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Lasse, Keit and Sumanta. You and all other friends I thank for the nice dinners,
parties, Salsa, wind-surfing, etc. and all the things traditionally a family provides
you with. Last but not least I want to mention my “Swiss guards” Christian and
Krzysztof, who will stand by me during my defense. All of you made these four
years a great time.

I would probably not be writing this if I had not gotten continuous support
from my family. I thank my parents Brita and Hans-Jürgen for their love and
support and my brothers Claus, Ulf and Jörg.

xii



Chapter 1

Introduction

Quantum mechanics is a physical theory attempting to describe the world on the
smallest scales. Its theoretical foundations were mostly laid out in the 1920’s
and 1930’s. It accurately predicts effects which are not explainable by classical
theories. These effects can aid in information processing tasks, for example in
computation but also communication and cryptography.

The idea to use quantum mechanics to do computation goes back at least to
the early 80’s [35, 44]. To compute the value of some function f on a particular
input x, one takes a quantum mechanical system (consisting of a collection of
photons, ions or some other suitable objects), and initializes its state depending on
x. One then manipulates the system according to some predetermined procedure
(a quantum algorithm), which depends on the function f one wants to compute.
In the end one observes (measures) the final state of the quantum state and
determines the value f(x) from it.

It is not at all obvious why this way of computing should have advantages
over the way classical computers work. Even today we are far away from a
full understanding. However, in 1994 Shor [88] showed that it is possible to
factor large numbers on quantum computers quickly, i.e. in polynomial time. The
currently known best classical algorithms for factoring numbers are comparatively
slow; they run in exponential time. This suggests that quantum computers might
have capabilities which go beyond those of classical computers. Apart from its
theoretical significance, this result is important since factoring numbers quickly
will allow to break many cryptographic protocols, which are for example used on
the internet. Factoring is not the only problem for which quantum computers
give advantages over classical computers. For example, Grover [50] invented an
algorithm to search for an item in a database significantly faster than on a classical
computer. See [68] for more examples of quantum algorithms which outperform
classical ones.

The full potential offered by quantum mechanics for information processing is
still not clear. One reason is a practical one: We simply do not yet know how to
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2 Chapter 1. Introduction

construct the physical devices necessary to practically implement the proposed
applications. For example, it is currently impossible to build error-free quantum
mechanical devices that are strong enough for large-scale quantum computation.
It is likely that also in the future the hardware for building quantum computers
will have faults. In Part I we will look at the limitations of quantum computation,
when all we have are faulty devices (Chapters 3, 4 and 5). We will also analyze
noise in classical computation (Chapter 6).

Apart from the practical problem of building quantum devices, we are only
starting to discover what kind of applications are theoretically possible using
quantum mechanics. One particular example is that of multi-prover interactive
proof systems (MIP systems), which we discuss in Part II in Chapter 7. MIP
systems are verification procedures in which a certain number of provers try to
convince a verifier of the truth of some statement. It is important that the provers
are not allowed to communicate with each other during the protocol. Classical
proof systems are relatively well-understood. Much less is known about quantum
interactive proof systems, in which the provers may share an entangled state.
The reason we know much less is that we do not have a full understanding of
entanglement, yet. In Chapter 7 we analyze a special class of quantum MIP
systems and their behaviour under simultaneous (or parallel) repetition.

In the last chapter we try to explain another mystery of entanglement: Why
does quantum mechanics allow entangled, non-communicating parties to generate
certain shared distributions, but certain others not? Or more generally: Why are
the quantum mechanical axioms like they are? We give a partial answer to this
question. The existence of some of the distributions that are ruled out by quantum
mechanics would have some really strange consequences and would make our
world very different from how it is. This result partially explains why quantum
mechanics is like it is and puts constraints on all physical theories extending it.
Incidentally, the techniques of Chapter 8 use fault-tolerant computation.

The author hopes that this brief overview of the results has incited the reader
to read on. In the rest of this chapter we will explain the results and some more
background in more detail.

1.1 Limits on fault-tolerant computation

Quantum computing with imperfect devices

At the moment we are a long way from building quantum computers large enough
to solve large instances of the problems for which we believe quantum algorithms
are faster than classical algorithms (e.g. factoring). This is despite a decade-
long effort by experimental physicists. The general problem is that the objects
carrying the quantum information must be small in order to exhibit quantum
mechanical behaviour. Common proposals use photons, ions or other “small”
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objects. One reason why large enough quantum computers do not exist yet is
that it is hard to manipulate and operate on these small objects faultlessly. Even
worse, also if not operated on, the state of the quantum system can deviate
over time from its original state if no precautions are taken. If too many faults
in the system accumulate over time the final measurement will not give any
useful information about the value of the function we want to compute. This
problem of manipulating and preserving quantum states makes it hard to build
large quantum computers.

Rather surprisingly, there is a way around this. In the mid 90’s Shor, Steane,
and others [86, 87, 90, 48] invented a “software solution” for the problem of noise.
They showed that quantum error-correcting codes exist, which means it is pos-
sible to map the state of a quantum mechanical system A (consisting e.g. of N
photons) into some slightly larger system Ã (consisting e.g. of 10N photons), in
such a way that it is possible to store the state of A essentially perfectly even if
Ã is slightly noisy (i.e. some of the photons are not in state they are supposed to
be). Later results improved on this and showed that it is not merely possible to
store quantum states fault-tolerantly in this way. It was shown [4, 59, 62] that it
is even possible to do this encoding in a way which allows to simulate the compu-
tation of the noise-free system A with the faulty system Ã. In particular, if the
probability that errors happen in the Ã system is small enough and below some
threshold—usually referred to as the fault-tolerance threshold1–, then arbitrar-
ily long quantum computation is possible. The overhead of these schemes (the
number of additional resources needed in the larger system) is relatively moder-
ate and manageable. This means that if it is possible to build and operate on
quantum systems with small enough errors it is possible to efficiently implement
any (noise free) quantum algorithm. Thus, faults in quantum system are not
an unsurmountable problem and the task of building large quantum computers
becomes a “mere” engineering problem.

Lower bounds on quantum fault-tolerance threshold

Unfortunately, as many other engineering problems, this is not an easy one. Ini-
tial fault-tolerant schemes were proven to tolerate noise on the order of 10−6, and
have been substantially improved in the past decade. The best rigorous lower
bounds on the fault-tolerance threshold—which we state without reference to the
specific assumptions used—are on the order of 0.1% [7, 6, 5, 82], which is orders
of magnitude smaller than the noise rates currently achievable in the lab. On
the other hand, the situation is not as bad as it looks, since these rigorous lower
bounds are rather conservative and probably underestimate the true thresholds.
The gaps between rigorous lower and upper bounds on the threshold are signifi-
cant, often by a factor of 102 to 103. For most models the exact values are still

1Of course, its value depends crucially on the exact parameters of each particular system.
The exact value will not matter for the following qualitative account, though.
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unknown. The true thresholds will be somewhere in between. A particular very
interesting scheme proposed by Knill [61] was estimated to allow universal quan-
tum computation with gates that have more than 3% of depolarizing errors, and
a recent result [43] estimates that the actual threshold is as high as 6.88% for this
particular scheme.

Upper bounds on quantum fault-tolerance threshold

In this thesis we try to prove rigorous upper bounds on the tolerable noise level,
thereby shrinking the gaps between lower and upper bounds. For one particular
model we will show a tight threshold. In the following we list the contributions
of this thesis and compare them. The definitions of relevant terms are given in
the respective chapters and Chapter 2. In particular, Chapter 2 contains the
definitions of efficient quantum computing and quantum circuits.

In Chapters 3 and 4 we will consider quantum circuits with storage noise only,
which means that we assume that all gates used are perfect, and after each time-
step noise happens on each qubit independently. In contrast, when we talk about
gate noise we mean that after the execution of each gate some noise happens,
which may be an arbitrary quantum operation applied to all the outgoing wires
of the gate coherently. This will be the model in Chapter 5, in which we establish
a threshold for a particular set of gates.

The reason for considering storage noise in Chapters 3 and 4 are manyfold:
At the current stage of the development it is not clear which proposal for building
physical quantum computers will be used eventually. Since each proposed imple-
mentation has different noise properties, it currently seems more appropriate to
develop general techniques and tools for proving noise bounds, rather than exact
results for concrete proposals. The techniques presented in the following are very
general and can be easily adapted to gate noise as well. Furthermore, in several
proposals for physical implementations of quantum computers, e.g. in ion-traps,
storage noise actually seems to be the most severe noise. Finally, in most models
storage noise can be seen as a particular kind of gate noise, since the noise on the
outgoing wires may be considered to belong to the previous gate.

In Chapter 3 we study erasure noise. Erasure noise (see Chapter 3 for a more
precise definition) of rate p is an operation that on input of some quantum state
ρ outputs ρ and a classical bit |0〉 with probability 1 − p and with probability p
it outputs some fixed quantum state of the same dimension as ρ and a classical
bit |1〉. The classical bit indicates whether an error occurred or not.

The main result from Chapter 3 is that circuits that use gates with at most
k input wires, and in which each wire is erased with probability 1− 1/k in each
time-step can neither be universal for classical or quantum computation. The
proof shows that above this noise rate it is impossible to transmit a single bit
from the input to the output, if the output is sufficiently far away from the input.
In particular, after a logarithmic amount of time any two input states become
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indistinguishable. Further, already after a constant amount of time, any two
input states become indistinguishable for measurements which act on one qubit
only. The proof works by showing that above this noise rate the output becomes
“disconnected” from the input.

A slightly weaker result which applies only to depolarizing noise was obtained
by Razborov [79]. Depolarizing noise with probability p is a quantum operation
which applies the identity operation with probability 1− p and replaces the state
by the completely mixed state I/d with probability p.

The proof in Chapter 3 is relatively simple, but nevertheless the best general2

upper bound on the tolerable noise currently known. Further, we will show that
this bound is tight in some sense, for if erasure noise has rate less than 1− 1/k,
it is possible to transmit a bit from the input to the output. It is likely (though
not proven) that below the threshold arbitrary fault-tolerant computation is pos-
sible but it is not clear whether efficient fault-tolerant quantum computation is
possible.

In Chapter 4 we show that circuits with arbitrary, essentially noise-free 1-
qubit gates and unitary k-qubit gates are useless for fault-tolerant quantum com-
putation if there is depolarizing noise of more than 1 −

√
21/k − 1 on all the

incoming wires of the k-qubit gates. “Useless” in this case means that after a
constant amount of time it is impossible to distinguish any two input states with
bounded error by a single-qubit measurement.

Of special interest from an experimental point of view is the case k = 2, for
which our bound becomes about 35.7%. Furthermore, for the case in which the
only allowed two-qubit gate is the controlled-NOT (CNOT) gate, we can improve
our bound further to about 29.3%, as we show in Section 4.5. This case is
interesting both theoretically and experimentally. Note also that the CNOT gate
together with all one-qubit gates forms a universal set [10]. The same noise-bound
applies if we also allow controlled-Y and controlled-Z gates.

The results of Chapter 3 and 4 are summarized in Figure 1.1. The bound
1 −
√

21/k − 1 obtained in Chapter 4 is better than 1 − 1/k from Chapter 3 for
all k. In particular the bound behaves like 1 − Θ(1/

√
k). This matches what

is known for classical circuits (see later in this chapter), and therefore probably
represents the correct asymptotic behavior.

However, the result in Chapter 4 is weaker than the result in Chapter 3 in cer-
tain aspects. Most importantly, we analyze depolarizing noise instead of erasure
noise. Further, we assume that all k-qubit gates are mixtures of unitaries, which
slightly restricts generality. Not every completely-positive trace-preserving map
can be written as a mixture of unitaries.3 We believe that it is still a reasonable

2In the sense that gates may perform any physical operation; only the number of wires going
into a gate is restricted.

3One can implement an arbitrary gate by a unitary gate acting on the original qubits and
additional ancilla qubits in a fixed pure state, but this increases the arity of the gate and
moreover the ancilla qubits will be affected by the noise operators that precede the unitary.
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Figure 1.1: Upper bounds on noise for fault-tolerant quantum computation

assumption. For instance, to the best of our knowledge, all known fault-tolerant
constructions can be implemented using such gates (in addition to arbitrary one-
qubit gates). Moreover, all known quantum algorithms obtain their speed-up over
classical algorithms by using only unitary gates.

Another restriction is the assumption that the output consists of just one
qubit. In many instances this is an acceptable assumption. For instance, this is
the case whenever the circuit is required to solve a decision problem. Moreover,
our results can easily be extended to the case where the output is obtained by a
measurement on a small number of qubits, instead of only one.

To prove the results in Chapter 4 we introduce a new technique for obtaining
upper bounds on the fault-tolerance threshold. Namely, we use a Pauli basis
decomposition in order to track the state of the computation. We believe this
framework will be useful also for further analysis of quantum fault-tolerance. A
finer analysis of the Pauli coefficients might improve the bounds we achieve here,
and possibly obtain bounds that are tailored to other computational models.

Note that the results in Chapters 3 and 4 all apply to arbitrary starting
states. In particular they also apply when the initial state is encoded in some
good quantum error-correcting code.

The third result is in Chapter 5 and there we do not consider storage noise,
but gate noise for a very specific but interesting set of gates. We establish a
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threshold of θ̂ = (6 − 2
√

2)/7 ≈ 45% for depolarizing noise on 1-qubit unitaries,
when additionally noisefree stabilizer operations (CNOT gates, Hadamard gates,
π/4-gates, preparation of computational basis states and measurements in the
computational basis) are available. We first prove that in this model with noise
rates at least θ̂ fault-tolerant quantum computation is impossible. We then show
a second result, that if one allows additionally classical co-processing and per-
fect classical control (i.e. later quantum gates may arbitrarily depend on earlier
measurement outcomes) at noise rates above θ̂ the whole computation can be
efficiently simulated, using the Gottesman-Knill Theorem. We then explain how
it follows from [83, 21] that this last result is tight, i.e., at noise rates less than θ̂
it is possible to do efficient universal quantum computation.

Other related results

Early results on upper bounds of the threshold decoherence rate were obtained by
showing that quantum computers with faulty gates can be simulated efficiently
on a classical computer. The first to prove one of these results were Aharonov and
Ben-Or [3], who proved an upper bound of 97% for depolarizing noise. In other
words, if the noise has rate is higher than 97%, then quantum computers cannot
be (significantly) faster than classical computers. Later Harrow and Nielsen [52]
showed that if 74% depolarizing noise is applied to each output qubit of each gate,
then (faulty) two-qubit gates cannot produce entanglement. They concluded that
circuits containing only one- and two-qubit gates with depolarizing noise at least
74% can be simulated efficiently on a classical computer.

Another result by Virmani, Huelga and Plenio [99] shows that the set consist-
ing of CNOT with depolarizing noise at least 67% and arbitrary 1-qubit gates is
efficiently simulatable classically. In this paper they also introduce the interest-
ing idea that sufficiently noisy 1-qubit gates can be simulated by Clifford gates,
which we will also use in Chapter 5. Their strongest results are for a restricted
class of gates (ones which are diagonal in the computational basis) and dephas-
ing or worst-case noise. They prove that (

√
2 − 1)/

√
2 ≈ 29% dephasing noise

is enough to make these diagonal gates a mixture of Clifford operations. (They
define 1-qubit dephasing noise as ρ 7→ 1

2
(ρ + ZρZ).) Note that classical states

(states in the computational basis) are not affected by dephasing noise. Therefore
even at 100% dephasing noise it is possible to do universal classical computation,
using classical gates. The result in Chapter 5 uses depolarizing noise, which is
symmetric in the sense that it is invariant under local basis changes. Our result
in Chapter 5 implies that if the depolarizing noise is at least θ̂ ≈ 45.3% then even
universal classical computation is not possible anymore.

Finally, it is known that it is impossible to transmit quantum information
through a p-depolarizing channel for p > 1/3 [22]. As Razborov [79] noticed, this
seems to suggest that quantum computation is impossible with depolarizing noise
of strength greater than 1/3, but there is no proof that this is indeed the case.
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1.1.1 Limits on fault-tolerant classical computation

Proving noise bounds for quantum fault-tolerance is difficult. However, even
classically we do not have an exact understanding of fault-tolerant computation.
We believe that a good understanding of fault-tolerant classical computing will
also help for a better understanding in the quantum case, as many concepts
from classical fault-tolerance also naturally appear in quantum fault-tolerance.
One particular example are CSS-codes, the most commonly used quantum error-
correcting codes, which are derived from classical error-correcting codes.

Moore’s law and noise in classical computation

But there is another and perhaps even more compelling reason to study classical
fault-tolerance. Over the last half century we saw great increases in computational
power, by shrinking the size of the components on computer chips. This is known
as hardware miniaturization and is roughly governed by Moore’s law [64]. Moore’s
law states that the number of gates on computer chips has been increasing roughly
exponentially over the last decades. Accordingly, the size of the gates has been
shrinking exponentially. However, the size of the components used in modern
computer chips are close to the physical limits above which non-faulty behaviour
of the components can be guaranteed. It was pointed out [15] that at the current
speed of miniaturization we will reach the point within the next decade at which
it will be impossible to make the components/gates on chips smaller without
making them faulty at the same time. If we want to continue those increases in
computational power from the past, it is likely that at some point one has to deal
with faulty components.

In Chapter 6 we consider noise in classical computation. Given a set of gates,
which sometimes fail, we ask how much noise on the gates is tolerable, such that
any function can still be computed with bounded-error. Gates on k input wires
compute boolean functions f : {0, 1}k → {0, 1}. A gate fails with probability p,
if the output is flipped with probability p. We will assume throughout that gates
fail independently of each other.

Note that this definition of noise corresponds to replacing the output bit with
a uniformly random bit with probability 2p and leaving the output bit untouched
with probability 1 − 2p. Our definition of noise in the classical case is therefore
somehow inconsistent with the definition of depolarizing noise in the quantum
case, because depolarizing noise p means that with probability p a bit is replaced
by the completely mixed state I/2 (i.e. a random bit) and with probability 1− p
nothing happens. In order to compare our noise bounds for classical computation
to those for quantum computation4 it is therefore necessary to multiply the noise
bounds for classical computation by a factor of 2. This inconsistency in definitions

4which is strictly speaking of course not possible, since in one model we allow quantum gates
and in the other only classical gates
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is unfortunate, but we also stick to them here since these definitions are standard
in the classical respectively quantum literature.

Fault-tolerance thresholds for classical computation

The question of noise in computation has been studied already during the infancy
of computers. Already in 1956 von Neumann discovered that reliable computation
is possible with noisy 3-majority gates if each gate fails independently with prob-
ability less than 0.0073 [67]. The first to prove an upper bound on the tolerable
noise was Pippenger [73]. He proved that formulas5 with gates of fan-in at most
k, where each gate fails independently with probability at least ε ≥ 1

2
− 1

2k
, are

not sufficient for universal computation (i.e. not all functions can be computed
with bounded error). Feder proved that this bound also applies to circuits [39].
Later, Feder’s bound was improved to 1

2
− 1

2
√
k

by Evans and Schulman [37].
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Bounds given apply to (a) arbitrary classical circuits with gates of fan-in at most k, (b)
classical formulas with gates of fan-in at most k, with k=2 or k odd. The bounds in (b) are

thresholds.

Figure 1.2: Upper bounds on noise for fault-tolerant classical computation

For formulas with gates of fan-in k and k odd, Evans and Schulman [38]

proved the tight threshold βk := 1
2
− 2k−2

k( k−1
k/2−1/2)

on the amount of noise for which

fault-tolerant computation is possible . Tight here means that if all gates fail

5Formulas are circuits in which every gate has exactly one output wire. See Section 6.2 for
exact definitions.
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independently with the same fixed probability ε < βk, then any function can be
bounded-error computed, and if each gate fails with some probability at least βk
(which does not need to be the same for all gates), universal computation is not
possible. For k = 3 the threshold was first established by Hajek and Weller [51].

However, so far it has not been possible to establish thresholds for gates with
even fan-in (or even prove their existence), as pointed out in [38]. In particular,
the most basic case of fan-in 2, which is most commonly used in modern computer
hardware, had been elusive. An intuitive argument why even fan-in is different is
that for even fan-in, threshold gates (and in particular majority gates) can never
be “balanced”, in the sense that the number of inputs on which they evaluate to
1 cannot be the same as the number of inputs on which they evaluate to 0.

In Chapter 6 we show that fault-tolerant computation with formulas at noise
rates more than β2 = (3−

√
7)/4 ≈ 8.856% is impossible. Together with a result

by Evans and Pippenger [36], which shows that at noise rates less than β2 fault-
tolerant computing is possible (if all gates fail with the same probability), this
establishes a threshold. We introduce a new technique, which takes care of the
peculiarities in the even fan-in case. We expect that it can be extended to other
(even) fan-in cases. We conjecture that our bound also holds for circuits. The
results for classical fault-tolerant computation are shown in Figure 1.2.

1.2 Entanglement and interactive proof systems

1.2.1 Repetition of XOR games

Entanglement is probably the most intriguing notion in quantum mechanics and
describes the phenomenon that two particles (which can in principle be arbitrarily
far away) can in some sense be connected, or “entangled”: Doing something to
one particle, seems to have an instantaneous effect on the other particle. This
effect cannot be used to transmit information faster than light and therefore
does not contradict causality (meaning that an effect cannot precede its cause).
Nevertheless, many notable physicists rejected the possibility of those “spooky
actions at a distance”, because they contradict the principle of locality (meaning
that an object can only be influenced by its immediate surrounding). However,
after many experiments during the last half century have verified the predictions
of quantum mechanics, it is currently mostly accepted that quantum theory is
the best theory we have. It explains phenomena which happen in the “small”
world very accurately.

CHSH game

One particular aspect of entanglement is that spatially separated parties who
share an entangled quantum state, can produce correlations which parties who
only share a classical state cannot achieve. This statement is best explained with
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a game, played between a referee—also called verifier—and two more parties,
Alice and Bob, see Figure 1.3. Alice and Bob are not allowed to communicate
but may share a quantum state (or a classical state). The referee selects two
random bits x, y and sends them to Alice and Bob respectively. They each reply
with one bit a, b respectively. The referee accepts if x · y = a⊕ b. In words: He
accepts if x = y = 1 and a 6= b, and he also accepts if x and y are not both 1
and a = b. In all other cases he rejects. This particular game is called the CHSH

Alice Bob

Verifier

π(x,y)a b

yx

Alice and Bob win if x · y = a⊕ b

Figure 1.3: CHSH game

game and is an example of the more general class of XOR games, in which the
referee’s decision only depends on the parity of the two output bits from Alice
and Bob. These games will be the focus of Chapter 7.

If Alice and Bob share some particular entangled state (an EPR-pair), then
they can win the CHSH game with probability (2 +

√
2)/4 ≈ 85%. Tsirelson’s

bound [93] states that this is the best they can do. On the other hand, if they
do not share entangled states, they can win with probability at most 3/4. This
bound is known as the CHSH-inequality [25], which is a particular kind of Bell-
inequality.

Bell-inequalities

The term Bell-inequality is generally used for bounds on the winning probability
of games in which Alice and Bob do not share entanglement.
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So, if Alice and Bob claim to possess entanglement, it is easy for the referee
to verify this by just playing sufficiently many CHSH games after each other and
checking whether Alice and Bob win close to 85% of the games or not (signif-
icantly) more than 3/4. With more and more repetitions of this protocol, the
probability that unentangled Alice and Bob can trick the referee into believing
that they do share entanglement becomes smaller and smaller and can be made
arbitrarily small.

These “games” are not just play. The whole topic of Bell inequalities in physics
can be cast in the framework of games. In fact, constructing games in which
Alice and Bob share a quantum state and have a higher winning probability than
without entanglement is an important way to show that classical physics cannot
explain all real-world phenomena. On the other hand, quantum mechanics can
explain these phenomena, and hence gives a more accurate description of the
world.

Games in computer science

Furthermore, these games are not only relevant for physics but also for computer
science. One of the great challenges in computer science is to capture the com-
putational complexity of algorithmic problems, for example by the number of
elementary operations needed to solve a problem. In general this is very hard.
Interestingly, it turns out that these games (without entanglement) are also a
powerful tool to characterize the complexity of many computational problems.
For example all problems in NEXP (the class of problems which can be solved
by a non-deterministic Turing machine in exponential time) can be characterized
using classical XOR games (i.e. XOR games in which Alice and Bob do not share
entanglement), see [31, 13, 53]. It is also possible to characterize other complex-
ity classes in this setting and the general area is called the theory of interactive
proof systems, from which many beautiful and deep results emerged during the
last two decades. The expressive power of entangled games is less understood, al-
tough there has been significant progress recently. The introduction of Chapter 7
contains some known results concerning classical as well as quantum interactive
proof systems.

Sequential versus parallel repetition

It turns out that also in interactive proof systems it is often necessary to repeat
games to boost one’s confidence about the results (see Chapter 7 for some more
explanations). However, regardless of wether games are used inside interactive
proof systems or for generalized Bell inequality tests in physics, repeating games
sequentially (i.e. one after another) might be undesirable for certain reasons.
For example, in the case of Bell inequality tests the time needed to execute the
whole sequential protocol goes up. In the case of interactive proof systems proto-
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cols with several rounds of interaction lose certain desirable structural properties
which one-round protocols have (like Zero-knowledge). A different solution would
be to play all games in parallel, i.e., sending Alice and Bob the questions for all
games at once and then getting all answers back at the same time. This induces
a new problem though, since Alice and Bob might not play in each individual
game the strategy they would have played in a sequential protocol. Since they
get all inputs at once, they can also choose a collective strategy which depends on
all inputs. If we care about the probability that Alice and Bob can win all games
in one parallel protocol, a collective strategy can indeed help, see Section 7.6.2
on page 110 for an example. The celebrated Parallel Repetition Theorem [78] by
Ran Raz addresses one aspect of this problem in the classical case and shows that
if the maximum probability to win one game is c < 1, then there is some constant
c′ < 1 such that winning n games in parallel has winning probability at most
c′n. This means that with sufficiently many parallel repetitions the success prob-
ability of winning all games goes down exponentially. For the particular kind of
games encountered in classical interactive proof systems, this result is sufficient to
make the error probability of the referee negligible. We show an analogous result
for XOR games with entanglement in Chapter 7: Let G1, . . . , Gn be a num-
ber of (possibly different) quantum XOR games and assume that the maximum
probabilities to win each game individually are respectively c1, . . . , cn. Then the
probability to win all games G1, . . . , Gn in a parallel protocol is exactly

∏n
i=1 ci.

What this means is that if Alice and Bob share entanglement, they do not gain
anything by correlating their strategies, but rather playing them independently
is optimal. We therefore call our theorem a perfect parallel repetition theorem.

This chapter also contains an additivity result for quantum XOR games, which
is central in the proof of our parallel repetition theorem proof. The setup for the
second result is exactly like for the parallel repetition theorem, but we define that
the parallel protocol is won if Alice and Bob lose an even number of individual
games, otherwise it is lost. In particular, Alice and Bob win the protocol if they
win all individual games, but also if they lose exactly 2, 4, 6, . . . games. Our
additivity theorem states that the best strategy for Alice and Bob again is the
the trivial strategy of playing all games independently.

Our results imply that in the quantum world XOR games behave perfectly
natural under composition, which is not always true for XOR games without
entanglement.

1.2.2 Limits on non-locality

At the end of the last paragraph we noted that sometimes quantum mechanics
behaves more natural and intuitive than classical physics. In Chapter 8, we
try to reverse this argument. We start by identifying some natural property
any physical theory—in particular quantum mechanics—should have and study
its implications. It follows that these implications themselves should hold in
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any reasonable physical theory, and hence we can interpret these implications as
“natural” axioms themselves.

None of the predictions of quantum mechanics have been disproved so far,
and therefore we assume that its axioms predict (small-scale) physical phenomena
accurately. What our kind of approach can add, is that we will not need to look
at the axioms of quantum mechanics as just some purely mathematical theory,
which happens to describe quantum effects very well, but we can explain how
these axioms come about. Even further, these natural axioms should not only
hold for quantum mechanics itself, but also for all other theories extending it.

Note, that the whole theory of general relativity is derived from some natural
assumptions about the world and it would be interesting to do the same for
quantum mechanics. The goal of recovering the axioms of quantum mechanics
from some natural assumptions alone is of course very ambitious, and we shall be
content with some more modest results.

The non-signalling condition

To illustrate this we go back to the example of CHSH games from Figure 1.3 and
consider the kind of correlations Alice and Bob can create. For some arbitrary
(quantum) strategy of Alice and Bob, let P (a, b|x, y) be the probability of outputs
a and b given the inputs x and y. The correlation P (a, b|x, y) obtainable from
a shared quantum state is non-signalling , i.e., it is impossible for Alice to gain
any information about Bob’s input y by observing her output a, without actually
communicating with him. More formally, the non-signalling condition means that
the marginal distributions satisfy ∀a,x : P (a|x, 0) = P (a|x, 1) and analogously
∀b,y : P (b|0, y) = P (b|1, y). If Alice (respectively Bob) could manipulate her
share of the quantum state in such a way that Bob can gain some knowledge
about her input, then she could instantaneously (in particular at a speed faster
than light) send information to Bob. This is another natural condition/axiom we
require.6

However, the non-signalling condition alone will not lead to strong constraints
on the axioms of quantum mechanics. For example for the case of CHSH games
it is possible to define correlations P (a, b|x, y) which are non-signalling, yet they
can be used to achieve the maximum success probability of 1 in the CHSH game,
whereas we pointed out before that the maximum success probability in the quan-
tum case is only ≈ 85%. Such maximal non-signalling correlations can be oper-
ationally defined by saying that the first player who fixes their input bit gets a
uniformly random bit as output and once the second player also fixes their input
bit, the output bit will be chosen such that x ∧ y = a ⊕ b. Note that a (and
similarly b) is always independent of x and y and, hence, the resulting distribu-
tion satisfies the non-signalling requirement and can be used to achieve success

6Physicist say that otherwise our theory is not causal , see also page 117.
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probability 1 in the CHSH game.

Stronger conditions

So, if we want to have a better characterization of the quantum mechanical ax-
ioms, we need to add some more natural assumptions. Popescu and Rohrlich were
the first to observe that the non-signalling condition alone allows for higher cor-
relations in the CHSH game than allowed by quantum mechanics [74, 75, 76].
They asked themselves whether there is any fundamental reason—or natural
requirement—why nature does not allow arbitrary non-signalling correlations.
They constructed a toy theory, which (for certain games) allows arbitrary non-
signalling correlations and which is apparently consistent with causality. If there
is no obvious formal contradiction, why is quantum mechanics like it is and why
(or because of which natural requirements) does nature not allow for stronger
correlations?

Cleve [26] and van Dam [96, 97] realized that maximal correlations which
are only constrained by the non-signalling condition, would indeed imply a very
strange world: In this world two parties Alice and Bob could compute the out-
come of any function f(x, y) with just one bit of communication, when the input
x is given only to Alice and y only to Bob. This seems too good to be true,
and somewhat unreasonable. This result implies that maximal non-signalling
correlations of the CHSH type should not exist, under the following natural re-
quirement: There are functions on shared inputs for which the number of bits
one needs to communicate in order to compute the value of that function is not
trivial (i.e. it should be larger than 1). We may take the non-existence of max-
imal non-signalling correlations of the CHSH type as a natural requirement for
any physical theory.

In Chapter 8 we expand this idea further and prove that even non-signalling
correlations which allow to win the CHSH game with probability more than
3+
√

6
6
≈ 90.8% allow for trivial communication complexity, i.e., there is an ε > 0

such that every Boolean function on distributed inputs can be evaluated with
probability at least 1/2+ ε using just a single bit of communication. By the same
argument as before these correlations should not exist in nature. This suggests to
make the following an axiom of any reasonable physical theory: Instantaneous cor-
relations which can win the CHSH game with probability more than 3+

√
6

6
≈ 90.8%

cannot exist.
We do not know if our bound is optimal. Ideally, we would like to lower

it to the quantum mechanical bound of (2 +
√

2)/4 ≈ 85%. This would mean
that the assumption that communication complexity should not be trivial implies
Tsirelson’s bound and we would get a tight characterization of the quantum
mechanically achievable CHSH type correlations. Incidentally, the techniques we
use in this chapter use fault-tolerant techniques and are therefore strongly related
to the results in Part I of this thesis.





Chapter 2

Preliminaries

In this chapter we will discuss some general techniques and results which will be
needed later. In later chapters we will provide pointers to this chapter whenever
needed.

Section 2.1 is intended to set up our linear algebra notation, and in particular
introduce the famous Dirac notation. Some more facts and notation can be found
in Appendix A but it is very concise and mostly intended as a reminder. For an
introduction to linear algebra the reader can consult for example [55].

In Section 2.2 we will summarize all prerequisites from quantum mechanics
necessary to understand this thesis.

In Sections 2.3 and 2.4 we will give formal definitions of some notions in com-
putational complexity theory and communication complexity theory, although
an intuitive understanding of these concepts will be sufficient to read this thesis.
Computational complexity theory will be uses to partially motivate the results in
Chapter 7 and all the reader needs to know about communication complexity is
that there are functions which have high communication complexity.

Section 2.5 from this chapter will summarize facts about the Bloch sphere,
which will be a convenient tool in Chapters 4 and 5 for characterizing 1-qubit
operations.

Section 2.6 discusses Semidefinite Programming, which will be needed in
Chapter 7 to characterize XOR games.

2.1 Linear algebra notation

Hilbert space We denote the d-dimensional complex vector space by Cd. It
consists of all column vectors with d complex entries. For vectors elements φ, ψ ∈

17
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Cd

φ =


φ0

φ1
...

φd−1

 , ψ =


ψ0

ψ1
...

ψd−1


we can define a complex inner product by

〈φ, ψ〉 =
d−1∑
i=0

φ∗iψi,

where φ∗i is the complex conjugate of φi. This makes Cd a complex Hilbert space,
since d is finite. From this inner product we define the standard norm (or Eu-
clidean norm) as ||φ|| =

√
〈φ, φ〉.

Dirac notation It will be convenient to write vectors φ ∈ Cd in Dirac notation
by sandwiching φ in between “|” and “〉” and write |φ〉 instead of φ. We will
denote the conjugate transpose of a vector |φ〉 by 〈φ|, which is the row vector
with entries

〈φ| =
(
φ∗0, φ

∗
1, . . . , φ

∗
d−1

)
.

With this notation the inner product 〈φ, ψ〉 can be simply written as the matrix
product of 〈φ| and |ψ〉 as

〈φ, ψ〉 = 〈φ||ψ〉.

Standard basis It is easy to see that the vectors

|0〉 =


1
0
...
0

 , |1〉 =


0
1
...
0

 , . . . |d− 1〉 =


0
0
...
1


are linearly independent and orthonormal (since 〈i||j〉 is 0 if i 6= j and 1 otherwise)
with respect to our inner product. We therefore call {|0〉, |1〉, . . . |d− 1〉} the
standard basis or computational basis .

Matrices We let Cd×d be the d2-dimensional complex vector space of all d× d
matrices with complex entries. For a matrix A ∈ Cd×d we let Aij be the entry of
A in the i-th row and j-th column. The identity matrix is denoted by Id. For a
matrix A ∈ Cd×d we let AT be the transpose of A, which means that (AT )ij = Aji.
Similarly, A† denotes the conjugate transpose and has entries (A†)ij = (Aji)

∗. We
can also equip Cd×d with an inner product by defining for A,B ∈ Cd×d

〈A,B〉 = Tr(A†B) =
d∑

i,j=1

A∗ijBij.
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This inner product is called the Hilbert-Schmidt inner product .
Eij is the all-zero matrix, except for the entry i, j which is equal to 1. Ev-

idently, the Eij form an orthonormal basis for Cd×d with respect to our inner
product. Later in Chapter 4 we will present a different orthonormal basis (tensor
products of Pauli matrices), which is in certain applications more natural.

Positive semidefinite A hermitian matrix A ∈ Cd×d is called positive semidef-
inite if for all ψ ∈ Cd it holds

〈ψ|A|ψ〉 ≥ 0. (2.1)

We also write A � 0 for “A is positive semidefinite”. We write A � B if A−B � 0.
Further, we write A � 0 if the above inequality is strict. We then say that A is
positive definite.

2.2 Quantum states, operations and computa-

tion

Quantum states We model a closed physical system (of finite dimension d)
abstractly by attaching to it the d-dimensional Hilbert space Hd = Cd. The set
of all linear operators ρ mapping Hd into itself is written B(Hd). It is isomorphic
to Cd×d, the set of all d × d-matrices. We assume that linear operators are
always represented in matrix form. The set of possible states the system can
be in is the set of all bounded linear operators ρ ∈ B(H) which are normalized
(i.e. Tr(ρ) = 1) and positive semidefinite ρ � 0 (and therefore by definition also
hermitian). Any such ρ we call a density matrix . For convenience we often do not
make a distinction between the physical system and the Hilbert space associated
to it and speak of “the physical system Hd”.

Measurements In order to gain some information about the state of a system
one can perform a measurement . A measurement on system H is given by a
set of measurement operators M = {M1, . . . ,Mm} ⊂ B(H), which have the
property that

∑
iM

†
iMi = Id. The outcome of the measurementM is one of the

labels 1, . . . ,m. If the system is in state ρ before the measurement then outcome
1 ≤ i ≤ m occurs with probability

pi = Tr(M †
iMiρ)

and if outcome i occurred, the new state after the measurement is

ρi =
MiρM

†
i

Tr(M †
iMiρ).
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Note that in general a measurement is a non-reversible operation, i.e. it is in
general impossible to “undo” the measurement and obtain the premeasurement
state.

General evolution The most general way to change the state of a quantum
system is by applying a completely positive trace-preserving map, short CPTP
map. They can change the dimensionality of a system, though we will be mostly
concerned with operations that preserve dimensionality. A CPTP map E mapping
a d-dimensional system into a d′-dimensional system is given by Kraus operators
{E1, . . . Em} ⊂ Cd′×d with the property that∑

i

E†iEi = I.

Then E changes the density matrix ρ into

E(ρ) =
∑
i

EiρE
†
i .

A special case is when E is given by one Kraus operator E1 = U only, which
necessarily has to be unitary. We then say that ρ evolves (under unitary evolution)
into the state

ρ→ UρU †.

Obviously, unitary operations are reversible.

Pure states A state ρ is called pure if rank(ρ) = 1, which is equivalent to
saying that there is some φ ∈ Cd with the property that ρ = |φ〉〈φ|. States which
are not pure are called mixed . Often the short-hand |φ〉 is used for |φ〉〈φ|.

For every density matrix ρ it is possible to find normalized vectors |φi〉 ∈ Cd

and non-negative real numbers pi with
∑

i pi = 1 with

ρ =
d∑
i=1

pi|φi〉〈φi|. (2.2)

For example, since ρ is hermitian and positive semidefinite it can be unitarily
diagonalized, and thus it is possible to choose pi and |φi〉 to be the eigenvalues
respectively eigenvectors of ρ. We call {pi, |φi〉〈φi|} an ensemble for ρ. However,
in general the choice of an ensemble for a state is not unique.

It is straightforward to see that a quantum system state which is in a proba-
bilistic mixture of states |φi〉〈φi| ∈ Cd×d, each occurring with probability pi, has
the same measurement statistics as the state ρ =

∑d
i=1 pi|φi〉〈φi| for any measure-

ment. This means that it is impossible to distinguish the ensemble {pi, |φi〉〈φi|}
from the state ρ by observing the system. (Note that this remains true even after
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applying arbitrary quantum operations/measurements on the system.) Hence,
the description of the state of a system in terms of ensembles and the description
in terms of density matrices are absolutely equivalent from a physics point of
view.

Note that the (pure) states |φi〉 of an ensemble for ρ are elements of the
d-dimensional Hilbert space Cd only. Since these d dimensions are enough to
describe the pure states of the physical system and as we have seen we may
interpret every state as a probabilistic mixture of pure states, the system is called
d-dimensional. The reason for describing states in the larger Hilbert space of
hermitian matrices in Cd×d is that it is more suitable when using general CPTP
maps as defined above.

Subsystems and entanglement If two physical systems are represented by
Hilbert spaces A = Ca respectively B = Cb, then the joint system is represented
by the Hilbert space A⊗B := Cab. Its inner product is defined as above. It holds
B(A⊗ B) = B(A)⊗ B(B).

The system A ⊗ B can be in a state C ∈ B(A) ⊗ B(B) for which there are
no Ai ∈ B(A), Bi ∈ B(B) such that C =

∑
iAi ⊗ Bi. We then say that C is

entangled .
We say that a measurement M = {M1, . . . ,Mm} ⊂ B(A ⊗ B) acts only on

subsystem A if there are M ′
1, . . . ,M

′
m ⊂ B(A) such that for all 1 ≤ i ≤ m :

Mi = M ′
i ⊗ IB, where IB is the identity operator on B. Similarly, we say that

a CPTP map E , given by Kraus operators {E1, . . . Em} ⊂ B(A ⊗ B), acts on
subsystem A only if there are E ′1, . . . , E

′
m ⊂ B(A) such that for all 0 ≤ i ≤ m :

Ei = E ′i ⊗ IB.

Qubits We say that the Hilbert space H2 = C2 represents one qubit and gen-
erally Hd = Cd represents one qudit. The space H⊗n2 represents n qubits.

2.2.1 Quantum circuits and quantum computation

We will only define quantum circuits on qubits, as this is all we will need later.
It is straightforward to generalize this to arbitrary d-dimensional qudits.

Quantum circuits A quantum circuit on n qubits and of depth T consists of a
set of (quantum) gates Gi, each of which contains 3 parameters: Wi ⊆ {1, . . . , n}
(the qubits Gi acts on), an integer number 1 ≤ ti ≤ T (the execution time) and
a quantum operation Ei which acts on |Wi| qubits. Further, we require that for
each 1 ≤ t ≤ T and every 1 ≤ j ≤ n there is exactly one i with j ∈ Wi and ti = t.
In other words for each qubit and each time there is exactly one gate which acts
upon this qubit (which may be the identity gate). The number of qubits |Wi| is
called the fan-in of gate Gi.
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Evolution We fix a unique total order ≺ on the set of gates by defining that

Gi ≺ Gj ←→ (ti < tj) or (ti = tj and minWi < minWj).

Without loss of generality we let the gates be numbered from 1 to S and we
assume that this numbering is consistent with the ordering ≺, i.e.,

Gi ≺ Gj ←→ i < j.

The computation of a quantum circuit on input ρ ∈ H⊗n2 is inductively defined
through the following set of quantum states ρi

1. ρ0 = ρ

2. If i < S then ρi+1 = E ′i+1(ρi).

If Ei has Kraus operators Ej, we let E ′i be the quantum operation with Kraus
operators Ej ⊗ I⊗{1,...,n}\Wi , where the Ej act on the Hilbert space of the qubits
Wi and I⊗{1,...,n}\Wi is the identity matrix on the Hilbert space of the qubits
{1, . . . , n}\Wi. We define the output of the computation to be ρS.

If x ∈ {0, 1}n we denote by ρx ∈ C2n×2n the output of the computation with
input |bin(x)〉, where bin(x) is the number with binary representation x and
|bin(x)〉 is short for |bin(x)〉〈bin(x)|, as defined above. We say that ρx is the
output of the computation with classical input x.

Computation of a function Often it is necessary to give quantum circuits
additional work space, e.g. to “store” intermediate results. To take care of that
we pad inputs with additional qubits in state |0〉, which are input-independent.
These qubits are called ancilla qubits . The precise definition is as follows.

We say that a quantum circuit on m qubits computes a boolean function
f : {0, 1}n 7→ {0, 1} , n ≤ m, with error 0 ≤ ε < 1

2
using m−n ancillas, if there is

some measurement M = {M0,M1} such that for every x ∈ {0, 1}n the outcome
of M on ρx0n−m is equal to f(x) with probability at least 1− ε. Formally,

∀x∈{0,1}m : Tr(M †
f(x)Mf(x)ρx0n−m) ≥ 1− ε.

We say thatM measures the first qubit if Mi = M ′
i⊗I2m−1 , for some measurement

operators {M ′
0,M

′
1} on the first qubit.

Efficient quantum computation A family of boolean functions f1, f2, f3, . . .
with fn : {0, 1}n 7→ {0, 1} is said to be uniformly computable in polynomial-time
with bounded error by a quantum computer, if there is some polynomial p(·),
0 ≤ ε < 1/2, k > 0 and a (classical) Turing machine M with the property that

1. For each n the Turing machine M(n) runs in time at most p(n).
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2. The output M(n) is a description of a quantum circuit Cn which has mn

qubits and each gate has fan-in at most k.

3. Cn computes fn with error at most ε using mn − n ancillas and a measure-
ment on the first qubit.

Note that n ≤ mn ≤ p(n) and that the depth of Cn is at most p(n). The output
M(i) (which is the description of Ci) should be a list of numbers specifying for
each gate: Wi, ti and numbers specifying the Kraus operators. Note that since
the running time of M(n) is at most polynomial in n, the number of gates and
the number of ancilla qubits are also polynomially bounded.

At first sight it might look that changing the parameters ε, k or the type of
gates might change the computational power (i.e. set of functions that can be
computed). However, this is not the case. Firstly, it is not hard to show [68]
that every family of functions which can be computed with error 0 ≤ ε < 1/2,
can also be computed with arbitrarily small error 0 < ε′, with small overhead in
the size of the circuit. Secondly, it turns out that there is a finite set of unitary
gates U (with fan-in 2) such that every family of functions which can be efficiently
computed in the above way can also be efficiently computed with circuits using
only gates from U . However, the polynomial p(·) might change. For example it is
possible to choose U to be the CNOT gate, the Hadamard gate and the π/8 gate
[18], see (5.2) on page 63 and (5.19) on page 74 for definitions of this gate set.

This makes it possible to define the complexity class BQP without reference
to a particular gate set and to fix 0 < ε < 1/2 arbitrarily, see Section 2.3 later.

2.3 Complexity classes

One—or perhaps the most—important part of computer science is to determine
how difficult computational problems are, in terms of the number of resources
(e.g. time) needed to solve the problem. A thorough introduction can be found
in [71].

Computational problems are usually phrased as membership problems (with
binary yes/no answers), because every computational problem can be reduced to
membership problems. A membership problem is modeled by a set A ⊆ {0, 1}∗,
a subset of all 0/1-strings. The task is to determine whether a given x ∈ {0, 1}∗
is in A or not.

We say that the problem A ⊆ {0, 1}∗ is polynomial-time decidable if there is
a Turing machine M and a polynomial p such that for each input x ∈ {0, 1}∗
the machine M stops after at most p(|x|) steps and outputs whether x ∈ A or
not. Here |x| is the number of bits of x. The class P consists of all problems A
which are polynomial-time decidable. It contains interesting problems, like (the
decision version of) Linear Programming, finding the shortest path between two
nodes in a graph, deciding whether a number is prime or not and many others.



24 Chapter 2. Preliminaries

Another important complexity class is NP, which we define via projection. A
problem A ⊆ {0, 1}∗ is in NP if there is some set B ∈ P and a k ∈ N such that

x ∈ A ←→ ∃
y∈{0,1}|x|k : xy ∈ B,

where xy is the concatenation of x and y. We say that the problems in NP can
be “accepted by a non-deterministic polynomial-time Turing machine”.

Changing “polynomial time” into “exponential time” in the above definitions
gives the classes EXP respectively NEXP, which are the classes of problems which
can be decided/accepted by a deterministic/non-deterministic Turing machine in
exponential time. If in the definition of P we do not require that M stops after
p(|x|) steps, but only demand that M uses at most p(|x|) many cells of the tape
of M , then we get the definition of PSPACE.

The following inclusions are obvious

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP.

All inclusion are conjectured to be strict, but currently there is no proof for any
of them. We do know however, that P ⊂ EXP and NP ⊂ NEXP, so at least one
of the inclusions must be strict.

The class BPP is the class of all problems which can be decided by a proba-
bilistic polynomial-time Turing machine which always outputs the correct result
with probability at least 2/3. More formally, a problem A ⊆ {0, 1}∗ is in BPP
if there is some set B ⊆ {0, 1}∗ which can be decided in polynomial time and a
polynomial q(·) such that

x ∈ A → ∃S⊆{0,1}q(|x|),|S|≥ 2
3

2q(|x|)∀y∈S : xy ∈ B
x 6∈ A → ∃S⊆{0,1}q(|x|),|S|≥ 2

3
2q(|x|)∀y∈S : xy 6∈ B.

The choice of the constant 2/3 is not unique. It can be shown that any constant
1/2 < c < 1 yields the same class. Clearly,

P ⊆ BPP ⊆ PSPACE.

The first inclusion is conjectured to be an equality [69].
We now define the class BQP [106], the equivalent of BPP for quantum com-

puters. A set A ⊆ {0, 1}∗ is in BQP if its characteristic function

χA(x) =

{
1 if x ∈ A
0 if x 6∈ A

is uniformly computable in polynomial-time with error ε = 1/3 by a quantum
computer (see end of Section 2.2). The following inclusions are known

BPP ⊆ BQP ⊆ PSPACE.
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2.4 Communication complexity

We briefly review the field of communication complexity [63, 28, 103, 19]. Assume
Alice and Bob wish to compute some Boolean function f(x, y) of input x ∈
{0, 1}n, known to Alice only, and input y ∈ {0, 1}n, known to Bob only. The aim
is that Alice learns the value f(x, y). To this end they exchange messages, using
as little communication as necessary.

Alice Bob
y

...

f(x,y)

m
2

x

m
e

m
1

Alice and Bob send messages m1, . . . ,me back and forth and Alice outputs f(x, y)

Figure 2.1: A communication protocol

Deterministic communication complexity The deterministic communica-
tion complexity D(f) of f : {0, 1}n × {0, 1}n → {0, 1} is the smallest number c
such that any protocol which always computes the correct result, needs at least
c bits of communication for at least one input pair x, y ∈ {0, 1}n. It is clear that
this task cannot be accomplished in general without at least some communica-
tion, unless f(x, y) does not actually depend on y. In fact, it is well-known that
there are functions f where D(f) is n. An example is the inner product function
(see [63]), which is defined as IPn(x, y) =

⊕n
i=1(xi ∧ yi).

Randomized communication complexity There is a probabilistic version of
communication complexity, in which there is a source of random bits, to which
Alice and Bob both have access. This is called the public coin model [105] because
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Alice and Bob both see the same random bits.1 In this model, Alice is not required
to learn the value of f(x, y) with certainty. Instead, we shall be satisfied if she can
obtain an answer that is correct with probability bounded away from 1

2
. In other

words, there must exist some real number p > 1
2

such that the probability that
Alice outputs the correct value f(x, y) is at least p for all pairs (x, y) of inputs.
The probability is taken over the value of random variables shared between them.
The error probability of a protocol is defined as ε = 1 − p and we define the
randomized communication complexity Rε(f) to be the minimum number of bits
needed such that the output is correct with probability at least 1 − ε. Also in
this randomized setting there are “hard” functions. For example, it is known
that the inner product function has randomized communication complexity n −
O(log(1/ε)), if the outputs have to be correct with probability at least 1− ε (see
also [63]).

Entanglement-assisted communication complexity There is another ver-
sion of communication complexity, introduced in [28], in which Alice and Bob
may share entanglement. More precisely, Alice and Bob may hold an arbitrary
(entangled) quantum state shared between them. Particularly useful is often an
arbitrary amount of EPR pairs

|φ+〉 =
|0〉A|0〉B + |1〉A|1〉B√

2
,

where Alice has access to the qubit(s) with subscript A and Bob has access to
the qubit(s) with subscript B. We denote by R∗ε (f) the number of classical bits
needed to communicate in order for one party to compute the correct result.

Shared entanglement between Alice and Bob helps sometimes but not always.
Some functions can be computed with exponentially less communication than
with a purely classical protocol [23]. However, for other functions, for example
the inner product function, the communication cannot be reduced significantly.
Alice and Bob cannot succeed with probability 1− ε > 1

2
if they transmit less than

max(1
2
(1− 2ε)2, (1− 2ε)4)n− 1

2
bits, even if they share prior entanglement [29].

In Appendix C we will give a better bound of

R∗ε (IPn) ≥ n− 2 log2
1

1−2ε

using a reduction by [104] to a lower bound for the number of qubits needed to
communicate with shared entanglement [65].

Worst-case partition communication complexity For functions of the form
f : {0, 1}n → {0, 1} which depend only on one input string and any S ⊆

1There is another model, called private coin model, in which Alice and Bob do not have
access to the same random bits. But we will not need this model subsequently.
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{1, . . . , n} let DS(f) be the deterministic communication complexity of f if the
bits with indices in S are given to Alice and all others to Bob. As in [63] we
then define the worst-case partition communication complexity as Dworst(f) =
maxS⊆{1,...,n}D

S(f). In [91] this is called symmetric communication complexity.
The randomized worst-case partition communication complexity is defined anal-
ogously by replacing “Dworst” with “Rworst

ε ” and providing Alice and Bob with
shared random bits.

2.5 Bloch sphere

In later chapters it will be convenient to use the Bloch sphere representation of
1-qubit states and 1-qubit operations, which we review now (see e.g. Section 4.2
and Chapter 8 in [68]).

2.5.1 Pauli matrices

The following Pauli matrices are the basis of the Bloch vector representation

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. (2.3)

It is immediately obvious that they span the whole space C2×2 and are therefore a
basis. They are hermitian and self-inverse. They obey the following commutation
relations:

XY = iZ Y X = −iZ
ZX = iY XZ = −iY
Y Z = iX ZY = −iX

2.5.2 Bloch-vector representation

For r ∈ R3 define r · σ = rxX + ryY + rzZ, where σ = (X, Y, Z) is the vector of
Pauli matrices. Then, all 1-qubit density matrices ρ can be uniquely written in
the form

ρ =
I2 + r · σ

2
=

I2 + rxX + ryY + rzZ

2
,

where r ∈ R3 and ||r|| =
√
r2
x + r2

y + r2
z ≤ 1. We call r the Bloch vector of ρ.

For n ∈ R3 with ||n|| = 1 and θ ∈ R we define

Un(θ) = exp

(−iθn · σ
2

)
= I2 cos

θ

2
− in · σ sin

θ

2
.

We first note that Un(θ)Un(θ)∗ = I, i.e., Un(θ) is unitary. Second, let the result
of the unitary quantum operation Un(θ) applied to state ρ = I/2 + r · σ/2 be
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ρ′ = Un(θ)∗ρUn(θ) = I/2 + r′ · σ/2. Then r′ is the image of rotating r around n
by an angle θ. Third, all 1-qubit unitaries U can be written as

U = Un(θ)

with n ∈ R3, θ ∈ R and ||n|| = 1 (ignoring an unimportant phase factor α ∈ C
with |α| = 1).

Thus, one-qubit states and unitaries are isomorphic to vectors, respectively,
rotations in R3. The set of all rotations in R3 is the group SO(3).

Arbitrary quantum operations For non-unitary one-qubit quantum oper-
ations the picture is a little bit more complicated. We present a characteriza-
tion of trace-preserving completely-positive maps on one-qubit operations due to
Ruskai, Szarek, and Werner [84, Sections 1.2 and 1.3]. They show that any one-
qubit CPTP map G can be written as a convex combination of gates of the form
U ◦J ◦V , where U and V are one-qubit unitary operations (acting on the density
matrix by conjugation with some unitary U, V ∈ C2×2), and J is one-qubit map
that in the Pauli basis has the form

J =


1 0 0 0
0 λ1 0 0
0 0 λ2 0
t 0 0 λ1λ2

 (2.4)

for some λ1, λ2 ∈ [−1, 1] and t = ±
√

(1− λ2
1)(1− λ2

2). In other words, if a one-
qubit state ρ has Bloch vector r, then the Bloch vector r′ of ρ′ = J(ρ) is given
by (

1
r′

)
= J

(
1
r

)
.

2.6 Semidefinite programming

In Chapter 7 we will use semidefinite programming methods as a tool to char-
acterize quantum XOR games. We briefly review the most important facts here,
closely following [17]. A semidefinite program (for short SDP) is an optimization
problem of the form

p∗ = sup Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . ,m ,

X � 0
(2.5)

where A1, . . . , Am, C ∈ Cd×d are given hermitian matrices and the constraint
X � 0 means that X ∈ Cd×d is a positive semidefinite hermitian matrix, i.e.
X = X† and for all |v〉 ∈ Cd : 〈v|X|v〉 ≥ 0. Note that with these constraints
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∀i : Tr(AiX) ∈ R and Tr(CX) ∈ R. We call (2.5) an SDP in standard primal
form.

In Chapter 7 we will express the optimal winning probability of a quantum
XOR game as the optimal solution p∗ of an SDP. Lower bounds on the optimal
value of (2.5) can be shown by finding an X̂ satisfying the constraints. Then it
is clear that the optimal value of (2.5) is at least Tr(CX̂).

However, we also want to be able to give upper bounds on p∗. One way to
find upper bounds is by duality. To this end, we first write down the Lagrangian
of (2.5) in terms of the objective function and the constraints as

L(X, y,Λ) = Tr(CX) +
∑
i

yi (Tr(AiX)− bi) + Tr(ΛX), (2.6)

where y ∈ Rm and Λ ∈ Cd×d are called Lagrange multipliers. Now, for any y ∈ Rm

and any hermitian Λ ∈ Cd×d with Λ � 0 the value of p∗ can be upper bounded
by

p∗ ≤ sup
X
L(X, y,Λ), (2.7)

because every solution X̂ for (2.5) satisfies Tr(AiX̂) − bi = 0 and Tr(ΛX̂) ≥ 0.
Note that there are no constraints on X, other than X ∈ Cd×d and X = X†.
Hence, if we can find y, Λ such that the right hand side of (2.7) is small we can
also give good upper bounds on p∗. Let us write this out more explicitly

sup
X
L(X, y,Λ) = sup

X
Tr(CX) +

∑
i

yi (Tr(AiX)− bi) + Tr(ΛX)

= sup
X

∑
i

yibi + Tr
((∑

i

yiAi + C + Λ
)
X
)

=

{∑
i yibi if

∑
i yiAi + C + Λ = 0

∞ if
∑

i yiAi + C + Λ 6= 0.

Obviously, we are not interested in the trivial upper bound p∗ ≤ ∞. So, to get
good upper bounds we have to find y, Λ � 0 with

∑
i yiAi + C + Λ = 0. Since

Λ � 0, we need to require
∑

i yiAi +C � 0 and we get the following dual problem

d∗ = infy1,...,ym∈R
∑

i yibi
subject to

∑
i yiAi + C � 0

(2.8)

From our derivations it immediately follows that

p∗ ≤ d∗

a property known as weak duality . If this inequality is tight, i.e. p∗ = d∗, we speak
of strong duality . There are many results about when strong duality holds [17].
The most important one is Slater’s condition. It states that if (2.5) is strictly
feasible, which in our case means that some X � 0 satisfies the constraints of
(2.5), then strong duality always holds. This is the criterion which we will also
use later.
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Real SDPs versus complex SDPs Most literature deals only with real SDPs,
which means that all (entries of all) variables are real numbers. We have given a
direct derivation for complex SDPs, because it is more natural for our application
in Chapter 7. The complex SDPs we are using can be transformed into real SDPs,
using that for any hermitian X ∈ Cd×d it holds

X � 0 ←→ ∀a, b ∈ Rd : (aT , bT )

(
Re(X) −Im(X)
Im(X) Re(X)

)
︸ ︷︷ ︸

=:X̃

(
a
b

)
≥ 0,

where Re(X) is the real part and Im(X) the imaginary part of X. Note that
X ∈ Cd×d is hermitian if and only if Re(X) = Re(XT ) and Im(X) = −Im(XT ),
which is the case if and only if X̃ is symmetric. See also Exercise 4.42 in [17] for
a more thorough discussion.
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Chapter 3

Erasure noise

The results in this chapter are based on an unpublished manuscript

Falk Unger, Erasure noise threshold for fault-tolerant com-
putation, unpublished

It extends and simplifies a result in

A. Razborov. An upper bound on the threshold quan-
tum decoherence rate, Quantum Information and Computation,
4(3):222–228, 2004

In this chapter we will present a first upper bound on the noise tolerable for
fault-tolerant classical as well as quantum computing. Despite its simplicity, it
is currently the best upper bound on storage noise if there are no restrictions on
the allowed quantum gates other than their fan-in.

We will consider circuits in which after each time-step, every qubit is “erased”
with a certain probability p and prove an upper bound of 1− 1/k on p for fault-
tolerant computation, where k is the maximal fan-in1 of the gates allowed. The
result is very general, since all quantum operations with restricted fan-in are
allowed (in particular also classical operations).

We prove that for long enough computations it is impossible to distinguish
any two input states reliably if the noise is more than 1 − 1/k. In particular,
above this noise rate quantum circuits with single qubit measurements become
“useless” after a constant amount of time and polynomial-size circuits (but with
arbitrary measurements) become “useless” after a logarithmic amount of time.

Surprisingly, this is tight since for smaller noise rates it is possible to construct
circuits of arbitrary depth such that it is possible to distinguish certain input
states. However, it is not clear whether it is possible to simulate any quantum
circuit efficiently, if the noise is less than 1− 1/k. See Section 3.4.

1Recall that the fan-in of a gate is the number of its input wires.

33
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3.1 Erasure vs. depolarizing noise

As announced in the introduction of this thesis, our noise bound will apply to
storage noise, which means that we assume that all gates used are perfect, and
after each time-step noise happens on each qubit independently. We will assume
that gates can be executed perfectly, i.e. there is no gate noise. Further, there
are different types of noise which could be applied to stored qubits, for example
erasure noise and depolarizing noise. We will first define both and then argue
that the upper bound for erasure noise, which we prove later in this chapter, also
applies to depolarizing noise.

Erasure noise of rate p is an operation that takes one qubit ρ as input and
outputs one qubit and one classical bit

ρ 7→ (1− p)|0〉〈0| ⊗ ρ + p|1〉〈1| ⊗ ψ0.

The classical bit indicates whether an error occurred or not. It is set to 1 with
probability p, otherwise 0. If it is equal to 1, then the gate replaces the input
qubit by a fixed qubit state ψ0. If it is 0 it applies the identity to its quantum wire
and the output qubit is the same as the input qubit. The exact specification of ψ0

is unimportant in our case (and most other cases) and can be an arbitrary mixed
one-qubit state. The error-indicating bit is sent to the experimenter running the
circuit, who can react to erasure errors by letting later quantum gates depend on
which erasure errors have happened so far. The precise definitions of our model
can be found in the next section.

This error model is often studied and a good model for many kinds of errors
happening in quantum mechanical systems. For example a qubit might be stored
by an ion, where the lowest energy state represents a |0〉 and the second lowest
a |1〉. Due to noise processes this ion can shift to some higher excited state with
some probability. It is still possible to detect whether the ion is in some higher
excited state, in which case we say that the information is lost, or “erased”. This
is possible without disturbing the state in case no error is detected, i.e. if the
qubit is in |0〉 or |1〉 (or a superposition thereof). See [49] for more examples.

Recall that for a qubit ρ depolarizing noise with probability p is a quantum
operation which applies the identity operation with probability 1−p and replaces
the qubit by the completely mixed state I2/2 with probability p

ρ 7→ (1− p)ρ+ pI2/2. (3.1)

In the case of erasure noise it is inessential for most applications (including the
following noise bound for erasure noise) what ψ0 exactly is, because in case an
error is detected, one can just replace the qubit by the desired state ψ0. It is im-
mediately clear that erasure noise at rate p is less serious than depolarizing noise
at the same rate, because in the former case we are informed when noise happens
and could just replace the wire by a completely mixed qubit I/2. Therefore, the
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upper bound we prove in Theorem 3.3.1 immediately also applies to depolarizing
noise.

3.2 Circuit model

We start by explaining the model informally and give formal definitions later. As
customary for quantum circuits, we consider synchronized parallel circuits, as in
Section 2.2. In a synchronized quantum circuit of depth T quantum operations
can only happen at discrete time-steps t ∈ {1, . . . , T}. The only thing we restrict
is the number of qubits k > 1 which go into any gate. Otherwise we allow any
quantum operation, i.e., completely positive trace-preserving map. In our model
time proceeds in discrete time-steps and in each time-step any number of gates
can be executed, as long as they act on disjoint sets of wires. We assume that
gates can be executed perfectly. After every time-step erasure noise happens on
each qubit, the rate of which will determine whether fault-tolerant computation
is possible or not.

We further allow weak classical control : The operation a gate performs may
arbitrarily depend on the classical bits on earlier wires that indicate erasure. But
the qubits a gate acts on and the time of its execution are fixed from the start. We
call this kind of control weak because the most general kind of classical control ,
also allows to choose on which qubits a gate acts depending on previous erasure
errors and measurements on earlier wires. This stronger kind of classical control
is also called perfect classical control.

To incorporate erasure noise and weak classical control into our circuit model
we have to expand the definitions of circuits from Section 2.2.

Recall from Section 2.2 that a quantum circuit is given by a set of gates and
each gate contains a description of which qubits it acts on, the time it is executed
and its quantum operation (in terms of Kraus operators).

3.2.1. Definition. [Skeleton graph] A description of a circuit C without the
specification of the quantum operations of the gates (the Kraus operators) is
called the topology of the circuit. From the topology of a circuit we can define its
skeleton graph S: The circuit graph of a quantum circuit is a graph with T + 1
parts 1, . . . , T + 1. The t-th part, 1 ≤ t ≤ T , is called Gt and contains the gates
at time t. There are only directed edges from Gt to Gt+1 for any t. For every gate
Gi ∈ Gt and every gate Gj ∈ Gt+1, operating on qubits Wi respectively Wj, the
number of edges between Gi and Gj is equal to |Wi ∩Wj|, which is the number
of output qubits of Gi which are input qubits of Gj. Such an edge is called a wire
at time t. The set of all wires at time t is denoted by Vt. The nodes in the first
subset G1 have no incoming edges and correspond to the gates executed in the
first time step. Nodes in GT+1 have no outgoing edges and represent the output
qubits of the circuit after its T computation steps.
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When we restrict the gates to fan-in at most k, then every node in the graph has
in-degree (and out-degree) at most k.

From the skeleton graph we can define erasure patterns.

3.2.2. Definition. [Error pattern] An error pattern E for a circuit C is a subset
of wires of the skeleton graph. If a wire w is in E than we say w that has been
erased. A particular wire w ∈ Vt is called connected (to the input), if there is a
path from the input to w which does not contain any edges in E. In particular,
the wire itself must not be erased. We write conn(w,E).

3.2.3. Definition. [Weak classical control] Let M be a map which associates
to each gate G at time 1 ≤ t ≤ T and each error pattern E a quantum operation
(which has to act on the same number of qubits as the gate)

M(G, E) 7→ ÊG,E,

where ÊG,E is given in terms of its Kraus operators. We call Ê the intended or
noise-free operation. The quantum operation of a gate on k qubits is then defined
as the operation

EG,E = ÊG,E ◦ N ,
where N is the quantum operation that replaces those outputs qubits of G that
are in E (i.e. are erased) by ψ0.

Further, to each error pattern E our map M associates a two-valued measure-
ment with operators {ME,0,ME,1}.

Note that via M every error pattern E defines a quantum circuit in the usual
sense (as in Section 2.2), which we call CE. In Definition 3.2.3 we also notice that
the Kraus operators which M associates to G may depend on whether erasures
happen on later wires. This is of course physically unreasonable, but since we
are proving an upper bound on the tolerable noise, this is not a problem. For the
lower bound on the threshold we will give a “physically reasonable” definition in
Definition 3.3.4.

3.2.4. Definition. [Erasure noise] With each wire w we associate a probability
pw, which is its probability of being erased. Let q(E) be the probability distri-
bution over error patterns in which each wire w is erased independently of the
others with probability pw.

3.2.5. Definition. [Bias] Let C be a quantum circuit with weak classical con-
trol. For each error pattern E of C let ρE be the output of CE on input ρ. The
bias of C on the two input states ρ0 and ρ1 is∑

E

q(E)
∣∣∣Tr(M †

E,1ME,1(ρ0,E − ρ1,E))
∣∣∣ .
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In Theorem 3.3.1 we show that if the rate of erasure noise is higher than
1− 1/k then for any bias δ (a) no measurement on a single qubit can distinguish
any two input states with bias δ after some constant amount of time and (b) no
measurement on a polynomial number of qubits can distinguish any two input
states after some logarithmic amount of time. The first result implies that only
for a constant number of functions there is a circuit, that outputs the value of
the function on one output qubit with bounded error. The second result implies
that functions which need super-logarithmic depth to compute on a quantum
computer, cannot be computed if the noise rates are too high. The last result
holds even if the final measurement can be arbitrary and arbitrary classical post-
processing is allowed.

3.3 Noise threshold

The following theorem was first proved for depolarizing noise by Razborov [79],
using a different technique. Our technique extends to erasure noise. Further, we
want to point out that a similar argument was already used by Feder [39] for
classical noise bounds, but without making the connection to erasure noise.

3.3.1. Theorem. Consider circuits C with weak classical control, which use ar-
bitrary gates of fan-in at most k. Assume that there is an ε > 0 such that on each
wire w erasure noise happens with probability at least pw ≥ 1− 1/k + ε, indepen-
dently of erasures on other wires. Let δ > 0 be the desired output bias and let q
be the number of output qubits to be measured. Then there is some T ∈ O(log q

δ
)

such that for any two input states ρ0 and ρ1 and for any circuit C that takes at
least T steps to compute and uses an arbitrary q-qubit measurement, the bias of
C is at most δ.

In particular this implies that already after a constant amount of time quantum
circuits with one final one-qubit measurement are “useless”. Further, if we are
interested in polynomial-size quantum circuits, then circuits with n input qubits
have at most q ∈ O(poly(n)) many output qubits. Hence, already after T ∈
O(log n) time-steps the inputs to the circuit are completely indistinguishable.

We first show the following Lemma, which gives a bound on the probability
that a wire is connected to the input.

3.3.2. Lemma. For any circuit C as in Theorem 3.3.1 and t ≥ 1 let

at = max
w∈Vt

PrE[conn(w,E)],

be the smallest number such that no wire at time t is connected to the input with
probability higher than at. Then

at ≤ (1− kε)t. (3.2)
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Proof: The proof is by induction. Clearly, a1 ≤ 1/k − ε < 1 − kε, because the
wires at time 1 are erased with probability at least 1− 1/k + ε. This proves the
base case. For the induction step consider a wire w at time t + 1. Let G be the
gate which has output wire w. (G can also be the 1-qubit identity gate.) Let
v1, . . . vl be the input wires of G, with l ≤ k. Then wire w is connected if and
only if one of the wires v1, . . . vl is connected and w itself is not erased. By the
union bound we therefore get at+1 ≤ (1/k − ε)kat = (1− kε)at, which proves the
inductive step.

The next Lemma shows that if a set of wires is not connected to the input, then
the state on its qubits is input-independent.

3.3.3. Lemma. Fix an error pattern E and some t with 1 ≤ t ≤ T and let V ⊆ Vt
be some set of wires which are all not connected to the input. Let ρt be the state
of the computation of circuit CE on input ρ after all gates up to time t have been
processed. Let ρV,t = Tr{1,...,n}\V (ρt) be the state on the qubits V only. Then ρV,t
does not depend on ρ.

Proof: The proof is by induction on t. If none of the wires in V ⊆ V1 is connected,
then they are all erased. Thus, ρV,1 = ψ

⊗|V |
0 , which is clearly independent of ρ.

This proves the base case.
For t > 1 let Ve ⊆ V ⊆ Vt be the set of wires in V which are erased at time

t. Let F ⊆ Gt be the set of gates which have an outgoing wire in V \Ve. Let
U ⊆ Vt−1 be the set of all wires going into a gate in F . In simple words: U is
the set of wires at time t − 1 that “lead” into the wires V \Ve at time t. Since
the wires V \Ve are neither erased nor connected, none of the wires in U can be
connected. This means that by our inductive assumption ρU,t−1 does not depend

on ρ and therefore neither ρV \Ve,t. Thus the state ρV,t = ρV \Ve,t ⊗ ψ⊗|Ve|0 does not
depend on ρ.

Proof of Theorem 3.3.1: Let T be the number of steps of C and O be the set
of the q measured output qubits. For an error pattern E let ρE,i be the state of
the qubits O at time T of circuit CE with input ρi. The bias of the circuit is∑

E

q(E)
∣∣∣Tr(M †

E,1ME,1(ρE,0 − ρE,1))
∣∣∣

=
∑

E,∃w∈O : conn(w,E)

q(E)
∣∣∣Tr(M †

E,1ME,1(ρE,0 − ρE,1))
∣∣∣

≤
∑

E,∃w∈O : conn(w,E)

q(E)

=
∑
w∈O

∑
E: conn(w,E)

q(E)

≤ q(1− kε)T ,
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using Lemmas 3.3.3 for the first equality and Lemma 3.3.2 and the union bound
for the last inequality.

Thus, the bias δ can be upper bounded by q(1−kε)T ≤ δ, which is equivalent
to T ≥ log δ−log q

log(1−kε) . This establishes the theorem.

We now show that the above Theorem 3.3.1 is essentially tight, by showing
that at noise rates less than 1− 1/k it is no longer true. For the upper bound we
allowed the quantum operation of gate G to depend on a “global” error pattern,
i.e. it could depend on erasures which happen at later time-steps than the gate
itself. For our lower bound we do not want this assumption.

3.3.4. Definition. [Causal] For a quantum circuit let as in Definition 3.2.3

M(G, E) 7→ ÊG,E,

be the map specifying for each gate and erasure pattern the Kraus operators of
this gate. We say that this quantum circuit is causal (or: can be generated in a
causal manner) if for all error patterns E and gates G it holds that

M(G, E) = M(G, E ∩ (V1 ∪ · · · ∪ Vt−1)),

where t is the time of gate G.

Note that causality means that the quantum operation of gate G only depends
on erasures on wires which happened before G.

3.3.5. Definition. [Efficiency] We say that a quantum circuit with weak clas-
sical control can be efficiently generated if the description of its skeleton graph,
the output of M(G, E) (Kraus operators of gate G for erasure pattern E) and
the measurement operators can be computed efficiently, i.e., in time which is
polynomial in the number of input qubits to the circuit.

3.3.6. Theorem. For every k, T and ε > 0 there is a quantum circuit C with

weak classical control, a δ > 0 and input states ρ0 = |0〉⊗kT and ρ1 = |1〉⊗kT
with the following properties: C can be efficiently generated, has causal quantum
operations and uses gates of fan-in at most k. Further, if each wire in C is
subjected to erasure noise with probability at most 1− 1/k− ε, then after T steps
it is possible to distinguish ρ0 from ρ1 with bias δ using a one-qubit measurement.

Proof: The circuit we construct is a formula: Each gate has k input wires, one
output wire and the gates are arranged as a balanced tree of depth T , with the
output as the root. Every gate will depend on an erasure pattern in the following
way: If one of its input wires w1, . . . , wk is connected then the gate outputs the
qubit on the first connected wire. Otherwise output some fixed state, say ψ0.

The measurement operators for the final 1-qubit measurement are |0〉〈0| and
|1〉〈1|, which corresponds to a measurement in the computational basis. It acts on
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the output qubit of the last gate. Clearly, this circuit can be generated efficiently
and it is causal.2

We need the following Lemma, which complements Lemma 3.3.2.

3.3.7. Lemma. Let bt be the minimum probability over all wires w at time t that
w is connected, i.e.,

bt = min
w∈Vt

PrE[conn(w,E)].

Then there is a constant D > 0 such that for all t

bt ≥ D.

Proof: A wire at time t+ 1 is connected if at least one of the input wires to the
preceding gate is connected and no erasure happens after the gate. Therefore we
have the recursion

bt+1 ≥
(

1

k
+ ε

)(
1− (1− bt)k

)
(3.3)

≥
(

1

k
+ ε

)(
kbt −O(b2

t )
)

≥ bt(1 + kε− cbt), (3.4)

for some c > 0. We first note that always (1 − (1 − bt)k) ≥ bt and therefore by
(3.3) we get (a): bt+1/bt ≥ 1/k. Secondly, if bt ≤ kε/c then (3.4) implies (b):
bt+1/bt ≥ 1. From (a) and (b) we get

bt ≥
ε

c

for all t.

Continuing with the proof of Theorem 3.3.6, we note that by construction of
our circuit every connected wire carries the qubit |i〉 if ρi was input. In particular,
this holds for the output wire. As in the proof of Theorem 3.3.1 we can therefore
write the bias of the circuit as∑

E

q(E)

∣∣∣∣∣Tr
(
|1〉〈1|(ρE,0 − ρE,1)

)∣∣∣∣∣
=

∑
E,∃w∈O : w is connected

q(E)

∣∣∣∣∣Tr
(
|1〉〈1|

(
|0〉〈0| − |1〉〈1|

))∣∣∣∣∣
≥ D,

by Lemma 3.3.7.

2Technically, this circuit is not a quantum circuit as we defined it in Section 2.2, since there
we defined that every gate has the same number of input and output wires and that each qubit is
acted on by some gate at each time. It is easy to extend our circuit such that it formally matches
the definition from Section 2.2: Just output some fixed qubit, say ψ0, on all the remaining k−1
output wires of the gates in the tree and apply the identity operation at all time steps to those
qubits which are not operated on by one of our gates.
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3.4 Discussion

We have seen an upper bound of 1− 1/k on the amount of erasure noise that can
be tolerated to enable fault-tolerant quantum computation. This bound obviously
also applies to classical circuits, although it is less relevant.

Note that in the proof of the upper bound (in particular in the proof of Lemma
3.3.2) we never needed any bound on the out-degree of the nodes in the skeleton
graph. Hence, the upper bound actually holds for gates with unbounded fan-out.3

Further, the proof also applies if the quantum circuit works on arbitrary qudits,
where we only formally need to change the dimensions of the Hilbert spaces.

The matching lower bound we have shown is weak in the sense that it only
shows that for noise rates less than 1 − 1/k Theorem 3.3.1 is no longer true. It
is interesting to analyze whether efficient fault-tolerant quantum computing can
be possible for noise less than 1− 1/k. We conjecture that fault-tolerant classical
computation is possible, meaning that every classical circuit can be efficiently
simulated in our model if the erasure noise is less than 1− 1/k.

A (minor) open problem is to determine what happens at noise rates exactly
equal to 1− 1/k. We conjecture that Theorem 3.3.1 still holds.

Our upper bound was for erasure noise, which is a very benign error model
since errors can be detected, i.e., we are informed when and where errors happen.
This suggests that the noise thresholds for other noise models (e.g. depolarizing
noise) are much lower. In particular, since for classical circuits4 the gaps between
erasure noise and probabilistic noise are significant: Theorems 3.3.1 and 3.3.6 are
still true for erasure noise. However, it follows from [37] that for depolarizing
noise Theorem 3.3.1 already holds for noise rates above 1 − 1/

√
k. For k = 2,

the corresponding noise rate of 1 − 1/
√

2 ≈ 29.3% is much lower than the noise
rate 1 − 1/2 = 1/2 we get for erasure noise. In fact, results in [36] and Chapter
6 suggest that the true threshold for k = 2 should not be 1 − 1/

√
2, but rather

(3−
√

7)/2 ≈ 17.7% (where we have adjusted for the different noise model from
Chapter 6), which is much smaller than 1− 1/2. Thus, for classical circuits it is
true that the noise threshold for erasure noise only gives a very crude estimate of
the threshold for random non-erasure noise (i.e. depolarizing noise).

In Chapter 4 we will give a better upper bound for quantum circuits with
depolarizing storage noise, but we will have to restrict the multi-qubit gates to
be unitaries.

3We did not define quantum circuits with unbounded fan-out in Section 2.2, but it is straight-
forward. In our model the fan-in and fan-out of a gate are always the same.

4in which gates map computational basis states always into (probabilistic mixtures) of com-
putational basis states





Chapter 4

Perfect 1-qubit operations and noisy
k-qubit unitaries

This chapter is based on the paper

Julia Kempe, Oded Regev, Falk Unger and Ronald de Wolf, Upper
bounds on the noise threshold for fault-tolerant quantum
computing, ICALP 2008

4.1 Introduction

In the previous chapter we have seen an upper bound on the tolerable noise for
quantum computation. It applied to erasure noise only, which means that the
experimenter is notified whenever an error happens. Of course this is a strong
assumption. A more common (and often more realistic) assumption is that errors
happen and the experimenter does not know when. Intuitively it is clear that
these kinds of errors are harder to correct, since the experimenter does not know
where and when errors happen. And it is very plausible that the thresholds for
these kinds of noise should be smaller, see also Section 3.4 for more on this. In
this chapter we give stronger bounds for the noise model of depolarizing noise on
wires and a slightly weaker set of available gates.

We consider circuits consisting of unitary k-qubit gates each of whose input
wires is subject to depolarizing noise of strength at least εk, as well as arbitrary
one-qubit gates that are essentially noise-free. We assume that the output of
the circuit is the result of measuring some designated qubit of the final state.
The main result is that if the noise εk is strictly larger than 1 −

√
21/k − 1 =

1−Θ(1/
√
k) the output of any such circuit of large enough (but constant) depth

is essentially independent of its input, thereby making the circuit useless. For the

43
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important special case of k = 2, our bound is ε2 > 1 −
√√

2− 1 ≈ 35.7%. It is
interesting to note that our bound on the threshold behaves like 1 − Θ(1/

√
k).

This matches what is known for classical circuits [38, 37], and therefore probably
represents the correct asymptotic behavior. In comparison, the bound for erasure
noise from Chapter 3 behaves like 1− 1/k.

It is known that fault-tolerant quantum computation is impossible (for any
positive noise level) without a source of “fresh” qubits. Our model takes care of
this by allowing arbitrary one-qubit gates—in particular, this includes gates that
take any input, and output a fixed one-qubit state, for instance |0〉.

By allowing essentially noise-free one-qubit gates, our model addresses the
fact that gates on more than one qubit are generally much harder to implement
than one-qubit gates. It should also be noted that the exact value of the constant
ε1 is inessential and can be chosen to be an arbitrarily small positive constant,
see also comments after Theorem 4.2.1.

Note that since our theorem applies to arbitrary starting states, it in particular
applies to the case that the initial state is encoded in some good quantum error-
correcting code, or that it is some sort of “magic state” [21, 81].1 Further, we
could even allow operations which add/replace arbitrary states on multiple qubits
at any time during the computation. To extend our proof to accommodate for this
is straightforward. In all these cases, our theorem shows that the computation
becomes essentially independent of the input after sufficiently many levels.

Weaknesses of the model Our assumption that all k-qubit gates are mixtures
of unitaries does slightly restrict generality. Not every completely-positive trace-
preserving map can be written as a mixture of unitaries.2 However, we believe
that it is still a reasonable assumption. For instance, to the best of our knowledge,
all known fault-tolerant constructions can be implemented using such gates (in
addition to arbitrary one-qubit gates). Moreover, all known quantum algorithms
obtain their speed-up over classical algorithms by using only unitary gates.

A slightly more severe restriction is the assumption that the output consists of
just one qubit. Recall that in Chapter 3 we showed that if the noise is above the
threshold of 1−1/k than after logarithmically many steps no measurement on all
qubits can distinguish any two input states. However, we believe that in many
instances the assumption that there is only one output qubit is still reasonable.
For instance, this is the case whenever the circuit is required to solve a decision

1The set of gates Stab (see page 60) is not quantum universal by itself if the only allowed
input states are computational basis states. However, if one can additionally create certain
”magic states” and allows perfect classical control, then one can perform universal quantum
computation [21, 81]. This is the reason to call these states “magic states”.

2One can implement an arbitrary gate by a unitary gate acting on the original qubits and
additional ancilla qubits in a fixed pure state, but notice that this increases the arity of the
gate and moreover the ancilla qubits will be affected by the noise operators that precede the
unitary.
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problem. Moreover, our results can easily be extended to the case where the
output is obtained by a measurement on a small number of qubits, instead of
only one.

4.2 Model and results

Before we state the results, we describe the exact model, recalling definitions from
Section 2.2. We consider parallel circuits, composed of n wires and T levels of

0 1 2 3 T-2 T-1 T

Dark circles denote εk-depolarizing noise, and light circles denote ε1-depolarizing noise. Also
marked are two consistent sets (defined in Section 4.4), each containing four qubits. The first
has distance 1, the second has distance T − 2. The output qubit is in the upper right corner.

Figure 4.1: Parallel circuit with k = 3 and T levels

gates3 (see Figure 4.2). We assume that the number of qubits n does not change
during the computation. Notice that at each level, all qubits must go through
some gate (possibly the identity). For each gate, the number of input qubits is
the same as the number of output qubits.

We assume the circuit is composed of k-qubit gates that are probabilistic
mixtures of unitary operations, as well as arbitrary (i.e., all completely-positive
trace-preserving) one-qubit gates. In particular, it is possible to do intermediate

3So, we call the parts of the skeleton graph from Definition 3.2.1 “levels”.
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one-qubit measurements. We assume the output of the circuit is the outcome of a
measurement of a designated output qubit in the computational basis. Finally, we
assume that the circuit is subject to noise as follows. Recall that p-depolarizing
noise on a certain qubit replaces that qubit by the completely mixed state with
probability p, and does not alter the qubit otherwise. Formally, this is described
by the superoperator E acting on a qubit ρ as E(ρ) = (1− p)ρ+ pI/2. We assume
that each one-qubit gate is followed by at least ε1-depolarizing noise on its output
qubit, where ε1 > 0 is an arbitrarily small constant. Thus one-qubit gates can be
essentially noise-free. We also assume that each k-qubit gate is preceded by at
least εk-depolarizing noise on each of its input qubits, where εk > 1−

√
21/k − 1.

Main results We prove the following main result

4.2.1. Theorem. Fix any T -level quantum circuit as above. Then for any two
states ρ and τ , the probabilities of obtaining measurement outcome 1 at the output
qubit starting from ρ and starting from τ , respectively, differ by at most 2−Ω(T ).

In other words, for any η > 0, the probability of measuring 1 at the output qubit
of a circuit running for T = O(log(1/η)) levels is independent of the input (up
to ±η). This makes the output essentially independent of the starting state, and
renders long computations “essentially useless”.

As pointed out in the introduction, ε1 can be chosen to be an arbitrarily small
but positive constant. The value of ε1 only affects the constant in the Ω(·) of
Theorem 4.2.1. The reason we require ε1 > 0 is a technicality which simplifies
the statement of our result. However, for ε1 = 0 the statement of Theorem 4.2.1
is just wrong: One could choose input states ρ := |0〉〈0| ⊗ ρ′ and τ := |1〉〈1| ⊗ τ ′,
do nothing for T levels (i.e., apply noise-free one-qubit identity gates on all wires)
and then measure the first qubit in the computational basis. Clearly, from this
measurement outcome one can exactly tell which of the two states ρ, τ was input.
Nevertheless, it is possible to let ε1 = 0, if we slightly change the model and
additionally require that every path from the input to the output qubit goes
through enough k-qubit gates. Our proof can easily be adapted to this case.

Of special interest from an experimental point of view is the case k = 2, for
which our bound becomes about 35.7%. Furthermore, for the case in which the
only allowed two-qubit gate is the controlled-NOT (CNOT) gate, we can improve
our bound further to about 29.3%, as we show in Section 4.5. This case is
interesting both theoretically and experimentally. Note also that the CNOT gate
together with all one-qubit gates forms a universal set [10]. The same noise-bound
applies if we additionally allow controlled-Y and controlled-Z gates.

4.3 Preliminaries

We first recall some definitions.



4.3. Preliminaries 47

The Pauli matrices are

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
and we define P = {I, X, Y, Z} and P∗ = {X, Y, Z}. We use Pn to denote the set
of all tensor products of n one-qubit Pauli matrices. For a Pauli matrix S ∈ Pn
we define its support, denoted supp(S), to be the qubits on which S is not identity.
We sometimes use superscripts to indicate the qubits on which certain operators
act. Thus IA denotes the identity operator applied to the qubits in set A.

The set of all 2n × 2n Hermitian matrices forms a 4n-dimensional real vector
space. On this space we consider the Hilbert-Schmidt inner product, given by
〈A,B〉 := Tr(A†B) = Tr(AB). Note that for any S, S ′ ∈ Pn, Tr(SS ′) = 2n if
S = S ′ and Tr(SS ′) = 0 otherwise. Hence, Pn is an orthogonal basis of this
space. It follows that we can uniquely express any Hermitian matrix δ in this
basis as

δ =
1

2n

∑
S∈Pn

δ̂(S)S

where δ̂(S) := Tr(δS) are the (real) coefficients.
We now state some easy observations which will be used in the proof of our

main result. First, by the orthogonality of Pn, it follows that for any δ,

Tr(δ2) =
1

2n

∑
S∈Pn

δ̂(S)2.

This easily leads to the following observation.

1. Observation (Unitary preserves sum of squares). For any unitary U
and any Hermitian matrix δ, if we denote δ′ = UδU †, then∑

S∈Pn
δ̂′(S)2 = 2nTr(δ′2) = 2nTr(UδU †UδU †) = 2nTr(δ2) =

∑
S∈Pn

δ̂(S)2.

This also shows that the operation of conjugating by a unitary matrix, when
viewed as a linear operation on the vector of Pauli coefficients, is an orthogonal
transformation.

2. Observation (Tracing out qubits). Let δ be some Hermitian matrix on
a set of qubits W . For V ⊆ W , let δV = TrW\V (δ). Then,

δ̂(SIW\V ) = Tr(δ · SIW\V ) = Tr(δV · S) = δ̂V (S).

3. Observation (Noise in the Pauli basis). Applying p-depolarizing noise
E to the j-th qubit of Hermitian matrix δ changes the coefficients as follows:

Ê(δ)(S) =

{
δ̂(S) if Sj = I

(1− p)δ̂(S) if Sj 6= I



48 Chapter 4. Perfect 1-qubit operations and noisy k-qubit unitaries

In other words, E “shrinks” by a factor 1− p all coefficients that have support on
the j-th coordinate.

4. Observation. Let ρ and τ be two one-qubit states and let δ = ρ − τ . Con-
sider the two probability distributions obtained by performing a measurement in
the computational basis on ρ and τ , respectively. Then the difference in the prob-
abilities of obtaining the outcome 1 given ρ respectively τ is

1

2
|δ̂(Z)|.

Proof: The difference in the probabilities of obtaining the outcome 1 is given by

|Tr((ρ− τ) · |1〉〈1|)| =
∣∣∣∣Tr

(
δ · I− Z

2

)∣∣∣∣ =
1

2
|Tr(δ · Z)| = 1

2
|δ̂(Z)|,

where we have used Tr(δ) = 0.

The last observation follows immediately from the convexity of the function x2.

5. Observation (Convexity). Let pi be any probability distribution, and δi a
set of Hermitian matrices. Let δ =

∑
i piδi. Then∑

S∈Pn
δ̂(S)2 ≤

∑
i

pi
∑
S∈Pn

δ̂i(S)2.

Proof: Follows immediately from the convexity of the function x2.

4.4 Proof of Theorem 4.2.1

In this section we prove Theorem 4.2.1. The rough idea is the following. Fix two
arbitrary initial states ρ and τ . Our goal is to show that after applying the noisy
circuit, the state of the output qubit is nearly the same with both starting states.
Equivalently, we can define δ = ρ − τ and show that after applying the noisy
circuit to δ, the “state” of the output qubit is essentially 0 (the noisy circuit is
a linear operation, and hence there is no problem in applying it to δ, which is
the difference of two density matrices). In order to show this, we will examine
how the coefficients of δ in the Pauli basis evolve through the circuit. Initially we
might have many large coefficients. Our goal is to show that the coefficients of
the output qubit are essentially 0. This is established by analyzing the balance
between two opposing forces: noise, which shrinks coefficients by a constant factor
(as in Observation 3), and gates, which can increase coefficients. As we saw in
Observation 1, unitary gates preserve the sum of squares of coefficients. They
can, however, “concentrate” several small coefficients into one large coefficient.
One-qubit operations need not preserve the sum of squares (a good example is the
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gate that resets a qubit to the |0〉 state), but we can still deal with them by using
a known characterization of one-qubit gates. This characterization allows us to
bound the amount by which one-qubit gates can increase the Pauli coefficients,
and very roughly speaking shows that the gate that resets a qubit to |0〉 is “as
bad as it gets”.

Before continuing with the proof, we introduce some terminology. From now
on we use the term qubit to mean a wire at a specific time, so there are (T + 1)n
qubits (although during the proof we will also consider qubits that are located be-
tween a gate and its associated noise). We say that a set of qubits V is consistent
if we can meaningfully talk about a “state of the qubits of V ” (see Figure 4.2).
More formally, we define a consistent set as follows. The set of all qubits at time
0 and all its subsets are consistent. If V is some consistent set of qubits, which
contains all input qubits IN of some gate (possibly a one-qubit identity gate),
then also (V \ IN)∪OUT and all its subsets are consistent, where OUT denotes
the gate’s output qubits. Note that here we think of the noise as being part of
the gate. For a consistent set V and a state (or more generally, a Hermitian
matrix) ρ, we denote the state of V when the circuit is applied with the initial
state ρ, by ρV . In other words, ρV is the state one obtains by applying some
initial part of the circuit to ρ, and then tracing out from the resulting state all
qubits that are not in V .

If v is a qubit, we use dist(v) to denote its distance from the input, i.e., the level
of the gate just preceding it. The qubits of the starting state have dist(v) = 0.
For a nonempty set V of qubits we define dist(V ) = min{dist(v) | v ∈ V }, and
extend it to the empty set by dist(∅) = ∞. Note that dist(V ) does not increase
if we add qubits to V .

In the rest of this section we prove the following lemma, showing that a certain
invariant holds for all consistent sets V .

4.4.1. Lemma. For all ε1 > 0 and εk > 1−
√

21/k − 1 there exists a θ < 1 such
that the following holds. Fix any T -level circuit in our model, let ρ and τ be some
arbitrary initial states, and let δ = ρ− τ . Then for every consistent V ,∑

S∈PV
δ̂V (S)2 ≤ 2 · 2|V | · θdist(V ), (4.1)

or equivalently,

Tr(δ2
V ) ≤ 2 · θdist(V ).

In particular, if we consider the consistent set V containing the designated output
qubit at time T , then we get that δ̂V (Z)2 ≤ 4θT . By Observation 4, this implies
Theorem 4.2.1.
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4.4.1 Proof of Lemma 4.4.1

The proof of the invariant is by induction on the sets V . At the base of the
induction are all sets V which only contain qubits at time 0. All other sets are
handled in the induction step. In order to justify the inductive proof, we need
to provide an ordering on the consistent sets V such that for each V , the proof
for V uses the inductive hypothesis only on sets V ′ that appear before V in the
ordering. As will become apparent from the proof, if we denote by latest(V ) the
maximum time at which V contains a qubit, then each V ′ for which we use the
induction hypothesis has strictly less qubits than V at time latest(V ). Therefore,
we can order the sets V first in increasing order of latest(V ) and then in increasing
order of the number of qubits at time latest(V ).

Base case

Here we consider the case that V is fully contained within time 0. If V = ∅ then
both sides of the invariant are zero, so from now on assume V is nonempty. In
this case dist(V ) = 0. The matrix δV is the difference of two density matrices,
say δV = ρV − τV , and hence Tr(δ2

V ) = Tr(ρ2
V ) + Tr(τ 2

V )− 2Tr(ρV τV ) ≤ 2, and the
invariant is satisfied.

Induction step

Let V ′′ be any consistent set containing at least one qubit at time greater than
zero. Our goal in this section is to prove the invariant for V ′′. Consider any of the
qubits of V ′′ located at time latest(V ′′) and let G be the gate that has this qubit
as one of its output qubits. We now consider two cases, depending on whether G
is a k-qubit gate or a one-qubit gate.

Case 1: G is a k-qubit gate. Here we consider the case that G is a probabilis-
tic mixture of k-qubit unitaries. First note that by Observation 5 it suffices to
prove the invariant for k-qubit unitaries. So assume G is a k-qubit unitary acting
on the qubits A = {A1, . . . , Ak}. Let A′ = {A′1, . . . , A′k} be the qubits after the
εk-noise but before the gate G and A′′ = {A′′1, . . . , A′′k} the qubits after G (see
Figure 4.2). By our choice of G, A′′ ∩ V ′′ 6= ∅. Define V ′ = (V ′′ \ A′′) ∪ A′ and
V = (V ′′ \ A′′) ∪A. Note that V and its subsets are consistent sets with strictly
fewer qubits than V ′′ at time latest(V ′′), and hence we can apply the induction
hypothesis to them.

Recall that our goal is to prove the invariant Eq. (4.1) for V ′′. To begin, using
Observation 2, ∑

S∈PV ′′
δ̂V ′′(S)2 ≤

∑
S∈PV ′′∪A′′

δ̂V ′′∪A′′(S)2. (4.2)
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Figure 4.2: An example showing the sets V , V ′, and V ′′ for a two-qubit gate G.

Because G (which maps δV ′ to δV ′′∪A′′) is unitary, it preserves the sum of squares

of δ̂-coefficients (see Observation 1), so the right hand side of (4.2) is equal to∑
S∈PV ′

δ̂V ′(S)2 =
∑

S∈PV ′\A′

∑
R∈PA′

δ̂V ′(RS)2.

Since the only difference between δV and δV ′ is noise on the qubits A1, . . . , Ak,
using Observation 3 and denoting µ = 1− εk, we get that the above is at most∑

S∈PV \A

∑
R∈PA

µ2|supp(R)|δ̂V (RS)2

=
∑

S∈PV \A

∑
a⊆A

µ2|a|(1− µ2)k−|a|
∑

R∈Pa⊗IA\a
δ̂V (RS)2,

where the equality follows by noting that for any fixed S and any R ∈ PA, the
term δ̂V (RS)2, which appears with coefficient µ2|supp(R)| on the left hand side,
appears with the same coefficient

∑
a⊇supp(R) µ

2|a|(1− µ2)k−|a| = µ2|supp(R)| on the
right hand side. By rearranging and using Observation 2 we get that the above
is equal to ∑

a⊆A

µ2|a|(1− µ2)k−|a|
∑

S∈P(V \A)∪a

̂δ(V \A)∪a(S)2

≤
∑
a⊆A

µ2|a|(1− µ2)k−|a|2 · 2|(V \A)∪a| · θdist((V \A)∪a)

where we used the inductive hypothesis. Note that dist((V \ A) ∪ a) ≥ dist(V ),
so the above is

≤ 2 · 2|V \A| · θdist(V )
∑
a⊆A

2|a|µ2|a|(1− µ2)k−|a|

= 2 · 2|V \A| · θdist(V )((1− µ2) + 2µ2)k

= 2 · 2|V \A| · θdist(V )(1 + µ2)k. (4.3)
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Note that |V \ A| ≤ |V ′′| − 1 and dist(V ′′)− 1 ≤ dist(V ), so the right hand side
is bounded by

≤ 2 · 2|V ′′|−1 · θdist(V ′′)−1(1 + µ2)k.

Since εk > 1 −
√

21/k − 1, we have that (1 + µ2)k ≤ 2θ if θ is close enough to 1,
so we can finally bound the last expression by

≤ 2 · 2|V ′′| · θdist(V ′′)

which proves the invariant for V ′′.

Case 2: G is a one-qubit gate. Before proving the invariant, we need to prove
the following property of completely-positive trace-preserving (CPTP) maps on
one qubit.

4.4.2. Lemma. For any CPTP map G on one qubit there exists a β ∈ [0, 1] such
that the following holds. For any Hermitian matrix δ, if we let δ′ denote the result
of applying G to δ, then we have

δ̂′(X)2 + δ̂′(Y )2 + δ̂′(Z)2 ≤ (1− β) · δ̂(I)2 + β · (δ̂(X)2 + δ̂(Y )2 + δ̂(Z)2).

Proof: The proof is based on the characterization of trace-preserving completely-
positive maps on one qubit gates given in Section 2.5.2 on page 28, which we recall
now. Any one-qubit gate G can be written as a convex combination of gates of
the form U1◦J ◦U2. Here U1 and U2 are one-qubit unitaries (acting on the density
matrix by conjugation), and J is a one-qubit map that in the Pauli basis has the
form

J =


1 0 0 0
0 λ1 0 0
0 0 λ2 0
t 0 0 λ1λ2


for some λ1, λ2 ∈ [−1, 1] and t = ±

√
(1− λ2

1)(1− λ2
2).

First observe that by the convexity of the square function, it suffices to prove
the lemma for G of the form U1◦J ◦U2 (with the resulting β being the appropriate
average of the individual β’s). Next note that since U1 and U2 are unitary, they act

on the vector of coefficients (δ̂(X), δ̂(Y ), δ̂(Z)) as an orthogonal transformation,
and hence leave the sum of squares invariant. This shows that it suffices to prove
the lemma for a map J as above. For this map,

δ̂′(X)2 + δ̂′(Y )2 + δ̂′(Z)2 = λ2
1δ̂(X)2 + λ2

2δ̂(Y )2 + (tδ̂(I) + λ1λ2δ̂(Z))2.

Assume without loss of generality that λ2
1 ≥ λ2

2. Applying Cauchy-Schwarz to
the two 2-dimensional vectors (±

√
1− λ2

1a, λ1b) and (
√

1− λ2
2, λ2), we get that
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for any a, b ∈ R, (ta + λ1λ2b)
2 ≤ (1− λ2

1)a2 + λ2
1b

2. Hence the above expression
is upper bounded by

λ2
1δ̂(X)2 + λ2

1δ̂(Y )2 + (1− λ2
1)δ̂(I)2 + λ2

1δ̂(Z)2

and we complete the proof by choosing β = λ2
1.

Let A be the qubit G is acting on, and recall that our goal is to prove the
invariant for the set V ′′. Denote by A′ the qubit of G after the gate but before the
ε1 noise, and by A′′ the qubit after the noise. As before, by our choice of G, we
have A′′ ∈ V ′′. Let A = {A}, A′ = {A′}, A′′ = {A′′}. Define V ′ = (V ′′ \A′′)∪A′
and V = (V ′′ \A′′)∪A and notice that |V | = |V ′| = |V ′′|. By using Lemma 4.4.2,
we obtain a β ∈ [0, 1] such that∑

S∈PV ′′
δ̂V ′′(S)2

≤
∑

S∈PV ′\A′

(
δ̂V ′(IS)2 + (1− ε1)2

∑
R∈PA′∗

δ̂V ′(RS)2

)

≤
∑

S∈PV \A

(
(1 + (1− ε1)2(1− 2β))δ̂V (IS)2 + (1− ε1)2β

∑
R∈PA

δ̂V (RS)2

)
.

By applying the induction hypothesis to both V \A and V , we can upper bound
the above by

(1 + (1− ε1)2(1− 2β)) · 2 · 2|V |−1 · θdist(V \A) + (1− ε1)2β · 2 · 2|V | · θdist(V )

≤ 1 + (1− ε1)2

2θ
· 2 · 2|V ′′| · θdist(V ′′)

where we used that |V | = |V ′′|, and dist(V ′′)− 1 ≤ dist(V ) ≤ dist(V \A). Hence
the invariant remains valid if we choose θ < 1 such that 1 + (1− ε1)2 ≤ 2θ.

4.5 Arbitrary one-qubit gates and CNOT gates

In this section we consider the case where CNOT is the only allowed gate acting
on more than one qubit. We still allow arbitrary one-qubit gates. The proof
follows along the lines of that of Theorem 4.2.1 with one small modification. As
before, we will prove that for all ε1 > 0 and ε2 > 1− 1/

√
2 ≈ 0.293 the invariant,

Eq. (4.1), holds. The proof for the case that G is a one-qubit gate holds without
change. We will give the modified proof for the case that G is a CNOT gate.
The idea for the improved bound is to make use of the fact that the CNOT gate
merely permutes the 16 elements of P ⊗ P , and does not map elements from
I⊗ P∗ to P∗ ⊗ I or vice versa (as illustrated in Figure 4.3). As a result we need
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I I I X I Y I Z

X I X X X Y X Z

YI YX YY YZ

Z I Z X Z Y Z Z

The action of CNOT on P ⊗ P under conjugation, with the control wire corresponding to the
first qubit.

Figure 4.3: Action of CNOT on Pauli group

to apply the induction hypothesis on one less term, which in turn improves the
bound.

Assume the CNOT acts on qubits A = {A,B}, with A′ = {A′, B′} and
A′′ = {A′′, B′′} as before, where again A′′ ∩ V ′′ 6= ∅. If both A′′ and B′′ are
contained in V ′′ then the proof of the general case (cf. Eq. (4.3)) already gives a
bound of

2 · 2|V \A| · θdist(V )(1 + µ2)2 ≤ 2 · 2|V ′′|−2 · θdist(V ′′)−1(1 + µ2)2 ≤ 2 · 2|V ′′| · θdist(V ′′)

where the last inequality holds for all µ < 1. Hence it suffices to consider the case
that exactly one of A′′ and B′′ is in V ′′. Assume without loss of generality that
A′′ ∈ V ′′ and B′′ /∈ V ′′. As before, our goal is to upper bound

∑
S∈PV ′′

δ̂V ′′(S)2 =
∑

S∈PV ′′
δ̂V ′′∪B′′(SIB′′)2,

where the equality follows from Observation (2). Because of the property of
CNOT mentioned above, we can now upper bound this by

∑
S∈PV ′\A′

(
δ̂V ′(IA

′IB′S)2 +
∑
R∈PA′∗

δ̂V ′(RIB′S)2 +
∑

R∈PA′∗ ⊗PB
′
∗

δ̂V ′(RS)2
)
.

This is the crucial change compared to the case of general two-qubit gates (the

latter case also includes a term of the form
∑

R∈PB′∗
δ̂V ′(IA

′
RS)2). The rest of the

proof is similar to the earlier proof. Using the induction hypothesis we can upper
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bound the above by

∑
S∈PV \A

(
δ̂V (IAIBS)2 + µ2

∑
R∈PA∗

δ̂V (RIBS)2 + µ4
∑

R∈PA∗ ⊗PB∗

δ̂V (RS)2
)

≤ (1− µ2)
∑

S∈PV \A
δ̂V \A(S)2 + (µ2 − µ4)

∑
S∈PV \{B}

δ̂V \{B}(S)2 + µ4
∑
S∈PV

δ̂V (S)2
)

≤ (1− µ2)2 · 2|V \A|θdist(V \A) + (µ2 − µ4)2 · 2|V \{B}|θdist(V \{B}) + µ4 2 · 2|V |θdist(V )

≤ 2 · 2|V ′′|θdist(V )
(1 + µ2

2
+ µ4

)
≤ 2 · 2|V ′′|θdist(V ′′)

(1 + µ2

2
+ µ4

)1

θ
.

Hence the invariant remains valid as long as 1+µ2

2
+ µ4 ≤ θ < 1. This can be

satisfied as long as µ < 1/
√

2, equivalently ε2 > 1− 1/
√

2 ≈ 0.293.

4.6 Discussion

4.6.1 Comparison with other chapters

In Chapter 3 we have shown an upper bound of εk = 1 − 1/k on erasure noise.
On one hand, this result is stronger than the result from this chapter as it allows
arbitrary k-qubit gates and not just mixtures of unitaries and it holds for erasure
noise instead of depolarizing noise. Further, we saw that the result of an arbitrary
n-qubit measurement on the full final state becomes essentially independent of
the initial state after T = O(log n) levels. On the other hand, the bound in this
chapter is better for all values of k. Hence the two results are incomparable.

We will see another bound in Chapter 5, which shows that classical circuits
can efficiently simulate any quantum circuit that consists of perfect, noise-free
stabilizer operations (meaning Clifford gates (Hadamard, phase gate, CNOT),
preparations of states in the computational basis, and measurements in the com-
putational basis), perfect classical control (i.e., the ability to condition future
gates on earlier classical measurement outcomes, see page 35) and arbitrary one-
qubit unitary gates that are followed by 45.3% depolarizing noise. Hence such
circuits are not significantly more powerful than classical circuits. We will also
see that this result is tight: If the one-qubits gates have less than 45.3% noise, it
is possible to efficiently simulate any (noise-free) quantum circuit. Although this
result establishes a tight threshold, it is incomparable to our current result since
the result in Chapter 5 applies to a restricted gate set only.
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4.6.2 Comments on results and open problems

We believe that a main part of our contribution is introducing a technique for
obtaining upper bounds on the fault-tolerance threshold. Namely, we use a Pauli
basis decomposition in order to track the state of the computation. We believe
this framework will be useful also for further analysis of quantum fault-tolerance.
A finer analysis of the Pauli coefficients might improve the bounds we achieve here,
and possibly obtain bounds that are tailored to other computational models.

We only analyze depolarizing noise acting independently on each qubit. De-
polarizing noise is the “most symmetric” type of one-qubit noise and therefore a
natural choice for our analysis. Also, it is a relatively weak type of noise: it is not
adversarial and does not have correlations between the errors occurring on differ-
ent qubits. However, since we are proving an upper bound on the fault-tolerance
threshold, this weakness is actually a good thing, making our result stronger.
In principle one can extend our results to various other one-qubit noise models,
using an analysis similar to the one developed in Lemma 4.4.2. However, not
all noise models can actually yield a result like Theorem 4.2.1. For instance, if
we have Toffoli gates with only phaseflip errors, then we can do perfect classical
computation. Statements like Theorem 4.2.1 are just false in that case.

Open problems In the introduction we mentioned some weaknesses of our
model. Of course, we would like to prove a result which does not have these
restrictions. Further, it would be interesting to extend the result in a couple of
other directions. We now summarize some desirable extensions:

• We should make it work for all possible k-qubit gates (CPTP maps), rather
than just mixtures of unitaries.

• We should allow some classical side-processing, where classical outcomes
of intermediate measurements can be used by a classical computer and
its results can later be fed back into the circuit. Allowing such “classical
control” requires a type of theorem different from the one we have now: if
initial states ρ and τ were bits 0 and 1, respectively, we could just measure
this right at the start, store the bit in the classical part without noise, and
feed it back into the circuit only at the last step, yielding distinguishable
final states. Furthermore, if we allow classical control (and classical side-
processing) then it is clearly possible to compute any function just in the
classical part of the circuit. Hence, a statement like ours is just not true.

To get a noise bound for the model with classical control, one would need to
show that if the noise in the quantum hardware is above a certain threshold,
then not all problems in BQP could be solved efficiently, where BQP is the
class of problems that can be efficiently solved with a noise-free quantum
computer (see also Section 2.3).
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• We should relax the assumption that the final output is determined by a
measurement on one or a few qubits of the final state. Often in fault-tolerant
schemes one encodes each “logical qubit” in a large block of physical qubits,
and measures all qubits in that block to obtain the final outcome of the
computation. If only some of the qubits in the final measurement are faulty
the final result can still be recovered by applying classical post-processing.
Our results cannot rule out this approach.

• Last but not least, our upper bounds on the fault-tolerance threshold are
still higher than one would expect, and we would like to decrease them
further.





Chapter 5

Perfect stabilizer operations and noisy
1-qubit unitaries

This chapter is based on the paper

Harry Buhrman, Richard Cleve, Monique Laurent, Noah Linden,
Lex Schrijver and Falk Unger, New Limits on Fault-Tolerant
Quantum Computation, Proceedings of 47th IEEE FOCS, 2006

In this chapter we prove another noise bound for certain interesting classes of
gates. We show that quantum circuits using perfect Clifford operations (CNOT,
Hadamard, S, X, Y , Z and measurements in the computational basis) and noisy
1-qubit unitaries cannot be made fault-tolerant if the depolarizing noise on the
1-qubit gates is at least θ̂ = (6 − 2

√
2)/7 ≈ 45%. We further show that if we

additionally allow noise-free measurements in the computational basis, perfect
classical control and perfect classical side processing, then above the noise rate
of θ̂ the circuits become efficiently simulatable on a classical computer. This last
result is tight, since at lower noise rates this gate set becomes quantum universal ,
that is, it is possible to simulate any other quantum circuit efficiently. A corollary
of our approach is that circuits consisting only of gates from the Clifford group
cannot be universal for classical computation.

5.1 Introduction

In the previous chapters we have proved very general upper bounds on the noise
rates for which fault-tolerant computing is possible. They were very general,
because we allowed all possible gates (Chapter 3) respectively all unitary gates
(Chapter 4) with bounded fan-in. All multi-qubit gates had the same amount of
noise.

59
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Restricted gate sets

However, this might not reflect the actual properties of a physical system. It
might be hard in practice to physically perform all possible quantum operations.
And among those which can be implemented it might be that certain quantum
operations, including storing qubits, might have lower noise rates or even no noise
at all. This particular situation was studied by Bravyi and Kitaev in [21], where
they argue that some realistic proposals for topological quantum computation
have exactly these properties. They consider an example, where perfect stabi-
lizer operations, perfect classical control and perfect classical side-computation is
allowed (see definitions in Section 5.2). Then they prove that if it is addition-
ally possible to create certain pure 1-qubit states, then universal fault-tolerant
quantum computation becomes possible. Because of this these states were called
“magic” states. However, they also show that it is not necessary to be able to
prepare these magic states perfectly. It is possible to distill better magic states
from several copies of noisy magic states. Thus, perfect stabilizer operations and
noisy magic states are enough for universal quantum computation. We will follow
a similar path in this chapter.

Model and its computational power

We will assume that we can perfectly implement the set of all stabilizer operations
Stab, which includes Clifford gates Clifford (see Section 5.2.2), preparation
of computational basis states and measurements in the computational basis (see
Section 5.2.3). The Gottesman-Knill Theorem says that this set of gates can be
efficiently simulated classically (see also [2]), and therefore it seems plausible that
it is not sufficient for universal quantum computation. We prove this intuition
later rigorously in Corollary 5.3.2. On the other hand, it is known that Clifford
alone together with any other 1-qubit unitary gate, not generated by the gates in
Clifford, form a universal set of gates for quantum computation [89, 66]. We
show, however, that such additional 1-qubit gates should not be too noisy.

Main results

More precisely, let Clifford∗ be Clifford augmented with arbitrary 1-qubit
unitary gates with depolarizing error at least θ̂ = (6 − 2

√
2)/7 ≈ 45%. Then

this set of gates is not capable of computing arbitrary functions and therefore is
not even classically universal, which is proved in Theorem 5.4.3. In particular,
fault-tolerant (quantum) computation cannot be performed if there is at least
this level of noise. Our second result in Theorem 5.4.4 states that circuits with
arbitrary classical control and that use gates from Stab and 1-qubit unitaries
with noise at least θ̂ can be simulated efficiently on classical computers. This last
result is tight, as we explain in Section 5.5, based on results from [83, 21]. Their
results imply that at noise rates less than θ̂ ≈ 45.3% it is possible to do efficient
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universal quantum computation if perfect stabilizer operations, perfect classical
control and perfect classical side computation are available.

On the way, we give a characterization of the convex closure of all 1-qubit
Clifford operations (Lemma 5.4.1).

Outline of proof ideas

We first show in Section 5.3 that the set of all Clifford operations is not universal,
i.e., that it is is impossible to compute every function with bounded error. In
particular, in Corollary 5.3.2, we show that a boolean function which can be
computed by Clifford circuits can be written as the parity of a subset of input bits
(complementing results in [2]). The argument uses results from communication
complexity.

We then show in Lemma 5.4.1 that all 1-qubit unitaries with noise at least
θ̂ can be seen as probabilistic mixtures of 1-qubit Clifford operations. In the
proof we first compute the smallest polytope P that contains all 1-qubit Clifford
gates. Then we show that any 1-qubit unitary with noise at least θ̂ lies inside
P . Together with the fact that Clifford operations alone are not universal this
establishes the first result Theorem 5.4.3.

The same Lemma together with the Gottesman-Knill theorem implies our
second result Theorem 5.4.4.

Best gate

It is interesting to point out that among all 1-qubit unitary gates, the so-called
π/8-gate (see Section 5.6) is the gate that requires the most noise to render it
incapable of universal quantum computation by our approach. That is, augment-
ing the Clifford gates Clifford with other gates (e.g., π/16-gates), our approach
will yield stronger bounds on the tolerable noise level.

5.1.1 Organization

This chapter is organized as follows: In the beginning of Section 5.2 we introduce
some notation and review some standard facts about Bloch-sphere representations
from Section 2.5.1 and explain how depolarizing noise acts on the Bloch sphere.
We then introduce the Clifford group and stabilizer operations in Section 5.2.2.
Section 5.3 contains the result that the gate set Clifford cannot be universal
and only allows to compute parity functions, see Corollary 5.3.2. The proof uses
a reduction to communication complexity (introduced in Section 2.4) and the
fact that there are functions with non-trivial communication complexity. Section
5.4 shows that gates from Clifford∗, together with all stabilizer operations
and perfect classical control are classically simulatable and thus probably not
quantum-universal. It can be read independently of the preceding section. Section
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5.5 shows how results from [83, 21] imply a lower bound on θ̂. In Section 5.6 we
then discuss some possible extensions, including different noise models and show
that the π/8-gate is in some sense the most fault-tolerant gate.

5.2 Preliminaries and notation

Recall from Chapter 2 that Eij is the all-zero matrix, except for the entry i, j
which is equal to 1. For matrices A,B ∈ R3×3 we define as before the inner
product 〈A,B〉 as:

〈A,B〉 = Tr(ATB) =
∑

i,j∈{1,2,3}

aijbij.

The following fact is used repeatedly: 〈A,BC〉 = 〈BTA,C〉 for A,B,C ∈ R3×3.
Recall Section 2.5 where we saw that 1-qubit states ρ ∈ C2×2 are isomorphic

to vectors r ∈ R3 via

ρ =
I2 + r · σ

2
=

I2 + rxX + ryY + rzZ

2
,

and 1-qubit unitary operations U ∈ C2×2 are isomorphic to rotations R ∈ SO(3)
via

Un(θ) = exp

(−iθn · σ
2

)
= I2 cos

θ

2
− in · σ sin

θ

2
,

where n ∈ R3 with ||n|| = 1 is the axis and θ ∈ R the angle of the rotation R. We
introduce some notation reflecting this isomorphism. For unitary U ∈ C2×2 we
let RU ∈ SO(3) be the corresponding rotation matrix. We get a reverse operation
(up to phase factors) by fixing one mapping f : SO(3)→ C2×2 with the property
that for all unitary U ∈ C2×2 it holds that f(RU) = αU for some α ∈ C, |α| = 1.
We then write UR = f(R).

This can be extended to probabilistic mixtures of quantum operations. Let
{pi} be a probability distribution, i.e.,

∑
i pi = 1 and 0 ≤ pi, and let Ui ∈ C2×2

be a 1-qubit unitary with corresponding Bloch representation Ri ∈ R3×3. Then
the quantum operation E in which each Ui is applied with probability pi has
Bloch-representation RE =

∑
i piRi.

5.2.1 Noise

The noise model we consider is again depolarizing noise. We repeat its definition
from page 34. A 1-qubit state ρ to which depolarizing noise p is applied, becomes

ρ 7→ (1− p)ρ+ pI/2.

Thus, with probability 1− p the state is not changed, and with probability p the
state is replaced with the completely mixed state.
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It is not hard to see that applying depolarizing noise p to ρ = I/2 + r · σ/2
yields ρ′ = I/2 + r′ · σ/2, with r′ = (1 − p)r. So, this noise shrinks the Bloch
vector of a state to (1− p) of its original length.

We say that a 1-qubit gate implements the unitary operation U with noise p
if it transforms states ρ into

(1− p)UρU † + pI/2. (5.1)

This quantum operation can be seen as a two-stage process, in which first U
and then depolarizing noise is applied. Let RU ∈ R3×3 be the rotation matrix
corresponding to the unitary U . Then this noisy quantum operation has Bloch-
representation (1 − p)RU , i.e., it rotates a Bloch vector and scales it by a factor
1− p.

For 1-qubit gates and depolarizing noise, the two representations are (up to
unimportant global phase factors) equivalent. See Section 8.3 in [68] for more
details.

5.2.2 Clifford group

The (n-qubit) Clifford group contains all unitary operations that can be written
as a product of tensor products of S,H and CNOT1

2 (see equation (5.2)).

CNOT1
2 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
(5.2)

We denote the set of all operations which can be generated in this way by
Clifford. In particular, the Clifford group contains also the Pauli group (S2 =
Z, HS2H = X and ZX = iY ), which is the tensor product of all Pauli operators
I, X, Y, Z.

Let Clifford∗ be the set of gates consisting of Clifford and arbitrary
1-qubit gates followed by depolarizing noise at least θ̂ = (6− 2

√
2)/7.

Bloch-vector representation of Clifford operations For a state with Bloch
vector r we get:

S

(
1

2
I +

rx
2
X +

ry
2
Y +

rz
2
Z

)
S∗ =

1

2
I− ry

2
X +

rx
2
Y +

rz
2
Z

Let RS be the Bloch representation of S. Then RS rotates Bloch vectors around
the z-axis by π/2. In particular, the x-axis is mapped to y and y to −x. For the
Hadamard-gate we similarly have

H

(
1

2
I +

rx
2
X +

ry
2
Y +

rz
2
Z

)
H∗ =

1

2
I +

rz
2
X − ry

2
Y +

rx
2
Z.
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So the Bloch representation RH of H negates the y-coordinate of a Bloch vector
and swaps the x and z-coordinates, i.e., it is a rotation by π around the axis
(1, 0, 1)/

√
2.

We define C as the set of matrices which can be generated from RS and RH . A
C ∈ C is called a Clifford (rotation) matrix. It is not hard to see that C contains
exactly those rotations which map axes to axes (or their opposite). Those C have
in each row and column exactly one non-zero entry, which must be either +1 or
−1, and det(C) = 1. Note that C, being isomorphic to the 1-qubit Clifford group,
is a group under matrix multiplication. Examples of Clifford matrices are 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 −1 0
0 0 −1

 ,

 1 0 0
0 0 1
0 −1 0


In Appendix B we need (and explain) more details about Clifford rotation

matrices, which are only necessary for one technical result in Lemma 5.4.1, which
can alternatively be obtained by computer software [46].

5.2.3 Stabilizer operations and the Gottesman-Knill The-
orem

We conclude this section by defining a few more terms. The set of stabilizer
operations , denoted by Stab, contains all operations generated by the Clifford
group Clifford and additionally preparations of computational basis states and
measurements in the computational basis. The Gottesman-Knill Theorem says
that this set of gates can be efficiently simulated classically, see also [2].

Classical control (see page 35) means that later gates may arbitrarily depend
on earlier measurement outcomes. In particular, this means that arbitrary clas-
sical side computation is allowed. In [2] it is shown that quantum circuits using
only operations from Stab in which perfect classical control is allowed are also
efficiently simulatable on a classical computer, i.e., the simulation can be done
with at most a polynomial overhead over the number of quantum operations and
the number of (classical) operations needed for the classical control.

5.3 The power of Clifford circuits

The main idea of this section is as follows. Assume we have a Clifford cir-
cuit C (i.e. a circuit composed of the gates in (5.2)) with n classical input bits
x = x1, . . . , xn and one dedicated output qubit that, when measured in the com-
putational basis, yields the output of the computation of C on x. Suppose now
that the input is partitioned over two parties, Alice and Bob, such that Alice
has bits S ⊆ {1, . . . , n} of x and Bob has bits {1, . . . , n}\S. We first show how
Alice, with the help of Bob, can compute the value of C on x with just a single
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classical bit of communication (Lemma 5.3.1) for any partition S. Recall that
in Section 2.4 we defined the worst-case partition communication complexity of
f : {0, 1}n → {0, 1} as Dworst(f) = maxS⊆{1,...,n}D

S(f), where DS(f) is the (de-
terministic) communication complexity of f when the bits in S are given to Alice
and all others to Bob. Hence, Clifford circuits can at the very best compute only
those functions that require a single bit of communication for any partition of
the inputs; it is well known that most functions require more than one bit of
communication, see Section 2.4.

We are now ready to prove the main lemma, which explains the idea of sim-
ulating Clifford circuits.

5.3.1. Lemma. Let f : {0, 1}n → {0, 1} be a function that is computable with
unbounded error1 by a quantum circuit C that uses only gates from Clifford,
ancillas initialized to |0〉 and one single-qubit measurement in the computational
basis, which determines the output. Then the deterministic worst-case partition
communication complexity of f is at most one bit.

Proof: In the simulation of the circuit C we represent the j-th qubit by two
shares : a classical share consisting of two bits aj, bj, and a quantum share con-
sisting of 1-qubit. A state |ψC〉 of C will be encoded by

|ψC〉 :=
⊗
j

X
aj
j Z

bj
j |ψ〉, (5.3)

where |ψ〉 is the state of all quantum shares and the indices j denote the qubits
on which the operators X and Z act. We call |ψC〉 the logical state (of C).

Assuming that the set of qubits of C is encoded in this manner, the operations
H, S, and CNOT can be applied to the logical qubits by separately performing
operations on the shares that encode them (i.e., the logical qubits do not have
to be reconstructed). The reason why this works is because for any Clifford
operation C = H,S,CNOT1

2 and any tensor product of Pauli operators P1 there
is a tensor product of Pauli operators P2 with CP1 = P2C. For example, to apply
H to the logical qubit i, the two bits that make up its classical share are swapped
and H is applied to its quantum share. This works correctly because

HjX
aj
j Z

bj
j |ψ〉 = HjX

aj
j HjHjZ

bj
j HjHj|ψ〉 (5.4)

= Z
aj
j X

bj
j Hj|ψ〉

= (−1)aj∧bjX
bj
j Z

aj
j Hj|ψ〉,

and (−1)aj∧bj is an irrelevant global phase.

1That means, that the output is only correct with probability greater than 1/2, but can go
arbitrarily close to 1/2.
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To apply S to a logical qubit, the b-part of the classical share is updated to
b := a ⊕ b and S is applied to its quantum share. This case can be verified by
noting that

SjX
aj
j Z

bj
j |ψ〉 = iajX

aj
j SjZ

aj
j Z

bj
j |ψ〉 (5.5)

= iajX
aj
j Z

aj⊕bj
j Sj|ψ〉,

where we note that iaj is a global phase.
To simulate the application of a CNOT1

2 gate on two logical qubits, with
classical shares a1b1 and a2b2, we update a2 := a1 ⊕ a2, b1 := b1 ⊕ b2 and CNOT1

2

is applied to the two quantum shares. In this case, we omit the details but note
that the correctness can be verified using the identities (see also Figure 4.3 on
page 54)

CNOT1
2(X ⊗ I) = (X ⊗X)CNOT1

2 (5.6)

CNOT1
2(I ⊗X) = (I ⊗X)CNOT1

2

CNOT1
2(Z ⊗ I) = (Z ⊗ I)CNOT1

2

CNOT1
2(I ⊗ Z) = (Z ⊗ Z)CNOT1

2.

We first describe a probabilistic communication protocol for f . Alice operates
on the classical shares while Bob operates on the quantum shares.

The initial shares are easy to construct, see also Figure 5.1: for each of Alice’s

|x1〉 = Xx1Z0|ψ1〉 • S ⊕

|x2〉 = Xx2Z0|ψ2〉 ⊕ H

|x3〉 = Xx3Z0|ψ3〉 •

|y1〉 = X0Z0|ψ4〉 ⊕ •

|y2〉 = X0Z0|ψ5〉 X •

|y3〉 = X0Z0|ψ6〉 ⊕

Figure 5.1: Distributed representation of input bits

input bits xj, Alice sets her classical share to aj := xj,bj := 0 and Bob sets his
quantum share to |0〉j; for each of Bob’s input bits yj, Alice sets her classical share
to aj = bj := 0 and Bob sets his quantum share to |yj〉j. If the j-th input bit to
circuit C is an ancilla qubit (initialized to |0〉) then Alice sets aj := xj,bj := 0
and Bob sets the j-th qubit to |0〉j. Note that the logical state encoded in this
way is |x〉|y〉|0 . . . 0〉, where |0 . . . 0〉 denotes the ancilla qubits.

With this representation, Alice and Bob can simulate the execution of circuit
C on input |x〉|y〉|0 . . . 0〉 without any communication as explained above. In
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particular, they can obtain the shares of the output qubit of C, which without
loss of generality we assume to be the first qubit of C. For Bob to obtain the
result of measuring the (logical) output qubit, Alice sends the first bit of her
classical share, a1, to Bob, who applies Xa1 to his quantum share and measures it
in the computational basis. Alice need not send b1, the second bit of the classical
share, since Bob is performing a measurement in the computational basis.

Finally, to obtain a deterministic communication protocol for f , we note that
Bob need not actually manipulate quantum information; rather, he can simulate
his quantum registers and his operations with high enough precision on a classical
computer. Then, upon receipt of the classical bit from Alice, he can exactly de-
termine the output probabilities of his measurement to determine which outcome
is more likely.

The next Corollary characterizes exactly all functions computable by Clifford
circuits. From Lemma 5.3.1 we get that this set is very limited and far from being
universal.

5.3.2. Corollary. All functions f : {0, 1}n → {0, 1} which can be computed by
a Clifford circuit, can be written in the form

f(x1 . . . xn) = c⊕
⊕
j∈S

xj,

where S ⊆ [n] is a subset of the input bits not depending on the input bits and
c ∈ {0, 1}.

Proof: It is clear that all functions f of this form can be computed by a Clifford
circuit. We now also prove the reverse.

Let f : {0, 1}n → {0, 1} be a function which can be computed by a Clifford
circuit C. Then we can simulate this circuit as in Lemma 5.3.1, where we give
Alice the whole input, i.e., with the notation before Lemma 5.3.1 this means
S = {1, . . . , n}.

Inspecting the proof of Lemma 5.3.1 we see that in each step Alice always
updates her ai’s and bi’s by computing the parity of two bits. So, the final bit
a1 she sends over is just the parity of some of the input bits. Thus we can write
ai =

⊕
j∈S xj, for some S ⊆ [n]. Bob initializes all his quantum bits to |0〉, so he

starts with the state |ψ0〉 = |0 . . . 0〉. Further, Bob just applies the circuit C to
his state and measures the i-th qubit of XaiC|ψ0〉 in the computational basis.

It is known that the probability for measuring 1 in a Clifford circuit is either 0,
1/2 or 1 (see [68] page 463). It cannot be 1/2 in our case, because that would mean
that the circuit does not compute f . So, measuring the i-th bit of C|ψ0〉 yields a
bit c ∈ {0, 1} with certainty. But this means that f(x) = c⊕ ai = c⊕⊕j∈S xj.

We mention that Aaronson and Gottesman proved [2] that there is a log-
space machine which transforms a Clifford circuit C into a classical circuit C ′
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consisting only of CNOT and NOT gates, with the property that C accepts the
all zero state |0〉⊗n iff C ′ accepts the (classical) all zero input. Our corollary
extends this slightly: For every Clifford circuit C computing a boolean function,
there is an equivalent (for classical inputs) classical circuit which uses only NOT-
and CNOT-gates. Using the result from [2] we see that we can compute the bit
c in the proof of Corollary 5.3.2 in log-space and it is also clear that the circuit
Alice uses to compute ai can be computed in log-space.

5.3.3. Remark. It is trivial to extend Lemma 5.3.1 to functions with m output
bits, if the communication complexity of the function is also higher than m,
resulting in a scheme that uses m bits of communication.

5.4 Simulating 1-qubit unitaries by Clifford gates

We want to extend Lemma 5.3.1, by replacing Clifford with Clifford∗. We
show in Lemma 5.4.1 how probabilistic mixtures of Clifford gates can be used to
simulate any single qubit unitary gate that has noise θ̂(≈ 45%). The proof relies
on solving an optimization problem related to the Clifford polytope, defined as
the convex hull of the set C ⊆ R3×3 of Clifford rotation matrices in R3. Here, the
matrices C are the 1-qubit Clifford gates in Bloch sphere representation.

Combining Lemmas 5.3.1 and 5.4.1, we get that for all circuits with Clif-
ford∗-gates and any distribution of its input bits among Alice and Bob, the
output of the circuit can be obtained with a single bit of communication (Lemma
5.4.2). Using the fact that there are functions which require communication
more than one bit, we get our main result (Theorem 5.4.3): The set of gates in
Clifford∗ cannot be universal. We also generalize our result to the case that
the inputs are quantum states.

We first show how one can simulate arbitrary 1-qubit gates with depolarizing
noise θ̂ = (6− 2

√
2)/7 with a probabilistic mixture of Clifford operations.

5.4.1. Lemma. Let U be a 1-qubit unitary and EU be the following noisy version
of it

ρ 7→ EU(ρ) = (1− θ̂)UρU∗ + θ̂I/2,

for any ρ ∈ C2×2. Then there is a probability distribution {pC} over C such that
for all ρ ∈ C2×2 we have

EU(ρ) =
∑
C∈C

pCUCρU
∗
C

and UC is a Clifford operation corresponding to the Clifford rotation matrix C.
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Proof: Using Section 2.5.1 and Section 5.2 the lemma can be reformulated equiv-
alently in Bloch representation: For any S ∈ SO(3) there is a probability distri-
bution {pC} over C such that

(1− θ̂)S =
∑
C∈C

pCC. (5.7)

We will prove this latter statement. Define the Clifford polytope

Figure 5.2: The polytope P (schematically in two dimensions)

Rotation matrices (corresponding to 1-qubit unitaries) are depicted by patches of a circle.
The polytope P spanned by the Clifford operators Ci is depicted by the rectangle, with facets

Fi ∈ F . For every rotation matrix S on the circle there is a smallest value p such that
shrinking S by a factor (1− p) gives a point inside P . Then θ̂ is the maximum of such p over

all rotation matrices S.

P := conv(C) =

{
S | S =

∑
C∈C

pCC, pC ≥ 0,
∑
C∈C

pC = 1

}
(5.8)

as the convex hull of the 24 Clifford rotation matrices in R3×3. We have to prove
(see also Figure 5.2)

(1− θ̂)S ∈ P for any S ∈ SO(3). (5.9)
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For this we use the fact that the Clifford polytope can be alternatively described
by its facet description:

P =
{
S ∈ R3×3 | 〈F, S〉 ≤ 1 for all F ∈ F

}
, (5.10)

where

F :=
{
C1BC2|C1, C2 ∈ C, B ∈ {B1, B

T
1 , B2}

}
, (5.11)

B1 :=

 1 0 0
1 0 0
1 0 0

 , B2 :=

 1 −1 0
1 1 0
0 0 −1

 .

One can use the software from [46] for computing the facet description (5.10);
we will give a direct proof in Appendix B. In view of (5.10), our claim (5.9) is
equivalent to

(1− θ̂)〈F, S〉 ≤ 1 for all S ∈ SO(3), F ∈ F . (5.12)

Let F ∈ F be of the form F = C1BC2 where C1, C2 ∈ C. As 〈F, S〉 =
〈CT

1 SC
T
2 , B〉 and CT

1 SC
T
2 ∈ SO(3), (5.12) is equivalent to

〈S,B〉 ≤ 1

1− θ̂
= 2
√

2− 1 for all B ∈ {B1, B2}, S ∈ SO(3). (5.13)

The case B = B1 is easy to handle: For S ∈ SO(3), 〈S,B1〉 =
∑3

i=1 Si1 ≤
√

3 <
2
√

2− 1. We now show (5.13) for B = B2. Write S ∈ R3×3 as

S =

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 . (5.14)

It is well-known that it is necessary and sufficient for S ∈ SO(3) that the column
vectors a = (a1, a2, a3)T ,b = (b1, b2, b3)T and c = (c1, c2, c3)T satisfy

aTb = 0, c = a× b, aTa = 1, bTb = 1, (5.15)

where × denotes the vector product, defined as

a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)T .

Recall that, for a,b, c as in (5.15), a = b×c and b = c×a. Using c3 = a1b2−a2b1,
we obtain 〈B, S〉 = a1 − a2 + b1 + b2 − a1b2 + a2b1. Therefore our task is now to
prove that the optimum value of the program

max f := a1 − a2 + b1 + b2 − a1b2 + a2b1

s.t. g1 := a2
1 + a2

2 + a2
3 = 1

g2 := b2
1 + b2

2 + b2
3 = 1

g3 := a1b1 + a2b2 + a3b3 = 0

(5.16)
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is at most 2
√

2 − 1; we in fact show that max f = 2
√

2 − 1. For this, consider
a global maximizer (a, b) to the program (5.16). Then, the Karush-Kuhn-Tucker
conditions have to be satisfied, since the gradient vectors {∇gi(a, b) | i = 1, 2, 3}
are linearly independent; see, e.g., Theorem 12.1 in [70]. (Here the gradient vector
∇gi(a, b) = ( ∂

∂a1
, ∂
∂a2
, ∂
∂a3
, ∂
∂b1
, ∂
∂b2
, ∂
∂b3

)Tgi(a, b) consists of the partial derivatives

with respect to the six variables a1, . . . , b3.) That is, there exist scalars λ1, λ2, λ3

for which
∇f(a, b) +

∑
i=1,2,3

λi∇gi(a, b) = 0.

Equivalently, considering the partial derivatives first with respect to (a1, a2, a3)
and then with respect to (b1, b2, b3) 1− b2

−1 + b1

0

 + 2λ1a + λ3b = 0 1 + a2

1− a1

0

 + 2λ2b + λ3a = 0.

Multiplying the first and the second line by cT = (a× b)T (recall that c ⊥ a,b)
we get

0 = c1(1− b2) + c2(−1 + b1) = c1 − c2 + a3

0 = c1(1 + a2) + c2(1− a1) = c1 + c2 + b3.

Adding (resp. subtracting) these equations yields 2c1 = −a3−b3 and 2c2 = a3−b3.
Squaring these two equations and then adding them gives 2a2

3 + 2b2
3 = 4c2

1 + 4c2
2.

Since the rows and columns in S are normalized, we get 2(1 − c2
3) = 4(1 − c2

3),
from which we conclude c2

3 = 1 and, therefore, a3 = b3 = c1 = c2 = 0. This
implies a2

1 + b2
1 = 1 = a2

1 + a2
2 and thus |b1| = |a2|. Similarly one can establish

|a1| = |b2|. On the basis of this observation we distinguish three cases.

1. a1 = b2 = 0. Then, |a2| = |b1| = 1 and f = −a2 + b1 + a2b1 ≤ 1.

2. a1 6= 0 and a1 = −b2. From aT b = 0 we have a1(b1 − a2) = 0, which gives
a2 = b1. Then, f = a1 − a2 + a2 − a1 + a2

1 + a2
2 = 1.

3. a1 6= 0 and a1 = b2. From aT b = 0 we have a1(b1 + a2) = 0, which gives
a2 = −b1. Then, f = a1 − a2 − a2 + a1 − a2

1 − a2
2 = 2(a1 − a2) − 1, which

(under the condition a2
1+a2

2 = 1) is clearly maximized by a1 = −a2 = 1/
√

2.
Therefore, we find max f = 2

√
2− 1.

Thus, we have shown that the optimum value of the program (5.16) is equal to
2
√

2− 1, which concludes the proof.
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5.4.2. Lemma. Let f : {0, 1}n → {0, 1} be a function and K a quantum cir-
cuit for f with error probability at most ε > 0 which uses only gates from
Clifford∗and one final single qubit measurement in the computational basis.
Then the randomized worst-case partition communication complexity (defined in
Section 2.4 on page 27) of f is at most one bit, i.e., Rworst

ε (f) ≤ 1.

Proof: From Lemma 5.3.1 we know how two parties, Alice and Bob, can simulate
perfect Clifford gates. From Lemma 5.4.1 we know how they can jointly simulate
the other noisy 1-qubit gates in Clifford∗, where they use shared randomness
to make sure that they always simulate the same Clifford gate.

We can now prove an upper bound on the noise in fault-tolerant quantum
computation.

5.4.3. Theorem. The set of gates from Clifford together with 1-qubit gates
with depolarizing noise more than θ̂ ≈ 45% and one single-qubit measurement is
not sufficient for arbitrary classical computation.

Proof: The result follows by Lemma 5.4.2 and the fact that there are functions
with communication complexity greater than 1, for any bounded error.

In fact we have that none of the functions f with Rε(f) > 1 can be computed
by Clifford∗ circuits with error at most ε. From Corollary 5.3.2 we also get
that the functions computable by Clifford∗ are always probabilistic mixtures
of parity functions.

If we additionally allow perfect stabilizer operations Stab and perfect classical
control, we can state the following theorem.

5.4.4. Theorem. Any computation using

1. gates Clifford∗

2. perfect stabilizer operations Stab

3. perfect classical control and classical side computation

in which the input state is a computational basis state, can be simulated by a
classical computer with at most polynomial overhead.

Proof: Follows immediately by Lemma 5.4.1 and the Gottesman-Knill Theorem.
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5.5 Lower bound on θ̂

We now discuss wether it is possible to improve Theorems 5.4.3 and 5.4.4.

Theorem 5.4.3 states that fault-tolerant quantum computing is not possible if
we have depolarizing noise at least θ̂ ≈ 45% on 1-qubit gates even if we can use
perfect gates from Clifford in our fault-tolerant circuit design. Is this optimal?
Could it be that with less than θ̂ noise on the single-qubit gates and perfect gates
from Clifford still no fault-tolerant circuit design is possible? This is still an
open question since we do not know if Theorem 5.4.3 is tight.

In contrast to this, the second result (Theorem 5.4.4) is tight, which was
pointed out by Ben Reichardt [80]. The argument builds upon magic-state
distillation, introduced in [21], and goes as follows. Assume we have at our
disposal noisy π/8-gates T ′, with depolarizing noise strictly less than θ̃, i.e.
T ′(ρ) = (1 − p)TρT † + pI/2 with p < θ̂, where T is the perfect π/8 gate, see
equation (5.19). Then apply T ′ to the second half of an EPR-pair and measure
the observable Z⊗Z, which can be implemented as a measurement in the compu-
tational basis with additional gates from Clifford. If the outcome is −1 throw
away the state and do the experiment again. If the outcome is +1, apply a CNOT
from the first to the second qubit, which gives

1

2

(
I +

1− p
1− p/2

1√
2
X +

1− p
1− p/2

1√
2
Y

)
⊗ |0〉〈0|. (5.17)

Using the result from [83, 82] an arbitrary supply of qubits in the state of the
first qubit of (5.17) can be used to distill magic states in the H-direction, which
together with stabilizer operations is sufficient for quantum computation. We do
not know if this also holds for gates other than the π/8-gate.

5.6 Discussion and extensions

In this section we will discuss certain extensions and generalizations of our results.

Best gates

From the proof of Lemma 5.4.1 we see that the rotation matrix S which achieves
the optimal value, is  1/

√
2 −1/

√
2 0

1/
√

2 1/
√

2 0
0 0 −1

 . (5.18)
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Multiplying from the right by the Clifford-matrix diag(1,−1,−1) we get a rota-
tion around the z-axis by π/4. The π/8-gate

T =

(
exp(−iπ/8) 0

0 exp(iπ/8)

)
(5.19)

performs a rotation of π/4 around the z-axis. So, the π/8-gate and its symmetric
versions are the ones which need the most depolarizing noise to be simulated by
gates from Clifford.

Worst case noise

In Lemma 5.4.1 we asked with how much depolarizing noise all 1-qubit unitary
gates are equivalent to probabilistic mixtures of Clifford gates. Similarly to [99]
one can also ask how much arbitrary noise is needed to make every gate a mixture
of Cliffords. More precisely what is the value θ̃ = supU∈SU(2) pU , where pU is the
infimum of all p such that there is a completely positive trace-preserving 1-qubit
quantum operation EU with the property that the noisy implementation of U

U ′ : ρ 7→ (1− p)UρU † + pEU(ρ)

becomes a probabilistic mixture of Clifford operation.
In this section we will provide some bounds on θ̃. Let K ∈ SU(2) be any

operation that in Bloch representation maps the X-eigenstate vX = (1, 0, 0) to
u = 1√

3
(1, 1, 1). Note that a probabilistic mixture of 1-qubit Clifford operations

C =
∑

i piCi can map vX only into the octahedron O spanned by vX = (1, 0, 0),
vY = (0, 1, 0) and vZ = (0, 0, 1) and their negatives −vX ,−vY ,−vZ (see also [21]).
Note that the state of O which is closest to u is 1

3
(1, 1, 1) = 1√

3
u and their distance

is ||u−u/
√

3||2 = 1− 1√
3
. The Bloch-state which is furthest away from u is −u. All

three of these states lie on a line. With this it is clear that the state unoise which
needs the smallest noise p, such that (1− p)u + punoise is inside the octahedron,
is −u and the optimal p is 1

2
(1− 1√

3
). This implies 21% ≈ 1

2
(1− 1√

3
) ≤ θ̃.

To get an upper bound, recall that by Lemma 5.4.1 for any gate U ∈ SU(2)
the operation

U ′ : ρ 7→ (1− p)UρU † + pI/2

is a Clifford operation, if p ≥ θ̂. Setting

EU(ρ) =
1

3

(
XUρU †X + Y UρU †Y + ZUρU †Z

)
and noting that for any 1-qubit density matrix ρ it holds

I
2

=
1

4
(ρ+XρX + Y ρY + ZρZ)
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we can rewrite the action of U ′ also as

U ′ : ρ 7→ (1− 3

4
p)UρU † +

3

4
pEU(ρ).

Thus, θ̃ ≤ 3
4
θ̂ ≈ 34%. Note that this is certainly not tight, since all gates, apart

from the π/8-gate (and its symmetric versions), need less than θ̂ depolarizing
noise to make it a probabilistic mix of Clifford operations, which implies they
need less than 3

4
θ̂ worst case noise. However, as follows from [99], the worst case

noise for the π/8-gate(s) is only 1
2
− 1

2
√

2
≈ 15%.

We leave it as an interesting open question to determine the precise value of
θ̃.

Different noise models

The approach we have taken can in principle also be applied to other noise models:
For any 1-qubit noise operation E , with Bloch representation SE we can compute
the minimum value θ such that for all rotations R ∈ R3×3 the noisy version
(1−θ)R+θSE is inside the Clifford polytope P , defined in equation (5.8). However,
the actual optimization problems might not be as easy as for depolarizing noise,
since depolarizing noise with probability p corresponds to multiplying with (1−p)
in Bloch-representation.

In principle, a similar approach might be possible to calculate how well one can
approximate arbitrary (unitary) gates given a gate set S other than Clifford∗

under a certain noise model. If S is not universal, this will also give new noise
bounds.

Allowing some perfect unitaries

Our threshold theorem says the following. Let f : {0, 1}n → {0, 1} be a func-
tion which requires more than one bit of communication in order to compute it,
when the input bits are partitioned over Alice and Bob. There is no quantum
circuit consisting of perfect Clifford operations and single qubit gates with noise
θ̂ (≈ 45%) that can compute f . We can strengthen this result to allow a small
number of perfect single-qubit gates as well: Assume that f requires m bits of
communication to be computed, i.e., the randomized worst-case partition com-
munication complexity Rworst

ε (f) is at least m. Then there is no quantum circuit
that uses perfect Clifford operations, s perfect single-qubit gates, and single qubit
gates with noise θ̂ that computes f , for 2s + 1 < m with error at most ε. We
get this strengthening by changing the simulation of a Clifford circuit in Lemma
5.3.1 in the following way: Whenever Alice and Bob want to perform a perfect
single qubit gate on some qubit, Alice sends her classical share a, b of that specific
qubit to Bob. Note that Bob now has complete control over this qubit and can
perform the perfect gate on that qubit. They then proceed as in Lemma 5.3.1.
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By the end of the simulation Alice has sent 2s+ 1 bits to Bob and he will be able
to compute f , contradicting that the communication complexity of f is at least
m > 2s+ 1.

Quantum inputs

Lemma 5.3.1 can actually be extended to the case where Alice and Bob get quan-
tum states as inputs and they are provided with entanglement. The statement
is as follows: Suppose they have a quantum circuit C as in Lemma 5.3.1, but
they get a quantum state ρ ∈ C2n×2n . Let pρ,i, i = 0, 1, be the probability that
C (which uses one 1-qubit measurement in the computational basis to determine
the output) outputs i on input ρ. Now, let ρ be arbitrarily partitioned between
Alice and Bob, that is, Alice gets the qubits with indices S ⊆ {1, . . . , n} of ρ and
Bob the rest and they both know S, but they do not know what ρ is. Then it
is possible with one classical bit of communication from Alice to Bob that Bob
outputs i with probability exactly pρ,i.

To see how this works let without loss of generality Alice’s input qubits be
S = {1, . . . ,m}, m ≤ n. Alice and Bob then need to share m EPR pairs. We
use an “aborted” teleportation scheme to set up a representation as in Lemma
5.3.1, equation (5.3): Call ρi the i-th qubit of ρ. Recall that during the standard
protocol (see e.g. [68], page 26) of teleporting ρi to Bob, Alice measures at some
point two classical bits ai, bi. In the standard protocol for teleportation she then
sends these two bits to Bob, who applies XaiZbi on his share of the i-th EPR-pair
and this then contains ρi.

Now, in our aborted version of teleportation Alice does not send the bits ai,
bi (1 ≤ i ≤ m). She keeps them and for m < i ≤ n she additionally initializes
bits ai, bi to ai = bi = 0, so that Alice ends up with 2n classical bits in total.
With this protocol, Alice and Bob obtain the correct representation of the state ρ
from Lemma 5.3.1. More precisely, if ρ′ ∈ C2n×2n is the state in the n−m qubits
given initially to Bob and the m qubits from his shares of the EPR-pairs (after
the “aborted” teleportation), then

ρ =

(
m⊗
i=1

Xai
i Z

bi
i

)†
ρ′

(
m⊗
i=1

Xai
i Z

bi
i

)
,

where the subscript i means that the operator acts on the Hilbert space of Bob’s
share of the i-th EPR-pair. Note that ρ′ is completely in Bob’s hands. This is
the same representation as in equation (5.3), just that now the quatum share ρ′ is
some mixed state, which is not known to Alice and Bob. This is necessary since
we also assumed that the logical input state ρ, which is encoded in this way, can
also be some arbitrary mixed state.

From here, they can then run the same protocol as in the proof Lemma 5.3.1,
where in the end Alice sends one classical bit to Bob. Of course, this time Bob has
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to do the final measurement and can not just classically simulate the quantum
computation since we assumed the state ρ to be arbitrary and not known to Alice
and Bob. It is clear that the outcome of his final measurement will have the
correct distribution pρ,i.





Chapter 6

Classical 2-input gates

This chapter is based on the paper

Falk Unger, Noise threshold for universality of 2-input gates,
presented at IEEE International Symposium on Information The-
ory, 2007, published in IEEE Transactions on Information Theory,
54(8), Aug 2008 (see [95])

6.1 Introduction

It is a common belief that the hardware of quantum computers will be faulty and
that some kind of fault-tolerant architectures will be needed. This is reflected
in the large amount of work on quantum fault-tolerance schemes. On the other
hand, the situation for classical computers seems very different at first sight. The
error probability of gates in modern computer chips is so small that the problem of
error correction is still mostly ignored in modern computer processors. However,
the situation might change in the future.

Moore’s law versus faulty components

In order to make classical computers faster and faster, hardware engineers have
been increasing the number of gates on computer chips steadily. The rate of this
increase is roughly given by Moore’s law [64]. In order to increase the number of
gates, they have to be made smaller and smaller, a process known as hardware
miniaturization. However, there are physical limits to the possible extent of this
miniaturization, and the closer one gets to these limits, the less robust and more
error-prone the components become [16, 15]. It is estimated that the time when
processor architects face these limitations is within the next decade [34]. Gates

79
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can fail in (at least) two ways. The first is that they do not work at all, which
could be due to manufacturing faults. For example, it could be that a gate
always outputs 0. The second is that they work most of the time correctly, and
fail sometimes. This type of errors is called “soft errors” by hardware engineers.
In this chapter we deal with faults of the second type. We assume a probabilistic
error model in which the probability of a fault of any gate is independent of the
input and whether other faults have occurred.

We establish a noise threshold for computation by formulas which use gates
of fan-in at most 2 (see definitions in Section 6.2).

Some known noise thresholds

We have already given a detailed overview of known classical noise bounds in
Chapter 1. Recall from Chapter 1 (see also Figure 1.2 on page 9) that it is
impossible to compute all boolean functions with bounded error by circuits using
gates of fan-in at most k, if each gate fails independently with probability at least
ε > 1

2
− 1

2
√
k

[37]. For formulas with gates of fan-in k and k odd, we know the tight

bound βk = 1
2
− 2k−2

k( k−1
k/2−1/2)

. Tight here means that if all gates fail independently

with the same fixed probability ε < βk, then any function can be bounded-error
computed, and if each gate fails with some probability at least βk (which does
not need to be the same for all gates), universal computation is not possible.

6.1.1 Noise threshold for fan-in 2 gates

For formulas of gates with even fan-in much less is known. In this chapter we
deal with noisy gates of fan-in at most 2. Evans and Pippenger [36] showed that
all functions can be computed by formulas with noisy NAND-gates with fan-in
2, if each NAND-gate fails with probability exactly ε, for any 0 ≤ ε < β2 = 3−

√
7

4
.

The main result of this chapter is that this result is tight.

6.1.1. Theorem. Assume ∆ > 0. Functions that are computable with bias ∆
by a formula in which all gates have fan-in at most 2 and fail independently with
probability at least β2 = (3 −

√
7)/4, depend on at most a constant number of

input bits.

Together with the first mentioned result from [36] this gives the exact threshold
for formulas with gates of fan-in 2. In [36] there is already a weaker version of
our Theorem 6.1.1, which we extend in the following ways: (1) We allow all gates
of fan-in 2, whereas in [36] the upper bound is only established for the case that
all gates are NAND-gates. (2) We prove that if the noise is exactly β2, then no
universal bounded-error computation is possible. (3) In contrast to our result,
the upper bound in [36] only applies to “soft” inputs. They show that gates with
noise more than β2 cannot increase the bias. More precisely, if the inputs to the
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formula are noisy themselves and have bias at most ∆ > 0, then the output of
the formula cannot have larger bias than ∆. This left open the case where the
input bits are not noisy and either 0 or 1, which is the case we care about most.
Our argument shows that even with perfect inputs fault-tolerant computation is
not possible for noise at least β2.

To prove Theorem 6.1.1 we introduce a new technique, which is also applicable
in the even fan-in case. We expect that it can be extended to other (even) fan-in
cases.

6.1.2 Outline of the proof

For any function f : {0, 1}n → {0, 1} we will choose an input bit xi on which f
depends, and fix all other bits such that flipping xi flips the value of f . Assume
that there is a formula F with noisy gates that fail independently with probability
at least β2. Then, for each gate in the formula F with input wires A and B and
output wire C we can define a = 1

2
Pr[A = 0 | xi = 0] + 1

2
Pr[A = 0 | xi = 1] and

δa = Pr[A = 0 | xi = 0]− Pr[A = 0 | xi = 1] and analogously for B and C. The
variable a can be seen as the average probability of A being 0. We call δa the
bias of A with respect to the two input settings xi = 0 and xi = 1.

To prove our result one could attempt the following, which will turn out to
not quite work (but we then show how to fix that): For an ε-noisy gate with
fan-in 2, input wires A, B and output wire C, we would like to show that if the
noise ε is at least the threshold β2 then for any δ > 0 there is some 0 ≤ θ < 1
such that if |δa| ≥ δ or |δb| ≥ δ then

|δc| ≤ θmax{|δa|, |δb|} (6.1)

This would mean that the bias goes down exponentially with the number of
computation steps, until it reaches δ. Further, it is easy to show that for any
d > 0 there is a function f such that any formula computing f has one input bit
xi on which f depends and the number of computation steps on any path from
xi to the output bit is at least d. Hence, the bias cannot be bounded away from
zero for all f and xi.

Unfortunately, (6.1) is not always true. Sometimes the bias can actually go
up.1 We use a more sophisticated approach, showing that the bias goes down
“on average”: We define a potential function q, which is positive and bounded on
[0, 1]. Instead of showing (6.1) we show that for any δ > 0 there is some 0 ≤ θ < 1
such that if |δa| ≥ δ or |δb| ≥ δ then

|δc|q(c) ≤ θmax{|δa|q(a), |δb|q(b)}. (6.2)

1An easy example is an OR-gate with noise ε = 1/10, δa = δb = 1/10 and a = b = 8/10, for
which δc = (aδb + bδa)(1− 2ε) = 0.128 > 1/10.
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and (6.2) holds for θ = 1 even if |δa|, |δb| < δ. Since q is bounded, this implies that
for any arbitrarily small constant δ > 0 the bias of any formula becomes O(δ)
after a constant number of computation steps. We can then proceed as above.

6.1.3 Organization

Section 6.2 contains all further definitions. The main proof is in Section 6.4. In
Section 6.3 we prove (6.2), in the main Lemma 6.3.6. This is the most technical
part of this chapter. Section 6.5 contains some remarks on our particular choice
of q.

6.2 Definitions

A circuit is represented by a directed acyclic graph with one unique sink. We
call its nodes gates and its edges wires. The sink is called the output gate. Each
gate has a certain number of input wires (incoming edges), which is called the
fan-in of the gate. The wires can take boolean values 0 or 1. A gate computes an
output bit as a boolean function of its input bits. Gates with no incoming edges
correspond to input bits. The output of the output gate determines the output
of the circuit.

A formula is a particular type of circuit in which the gates are connected in
a tree, with the output gate at the root and the input bits at the leaves. In
particular, this mean that each gate has exactly one output wire. Each input bit
to the function we want to compute can appear more than once as an input bit
to the formula.

A (perfect) PARITY-gate with input bits x1 and x2 outputs 0 if x1 = x2 and
1 otherwise. A (perfect) OR-gate outputs 0 if x1 = x2 = 0 and 1 otherwise.

We call a gate ε-noisy if it outputs the correct result with probability 1−ε and
with probability ε it outputs the opposite. We say that a formula F with noisy
gates computes the function f with bias ∆ > 0 if for all x ∈ f−1(0), y ∈ f−1(1):
Pr[F (x) = 0] ≥ ∆ + Pr[F (y) = 0]. If f can be computed with some bias ∆ > 0
we also say that f is computable with bounded-error.

A function f : {0, 1}n → {0, 1} depends on the i-th input bit xi if there is
some setting of the other bits, such that flipping xi flips the function value. The
number of bits that f depends on is denoted by d(f).

In a formula, we define the depth of a wire A, denoted by depth(A), as the
number of 2-input gates on a path from A to the output wire. Gates with fan-in
1 (NOT gates and identity gates) or fan-in 0 (input gates) are not counted and
are assumed to be noise-free.

For the definition of the quantities a and δa for a wire A we refer to Section
6.1.2.
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6.3 Bias reduction for noisy gates

We define the constant x0 = 1/(2 − 4β2) = (1 +
√

7)/6 ≈ 0.61. It will turn out
later that an OR-gate with input wires A,B performs best when a ≈ x0 and
b ≈ x0. Further, we define the potential function

q(x) =
(

29
2

+ 2
√

7
) (
x− 1

2

)4

+
(

5
√

7
2
− 13

4

) (
x− 1

2

)2 −
√

7
2

+ 73
32

(6.3)

≈ 19.79(x− 0.5)4 + 3.36(x− 0.5)2 + 0.96,

which is given in Figure 6.1. This is a bi-quadratic function in (x−1/2). Further,

qmax

qmin

ϵ01 -0.2 0.4 0.6 0.8

1.0

1.2
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1.8

2.0

ϵ0

Figure 6.1: Graph of q(x)

q is symmetric around 1/2 and convex. In [β2, 1 − β2] the potential function q
is bounded between qmin = q(1/2) = −

√
7/2 + 73/32 > 0.9 and qmax = q(β2) =

(247 + 8
√

7)/128 < 2.1.
For any ε ≤ 1/2 we define the function

ηε(x) = (1− 2ε)x+ ε.

If x is the probability that some variable is 0, then ηε(x) is the probability that
this variable is 0 after it has been flipped with probability ε.

In the rest of this section we establish inequality (6.8) in Lemma 6.3.6, from
which the proof of the main theorem will follow relatively straightforwardly. The
proof of this inequality is quite technical and so at first reading the reader might
just want to read the statement of Lemma 6.3.6 and then move immediately to
Section 6.4, where we establish the main result. Inequality (6.8) can also be
checked with the help of a computer (e.g. using Mathematica [1]), but in the
remainder of this section we will prove it rigorously.
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6.3.1 Technical lemmas

The following technical results are used in the proof of Lemma 6.3.6.

6.3.1. Proposition. For all a, b with β2 ≤ a, b ≤ 1− β2 it holds that

q(a)q(b)− (1− 2β2)(aq(a) + bq(b))q(ηβ2(ab)) ≥ 0. (6.4)

Proof: We write a = x0 + sa and b = x0 + sb. Without loss of generality let
|sb| ≥ |sa| and choose −1 ≤ k ≤ 1 s.t. sa = ksb. Then the lhs of (6.4) can be
written as

11∑
i=0

ri(k)si+2
b . (6.5)

The reason why (6.5) only starts with a quadratic term in sb is our special choice
of q, see Section 6.5.2 for more on this. The first coefficient is easily computed

r0(k) =
(

3− 3
√

7
4

) (
k2 + 1

)
.

This function attains its minimum value of 3−3
√

7/4 ≈ 1.02 at k = 0. Therefore,
there is a κ > 0 s.t. for a, b ∈ [x0 − κ, x0 + κ] the lhs of (6.4) is non-negative. We
show that κ = 0.02 is a solution.

The absolute value of the other coefficients for −1 ≤ k ≤ 1 can be bounded
by |r1(k)| ≤ 5, |r2(k)| ≤ 31, |r3(k)| ≤ 18, |r4(k)| ≤ 68, |r5(k)| ≤ 326 and for all
other |ri(k)| ≤ 5000. Therefore, if |sb| ≤ 1/50, (6.5) is at least

s2
b (1.02− 5(0.02)− 31(0.02)2 − 18(0.02)3 − . . . ) ≥ 0.90s2

b ≥ 0.

This proves the case x0−1/50 ≤ a, b ≤ x0 +1/50. For all other |a−x0| ≥ 1/50
or |b− x0| ≥ 1/50 the proposition follows from Fact 6.3.2 with µ = 0.

We now state some bounds on polynomials. They are similar in spirit to (6.4),
with the crucial difference that these bounds are not tight. This is convenient,
because there are numerical techniques for finding global optima of multivariate
polynomials up to arbitrary precision. See [72] for an overview. We have used
the computer algebra program Mathematica [1]. We used an accuracy of 10−10

and rounded the results in such a way that the bounds given are rigorous.2

6.3.2. Fact. For all a, b with β2 ≤ a, b ≤ 1 − β2 with |a − x0| ≥ 1/50 and
0 ≤ µ ≤ ξ := (1− β2 − a)(1− β2 − b) it holds that

q(a)q(b)− (1− 2β2)(aq(a) + bq(b))q(ηβ2(ab+ µ)) > 0.0003. (6.6)

2Even more simple, one could bound the first derivatives and check all values of the polyno-
mials on a small enough grid.
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Proof: Notice that µ only appears in the term q(ηβ2(ab+ µ)). For 0 ≤ µ ≤ ξ we
notice that by convexity of q and linearity of ηβ2 it follows that q(ηβ2(ab+ µ)) ≤
max{q(ηβ2(ab)), q(ηβ2(ab+ ξ))}. Thus, (6.6) is minimized for µ = 0 or µ = ξ. For
µ = 0 the lhs of (6.6) is lower bounded by 0.0003 and for µ = ξ by 0.01.

6.3.3. Fact. For all a, b, µ with β2 ≤ b ≤ 1 − β2, 1/2 ≤ a ≤ 1 − β2 and
|µ| ≤ ξ := 2(1− β2 − a)(1− β2 − b) it holds that

q(a)q(b)
−
(
(2a− 1)q(a) + (2b− 1)q(b)

)
(1− 2β2)q

(
ηβ2

(
ab+ (1− a)(1− b) + µ

))
≥ 0.45.

Proof: For µ = ξ the term is lower bounded by 0.48 and for µ = −ξ by 0.55.
Using convexity of q as above the fact follows.

6.3.4. Fact. For all a, b, µ with β2 ≤ b ≤ 1 − β2, β2 ≤ a ≤ 1/2 and |µ| ≤ ξ :=
2(a− β2)(1− β2 − b) it holds that

q(a)q(b)
−
(
− (2a− 1)q(a) + (2b− 1)q(b)

)
(1− 2β2)q

(
ηβ2(ab+ (1− a)(1− b) + µ)

)
≥ 0.48.

Proof: For µ = ξ the term is lower bounded by 0.51 and for µ = −ξ by 0.48.
The fact then follows by convexity of q as above.

6.3.5. Fact. Let a, b, µ with β2 ≤ a, b ≤ 1− β2 Then

q(a)− (1− 2β2)bq(ηβ2(ab+ µ)) > 0.22

holds if (a) a ≤ 1/2 and −(a − β2)(1 − β2 − b) ≤ µ ≤ 0 or (b) 1/2 ≤ a and
−(1− β2 − a)(1− β2 − b) ≤ µ ≤ 0.

Proof: For µ = 0 (and all β2 ≤ a ≤ 1 − β2) the term is lower bounded by
0.23. For both cases a ≤ 1/2 , µ = −(a − β2)(1 − β2 − b) and 1/2 ≤ a, µ =
−(1− β2 − a)(1− β2 − b) the term is lower bounded by 0.22. Using convexity of
q as above the fact follows.

6.3.2 Main Lemma

We can state our main Lemma. Recall from Section 6.1.2 that we chose one input
bit xi of the function f we want to compute and set all the other input bits such
that flipping xi flips the output value of the function. See also the notation in
the proof of our main theorem in Section 6.4.
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6.3.6. Lemma. Let β2 ≤ ε ≤ 1/2. Assume an ε-noisy OR-gate or PARITY-gate,
with input wires A and B and output wire C. Let

β2 ≤ Pr[A = 0 | xi = 0] ≤ 1− β2

β2 ≤ Pr[A = 0 | xi = 1] ≤ 1− β2,
(6.7)

and let the same be true for B. Define a, b, c and δa, δb, δc for A,B,C as in Section
6.1.

1. The following inequality holds for θ = 1:

|δc|q(c) ≤ θmax{|δa|q(a), |δb|q(b)}. (6.8)

2. For any δ > 0 there is a 0 ≤ θ < 1 such that if |δa| ≥ δ or |δb| ≥ δ, then
(6.8) is still true for this θ.

Proof: We consider the OR-gate first. We have

Pr[C = 0 | xi = 0] = ηε ((a+ δa/2) (b+ δb/2))

Pr[C = 0 | xi = 1] = ηε ((a− δa/2) (b− δb/2)) ,

which implies

δc = (aδb + bδa) (1− 2ε)

c = ηε (ab+ δaδb/4) .

Increasing ε decreases |δc| as well as q(c), since the c gets closer to 1/2 and q
decreases towards 1/2. Thus we may assume ε = β2. Further, we may assume
|δa|q(a) ≥ |δb|q(b). Note that, for δa = 0 we then also have δb = 0 and the Lemma
holds trivially. In the remainder we therefore assume δa 6= 0. In fact, we will even
assume δa > 0: In case δa < 0 we can just formally replace every occurrence of
δa and δb with −δa resp. −δb. Because of the absolute value signs, this will not
change the validity of (6.9). So we have to prove

(1− 2ε) |aδb + bδa| q (ηε (ab+ δaδb/4)) ≤ θ|δa|q(a). (6.9)

In the remainder, we will repeatedly use that a and b are bounded between β2

and 1 − β2 and that in this range, 0.9 < qmin ≤ q(a) ≤ qmax < 2.1, without
mentioning it each time. We distinguish the following cases:

δb > 0: Since we assumed |δa|q(a) ≥ |δb|q(b), it is enough to prove (6.9) where
we replace the first occurrence of δb by δaq(a)/q(b). Cancelling δa and multiplying
by q(b) we get

θq(a)q(b)(1− 2β2) (aq(a) + bq(b)) q (ηβ2 (ab+ δaδb/4)) ≥ 0. (6.10)
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In case |a−x0| ≥ 1/50 or |b−x0| ≥ 1/50, note that δaδb/4 ≤ (1−β2− a)(1−
β2 − b). If we set µ = δaδb/4 and θ = 1, then by Fact 6.3.2 the lhs of (6.10) is
greater than 0.0003. This implies the existence of a θ < 1 for (6.10) and settles
both parts of the Lemma.

We are left with the case |a−x0| < 1/50 and |b−x0| < 1/50. By (6.7) we can
then bound δa/2 ≤ 1−β2−a ≤ 1−β2−x0+1/50 < 0.33 and similarly δb/2 < 0.33,
i.e. (1 − 2β2)δaδb/4 < 0.1. We also note that in our case 0.37 < ηβ2(ab) < 0.42.
By convexity, min0.37≤x≤0.42 q(x)− q(x+ 0.1) = q(0.42)− q(0.52) > 0.02, and thus
q(ηβ2(ab)+0.1) < q(ηβ2(ab))−0.02. This, convexity of q and (1−2β2)δaδb/4 < 0.1
imply q(ηβ2(ab) + (1−2β2)δaδb/4) < q(ηβ2(ab))− 0.02

0.1
(1−2β2)δaδb/4. Noting that

ηβ2(ab) + (1− 2β2)δaδb/4 = ηβ2(ab+ δaδb/4) this becomes

q(ηβ2(ab+ δaδb/4)) < q(ηβ2(ab))− (1− 2β2)δaδb/20. (6.11)

In particular q(ηβ2(ab+ δaδb/4)) < q(ηβ2(ab)). Plugging the lhs of this into (6.10)
and using Proposition 6.3.1 implies (6.10) for θ = 1. This establishes part 1 of
the Lemma for δb > 0.

Now part 2 of the Lemma. Let δa ≥ δ or δb ≥ δ. Consider first the case that δb
is not too small compared to δa, say δb ≥ δa/100. Together with our assumption
|δa|q(a) ≥ |δb|q(b) this implies (1− 2β2)δaδb/20 ≥ (1− 2β2)δ2/2000. With (6.11)
we then get q(ηβ2(ab + δaδb/4)) + c < q(ηβ2(ab)) for c = (1 − 2β2)δ2/2000 > 0
and putting this into (6.4) gives q(a)q(b) − (1 − 2β2)(aq(a) + bq(b))(q(ηβ2(ab +
δaδb/4)) + c) > 0. This implies the existence of a θ < 1 for (6.10) and establishes
part 2 of the Lemma when δb ≥ δa/100.

If δb is small, i.e. δb < δa/100, then we can use that upper bounding the
first occurrence of δb by δaq(a)/q(b) to get from (6.9) to (6.10) was far from
tight. A better bound is δb < δaq(a)/(10q(b)), which derives from q(a)/(10q(b)) ≥
qmin/(10qmax) > 1/100. Analogously to the derivation of (6.10) we get

θq(a)q(b)− (1− 2β2) (aq(a)/10 + bq(b)) q (ηβ2 (ab+ δaδb/4)) ≥ 0. (6.12)

By (6.7), a > β2. Thus, aq(a) > β2qmin and also q (ηβ2 (ab+ δaδb/4)) > qmin.
Hence, the lhs of (6.12) is at least (1 − 2β2)β2q

2
min9/10 smaller than the lhs of

(6.10). Since we already proved earlier that (6.10) holds for θ = 1 without the
restriction δb < δa/100, we conclude that (6.12) holds for some θ < 1. This
establishes part 2 of the Lemma for δb < δa/100.

δb ≤ 0: It is enough to prove (6.9) where we replace |aδb + bδa| by (a) |bδa| or
(b) |aδb|. If in case (a) we cancel δa and q(a) after the replacement, we see that
a θ < 1 must exist if

q(a)− (1− 2β2)bq(ηβ2(ab+ δaδb/4)) ≥ χ, (6.13)

for some χ > 0. Note that in case a ≤ 1/2 we have −(a − β2)(1 − β2 − b) ≤
δaδb/4 ≤ 0 and in case 1/2 ≤ a we have −(1− β2 − a)(1− β2 − b) ≤ δaδb/4 ≤ 0.
The Lemma then follows from Fact 6.3.5.
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For case (b) we note that |aδb| ≤ aδaq(a)/q(b). Replacing |aδb + bδa| in (6.9)
by aδaq(a)/q(b) and rearranging terms we get exactly the same as (6.13), with a
and b swapped. We proceed as in case (a).

We now consider the PARITY-gate. First note, that if the two input wires of
a noiseless PARITY gate are independently 0 with probability α resp. β, then
the output wire will be 0 with probability αβ + (1−α)(1− β). Thus, in our case

Pr[C = 0 | xi = 0] = ηε((a+ δa/2) (b+ δb/2)
+ (1− a− δa/2) (1− b− δb/2))

Pr[C = 0 | xi = 1] = ηε((a− δa/2) (b− δb/2)
+ (1− a+ δa/2) (1− b+ δb/2))

which implies

c = ηε (ab+ (1− a)(1− b) + δaδb/2)

δc = ((2a− 1)δb + (2b− 1)δa) (1− 2ε)

We need to prove

|(2a− 1)δb + (2b− 1)δa| (1− 2ε)× q(ηε (ab+ (1− a)(1− b) + δaδb/2))
≤ θ|δa|q(a).

(6.14)

As for the OR gate we only need to consider ε = β2 and may assume δa ≥ 0
w.l.o.g, because otherwise we can just change the signs of both δa and δb. Also,
w.l.o.g. we assume |δa|q(a) ≥ |δb|q(b). If δa = 0, then also δb = 0 and the Lemma
becomes trivial. So we assume δa > 0. Further, we may assume b ≥ 1/2 (and
therefore (2b− 1)δa ≥ 0), because formally replacing a and b by 1− a and 1− b
does not change (6.14). We condition on the sign of 2a− 1.

First 2a− 1 ≥ 0. It is enough to prove (6.14), where we replace the first
occurrence of δb by δaq(a)/q(b), since we assumed |δa|q(a) ≥ |δb|q(b). Cancelling
δa and rearranging terms, the existence of a 0 ≤ θ < 1 for (6.14) then follows
from

q(a)q(b)
− ((2a− 1)q(a) + (2b− 1)q(b))(1− 2β2)q(ηβ2(ab+ (1− a)(1− b) + δaδb/2))
≥ χ > 0.

This inequality follows from Fact 6.3.3 by noting that |δb| ≤ 2(1 − β2 − b) and
|δa| ≤ 2(1− β2 − a).

In case 2a− 1 < 0 we can proceed similarly, where this time we replace the
first occurrence of δb by −δaq(a)/q(b) and bound |δa| ≤ 2(a− β2). The resulting
inequality follows from Fact 6.3.4.
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6.4 Proof of Theorem 6.1.1

Proof: Let f be any function and let F be any formula with noisy gates that fail
independently with probability at least β2. Let F compute f with bias ∆. We
show that f depends on at most a constant number of bits, i.e. d(f) ≤ c(∆), for
some function c(∆).

Before starting we note the following: Every ε-noisy fan-in-2 gate can be
constructed from an ε-noisy PARITY- or an ε-noisy OR-gate, perfect NOT-gates
and constant inputs. Hence, we may assume that F is constructed only from
perfect NOT-gates, noisy PARITY-gates with fan-in 2 and noisy OR-gates with
fan-in 2.

Let xi be an input bit on which f depends with the additional property that
any input wire of F carrying xi has depth at least dlog2 d(f)e. Because all gates
in F have fan-in at most 2, the existence of such xi is guaranteed. Fix all other
input bits such that the output of F changes when flipping xi.

Set d̄ = dlog2 d(f)e − 1 and δ = ∆
2qmax

. Let θ < 1 be given by Lemma 8.4.6

for this δ. In case this results in θ < 1 − 2β2, set θ = 1 − 2β2. (The adjustment
θ ≥ 1− 2β2 is not really needed, but will later simplify the proof.) We will prove
inductively that for any wire C at depth d ≤ d̄

q(c)|δc| ≤ max{∆
2
, θd̄−dqmax}. (6.15)

For d = d̄ (6.15) holds trivially. Now take any wire C in F with depth d < d̄.
We distinguish what signal C carries.

Firstly, C can be an input wire carrying an input bit xj. Then necessarily
i 6= j, because input wires carrying xi have depth at least d̄ + 1. Thus, δc = 0
and (6.15) holds.

Secondly, C can be the output of a noiseless NOT-gate, which has input
wire B. Note that since we do not count NOT-gates in the depth of a wire,
depth(C) = depth(B), c = 1 − b and δc = −δb. Then, by symmetry of q around
1/2 we get (6.15) for C from the same statement for B.

Thirdly, C can be the output of gate G, with G either an OR-gate or a
PARITY-gate. Let the input wires to G be A and B. If one wire is a constant
(i.e. its value is independent of the value of xi), then gate G is essentially a
(noisy) gate with fan-in 1. Hence, G always outputs either a (noisy) 0 or 1, or
G is the noisy identity- or the noisy NOT-gate. In the first two cases δc = 0. In
the last two cases we can easily calculate that |b − 1/2|(1 − 2ε) = |c − 1/2| and
|δc| ≤ (1− 2β2)|δb|. Because q decreases monotonically towards 1/2 and we chose
θ ≥ 1− 2β2, (6.15) holds.

So we are left with the case where both inputs to G are non-constant. Since
d < d̄, both wires A and B are the output of some noisy gate, so the conditions
(6.7) in Lemma 6.3.6 are satisfied. We may assume |δb|q(b) ≤ |δa|q(a) w.l.o.g. If
|δa|q(a) ≤ ∆/2, then by part 1 from Lemma 6.3.6 also |δc|q(c) ≤ ∆/2 and (6.15)
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holds. If |δa|q(a) > ∆/2, then |δa| > ∆
2qmax

= δ. Then (6.15) follows from part 2
of Lemma 6.3.6 and the inductive assumption.

Let O be the output wire of F , which by assumption has bias ∆, and as
before let o be its average probability of being zero. Because q(o)∆ ≤ ∆/2 is
impossible (since q(o) ≥ qmin > 1/2) we get from (6.15): q(o)∆ ≤ θd̄qmax, and

further ∆ ≤ θdlog2 d(f)e−1(qmax/qmin), which implies log2(∆qmin/qmax)
log2 θ

+1 ≥ log2 d(f).

Since θ depends only on ∆, d(f) is upper bounded by the function

c(∆) := 2 (∆qmin/qmax)
1/ log2 θ .

6.5 Discussion

We have shown a tight threshold for the noise which is tolerable for computation
by formulas with gates of fan-in at most 2. This is the first tight threshold for
gates with an even number of input wires. It should be possible to generalize this
to other gates with even fan-in, although the proof is probably more tedious.

6.5.1 Circuits vs. formulas

The same bound probably also applies to circuits (with gates of fan-in at most
2), where our noise model is that if a gate fails, then all its output wires carry the
incorrect output. The intuition why circuits should not be more fault-tolerant
than formulas is the following. If a gate G has m > 2 output wires, then they
all carry the same value. But if G fails, then all output wires carry the same
“wrong” value. It therefore becomes impossible to detect or correct the error on
this gate by just looking at these output wires. A better idea should be to make
m copies of G, all having the same inputs. In this case it is less likely that all
gates fail at the same time. So, most of the output wires carry the correct output
and it is possibly easier to correct the errors.

Proving that circuits are not more fault-tolerant than formulas is an interesting
and important open question.

6.5.2 Choice of potential function

So far we have not given any idea of why we chose this particular potential
function. In fact, this choice is not unique. The choice of q was determined
as follows: (1) It is convenient to choose q symmetric around 1/2, so applying a
NOT-gate to wire A does not change the value of |δa|q(a). (2) It is natural to scale
q such that q(x0) = 1. (3) After these choices, we have to choose d

dx
q(x)|x=x0 =

1
2
(−1 +

√
7). This ensures that (6.5) does not have a linear term in sb and only
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starts with the quadratic term, i.e. “r−1(k) ≡ 0”. (4) We also need d2

dx2 q(x)|x=x0 >

16− 4
√

7 ≈ 5.42, because that makes r0(k) > 0 for −1 ≤ k ≤ 1. The rest of the
choices are not so binding.

However, a quadratic function alone is not enough. For (6.5) to be at least 0
one also has constraints on higher derivatives of q. The expression in (6.3) for q
is one of the “nicer” possible potential functions. One can also find a possible q
by dividing the interval [β2, 1− β2] into smaller intervals and define q as different
quadratic functions in each of these intervals.

Our choice of q was determined by the properties we want q to have. Unfortu-
nately, q does not have an immediate interpretation in “standard” information-
theoretic terms. It would be nice to come up with a proof which can be more
easily interpreted in standard terms.
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Chapter 7

Parallel repetition of quantum XOR
games

This chapter is based on the paper

R. Cleve, W. Slofstra, F. Unger, and S. Upadhyay, Strong par-
allel repetition theorem for quantum XOR proof systems,
In Special Issue of 22nd IEEE Conference on Computational Com-
plexity, 2007.

7.1 Introduction

7.1.1 Motivation

Complexity classes

A large part of theoretical computer science is concerned with classifying the
difficulty of computational problems. Usually the difficulty of a problem is defined
as the amount of resources (for example time or storage space) a Turing machine
needs to solve the problem. The most important class of problems is the well-
known class P, that contains all problems which can be solved by a polynomial
time Turing machine. Polynomial-time solvable problems are considered to be
efficiently solvable. The class P contains interesting problems, like (the decision
version) of Linear Programming, finding the shortest path between two nodes
in a graph, testing whether a given natural number is prime and many others.
Readers not familiar with computational complexity theory can find some concise
definitions in Section 2.3 on page 23.

Another approach to define complexity classes does not ask how difficult it
is to solve a problem, but rather how much resources are needed to become

95
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“convinced” that a solution exists. The most important class defined this way
is NP, which contains all problems for which a polynomial time Turing machine
can check that a solution to a problem is correct. A particular example is the
satisfiability problem SAT , which is the problem of deciding whether for a given
Boolean formula there is an assignment of values to the variables which makes the
formula evaluate to true. Obviously, if one sees an assignment it is easy to verify
(i.e., it is possible to decide in polynomial time in the length of the formula)
whether it makes the formula true. In the example of NP “being convinced”
means that it is possible to be sure without doubt that a solution exists. It is
widely believed that for this strong version of being convinced it is essentially
necessary to see a solution.

Interactive proof systems

There is a more liberal version of “being convinced” in which one only wants to
be sure that a solution exists beyond “reasonable doubt”. Here it might not be
necessary to see the solution in order to believe that there is one. This notion
can be explained more formally in the framework of multi-prover interactive proof
systems (MIP proof systems), in which games –the focus of this chapter– show up
naturally. An MIP system is a protocol between two provers Alice and Bob and a
verifier . The computational power of the verifier is usually that of a probabilistic
polynomial-time machine. He wants to know if some instance x of a problem has

Alice Bob

Verifier

Is L(x) true?  

Verifier interacts with provers and then accepts or rejects x

Figure 7.1: Multi-prover interactive proof systems

a solution (i.e. whether x satisfies some predicate L), and in order to do that
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he can interact with the two provers by sending them questions generated by
some probabilistic procedure and receive their answers. The only restriction on
the provers is that they are not allowed to interact once the protocol has started.
They see the verifier’s input x and they may agree on a strategy which depends on
x. At the end of the protocol the verifier outputs a single bit, indicating whether
he believes that x has a solution or not. We say that problem C can be decided
by an MIP system, if there is a verifier V (i.e. a probabilistic polynomial-time
machine) and constants c > s, such that for any x it holds: If x ∈ C then there
is a strategy of the provers which makes the verifier V accept with probability at
least c and if x 6∈ C then every strategy of the provers makes the verifier accept
with probability at most s. The class of problems which can be characterized this
way is called MIP. The parameter c is called the correctness parameter and s the
soundness parameter . This model is very powerful. Every problem in NEXP has
an MIP proof system [9]. Recall that NEXP is the class of all problems which
can be verified by a Turing-machine whose running time is at most exponential
in the input size. It is not hard to see that MIP⊆NEXP, since a NEXP-verifier
can just guess the prover’s best strategy. Hence, MIP=NEXP.

The number of rounds needed in such MIP systems is only 1, that is, it is
enough for the verifier to send one question to Alice and one to Bob and then
accept or not depending on the replies. In this way, we can say that for each input
x Alice and Bob are playing a game Gx in which they always try to make the
verifier accept. If x has a solution then the provers can win Gx with probability
at least c, if there is no solution then they can win with probability at most s.

Uncertainty versus acceptance power

Recall (see also Section 2.3) that the class NEXP is incredibly more powerful than
NP. This means that the verifier can trade some uncertainty about the correctness
of his output (if c < 1 or s > 0) against the ability to verify “exponentially” harder
problems. How much uncertainty do we have to accept such that we get the full
expressive power of the class MIP? Surprisingly, it turns out that it is possible
to choose c = 1 and s an arbitrarily small constant. Note though, that it is
impossible to choose s = 0 in addition to c = 1, because then the proof system
becomes deterministic and therefore characterizes only NP, which is known to
be different from NEXP. In other words, if we are willing to tolerate some small
uncertainty in the result, then we can characterize problems in NEXP instead of
NP only.

Error-reduction by parallel repetition

Constructing MIP proof systems which achieve c = 1 and s > 0 arbitrarily small
is clearly desirable. In particular because it makes the definition of the class MIP
independent of the exact values of c and s. One way (but not the only) to see
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that there are MIP proof systems which match the above minimal requirements
is as follows: Show that there is a proof system, with parameters c = 1 and
s < 1. This is always possible for NEXP and can even be achieved with one-
round protocols, see [42]. Then just repeat the same protocol again and again.
Accept if the provers have won all instances. Clearly, if the provers had a perfectly
convincing strategy for one protocol, then they can just use the same strategy
on all instances and win them all. If their strategy allowed them to win only
with probability s then the probability for winning T protocols has probability
at most sT and increasing T makes the soundness error go to 0 very quickly.
This strategy has one obvious drawback. The verifier might need to involve in
a very lengthy discussion, T times longer than the original protocol. This might
be inefficient but also theoretically bad, because sequential repetition might not
preserve certain properties of a proof system (like Zero-knowledge, see [78]). The
other solution is to run all the T protocols in parallel, sending the questions of
all the protocols at the same time to the respective provers. Clearly, the expected
number of protocols the provers can win in this case cannot go up. However, for
our purposes this is not enough yet, because the provers might use their knowledge
about which question are asked in the other protocols in a sophisticated way: For
instance, if one protocol can be won with probability s then there could be a
collective strategy that wins all parallel protocols with probability s and loses all
of them with probability 1−s. Unfortunately, this would not help in reducing the
error probability. In fact, we will later see an example in which two parallelized
protocols have the same winning probability as one, see Section 7.6.2. So, does
repeating protocols in parallel help to reduce winning probabilities?

The answer is yes and is established by the celebrated Parallel Repetition
Theorem by Raz [78], see also [54, 77]. For any protocol that can be won with
probability s < 1 there is some s′ < 1, such that k parallel repetitions can be won
with probability at most s′k. This means that the above mentioned procedure for
reducing the soundness error to almost 0 works, without increasing the number
of rounds needed. And so the exact value of s is inessential, as long as s > 0.

XOR proof systems

The main result of this chapter considers a particular variant of this model, called
quantum XOR proof systems. In XOR proof systems the protocol is restricted to
one round only and the provers Alice and Bob reply with one bit a resp. b only.
The verifier’s verdict depends only on the parity a ⊕ b.1 If the provers are not
allowed to share an entangled state, we speak of a (classical) XOR proof system
and the complexity class they characterize is called ⊕MIP. In Section 7.2.1 we
will see that even this restricted class is powerful enough to characterize NEXP.
It holds that ⊕MIP =NEXP [32] (although only with parameters c = 12/16 − ε

1a⊕ b is equal to 0 if a = b and otherwise 1.
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and s = 11/16 + ε for arbitrarily small ε). If the provers are allowed to share an
entangled state, we call it a quantum XOR proof system and the complexity class
they characterize is called ⊕MIP∗. When entanglement is allowed the complexity
can be bounded by ⊕MIP∗ ⊆ EXP [33, 102], so assuming that NEXP6=EXP,
entanglement strictly weakens the expressive power of XOR proof systems.

Main result

Our main result in this chapter is a perfect parallel repetition theorem for quantum
XOR proof systems, which states that if one protocol can be won with probability
p, then k parallel repetitions of the protocol can be won exactly with probability
pk but not more. This means that the optimal collective strategy is to play all
protocols individually optimal, i.e., there is no way in which knowledge of the
other instances can help.

7.1.2 Organization

More about interactive proof systems with and without entanglement will be
explained in Section 7.2.1. This section is meant to acquaint the reader with
some further background but will not be needed for later sections. As mentioned
in the introduction we focus on proof systems which are based on quantum XOR
games. Quantum XOR games will be defined in Section 7.2.2 and in the following
section we define parallel repetition. It is enough to read these two sections to
understand the main results in Sections 7.4 and 7.5. We explain the connection
between Bell inequalities and XOR games in Section 7.2.3.

Section 7.3 contains a characterization of quantum XOR games in terms of
semidefinite programs. In Section 7.4 we show that quantum XOR games are
additive, in a sense which is defined in the same section. The proof of our par-
allel repetition theorem in Section 7.5 uses this result and a Fourier transform
technique.

7.2 Background and definitions

7.2.1 More on interactive proof systems

In the introduction we saw that proof systems can be very powerful and we
explained their use in complexity theory. Interactive proof systems also had a
significant impact in cryptography, but we will not explain this connection further
(the interested reader is referred to [47]). In this section we present some more
details about proof systems which further motivate the results of this chapter.
The amount of work done on this is significant, [47] and the forthcoming book
[8] might be a good starting point to learn more about classical interactive proof
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systems. We will not attempt to be in any way complete or reflect the historical
line of events and only review certain aspects.

Further, we want to mention that it is also possible to define interactive proof
systems in which the verifier and the prover(s) communicate quantum messages.
We will not go into this subject in this thesis. The interested reader might find
the following articles [58, 100, 60, 56] interesting and can find further pointers to
the literature in there.

Number of provers

Let us first see how the number of provers influences the expressive power. It is
known that allowing more than two classical provers does not increase the power
of these proof systems [14]. However, if there is only one prover, then the re-
sulting class IP exactly captures the problems in PSPACE, or more succinctly:
IP=PSPACE [85]. Hence, it seems that at least 2 provers are needed to unleash
the full power of the model. Further, the number of rounds needed is at most one,
which follows by Raz’s parallel repetition theorem [78].2 A natural question is
whether a parallel repetition theorem also holds for any other number of provers.
Under the reasonable assumption that PSPACE6= Πp

2 it is impossible that a clas-
sical parallel repetition theorem for one prover only holds, since it is known that
IP(m)=IP(2)⊆ Πp

2, but PSPACE=IP.

XOR proof systems

As mentioned in the introduction, the simplest case of MIP systems are XOR
multi-prover interactive proof systems in which the verifiers reply only with one
bit each, and the verifier accepts depending on a⊕b. We defined the corresponding
complexity classes ⊕MIP (no entanglement) and ⊕MIP∗ (with entanglement). In
[32] it is pointed out that results in [13, 53] imply that, in the case of classical
provers, these ⊕MIP systems are sufficient to recognize every language in NEXP
(with soundness probability s = 11/16 + ε and completeness probability c =
12/16−ε, for arbitrarily small ε > 0). Thus, although these proof systems appear
restrictive, they can recognize the same languages as unrestricted multi-prover
interactive proof system. Moreover, in [33, 102] it is shown that any language
recognized by a quantum XOR proof system is in EXP, which uses a semidefinite
programming characterization due to Tsirelson [94, 32], which is given in Section
7.3. Thus, assuming EXP 6= NEXP, quantum entanglement strictly weakens the
expressive power of XOR proof systems.

2Though we should remark that it is not needed.
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Parallel repetition for quantum games

The only other parallel repetition theorem along the lines of [78] for quantum
games (where the players share entanglement) we know of is for unique games
[57]. Unique games are two-prover games where for each pair of questions to
the verifier and each answer of Alice, there is always exactly one answer of Bob
that makes the verifier accept. Note that XOR games are a particular kind of
unique games. The result in [57] is not “perfect” in our sense though, since it does
not imply that the trivial strategy (of playing all parallel games independently)
achieves the best success probability for winning all games. We do not know
about a parallel repetition theorem for general quantum games. A perfect parallel
repetition theorem cannot be true in general as was pointed out by Watrous [101],
who has shown that there is a binary game (that is not an XOR game) for which
the success probability ωq(G) of winning one game and the success probability
ωq(G∧G) of winning two games played in parallel is in both cases 2/3. as in the
classical case. This is explained in Section 7.6.2.

This chapter is about parallel repetition of 2-prover games. We do not know
about any results for more than two provers.

7.2.2 XOR games

The definition of XOR interactive proof systems can be based on XOR games ,
which we define first. For a predicate f : S × T → {0, 1} and a probability
distribution π on S×T , define the XOR game G = (f, π) operationally as follows.

• The Verifier selects a pair of questions (s, t) ∈ S×T according to distribution
π.

• The Verifier sends one question to each prover: s to prover Alice and t to
prover Bob (who are not allowed to communicate with each other once the
game starts).

• Each prover sends a bit back to the Verifier: a from Alice and b from Bob.

• The Verifier accepts if and only if a⊕ b = f(s, t).

A definition that is essentially equivalent to this3 appears in [32]. In the classi-
cal version, the provers have unlimited computing power, but are restricted to
possessing classical information; in the quantum version, the provers may pos-
sess qubits whose joint state is entangled. In both versions, the communication
between the provers and the verifier is classical.

3Except that degeneracies are allowed, where for some (s, t) pairs, the Verifier is allowed to
accept or reject independently of the value of a⊕ b. All results quoted here apply to nondegen-
erate games.
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Following [32], for an XOR game G, define its classical value ωc(G) as the
maximum success probability achievable by a classical strategy, i.e., if the provers
do not share entanglement. Similarly, define its quantum value ωq(G) as the
maximum success probability achievable by a quantum strategy. It is convenient
to define the bias of a quantum XOR game as εq(G) = 2ωq(G)− 1 and similarly
εc(G) = 2ωc(G)− 1 in the classical case.

Using the definition of XOR games it is straightforward to define XOR inter-
active proof systems. A language L has an XOR interactive proof systems (with
soundness probability s and completeness probability c > s) if it is possible to
associate to each x an efficient XOR game Gx such that if x ∈ L then the maxi-
mum acceptance probability over the prover’s strategies is at least c and if x 6∈ L
then the maximum acceptance probability over prover’s strategies is at most s.
The game Gx = (f, π) is efficient if the verifier can be efficiently implemented:
More precisely we demand that S and T consist of strings of length polynomial
in |x|, π can be sampled in time polynomial in |x|, and f can be computed in
time polynomial in |x|. It is clear that the restriction to efficient XOR games is
crucial for the definition of ⊕-MIP systems. However, our parallel repetition the-
orem will hold for all XOR games and therefore we will not talk about efficiency
anymore.

7.2.3 XOR games and non-locality

It is interesting to note that quantum physicists have, in a sense, been studying
quantum XOR games since the 1960s, when John Bell introduced his celebrated
results that are now known as Bell inequality violations [12]. An example is the
CHSH game, named after the authors of [25]. This game will play a prominent
role in Chapter 8, but we will quickly explain it here. In this game, S = T =
{0, 1}, π is the uniform distribution on S×T , and f(s, t) = s∧ t. In other words,
the provers win if and only if they output bits a and b which satisfy a⊕ b = s∧ t.

The best possible classical strategy succeeds with probability 3/4, whereas the
best possible quantum strategy succeeds with higher probability of (1+1/

√
2)/2 ≈

0.85 [25, 93], which can be straight forwardly computed from the characterization
in Section 7.3. This difference in success probabilities can be used to show that
classical physics cannot explain all physical phenomena.4

7.3 Characterization of quantum XOR games

A quantum strategy for an XOR game consists of a bipartite quantum state |ψ〉
shared by Alice and Bob, a set of observables Xs (s ∈ S) corresponding to Alice’s

4Although it should be noted that because of the inaccuracies in today’s quantum hardware
it is not possible to completely rule out classical theories.
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part of the quantum state, and a set of observables Yt (t ∈ T ) corresponding to
Bob’s part of the state. The bias achieved by this strategy is given by

εq(G) =
∑
s,t

π(s, t)(−1)f(s,t) 〈ψ|Xs ⊗ Yt|ψ〉 .

Tsirelson’s vector characterization

We make use of a vector characterization of XOR games due to [94] (also pointed
out in [32]), which is a consequence of the following.

7.3.1. Theorem ([94, 32]). Let S and T be finite sets, and let |ψ〉 be a pure
quantum state with support on a bipartite Hilbert space H = A ⊗ B such that
dim(A) = dim(B) = n. For each s ∈ S and t ∈ T , let Xs and Yt be observables
on A and B with eigenvalues ±1 respectively. Then there exist real unit vectors
xs and yt in R2n2

such that5

〈ψ|Xs ⊗ Yt|ψ〉 = xs · yt,
for all s ∈ S and t ∈ T .
Conversely, suppose that S and T are finite sets, and xs and yt are unit vectors
in RN for each s ∈ S and t ∈ T . Let A and B be Hilbert spaces of dimension
2dN/2e, H = A⊗B and |ψ〉 be a maximally entangled state on H. Then there exist
observables Xs and Yt with eigenvalues ±1, on A and B respectively, such that

〈ψ|Xs ⊗ Yt|ψ〉 = xs · yt,
for all s ∈ S and t ∈ T .

A proof of this theorem can be found in Appendix D.
Using Theorem 7.3.1, we can characterize Alice and Bob’s quantum strategies

by a choice of unit vectors {xs}s∈S and {yt}t∈T . Using this characterization, the
bias becomes

εq(G) = max
{xs},{yt}

∑
s,t

π(s, t)(−1)f(s,t) xs · yt. (7.1)

The cost matrix for the game is defined as the matrix A with entries As,t =
π(s, t)(−1)f(s,t). Note that any matrix A, with the provision that the absolute
values of the entries sum to 1, is the cost matrix of an XOR game.

Symmetry considerations and convex combinations of XOR games

We start by some symmetry considerations. If G1 and G2 are XOR games with
cost matrices A1 and A2, then define the convex combination λG1 + (1−λ)G2 to
be the XOR game with cost matrix(

0 λA1

(1− λ)A2 0

)
.

5For real-valued vectors x, y we write the inner product xT y as x · y.
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This convex combination can be interpreted as the game where, with probability
λ, game G1 is played and, with probability 1 − λ, game G2 is played (and Alice
and Bob are informed about which game is occurring). Also, for a game G with
cost matrix A, define GT to be the game with cost matrix AT . In other words,
Alice and Bob switch places to play GT . The following facts are easy to verify.

7.3.2. Proposition. 1. εq(G) = εq(G
T ).

2. For all 0 ≤ λ ≤ 1,

εq (λG1 + (1− λ)G2) = λεq(G1) + (1− λ) εq(G2)

Value of XOR games as SDP

The bias of a quantum XOR game may be stated as a semidefinite programming
problem (SDP). We refer to Boyd and Vandenberghe [98] for a detailed introduc-
tion to semidefinite programming. For cost matrix A, the bias is equivalent to
the objective value of problem

max Tr
(
ATUT

1 U2

)
s.t. diag

(
UT

1 U1

)
= diag

(
UT

2 U2

)
= ē

, (7.2)

where {xs} and {yt} appear as the columns of U1 and U2 respectively. Here
diag(M) denotes the column vector of diagonal entries of the matrix M , and ē is
the column vector (1, . . . , 1)T .

We note that instead of directly analyzing the XOR game G with cost matrix
A we can also analyze the XOR game 1

2
G+ 1

2
GT with cost matrix

B =

(
0 1

2
A

1
2
AT 0

)
.

It has useful structural properties, one of them being that it is symmetric, i.e. we
are guaranteed that B is hermitian. Proposition 7.3.2 implies that εq(

1
2
G+ 1

2
GT ) =

εq(G). Hence, we can express the value of game G in terms of the SDP (PB)
defined by

max TrBX
s.t. diag(X) = ē, X � 0

.

The notation X � Y means that the matrix X − Y lies in the cone of positive
semidefinite matrices. That (PB) is equivalent to problem (7.2) follows from the
fact that a semidefinite matrix X can be written as (U1, U2)T (U1, U2) for some
matrices U1 and U2.
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Dual of SDP

To show that an optimal solution for (PB) exists, we can examine the Lagrange-
Slater dual of (PB). The dual, denoted by (DB), is (see Section 2.6)

min (x, y)ē
s.t. ∆(x, y) � B

,

where ∆(x, y) denotes the diagonal matrix with entries given by the (row) vectors
x, y. Both (PB) and (DB) have Slater points—that is, feasible points in the
interior of the semidefinite cone and are therefore strictly feasible. Explicitly,
the identity matrix is a Slater point for (PB), and ē is a Slater point for (DB).
Therefore, by the strong duality theorem, the optimal values of (PB) and (DB)
are the same and both problems have optimal solutions attaining this value.

7.3.3. Remark. For any XOR game G, the semidefinite programming relax-
ations of G due to Feige and Lovász [42] have value equal to the quantum value
of G, given by equations (7.3) and (7.3). We say more about the relation of our
result to the ones in [42] in Section 7.6.3.

7.4 Additivity theorem

For any two XOR games G1 = (f1, π1) and G2 = (f2, π2), define their sum (modulo
2) as the XOR game

G1 ⊕G2 = (f1 ⊕ f2, π1 × π2). (7.3)

In this game, the verifier begins by choosing questions ((s1, t1), (s2, t2)) ∈ (S1 ×
T1)× (S2 × T2) according to the product distribution π1 × π2, sending (s1, s2) to
Alice and (t1, t2) to Bob. Alice and Bob then win if and only if their respective
outputs, a and b, satisfy a ⊕ b = f1(s1, t1) ⊕ f2(s2, t2). If G1 and G2 have cost
matrices A1 and A2 respectively, then the cost matrix of G1⊕G2 is A1⊗A2. The
next proposition summarizes some simple facts.

7.4.1. Proposition. 1. εq(G1 ⊕G2) = εq(G2 ⊕G1)

2. For all 0 ≤ λ ≤ 1,

G1⊕ (λG2 + (1− λ)G3) = λ(G1⊕G2) + (1− λ)(G1⊕G3).

A simple way for Alice and Bob (who may or may not share entanglement)
to play G1 ⊕ G2 is to optimally play G1 and G2 separately, producing outputs
a1, b1 for G1 and a2, b2 for G2, and then to output a = a1 ⊕ a2 and b = b1 ⊕ b2

respectively. It is straightforward to calculate that the above method for playing
G1 ⊕G2 succeeds with probability

ω(G1)ω(G2) + (1− ω(G1))(1− ω(G2)), (7.4)
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where ω (and later ε) can be indexed by q or c depending on whether Alice and
Bob share entanglement. Then it is easy to see that the bias εtrivial(G1⊕G2) for
this particular strategy of playing G1 ⊕G2 is

εtrivial(G1 ⊕G2) = ε(G1)ε(G2). (7.5)

Is this the optimal way to play G1 ⊕G2?
The answer is no for classical strategies. To see why this is so, note that, using

this approach for the XOR game CHSH⊕CHSH, produces a success probability
of 5/8. A better strategy is for Alice to output a = s1 ∧ s2 and Bob to output
b = t1 ∧ t2. It is straightforward to verify that this latter strategy succeeds with
probability 3/4.

Our first result is that the answer is yes for quantum strategies.

7.4.2. Theorem (Additivity). For any two XOR games G1 and G2 an optimal
quantum strategy for playing G1 ⊕ G2 is for Alice and Bob to optimally play G1

and G2 separately, producing outputs a1, b1 for G1 and a2, b2 for G2, and then to
output a = a1 ⊕ a2 and b = b1 ⊕ b2.

The proof uses the characterization of quantum strategies for individual XOR
games as semidefinite programs from Section 7.3.

Recall that we defined the quantum bias of an XOR game as as εq(G) =
2ωq(G) − 1. Then, due to equation (7.5), we already have one part of Theorem
7.4.2.

7.4.3. Proposition. For two XOR games G1 and G2,

εq(G1 ⊕G2) ≥ εq(G1)εq(G2).

The nontrivial part of the proof of Theorem 7.4.2 is the reverse inequality.
The next lemma establishes the upper bound for the game (1

2
G1 + 1

2
GT

1 ) ⊕
(1

2
G2 + 1

2
GT

2 ) (which we will show afterwards has the same bias as G1 ⊕G2).

7.4.4. Lemma. If G1 and G2 are XOR games, then

εq((
1
2
G1 + 1

2
GT

1 )⊕ (1
2
G2 + 1

2
GT

2 )) ≤ εq(G1)εq(G2).

Proof: Let G1 and G2 be two games with cost matrices A1 and A2, respectively,
and let

B1 =

(
0 1

2
A1

1
2
AT1 0

)
and B2 =

(
0 1

2
A2

1
2
AT2 0

)
. (7.6)

Let (x1, y1) and (x2, y2) be optimal solutions to (DB1) and (DB2), respectively,
which implies ∆(xi, yi) − Bi � 0 and εq(Gi) = (xi, yi)ē, for i = 1, 2. It suffices
to show that (x1, y1) ⊗ (x2, y2) is a solution to (DB1⊗B2), since B1 ⊗ B2 is the
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cost matrix of (1
2
G1 + 1

2
GT

1 )⊕ (1
2
G2 + 1

2
GT

2 ). Note that, for arbitrary B1 and B2,
∆(x1, y1) � B1 and ∆(x2, y2) � B2 does not imply that ∆(x1, y1) ⊗∆(x2, y2) �
B1 ⊗ B2 (a simple counterexample is when ∆(x1, y1) = ∆(x2, y2) = 0 and B1 =
B2 = −I). We make use of the structure of B1 and B2 arising from equation (7.6).
For each i, ∆(xi, yi)−Bi � 0 implies that, for all (row) vectors u, v,

0 ≤
(
u v

)(
∆(xi) −1

2
Ai

−1
2
ATi ∆(yi)

)(
uT

vT

)
=

(
u −v

)(
∆(xi) +1

2
Ai

+1
2
ATi ∆(yi)

)(
uT

−vT
)
,

which in turn implies that ∆ (xi, yi) +Bi � 0 also holds. Therefore,

(∆(x1, y1)−B1)⊗ (∆(x2, y2) +B2) � 0 and

(∆(x1, y1) +B1)⊗ (∆(x2, y2)−B2) � 0,

which, by averaging, yields

∆(x1, y1)⊗∆(x2, y2)−B1 ⊗B2 � 0.

Therefore, (x1, y1) ⊗ (x2, y2) is a feasible point in the dual (DB1⊗B2), which
obtains the objective value εq(G1)εq(G2). Noting that (1

2
G1+ 1

2
GT

1 )⊕(1
2
G2+ 1

2
GT

2 )
has cost matrix B1 ⊗B2 implies the Lemma.

Now we may complete the proof of Theorem 7.4.2. Using Proposition 7.4.3 for
line (7.7), Lemma 7.4.4 for line (7.8) and Propositions 7.3.2 and 7.4.1 and some
easy algebra for the rest we can derive the following

εq (G1 ⊕G2)

≥ εq (G1) εq (G2) (7.7)

≥ εq((
1
2
G1 + 1

2
GT

1 )⊕ (1
2
G2 + 1

2
GT

2 )) (7.8)

= εq
(

1
4
(G1 ⊕G2) + 1

4
(G1 ⊕GT

2 ) + 1
4
(GT

1 ⊕G2) + 1
4
(GT

1 ⊕GT
2 )
)

= εq

(
1
2

[
1
2
(G1 ⊕G2) + 1

2
(G1 ⊕GT

2 )
]

+ 1
2

[
1
2
(G1 ⊕G2) + 1

2
(G1 ⊕GT

2 )
]T )

= 1
2
εq (G1 ⊕G2) + 1

2
εq
(
G1 ⊕GT

2

)
.

Therefore εq(G1⊕G2) ≥ εq(G1⊕GT
2 ). By symmetry, εq(G1⊕GT

2 ) ≥ εq(G1⊕G2),
as well, which means that all of the above inequalities must be equalities. This
completes the proof of Theorem 7.4.2.

7.5 Parallel repetition theorem

For any sequence of XOR games G1 = (f1, π1), . . . , Gn = (fn, πn), define their
conjunction, denoted by ∧nj=1Gj, as follows. The verifier chooses questions

((s1, t1), . . . , (sn, tn)) ∈ (S1 × T1)× · · · × (Sn × Tn)
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according to the product distribution π1 × · · · × πn, and sends (s1, . . . , sn) to
Alice and (t1, . . . , tn) to Bob. Alice and Bob output bits a1, . . . , an and b1, . . . , bn,
respectively, and win if and only if their outputs simultaneously satisfy these n
conditions: a1 ⊕ b1 = f1(s1, t1), . . . , an ⊕ bn = fn(sn, tn). (Note that ∧nj=1Gj is
not itself an XOR game for n > 1.)

One way for Alice and Bob to play ∧nj=1Gj is to independently play each game
optimally. This succeeds with probability

∏n
j=1 ω(Gj). Is this the optimal way

to play ∧nj=1Gj?

The answer is again no for classical strategies. It is shown in [11] that6

ωc(CHSH ∧ CHSH ) = 10/16 > 9/16 = ωc(CHSH )ωc(CHSH ).

Our second result is that the answer is yes for quantum strategies.

7.5.1. Theorem (Parallel Repetition). For any XOR games G1, . . . , Gn, we
have that ωq(∧nj=1Gj) =

∏n
j=1 ωq(Gj).

This is a quantum version of Raz’s parallel repetition theorem [78] for the re-
stricted class of XOR games. We call it a perfect parallel repetition theorem
because the probabilities are multiplicative in the exact sense (as opposed to an
asymptotic sense, as in [78]). The proof of Theorem 7.5.1 is based on Theo-
rem 7.4.2 combined with Fourier analysis techniques for boolean functions. Sec-
tion 7.5 contains the proof.

In this section we prove Theorem 7.5.1, which is stated in Section 7.5.

We begin with the following simple probabilistic lemma.

7.5.2. Lemma. For any sequence of binary random variables X1, X2, . . . , Xn,

1

2n

∑
M⊆[n]

E
[
(−1)⊕j∈MXj

]
= Pr[X1 . . . Xn = 0 . . . 0].

Proof: By the linearity of expectation,

1

2n

∑
M⊆[n]

E
[
(−1)⊕j∈MXj

]
= E

[
1

2n

∑
M⊆[n]

(−1)⊕j∈MXj
]

= E

[ n∏
j=1

(
1 + (−1)Xj

2

) ]
= Pr [X1 . . . Xn = 0 . . . 0] ,

6After posing this question about ωc(CHSH ∧ CHSH ), the answer was first shown to us by
S. Aaronson, who later found that this result was already stated in [11].
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where the last equality follows from the fact that

n∏
j=1

(1 + (−1)Xj) 6= 0

only if X1 . . . Xn = 0 . . . 0.

We introduce the following terminology. For any strategy S—classical or
quantum—and for any game G, define ω(S, G) as the success probability of
strategy S on game G. Similarly, define the corresponding bias as ε(S, G) =
2ω(S, G)− 1.

Now let S be any protocol for the game ∧nj=1Gj. For each M ⊆ [n], define the
protocol SM (for the game ⊕j∈MGj) as follows.

1. Run protocol S, yielding a1, . . . , an for Alice and b1, . . . , bn for Bob.

2. Alice outputs ⊕j∈Maj and Bob outputs ⊕j∈Mbj.
7.5.3. Lemma.

1

2n

∑
M⊆[n]

ε(SM ,⊕j∈MGj) = ω(S,∧nj=1Gj).

Proof: For all j ∈ [n], define Xj = aj ⊕ bj ⊕ fj(sj, tj). Then, for all M ⊆
[n], we have E[(−1)⊕j∈MXj ] = ε(SM ,⊕j∈MGj), and Pr[X1 . . . Xn = 0 . . . 0] =
ω(S,∧nj=1Gj). The result now follows from Lemma 7.5.2.

7.5.4. Corollary.

ωc(∧nj=1Gj) ≤
1

2n

∑
M⊆[n]

εc(⊕j∈MGj) (7.9)

and

ωq(∧nj=1Gj) ≤
1

2n

∑
M⊆[n]

εq(⊕j∈MGj). (7.10)

Now, to complete the proof of Theorem 7.5.1, using Theorem 7.4.2, we have

1

2n

∑
M⊆[n]

εq(⊕j∈MGj) =
1

2n

∑
M⊆[n]

∏
j∈M

εq(Gj)

=
n∏
j=1

(
1 + εq(Gj)

2

)

=
n∏
j=1

ωq(Gj). (7.11)

Combining this with equation (7.10), we deduce ωq(∧nj=1Gj) =
∏n

j=1 ωq(Gj),
which completes the proof of Theorem 7.5.1.
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7.6 Discussion

A natural question to ask is whether it is possible to extend the proof for other
kinds of games. We have already mentioned that a perfect parallel repetition
cannot hold for classical XOR games, since it does not even hold for classical
CHSH games. The next remark gives some more details about how the classical
CHSH game behaves under repetition. The second remark in this section will
show that a perfect parallel repetition theorem can also not hold for general
quantum games. We will conclude by explaining the connection of our results to
Feige-Lovász games games.

7.6.1 Perfect parallel repetition of classical XOR games

Although equation (7.10) is used to prove a tight upper bound on ωq(∧nj=1Gj),
equation (7.9) cannot be used to obtain a tight upper bound on ωc(∧nj=1Gj) for
general XOR games. This is because εc(CHSH ) = εc(CHSH ⊕CHSH ) = 1/2 and
it can be shown that εc(CHSH ⊕ CHSH ⊕ CHSH ) = 5/16. Therefore, for G1 =
G2 = G3 = CHSH , the right side of equation (7.9) is 1

8

∑
M⊆[3] εc(⊕j∈MGj) =

34.5/64, whereas ωc(∧3
j=1Gj) must be expressible as an integer divided by 64 (in

fact7, ωc(∧3
j=1Gj) = 31/64).

7.6.2 Parallel repetition of general games

We give the unpublished proof due to Watrous [101] that there is a binary game
G (that is not an XOR game) for which ωq(G) = ωq(G ∧ G) = 2/3. The game
used was originally proposed by Fortnow, Feige and Lovász [45, 42], who showed
that ωc(G) = ωc(G ∧G) = 2/3.

The game has binary questions (S = T = {0, 1}) and binary answers (A =
B = {0, 1}). The operation of the game is as follows. The Verifier selects a pair
of questions (s, t) uniformly from {(0, 0), (0, 1), (1, 0)} and sends s and t to Alice
and Bob, respectively. Then the Verifier accepts the answers, a from Alice and b
from Bob, if and only if s ∨ a 6= t ∨ b.

Consider a quantum strategy for this game, where |φ〉 is the shared entangled
state. We may assume that Alice’s behavior is determined by the observables A0

and A1, and Bob’s behavior is determined by the observables B0 and B1 and that
all observables have only eigenvalues ±1. On input (s, t), Alice computes a by
measuring with respect to As, and Bob computes b by measuring with respect to
Bt. It is straightforward to deduce that the bias of this strategy is

〈φ|
(
−1

3
A0 ⊗B0 + 1

3
A0 ⊗ IB + 1

3
IA ⊗B0

)
|φ〉 (7.12)

7This was independently calculated by S. Aaronson and B. Toner, by searching over a finite
number of deterministic classical strategies.
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(curiously, the bias does not depend on A1 or B1). We can rewrite −1
3
A0 ⊗B0 +

1
3
A0⊗ IB + 1

3
IA⊗B0 = 1

3
(IA−A0)⊗ (B0− IB) + 1

3
(IA⊗ IB), and the bias becomes

1

3
〈φ|(IA − A0)⊗ (B0 − IB)|φ〉+

1

3
. (7.13)

We note that IA−A0 has eigenvalues 0 and 2 and B0−IB has eigenvalues 0 and−2,
from which we can conclude that the hermitian matrix (IA−A0)⊗ (B0− IB) has
no positive eigenvalues. This implies that εq(G) = 1/3 and further ωq(G) = 2/3.
Combining this with the fact that 2/3 = ωc(G ∧ G) ≤ ωq(G ∧ G) ≤ ωq(G), we
obtain ωq(G ∧G) = ωq(G) = 2/3.

7.6.3 Feige-Lovász games

For a broad class of games, Feige and Lovász [42] define quantities that are
relaxations—and hence upper bounds—of their classical values, and show that
one of these quantities satisfies a parallel repetition property analogous to The-
orem 7.5.1. For any XOR game G, the Feige-Lovász relaxations of its classical
value are equal to the quantum value of G. This was noted first in [40, 41] and
an explicit proof appears in the appendix of [30]. It is important to note that,
for general games, the relationship between their quantum values and the Feige-
Lovász relaxations of their classical values are not understood. As far as we know,
neither quantity bounds the other for general games.

Using this relation between the value of a quantum XOR game and the value
of its Feige-Lovász relaxation combined with Theorem 7.5.1, it follows that for
XOR games G1, . . . , Gn, the quantum value of ∧nj=1Gj is also determined by
its associated Feige-Lovász relaxation. However, it should be stressed that the
parallel repetition property for Feige-Lovász relaxations does not imply our The-
orem 7.5.1, since we do not know a priori that for the non-XOR game ∧nj=1Gj

the same relation between its quantum value and the value of its Feige-Lovász
relaxation holds. Our Theorem 7.5.1 shows this.





Chapter 8

Limits on non-locality from
communication complexity

This chapter is based on the paper

Gilles Brassard, Harry Buhrman, Noah Linden, André Allan
Methot, Alain Tapp, and Falk Unger, Limit on nonlocality in
any world in which communication complexity is not triv-
ial, Physical Review Letters 96(25), 2006.

8.1 Introduction

Quantum mechanics is a physical theory which is hugely successful in describing
very small physical systems, on the scale of atoms. Its foundations were laid out
in the 1920s and 1930s. At first quantum mechanics was not accepted immedi-
ately by all physicists, because of its counter-intuitive properties and predictions.
Most notably, Albert Einstein rejected quantum mechanics with the famous words
“Gott würfelt nicht”, which translates to “God does not play dice”. Nowadays,
quantum mechanics is widely accepted, mainly due to the fact that quantum me-
chanics predicts outcomes of many experiments where classical physics fails. For
example, later in this chapter we will describe (an abstract setting of) an exper-
iment, so called Bell inequality violations, which can be explained by quantum
mechanics but not by classical mechanics. Because of experiments of this kind,
quantum mechanics is nowadays widely believed to accurately describe the world
in the “small”.

Nevertheless, despite its successes in experiments, quantum mechanics is of-
ten considered mysterious, due to its counter-intuitive predictions and intriguing
properties. One of these properties is entanglement. In our example, based on a

113
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violation of a Bell inequality, we will see that two separated, non-communicating
parties possessing entanglement can create correlations which are not attainable
without entanglement. However, it follows from the axioms of quantum mechan-
ics that also entanglement does not allow for all (causal1) correlations which are
in principle conceivable in the physical world. The question we want to address
in this chapter is whether this limitation of achievable correlations is more than
merely a consequence of quantum mechanics. We will explain why limitations of
possible correlations can be seen as a “natural axiom”, which every reasonable
physical theory (including quantum mechanics) should obey. In our argument we
show that under a reasonable assumption about the physical world—namely that
communication complexity (explained in Section 2.4 or later in this chapter) is
non-trivial—restrictions on achievable correlations are indeed necessary.

This chapter is about the axioms of physics. Since they cannot be stated as
rigorously as mathematical theories, the first part (in particular the introduction)
of this chapter will be less rigorous than the other chapters. After we have set
the stage and defined a suitable mathematical model, the proofs presented will
be rigorous.

CHSH inequality

We will start by explaining the CHSH inequality, a particular type of Bell in-
equality . Assume two parties, Alice and Bob, share a quantum state |ψ〉 and
they can both perform two different measurements on their respective parts of
|ψ〉, with binary outcomes 0 or 1. Let Alice’s choice of the measurement be de-
noted by x ∈ {0, 1} and Bob’s by y ∈ {0, 1}. Let Alice’s and Bob’s outcomes
be a, b ∈ {0, 1}, respectively. Tsirelson [93] proved a bound on the correlation
between Alice’s and Bob’s outcomes, see also Figure 1.3:

1

4

∑
x,y

Pr[x · y = a⊕ b] ≤ ℘ =
1

2
+

√
2

4
≈ 85%. (8.1)

Here x · y is the logical AND of x and y and a⊕ b is the logical XOR of a and b.
This means that x · y = a ⊕ b is satisfied if and only if (1) x = y = 1 and a 6= b
or if (2) x and y are not both 1 and a = b.

In quantum mechanics, this bound is actually tight and can be attained, see
[97, 96] for a derivation. Furthermore, it is even possible to achieve that

∀x,yPr[x · y = a⊕ b] = ℘ =
1

2
+

√
2

4
, (8.2)

which means that it is possible to guarantee optimal worst-case behaviour.

1explained later
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However, classical physics, using the so-called local hidden-variable model
(LHV), only allows a correlation of up to 3/4. Bell [12] and Clauser, Horne,
Shimony and Holt [25] proved for classical LHV-theories

1

4

∑
x,y

Pr[x · y = a⊕ b] ≤ 3

4
, (8.3)

which is known as the CHSH inequality . It is a special kind of Bell inequality.
It can be used to test local hidden-variable theories because it follows also from
CHSH that in a local realistic theory (i.e. under a local hidden-variable model)
Alice and Bob cannot succeed with probability greater than 3

4
if they are space-

like separated. If correlations greater than 3
4

can be detected in an experiment,
then we conclude that the world cannot be local realistic and in particular not
classical.

The CHSH inequality shows up in many different contexts in quantum me-
chanics and appears under different names. In this chapter we will discuss it in
the framework of non-local boxes (whose exact definition is not important at the
moment and will be given in the next section) as we focus on the non-local prop-
erties of quantum mechanics. The CHSH inequality can also be cast in terms of
XOR games, which are the focus of Chapter 7.

Violations of CHSH inequality

Within the framework of non-local boxes it is possible to define correlations for
which the left-hand side of equation (8.1) becomes 1, but which do not violate
causality (see Section 8.2). This was first observed in 1995 by Popescu and
Rohrlich and elaborated on in a series of papers [74, 75, 76]. They asked: Why
does Quantum Mechanics not allow a higher correlation in equation (8.5) than
℘ = 1/2 +

√
2/4? In fact, they constructed a toy theory with correlations of up

to 1 in equation (8.1), which did not exhibit any apparent inconsistency.
This question was later answered by Cleve [26] and van Dam [97, 96] who

showed that a maximal correlation of 1 in (8.1) would imply some improbable
consequences in the real world, namely that all functions have trivial communica-
tion complexity of just one bit. Recall from Section 2.4 that for certain functions
f : {0, 1}n × {0, 1}n 7→ {0, 1} Alice and Bob have to communicate essentially n
bits to compute the value of f . An example was the inner product function, but in
fact this holds for almost all functions. Indeed, trivial communication complexity
seems too good to be true.

When we extend the notion of “trivial” communication complexity to bounded
error protocols (either with public random coins or shared entanglement) the in-
ner product function remains nontrivial according to quantum mechanics: In
Appendix C we use an argument from [104] to show that Alice and Bob cannot
succeed at computing the inner product function on n bits with probability 1− ε
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if they transmit fewer than n− 2 log2
1

1−2ε
bits, even if they share prior entangle-

ment. Hence, if we assume that Nature does not offer “free lunch” by allowing
to compute functions on distributed inputs with trivial communication, then the
above results by Cleve and van Dam imply that Nature also cannot allow all
possible CHSH-correlations.

However, their argument only excludes CHSH-correlations which achieve the
maximum value of 1. In this chapter we will improve this and answer a stronger
question: Considering that values larger than ℘ on the right hand side of (8.1)
would not violate causality, why do the laws of quantum mechanics only allow
correlations of up to ℘, but not something better? In fact, could it even be that
this “magic” value of ℘ is not only a consequence of quantum mechanics but
rather a defining property and should be seen as an axiom [75]? In this chapter
we attempt to give a partial answer to this question by generalizing van Dam’s
and Cleve’s result: If correlations of more than 3+

√
6

6
≈ 90.8% were possible, still

all functions with shared inputs could be computed with bounded error with
trivial communication complexity (i.e., with just just one bit of communication).

Ideally, we would want to show that for all correlations higher than ℘ ≈ 85%,
communication complexity becomes trivial. This indeed would imply that the
value of ℘ may be taken as an axiom of any (reasonable) physical theory. It is an
interesting open problem to determine whether our result can be extended up to
the value ℘.

For the precise statement of our result and our proof we use the more modern
framework of non-local boxes, introduced by Popescu and Rohrlich [74, Eq. (7)].
This will be explained in the next section. We then prove our main result, The-
orem 8.3.1.

8.2 Non-local boxes

A non-local box (NLB) is an imaginary device shared between Alice and Bob,
who can be arbitrarily far apart. It has an input-output port at Alice’s and
another one at Bob’s. Whenever Alice feeds a bit x into her input port, she
instantaneously gets a uniformly distributed random output bit a, locally uncor-
related with anything else, including her own input bit. The same applies to Bob,
whose input and output bits we call y and b, respectively. The “magic” appears
in the form of a correlation between the pair of outputs and the pair of inputs:
the exclusive-or of the outputs is always equal to the logical AND of the inputs:
a⊕ b = x · y. Much like the correlations that can be established by use of quan-
tum entanglement, this device is atemporal: Alice gets her output as soon as
she feeds in her input, regardless of whether (and when) Bob feeds in his input,
and vice versa. These devices are also known under the name “Popescu-Rohrlich
box” or PR-box. The name non-local box derives from the fact that an operation
(i.e., choosing an input bit and receiving an output bit) on Alice’s side has an
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Alice Bob

a b

yx

x.y=a⊕b

Figure 8.1: Non-local box

instantaneous effect on Bob’s side as well. In particular, depending on the values
x and a which Alice observes, there is a deterministic function f computing Bob’s
output b := f(y). The function f is either the identity function, logical negation,
constant zero or constant one.

Also inspired by entanglement, this is a one-shot device: the correlation ap-
pears only as a result of the first pair of inputs fed in by Alice and Bob.

NLBs cannot be used by Alice and Bob to signal instantaneously to one an-
other, i.e., they are non-signalling . This is because the outputs that can be
observed are purely random from a local perspective.2 Hence, NLBs are causal :
they cannot make an effect precede its cause in the context of special relativity.
We are interested in the question of how well the correlation of NLBs can be
approximated. An approximation of an NLB with success probability p is an NLB
with the property that

∀x,y
∑
x,y

Pr[x · y = a⊕ b] ≥ p. (8.4)

Alternatively, we can define approximate NLBs operationally, by saying that an
approximate NLB is “obtained” from a (perfect) NLB by flipping Bob’s output
bit with probability 1− p.

2Remember that Bob’s output is “created” even if Alice has not yet input a bit into her
input port and vice versa. It is even possible to demand that locally the output bit a of an
NLB is always uniformly random, if b is not yet determined; and vice versa.
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Although originally presented differently, the CHSH inequality can be recast
in terms of imperfect NLBs. The availability of shared entanglement allows Alice
and Bob to approximate NLBs with success probability

℘ = cos2 π
8

= 2+
√

2
4
≈ 85.4% .

Tsirelson proved the optimality of the CHSH inequality, which translates into
saying that quantum mechanics does not allow for a success probability greater
than ℘ at the game of simulating NLBs [93]. See also [24] for an information-
theoretic proof of the same result.

In the next section we attempt to show why the axioms of quantum mechanics
are such that they do not allow to approximate NLBs with success probability
greater than ℘.

8.3 Main result

Our main theorem is stated below and proved in the rest of this chapter. It
shows that even the availability of imperfect NLBs would dramatically change
the picture of communication complexity discussed in Section 2.4: It would make
the randomized communication complexity of all functions trivial. Indeed, most
computer scientists would consider a world in which randomized communication
complexity is trivial to be as surprising as a modern physicist would find the
violation of causality.

8.3.1. Theorem. In any world in which it is possible, without communication,
to implement an approximate NLB that works correctly with probability greater
than 3+

√
6

6
≈ 90.8%, i.e.

∀x,yPr[x · y = a⊕ b] > 3 +
√

6

6
≈ 90.8%,

every Boolean function has trivial probabilistic communication complexity of just
one bit.

8.4 Proof

To prove this theorem, we introduce the notion of distributed computation and
the notion of bias for such computations. Then, we explain how compute any
Boolean function with small bias and show how to amplify this “natural” bias by
having Alice and Bob calculate it many times and taking the majority. We deter-
mine how imperfect a majority gate can be and still increase the bias. Finally,
we construct a majority gate with the use of NLBs, and we determine to what
extent we can allow them to be faulty.
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8.4.1 Distributed computation

8.4.1. Definition. A bit c is distributed if Alice has bit a and Bob bit b such
that c = a⊕ b.

8.4.2. Definition. A Boolean function f is distributively computed by Alice and
Bob if, given inputs x and y, they can produce a distributed bit equal to f(x, y).

8.4.3. Definition. A Boolean function is biased if it can be distributively com-
puted without any communication and with probability strictly greater than 1

2
.

8.4.4. Lemma. Provided Alice and Bob are allowed to share random variables,
all Boolean functions are biased.

Proof: Let f : {0, 1}n × {0, 1}n 7→ {0, 1} be an arbitrary Boolean function and
let Alice and Bob share a uniformly distributed random variable z ∈ {0, 1}n.
Upon receiving her input x, Alice produces a = f(x, z). Bob’s strategy is to
test whether y = z. If so, he produces b = 0; if not, he produces a uniformly
distributed random bit b. In the lucky event that y = z, the bit distributed
between Alice and Bob is correct since a⊕ b = f(x, z)⊕ 0 = f(x, y). In all other
cases, the distributed bit a⊕ b is uniformly random. Summing up, the distributed
bit is correct with probability 1

2n
+ (1− 1

2n
)1

2
= 1

2
+ 1

2n+1 >
1
2
.

8.4.5. Definition. A Boolean function has bounded bias if it can be distribu-
tively computed without any communication and with probability bounded away
from 1

2
, with probability at least 1

2
+ ε for some ε > 0.

The difference between bias and bounded bias is that the probability of be-
ing correct in the former case can come arbitrarily close to 1

2
as the input size

increases. In the latter case, there must be some fixed p > 1
2

such that the prob-
ability of being correct is at least p no matter how large the inputs are.

8.4.6. Lemma. Any Boolean function that has bounded bias has trivial proba-
bilistic communication complexity of one bit.

Proof: Assume Boolean function f has bounded bias. For all inputs x and y,
Alice and Bob can produce bits a and b, respectively, without communication,
such that a⊕ b = f(x, y) with probability at least p > 1

2
. If Bob transmits his

single bit b to Alice, she can compute a⊕ b, which is correct with bounded error
probability.
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8.4.2 Bias Amplification

8.4.7. Definition. The non-local majority problem consists in computing the
distributed majority of three distributed bits. More precisely, let Alice have bits
x1, x2, x3 and Bob have y1, y2, y3. The purpose is for Alice and Bob to compute
a and b, respectively, such that

a⊕ b = Maj(x1 ⊕ y1, x2 ⊕ y2, x3 ⊕ y3) ,

where Maj(u, v, w) denotes the bit occurring the most among u, v and w. The
computation must be achieved without any communication between Alice and
Bob.

Von Neumann proved a statement rather similar to Lemma 8.4.8 below in
1956, albeit not in the context of distributed computation [67]. A more general
result appears also in [38]. We sketch the proof nevertheless for the sake of
completeness.

8.4.8. Lemma. For any q such that 5
6
< q ≤ 1, if Alice and Bob can compute

non-local majority with probability at least q, then every Boolean function has
bounded bias.

Proof: Let f be an arbitrary Boolean function, fix Bob’s input size, and consider
any p > 1

2
so that Alice and Bob can distributively compute f with probability at

least p. We know from Lemma 8.4.4 that such a p exists (although it may depend
on the input size). Let Alice and Bob apply their distributed computational pro-
cess three times, with independent random choices and shared random variables
each time. This produces three distributed bits such that each of them is correct
with probability at least p. Now, let Alice and Bob compute the non-local ma-
jority of these three outcomes with correctness probability at least q, which we
assumed they can do. Because the overall result will be correct either if most of
the distributed outcomes were correct and the distributed majority calculation
was performed correctly, or if most of the distributed outcomes were wrong and
the distributed majority calculation was performed incorrectly, the probability
that the distributed majority as computed yields the correct value of f is at least

h(p) = q(p3 + 3p2(1− p)) + (1− q)(3p(1− p)2 + (1− p)3).

Define

s =
1

2
+

√
6q − 5

8q − 4
>

1

2
.

With this definition h(s) = s and h(1
2
) = 1

2
, see also Figure 8.4.2. Further,

∂
∂p
h(p) = 6(1− p)p(2q − 1)
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Figure 8.2: h(p) for q=0.95

is positive for 0 < p < 1. Thus, p < h(p) < s provided 1
2
< p < s. Because of this

and the fact that h(p) is continuous over the entire range 1
2
< p < s, iteration

of the above process can boost the probability of distributively computing the
correct answer arbitrarily close to s. This proves that f has bounded bias because,
given any fixed value of q > 5

6
, we can choose an arbitrary constant t < s such

that t > 1
2

and distributively compute f with probability at least t, independently
of the input size.

8.4.9. Definition. The non-local equality problem consists in distributively de-
ciding if three distributed bits are equal. More precisely, let Alice have bits x1,
x2, x3 and Bob have y1, y2, y3. The purpose is for Alice and Bob to compute a
and b, respectively, such that

a⊕ b =

{
1 if x1 ⊕ y1 = x2 ⊕ y2 = x3 ⊕ y3

0 otherwise .

The computation of a and b must be achieved without any communication be-
tween Alice and Bob.

8.4.10. Lemma. Non-local equality can be computed using only two (perfect) non-
local boxes.

Proof: The goal is to obtain a and b such that:

a⊕ b = (x1 ⊕ y1 = x2 ⊕ y2) ∧ (x2 ⊕ y2 = x3 ⊕ y3). (8.5)

First, Alice and Bob compute locally x′ = x1 ⊕ x2, y′ = y1 ⊕ y2, x′′ = x2 ⊕ x3 and
y′′ = y2 ⊕ y3. Then (8.5) becomes equivalent to (x′⊕y′)∧(x′′⊕y′′) = a⊕b. Hence,
it is sufficient to show how Alice and Bob can compute the and of the distributed
bits x′ ⊕ y′ and x′′ ⊕ y′′.
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By distributivity of the and over the exclusive-or,

(x′ ⊕ y′) ∧ (x′′ ⊕ y′′) = (x′ ∧ x′′)⊕ (x′ ∧ y′′)⊕ (x′′ ∧ y′)⊕ (y′ ∧ y′′).

Using two non-local boxes, Alice and Bob can compute distributed bits a′ ⊕ b′ and
a′′ ⊕ b′′ with a′ ⊕ b′ = x′ ∧ y′′ and a′′ ⊕ b′′ = x′′ ∧ y′. Setting a = (x′ ∧ x′′)⊕ a′ ⊕ a′′
and b = (y′ ∧ y′′)⊕ b′ ⊕ b′′ yields (8.5), as desired.

8.4.11. Lemma. Non-local majority can be computed using only two (perfect)
non-local boxes.

Proof: Let x1, x2, x3 be Alice’s input and y1, y2, y3 be Bob’s. For i ∈ {1, 2, 3},
let zi = xi ⊕ yi be the ith distributed input bit. By virtue of Lemma 8.4.10, Alice
and Bob use their two NLBs to compute the non-local equality of their inputs,
yielding a and b so that a⊕ b = 1 if and only if z1, z2 and z3 are equal. Finally,
Alice produces a′ = a⊕ x1 ⊕ x2 ⊕ x3 and Bob produces b′ = b⊕ y1 ⊕ y2 ⊕ y3. Let

z = a′ ⊕ b′ = (a⊕ b)⊕ (z1 ⊕ z2 ⊕ z3)

be the distributed bit computed by this protocol. Four cases need to be consid-
ered, depending on the number ` of 1s among the zi’s:

1. if ` = 0, then a⊕ b = 1 and z1 ⊕ z2 ⊕ z3 = 0;

2. if ` = 1, then a⊕ b = 0 and z1 ⊕ z2 ⊕ z3 = 1;

3. if ` = 2, then a⊕ b = 0 and z1 ⊕ z2 ⊕ z3 = 0;

4. if ` = 3, then a⊕ b = 1 and z1 ⊕ z2 ⊕ z3 = 1.

We see that z = 0 in the first two cases and z = 1 in the last two, so that
z = Maj(z1, z2, z3) in all cases.

We are now ready to prove our main theorem.

Proof of Theorem 8.3.1: Assume NLBs can be approximated with some prob-
ability p of yielding the correct result. Using these approximate NLBs, we can
compute non-local majority with probability q = p2 + (1− p)2 since the protocol
given in the proof of Lemma 8.4.11 succeeds precisely if none or both of the NLBs
behave incorrectly. The result follows from Lemmas 8.4.6 and 8.4.8 because q > 5

6

whenever p > 3+
√

6
6

.

8.4.12. Corollary. In any world in which probabilistic communication com-
plexity is nontrivial, non-local boxes cannot be implemented without communica-
tion, even if we are satisfied in obtaining the correct behaviour with probability
3+
√

6
6
≈ 90.8%.
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8.5 Discussion

In conclusion, we have shown that in any world in which communication com-
plexity is nontrivial, there is a bound on how much nature can be non-local.
This bound, which is an improvement over previous knowledge that non-local
boxes could not be implemented exactly [96, 97, 26], approaches the actual bound
℘ ≈ 85.4% imposed by quantum mechanics. The obvious open question is to close
the gap between these probabilities. A proof that nontrivial communication com-
plexity forbids non-local boxes to be approximated with probability greater than ℘
would be very interesting, as it would render Tsirelson’s bound [93] inevitable,
making it a candidate for a new information-theoretic axiom for quantum me-
chanics [20]. We will finish with some remarks.

8.5.1 One NLB for majority

Neither non-local majority nor non-local equality can be solved exactly with a
single non-local box. Otherwise, entanglement could approximate that NLB well
enough to solve the non-local majority problem with probability ℘ ≈ 0.854 > 5

6
of

being correct [25]. It would follow from Lemmas 8.4.6 and 8.4.8 that all Boolean
functions have trivial entanglement-assisted communication complexity. But we
know this not to be the case for the inner product, as we stated earlier in Section
2.4 and prove in Appendix C.

8.5.2 Fault-tolerance threshold

Quite surprisingly, our results also give bounds on the maximum admissible error
for purely classical fault-tolerant computation. This subject was discussed already
in more detail in earlier chapters, see in particular Chapter 6. Here we only want
to explain this interesting connection.

Suppose that we could transform any classical circuit into a fault-tolerant
version that would work with probability bounded away from 1

2
even if each

gate failed independently with probability 1
4
. Assume furthermore that the fault-

tolerant circuit C is composed only of unary and binary gates, i.e., gates with at
most two input wires. In the proof of Lemma 8.4.10, we showed how to simulate
distributed AND gates by use of two NLBs. Similarly, it is easy to see that all other
binary gates can be computed distributively with at most two NLBs. (Several
gates require no NLBs at all, such as the unary NOT gate and the binary XOR
gate, also known as the CNOT gate or PARITY gate.) Now, quantum mechanics
provides us with NLBs with correctness probability ℘, which yields distributed
gates that are correct with probability (1− ℘)2 + ℘2 = 3

4
if two NLBs are needed

(e.g. the AND gate), or better if no NLBs are needed.
This allows us to use the assumed fault-tolerant circuit C in a distributed

way and conclude that all Boolean functions have bounded bias, and therefore
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trivial quantum probabilistic communication complexity. But this is impossible
since most Boolean functions, for example the inner product, require Ω(n) bits of
communication even if Alice and Bob share entanglement and are satisfied with
a probability of correct answer bounded away from 1

2
. It follows that circuits

cannot in general be fault-tolerant if all gates have at most two input wires and
the gates fail with probability 1

4
or more, even if NOT and XOR gates are perfect.

As an interesting coincidence, the best known upper bound on the error thresh-
old, due to Evans and Schulman [37], states that fault-tolerance is impossible in
general for circuits with gates of fan-in at most 2 which fail with probability
1− ℘ = 2−

√
2

4
or worse.



Appendix A

Some more facts about Linear algebra

In the following we will present some more facts about linear algebra, which might
help as a reminder. We use the same notation as in Section 2.1 and continue from
there.

Linear independence A set |φ1〉, . . . , |φm〉 ∈ Cd is called linearly independent
if the only way to choose αi ∈ C such that

∑m
i=1 αi|φi〉 = 0 is to choose αi = 0

for all i.

Rank The rank of a matrix A ∈ Cd×d is the largest number of linearly inde-
pendent rows of A.

Inverse matrix If for some matrix A ∈ Cd×d there exists some B ∈ Cd×d with
the property that AB = I then we call B the inverse of A and denote it by A−1.
Note that if AB = I then also BA = I [55]. A ∈ Cd×d is invertible if and only if
A has full rank d.

Unitary matrix A matrix A is called unitary if AA† = I. The following
conditions for A ∈ Cd×d are equivalent:

1. A is unitary

2. ∀φ, ψ ∈ Cd : 〈Aφ,Aψ〉 = 〈φ, ψ〉 (inner-product preserving)

3. ∀φ ∈ Cd : ||Aφ|| = ||φ|| (norm-preserving),

with 〈·, ·〉 and || · || as defined in Section 2.1.
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Unitary diagonalization A matrix A ∈ Cd×d can be unitarily diagonalized , if
there is some matrix U ∈ Cd×d and a matrix Λ whose off-diagonal entries are all
zero with the property that

A = U †ΛU.

The values on the diagonal of Λ are called the eigenvalues of A and the columns
of U the corresponding eigenvectors.

A matrix A is called normal if AA† = A†A. It turns out that precisely all
normal matrices can be diagonalized in this way.

Hermiticity A matrix A is called hermitian if A = A†. Note that every hermi-
tian matrix is normal and therefore can be unitarily diagonalized as A = U †ΛU
as above. From A = A† it follows that U †ΛU = U †Λ†U , and then further Λ = Λ†.
This means that hermitian matrices only have real eigenvalues.

Tensor products If A = Ca×a and B = Cb×b, then

A⊗ B := Cab×ab

is called the tensor product of A and B.
For elements A ∈ A and B ∈ B we define

A⊗B =

 A11B . . . A1aB
. . .

Aa1B . . . AaaB


as the tensor product of A andB. The tensor product enjoys many nice properties,
for example

(A⊗B)∗ = A∗ ⊗B∗
A⊗ (B + C) = A⊗B + A⊗ C
(A⊗B)⊗ C = A⊗ (B ⊗ C)

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

We will write AA⊗BB if it is otherwise not clear from the context on which space
A and B act.

(partial) Trace The trace of a matrix A ∈ Cd×d is

Tr(A) =
d∑
i=1

Aii,

i.e., it is the sum of all entries on the diagonal of A. Note that for unitarily
diagonalizable matrices Tr(A) is the sum of all its eigenvalues. If A ∈ A and
B ∈ B we define the operator

TrA(A⊗B) = B · Tr(A).
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Requiring that TrA(·) is linear uniquely defines this operator. Note that TrA(·)
maps from A⊗B to B. The operation TrA(·) is called the partial trace over A or
just “tracing out system A”.

Similarly, one can define TrB(·) to be the unique linear operator with the
property that

TrB(A⊗B) = A · Tr(B).





Appendix B

Convex hull of all 1-qubit Clifford
operations

We now show that the Clifford polytope P defined in (5.8) is equivalent to the
polytope defined by (5.10) and (5.11). In principle, this proof can be carried out
by a computer, using for example the software cplex [46]. We give an explicit
proof.

Define the polyhedron

Q := {S ∈ R3×3 | 〈F, S〉 ≤ 1 for all F ∈ F},

where F is as in (5.11). Our objective is to show the equality P = Q.
First, let us prove the easy inclusion P ⊆ Q. For this, let C ∈ C and F ∈ F

be of the form F = C1BC2 with C1, C2 ∈ C and B ∈ {B1, B
T
1 , B2}. Then,

〈F,C〉 = 〈B,CT
1 CC

T
2 〉. As CT

1 CC
T
2 ∈ C, it suffices to verify that 〈B,C〉 ≤ 1 for

any C ∈ C and B = B1, B2. (We have used here the fact that C is a group which
is closed under transposing matrices.) For C ∈ C, the inequality 〈B1, C〉 ≤ 1 is
obvious and the inequality 〈B2, C〉 ≤ 1 can be checked by direct inspection.

The reverse inclusion Q ⊆ P follows from the following result.

B.0.1. Theorem. Any facet of the polytope P is defined by an inequality of the
form 〈F, S〉 ≤ 1 where F ∈ F .

The rest of the Appendix is devoted to the proof of this result. We first need
to go in more detail into the structure of the Clifford matrices.

B.1 Preliminaries about the Clifford matrices

Each matrix C ∈ C corresponds to a “signed permutation” (σ, s), where σ ∈
Sym(3) and s ∈ {±1}3. Namely, C has nonzero entries precisely at the (σ(i), i)-
positions with Cσ(i),i = si for i = 1, 2, 3; we then also denote C as Cσ,s. The
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condition det(C) = 1 translates into s1s2s3 = sign(σ); that is, s1s2s3 = 1 if σ is
an even permutation (i.e., one of σ1 := (1, 2, 3), σ2 := (2, 3, 1), σ3 := (3, 1, 2)) and
s1s2s3 = −1 if σ is an odd permutation (i.e., one of σ4 := (1, 3, 2), σ5 := (2, 1, 3),
σ6 := (3, 2, 1)). Thus the set C of Clifford matrices is naturally partitioned into
six subclasses

C =
⋃

σ∈Sym(3)

Cσ, where Cσ := {Cσ,s | s ∈ {±1}3, s1s2s3 = sign(σ)}

with |Cσ| = 4. For convenience we display in the table below the six subclasses
Cσ; the nonzero entries are indicated by ∗.

Even permutations Odd permutations

σ1 = (1, 2, 3) Cσ1 :

 ∗ 0 0
0 ∗ 0
0 0 ∗

 σ4 = (1, 3, 2) Cσ4 :

 ∗ 0 0
0 0 ∗
0 ∗ 0


σ2 = (2, 3, 1) Cσ2 :

 0 0 ∗
∗ 0 0
0 ∗ 0

 σ5 = (2, 1, 3) Cσ5 :

 0 ∗ 0
∗ 0 0
0 0 ∗


σ3 = (3, 1, 2) Cσ3 :

 0 ∗ 0
0 0 ∗
∗ 0 0

 σ6 = (3, 2, 1) Cσ6 :

 0 0 ∗
0 ∗ 0
∗ 0 0


Table 1

The following observation can be directly verified and will be useful for the
proof.

6. Observation. Let σ ∈ Sym(3). Then,
∑

C∈Cσ C = 0. Moreover, for any
position (σ(i), i) corresponding to a nonzero entry for matrices in Cσ and for d ∈
{±1}, there exist C,C ′ ∈ Cσ with C + C ′ = 2dEσ(i),i, which implies dEσ(i),i ∈ P .
Thus, ±Ei,j ∈ P for any i, j = 1, 2, 3.

We now proceed with the proof of Theorem B.0.1. Let 〈F, S〉 ≤ b be an
inequality defining a facet of P , where F ∈ R3×3 and b ∈ R. That is, the
inequality 〈F, S〉 ≤ b is valid for P , which means that 〈F, S〉 ≤ b holds for any
S ∈ P , and the set

RF := {C ∈ C | 〈F,C〉 = b}
contains nine affinely independent matrices. Without loss of generality, we may
assume that b = 1. Indeed, b ≥ 0 since 0 ∈ P . Moreover, b > 0 for, otherwise, we
would have Fij = 0 for all i, j = 1, 2, 3, implying F = 0, in view of Observation 6.
Thus, by rescaling, we can now assume that the facet is of the form 〈F, S〉 ≤ 1.
We sometimes speak of the “facet F” for short. Our objective is to show that
F = C1BC2 for some C1, C2 ∈ C, B ∈ {B1, B

T
1 , B2}.
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Call F, F ′ ∈ R3×3 equivalent if F ′ = C1FC2 for some C1, C2 ∈ C. Then, as C is
a group, 〈F ′, S〉 ≤ 1 defines a facet of P if and only if 〈F,C〉 ≤ 1 does. Moreover,
RF ′ = C1RFC2 = {C1CC2 | C ∈ RF}. This property will be used repeatedly
throughout the proof as it permits to exploit symmetry and to reduce the number
of cases we need to check.

The proof is based on a detailed inspection of the structure of the set RF . We
begin with collecting several properties of the matrix F and the set RF .

7. Observation. |RF ∩ Cσ| ≤ 3 for any σ ∈ Sym(3).

Proof: If Cσ ⊆ RF , then 〈F,C〉 = 1 for any C ∈ Cσ, which implies 4 =∑
C∈Cσ〈F,C〉, contradicting the fact that

∑
C∈Cσ C = 0 by Observation 6.

8. Observation. If Fij = d ∈ {−1, 1}, then all C ∈ C with Cij = d belong to
RF .

Proof: Let C ∈ C with Cij = d. There exists C ′ ∈ C with C + C ′ = 2dEij.
Summing 〈F,C〉 ≤ 1 and 〈F,C ′〉 ≤ 1 yields 〈F,C + C ′〉 ≤ 2. As 〈F,C + C ′〉 =
2dFij = 2, we have the equalities 〈F,C〉 = 〈F,C ′〉 = 1, which implies C ∈ RF .

9. Observation. Let C 6= C ′ ∈ RF ∩ Cσ (for some σ ∈ Sym(3)) and assume
that Cσ(i),i = C ′σ(i),i = d ∈ {±1} for some i ∈ {1, 2, 3}. Then, Fσ(i),i = d and

Fσ(j),j + sign(σ)dFσ(k),k = 0 with {j, k} = {1, 2, 3} \ {i}.

Proof: Equality Fσ(i),i = d follows from the fact that C + C ′ = 2dEσ(i),i. Then,
1 = 〈F,C〉 implies 0 = Fσ(j),jCσ(j),j + Fσ(k),kCσ(k),k. Using Cσ(i),iCσ(j),jCσ(k),k =
sign(σ), we find Fσ(j),j + sign(σ)dFσ(k),k = 0.

Our last observation is an easy corollary of the former two observations.

10. Observation. If Fσ(i),i = d ∈ {±1} (for some σ ∈ Sym(3)), then Fσ(j),j +
sign(σ)dFσ(k),k = 0, where {i, j, k} = {1, 2, 3}.

One can verify that, for F = B1, B
T
1 , |RF ∩ Cσ| = 2 for all σ ∈ Sym(3) while,

for F = B2, |RF ∩ Cσ| = 3 for σ = σ1, σ5. Based on this observation we now
distinguish two cases: Either, |RF ∩Cσ| ≤ 2 for all σ ∈ Sym(3) (in which case we
show that F is equivalent to B1 or BT

1 ), or |RF ∩ Cσ| = 3 for some σ ∈ Sym(3)
(in which case we show that F is equivalent to B2).

B.2 The case |RF ∩ Cσ| = 3 for some σ ∈ Sym(3)

Using symmetry, we may assume that |RF ∩ Cσ| = 3 for the (odd) permutation
σ = σ4. We prove this in detail to show how this kind of symmetry argument
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works. To shorten notation we will use +,− for 1 respectively −1 whenever we
explicitly write out matrices.

Define the matrices

C1 =

− 0 0
0 0 −
0 − 0

 , C2 =

0 + 0
0 0 +
+ 0 0

 , C3 =

0 0 +
+ 0 0
0 + 0

 (B.1)

lying, resp., in Cσ4 , Cσ3 , Cσ2 .
Our assumption is that |RF ∩ Cσi | = 3 for some i = 1, . . . , 6; we show that

one can replace F by another equivalent facet F ′ in such a way that i = 4 holds.
For this, suppose first i = 2, 3. As the mapping X 7→ XCi maps Cσi to Cσ1 , we
can replace the facet F by F ′ := FCi and then we find |RF ′ ∩ Cσ1| = 3 since
RF ′ = RFCi. Thus we may assume |RF ∩ Cσ1| = 3. As the mapping X 7→ XC1

maps Cσ1 to Cσ4 , replacing the facet F by F ′ := FC1, we find |RF ′ ∩ Cσ4 | = 3.
Thus we can now assume |RF ∩ Cσi | = 3 for some i = 4, 5, 6. If i = 5, as the
mapping X 7→ XC3 maps Cσ5 to Cσ4 , replace F by F ′ := FC3; if i = 6, the
mapping X 7→ XC2 maps Cσ6 to Cσ4 and one can replace F by F ′ := FC2; in
both cases we get back to the case when |RF ′ ∩ Cσ4| = 3.

Thus we now assume |RF ∩ Cσ4| = 3. Moreover, we may assume that the
following matrices from Cσ4 + 0 0

0 0 −
0 + 0

 ,

 − 0 0
0 0 +
0 + 0

 ,

 − 0 0
0 0 −
0 − 0

 (B.2)

belong to RF . (To see this, replace if necessary F by FC, where C ∈ Cσ1 .) Using
Observation 9, we obtain F11 = −1, F23 = −1, F32 = 1. From this we get by
Observation 8 that also the matrices − 0 0

0 − 0
0 0 +

 ,

 − 0 0
0 + 0
0 0 −

 ∈ Cσ1 , (B.3)

 0 0 +
+ 0 0
0 + 0

 ,

 0 0 −
− 0 0
0 + 0

 ∈ Cσ2 , (B.4)

 0 + 0
0 0 −
− 0 0

 ,

 0 − 0
0 0 −
+ 0 0

 ∈ Cσ3 (B.5)

(B.6)

belong to RF . By Observation 9, we also obtain F22 = F33, F12 = F31 and
F13 = −F21.

1. Claim. There exists also an even permutation σ ∈ Sym(3) for which |RF ∩
Cσ| = 3.
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Proof: Assume for contradiction that, for i = 1, 2, 3, the set RF ∩ Cσi contains
only the respective two matrices from (B.3)-(B.5). Choose a subset B ⊆ RF

consisting of nine affinely independent matrices and such that RF ∩Cσ4 ⊆ B. We
have |B∩Cσ1| ≤ 1, since the two matrices in (B.3) are affinely dependent with the
last two matrices in (B.2). Similarly, |B ∩ Cσ2| ≤ 1, |B ∩ Cσ3| ≤ 1. As |B| = 9, we
deduce that |B ∩ Cσ5| ≥ 2 or |B ∩ Cσ6| ≥ 2. Assume first that |B ∩ Cσ5| ≥ 2. Say,
C 6= C ′ ∈ RF ∩ Cσ5 . Then C and C ′ have the same nonzero entry d ∈ {−1, 1} in
some position (k, l). By Observation 9 this yields Fkl = d. Now, there is also an
even permutation σ for which k = σ(l). By Observation 8 we then deduce that
at least two matrices from Cσ must be in RF , which contradicts our assumption.
The other case |B ∩ Cσ6| ≥ 2 goes analogously.

It is sufficient to consider the case |RF ∩ Cσ1| = 3. Indeed, if |RF ∩ Cσ2| = 3,
then one may replace F by C3FC4 with C3 as in (B.1) and

C4 :=

0 0 +
− 0 0
0 − 0

 ,

since the mapping X 7→ C3XC4 maps Cσ2 to Cσ1 and preserves the set of three
matrices from (B.2), as well as the set of 6 matrices from (B.3)-(B.5) (namely,
(B.3) → (B.5) → (B.4) → (B.3)). One can handle the case when |RF ∩ Cσ3| = 3
in the same way.

The set RF already contains the matrices

D1 :=

− 0 0
0 − 0
0 0 +

 , D2 :=

− 0 0
0 + 0
0 0 −


from Cσ1 (displayed in (B.3)). The remaining two matrices of Cσ1 are

D3 :=

+ 0 0
0 + 0
0 0 +

 , D4 :=

+ 0 0
0 − 0
0 0 −

 .

If D4 ∈ RF , one may replace the facet F by F ′ := D2FD1 to obtain that
D1, D2, D3 ∈ RF ′ , since the mapping X 7→ D2XD1 maps the set {D1, D2, D4} to
{D1, D2, D3} and leaves the set of 3 matrices from (B.2) invariant as well as the
set of 6 matrices from (B.3)-(B.5). Thus we may assume that D3 ∈ RF .

By Observation 9, we find that F33 = F22 = 1. As F22 = 1, Observation 10
implies that F31 = F13. Similarly, F33 = 1 implies that F12 = F21. Putting all
equations together we obtain F12 = F21 = −F13 = −F31 = −F12, implying they
are all zero. Thus

F =

 − 0 0
0 + −
0 + +

 =

0 0 1
1 0 0
0 1 0

B2

0 1 0
0 0 1
1 0 0

 . (B.7)
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B.3 The case |RF ∩ Cσ| ≤ 2 for all σ ∈ Sym(3)

Let again B ⊆ RF consist of nine affinely independent matrices. As |RF | ≥ 9,
|RF ∩Cσ| = 2 for at least three permutations σ. W.l.o.g. we can assume that two
of those permutations are odd permutations and that they are equal, say, to σ4

and σ6 (replacing if necessary F by an equivalent facet). Further we may assume
RF contains the following two matrices of Cσ4 :− 0 0

0 0 −
0 − 0

 ,

− 0 0
0 0 +
0 + 0

 ∈ RF . (B.8)

This can be seen using the following two mappings X 7→ C2XC2 (with C2 defined
as in (B.1)) and X 7→ CX (with C ∈ Cσ1) which permit to map any subset of
size 2 of Cσ4 to any other such subset and which preserve Cσ6 as well. We choose
the basis B containing the two matrices of (B.8). ¿From Observation 9 we find
F11 = −1 and F23 = −F32 6= ±1; the latter inequality follows from the fact that
|RF ∩ Cσ4| = 2 combined with Observation 8. As F11 = −1, by Observation 8, − 0 0

0 − 0
0 0 +

 ,

 − 0 0
0 + 0
0 0 −

 ∈ RF ∩ Cσ1 (B.9)

and Observation 9 implies F22 = F33 6= ±1. At most one of the two matrices in
(B.9) belongs to B since they are affinely dependent with the matrices in (B.8).
Say, |B ∩ Cσ1 | = 1.

Let us now examine which two matrices of Cσ6 belong to RF . Set

C5 :=

+ 0 0
0 − 0
0 0 −

 ∈ Cσ1 , X1 :=

0 0 −
0 − 0
− 0 0

 ∈ Cσ6 .

The two mappings X 7→ XC5 and X 7→ C5X preserve the set of matrices in (B.8)
and permit to map any other matrix of Cσ6 to the matrix X1. Therefore we can
assume w.l.o.g. that X1 ∈ RF ∩ Cσ6 . The second matrix of RF ∩ Cσ6 does not
have entry −1 at the position (2, 2) since, otherwise, F22 = −1 contradicting an
earlier claim. Hence the second matrix in RF ∩ Cσ6 is

X2 :=

0 0 +
0 + 0
− 0 0

 , or X3 :=

0 0 −
0 + 0
+ 0 0

 .

1. Consider first the case when X2 ∈ RF ∩ Cσ6 . Then, F31 = −1 and F22 =
−F13 6= ±1. As F31 = −1, we have 0 + 0

0 0 −
− 0 0

 ,

 0 − 0
0 0 +
− 0 0

 ∈ RF ∩ Cσ3 (B.10)
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and F12 = F23 6= ±1. As B contains at most three of the matrices X1, X2

and in (B.10), we must have |B ∩ Cσ2| = 2 or |B ∩ Cσ5| = 2. We obtained
earlier that F33 = F22 = −F13 6= ±1 and F12 = F23 = −F32 6= ±1. In
other words, the second and third columns of F contain no entry ±1. On
the other hand, the two matrices from B ∩ Cσi (i = 2, 5) have one common
nonzero entry which therefore is located in the first column, at the position
(2, 1). This implies F21 = ±1.

(a) If F21 = 1, then Observation 10 implies F12 = F33 and F13 = −F32.
Combining with the former relations on entries of F , we find

F =

 − 0 0
+ 0 0
− 0 0

 . (B.11)

(b) If F21 = −1, then in the same way we find

F =

 − 0 0
− 0 0
− 0 0

 . (B.12)

In both cases we find that F is equivalent to B1.

2. Consider now the case when X3 ∈ RF ∩Cσ6 . Then, F13 = −1, F22 = −F31 6=
±1,  0 0 −

− 0 0
0 + 0

 ,

 0 0 −
+ 0 0
0 − 0

 ∈ RF ∩ Cσ2 (B.13)

and F21 = F32 6= ±1. In the same way as in the first case one finds that F
is equivalent to BT

1 .

This proves that the facet description of polytope P from Lemma 5.4.1 is indeed
given by (5.10) and (5.11).





Appendix C

Classical entanglement-assisted commu-
nication complexity of inner product

We show here that the classical communication complexity of the inner product
function under shared entanglement is

R∗ε (IPn) ≥ n− 2 log2
1

1−2ε
, (C.1)

where ε > 0 is (a lower bound on) the desired error probability. The proof is via
a reduction from the quantum communication complexity of inner product with
entanglement [65]

Q∗ε(IPn) ≥ 1
2
n− log2

1
1−2ε

. (C.2)

Here Q∗ε(IPn) is the minimum number c such that there is a protocol which
uses arbitrary entanglement, communicates at most c qubits and for every x, y ∈
{0, 1}n it correctly outputs IPn(x, y) with probability at least 1− ε. The bound
(C.1) already appears in [65], but only for the model of one-way communication.
We show that this bound even holds without a restriction on the number of
rounds.

The problem of proving (C.1) came up in a discussion with Ronald de Wolf
who pointed out the following easy reduction to me [104].

Proof: Assume there is an entanglement-assisted protocol P for IPn which needs
at most c̄ classical bits to compute IPn correctly with probability at least 1− ε.
We will show that c̄ must be at least as large as the right-hand side of (C.1).

Consider the following protocol for computing IPkn for inputs x, y ∈ {0, 1}kn:
Chop x into k blocks xi, 1 ≤ i ≤ k, of length n each. Do the same for y. Run
P to compute all instances IPn(xi, yi) and then output

⊕k
i=1 IPn(xi, yi). It is

straightforward to prove (by induction on k) that this protocol P⊗k will correctly
compute IPkn(x, y) with probability

Pr[P⊗k(x, y) = IP (x, y)] ≥ 1

2
+

1

2
(1− 2ε)k. (C.3)
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Further, by assumption protocol P⊗k uses at most kc̄ bits of classical communi-
cation, and it is easy to design P⊗k such that it never uses more than c̄ rounds
of communication.

If P⊗k sends ci classical bits in the i-th round, then this can be simulated with
dci/2e many qubits using superdense coding. Simulating the whole protocol P⊗k

in this way results in a protocol which never communicates more than

c̄∑
i=1

d ci
2
e ≤

c̄∑
i=1

ci+1
2
≤ (k + 1

2
)c̄ (C.4)

qubits, where we used that P⊗k needs
∑c̄

i=1 ci ≤ kc̄ classical bits. From this and
equations (C.3) and (C.2) it then follows that

(k + 1
2
)c̄+ 1 ≥ 1

2
kn− log2

1
1−2( 1

2
+ 1

2
(1−2ε)k)

= 1
2
kn− k log2

1
1−2ε

.

Since this inequality has to hold for any k, we can conclude that c̄ ≥ n−2 log2
1

1−2ε
,

which proves our claim.



Appendix D

Tsirelson’s vector characterization of
XOR games

We now give the proof of Theorem 7.3.1. The proof is originally due to Tsirelson
[94]. In the form we use it here it first appeared in [32]. For convenience we
repeat its statement here.

D.0.1. Theorem (7.3.1, [94, 32]). Let S and T be finite sets, and let |ψ〉 be a
pure quantum state with support on a bipartite Hilbert space H = A⊗B such that
dim(A) = dim(B) = n. For each s ∈ S and t ∈ T , let Xs and Yt be observables
on A and respectively B with eigenvalues ±1. Then there exist real unit vectors
xs and yt in R2n2

such that

〈ψ|Xs ⊗ Yt|ψ〉 = xs · yt,

for all s ∈ S and t ∈ T .
Conversely, suppose that S and T are finite sets, and xs and yt are unit vectors
in RN for each s ∈ S and t ∈ T . Let A and B be Hilbert spaces of dimension
2dN/2e, H = A⊗B and |ψ〉 be a maximally entangled state on H. Then there exist
observables Xs and Yt with eigenvalues ±1, on A and B respectively, such that

〈ψ|Xs ⊗ Yt|ψ〉 = xs · yt,

for all s ∈ S and t ∈ T .

The following version of the proof seems not to have appeared in the literature
before and I am grateful to Ben Toner [92] and Richard Cleve [27] for sharing it
with me.

Proof: “→” We start with the first part. Define

|xs〉 = Xs ⊗ I|ψ〉 ∈ Cn2

(D.1)

|yt〉 = I ⊗ Yt|ψ〉 ∈ Cn2

(D.2)
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and define1 xs, yt ∈ R2n2
as

xs = (Re(xs,1), . . . , Re(xs,n), Im(xs,1), . . . , Im(xs,n))T (D.3)

yt = (Re(yt,1), . . . , Re(yt,n), Im(yt,1), . . . , Im(yt,n))T (D.4)

By construction we then have

xs · yt = 〈ψ|Xs ⊗ Yt|ψ〉.

Further,
xs · xs = 〈ψ|(Xs ⊗ I)†(Xs ⊗ I)|ψ〉 = 〈ψ|ψ〉 = 1,

since Xs has eigenvalues ±1. Similarly, yt · yt = 1, which establishes the first
direction of the proof.

“←” Recall the definition of the Pauli matrices

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
I =

(
1 0
0 1

)
, (D.5)

which obey the commutation relations XY = −Y X, ZX = −XZ and Y Z =
−ZY . Further, X2 = Y 2 = Z2 = I2.

For i = 1, . . . , N we define Gi ∈ C2dN/2e×2dN/2e by setting

G2k+1 = Z⊗k ⊗ Y ⊗ I⊗(dN/2e−k−1)
2 , if i = 2k + 1 with k ∈ N

G2k = Z⊗k ⊗X ⊗ I⊗(dN/2e−k−1)
2 , if i = 2k with k ∈ N

The Gi are hermitian and satisfy the relations

{Gi, Gj} = GiGj +GjGi = 2δi,j. (D.6)

(Remark: The Gi are generators of a Clifford algebra). We set

Xs = xs,1G1 + · · ·+ xs,NGN

Yt = yt,1G
T
1 + · · ·+ yt,NG

T
N

and note that they are also hermitian. Then by (D.6) we get that

X2
s =

N∑
i,j=1

xs,ixs,jGiGj =
N∑
i=1

xs,ixs,iI⊗dN/2e2 = I2dN/2e

and similarly
Y 2
t = I2dN/2e .

1For convenience we will use superscripts for the entries of a vector in this proof, whereas in
the rest of this thesis we use subscripts for the entries of vectors.
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Hence, all Xs and all Yt have eigenvalues ±1. For the maximally entangled state

|ψ〉 = 2−dN/2e/2
2dN/2e∑
i=1

|i〉A|i〉B

we calculate

〈ψ|Xs ⊗ Yt|ψ〉 =
2dN/2e∑
i,j=1

xs,iyt,j〈ψ|Gi ⊗Gj|ψ〉

= 2−dN/2e
N∑

i,j=1

xs,iyt,j Tr(GiGj)︸ ︷︷ ︸
=2dN/2eδi,j

=
N∑
i=1

xs,iyt,i

= xs · yt

This proves the second part of the theorem.
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Samenvatting

Quantum computers lijken mogelijkheden te hebben die verder gaan dan die van
klassieke computers. Een voorbeeld dat belangrijk is voor de cryptografie, is dat
quantum computers veel sneller grote getallen kunnen factoriseren dan mogelijk
lijkt op klassieke machines.

Om daadwerkelijk een quantum computer te kunnen bouwen, is het noodza-
kelijk om voldoende preciese hardware te bouwen, wat een grote uitdaging is. In
Deel I van dit proefschrift bewijzen we ondergrenzen op de noodzakelijke pre-
cisie van de hardware die nodig is voor quantum computers. We presenteren ook
analoge resultaten voor klassieke computers.

Eén middel dat quantum computers wel, maar klassieke computers niet hebben,
is entanglement. In Deel II bestuderen we bepaalde algemene aspecten van en-
tanglement in termen van XOR-spelen en niet-localiteit.

Part I: Limits on fault-tolerant quantum and classical computation

Op dit moment zijn quantum algoritmes alleen snel in theory, aangezien we ver
verwijderd zijn van het daadwerkelijk bouwen van quantum computers die groot
genoeg zijn om grote instanties van die problemen (zoals factorisatie) op te lossen.
Dit is ondanks een krachtige inspanning van de natuurkundigen de afgelopen
tien jaar. De reden hiervoor is dat quantum computers uit heel kleine compo-
nenten moeten worden opgebouwd om quantum effecten te kunnen laten zien.
Het bouwen en manipuleren van zulke kleine componenten is moeilijk, en het
is waarschijnlijk onmogelijk om dit geheel foutloos te doen. Niet goed func-
tionerende componenten bevatten “ruis”. Het is tamelijk verassend dat het nog
steeds mogelijk is om willekeurig lange quantum berekeningen te doen zelfs wan-
neer de componenten wat ruis bevatten. Helaas is het op dit moment onmogelijk
om hardware te bouwen die voldoende precies is voor grootschalige quantum
berekeningen.

In Deel I van dit proefschrift laten we bepaalde minimum vereisten zien voor
de precisie van quantum hardware, door bovengrenzen te bewijzen op de ho-
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eveelheid ruis die quantum computers kunnen tolereren. We laten de volgende
bovengrenzen zien op de tolereerbare hoeveelheid ruis:

1. In Hoofdstuk 3 behandelen we circuits waarin de poorten (“gates”) fan-
in hoogstens k hebben, waarbij elke ingaande draad (“input wire”) met
kans 1 − 1/k verwijderd wordt (zogenaamde “erasure noise”). We laten
zien dat het al na een constante hoeveelheid tijd onmogelijk wordt om twee
verschillende begintoestanden van elkaar te onderscheiden met een meting
op één qubit. Voor circuits van polynomiale grootte kan na logarithmische
tijd zelfs een meting op alle qubits de twee begintoestanden niet meer van
elkaar onderscheiden.

2. In Hoofdstuk 4 analyseren we circuits die opgebouwd zijn uit vrijwel perfecte
1-qubit poorten, en willekeurige unitaire k-qubit poorten waarvan elk van de
k ingaande draden 1−

√
21/k − 1 depolariserende ruis ondergaat. We laten

zien dat na constante tijd geen enkele één-qubit meting twee verschillende
begintoestanden nog kan onderscheiden. Voor het interessante geval k = 2
is onze bovengrens op de ruis 35.7%.

3. In Hoofdstuk 5 laten we zien dat circuits die zijn opgebouwd uit zoge-
naamde “stabilizer gates” (Hadamard, Phase, CNOT, metingen in de com-
putationele basis, en preparaties van computationele basis-toestanden) en
willekeurige 1-qubit poorten met depolariserende ruis van minstens θ̂ =
(6− 2

√
2)/7 ≈ 45%, efficiënt door een klassieke computer gesimuleerd kun-

nen worden.

In Hoofdstuk 6 analyseren we ruis in klassieke computers. In moderne computers
treden zo weinig fouten op dat de problemen van fout-correctie en fout-tolerantie
grotendeels genegeerd worden. Echter, wanneer de grootte van nieuwe hardware-
componenten blijft krimpen, dan zullen fouten steeds waarschijnlijker worden, en
wordt het belangrijk om hier goed mee om te gaan.

4. We laten een drempelwaarde zien op de tolereerbare hoeveelheid ruis voor
berekeningen met formules bestaande uit poorten met 2 inputs, en ε ruis
per poort: fout-tolerante klassieke berekening is mogelijk dan, en slechts
dan, als ε < (3−

√
7)/4 ≈ 8.856%.

Part II: Entanglement and interactive proof systems

In Hoofdstuk 7 bestuderen we spelen (“games”) tussen een “verificator” en twee
“bewijzers”. Tussen de twee bewijzers kan entanglement bestaan. In deze spelen
stuurt de verificator vragen naar de bewijzers, die het spel winnen als ze deze
vragen correct beantwoorden. Spelen zoals deze vormen de basis van alle in-
teractieve bewijssystemen met meerdere bewijzers, maar ze hebben ook andere
toepassingen. Voor spelen van een bepaald type, namelijk zogenaamde “XOR
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spelen”, laten we een perfecte parallelle repetitie stelling zien: de maximale kans
waarmee de bewijzers een aantal simultaan gespeelde XOR spelen kunnen win-
nen, is precies gelijk aan het product van de maximale kansen waarmee ze de
individuele spelen kunnen winnen. Dit is een opmerkelijke eigenschap van en-
tanglement, aangezien zo’n stelling niet waar is wanneer de bewijzers klassiek
zijn. Bovendien zijn quantum XOR spelen de enige soort spelen waarvoor op dit
moment een perfecte parallelle repetitie stelling bekend is.

In Hoofdstuk 8 analyseren we een ander aspect van entanglement. Entan-
glement staat twee gescheiden partijen toe om niet-locale correlaties te hebben,
d.w.z. correlaties die niet verklaard kunnen worden door een lokale klassieke theo-
rie met verborgen variabelen. Tsirelson heeft een bovengrens laten zien op de
sterkte van dit soort correlaties, met behulp van de axioma’s van de quantum-
mechanica. Zijn grens staat bekend als “Tsirelson’s bound”. In Hoofdstuk 8
laten we zien dat een zwakkere versie van Tsirelson’s bound kan worden afgeleid
uit bepaalde algemene plausibele aannames over de wereld, zonder de axioma’s
van de quantummechanica zelf te gebruiken. Het doel hierbij is om bepaalde
verrassende gevolgen van de quantummechanica te verklaren, met gebruik van
zwakkere aannames over de werkelijke wereld. De aanname die we gebruiken is
de volgende: wanneer twee gescheiden partijen die elk een deel van de invoer
bezitten samen een functie willen berekenen, dan moeten ze over het algemeen
meer dan één bit communiceren.





Abstract

Quantum computers seem to have capabilities which go beyond those of classical
computers. A particular example which is important for cryptography is that
quantum computers are able to factor numbers much faster than what seems
possible on classical machines.

In order to actually build quantum computers it is necessary to build suf-
ficiently accurate hardware, which is a big challenge. In part I of this thesis
we prove lower bounds on the accuracy of the hardware needed to do quantum
computation. We also present a similar result for classical computers.

One resource that quantum computers have but classical computers do not
have is entanglement. In Part II of this thesis we study certain general aspects
of entanglement in terms of quantum XOR games and non-locality.

Part I: Limits on fault-tolerant quantum and classical computation

At the moment, quantum algorithms are only fast in theory, since we are a long
way from building quantum computers large enough to solve large instances of
these problems (for example factoring). This is despite a decade-long, concen-
trated effort by experimental physicists. The reason is that quantum computers
must be built from very small components in order to exhibit quantum properties.
Building and operating on these small components is hard and is probably not
possible without faults. Faulty devices are also called “noisy”. Rather surpris-
ingly, it is still possible to do arbitrarily long quantum computation even if the
physical devices used are not perfect but slightly noisy. Unfortunately, currently
it is not possible to build hardware which is accurate enough to allow large-scale
quantum computation.

In Part I of this thesis we show minimum requirements on the accuracy of
quantum hardware, by proving upper bounds on the amount of noise tolerable
for fault-tolerant quantum computation. We show the following upper bounds on
the tolerable noise rates:
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1. In Chapter 3 we consider circuits with arbitrary gates of fan-in at most k,
in which each wire is subject to more than 1− 1/k erasure noise. We show
that already after a constant amount of time it is impossible to distinguish
any two input states by a single-qubit measurement. For polynomial-size
circuits it is impossible to distinguish any two input states by measurements
on all qubits after time which is logarithmic in the size of the circuit.

2. In Chapter 4 we analyze circuits built with almost perfect 1-qubit gates
and arbitrary k-qubit unitaries in which all incoming wires are subject to
at least 1 −

√
21/k − 1 depolarizing noise. We show that after a constant

amount of time no single-qubit measurement can distinguish any two input
states. For the interesting case k = 2 our bound becomes 35.7%.

3. In Chapter 5 we show that circuits built from stabilizer gates (Hadamard
gate, Phase gate, CNOT, measurements in the computational basis, prepa-
ration of computational basis states) and arbitrary 1-qubit gates with de-
polarizing noise at least θ̂ = (6−2

√
2)/7 ≈ 45% can be efficiently simulated

on a classical computer.

In Chapter 6 we analyze noise in classical computation. Faults happen in mod-
ern computers so rarely that the problem of error-correction and fault-tolerance is
nowadays essentially ignored. However, if hardware engineers continue to shrink
the size of components, faults will become more likely and it will be important
to know how to cope with them.

4. We show a threshold on the tolerable noise for computation by formulas
with ε-noisy 2-input gates: Fault-tolerant classical computation is possible
if and only if ε < (3−

√
7)/4 ≈ 8.856%.

Part II: Entanglement and interactive proof systems

In Chapter 7 we consider games played between a verifier and two (possibly
entangled) provers. In these games the verifier sends questions to the provers, who
win if they can answer them correctly. Games like this are the basis of all multi-
prover interactive proof systems, but they also have many other applications.
For certain types of games, namely quantum XOR games, we show a perfect
parallel repetition theorem: The provers’ optimal success probability for winning
a collection of quantum XOR games played simultaneously is equal to the product
of the success probabilities of the individual games. This is a remarkable feature of
entanglement, since for classical XOR games a perfect parallel repetition theorem
does not hold. Further, quantum XOR games are the only kind of games which
are currently known to obey a perfect parallel repetition theorem.

In Chapter 8 we analyze a different feature of entanglement. Entanglement
allows two separated parties to exhibit non-local correlations, i.e., correlations
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that cannot be explained by any classical local hidden-variable model. Tsirelson
proved an upper bound on the strength of these correlations, using the quantum
mechanical axioms. His bound is known as Tsirelson’s bound. In Chapter 8 we
show that a weaker version of Tsirelson’s bound can be derived from some general
plausible assumptions about the world, without invoking the axioms of quantum
mechanics themselves. The aim is to explain certain surprising consequences
of quantum mechanics, using plausible assumptions about the real world. The
assumption we use is the following: Two separated parties Alice and Bob need
to communicate in general more than one bit, in order to compute the value of
a Boolean function for which some of the input bits are in Alice’s possession and
some in Bob’s.
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