, maybe only one, it yields an intended outcome. But
if a huge number of scenarios are compatible with a single choice of strategy, the
agent might be more careful in assessing admissibility. He might, for instance,
only consider admissible strategies which yield intended outcomes in a major-
ity of cases. I do not investigate here what cleaning would look like with such a
criterion. Rather, I now move to the second aspect of reasoning-centered commit-
ment, namely the standard of relevance that stems from intentions. In Chapter
5 I return to (altruistic) cleaning, but this time to study how it transforms the
information that agents have about each other in strategic games.
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4.2 Grouping redundant options

Intentions impose a standard for relevance of options because planning agents
are under rational pressure to form intentions about means to achieve what they
intend. Some options might not be considered relevant simply because they are
no means to achieve one’s intentions. This is what I have studied in the last
section. But even among the admissible options, there might be differences that
are not relevant with respect to achieving one’s end. In other words, some options
might just be redundant in terms of the agent’s intentions. Look for example at
the game in Table 4.3, again with the numbers 1 and 2 in the cells referring to
the outcomes that are in ↓ ι1 and ↓ ι2. Observe that agent 1 gets an intended
outcome in the exact same circumstances by choosing s1 or s2. In both cases,
he obtains an intended outcome if 2 chooses t1 or t3, but not if 2 chooses t2.
If 1 looks at his options as ways to satisfy his intentions, there is no significant

t1 t2 t3
s1 1, 2 2 1
s2 1 2 1
s3 1 2

Table 4.3: A game with two means-redundant strategies for agent 1.

difference between s1 and s2. In view of choosing a means, strategies s1 and s2

are redundant. He could just as well treat them as one way to achieve what he
intends, thus discarding irrelevant details. The following notion of redundancy
embodies such a standard of relevance.

4.2.1. Definition. [Means-redundancy] Two strategies s1 and s2 in Si are means-
redundant, noted s1 ≈ s2, whenever π(s1, σj 6=i) ∈↓ιi iff π(s2, σj 6=i) ∈↓ιi for all
combinations of actions of other agents σj 6=i ∈ Πj 6=iSj.

Means-redundant options are thus options which yield intended outcomes in
exactly the same circumstances. Options that are not means-redundant, on the
other hand, are genuinely distinct means to achieve what one intends. They
are different ways to meet the means-end coherence requirement. This idea is
naturally captured by the fact that ≈ is an equivalence relation. It partitions the
set of strategies Si into subsets [si]

G
≈ = {s′i ∈ Si|s′i ≈ si}, each of which represents a

distinct means for agent i to achieve what he intends. The clustering of redundant
options thus gives a “means-oriented” perspective on decision problems.

But to make a decision from this means-oriented perspective, the agents need
to evaluate these means, i.e., to assess which one they prefer, and form expec-
tations about how the others will evaluate theirs. Here I use the underlying
preference ordering on outcomes, by assuming that each agent “picks” according
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to some criterion one strategy per means [si]
G
≈, and collects these picked strategies

to form his new strategy set. The idea here is that agents might still acknowledge
differences between two strategies, even though these differences are not relevant
from a means-oriented point of view. But by picking inside clusters of strategies,
planning agents give priority to decision on means. They first sort out their op-
tions with respect to what they intend. Only then, among the options that are
equivalent means, do they invoke other discriminating criteria. In other words,
the focus on means lexicographically precedes any other decision rules.

A lot of different criteria might drive this picking. Rational expectations and
preferences are obvious candidates, but these are not the only ones10. To keep the
analysis as general as possible I use the following abstract definition of picking
functions.

4.2.2. Definition. [Picking function] Given a strategic game G, a function θi :
P(Si) → Si such that θi(S) ∈ S for all S ⊆ Si is called i’s picking function. A
profile of picking functions Θ is a combination of such θi, one for each agent i ∈ I.

These functions thus return, for each set of strategies—and in particular each
equivalence class [si]≈—the strategy that the agents picks in that set. I define
them over the whole power set of strategies, instead of over the sets [si]

G
≈ because

it makes the technical details much simpler in what follows. As mentioned, one
can constrain these functions in various ways, to encode different picking criteria.
These lead to different prunings of strategy sets.

4.2.3. Definition. [Pruned Strategy set] The pruned version pr(Si) of a strat-
egy set Si, with respect to an intention set ιi and a picking function θi is defined
as:

pr(Si) = {θ([si]G≈) : si ∈ Si}

For cleaning, admissibility provided the criterion for transforming each agent’s
strategy set, and from there I defined the corresponding transformation of strate-
gic games. The situation is entirely similar here, except that the transformation
of the strategy set proceeds in two steps. First, the agents group their options
into different means to achieve what they intend. They then pick one option per
means, according to whatever criterion θi encodes. The strategic games which
result from this two-step transformation are defined in exactly the same fashion
as those which result from cleaning.

4.2.4. Definition. [Pruning of strategic games] The pruned version of a strate-
gic game G, from the perspective of an intention profile ι and of a profile of
picking function Θ is the tuple pr(G) = 〈I,Xpr, {pr(Si),�pr

i }i∈I , πpr〉 such that:

10To push the investigation further in that direction one could look at the work of Jehiel
and Samet [2003] or in the literature on social choice and preference or judgment aggregation,
for example in the classical works of Arrow [1970] and Sen [1970]. For further references on
judgment aggregation see List [2007].
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• Xpr = π(Πi∈Ipr(Si)).

• �pr
i is the restriction of �i to Xpr.

• πpr is π with the restricted domain Πi∈Ipr(Si).

The pruned version ιpri of an intention set ιi is the filter generated by ↓ιi ∩Xpr.

This definition once again features the idea that agents should adapt their
intentions in the process of pruning. They abandon achieving the outcomes that
are no longer realizable. In the case of cleaning this opened the possibility for
agents to end up with internally inconsistent intentions, and as a consequence for
strategic games to have empty cleaned fixed points. The situation is similar in
the case of pruning. It can happen that agents end up with internally inconsistent
intentions after a few rounds of pruning.

Consider for example the leftmost matrix in Table 4.4, and suppose that
θ1({s1, s2}) = s2 and θ1({s2, s3}) = s2 for agent 1 and θ2({t1, t2}) = t2 and
θ2({t2, t3}) = t2 for agent 2. The picking criterion of each agent removes all the
intended outcomes of the other, leaving them with empty intention sets after one
step of pruning. No more pruning can reduce the matrix on the right of Table 4.4.
It is the pruning fixed point of G.

G t1 t2 t3
s1 1, 2 2
s2 1
s3

pr(G) t2 t3
s2

s3

pr(pr(G)) t2
s2

Table 4.4: A game in which pruning removes all intended outcomes.

4.2.5. Definition. [Iterated pruning] Given a strategic game G, let prk(G) be
the strategic game that results after k iterations of the pruning of G. That is,
pr0(G) = G and prk+1(G) = pr(prk(G)). The pruning fixed point pr#(G) of G is
defined as prk(G) for the smallest k such that prk(G) = prk+1(G).

The pruning fixed point in the above table has two interesting features which
generalize to arbitrary strategic games. Observe first that even though both
agents have internally inconsistent intentions in pr#(G), this does not lead to an
empty game. Pruning, in fact, never make strategic games empty.

4.2.6. Fact. [Non-empty pruning] For all strategic game G and agent i ∈ I,
pr#(Si) 6= ∅.
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Proof. This is shown by induction on prk(G). The basic case is trivial. For
the induction step, observe that the picking function θi is defined for the whole

power set of Si. This means, given the inductive hypothesis, that θi([si]
prk(G)
≈ ) is

well-defined and in [si]
prk(G) for any si ∈ prk(Si), which is enough to show that

prk+1(Si) is also not empty. �

For any game G, as in the example above, it is also worth noting that there
is no means-redundancy at the pruning fixed point pr#(G). All options are gen-
uinely different from the means-oriented perspective. This is indeed what being

a fixed point means. For all agents i, all sets [si]
pr#(G)
≈ are singletons and so

θi([si]
pr#(G)
≈ ) = si. There is no way to reduce the strategy sets further.

For cleaning with individualistic admissibility, the existence of a non-empty
fixed point rests on a tight connection between the agents’ intentions. The situ-
ation is similar here. The existence of pruning fixed points where all agents have
consistent intentions depends on whether they intend “safe” outcomes.

4.2.7. Definition. [Safety for pruning] Given a strategic game G, an intention
profile ι and a profile of picking functions Θ, the outcome x = π(σ) is:

• Safe for pruning at stage 1 iff for all agents i, θi([σ(i)]) = σ(i).

• Safe for pruning at stage n + 1 whenever it is safe for pruning at stage n
and for all agents i, θi([σ(i)]pk

n(G)) = σ(i).

• Safe for pruning when it is safe for pruning at all stages n.

The picking functions θi are the cornerstones of this inductive definition. Safe
outcomes are those which the function retains, whatever happens in the process
of pruning. It should thus not come as a surprise that intending safe outcomes
is necessary and sufficient for an agent to keep his intention set consistent in the
process of pruning.

4.2.8. Fact. [Intention-consistency at pr#(G)] For any strategic game G, inten-
tion profile ι and profile of picking function Θ, the following are equivalent for all
i ∈ I.

1. ↓ιpr
#

i 6= ∅

2. There is a π(σ) ∈↓ιi safe for pruning in G.

Proof. From (1) to (2). Take any x ∈↓ιpr
#

i . By definition we know that there is a
σ ∈ Πi∈Ipr

#(Si) such that π(σ) = x. But this happens iff σ ∈ Πi∈Ipr
k(Si) for all

k, and so that θi([σ(i)]
prk(G)
≈ ) = σ(i) also for all k, which in turns means that x is

safe for pruning in G. From (2) to (1), take any such π(σ) ∈↓ιi. I will show that
π(σ) ∈ Xprk for all k. The basic case is trivial, so assume that π(σ) ∈ Xprk . We
know by definition that π(σ) is safe for pruning at k, which gives automatically
that π(σ) ∈ Xprk+1

. �
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If pruning is not to lead the agents into internally inconsistent intentions, they
are required to take the others’ intentions and picking criteria into account11.
Indeed, the notion of safe outcome for an agent i crucially involves both the
intentions and the picking function of all agents in a given strategic game. A
quick check reveals that in single-agent cases pruning never makes the intention
set of the agent internally inconsistent, as long as the agent has realizable inten-
tions. This shows, once again, that reasoning-centered commitment really gains
an interactive character in situations of strategic interaction.

Another way to appreciate this fact is to compare the result of pruning a
given game with different picking functions. Consider for example the game
in Table 4.5. Assume that there is a one-to-one correspondence between pro-
files and outcomes, and that the agents have the following intentions : ↓ ι1 =
{(s1, t1), (s2, t1)} and ↓ι2 = {(s1, t2), (s2, t2)}. Agent 1 has two ways to prune

G t1 t2
s1 (1,2) (0,0)
s2 (1,0) (0,2)

Table 4.5: A game with a better pruning for agent 1.

his options, because s1 ≈ s2. Either θ1([s1]) = s1 or θ′1([s1]) = s2. Agent 2,
on the other hand, has no means-redundant strategy. The games resulting from
pruning with the picking functions of agent 1 are displayed in Table 4.6. Clearly,

pr(G) t2 t3
θ([s1]) (1,2) (0,0)

pr′(G) t2 t3
θ′([s1]) (0, 0) (0,2)

Table 4.6: The two prunings of Table 4.5.

by picking according to θ′1 agent 1 does not take 2’s preferences into account. He
can rationally expect 2 to choose t2 in the game pruned with θ′1, from which he
becomes strictly worse off than in the game pruned by θ1.

This shows that the result of pruning can be made dependent not only on the
agents’ intentions, but also on their preferences and rationality. As we saw in
Fact 4.2.8, the pruning operation is not in itself responsive to these characteris-
tics12. To avoid empty fixed points, the agents’ intentions must make up for this.

11The considerations about knowledge of intentions that I made in the footnote on page 69
apply with even greater force here. The epistemic analysis of non-empty pruning would have
to take into account not only the agents’ information about each other’s intentions, but also
about their picking criteria.

12To put it in terms I used for cleaning, I defined here an “individualistic” pruning. A more
altruistic pruning would have to take not only strategies but also interdependence of picking
functions into account.
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The last example shows that the picking criterion is also of great importance here.
To be sure, there is a lot to be said about how various constraints on the

picking functions would embody the responsiveness to others’ intentions, prefer-
ences and rationality13. I do not, however, go in that direction here. My goal was
rather to point to the fact that pruning, just like cleaning, is quite sensitive to
the interactive aspects of strategic games. When transforming their strategy sets
agents should take into account that they interact with other planning agents,
that is agents who also fit their intentions sets according to what they intend.
As we shall now see, this sensitivity to others has to be even more acute when
pruning and cleaning can be combined.

4.3 Grouping and ruling out options

The full picture of reasoning-centered commitment of intentions certainly requires
one not only to look at how pruning and cleaning transform strategic games, by
also at how they interact with one another. To keep things relatively simple,
I look at this interaction in terms of sequential applications of these operations.
That this, I look at what happens when agents first perform one of the operations,
then the other, and so on.

The first thing to notice is that cleaning and pruning do not in general com-
mute. Table 4.7 is a counterexample, again with the elements of ↓ιi indicated
by the numbers in the cells. If we fix θ2([t1]) = t1, after one round of pruning
we obtain the centre matrix pr(G). This is in turn reduced to the rightmost
matrix after one more round of cleaning. But observe that cl(G) = G and thus
that pr(cl(G)) = pr(G) 6= cl(pr(G)). Interestingly, in this game individualistic
and altruistic admissibility give the same result: pruning does not commute with
either type of cleaning.

G t1 t2
s1 1
s2 1, 2 1, 2

pr(G) t1
s1

s2 1, 2

cl(pr(G)) t1
s2 1, 2

Table 4.7: Counter-example to commutativity.

It should also be clear that sequences of pruning and cleaning can make strate-
gic games empty, even when altruistic admissibility drives cleaning. The reason

13Observe, for instance, that in the last example both feasible outcomes after the two possible
prunings are also feasible in the original game. This suggests, as I mentioned earlier (footnote
on page 68), a connection between “dominated” picking functions such as θ′1, on the one hand,
and more standard game-theoretical solution concepts on the other. But observe that the
connection is rather loose. Even though agent 1 is strictly worse off with the feasible outcome
he gets after pruning with θ′1, this outcome is not part of a dominated strategy in the original
game, not even a weakly dominated one.
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is that pruning can by itself make the intention sets of agents internally incon-
sistent. Once this stage is reached, one more round of cleaning makes the game
empty, whatever notion of admissibility is running in the background. This would
happen in the example of Table 4.4. One further round of cleaning eliminates all
strategies for both agents.

This interaction between cleaning14 and pruning really creates new possibil-
ities for empty fixed points. Neither the existence of a cleaning core nor of safe
outcomes is sufficient to preserve consistency of intentions. For the first case,
look again at the game in Table 4.4. It has a cleaning core, namely the four
combinations of s1 and s2 with t1 and t2. But, as we saw, pruning can make
the intentions of all agents internally inconsistent in that game. For the second
case, look at the game in Table 4.1. Here all outcomes are safe for pruning, but
cleaning quickly makes this game empty.

Not even a combination of the two criteria ensures non-emptiness. Consider
the game in Table 4.8, where θi([s1]

G
≈) = s2. The game reached after one round of

pruning is the pruning fixed point, which means that the outcomes of both (s2, t1)
and (s2, t2) are safe for this operation. These two profiles are also in the cleaning
core, as in fact are the two others. But by alternating the two operations, we
reach the rightmost game, where agent 1 has internally inconsistent intentions.

G t1 t2
s1 1, 2
s2 1 2

pr(G) t1 t2
s2 1 2

cl(pr(G)) t2
s2 2

Table 4.8: A game where the combination of the two operations makes the game
empty.

In all these examples, the alternation of cleaning and clustering has a unique
fixed point15. But this need not be so, at least when cleaning is done with individ-
ualistic admissibility. Consider the game in Table 4.9, and assume that the picking
function of agent 1 satisfies the following: θ1({s1, s2}) = s2, θ1({s1, s2, s3}) = s1

and θ1({s2, s3}) = s2.
If we start by cleaning this game, only t3 is removed. This makes all three

strategies of agent 1 means-redundant in cl(G). According to 1’s picking function,
only s1 remains in pr(cl(Si)), which makes t1 inadmissible for agent 2. One more
round of cleaning thus makes this game empty.

Things are different, however, if we start by pruning instead of cleaning. Only
agent 1 reduces his strategy set in this case, by picking s2 in {s1, s2}. This makes
both t2 and t3 inadmissible, leaving only t1 in cl(pr(S2)). In this reduced game,

14For the remainder of the section I consider individualistic admissibility only. I return to
altruistic admissibility in Chapter 5.

15Observe that this is even the case in the counterexample to commutativity (Table 4.7).
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G t1 t2 t3
s1 1 2
s2 1, 2
s3 1 1

Table 4.9: A game with two different fixed-points.

cl(G) t1 t2
s1 1 2
s2 1, 2
s3 1

pr(cl(G)) t1 t2
s1 1 2

cl(pr(cl(G))) t2
s1 2

Table 4.10: The route to the first (empty) fixed point of the game in Table 4.9.

the centre matrix in Table 4.11, s2 and s3 is means-redundant for 1, among which
he picks s2, leading to a non-empty fixed point.

pr(G) t1 t2 t3
s2 1, 2
s3 1 1

cl(pr(G)) t1
s2 1, 2
s3 1

pr(cl(pr(G))) t2
s2 1, 2

Table 4.11: The second fixed point of the game in Table 4.9.

If we ignore redundant transformations, all sequences of cleaning and pruning
reach a fixed point in a finite number of steps, for every finite strategic games16.
The example above reveals, however, that some games do not have a unique fixed
point, but many different ones.

4.3.1. Definition. [Iterated transformation] Given a strategic game G, let t(G)
be either pr(G) or cl(G). A sequence of transformation of length k is any tk(G)
for k ≥ 0, where t1(G) = t(G) and tk+1(G) = t(tk(G)). A sequence of transfor-
mation tk(G) is a transformation fixed point whenever both cl(tk(G)) = tk(G)
and pr(tk(G)) = tk(G).

As we saw in Table 4.8, ensuring a non-empty fixed point is not just a matter
of looking at the intersection of the cleaning core with the set of profiles yielding
outcomes that are safe for pruning. The problem is that these two notions do not
take account of the possible alternation of pruning and cleaning. The following,
stronger notion of safety ensures the existence of non-empty fixed points.

16The reference to Apt [2007], and the considerations in the footnote on page 68 are also
important here.
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4.3.2. Definition. [Safety for iterated transformations] The outcome x of pro-
file σ ∈ Πi∈ISi is:

• Safe for iterated transformations at stage 1 whenever, for all i ∈ I:

1. π(σ(i))∩ ↓ ιi 6= ∅.
2. θi[σ(i)]G≈ = σ(i).

• Safe for iterated transformations at stage n + 1 whenever it is safe for
iterated transformation at stage n and for all i ∈ I:

1. πt
n(G)(σ(i))∩ ↓ ιt

n(G)
i 6= ∅.

2. θi[σ(i)]
tn(G)
≈ = σ(i).

• Safe for iterated transformations whenever it is safe for transformation at
all n.

4.3.3. Fact. [Safety for transformation and non-empty fixed points] For any
strategic game G, intention profile ι and profile of consistent picking function Θ,
if π(σ) is safe for transformation in G then for all fixed points t#(G), σ ∈ Πit

#(Si).

Proof. This is shown by induction on k for an arbitrary fixed point tk(Si). The
proof is a direct application of Definition 4.3.2. �

The presence of safe outcomes is thus sufficient to ensure that a game has no
empty fixed point. In fact it ensures something stronger, namely that all fixed
points have a non-empty intersection. But precisely because of that, it does not
entail that any game which has no empty fixed point contains safe outcomes. If
it can be shown that all games have a unique, non-empty fixed point, which is
the case in all the examples considered above, then we would know that safety
for transformation exactly captures non-emptiness. It remains, however, open to
me whether this is the case or not.

Interestingly, the converse of Fact 4.3.3 also holds, if we impose the following
constraint on picking functions.

4.3.4. Definition. [Consistent picking functions] A picking function θi is con-
sistent if θi(X) = si whenever θi(Y ) = si, X ⊆ Y and si ∈ X.

A good example of a consistent picking function is one which always picks the
maximal element in some fixed ranking, for example the preference relation17.
If s1 is the maximal element among all strategies in X then, provided that the
ranking is kept constant, s1 stays the maximal element in all the subsets in which
it appears.

17I draw this condition from Sen’s [2002] “property α”, who uses it in a decision-theoretic
context as a constraint on consistency of choices.
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4.3.5. Fact. [Non-empty fixed points and safe outcomes] For any strategic game
G, intention profile ι and profile of consistent picking function Θ, if σ ∈ Πit

#(Si)
for all fixed points t#(G), then π(σ) is safe for transformation in G.

Proof. I show by “backward” induction that π(σ) is safe for transformation
at any k for all sequences tk(G). For the basic case, take k to be the length
of the longest, non-redundant fixed point of G. I show that π(σ) is safe for
transformation at stage k for all sequences of that length. Observe that by the
choice of k all tk(G) are fixed points. We thus know by assumption that σ ∈
Πi∈It

k(Si). But then it must be safe for transformation at stage k. If clause (1)
was violated at one of these, say t′k(G), then we would have cl(t′k(G)) 6= t′k(G),
against the fact that t′k(G) is a fixed point. By the same reasoning we know that
clause (2) cannot be violated either. Furthermore, by the fact that t′k+1(G) =
t′k(G), we know that it is safe for transformation at all stages l > k.
For the induction step, take any 0 ≤ n < k and assume that for all sequences
tn+1(G) of length n+ 1, π(σ) is safe for transformation at stage n+ 1. Take any
tn(G). By our induction hypothesis, that π(σ) is safe for transformation at both
cl(tn(G)) and pr(tn(G)). This secures clause (2) of Definition 4.3.2, and also gives
us that σ ∈ Πi∈It

n(Si). Now, because it is safe for transformation in cl(tn(G)),

we know that πcl(t
n(G))(σ(i)) ∩ ↓ ιcl(t

n(G))
i 6= ∅ for all i. But since πcl(t

n(G))(σ(i)) ⊆
πt

n(G)(σ(i)), and the same for the intention set, we know that πt
n(G)(σ(i)) ∩ ↓

ι
tn(G)
i 6= ∅ for all i. For condition (2), we also know that θi[σ(i)]

cl(tn(G))
≈ = σ(i)

for all i from the fact that π(σ) is safe for transformation at stage n + 1. By
Lemma 4.3.6 (below) and the assumption that θi is consistent for all i, we can

conclude that θi[σ(i)]
tn(G)
≈ = σ(i), which completes the proof because we took an

arbitrary tn(G). �

4.3.6. Lemma. For any game strategic game G and intention set ιi and strategy
si ∈ cl(Si), [si]

G
≈ ⊆ [si]

cl(G)
≈ .

Proof. Take any s′i ∈ [si]
G
≈. Since si ∈ cl(Si), we know that there is a σj 6=i such

that π(si, σj 6=i) ∈ ↓ιi. But because s′i ≈ si, it must also be that π(s′i, σj 6=i) ∈ ↓ιi,
and so that s′i ∈ cl(Si). Now, observe that {σ ∈ Πi∈Icl(Si) : σ(i) = si} ⊆ {σ ∈
Si : σ(i) = si}, and the same for s′i. But then, because s′i ≈ si, it must also be

that s′i ∈ [si]
cl(G)
≈ . �

From the last two Facts we obtain, as a direct corollary, that if all players
intend safe outcomes then no fixed-point is empty, and we can “track” safe out-
comes in the agents’ original intentions by looking at those they keep intending
in all fixed-points.

4.3.7. Corollary. For any strategic game G, intention profile ι and profile of
consistent picking function Θ, the following are equivalent.
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1. For all i there is a π(σ) in ↓ιi that is safe for transformation in G.

2. π(σ) ∈↓ιt
#(G)
i for all fixed-points t#(G).

The existence of empty transformation fixed points once again shows the im-
portance of taking each others’ intention into account while simplifying decision
problems. To be sure, the pruning and cleaning do commute when there is only
one agent.

4.3.8. Fact. pr(cl(G)) = cl(pr(G)) for any strategic game G with only one
agent, intention set ιi and picking function θi.

Proof. This is a direct consequence of the following lemma18.

4.3.9. Lemma. For any strategic game G and intention set ιi, if si 6∈ cl(Si) with
individualistic admissibility then θi([si]

G
≈)pr(G) 6∈ cl(pr(G)). The converse also

holds for all strategic games G with one agent.

For the first part, assume that si 6∈ cl(Si). This means that for all profiles,
π(si)∩ ↓ιi = ∅. This means, in turn, that π(s′i)∩ ↓ιi = ∅ for all s′i such that
s′i ∈ [si]

G
≈. So, whatever is the value of θi([si]

G
≈), we know that πpr(G)(θi([si])) ∩

ι
pr(G)
i = ∅, and so that θi([si]

G
≈)pr(G) 6∈ cl(pr(G). The second part follows the same

line, this time using the fact that in single agent cases, π(si) is a singleton. �

4.4 Conclusion

The considerations at the end the last section reflect the overall concern of this
chapter. In genuine strategic situations the reasoning-centered commitment of
intention takes on a crucial interactive dimension. We saw in particular how
important it is for agents who rule out inadmissible options and group redundant
alternatives to take into account the fact that they interact with other agents
who similarly transform their decision problems. If they fail to take the others
into account, there might simply be no more options for them to decide.

To stress the matter a little more, it is worth recalling that when there is only
one decision maker, neither cleaning nor pruning and not even a combination of
the two can eliminate all options in a decision problem, if the agent has realizable
intentions to start with. What is more, in all these cases a single application of
these transformations is enough to reach a fixed point, and as we have just seen,
the order of these two transformations is not important. In other words, the
interesting complications that we faced in this chapter genuinely stemmed from
the interaction of planning agents.

18The matrix in Table 4.7 shows that the “furthermore” really only holds for single-agent
strategic games.
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This would become even more clear by supplementing the analysis of this
chapter with an epistemic dimension. Intuitively, agents can only take care of
the intentions and picking criteria of others if they know what these are. As we
saw in the previous chapter, this is precisely the kind of claim that can be given
a formal treatment using epistemic models. In the next chapter I take a step
in that direction, by looking at how epistemic models of games with intentions
evolve in the process of cleaning. This will, however, only be a first step since, for
instance, I do not look at pruning. But putting together interactive information
and cleaning of decision problems will unveil yet another dimension of intention-
based practical reasoning, in particular new “epistemically laden” admissibility
criteria. What is more, the “logical” methods that I use allow for an explicit
representation of practical reasoning in games with intentions, something which
has so far been much discussed but still left implicit.

I should also stress once again that looking at intention revision is another way
to cope with the fact that transformation of decision problems can lead to empty
games. I did not look at intention revision here, because it would have lead us too
far along a tangent to reasoning-centered commitment. Its full-fledged analysis
requires one to draw from the theory of belief revision—as e.g. in Rott [2001]—as
well as from the in depth analysis of Bratman [1987, chap.5] and van der Hoek
et al. [2007]. But the considerations in this chapter could also be used as inputs
to such a theory of intention revision. Intentions which cannot become internally
inconsistent after some game transformations are obviously good things to adopt
in the need of revision. In other words, the conditions that I isolated in this
chapter could arguably be turned into “fall back” ones, thus contributing to the
understanding of intention revision.



Chapter 5

Logics for practical reasoning with
intentions

In the previous chapters I used formal models of rational interaction to deepen
our understanding of three important facets of practical reasoning with intentions:
the reasoning-centered and volitive commitments of intentions, the information
in games and the rationality of the agents. In this chapter I use dynamic epis-
temic logic to combine these aspects into a unified theory of practical reasoning of
planning agents in interactive situations. This will give us a better understanding
of how the information about intentions, preferences and mutual knowledge be-
comes involved in practical reasoning, and also how it changes in the course of this
process. Looking at these games with intentions through the lenses of logic also
provides a concrete representation of practical reasoning. Such formal languages
come with well-known proof systems, in which inferences involving intentions,
knowledge, preferences and actions are actually worked out.

To get us acquainted with the logical “toolbox” that I use throughout the
chapter, in Section 5.1 I look at simple preference structures. I then turn to
epistemic models for games with intentions (Section 5.2). As we shall see, these
models express themselves naturally through logical languages, and they have a
lot to say about the relation between intention, information, and rational agency.
In Section 5.3 dynamic epistemic logic comes into play in order to capture trans-
formations of game models. I show that it unveils natural epistemic variants of
the cleaning operation, that it allows for a more systematic study of intention
overlap and of conditions under which cleaning is “enabled”.

5.1 Preliminaries: modal logic for preferences

All the decision problems I have studied so far included a representation of the
agents’ preferences. They were described in very similar terms and they shared
some common properties. In this section I highlight these properties and, at the
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same time, deploy most of the logical machinery that I use in this chapter.

The study of preferences from a logical point of view, the so-called “preference
logic”, has a long history in philosophy (see e.g. von Wright [1963] and Hansson
[2001]) and computer science (see e.g. Boutilier [1994] and Halpern [1997]). The
logic I present here has been developed by Johan van Benthem, Patrick Girard,
Sieuwert van Otterloo and myself during recent years. The reader can consult
[van Benthem et al., 2005; van Benthem et al., Forthcoming] for more details.

5.1.1 Preference models and language

All the logical languages I use in this chapter have been devised to talk about
classes of structures, generally classes of relational frames1. These are simply sets
of states interconnected by a number of relations. The extensive and strategic
decision problems of Chapter 2, the strategic games and the epistemic models of
Chapter 3 can all be seen as relational frames. To study the features of preferences
in abstraction from their representations into some particular games or decision
problems is just to look at the preference component of these frames.

5.1.1. Definition. [Preference frames] A preference frame F is a pair 〈W,�〉
where:

• W is a non-empty set of states,

• � is a reflexive and transitive relation, i.e. a “preorder”, over W . Its strict
subrelation, noted �, is defined as w � w′ iff w � w′ but w′ 6� w.

The relation w � w′ should be read “w is at least as good as w′.” In all
the models of the previous chapters this relation was assumed to be reflexive,
transitive and, most of the time, total. The relation of strict preference � is
the irreflexive and transitive sub-relation of �. The reader can check that these
properties indeed follow from the definition of �. If w � w′, we say that w is
strictly preferred to w′.

Adopting a logical point of view on preference frames—in fact, on any class of
relational frames—means talking about them in terms of some formal language.
In this chapter I use propositional modal languages , which are essentially propo-
sitional Boolean languages supplemented with modal operators, in order to talk
about the properties of the relation. The language for preference frames is defined
as follows.

1I borrow this terminology, like almost all the definitions and techniques used in this section,
from Blackburn et al. [2001].
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5.1.2. Definition. [Preference language] Given a set of atomic proposition prop,
the language LP is inductively defined as follows2.

φ ::= p | φ ∧ φ | ¬φ | ♦≤φ | ♦<φ | Eφ

The “boolean” fragment of this language thus contains the propositions to-
gether with the conjunction and negation operators. I use > to abbreviate the
tautology p→ p and ⊥ to abbreviate ¬>. The modal operators are ♦≤, ♦< and
E. Formulas of the form ♦≤φ and ♦<φ should be read, respectively, as “φ is
true in a state that is considered at least as good as the current state” and “φ is
true in a state that is considered strictly better than the current state”. Eφ is
a “global” modality. It says that “there is a state where φ is true”. As usual in
modal logic, I take �≤φ to abbreviate ¬♦≤¬φ. This formula can be read as “φ
holds in all states that are at least as good as the current one”. �<φ is defined
similarly. Aφ, which abbreviates ¬E¬φ, is taken to mean “φ holds in all states”.

The key step in any logical investigation of a certain class of frames is to
connect the formulas of the language with elements of the frames. This is done
by defining a model, which is essentially an assignment of truth values to the
propositions in prop, and the truth conditions for the other formulas of the
language.

5.1.3. Definition. [Preference models] A preference model M is a preference
frame F together with a valuation function V : prop → P(W ) that assigns to
each propositional atom the set of states where it is true. A pointed preference
model is a pair M, w.

5.1.4. Definition. [Truth and validity in LP ]

M, w |= p iff w ∈ V (p)
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= ¬φ iff M, w 6|= φ
M, w |= ♦≤φ iff there is a v such that v � w and M, v |= φ
M, w |= ♦<φ iff there is a v such that v � w and M, v |= φ
M, w |= Eφ iff there is a v such that M, v |= φ

A formula φ is valid in a preference model M, denoted M |= φ, whenever M, w |= φ
for all w ∈ W . A formula is valid in a preference frame F whenever it is valid in

2A few guidelines for the reader unaccustomed to this way of defining logical languages.
φ ::= p | φ∧φ | ... means that a formula φ of that language is either a proposition letter p from
prop, a conjunction of formulas of the language, the negation of a formula of the language, and
so on. I do not make any assumption regarding the finiteness of prop. In most of what follows
I use a multi-agents version of this language, in which I index the modalities with members of
a set I of agents. I omit this here, but the results about the preference language generalize
naturally to the multi-agent case.
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all preference models M = 〈F, V 〉. Finally, a formula is valid in a class of models
M whenever it is valid in all models M ∈ M. Validity with respect to classes of
frames is defined in the same way.

These truth conditions are intended to capture the intuitive meaning of the vari-
ous connectives just described. For example, the truth condition for ♦≤φ literally
states “φ is true in a state that is considered at least as good as the current state.”

Equipped with a language and an interpretation for it, we can start the logical
investigation. In this section and the subsequent ones, it divides into two main
inquiries.

First I look at what can and what cannot be said about a given class of frames
with the language at hand. This is called looking at the expressive power. In the
case of preference frames, we shall see that some properties of the relations � and
� find clear expression in LP , while others are beyond its reach. Furthermore, in
this language one can unveil features of the intended class of frames that are not
obvious at first sight. In the case of preference frames, we shall see that we can
study in LP properties of “lifted” preference relations, from preference between
states to preference between sets of states.

Beside questions related to expressive power, most logical investigations look
at what kind of inferences can be made about some class of frames. This is done
by providing a proof system, i.e. a logic, in which one can derive formulas that
are true or valid with respect to some (classes of) frames. Here I use axiomatic
proof systems, which neatly encapsulate key properties of the class of frames we
want to talk about.

5.1.2 Expressive power

To show that a property of a certain class of frames is expressible in given lan-
guage, one has to provide a formula that is valid in a class of frames exactly when
all the frames in that class have that property. More precisely, one has to find a
formula φ such that φ is valid in a class of frame F iff all the frames in F have
this property. If we can find such a formula, we say that we have a correspondent
for that property in the language.

Transitivity and reflexivity of � have well-known correspondent in LP3 :

♦≤♦≤φ→ ♦≤φ (Transitivity)

φ→ ♦≤φ (Reflexivity)

Totality is also expressible, but its corresponding formula crucially uses the
global modality E.

5.1.5. Fact. The following corresponds to � being a total relation.

φ ∧ Eψ → (♦≤ψ ∨ E(ψ ∧ ♦≤φ)) (Totality)

3The correspondence arguments are well know. See again Blackburn et al. [2001, chap.3].
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Proof. It is easy to see that this formula is valid on a preference frame, provided
its relation � is total. For the other direction, take a preference model M where
this formula is valid, which contains only two states w and w′ and where φ
and ψ are true only at w and w′, respectively. The truth condition for E gives
M, w |= φ ∧ Eψ, and so the consequent of (Totality) must also be true there.
But then either M, w |= ♦≤ψ, which means that w′ � w or M, w |= E(ψ ∧ ♦≤φ),
which means, by the way we devised our model, that w � w′. �

The properties of � are harder to express in LP . One can easily say that it is
a sub-relation of � with the following:

♦<φ→ ♦≤φ (Inclusion)

It is, however, more intricate to ensure that it is precisely the sub-relation
that I defined in 5.1.1. In particular, irreflexivity of � is not expressible in LP .
That is, there is no formula of LP that is valid on a class of frames if and only
if � is irreflexive in all frames of this class. To show this requires a notion of
invariance between preference frames or models.

The best known is probably that of bisimulation4. Two pointed models M, w
and M′, v are bisimilar when, first, they make the same propositions true and,
second, if there is a w′ such that w′ � w, one can find a v′ bisimilar to w′ such
that v′ �′ v, and vice-versa from M′ to M. A standard modal logic argument
shows that if two pointed preference models are bisimilar, then they make exactly
the same formulas of LP true.

With this in hand, to show that a given property is not definable in LP boils
down to finding two bisimilar pointed models, one that does and the other that
does not have the property. With such an argument one can show that irreflexivity
is not definable5.

The various properties of � and � thus provide benchmarks to assess the
expressive capacities of LP . But, as I mentioned, the real interest of such a
language is that it can capture in a perspicuous manner features of preference
frames that would otherwise be quite intricate to grasp.

A good example is the “lifting” of � and �, which are relations between
states, to relations between sets of states. One might consider that, for example,
a set of states Y is “at least as good” as a set of state X whenever for all states in
X one can find a state that is at least as good in Y . One can easily capture this
“lifted” preference relation with binary preference statements between formulas
of LP . After all, formulas neatly correspond to sets of states in a preference
model, namely the sets of states where they are true.

4Here I simply sketch the definition of this notion. The precise definition can be found in
Appendix 5.5.

5By an argument similar (and in fact related) to the one for inexpressibility of irreflexivity
one can also show that the modality ♦< is not definable in terms of ♦≤. In other words, to talk
directly about the � relation one has to introduce a separate modality.
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φ ≤∀∃ ψ ⇔ A(φ→ ♦≤ψ) (Lifted relation)

The reader can check that the formula φ ≤∀∃ ψ does indeed correspond to the
fact that for all the states where φ is true one can find a state that is at least as
good where ψ is true. In other words, this formula expresses that ψ is at least as
good as φ.

Are properties of � also lifted to ≤∀∃? For example, does it follow from the
fact that � is total that ≤∀∃ is also a total relation between sets of states? This is
not so obvious merely from an examination of preference models, but it becomes
quite transparent if one goes through the truth conditions of φ ≤∀∃ ψ.

5.1.6. Fact. With respect to the class of preference models, if � is total then
for all formulas φ and ψ of LP , either φ ≤∀∃ ψ or ψ ≤∀∃ φ.

Proof. Take a preference model M where � is total, and two formula φ and ψ.
If either φ or ψ is not satisfied in M, then we are done. Assume then that both
are satisfied, and take any state w such that M, w |= φ. We have to show that
there is a w′ such that w′ � w and M, w′ |= ψ. Assume this is not the case, i.e.
that for all w′ such that w′ � w, w′ 6|= ψ. Given totality of �, and the fact that
ψ is satisfied, this means that for all w′′ such that M, w′′ |= ψ, w � w′′. But this
is enough to show that M |= ψ ≤∀∃ φ. �

This kind of analysis can be carried further to other properties of ≤∀∃, such
as reflexivity and transitivity, and even to alternative lifted relations. I shall not
pursue this further here6. For now it is enough to know that by devising a modal
language to talk about a given class of frames one can express in a very clear way
notions that would otherwise have been rather opaque. For now, I want to turn
briefly to the second side of logical inquiry, namely inferences and proof systems.

5.1.3 Axiomatization

One can precisely capture reasoning about a given class of frames by providing
a system of axioms and inference rules such that all formulas valid on that class
of frame are derivable in that system. This is called showing completeness of
an axiom system. This is usually more difficult than showing that the system
is sound, i.e. that everything that can be derived in it is a valid formula. If we
can show both, then we know that the set of valid formulas is exactly the set of
formulas that are derivable in that system.

There is a sound and complete axiom system for the class of preference frames.
It can be found on page 90. The reader will recognize in this table many formulas

6The reader can find various other definability and lifting results in the Appendix 5.5.2 and
in Liu [2008].
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that we have already encountered in this section. This is, of course, no coin-
cidence7. What can be deduced using a given language about a given class of
frames depends on its expressive power. This is, in a way, what the following
theorem says.

5.1.7. Theorem. The logic ΛLP is sound and complete with respect to the class
of preference models. With (Tot) it is sound and complete with respect to the
class of total preference models.

Proof. See van Benthem et al. [Forthcoming]. �

This is where I stop this brief investigation into the logic of abstract preference
frames. In the next sections I follow essentially the same methodology: I define
logical languages for the intended classes of frames and examine what can be
said and which sorts of reasoning can be conducted with them. For the class of
preference frames, this methodology has already paid off: it has shed light on
properties of preference relation between sets of states. But the usefulness of a
logical point of view for intention-based practical reasoning really reveals itself
on more complex models, to which I now turn.

5.2 Logic for games with intentions

In this section I take a closer (logical) look at the epistemic models of games with
intentions that I used in Chapter 3. We shall see that logical methods shed new
light on how planning agents use the information they have about each others’
information and intentions to reason in strategic interaction.

5.2.1 Language for epistemic game models with intentions

In Chapter 2 and 3 I took care to distinguish between strategy profiles and out-
comes in the representation of decision problems. This provided an encompassing
point of view, bringing under the same umbrella strategic games and models of
decision making under uncertainty. In the present chapter, however, I ignore this
distinction between outcomes and profiles in order to simplify the analysis.

Recall that in Chapter 3 epistemic models were always constructed on the basis
of a strategic game G. Here I directly define epistemic game frame, packing both
the game and the epistemic information into a single structure. I nevertheless
always assume that some strategic game G can be read off from any epistemic
game frame. This will simplify the analysis, without any great loss of generality.

7Modulo certain restrictions on the shape of the formulas, there is a tight connection between
them corresponding to a given property and, so to speak, “axiomatizing” it. For more details
about this phenomenon, which is called Sahlqvist correspondence, see [Blackburn et al., 2001,
p.157-178].



90 Chapter 5. Logics for practical reasoning with intentions

• All propositional tautologies.

• S4 for ♦≤:
(K) �≤(φ ∧ ψ) ↔ �≤φ ∧�≤ψ
(Trans) ♦≤♦≤φ→ ♦≤φ
(Ref) φ→ ♦≤φ
(Tot) φ ∧ Eψ → (♦≤ψ ∨ E(ψ ∧ ♦≤φ))

• For ♦<:
(K) �<(φ ∧ ψ) ↔ �<φ ∧�≤ψ

• S5 for E:
(K) A(φ ∧ ψ) ↔ Aφ ∧ Aψ
(Trans) EEφ→ Eφ
(Ref) φ→ Eφ
(Sym) Eφ→ AEψ

• Interaction axioms.
Inc1 ♦<φ→ ♦≤φ
Inc2 ♦≤φ→ Eφ
Int1 ♦≤♦<φ→ ♦<φ
Int2 φ ∧ ♦≤ψ → (♦<ψ ∨ ♦≤(ψ ∧ ♦≤φ))
Int3 ♦<♦≤φ→ ♦<φ

• The following inference rules:

Nec If φ is derived then infer �≤φ. Similarly for �< and A.

Table 5.1: The axiom system for ΛLP .

5.2.1. Definition. [Epistemic game frames with intentions] An epistemic game
frame with intentions G is a tuple 〈I,W, {ιi,∼i,�i}∈I〉 such that

• I is a finite set of agents.

• W is a finite set of states, viewed as strategy profiles. For convenience I
keep the notation w(i) for the ith component of w.

• ιi : W → P(P(W )) is a function that assigns to each state the intention set
of i at that state. For each w and i, ιi(w) is a filter and does not contain
the empty set.

• ∼i is an equivalence relation on W such that if w ∼i w
′ then wi = w′

i and
ιi(w) = ιi(w

′). As in Chapter 3, [w]i denotes {w′ : w ∼i w
′}.
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• �i is a total, reflexive and transitive preference relation on W .

There is indeed much similarity between these frames and the game models
I used in Chapter 3. Instead of a general assignment of strategy and intention
profiles to abstract states, I use a set of profiles W to which are assigned intention
sets. Just as in the work of van Benthem [2003], strategy profiles act here directly
as states.

This modelling decision is of course “logically” driven. I want to build a
relational frame within which I will interpret a modal language. The reader
will have recognized the preference relation �i from the previous section, and
the epistemic accessibility relation ∼i from Chapter 3. The latter is constrained
exactly as before. Agents are assumed to know, at each state, their strategy
choices and their intentions. Thus the condition that if w ∼i w

′ then w(i) = w′(i)
and ιi(w) = ιi(w

′).
The intention function ιi is specified as in Chapter 3. In logical vocabulary,

it is a neighbourhood function which returns, for each state, the intention set of
each agent at that state. I assume directly that these intentions are internally
consistent, agglomerative and closed under superset. Recall that this means that
the intention sets are consistent filters . As I mentioned in Chapter 2, this greatly
simplifies the analysis. I shall show how in a moment, after the introduction of
the language and its semantics.

As in the previous section, this language is a modal one, with the exception
that it includes “constants”—σ, σ′ and so on—which directly refer to strategy
profiles in epistemic game frames. These constants are known as nominals in the
modal logic literature, and languages that contain them are called hybrid8.

5.2.2. Definition. [Language for epistemic game frames] Given a set of atomic
propositions prop and a set of nominals S, let LGF be the language defined as:

φ ::= p | σ | φ ∧ φ | ¬φ | ♦≤φ | ♦<φ | Kiφ | Iiφ |Eφ

We are now familiar with the preference fragment of that language. Formulas of
the form Kiφ should be read “i knows that φ” and those of the form Iiφ as “i
intends that φ.” As in the previous section, these connectives have duals. For
¬Ki¬φ I use ♦iφ, which means “i considers φ possible”, and for ¬Ii¬φ I use iiφ,
meaning “φ is compatible i’s intentions.”

Models for epistemic game frames are essentially devised as in the previous
section, with especial care for the valuation of nominals.

5.2.3. Definition. [Models for epistemic game frames] A model M is an epis-
temic game frame G together with a valuation function V : (prop∪S) → P(W )
that assigns to each propositional atom and nominal the set of states where it is
true, with the condition that for all σ ∈ S, V (σ) is a singleton. A pointed game
model is a pair M, w.

8Key references on hybrid logic are Blackburn et al. [2001, chap.7] and ten Cate [2005].
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5.2.4. Definition. [Truth in LGF ] Formulas of the form ♦≤
i φ, ♦<

i φ and Eφ are
interpreted as in 5.2.4.

M, w |= σ iff w ∈ V (σ).
M, w |= Kiφ iff for all w′ such that w ∼i w

′, M, w′ |= φ.
M, w |= Iiφ iff ||φ|| ∈ ιi(w), where ||φ|| = {w′ : M, w′ |= φ}.

The nominals are essentially interpreted in the same fashion as atomic propo-
sitions. It is the special clause on the valuation function V that turns them into
real “names” for strategy profiles. The knowledge operator Ki is interpreted as
in standard epistemic logic9.

The interpretation of Iiφ is adapted to the fact that ιi is a neighbourhood
function. Iiφ is true at a state w if and only if i intends that φ at that state, i.e.
if and only if the interpretation of φ is in the intention set of i at w.

Here the assumption that ιi is a filter becomes very useful. It allows one almost
to forget about the structure of a given neighbourhood ιi(w) and look only at its
“core”,

⋂
X∈ιi(w)X, which I once again denote ↓ιi(w). By this I mean that, instead

of saying “agent i intends to achieve φ at w” if and only if ||φ|| ∈ ιi(w), one can
just say that “agent i intends to achieve φ at w” if and only if φ holds at all
w′ ∈ ↓ιi(w). Indeed, if the later is the case then we know that ↓ιi(w) ⊆ ||φ||,
and since ιi(w) is closed under supersets, we also know that ||φ|| ∈ ιi(w). The
other direction is a direct consequence of closure under intersection of ιi(w) and
the finiteness assumption on W .

To say that agent i intends to achieve φ at w if and only if φ holds at all
w′ ∈ ↓ιi(w) indeed reminds of the “relational” definition for the knowledge op-
erator Ki. This is no coincidence. When neighbourhoods are filters, there is a
straightforward and general back-and-forth correspondence between them and a
more classical relational semantic10. Here I stick to the neighbourhood approach
for two reasons. First, it permits one easily to drop assumptions on ιi, for example
the closure under supersets, if one finds them counterintuitive. The axiomatiza-
tion result of Section 5.2.3, for example, can be easily adapted to classes of frames
where ιi is less constrained. In other words, the neighbourhood approach allows
for a greater generality. The approach also allows a more intuitive presentation
of the simple intention revision policy that I use in Section 5.3.1. Throughout
the chapter, however, I often use this correspondence either in the formal results
or to fix intuitions.

We can in fact already profit from it to understand the truth conditions of
the dual iiφ. In the general case, i.e. when the neighbourhood are not necessarily
filters, one has to include a separate clause to ensure that iiφ really is interpreted

9Recall the references on the topic in the Introduction, Section 1.3.
10The correspondence is obvious for finite frames, as the argument in the previous paragraph

shows. In the general case, neighbourhood functions such as ιi define Alexandroff topologies,
from which there is a direct translation into relational frames. See Chellas [1980], Aiello et al.
[2003] and Pacuit [2007] for the details of this correspondence.
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as “φ is compatible with i’s intentions”. One then requires that M, w |= iiφ
iff W − ||φ|| 6∈ ιi(w). But given that ιi(w) is a filter, we automatically get that
M, w |= iiφ iff there is a w′ ∈ ↓ιi(w) such that M, w′ |= φ. Hence, by closure under
supersets, we know that w′ is in all X ∈ ιi(w), that is in all of i’s intentions at w.
This clearly, and in a much more intuitive manner than with the neighbourhood
definition, boils down to saying that iiφ is true whenever φ is compatible with i’s
intentions.

I am now ready to put LGF to use on epistemic game frames. As in the previous
section, I look first at what it can say about these frames, and then look at what
kind of reasoning can be done with it.

5.2.2 Expressive power

I now use the expressive power of LGF to investigate more systematically condi-
tions on the information, intentions, strategy choices and preferences of agents
in epistemic game frames. In particular, I show that knowledge of one’s own
strategy choice and intentions bears unexpected consequences for the intention-
related rationality constraints that I used in the previous chapters. Furthermore,
we shall see that one can read off various knowledge-based conditions for Nash
equilibria from epistemic game frames, using LGF . This provides a connection
between well-known results in epistemic foundations of game theory and shows
that the current framework is quite broadly encompassing.

Definition 5.2.1 imposes three conditions on what the agents intend, know
and choose. I present them briefly before discussing stronger conditions. First,
agents are assumed to know their own strategy choices. To spell out the cor-
respondent of this notion, I need to express the notion of strategy choice itself.
This crucially uses the expressive power provided by nominals. Once we have it,
the correspondent of knowledge of strategy choice is quite obvious11.

si ⇔
∨

σ(i)=si

σ (i plays strategy si)

si → Kisi (Knowledge of strategy choice)

The argument for the correspondence for the second formula, the knowledge
of strategy choices, is relatively straightforward. More interestingly, one can see
in Figure 5.1 what this condition boils down to. For all states w it makes the
set [w]i completely included in the set of states where the agent plays the same
strategy, i.e. the set of w′ such that w′(i) = w(i).

The condition that the intention sets ιi(w) are consistent filters has two well-
known correspondents in LGF . On the one hand, a standard argument in neigh-
bourhood semantic shows that ιi is closed under conjunction and disjunction, so

11In the following I slightly abuse notation and write σ(i) instead of V (σ)(i).
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W

w

w’(i) = w(i)

[w]i

Figure 5.1: The graphical representation of knowledge of strategy choice.

that it is a filter, whenever the following hold12.

Ii(φ ∧ ψ) ↔ Iiφ ∧ Iiψ (Intention closure)

For consistency, we have the following.

ii> (Intention consistency)

Here, once again, the fact that we can see iiφ as true at w whenever there is a w′ ∈
↓ιi(w) such that φ holds at w′ makes the correspondence argument completely
straightforward. Indeed, since > is true at all states, to ask for the validity of ii>
boils down to requiring that there is at least one state w′ in ιi(w), for all w.

Definition 5.2.1 also imposes that the agents know what they intend, i.e. that
in all states that they consider possible, they have the same intentions. This can
be illustrated as in Figure 5.2, and translates in LGF as follows.

5.2.5. Fact. The following corresponds to the fact that for all w,w′, if w′ ∼i w
then ιi(w

′) = ιi(w).

Iiφ→ KiIiφ (Knowledge of Intention)

Proof. The right-to-left direction is obvious. For left to right, take a model M
with two states, w and w′ such that w ∼i w

′, where the formula is valid. Fix
↓ιi(w) = {w′} and make φ true only at w′. By definition, we get that M, w |= Iiφ,
and thus that M, w |= KiIiφ. This means that M, w′ |= Iiφ. But by the way
we fixed the valuation of φ, it has to be that ↓ιi(w′) = {w′}, which means that
ιi(w) = ιi(w

′). �

12The right-to-left direction of the biconditional ensures agglomerativity, while left-to-right
ensures closure under supersets. Thus, if one wants to drop one of these two assumption it is
enough to look at models where only one direction holds. See Pacuit [2007] for the detailed
argument.
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W

w

ιi(w’) = ιi(w) 

[w]i

Figure 5.2: Knowledge of intentions ensures that [w]i ⊆ {w′ : ιi(w
′) = ιi(w)}.

Knowledge of intentions is, to say the least, a minimal requirement. Among
other things, it allows agents to form intentions that they know are impossible
to realize. Consider, for example, the epistemic frame for a Hi-Lo game depicted
in Figure 5.3. At Lo − Lo, none of the agents consider Hi −Hi possible. If we

Hi-Hi 0, 0

M

0, 0 Lo-Lo

2 2

1

1

Figure 5.3: Epistemic frame for a Hi-Lo game. Only the epistemic relations are
represented.

assume that one of the agents has payoff-compatible intentions, which for him
boils down to intending Hi−Hi, then we find that this agent intends something
that he himself considers impossible13

This is an obvious violation of belief consistency14, according to which agents
should only form intentions which are consistent with what they think the world

13Observe, however, that this does not preclude him from knowing what he intends. In fact, I
show shortly that such cases of intention-irrationality are introspective. When the agent intends
something which he considers impossible, he knows it.

14Recall the remarks about this in the Introduction, Section 1.2. I also revisit belief consis-
tency in the next Chapter, Section 6.1.
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is like. They should not have intentions that they think are impossible to achieve.
This idea, which is stronger than knowledge of intentions, is not in itself repre-
sentable in epistemic game frames for the simple reason that there is no repre-
sentation of beliefs there. One can, however, look at “knowledge”-consistency of
intention.

Iiφ→ ♦iφ (Knowledge consistency (IKi))

Put contrapositively, this formula states that agents do not form intentions to
achieve facts that they know are impossible. This condition is stronger than be-
lief consistency would be, since knowledge is always veridical in epistemic game
frames. Belief consistency allows agents to form intentions that are, in fact,
impossible, just as long as the achievement of these intentions is consistent with
what the agent (maybe mistakenly) believes. But this cannot be the case with re-
spect to what the agents know in epistemic game frames. Knowledge-consistency
of intentions thus strongly ties intentions with what is actually true at a given
state.

Knowledge consistency corresponds to the fact that, for a given state w, there
is at least one w′ such that w ∼i w

′ and w′ ∈ ↓ιi(w). In other words, there is at
least one state that is compatible with the agent’s intentions which he considers
possible. See Figure 5.4 for an illustration of this condition.

5.2.6. Fact.

1. Take an arbitrary frame F in a class F. If [w]i ∩ ↓ιi(w) 6= ∅ for all w, then
F |= IKi.

2. If for all models M based on a frame F, M |= IKi, then [w]i ∩ ↓ιi(w) 6= ∅
for all state w in that frame.

Proof. The proof of (1) is straightforward. For (2), take a frame F with two
states w,w′ such that ↓ιi(w) = {w′}. Assume that M |= IKi and that, for a given
σ, we have V (σ) = {w′}. This means that M, w |= Iiσ, and so by assumption
that M, w |= ♦iσ, which can only be the case if w ∼i w

′, i.e. if ↓ιi(w) ∩ [w′] 6= ∅.
�

It is worth recalling that the first account of coordination in Hi-Lo games
(Section 3.5) did not require knowledge-consistent intentions. For this class of
games, intentions can anchor coordination on the basis of a weaker constraint,
namely intention-rationality. This constraint requires that, among all the profiles
that can result from the strategy choice of an agent at a state, there is at least one
that figures in his most precise intention (see Figure 5.5). This is also expressible
in LGF , as follows. ∨

σ(i)=w(i)

iiσ (Intentions-rationality (IRi) at w)
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W

w

[w]i ιi(w) 

Figure 5.4: Knowledge consistency ensures that [w]i ∩ ↓ιi(w) 6= ∅.

W

w’(i) = w(i)

w
ιi(w) 

Figure 5.5: Intention-rationality ensures that ↓ιi(w) ∩ {w′ : w(i) = w′(i)} 6= ∅.

Intention-rationality and knowledge-consistency are of course related, given that
agents know what they intend. First, knowledge consistency implies intention-
rationality. This can easily be seen by combining Figure 5.2, 5.4 and 5.5. On the
general class of epistemic game frames, however, there can be intention-rational
agents who are not knowledge-consistent, as the following shows.

5.2.7. Fact. [IKi implies IRi] At any pointed model M, w, if M, w |= IKi then
M, w |= IRi. There are, however, models where the converse does not hold.

Proof. For the first part, I show the contrapositive. Assume that M, w |= ¬IRi.
That is, M, w |=

∧
σ(i)=w(i) ¬iiσ. This means that w′(i) 6= w(i) for all w′ ∈ ↓ι(w).

But we also know, by definition, that [w]i ⊆ {w′ : w′(i) = w(i)}, which means
that for all w′ ∈ ↓ιi(w), w′ 6∈ [w]i. Take s∗i to be the collection of nominals σ′

such that V (σ′) ∈↓ιi(w). We get M, w |= Ii(
∨
σ′∈s∗i

σ′) ∧Ki¬(
∨
σ′∈s∗i

σ′).

For the second part, take any pointed model M, w where [w]i ⊂ {w′ : w′(i) =
w(i)}, and fix ↓ ιi(w) = {w′ : w′(i) = w(i)} − [w]i. We obviously get that
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M, w |= IRi. But by again using s∗i as the collection of nominals σ′ such that
V (σ′) ∈↓ιi(w), we get that M, w |= Ii(

∨
σ′∈s∗i

σ′) ∧Ki¬(
∨
σ′∈s∗i

σ′) �

Knowledge consistency thus implies intention rationality. This crucially rests
on the fact that agents know what they choose and intend. The two notions in
fact coincide when we tighten even further the connection between knowledge
and strategy choices, i.e. when w(i) = w′(i) if and only if w ∼i w

′, as in [van
Benthem, 2003]. In other words, IKi and IRi are the same on game frames
where the agents consider possible all the strategy profiles that can result from
their strategy choices. This can easily be seen by fixing [w]i = {w′ : w′(i) = w(i)}
in Figure 5.1, and then combining it with Figure 5.4 and 5.5.

It is thus no coincidence that, in the last proof, i is knowledge-inconsistent
but still intention-rational at a state where he does not consider all of his oppo-
nents’ replies possible. The relation between intention rationality and knowledge
consistency for an agent depends directly on what he considers possible. The
following strengthening of IRi makes this even more explicit.∨

σ(i)=w(i)

iiσ ∧ ♦iσ (Epistemic intentions-rationality (IR∗
i ) at w)

IR∗
i is an epistemically constrained version of IRi. It requires not only of

agents that their strategy choice somehow matches their intentions, but also that
they consider the “matching” profile possible. Under knowledge of one’s own
strategy choice, IR∗

i is just IKi under a different guise.

5.2.8. Fact. [Equivalence of IKi and IR∗
i ] At any pointed model M, w, M, w |=

IKi iff M, w |= IR∗
i .

Proof. Provided the first part of Fact 5.2.7, all that remains to be shown is the
right-to-left direction. Again, I do it in contrapositive. Assume that M, w |=
Iiφ ∧Ki¬φ for some φ. This means that ↓ιi(w) ⊆ ||φ|| and that ||φ|| ∩ [w]i = ∅.
We thus have ↓ιi(w) ∩ [w]i = ∅. But this means that for all σ′ and w′(i) = w(i)
such that V (σ′) = w′ and w′ ∈ [w]i, M, w |= ¬iiσ

′. In other words, M, w |=∧
σ′(i)=si

♦iσ
′ → ¬iiσ

′. �

This results rests crucially on the condition that agents know their strategy
choice. To see this, consider the epistemic game frame in Figure 5.6. Suppose
that w1(1) 6= w3(1), that at w1 we have ↓ι1(w1) = {w3} and that prop is empty.
We clearly get M, w1 |= I1φ→ ♦1φ while M, w1 6|= IR1 and M, w1 6|= IR∗

1.
This is a clear instance of interaction between the assumptions on epistemic

game frames and intention-related conditions such as intention rationality and
knowledge consistency. This interaction goes deeper, in fact. Precisely because
the agents are assumed to know their own intentions and actions, both knowledge
consistency and intention rationality are fully introspective. Indeed, knowledge of
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w1 w2

M

w3 w4

1

Figure 5.6: An epistemic game frame where knowledge of strategy choice is vio-
lated.

intentions and of strategy choice means that at all states that the agent considers
possible he has the same intentions and chooses the same strategy. So if his
strategy choice is compatible with his intentions at one of these states, it is
compatible with those of his intentions at all states that he considers possible,
i.e. he knows that he is intention-rational. The following makes this precise.

5.2.9. Fact. [Positive and negative introspection of IRi and IKi] For all pointed
game models, M, w |= IRi implies M, w |= KiIRi and M, w |= ¬IRi implies
M, w |= Ki¬IRi. The same hold for IR∗

i .

Proof. I only prove positive introspection for IRi; the arguments for the other
claims are similar. Assume that M, w |= IRi. This happens if and only if there
is a w′ ∈↓ιi(w) such that w′(i) = w(i). Take any w′′ ∈ [w]i. We know that
ιi(w

′′) = ιi(w), which means that w′ is also in ↓ιi(w′′), and w′′(i) = w(i), which
means that w′′(i) = w′(i), and so that M, w′′ |= IRi. �

Introspection of intention rationality is a surprising consequence of knowledge
of one’s own intention. Recall that the former notion is not per se knowledge-
related. It only refers to the connection between strategy choices and intentions.
Agents are introspective about their own intention rationality because we assume
that they know what they choose and what they intend.

That this assumption ensures negative introspection of both knowledge con-
sistency and intention rationality is also surprising. With respect to knowledge
and intentions, negative introspection is often seen as an overly strong condi-
tion15. Agents who do not intend to do something are not automatically required
to know that they do not have this intention. Similarly, one might not view in-
tention irrationality as something that agents automatically know of themselves.

15See e.g Wallace [2006, chap.5].
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But the last fact shows that if one seeks to abandon this assumption in epis-
temic game frames one has to give up an apparently much weaker one, namely
that agents know what they do and what they intend. In other words, with this
apparently weak assumption one gives agents rather strong introspective powers.

Introspection helps to give us a better understanding of the coordination result
for Hi-Lo games from Chapter 3.

5.2.10. Fact. Let payoff-compatibility of intentions be defined as follows:

φ >i
∀∀ ψ ∧ Ii(φ ∨ ψ) → Iiφ (Payoff-compatibility (IPCi))

Take any pointed game model M, w of an Hi-Lo game. Then the following are
equivalent:

• M, w |=
∧
i∈I Ki(

∧
j 6=i(IPCj ∧ IRj))

• w is the Pareto-optimal profile of that game.

Proof. The proof is essentially the same as in Chapter 3. Instead of restating
the details, I only highlight what is relevant for the present analysis.

The statement of this fact uses the notion of payoff-compatibility, which in
turn uses a lifted preference relation: φ >∀∀ ψ. This formula states that φ is
strictly preferred to ψ whenever all states that make φ true are strictly preferred
to all states that make ψ true16. An argument very similar to the one provided
for introspection on IRi shows that payoff-compatibility of intention is also in-
trospective.

Now, the key observation underlying the present fact is that the formula
Ki(

∧
j 6=i(IPRj ∧ IRj)) is true only when i’s epistemic accessibility relation is

restricted to states where all his opponents have payoff-compatible intentions
and are intention-rational. Since this is veridical mutual knowledge, i is also
intention-rational, and his intentions are payoff-compatible. Furthermore, be-
cause these two notions are introspective, i knows it. Given the structure of
Hi-Lo games, this means that i’s most precise intention contains exactly the
Pareto-optimal profile. But since this is the case for all i, we find that the for-
mula Ki(

∧
j 6=i(IPRj ∧ IRj)) can only be true at that profile. �

For the first time in this section, this result explicitly uses the preferences
fragment of LGF . Indeed, what is so special about the Pareto-optimal profile is
its place in the preference relations: it the most preferred Nash equilibrium. That
we can capture this notion in LGF should not come as a surprise, though. This
language can capture Nash equilibria in the general case. We showed in van Ben-
them et al. [2005] how to do this using “distributed knowledge”, a notion which
is also definable in LGF and which “pools” the epistemic accessibility relations

16The precise definition of this relation can be found in the Appendix 5.5.2.
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together. But LGF also allows for a characterization of this solution concept that
echoes the well-known result of Aumann and Brandenburger [1995, p.1167] that
I mentioned in Chapter 3 (Section 3.5).

Recall that they have shown that in two-player strategic games, if at a state
each player is “weakly rational” [van Benthem, 2003, p.17] and knows his oppo-
nent’s strategy choice, then at this state the agents play a Nash equilibrium. Now,
the notion of “weak rationality” is not in itself expressive in LGF . By introducing
it as a special propositional atom17, we can however capture in LGF the epistemic
characterization of Aumann and Brandenburger [1995].

5.2.11. Definition. [Weak rationality] For a given profile w ∈ W and strategy
s ∈ Si, take w[s/w(i)] to be the profile w′ that is exactly like w expect that
w′(i) = s.

M, w |= WRi iff for all s ∈ Si such that w(i) 6= s
there is a w′ ∼i w such that w′ �i w

′[s/w′(i)] .

The notion of weak rationality is easier to grasp in contrapositive. An agent is
not weakly rational at a state w when one of his strategies, different from the one
he plays at w, gives him strictly better outcomes in all combinations of actions of
others that he considers possible. In other words, an agent is not weakly rational
at a state when, as far as he knows, he plays a dominated strategy at that state.

Weak rationality thus crucially involves what the agent considers possible. He
is weakly rational when he can find a “reason” to justify his current choice instead
of any other options. That is, for each of his alternative strategy s′ there is a
state that he considers possible in which his current strategy choice is at least as
good as s′. The characterization below exploits this fact by restraining what each
agent considers possible. They know their own action, and so they can only be
uncertain about the action of their opponent. But if they know this action too,
they know the actual profile. This means that if they are weakly rational, their
current strategy choice is as least as good as any other, given this strategy choice
of their opponent. In other words, they are weakly rational if their strategy choice
is a best response to the strategy choice of the other, which is just what Nash
equilibrium requires.

5.2.12. Fact. [Nash equilibrium definability] Given a game model M with two
agents, a profile w named by σ is a Nash equilibrium if it satisfies the following:

WR1 ∧K1σ(2) ∧WR2 ∧K2σ(1)

17This notion could have been expressible in LGF , provided I had equipped it with binders
(see ten Cate [2005, p.133]). Again, I did not go in that direction in order to keep the language
relatively simple.
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Proof. It is enough to show that w(i) is a best response for both agents, that
is for all s ∈ Si and w′ = w[s/w(i)], w �i w

′ for i ∈ {1, 2}. Consider player
1. Given M, w |= WR1, we will be done if we can show that [w]i = {w}. Now
observe that M, w |= K1σ(2) is just the same as saying that for all w′ ∼1 w,
M, w′ |=

∨
σ(2)=w(2) σ. That is, for all w′ ∼1 w, w(2) = w′(2). But by definition

we also know that w(1) = w′(1) for all those w′, which means that w′ = w. The
same reasoning applies to player 2, showing that w is indeed a best response for
both agents. �

This characterization of Nash equilibria, as well as that of van Benthem et al.
[2005], shows that LGF can capture features of epistemic game frames not only
in relation to what the agents know and intend, but also the well-known solution
concepts18. In other words, the present framework is sufficiently encompassing
to capture aspects of both instrumental and intention-based rationality, as well
as the information that agents have about them in strategic interaction. What is
more, this framework has a concrete deductive component, as I show now, which
makes it a genuine theory of practical reasoning for rational planning agents.

5.2.3 Axiomatization

The set of valid formulas of LGF over the class of epistemic game frames is com-
pletely axiomatizable by the system presented in Table 5.2 on page 103. As for
the axiomatization over the class of preference frames, the reader will recognize
in this table many formulas that I studied in the previous section. Most of the
others axiomatize the hybrid fragment of this logic. The following theorem shows
that this axiom system does indeed capture reasoning in games with intentions.
The details of the proof are given in Appendix 5.5.4.

5.2.13. Theorem. The logic ΛLGF is complete with respect to the class of epis-
temic game frames with intentions.

5.3 Transformations of games with intentions

In the previous section I studied what can be said about what the players know,
intend and ultimately decide in epistemic game frames with intentions. This
covered one aspect of intention-based practical reasoning, namely how agents
take their intentions and those of others into account in deliberation. But as I
have already mentioned many times, this is only one part of the story. Intentions
also play an active role in the shaping of decision problems.

18As the reader may have come to realize, most of this high expressive power comes from
the “hybrid” fragment, i.e. the constants that directly name strategy profiles. I show in
Appendix 5.5.3 that nominals are indeed crucial to capture Nash equilibria.
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• All propositional tautologies.

• S4 for ♦≤ and, for all σ and σ′:
(Tot) (σ ∧ ♦≤

i σ
′) ∨ (σ′ ∧ ♦≤

i σ)

• For ♦<, K and:
(Irr) σ → ¬♦<σ
(Trans) ♦<♦<σ → ♦<σ

• For Ii:
(K) Ii(φ ∧ ψ) ↔ Iiφ ∧ Iiψ
(Ser) ii>

• S5 for E.

• Interaction axioms.
(Existsσ) <> φ→ Eφ
(IncE−σ) E(σ ∧ φ) → A(σ → φ)
(Incσ) E(σ)
(Inc1) As in Section 5.1.3.
(K-I) Iiφ→ KiIiφ

• (Nec) for all modal connective, and the following additional inference rules. In
both cases σ 6= σ′ and the former does not occur in φ.

– (Name) From σ → φ infer φ.

– (Paste) From (E(σ′∧ <> σ) ∧ E(σ ∧ φ)) → ψ infer E(σ′∧ <> φ) → ψ

Table 5.2: The axiom system for ΛLGF . Here <>i is any of ♦i, ♦<
i , ♦≤

i or ii.

In Chapter 4 I modelled this process with two transformations of strategic
games: cleaning, which excluded options that are inconsistent with one’s inten-
tions, and pruning, in which irrelevant details were overlooked. In this section
I use logical methods to gain further insights into cleaning. I show that altru-
istic cleaning naturally relates to the notion of intention rationality that I used
in the previous section. This observation opens the door to a whole family of
cleaning-like operations, definable using a dynamic extension of LGF , while at
the same time giving a more general perspective on transformations of epistemic
game frames.



104 Chapter 5. Logics for practical reasoning with intentions

5.3.1 Dynamic language

I introduced cleaning as, so to speak, a dynamic add-on that supplements the
machinery of strategic games with intentions. That is, the exclusion of intention-
inconsistent options comes, as a separate module, on top of the “static” analysis
of games in terms of knowledge, preferences and intentions. In the same modular
manner, dynamic epistemic logic (DEL) extends “static” epistemic languages to
talk about information changes19. The DEL approach is thus a natural envi-
ronment for broadening our perspective on cleaning-like operations in epistemic
game frames.

In its full generality, DEL can analyze the most diverse information changes.
However, operations like cleaning, which contract relational frames, correspond
to a very simple fragment of DEL, known as public announcements logic. In this
logic the contraction of a relational model is viewed as the result of publicly and
truthfully announcing that a given formula is true. More precisely, in a given
relational model, announcing that φ means looking only at the sub-model where
φ holds. A public announcement formula, denoted [φ!]ψ, thus says that after
removing from the original models all the states where φ does not hold, ψ is the
case. As we shall see shortly, cleaning will indeed correspond to the announcement
of a particular formula of LGF . But before showing this, let me look at the “public
announcement” extension of LGF in full generality.

5.3.1. Definition. [Dynamic extension of LGF ] DLGF , the dynamic extension
of LGF , is defined as follows :

φ ::= p | σ | φ ∧ φ | ¬φ | ♦≤φ | ♦<φ | Kiφ | Iiφ | Eφ | [φ!]φ

The only new formulas in this language are of the form [φ!]ψ. They should be
read as “after truthfully announcing that φ, it is the case that ψ”. As I have
just written, these announcements correspond to contractions of the underlying
epistemic game model, that I denote M|φ.

5.3.2. Definition. [Contracted epistemic game models] Given an epistemic game
model M and a formula φ ∈ DLGF , the contracted model M|φ is defined as fol-
lows20.

1. W|φ = ||φ||.

2. ∼i |φ is the restriction of ∼i to W|φ. Similarly for �i.

3. ι|φ(w) =

{
↑ (||φ|| ∩ ↓ι(w)) if ||φ|| ∩ ↓ι(w) 6= ∅
W|φ otherwise

19Key references on the topic are Plaza [1989], Gerbrandy [1999], Baltag et al. [1998] and van
Ditmarsch et al. [2007].

20In this definition ↑A, for a given set A ⊆ W , is a shorthand for the closure under supersets
of A, that is ↑A = {B : A ⊆ B ⊆ W}. In item (3) the closure is with respect to W|φ.
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4. V|φ is the restriction of V to W|φ.

The domain W|φ of a model restricted to φ is just what one would expect. It
is the set of states where φ was the case before the announcement. The epistemic
and preferences relations are modified accordingly.

The restriction of the intention function ιi splits into two cases. On the one
hand, if what is announced was compatible with the agent’s intention, that is
if ||φ|| ∩ ↓ ι(w) 6= ∅, then the agent “restricts” his intention according to the
announcement, just as the agents restricted their intentions after cleaning or
pruning in Chapter 4. Formally, the new intention set is built just as before,
by taking restriction of the most precise intention to the states compatible with
the formula announced : ι|φ(w) =↑(||φ|| ∩ ↓ ι(w)). This process is illustrated
in Figure 5.7. For the other case, where the announcement is not compatible

M

w ιi(w) 

φ

[φ !]

 not- φ M|φ

w ιi(w) 

Figure 5.7: The intention restriction when ↓ιi(w) ∩ ||φ|| 6= ∅.

with what the agent intends, that is when ↓ιi(w) ∩ ||φ|| = ∅, I introduce here an
elementary intention revision policy. The agent conservatively bites the bullet,
so to speak. He indeed throws away the old, unachievable intentions but, on the
other hand, he refrains from committing to anything other than what he already
knows to be the case. In other words, the agent’s intention revision boils down to
his not forming any new specific intentions, which formally gives ι|φ(w) = {W|φ}.
This is illustrated in Figure 5.8.

I do not claim that this revision policy is “right” or adequate. It is a simple
starting point, using only existing resources of epistemic game frames. In Sec-
tion 5.3.3 I shall have many occasions to observe how this policy behaves, and
will then be in a better position to assess it.

A model M|φ restricted after the announcement of φ is thus built out of the
sub-model of M where φ holds before the announcement, with the valuation, the
epistemic accessibility relations, the preferences and the intention functions re-
stricted accordingly. Equipped with such models, we can give a generic definition
of the truth condition of formulas of the form [φ!]ψ.
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M

w ιi(w) 

φ

[φ !]

 not- φ M|φ

w ιi(w) 

Figure 5.8: The intention restriction when ↓ιi(w) ∩ ||φ|| = ∅.

5.3.3. Definition. [Truth for public announcement formulas]

M, w |= [φ!]ψ iff If M, w |= φ then M|φ, w |= ψ.

The condition “If M, w |= φ then... ” ensures that we are dealing with truthful
announcements. That is, only true facts can be announced publicly in this logic.
This simplification will not hamper the present analysis. Cleaning was always
based on actual, i.e. veridical, intentions of agents, as will the other cleaning-like
operations that DLGF unveils.

It is important to observe at this point that announcements are not necessarily
“successful”—I give a precise definition of this notion later on. It can happen
that an announcement is self-refuting, in the sense that announcing it truthfully
as a formula makes it false. This is so because even though announcing true
things does not change the “basic” facts of the situation, it definitely changes
the information that agents have about these facts21. When an announcement
contains informational facts, it can thus make these very facts false.

As in the last two sections, these announcements are studied by looking at the
expressive power of DLGF . But, unlike what I did in these sections, I first look at
the logic of public announcements in epistemic game frames. The axiomatization
techniques for this logic are slightly different from what we have seen so far, and
also provide tools for what comes thereafter.

5.3.2 Axiomatization

The logics ΛLP and ΛLGF were devised in a very similar and also quite standard
manner. They consisted of a set of axioms encapsulating properties of the in-
tended class of frames, for example ♦≤♦≤φ→ ♦≤φ for transitivity of �, together

21See van Benthem [2006a] for more on this phenomenon.
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with some inference rules. The completeness arguments for these logics were also
quite standard.

The axiomatization of the valid formulas of DLGF over the class of epistemic
game frames proceeds differently. One does not need directly to provide formulas
that correspond to properties of public announcements22. Rather, it is enough to
provide a set of formulas, shown in Table 5.3, that allow one to compositionally
translate formulas with [φ!] operators to formulas in LGF . If one can show that
these formulas are valid, completeness of ΛDLGF with respect to the class of epis-
temic game frames is just a corollary of completeness of ΛLGF with respect to this
very class of frames. By taking these formulas as axioms of ΛLGF , valid formulas
in DLGF are then deductively reducible to valid formulas of LGF , which we know
can in turn be deduced in ΛLGF . In other words, the axioms of Table 5.3 show
that agents can reason about information change in games with intentions in the
basis of what information they have about each other’s knowledge and intentions.

The detailed arguments for the validity of the formulas in Table 5.3 can be
found in Appendix 5.5.5. They all explain post-announcement conditions in terms
of pre-announcement ones. Let me look briefly at (5), which encodes the intention
revision policy that I have just discussed. It states the pre-announcement condi-
tions under which it can be the case that, after an announcement that φ, i intends
that ψ. Not surprisingly, these conditions match the two cases of the update rule
for ιi. If the intentions of i were already compatible with the announcements,
that is if iiφ, then one should have been able to find ||φ|| in the intention set of
i, once restricted to ||φ||. This is essentially what Ii(φ → [φ!]ψ) says. On the
other hand, if the announcement of φ was not compatible with φ, i.e. if ¬iiφ,
then i intends ψ after the announcement if and only if ψ is true everywhere in
the restricted model, i.e. [φ!]Aψ, which is exactly what the intention revision rule
for ιi prescribes.

1. [φ!]x↔ φ→ x for x ∈ prop ∪ S.

2. [φ!]¬ψ ↔ φ→ ¬[φ!]ψ.

3. [φ!]ψ ∧ ξ ↔ φ→ ([φ!]ψ ∧ [φ!]ξ).

4. [φ!][·]ψ ↔ φ→ [·](φ→ [φ!]ψ)

5. [φ!]Iiψ ↔ φ→ (iiφ ∧ Ii(φ→ [φ!]ψ) ∨ (¬iiφ ∧ [φ!]Aψ))

Table 5.3: The axiom system for ΛDLGF . Here [·] is either A, Ki, �≤
i or �<

i .

22Although the following set of axioms in Table 5.3 can also be seen as tightly fixing the prop-
erties of model restrictions. See the references in the footnote on page 13, in the Introduction.
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As we shall see in the next section, these axioms not only provide a “shortcut”
toward completeness results; they also prove very useful in understanding pre-
announcement conditions.

5.3.3 Expressive power

The dynamic extension of LGF really unfolds the full expressive power of this
language. It provides a unified framework for studying practical reasoning of
planning agents in strategic interaction. In short, it gets us closer to the “big
picture” of intention-based practical reasoning.

This section is quite long, in comparison to the preceding ones. I have thus
split it into three parts. First, I look back at altruistic cleaning from the perspec-
tive of DLGF . Second, I investigate more closely the behaviour of the intention
revision policy in the context of overlapping intentions. Finally, I look at en-
abling conditions for cleaning, in terms of announcements of weak rationality. Of
course, much more could be said using the dynamic language about how informa-
tion changes in games with intentions. I have chosen these three topics because,
on the one hand, they shed new light on phenomena that we have encountered
previously and, on the other hand, because they are paradigmatic of the type of
analysis that can be conducted with dynamic epistemic logic on epistemic game
frames.

Varieties of cleaning

Let me start by looking at the cleaning of decision problems. Both versions of
this operation, individualistic and altruistic, were defined with respect to a given
intention profile, one for the whole decision problem. By contrast, in epistemic
game frames we have “state-dependent” intentions, that is one intention profile
per state. There is a further difference between the decision problem I used in
Chapter 4 and the current epistemic game frames. As mentioned at the beginning
of Section 5.2.1, I distinguished strategy profiles and outcomes in the former, but
not in the latter. To capture cleaning in DLGF , I have to take care of these two
differences.

The second one requires a slight redefinition of the cleaning operation to fit
epistemic game frames. For most of this section I shall focus on altruistic cleaning.
As we shall see later, one can present a very similar analysis of individualistic
cleaning.

5.3.4. Definition. [Altruistic cleaning of epistemic game frame] Given an epis-
temic game frame G and an intention profile ι, the cleaned strategy set cl(Si) for
an agent i is defined as

cl(Si) = {si | there is a w′ ∈ ↓ιi such that w′(i) = si}
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The altruistically cleaned version of G from the point of view of the intention
profile ι, denoted clι(G), is defined as follows.

• cl(W ) = {w | ∃i such that w(i) ∈ cl(Si)}.

• ∼cl
i , �cl

i and V cl are restriction of ∼i, �i and V cl to cl(W ), respectively.

• For all i, ιcli =↑(cl(W ) ∩ ↓ιi).

The second point of divergence between the strategic games of Chapter 4 and
epistemic game frames is also easily accommodated.

5.3.5. Definition. [State-independent intentions] An epistemic game frame G
is said to have state-independent intentions whenever, for all w,w′ ∈ W and i ∈ I,
ιi(w) = ιi(w

′).

Altruistic cleaning can thus be seen as an operation on epistemic game frames
with state-dependent intentions. With this in hand, we can readily characterize
cleaning inDLGF . It corresponds to the public announcement of a crucial concept:
intention-rationality.

5.3.6. Fact. For any model M with state-independent intentions, its cleaned
version clι(DP ) is exactly the model that results from announcing

∨
i∈I IRi.

Proof. I first show that cl(W ) = W|
W
i∈I IRi

. We know that w′ ∈ cl(W ) iff
there is an i such that w′(i) ∈ cl(Si). This, in turn, happens iff there is an i
and a w′′ ∈ ↓ιi such that w′′(i) = w′(i), which is also the same as to say that
there is an i such that M, w′ |=

∨
σ(i)=w′(i) iiσ. This last condition is equivalent

to M, w′ |=
∨
i∈I IRi, which finally boils down to w′ ∈ W|

W
i∈I IRi

. It should
then be clear that the restricted cleaned relations and valuation correspond to
those obtained from the announcement of

∨
i∈I IRi, and vice versa. It remains to

be shown that the two operations update the intention sets similarly. Here the
state-independence becomes crucial, witness the following:

5.3.7. Lemma. For any state-independent intention ιi:

↓ιi ∩
∥∥∥∨
i∈I

IRi

∥∥∥ 6= ∅

Proof. Take any such ιi. We know that ↓ιi 6= ∅. So take any w ∈↓ιi. We have
that M, w |= iiσ for V (σ) = w. But since we are working with state independent
intentions, iiσ implies

∨
i IRi, as can be seen by unpacking the definition of the

latter. This means that w ∈ ||
∨
i∈I IRi|| and thus that ↓ιi ∩ ||

∨
i∈I IRi|| 6= ∅. �

This lemma reveals that for state-independent intentions, the second clause of
the definition of ιi|φ is never used. But then it should be clear that for all i,
ιcli = ιi|Wi∈I IRi

.
�
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This characterization of cleaning in terms of intention-rationality shows that
the two notions are really two sides of the same coin: altruistically inadmissible
options are just intention-irrational ones, and vice versa. This characterization
also highlights the altruistic aspect of cleaning. That the operation corresponds
to the announcement of a disjunction over the set of agents is indeed quite telling.
The idea behind altruistic cleaning was that the agents retained all the strategies
which were compatible with the intentions of one of their co-players. This is ex-
actly what the announcement says: one of the agents is intention-rational. Along
the same line, an easy check reveals that cleaning with individualistic admissibil-
ity can be characterized in terms of a stronger, i.e. conjunctive announcement of
intention-rationality.

Recall that intention-rationality is introspective (Fact 5.2.9). Agents in epis-
temic game frames know whether they are intention-rational at a given state.
The following shows that in epistemic game frames with state-independent inten-
tion, announcing intention-rationality is, so to speak, safe. Intention-rationality
is robust to altruistic cleaning23.

5.3.8. Definition. [Self-fulfilling announcements] An announcement that φ is
said to be self-fulfilling at a pointed model M, w if M, w |= [φ!]Aφ.

5.3.9. Fact. The announcement of
∨
i∈I IRi is self-fulfilling for any pointed

model M, w with state-independent intentions.

Proof. We have to show that for any pointed model with state-independent
intentions, if M, w |=

∨
i∈I IRi then M|

W
i∈I IRi

, w |= A
∨
i∈I IRi. I will show

something stronger, namely that for all w ∈ ||IRi||, M|IRi , w |= A IRi.
Take any w′ ∈ W|IRi . We have to show that there is a w′′ in ↓ιi|IRi(w′) such

that w′′(i) = w′(i). Because w′ ∈ W|IRi we know that w′ was in ||IRi|| before
the announcement. But this means that there was a w′′ ∈ ↓ ιi(w′) such that
w′′(i) = w′(i). But since we have state-independent intentions, this means that w′′

was also in ||IRi||. Furthermore, that means that ↓ιi|IRi(w′) =↓ιi|IRi(w′)∩||IRi||,
and so that w′′ ∈↓ιi|IRi(w′), as required. �

In the course of this proof I have shown that the formula IRi → [IRi!]A(IRi)
is valid on the class of epistemic game frames with state-independent intentions.
It states that if an agent is intention-rational then he remains so after the an-
nouncement of this fact. Here we can draw some interesting conclusions about
intentions-based, practical reasoning, given the completeness result mentioned in
Section 5.3.2. This formula is not an axiom of this logic, but by completeness
we know that it is a theorem, that is, it is part of the information that plan-
ning agents can deduce from state-independence and knowledge of intentions and
actions.

23Recall that this is not generally the case for announcements. This result is clearly the
epistemic counterpart of the fixed-point result for altruistic cleaning (Fact 4.1.9).
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Fact 5.3.9 thus shows that ruling out options is an operation on decision
problems that agents can safely perform. Colloquially, the previous considera-
tions show that agents who exclude inconsistent options from a given decision
problem know what they are doing, and cannot mess things up by doing it. This
characterization of cleaning in terms of announcement also opens the door to
new kinds of cleaning operations. One can refine the notion of admissibility of
options by playing with the announced formula. An obvious candidate for such
a refined cleaning operation is the announcement of knowledge-consistency of
intentions. Being also introspective, this notion is something that agents can
knowingly announce. For the same reason, it is also “safe”. If an agent has
knowledge-consistent intentions at a state, he also has knowledge-consistent in-
tentions at all states which he considers possible. But then the announcement
of knowledge-consistency keeps all these states—and by the same token keeps
him—knowledge-consistent. In other words, announcing knowledge consistency
cannot be self-defeating. It is also robust to its corresponding operation.

5.3.10. Fact. The announcement of
∨
i∈I IR

∗
i is self-fulfilling for any pointed

model M, w with state-independent intentions.

Proof. The proof follows the same line as in the previous fact. Namely, I show
that if M, w |= IR∗

i then M|
W
i∈I IR

∗
i
, w |= A IR∗

i . The reasoning is entirely similar.
Take any w′ ∈ W|IR∗ . We know that ↓ιi(w′) ∩ [w′]i 6= ∅. Now take any w′′ in this
intersection. Because we work with state independent intentions, we know that
ιi(w

′′) = ιi(w
′) and because w′′ ∼i w

′ we know that w′′(i) = w′(i). Furthermore,
because ∼i is an equivalence relation we know that [w′′]i = [w′]i. This means
that w′′ ∈ ||IR∗

i ||. This gives us that ↓ιi|IR∗
i
(w′) = ιi(w

′) ∩ ||IR∗
i || and also that

w′′ ∈↓ιi|IR∗
i
(w′) ∩ [w′]i|IR∗

i
, as required. �

In proving this fact I also show that agents remain knowledge-consistent after
the announcement of this fact. Once again, it is worth stressing that planning
agents in strategic games with intentions can deduce this. In other words, the
proof of this fact unveils another valid formula to which corresponds explicit
reasoning which agent performs in games with intentions.

Let me call epistemic cleaning the operation that corresponds to the an-
nouncement of knowledge-consistency. As one can expect from Section 5.2.2,
there is a tight connection between epistemic and non-epistemic, that is intention-
rationality-based cleaning. All the profiles that survive the first operation would
survive the altruistic cleaning. Moreover, no further transformation can be achie-
ved by altruistic cleaning after an epistemic one.

5.3.11. Fact. For any pointed model M, w with state-independent intentions:∥∥∥ ∨
i∈I

IR∗
i

∥∥∥
|
W
i∈I IR

∗
i

⊆
∥∥∥ ∨
i∈I

IRi

∥∥∥
|
W
i∈I IRi

Furthermore, there exist pointed models where this inclusion is strict.
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Proof. The first part follows directly from Lemma 5.3.9, 5.3.10 and 5.2.7. For the
second part, take the model in Figure 5.9, with ι1 = {w1, w3} and ι2 = {w1, w4}.
Observe that no state is ruled out by altruistic cleaning. But w2 is eliminated by
epistemic cleaning. Indeed, we have M, w2 |= ¬IR∗

1 ∧ ¬IR∗
2. �

w1 w2

M

w3 w4

2

1

Figure 5.9: The game for the proof of Fact 5.3.11. Only the epistemic relations
are represented.

For epistemic game frames with state-independent intentions, the “original”
environment of cleaning, the static connection between intention-rationality and
knowledge-consistency thus carries through to their dynamic counterparts. But
what about the more general case of state-dependent intentions? In this more
general framework the two types of cleaning are distinguished more sharply. Only
knowledge consistency remains robust to its corresponding announcement.

5.3.12. Fact. The announcement of
∨
i∈I IR

∗
i is self-fulfilling for any pointed

model M, w.

Proof. Inspecting the proof of Lemma 5.3.10 reveals that, in fact, I did not need
to use the state-independence of intention to conclude that ιi(w

′′) = ιi(w
′). This

was already ensured by the fact that w′′ ∼i w
′. �

5.3.13. Fact. The announcement of
∨
i∈I IRi is not self-fulfilling for arbitrary

pointed model M, w.

Proof. Take again the set of states in Figure 5.9, but fix the intentions as in
Table 5.4. The announcement of

∨
i∈I IRi removes w2 and w3, making both agents

intention-irrational at w1. �

This shows that non-epistemic cleaning is more sensitive to state-dependent
intentions than its epistemic variant. Again, in more colloquial terms, one an-
nouncement of intention-rationality can mess things up when agents have state-
dependent intentions. But, interestingly enough, this is not the case in the long
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w ↓ι1(w) ↓ι2(w)
w1 w2, w4 w3, w4

w2 w3 w1

w3 w2 w4

w4 w4 w4

Table 5.4: The state-dependent intentions for Figure 5.9.

run. That is, announcing intention-rationality is self-fulfilling if it is repeated
often enough, so to speak. To see this requires a few preparatory facts.

As the remark in Section 5.3.1 already suggested, I introduced the intention-
revision policy precisely to avoid cases where a truthful announcement would leave
the agent with inconsistent intentions. This is in fact something that agents can
explicitly deduce in epistemic game frames.

5.3.14. Fact. M |=
∧
i∈I [φ!]ii> for all models for game structure M.

Proof. This could be shown semantically, going through the various clauses
of the definition of cleaned models. Here, however, I can put the axioms from
Section 5.3.2 to work to show that

∧
i∈I [φ!]ii> is valid. In this proof the numbers

refer to Table 5.3 on page 107.
We start with [φ!]¬Ii⊥, which is the same as [φ!]ii>. By (2), this is equivalent

to :
φ→ ¬[φ!]Ii⊥

Now, by (5), the consequent expends into two parts Φ = iiφ ∧ Ii(φ→ [φ!]⊥) and
Ψ = ¬iiφ ∧ [φ!]A⊥, that I treat separately to keep the formulas readable.

φ→ ¬(φ→ (Φ ∨Ψ))

Before looking at each disjunct, some redundancy can be eliminated by proposi-
tional reasoning, to get:

φ→ ¬(Φ ∨Ψ)

Now let us first look at Φ = iiφ ∧ Ii(φ → [φ!]⊥). By (1)—⊥ can be treated as a
propositional atom—we get:

iiφ ∧ Ii(φ→ (φ→ ⊥))

This is equivalent in propositional logic to:

iiφ ∧ Ii(¬φ)

But the second conjunct is just the negation of the first, which means that Φ is
just equivalent to ⊥. We are thus left with :

φ→ ¬(⊥ ∨Ψ)
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Which is just the same as :
φ→ ¬Ψ

Now, recall that B is the following:

¬iiφ ∧ [φ!]A⊥

By (4), this expands to:
¬iiφ ∧ A(φ→ [φ!]⊥)

By (1) again, we thus get:

¬iiφ ∧ A(φ→ (φ→ ⊥))

This again reduces to:
¬iiφ ∧ A(¬φ)

Putting this back in the main formula, we get:

φ→ ¬(¬iiφ ∧ A(¬φ))

But then propositional reasoning gets us:

(φ ∧ A¬φ) → iiφ

But the antecedent is just a contradiction of the axiom (Ref) for E, and so we
get:

⊥ → iiφ

Which is a tautology. Since we took an arbitrary i, we can conclude that∧
i∈I [φ!]ii> is also one. �

As just stated, this result tells us that the intention revision policy that I intro-
duce does indeed preserve the consistency of plans, and that planning agents can
deduce this in epistemic game frames. But it also bears important consequences
for the fixed-point behaviour of non-epistemic cleaning.

5.3.15. Definition. [Announcement stabilization] Given a pointed game model
M, w, let Mk

|φ, w be the pointed model that results after announcing k times φ at

w. The announcement of φ stabilizes at k for M, w whenever Mk
|φ, w = Mk+1

|φ , w.

To show that non-epistemic cleaning is self-fulfilling at the fixed point, I first
have to show that it indeed reaches such a point.

5.3.16. Fact. [Stabilization of [
∨
i∈I IRi!]] For any pointed model M, w, the an-

nouncement of
∨
i∈I IRi stabilizes at some k.
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Proof. Assume that there is no such k.24 This means that there is no k such
that Mk

|
W
i∈I IRi

, w = Mk+1
|
W
i∈I IRi

, w. Since we work with finite models, this means

that there is a finite n-step loop where Mk
|
W
i∈I IRi

= Mk+n+1
|
W
i∈I IRi

such that

Mk
|
W
i∈I IRi

, w 6= Mk+1
|
W
i∈I IRi

, w 6= ... 6= Mk+n
|
W
i∈I IRi

6= Mk+n+1
|
W
i∈I IRi

Now, observe that by Definition 5.3.2:

W k
|
W
i∈I IRi

⊇ W k+1
|
W
i∈I IRi

⊇ ... ⊇ W k+n
|
W
i∈I IRi

⊇ W k+n+1
|
W
i∈I IRi

But since Mk
|
W
i∈I IRi

= Mk+n+1
|
W
i∈I IRi

, all these inclusion are in fact equalities.

W k
|
W
i∈I IRi

= W k+1
|
W
i∈I IRi

= ... = W k+n
|
W
i∈I IRi

= W k+n+1
|
W
i∈I IRi

Given the definition of the relations ∼i and �i, it must then be that for all 0 ≤ ` ≤
n, there is a i ∈ I and a w ∈ W k+`

|
W
i∈I IRi

such that ιk+`i,|
W
i∈I IRi

(w) 6= ιk+`+1
i |

W
i∈I IRi

(w).

But this cannot be, as the following two cases show, and so there cannot be such
a loop.

1. Assume that:

↓ιk+`i|
W
i∈I IRi

(w) ∩
∥∥∥∨
i∈I

IRi

∥∥∥k+` 6= ∅ (1)

This means that:

ιk+`+1
i |

W
i∈I IRi

(w) =↑
(
↓ιk+`i|

W
i∈I IRi

(w) ∩
∥∥∥∨
i∈I

IRi

∥∥∥k+`)
But observe that, while W k+`+1

|
W
i∈I IRi

= W k+`
|
W
i∈I IRi

:∥∥∥∨
i∈I

IRi

∥∥∥k+` = W k+`+1
|
W
i∈I IRi

This means that:

ιk+`+1
i|

W
i∈I IRi

(w) =↑(↓ιk+`i|
W
i∈I IRi

(w) ∩ W k+`
|
W
i∈I IRi

) =↑↓ ιk+`i|
W
i∈I IRi

(w) = ιk+`i|
W
i∈I IRi

(w)

So (1) cannot hold while:

ιk+`i|
W
i∈I IRi

(w) 6= ιk+`+1
i|

W
i∈I IRi

(w)

24If we could show that this announcement is a monotone map, i.e. if it were the case that
M|

W
i∈I IRi

⊆ M′
|

W
i∈I IRi

provided that M ⊆ M′, then we would be done. See Apt [2007]. Un-
fortunately this announcement is not monotonic. We indeed have that W|

W
i∈I IRi

⊆ W ′
|

W
i∈I IRi

if M ⊆ M′. The non-monotonicity lies in the update rule for the intention set. It is not very
complicated to devise an example where M ⊆ M′ but in which there is a w ∈ W and an i ∈ I
such that ιi|

W
i∈I IRi

(w) 6⊆ ι′i|
W

i∈I IRi
(w). For this reason I show the existence of the fixed point

directly.
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2. Assume then that:

↓ιk+`i|
W
i∈I IRi

(w) ∩
∥∥∥∨
i∈I

IRi

∥∥∥k+` = ∅ (2)

In this case ιk+`+1
i|

W
i∈I IRi

(w) just becomes {W k+`+1
|
W
i∈I IRi

}. But recall that by defi-

nition,W k+`+1
|
W
i∈I IRi

is just ||
∨
i∈I IRi||k+`. But since we know thatW k+`+1

|
W
i∈I IRi

=

W k+`
|
W
i∈I IRi

, this means that ||
∨
i∈I IRi||k+` = W k+`

|
W
i∈I IRi

. But that would
mean:

↓ιk+`i|
W
i∈I IRi

(w) ∩W k+`
|
W
i∈I IRi

= ∅

Which is just to say that

↓ιk+`i|
W
i∈I IRi

(w) = ∅

Which is impossible by Fact 5.3.14.

�

5.3.17. Corollary. If the announcement of intention-rationality stabilizes at
k for a given pointed model M, w, then Mk

|
W
j∈I IRj

, w |=
∧
i ii>.

With this in hand, we get the intended results almost automatically.

5.3.18. Fact. [Successfulness of [
∨
i∈I IRi!]-stabilization] At any k where [

∨
i∈I IRi!]

stabilizes, Mk
|
W
i∈I IRi

, w |=
∨
i∈I IRi.

Proof. Assume not, then Mk
|
W
i∈I IRi

, w |= ¬
∨
i∈I IRi. But then w 6∈ Mk+1

|
W
i∈I IRi

,

against the assumption that the announcement of
∨
i∈I IRi stabilizes at k. �

This means that, even though non-epistemic cleaning is not necessarily safe
after one announcement, it is in the long run. But the route to a stable contracted
epistemic game frame is much quicker with epistemic cleaning25.

5.3.19. Fact. For any pointed model M, w, the announcement of
∨
i∈I IR

∗
i sta-

bilizes after one announcement.

Proof. By definition,W|
W
i∈I IR

∗
i

= ||
∨
i∈I IR

∗
i ||. But we also know from Fact 5.3.12

that for all w′ inW|
W
i∈I IR

∗
i
, M|

W
i∈I IR

∗
i
, w′ |=

∨
i∈I IR

∗
i . This means that M2

|
W
i∈I IR

∗
i

=

M|
W
i∈I IR

∗
i
. �

25The situation here is similar to what happens for announcements of weak and strong ratio-
nality in [van Benthem, 2003]. The comparison of these various transformations would certainly
be illuminating. I look a briefly at their interaction in Section 5.3.3.
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Moreover, as the example in the proof of Fact 5.3.13 suggests, these stabiliza-
tion points can be slightly different.

5.3.20. Fact. [Fixed points divergence] There exist models M where the an-
nouncement of intention-rationality stabilizes at k such that :

M|
W
i∈I IR

∗
i
6⊆ Mk

|
W
i∈I IRi

Proof. Take a model M with two agents and four states, w1 to w4, where
[w]i = {w} for all states. Fix the intentions as in Table 5.5. It should be clear

w ↓ι1(w) ↓ι2(w)
w1 w2 w1

w2 w1 w4

w3 w3 w3

w4 w4 w4

Table 5.5: The intentions of the agents in counterexample for Fact 5.3.20.

that in all states, M, w |=
∨
i∈I IRi. This means that for all states, M|

W
i∈I IRi

, w =
M, w, i.e. this announcement does not remove any states, and so that M is
its own stabilization point. But observe, on the other hand, that at M, w2 6|=∨
i∈I IR

∗
i . But since ↓ ι1(w1) = {w2}, we get ↓ ι1,|Wi∈I IR

∗
i
(w1) = {w1, w3, w4}

after the announcement of knowledge-consistency at w1. But then it is clear that
↓ ι1,|Wi∈I IR

∗
i
(w1) 6⊆↓ ι1,|Wi∈I IRi

(w1), and since in this case the announcement of∨
i∈I IRi “stabilizes” at k = 0, we get that M|

W
i∈I IR

∗
i
6⊆ MkW

i∈I IRi
�

This last result is essentially a consequence of the intention-revision policy. It
preserves consistency of intentions, but it sometimes forces agents in epistemic
game frames to adjust their intentions in the face of non-epistemic cleaning in a
way that would not have been necessary for epistemic cleaning.

This difference between the fixed points of epistemic and non-epistemic clean-
ing is, however, the only one that can occur. In particular, knowledge-consistency
is robust to any number of altruistic cleanings. This is, once again, something
the agents can deduce in strategic games with intentions. If they are knowledge-
consistent they can conclude that they remain so after the announcement of
altruistic cleaning.

5.3.21. Fact. For all pointed models M, w, if M, w |=
∨
i∈I IR

∗
i then M, w |=

[
∨
i∈I IRi!]

∨
i∈I IR

∗
i .

Proof. Assume that M, w |=
∨
i∈I IR

∗
i , i.e. that there is an i and a w′ ∼i w such

that w′ ∈↓ιi(w). Because IR∗
i is introspective, this means that M, w′ |=

∨
i∈I IR

∗
i .

But then M, w′ |=
∨
i∈I IRi, which means that both w′ and w are in W|

W
i∈I IRi

,
and also that w′ ∈ ↓ιi|Wi∈I IRi

(w). But then M, w |= [
∨
i∈I IRi!]

∨
i∈I IR

∗
i . �
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5.3.22. Corollary. Suppose that for a pointed model M, w the announcement
of intention-rationality stabilizes at k, then∥∥∥∨

i∈I

IR∗
i

∥∥∥
|
W
i∈I IR

∗
i

⊆
∥∥∥∨
i∈I

IRi

∥∥∥k
|
W
i∈I IRi

Using DLGF , we thus get a very general picture of cleaning-like operations
and of their associated reasoning in epistemic game frames. Not only have I been
able to recapture altruistic cleaning, but we have seen that there is in fact a whole
family epistemic variants of this operation, which correspond to new epistemic
criteria for admissibility. Much more could be said along these lines, of course.
In particular, it would be interesting to have a systematic classification of the
possible types of cleaning, according to their relative strengths or their long run
behaviour. I do not, however, pursue these matters here. I rather look at two
other aspects of model transformation involving intentions, namely the cases of
intention overlap and of enabling announcements.

Intention overlap

We saw in Chapter 3 (Section 3.8) that overlap of intentions, or what I called
intention agreement, is crucial to ensure coordination in the general case. In this
section I look at whether intention overlap is something that could be forced, so
to speak, by an arbitrary announcement in epistemic game frames. As we shall
see, this is unfortunately not the case. The intentions of agents overlap after an
arbitrary announcement only if they already overlapped before the announcement,
at least for the agents whose intentions were compatible with the announcement.
To see this, let me first fix the formal definition of intention overlap in epistemic
game frames.

5.3.23. Definition. [Intention Overlap] At a pointed epistemic game frame
G, w, the intentions of the agents overlap whenever there is a w′ ∈ W such
that w′ ∈ ↓ιi(w) for all i ∈ I.

Obviously, if the intentions of the agents overlap at a state w in a given epistemic
game frame, then for any model based that frame we have: M, w |=

∨
σ∈S

∧
i∈I iiσ.

With this in hand, one can directly show general conditions for overlapping.

5.3.24. Fact. [Intention overlap] For any pointed model M, w, the following are
equivalent:

(i) M, w |= [φ!]
∨
σ∈||φ||

∧
i∈I iiσ

(ii) There is a w′ ∈ ||φ|| such that for all i ∈ I, if ↓ ιi(w) ∩ ||φ|| 6= ∅ then
w′ ∈↓ιi(w).
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Proof. The first part of the proof is be syntactical. I again use axioms from
page 107 to “deconstruct” the post-announcement conditions of (i) into pre-
announcement conditions. Then I show, via a correspondence argument, that
these conditions are indeed those expressed by (ii). So let us start with:

[φ!]
∨

σ∈||φ||

∧
i∈I

iiσ

This formula is propositionally equivalent to :

[φ!]¬
∧

σ∈||φ||

¬
∧
i∈I

iiσ

Then, by (2) and (3) , we get:

φ→ ¬
∧

σ∈||φ||

[φ!]¬
∧
i∈I

iiσ

By (2) again, we obtain:

φ→ ¬
∧

σ∈||φ||

(φ→ ¬
∧
i∈I

[φ!]iiσ)

Now we can replace ii by its dual:

φ→ ¬
∧

σ∈||φ||

(φ→ ¬
∧
i∈I

[φ!]¬Ii¬σ)

We then reapply (2):

φ→ ¬
∧

σ∈||φ||

(φ→ ¬
∧
i∈I

(φ→ [φ]Ii¬σ))

This, after some transformation from propositional logic, reduces to:

φ→
∨

σ∈||φ||

∧
i∈I

(φ→ ¬[φ!]Ii¬σ)

Now I will look at [φ!]Ii¬σ separately. By (5) it reduces to:

φ→ ((iiφ ∧ Ii(φ→ [φ!]¬σ)) ∨ (Ii¬φ ∧ [φ!]A¬σ))

By (2) and (4), this is the same as:

φ→ ((iiφ ∧ Ii(φ→ ¬σ)) ∨ (Ii¬φ ∧ A(φ→ ¬σ))
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Now, reinserting this formula in the main one and pushing the negation inside,
we get:

φ→
∨

σ∈||φ||

∧
i∈I

(φ→ (iiφ→ ii(φ ∧ σ)) ∧ (Ii¬φ→ E(φ ∧ σ)))) (Post)

I am now ready for the correspondence argument, which boils down to show-
ing that (Post) is true at a pointed model M, w iff (ii) holds. We have that
M, w, |= Post iff there is a σ and a w′ ∈ ||φ|| with V (σ) = {w′} such that for all
i ∈ I the two conjuncts hold, provided that M, w |= φ. Observe first that the two
conjuncts divide the agents into two groups. On the one hand are those such that
↓ιi(w) ∩ ||φ|| 6= ∅, i.e. those whose intentions are compatible with the announce-
ment of φ. On the other hand are those whose intentions are not compatible with
this announcement. Let us look at this case first, which is taken care of by the
second conjunct Ii¬φ → E(φ ∧ σ). This simply restates what we already knew,
namely that φ holds at w′, which means that the truth of this formula in fact
only depends on the first conjunct, iiφ→ ii(φ∧σ). This bluntly says that w′ was
already compatible with the intentions of all the agents in the first group before
the announcement of φ, which is just what (ii) enforces. �

This result tells us that intention overlap occurs after an arbitrary truthful
announcement only in cases where it already occurred before, at least for the
agents that had intentions compatible with the announcement. In other words,
announcing arbitrary truths is not sufficient to force intention overlap. This is also
something which features in the agents’ reasoning about epistemic game frames,
and the proof of this in fact explicitly shows part of this reasoning.

To ensure intention-overlap, and with it coordination in the general case,
one has to look for more specific, i.e. stronger, forms of announcement. For
example, the blunt announcement of the current strategy profile would surely do
it. But this is not a very interesting case, for agents typically do not know what
the actual profile is in epistemic game states. It would be more interesting to
find introspective formulas of LGF whose announcement would ensure intention
overlap.

Fact 5.3.24 states that overlap occurs after an announcement whenever it
occurred before, for the agents whose intentions were compatible with the an-
nouncement. This means that, for the others, arbitrary announcements do force
overlap. In fact, they do so in a very blunt way. All agents which have intentions
inconsistent with a given announcement end up with the same intention set in the
contracted epistemic game frame. So far, I have neglected this important aspect
of the intention revision policy. It revises the intentions of agents in a uniform
manner, brushing aside all differences in the pre-announcement intentions of such
agents. From that point of view, the revision policy that I embodied here does
indeed appear coarse-grained. This can be taken as a good reason to seek a more
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subtle policy of intention revision. But this can also be viewed from a more posi-
tive point of view. Precisely because it is so “blunt”, the intention revision policy
I use in this chapter also ensures intention overlap in case of revision. In other
words, together with the coordination results in Chapter 3, it brings together the
reasoning-centered and the volitive commitment of intentions.

Conditions for the enablement of cleaning

So far my attention has mainly focused on cases where cleaning does remove
states from the epistemic game frame. But it can well be that this operation
leaves the structure unchanged. In such cases, cleaning might benefit from other
announcements to get started, so to speak. Here I provide one case study for such
“enabling announcements” [van Benthem, 2003]. I look at the conditions under
which announcing weak rationality (Section 5.2.2) enables epistemic cleaning. Let
me first explain formally what enabling announcements are.

5.3.25. Definition. [Enabling announcements] The announcement of φ enables
the announcement of ψ for a given model M whenever the following holds:

• M|ψ = M

• M|φ|ψ ⊂ M|φ ⊂ M

With non-empty W for all these models.

In words, an announcement is enabling of another whenever, on the one hand,
the second would by itself leave the original model unchanged but, on the other
hand, it does change the model after announcement of the first. In other words,
an announcement of φ enables the announcement of ψ when information in an
epistemic game frame is not affected by the announcement of ψ alone, but it
is affected by this announcement after the announcement of φ has taken place.
As one can expect, announcing weak rationality enables cleaning under specific
conditions at the interplay between what agents intend and what they prefer.

5.3.26. Fact. [Enabling IR∗
i with WRj] For any model M, the announcement

of WRi enables the announcement of IR∗
j iff for all w, M, w |= IRj but there are

some w such that

• M, w |= WRi.

• ↓ιj(w) ∩ ||WRi|| 6= ∅.

• for all w′ ∈↓ιj(w) ∩ [w]j, M, w′ 6|= WRi.
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Proof. First the left-to-right direction. Assume that in M the announcement of
WRi enables the announcement of IRj. That means first that M|IRj = M, which
means that for all w ∈ W , M, w |= IRj, i.e. ↓ιj(w)∩ [w]j 6= ∅. On the other hand,
that M|WRi|IR∗

j

⊂ M|WRi means that for some of these w, we have M, w |= WRi

but ↓ ιj,|WRi(w) ∩ [w]j|WRi = ∅. Now ιj,|WRi(w) can be obtained in two ways,
depending on whether ↓ιj(w) ∩ ||WRi|| = ∅ or not. Consider the first case. We
then would have ιj,|WRi(w) = {||WRi||}. But given that ||WRi|| is not empty for
any game model, see [van Benthem, 2003, p.17] and that [w]j|WRi ⊆ ||WRi||, we
would conclude against our assumption that ↓ιj,|WRi(w)∩ [w]j|WRi 6= ∅. So it has
to be that ↓ιj(w)∩||WRi|| 6= ∅. In this case ιj,|WRi(w) =↑(↓ιj(w)∩||WRi||). This
means that there are some w′ ∈ ↓ιj(w) ∩ [w]i while w′ 6∈ ↓ιj|WRi(w) ∩ [w]j|WRj .
Now, unpacking the definitions of the update rule for the intention set and the
epistemic relation, we get, for all w:

if w ∈ (↓ιi(w) ∩ [w]i ∩ ||WRj||) then w ∈↓ιi|WRj(w) ∩ [w]i|WRj

Putting this in contrapositive, we get that for all w′ 6∈↓ιj|WRi(w)∩ [w]j|WRi while
being in ↓ιj(w) ∩ [w]j, w

′ 6∈ ||WRi||
For the right-to-left direction, observe first that for all w, M, w |= IRj is the

same as to say that M|IRj = M. Now, take one w as specified. Since M, w |= WRi

and M, w′ 6|= WRi for all w′ ∈↓ιj(w) ∩ [w]j, we know that M|WRi ⊂ M and that
the former is not empty. Now, because ↓ιj(w) ∩ ||WRi|| 6= ∅ we also know that
ιj,|WRi(w) =↑(↓ιj(w)∩||WRi||), which means that ↓ιj,|WRi(w) ⊆↓ιj(w). Moreover
[w]j|WRi ⊆ [w]j by definition. This means that ([w]j|WRi∩ ↓ιj,|WRi(w)) ⊆ ([w]j∩ ↓
ιj(w)). What is more, by assumption, (↓ιj(w) ∩ [w]j) ⊆ ||¬WRi||, which in the
present context can only result in ↓ιj|WRi(w) ∩ [w]j|WRi = ∅. This means that
w 6∈ W|WRi|IR∗

j

, and so that M|WRi|IR∗
j

⊂ M|WRi . �

This fact shows that cleaning is enabled by announcement of weak rationality
just in case some agents have formed intentions without taking the rationality of
others into account. They intend to achieve profiles that their opponent would
never rationally choose. This is of course reminiscent of the interplay we saw
in Chapter 4 between pruning and preferences in cases of sub-optimal picking
functions (Section 4.2). What is going on here is indeed that weak-rationality
enables cleaning only when the agents did not take into account that they are
interacting with other rational agents when forming their intentions. They count
on the others, as it were, to play irrational strategies in order to achieve their
intentions.

Here the interplay between agents is in fact crucial. Because weak rationality
is also introspective26, agents cannot “enable themselves” by first announcing
their own rationality and then their own knowledge consistency.

26See again van Benthem [2003] for a proof of this fact.
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5.3.27. Fact. [No self-enabling] If M, w |= WRj and M, w′ |= IR∗
i for all w′ ∈

W , and WRj enables IR∗
i , then i 6= j.

Proof. We would be done if we can show that M|WRi|IR∗
i

= M|WRi provided that

M, w |= WRi and M, w′ |= IR∗
i for all w′ ∈ W . This, in turn, follows from the

Lemma 5.3.28 (below). �

5.3.28. Lemma. For any pointed model M, w, if M, w |= IR∗
i and M, w |= WRi

then M, w |= [WRi!]IR
∗
i .

Proof. I will show the contrapositive. The proof rests crucially on the fact that
WRi is introspective. That is, for any M, w |= WRi we also have M, w′ |= WRi

for all w′ ∼i w.
Assume that M, w 6|= [WRi!]IR

∗
i while M, w |= WRi. That means that

M|WRi , w 6|= IR∗
i , i.e. that ↓ιi|WRi(w) ∩ [w]i|WRi = ∅. Now, as usual, ιi|WRi(w)

can come from two sources.

1. It can be that ιi|WRi(w) = {W|WRi} because ↓ ιi(w) ∩ ||WRi|| = ∅. But
because M, w |= WRi and WRi is introspective, we know that [w]i ⊆
||WRi||, which means that ↓ιi(w) ∩ [w]i = ∅, i.e. M, w, 6|= IR∗

i .

2. It thus remains to check what happens when ↓ιi(w) ∩ ||WRi|| 6= ∅. I will
show that in that case ↓ιi(w) ∩ [w]i and ↓ιi|WRi(w) ∩ [w]i|WRi are just the
same set.

The right-to-left inclusion follows directly from the definitions of the re-
stricted relations and intention set. Now take a w′ ∈↓ ιi(w) ∩ [w]i.
Since w′ ∼i w and WRi is introspective we know that w′ ∈ W|WRi and
w′ ∼i|WRi w. But since ↓ ιi(w) ∩ ||WRi|| 6= ∅, we also know that ↓
ιi|WRi(w) =↓ιi(w) ∩ ||WRi||, which means that w′ is in ↓ιi,|WRi(w) as well.

So ↓ιi(w) ∩ [w]i =↓ιi|WRi(w) ∩ [w]i|WRi . The required conclusion is then a
direct consequence of our assumption that ↓ιi|WRi(w) ∩ [w]i|WRi = ∅.

�

This proof once again displays a valid principle of the logic of strategic games
with intentions: knowledge-consistency is robust to the announcement of weak
rationality. This means that this is also something that planning agents can
deduce in game situations. This exemplifies very well the kind of intention-based
practical reasoning that the present logic can provide: a reasoning precisely at
the intersection of instrumental rationality and planning agency.

Looking more systematically at enabling announcements can surely contribute
to our general understanding of intention-based transformations of decision prob-
lem. As van Benthem [2003] suggests, one might also find interesting cases
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where intention-based announcements enable weak rationality. Given that the
latter correspond to the well-known game theoretical process of elimination of
strongly dominated strategies, this would open the door to a nice interplay be-
tween intention-based and classical game-theoretical reasonings. I shall not pur-
sue that here, however. In Appendix 5.5.6 I show, much in the spirit of van
Benthem [2003], that Nash equilibria can be given a dynamic characterization in
DLGF . This already indicates that this language, and with it the whole “DEL
methodology”, is also quite suited to capturing game-theoretical notions.

These consideration close the section on the dynamics of epistemic game frames
with intention. Before looking back at the whole chapter, let me briefly review
what we saw in this section.

By taking a logical stance, I have connected cleaning to the notion of intention-
rationality and I have situated it within a bigger family of option-excluding op-
erations. In particular, I studied the connection between two forms of cleaning,
the altruistic version and its “epistemic” variant. I showed that these operations
behave quite similarly in epistemic game frames with state-dependent intentions,
but that they might diverge in the long run once this assumption is lifted. As
I noted, the coarse-grained intention revision policy that I introduced is mostly
responsible for this divergence. I gained a better assessment of the pros and cons
of this policy by taking a look at condition for intention overlap. I also investi-
gated the interplay between cleaning and announcement of weak rationality, and
provided conditions under which the second enables the first. All through this
section, I also pointed to many instances of valid principles in epistemic games
frames which, by the completeness result of Section 5.3.2, correspond directly to
reasoning of planning agents in such interactive situations.

5.4 Conclusion

In this chapter, I have proposed a unified theory of practical reasoning in in-
teractive situations with intentions. We have seen that some aspects of the
volitive commitment of intentions echo their reasoning-centered commitments,
e.g. intention-rationality and exclusion of inadmissible options. I have also been
able to match conditions on what the agents know and intend with epistemic
game frame transformations, e.g. knowledge consistency and “epistemic” clean-
ing. Taking the logical point of view also allowed me to venture into new ter-
ritories, namely policies of intention-revision, general conditions for overlap of
intentions and enabling of model transformation, all provided with a concrete
deductive counterpart. Even though there is still a lot to explore about these
three topics, I hope to have open the way towards a fully developed theory of
intention-based practical reasoning in games.

Throughout this chapter, and more generally in this thesis, I have made no
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attempt to connect with another important paradigm for intention-based practi-
cal reasoning, the so-called BDI (Belief-Desire-Intention) architectures for multi-
agent systems27. Although very similar in method and aims, the BDI models
have not been developed for direct application to strategic games, which makes
it at least not trivial to see how they relate to the present framework. It would
nevertheless be worthwhile investigating the connection. The work on intention
revision of van der Hoek et al. [2007], which is strongly based on the BDI archi-
tectures, can definitely enrich what I have proposed here, and the explicit focus
on games could arguably profit BDI reasoning, too. I shall not, however, go in
that direction in the next chapter. I rather take a step back and ask why, to start
with, intentions play such a role for planning agents. This will allow me to clarify
some philosophical concepts that I used since the beginning of this thesis, while
at the same time opening the door to unexpected avenues for practical reasoning
with intentions in strategic interaction.

5.5 Appendix

5.5.1 Bisimulation and modal equivalence for LP
5.5.1. Definition. [Modal equivalence] Two pointed preference models M, w
and M′, v are modally equivalent, noted M, w ! M′, v, iff for all formula φ of
LP , M, w |= φ iff M′, v |= φ.

5.5.2. Definition. [Bisimulation] Two pointed preference models M, w and M′, v
are bisimilar, noted M, w ↔ M′, v, whenever there is a relation E ⊆ M×M′ such
that:

1. For all p ∈ prop, w ∈ V (p) iff v ∈ V (p),

2. (Forth) if w′ � w (w′ � w) then there is a v′ ∈ W ′ such that v′ �′ v (v′ �′ v
respectively) and w′Ev′,

3. (Back) if v′ �′ v (v′ �′ v) then there is a w′ ∈ W such that w′ � w (w′ � w
respectively) and v′Ew′,

4. For all w′ ∈ W , there is a v′ ∈ W ′ such that w′Ev′, and

5. For all v′ ∈ W ′, there is a w′ ∈ W such that v′Ew′.

The relation E is called a total bisimulation between M, w and M′, v. If E is a
bisimulation and M, w ↔ M′, v, then we say that w and v are bisimilar, which is
noted w ↔ v.

27Key references here are Cohen and Levesque [1990], Georgeff et al. [1998] and Wooldridge
[2000].
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As usual in modal logic, one can show that any two bisimilar pointed preference
models are modally equivalent. In other words, truth in LP is invariant under
bisimulation.

5.5.2 More on lifted relations in LP
The following lifted preference relations can be defined in LP :

5.5.3. Definition. [Binary preference statements]

1. ψ ≥∃∃ φ ⇔ E(φ ∧ ♦≤ψ)
2. φ ≤∀∃ ψ ⇔ A(φ→ ♦≤ψ)
3. ψ >∃∃ φ ⇔ E(φ ∧ ♦<ψ)
4. φ <∀∃ ψ ⇔ A(φ→ ♦<ψ)

The formulas ψ ≥∃∃ φ and ψ >∃∃ φ may be read as “there is a ψ-state that is at
least as good as a φ-state” and “there is a ψ-state that is strictly better than a
φ-state”, respectively. The other comparative statements, φ ≤∀∃ ψ and φ <∀∃ ψ,
can be read as “for all φ-states there is an at least as good ψ-state” and as “for
all φ-state there is a strictly preferred ψ-state”, respectively.

We can define further binary preference statements as duals of the above
modalities.

5.5.4. Definition. [Duals]

5. φ >∀∀ ψ ⇔ ¬(ψ ≥∃∃ φ) ⇔ A(φ→ �≤¬ψ)
6. φ >∃∀ ψ ⇔ ¬(φ ≤∀∃ ψ) ⇔ E(φ ∧�≤¬ψ)
7. φ ≥∀∀ ψ ⇔ ¬(ψ >∃∃ φ) ⇔ A(φ→ �<¬ψ)
8. φ ≥∃∀ ψ ⇔ ¬(φ <∀∃ ψ) ⇔ E(φ ∧�<¬ψ)

The first formula tells us that “everywhere in the model, if φ is true at a state,
then there is no ψ-state at least as good as it”. Observe that if the underlying
preference relation is total, this boils down to saying that all φ-states, if any, are
strictly preferred to all ψ-states, also if any. This is indeed the intended meaning
of the notation φ >∀∀ ψ. Similarly, the second dual says, under assumption of
totality, that there is a φ-state strictly preferred to all the ψ-states, if any. These
intended meaning are, however, not definable in LP without assuming totality.

5.5.5. Fact. The connectives φ >∀∀ ψ, φ >∃∀ ψ, φ ≥∀∀ ψ and φ ≥∃∀ ψ, in
their intended meaning, are not definable in LP on non-totally ordered preference
frames.

Proof. See van Benthem et al. [Forthcoming]. �
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5.5.6. Definition. [Relation Lifting] A property lifts with a relation ≤ in the
class of models M if whenever � as this property the lifted relation ≤ also has it.

5.5.7. Fact. With respect to the class of preference models, reflexivity and total-
ity lift with ≥∃∃ for satisfied formulas and with ≤∀∃ for any formulas. Transitivity
does lift with ≤∀∃ for satisfied formulas, but not with ≥∃∃.

Proof. The proof is trivial for reflexivity, in both cases, for totality with ≥∃∃ and
for transitivity with ≤∀∃, both for satisfied formulas. Totality for ≤∀∃ has been
proved in Section 5.1.2.

For failure of transitivity lifting with ≥∃∃, take a preference model with four
states where w1 � w2 � w3 � w2. Make φ only true at w1 and w4, ψ only at w3

and ξ only at w3. We clearly get ψ ≥∃∃ φ, φ ≥∃∃ ξ but not ψ ≥∃∃ ξ. �

Halpern [1997] and Liu [2008] have other results of this kind, with different
binary relations among formulas.

5.5.3 More on the expressive power of LGF
In the following definition, the clauses 2 and 3 are intended to apply to both �i

and ∼i. For that reason I simply write R.

5.5.8. Definition. [Bisimulation] Two pointed game pointed models M, w and
M′, v are bisimilar, noted M, w ↔ M′, v, whenever there is a relation E ⊆ M×M′

such that:

1. For all x ∈ prop ∪ S,w ∈ V (x) iff v ∈ V (x),

2. (Forth -R) if w′Rw then there is a v′ ∈ W ′ such that v′Rv and w′Ev′,

3. (Back -R) if v′Rv then there is a w′ ∈ W such that w′Rw and v′Ew′,

4. [ten Cate, 2005, p.47] For all σ ∈ S, if V (σ) = {w} and V ′(σ) = {v} then
wEv.

5. [Hansen, 2003, p.18] (Forth -ι) if X ∈ ιi(w) then there is a X ′ ⊆ W ′ such
that X ′ ∈ ι(v) and for all v′ ∈ X ′ there is a w′ ∈ X such that w′Ev′.

6. [Hansen, 2003, p.18] (Back -ι) if X ′ ∈ ιi(v) then there is a X ⊆ W such
that X ∈ ι(w) and for all w′ ∈ X ′ there is a v′ ∈ X such that v′Ew′.

Truth in LGF is indeed invariant under this notion of bisimulation.

5.5.9. Fact. [Nash Equilibrium without nominals] Let LGF− be LGF minus the
nominals. Nash equilibrium is not definable in LGF−.
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G1 t1 t2
s1 1 0
s2 1 0

G2 t0 t1 t2
s1 3 1 0
s2 2 1 0

Table 5.6: Two games with bisimilar models but different Nash equilibria. The
payoffs are identical for both players.

Proof. Look at the pair of games in Table 5.6, where the payoffs are the same for
both agents. Take the models for these games depicted in Figure 5.10. Assume
that for all w ∈ W and i ∈ {1, 2}, ιi(w) = {W}, {w′ : w ∼i w

′} = {w} and for
all p ∈ prop, V (p) = ∅, and similarly in M′.

It is easy to check that LGF− is invariant under bisimulation as just defined,
without clauses related to nominals. M and M′ are bisimilar in that sense, as
reveals a rather tedious check from the information in Table 5.7. Now observe
that v3 is a Nash equilibrium, while one of its bisimilar counterpart, w3, is not.

v1 v2

M

M‘

v3 v4

w1 w2

w3 w4

w5 

w6

Figure 5.10: The models for the games in Table 5.6. Only the preference relations
are represented.

�

5.5.4 Proof of Theorem 5.2.13

The proof is essentially a collage of known techniques for the various fragments
of LGF . Before going into detail, let me give a brief survey of the main steps.

The first part amounts to ensuring that we can build a named model for any
consistent set of formulas in LGF . A named model is a model where all states are
indeed “named” by at least one nominal in the language. Once this is secured, we
can really profit from the expressive power provided by nominals. In such models
all properties definable by a pure formula, i.e. a formula with only nominals as
atoms, are cannonical (see ten Cate [2005, p.69]). During the construction of
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Profile in G1 State in M bisimilar to in M ′

(s1, t1) v1 w1, w2, w3, w5, w6

(s1, t2) v2 w2

(s2, t1) v3 w1, w3, w5

(s2, t2) v4 w4

Profile in G2 State in M ′

(s1, t1) w1

(s1, t2) w2

(s2, t1) w3

(s2, t2) w4

(s1, t0) w5

(s2, t0) w6

Table 5.7: The bisimulation for the models in Figure 5.10.

the named model we also make sure that it contains enough states to prove an
existence lemma for E, which is a little trickier than usual in the presence of
nominals. This boils down to showing that it is pasted, a property that is defined
below. All this is routine for hybrid logic completeness. Most definitions and
lemmas come from Blackburn et al. [2001, p.434-445] and Gargov and Goranko
[1993].

I then turn to the other fragments of ΛLGF , by proving existence lemmas for
Ki, ♦<, ♦≤ and Ii. These are completely standard, just like the truth lemma that
comes thereafter. In the only part of the proof that is specific to LGF , I finally
make sure that the model can be seen as an epistemic game model with intentions.
As we shall see, this is a more or less direct consequence of known facts about
neighbourhood semantics, see [Pacuit, 2007], together with the aforementioned
canonicity of pure formulas and the various interaction axioms. From this we will
have shown completeness with respect to the class of epistemic game models with
intentions.

5.5.10. Definition. [Named and pasted MCS] Let Γ be a maximally consistent
set (MCS) of ΛLGF . We say that Γ is named by σ if σ ∈ Γ. If σ names some
MSC(s) Γ we denote it (them) Γσ. Γ is pasted whenever E(σ∧ <> φ) ∈ Γ implies
that E(σ∧ <> σ′) ∧ E(σ′ ∧ φ) is also in Γ.

5.5.11. Lemma (Extended Lindenbaum lemma). [Blackburn et al., 2001,
p.441] Let S ′ be a countable collection of nominals disjoint from S, and let LGF ′
be LGF ∪ S ′. Then every ΛLGF consistent set of formulas can be extended to a
named and pasted ΛLGF ′-MCS.
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Proof.

Naming Enumerate S ′, and let σ be the first new nominal in that enumeration.
For a given consistent set Γ∗, fix Γσ = Γ∪{σ}. By (Name) Γσ is consistent.

Pasting Enumerate the formulas of LGF ′ and take Γ0 = Γσ. Assume Γn is
defined, and let φn+1 be the nth + 1 formula in the enumeration. Define
Γn+1 as Γn if Γn ∪ {φn+1} is inconsistent. Otherwise form Γn+1 by adding
φn+1 to Γn if φn+1 is not of the form E(σ′∧ψ). If φn+1 is of form E(σ′∧ψ),
then we paste with the first new nominal σ′′ in the enumeration of S ′. I.e.
Γn+1 = Γn∪{φn+1}∪{E(σ′∧ <> σ′′)∧E(σ′′∧φ)}. By (Paste), Γn+1 is also
consistent. Set, finally, Γ =

⋃
n≤ω Γn. This is clearly a named and pasted

MCS.

�

5.5.12. Definition. [Yielded MCS] The sets yielded by a ΛLGF ′-MCS Γ are the
sets ∆σ such that ∆σ = {φ : E(σ ∧ φ) ∈ Γ}.

5.5.13. Lemma (Properties of yielded sets). [Blackburn et al., 2001, p.439]
Let ∆σ and ∆σ′ be any yielded sets of a ΛLGF ′-MCS Γ, for arbitrary nominals σ
and σ′ in LGF ′.

1. Both ∆σ and ∆σ′ are named Λ′
LGF -MCS.

2. If σ′ ∈ ∆σ then ∆σ = ∆σ′.

3. E(σ ∧ φ) ∈ ∆σ′ iff E(σ ∧ φ) ∈ Γ.

4. If σ′′ names Γ then Γ is itself the yielded set ∆σ′′.

Proof.

1. By (Existsσ), Eσ ∈ Γ, and thus ∆σ is named. Assume now it is not con-
sistent. That means that there are ξ1 ∧ ... ∧ ξn such that one can prove
¬(ξ1∧ ...∧ ξn) in ΛLGF . But that means that A¬(ξ1∧ ...∧ ξn) ∈ Γ, by (Nec).
This, in turns, means that ¬E(ξ1 ∧ ... ∧ ξn) ∈ Γ. But that can’t be. Recall
that (ξ1 ∧ ... ∧ ξn) ∈ ∆Γ iff E(σ ∧ ξ1 ∧ ... ∧ ξn) is also in Γ. But then by
(K) for E, we get that E(ξ1 ∧ ... ∧ ξn) ∈ Γ. For maximality, observe that a
formula φ and its negation are not in ∆σ iff neither E(σ∧φ) nor E(σ∧¬φ)
are in Γ. But because the latter is a MCS, that means that both ¬E(σ∧φ)
and ¬E(σ ∧ ¬φ) are in Γ. The first formula implies A(σ → ¬φ) ∈ Γ, but
then, given that Eσ ∈ Γ, by a standard modal logic reasoning we get that
E(σ ∧ ¬φ), contradicting the consistency of Γ.
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2. Assume σ′ ∈ ∆σ. That means that E(σ ∧ σ′) ∈ Γ. By (IncE−σ) we get
that both A(σ → σ′) and A(σ′ → σ) are in Γ, and so by K for E, we get
A(σ ↔ σ′) ∈ Γ. Assume now that φ ∈ ∆σ. This means that E(σ ∧ φ) ∈ Γ.
But standard K reasoning we get that E(σ′ ∧ φ) ∈ Γ, which means that φ
is also in ∆σ′ . The argument is symmetric for φ ∈ ∆σ′ , and so ∆σ = ∆σ′ .

3. I first show the left-to-right direction. Assume that E(σ′ ∧ φ) ∈ ∆σ. This
means that E(σ ∧ E(σ′ ∧ φ)) ∈ Γ. But then this implies, by K for E
that EE(σ′ ∧ φ) ∈ Γ, which in turns, because of (Trans) for E, implies
E(σ′ ∧ φ) ∈ Γ. For the converse, assume that E(σ′ ∧ φ) ∈ Γ. By (Sym) for
E, we get that AE(σ′∧φ) ∈ Γ. But we also know by (Existsσ) that Eσ ∈ Γ,
from which we get by standard K reasoning that E(σ∧E(σ′∧φ)) ∈ Γ. This
means that E(σ′ ∧ φ) ∈ ∆σ.

4. Assume that σ ∈ Γ. For the left to right, assume that φ ∈ Γ. This means
that σ ∧ φ ∈ Γ, which implies by (Ref) that E(σ ∧ φ) and so that φ ∈ ∆σ.
Now assume that φ ∈ ∆σ. This means that E(σ ∧ φ) ∈ Γ, which in turn
implies that A(σ → φ) by (IncE−σ). But then by (Ref) again we get that
σ → φ ∈ Γ, and φ itself because σ ∈ Γ.

�

This last lemma prepares the ground for the hybrid fragment for ΛLGF . Now
we need a few more background notions regarding the neighborhood fragment for
this logic.

5.5.14. Definition. [Varieties of neighbourhood functions] [Pacuit, 2007, p.8-9]
For any set W , we say that f : W → P(P(W )) is:

• closed under supersets provided that for all w and each X ∈ f(w), if X ⊆
Y ⊆ W then Y ∈ f(w).

• closed under binary intersections provided that for all w and each X, Y ∈
f(w), X ∩ Y is also in f(w).

• a filter if it is closed under supersets and under binary intersection.

5.5.15. Definition. [Neighbourhood tools] [Pacuit, 2007, p.8-9] Let W Γ be the
set of all named sets yielded by Γ.

• The proof set |φ| of a formula φ of LGF ′ is defined as {∆σ ∈ W Γ : φ ∈ ∆σ}.

• A neighbourhood function ι is canonical for ΛLGF if for all φ, |φ| ∈ ι(∆σ)
iff Iiφ ∈ ∆σ.

• A neighbourhood function ιmin : W Γ → P(P(W )) is minimal if ιmin(∆σ) =
{|φ| : φ ∈ ∆σ}.
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• The supplementation ↑ ιmin of ιmin is the smallest function that contains
ιmin(∆σ) and that is closed under supersets.

5.5.16. Fact. [Properties of ↑ιmin] [Pacuit, 2007] ↑ιmin is well-defined, canonical
for ΛLGF and a filter.

5.5.17. Definition. [Epistemic model for completeness] Let Γ be any named
and pasted ΛLGF ′-MCS. The named game model MΓ yielded by Γ is a tuple
〈 W Γ, I,∼Γ

i ,�Γ
i ,�Γ

i , ι
Γ
i , V

Γ 〉 such that:

• W Γ is the set of sets yielded by Γ.

• I, defined as {i : there is a <>i φ in LGF}, is the set of agents.

• ∆σ ∼Γ
i ∆σ′ iff for all φ ∈ ∆σ′ ,♦iφ ∈ ∆σ, and similarly for �Γ

i and �Γ
i .

• ιΓi (∆σ) =↑ιΓi,min.

• For all x ∈ prop ∪ (S ∪ S ′), V Γ(x) = {∆σ : x ∈ ∆σ}.

5.5.18. Lemma (Existence Lemma for Eφ, Ki, ♦≤
i and ♦<

i .). If ♦iφ ∈ ∆σ

then there is a ∆σ′ ∈ W such that φ ∈ ∆σ′ and ∆σ ∼Γ
i ∆σ′. Similarly for ♦≤

i , ♦<
i

and Eφ. Furthermore, if φ ∈ ∆σ then for all ∆′
σ, Eφ ∈ ∆′

σ.

Proof. Blackburn et al. [2001, p.442] for Ki and the preference modalities. The
argument for Eφ, including the “furthermore” part, is a direct application of
Lemma 5.5.13. �

5.5.19. Lemma (Existence Lemma for Ii). If Iiφ ∈ ∆σ then |φ| ∈ ιΓi (∆σ).

Proof. Trivially follows from the definition of ιΓi . �

5.5.20. Lemma (Truth Lemma). For all φ ∈ Γ, MΓ,∆σ |= φ iff φ ∈ ∆σ.

Proof. As usual, by induction on φ. The basic cases, including the nominals,
are obvious. Now for the inductive cases:

• φ = Eψ, φ = Kiψ, φ = ♦≤ψ and φ = ♦<ψ. Standard modal logic argument
from Lemma 5.5.18.

• φ = Iiψ. [Pacuit, 2007, p.26], from Lemma 5.5.19.

�

All that remains to show is that MΓ is indeed a game model. We start by
looking at the epistemic relation ∼Γ

i .
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5.5.21. Lemma (Adequacy of ∼Γ
i - Part I). The relation ∼Γ

i is an equiva-
lence relation.

Proof. All S5 axioms are canonical [Blackburn et al., 2001, p.203]. �

This means that {[∆σ]i : ∆σ ∈ W Γ} partitions the set W Γ, for each agent. We
can look at these partitions directly as strategies. That is, for each “profile” ∆σ,
set ∆σ(i) = [∆′

σ]i such that ∆σ ∈ [∆′
σ]i. By the previous lemma we automatically

get that this function is well-defined. The rest of the adequacy lemma for ∼Γ
i is

then easy.

5.5.22. Lemma (Adequacy of ∼Γ
i - Part II). For all ∆σ and ∆′

σ, if ∆σ ∼Γ
i

∆′
σ then ∆σ(i) = ∆σ′(i) and ιΓi (∆σ) = ιΓi (∆

′
σ) .

Proof. The first part is a trivial consequence of the way I set up ∆σ(i). For
the second part, observe that by the definition of ιΓi all we need to show is that
for all |φ| ∈ ιΓi (∆σ), |φ| is also in ιΓi (∆σ′). So assume the first. This means that
Iiφ ∈ ∆σ, which means by (K-I) that KiIiφ is also in ∆σ. But then, because
∆σ ∼Γ

i ∆σ′ , we obtain by a routine modal logic argument that Iiφ ∈ ∆σ′ , which
is just to say, |φ| is also in ιΓi (∆σ′). �

5.5.23. Lemma (Adequacy of �Γ
i and �Γ

i ). The relation �Γ
i is a total, re-

flexive and transitive relation on W Γ, and �Γ
i is its irreflexive and transitive

sub-relation.

Proof. The S4 axioms for ♦≤
i are canonical. Irreflexivity of �i and totality

of �i are respectively enforced by the pure axiom (Tot) and (Irr), which are
also canonical [ten Cate, 2005, p.69]. (Inc1) finally ensures that �i is indeed a
sub-realtion of �i. �

5.5.24. Lemma (Adequacy of ιΓi ). For all ∆σ, ι
Γ
i (∆σ) is a filter and does not

contains the empty set.

Proof. The filter part follows directly from K for Ii. See [Pacuit, 2007, p.29].
The second part is follows from (Ser). �

5.5.5 Complete axiom system for DLGF
I define ΛDLGF as ΛLGF together with the formulas in Table 5.3. Showing com-
pleteness boils down to show soundness for these new axioms.

5.5.25. Theorem (Soundness). The formulas in Table 5.3 are sound with re-
spect to the class of models for epistemic game frames and the restriction operation
defined in 5.3.2.
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Proof. Soundness of the first four axioms is well known. It remains to show
soundness of the fifth.

Take an arbitrary pointed model for game a structure M, w, and assume that
M, w |= φ (otherwise we are done) and that M, w |= [φ!]Iiψ. This means that
||ψ|||φ ∈ ιi|φ(w), with ||ψ|||φ = {w′ ∈ W|φ : M|φ, w

′ |= ψ}. Now, this can happen
in only two cases.

1. ||φ|| ∩ ↓ ιi(w) 6= ∅ and ||ψ|||φ ∈ ↑ (||φ||∩ ↓ ιi(w)). Now, unpacking the
definition of M, w |= iiφ reveals that this happens iff there is a w′ ∈ W
such that for all X ∈ ι(w), w′ ∈ X and w′ ∈ ||φ||. But this is just to say
that ||φ|| ∩ ↓ιi(w) 6= ∅. Now that ||ψ|||φ ∈ ↑(||φ|| ∩ ↓ιi(w)) means that
(||φ|| ∩ ↓ ιi(w)) ⊆ ||ψ|||φ. But this is the same as to say that ↓ ιi(w) ⊆
¬||φ|| ∪ ||ψ|||φ, where ¬||φ|| is the complement of ||φ|| with respect to W .
But ¬||φ|| ∪ ||ψ|||φ is the same set as ||φ → [φ!]ψ||, which means that
||φ→ [φ!]ψ|| ∈ ↑↓ιi(w). Since this last set is nothing but ιi(w), this means
that M, w |= Ii(φ→ [φ!]ψ).

2. ||φ|| ∩ ↓ιi(w) = ∅ and ||ψ|| ∈ ι|φ(w). In this case I defined ι|φ(w) as {W|φ}.
This means that the second clause boils down to ||ψ|||φ = W|φ. But this
happens iff for all w′ ∈ M|φ, M|φ, w

′ |= ψ, which in turn is nothing but to
say that M|φ, w |= Aψ. Assuming that M, w |= φ, this is the same things
as M, w |= [!φ]Aψ. Now, for the first clause, observe that M, w |= ¬iiφ is
just the same as M, w |= Ii¬φ. This means that ||¬φ|| ∈ ιi(w), which is the
same as to say that ¬||φ|| ∈ ιi(w), i.e. ↓ιi(w) ⊆ ¬||φ||, which happens iff
(recall that ιi(w) is a filter) ||φ|| ∩ ↓ιi(w) = ∅.

�

5.5.6 Dynamic characterization of Nash equilibrium.

The crucial condition in the characterization of Section 5.2.2 is the mutual knowl-
edge of each other’s action. This, in turn, is the sort of condition that can typically
be achieved by public announcements. In that case the very announcement that
the agents play such-and-such a strategy surely does the trick.

5.5.26. Fact. [Nash equilibrium in DLGF ] Given a game model M with two
agents, if at a profile w named by σ,

M, w |= [σ(2)!]WR1 ∧ [σ(1)!]WR2

then w is a Nash equilibrium.
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Proof. The argument again boils down to showing that at w both agents play a
best response. Consider player 1. Clearly M, w |= σ(2), and so it must be that
M|σ(2), w |= WR1. Now observe that W|σ(2) = {w′ : w′ = w[s/w(i)] for a s ∈ Si}.
But this means, by the same argument as in Fact 5.2.12, that [w]i|σ(2) = {w}.
So M|σ(2), w |= WR1 boils down to say that for all s ∈ Si and w′ = w[s/w(i)],
w′ �i w, as required. The argument for player 2 is symmetric. �

We thus have a third characterization of the Nash equilibria, where they are
now described as those profiles where the choice of a player would still remain
rational after learning the other player’s actions.





Chapter 6

Hybrid pragmatism, acceptances and
norms on intentions

In the foregoing chapters I have explored how the volitive and the reasoning-
centered commitment of intentions influence the deliberations of planning agents.
As I mentioned in the Introduction, Section 1.2, intentions exert this influence
because they are subject to four rationality constraints. They must be internally
consistent, consistent with the beliefs, agglomerative and means-end coherent.

In this chapter I leave the formal theory and try to understand where these
normative requirements come from. That is, I examine various ways to account
for the fact that intentions are subject to these rationality constraints.

This issue has attracted much attention in recent years. Some authors have
argued that the norms on intentions—which are usually thought of as practical
norms—stem in fact from analogous norms of theoretical rationality associated
with beliefs. This is the cognitivist view, championed for example by Harman
[1976, 1986], Velleman [2003, 2005] and Setiya [2007, forthcoming]. Others, chiefly
Bratman [2006b], have rather proposed an “agency approach”, which avoids this
reduction of the practical to the theoretical by accounting for the norms on in-
tentions solely in pragmatic terms.

Both sides have their pros and cons. But, with the notable exception of Wal-
lace [2006, 2003a], very few authors have moved away from these two extremes.
There is, however, sufficient conceptual space for manoeuvre between pure cog-
nitivism and the agency approach. In this chapter I investigate how far one can
get in accounting for the normative requirements on intentions by using such an
“intermediate” approach. This approach, based on the concept of acceptances in
deliberation, tries to derive the norms on intentions from similar norms on ac-
ceptances. As we shall see, this is an essentially mixed approach because accep-
tances are “hybrid” attitudes, definitely on the cognitive side but still responsive
to practical concerns. For that reason, I call it hybrid pragmatism. I argue that it
provides a reasonable compromise between cognitivism and the agency approach,
in a way that does justice to both the practical and theoretical aspects of the
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norms on intentions.
In Section 6.1 I return in greater detail to the four normative requirements

on intentions that I presented in the Introduction. Section 6.2 is devoted to the
cognitivist derivation of these requirements. The key sections of this chapter
are 6.3 and 6.4, in which I introduce acceptances in deliberation and study how
they can account for the norms on intentions.

In contrast to the preceding chapters, the investigation here is not formally
driven. My goal is to provide the theory that I have developed so far with a
philosophically solid basis. It will come clear as we move along, though, that
hybrid pragmatism, with its focus on acceptances in deliberation, also introduces
new issues onto the agenda for more formal enquiry. As such it helps us to
understand better the functions of intentions in practical reasoning while opening
up further research directions.

6.1 Constraints on rational intentions

In the Introduction (Section 1.2) I mentioned that rational intentions are required
to be internally consistent, strongly belief-consistent, agglomerative and means-
end coherent. Here I present these norms in more detail.

Means-end Coherence. A plan that aims to achieve some ends must contain
intentions about necessary means1. More precisely, the agent must intend to do
what he believes is necessary for him to intend to reach his end. Or, at least, he
must plan to form the appropriate means-intentions later.

It is crucial that the “necessary means” are those that the agent has to intend
to reach his end. Take for example an agent who intends to bring his oven up to a
certain temperature, say to bake a cake. He might also know that this boils down
to transforming electrical energy into heat. But he does not seem to be means-
end incoherent if he does not have per se the intention to transform energy. To
be sure, he has to intend to turn on the oven, which might require other actions
such as turning some switches, but even though transforming energy is from a
certain point of view a necessary means to achieve the required intention, it is not
one that has to be directly intended for it to happen. The proviso on means-end
coherence is precisely intended to cope with such cases.

The cases of means-end incoherence that I discuss feature a “gap” in the
intention structure of the agent. That is, these are cases such that the agent
intends an end E, believes that to achieve E he must form an intention about
some means M , but does not have that intention. Of course, one can also conceive
of stronger cases of means-end incoherent plans. An agent can intend an end E,

1Many authors have discussed the interpretation of this principle. The reader can consult
Harman [1976], Brunero [forthcoming], Wallace [2006], Kolodny [2007], and Setiya [forthcom-
ing].
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believe that to achieve E he must come to form intentions about some means M
but, instead, forms an intention that excludes his doing M . Such cases can in
general be reduced to violations of one of the other requirements, and so I do not
treat them as violations of means-end coherence.

Strong Belief Consistency. Means-end coherence crucially involves what the
agent believes. But this connection between intentions and beliefs goes further.
An intention should be feasible in a world where the agent’s beliefs are true. That
is, a plan should not be impossible to realize, given what the agent believes. This
is what Bratman [1987, p.31] calls the strong belief consistency requirement2.

Internal Consistency. Plans and intentions themselves have to be consistent.
First, the content of an intention should be consistent. An agent should not
intend impossible things, for example to do A and not to do A. Let me call this
the internal consistency of intentions. But it also seems reasonable to ask plans
to be consistent as wholes. The intentions in a plan should not contradict each
other, they should not preclude one another’s achievement. This can be called
internal consistency of plans. Observe that a plan can be internally inconsistent
even if each of its intentions is internally consistent. Internal inconsistency of
plans arises out of the combination of the intentions it contains, a phenomenon
that naturally brings us to the next requirement.

Agglomerativity. The original formulation of the principle of agglomerativity
goes as follows:

Given the role of intentions in coordination, there is rational pressure
for the agent to put his intentions together into a larger intention.
[Bratman, 1987, 134, my emphasis]

As I mentioned in the Introduction (Section 1.2), one can distinguish two readings
of this principle3. First, there is what I called agglomerativity as closure: an agent
cannot rationally intend to A and intend to B unless he also intends both A and
B. What Bratman thus meant by “put intentions together” is, according to this
interpretation, that they should close under conjunction.

For Yaffe [2004] this principle demands too much effort from agents with
limited time and capacities. “It demands mental labor from agents that they
have no need to perform, given their aims.” In other words, agglomerativity as
closure requires worthless combinations of intentions. He illustrates his claim

2Note that an agent does not have to believe that his plan is impossible to realize for it to be
belief inconsistent. This is a stronger condition, to which I shall return soon. In Sections 6.2.4
and 6.4.4, however, I directly adopt this stronger condition.

3The two interpretations of agglomerativity, and the quotations in the following paragraphs,
come from Yaffe [2004, p.511-512].
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with the following example. Suppose one has the intention to go to Los Angeles
tomorrow and the intention to go to London a year from now. To him, it is not
worth the effort to combine these two intentions into a single one. To have the
merged intention neither contributes to the achievement of the individual ones
nor does it help the agent to coordinate his own actions. So, according to Yaffe,
agglomerativity as closure demands that one combines intentions that do not need
to be put together. Since the combination itself takes a certain amount of time
and effort, it should not be required of normal, i.e. resource-bounded, agents.

In view of this he proposes the following alternative interpretation of the prin-
ciple, which I called agglomerativity against potential irrationality : it is irrational
to intend A and to intend B if the intention to do both would be irrational accord-
ing to some other norms of rationality for intentions. According to this second
interpretation planning agents are no longer required to combine arbitrary inten-
tions. Rather, they are required to do so only to the extent that this “makes
conflicts evident to themselves, when there is doubt as to the rationality of the
conjunctive intentions”. The conflicts mentioned here are conflicts “with other
norms of rational intentions”. Given what I have said so far, this means that hav-
ing two intentions is irrational if their combination would result in an intention
whose content is contradictory or impossible to realize given the agent’s beliefs4.

Observe that, understood that way, agglomerativity parasitizes, so to speak,
its rationality demands on these two other norms. In the case of internal con-
sistency, for example, having the intention to do A and the intention to do B
is irrational to the extent that having the intention to do A and B is internally
inconsistent. Along the same lines, having the intention to do A and the intention
to do B, given the belief that A and B cannot be achieved together, is irrational to
the extent that having the intention to do A and B is strongly belief-inconsistent.

It is thus no coincidence that the former case resembles what I have called
above “internal inconsistency of plans”. Plans were called internally inconsistent
precisely when a pair of their elements could not be achieved together5. In other
words, internal consistency of plans is a particular case of agglomerativity against
potential irrationality, preventing the agent from holding pairs of intentions which
would violate internal consistency of intentions if they were put together.

It also worth noting that, unlike agglomerativity as closure, agglomerativity
against potential irrationality does not require a systematic combination of inten-

4Recall that I consider means-end incoherent plans as plans where the means-intentions are
missing. But agglomerativity as potential irrationality is about pairs of intentions the agent
already has. In view of that, a violation of that requirement that resorts on means-end coherence
seems to involve what I have called strongly means-end incoherent plans. But, as I said, it seems
that these cases are, in turn, reducible to violation of some other norms. For that reason I only
consider cases where agglomerativity as potential irrationality leads to a violation of internal
or strong belief consistency.

5It is, in that respect, telling that Yaffe does not consider internal consistency of plans as a
separate requirement.
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tions. Combining individual intentions into a single intention with a conjunctive
content somehow becomes instrumental to the unveiling of other forms of irra-
tionality. As long as the intentions of an agent are not potentially problematic,
the agent is not required to agglomerate them.

In what follows I work with these two forms of agglomerativity in parallel, for
I do not consider Yaffe’s argument for rejecting agglomerativity as closure totally
convincing, while I do not find agglomerativity against potential irrationality
completely satisfactory either. Let me sketch the reasons for my doubts before
going further.

Granted, it is unrealistic to ask limited agents to agglomerate all their inten-
tions into a single “grand world” intention6. But it is rather unlikely that this
is what the original idea of agglomerativity was intended to mean. Rather, it
seems more probable that it was aimed at smaller “worlds”, maybe at the level of
plans, where agglomeration should be systematic. It seems plausible that putting
the various intentions of a plan together does facilitate personal coordination
in extensive decision problems, for example, even though this combination does
not reveal any violation of the other rationality requirements. If this is so, then
Yaffe’s overall rejection of agglomerativity as closure goes too far. On the other
hand, it also means that agglomerativity against potential irrationality does not
tell the whole story. There may be cases where it is rational to agglomerate
systematically.

Let me summarize. I started with four rationality requirements on intentions:
means-end coherence, strong belief consistency, internal consistency and agglom-
erativity. Internal consistency applies within intentions and within plans. The
last reguirement, though, is a special case of agglomerativity against potential ir-
rationality, namely when there is a threat of violating internal consistency within
intentions. Following Yaffe I distinguished this form of agglomerativity from
agglomerativity as closure. So there are really five rationality requirements to ex-
plain: means-end coherence, strong belief consistency, internal consistency within
intentions, agglomerativity as closure and agglomerativity against potential irra-
tionality7.

6.2 Cognitivism

In this section I present the cognitivist view, according to which the norms just
presented ultimately stem from norms of theoretical rationality associated with
beliefs.

6I draw this appellation from Savage [1954]. My reservations with respect to Yaffe’s parallels
the difficulty of explaining how agents set the “size” of their worlds, i.e. of their decision
problems.

7There are of course interrelations between these various norms. See again Section 2.2.
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The keystone of cognitivism is a postulated connection between intentions and
beliefs. I present two ways to understand this connection. Most of this section is
then devoted to seeing how well they support the derivation from the theoretical
norms on beliefs to the practical norms on intentions. All of this, of course, rests
on a particular philosophical theory of beliefs. In the previous chapters we could
do most analyses without diving into such conceptual details. For the present
chapter, though, they become crucial, especially in distinguishing between beliefs
and acceptances in deliberation.

6.2.1 The functionalist view on beliefs

Many authors who have written on the relation between practical and theoretical
rationality take good care to distinguish between probabilistic and flat-out [Brat-
man, 1987] or all-or-nothing [Harman, 1986] beliefs. They differ mainly in that
the first, in contrast to the second, comes in various degrees. Probabilistic beliefs
echo subjective probabilities or endogenous uncertainty, which I mentioned in the
Introduction (Section 1.1.1). Flat-out beliefs, on the other hand, are attitudes
that an agent either has or not. In that respect, they are close in behaviour to
the qualitative representations of information that I used in most of the previous
chapters8.

Whether probabilistic or flat-out, the theory of beliefs that underlies most
cognitivist accounts is functionalist. Just as intentions, beliefs are characterized
through their “actual and potential, or typical, causal relations to sensory stim-
ulations, behavior and other mental states” [Schwitzgebel, 2006].

A belief that p is thus viewed as an attitude of regarding p as true that9:

1. dispose the subject to incorporate p into further practical and theoretical
reasoning.

2. is “formed, revised and extinguished—or [...] for short [...] regulated for
truth”, in the sense that it is responsive to evidence and reasoning.

3. is correct if and only if p is the case.

Once again following Schwitzgebel [2006], one can think of the first two conditions
as respectively specifying the backward-looking and forward-looking conditions
for an attitude to functionally count as a belief. I used this idea to describe

8It is, however, unclear whether flat-out beliefs match the subject matter of epistemic logic.
For one thing, epistemic logic is often thought of as the study of sure beliefs, which correspond
in turn to probabilistic beliefs of degree 1 or 0. But it is often stressed, e.g. by Bratman
[1991], that flat-out beliefs are not reducible to beliefs with degree 0 or 1. I do not go into
this distinction in detail, for it is orthogonal to my present concern. I simply proceed, unless
explicitly stated, with the two notions of belief.

9This characterization is taken almost textually from Shah and Velleman [forthcoming, p.2-
3].
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intentions in the Introduction (Section 1.2). Intentions are outputs of practical
reasoning (backward-looking) which typically also play a certain role as inputs to
deliberation (forward looking).

Condition (2) is backward-looking in the sense that it points to processes that
affect beliefs. They are created, revised or abandoned according to the input
of new evidence or conclusions reached from theoretical reasoning. This is a
constitutive claim about what beliefs are.

This should be contrasted with condition (3), which gives a criterion for cor-
rectness, and which is thus essentially normative. It states that beliefs are correct
only to the extent that they are true, i.e. that they fit the world10. In the words
of Austin [1953] and Searle [1983], beliefs have the “mind-to-world” direction of
fit.

Conditions (2) and (3) sharply distinguish beliefs from practical attitudes
like intentions. Intentions can be formed, revised and abandoned in response to
changes in desires or preferences, and their correctness is more often than not a
matter of instrumental rationality. Cases of beliefs formed or held for practical
reasons are, on the other hand, not typical and are usually viewed as a form of
wishful thinking. That is, these are pathological cases, i.e. incorrect ways to hold
belief. For that reason, beliefs are often said to belong to the realm of theoretical
rationality.

This is not to say, of course, that they do not take part in practical reasoning.
Condition (1) makes this clear. It is “forward-looking” because it points to typical
processes that take beliefs as input. Although there might be other forward-
looking conditions that characterize beliefs, the disposition to be incorporated
into practical and theoretical reasonings is the most important for our present
concerns11.

6.2.2 Constraints on rational beliefs

I have already introduced a normative component in the functionalist definition
of beliefs, but the cognitivist derivation of the practical norms on intentions does
not explicitly use it. Instead, it appeals to three other normative requirements
on beliefs, which I now present.

10Here I follow Shah and Velleman [forthcoming] and include the normative claim in the
definition of beliefs. This is by no means an uncontroversial practice, but it will prove useful in
distinguishing beliefs from acceptances in deliberation.

11It is worth noting that one even finds characterization of beliefs only in terms of potential
input into practical reasoning. Holton [1994, p.68], for example, says that “ your belief that a
certain thing will happen is just the disposition that you acquire when you work the supposition
that it will happen into your plans.” Similar remarks can be found in Schwitzgebel [2006] and
Alonzo [forthcoming]. Note, furthermore, that this view of belief quite nicely matches the
Bayesian approach to belief that is inherent in representation results in decision theory. See the
references in the Introduction (Section 1.1.1) and Joyce [2004].
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Internal Consistency of Beliefs. Just as with intentions, one can distinguish
two senses of this requirement. Internal consistency within beliefs requires the
content of beliefs to be consistent. An agent should not believe contradictions.
Internal consistency between beliefs, on the other hand, asks the different beliefs
of an agent to be consistent with each other. As was the case with intentions, in-
ternal consistency between beliefs follows from internal consistency within beliefs,
together with agglomerativity, which I shall introduce shortly. For that reason,
I use the plain “internal consistency of beliefs” to refer to internal consistency
within beliefs.

Agglomerativity of Beliefs. Again, one can think of agglomerativity as clo-
sure under conjunction or as a safeguard against potential violations of other
norms on beliefs. In the case of intentions, this second interpretation of the prin-
ciple was proposed as an alternative to the first one, which Yaffe [2004] found
too strong. Agglomerativity as closure is less controversial for beliefs. Here is
Velleman [2003, p.18] on the subject:

Beliefs are agglomerative because they aim to fit the world, of which
there is just one, in whose complete characterization the contents of
all true beliefs are conjoined. The rational pressure to conjoin beliefs
is a pressure to fuse them into a single characterization of the single
world that all of them aim to fit.

As this last sentence suggests, there seems to be a relation between the standard
of correctness for beliefs mentioned in Section 6.2.1 and the fact that they are
agglomerative. Beliefs have to fit the world, and for that reason it seems that
there is a rational requirement to agglomerate them.

One can obtain agglomerativity against potential irrationality of beliefs if
they are closed under conjunction. This is so because, for beliefs, agglomerativity
against potential irrationality really amounts to agglomerativity against potential
inconsistency12. An agent whose beliefs are closed under conjunction and who
has “potentially inconsistent” beliefs would turn them directly into an internally
inconsistent conjoined belief. For that reason, I take “agglomerativity of beliefs”
to mean only agglomerativity as closure.

Explanatory Coherence. The last requirement, which I call “explanatory
coherence” [Harman, 1986], comes from what Schwitzgebel [2006, Section 3.2]
calls the “holistic” view on beliefs. In normative terms, it requires a rational
agent to maintain “relations of immediate coherence or intelligibility” among his
beliefs [Harman, 1986, p.75]13. That is, given one particular belief of an agent,

12In Section 6.1 I made a proviso regarding means-end coherence. The same applies to
explanatory coherence, which I introduce next.

13Holism about beliefs also has a constitutive counterpart. See again Schwitzgebel [2006,
Section 3.2] for more explanations and references.
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one should be able to locate other beliefs that “explain” it14. Given that beliefs
are responsive to evidence, this means that a belief that φ should be backed, so
to speak, by a belief about evidence in favour of φ.

6.2.3 Weak, intermediate and strong cognitivism

There are thus three norms on rational beliefs: internal consistency, agglom-
erativity and explanatory coherence. For the cognitivists the requirements on
intentions that I presented in Section 6.1 can be derived from these requirements
on beliefs. This derivation typically rests on the assumption that intentions “in-
volve” beliefs. One can classify the various cognitivist derivations according to
their view on how strong this involvement is. More precisely, Bratman [2006b]
distinguishes three strengths of cognitivism, which I now present. Even though
only the last two will be of interest hereafter, a close look at the first one will
help to clarify issues.

The requirement of strong belief consistency is already an assumption on how
intentions involve beliefs, but it is a negative involvement, so to speak. It states
that having the intention to do A implies not believing that one will not do A.
Weak cognitivism holds something slightly stronger: if an agent intends to do
A he must consider it possible that he will do A15. In other words, to have
the intention to do A implies believing that it is possible that one will do A.
This belief can be either flat-out, as advocated e.g. by Wallace [2003a, 2006],
or probabilistic, as Chan [1999] takes it. In both cases, however, this belief is
compatible with the belief that it is possible that one will not do A, and both
can be simultaneously and consistently incorporated into practical reasoning as
partial beliefs. That is, the agent can work into his further deliberation the fact
that he might and that he might not do A.

I call the second type of cognitivism intermediate. It holds that having the
intention to do A implies believing that one will do A. This, of course, entails
weak cognitivism, but not the other way around. As I take it, the key idea
underlying intermediate cognitivism is that intending to do A implies, first and
foremost, being disposed to work in flat-out the fact that one will do A in further
planing and, second, that this assumption is regulated by truth and is responsive
to evidence. That is, it seems that intermediate cognitivism is not compatible
with incorporating the fact that one might not do A in practical reasoning, once
one intends to do A. Or at least this is what I take intermediate cognitivism to
mean: intending to do A implies believing that A in the sense of being disposed

14I leave open the question of what should be necessary or sufficient to count as an explanation
here. See the illuminating discussion of Harman [1986] and the papers cited in the footnote on
page 138. I return briefly to this issue in Section 6.3.

15This is stronger than strong belief consistency as long as we assume that not believing that
not φ is not equivalent to considering it possible that φ. Recall that this equivalence holds, for
knowledge, in all the epistemic models that I used in the last chapters.
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to use the fact that one will do A in deliberation, in a way that is regulated by
truth and is responsive to evidence.

Except for Harman [1986], very few authors have directly argued for the in-
termediate cognitivist view. The most popular cognitivist standpoint is rather
stronger. According to e.g. Harman [1976], Velleman [2005] and Setiya [2007],
intending to do A is the same as having a special kind of belief that one will do
A. I call this strong cognitivism. Again, the kind of belief involved here seems
to be essentially flat-out, at least as far as integration into practical reasoning
is concerned. Strong cognitivism thus holds that to have the intention to do A
is nothing else than being disposed to work in the fact that you will do A in
your practical reasoning, in a way that is responsive to evidence and regulated
by truth16.

6.2.4 Rational intentions from rational beliefs

I now show how cognitivists derive the norms on intentions from the norms on
beliefs. I look at each of the derivations in some detail, for they will serve as a
landmark for the “hybrid” derivation that I present later.

Internal and strong belief consistency of intentions. These two norms are
the easiest to derive for the cognitivist. Let me look first at internal consistency
of intentions. Suppose one intends something contradictory, say to do A and
not to do A. By the intermediate cognitivist assumption, one then must believe
that he will do A and that he will not do A, which violates internal consistency of
beliefs. Putting back this contrapositive argument in its normal direction, it shows
that internal consistency of beliefs and the intermediate cognitivist assumption
together imply internal consistency of intentions.

The argument for strong belief consistency goes along the same lines. An
intention that is not feasible given the agent’s background beliefs will generate a
new belief that is, by assumption, inconsistent with this background. But then,
using agglomerativity, one gets a belief that is internally inconsistent17.

Means-end from explanatory coherence. To derive means-end coherence
of intentions from explanatory coherence of beliefs, cognitivists usually make one
more assumption about what counts as evidence for an agent that he will act
in a certain way. As I have mentioned many times now, beliefs are taken to be
responsive to evidence. But in the case of beliefs about what one will do, it seems
that we have a special source of evidence18, namely the intentions themselves.

16The authors mentioned above usually add special conditions to the way these intention-as-
beliefs are responsible to evidence and regulated by truth. I leave these details aside.

17Observe that one could have argued directly from internal consistency between beliefs.
18I am using “evidence” rather sloppily here. For in-depth discussions about the epistemology

of agency, see Anscombe [1957], Faley [2000] and Velleman [2005].
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This means that such beliefs have to be explained by beliefs about what the
agent intends.

Cognitivists derive means-end coherence of intentions from explanatory coher-
ence of beliefs as follows. Suppose that one has means-end incoherent intentions.
He intends the end E but he does not intend any of what he believes are means
M that he must come to intend to achieve E. What is more, he does not intend
to form such means-intentions later. By the intermediate cognitivist assumption,
this means that this agent must believe that he will do E. But since he also
believes that he will do E only if he does something in M , he should believe that
he will do some M19. But since he does not intend to do anything in M , and he
does not believe that he has such intentions, it seems that he lacks the required
evidences to back up this new belief, so to speak. In other words, the beliefs of
the agent are explanatory incoherent. It thus seems that explanatory coherence,
together with the fact that beliefs about intentions count as evidence for beliefs
about what an agent will do, imply means-end coherence.

This derivation is unfortunately not sound. It slips too quickly from one not
having the required means-intentions to one not believing that one has these in-
tentions. As pointed out by Brunero [forthcoming], Bratman [2006b] and Wallace
[2006, 2003a]), the latter can come without the former. Here is Bratman [idem]:

Suppose I intend E and know that E requires both M and that I
intend M. If I still do not intend M my intentions suffer from means-
end incoherence. But suppose that, while I in fact do not intend M, I
nevertheless falsely believe that I intend M. So my beliefs are that E,
that E requires both M and that I intend M, that I intend M, and that
M. There is no incoherence (though there is falsity) in this structure
of beliefs. So means-end coherence is not belief coherence.

Bratman points out that an agent can falsely come to believe that he intends
something and so he has coherent beliefs, but nevertheless incoherent intentions.
To carry the above derivation through, cognitivists thus need not only to assume
that the intentions are means-end coherent, but also that the agent is not mistaken
about what he intends.

This, according to Wallace [2003a, p.21], cannot be assumed without some
additional rationality constraints: “theoretical constraints on rational beliefs can
get you as far as the belief that you intend to do [something]; to go beyond
that, to a rational requirement that you form the [required means-intentions], we
need an additional principle [...]”, a principle that is independent of explanatory
coherence of beliefs.

The principle that Wallace has in mind is a pragmatic one. He holds that
to have true beliefs about one’s own intentions is, “in deliberative contexts where
[means-end coherence] is relevant, [...] an executive virtue, to be included among

19This step assumes, of course, something like an inference closure principle for beliefs.
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the traits and capacities that make us, in general, effective in the pursuit of our
goals” or “is a strategy that enhances our ability to realize the broader aims
that are given with our nature as deliberating agents” [Wallace, 2006, p.119, my
emphasis]. That is, having a false belief about one’s own intentions, when that
belief features in the cognitive background of deliberation, seems to threaten the
overall prospect of reaching one’s ends. Bluntly, being wrong about what you
intend is, in the long run, not good.

This is an important shift in Wallace’s argument, because he thereby steps
outside the pure cognitivist enterprise. In his view, it is not “plausible to suppose
that the whole field of instrumental rationality can be explained in terms of the
requirements of coherence in beliefs” [idem]. This recourse to the principle of
practical rationality will also be very important later on. I argue in Section 6.4
that this is precisely the kind of hybrid justification that comes out of using
acceptances instead of beliefs to derive the norms on intentions.

This is looking too far ahead, however: for now what matters is to observe that
Bratman [2006b, p.13] has offered a counterexample to the thesis that mistaken
beliefs about one’s own intentions are irrational. He pointed out that “to reflect
carefully on all that one intends [...] is an activity that takes time and uses other
resources, and one may well have better things to do.” Bratman considers, for
example, an agent who believes that he intends to go shopping on Thursday while,
in fact, he intends to go on Friday. A week before, it seemed perfectly rational
for this agent not to reflect on the accuracy of this belief because “other matters
are more pressing right now”[idem].

Bratman’s example is rightly aimed at showing that it is not always irrational,
practically speaking, to have false beliefs about one’s intentions. But Wallace
seems to have two ways around it.

First, he crucially uses the notion of relevant deliberations. It is notable that,
in Bratman’s counter-example, the agent is correct about the fact that he intends
to go shopping, but he is mistaken as to when he intends to go. Now, the essence
of the case is that it does not seem irrational to have an incorrect belief as long as
its accuracy is not relevant to further deliberations. To see this, suppose that the
agent intends to go shopping in order to buy some camping gear that he needs
for a hiking trip the week after. The fact that he is mistaken about when he
actually intends to buy the gear does not threaten his hiking plans. On the other
hand, this mistaken belief becomes more problematic if he is to plan his Thursday
evening. Whether or not it is irrational to have such mistaken beliefs depends
on the context of deliberation, and this is precisely what Wallace seems to point
out when he focuses on “deliberative contexts where [means-end coherence] is
relevant [...]”.

Second, Wallace also holds that being mistaken about what one intends is
irrational because it threatens the overall prospect of achieving one’s own inten-
tions. In other words, not all instances of such mistaken beliefs have to mess up
the agent. Rather, such beliefs are irrational because they embody, so to speak,
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a bad deliberation habit. In this context, is not so devastating that there exist
cases of false beliefs about one’s own intentions which are not irrational.

These two replies to what we may call the “problem of false beliefs” will also be
very important later, because they apply even more naturally with acceptances in
deliberation. But for now the reader should bear in mind that cognitivism has dif-
ficulty in accounting for means-end coherence. There seems to be a way to derive
this norm on intentions from explanatory coherence of beliefs, if one is willing to
use an additional pragmatic principle. But, as we shall see presently, means-end
coherence is not the only norm that resists a purely cognitivist derivation.

Agglomerativity. Let us look first at agglomerativity against potential irra-
tionality. As this requirement imports part of his rationality demands from other
norms on intentions, it should not come as a surprise that cognitivism can ex-
plain it to the extent that it can explain the others. There are, more precisely,
two cases to consider. Suppose first that an agent has the intention to do A
and the intention to do B and that the combination of these into the intention
to do A and B would be internally inconsistent. Clearly, this pair of intentions
would be irrational because the combined intention would generate an internally
inconsistent belief, given the intermediate cognitivist assumption20. An entirely
similar argument covers the case where the combination of A and B would gen-
erate a strongly belief-inconsistent intention. So cognitivism can easily explain
agglomerativity as potential irrationality, simply because it can explain internal
and strong belief consistency.

The case of agglomerativity as closure is more problematic. Strong cognitivism
can of course explain it, given agglomerativity of beliefs. After all, to hold that
beliefs are agglomerative is just the same as to hold that intentions are also
agglomerative, once one views intentions as a special kind of beliefs.

But observe that the argument does not go so straightforwardly for intermedi-
ate cognitivism, even if one assumes agglomerativity of beliefs. Suppose an agent
has the intention to do A and the intention to do B, but not the intention to do
A and B. From the assumption underlying intermediate cognitivism, together
with belief agglomerativity, we can conclude that the agent believes that he will
do A and B. But what is supposed to be wrong with having this belief while not
having the corresponding intention? Note that he does not have the intention
not to do A and B, which would simply make his beliefs internally inconsistent.

One possible way out would be to use explanatory coherence again. One would
thus say that the belief that one will do A and B wants an explanation, which
the belief that one has the intention to do A and B would provide. But why can
the beliefs that one intends to do A and the belief that one intends to do B not
together provide the required explanation? If they do, then we are still missing

20Note that one could also argue directly from these two intentions, the intermediate cogni-
tivist assumption and agglomerativity of beliefs.
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a intermediate cognitivist argument for agglomerativity.
What is more, as we have seen for means-end coherence, the recourse to

explanatory coherence of beliefs makes one vulnerable to the problem of false
beliefs about intentions. In the present context, the problem can be rephrased
as follows. If an agent can be mistaken about his own intentions, i.e., can have
false beliefs about what he intends, then his belief that he will do A and B can
be explained by the (false) belief that he intends to do both.

In view of all this, it seems that intermediate cognitivism can explain internal
consistency, belief consistency and agglomerativity as potential irrationality. It
has difficulties with means-end coherence, because of the problem of false beliefs
about one’s own intentions. Strong cognitivism, however, explains agglomerativ-
ity as closure.

6.2.5 A general concern against cognitivism

The shortcomings of the cognitivist derivations of agglomerativity and means-
end coherence are in themselves enough to motivate the search for an alternative.
But Bratman [1987] has famously cast doubts on the basic assumption that in-
tending to do A implies believing that one will do A. According to him, this
assumption rules out some plausible cases of agents who apparently have the
intention to do A while not believing that they will do A. He explains:

[In [Bratman, 1987]], it seemed to me plausible that I might, for ex-
ample, intend to stop at the bookstore on the way home even though
I know that, once I get on my bike I tend to go on automatic pilot,
and so even though I do not, strictly speaking, believe that I will stop
(though I do not believe that I will not stop). So I thought it best
not to tie the theory of intention and planning to such a strong belief
condition. [Bratman, 2006b, p.3]

The “strong belief condition” that Bratman writes about here is what I have
called intermediate cognitivism. Given what I said in Section 6.2.3, what is at
stake is whether the agent believes flat-out that he will stop at the bookstore.
For a cognitivist, if this agent really does not have such a flat-out belief then we
cannot say that he has the intention to stop at the bookstore. Bratman, on the
other hand, thinks that the agent can genuinely intend to do so even if he does
not have this flat-out belief.

Recall that an agent counts as having such a belief if he regards the fact that
he will do A as true in a way that:

1. disposes him to incorporate the fact that he will do A into further practical
and theoretical reasoning.
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2. is regulated by evidence in favour of him going to do A.

3. is correct if and only if he will in fact do A.

It seems to me that the only thing to deny is the fact that the agent, from having
the intention to do A, is automatically disposed to work the assumption that he
will do A into his theoretical reasoning. To be sure, one cannot deny that the
agent regards the fact that he will do A as “true”. This agent is disposed to
incorporate this fact into practical reasoning21. What is more, as we have seen in
Section 6.2.4, having the intention to do A can be seen as an evidence for the fact
that one will do A, especially in the context where the intention at hand is future-
directed. There is not yet a “fact of the matter” that can settle the correctness
of this attitude. Given all this, the only thing left to deny is the disposition to
incorporate “I will do A” into theoretical reasoning. This reading is supported, I
think, by the original formulation of the absent-minded cyclist example:

I might intend now to stop at the bookstore on the way home while
knowing of my tendency towards absentmindedness—especially once
I get on my bike and go into “automatic pilot.” If I were to reflect on
the matter I would be agnostic about my stopping there, for I know I
may well forget. It is not that I believe that I will not stop; I just do
not believe I will. [Bratman, 1987, p.37, my emphasis]

The reflection that is mentioned here seems to be essentially truth-oriented, in
the sense that what is at stake is whether the agent will, in fact, stop at the
bookstore. In other words, the agent deliberates about the truth of “I will stop
at the bookstore” and not about, for example, whether he should stop or how he
would make it happen.

In view of all this, I will take the general concern about cognitivism to be
the following. Intending to do A seems to come with an attitude of regarding “I
will do A” as true, but this attitude is not quite a belief. In particular, it does
not dispose the agent to incorporate this fact into theoretical reasoning. The
overall aim of this chapter is indeed to see whether the normative requirements
on intentions can be derived if one thinks of this attitude not as a belief but
rather as an acceptance in deliberation22.

21Witness the discussion in Bratman [1987, p.37-39].
22It is interesting to note, before going further, that Bratman [2006b] does not take this

route. As noted in the introduction of this chapter, he proposes a justification of the norms
on intention that altogether bypasses the recourse to cognitive-like attitudes, whether beliefs
or acceptances. For him norms on intentions stem from the general “aim to achieve what is
intended” and of the “projected unity of agency”. Thus the appellation “agency approach” to
describe Bratman’s approach.
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6.3 Acceptances in deliberation

In this section I first introduce the concept of “acceptance in deliberations”, which
bases the alternative derivation of the norms of intentions. After that I briefly
present the companion idea of “adjusted background of deliberation”, which will
be important hereafter, when I look at the normative requirements that apply to
acceptances.

6.3.1 Accepting or taking for granted in deliberation

In the context of practical reasoning, some authors23 observed that there is more
than beliefs in the “cognitive background of deliberation”. We sometimes in-
tentionally accept or take for granted some facts about the world, even though
we neither believe them with degree 1 nor flat-out. These phenomena are called
“acceptances in a context”. In what follows I am specifically concerned with the
role of these attitudes in practical reasoning. For that reason I refer to them
as acceptances in deliberation, or simply as acceptances. I should mention that
Shah and Velleman [forthcoming] talk about acceptances as the general attitude
of regarding something as true. For them, beliefs, assumptions and even images
are all specific kinds of acceptances. As we shall soon see, the acceptances that I
am concerned with, acceptances in deliberation, are a specific kind in this general
category of epistemic attitudes.

Acceptances in deliberations are not only regulated by truth and responsive
to evidence, but also also “regulated for practice” and responsive to “pragmatic
considerations” [Alonzo, forthcoming]. This difference is best illustrated by an
example.

In planning my day—a June day in Palo Alto—I simply take it for
granted that it will not rain even though I am not certain about this.
If I were instead figuring out at what odds I would accept a monetary
bet from you on the weather I would not simply take it for granted
that it will not rain. But in my present circumstances taking this
for granted simplifies my planning in a way that is useful, given my
limited resources for reasoning. [Bratman, 1991, p.22]

Even though the agent, in this case, incorporates the fact that it will not rain
into his practical reasoning, he does it in a peculiar way. Observe first that he

23Chiefly Bratman [1991]. For a congenial but nevertheless different characterization of accep-
tances, see Grice [1971], [Cohen, 1989] and [Engel, 1998]. Holton [1994] has also studied related
phenomena in the context of thrusting relations. Harman [1976, p.438] already spoke of “taking
for granted” in relations with intentions, but the appellation “acceptances” seems to come from
Willams [1973]. Note that some authors—e.g. Holton [item] and Alonzo [forthcoming]—use
“reliance” instead of acceptance to talk about what appears to be the same attitudes. Engel
[1998, p.148] finally remarks that one finds discussion of “pragmatic beliefs” already in Kant,
in a way that is very close to what will be described as acceptances.



6.3. Acceptances in deliberation 153

does not plan with the idea that the chances of rain are extremely low, even
though one could argue that this is what he really believes. He plans with the
plain assumption that it will not rain. Observe too that what really triggers
the incorporation of this fact into the agent’s planning is a pragmatic concern.
It simplifies deliberation. These seem to be the key features of acceptances.
They can be at variance with the agent’s beliefs and are responsive to pragmatic
considerations.

In what follows I shall thus take an acceptance that p in a given deliberation
to be an attitude of regarding p as true that:

1. Incorporates p into that very deliberation.

2. Is regulated by either the truth of p or the pragmatic context of a given
deliberation, in a way that is responsive to evidence or practical concerns.

3. If both p is not true and the agent is not better off by accepting p, then the
acceptance that p is not correct.

Acceptances thus share with beliefs the part of the “forward-looking” (see Sec-
tion 6.2.1) functional characterization. They are both states that are crucially
incorporated into practical reasoning. But I do not take acceptances in deliber-
ation as featuring typically in theoretical reasonings, even though some authors,
e.g. Stalnaker [1984], have studied closely related phenomena in that context. I
take them to be specifically tailored for practical contexts.

Acceptances and beliefs differ in the way they are regulated, i.e. formed,
changed or discarded. Condition (2) states that acceptances can be regulated
both by evidence and practical concerns. Similarly, condition (3) states that
practical concerns also come into play to assess the correctness of acceptances.
Here I deliberately leave unanswered the question whether there is a systematic
relation between the evidential and practical inputs, for example whether one has
priority on the other. For what follows, it will be enough to know that acceptances
are responsive to both24.

24I think that to provide sufficient conditions for correctness one would have to be more precise
about this relation, especially to handle properly the relation between bracketed beliefs and
acceptances (see below). For that reason (3) only specifies necessary conditions for correctness.

Such a more precise stance could go as follows. Following Alonzo [forthcoming], I find it
plausible to think that the pragmatic considerations that justify acceptances are constrained
by evidence. That is, it seems that truth somehow has precedence over practice in terms of the
correctness of acceptances. One could propose to make this precedence more explicit, namely
in lexicographical terms. Condition (3) would then state that an acceptance that p is ultimately
correct if p is the case. But in case the truth of p is not (yet) a settled matter then, and
only then, can practical considerations enter the assessment of whether accepting that p is
correct. This will happen when p is about something in the future, as in the example above,
and especially about future actions. As observed again by Alonzo [forthcoming], this could
help to distinguish acceptances from simple wishful thinking. Acceptances should respond to
evidence in a way that wishful thinking does not. If there is any way that the later can be
justified, it seems that this will be solely by practical concerns.
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Observe that, in the last example, it is the acceptance in itself that seems to
be practically useful. The practical consequences of the fact that it will rain do
not really influence how one assesses the acceptance. This is what condition (3)
makes precise: the pragmatic considerations should bear on the acceptance itself,
rather than on its content. Pragmatic arguments that justify accepting that p
are arguments that show that the agent can be better off by incorporating p into
his practical reasoning, and not necessarily that the agent would be better off if
p were the case. These can go together, but they need not25.

The simple fact that practical considerations regulate and take part of the
standard of correctness for acceptances suffices to distinguish them from beliefs.
But this difference also shows in the context-dependency of these two attitudes.
Bratman [1991] has strongly emphasized that the rationality of acceptances de-
pends in general on the context of deliberation. An agent may rationally take
some facts for granted in some deliberations while not taking them for granted in
others. This is not the case for beliefs, either probabilistic or flat-out. Whether
a belief is justified depends on the evidences that support it, not on the specific
deliberation in which it is applied. To appreciate this difference, look again at
Bratman’s example. While planning his day, it seems perfectly justified for the
agent to take it for granted that it is not going to rain. But it is also justified for
him to abandon this acceptance when he has to decide how much he would bet
on that very fact, even though the matter remains unsettled in both cases. To
put it differently, it would not be rational for the agent to change his belief about
the weather from one deliberation to the other, unless he receives new informa-
tion in the meantime. But the change in acceptance seems perfectly justified.
This, [Bratman, 1999, chap.1] argues, shows that acceptances are not the same
as beliefs.

It should be noted that an agent can decide, to a certain extent, which facts
he takes for granted. Following Bratman [1991, p.29], we can distinguish two
ways in which an agent can take a fact A for granted: positing and bracketing.
The first occurs when the agent decides to take A for granted even though the
agent is uncertain about it. This is the case I had in mind in most of the previous
discussion. A gets temporarily promoted, so to speak, from mere possibility to
“hard” fact. Bracketing occurs, on the other hand, when an agent believes that
A but decides not to work this assumption into his deliberation. Unfortunately,
Bratman is not very explicit about bracketing. It seems to concern mainly flat-out
beliefs or those with degree 0 or 1. In these cases, one can imagine that the agent
decides to plan as if the possibility of not-A was serious, even though he does not
believe so. For flat-out beliefs, note that this crucially uses the fact that the agent

25Take for example a chess player who takes for granted that his opponent will play very well,
without having any conclusive evidence for that. We can easily imagine that this acceptance
makes the player better off. He will plan several moves ahead and play more cautiously, which
might make him more likely to win. But observe that if, in fact, the opponent does play well,
then the chances of winning for the player seem to be actually diminished.
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can decide what he takes for granted. Flat-out beliefs were indeed characterized
as disposing the agent to include their contents into practical reasoning. By
bracketing the agent explicitly overrides this disposition.

6.3.2 The adjusted background of deliberation

At the beginning of this section I introduced acceptances by way of the (adjusted)
cognitive background of deliberation. Bratman [1991, p.29] put forward this con-
cept to stress that the information invoked in practical reasoning is different from
the collection of the agent’s beliefs, which he calls the default cognitive back-
ground. The cognitive background of deliberation is “adjusted” precisely because
it contains acceptances resulting from positing or bracketing elements of the de-
fault background.

I remarked earlier that acceptances and beliefs have a similar forward-looking
functional characterization, at least as far as practical reasoning is concerned.
They are attitudes that feature in the adjusted cognitive background of deliber-
ation. The adjusted cognitive background of deliberation thus differs from the
“default” background in that it features contents of acceptances and of beliefs.

The remarks at the end of the previous section suggest that agents can some-
how build the adjusted background of deliberation by positing and bracketing
some facts. But agents with limited time and resources can only make a small
number of such explicit decisions26. Should we take, then, the adjusted cogni-
tive background to contain only the facts that are explicitly taken for granted,
or should it also include other elements of the default background? Accord-
ing to Bratman [1991, p.30, my emphasis], in a particular deliberation, “if one
has a relevant all-or-none, context-independent belief that p, and this belief is
not bracketed, then one accepts p in that context. And similarly concerning a
context-independent degree of confidence of 1.” Observe that, without the em-
phasized notion of relevance, the adjusted cognitive background becomes rather
large. It includes what is explicitly taken for granted and all the default back-
ground beliefs that can be added to it—consistently, as we shall see. The notion
of relevant beliefs is aimed at limiting the size of the adjusted background. I
return on the notion of relevance in Section 6.4.3. It is enough for now to see
that the adjusted background might not decide on every single fact.

6.3.3 Requirements on the background of deliberation

There seem to be norms of rationality that apply to the constituents of the ad-
justed cognitive background, regardless of whether they are acceptances or beliefs.
As we shall see, these general norms on the adjusted background mirror the norms

26The ideal agents that I have studied in the previous chapters do not, of course, have such
constraints. I come back to this in Section 6.5, the conclusion of the present chapter.
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on beliefs that I presented in Section 6.2.2. This can be seen as a consequence of
the fact that beliefs and acceptances play essentially the same role in delibera-
tion. Paraphrasing Velleman [2003, p.18], one can say that the adjusted cognitive
background aims at picturing the world, of which there is just one, where the
various courses of action considered shall be pursued. This can be seen as the
starting point of an argument for the various norms that I am about to present.
But I will not go into such a justification. My goal here is rather to present the
norms on the adjusted background, from which follow most norms on acceptance,
and to show how can one derive the norms on intentions from them.

Closure under logical operations. I first assume that the cognitive back-
ground of deliberations should be “logically” closed. I do not go into much detail
about which logical rules of inference I mean here. For what follows I “only” sup-
pose that the adjusted background should be closed under classical implication
and conjunction. This means that if I accept in a given deliberation both that by
doing A I also do B, and that I will do A, then I should also incorporate in my
deliberation the fact that I will do B. Similarly, what an agent includes in the
background should agglomerate. If φ and ψ feature in the adjusted background
of a deliberation, then their conjunction should, too.

Obviously, agglomerativity of acceptances follows from this general closure re-
quirement. If, in a particular deliberation, an agent takes φ for granted and takes
also ψ for granted, he should take their conjunction for granted. But the agent
is no more required to hold to this agglomerated acceptance in other contexts
than he is with respect to the conjuncts. I take the same to apply when one
of the conjuncts comes from a context-independent belief and the other from an
acceptance. In this case the conclusion is also restricted to the given deliberation.
Agents are required to carry agglomerated cognitive attitudes from one delibera-
tion to another only when this operation can be done in the default background,
as for example when two beliefs agglomerate27.

To follow up on the remark at the end of Section 6.3.2, it is worth noticing that
this closure requirement makes the adjusted cognitive background considerably
larger. It does not, however, makes it complete in the sense of deciding on all
facts.

Internal consistency. Beliefs were required to be internally consistent, and
I assume that this is also the case in general for the elements of the adjusted
cognitive background. Here I have in mind internal consistency in a strict sense:
an agent should not include plain contradictions into the background of his de-
liberation. Internal consistency of acceptances is, of course, a special case of this
general norm of consistency.

27This applies more generally to all “conclusions” that are reached via the closure requirement.
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Another important consequence of internal consistency, together with the log-
ical closure requirement, is a context-dependent form of belief consistency for
acceptances. What is taken for granted should be consistent with the “believed”
facts that are imported into the adjusted background. Otherwise, by the closure
requirement, one would quickly obtain a new internally inconsistent acceptance.
The strength of this new requirement, of course, depends on which beliefs are ac-
tually carried in the adjusted background. But even without being specific about
which beliefs should be imported, this belief consistency requirement precludes
an agent from bracketing flat-out beliefs that are explicitly invoked in practical
reasoning. This seems to be in line with condition (3) of the definition of accep-
tances. An agent who is convinced that φ and is ready to use it in a particular
context cannot rationally take for granted that φ is not the case in that same
context.

Observe that one may require a stronger form of belief-consistency for ac-
ceptances, namely that they should be consistent with all non-bracketed flat-out
and probabilistic beliefs of degree 0 or 1, regardless of whether they feature in the
adjusted background or not. This requirement does not follow from internal con-
sistency and closure of the adjusted background, but I do not need it to carry out
the derivation of belief consistency of intentions, and so I leave it open whether
one should include it in a theory of acceptances.

Explanatory coherence. Explanatory coherence of beliefs is mirrored in their
standard of correctness (see Section 6.2.2). Agents were required to hold beliefs
about evidence, but the adjusted background of deliberation also contains accep-
tance, the standard of correctness of which is different from that of beliefs. I
shall thus use the following generalization of explanatory coherence. For a given
element of the adjusted cognitive background, one should be able to find another
element in the background that underpins its correctness.

For elements of the adjusted background that come from relevant beliefs, this
new requirement boils down to the one presented above. Things are different for
acceptances, though. Recall that the truth of their content or the fact that they
make the agent better is necessary for their correctness. In terms of explana-
tory coherence of the adjusted background, it means that, for a given acceptance,
one should be able to find other elements in the background that provide ei-
ther evidence in favour of what is taken for granted or facts about the practical
circumstances that motivate this very acceptance.

The cognitivist argument from explanatory to means-end coherence requires
a specific assumption on beliefs about what one will do. Namely, these are to
be explained by beliefs about what one intends. Now, the same will be required
of elements of the adjusted background. I assume that if an agent accepts in a
deliberation that he will do A he should also accept that he intends to A, or at
least that he will later form the intention to A.
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From the three general norms on the adjusted background thus follow agglom-
erativity, internal consistency, a form of belief consistency and explanatory co-
herence of acceptances. It should be stressed that these norms are all context-
dependent. Acceptances, unlike beliefs, are not required to be consistent nor to
agglomerate across contexts. I now investigate whether, with these characteristics
to hand, one can explain internal consistency, belief consistency and means-end
coherence of intentions without assuming that they involve beliefs.

6.4 Hybrid Pragmatism

Cognitivism is so called because it aims at showing that the norms of practical
rationality associated with intentions come, in fact, from the norms of theoretical
rationality associated with beliefs. Similarly, I have called Bratman’s approach
an “agency approach” because it tries to find an explanation for the norms of
practical rationality in general structures of agency28. Here I want to see whether
one can derive the norms on intentions from norms on acceptances that mirror
the norms of theoretical rationality for beliefs. But this derivation is based on
the idea that intentions involve acceptances, and I find that the most fitting
overall justification for this requirement is a pragmatic one. So even though the
approach I investigate here has an important cognitivist component, it is also
firmly pragmatist. For that reason I call it hybrid pragmatism.

In this section I first present the assumption that drives hybrid cognitivism,
namely that intentions “involve” acceptance. I then go on to say a few words
on the notion of relevance for a particular deliberation, and come back to the
absent-minded cyclist case. The core of the section is the last part, in which I
finally look at how the norms on intentions can be derived from the norms on
acceptance.

6.4.1 Intentions and acceptances

The key idea underlying the explanation of the requirements on intentions is the
following:

(1) Having the intention to do A implies, in deliberations where this intention is
relevant, accepting that one will do A.

This is indeed very close to the intermediate cognitivist assumption, with the
crucial difference that beliefs are replaced by acceptances. One can find many
statements that get close to (1) in the literature, notably in [Harman, 1976,
p.438], [Bratman, 1999, p.32] and [Wallace, 2006, postscript to chap.5]. The
changes from beliefs to acceptances, however, introduces a complication that the

28See the note on page 151.
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notion of relevance for a deliberation tries to handle. The problem is that it does
not seem realistic to assume that one can explicitly accept a very large number of
facts when one deliberates29. The notion of relevance aims precisely at avoiding
such an “overload” of acceptances. If, for example, I intend now to write my
PhD thesis, there are many deliberations where I do not have to take that fact
for granted. For most of my daily decisions this is just not relevant. But, as we
shall see, relevance also plays a crucial role in the derivation of the requirements
on intentions.

6.4.2 The absent-minded cyclist revisited

Before going further it is worth stressing that hybrid pragmatism is not bound to
accept that the absent-minded cyclist described in Section 6.2.5 does not really
intend to stop at the bookstore.

Recall the key features of this case. The agent intends to stop by the bookstore
but he is uncertain whether he will in fact do so, because he knows that he tends
to go on “automatic pilot” once on his bike. According to (1), he must come
to accept that he will stop at the bookstore in further deliberations where this
intention is relevant. But one can still deny that the agent would also assume
that he will stop in theoretical reasonings. In short, one can still deny that the
agent believes that he will stop at the bookstore.

6.4.3 Relevance for a deliberation

I have already mentioned twice the notion of relevance for a deliberation: in the
Section 6.4.1, where it applied to intentions with respect to deliberations, and in
Section 6.3.2, where it constrained the beliefs that have to be incorporated in the
adjusted cognitive background.

These two uses of relevance regulate what should appear in the adjusted cog-
nitive background. Indeed, in (1) it limits the intention-based acceptances that
have to be incorporated in the adjusted background. Similarly, to say that be-
liefs, if not posited or bracketed, count as acceptances in deliberations where they
are relevant is also to constrain what has to feature in the adjusted background.
So, even though I have twice before mentioned the idea of relevance, relevance of
beliefs once and relevance of intentions once, it served the same purpose in both
cases.

I spell out the notion of relevance using the deliberately vague notion of “rea-
sonably direct influence”. I state that a belief is relevant for a deliberation if the
outcome of this deliberation depends in a reasonably direct way on the truth of
the belief. In other words, if the content of the belief can make a reasonable dif-
ference in the deliberation, I state that this belief is relevant. The case is similar

29This, again, is not a problem for ideal agents. More on this in conclusion of this chapter.
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for intentions. I state that an intention is relevant for a deliberation whenever the
fact that one would execute the intention under consideration can in a reasonably
direct way influence the outcome of the deliberation. The obvious case is when
one takes into account the fact that the agent will accomplish what he intends
influences the payoff structure of a deliberation as in, for example, situations of
“overloading” [Pollack, 1991]. But it may also be that some options in a given
deliberation enhance or diminish the feasibility of a pre-existing intention30. In
that case the influence is less direct. The intention is relevant because the agent
might want to take into account the consequences of his choice for the intentions
that he has already settled on.

I do not think that it is necessary to get very precise about this notion of
“reasonably direct influence”. I put it forward only because it seems too strong
to suppose, for example, that all beliefs whose content can have the slightest
influence on the outcome of a deliberation are relevant. That would, I think, make
too many beliefs relevant, and the same for intentions. On the other hand, there
are cases where intentions or beliefs are obviously relevant for a deliberation; for
example, when choosing one option in a deliberation would make it impossible to
achieve some intention. In such a case it is clear that the deliberation influences
the prospect of achieving the intention. The correct notion of relevance for a
deliberations probably lies somewhere between these two extremes. But I do not
think it is useful, nor easy, to draw a sharp distinction between what is relevant
to a deliberation and what is not31.

This is not to say that this notion of relevance is unimportant for what follows.
Quite the contrary. On the one hand, it embodies a strong concern for the limited
capacities of non-idealized planning agents by keeping down the number of facts
that have to be taken into account during deliberation. But it nevertheless forces,
so to speak, some acceptances to feature in deliberations. This provides hybrid
pragmatism with a natural shield against the problem of false beliefs.

6.4.4 Rational intentions from rational acceptances

This section and the next are the keystones of this chapter. I look at how well
hybrid pragmatism supports the derivation of internal consistency of intentions,
strong belief consistency, means-end coherence and agglomerativity.

Internal consistency. This requirement is the easiest to derive. The argument
is brief, and essentially parallels the one presented in Section 6.2.4. By (1), an
internally inconsistent intention generates an internally inconsistent acceptance.
Putting this contrapositive argument in the other direction, this means that in-
ternal consistency of acceptances implies internal consistency of intentions.

30See e.g. [Horty and Pollack, 2001].
31I should warn the reader that, in what follows, I often just use “influence”, living implicit

the “reasonably direct” proviso.
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Strong belief consistency. The argument for belief consistency is more in-
volved because one has to deal with the notion of relevance for deliberation. The
difficulty lies in the fact that intentions have to be realizable in a world that corre-
sponds to the default cognitive background. For the intermediate cognitivist this
is not a problem because its main assumption goes directly from intentions to be-
liefs, which “live” in the default background, so to speak. But hybrid pragmatism
stays at the level of the adjusted cognitive background of relevant deliberations.
To carry the derivation through in this framework, one must show that, in case of
strong belief inconsistency, the contradictory belief-intention pairs are somehow
jointly relevant in certain deliberations. But once this is shown, the argument is
more or less the same as in Section 6.2.4.

Suppose an agent has strongly belief-inconsistent intentions. He has the inten-
tion to do A but A cannot be realized in a world where his (default) background
beliefs turn out to be true. Here I assume that this is the same as his believing that
A cannot be done. Observe that this belief should be included in the adjusted
cognitive background of a deliberation if this deliberation can in a reasonably
direct way be influenced by the fact that A cannot be done. Take any such de-
liberation. Since doing A implies that A can be done, which is just the negation
of something we assumed is relevant for this deliberation, we get that the fact
that the agent will do A can also influence—through one of its consequences—the
upshot of that deliberation. But this is just saying that the intention to do A is
also relevant for that deliberation. This means, by (1), that the agent should also
include in the cognitive background of that deliberation the fact that he will do
A. But this new acceptance is belief inconsistent32.

Agglomerativity. Let me once again begin with agglomerativity against po-
tential irrationality. As for cognitivism, hybrid pragmatism derives it automati-
cally given that it can explain internal and strong belief consistency. Again, there
are two cases to consider. Since they are essentially similar, I only sketch the argu-
ment for agglomerativity against potential violation of belief consistency. Suppose
that an agent has the intention do to A and the intention do to B which, were
they conjoined in a single intention, would not be achievable, given his beliefs.
We know from the previous section that this hypothetically conjoined intention

32The reader should also bear in mind that internal consistency and agglomerativity of the
adjusted cognitive background are at work here. They were used to derive belief consistency of
acceptances. It should also be noted that the argument could also have proceeded as follows.
Take any deliberation on means to achieve the intention to do A. It is clear that the fact that
A cannot be done is relevant to such deliberation, and so that it should feature in the adjusted
cognitive background. Given (1), one thus directly obtains a violation of beliefs consistency
of acceptances. This argument is not as general as it should be, if one grants that some
intentions never require any further deliberations on means. I honestly doubt that there are
such intentions. But in the absence of an explicit argument for that claim, I think that hybrid
pragmatism should retain the more abstract derivation presented above.
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would generate a violation of the belief consistency of acceptances, which is just
what was needed.

Agglomerativity as closure, however, is more difficult to derive. Acceptances
are indeed agglomerative within relevant backgrounds of deliberations. But here
this restriction to the adjusted background is a blight rather than an asset. For
suppose that an agent intends to do A and intends to do B. Why should he intend
to do A and B? To use agglomerativity of acceptances, we would have to make
sure that these two intentions are relevant to at least one common deliberation.
But since we are considering arbitrary intentions, I do not see why this should be
so.

We have seen in Section 6.2.4 that strong cognitivism can, however, easily jus-
tify this requirement. Maybe a stronger form of hybrid pragmatism, characterized
as follows, could work.

(2) An agent intends to do A if and only if he accepts, in relevant deliberations,
that he will do A.

At first sight, such strong hybrid pragmatism is tempting, because acceptances
are functionally very close to intentions. But just like its cognitivist analogue,
(2) comes with independent problems. Namely, it makes it difficult to distin-
guish unintended side effects from intended consequences of actions, as argued
in [Bratman, 2006b, p.18-20]. For that reason I think that one should resist the
temptation to accept (2) and rather stick to (1). This, of course, means that
hybrid pragmatism still falls short of an explanation of agglomerativity as closure
of intentions. Given that this principle can itself be questioned, as we saw in
Section 6.1, this might not be a very serious problem.

It should be noted, however, that if one adopts a principle of agglomerativity
as closure restricted to plans, relevance in deliberation might come back into force
and provide what we need to push agglomerativity as closure. For one would no
longer be dealing with arbitrary intentions, but rather with intentions that are
part of a single plan. This could help to find the common relevant deliberations
that are absent in the general case.

I shall not go in that direction here, though. It would require me to specify
the adequate level of agglomeration, and I have for now no precise idea of how
one could do this. It is telling, however, that the only argument I sketched for
agglomerativity as closure with a restricted scope was, in essence, pragmatic (see
Section 6.1). I mentioned that, at the level of plans, to systematically agglomerate
intentions might help personal coordination in extensive decision problems. If this
argumentative strategy turns out to be fruitful, it would in itself lobby in favour
of the “hybrid” character of the derivation using acceptances.

Means-end coherence. The main ingredient in the derivation of means-end
coherence of intentions is explanatory coherence of acceptances. But, just like
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cognitivism, using means-end coherence makes hybrid pragmatism vulnerable to
the problem of false beliefs. I shall return to this at the end of the section. There
is, in the meantime, another complication that the hybrid pragmatist derivation
has to overcome.

This complication comes once again from the fact that (1) only requires the
agent to take things for granted in the adjusted background of relevant delib-
erations, while the belief that “triggers” means-end incoherence is primarily a
denizen of the default background. The main step of the derivation is thus to
show that the means-end incoherent belief-intention pair can be relevant to at
least some common deliberations. Just as for belief consistency, once this is
shown the argument is fairly similar to the one in Section 6.2.4.

Suppose that an agent intends to do E and believes that he will achieve E
only if he does (M1 or M2 or... or Mn). Take a deliberation the upshot of
which can affect the prospect of achieving E. As noted in Section 6.3.3, this is
a case where the fact that the agent will do E can influence the upshot of that
deliberation. The agent might want to take into account the effect of his decision
on his background plans. This means, first, that this intention is relevant for
that context, and so by (1) that he should include in the adjusted background
the fact that he will do E. Observe, however, that the upshot of the deliberation
can affect the prospect of doing E only by affecting the prospect of doing M1

or M2 or ... or Mn, at least according to what the agent believes. That is, the
agent might want to take into account the effect of his decision on the feasibility
of each of these means. This makes the fact that doing E implies doing one of
these M is also an important input into that deliberation, which is just to say
that it is also relevant here. But then the adjusted background features both the
facts that the agent will do E and that doing E implies doing one of the Ms. By
the closure principle for the adjusted background, the agent must come to accept
that he will do M1 or that he will do M2 or... or that he will do Mn. Finally,
by applying explanatory coherence one can conclude that the agent should also
accept in that background that he intends one of these means or, at least, that
he will come to intend one of them later.

As Wallace puts it in the context of the cognitivist derivation, this is as far
as explanatory coherence of acceptances can get the derivation. But this is not
quite as far as one needs, unless one can show that the agent should not take for
granted that he has the required means-intentions without, in fact, having these
intentions. In other words, mistaken acceptances about one’s own intentions seem
to threaten the hybrid pragmatist derivation just as it did the cognitivist one.

As we saw in Section 6.2.4, Wallace has proposed a solution that seemed
to cope with the problem. This solution, however, involves a step outside the
pure cognitivist perspective because it crucially invokes a principle of practical
rationality. But hybrid pragmatism is built on the notion of acceptances in de-
liberations, which are sensitive to practical concerns. For that reason, I think it
can naturally claim Wallace’s reply to the problem of false belief, in a way that
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might be even more suited to his “hybrid” nature.
Recall that the essence of Wallace’s reply was that, in relevant deliberations,

it is independently irrational, for general pragmatic reasons, to hold false beliefs
about one’s own intentions. Mutatis mutandis, one can say that it is indepen-
dently irrational, for general pragmatic reasons, to mistakenly take for granted
one’s own intentions in deliberations where the latter would be relevant.

I have already explained in Section 6.2.4 why Wallace’s emphasis on relevant
contexts blocks counterexamples like the one proposed by Bratman. The expla-
nation is readily applicable to acceptances, and is arguably even more convincing
in these terms33.

But to push through the derivation of means-end coherence one needs not
only to show that this particular counterexample could be handled; one needs
to show that, in general, mistaken acceptances about one’s own intentions are
irrational. This was the object of Wallace’s recourse to a general principle of
practical rationality. Hybrid pragmatism is, once again, especially suited to the
incorporation of such a principle. Acceptances are after all responsive to practical
concerns.

The reader should observe, however, that Wallace’s general type of practical
concerns is not the same as the one that features in the characterization of ac-
ceptances (Section 6.3.1). The latter is specific to deliberation contexts, while
the former are “to be included among the traits and capacities that make us, in
general, effective in the pursuit of our goals”. In fact, there is a principle of this
sort that can be used to provide a “wide scope” justification of (1), which I shall
look at in the next section34.

Before I do that, though, let me summarize where things stand now. Hybrid
pragmatism can easily explain internal consistency of intentions and, after taking
care of complications regarding relevance in deliberation, strong belief consistency
as well as agglomerativity against potential irrationality. Just like intermediate
cognitivism, however, it fails to explain agglomerativity as closure. It can also
explain means-end coherence, provided that we can secure the irrationality of

33This reply also takes care of another potential counterexample. Acceptances are, as we
saw, both responsive to evidence and practical concerns. Now, suppose that an agent has,
in the default background, a mistaken belief about his own intention, which is supported by
some misleading evidence. Would it not then be rational of him to incorporate this fact in
relevant deliberation? The answer, I think, should be “no”, because such deliberations are
again precisely deliberations where the fact that the agent has the intention is relevant.

34To the extent that the last step of the argument succeeds, it shows how suited to hybrid
pragmatism is Wallace’s attempt to save the cognitivist derivation of means-end coherence. Ex-
cept for the switch from acceptances to beliefs, he spelled out all the key steps of the argument.
He saw the importance of looking at deliberation where one’s own intentions are relevant, and
connected it to pragmatic consideration. In fact, his suggestion is much more at odds with the
orthodox cognitivist line than with hybrid pragmatism. At the end of the day, one may wonder
why he did not directly speak in terms of acceptances.
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mistaken acceptances about one’s own intentions. This requires a more general
pragmatic argument, which I now explore.

6.4.5 Acceptances and intentions in deliberation

The hybrid pragmatist derivation of the norms on intentions rests on two as-
sumptions that still have to be justified: the implication (1) from intention to
acceptances and the connection between intention and acceptances about inten-
tions. In this section I first sketch how one can provide a two-step argument
for (1). At the core is a constitutive claim in favour of (1), which is cloaked by
a “wide scope” pragmatic justification. The ideas driving this second step are
quite unifying, allowing one also to secure the derivation of means-end coherence.
I finally look back at the constitutive claim, in the light of a more general worry
about the hybrid pragmatist enterprise.

A key ingredient in the theory of practical reasoning for planning agents that I
have developed in this thesis is that intentions should not only be seen as outputs
of deliberation, but also as important inputs. This influence of previously adopted
intentions and plans on deliberation is twofold. They trigger deliberation about
the means by which they will be achieved and they rule out of consideration
options with which they are incompatible.

The planning theory, however, says little about how they do so, and it seems
that acceptances help to understand this connection. More precisely, the impli-
cation (1) from intentions to acceptances, together with the various norms on the
latter, provide the required connection between intentions and deliberation.

Let me first look at the filtration of options that comes from intentions. How
is that supposed to happen? Bratman [1991, p.32] proposed that “what is re-
quired of an option in deliberation is that one’s so acting be consistent with one’s
intentions and beliefs, and that one accept in that context that one will so act if
one so decides”. One can say, more generally, that options in deliberations have
to be consistent with the adjusted cognitive background. But then, if we assume
(1), the options to be considered in a deliberations will have to be consistent
with the agent doing what he intends. Conversely, (1) gives us a way to see why
intentions rule out inadmissible options. They do so via acceptances.

The situation is analogous with respect to the standard of relevance with
respect to means that intentions impose. Recall the reasoning that I pictured
in Section 6.4.4. I started with an intention to do E and the belief that to do
E one must do (M1 or M2 or... or Mn). From these I concluded, after a few
intermediate steps which crucially involved (1), that one should accept that he
will do M1 or that he will do M2 or... or that he will do Mn. But, in the absence
of a mistaken acceptance that the agent already has the corresponding intention,
recognizing that this intention is absent may well trigger means-reasoning. In
other words, becoming aware of this threat of means-end incoherence may trigger
deliberation about means. Note that this is not to say that the agent should form
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the intentions required to resolve means-end incoherence. For now the claim is
only constitutive. With (1), intentions about ends can find their way into the
adjusted background and set off deliberation about means.

So (1) can be seen as a way to understand how intentions influence practical
reasoning. As I just mentioned, this is a constitutive claim. The next step
is to ask why the intentions of planning agents should play this role. In other
words, is there a normative reason to think that planning agents should take their
previously adopted intentions into account while deliberating? Here I think that
the most promising answer to this question is the general pragmatist approach
proposed by Bratman [2006b] and Wallace [2006]35. Intentions generally “aim
at coordinated control of action that achieve what is intended” [Bratman, 2006b,
p.33, emphasis in original] or, in other words, intentions are “among the traits and
capacities that makes us, in general, effective in the pursuit of our goals”[Wallace,
2006, p.118]. Forming intentions is, in short, a generally useful tool to achieve
our goals. Many features of intentions make them useful. They are “conduct
controlling”, relatively resistant to reconsideration and, what is important for
hybrid pragmatism, they influence further deliberations.

This normative claim indeed very well suits the hybrid nature of (1). If the
reason why intentions should play a role in practical reasoning is a general, prag-
matic one, it is natural to think that they will do so in a way that is also responsive
to practical concerns, i.e. via acceptances. But one should bear in mind that it
is a “wide scope”, normative claim. In the words of Broome [1999], the “should”
is not detachable. If an agent intends to do A it does not follow that he auto-
matically has good, practical reasons to take it for granted that he will do A,
especially if he did not have good reasons to form that intention to start with.
Rather, the argument aims at showing that there are general pragmatic reasons
for planning agents to comply with (1)36.

This general pragmatic claim reaches further than the justification of (1). It
also allows us to overcome the problem of mistaken acceptances. In exactly the
same fashion as Wallace, one can say that to mistakenly accept that one intends
something in relevant deliberation is irrational because it threatens the general
efficiency of planning agents to reach their goal. Again, bluntly, mistaken ac-
ceptances can mess up the agent in the long run37. With this in hand, hybrid
pragmatism has a way to explain the means-end coherence requirement for in-
tentions, in a way that fits the overall justification of the others requirements.
As such, it seems to provide a more unified argumentation than Wallace’s sup-

35Observe that one is not bound to take this route. Since (1) is taken here as a constitutive
claim, one could as well try to cloak it with a more cognitively-oriented normative argument. I
choose the pragmatist one because it seems to me the more plausible.

36In quasi-formal terms, the argument aims at showing that “pragmatic-should (Intention A
→ Acceptance that A)” and not that “Intention A → pragmatic-should (Acceptance that A)”.

37In fact, one could argue that they can mess up even more than mistaken beliefs, because
of the crucial context-dependency of acceptances.
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plemented cognitivism38. In this case one could wonder why one suddenly needs
to appeal to practical concerns to derive means-end coherence, while this is not
the case for belief and internal consistency. But if one uses acceptances, practical
concerns are there all along.

This raises a more general question about the motivations behind the hybrid
pragmatist view. One attractive feature of cognitivism, to the extent that it suc-
ceeds, is its clear stance: the practical norms on intentions can be explained only
in terms of theoretical norms on beliefs. The same can be said about Bratman’s
agency approach: the practical norms on intentions can be explained only in
practical terms39. In comparison, hybrid pragmatism sits in a rather grey area,
invoking both pragmatic and theoretical-like requirements.

I think one can better appreciate the relevance of such a mixed approach
by looking at the constitutive claim mentioned at the beginning of this section.
Intentions are playing a role in practical reasoning via their influence on the
cognitive background of deliberation, which is under some pressure to represent
accurately the world. From that point of view, it seems that the norms on inten-
tions fall in two categories. On the one hand, the derivations of agglomerativity
against potential irrationality, of internal consistency and of strong belief consis-
tency rest on the requirements of closure under logical operation and of internal
consistency for the adjusted background of deliberation. These norms obviously
mirror norms of theoretical rationality. This should not come as a surprise. To
paraphrase again Velleman [2003], the adjusted cognitive background seems to
aim at picturing the world, of which there is just one, where the various courses
of action considered shall be pursued. It plays in practical reasoning a role sim-
ilar to the role of the default background in theoretical reasoning. Inasmuch as
the argument in Section 6.4.4 is correct, the norms of agglomerativity against
potential irrationality, of internal consistency and of strong belief consistency ul-
timately derive from this role of the adjusted background. This gives a strong
“cognitive” character to these norms, by which they somehow differ from means-
end coherence. The derivation of this norm on intention indeed crucially rests on
practical concerns, especially to avoid the problem of false beliefs or of mistaken
acceptances. As such, means-end coherence appears to be, unlike the three other
norms just mentioned, a genuinely practical norm on intentions.

This general distinction between the practically- and the cognitively-oriented
norms on intentions help to understand why “pure” cognitivism as so much dif-
ficulty with means-end coherence, and why it seems forced in the end to fall
back on pragmatic concerns. To explain this practically-oriented norm one needs
at least some pragmatist component. But, on the other hand, a pure agency
approach seems to leave behind the fact that some norms on intentions have a

38The epithet comes from Bratman [2006b, p.8].
39One should take care about where the “only” is located. Bratman does not seems to claim

that the practical norms can only be explained in practical terms.
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important cognitive character. The theoretical-like constraints that they embody
are perhaps better explained in their relations with the cognitive background
of deliberation, which is precisely what hybrid cognitivism does by using accep-
tances.

6.5 Conclusion

Hybrid pragmatism is thus a plausible philosophical approach to the norms of
consistency and coherence which apply to intentions. It not only helps us to
understand where these norms come from, but also allows us to explain how
intentions influence deliberation, via the notion of acceptances. That this ap-
proach definitely stands in between cognitivism and Bratman’s agency approach
can also be seen as an asset. It provides an account that does justice to the
influence of intentions on both the pragmatic and the cognitive component of
practical reasoning. In other words, it provides a unifying background to the role
of intentions in rational decision making, something that was arguably missing
in the last chapters.

To conclude this chapter I would like to address one final question, bearing to
resource-boundedness40. As I explained in Chapter 2, I have carried the formal
investigations under strong assumptions about the capacities of agents: all issues
pertaining to resource-boundedness were ignored. Resource-boundedness played,
however, an important role in the discussion of hybrid pragmatism. A crucial asset
of acceptances is that they simplify deliberation, by for instance provisionally
settling issues that the agents is uncertain about. Resource-boundedness also
came back through the idea of relevance for deliberation, in Section 6.4.3, and
during the discussion of the problem of false beliefs (Sections 6.2.4 and 6.4.4).
Does it mean that hybrid pragmatism is a suitable theory of how intentions
influence practical reasoning for limited agents, but not for the type of agents
that I studied in Chapters 2 to 5?

I think not, for the following reasons. First, in the discussion around the idea
of relevance for deliberation and around the problem of false beliefs, resource-
boundedness rather raised difficulties for the hybrid pragmatist justification. It
has, for instance, forced to look carefully at what agents should accept in de-
liberation, precisely for the reason that resource-bounded agents can only take
for granted a limited amount of facts. Since this problem does not arise for non-
resource-bounded agents, the hybrid pragmatist derivation of the norms on inten-
tion seems even more straightforward under the idealizations I made in Chapters 2
to 5. Second, the idea that acceptances are of greater importance for agents with
limited capacities does not undermine their explanatory power in the general case.
They still provide a simple way to understand how intentions influence practical

40I am grateful to Michael Bratman (p.c.) for pointing me out this potential weakness in the
connection between the present chapter and the foregoings.
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reasoning—the “constitutive claim” of Section 6.4.5—an issue that has been very
little addressed in the philosophical literature. In other words, acceptances in
deliberation and hybrid pragmatism complete the picture of how future-directed
intentions constraint practical reasoning, whether for ideal or resource-bounded
agents. As such, the philosophical theory developed in this chapter seems indeed
to encompass both the case of agents with limited capacities and the ideal agents
which have been studied in Chapters 2 to 5.

Of course, hybrid pragmatism also opens up questions about intention-based
practical reasoning from a formal perspective. How is one to include acceptances
in the formal theory of deliberations that I proposed? How will they be distin-
guished from other kinds of “informational” states, like knowledge and belief?
How, in these models, can one account for the fact that acceptances are also re-
sponsive to pragmatic considerations? These are crucial questions that a formal
enquiry would surely help answer. Furthermore, one can hope that bringing ac-
ceptances into the formal picture will also unveil new issues about them, just as
in the previous chapters game and decision-theoretic models unveiled new issues
about intentions. All in all, hybrid pragmatism is very well suited as the final
theme for this thesis. It rounds up issues that were carried all the way, and opens
up exiting new ones.





Chapter 7

Conclusion

In this thesis I have proposed a theory of practical reasoning which drew on
three contemporary paradigms: instrumental rationality from decision and game
theory, epistemic reasoning from philosophical logic and computer science, and
planning agency from philosophy of action. This provides a unified theory of
rational planning agency, which is a theory of how agents deliberate when they
take into account the demands of instrumental rationality, their background of
future-directed intentions and the information they have about the rationality,
intentions and information of others.

7.1 Review of the chapters

I have shown in Chapter 2 that such a broad perspective can account for personal
coordination in extensive decision problems, because rational planning agents are
able to break ties between equally desirable options. In Chapter 3 I brought this
tie-breaking effect to the level of interactive situations, and I have shown that it
provides a natural anchor for interpersonal coordination in Hi-Lo games. With
the help of epistemic models for these games, I have been able to study explicitly
how mutual knowledge of intentions also foster coordination in games. By the
same token I was able relate the intention-based explanation of coordination to
other accounts in the game theoretical literature, and to circumscribe better the
differences between coordination and fully cooperative shared agency.

In Chapter 4 I have studied how rational planning agents transform their
decision problem on the basis of what they intend, a phenomenon called the
reasoning-centered commitment in philosophy of action. I have shown that this
aspect of intention-based practical reasoning is especially sensitive to interactions.
When many planning agents simultaneously transform the decision problem they
face, it becomes crucial that they take each others’ intentions into account.

Chapter 5 merged the considerations of the previous chapters into a uni-
fied picture of rational planning agency. Using dynamic epistemic logic, I have
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been able to relate the informational components of intentions-based delibera-
tion with the active process of decision problem transformation. I have also
shown that this framework really does capture phenomena at the intersection of
planning agency and instrumental rationality, such as the relation between the
game-theoretic solution concept of elimination of dominated strategies and the
filtering of intention-inconsistent options. Finally, I have provided this framework
with axiomatic proof systems, which give an explicit representation of practical
reasoning in games with intentions.

In Chapter 6 I explored the philosophical basis of this theory of intention-based
deliberation, looking at where the various norms of consistency and coherence of
intentions come from. This led to hybrid pragmatism, an attempt to explain these
norms in terms of similar norms which apply on acceptances in deliberation.
I have argued that hybrid pragmatism is a plausible alternative to the main
contemporary proposals in philosophy of action, because it does justice to both
the cognitive and the pragmatic side of the norms of consistency and coherence.
Furthermore, it provides a natural explanation of how future-directed intentions
influence practical reasoning, and as such helps us to see better how the various
pieces encountered in this thesis fit together.

7.2 Open questions

Of course, many questions were left unanswered along the way. Instead of re-
viewing them, I will rather present three broad research themes that this thesis
opens up. The first relates more specifically to logic, the second to the theory of
intentions and the third to game theory. I think, however, that from a general
point of view each of them is relevant to all these fields.

I have many times mentioned that the present framework is in great need of a
more elaborate theory of intention revision. This poses challenging problems from
a logical point of view. Dynamic epistemic logics for belief revision have been
extensively studied1. These systems have very interesting logical properties, in
terms of axiomatizations and expressive power, and it is surely worth looking at
how they would transfer to logic for intention revision. What it more, developing
the logic of intention revision is surely a good way to establish the connection
between the approach adopted in this thesis and BDI architectures. As I men-
tioned at the end of Chapter 5, BDI models are the main contemporary logical
approach to intention-based practical reasoning. The road I have taken here did
not quite allow for a systematic comparison, but at this point the issue is, to say
the least, pressing.

From the philosophical point of view, hybrid pragmatism and the theory of
acceptances in deliberation that I used in Chapter 6 are “new” issues that deserve

1Girard [2007], van Benthem [2007] and Baltag and Smets [2006] are especially interesting
from the current perspective.
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much more detailed scrutiny. But the investigation that I carried out in Chapter
4 has also unveiled, I think, an important gap in the “core” theory of intentions.
The intricacies of intention-based transformation of decision problems in interac-
tion situations have been widely overlooked in the philosophical literature2. In
comparison, the notion of individual intentions with a “we content” that I used
in Chapter 3 has attracted much attention, and raised important questions about
conditions under which agents are justified in forming them. Similar questions
obviously also apply to intention-based transformations of decision problems. Are
agents always justified in cleaning or pruning their option set, even when they are
uncertain about the intentions of others? If not, can one phrase the appropriate
conditions of justification in terms of mutual knowledge of intentions, as it is done
for intentions with a “we” content? These issues are of the greatest importance
for the theory of intentions, because they concern the very “regularities which
connect intentions with each others, with associated processes and activities, and
with characteristic ‘inputs’ and ‘outputs’.” [Bratman, 1987, p.9] In short, they
concern what intentions are.

The place of rational deliberation with intentions in interactive situations also
poses very interesting problems from the point of view of game theory. As men-
tioned in Chapter 3, the intention-based account of coordination in Hi-Lo games
occupies a point somewhere in the middle ground between purely competitive
and genuinely cooperative scenarios. It makes crucial use of intentions of the
form “I intend that we. . . ” which, even though they are essentially individual
states, have a clear social character. As such, intention-based practical reasoning
is a bridge between competitive and cooperative game theory. It thus offers a
plausible alternative to the Nash program [Serrano, 2005], a well-known attempt
to translate cooperative into non-cooperative frameworks.

D. Davidson’s seminal contribution [1980] to contemporary philosophy of action
was profoundly influenced by his familiarity with models of instrumental ratio-
nality from theoretical economics, and especially with decision theory [Malpas,
2005]. Since then, however, these disciplines have mostly evolved in parallel, and
only recently can we see a renewal of interest in genuinely interdisciplinary work
on rational decision making, witness e.g. the work of Parikh [2002], van Ben-
them [2006] and Bacharach [2006]. I have written this thesis with the conviction
that such interdisciplinary approaches are fruitful, and my hope is that I have
conveyed this conviction to the reader.

2Harp [2008] is a notable exception.
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Samenvatting

In dit proefschrift ontwikkel ik een theorie van beslissingen die recht doet aan het
feit dat mensen toekomstgerichte intenties vormen. Tegelijkertijd maak ik gebruik
van moderne theorieën van instrumentele rationaliteit en dynamisch epistemische
logica. Het resultaat is een completer beeld van praktisch redeneren. Ik laat zien
dat een zodanige benadering van het vraagstuk bestaande theorieën van rationeel
beslissen en intenties verrijkt.

Hoofdstuk 2 laat zien dat de introductie van toekomstgerichte intenties in-
derdaad de verklarende kracht van beslis-theoretische modellen versterkt. Met
toekomstgerichte intenties verbinden agenten zich aan een bepaalde uitkomst en
dit staat ons toe om genuanceerder om te gaan met op het eerste gezicht evenredig
attractieve uitkomsten. Tegelijkertijd verklaren intenties beter hoe agenten hun
beslissingen over tijd coördineren. Dit brengt de traditionele beslistheorie een
stap verder.

Hoofdstuk 3 bespreekt coördinatie tussen verschillende agenten, vooral in “Hi-
Lo games”. Ik laat zien dat intenties inderdaad helpen om coördinatie—ook
tussen verschillende agenten—beter worden verankerd, op een manier die gen-
eraliseert van één naar meerdere agenten. Aan het eind van het hoofdstuk laat
ik zien hoe intenties in het algemeen (niet alleen in “Hi-Lo games”) coördinatie
verankeren. Dit staat ons toe om belangrijke beweringen met betrekking tot
gemeenschappelijk handelen in de filosofie te verklaren.

In hoofdstuk 4 bespreek ik twee facetten van het bindende vermogen van inten-
ties en hun invloed op praktisch redeneren: Eerst het filteren van mogelijkheden
en vervolgens de focus op middelen. Ik laat zien dat beide onderwerpen kunnen
worden verklaard als transformaties van beslis- en speltheoretische modellen. In
de context van strategische interactie krijgen deze onderwerpen een belangrijk
sociaal karakter dat nog niet eerder bestudeerd is in de filosofische theorie van
actie.

In hoofdstuk 5 maak ik gebruik van dynamisch epistemische logica om de
ideeën uit voorgaande hoofdstukken tot één theorie te integreren. Ik laat be-
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langrijke overeenkomsten zien tussen de rol van intenties in coördinatie en het
filteren van mogelijkheden. Deze observatie leidt tot een natuurlijke generalisatie
van het filterproces die rekening houdt met de informatie die agenten tot hun
beschikking hebben over hun eigen en andermans intenties. Vervolgens bespreek
ik hoe onder andere het filteren en de focus op middelen helpen coördinatie te
verklaren en hoe ze benvloed worden door de bekende oplossingsconcepten.

In hoofdstuk 6 neem ik een meer filosofisch perspectief en ik bespreek hoe de
normen van consistentie en coherentie van intenties kunnen worden verklaard. Er
bestaan twee dominante verklaringen in de hedendaagse filosofische theorie van
actie: de “cognitieve” en de “agency” benadering. Ik ontwikkel een alternatieve
benadering die omschreven kan worden als hybride pragmatisme en tussen de
twee andere concepten geplaatst kan worden. Hybride pragmatisme is gebaseerd
op het tot nu toe weinig besproken concept van “acceptance in deliberation”.
Ik beargumenteer dat hybride pragmatisme beter kan verklaren hoe toekomst-
gerichte intenties invloed hebben op praktisch redeneren.



Résumé

Cette thèse développe une théorie de la prise de décision qui, tout en s’appuyant
sur les théories contemporaines de la rationalité instrumentale et sur la logique
épistémique dynamique, rend justice au fait que les agents humains ont la capacité
de former des intentions à propos d’actions futures. Il en résulte un point de
vue plus complet sur le raisonnement pratique, qui enrichit à la fois les modèles
existants de la prise de décision rationnelle et les théories philosophiques des
intentions.

Dans le chapitre 2 je montre qu’en introduisant des intentions à propos d’action
futures on élargit le pouvoir explicatif des modèles en théorie de la décision.
L’engagement volitif associé aux intentions, par exemple, permets aux agents de
départager des options qui ne peuvent être distinguées dans les modèles classiques,
et par le fait même de mieux coordonner leur actions dans le temps.

Dans le chapitre 3 j’étudie à nouveau la coordination, mais cette fois en con-
textes interactifs, plus particulièrement dans les jeux de type Hi-Lo. Je mon-
tre que les intentions facilitent la coordinations entre agents dans ces contextes
spécifiques, d’une manière qui généralise naturellement les résultats obtenus au
chapitre précédent. J’examine ensuite comment les intentions facilitent la co-
ordination, non seulement dans les jeux de type Hi-Lo, mais de manière plus
générale. Ceci permet de jeter un oeil nouveau sur des hypothèses importantes
en philosophie de l’action, notamment sur la notion d’action conjointe.

Le chapitre 4 se consacre à deux facettes de l’engagement généré par les inten-
tions dans le raisonnement pratique: la pré-sélection d’options et le ciblage de la
délibération sur les moyens de parvenir aux fins. Je montre qu’elles peuvent être
étudiées sous la forme de deux opérations simples qui transforment les modèles
en théorie de la décision et des jeux. En situations d’interactions, ces opérations
prennent une dimension sociale importante, qui n’a précédemment pas été étudiée
en philosophie de l’action.

Dans le chapitre 5 j’utilise la logique épistémique dynamique pour constru-
ire une théorie du raisonnement pratique englobant et généralisant les résultats
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obtenus dans les chapitres précédents. Je montre qu’un aspect important de
l’engagement volitif utilisé au Chapitre 3 dans l’étude de la coordination inter-
personnelle réapparâıt dans la pré-sélection d’options définie au Chapitre 4. De
cette observation découle une généralisation naturelle du concept de pré-sélection,
qui prend en compte l’information que les agents possèdent à propos de leurs pro-
pres intentions et de celles des autres agents. En fin de chapitre j’explore deux
autres thèmes à l’intersection des théories de l’action et de la rationalité instru-
mentale, soit les conditions sous lesquelles la pré-sélection d’options facilite la
coordination et est à son tour facilitée par l’élimination d’options irrationnelles.

Le chapitre 6 propose un retour philosophique sur la théorie développée au
chapitre précédent, pour mettre en lumière la provenance de différentes normes
associés aux intentions. Deux approches, le cognitivisme et l’approche pratique,
dominent le débat sur cette question en philosophie contemporaine de l’action.
Dans ce chapitre je développe une approche alternative, que je nomme le pragma-
tisme hybride, située à mi-chemin entre le cognitivisme et l’approche pratique. Le
pragmatisme hybride se base sur le concept d’acceptation en délibération, un état
cognitif qui n’a jusqu’à maintenant que peu été étudié en philosophie. Je soutiens
que le pragmatisme hybride constitue une alternative avantageuse, et que son re-
cours aux acceptations en délibération permet de mieux comprendre comment les
intentions à propos d’action futures influencent le raisonnement pratique.



Abstract

In this thesis I propose a theory of decision making that does justice to the
idea that human agents can form future-directed intentions, but which at the
same time capitalizes on the resources of contemporary theories of instrumental
rationality and dynamic epistemic logic. The result is a more all-encompassing
picture of practical reasoning for planning agents. I show that such a broad
approach genuinely enriches existing models of rational decision making, as well
as the philosophical theory of intentions.

In Chapter 2 I show that the introduction of future-directed intentions does
indeed broaden the explanatory scope of decision-theoretic models. The volitive
commitment of future-directed intentions allows one to go beyond traditional
decision-theoretic reasoning by “breaking ties” between equally desirable options,
and thus provides a straightforward anchor for personal coordination.

In Chapter 3 I consider coordination, mostly in “Hi-Lo” games. I show that
intentions do indeed anchor coordination in these games, in a way that naturally
generalizes their “tie-breaking” effect in single agent contexts. At the end of
the chapter I look at how intentions can anchor coordination in the general case.
This allows to revisit important claims in the planning theory concerning “shared
agency”, and in particular to circumscribe better the extent of this phenomenon.

In Chapter 4 I turn to two facets of the reasoning-centered commitment of
intentions, namely the filtering of options and the focus on means. I show that
they can be studied by means of two simple operations which transform decision-
and game-theoretic models. In contexts of strategic interaction, these operations
acquire an important social character, that has not yet been studied in philosophy
of action.

In Chapter 5 I use dynamic epistemic logic to bring the considerations of the
previous chapters under a single umbrella. I show that an important aspect of
the volitive commitment used to account for coordination with intentions has
an echo in the filtering of options that I define in Chapter 4. This observation
triggers a natural generalization of the idea of filtering, which takes into account
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the information that agents have about their own intentions and the intentions
of others. By the end of the chapter I explore two other issues at the intersec-
tion of planning agency and instrumental rationality, namely the condition under
which intention-based transformations of decision problems foster coordination
and become “enabled” by the elimination of dominated strategies.

In Chapter 6 I look back at this theory from a philosophical point of view, and
investigate the question of how the norms of consistency and coherence which ap-
ply to intentions can be explained. In contemporary philosophy of action there are
two main takes on this issue, called the “cognitivist” and “agency” approaches.
Here I explore an alternative one, hybrid pragmatism, which stands half-way be-
tween cognitivism and the agency approach. It is based on the notion of “accep-
tance in deliberation”, a cognitive state which has so far attracted little attention.
I argue that hybrid pragmatism is a plausible alternative to the two main con-
temporary approaches, and that its use of acceptances provides a more complete
picture of how future-directed intentions make their way into practical reasoning.
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