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Chapter 1

Introduction

A key property of the human language faculty is the capacity to produce and compre-
hend a large and indeVnite number of diUerent expressions which are assembled from a
fairly small inventory of memorized words. Natural language allows the combination of
words into phrases and clauses and these can be organized into hierarchically structured
complex sentences. In order to cope with this expressivity, language learners must be
capable of generalizing acquired linguistic knowledge beyond their immediate experi-
ence. Explaining the nature of such generalizations and how they can be accomplished
is a central endeavor for any theory of language acquisition.

1.1 Computational models in language acquisition

Theories of language acquisition are intimately tied to theories of language. Theories
of language characterize the acquirendum, the kind of linguistic property or knowledge
that is being learned and generalized. The processes of learning and generalization as
such are then investigated by theories of acquisition. The reliance of theories of ac-
quisition on theories of language is inevitable since a theory of acquisition needs to
be informed by a theory of language about which aspects of language are general pat-
terns and not merely rote forms. Thus, theories of language provide the conceptual
and theoretical scaUold in the very description of the learning and generalization tasks
studied by theories of acquisition.1 As a consequence, the study of language acquisi-
tion inherits many assumptions about the acquirendum and the nature of a learner’s
linguistic knowledge from theories of language. In English, for example, subject-auxil-
iary inversion occurs in a variety of utterance types such as yes/no-questions (Did they
win?), counterfactual conditionals (Had he left Vve minutes later, he would have missed
the train), exclamatives (Wow, does that taste good!), comparatives (He has ventured
further than have his contemporaries), and several others. Subject-auxiliary inversion

1As Pinker (1990) has put it succinctly, “to understand how X is learned, you Vrst have to understand
what X is.”

1



2 Chapter 1. Introduction

is regarded as a purely syntactic generalization in approaches to language which em-
phasize the autonomy of syntax (Newmeyer, 2000). In constructivist approaches, on
the other hand, subject-auxiliary inversion is characterized as a grammatical category
held together by semantic and pragmatic functional similarity (Goldberg, 2006). In
the former framework, what must be explained by a theory of acquisition is how (and
whether) a single, all-encompassing grammatical movement rule can be induced from
linguistic input. According to the latter view, it must be explained how (and whether)
a grammatical category can be abstracted from lexically-specific patterns of inversion
by means of ‘functionally-based distributional analysis’ of the input (Tomasello, 2003).
Thus, both characterizations of the generalization task are shaped by assumptions from
distinct theories of language, and these assumptions enter into the formulation of ex-
perimental hypotheses and design, and often determine in a subtle way how behavioral
data should be interpreted.

In this way, language acquisition theory is strongly inWuenced by linguistic theory;
a theory of language isolates and describes properties of natural language that a learner
must come to know, a theory of acquisition collects behavioral data and evaluates the
stipulations of linguistic theory against this data.2 In the above example of subject-
auxiliary inversion, a movement-rule account might predict category-general knowl-
edge and the absence of errors in children’s data. Children, however, make inversion
mistakes and movement accounts need to be repaired by explaining errors in terms of
several rules and their occasional misapplication. Moreover, Rowland and Pine (2000)
found that children make lexically-specific errors in subject-auxiliary inversion which,
arguably, contradicts the idea of knowing a category-general movement rule. Their
analysis suggests that children learn subject-auxiliary inversion in wh-questions item
by item and develop more abstract generalizations later on. The functional-construc-
tivist approach to subject-auxiliary inversion, to which Rowland and Pine subscribe, is
consistent with their data. Conversely, the data is inconsistent with an acquirendum
posited by a speciVc theory of language—i.e., subject-auxiliary is governed by move-
ment rules—which might thus be rejected in this domain. An explanatory relationship
is established between a linguistic theory and acquisition data by this kind of analysis.
But this relationship is conceptual in nature, not causal. It does not answer the crucial
question how adult-like generalizations can be acquired based on linguistic experience.
It also does not answer whether the functionally deVned category of inversion construc-
tions is psychologically real in language processing. Most importantly, a constructivist
characterization of the acquirendum by itself does not enable quantitative predictions
which could be tested independently.

These shortcomings result from the failure to specify themechanisms and processes
subserving the acquisition and generalization of inversion. In other words, there can
be no satisfactory explanation growing out of a theory of acquisition plus developmen-
tal data, without an account of how the human language processor is aUected by the

2Of course this picture is a dramatic oversimpliVcation of the often intricate reciprocal relationship of
linguistic theory and theories of acquisition in natural language research.



1.1. Computational models in language acquisition 3

properties of the input language according to linguistic theory (e.g., the functional sim-
ilarity of inversion constructions), and how this processor causes the observed data.
This is, I believe, the main reason why we need to supplement theories of acquisition
with the study of learning and generalization in the framework of computational mod-
els (Figure 1.1). Computational mechanisms of learning and generalization can establish

Acquisition 
Data

Properties of
Language 

Language
Processor

Computational
Mechanism

Theory of
Acquisition

Linguistic
Environment

causes

tests

models

explains?

informs

shape

predicts

input

input
describe

Figure 1.1: The role of computational models in the study of language acquisition.

an explanatory link between a theory of language and acquisition data by providing
answers to how questions. How do properties of natural language (according to linguis-
tic theory) aUect the human processor and how does the processor cause the observed
behavior in acquisition? Rowland and Pine argue, for instance, that the error patterns
they observed in children are best explained by the frequency of inversion patterns in
the learning environment which give rise to lexically-specific knowledge. This claim is
diXcult to test in a verbal theory of acquisition, but it could be tested in a computational
learning model which is sensitive to distributional properties of the input. Such a model
could help bridge the gap between input data and observed developmental data and thus
validate a speciVc theory of acquisition. Moreover, computational models are formally
precise, consistent theories themselves, which do not leave components unexplained or
underspeciVed (else the model could not produce any useful behavior). These properties
are particularly desirable when due to their inherent vagueness several verbal theories
appear to be in line with some acquisition data. On the downside, computational mod-
els are often highly simplifying and can not implement verbal theories precisely and in
every detail. Hence, they usually do not cover the full range of data explained by the-
ories of acquisition. Unlike such theories, however, computational models allow novel,
quantitative predictions which in turn can be tested in behavioral experiments and this
can help justify a particular theory of acquisition.3

3Models are not only heuristic tools in the justiVcation of theories but also in their very discovery
(Gigerenzer, 2000).



4 Chapter 1. Introduction

1.2 Why neural networks?

When motivating the use of neural networks over other kinds of architectures, fre-
quently the particular strengths of connectionist systems in modelling aspects of human
cognition are invoked. For instance, neural networks deal well with noisy input and lo-
cal malfunction, causing ‘graceful degradation’ instead of catastrophic failure. They
can learn graded category membership, attend to subtle statistical regularities, satisfy
multiple, conWicting constraints, and so forth. Although these properties clearly are ad-
vantageous in modelling language processing, there are other, more mundane reasons to
study syntactic development with neural networks: these models can learn from natural
language input and they develop syntactic representations in an autonomous, self-or-
ganizing manner. As was argued above, in verbal theories of language acquisition, it is
diXcult to describe generalization tasks of a human learner without adopting a speciVc
theory of syntax to characterize the task itself. Statistical learning models such as neural
networks allow us to study the mechanisms of linguistic generalization in a less theory-
dependent way. This is because they learn from language corpora by domain-general
algorithms. No explicit, language-specific programming is required, the ‘program’ of
the model is found by adjusting its free parameters adaptively. Specifying the model’s
learning environment, input/output encoding, and learning procedures does not involve
theory-laden assumptions about the syntax underlying the target language. Neural net-
work models ‘Vnd’ syntactic representations autonomously in the process of generating
a solution to a computational problem and these representations are not preconceived
by the experimenter nor do they necessarily map onto the syntactic categories postu-
lated by descriptive linguistics. Because of domain-general learning and the autonomy
of representations, neural network models prima facie are ideally suited for modelling
syntactic development and sentence processing.

Neural networks are often advertised for their neurobiological plausibility. These
models are an attempt at emulating information processing in the human central ner-
vous system. It should be pointed out, however, that the artiVcial systems studied in
this thesis are perhaps no more neurobiologically accurate models of the brain than
the Dutch telephone system, or the World Wide Web with its ‘highly interconnected’
computing units and ‘massively parallel’ Wow of information. This is because artiVcial
neurons and their connection weights do not adequately model the biochemical and
bioelectric properties of living neurons and their synaptic connectivity (see also Section
2.3.3); nor do they reWect the variety of cell types in the nervous system. But compu-
tational models should not seek to replicate reality in all its vast complexity. Rather
they should make helpful abstractions and reasonable simpliVcations to isolate critical
aspects of reality. One such aspect is the way in which information is processed concur-
rently by simple computational units through activation spread and signal transforma-
tion, without central control, and without manipulating explicit data structures. Control
is achieved through communication and coordination between individual cells. This bi-
ological ‘model of computation’, although implemented in networks of highly simpliVed
neurons, I believe, captures the essence of computational processes in the human brain.
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Yet, whether abstracting away from a myriad of other, more speciVc properties of real
neurons and how they exchange information is appropriate for artiVcial networks to
yield cognitively plausible linguistic behavior is an entirely diUerent question. It is one
that can only be addressed experimentally, and the present thesis hopefully contributes
to investigating this issue.

While neural networks are widely considered suitable models for ‘low-level’ cog-
nitive functions (such as memory, attention, perception, recognition, category learning,
and motor control), they are also widely considered ill-suited for modelling ‘representa-
tionally-intense’ cognitive functions such as language processing, reasoning and deci-
sion-making. In the literature, neural networks have been heavily criticized speciVcally
for their inability to generalize linguistic knowledge in human ways—due to, e.g., the
nature of their syntactic representations (Fodor and Pylyshyn, 1988), their overreliance
on statistical information (Marcus, 1998, Marcus et al., 1999), and their failure to be be-
have systematically (Hadley, 1994, 2004, Fodor and McLaughlin, 1990). Furthermore, it
has been argued that neural networks generalize in empirically incorrect ways (Pinker
and Prince, 1988) and that they are downright unsuitable for explaining syntactic gen-
eralization, because they do not represent syntax at all.4 The present thesis partially
grew out of my dissatisfaction with these negative verdicts which are often based on
speciVc neural network models and might not extend to all connectionist systems. I
aim to show that the Dual-path model, studied in this work, displays interesting gen-
eralization behavior which makes it a suitable computational platform for investigating
human syntactic development and sentence processing.

1.3 Thesis outline

This manuscript is organized as follows. In Chapter 2, I begin giving a brief overview
of results that characterize the properties of neural networks as mathematical objects.
By identifying their computational capacities these models can be related to the formal
complexity of artiVcial string languages. The issue of learning such languages from
Vnite data will be considered before I turn to studies which replaced string languages
with more naturalistic input. In both domains I focus mainly on work with the sim-
ple-recurrent network model of Elman (1990, 1991) which has been used extensively in
studying the acquisition of complex sentence structure, although other models will be
discussed too. In particular, I will review the seminal approach of Christiansen (1994)
and Christiansen and Chater (1999b), to provide a neural network account of recursion
in human performance. The chapter serves to map out the conceptual landscape in
which the current work is located.

Although the simple-recurrent network model yielded important insights into how
complex syntactic structure could be learned from temporally extended data, I will ar-
gue that the model is limited in a number of ways. The construction and use of meaning

4Harald Clahsen in personal correspondence, June 2007.
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is essential in child language acquisition and adult processing and neural network mod-
els need to incorporate this dimension of human linguistic behavior. Enriching such
models with semantic information transforms the computational learning problem from
grammar induction into meaning-form transduction. The Dual-path model is a model
of sentence production and syntactic development which is able to represent sentence
meaning and incrementally map it onto a sentence form (Chang, 2002; Chang, Dell, and
Bock, 2006). It learns from exposure to sentences paired with their meaning. I explain
the architecture of the Dual-path model in Chapter 3, motivate critical assumptions be-
hind its design, and discuss past research using this model.

Chapter 4 describes and compares several extensions of the basic Dual-path model
to accommodate the processing of multi-clause utterances. These extensions are eval-
uated against computational desiderata, such as good learning and generalization per-
formance and the parsimony of input representations. A single-best solution to encod-
ing the meaning of complex sentences with restrictive relative clauses will be isolated,
which forms the basis for all subsequent simulations. This chapter should be viewed as
establishing necessary architectural preliminaries rather than containing novel insights
into human sentence processing.

After determining suitable semantic representations for complex events which al-
low the Dual-path model to produce sentences with embedded clauses, I analyze the
model’s learning dynamics in detail in Chapter 5. In the Vrst part of this chapter, I
examine the model’s diUerential performance on distinct structures in the input. Syn-
tactic alternations prove to be particularly diXcult to learn because they complicate the
meaning-to-form mapping the model has to acquire. In the second part, I probe the
internal representations the model has developed in learning the target language. By
inspecting activation patterns at individual layers during processing, it can be demon-
strated that the model induces grammatical categories over word sequences, and assigns
thematic roles to sentence constituents incrementally. I also investigate whether the
model represents phrase structure, verb argument structure, and the clausal structure
of complex utterances. It is argued that traditional phrasal categories are not detectable
but that the model acquired the argument structure of the construction types in its input
language. Furthermore, it is shown that the Dual-path model represents the hierarchical
organization of distinct multi-clause utterances.

The juice of this dissertation is contained in Chapters 6–8. In Chapter 6, the Dual-
path model’s generalization capacities are put to the test in a variety of tasks. First, I
show that the model’s syntactic representations allow the transfer of knowledge be-
tween clauses, which is a precondition for generalizing basic constructions to more
complex constructions. The artiVcial language and corresponding meaning represen-
tations are extended to sentences with up to four nested relative clauses. I demonstrate
that the Dual-path model can assemble novel multi-clause utterances with several em-
beddings from experience of simpler structures. In other words, the model generalizes
structurally. Semantic similarities in the conceptual structure between novel and famil-
iar sentence types play a critical role in this task. It is an important human capacity
to learn words in one syntactic/semantic context and use them in another. The Dual-
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path model is able to generalize familiar lexical items to novel thematic roles, in novel
constructions, at novel levels of embedding. Since most of these constructions are not
experienced in learning, this property might be called super-strong semantic systemati-
city (Hadley, 1994). Humans can also comprehend and produce utterances with a novel
hierarchical organization, they are recursively productive. According to Hauser et al.
(2002), recursion is a core capacity of the human language faculty. I identify learn-
ing conditions under which the Dual-path model displays recursive productivity. It is
shown that the model’s behavior is consistent with human behavior in that production
accuracy degrades with depth of embedding, and right-branching recursion is easier for
the model than self-embedding recursion.

A central issue in language acquisition concerns the question which syntactic con-
structions can be learned from experience and which require some kind of biological
endowment. Complex polar interrogatives—yes/no-questions with relative clauses—
occupy a prominent place in this nature versus nurture controversy. They appear to
be largely absent from child-directed speech and therefore necessitate innate structure-
dependent principles for their learnability. In Chapter 7, I address this issue in the
framework of the Dual-path model. I show that the model can induce the syntax of
complex polar interrogatives piecemeal from simpler and similar structures which are
warranted in a child’s linguistic environment. In the absence of positive exemplars of
the target structure in the input, both lexical and structural generalization are critical
features of the Dual-path model in this task. The model’s errors are compared with
child language data and I argue that the model does not entertain erroneous syntac-
tic hypotheses which would require overt correction or an innate learning bias. As a
consequence, the orthodox formulation of the learning problem that children suppos-
edly face might be ill-conceived. Since the model does not implement a traditional kind
of language-specific universal grammar, these results are relevant to the poverty of the
stimulus debate.

English relative clause constructions give rise to similar orderings of diUerential pro-
cessing in adult comprehension (Keenan and Hawkins, 1987) and language production
in development (Diessel and Tomasello, 2005). This pattern matches the typological
universal called the noun phrase accessibility hierarchy. I propose an input-based ex-
planation of this data in Chapter 8. The Dual-path model displayed the ordering of the
hierarchy in syntactic development when exposed to plausible input distributions. But
it was possible to manipulate and completely remove this ordering by varying proper-
ties of the input from which the model learned. This indicates, I argue, that patterns of
interference and facilitation among input structures can explain the accessibility hierar-
chy in processing and development when all structures are simultaneously learned and
represented over a single set of connection weights in a neural network model.

In Chapter 9, Vnally, I draw conclusions from this work, address some unanswered
questions, and give a brief outlook how this research might be continued. An abstract
precedes each chapter to help the reader keep track of the agenda.





Chapter 2

Recursion in neural networks

In this chapter I review previous research investigating the capacity of neural
networks to represent and learn recursive structure. First, an overview of for-
mal results is given regarding the mathematical properties of widely used neural
network architectures. Then I review the application of such models in the do-
main of grammar induction for string languages of various complexity. Several
computational studies of language learning and processing are discussed which
aimed at showing that neural network models can cope with aspects of complex
sentence structure found in natural language.

2.1 Introduction

When attempting to model natural language processing in neural networks—in partic-
ular the acquisition of recursive syntax—it is a question of immediate interest whether
these models are computationally capable of coping with the amount of structural com-
plexity attributed to natural language in a formal sense. Historically, negative results
on the computational capabilities of neural networks have led to a decline of interest
in these models, for instance, when Minsky and Papert (1969) showed that perceptrons
(the simplest kind of feed-forward network with two layers and a threshold activa-
tion function) could not compute functions which are not linearly separable (e.g., the
XOR-function). Whether other neural network types are computationally adequate for
natural language processing is a complicated issue, the intricacies of which are often un-
derestimated in the ‘symbolism-versus-connectionism’ debate. The spectrum of claims
made in this debate ranges from downright rejection because “connectionist networks
just don’t compute the right kind of functions” to accommodate for natural language
syntax1 to declarations of triviality that “it is a simple matter to prove that neural net-
works can do anything that symbolic processors can do”.2 These quotes indicate that
there is a considerable amount of uncertainty regarding the computational power of

1Ted Briscoe in discussion at the First Scottish-Dutch Workshop on Language Evolution, University
of Amsterdam 2005.

2James Garson in the Stanford Encyclopedia of Philosophy entry on “Connectionism”.
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neural networks. This might be due, partially, to the vast diversity of neural network
architectures that have been proposed, which impedes a straightforward computational
analysis.

2.2 The computational power of neural networks

In the following sections I will give a very brief overview of formal results which
have been obtained in recent years for multi-layer feed-forward and recurrent networks
which, arguably, are the most important architectures used in connectionist natural lan-
guage processing.

2.2.1 Feed-forward networks

Minsky & Papert speculated that their limitative result for perceptrons would also hold
for multi-layer feed-forward networks which was proven wrong in that networks with
additional layers are strictly more powerful (Grossberg, 1973; Rumelhart et al., 1986).
Since then it has been shown that these models can be viewed as ‘universal function
approximators’ in the following sense: let f be any continuous real function from K ⊂
[0, 1]n to (0, 1). Then, for any ε > 0 there exists a multi-layer feed-forward network
with sigmoid activation function such that

E =

∫
K

|f(x)− f̃(x)|dx < ε (2.1)

where f̃ is the function computed by the network andE is the total approximation error.
Thus, f can be approximated by such a network with arbitrary precision. A particularly
simple, constructive proof of this proposition can be found in Rojas (1996), and this result
is based on work by Hornik et al. (1989) and Funahashi (1989). Castro et al. (2000) have
recently extended this result to continuous real functions f : K ⊂ Rn → (0, 1)m and
networks with arbitrary continuous, strictly increasing squashing activation functions.
This is a strong statement about the computational properties of these networks, but it
should not be misconstrued as asserting or entailing that any such function f can be
computed by a feed-forward network. For any degree of precision ε, a network can be
constructed which approximates f to this degree. But for a better approximation ε′ < ε,
more hidden units must be invested; no single network is suXcient to approximate f
to any desired degree of accuracy. Thus, proposition (2.1) assumes that networks can
be constructed using unbounded resources. Moreover, the procedure for determining
the parameters of a network (hidden units, weight size, etc.), which may be called the
‘learning problem’, is not eXcient but NP-complete (see Rojas, 1996). Nonetheless, (2.1)
indicates that the functional relationships which multi-layer feed-forward networks can
represent are very complex. Consequently, it should be considered an analytic principle
of connectionist language processing that any failure of such models in application must
be due to inappropriate learning, an inadequate ‘phenotype’ (e.g., too few hidden units),
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or the lack of functional relations between input and targets in the training set (cf.
Hornik et al., 1989).

2.2.2 Recurrent networks

Natural language exhibits many relationships between sentence constituents, for in-
stance noun-verb agreement, pronominal and anaphoric binding, co-reference, verb-
argument structure, and quantiVer scope. These relationships are often complicated
through complex syntactic constructions such as relative clauses, complement clauses,
and conjunctive subordination/coordination, creating long-distance dependencies. Be-
cause of its hierarchical clause structure, language is more than a linear arrangement of
words. But sentences are processed sequentially over time. It is therefore a major chal-
lenge for any model of natural language processing to explain how complex relation-
ships between constituents can be represented and learned from temporally extended
data. One way to approach this problem is by representing time ‘spatially’ through
storing the sequential input in a separate memory system. Recurrent neural networks,
on the other hand, track dependencies in temporal data through feedback connections.
This recurrence creates a dynamic short-term memory of the previous activation states
of units in the network. In that these states inWuence the network’s input-output map-
ping, the temporal properties of sequentially presented data become encoded in the
network’s internal representations during learning. Thus, time is represented implicitly
“by the eUect it has on processing and not as a separate dimension of the input” (Elman,
1990, p. 180). As opposed to other more limited architectures, recurrent networks there-
fore lend themselves as particularly suitable for modelling aspects of natural language
processing.

The recurrent neural networks (RNN for short) I consider here are n-dimensional
dynamical systems over a bounded n-cube of reals. Each of the units xj (1 ≤ j ≤ n)
assumes an analog-state in [0, 1] ⊂ R at discrete points in time t ∈ {0, 1, 2, . . .}. The
interconnections between units are given by the set of weights W = {wij ∈ R | 1 ≤
i, j ≤ n} where wij means that unit xj projects to unit xi via a synaptic connection.
Let Θ = {θ1, . . . , θn} be bias constants, χ : R2n → R an excitation function, and
σ : R → [0, 1] an activation function. Initially, at time t = 0, the network is placed in
state x(0) which possibly includes external input at some units. The network is updated
synchronously in parallel. The global network state x(t) = (x1(t), . . . ,xn(t)) ∈ [0, 1]n

for all discrete time instants t = 0, 1, 2, . . . is computed as follows: each unit xj collects
the input xi(t) from all units such that wji ∈ W and computes its subsequent state
according to the equation

xj(t+ 1) = σ(χj(xi(t), wji)− θj). (2.2)

If the excitation function χj is a linear combination of inputs for all units xj , such as
the common dot product χj =

∑n
i=1wjixi(t), the network is called Vrst-order. θj in

(2.2) is a weighted local input from a special constant bias unit. Next, the activation
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function σ is applied to all units’ excitation level, determining the network’s next global
state x(t + 1). Usually, σ is a threshold function in Boolean networks, and a sigmoid
function, such as tanh, the logistic or the saturated-linear function in analog-state net-
works. If the same activation function σ is used for all units, the network is called
homogenous. Recurrence is realized in this model in that weights inW are allowed to
connect units with themselves, recurrent layers are realized by weights between units
in the same layer. Generally, time-delayed connections can occur in RNNs at any of the
network’s units. In simple-recurrent networks (SRN) recurrence is limited to one hidden
layer (Elman, 1990, 1991). The activation spread of a recurrent network can be visualized
by unfolding the temporal delay into space. Thus, for Vxed-length input sequences, a
dynamical RNN can be mimicked by a larger, static feed-forward network (see Figure
2.1). This property is utilized in the backpropagation-through-time learning algorithm
(BPTT, Rumelhart et al., 1986), which is an approximation to ideal gradient-descent er-
ror correction, where blame for a current mismatch would be assigned to the weights
by taking into account the entire input history of the network. But unlike feed-forward
networks, recurrent networks are capable of performing general computations for inputs
of varying length.

Elman-type SRNs typically employ the real-valued, continuous logistic activation
function

σ(χj) =
1

1 + e−χj
(2.3)

where χj is the excitation of unit xj . However, neural networks are implemented on
systems which use Vxed precision arithmetic, e.g., digital computers, so that the net-
work’s activation state and weight memory is Vnitized. Kremer (1995) has shown that
under this assumption SRNs are computationally equivalent to deterministic Vnite-state
machines (FSM).3 For every such FSM there is an SRN which emulates it. Hence, in a
representational sense SRNs are as powerful as any digital computer with Vnite mem-
ory. Whether for a given FSM this SRN can be found eXciently through learning is a
diUerent issue, which depends on the training conditions, learning algorithm and net-
work topology.

Heterogenous, second-order RNNs with unbounded precision (unit output and
weights) were shown to be Turing-equivalent by Pollack (1987). Siegelmann and Sontag
(1991) considerably strengthened this result by demonstrating that there is a Vnite, ho-
mogenous Vrst-order RNN NTU with saturated-linear activation function and rational
weights which is Turing-universal.4 If σ is a threshold function, such RNNs coincide
with FSMs. Thus, contrary to intuition, the multiplicative excitation function used in
Pollack (1987) turned out to be unnecessary.5 The proof in Siegelmann and Sontag (1991)

3The proof in Kremer (1995) considers only SRN with threshold activation functions but has been
extended to sigmoids by Alquézar and Sanfeliu (1995).

4This activation function is piecewise linear σ(x) =

 0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

.

5Modulo polynomial speed-up, multiplicative networks are computationally equivalent to Vrst-order
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is constructive and Neto et al. (1997) provided a construction method for modular RNNs
to compute arbitrary partial recursive functions ψ : N → N. Siegelmann (1999) con-
structed an RNN N ′TU which real-time simulates a universal Turing machine, i.e., it
respects time complexity as well. These results show that under standard idealizations
made in symbolic computation, such as unbounded time and memory, RNNs are equiv-
alent to classical computational paradigms.
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Figure 2.1: (a) An SRN with two hidden units, dotted lines indicate non-learnable copy-
back connections which implement recurrence. (b) The same network unrolled for three
time-steps.

A sigmoid activation function σ injects non-linearity and noise into the network
because no matter how extreme a unit’s excitation level, its response will never be
binary. Interestingly, the RNNs described above remain Turing-universal under such
conditions, confer the proof in Kilian and Siegelmann (1996). Noise becomes highly de-
trimental, however, if it aUects a network in the sense of slightly ‘shaking up’ its global
state during activation spread. Maass and Orponen (1998) showed that RNNs collapse
to the computational capacities of FSMs when subjected to “any reasonable type of
analog noise, even if their computation time is unlimited and if they employ arbitrary
real-valued parameters” (p. 1082). In noiseless environments, such as pure mathematics,
one may wonder what capacities real weights add over rational, i.e., Vnitely describable
RNNs. Granted exponential time, real-weight RNNs are omniscient in that they recog-
nize arbitrary languages over a Vnite alphabet. Restricted to polynomial time and with a

RNNs (confer Chapter 10 of Siegelmann, 1999). Consequently, higher-order networks do not give rise to
a computational hierarchy.
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linear-precision bound on all internal coeXcients, they recognize all and only languages
in the non-uniform complexity class P/poly.6 Hence these RNNs remain super-Turing
even when internal arithmetic operations are dynamically truncated as a function of the
input length (see Chapter 4 in Siegelmann, 1999).

To summarize this brief and highly selective survey, the representational capacities
of recurrent neural networks are very strong in terms of automata-theoretic notions of
computability. Under real-world restrictions such as Vnite precision and Vnite memory,
i.e., in any experimental application, RNNs are equivalent to the class of deterministic
Vnite-state automata (which are an expressive subclass of Vnite-state machines). Thus,
such RNNs can implement any realizable Vnite memory digital computer. This is also
true in ecologically realistic conditions such as the presence of cortical noise. Under
idealized conditions, i.e., as mathematical objects, RNNs are Turing equivalent or even
super-Turing, depending on more Vne-grained assumptions about the nature of param-
eters in these networks as sketched above.

2.3 RNNs and string language learning

To determine the computational properties of RNNs in a mathematically precise fashion
is important to preempt objections against connectionist language processing based on
architectural limitations. A main appeal of neural network models, however, lies in the
capacity of these systems to learn from examples. In learning, the network conVguration
is altered by gradually adjusting the weights in such a way as to enable the network to
map inputs to desired outputs in the training set. At the same time, the network may
acquire dispositions to respond to novel input retaining the transformations encountered
during training. The representations developed by the network through learning may
enable it to functionallymaintain structured information from the training environment
and generalize it to novel stimuli. It is an issue of considerable practical interest whether
recurrent neural networks can deal with the structural complexity of natural language
in this sense of functional learning. While RNNs may in principle be computationally
suitable to perform mappings required for natural language processing, learning this
task from examples may be diXcult or even impossible.

The degree of success in approaching this issue will depend on learning parameters,
RNN topology, and critically on the learning task itself, i.e., the structural complexity
of the target language. A measure of complexity is provided by the Chomsky hierarchy
which is a containment ordering of classes of phrase structure grammars that generate
formal languages of distinct automata-theoretic complexity (Figure 2.2). The task of
learning string languages from the Chomsky hierarchy with neural networks can be
explicated in several ways, the most general deVnition has been given in terms of the
notion of a dynamical recognizer (Pollack, 1991; Moore, 1999). A dynamical recognizerD

6P/poly is the class of languages recognized by a polynomial-time Turing machine with a polynomially
bounded advice function and contains every undecidable unary language. It can be considered a class of
‘eXcient non-computability’.



2.3. RNNs and string language learning 15

Chomsky Hierarchy
Grammar Language Automata Rewrite Rules
Type-0 Recursively Turing machines α→ β, α 6= ε

enumerable
Type-1 Context-sensitive Linearly-bounded, αAβ → αγβ, γ 6= ε

non-deterministic
Turing machines

Type-2 Context-free Non-deterministic A→ γ
pushdown automata

Type-3 Regular Deterministic A→ α and either
Vnite-state automata A→ Bα or A→ αB,

α terminal

Figure 2.2: The Chomsky hierarchy of formal languages. Uppercase letters represent
non-terminals, greek letters represent strings of terminals and/or non-terminals, ε is the
empty string.

for a language L over a Vnite alphabet A consists of a space Rk, a set F = {fa : Rk →
Rk | a ∈ A} of maps, an initial state x0 ∈ Rk and a subset H ⊂ Rk called accepting
set. Let w be a word from A∗, wi its i-th letter and |w| the length of w. DeVne the
compositional map fw := fw|w| ◦ . . . ◦ fw2 ◦ fw1 and let xw := fw(x0). The language
recognized by D is deVned as LD = {w |xw ∈ H}. In other words, D recognizes a
set of words from A∗ if the iteration of maps fwi

for successive letters wi of each w
in the language L, starting from an initial point x0, terminates in a designated region
H of Rk.7 Pollack (1991) demonstrated that a higher-order, cascaded recurrent network,
when trained with backpropagation, was able to induce a dynamical recognizer for a
depth-limited balanced parentheses language. This relation between string acceptance
and neural networks as dynamical recognizers suggests a deVnition of discrete-time
RNNs as neural-state Mealy or Moore machines (Carrasco et al., 2000; Carrasco and
Forcada, 2001).8 After an input string has been processed in its entirety, the RNN signals
acceptance (or rejection) in a designated region of the output space (classiVcation task).
Alternatively, RNN can be trained to predict the next word in a string, including an end-
of-word marker (prediction task).9 For instance, the Elman-type SRN can be deVned as a
neural-state Moore machine and trained to accept all and only the strings w from some
regular language L (see below).

7Note that the set-theoretic ‘complexity’ ofH co-determines the capacity of D, cf. Moore (1999).
8Moore and Mealy machines are equivalent types of Vnite-state automata with output, the former

computes outputs over states, whereas the latter computes outputs over state transitions.
9The prediction task is psycholinguistically more plausible than the classiVcation task which can be

viewed as a grammaticality judgement.
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2.3.1 Regular languages

A large number of studies have investigated the learnability of regular languages by
various types of recurrent networks from Vnite data (commonly referred to as ‘gram-
mar induction’). The SRN model, for instance, was tested on this task by Cleeremans
et al. (1989) and Maskara and Noetzel (1992) used a more potent variant of the SRN in
which the network also had to produce the previous context and current input at each
point in time. More general Vrst-order RNN architectures have been studied by Mano-
lios and Fanelli (1994) and Sanfeliu and Alquézar (1994), second-order RNNs by Pollack
(1991), Giles et al. (1992), Forcada and Carrasco (1995), Watrous and Kuhn (1992), Ñeco
and Forcada (1996), and hybrid or modular RNN architectures by Tiňo and Sajda (1995)
and Gori et al. (1998). Others have focused on methods for algorithmically hard-wiring
second-order RNNs to behave like a deterministic Vnite automaton (DFA for short), e.g.,
Omlin and Giles (1996). The learning capacities of diUerent RNN architectures (includ-
ing SRNs) are compared in Horne and Giles (1995), and Miller and Giles (1993) have
compared the performance of RNNs with the same architecture but Vrst- or second-
order excitation function. From this literature, it appears that second-order networks
are more suitable for the induction of Vnite-state automata; learning times and general-
ization improved when the grammar was complex and these networks were generally
faster and more reliable. A common problem witnessed in several studies mentioned
above was that RNNs were able to behave like a DFA after training but only for short
input strings encountered in training. When tested on longer strings, RNNs were often
not able to generalize the learned behavior. Hidden-state representations started to blur
for longer dependencies and the RNNs became instable in their DFA emulation. Some
of the reasons for this instability have been analyzed by Tiňo et al. (1998) in terms of
dynamical systems theory. One strategy to improve generalization is to adjust the net-
work’s weights manually after learning. Another option is to extract a formal DFA from
the trained RNN dynamics. Such a DFA generalizes perfectly, but the speciVc mode of
network computation is destroyed in this process. Thus, although the RNNs used in the
study of regular grammar induction are in principle representationally capable of em-
ulating deterministic Vnite-state automata, learning such behavior to perfection from
limited data is unreliable for currently known methods of RNN training.

2.3.2 Context-free languages

Natural language viewed as the totality of all past, present and future human linguistic
behavior is Vnite and hence trivially regular. Theories of linguistic competence, on the
other hand, view language as a productively unbounded system of expressions. Con-
temporary linguistic wisdom has it that natural language syntax might be accurately
modelled by mildly context-sensitive grammars (MCSG). These grammars generate a
subclass of the context-sensitive languages which properly includes the context-free
languages (CFL). It is widely believed that at least the expressivity of CFLs is required in
the formal description of natural language syntax to model the property of clausal self-
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embedding. Note, however, that self-embedding, which can be described by a rewrite
rule A → αAβ with α, β 6= ε, does not automatically generate non-regular languages
(see Chapter 6). Conversely, any CFL can be eUectively approximated by transforming
the CFL into a strongly-regular grammar at the expense of generating a superset of the
original language (Mohri and Nederhof, 2001). The use of formal grammars beyond
regularity might therefore be justiVed for reasons of descriptive precision, but also sim-
plicity and parsimony. MCSGs were introduced by Joshi (1995) to model unbounded
cross-serial dependencies in Dutch subordinate clauses while at the same time being
eXciently parseable.10 Typologically, such dependencies are rare, CFLs appear to be
suXciently expressive to model the syntax of more than 99.9% of the world’s languages.
Hence, non-context free languages might be considered necessary mainly to achieve
descriptive universality.

The SRN architecture was used in grammar induction by Cleeremans et al. (1989)
where it was shown that it could behave like a perfect DFA for simple regular grammars.
When the grammar contained long-distance dependencies across embeddings the SRN
could still maintain non-local information about dependent elements when the transi-
tional probabilities in the embeddings co-varied with the identity of the head. Their SRN
approximated a DFA for short strings and accuracy degenerated with more embedded
elements. These results raise the question whether SRN would also be capable of learn-
ing nested, non-local dependencies generated by context-free grammars. This question
has been addressed most notably by Wiles and colleagues in a series of articles. Like
Cleeremans et al. (1989), the learning paradigm they used was the prediction task for
sequentially presented input in a backpropagation SRN. Generally speaking, what they
found was that the SRN could learn Vnite fragments of context-free languages without
emulating memory devices like counters or stacks. For instance, Wiles and Elman (1995)
taught a 2× 2× 2 SRN the simplest context-free language anbn in the following sense.
The network was trained using BPTT for eight time-steps on a set of 356 sample strings
from the language up to depth n = 11, strongly biased towards short strings. In testing,
the network obviously can not predict the exact length of the initial segment of as. But
the network could be considered to perform successfully if, upon the Vrst encountered b,
it predicted the remaining number of bs until the end-of-string marker # was correctly
predicted. This criterion subsumed ‘acceptance’ for formal automata and a rejection re-
sponse could easily be added to the paradigm. In a population of 20 randomly initialized
networks and after being exposed to two million training items, 15 SRN subjects learned
the trivial language a∗b∗ (any number of as followed by any number of bs, the network
parrots its input), four successfully generalized to n = 12 and one to n = 18. The
‘winner’ network accomplished this task by developing a damped oscillation dynamics
around Vxed points in its hidden layer (see Wiles and Elman (1995) for details). Thus,
the SRN locally emulated a pushdown automaton but the computational solution did
not mimic a pushdown stack.11 In the authors’ words, the network dynamics allowed

10In the clause omdat ik Cecilia Henk de nijlpaarden zag helpen voeren, for instance, the
three verbs depend in serial order on the three consecutive noun phrases (Stabler, 2004).

11The approach to connectionist learning of context-free grammars by means of an external stack has
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the SRN to ‘count without a counter’.
Similar results for learning the language anbn were reported in Rodriguez et al.

(1999), Wiles et al. (2001), and Rodriguez (2001) where also the SRN learnability of more
complex context-free languages was investigated. The induced solutions reported in
these studies, however, appear to be quite unstable and unreliable throughout as they
tend to become obliterated again by further training. For example, when training was
extended to three million items in the study of Wiles and Elman (1995), many network
subjects which had generalized earlier converged on a∗b∗ behavior and no subject gen-
eralized to n > 11. The analysis of Bodén et al. (1999) suggests that this is because the
hidden units’ solution space lies close to a bifurcation point which causes Wuctuating
network behavior when trained using any gradient-based weight adaptation.12 Despite
these shortcomings in learning and generalization, it is clear that the SRN of Wiles and
Elman (1995) did not merely internalize the statistical properties of the corpus of input
patterns. Rather, it developed a genuine computational mechanism to solve the task of
learning a context-free language. Using dynamical systems analysis Rodriguez et al.
(1999) argued that the induced mechanism was computationally adequate to process
strings of unlimited length. The counting dynamics could in principle assume an inV-
nite number of states. Insights from this analysis were then used to manually modify
the SRN weights towards a more stable solution which lead to generalization for strings
of depth n = 28 in some trained models. Hence, it seems that SRNs are potentially ca-
pable of learning and representing some non-regular languages to arbitrary depth from
Vnite data.

2.3.3 Context-sensitive languages

Steijvers and Grünwald (1996) investigated whether RNNs could even induce context-
sensitive languages (CSL), speciVcally the simple CSL (ban)m. They handcrafted the
weights of a second-order RNN which was able to perform a prediction task for strings
from this language. The network they developed solved the task for 0 < n ≤ 120
showing that some RNNs are capable of representing some CSLs to considerable depth.
The authors did not address the learning problem for their model, i.e., how suitable
weights could be induced from exposure to sample strings from this language. They
speculate that in general RNNs may not be capable of representing and consequently
learning arbitrary CSLs.

The learning aspect for CSLs in RNNs has been studied by Bodén and Wiles (2000,
2002) using the second-order sequential cascaded networks (SCN) Vrst described in
Pollack (1991). Training with BPTT showed that SCNs could indeed learn to accurately
predict sequences from the CSL anbncn. From experiencing strings of length n ≤ 10
during training, their model generalized to n = 18 in testing. They also attempted to

been explored in Sun et al. (1990) and Das et al. (1992).
12A study of Tonkes et al. (1998) suggested that the seemingly erratic BPTT search for a solution could

be improved—in terms of stability and depth, not necessarily speed—when learning was guided by an
evolutionary hill-climbing algorithm.
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elicit similar performance using an SRN trained with BPTT but failed. Chalup and Blair
(1999, 2003), however, employed an SRN together with an incremental hill-climbing
algorithm in learning the same language anbncn, and found good performance at least
on the training set; the generalization capacities were not tested.

Returning to the CSL (ban)m of Steijvers and Grünwald (1996), Rodriguez (2001)
reported on training an SRN with three hidden units using BPTT for 12 time steps on
length-balanced items with n ≤ 7,m ≤ 10 for 1.29 million sweeps through the training
set. Out of 50 networks, the winning subject managed to generalize all cases of (ban)m

with n ≤ 7 to m > 10. The diXculty in processing this CSL, which is beyond the
means of a single stack, lies in retaining the ‘a-count’ across subsequences. Therefore
m would seem to be the critical parameter to test generalization on, althoughm itself is
not predictable by the network (as opposed to n). Once the SRN has been exposed to the
initial segment ba . . . a it should be able to predict the number of as when encountering
the next b. Unfortunately, Rodriguez did not mention for which m correct prediction
broke down (if at all), which makes it diXcult to assess the generalization capabilities
of the SRN in this task. Furthermore, the network did not generalize to instances of
strings with n > 7 suggesting that the induced a-counter is not fully general. Yet, as in
case of the Wiles and Elman (1995) study, the developed mechanism is computationally
adequate and non-contingent as Rodriguez’s analysis of the network dynamics shows.
The Vrst hidden unit is counting up as, simultaneously the second is counting as down,
and the third unit is reactivating the count of unit one for unit two after each segment
ba . . . a. Again, an idealized solution can be constructed which expands the discovered
dynamics to novel stimuli.

Grammar induction for string languages is an inadequate model of child language
acquisition because the primary target of a human learner is to be able to comprehend
and produce meaningful sentences. Nonetheless, it is a question of considerable theo-
retical importance whether RNN architectures such as the SRN are capable of learning
string languages from a reasonable amount of positive examples using standard training
techniques. The reason is twofold. Demonstrations that they are suitable for this task
provide a ’proof of concept’ that neural network models of language processing are able
to cope with the structural complexity of natural language emphasized in the Choms-
kyan tradition. And secondly, successful grammar induction shows that connectionist
architectures might be capable of developing and generalizing knowledge about purely
structural relationships between constituents despite lacking structured representations
in the sense of Fodor and Pylyshyn (1988).

In the reviewed experiments it was shown that Vrst-order RNNs could learn to uni-
formly behave like a deterministic Vnite automaton when trained in a word prediction
task, and they could learn Vnite fragments of context-free and context-sensitive lan-
guages. These languages were not learned in a strict, automata-theoretic sense. Conse-
quently, the learning and generalization capabilities of RNNs remain controversial and
uncertain at this moment. Further simulations are required to shed light on the relation
between formal grammars and learnable dynamics which is not fully understood. To
all appearances, the failure to reliably learn non-regular languages must be attributed
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mainly to the limitations of the gradient-descent training regime, not the network ar-
chitecture itself. The widespread conviction that RNNs are at most FSMs is false with
certainty in terms of representational competence and false in all probability in terms of
learning performance.

Remark on backpropagation

Many of the simulations mentioned in the previous section used variants of backprop-
agation of error for adjusting the weights in the networks. Severe criticism has been
levelled against the neural plausibility of backpropagation learning (Crick, 1989; Zipser
and Andersen, 1988). Arguably, it is even contradicting neurobiological facts. Most im-
portantly, it has been criticized that in backpropagation learning error terms are not used
locally because there are distinct forward and backward transmission phases. In addi-
tion, it is unclear where the error signal originates from in the Vrst place. For grammar
induction from string languages these points of criticism might not be relevant since
this paradigm lacks psycholinguistic plausibility anyway. However, backpropagation
will also be used in all the network models of complex sentence structure I will discuss
in the remainder of this chapter, and in the Dual-path model which is the experimental
platform in all subsequent chapters. These approaches to syntactic development claim to
be more adequate psycholinguistically and attempt to match model performance against
human data. Thus, it might be worthwhile to brieWy try and defend the use of back-
propagation here. Neurocomputational realism is easy to request but diXcult to deliver
because our limited knowledge of cortical neurobiology does not supply suXcient con-
straints. Primarily, connectionist models are intended to simulate intelligent behavior
not neural activity. The cognitive plausibility of such models is therefore a more impor-
tant desideratum than their neurobiological plausibility. Even though backpropagation
may not be a plausible account of learning in the human nervous system, the resulting
networks may nonetheless perform a task in a cognitively adequate way once they are
trained with it. Secondly, a backpropagation learning trajectory may still accurately
reWect progressive stages in human cognitive development. Hence, backpropagation
learning may be functionally adequate to produce cognitively and developmentally re-
alistic models, despite being neurobiologically implausible as a mechanism for synaptic
change. This is essentially Smolensky’s point, that the ‘proper treatment of connection-
ism’ lies at the behavioral, not the neural level of analysis (Smolensky, 1988).

Particularly in the domain of language acquisition, backpropagation learning must
also be criticized for being ecologically implausible. Language learning is more ade-
quately conceived of as reinforcement learning rather than supervised learning with
explicit error signals. Yet, in very general terms, language learning is a task which
can be described as the eUort to minimize the diUerence between a learning target and
the learner’s behavior, and backpropagation is very suitable for modelling this process.
Consequently, similar to the responses given above, backpropagation can be justiVed
as being useful functionally and adequate extensionally despite being ill-conceived in-
tensionally (i.e., algorithmically). Nonetheless, it would certainly be desirable to re-
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place backpropagation by more realistic accounts of synaptic adjustment in biological
networks in the long run. Several attempts to approximate backpropagation learning
by neurobiologically and ecologically more appealing mechanisms have been made in
the literature, e.g., through contrastive Hebbian learning (Xie and Seung, 2003), rein-
forcement learning (Mazzoni et al., 1991), or recirculation learning (Hinton and McClel-
land, 1988, and further developed by O’Reilly, 1996). Most recently, Grüning (2007)
argued that backpropagation in SRN sequence prediction could be replaced by a rein-
forcement variant, obtaining similar results in simulations of string language learning.
These approaches suggest that the functionality of backpropagation-driven cognitive
models might be achievable in multiple ways.

2.4 RNNs and complex sentence structure

Most theories of syntax view natural language as a system of expressions with constit-
uent structure. Constituents are words or groups of words, such as phrases or clauses,
which function as a unit within a hierarchical sentence structure. On this view, the
syntax of a language speciVes the ‘legal’ relations between constituents within phrases
and clauses, and the type of productive patterns to compose hierarchical structure from
such units. For instance in English the phrase structure rules

(i) NP→ (det) N (PP)
(ii) PP→ prep NP

capture the intuition that noun phrases can be prepositionally modiVed indeVnitely as
in

(1) The laptop on the table by the bookshelf in the library...

and so forth. Sentence (1) is often referred to as a right-branching recursive structure
because in order to instantiate either phrasal form on the right-hand side of each rule, a
call to the other rule is possible in forming grammatical sentences.13 Constituency and
recursion have been acknowledged as two of the most fundamental linguistic notions
even by connectionists (Christiansen and Chater, 2003).

Constituency and recursion are properties of phrase structure rules for generating
sentences, but both syntactic properties are not visible in the surface form. Consider the
simple string language anbn from above. It could have been generated by the recursive
rule of ‘self-embedding’

(iii) S→ aSb
(iv) S→ ab

but it also could have been generated by the instruction ‘write any Vnite number of as

13Note, however, that (i) + (ii) are not an instance of true recursion in which a rule would be called by
itself. Rather, it is a form of iteration, which could be expressed recursively as NP→ (det) N (prep NP).
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followed by the same number of bs’. Similarly, the fact that according to (iii) + (iv)
the nth a and the Vrst b belong to the same ‘clausal constituent’ is not encoded in the
surface form of the strings in this language. An SRN trained on anbn (or a pushdown
automaton, for this matter) could recognize this language without having to recover the
constituent structure or the rules of grammar which generated this language in the Vrst
place. Both models of language processing, the network and the automaton, need not
explicitly represent constituency and recursion but functionally behave as if they did.

In natural language processing, on the other hand, it is widely held that language
users represent the constituent structure of utterances and the syntactic rules of gener-
ation which give rise to this structure. In comprehension, for example, sentences are
presented sequentially to the language processor and their constituent structure must
be recovered from this data. How this can be achieved by virtue of internalized rules
of grammar is a core explanandum of research in natural language processing, such
as parsing in computational linguistics. Many accounts seek to identify mechanisms
of structure-sensitive processing which induce structured representations from sequen-
tial data. It is a fallacy, however, to assume that the abstract structures employed by
descriptive linguistics to capture constituency and recursion (such as syntactic trees
and phrase structure rules) determine the internal representations the human language
processor forms. Moreover, there is no evidence from language processing or acquisi-
tion which suggests that causally eXcacious rules of grammar are mentally encoded as
a stored program which computes representations of sentences (Stabler, 1983). In the
course of learning a language processor might become hard-wired to functionally be-
have in a manner which is consistent with formal rules of grammar without mentally
representing such rules in any form. Combinatorial syntax is rooted in constituency and
generative capacities are rooted in recursive processes. For connectionism it is a central
issue to explain how neural network models of natural language processing can come to
exhibit behavior which reWects combinatorial syntax and generative capacities without
utilizing structured representations and explicit rules of grammar. In this section, I will
describe three connectionist models which have attempted to address this issue in some
way or another.

2.4.1 Recursive auto-associative memory

Pollack (1988, 1990) devised a neural network model of sentence processing called Re-
cursive Auto-Associative Memory (RAAM for short) which provides a straightforward
refutation of the allegation put forth in Fodor and Pylyshyn (1988) that connectionist
systems cannot develop representations of combinatorial structure. A RAAM is a three-
layer, feed-forward, auto-associative network for encoding and storing linguistic rep-
resentations of the constituent structure of complex sentences, such as trees and lists,
through iterated compression of Vxed-width patterns.

Suppose a tree with arbitrary, Vnite depth d has maximal valence k and it takes at
most n bits to represent all nodes of the tree, including the terminal symbols. Then a
kn × n × kn RAAM exists which encodes such a tree using the following procedure.
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First, all terminals (1d, . . . , kd) are presented to the RAAM at its input layer and the
network is trained with standard backpropagation to correctly reproduce them at its
output layer. This process is called auto-association. Thereby, the n hidden units form
a compressed representation CRd of the pattern of terminals. Moving one level up the
tree, the procedure is repeated by auto-associating the pattern of terminals and non-ter-
minals (1d−1, . . . , (k − 1)d−1,CRd), and so on iteratively all the way up to the root.14 In
this manner, the RAAM model concurrently evolves two subnetworks during training,
one for representing and one for recovering complex tree structures. Once trained on a
tree (or a set of trees), the lower part of the RAAM can function as an encoder, whereas
the upper part of the network can function as a decoder.

A concrete example may clarify this process. Figure 2.3 shows a simpliVed phrase
structure tree for a sentence with multiple embeddings. Initially the subtree with termi-
nals Paul loves books is presented to the RAAM which learns to recreate the input
activation pattern on its output. The hidden unit representation of this subtree, denoted
[P/l/b], is fed back to the right-most n-width input cluster (Figure 2.4). The network
then learns to auto-associate the pattern for Mary knew [P/l/b] and so forth until the
whole tree is internally compressed. Upon completion of training, the RAAM has de-
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Figure 2.3: (a) A simple representation of the sentence John thought Mary knew Paul

loved books derived from (b) its phrase structure tree.

veloped a ‘recursive distributed representation’ of the tree at its hidden layer (RDR for
short), which can be systematically recovered, reversing the encoding. Repeatedly feed-
ing such a representation into the hidden units will produce an expansion of the tree by
one degree at the output layer, until the representation is completely decoded back into
the original sentence. This is illustrated in Figure 2.5 (b). Recovery, however, can not

14This applies only to trees which branch at most once at each level and non-existing nodes are rep-
resented by some null-string. The training procedure can be extended to arbitrary trees. First the tree
is turned into a full k-ary tree (where k is the maximal valence) by inserting ‘empty’ nodes. Then all
subtrees are encoded serially at each level.
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be perfectly accurate because the output activation function is a continuously-valued
sigmoid.
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Figure 2.4: A RAAM trained on the terminal subtree of Figure 2.3 (a). Each word is rep-
resented at one input cluster and the model recreates the input pattern at its output. The
pattern is encoded at the hidden layer. On the next training step this compressed rep-
resentation becomes part of the subsequent input pattern Mary knew [P/l/b] (dotted
arrow).

Iterated encoding can accumulate error which causes the decoder to loose track
of the constituent structure to such an extent that it mistakes terminals for non-termi-
nals. Furthermore, the unsupervised hidden layer representations, which become partial
inputs on the next training step, dynamically change from epoch to epoch, so that the
auto-associator is ‘chasing a moving target’ during encoding, and this variation can not
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Figure 2.5: (a) After training the auto-associator, the lower part of the network functions
as an encoder. (b) The upper part functions as a decoder.

entirely be counterbalanced by the error correction algorithm.15 Pollack (1990) trained a
48× 16× 48 RAAM on a set of thirty phrase structure trees with up to four embeddings

15Consequently, criteria must be imposed to decide when a representation is considered decompressed
to a sequence of terminals.
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from a simple language. This language consisted of a “somewhat random collection” of
meaningful English sentences composed from Vve word classes, thing, human, prep,
adj and verb. Despite the shortcomings mentioned above, Pollack was able to show that
the decoder of this RAAM could correctly reproduce all trees experienced in training.
Because of this capacity of RAAMs to retrieve (an approximation of) the full sentence
from a compressed representation, thereby recovering its constituent structure, these
models are functionally combinatorial.

Pollack also demonstrated that RAAMs have some structure-sensitive, albeit lim-
ited, generalization capabilities. The RAAM in the above experiment was not able to
correctly decode representations of novel embedded structures but instead often con-
verged on sentences encountered during training which were within minimal Hamming
distance from the target. However, the network correctly recovered simple clause struc-
tures such as the 16 instances of the transitive scheme ‘X loves Y’ over the lexical items
{John, Mary, Pat, man}, even though most of these sentences were not in the train-
ing set. In other words, the RAAM displayed some systematicity (as characterized in
Fodor and Pylyshyn, 1988).

RAAM applications, extensions, and limitations

A RAAM generates distributed, Vxed-width, real-valued vectors which implicitly en-
code combinatorial structure. Thus, the representations of a RAAM are essentially of
the same data type as the constituents from which they were composed of. It is therefore
interesting to investigate whether RAAMs can perform tasks which require sensitivity
to constituent structure by operating on such representations holistically, without Vrst
decoding them into a sentence form.

This issue was taken up by Chalmers (1990) in an active/passive sentence trans-
formation task. First, a RAAM was trained on a corpus of both active and passive
sentences to produce recursive distributed representations. Then a three-layer feed-for-
ward transformation network was trained to map an RDR of an active sentence onto
an RDR for the corresponding passivized form. To test the tranformation network, an
active sample sentence was encoded using the RAAM. The resulting RDR was fed to
the transformation network to obtain a passive RDR. This RDR was then decoded back
by the RAAM into a passive sentence. Chalmers found that the transformation network
generalized perfectly to novel active/passive sentence pairs when decoding errors in the
RAAM were systematically eliminated. Blank et al. (1992) investigated similar trans-
formation tasks using RAAMs and Chrisman (1991) extended the approach to holistic
computation on RDRs for natural language translation. These studies indicate that neu-
ral network models like the RAAM are capable of developing sensitivity to implicitly
encoded sentence structure without having to extract and then recombine constituents
from the input data.16

16Chrisman (1991) called this feat ‘holistic inference’ which maps “directly from the representations of
a problem to the representations of its answer in a Gestalt fashion” p. 364.
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Two shortcomings of the RAAM architecture appear to impose limitations on its use
as a model of natural language processing. First, the RAAM can only deal with Vxed-
valence trees, and secondly the Vxed-size compression layer restricts sentence length
and depth of embedding. The latter limitation is due to the hidden units’ coarse res-
olution imposed by Vnite-precision calculations. In other words, the hidden layer can
not encode an unbounded amount of information in any concrete implementation. As
Melnik et al. (2000) have argued this is not an architectural constraint. Moreover, it
will lead the RAAM to display behavior which degenerates with the number of con-
stituents in a sentence, a trait which may still adequately reWect human performance.
The former restriction to Vxed-valence trees can be overcome in the sequential recursive
auto-associative memory, or SRAAM. Prior to training, tree structures are transformed
into sequential lists by encoding internal tree nodes. A complex sentence can then be
presented to the network word by word. The hidden layer of an SRAAM functions like
a stack whose content is copied back to the input layer at each point in processing. This
variation of the RAAM architecture closely resembles an SRN and can be trained in a
similar fashion (see Kwasny and Kalman (1995) for details). A combination of recurrent
networks and the RAAM model has also been used in the connectionist parser XERIC
developed by Berg (1992). This system represents sentence structure by learning to as-
sign syntactic roles of X-bar grammar, such as specifier, head and complement, to
constituents. The roles of speciVers and complements can be Vlled by X-bar structures
themselves, hence the XERIC system can in principle cope with embeddings of arbitrary
depth.17

The RAAM model and all discussed variations thereof reWect top-down approaches
to language processing. A network is evolved speciVcally to represent syntactic rela-
tions between locally encoded constituents. Whereas this may prove a useful avenue to
modelling human working memory it might not be a viable approach to modelling as-
pects of learning in connectionist natural language processing. Because of the iterated
training RAAMs experience, they do not by themselves induce hierarchical relations
from temporal sequences but rather require a complex external control structure which
not only stores intermediary representations but ex ante constructs a parse tree for the
particular training sample. This syntactic preprocessing of the linguistic input is nei-
ther removed in the SRAAM model, which operates on sequentially coded trees, nor in
Berg’s parser where X-bar roles are prompted on the output. The RAAM architecture
is therefore primarily a model for the controlled compression of structured data, not for
autonomous structure-sensitive learning.

2.4.2 A subsymbolic parser for embedded clauses

In a series of papers, Miikkulainen developed a comprehension model for sentences
with relative clauses (Miikkulainen, 1990, 1996, 1997; Miikkulainen and Dyer, 1991; Mi-

17In addition, the network was able to perform simple lexical disambiguation regarding word category
and number/person.
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ikkulainen and Mayberry, 1999). It has a modular architecture which combines an SRN
parser with a RAAM memory, controlled by a higher-level, feed-forward segmentation
network. A virtue of this model, which will be described subsequently, lies in its mo-
tivation to provide a connectionist explanation of attested psycholinguistic phenomena
occurring in human processing of embedded structure.

A basic assumption underlying the SRN parser design is that comprehension in-
volves mapping a word sequence into a semantic interpretation which assigns thematic
roles to sentence constituents. The SRN learns to decide which words in an input se-
quence Vll thematic roles such as agent, action, patient, instrument, location, recipient,
etc. (Fillmore, 1968). Through backpropagation the network is trained to assign the
current input to a Vxed scheme of thematic-role slots and to propose a tentative in-
terpretation for the entire sentence at the same time, including past input and future
expectations.18 This process is depicted in Figure 2.6. An interesting feature of this

Figure 2.6: The SRN parser performing thematic-role assignment for the sentence The
boy hit the window with a hammer; image from Miikkulainen (1997).

model component is that it evolves suitable lexical encodings at the input layer from
random initial patterns by itself. Thus the network is able to adapt its word represen-
tations to the task at hand and is not biased by ad hoc choices of the modeler.19 This
subsymbolic parser has been studied in a variety of comprehension tasks (Miikkulainen,
1990, 1997, Miikkulainen and Mayberry, 1999). For instance, the model was trained on
an artiVcial language generated from simple sentence templates and word categories
such as human, food, animal, predator, and hitter. The network learned to assign
thematic roles successfully and generalized role assignment to familiar lexical items in

18Thus, diUerent units in the output layer can represent the same word in diUerent thematic roles
which is called binding-by-space.

19This is implemented by extending backpropagation down to the input layer, a training mechanism
called FGREP, see Miikkulainen (1990) and Miikkulainen and Dyer (1991).
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novel sentences. To achieve this, the model had to learn the semantic regularities in the
training set and encode them into the network weights and lexical representations.

The SRN parser also learned to disambiguate lexical meaning depending on a word’s
context of occurrence, see Miikkulainen and Mayberry (1999). Assigned sentence mean-
ing changed as a function of the lexical meaning of its components and the network
was able to tentatively change its interpretation and yet revise it again at a later point
in processing if necessary. Thus, the model demonstrated an ability to process sentences
incrementally by entertaining the most likely semantic interpretation as it read in one
word at a time. In order to process complex sentences with embedded clauses in which
multiple thematic roles of the same type could be assigned to diUerent constituents, the
SRN had to be augmented with a RAAM dynamic memory. This memory helped the
parser to keep track of constituents to which thematic roles were assigned already and
which occurred in hierarchical dependencies. The RAAM acted like a stack which stored
intermediary representations developed by the parser and popped back previous partial
representations into the parser’s hidden layer when role assignment in an embedded
clause was complete. Accordingly, the target pattern across embeddings changed at
each clause boundary so that the parser could eUectively learn the correct thematic role
assignment as if the input contained no hierarchical structure at all.

An example may clarify this information exchange between modules. Suppose the
center-embedded sentence the girl who liked the dog saw the boywas received as
input structure in the model’s role assignment task. The sentence was fed to the SRN
parser sequentially, word by word. Initially, the main clause target was a thematic
role vector set to t1=(actor=girl, action=saw, patient=boy). When the relative
pronoun was encountered, the parser’s hidden layer representation of the incomplete
sentence the girl was pushed onto the RAAM stack and the parser’s context layer
was reset. While the subordinate clause was processed, the thematic role target vector
switched to t2=(actor=girl, action=likes, patient=dog). When role assignment
was completed, the stored main clause fragment was retrieved from the RAAM and
loaded into the parser’s context layer. The target pattern then changed back to t1 for
the rest of the sentence. The stack itself worked exactly as described in Section 2.4.1 and
there was no a priori limit on the depth of embedding that this coupled SRN + RAAM
system could process.

It turned out that parser and stack were not yet suXcient for generalizing role as-
signment to novel relative clause structures. A feed-forward segmentation network was
added to the model which not only detected transitions into relative clauses to control
the information Wow between parser and external memory, but also uniVed types of
relative clauses. This network modiVed the parser’s sequence memory so that, e.g.,
a center-embedded clause, such as the one in the example above, looked exactly like
a center-embedding inside a tail-embedded clause to the parser. The resulting model,
which is shown in Figure 2.7, is a full-Wedged subsymbolic parser for embedded clauses
(SPEC). The division of labor achieved by the modular, tripartite architecture proved
very powerful computationally, while at the same time displaying performance lim-
itations that matched characteristics of human sentence processing. The SPEC model
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Figure 2.7: SPEC architecture for thematic-role assignment. Grey areas represent total
learnable connectivity, solid arrows are copy links, and dotted lines control connections;
Vgure from Miikkulainen and Mayberry (1999).

performed and generalized well in thematic-role assignment tasks for complex sentences
with multiple nested embeddings (cf. Miikkulainen, 1996). Trained on a small fraction
of the total number of sentences generated by a simple phrase structure grammar, the
SPEC model successfully generalized to new instances of familiar sentence templates
and also to novel templates. Although in some experiments the SPEC model occasion-
ally confused the roles of two constituents, this virtually always occurred for lexical
items of the same word category, e.g., incorrect agent/patient assignment to nouns. This
indicates that an abstract categorization of the lexical space in terms of plausible role
bindings was acquired.

When subjected to noise, simulating stress and overload, the RAAM component
showed degradation which aUected the overall system performance as the depth of em-
bedding increased and the stack piled up. The eUect closely resembled human error pat-
terns, reported by Miller and Isard (1964) and Foss and Cairns (1970), in that sentences
with deeper center-embeddings were more diXcult to process and remember than shal-
low ones. It was also found that semantic constraints between constituents signiVcantly
facilitated the task of assigning thematic roles across embeddings, even in the presence
of noise.20 This is in line with psycholinguistic evidence from Stolz (1967) and Huang
(1983) showing that human subjects can comprehend relative clause structures much
better when semantic constraints are imposed on the relations between constituents.21

20The strength of semantic constraints was measured, e.g., as the number of nouns that could Vll, say,
the patient role of a verb. It is not surprising that such constraints inWuence a neural network model in
a sequential prediction task because they immediately aUect conditional probabilities between adjacent
constituents.

21Compare the comprehensibility of the following two sentences (Miikkulainen, 1996):
(i) The girl who the boy who the man who lived next door blamed hit cried.
(ii) The car that the man who the dog that had rabies bit drives is in the garage.
In sentence (i), every noun could be the subject/object of every verb, whereas in sentence (ii) the argument
structure is semantically constrained and can therefore be recovered more easily (e.g., usually it is dogs
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The plausibility of SPEC

The behavior of Miikkulainen’s subsymbolic parser in the comprehension task is con-
sistent with observations from a number of psycholinguistic studies. But how plausible
are the assumptions behind the model’s architecture from which this behavior results?
First, it should be pointed out that the capacity of SPEC to process complex sentences is
largely due to a central executive, the segmenter network, which monitors and controls
the combined system. The segmenter detects clause boundaries in the input sequence,
recognizes the completeness of a thematic-role vector and the end of a sentence, modiVes
the parser’s context layer, initiates the push/pop operations in short-term memory, and
coordinates the temporal dependencies in the communication between modules. Thus,
most of the structural demands arising in the parsing process are relegated to a special-
ized module. Incorporating the segmenter network imposes a modular hierarchy onto
the model, but centralized control mechanisms are a feature which the PDP approach to
cognition decidedly set out to dispose of. Although the segmenter is implemented by a
neural network, the way it performs its task is not distinctly connectionist. It might just
as well be realized by a symbolic supervisor.

Secondly, all subnetworks within SPEC are trained separately, without communi-
cation between modules. Consequently the learning behavior of each component is
not inWuenced or informed by activity elsewhere in the system. Guided by a dedicated
training signal, each module—parser, stack, and segmenter—develops a partial solution
to the parsing problem before getting integrated. Cognitive modularity in general is a
controversial issue and there is no evidence that language comprehension subdivides
into discrete processes developing in complete isolation. Moreover, the segmenter is
trained to recognize, not to discover relative clauses. This is a subtle but important dif-
ference. The structural knowledge that this control network brings to bear on parsing
complex sentences is not itself extracted from sequential data but merely derived from
representations of speciVc clausal segments. Thus, the model’s ability to cope with the-
matic role assignment for multiple embeddings is not strictly learned from temporally
extended data but hardwired into the system architecture.

Finally, subnetworks of the SPEC model are trained to perfection and noise has to be
added to the memory component to elicit errors which match human performance. This
suggests that the performance characteristics of SPEC arise mainly from the properties
of the separate memory system, not from the processing mechanism of the parser or the
type of representations it employs. Because segmentation and memory are externalized,
the parser’s task of assigning interpretations to complex sentences is reduced to as-
signing interpretations to clausal components. Conversely, the semantic processing the
parser performs for clausal components does not inWuence the system’s overall perfor-
mance when decoding complex sentences. Explanations of human linguistic behavior
in this model rest on the problematic assumptions that crucial grammatical informa-
tion and the storage of intermediate representations reside outside the comprehension
system. Again, there is nothing distinctly connectionist about such explanations, they

who bite humans, and dogs do not drive cars.).
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could be obtained frommodular symbolic systems with artiVcially imposed performance
handicaps.

2.4.3 Simple recurrence and complex structure

A more radical approach to processing complex sentences was taken by Elman in a se-
ries of experiments (Elman, 1990, 1991, 1993; Weckerly and Elman, 1992). These studies
relied exclusively on the processing capabilities of a single, simple-recurrent network
without special-purpose modules, external memory or higher-level control. Introducing
this particular connectionist paradigm, Elman (1990) trained an SRN to predict the order
of words in a linguistic corpus. The corpus consisted of single-clause 2- and 3-word
sentences generated from 15 templates over 13 word classes with 29 lexical items which
were concatenated into a single input sequence.22 The network learned to approximate
the conditional probabilities of words in a sequence given the previous word by using
its short-term memory of prior context. The distributional regularities in the corpus
became encoded in the network weights. A cluster analysis of the SRN showed that
it had developed representations of lexical categories (noun/verb, animate/inanimate,
human/animal, large/small) at its hidden layer from exposure to a continuous input
stream. Since the training language lacked recursive structure, no judgement was pos-
sible whether the SRN could detect long-distance dependencies as well.

In Elman (1991) an SRN was used to predict word sequences from a context-free lan-
guage containing complex multi-clause sentences. These were generated from a lexicon
of 24 items—8 nouns, 12 verbs, 2 proper names, a relative pronoun who, and an end-of-
sentence marker #—by the phrase structure grammar shown in Figure 2.8. This artiVcial
language, albeit simple, shared some interesting properties with natural language, for
instance restrictions on verb-argument structure, and number agreement between sub-
jects and verbs created long-distance dependencies across relative clauses. The grammar
also included recursive rules in that relative clauses (RC) contained noun phrases (NP)
which could be modiVed by another relative clause, and so forth. The language there-
fore included embeddings of (potentially) arbitrary depth. Moreover, many sentences
from this language could legally terminate with an end-of-sentence marker # at several
diUerent positions. Compared to processing single-clause sentences in the Elman (1990)
study, these properties could be expected to signiVcantly increase the diXculty of the
learning task for the network. The architecture used in this task was a 26 × 70 × 26
SRN with two additional 10 unit compression layers immediately below and above the
hidden layer. Lexical items were represented locally at the input layer by switching on
exactly one corresponding bit. In other words, all items were pairwise orthogonal and
thus the network could not read any categorization oU the encoding.

Training consisted of four phases of 5 sweeps through 10.000 sentences during
which the amount of complex sentences was increased incrementally from 0% to 75% in

22These templates were, for instance, [NOUN-human VERB-intransitive] and [NOUN-animate VERB-
transitive NOUN-animate].
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S → NP VP #
NP → PropN | N | N RC
VP → V (NP)
RC → who NP VP | who VP (NP)

N 7→ {boy, girl, cat, dog, boys, girls, cats, dogs}
PropN 7→ {John,Mary}

V 7→ {chase, feed, see, hear, walk, live, chases,
feeds, sees, hears, walks, lives}

Additional restrictions:

• number agreement between N and V (within
clause, and between head N and subordinate V)

• verb arguments:
chase, feed→ require a direct object
see, hear → optionally allow a direct object
walk, live → preclude a direct object

Figure 2.8: The phrase structure grammar used in Elman (1991). Constituents in paren-
theses are optional.

steps of 25%. This methodology was developed in reaction to the Vnding that when pre-
sented with the whole corpus at once the network failed to learn. Focussing on simple
input data Vrst, the network could successively learn to handle more complex structure
once knowledge of simpler structures was in place. This incremental training strategy
was elaborated on in Elman (1993) where it was labelled “the importance of starting
small”. After training, the network was tested for generalization on a set of novel sen-
tences generated from the same phrase structure grammar. Because the prediction task
was inherently non-deterministic, Elman used an error measure which compared the
network’s output against the statistical probabilities for the occurrence of a word in a
given context in the entire corpus. He found that the network performed quite well,
producing an overall error of ρ = 0.852.23 According to Elman, the SRN’s performance
diUerence between incremental and non-incremental training conVrmed Newport’s psy-
cholinguistic “less is more” hypothesis (Newport, 1990), that maturational constraints on
cognitive resources help language acquisition because they Vlter out structural complex-
ity in early learning.24

23The error measure was the mean cosine of the angle between target and output vectors instead of
the more common mean squared error which was unsuitable here. The closer the error is to 1 the better
the performance.

24Rohde and Plaut (1999), on the other hand, argued that neither staged training nor limited working
memory are necessary for incremental learning because neural networks can reliably learn local before
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The low overall prediction error becomes more signiVcant when analyzing how the
network behaved in response to individual complex sentences such as boys who Mary
chases feed cats during testing. This sentence contains three non-adjacent depen-
dencies between constituents. After having read in the initial segment boys who Mary,
the network must predict a verb which takes at least one object, the head of the relative
clause. This verb has to agree in number with the relative clause subject (Mary). When
this verb is predicted, the network must omit the direct object from the surface form be-
cause the verb occurs in an object-relativized subordinate clause. Instead, the network
must produce the main clause verb next which agrees in number with the head noun.
Figure 2.9 (a) and (b) show the actual predictions of the SRN after the segments boys
who Mary and boys who Mary chases, respectively. The network correctly predicted a
singular, transitive verb which requires a direct object as the continuation of the sub-
ordinate clause (Figure 2.9 (a)). Thus, it was aware that the verb class in this position

end of sentence
who

pl. verb intrans.
pl. verb trans.
pl. verb either

sing. verb intrans.
sing. verb trans.
sing. verb either

proper noun
pl. noun

sing. noun

0.20 0.4 0.6 0.8 1

(a) boys who Mary...

end of sentence
who

pl. verb intrans.
pl. verb trans.
pl. verb either

sing. verb intrans.
sing. verb trans.
sing. verb either

proper noun
pl. noun

sing. noun

0.20 0.4 0.6 0.8 1

(b) boys who Mary chases...

Figure 2.9: Normalized activation vectors in prediction task for a test sentence with
relative clause, Vgures adapted from Elman (1991).

depended on having encountered an object Vller (boys) previously. After producing
the embedded verb, the network predicted plural verbs from diUerent verb classes as
possible continuations (Figure 2.9 (b)). Since at this point the SRN could not predict
whether the main clause is transitive or intransitive, this is an appropriate output distri-
bution. It is crucial, however, that the network did not activate the class of nouns here
to Vll the object slot, which shows that it has learned aspects of verb-argument structure
for multi-clause sentences. Moreover, all activated verb forms were plural verbs which
agreed with the head noun, indicating that the SRNwas sensitive to dependencies across
the embedded clause.

The network’s behavior on this and a variety of other test items permitted by the ar-
tiVcial grammar suggests that the SRN (i) developed representations of functional cate-
gories (noun/verb), (ii) subcategorized verbs (transitive/intransitive/both) by respecting
direct object restrictions, (iii) learned verb-argument structure for complex sentences
(presence/absence of direct objects in relative clauses), and (iv) maintained number

non-local dependencies when appropriate semantic constraints are imposed on the language.
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agreement across subordinate clauses. Accordingly, Elman argued that connectionist
models such as the SRN are computationally adequate to cope with some complex struc-
tural relationships between constituents found in natural language.

While these results were an important Vrst step towards modelling constituency and
recursion with neural networks, the study of Elman (1991) had a number of shortcom-
ings. The grammar of Figure 2.8 generated subject- and object-relativized subordinate
clauses, center-embedded and right-branching constructions, and sentences with arbi-
trary depth of embedding. It is not clear, however, what Elman’s training set looked like
in terms of these dimensions of distinction and it was not systematically investigated
how the SRN performed on these diUerent structures. Consequently, no attempt was
made to compare the model’s behavior to human data in this regard. Furthermore, all
results were obtained using the controversial staged training regime. And Vnally, the
generalization capabilities of the SRN were not quantiVed, for instance, by exposing the
model to novel sentences with more relative clauses than experienced in learning. It
is therefore uncertain whether the model could handle the open-ended productivity of
natural language.

2.4.4 Structural processing with semantic constraints

Several of these issues were addressed in a study by Weckerly and Elman (1992). It is
experimentally well established that humans display diUerential behavior in processing
distinct types of subordinate clauses. Sentences with center-embeddings such as (2-a),
where clauses (NP VP) are inVxed between the NP and VP of a higher-order clause
twice, are found more diXcult to process than semantically equivalent right-branching
structures such as (2-b).

(2) a. The mouse that the cat that the dog scared chased ran away.

b. The dog scared the cat that chased the mouse that ran away.

On the other hand, semantic constraints can signiVcantly improve the comprehensibil-
ity of center-embedded sentences (see footnote 21 in Section 2.4.2). Weckerly and Elman
(1992) tried to give a connectionist account of why center-embedding is relatively dif-
Vcult compared with right-branching and how semantic constraints aUect structural
processing. The SRN used in their simulations was essentially the same as the network
in Elman (1991). The lexicon consisted of 10 nouns, 14 verbs, a pronoun that, and
an end-of-sentence marker.25 The artiVcial grammar allowed multiple center-embed-
ding and right-branching and object- as well as subject-relativized constructions.26 The
verb-argument structure of the language is shown in Figure 2.10. As usual, the network
was trained in a prediction task using backpropagation learning. Lexical items were
coded locally and training was incremental as described in the previous section. The

25In generative syntax, that is often classiVed as a complementizer because it occupies the position of
true complementizers. I will refer to that as a relative pronoun throughout.

26Unfortunately, the full generative grammar was not presented in the paper.
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Verb Possible Subject Possible Object
{walk, live} HU, AN —
{write, send} HU DOC
{love, kick} HU HU, AN
{bite, chase} AN HU, AN
{see} HU, AN HU, AN, DOC, INANIM
{hear} HU, AN HU, AN
{advise, thank} HU HU
{own, tame} HU AN

Figure 2.10: Argument structure of the artiVcial language, Vgure adapted from Weck-
erly and Elman (1992). Nouns are divided into classes of humans (HU), animals (AN),
documents (DOC), and inanimate objects (INANIM).

network was then tested on 192 novel center-embedded and right-branching sentences
containing two nested relative clauses.27 With ρ = 0.7137 for the center-embedded ver-
sus ρ = 0.8484 for the right-branching test set, the network learned to predict the latter
construction more reliably. It also showed a degradation in performance with increased
depth of embedding similar to human performance data.

Weckerly and Elman oUer a genuinely connectionist explanation for these results.
In the SRN, grammatical structure is represented at the hidden layer. As the network
processes a sentence word-by-word these representations encode the current position in
the sentence, the context of the current word, and the possible grammatical trajectories
from there. But diUerent types of structures make diUerent representational demands
on the processor. Consider a right-branching structure such as (2-b). When reaching the
main clause verb scared the network can immediately match this verb with the previ-
ous, stored noun dog. It then expects a suitable direct object after which it can predict
the pronoun or the end of the sentence. In the former case, the seen object is expected
to be the head of the subordinate clause and upon reading in the next verb chased

the noun-verb match is already complete. This pattern repeats for each embedding and
consequently the network needs to keep track of at most one noun which requires inte-
gration with a verb over a short distance. In contrast, the resolution of dependencies in
center-embedded constructions is much harder. In order to correctly predict a sentence
such as (2-a), the network must store more information over longer a distance. First it
reads in three consecutive nouns which need to be kept active in memory simultane-
ously, then each predicted verb is matched with a subject successively further back in
the sentence. At each verb position the network also needs to remember the class of the
matching noun (human/animal) to predict an appropriate verb which satisVes the con-
straints on possible subjects encountered in the training set. These factors complicate

27Again, conditional probability distributions were the learning target, and success was measured by
the mean cosine ρ of angles between output vectors and empirical likelihoods.
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prediction in center-embedded structures compared with right-branching structures and
lead to diUerential behavior. Thus, the performance diUerence is due to the distance of
syntactic dependencies and the memory load the processor has to cope with in center-
embedded structures.

Memory load and distance between dependent constituents have also been conjec-
tured to be critical variables in human comprehension (Miller and Chomsky, 1963; Wan-
ner andMaratsos, 1978; Church, 1980; King and Just, 1991; Gibson, 1998). What the model
of Weckerly and Elman (1992) suggests, however, is not this ‘standard’ psycholinguis-
tic explanation of diUerential performance in which working memory limitations are
crucial. Rather, they argue that these limitations themselves arise from the particular
representations the processor develops to solve the task at hand:

“If we view the process of sentence [...] comprehension as movement from one
state to another as in a connectionist network, then memory limitations [...] are
due to the nature of representations (in human memory) in sentence processing.”
(Weckerly and Elman, 1992, p. 417)

The structural information necessary to predict a word sequence at each point is en-
coded in a Vxed-width state-vector guiding the processor through ‘grammatical space’.
The amount of data and the temporal distance between dependent data points in cen-
ter-embedded structures is particularly taxing the network’s representational capacities.
Information from diUerent embeddings is concurrently active in the network’s state-vec-
tor and this impedes the prediction of the next word. The processing limitations of the
model therefore arise from representational demands within the processor itself and are
not a consequence of the limitations of a separate working memory system external to
the processor.

The eUect of semantic constraints

In a second experiment, Weckerly and Elman (1992) examined the eUect of semanti-
cally constrained verb classes on the processing of center-embedded constructions. The
network was trained as before but tested on two distinct sets of 192 novel sentences.
The Vrst set contained only sentences in which each verb admitted a unique class of
subjects, objects or both (according to the semantic structure given in Figure 2.10). The
second set contained only sentences where subjects and objects belonged to diUerent
noun classes. An example sentence from the Vrst set is given by (3-a),

(3) a. Dog that Dorothy that bear bites tames chases tiger.

b. Dog that Dorothy that bear sees hears walks.

sentence (3-b) is an example from the second set. In (3-a) the subject of bites, for
example, must be an animal, whereas in (3-b) humans and animals are both possible
subjects of sees. It was found that for one as well as two levels of embedding the
semantically constrained corpus was predicted more accurately than the unconstrained
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corpus and this observation is consistent with human performance data (Blaubergs and
Braine, 1974; Stolz, 1967).

The explanation of this behavior in the SRN is two-fold. When the Vrst verb is
encountered in either of the sentences (3-a) and (3-b), the network already ‘stores’ three
nouns serving as potential subjects. But the subject-verb resolution is facilitated in
(3-a) by a direct incompatibility with one of the memorized nouns (Dorothy); a human
subject cannot function as the subject of bites in this artiVcial language. At the same
time, because this resolution is facilitated, the network is put in a more distinct state of
expectation about the next verb, i.e., the likelihood that the next verb takes the noun
Dorothy as its subject increases. In this bi-directional fashion, semantic constraints aid
in the resolution and prediction of syntactic dependencies.

It is perhaps not particularly surprising that semantic restrictions of this kind should
increase prediction accuracy in the model or comprehensibility in humans. What this
model demonstrates in addition, however, is that semantic processing and syntactic
parsing can interact in parallel. Sequential as well as ‘semantic information’ are not dis-
tinct, encapsulated information types but are available to the processor simultaneously
at all levels of embedding.

2.4.5 Increasing grammatical complexity

The focus of Elman’s language processing experiments was to show that SRNs can
learn aspects of complex grammatical structure from sequential data under favorable
conditions such as incremental training. Following up on Elman’s work, Christiansen
(1994) and Christiansen and Chater (1999b) pushed the processing load of SRNs further
by investigating the ‘recursive’ capacities of this model. The idea was to obtain a more
systematic picture of SRN behavior by identifying those neuralgic properties of artiVcial
grammars which elicit prediction failure.

Christiansen (1994) devised two phrase structure grammars which admitted several
constructions found in natural language that were not encompassed by the grammars of
Elman (1990, 1991, 1993). The Vrst grammar contained the following generative devices:

(i) left-branching recursion in the form of iterated genitives (John's boys' dogs)

(ii) right-branching recursion in the form of prepositional modiVcation (city near
lake), conjunction (John and Mary), sentential complements (Mary says that

John knows), and subject-relative clauses (boy chases girl that runs).

(iii) mirror recursion in the form of center-embedded object-relative clauses (cats
who John chases run).

The full grammar and lexicon are shown in Figure 2.11.
The second grammar replaced center-embedding with cross-serial dependencies.28

Both grammars generated sentences over the same vocabulary and could express the

28The object relative clause construction, which created center-embedding, was removed.
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S → NP VP #
NP → PropN | N | N rel | N PP | gen N | N and NP
VP → V(i) | V(t) NP | V(o) (NP) | V(c) that S
rel → who NP VP(t/o) | who VP
PP → prep prepN
gen → N + “s” | gen N + “s”

N 7→ {boy, girl, man, boys, girls, men, cats, dogs}
PropN 7→ {John, Mary}

V(i) 7→ {runs, jumps, run, jump}
V(t) 7→ {loves, chases, love, chase}
V(o) 7→ {sees, see}
V(c) 7→ {thinks, says, knows, think, say, know}
prep 7→ {near, from, in}

prepN 7→ {town, lake, city}

Figure 2.11: The phrase structure grammar from Christiansen (1994) which permitted
center-embedding. V(i) stands for intransitive verbs, V(t) for transitive verbs, V(o) is
optionally transitive, and V(c) are verbs expressing propositional attitudes.

same sentential content with diUerent constructions. Because of the diversity of recur-
sive constructions in these grammars, they imposed computational demands on the SRN
which were well beyond those of Elman’s studies.

Using a standard 42× 150× 42 SRN model in a word prediction task, Christiansen
(1994) conducted a number of experiments on learning and generalization with these
grammars. Throughout, training and test sets contained 10000 randomly generated
sentences of variable length and syntactic complexity. Training was incremental and
consisted of 5 phases. Unlike in Elman’s studies, in each phase the entire corpus was
presented to the network for several sweeps. Maturational constraints were simulated
by limiting the hidden layer’s ‘memory window’. The context layer was periodically
reset after n words with n growing across training phases.

At Vrst, the SRN’s general performance on sentences of at most one level of embed-
ding was separately evaluated and the network performed very well on both grammars
in terms of the mean cosine measure. In addition, the results were markedly above the
performance of n-gram statistical models (1 ≤ n ≤ 5), indicating that the network had
learned some complex structural regularities, not merely relative word frequencies. In
the next simulation, the depth of embedding was increased. Apart from left-branching
constructions (prenominal genitives) and right-branching constructions (complement
clauses, prepositional modiVcation, conjunction, subject relative clauses) the network
was exposed to doubly center-embedded sentences (such as cats who John who dogs

love chases run) which contained two nested object relative clauses. Both required
transitive verbs that took the two initial nouns as their direct objects. Although the
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network did make partially correct predictions for these structures, it showed a peculiar
‘breakdown pattern’ (see the histograms of Figure 2.12). The network is on target still
in 2.12 (a) where it predicts a plural transitive verb but in 2.12 (b) prediction starts to go
awry. The model should exclusively have predicted a singular transitive verb to match
John but instead activated all other verb classes as well, including all plural forms.
Moreover, despite two open subject-verb dependencies the network opted to abort the
sentence at this point by activating the end-of-sentence marker. When it received the
intended continuation chases it again failed to activate another plural form in 2.12 (c)
and activated single and plural nouns and the end-of-sentence marker. At this sentence
position sentence the network has gone wrong completely but once it sees the verb
run it recovers to correctly predict sentence termination. The same experiment was
conducted with the cross-serial dependency grammar and Christiansen (1994) reported
similar Vndings for sentences with two crossed dependencies such as dogs John cats

love chases run. In this English paraphrase, dogs is the subject of love, John the
subject of chases and the object of love, and so on. The network struggled particularly
with the second verb but the prediction error was not as severe as in the doubly center-
embedded case and recovery was better. This indicates, Christiansen pointed out, that
the network performed better on cross-serial dependencies than on center-embeddings
which is in accord with Vndings from a study by Bach et al. (1986). Note, however, that
the cross-serial word sequence looks to the network exactly like a doubly center-embed-
ded sentence with pronouns omitted. This suggests that the performance diUerence for
the two types of recursion might result from interspersed pronouns in center-embedded
sentences, rather than from diUerent kinds of dependencies in the two structures.

Finally, Christiansen (1994) examined the network’s performance when process-
ing instances of multiple branching for the recursive constructions permitted by both
grammars (i.e., prenominal genitives, complement clauses, right-branching subject-rel-
ative clauses, and prepositional modiVcation). The general pattern observed for these
structures was that prediction accuracy slowly degraded (with the exception of senten-
tial complements) as recursive depth increased and sentences became more complex.
Broadly speaking, due to memory limitations this behavior might be expected in hu-
mans as well, although experimental data on this issue is lacking.

Discussion of Christiansen’s results

The study of Christiansen (1994) was the Vrst to systematically investigate the process-
ing of recursive structure in SRN and provided important insights into the capabilities
and limitations of this model when learning complex grammars which capture many
properties of natural language. Christiansen concluded from the experiments on mul-
tiple center-embeddings and cross-serial dependencies that the former are harder to
process than the latter, although they are computationally more costly in terms of the
Chomsky hierarchy. He suggested that the network’s behavior matched human per-
formance according to several psycholinguistic studies of recall, comprehension and
grammaticality judgment. Moreover, right-branching subject relative clauses appeared
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Figure 2.12: SRN predictions for a test sentence with double center-embedding, Vgures
adapted from Christiansen (1994). The category misc included that, and, genitive
markers, and prepositions. Intended predictions are marked with an asterisk.

to be easier for the SRN than both center-embeddings and cross-serial dependencies
and the network’s performance degraded in a fashion similar to humans for most of the
recursive structures tested as the depth of embedding increased.

The results summarized in the previous section, are diXcult to interpret for a number
of reasons. First, the performance of the networks in the testing phase was not rigor-
ously quantiVed in terms of, e.g., the mean cosine measure. Assertions about the relative
diXculty in processing diUerent recursive structures were made on the basis of exam-
ining the histograms of single sentences. Without quantitative data for a larger corpus
of test items, the network’s behavior is not comparable across diUerent tasks and claims
about diUerential behavior are hard to vindicate. Secondly, structures were compared by
testing networks which did not experience the same training. For example, Christian-
sen cites several psycholinguistic studies showing that multiple subject relative clauses
are easier to process than multiple object relative clauses. The corresponding experi-
ments in Christiansen (1994) do not strictly warrant this conclusion for the SRN because
subject relative clause performance was tested on a network trained with the cross-de-
pendency grammar while object relative clause performance was tested on a network
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trained with the center-embedded grammar. Third, on a high level of analysis, network
and human processing behavior appear congruent in a number of tasks. Erroneous pre-
dictions of the network are interpreted as processing diXculties which humans have
too. The network’s breakdown patterns, however, have no correlate in psycholinguistic
data and are unlikely to be observable or reproducible in humans (which Christiansen
concedes). These patterns are not pointing towards a speciVc kind of processing prob-
lem in humans. Regrettably, Christiansen did also not attempt to analyze the internal
representations of the SRNs to explain diUerential behavior across recursive types and
the nature of failure in each particular task.

Most of these issues have subsequently been addressed in Christiansen and Chater
(1999b). In this study, SRNs were exposed to artiVcial grammars which generated a va-
riety of structures by means of recursive rules such as, among others, right-branching
subject relative clauses, center-embedded object relative clauses and relative clauses
with cross-serial dependencies. The grammars used in these experiments were not
as complex as the phrase structure grammar of Figure 2.12 since the aim was to con-
duct benchmark tests for recursive types in a simpliVed and pure form, without the
potential inWuence of other constructions in the language on learning and generaliz-
ing recursive structure. In two of the simulations, an SRN was trained on a language
which permitted right-branching recursion and either center-embedding or cross-seri-
al dependencies. The input set contained 5000 items of which 30% were single-clause
sentences. The complex sentences were split between the two recursive types with
various levels of embedding (55% of the total training set with one embedding, 14%
with two embeddings and 1% with three embeddings). Each network was tested on
500 novel sentences from the same grammars. The right-branching structures were
present in all languages and served as a baseline against which SRN performance on
other types of recursion was evaluated. What Christiansen and Chater (1999b) found
was that the SRN tested better on cross-serial dependencies than on center-embeddings
and these results did not depend on the size of the SRN’s hidden layer (between 2 and
100 units were tested). Moreover, the diUerence in performance did not depend on the
amount of training on sentences with deep embeddings. These results indicate that dif-
ferential behavior did not derive from arbitrary memory limitations in the network but
reWected a genuine, intrinsic processing bias of the model. Secondly, they found that
generally the SRN performance degraded with the depth of embedding. For 1–4 embed-
dings the model performed better on center-embeddings and cross-serial dependencies
than on right-branching, for 2–4 embeddings it performed better on cross-serial than on
center-embedded sentences. In other words, with increased depth the prediction error
increased more strongly on center-embedded sentences than on cross-serial dependen-
cies. In contrast, the prediction error for right-branching recursion only increased mildly
with depth in the center-embedded grammar and even decreased slightly in the cross-
serial dependency grammar. These results provide a good Vt with human processing
data for multiple embeddings in similar construction (see the discussion in Christian-
sen and Chater (1999b) for more details). To summarize, Christiansen and Chater have
shown that there is a “close qualitative similarity between the breakdown patterns in
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human and SRN processing when faced with complex recursive structures” (p. 201).
Thus, they have given a learning-based, connectionist account of recursion in linguistic
performance which does not require imposing ad hoc limitations on human grammatical
competence with unbounded recursive capacities.

The SRN simulations of Christiansen and Chater (1999b) were conducted by sepa-
rating diUerent types of recursive structures into several grammars. The network was
exposed to each grammar in turn and performance was compared within and across
the individual experiments. Although this methodology might be adequate to uncover
processing biases inherent to the SRN architecture, it can be criticized when applied
to explaining human behavior. A human learner of Dutch, for instance, is exposed to
right-branching, center-embedded and cross-serial dependencies during acquisition and
must learn all structures concurrently. It would therefore perhaps be more adequate to
test the SRN on a grammar which generates all three of these structures. There is reason
to suspect, however, that the SRN might not display the RB < CS < CE performance
ordering reported in Christiansen and Chater (1999b) when exposed to sentences from
such a grammar.29 This is because the SRN is sensitive to substructure frequencies in
its input and the RB + CS + CE grammar might give rise to substructure frequencies
which facilitate or encumber the learning of each recursive structure in a diUerent way
than the RB + CS or RB + CE grammars in isolation. To test this idea, I performed a
simple bigram analysis for three string languages which roughly corresponded to the
grammars used in Christiansen and Chater (1999b). In each language, lowercase let-
ters a, b, c denote nouns and uppercase letters A,B,C denote verbs. Nouns and verbs
formed strict pairs aA, bB and cC in order to express distinct dependencies in strings.
Thus, the RB-language consisted of strings such as aAbBcC , cCaAbB, and so forth,
indicating that surface dependencies were adjacent in each clause. The CE-language
consisted of all strings of the form abcCBAwhere dependencies were mirrored, and the
CS-language consisted of all strings abcABC , so that dependencies were cross-serial.
These languages permitted two and only two levels of embedding. Bigram probabili-
ties were then computed for the strings of the RB + CS and the RB + CE language (12
strings in each language). It was found that the bigram model predicted the order RB
< CS for the former and RB < CE for the latter language. Comparing string proba-
bilities across languages showed that CE < CS and RB(CE) < RB(CS), i.e., RB-strings
had a lower predictive probability in the CE-language than in the CS-language. No-
tice that these four orderings are precisely what Christiansen and Chater (1999b) found
for sentences with two embeddings from their languages using a bigram model (p. 181).
When probabilities were computed for strings of the RB + CS + CE language, how-
ever, the order CE < RB < CS was obtained. Strings from the CE-language had the
highest probability in the bigram model because substructures such as ab or BC could
occur in both CE-strings and CS-strings but not in RB-strings. This substructure over-

29I will use the abbreviations RB = right-branching, CS = cross-serial dependencies, and CE = center-
embedding in the remainder of this discussion. RB < CS < CE means that RB-structures are easier than
CS-structures, which are easier than CE-structures.
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lap pushed the string probabilities of CE-strings above those of RB-strings which means
they were easier to predict based on exposure to all strings from the RB + CS + CE
language. This highly simpliVed model shows that two ‘input’ grammars in isolation
can predict behavior which is partially consistent with human data (RB < CS and RB
< CE) but jointly they predict behavior which mismatches human data (CE < RB). As
Christiansen and Chater (1999b) demonstrate, the bigram (and the trigram) model is not
an accurate predictor of SRN behavior in a number of respects (e.g., the latter displays
CS < CE whereas the former does not). Nonetheless, it is conceivable that substructure
frequencies in a RB + CS + CE language might also aUect the diUerential behavior of
the SRN on recursion types in undesirable ways and partially reverse the performance
order. To put it diUerently, the SRN might have an intrinsic processing preference for
one type of dependency over another (as Christiansen and Chater (1999b) argue) but
this bias might be erased by diUerent distributional regularities in the input. In fact, it
will be argued in Chapter 8.4 that the Dual-path model (see Chapter 3) can account for
a human acquisition and processing hierarchy of diUerent relative clause constructions
based on the types of structures in the input, and the Dual-path model includes an SRN
as a sequencing submodel. The hierarchy arises solely due to patterns of similarity and
interference between structures in the language to which the model is exposed. To be
a viable model of recursion in human linguistic performance, the SRN of Christiansen
and Chater (1999b) in my view would have to be trained on a language containing all
three types of recursion (RB, CS, and CE) to see if the RB < CS < CE processing order
persists.

2.5 Summary

I started this chapter by surveying formal results from the study of neural networks as
mathematical objects. The results suggested that there is no reason to reject these mod-
els on grounds of their computational inadequacy for natural language processing. The
widely used class of simple-recurrent networks, for instance, was proven to be com-
putationally equivalent to the class of Vnite-state machines when implemented with
Vxed precision arithmetic (Kremer, 1995). When this assumption is dropped, Vrst-order,
heterogeneous recurrent networks with rational weights are Turing-equivalent (Siegel-
mann and Sontag, 1991). Thus, neural networks generally are a very powerful class of
computational devices.

The representational capacities of neural networks, however, must be distinguished
from their learning capacities. Whether a given network topology, a set of input/out-
put patterns and a training procedure are suXcient to make this network learn the
appropriate mappings is certainly amenable to mathematical analysis, but in practice it
is mostly treated as an empirical question.30 I reviewed some of the simulations which

30In language processing, the function a network is supposed to learn is often not explicitly speciVed
by the experimenter, but only implicitly through the mechanism which generates a set of input/output
patterns on which the model is trained.
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address this question in the domain of string language learning, using the simple-recur-
rent network. It was found that this model could induce recognizers for languages of
varying automata-theoretic complexity. When exposed to samples from a simple regular
grammar, the SRN could perfectly emulate a deterministic Vnite automaton. Due to the
temporally extended recurrence in SRN, there is no a priori reason why these systems
should not be able to also track dependencies over a distance. It was shown that SRN
can learn long-distance dependencies (under certain conditions) and that the reliability
of this process degrades with distance (Cleeremans et al., 1989, Servan-Schreiber et al.,
1991). Recently, Onnis (2003) demonstrated that the ability of SRN to predict agreement
dependencies is modulated by the variability of the material which intervenes, and this
was in line with human data. For non-regular languages, the SRN appeared to be limited
to embeddings of small depth and generalization was unstable (Wiles and Elman, 1995,
Steijvers and Grünwald, 1996, Rodriguez, 2001). Both limitations may result from the
deVciencies of backpropagation learning rather than the SRN architecture itself (Bengio
et al., 1994).

I then discussed a number of connectionist models which have been proposed in
the literature speciVcally to deal with aspects of recursive syntax found in natural lan-
guage. The RAAM model was able to develop compressed, distributed representations
of phrase structure trees of complex sentences (Pollack, 1990). These representations
encoded constituency in a holistic fashion and could be used in structure sensitive pro-
cessing. The SPEC model which was built from a RAAM memory, an SRN parser, and a
feed-forward sequencing network performed thematic-role assignment in the compre-
hension of multi-clause utterances (Miikkulainen, 1996). Several pioneering SRN stud-
ies demonstrated that connectionist systems are suitable models of learning artiVcial
languages which contained more lexical and structural diversity than string languages
(Elman, 1990, 1991, 1993). Christiansen, Vnally, pushed the limits of the SRN and showed
that this model might be able to explain the diUerential processing of recursive types in
humans (Christiansen, 1994; Christiansen and Chater, 1999b).



Chapter 3

The Dual-path model

In this chapter I describe and motivate the architecture of the Dual-path pro-
duction model and its semantic representations. An example will be given to
illustrate how the model produces sentences from such representations. I will
then review important properties of this model and summarize past research
with it.

3.1 Limitations of the SRN approach

The adequacy of neural networks, and speciVcally the SRN, as models of language learn-
ing and processing has been challenged in a number of ways. But few of these criticisms
seem to be pointing towards fundamental limitations of the SRN architecture as such.
Rather they are often based on preconceptions regarding the nature of syntactic rep-
resentations. It might be argued, for instance, that unlike humans the SRN does not
‘truly’ represent hierarchical phrase structure or long-distance dependencies but merely
records transitional probabilities between constituents. Objections along these lines are
irrefutable by computational simulations, because no behaviorally adequate connectio-
nist system could invalidate the empirical premiss of the argument. A good example of
this kind of controversy can be found in the debate ensuing a study by Marcus et al.
(1999) of rule-learning in infants (Altmann and Dienes, 1999; Christiansen and Curtin,
1999b,a; Eimas, 1999; Marcus, 1999a,b,c; McClelland and Plaut, 1999; Negishi, 1999; Sei-
denberg and Elman, 1999a,b). Nonetheless, the standard SRN model is limited when
compared to human linguistic behavior. These limitations, however, do not invalidate
the SRN approach in a principled manner. Moreover, they can be overcome by extend-
ing the SRN architecture appropriately and this chapter describes an attempt in this
direction.

3.1.1 Meaning

Learning a language involves learning to map meaning representations (message for
short) onto sequences of words in production, and vice versa in comprehension. This
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mapping is mediated and constrained by syntactic knowledge. Thus, linguistic be-
havior is a transduction process between diUerent kinds of representations, messages
and sequences of words. Standard SRNs which have been used in language learning
(e.g., Servan-Schreiber et al., 1991; Elman, 1991; Christiansen and Chater, 1999b) map se-
quences of words onto sequences of word categories as shown in Figure 3.1. Perhaps the
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<blank> the cat chases the dog <reset>

Figure 3.1: Sequential computation of an SRN in a word prediction task.

most obvious limitation of these models is that they do not explicitly represent lexical
or sentence meaning. When processing sentences, the SRN does not associate semantic
representations with word sequences and is therefore neither a model of production or
comprehension proper. Rather, an SRN can be viewed as a stochastic part-of speech
tagger which predicts grammatical sequences of word categories (see Steedman, 1999).
Such stochastic tagging may be part of the human language system, in particular in
comprehension, but it is not an overt process in human linguistic behavior. Of course,
the lack of meaning in standard SRN is not an inherent limitation of the mechanism.
In order to function as either comprehension or production model, the SRN can be aug-
mented with a meaning system (e.g., St. John and McClelland, 1992; Dell et al., 1999). In
these models, the SRN is a subcomponent which helps to learn mappings between word
sequences and semantic features. The Dual-path model (Chang, 2002; Chang, Dell, and
Bock, 2006) which is introduced in this chapter is such an extension of the SRN archi-
tecture which can both represent the intended meaning of a sequence of words as well
as the semantics of words in its lexical layers.

Adding semantic representations to the SRN is not merely a gimmick to render the
model more realistic with respect to human linguistic behavior. The use of semantic
information might be an essential aspect of acquisition and processing itself. Adult
speakers use language to convey meaning, and it has been argued that children must
also use meaning in syntactic development if they are to acquire adult-like linguistic
representations (MacNamara, 1972; Pinker, 1984; Tomasello, 2003). In the development
of vocabulary, for instance, it has been suggested that children draw on observation,
world knowledge and other extra-linguistic context to Vrst establish the semantic prop-
erties of words. From these properties, word categories are inferred and the syntactic
relations between words can be derived from the semantic relations between referents
in observed events. On this view of syntactic development (semantic bootstrapping),
“semantic representation[s] [are] part of the input to the language acquisition mecha-
nisms” (Pinker, 1989, p. 39). On a diUerent view (syntactic bootstrapping), syntax is a
cue to word meaning in that, for example, children supposedly rely on the number and
types of arguments of a verb to infer its meaning (Fisher et al., 1991). In early linguistic
experience, children often simultaneously observe objects and events while listening to
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adult speech. The visual stimulus and the syntactic context of word occurrence have to
be paired. The semantic and syntactic bootstrapping hypotheses diUer in their direction
of explanation. On the former view, meaning is inferred from the visual stimulus and
drives syntactic development, on the latter syntactic context drives the construction of
meaning which is mapped onto the visual stimulus. The vast amount of literature and
the complexity of the issue prohibit a closer look at this debate here. It appears, though,
that the controversy is diXcult to resolve for a number of reasons. First, diUerent pro-
cesses might drive the acquisition of diUerent classes of words. Semantic bootstrapping
might better explain noun learning because referents are usually objects in the visual
environment, while syntactic bootstrapping might better explain verb learning. Notice
also that much of the experimental evidence for syntactic bootstrapping of verb mean-
ing with nonce words depends on previously learned nominals occurring in a syntactic
frame. Secondly, both kinds of bootstrapping might operate in parallel. A child might
infer the meaning of a word from the visual stimulus and then check whether this in-
terpretation is consistent with the syntactic context in which the word occurred. Third,
it is diXcult to nail either hypothesis experimentally, because often an alternative ac-
count of the data can be given from the opposite theoretical angle. In a classical study by
Brown (1957), for instance, children were presented with sentences such as He’s daxing
him together with pictures of unusual events and they chose a picture of an action as
the referent of daxing, rather than an object or substance. It was suggested that it is the
verb morphology (-ing) which supported this choice. But it might just as well be argued
that children inferred the thematic core of ‘someone doing something to someone else’
and chose an action because they could Vx the referents of the pronouns in the depicted
event. In this way, the meaning of the novel word daxing could have been constructed
from the meaning of the utterance as a whole.

A related point has been stressed in the acquisition of argument structure (Gropen
et al., 1989). Purely syntactic accounts cannot easily explain why some verbs can occur
in the dative alternation, but others can only occur in prepositional datives (but not the
double object dative). If events are construed as ‘causing a thing to change location’
(prepositional dative) versus ‘causing a person to change his possessions’ (double object
dative), however, not all verb meanings are compatible with change of possession in a
double object frame (e.g., drive, push). Thus, the meaning of verbs is not determined
by syntactic variations in the phrase structure in which they occur (syntactic bootstrap-
ping), but on the contrary the syntactic properties of verbs (in which dative structure
they could be used) derive from the semantics of the entire construction.1 On this ac-
count, meaning is primary not derivative, it is the explanans of syntactic development
rather than its outcome. In order to capture the idea that meaning drives syntactic
development, a computational learning model needs to be equipped with semantic rep-
resentations.

In adult processing a similar divide exists between syntacto-centric and multiple-
constraints accounts which emphasize the role of meaning and other sources of infor-

1See also Tomasello (2003), Goldberg (2006), and Chapter 5.
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mation in the resolution of ambiguities during comprehension. The view that syntactic
processing is prior to and largely independent of semantic and contextual processing
has been advocated, e.g., by Frazier and Rayner (1982) and Ferreira and Clifton (1986).
On these accounts ambiguities are resolved Vrst in a purely syntactic fashion, regard-
less of available non-syntactic information. Multiple-constraints accounts, on the other
hand, propose that the processor continuously evaluates several syntactic alternatives
against information from the non-linguistic context and takes into consideration the se-
mantic and thematic appropriateness of possible arguments in each phrase (MacDonald
et al., 1994; Trueswell and Tanenhaus, 1994; Spivey-Knowlton and Sedivy, 1995). These
accounts are supported by a wealth of more recent evidence from psycholinguistic and
neuroscientiVc research, suggesting that non-syntactic information directly inWuences
comprehension. In eye-tracking studies of comprehension, for instance, it has been
shown that visual information and knowledge about events and their participants guides
the interpretation of sentences before syntactic dependencies (between verb and direct
object in single-clause sentences) are resolved (Altmann and Kamide, 1999; Kamide et al.,
2003). The inWuence of non-linguistic context has also been demonstrated in the res-
olution of syntactic ambiguities created by prepositional phrases (Spivey et al., 2002).
Semantic eUects on comprehension have been investigated in a number of studies and
it was shown that the thematic Vt between sentence-initial nouns and a particular verb
can inWuence expectations in comprehension (Trueswell et al., 1994; McRae et al., 1997;
McRae et al., 1998; Spivey-Knowlton and Tanenhaus, 1998). Ferreira (2003) has argued
that semantic anomalies can determine the interpretation of sentences even when this
interpretation is in conWict with the syntactically unambiguous surface form. Recording
event-related potentials during sentence comprehension, several studies indicate that
semantic and syntactic processing operate in parallel (Kim and Osterhout, 2005) and
are integrated as soon as relevant information becomes available (Brink and Hagoort,
2004; Friedrich and Kotz, 2007). These Vndings suggest that meaning and other types
of non-syntactic information are non-redundant in language learning and processing,
and point to a fundamental limitation of the SRN approach.

3.1.2 DeVniteness

Natural language syntax includes constructions such as relative clauses which separate
the head noun from the verb that agrees with it in number. For instance, in the sentence

(1) The boys that the dog chased are playing in the garden.

the head noun the boys requires the plural auxiliary are after the relative clause. This
relation between elements is often called unbounded long-distance dependency because
there is no a priori bound on how many embeddings can separate dependent constitu-
ents. It is crucial to the processing of natural language syntax that such non-adjacent
dependencies can be maintained. Although SRN learning is based on extracting depen-
dencies between adjacent constituents, it was argued in the previous chapter that under
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some conditions SRN can detect non-adjacent dependencies due to time-delayed recur-
rence. Once the relative clause in (1) is complete, the prediction task of the SRN becomes
deterministic in that a verb form must be predicted which agrees with the head noun
in number. Predictions of the structural properties of the content between the depen-
dent elements, however, are non-deterministic. The SRN activates every grammatical
continuation which is consistent with the input distribution at choice points between
non-adjacent dependencies. Consider a simple language which only contains an ar-
ticle, singular nouns, a relative pronoun and transitive verbs, and which can express
sentences such as (2) and various types of relative clause constructions such as (3).

(2) The boy hit the man.

(3) The boy who the dog chased hit the man.

When presented with the joint initial segment of (2) and (3), the noun phrase the boy,
an SRN trained on such a language, predicts the onset of the embedded clause in the
weak sense of activating lexical items from several word categories which are possible
legal continuations. For example, it might activate the class of transitive verbs and also
the relative pronoun, depending on the frequency of subject-modifying relative clauses
in the training corpus. When the network encounters the relative pronoun who it might
predict an article as in (3) or a transitive verb as in

(4) The boy who chased the dog hit the man.

Once it encounters the noun phrase the dog in (3) it will predict the relative clause
verb, yet another embedding, and so forth. Thus, the SRN predicts a probability dis-
tribution of all possible next elements and it lacks the deVniteness of human sentence
production. Unlike humans, the SRN is not generating a single target structure but
conditional grammatical continuations. This non-determinism is not problematic when
assessing SRN learning because model performance can be measured against the dis-
tributional properties of the training corpus. Ideally, the SRN has learned to perfectly
reproduce the conditional probabilities in the input. In sentence production, however,
performance should be measured against a speciVc target utterance, not against dis-
tributional properties of the learning environment. As the SRN approach to language
processing suggests, how fast and how well a linguistic construction is learned may
critically depend on frequency in the linguistic input (both at the level of individual
structures and substructures). But in production, speakers go beyond reproducing input
frequencies in that they select a deVnite structure (perhaps from several syntactic alter-
natives) to convey an intended meaning. In other words, a production event is not a
function of the totality of linguistic experience but of ones current communicative goal,
although the easewith which production is achieved may be a direct function of the for-
mer.2 Hence, apart from the absence of semantic representations in SRN, the nature of

2It was argued in Ferreira (2003), however, that relative processing diXculty in humans does not
solely depend on surface frequency.
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SRN mappings indicates that they might not be well-suited for the study of production.
These are fairly trivial observations about SRN and human behavior, which nonetheless
might have important consequences for modelling language learning and processing.

It is a symptom of the lack of deVniteness in SRN, for instance, that these models also
learn sequences of words (or word categories) which are ungrammatical. In the above
toy language example, the SRN learns that noun phrases are followed by transitive
verbs or relative pronouns and that verbs are followed by noun phrases or superordinate
clause verbs. Thus, in a trained state it might activate a sequence of word categories
which corresponds to ungrammatical sentences such as

(5) *The dog chases the dog hit the man.

Since the SRN overlays statistical information from diUerent input structures, it might
develop representations that do not always allow the model to reject structures which
are locally grammatical but ungrammatical globally.3 While it is one of the main
strengths of the SRN model to generalize by overlaying information from diUerent in-
put structures, the learned mappings might not be suXciently constrained. Semantic
representations which Vx the models larger communicative goal (conveying a particu-
lar message) in a prediction sequence will constrain the learned mapping more tightly
than local conditional expectations, because no meaning input in the model’s experience
corresponds to ungrammatical sentences such as (5).

In a neural network model deVniteness requires that only the most active output
units (words or categories) in a production sequence are evaluated in testing. An utter-
ance is discounted as ungrammatical if the most active predictions mismatch the target
word/category anywhere in the sequence. In order to achieve deVniteness the model
must in some way or other represent communicative goals, for example the intended
meaning of an utterance. Such representations will change the learning task for the
model, both algorithmically and conceptually. An SRN maps word sequences onto dis-
tributions of word categories, whereas a production model which represents meaning
will map from messages to word sequences. The main task of an SRN is to extract the
statistical regularities in the input to be able to predict items in a sequence. A pro-
duction model with additional meaning input learns to transduce between data types,
semantic representations and sentence forms. The statistical regularities of the training
corpus may inWuence the model in learning a meaning-to-form mapping but to extract
these regularities is not the primary task of such a model. Rather, the task of a pro-
duction model is to Vnd suitable mappings between messages and deVnite forms. This
might force the model to develop representations which are quite diUerent from SRN
representations because in order to produce deVnite forms, input messages need to be
separated more distinctly in hidden space than input structures in SRN learning. How
well a meaning-form mapping for some structure is learned in such a model might be

3Whether this indeed happens will depend on the particular input language and training conditions.
An example of such non-discriminatory behavior will be given in Chapter 7, drawn from a simulation by
Lewis and Elman (2001).
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modulated by distributional properties of the input, but it might also depend on other
factors. Two structures could be semantically similar but very diUerent in form and
therefore hard to distinguish despite being frequent in the input. On the other hand, two
structures could have overlapping semantic features and share subsequences of words
in their sentence form and this might facilitate learning both structures even if they are
infrequent in the input.4 Language processing as meaning-to-form transduction, and
the resulting deVniteness of expression, are two important properties of the Dual-path
model which the SRN lacks.

3.1.3 Symbolic generalization

A third limitation of the SRN approach lies in its exclusive reliance on experience to
produce sentences. There is ample evidence that language learners are sensitive to the
statistical regularities of the ambient language they hear at diUerent levels of linguistic
behavior. For instance, in speech stream segmentation children draw on transitional
probabilities to learn word boundaries (SaUran et al., 1996; Johnson and Jusczyk, 2001).
Distributional regularities in the linguistic environment support the acquisition of syn-
tactic categories (Redington et al., 1998; Mintz, 2003) and frequency information can aid
syntactic disambiguation (MacDonald et al., 1994). Statistical learning may therefore
provide children with powerful mechanisms to structure linguistic experience and ex-
ploit the rich sources of information in the ambient language, but it may nonetheless be
insuXcient for language acquisition for two reasons. The non-linguistic environment is
perceptually open, i.e., there is an unbounded variety of unprecedented event tokens that
a speaker must be able to describe using familiar words in novel combinations. On the
other hand, natural language itself is lexically open in that it can recruit novel words to
Vll the slots of familiar constructions. In addition, languages are combinatorial in struc-
ture, so no amount of experience covers their expressivity. Both forms of openness—
linguistic and non-linguistic—require the generalization of linguistic knowledge beyond
immediate experience and learning context and models of language acquisition should
exhibit the Wexibility to accommodate such generalization.

SRN with localist word representations are lexically speciVc (and so is the Dual-path
model), and they cannot easily handle lexical openness. Moreover, it has been suggested
that the SRN cannot use a familiar lexical item w in a learned syntactic frame F unless
it has experienced the word w in F during training (Marcus, 1998). Marcus argues, for
instance, that SRNs which are exposed to identity relations such as “a rose is a rose”
or “a tulip is a tulip”, cannot generalize a novel word “blicket” to form the sentence
“a blicket is a blicket” without exposure to this particular sentence. In the words of
Marcus, SRNs cannot extrapolate beyond their training set, whereas humans have no
diXculty in producing instances of the identity relation over novel words. If language
processing employs symbolic capabilities, this form of generalization is not problematic.

4EUects of interference and facilitation between structures are discussed in more detail in Chapters 5
and 8.
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Symbolic processing comprises at least two capacities, (i) the ability to bind instances
to variables, and (ii) the use of variables in rules or primitive operations. A model of
language processing which represents the identity relation as a template “a X is a X” and
binds lexical items to these variable slots would be able to produce such structures over
novel words. SRNs, on the other hand, do not develop ‘abstract variable-based frames’
(Chang, 2002) and cannot bind lexical instances to variable slots. The representations
the SRN develops in the identity task are entirely shaped by experience and this causes
diXculty in using them to generate novel sentences.

It was a major motivation for the Dual-path model architecture to augment a con-
nectionist system (such as an SRN) with a variable-binding mechanism to investigate
whether this mechanism would yield human-like symbolic behavior in the resulting
hybrid system. At the same time it was aimed at retaining the statistical nature of con-
nectionist learning in this system to balance symbolic processing with knowledge of the
distributional regularities in the linguistic environment (cf. Chang, 2002, p. 610).

3.2 Features of the Dual-path model

The Dual-path model has three important architectural features which I will brieWy
describe in this section. The complete model conVguration will be illustrated and ex-
plained in detail in the following section.

3.2.1 Separate pathways

The Dual-path model is a model of sentence production and syntactic development.
As previously mentioned, it consists of an SRN extended with a system to represent
sentence meaning. Both components—the SRN and the meaning system—are arranged
to form separate information channels or pathways. One pathway, the standard SRN,
learns distributional regularities over sequences of words and develops distributed rep-
resentations of word categories. In sentence production, this sequencing network en-
forces constraints on the order of classes of sentence constituents.

The second pathway, called the message-lexical system, is a feedforward network
which has hidden layers to represent the meaning of words and the thematic roles of
event participants (e.g., agent, patient, theme, experiencer, recipient, goal, lo-
cation, etc.). The message-lexical system learns to map the conceptual content of the
sentence meaning onto corresponding word forms. It also learns to activate thematic
roles in the right order within a sentence, a mechanism which will be explained below.
Thus, at each position in a sentence, the message-lexical system activates sentence-spe-
cific, ‘meaning-related possibilities’ and the sequencing system activates ‘syntactically
appropriate possibilities’ (cf. Chang, 2002, p. 622).

The two pathways of the Dual-path model intersect at the hidden-layer of the se-
quencing network and at the output word-layer where they compete (or cooperate) to
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produce the next word in a sequence.5 For example, early in learning the message-lexi-
cal system might activate verbs from diUerent clauses in a sentence, e.g., a transitive and
an intransitive verb, whereas the sequencing system activates all verbs in the transitive
verb class. Since activation of both subsystems is summed at the output, the joint activa-
tion of a speciVc transitive verb will win this slot. Or, the message-lexical system might
activate a transitive verb whereas the sequencing system activates a function word,
e.g., a relative pronoun. In this case both pathways compete and the more active unit
will win the slot. The subsystems learn diUerent types of information, the integration
of which ensures that words which are adequate to express the sentence meaning are
produced at the right position of an utterance. The separation of these pathways is mo-
tivated by a study of sentence production (Bock and Cutting, 1992), which showed that
sentence structure in production is inWuenced by distinct factors from lexical-semantic
and syntactic processing.

3.2.2 The what-where division

In spatial processing of visual information, there are two tasks to be performed. Objects
in the visual array need to be located and identiVed. Both tasks are dissociated. We
can identify and categorize objects we perceive without having to describe their exact
spatial position, and we can locate objects, e.g., obstacles in spatial navigation, without
having to identify them Vrst. Landau and JackendoU (1993) suggested that this separa-
tion correlates with two diUerent modules in the functional organization of the visual
system in the brain, a ‘what’-system for object categorization and a ‘where’-system for
object location. Both systems perform distinct subtasks but can temporarily be associ-
ated to locate a speciVc object, or to identify an object in a speciVc position. A system
which could not perform these tasks independently would not recognize familiar objects
in novel locations and would not be able to locate unfamiliar objects. But if both tasks,
object identiVcation and location, are functionally separate and can be linked together,
the compound system can generalize to novel perceptual episodes.

In language production, familiar words can be used in novel sentence positions with-
out a fundamental change in their lexical meaning. On the other hand, diUerent words
with distinct lexical meaning can assume the same position in a sentence. Thematic
roles indicate the semantic relationship between the predicate and an argument of a
sentence. Where in a sentence a word can be placed is constrained by which thematic
role it can occupy, although the nature of such constraints is an issue of much contro-
versy (see Goldberg, 2006). For instance, inanimate objects cannot usually occupy the
recipient role in dative constructions, such as the ditransitive He gave the dog the toy,
but they can always occupy the theme role (here: toy). The stipulated similarity between
words in language processing and objects in spatial processing is that lexical meaning
corresponds to object categorization and thematic role assignment corresponds to object

5I will use small capitals to denote layers of the Dual-path model throughout, and normal fonts to talk
about neural network layers in general.
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location. The thematic role of a constituent determines in which sentence position the
constituent is placed (where) and the lexical meaning of a constituent determines who
or what is placed there.

This analogy motivated the second important architectural feature of the Dual-path
model. DiUerent aspects of sentence meaning, such as concepts and thematic roles,
are represented at diUerent layers of the model. Concepts are locally represented by
units in the so-called what-layer and thematic roles are locally represented by units
in another, physically and functionally distinct layer, the so-called where-layer. As in
spatial processing, concepts and thematic roles in these layers can temporarily be bound
together by dynamically changing connection weights. Thus, it is possible to encode
sentence meaning in such a way that diUerent concepts (what information) can occupy
the same thematic role (where information) and that the same concept could be assigned
diUerent thematic roles. Building the model, it was hypothesized that in this manner
the Dual-path model architecture would inherit the generalization capabilities observed
in visual processing.

3.2.3 Event semantics

Aspects of the Dual-path model are inspired by a construction grammar approach to
language. By Goldbergs deVnition, constructions are form-meaning pairs which are
neither compositional nor derivational (Goldberg, 1995). They can be atomic or complex,
concrete or schematic, they have a holistic meaning and are basic linguistic units. For
example, the mapping of the phonetic form [kæt] to the concept [CAT] is an atomic,
concrete construction, and the mapping of the form [Subj V Obj Obl] to the semantic
structure [X causes Y to move Z] is a complex, schematic construction. The latter
is the caused-motion ‘argument structure’-construction, which is instantiated by the
sentence

(6) He kicked the ball across the field. (caused-motion)

Many diUerent verbs and prepositional phrases can feature in the caused-motion con-
struction, but it is not the syntactic properties of these constituents as listed in the
lexicon which determine whether they are admissible arguments. Rather, constructions
themselves select arguments which conform with their semantic and syntactic proper-
ties. Thus, non-prototypical verbs can be inserted into schematic constructions to yield
innovative sentences such as

(7) He sneezed the napkin off the table.

The meaning of sentence (7) is not a function of its constituents (cf. Goldberg, 1995).
The intransitive verb sneeze is used in an independent syntactic frame with its own
meaning in which it becomes interpreted transitively. Argument structure constructions
are schematic abstractions over event types which are basic to human experience, for
instance caused-motion, transfer, or acting on.
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In the Dual-path model, sentence meaning is represented in the message-lexical
system. A representational distinction is made between atomic concepts and complex
constructions. Whereas the meaning of atomic concepts is locally represented by units
in the what-layer (and learnable connection weights to word forms), the meaning of
complex constructions is represented by activation patterns in a dedicated event se-
mantics-layer. The event semantics marks the diUerences and, crucially, also the sim-
ilarities between distinct constructions. For instance, there is a metaphorical similarity
between the caused-motion construction in its central sense

(8) X causes Y to move Z: Joe drove the car into the lake.

and the transfer construction

(9) X causes Z to receive Y: Joe gave the present to Paula.

Both constructions share the causation and motion event features. This similarity is
reWected in the event semantics of the Dual-path model in that the same event roles are
used to encode the meaning of both constructions. In particular, the goal (the lake) of
caused-motion in sentence (8) and the recipient (Paula) of transfer in sentence (9)
are collapsed onto the Z role in the event semantics. Representing similarities among
constructions by shared features and similar patterns of activation in the event seman-
tics, the model is able to generalize acquired knowledge from one construction to related
constructions that share common event features. Examples of the event semantics mes-
sage component in the model will be given below. The sensitivity of children and adults
to event features of particular syntactic forms is well attested in the psycholinguistic
literature (Fisher et al., 1991; Gropen et al., 1991; Kaschak and Glenberg, 2000).

3.3 Dual-path model architecture explained

In this section, the full Dual-path model architecture will be presented, and the two
subsystems described in more detail. As was mentioned before, the sequencing pathway
is a standard simple recurrent network as explained in the previous chapter.

3.3.1 Sequencing system

The Dual-path model maps meaning representations, which it receives as input, onto
sequences of words. It learns in an error-based word-to-word prediction paradigm. The
cword- and word-layers are the word input and output layers, respectively, of the
model (Figure 3.2). In all experiments that will be discussed subsequently, an artiVcial
English-like language of varying complexity was used. Lexical items in these languages,
as well as morphological markers for tense, aspect and number, are represented locally
at these layers. That is, each lexical item occupies exactly one node which signals the
presence or absence of a word in a sequence by being switched on or oU. Activation,
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Figure 3.2: The Dual-path model architecture.

however, could be graded at the cword input, depending on the processing mode, and
at the word output, due to the speciVc activation function used. Localist representa-
tions of one word by one unit may seem simplistic but they have the advantage that all
lexical items viewed as vectors in input space are orthogonal by design. Thus, no se-
mantic bias is induced by the experimenters’ choice of features as in distributed lexical
representations (cf. Page, 2000).

In the sequencing system, solid arrows in the diagram represent full learnable con-
nectivity between layers and indicate the direction of activation spread. In other words,
in a layer which is the source of a solid arrow, every unit is connected to every unit in
the target layer, and activation can only propagate in the direction of the arrow. The
strength of these connections is gradually adjusted in learning by backpropagation of
error. Dashed arrows indicate copy-back connections along which the activation state
of one layer is copied onto another. For instance, at each word in a sentence, the ac-
tivation state of the hidden-layer is copied to the context-layer and fed back to the
hidden-layer at the next word. In this way, the context-layer provides the hidden-
layer with a working memory system which enables the sequencing system to learn
temporal contingencies in the input. Similarly, the dashed arrow between the word-
and the cword-layer indicates that the model’s word output in each sentence position
is copied back to the input cword-layer on the subsequent time step. Thus, the model
constantly monitors its own production output and predicts the next word based on the
previous word plus its knowledge of the context of uttering this word, active in the
hidden-layer.

Between the lexical layers and the hidden-layer, the sequencing system is equipped
with special compress- and ccompress-layers (see Elman, 1991) which are roughly 1/3
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the size of the hidden-layer. These layers ensure that the model develops abstract
representations of word categories instead of word-speciVc representations. This will
be shown in more detail in Chapter 5. In addition to the activation from the ccompress-
layer, the hidden units receive input from the context-layer which holds a copy of the
previous time-step activation state of the hidden units. Through the compress-layer
bottleneck, the hidden-layer then maps to the lexical output layer (word).

3.3.2 Message-lexical system

The message-lexical system is a feedforward network which holds the representations
of sentence meaning in the Dual-path production model (Figure 3.2). This message is
mapped to the same lexical layer to which the sequencing system projects.

To represent a sentence message, several special layers are sandwiched between the
hidden- and theword-layer in the message-lexical system, a semanticwhat-layer and
a thematic where-layer. The what-layer contains units which stand for concepts that
represent the meaning of words in the lexical layers. This encoding is again localist,
one unit represents one concept. In general, the what-layer is smaller than the lexical
layers because it only represents the semantics of all content words in the lexicon of the
artiVcial language. For example, the what-layer has units representing the meaning of
verb stems and nouns, such as a unit [Chase] and a unit [Cat], but no units representing
inWectional morphemes, auxiliaries, prepositions or relative pronouns. Thewhere-layer
contains units which stand for thematic roles that represent the semantic relationship
between the verb and its arguments in a sentence. For example, the where-layer has
units representing the thematic roles of agent, patient, recipient, as well as action
roles. Sentence-speciVc semantic content is represented through temporary binding-by-
weight of the what- and where-layers. Such bindings are implemented by setting a
connection weight between appropriate units in these two layers to a constant positive
value. In this fashion, the what units can represent the meaning of a word irrespective
of the event role that word occupies in a particular sentence. Consider, for instance, the
sentence the cat chases the dog in which the cat is the agent of transitive action.
To represent the meaning of this sentence, the agent unit in the where-layer would be
bound to the [Cat] concept unit in the what-layer by a connection weight. Similarly,
the patient unit in the where-layer would be linked to the [Dog] concept unit in the
what-layer and the action unit would be linked to the concept [Chase]. Activation
can then spread from the agent unit in the where-layer to the lexical semantics [Cat]
in thewhat-layer, but not from the agent unit to the [Dog] unit, since these two units
are not linked in the what-where-system for this particular sentence.

If the cat assumes a diUerent thematic role in another sentence, e.g., the patient
role in the dog chases the cat, the [Cat] concept in the what-layer would be dy-
namically bound to the patient unit in the where-layer to represent this aspect of
sentence meaning. Hence, through the binding of roles and concepts, the message rep-
resentation of the Dual-path model allows cats to Vll diUerent event roles in diUerent
sentences. At the same time, the role-independent representation of the lexical seman-
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tics of words in the what-layer retains the common meaning that all occurrences of
cat in diUerent sentences share (cf. Chang, 2002, p. 619).

The second important aspect of the message-lexical system concerns the mapping
from concepts to words. Thewhat- andword-layers are fully connected and the model
has to learn a ‘word tag’ in the word-layer for each concept in the what-layer. Once
this mapping is learned, the model can then productively use this word in diUerent
thematic roles to describe novel events. On the other hand, the model can learn to use
novel words in familiar syntactic frames because the intended mapping from concepts
to word forms is independent of the speciVc event role ‘location’ which words occupy
in a sentence. Thus, the acquired one-to-one mapping of meanings to words combined
with the dynamic binding of concepts to roles in the what-where system enables the
model to achieve lexical generalization (see Chapter 6).

To summarize the description of this part of the message-lexical system, Figure 3.3
depicts how the conceptual content of the intransitive sentence the cat sleeps would
be represented in the what-where-system. The action role 0A in the where-layer

H. Fitz, ILLC

where 0A 0X 0Y .. nZ

what CATSLEEP

word

Thematic roles

Dynamically changing synapses

Lexical semantics

Learnable connection weights

Word output layer cat     sleep

Figure 3.3: Message encoding of the intransitive sentence the cat sleeps.

is temporarily bound to the concept [Sleep] in the what-layer by a connection weight
and the patient role 0Y is temporarily bound to the concept [Cat] (the motivation for
speciVc event role assignments will be given in paragraph 3.5.3 below). During training,
the model learns to map the concepts [Cat] and [Sleep] in the semantic what-layer to
the corresponding word forms cat and sleep in the word output layer.

The message-lexical system also contains an inverted copy of the what-where-
system (Figure 3.2, page 56). This subnetwork consists of the cwhat- and cwhere-
layers, the analogues to the what- and where-layers. These layers are sandwiched
between the cword- and hidden-layers in reverse order and can be thought of as a
comprehension counterpart to the what-where system. When the model produces
a lexical item at the word-layer, this word is fed back to the model’s cword-layer
on the next time-step. This cword input is mapped to concepts in the cwhat-layer
in a comprehension direction. The model has to learn this mapping in order to make
sense of its own production output. The cwhat-layer again has dynamic bindings
with the thematic roles in the cwhere-layer. These bindings are preset in identical
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fashion to the what-where bindings before sentence production begins. The purpose
of this subsystem is to inform the hidden-layer at each point in processing about which
thematic role a previously produced word occupied. Consider the sentences the cat

chased the dog and the cat sleeps and suppose the model has just produced the
constituent cat at the word-layer. Then this word is copied back as input to the model
at the cword-layer. For the network it could be the beginning of the transitive or
the intransitive structure. In order to produce the intended structure the hidden-layer
needs to activate the correct sequence of roles in the where-layer. Hence, the model
needs to know the event role of cat in the conceptual structure of the target sentence,
otherwise it does not know how to continue from here. The reversedwhat-where-sys-
tem which feeds into the hidden-layer delivers precisely this kind of information. Once
cat is fed back to the cword-layer this will activate the concept [Cat] in the cwhat-
layer (provided the model has already learned this comprehension mapping). Since
[Cat] is dynamically linked to a speciVc thematic role in the cwhere-layer, activation
spreads along this connection and switches on a role unit which informs the hidden-
layer about the thematic role of the previously produced word (cat). In addition to the
cwhere-layer, there is a cwhere2-layer which functions similar to the context-layer
working memory in the sequencing system. At each point in time the cwhere2 units
sum the current activation state of the cwhere units and the previous activation state
of the cwhere2 units. In contrast to the cwhere units, which activate only the most
recent role, the chwere2 units provide the hidden-layer with a time-averaged history
of previously activated roles.

The cwhere- and cwhere2-layers can only accurately inform the hidden-layer
about previously produced roles if the model has learned the correct cword-cwhat
mapping, i.e., if it understands the meaning of the words it uttered. The error signal
which is backpropagated from the word-layer downwards, however, rapidly decays as
the number of layers increases over which the error is distributed. It is too weak to ad-
just the cword-cwhat connections during learning. Hence the cwhat-layer received
its own error signal from the previous time-step what-layer activation state. Initially,
the target activation state of the what-layer is not very distinctive because the model
does not activate the correct where roles at the beginning of training. It becomes more
distinct and reliable over time only if the model learns to sequence where roles appro-
priately. Thus, the assembly of inverted layer duals in the message-lexical pathway cre-
ates a learning problem with non-trivial dependencies. Consider again the sentence the
cat chased the dog. In order to produce the intended active transitive construction,
the model must perform two main tasks in the meaning system, (i) sequence appropriate
thematic roles in the right order at thewhere-layer, and (ii) map the conceptual content
to correct word forms. That is, for example, towards the end of the sentence the model
must activate the dog as the patient of the event in the message and map [Dog] to dog.
To learn (ii), the lexical semantics of dog, the model must learn (i), role sequencing, be-
cause role sequencing precedes the meaning-to-form mapping in the production process.
Task (i) is controlled by the hidden-layer whose activation state relies on information
coming from the cwhere-cwhere2 system about previously produced roles. The signal
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from this subsystem derives from the cwhat activation state which is a function of how
well the model comprehends the words it hears from itself. As outlined above, however,
comprehension at the cwhat-layer depends on the activation state of the what-layer
which in turn depends on role sequencing at the where-layer. Hence, role assignment
and word production/comprehension are tightly coupled. The model learns to identify
the thematic roles that words occupy in the semantics of a sentence it generates itself,
and concurrently it learns the meaning of words. In this way, the model “bootstrap[s]
word learning, by incrementally learning to comprehend the previously produced se-
mantics” (Chang, 2002, p. 620). There is evidence that adults assign thematic roles
incrementally in sentence comprehension (Sedivy et al., 1999) and that observed events
actively inWuence this incremental assignment (Knoeferle et al., 2005). In learning the
meaning of words, children must infer intended referents of words in the speech they
hear and assign thematic roles in observed events. To draw on visual information in
an environment shared with the speaker, they require selective attention mechanisms
which guide their attention to relevant aspects of the visual Veld. They also require joint
attention capabilities to pick out intended referents in word learning. Evidence from the
work of Tomasello (1999, 2003) indicates that children have both these required abilities.
This suggests that the concurrency of incremental role assignment and word learning in
the Dual-path model does not rest on assumptions which might be beyond the capacities
of language learning children.

3.3.3 Event semantics-layer

The complete message-lexical system of the Dual-path model comprises the two what-
where-systems plus an event semantics-layer which projects directly into the hid-
den-layer (Figure 3.2, page 56). The event semantics holds information about the type
of event described by the target utterance. SpeciVcally, it provides information about
the number of participants in an event. For this purpose the event semantics-layer
consists of units, or event features, which signal the presence of participants. An active
XX feature, for instance, would signal the presence of a causer or an agent, a ZZ feature
would signal the presence of a goal, recipient or location. Depending on the artiVcial
language and learning conditions, the event semantics can have additional features, e.g.,
a feature AA for the action in an event, a feature DD for prepositions, features PAST,
PRES for tense, and SIMP, PROG for aspect. For a multi-clause language with a complex
syntax, additional features are required to signal the relative prominence of basic events,
or to specially mark other participant features. The following chapter is devoted entirely
to optimizing the representations in the event semantics of such a language for learning
and generalization. To give an example, if the event is an instance of the agent-patient
construction, typically expressed by an active transitive sentence such as the woman

kicked the teacher, the event semantics would signal the presence of an agent by
activating the feature XX, the presence of a patient by activating the feature YY, and
(optionally) activate the action feature AA, the past tense feature PAST, and the simple
aspect feature SIMP. This pattern of activation would be fully set in the event seman-
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tics-layer prior to sentence production and remain active without change in the course
of production.

The event semantics provides the conceptual structure of an event which the model
experiences while trying to predict the next word in a sequence. It constrains the
model’s output in that it encodes the number of participants in the target utterance
and their semantic relationship. Moreover, the event semantics speciVes the relative
prominence of participants in an event. Higher activation of one feature over another
signals the higher prominence of the corresponding participant. The more prominent a
role feature is, the sooner the model produces the word associated with this role in the
output sequence. Consider the sentence from above in passive voice the teacher is

kicked by the woman. The two sentences are not distinguished in terms of the number
of participants, their semantic roles, tense or aspect, or their conceptual content in the
what-where-system. To encode the distinction between active and passive structures
in the event semantics, the prominence of the YY feature relative to the XX feature can
vary. This is implemented through a reduction of activation of the XX feature relative
to its default level (see Figure 3.4). In other words, if an active structure is intended to

Active sentence:    the woman kick -ed the teacher .

Thematic roles:         AGENT    ACTION   PATIENT
Where-layer nodes:       X            A             Y
Event-semantics:      XX=1.0                  YY=1.0

Passive sentence:  the teacher is kick -par by the woman .

Thematic roles:        PATIENT       ACTION      AGENT
Where-layer nodes:       Y                 A               X
Event-semantics:      YY=1.0                         XX=0.5

Figure 3.4: Marking the active/passive distinction in the event semantics.

express the message, both agent and patient features in the event semantics have the
same level of activation. If the passive construction is intended, the agent feature XX is
reduced relative to the patient feature YY. This biases the model towards activating the
Y role prior to the X role in the where-layer and hence to produce the teacher before
the woman in the word output sequence.

In visual processing, aspects of the perceived scene are organized into Vgure and
ground. Which aspect is categorized as Vgure and which as ground depends on the at-
tentional focus. Reversing the attentional focus, one aspect of a scene can alternate be-
tween Vgure and ground. The way the active/passive alternation is encoded in the event
semantics is analogous to the Vgure-ground alignment in visual perception. DiUerential
activation of features in the event semantics-layer encodes the relative prominence
of corresponding thematic roles in the message. By reducing the XX feature activa-
tion in the passive construction, the model’s attention is focused on the patient role Y,
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thus bringing it to the foreground and forcing the X role, corresponding to the reduced
feature XX, into the background. This principle is also used to encode other syntactic
alternations in the language. It is important to point out, however, that the event seman-
tics does not provide the model with syntactic frame information because the features
in the event semantics do not map onto syntactic roles one-to-one. The model develops
its syntactic representations through learning.

The Dual-path model is endowed with semantic role variables in the where-layer.
These variables become instantiated through fast-changing weight bindings with con-
cept nodes in thewhat-layer. This mechanism was designed to enable generalization of
novel constituents to familiar syntactic frames. It is not suXcient for symbolic behavior,
however, to equip a connectionist system with such variables unless the system is able
to properly use these variables. The Dual-path model can use these variables if it learns
to activate the appropriatewhere-layer roles of the sentence message in the right order,
and has learned the lexical semantics for thewhat-layer concepts temporarily bound to
these roles. The event semantics-layer feeds directly into the hidden-layer of the se-
quencing system and guides the use of the role variables. It provides information about
which structure the sequencing system should select in order to produce all variables
in the message. Activation diUerences between features in the event semantics-layer
help the model activate the correct sequence of role variables. In the words of Chang,
Dell, and Bock (2006), “the event semantics helps the sequencing system learn lan-
guage-specific frames for conveying particular sets of roles by giving the sequencing
system information about the number of arguments and their relative prominence” (p.
242). Without event semantics the Dual-path model does not have access to the in-
tended message. Consequently it cannot exploit sentence-specific semantic features to
constrain the sequencing process. Its word predictions are based on previously pro-
duced words only. The Dual-path model without event semantics still has thematic role
variables in the message-lexical system and acquires syntactic frames in the sequencing
system, but was nonetheless shown inferior to the Dual-path model with event seman-
tics in terms of a variety of generalization tasks (cf. Chang, 2002, pp. 625). This suggests
that variables alone are not suXcient architecturally to exhibit symbolic generalization
unless the use of these variables is supported appropriately.

3.4 Production sample

The Dual-path model architecture is quite complex, and so is the Wow of information
during learning and production. It will therefore be helpful to walk through the produc-
tion process step-by-step by means of a concrete example. Consider the prepositional
dative sentence the girl give -s a toy to the cat.6 It is assumed that the model is
trained and produces this sample sentence correctly. I will focus on the quintessential
processes in a model subject which has learned to produce sentences in the intended
way. Thus, I will describe an idealized production event.

6Note that the present tense morpheme -s is treated as a separate lexical item.
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Before production begins the model is initialized. All learnable connection weights
in the network are set to those values that developed in the model during training.
The training procedure is described in more detail in the appendix and the subsequent
chapters. The context-layer units are initialized to a value of 0.5. Next, the complete

Sentence the girl give -s a toy to the cat

Thematic roles X (agent) A (action) Y (theme) Z (recipient)
Concepts The, Girl Give A, Toy The, Cat

Event semantics XX=1.0 PRES, SIMP=1.0 YY=1.0 ZZ=0.5

Table 3.1: Message components for the target utterance.

message for the target sentence is set in the message-lexical system prior to produc-
tion and this message will not be manipulated externally in the production process.
The message associated with the target sentence is shown in Table 3.1. First, all the-
matic roles in the message are linked with the appropriate concepts by creating synaptic
connections between the corresponding units in the where- and what-layers. These
connections are set to a Vxed arbitrary value which is suXcient to ensure that an ac-
tive where-layer node activates the target what-layer node. Furthermore, the value of
these connections needs to be such that both pathways in the model can make a bal-
anced contribution to the overall production process. A smaller value will give more
weight to the sequencing system, a larger value more to the message-lexical system. In
the above example, the agent unit X in the where-layer gets linked with the concepts
[The] and [Girl] in the what-layer, the action node A is linked with the verb stem
concept [Give], the theme unit Y is linked with the indeVnite article [A] and [Toy],
and the recipient unit Z is linked with [The] and [Cat]. The same sentence-specific
connections are set in reverse direction between the cwhat- and the cwhere-layers of
the model, the cwhere2-layer is initialized like the context-layer. Secondly, the event
semantics component of the message is set. In the example, the XX and YY features are
switched to 1.0, and the ZZ feature is switched to 0.5. This pattern of activation sig-
nals to the sequencing system that a transfer construction with three participants is
intended and the activation value of the recipient feature, which is lower than baseline,
biases the model towards expressing the message with a prepositional dative instead
of a ditransitive sentence. If the ditransitive alternation the girl give -s the cat a

toy had been intended the recipient feature would have been set to 1.0. As in case of
the active/passive alternation diUerential activation encodes the relative prominence of
roles, and a feature reduction takes the corresponding role out of the attentional focus.
Finally, the present tense feature PRES and the simple aspect feature SIMP are turned on
in the event semantics-layer.

The Dual-path model operates on a discrete time scale, the production event is sub-
divided into ticks and each tick corresponds to one word. After the model is initialized
and the message is set in the described way production starts on the Vrst tick with no
word input. Activation spreads from the uniformly active context-layer and from the
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event semantics-layer to the hidden-layer of the sequencing system. Connections be-
tween these layers have been trained, hence the hidden-layer activates the agent role X
in the where-layer and consequently both concepts [The] and [Girl] will be activated
in the what-layer. Activation also spreads from the hidden-layer to the compress-
layer where the sequencing system represents grammatical word categories (Chapter
5). Since the model has learned the meaning of words, the message-lexical system ac-
tivates the lexical items the and girl at the word-layer. Both lexical items become
available for production. The compress-layer, however, activates only the determiner
category because all sentences in the input started with either a deVnite or indeVnite
article. The activation from both pathways is summed, thus the sequencing system
enforces the article and the model produces the on the Vrst tick.

After the deVnite article is produced, the is copied back to the cword-layer on
the second tick. Now activation spreads through both pathways to the hidden-layer.
The previous time-step activation pattern of the hidden-layer is supplied by the con-
text-layer as an additional input. In the comprehension system of the model, the is
mapped to the concept [The] which activates the X role in the cwhere-layer because
the produced article is part of the noun phrase that is associated with this role. Simi-
larly, the Z role in the cwhere-layer is active because the noun phrase associated with
Z also uses the deVnite article. The cwhere2-layer, on the other hand, is silent because
the cwhere-layer was inactive on the Vrst tick. In the sequencing system, the article
is mapped to the determiner category in the ccompress-layer. In the input language,
articles were always followed by nouns, hence the hidden-layer activates the noun
category in the compress-layer. From the message-lexical system, the hidden-layer
receives ambiguous information since both the agent role X and the recipient role Z are
activated by the deVnite article at the cwhere-layer. Consequently, the sequencing sys-
tem is uncertain which role should be activated next in the where-layer. At this point
in processing, statistical information from the training corpus helps the model in select-
ing a role. Passive datives, such as the cat is given a toy by the girl, were absent
from the learning environment in the condition from which this processing example is
drawn. Because the dative structure itself is signaled by the event semantics, and the
model never experienced a dative with a sentence-initial recipient it opts against the Z
role and strongly activates the agent role X at the where-layer instead. Again, the con-
cepts [The] and [Girl] are activated at thewhat-layer and therefore the corresponding
lexical items at the word-layer. This time, however, the compress-layer does not sup-
port articles but favors all nouns at the word output. Therefore the model produces
girl on the second tick.

On the third tick, girl is copied to the cword-layer and the model continues the
production process. In a trained state, the model comprehends its own word predic-
tions. Thus it activates [Girl] at the cwhat-layer which now unambiguously identiVes
the previous role as the agent role X in the cwhere-layer, due to the preset synaptic
bindings between these layers. This causes the hidden-layer to sequence the action
unit A next at the where-layer and triggers the activation of the concept [Give] at the
what- and ultimately the transfer verb give at the word-layer. This prediction is in
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accord with the word class prediction in the sequencing system, so give gets produced.
A change to this routine occurs on the fourth tick. The cwhere-layer signals to the
hidden-layer that the action role A has been sequenced on the previous tick. Accord-
ing to the event semantics the intended message conveys a non-continuous event in
the present. The knowledge to activate the tense marker -s resides in the sequencing
system because the action role A is linked only to the verb stem in the what-where-
system. Thus, the message-lexical system stays largely inactive and the compress-layer
activates the tense morpheme at the word output.

After the verb form is complete the model needs to decide whether to express the
message with a prepositional or a double object dative. The choice is between sequenc-
ing the theme role Y or the recipient role Z next. The previously produced words and
roles are neutral between these options. Moreover, in either case the sequencing path-
way must activate the determiner category next. At this juncture between syntactic
alternations, the hidden-layer relies exclusively on the semantic information from the
event semantics-layer which biases the model towards the prepositional dative ren-
dering of the message, because the YY feature is more active than the ZZ feature. Hence,
the model produces the indeterminate article a on the Vfth, and the noun toy on the
sixth tick. The structural choice between syntactic alternations is made and the se-
quencing system generates the preposition to after the theme of the prepositional da-
tive construction. Since function words such as prepositions are not encoded in the
message, the sequencing system draws on learned statistical regularities to produce the
preposition. It is aided by the context-layer which supplies the activation state of the
hidden-layer on the previous tick and this ‘sequential context’ informs the sequencing
system that the dative theme is complete and a prepositional phrase should be produced.

When to is fed back to the cword-layer, the cwhere-layer stays silent, because the
preposition is not thematically or conceptually represented in the what-where-sys-
tem. The cwhere2-layer, however, has recorded all roles which have been produced so
far. This is due to the time-averaging of the previous activation state of both layers in
the cwhere2-layer. Thus, it signals to the hidden-layer that the agent, action and the
theme role have been sequenced already. The model uses this cumulative history along-
side the constructional information from the event semantics to activate the recipient
role Z at the where-layer on the next two ticks. This leads to the production of the
cat. On the Vnal time step all units representing thematic roles in the intended message
are fully turned on at the cwhere2-layer. The where-layer roles are almost completely
silent. The model knows that all participants which are encoded in the event semantics
have been generated and the sequencing system produces the period symbol ‘.’ to mark
the end of the sentence.

The Dual-path model production process can be summarized as follows. Words are
incrementally activated from the sentence-specific semantic content in the message-lex-
ical system. The sequencing system constrains this process by enforcing the gramma-
ticality word category sequences, and provides the functional constituents in the target
utterance. This system is guided by statistical regularities in the learning environment
and the conceptual structure of the intended message in the event semantics. At the out-
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put layer there is a competition between the message-lexical and the sequencing path-
way for the subsequent word slot. The interplay of diUerent kinds of representations in
the separate pathways—the sentence-specific content of the message-lexical system and
the abstract syntactic frames in the sequencing system—is the key to felicitous sentence
production in the model.

The Dual-path model does not implement any particular psycholinguistic theory of
sentence production. Yet, the model’s production process can vaguely be compared with
one of the most inWuential such theory by Levelt which pictures sentence production as a
linear progression of successive stages: conceptualization, formulation, articulation, and
self-monitoring (Levelt, 1989). In the Dual-path model setting the preverbal message in
the meaning system can be viewed as the conceptualization stage. Conceptualization is
achieved by a planning system which, strictly speaking, is external to the model. One
aspect of formulation in Levelt’s theory is grammatical encoding to select a sentence
surface form. Roughly, this stage corresponds to the model utilizing the event seman-
tics to chose between syntactic alternatives which express the intended message. In the
Dual-path model, though, grammatical encoding is accomplished incrementally during
production and does not precede articulation. The model only selects a syntactic form
at structural choice points in a sentence, not prior to production. The incrementality
of grammatical encoding in the model will be demonstrated in Chapter 5. Articulation
occurs in the model when activation spreads along both pathways and a word is se-
lected based on competition or cooperation between the two functionally independent
subsystems. This output is fed back to the model in the self-monitoring stage in which
it is processed in a comprehension direction. Lexical meaning and thematic roles are
assigned to the monitored constituent to guide further production of the target word
sequence.

3.5 Model assumptions

Experimental results obtained by computational modelling should always be evaluated
against the strongest assumptions underlying the model. It is therefore crucial to put
these assumptions in plain view, so that the signiVcance of results can be assessed with-
out in-depth study of the model itself. I follow the classiVcation of assumptions from
Table 1 in Chang et al. (2006, p. 240) and the discussion therein.

3.5.1 Learning assumptions

A fundamental assumption underlying the Dual-path model (and many other connecti-
onist models) is that language learning occurs qua processing. There are three aspects
to this learning-as-processing assumption.

Learning-as-processing First, it is assumed that language acquisition is an instance
of implicit learning. Knowledge of a language develops incrementally by Vne-tuning
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the processor to the task of mapping semantic representations onto appropriate sentence
forms. This knowledge is non-declarative and not accessible to deliberate recall. In the
Dual-path model, experience-driven implicit learning corresponds to adjusting the con-
nection weights in response to the statistical contingencies in the training environment.
Secondly, implicit knowledge develops gradually in the very processor itself. There is no
special mechanism external to the processor which provides syntactic knowledge in sen-
tence production. The production system itself embodies this knowledge and it is only
manifest in performance. The Dual-path model does not induce syntactic knowledge
from training patterns to store this knowledge in a dedicated memory. Rather, syntactic
knowledge develops in the connectivity between layers in the processor. Even though
the model is structured, all syntactic knowledge resides in a single set of connection
weights which is the functional core of learning, knowledge representation and pro-
cessing in the model. This conception of learning and processing has been advocated in
several psychological models (e.g., Gupta and Cohen, 2002, Botvinick and Plaut, 2004).
And third, the Dual-path model incorporates a continuity assumption. It is assumed
that the mechanisms which drive language acquisition continue to function from child-
hood through adulthood. In the network, individual nodes saturate during learning
and synaptic plasticity decreases. Thus, it becomes increasingly inWexible over time.
Nonetheless, the model’s basic learning and processing mechanism remains essentially
the same at all stages of development.

Prediction error The Dual-path model learns in a situated comprehension mode, in
which it receives external linguistic input and has access to the meaning of these ut-
terances. At each word position, it predicts the next word in the overheard utterance.
The diUerence between the internal predictions and the external input is then used to
adjust the strength of the model’s connection weights. Thus, it is assumed that human
language learners engage in word prediction during comprehension and are sensitive
to mismatches between internal predictions and external sentence input. Pickering and
Garrod (2007) argue that prediction and imitation in the production system is used in
comprehension and combined with the linguistic input in a dynamic way. On their view,
the rapidity of human comprehension can be explained if the comprehension system re-
cruits the production system to emulate external production through covert prediction.
Evidence for prediction in comprehension comes from a number of psycholinguistic
studies of sentence processing (Altmann and Kamide, 1999; Knoeferle et al., 2005) and
evidence for the activation of the production system during comprehension has been
found in neuro-imaging studies of speech perception (Watkins et al., 2003; Heim et al.,
2003).

MacWhinney (2005) has argued that prediction error might be the basis of power-
ful learning mechanisms in language acquisition. In comprehension, the learner com-
pares word predictions from her own production system with the word sequence she
hears. Detected discrepancies between predictive expectations and actual input are uti-
lized to learn syntactic structure. In production, the learner monitors her own word
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output to recover from structural errors and overgeneralization. MacWhinney suggests
that these learning strategies—receptive and expressive monitoring, respectively—might
jointly overcome the ’logical problem of language acquisition’.

3.5.2 Architectural assumptions

The architectural assumptions which the Dual-path model was built on have partially
been motivated before. I brieWy recall them here.

Two pathways The model has separate meaning and sequencing systems which com-
pete for the next word slot at the output layer. A growing body of evidence suggests
that there is a dissociation between linguistic capacities associated with lexical-semantic
and syntactic knowledge. This evidence supports theories according to which distinct
aspects of language processing are subserved by diUerent neurocognitive systems, or
even diUerent cortical areas. Ullman (2001) provides a survey of this evidence for ’du-
al-system’ models with respect to grammatical processing and lexical memory from
several domains such as neurological and developmental disorders, functional imaging,
and psycholinguistics. The Dual-path model is consistent with these Vndings in that
knowledge of syntactic frames and lexical semantics are acquired in functionally and
physically distinct subsystems.

SRN sequencing In the Dual-path model, sequencing is accomplished by a simple re-
current network (Elman, 1990, 1991) which learns temporal contingencies in the input
by means of a simpliVed working-memory system (context). SRNs have been used suc-
cessfully in many cognitive domains which require learning sequential structure such
as artiVcial grammar learning (Cleeremans, 1993), discrimination learning (Christiansen
and Curtin, 1999a), routine action performance (Botvinick and Plaut, 2004), and natural
language processing (see Christiansen and Chater (1999a) for an overview). Thus, it has
been demonstrated in many domains that SRNs exhibit a similar sensitivity to sequential
dependencies as human subjects.

3.5.3 Representational assumptions

There are two important assumptions underlying the Dual-path model which govern
the way linguistic information is represented in the model.

what-where separation The conceptual content of a sentence is represented by dy-
namic bindings between concepts in the what-layer and thematic roles in the where-
layer. The notion of fast-changing synaptic binding through spontaneous synaptogen-
esis is not well supported neuroscientiVcally, but for my purposes it is not critical how
theses bindings are realized. What is important are the computational properties of rep-
resentations that connect two separate systems with temporary bindings, regardless of
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the speciVc biophysical realization of binding in the human brain. These representa-
tions are motivated by the functional distinction between object recognition and spatial
location in visual processing described in Ungerleider and Mishkin (1982). Through le-
sioning of the brains of macaque monkeys, they discovered a bifurcation between two
anatomical pathways in the primate visual system, the ventral and the dorsal stream.
The former is involved in the identiVcation of objects, while the latter communicates
the location of objects. Generalizing functional mappings from monkeys to humans is
not unproblematic. Neuroimaging experiments, however, also support the idea of func-
tionally dissociable processing systems for object recognition and spatial location in in
human visual perception (Haxby et al., 1991). Several other neuroimaging studies have
since strengthened the case for functionally and anatomically distinct processes in the
visual system that encode ‘what’ and ‘where’ information (Smith et al., 1995; Mecklinger
and Pfeifer, 1996; Mecklinger and Müller, 1996).

XYZ roles A second representational assumption concerns the assignment of the-
matic roles to sentence constituents. The Dual-path model of Chang, Dell, and Bock
(2006) uses three thematic roles—X, Y, and Z—to encode the semantic relationship be-
tween event participants. These roles are represented by units at the where-layer and
by role features in the event semantics-layer. The X role is assigned to agents, causes
and stimuli, the Y role to patients, themes and experiencers, and the Z role to goals,
locations, recipients and benefactors. This encoding does not follow any speciVc lin-
guistic theory of thematic roles, although it combines aspects from several such theories
(Dowty, 1991; Goldberg, 1995; Levin and Rappaport Hovav, 1995). The prime motivation
for the XYZ role encoding, according to Chang et al. (2006), was to develop a thematic
role representation which reWects the sequential process of scene analysis and approxi-
mates the movement of attention in visual processing. Evidence from several studies of
language processing suggests that both comprehension and production are inWuenced
by selective attention to spatial regions in observed scenes (GriXn and Bock, 2000;
Knoeferle et al., 2005).

In the XYZ role representation, the Y role is assigned to the event participant which
is most saliently aUected, moved or changed by the action in an event. In the artiVcial
languages I will mainly be using, this includes the subject of intransitives (the cat in
the sentence the cat sleeps) and transitive objects (the dog in the cat chases the

dog). It also includes objects which are transferred in dative events (the toy in the

cat gives the toy to a dog). The X role is assigned to transitive and dative subjects
only. The Z role is assigned to recipients in datives and oblique objects (the boy in
the cat runs with the boy). Perhaps the most unconventional feature of the XYZ
representation is that intransitive agents and transitive patients are assigned the same
Y role. This treatment was motivated in Chang et al. (2006) by a study of Goldin-
Meadow and Mylander (1998) on gesture in deaf children of non-signing parents. It
was found that these children tend to gesture about intransitive agents and transitive
patients before gesturing about actions which Chang et al. (2006, p. 241) interpret as
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evidence that “there is a prelinguistic basis for treating them as the same role”. I adopted
this role assignment convention throughout.

3.6 Past research with the Dual-path model

The Dual-path model was Vrst introduced in Chang (2002). In this paper, it was investi-
gated to what extent the model exhibits symbolic generalization capacities. For instance,
it was tested whether the model was able to produce familiar words in novel slots,
whether it could produce the identity frames mentioned in Section 3.1.3, and whether it
could produce novel adjective-noun pairs. By comparing the Dual-path model to simi-
lar production model architectures, it was shown that the model was superior in terms
of these generalization tasks. In this way, it could be demonstrated that several Dual-
path model features were essential for generalization. The binding-by-weight feature
in the what-where-system, for example, enabled the model to produce familiar words
in novel slots, whereas a binding-by-space message which used similar thematic roles
was not satisfactory. It was also shown that thematic role variables were not suX-
cient to produce identity frames (a blicket is a blicket) unless the model was equipped
with an event semantics-layer which guided the use of these variables. Moreover, it
was shown that the separation of pathways was conducive in all generalization tasks.
Linking the pathways contaminated the representations in the sequencing system with
lexical-semantic information and prevented the Dual-path model from learning fully ab-
stract syntactic frames. Since generalization is a critical aspect of language acquisition,
and therefore a benchmark for models of syntactic development, this model comparison
provided computational support for some of the basic architectural and representational
assumptions behind the Dual-path model. The dual pathway assumption was indepen-
dently supported by a demonstration of the model’s ability to account for some double
dissociations in aphasics—e.g., between function and content words and light and heavy
verbs—when lesioned selectively in either of the two pathways.

While the Chang (2002) study was mainly concerned with motivating the Dual-
path model architecture and its representational assumptions in a wide range of gener-
alization tasks, the study of Chang et al. (2006) focussed on testing whether the model
was able to account for sentence processing data, both in children and adults. In this
study the model was applied to explain experimental data from three methodologi-
cal paradigms which tap into the use of syntactic representations: structural priming,
elicited production, and preferential looking. Speakers are inclined to reuse syntactic
structures across sentences they produce. For instance, when exposed to a prepositional
dative sentence prior to describing a pictured event, people are more likely to use a prep-
ositional dative in that description rather than the double-object dative which could be
used to express the same meaning. This eUect is called syntactic priming (Bock, 1986;
Bock and Loebell, 1990). The Dual-path model approach hypothesized that syntactic
priming is a form of implicit learning. Priming in the model resulted from small changes
in the connection strength between units of the learning mechanism during the process-
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ing of the prime structure, and Chang et al. (2006) were able to qualitatively match and
explain a variety of structural priming data in adults using the model. Priming in the
model, for example, was persistent over lag (Vller sentences), was insensitive to lex-
ical and morphological overlap between prime and target, and diUerentially sensitive
to meaning, depending on the prime-target alternation. These Vndings were consistent
with human priming data from a number of previous studies (see Chang et al., 2006, p.
263 for details).

In the same study, the Dual-path model was tested on how well it matched data
from language acquisition in several tasks. Chang, Dell & Bock found, for instance, that
structural priming occurred also during syntactic development not merely in an adult
state at the end of learning. Furthermore, preferential looking preceded elicited produc-
tion in the model when tested on transitive frames. Transitives preceded intransitives in
preferential looking and the transitive construction developed in a verb-specific way in
production. Again, these results were broadly consistent with what is known on these
issues in developmental psycholinguistics.

Most recently, the Dual-path model has been used in a cross-linguistic study of En-
glish and Japanese (Chang, 2008). Since the semantic features in the model’s message
are generic and the model learns to map messages onto grammatical forms, the model
could be applied to languages other than English. In this study, it is demonstrated that
the Dual-path model was able to learn artiVcial English- and Japanese-like languages
and displayed language-specific behavior which matched human behavior with respect
to heavy NP shift and lexical accessibility in production. For instance, the model ex-
hibited the short-before-long NP preference in English and the long-before-short NP
preference in Japanese, and thus could explain shift direction in both languages in a
single mechanism. In addition, the model showed a preference to order animate be-
fore inanimate NPs in English and Japanese because it was sensitive to distributional
properties in the input which support this ordering.

To summarize, the Dual-path model is tying together language learning and sen-
tence production which have traditionally been studied separately in psycholinguistics.
Since learning and processing take place in the same mechanism, the model oUers a uni-
Ved approach to acquisition and adult production. In the three studies of Chang (2002,
2008) and Chang et al. (2006), the Dual-path model was tested in a wide variety of
acquisition, generalization and processing tasks. The Vndings indicate that the model’s
behavior is largely consistent with human performance in these tasks. This provides
converging evidence that the model captures important aspects of human syntactic de-
velopment and sentence production in a formal theory of learning and processing. In
the remainder of this thesis, I will attempt to adduce further support for this claim from
the domain of complex natural language syntax.





Chapter 4

Learning

In this chapter I describe the basic extension of the Dual-path model archi-
tecture necessary to accommodate the production of multi-clause utterances.
Several meaning representations for complex sentences with relative clauses
are presented. Learning results for these message types are discussed and
analyzed. I identify an optimal set-up which will form the basis for simulations
in subsequent chapters.

4.1 Introduction

The Dual-path model of Chang (2002) and Chang et al. (2006) has been used to in-
vestigate the processing of single-clause utterances exclusively. In language acquisi-
tion, however, many controversial claims about the limits of data-driven learning and
the role of universal grammar are intimately tied to complex sentence structure, for
example, the purported innateness of the human capacity for recursive productivity
(Hauser et al., 2002) or the non-learnability of structure-dependent rules of grammar
(Crain and Pietroski, 2001). In theories of language production and comprehension,
complex sentence structure plays a critical role in elucidating the nature of syntactic
processing. Often, fundamental properties of the human language system are inferred
from the diUerential processing of structurally distinct multi-clause utterances. DiUer-
ential processing has been found for right-branching, cross-serial and center-embedded
dependencies (see Christiansen and Chater, 1999b and Gibson, 1998), for subject- and
object-relativized subordinate clauses (King and Just, 1991), and more generally the ac-
cessibility of noun phrases to relativization (Keenan and Hawkins, 1987). Moreover,
diUerential processing of relative clauses has been shown to co-vary with linguistic
experience (MacDonald and Christiansen, 2002; Wells et al., 2008) and frequency of
occurrence (Reali and Christiansen, 2007a,b). These studies suggest that probabilistic
information inWuences syntactic processing in intricate ways. Other processing pref-
erences have been observed in relative clause attachment priming (Scheepers, 2003),
in the preferred ordering of short noun phrases before longer noun phrases which are
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modiVed by relative clauses (‘heavy NP shift’, Arnold et al., 2000), and in the way main
verb/reduced relative clause ambiguities (‘garden paths’) are resolved in comprehension
(MacDonald et al., 1994). Relative clauses are purely syntactic devices to modify NPs
and are not part of the argument structure of lexical items or linguistic constructions.
Hence, the diUerential processing of sentences with relative clauses opens a window
into human syntactic processing. Processing preferences reveal how syntactic structure
is built in the human language processor during comprehension, how meaning is gram-
matically encoded during production, and shed light on both the nature of the syntactic
representations involved and the cognitive architecture maintaining and using these
representations.

Relative clauses pose many challenges for theories of processing and acquisition.
The questions how meaning is mapped onto sentences and how language is learned
from input have been studied by diUerent branches of psycholinguistics. The Dual-
path model, on the other hand, is built on the assumption that learning and processing
are inseparable, that there exists an intimate relationship between linguistic input, syn-
tactic knowledge and the processing capacities of the human language system. The
model’s processor is the very locus of its syntactic knowledge and this knowledge is
shaped through linguistic experience. In the framework of the Dual-path model, the
language system is not conceived as a Vxed device which constrains learning and pro-
cessing but as a mechanism which is itself altered and adapted through learning and
processing. Since this model is sensitive to the distributional properties of its linguistic
environment, it provides an ideal platform to investigate the complex interactions be-
tween input, learning and processing of relative clause constructions. In order to utilize
the model in this endeavor it is Vrst of all necessary to accommodate its architecture for
the processing of multi-clause utterances. This will be the primary task in the current
chapter.

The Dual-path model learns from exposure to message-sentence pairs. In the begin-
ning, the model receives a meaning representation as input and incrementally predicts a
sentence form suitable to express this message. During prediction, the model’s output is
compared word-by-word with the intended utterance and the model receives feedback
when mismatches occur, which alters the strength of synaptic connections between neu-
rons. In this way, the model’s state of knowledge is gradually adjusted until it converges
on a stable state which, ideally, represents the target grammar. Thus, representations
of syntactic knowledge are the outcome of learning a meaning-to-form mapping for the
training language. The model acts as an incremental transducer which casts the concep-
tual structure of its semantic input into a syntactic string of words. In this process, the
model accomplishes a number of subtasks which are instrumental to achieving its learn-
ing goal. For instance, it learns the meaning of lexical items in the training language and
induces word categories based on statistical regularities in the input. Also, the model
learns to appropriately sequence thematic roles in basic constructions and builds rep-
resentations of syntactic frames for these constructions.1 Compared with single-clause

1See Chang (2002), Chang et al. (2006) and Chapter 5.
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structures, sentences with relative clauses complicate the meaning-to-form mapping the
model has to learn considerably. It must produce clauses in the right order and respect
their integrity. It must identify the relative clause attachment and gapping site, estab-
lish the co-reference of constituents in diUerent clauses, omit the relativized constituent
in the surface form, and correctly resume superordinate clauses once an embedding is
complete. In addition, relative clauses create many alternative forms of expressing iden-
tical propositions which renders the meaning-to-form mapping more complex and the
message input to the model less distinct. Both these factors might prevent the model
from learning the target language to a satisfactory degree altogether.

In this chapter I seek to identify the requirements on the conceptual structure of
the message input which enable the model to learn and generalize relative clause con-
structions. To learn relative clause constructions, the semantic representations of these
constructions must be suXciently rich to allow the Dual-path model to reliably make
the right structural choices in processing. Encoding the meaning of complex sentences
in the event semantics is subject to three constraints. The Vrst constraint concerns the
absence of temporal order with which the message input is provided. The message is
given to the model in its entirety at the start of each production episode. All seman-
tic information is present from the beginning and remains active and unaltered until a
sentence is complete. The message is static and the model has to dynamically map this
message onto a sequence of words. With complete message input the model has to solve
a serial-order problem (what to produce next) and a timing problem (when to produce
what). To solve these problems, it must Vgure out when to use which chunk of semantic
information in the message. In case of single-clause sentences the model could achieve
this task because the conceptual structure of the message corresponded systematically
with the syntactic structure of the sentence (see Chang, 2002; Chang et al., 2006). For
multi-clause utterances, one might consider providing the model with semantic infor-
mation in a piecemeal fashion, e.g., separately for main and subordinate clause with a
time delay. But this would endow the model with sequential guidance which might not
be available to human learners in acquisition or speakers in grammatical encoding.2

The second constraint pertains to the spatial organization of the event semantics
component of the input message. I aimed at semantic representations which charac-
terize complex events by a linear pattern of activation. Although relations between
message elements were encoded by means of neural activation in this pattern, represen-
tations did not have a hierarchical structure in a spatial sense (such as, e.g., diUerent
layers of features and connections between features in diUerent layers). The model was
supposed to assemble the hierarchical structure of complex sentences from activation-
based, relational features. Complex events were conceived of as concatenations of more
basic events, with semantically salient participants and prominence relations between
basic events. All this information was projected onto a Wat pattern of activation rather
than a hierarchically structured network of semantic feature nodes. The spatial distri-
bution of neural excitation in hierarchically structured representations could give rise

2Confer, however, the paragraph on future directions in Section 9.2.3, page 280.
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to temporal information in the message input, a property which was ruled out by the
Vrst constraint.

A third constraint derives from the learning task itself in which the model is tested
on its progress for experienced as well as novel sentences. For learning the experienced
fragment of the target language it is conducive if meaning representations are highly
distinct. We can expect optimal learning if every construction has an idiosyncratic rep-
resentation in semantic space, e.g., by using disjoint sets of features. For generalization,
on the other hand, idiosyncratic messages are detrimental because novel constructions
would be paired with novel meanings not experienced during learning. The model
would have no experiential basis for producing structurally novel utterances from se-
mantic representations which share no resemblance with experienced meanings. Mes-
sages must therefore be suXciently close in semantic space to allow similarity-based
analogical extension of the production mechanism from trained to novel constructions.
Hence, there might be a trade-oU between learning and generalization which requires
attention in the process of determining a suitable message encoding.

4.2 ArtiVcial language and method

In this section I will brieWy describe the artiVcial language and training conditions I
used to Vnd a message representation that enabled the model to learn the syntax of
subordination and generalize to novel multi-clause utterances.

4.2.1 ArtiVcial language

This language consisted of templates for linguistic constructions which are basic to hu-
man experience, e.g., transitive action and dative transfer. (Goldberg, 1995). These tem-
plates contained open argument slots which could be Vlled by words and inWectional
morphemes from the lexicon to create sentences. Table 4.1 lists all basic constructions in
the artiVcial language. By means of relativization, basic constructions were combined
to form complex constructions with multiple clauses. In these complex constructions,
all combinations of basic constructions were admissible given that the modiVed head
noun matched the relativized element in the subordinate clause in terms of animacy.
In this way, a combinatorially complete language with at most one relative clause per
sentence was obtained from the constructions of Table 4.1. Some examples of such
constructions and their instantiating sentences are shown in Table 4.2. The lexicon
from which the argument slots of construction templates were Vlled contained 72words
and morphemes—two articles (deVnite and indeVnite), 12 animate nouns, 12 inanimate
nouns, 23 verbs in four categories (intransitive, transitive, dative and oblique), four
auxiliaries (is, are, was, were), the continuous form being, three prepositions (by, to,
with), three inWectional morphemes (-ing, -s, -ed) to mark tense and aspect, a past
participle marker (-par), the pronoun that and an end of sentence marker. In total, the
language comprised 131 diUerent constructions which together with this lexicon yielded
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Construction type Example sentence (single-clause)
Animate Intransitive the cat was sleep -ing .

Agent-Patient the dog is chase -ing the cat .

(active voice)
Agent-Patient a dog is being hit -ed by the teacher .

(passive voice)
Transfer Dative the boy give -s a apple to a girl .

(prepositional)
Transfer Dative a nurse show -ed the dog a toy .

(double object)
Animate Oblique a boy is play -ing with a cat .

Table 4.1: Basic constructions in the input environment.

roughly 1.03 × 1011 diUerent sentence tokens. Thus, although this language has little
variety in its basic construction types, relativization created considerable structural di-
versity and a large amount of distinct sentence tokens for a data-driven learner to cope
with. Clearly, the artiVcial language is lacking many lexical categories of natural lan-
guages such as pronouns, adjectives, adverbs, quantiVers, etc., and I cannot even begin
to enumerate the grammatical categories it is lacking. The language is stripped to a
structural core of combining basic constructions (and their syntactic alternations) into
more complex sentences through relativization. The purpose of using such an impov-
erished language is to Vnd semantic representations which enable the model to acquire
this grammatical device by capturing the relations between events expressed in multi-
clause utterances. If these representations are suXciently general we can easily add
linguistic features and constructional variety later on, and tailor the language to more
speciVc learning and generalization tasks.

To train the model, sentences were randomly generated from the templates of Ta-
bles 4.1& 4.2 and then paired with a semantic representation (message) which the model
received as input. As described in Chapter 3, each message consisted of concepts, par-
ticipant roles and event semantics features. The letters X, Y, and Z are placeholders
for thematic roles assigned to event participants. These ‘semantic variables’ were as-
sociated with concepts (e.g., BOY, CAT) in the message-lexical system. Combinations
of features in the event semantics (e.g., XX, YY, SIMP) encoded the conceptual structure
of an intended utterance. As Chang et al. (2006) point out, the XYZ representational
scheme does not correspond to any single theory of thematic roles but combines sev-
eral approaches to meaning. The central Y role is assigned to event participants which
are “most saliently changed or moved, or aUected by the action”, such as subjects of
intransitives and obliques, objects of transitives and datives. Participants which cause
actions are assigned the X role, such as subjects of transitives and datives. The Z role is
assigned to the goal, location or recipient of an action involving movement or transfer,
such as dative objects, but also to oblique objects. Table 4.3 shows the role assignment
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Construction type Example sentence (multi-clause)
Animate Intransitive the man that kick -ed the dog is run -ing .

(main clause) + (subject-modiVed—subject-relativized)
Agent-Patient

(relative clause)
Agent-Patient a nurse was hit -ed by the brother that

(main clause) + the boy give -s the cake to .

Transfer Dative (subject-modiVed—object-relativized)
(relative clause)

...
...

Transfer Dative a girl present -s the mother that

(main clause) + the cat is arrive -ing with a kite .

Animate Oblique (object-modiVed—object-relativized)
(relative clause)

Table 4.2: Complex constructions in the input environment.

for each construction in the language from which the input to the model was generated.
In the event semantics, each XYZ role corresponded to semantic features whose pattern

Construction Arguments Action
Animate Intransitive Y=ANIMAL sleep, jump, walk, fall,

run, arrive
Agent-Patient X=ANIMAL, Y=ANIMAL push, kick, attack, carry,
(active voice) approach, teach, pat, hit
Agent-Patient X=ANIMAL, Y=ANIMAL push, kick, attack, carry,
(passive voice) approach, teach, pat, hit
Transfer Dative X=ANIMAL, Y=THING, give, throw, show, toss,
(prepositional) Z=ANIMAL present, bring
Transfer Dative X=ANIMAL, Y=THING, give, throw, show, toss,
(double object) Z=ANIMAL present, bring

Animate Oblique Y=ANIMAL, Z=ANIMAL jump, walk, run, leave,
or THING play, come

Table 4.3: Argument structure of the artiVcial language. The category ANIMAL com-
prised humans and pets, the category THING included toys, food and drinks.

of activation described the overall event structure, the number and relative prominence
of event participants. A simple transitive event (the dog attack -ed a boy), for in-
stance, would be represented by activating the agent feature XX, the patient feature YY
and the features SIMP and PAST for simple past tense. It is the objective of this chapter to
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analyze diUerent ways of representing the semantic structure of complex constructions
by relating atomic events in the event semantics.

4.2.2 Method

For each message type which was compared in the following experiments, the sen-
tence input, training regime and model parameters were identical. Only the seman-
tic representations which the model received as input diUered across conditions. The
training set consisted of 8.000 simple-clause sentences randomly generated from the
six basic constructions in the language and of 2.000 randomly generated sentences
containing one relative clause. This input environment is depicted in Figure 4.1. The
model was trained on 100.000 sentences in total, eUectively cycling through the train-
ing set ten times. Sentences from the training set were presented in random order.
After every 5.000 training items, the model’s learning progress was measured. To
do this, the model was tested on 500 simple-clause sentences experienced in train-
ing and 500 novel simple-clause sentences which were not experienced in training.
This was to ensure that all performance diUerences the model displayed for relative
clause constructions were not due to impaired learning of simple-clause sentences.
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Figure 4.1: Number of constructions in the
artiVcial language and the simple-to-complex
ratio in training.

In addition, after every 5.000 train-
ing items, the model was tested on
500 sentences with relative clauses
experienced in training, and 500
such sentences which were novel.
The performance scores on these
sets estimate to what extent the
model learned the target language
in each condition. The ratio of
novel-to-trained scores gives an in-
dication of how well each mes-
sage representation supports syn-
tactic generalization (see Section
4.3.9). Model performance was
measured in terms of sentence ac-
curacy, which compared produced
utterances word-by-word with tar-
get utterances. To count as a suc-
cessful production, the model’s ut-
terance had to perfectly match the target utterance at each sentence position, not only
by grammatical category but also by lexical item. Assessing the model’s learning be-
havior, construction types were not distinguished at this stage.3

3That is to say, tested sentences were not distinguished by the basic constructions they were composed
of, not classiVed into right-branching and center-embedded, subject- and object-relativized constructions,
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4.3 Message representation comparison

In this section I will discuss 8 × 2 diUerent ways of encoding the meaning of complex
sentences in the Dual-path model’s input message. 8 conditions vary the event seman-
tics component of the message and 2 conditions vary the role-to-concept bindings in
the model’s what-where system. All message types respected the Vrst two constraints
from above, they were presented to the model non-dynamically as a linear pattern of ac-
tivation. The number of compared message types may seem excessive, but the analysis
of each condition contributed a piece of insight to the overall puzzle of Vnding a seman-
tic encoding suitable for the learning and generalization of complex sentence structure.
By the end of this chapter I will have identiVed such a message type and continue using
it throughout this thesis.

4.3.1 Random baseline

In the Vrst condition I examined, each construction was assigned an idiosyncratic,
holistic meaning. Each event type was represented by a distinct randomized message
which—in case of messages with two propositions—was not a combination of represen-
tations of simple events. Each construction from the model’s input environment plus
a unique tense and aspect combination deVned a diUerent event type. For example, a
simple transfer dative such as

(1) the cat show -s the kite to the mother .

counted as a sentence describing a diUerent event type than the sentence

(2) the cat was show -ing the kite to the mother .

despite being instances of the same construction. Hence, there was a total of 6× 4 = 24
simple event types and 131×4×4 = 2096 complex event types expressible in the artiVcial
language. Once a random meaning was assigned to each event type, this message was
kept constant across training and testing. Thus, although sentence tokens in testing
were novel, the random meaning of the underlying event type was identical to the
training condition.

In contrast to message representations I will discuss subsequently, there was no de-
fault level of activation in the event semantics layer. All event features were assigned
an activation value uniformly randomized between 0.1 and 1.0. For instance, the event
type expressed by the sentence

(3) the mother was being hit -par by the cat .

from the actual training corpus was represented by setting the activation of the past
tense feature to 0.7, the progressive aspect feature to 0.3, the Patient feature to 0.2

or separated by other dimensions of distinction which will become relevant in later chapters.
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and the Agent feature to 0.9.4 The intra-clausal prominence of event participants was
not signalled to the model. Moreover, syntactic alternations such as the transitive ac-
tive/passive constructions were not semantically wedded by systematically varying the
Vgure-ground relationship of the Agent and Patient features (as described in the pre-
vious chapter). Each event type received it’s own unique and independent representa-
tion in the event semantics; the other message elements—thematic roles and concepts—
were linked in the usual way in the what-where system.

Among other things, Figures 4.2 (page 82) and 4.3 (page 83) show the model’s per-
formance in this ‘randomized condition’ on single-clause sentences from the training set
and on novel such sentences drawn from the same language, averaged over ten training
environments.5 On both test sets—the familiar and the unfamiliar sentences—the model
reached close to 100% sentence accuracy. Thus, the model correctly produced the sen-
tences it experienced in the learning phase and generalized to novel simple sentences
which it had not experienced in training. Performance looked very diUerent, however,
when the model was tested on the multi-clause fragment of the training set. As shown
in Figure 4.4 (page 84) it reached only approximately 15% sentence accuracy. For novel
sentences with relative clauses the model even scored less than 10% in the randomized
message condition (see Figure 4.5, page 85).

This limitative result suggests that the meaning-to-form mapping for multi-clause
utterances is not learnable if the sentence message is non-combinatorial at the proposi-
tional level. Learnability requires that clauses which express the same proposition have
the same meaning representation whether they occur in a simple or a multi-clause ut-
terance. This is not so much a claim about the compositionality of meaning, but a claim
about the necessity of semantic persistence. If every sentence, regardless of its number
of clauses, has a holistic meaning, linguistic experience is insuXcient for learning even
a simple language with one level of embedding.

4.3.2 Simple-event message

The requirement of semantic persistence was satisVed in the simple-event message. In
this condition, the event semantics for clauses in complex sentences was identical with
the event semantics for clauses in simple sentences. The basic simple-clause message
was introduced in Chapter 3 and the description of the artiVcial language in Section
4.2 above. Complex sentences in the simple-event message were represented by con-
catenating the event semantics of two single-clause sentences. For example, a simple
transitive sentence such as

4The diagram 4.10 on page 102 depicts this and all other compared messages schematically by their
characteristic pattern of activation.

5By randomizing the event semantics in the described manner, it could accidentally occur that mean-
ing representations of diUerent constructions were too close in ‘semantic space’. This could cause the
model to not learn certain constructions. Therefore each of the ten model subjects averaged in Figures
4.2 and 4.3 was equipped with a diUerent randomized event semantics.
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Figure 4.2: Testing on the simple-clause training fragment for all compared message
representations.

(4) the cat chase -s the dog .

was represented by activating the Agent, Patient, present tense and simple aspect
features (XX=YY=PRES=SIMP=1.0) and so was the embedded clause

(5) ...that [the cat] chase -s the dog...

together with the semantic representation of whichever matrix clause it was combined
with. Thus, the model received as input a message for two independent events, but
no semantic information about the relation of these events. The simple-event mes-
sage was characterized by the inter-sentential persistence of clause meanings and the
representation of the intra-clausal prominence of event participants.

Similar to the random baseline, the model rapidly learned to produce correct sim-
ple sentences, both trained and novel (Figures 4.2 and 4.3). On trained complex sen-
tences it reached around 50% sentence accuracy, which dropped below 40% for novel
complex sentences (Figures 4.4 and 4.5). Because the relative prominence of events was
not signalled to the model in its message input, 50% accuracy was the maximum of
what could reasonably be expected. Given this limitation of the message, the model
performed close to optimal in producing novel multi-clause utterances.

4.3.3 Event-order message

In the event-order message this limitation was removed. One way of thinking about
sentences with relative clauses is that they are composed out of two sentences which
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Figure 4.3: Testing on novel simple-clause sentences.

express distinct propositions.

(6) a. the boy chases the dog .

b. the boy runs .

Both sentences can be related by an anaphoric demonstrative if the referents of the
shared NPs are identical in some real world event.

(7) a. the boy chases the dog .

b. that boy runs .

The anaphoric demonstrative develops into a relative pronoun as the embedded clause
is merged with the main clause.

(8) the boy that runs chases the dog .

Parsons (1994, p. 250) speculated that this may be a process by which the restrictive
relative clause construction evolved in English, historically. This philological account
bears resemblance with the conjoined clause hypothesis of Tavakolian (1981) in language
acquisition. According to this hypothesis children process complex sentences as coordi-
nate clausal units, interpret the missing noun phrase as the subject of the relative clause
and take it to be co-referential with the subject of the main clause.

Multi-clause sentences describe complex events which are composed out of atomic
events (in my artiVcial language). These atomic events are semantically related since
they share an event participant (whose denoting NP is omitted in the relative clause).
Shared participants induce relations between events that can be thematic, causal, or



84 Chapter 4. Learning

Number of sentences trained

U
tte

ra
nc

es
 c

or
re

ct
ly

 p
ro

du
ce

d 
(%

)

0

10

20

30

40

50

60

70

80

90

100

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

topic−focus−simplified
topic−focus
binding
event−link−order
event−link
event−order
simple−event
random baseline

Figure 4.4: Testing on the training fragment containing relative clauses.

temporal in nature. For instance, in the sentence

(9) the horse that jumps over the fence bit the cow .

the restrictive relative clause functions as a predicate that identiVes the referent of the
head noun. The event described in the relative clause speciVes a participant in the main
clause event and Vxes the topic of the sentence. In the sentence

(10) the man that fell off the bridge died .

the embedded event is semantically related to the main clause event by causing the
latter. In nonrestrictive relative clauses,

(11) the cat, that chased the dog, is playing in the garden .

described events are independent, the construction is similar to a conjunction. The
relation between the events is predominantly temporal.

The sketched event relations of thematic speciVcation, causal dependency and tem-
poral order semantically structure complex events and it would be desirable to represent
such relations in the conceptual structure of the model’s message. For the purpose of
this chapter, however, it is suXcient to encode a more simplistic prominence relation be-
tween atomic events. In the literature on discourse and information structure, complex
sentences are often analyzed into a foreground and a background information compo-
nent (Tomlin, 1985; Thompson, 1987). Foreground information is pivotal and central to
the discourse whereas background information is peripheral and merely adds material
which Weshes out the main events of a narrative. It has been argued that the distinction
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Figure 4.5: Testing on novel sentences containing relative clauses.

between foreground and background information maps onto the distinction between
main and subordinate clauses in complex sentences. Main clauses convey crucial infor-
mation, whereas dependent subordinate clauses supply additional information which is
not essential to the narrative discourse (Hopper and Thompson, 1980). Thus, the no-
tions of foreground and background diUerentiate the semantic content and pragmatic
function of clauses in complex sentences.6 Tomlin (1985), for instance, showed that ex-
perimental subjects tend to report events which are important to the narrative by main
clauses when describing observed non-verbal action, whereas they express less pivotal
information in subordinate clauses.

In addition, a number of studies from the psycholinguistic literature have argued
that there are diUerences in sentence processing between main and subordinate clauses
which support the idea that foreground and background information correlate with
clause type. Baker and Wagner (1987), for example, showed that readers detect false
information more easily in main than in subordinate clauses which suggests that in-
formation is more likely to be evaluated for truthfulness when the syntactic structure
indicates that it is of central importance rather than logically subordinate and peripheral.
The main clause as the central focus of a proposition is more reliably checked against
world knowledge than the subordinate clause. Townsend and Bever (1978) demonstrated
that the meaning of main clauses is better maintained in memory than the meaning of
subordinate clauses whereas verbatim recall is more accurate for subordinate clauses.
This indicates that attention is focused on main clause events which are perceived as

6Cf. Diessel (2004, p. 44–45). In similar vein, Talmy (2000) proposed that in complex sentences the
semantic primitives of Vgure and ground characterize main and subordinate clause events, respectively.
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more prominent and that semantic information extracted from more salient sentence
positions is more available in subsequent processing.7

Main and subordinate clauses of complex sentences diUer in the types of informa-
tion they convey and they diUer in how accessible this information is in processing. If
it is the case that in terms of discourse structure important events are usually expressed
by main clauses and less important events by subordinate clauses, this relation of rel-
ative prominence between events should be reWected in the processor’s representations
of the semantic structure of complex sentences. The Dual-path model does not model
discourse or the context of utterances, every sentence is presented in isolation and as
an autonomous piece of discourse. Thus, unlike a human learner it can not infer promi-
nence relations between events from its learning environment. To compensate for this
deVcit, the model received semantic information that signalled which atomic event was
more pivotal. In this way it could learn to make an informed choice regarding the syn-
tactic structure with which to express complex events. Following the discussion above,
I adopted the convention that more prominent events were always expressed by the
main clause. In the examples (9)–(11) the prominent events are the temporally posterior,
the causal outcome, and the theme of the complex event, but in general prominence is
neutral with respect to temporal order or causal direction. The relative prominence of
events is anchored in discourse and temporal order or causal direction were therefore
not systematically reWected in the syntactic structure of the model’s training sentences.
For brevity, I will refer to more prominent events expressed by the main clause as the
sentence’s theme and to background events expressed by the relative clause as the sen-
tence’s comment.8

In the event-order message, the relative prominence of events was marked by
reducing activation of the tense/aspect features of the comment relative to the level
of activation of the tense/aspect features of the theme. The Dual-path model did not
use sets of dedicated units in the event semantics to represent diUerent events. An
agent feature XX, for example, could signal the presence of an agent in the theme or the
comment. If the intended order of events was the default order, the tense/aspect features
of both events were switched to 1.0, if the order was inverted, the tense/aspect features
of the comment were reduced to 0.5.9 For example, the event structure of the sentence

(12) the cat that is sleep -ing chase -ed the dog .

was represented by the event semantics activation pattern

ES(12) 1XX = 1YY = 1PAST = 1SIMP = 0YY = 1.0, 0PRES = 0PROG = 0.5

7EUects in this study varied with the semantic relation between events (being, e.g., causal, temporal,
or presuppositional), see also Cooreman and Sanford (1996).

8The use of theme and comment to designate the semantic status of diUerent clauses is not intended
to conform with any particular linguistic theory. It is a purely conventional label.

9It is also possible to always reduce the comment features but it was easier for the model to focus on
the activation state of two nodes instead of comparing the states of 2× 2 nodes to determine the order of
events.
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where the 1-features were main clause features and the 0-features are embedded clause
features. Hence, in the present condition the message representation employed sim-
ple, activation-based means of relating atomic events by placing prominent ones in the
foreground and less prominent events in the background. The event-order message
not only represented the relative prominence of participants within events but also the
relative prominence of atomic events.

Figure 4.5 (page 85) shows that the model tested barely above 40% sentence accu-
racy for novel complex utterances in the event-order condition. Performance was poor
because the message semantically related distinct events in terms of their prominence
but contained no information about the event roles of the shared participant. The mere
ordering of events did not tell the model which participant in the theme was further
speciVed by the comment. In other words, the event-order message was not suX-
ciently structured to deVne a one-one mapping between meanings and sentence forms.
Consider the sentence

(13) the cat chase -ed the dog that is sleep -ing .

In the event-order message, (13) was represented by the same activation pattern in
the event semantics as the previous sentence (12). The relative prominence of events in
the message reWected the distinction between main and subordinate clauses, but right-
branching and center-embedded constructions are not distinguishable by clause order
information alone. A closer look at the model’s test sentence output conVrmed that
incorrect attachment was the major source of the model’s production errors. In a word-
by-word comparison between target sequences and actual output sequences, the most
frequently missed target word was the pronoun that and, likewise, the most frequent
word erroneously produced (table 4.4). The high number of errors in tense (was/is sub-

Ten most frequently missed target words
122 that 92 was 36 is 24 -s 16 to 16 teach 13 being 12 show 11 a

Ten most frequent words erroneously produced
137 that 112 is 35 was 24 -s 14 to 12 blank 9 . 8 a 8 toss 8 -ed

Table 4.4: Most frequent lexical errors in the event-order condition.

stitution) also indicates that marking comment and theme on the tense/aspect features
was not ideal as they did not fully maintain their designated function.

Although the model represented some information about the conceptual structure
of complex events in its sentence message, it essentially had to guess which two event
participants in the theme and comment were co-referential. This condition resembles a
communicative situation in which a speaker plans a complex utterance about multiple
entities, not knowing the identity of the element which is to be speciVed or enriched
by the relative clause. It seems reasonable to assume that such conceptual content is
part of the mental representations of sentence meaning a speaker intends to convey.
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The event semantics described in the next section attempts to overcome this deVcit by
linking events in the message in a more precise fashion.

4.3.4 Event-link message

English relative clauses can be characterized by specifying the syntactic role of the head
noun, i.e., the main clause NP which is immediately followed by the relative pronoun,
and the syntactic role of the omitted NP inside the relative clause which is coreferen-
tial with the head noun. Depending on linguistic theory, these two NPs are frequently
called attachment and extraction site (Levine, 2001), modiVed and relativized element
(Sag, 1997; Diessel and Tomasello, 2005), or Vller and gap (Wanner and Maratsos, 1978).
These terms describe the syntactic properties of constituents in complex sentences and
are not usually applied to identify the semantic or pragmatic function of these constit-
uents. Semantically, the modiVed element is the most prominent sentence constituent
because it denotes the unique participant of both events, the theme and the comment.
Because restrictive relative clauses are the only modiVers in my artiVcial language, com-
plex sentences provide strictly more information about the modiVed element than about
any other sentence constituent, irrespective of whether part of this information is back-
grounded or pragmatically presupposed. This semantically salient participant I will refer
to as the topic of the complex sentence in its occurrence in the theme and as the focus
in its occurrence in the comment. Again, these labels are purely conventional and are
required to identify the modiVed and relativized elements semantically. They do not
match the use of ‘topic’ and ‘focus’ in any particular theory from the discourse-prag-
matics literature.10

In the event-link message, the model was provided with semantic information
about the co-reference of topic and focus. In doing so, I assumed that a language
learner can infer the referent of the topic/focus element from the visual environment
shared with the speaker. It is the very pragmatic purpose of a restrictive relative clause
to single out a discourse referent and establish the topic of a sentence. The presence
of multiple referents is therefore a felicity condition for the use of restrictive relative
clauses (Córrea, 1995; Kidd, 2003). If there is only one possible referent in a real world
event, the relative clause is redundant. If there is a set of possible referents, the relative
clause restricts this set and disambiguates the main clause meaning. Language learners
might not be sensitive to the pragmatic function of relative clauses but adult speakers
are and they might support this function through pointing, demonstration or gesture.
Pointing, e.g., serves to direct the hearer’s attention to the spatial region of the refer-
ent (Marslen-Wilson et al., 1982) and reference resolution is facilitated when speaker
and hearer share attentional focus on the same region (Hanna and Tanenhaus, 2004).

10According to Lambrecht (1994) the topic is characterized by semantic ‘aboutness’ and the focus ‘en-
riches the topic semantically’. Since “a relative clause must be a statement about its head noun”, Kuno
(1976) proposed to view the head noun of a relative clause as the topic of that clause (p. 420). The notion
of focus is also used by Villiers et al. (1979), Sheldon (1974) and Kidd and Bavin (2002), referring to the
syntactic role of the relativized element.
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SpeciVcally, then, I assume that the triadic relation between speaker, learner and topic
referent can be established in a communicative situation through joint attention and
non-linguistic deixis.

Topic/focus information connects events in a diUerent way as theme and comment
information. Theme and comment relate atomic events in terms of their relative promi-
nence but do not highlight individual participants, whereas topic and focus identify the
co-referential participants of both events. Of course, topic and focus are not canonically
associated with a particular syntactic function or thematic role. However, topics and
foci can be individuated by their thematic role because no two participants in atomic
events occupy the same thematic role. In the event-link message, topic/focus infor-
mation was incorporated by marking the event semantics features corresponding to the
thematic role of the joint participant in each event. This was implemented by reducing
the default activation of features by a Vxed value of 0.3. For instance, if the main clause
agent was the sentence topic the 0XX feature in the event semantics was reduced to
0.7. If the relative clause patient was the sentence focus the 1YY feature in the event
semantics was equally reduced to 0.7. In this message, the event structure of sentence
(12) was represented by the following pattern of activation:

ES(12) 1XX = 0YY = 0.7, 1YY = 1PAST = 1SIMP = 0PRES = 0PROG = 1.0

The event structure of sentence (13), on the other hand, was represented as

ES(13) 1YY = 0YY = 0.7, 1XX = 1PAST = 1SIMP = 0PRES = 0PROG = 1.0

Hence, in contrast to the event-order message from the previous section, the event-
link message could distinguish both sentences in that it contained information about
semantically salient participants.11

Because topic and focus map directly to the positions of the head noun and gapped
element we could expect strongly improved performance compared with the event-or-
der condition in which attachment errors accounted for a large number of incorrect
productions. Sentence accuracy for novel complex test items, however, reached only
around 53% (Figure 4.5, page 85). Intuitively, the model’s deVcits are rooted in the way
topic and focus were marked in the event-linkmessage. The event semantics contained
information about the co-reference of topic and focus but it did not signal to the model
which was which. In other words, the event features carrying topic and focus content
were not distinguished themselves. Consequently, the model could not associate the
topic with the theme of the complex event, or the focus with the comment for that
matter. Just as in the simple-clause message, atomic events were not distinguishable
in terms of their relative prominence. If this hypothesis is correct, we should expect
that the model generated many errors which reWect main/relative clause confusion. To
test this, I examined and classiVed the actual sentence output of the model for 187 novel
input messages (table 4.5). Sentences causing type I errors all were object-relativized
and the model produced the relative clause subject NP at sentence onset. If, e.g.,

11Again, refer to diagram 4.10 on page 102 for a more perspicuous comparison.
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Cummulative
Label Error type Number Percentage

I Initial noun phrase 41 21.8
II Initial determiner 54 50.8
III Verb scrambling 18 60.4
IV Aspect scrambling 10 65.8
V Attachment 32 82.9
VI Non-classiVed 32 100

Total 187

Table 4.5: Types of production errors in the event-link condition.

(14) the cat chase -ed the dog that a boy is hit -ing .

was the target sentence, the model started oU producing a boy... instead of the cat.
In type II errors, the model initially produced the determiner of the relative clause sub-
ject NP together with the main clause subject noun, i.e., a cat... for sentence (14).
Both types of error indicate that the model had diXculties with clause order, suggest-
ing that it could not determine the relative prominence of events based on the message
input. In verb and aspect scrambling—error types III and IV—the model began sentence
(14) with the correct main clause NP but then confused either the actions or the tempo-
ral Wow of the atomic events, as in the cat hit -ed... and the cat is chase...,
respectively. These two error types suggest that the model did not process complex
propositions in terms of atomic events, which is witnessed by disregarding the integrity
of clausal units expressing these events. A type V error was committed when the model
did not identify the topic of the construction and attached the relative clause to the
wrong main clause NP. Type VI errors included several forms of incorrect utterances
such as wrong determiners in positions other than sentence initial, the wrong choice of
syntactic form (e.g., a double object dative instead of an intended prepositional dative),
and other nondescript mistakes.

Problems with clause order and clausal integrity in type I–IV errors accounted for
nearly two thirds of all production errors in the event-link condition. These errors can
be attributed to the message input which only signalled the co-reference of topic and
focus but otherwise put both atomic events on a par. Next, I combined the event-link
features of the message with the event-order features from the previous message.
The resulting event semantics marked topic and focus of the complex event as well
as the relative prominence of atomic events. Given the model’s performance and the
distribution of characteristic errors in the current condition it can be expected that the
model reaches above 80% sentence accuracy when both sets of semantic features are
present.
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4.3.5 Event-order-link message

The event-order-link message combined features for encoding the relative promi-
nence of thematic roles within clauses, the relative prominence of events within a sen-
tence, and the semantic prominence of topic and focus. It was the conjunction of the
previous two message types. Consider the sentence

(15) the cat that a man was hit -par by is show -ing the toy to a girl .

The event semantics of this sentence in the event-order-link message is depicted in
Figure 4.6. The 0PRES and 0PROG features marked the present progressive of the theme
whereas the 1PAST and 1SIMP encoded the simple past of the comment.
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Figure 4.6: Event-semantics in the event-order-link condition.

The theme/comment contrast was marked by the activation diUerence between
0PRES/0PROG and 1PAST/1SIMP, respectively. The intended prepositional dative main
clause was represented by reducing the activation of the recipient feature 0ZZ relative
to the agent and theme features 0XX and 0YY. The 0XX feature was reduced to mark
the agent as the topic of the main clause. Passive voice in the relative clause was repre-
sented by reducing the activation of the agent feature 1XX relative to the patient feature
1YY to the level indicated by the dashed bar. Because the agent of the relative clause was
also the comment’s focus, co-referential with the main clause topic, the agent feature
1XX was reduced a second time to the level indicated by the solid bar.

In contrast to all previous kinds of event semantics, the event-order-link message
uniquely speciVed each construction in the language. The mapping between meaning
representations and sentence structures was bijective; there were no ambiguities and no
two ways of expressing the same message. Arguably, the two sentences

(16) a. the girl that a boy chase -ed leave -s with a dog .
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b. a boy chase -ed the girl that leave -s with a dog .

express the same proposition, but they were assigned a diUerent event-order-link
message. The diUerence lies in the salience of atomic events. Because topic and focus
were marked as co-referential but were not distinguished semantically, the diUerence
between (16-a) and (16-b) could be represented by simply Wipping the relative promi-
nence of events described by main and embedded clause. For the sentence of Figure 4.6
this was realized by fully activating the 1PAST and 1SIMP features and leaving every-
thing else constant. The resulting message mapped onto the sentence

(17) a man was hit -par by the cat that is show -ing the toy to a girl .

which has the center-embedded relative clause of (15) as its main clause and the main
clause of (15) as its right-branching relative clause. In order to enable this clause al-
ternation in the model, sets of semantic features had to be multi-purpose. Thematic
features which represented the prominence of roles in the main clause could also en-
code the role order in the relative clause and vice versa. Only with this Wexibility in the
message could the inversion of event prominence bias the model towards producing an
alternative structure to express the same proposition.

With the event-order-linkmessage, the model learned the simple clause fragment
of the artiVcial language as usual (Figure 4.3, page 83) and reached around 70% sen-
tence accuracy for novel complex sentences (Figure 4.7). Thus, the performance was
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Figure 4.7: Testing on novel sentences with relative clauses.

slightly lower than projected. I examined the production output of a model subject
whose accuracy score (71.2%) was closest to the mean over all model subjects. Out of
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144 total errors, only 3 (2.1%) involved mistakes which are characteristic of the clause
order problems described in the previous paragraph on the event-link message. For
99.4% of all tested sentences the model correctly started out producing the clause which
expressed the theme; the chosen encoding of the prominence of atomic events was very
eUective. The remaining errors fell into a variety of categories (wrong determiners, as-
pect or tense, attachment errors, etc.). The two most common errors, however, both
involved the speciVc way in which topic and focus were marked in the event semantics.
First, reducing the activation of message features which corresponded to topic and focus
caused interference with the encoding of syntactic alternations. For example, instead of
the subject-relativized transitive relative clause

(18) ...with a man that pat -ed the boy .

the model produced an object-relativized embedding

(19) ...with a man that the boy... .

The intended structure was encoded by reducing the activation of the agent feature in
the comment—the focus role—to a value of 0.7. The actually produced relative clause
onset, however, suggests that the model misinterpreted the focus information as sig-
nalling a passive construction (in which case the same feature got reduced to a value of
0.5). Marking the focus on the role features interfered with the encoding of the passive
transitive, because the model could not reliably distinguish activation patterns for diUer-
ent structures. Similarly, the model misinterpreted focus information in a double-object
dative comment as signalling a prepositional dative construction.

Reductions of activation in the event semantics carried information. In the event-
order-link message, reductions encoded the semantics of topic/focus and syntactic
alternations. Both types of information interfered and caused the model to produce
unintended sentences. It seemed plausible that many errors were due to the small dif-
ference in activation between topic/focus and alternation encoding. The model might
have been more sensitive to diUerent types of information if activation diUerences had
been more distinct. However, this was not the case, as the second dominant error type
in the event-order-link condition illustrated. It occurred frequently when there was a
double reduction on one event role to signal two diUerent message aspects. For instance,
instead of the object-modiVed passive main clause

(20) a cat is being push -par by the girl that...

the model began producing a subject-modiVed main clause a cat that.... The in-
tended construction (20) was encoded by Vrst reducing the agent feature to a value of
0.5 to signal passive voice plus another reduction to 0.3 to signal the main clause topic.
Thus, the passive marking was obscured by the additional topic marking and the model
interpreted the double reduction on the agent feature as attachment information for an
active transitive structure. One semantic feature (focus) was masking another (inverse
role order for passive voice) in this message. The structure that the model actually pro-
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duced would have been encoded by a single reduction of the agent feature to a value of
0.7. Hence, the activation diUerence between the message patterns for target and actual
sentence, was 0.4 which is quite large. Nonetheless, the model could not distinguish
the two messages, i.e., passive object-modiVed versus active subject-modiVed transitive.
This suggests that the model was not sensitive to the absolute level of activation of a
message feature but rather compared levels of activation for diUerent features and opted
for the simplest structural choice which was consistent with the activation diUerence.

To summarize, the event-order-link message had two shortcomings. DiUeren-
tial activation could encode syntactic alternations and topic/focus information. Al-
though numerically distinct, the corresponding patterns created ambiguities for the
model which caused production errors. Likewise, when one role feature was involved
in the encoding of two message properties—such as passivizing the sentence topic—the
overlay of information caused incorrect utterances. Both defects will be dealt with in
the meaning representations described in the following three subsections. The current
condition also showed that message features were not additive, i.e., the model’s perfor-
mance for combining features from two message types (event-link and event-order)
was not equal to the added performance for both feature sets individually. Combin-
ing features can be suboptimal if the message becomes too complicated. SimpliVcation
will therefore be aimed at in the subsequent condition, while retaining the unequivocal
message-sentence mapping of the event-order-link message.

4.3.6 Binding message

In the previous condition, semantic information was encoded relationally and one event
feature could be involved signalling two aspects of the message. This was one reason
why the model did not learn the complete language from its message-sentence input
pairs. To avoid this complication, I detached the two sets of features which encoded
the relative prominence of participants within atomic events and the topic/focus and
theme/comment relations between these events. The co-reference of topic and focus
was no longer signalled by activation diUerences on role features, but by dedicated
nodes in the event semantics. The simplest way to implement this was to utilize special
binding features which linked the topic and focus of a complex event. For each pair of
event roles that could function as topic and focus, there was a special feature node in the
event semantics. This feature was not construction-specific. If the agent of the theme
was the topic and co-referential with the patient focus of the comment, a feature was
activated which represented this topic/focus relation between participants in the two
events, regardless of the particular construction in which the agent and patient roles
occurred. Together with the semantic information in the atomic events, this feature
uniquely characterized the intended construction. Consider e.g.,

(21) the cat chase -ed the dog that bite -s a man .
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The event semantics for this sentence in the binding message consisted of the sim-
ple-event message for atomic events plus a single feature which marked the patient
of chasing (dog) as the topic and the agent of biting (dog) as the focus. This semantic
feature was denoted by 0Y1X to indicate that the intended sentence for this message had
a relative clause attached to the object (=patient) of the main clause, with the subject
(=agent) of the subordinate clause relativized. Since there was clause alternation in the
input language (and hence no Vxed set of event semantics nodes for each clause type),
the feature 0Y1X was distinct from the feature 1Y0X. With this semantic distinction the
need to signal the prominence of events to the model became superWuous. If 0Y1X was
activated the model Vrst had to sequence all event participants indexed with a ‘0’ in the
main clause (until the topic was produced) and then all event participants indexed with
a ‘1’. The intended order of role sequencing was reversed if 1Y0X was activated. As
a consequence, the binding message was particularly simple and parsimonious. Apart
from representing the intra-clausal prominence of roles the message employed a single
feature to encode the topic/focus binding and the theme/comment relationship with only
one additional node. There was no need to mark the relative prominence of events on
the tense/aspect features (as e.g., in the event-order message). The semantic encoding
was non-relational because binding features were autonomous and switched either on
or oU.

Figure 4.7 (page 92) shows that the model tested above 90% sentence accuracy on
novel relative clauses with the binding message. Around 78% of the remaining errors
involved either wrong tense/aspect, or an incorrect verb or determiner at some posi-
tion in the sentence. Thus, the majority of production errors was lexical in nature,
not structural (e.g., wrong clause order and/or attachment), which can be viewed as an
adequacy criterion for a model of complex sentence production. Notwithstanding, the
binding message was ill-suited for a number of reasons. The downside of parsimony
per construction was a rapid inWation of features (and hence event semantics-layer
nodes) as the language got more complex. The number of required binding nodes (BN)
depended on the maximum number of roles per clause (RC) and the depth of embedding
permitted by the language (DE), and can be calculated as BN = RC2 ×DE× (DE + 1).
For example, in the artiVcial language employed here, there was a maximum of three
roles per clause (in the dative construction) and at most one relative clause per sentence.
Hence 18 binding nodes were necessary to implement the binding message. When the
language permitted four embeddings (Chapter 6), the number of required binding nodes
was already 180. Large numbers of feature nodes are not immediately problematic,
architecturally. Due to the theme/comment-speciVcity of the binding nodes, however,
the model needs more and more training as the input language becomes more complex
and the depth of embedding increases. If the model has not been exposed to a train-
ing sentence with agent topic and patient focus for a particular combination of events,
the corresponding binding node is not trained and the model would not produce such
a sentence correctly. For example, training the 0X1Y feature did not enable the model
to produce this binding type at a deeper level of embedding. In other words, with the
binding message the model cannot be expected to generalize topic/focus combinations
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to novel constructions. To compensate for this inability, the amount of training would
have to be increased with the number of embeddings when in fact the exposure to
complex sentences decreases with the number of embeddings in realistic learning envi-
ronments. A second drawback of the binding message, which is a consequence of the
Vrst, is that the model does not acquire an abstract notion of relative clause topic and fo-
cus. Semantic features for topic/focus marking are idiosyncratic and do not recombine.
In the next message I tested, this will be remedied. Finally, the bindingmessage proved
inadequate with respect to a semantic property which will be discussed in Subsection
4.4 below.

4.3.7 Topic-focus message

The binding message showed that unambiguous topic/focus information was crucial
for the model’s high accuracy on novel multi-clause utterances. It was useful to equip
the model with separate features to signal topic/focus co-reference instead of marking
the corresponding event roles (as in the event-order-link message). In the latter con-
dition, topic and focus were symmetric in that both were represented by a reduction of
the default level of activation. The binding message, on the other hand, was asymmet-
ric because there were two distinct binding features for each pair of roles, depending
on which was the topic and which was the focus, respectively. In the topic-focus
message I retained the feature separation and the asymmetry of the binding message.
However, instead of having one feature signal co-reference, there were two separate
features, one for the topic and one for the focus. Binding was then encoded by con-
current activation of those features. For each atomic event in the message, there was a
set of features which could represent the topic and focus of the complex event. These
features were distinct from the event roles which indicated the relative prominence of
participants. For example, suppose the target sentence had an active transitive, subject-
modiVed main clause. Then the 0XX feature in the event semantics was activated and
there was a separate feature 0XXT in the message to signal that the agent was also the
topic of this event. Similarly, there was a feature 1YYF to indicate, e.g., that the patient
was the focus of the event in the relative clause of the intended construction. This rep-
resentation was asymmetric because sets of topic and focus features were distinct. The
model had to learn that the topic feature always belonged to the message theme and
the focus feature always belonged to the message comment. The set of event features
containing the active topic informed the model about the semantic structure of the main
clause, the set of event features containing the active focus informed the model about
the semantic structure of the relative clause. Therefore it was unnecessary to specially
mark the relative prominence of events in the topic-focus condition.

The resulting message was combinatorial. A topic feature could Vgure in the seman-
tic representation of any construction and combine with any other focus feature. Hence,
the binding of event participants could be encoded using only BN = 2×RC× (DE+ 1)
nodes (e.g., BN = 30 for a language with up to four relative clauses). More importantly,
this message potentially enabled the model to generalize the input fragment of the lan-
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guage to constructions which were not encountered in training. It was hoped that the
model could acquire abstract notions of topic, focus and co-reference and transfer this
knowledge from experiencing speciVc instances of multi-clause sentences to correctly
producing tokens of entirely novel constructions. Whether this was indeed the case will
be examined in detail in Chapter 6 on structural generalization.

The topic-focus message allowed minimal semantic changes to cause structurally
distinct sentence output which expressed the same proposition. For instance, the two
sentences

(22) a. the man kicks the dog that sleeps .

b. the dog that the man kicks sleeps .

were assigned identical semantic representations except that in (22-a) the sentence topic
was placed in the event that involved a man kicking, whereas in (22-b) it was placed in
the event which involved a dog sleeping. In this way the model represented which was
the foregrounded and which was the backgrounded event and was biased to select the
appropriate sentence structure to convey the same proposition with diUerent emphasis
on atomic events.

Turning to the analysis of performance, the model reached 93.4% sentence accuracy
for novel relative clauses (Figure 4.7, page 92). I examined the production errors of the
model subject least deviant from the average score. At epoch 100.000 this model pro-
duced 26 incorrect sentences in total (out of 500 tested). None of these errors involved
wrong attachment or confusion of main/relative clause. 22 (or 84,6%) of the errors were
directly related to syntactic alternations in the language, e.g., the model produced a
prepositional dative instead of a double object dative or it produced an active transitive
instead of a passive transitive relative clause. This means that most residual errors in
the topic-focus condition were clause-internal in nature and did not result from mis-
representing the hierarchical organization of multi-clause utterances. The model had
more diXculties ordering thematic roles within clauses, than mapping theme/comment
and topic/focus information onto the right construction type. With respect to the cur-
rent learning task, the topic-focus message was therefore suitable for the processing
of complex sentences. Secondly, 16 errors (61.5%) occurred in the relative clause and 10
(38.5%) in the main clause, i.e., the model had more diXculty to successfully produce a
relative clause than a main clause. For artiVcial languages with several levels of em-
bedding we can therefore expect that the model’s error rate should increase with clause
depth. This will also be tested in Chapter 6.

The non-uniform distribution of errors over clause types suggests that the model is
sensitive to the hierarchical structure of sentences and is not processing multi-clause
utterances as linear sequences or Wat strings of words. This claim is supported by an
analysis of error positions within sentences. The average length of incorrect sentences
was 16.7 words (sd 1.78), the average error position was 12.3 words (sd 3.79). Thus er-
rors occurred late in the sentence, after nearly 75% of the utterance had been produced
correctly. If the model processed sentences as Wat strings, based on local transitional
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probabilities only, we would expect the average error position to be sentence medial,
unless transitional probabilities weaken towards the end of the sentence. This might
indeed the case since, e.g., all sentences started with a determiner followed by a noun
whereas there was more conditional uncertainty later in the sentence when structural
choices became available. Furthermore, the sensitivity of the model’s sequencing sys-
tem to immediate word context (SRN working memory) decreases with sentence length
because more and more information accumulates in the recurrent buUer. Hence, late er-
rors could be explained by conditional uncertainty plus architectural constraints which
make word-to-word transitions more diXcult to predict later in the sentence. A closer
look at exact error positions, however, revealed that 8 instances occurred at the end of
a relative clause (terminal word) and 9 occurred at the continuation of the main clause
immediately following a completed relative clause (initial word). Thus, 17 out of 26
errors (65.4%) occurred at the boundary of main and embedded clause. The model had
diXculties completing the relative clause and resuming the main clause after the em-
bedding had been produced. This accumulation of errors at clause boundaries indicates
that the model is organizing complex sentences into clausal units. It is a claim central
to this thesis that the Dual-path model represents the hierarchical structure of multi-
clause utterances while at the same time being sensitive to substructure frequencies in
linear sequences of words. Throughout Chapters 5–7 I will adduce more evidence for
this capacity based on the topic-focus message representation.

4.3.8 Simple topic-focus message

The temporal characterization of events involves two kinds of information, when and
how an event happened. Tense is a deictic function which locates an event in time, rela-
tive to some point of reference (such as the time of utterance). Aspect characterizes the
temporal structure of situations, actions or events as completed, ongoing, etc. English
has two basic tenses, past and present, which are morphologically marked by inWec-
tional suXxes (-s, -ed) or by changing the verb stem (run/ran). Aspect is usually subdi-
vided into lexical aspect (Aktionsart) and grammatical aspect. Lexical aspect classiVes
situations in terms of temporal features such as being static or dynamic [±dynamic], in-
volving a change of state or location [±telic], or unfolding over time versus occurring in
an instant [±durative] (Smith, 1997). Lexical aspect is often considered an inherent tem-
poral property of verbs, although it has been argued that dividing verbs into aspectual
classes is ill-conceived because many verbs can be coerced into diUerent Aktionsarten
by grammatical constructions (van Lambalgen and Hamm, 2005). Grammatical aspect,
on the other hand, classiVes utterances in terms of the perspective they convey to the
listener and is marked by means of auxiliaries and/or morphemes (e.g., is/was, -ed/-ing).
The Dual-path model implements a very simple system of grammatical tense/aspect
which can express simple present/past and present/past progressive. Lexical aspect was
ignored altogether. Semantically, tense and aspect were represented by the combination
of features [±PAST], [±PRES], [±SIMP] and [±PROG] in the event semantics. Thus, it
was assumed that tense and aspect characterize the temporal structure of events. Since
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the event semantics-layer projected into the hidden-layer, information about tense
and aspect of a target utterance could be utilized by both model pathways. The Wow of
information is schematically shown in Figure 4.8. However, tense and aspect features

Tense & Aspect
(Event Semantics)

Action Role
(Where Layer)

Verb Sematics
(What Layer)

Word Form
(Lexical Layer)

Sequencing 
System

Message-Lexical
System

Figure 4.8: Tense and aspect in all previous message conditions.

in the event semantics had no correlate in the conceptual structure of the message in
the what-where-system. Hence, to produce auxiliaries and inWectional morphemes at
appropriate sentence positions the model had to rely on the sequencing system.

In all message types studied so far, tense and aspect were conceptualized as general
features of events rather than more speciVc characteristics of the action component of
an event. Representationally, tense and aspect features were on a par with features for
event participants and were not explicitly related to the action. In the simple topic-fo-
cusmessage, the semantic representation of tense and aspect was moved from the event
semantics into the model’swhat-where-system, tying it more closely to the action.12 In
the what-layer, nodes were added which represented the concepts of past and present.
Likewise, additional nodes represented the concepts of simple and progressive aspect.
To encode a speciVc tense/aspect combination the corresponding nodes in the what-
layer were temporarily bound to the action role in the where-layer, along with the
usual link to the lexical meaning of the intended verb. Figure 4.9 depicts the way tense
and aspect were represented in the simple topic-focus message. The triple connection
of a tense-aspect scheme plus verb meaning to an action role encoded the temporal
properties of actions in this message. Note that this implementation is still consistent
with the view that aspect is a way of conceptualizing the temporal structure of events.
Aspect is treated as an attribute of actions, not as a property of verb semantics. The
activation of the action role is determined by the overall event structure and in principle
every verb-tense/aspect combination could be associated with an action role.

Placing tense and aspect features in the message-lexical system of the model re-
moved this information from ‘sight’ of the sequencing system. Tense and aspect were
now controlled solely by the activity of the action role in the where-layer. In this way,
tense and aspect were separated from syntactic processing in the sequencing pathway.

12This was possible because tense and aspect features were not used for theme/comment encoding in
the topic-focus message.
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This treatment is supported by a study of syntactic priming in language production
(Pickering and Branigan, 1998) which showed that the magnitude of priming eUects for
dative structures was not aUected by diUerences in verb tense or aspect between prime
and target, suggesting that the representations involved in syntactic processing are dis-
tinct from the representations of verb tense and aspect.

Moving tense and aspect from the event semantics into the what-where-system
complicated the mapping from concepts to word forms. The model had to learn the
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Message-Lexical
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Figure 4.9: Tense and aspect in the
simple topic-focus message.

from tense-aspect schemes onto the correct
sequence of words in the verb phrase and
this mapping was one-many (as opposed to
one-one in all previous conditions). For ex-
ample, the concept [PRES] for present tense
mapped to the lexical item -s when the as-
pect attribute [SIMP] was concurrently active,
and to the sequence is VERB -ing when the
aspect attribute [PROG] was active. At the
same time it simpliVed the event semantics.
It was not predictable whether this trade-oU
had a beneVcial eUect on the model’s learning
curve. Figure 4.7 (page 92), however, shows
that the model learned considerably faster in
the simple topic-focus condition than with
the binding or topic-focus messages. At
epoch 100.000 it reached 97.2% sentence ac-
curacy which was nearly four percent higher
than in the topic-focus condition. Of the
few remaining errors, 16% involved lexical substitution (wrong article or noun) and 84%
involved structural errors in alternations (active/passive and double object/prepositional
dative). 80% of all errors occurred in the relative clause, 20% in the main clause. The
error proVle indicates that the model had no diXculty in learning the mapping from
tense/aspect features to complex verb phrases. Better and faster learning indicates that
the simpliVed event semantics facilitated the learning of syntactic frames from the mes-
sage input.

Since the task of learning a target language with relative clauses was the benchmark
of this event semantics comparison, the simple topic-focus message came oU as the
winner.

4.3.9 Summary message types

All compared messages were adequate for learning the single-clause sentences that were
experienced in training (Figure 4.2, page 82) and generalized this knowledge to novel
single-clause sentences outside the training set (Figure 4.3, page 83). The random base-
line showed that semantic persistence was important for learning multi-clause sentences
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(Figure 4.4, page 84). It was a minimal requirement for the message to encode clause
meaning invariantly, whether that clause occurred in a simple or complex sentence. The
complete array of compared message representations is depicted graphically in terms of
activation patterns for the sentence

(23) the cat that a man was hit -par by is show -ing the toy to a girl .

in Figure 4.10 on page 102. Only three of these message types proved suitable for learn-
ing the multi-clause sentences from the training set and generalized this knowledge to
novel complex sentences not experienced during training (Figure 4.7, page 92). These
were the binding message, the topic-focus message and the simple topic-focus mes-
sage. The three models reached >90% sentence accuracy on both these sets of complex
utterances.

Performance data from the message comparison was analyzed by a repeated mea-
sures ANOVA with the event semantics condition as factor. The dependent variable
was the model’s sentence accuracy for novel complex utterances measured at epoch
100.000. Not surprisingly, the ANOVA yielded a signiVcant main eUect for message
type [F(7,9) = 129.24, p < 0.001]. Post-hoc analyses using the Tukey HSD test indi-
cated that most pairwise comparisons were signiVcant, with the exception of the three
conditions which scored the highest. The full comparison matrix is shown in Table
4.6. Accordingly, in terms of performance on novel relative clause sentences the three
message types (binding, topic-focus, and simple topic-focus) are indistinguishable.
Nonetheless, the topic-focus message is preferable over the binding message for rea-

Pairwise message comparison with Tukey HSD
random simple event event event topic- simple
baseline event order link order-link binding focus topic-focus

random
baseline + + + + + + +
simple
event + – + + + + +
event
order + – – + + + +
event link + + – + + + +
event
order-link + + + + + + +
binding + + + + + – –
topic-
focus + + + + + – –
simple
topic-focus + + + + + – –

Table 4.6: Post-hoc analysis matrix for all event semantics conditions, a + sign marks
signiVcant contrasts.
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Figure 4.10: Event-semantics activation patterns in comparison for the sentence the
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sons of parsimony—it used considerably less event semantics nodes to encode sentence
meaning. The simple topic-focusmessage is preferable over the topic-focusmessage,
because the model learned faster with this meaning representation. The elegance of the
simple topic-focus message compared to other event semantics is visualized in Figure
4.10 (page 102). Models with distinct messages were analyzed in one learning condition.
But the parameters of this condition might not be optimal for all messages. The capacity
for generalization might therefore better be measured in terms of performance for novel
relative to trained sentences. Optimal generalization then occurs if the ratio of these
two data points is close to one. This measure of generalization (at the end of training) is
plotted in Figure 4.11.13 With the simple topic-focusmessage the model produced novel
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Figure 4.11: Ratio of sentence accuracy
for trained to novel complex utterances.

relative clauses with nearly the same ac-
curacy as trained such sentences. This
message is therefore preferable over its
competitors with respect to this criterion.14

Further reasons for preferring the simple
topic-focus message will be given in the
next section. All messages suitable for the
learning task shared three features which
turned out essential for successfully pro-
ducing complex utterances. First, they all
encoded the relative prominence of parti-
cipants in a systematic and semantically
persistent way. The semantic structure of
atomic events was represented by activa-
tion patterns which were systematically
related to a sentence form as, for instance,
in the active/passive alternation. These
representations were stable across occur-
rences in diUerent constructions. Conse-
quently, the message was combinatorial at the clausal level. Secondly, all messages
marked the topic and focus of complex events. This feature informed the model which
participant corresponded to the argument of the relative clause, and which thematic
role this participant occupied in the relative clause. The binding message employed
non-combinatorial, joint topic/focus nodes, the topic-focus messages used clause-spe-
cific, separated topic and focus nodes. And third, the message encoded the relative
prominence of events in complex propositions, i.e., which atomic event was the theme
and which the comment. This information guided the model in producing the cor-

13Labels mean: RB = random baseline, SE = simple-event, EO = event-order, EL = event-link, ELO =
event-link-order, BI = binding, TF = topic-focus, STF = simple topic-focus.

14There was no trade-oU between learning and generalization as projected in the introduction. The
better the model learned for a message type, the better it generalized. The reason is that, statistically
speaking, the model was not tested on novel sentence types but only novel tokens. In later chapters,
generalization tasks were more demanding and there such a trade-oU did show.
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rect order of clauses. The binding message represented theme and comment through
distinct topic/focus nodes for default and inverted clause order. In the topic-focusmes-
sages, the model could infer the theme/comment distinction from the index of the active
topic/focus nodes. Apart from these essential traits, I argued that it was important to
separate dimensions of information because the model could not trace overlaid message
features in multiple reductions of activation (event-order-link message versus bind-
ing message). Furthermore, it was shown that simplifying the message without loss of
semantic information can result in a substantial learning speed-up (topic-focus mes-
sage versus simple topic-focus message). The distinctive properties of all compared
messages are summarized in Table 4.7.15

Message System. & Theme & Topic & Tense & Constr. Coding
Type Persistent Comment Focus Aspect SpeciVc ConWict
Random
baseline no no no no yes no

Simple event yes no no yes no no
Event order yes yes no yes no yes
Event link yes no yes yes no yes
Event
order-link yes yes yes yes no yes

Binding yes yes yes yes yes no
Topic-focus yes yes yes yes no no
Simple
topic-focus yes yes yes no no no

Table 4.7: All message representations and their speciVc properties.

4.4 The gapped element

In all message representations I discussed, the relative clause focus had a special status
compared to the other event participants. Non-focus participants were anchored in the
message twofold. In the what-where system, the thematic role the participant occu-
pied was bound to a concept node in the lexical semantics. In the event semantics a
feature corresponding to this role was activated to signal the intended construction (in
conjunction with other features). The focus participant of a complex event, on the other
hand, was represented only in the event semantics and there was no binding link to the
focus concept in the message-lexical system (Figure 4.12). The focus feature in the event
semantics was strictly necessary to encode the event type. An example will clarify this
point. Suppose, the relative clause focus was the agent of an active transitive sentence.
If there was no focus feature in the event semantics, only the patient feature would have

15Abbreviations used in Table 4.7: System. = Systematic, Constr. = Construction.
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been active in the semantic representation of the relative clause. But this would be com-
patible with a subject-relativized oblique and a passive transitive. Hence, if the focus
feature was absent from the event semantics, the model would not be able to determine

Agent 
feature

Hidden layer

Event semantics

Agent
role

Where layer

What layer

Conceptual 
content

Figure 4.12: The gapped element is rep-
resented in the event structure but not
linked to conceptual content.

the intended construction, nor the clause-
internal structure, the target structure
would be semantically underdetermined
by the message.

The situation was diUerent for the
synaptic binding between the focus role
in thewhere-layer and lexical meaning in
the what-layer. This message component
was not necessary to distinguish all con-
structions by the message and was omitted
for simplicity. It was dispensable because
the lexical item associated with the focus
position is not overtly produced in English
relative clauses. Consequently, there was
no need for a dynamic link between the fo-
cus role and its Vller in the message-lexical
system.

I will argue here, however, that for
several reasons the gapped element should
be present in the meaning representation
of a sentence in just the same way as all other event participants.

4.4.1 Ambiguities

In English, the relativized NP is not formally expressed inside a restrictive relative clause
(gapping) and the pronoun that carries no information about the syntactic role of the
gapped element. In other languages, such as Hebrew, it is possible to indicate the posi-
tion and role of the relativized NP with a personal pronoun (pronoun retention).

(24) ha-sarim
the-ministers

she-ha-nasi
COMP-the-president

shalax
sent

otam
them

la-mitsraim
to-Egypt

‘the ministers that the president sent to Egypt’16

Thus Hebrew retains more overt information about the gapped element in the sentence
form. In English coordinate structures gapping can cause ambiguity. Consider the
sentence

(25) John met Paul yesterday and Ben today.

16Example from Max Wheeler, “Relative clauses and the noun phrase accessibility hierarchy.” Linguis-
tic typology handout, University of Sussex, 2006.
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which has two interpretations, depending on which phrase was omitted

(26) a. John met Paul yesterday and [John met] Ben today. (conjunction
reduction)

b. John met Paul yesterday and Ben [met Paul] today. (gapping)

Understanding (25) in either way involves establishing the omitted NP’s thematic role
and its co-referential element in the Vrst conjunct. The omitted NP is characterized by
its ‘position’ in the argument structure and its conceptual content. It is not merely the
agent or patient of the second coordinate clause which is omitted but a speciVc agent or
patient that has previously been introduced into the discourse. Comprehension requires
to establish the thematic and syntactic role of the gapped element but also its identity.
Semantically, the gapped element should therefore be treated like any other non-gapped
event participant and not be represented as an empty role without Vller content.

Ambiguities as in coordinate structures do not occur in unreduced relative clauses
(only temporary uncertainty about roles) because the pronoun immediately gives away
the identity of the gapped element. However, there is no reason to treat both forms
of omission in diUerent ways, the gapped element should be considered a full-Wedged
message component. This treatment is also more adequate cross-linguistically. Dif-
ferent languages reveal diUerent kinds of information about the gapped element in the
sentence surface form—none in English, a resumptive pronoun in Hebrew, gender, num-
ber and case (and hence thematic role) marked on German relative pronouns, etc.17 As
the case of Hebrew shows, not all languages simply omit the relativized position but
some retain a pronominal marker referring back to the head of the relative clause.18

This marker is co-referential with the head and has the same conceptual content. For
the Dual-path model message this suggests that not only should the gapped element be
represented by its role feature in the event semantics but the thematic role itself should
be linked to conceptual content in the lexical semantics.

4.4.2 Acquisition

In generative grammar it is common to analyze gaps in relative clauses as the result
of some kind of movement. A dislocated constituent is associated with a syntactically
dependent empty category which functions like a silent copy of this constituent (see
Chomsky, 1995). For instance, in X-bar syntax the gap arises because the relativized
element moves from the DP inside the CP to the speciVer (SPEC) of the CP and leaves
a trace ti:

(27) [DP [D the] [CP [SPEC man] [C’ [C that] [IP [DP ti] [VP returns the book]]]]]

movement
6

17Languages often have several relativization strategies which retain diUerent kinds of information.
18Pronoun retention also occurs in, e.g., Persian, Welsh and Cantonese.



4.4. The gapped element 107

But of course this is merely a theoretical model of relative clause syntax, not a model
of the psychological mechanisms of relative clause formation, processing or acquisition.
Such a model of syntax does not automatically establish the psychological reality of
transformational movement.19

Several studies have investigated the psychological reality of traces in sentence com-
prehension of adults (Swinney et al., 1988; Love and Swinney, 1996; Clahsen and Feath-
erston, 1999) and children (Love, 2007; Roberts et al., 2007) using cross-modal lexical
priming. These studies found that semantic information which is linked to the an-
tecedent becomes ‘reactivated’ at the trace position during on-line comprehension. The
parser reconstructs “grammatical and semantic features of the dislocated constituent at
a potential gap site by creating a silent syntactic copy of the antecedent” (Roberts et al.,
2007, p. 178). This is known as the trace reactivation hypothesis. Antecedent priming
has also been explained by the direct association hypothesis according to which Vller-
gap dependencies are resolved by reconstructing the verb’s argument structure (Pick-
ering and Barry, 1991; Sag and Fodor, 1994). Cross-linguistic evidence from scrambled
double-object constructions in German and head-Vnal languages like Japanese in which
objects precede verbs, however, is not compatible with the direct association hypothesis
(Clahsen and Featherston, 1999, Nakano et al., 2002). Regardless of which is the correct
account, mental reactivation eUects at gap sites, which have been conVrmed by many
studies for adults and children, suggest that syntactic gaps play an important role in
sentence comprehension.

‘Reactivation’ of grammatical and semantic features is logically neutral with respect
to movement, the ‘trace’ could also result, for example, from deletion. In developmental
psychology it has been hypothesized that early relative clauses merge two simple-clause
sentences into a novel constructional unit which expresses a single proposition (cf. Dies-
sel and Tomasello, 2000):

(28) [There’s a rabbit]1 that [I’m patting [a rabbit]]2.

The presentational scheme There’s Y introduces a discourse referent, focuses attention
on it, and makes it available for further speciVcation by a relative clause. The object of
the transitive scheme X is VERB -ing Y gets linked to the presentational clause subject
and is deleted from the surface form of the amalgamated construction. No movement
or dislocation of constituents is required. In production, the element in the transitive
construction which is co-referential with the antecedent becomes phonologically null.
According to this view, the acquisition of relative clauses involves the fusion of simpler
constructions, and the deletion of multiple occurrences of co-referential elements.20

If this mechanism is plausible, the gapped element should be considered a full

19How movement rules might be incorporated into a performance model, however, is discussed at
length in JackendoU (2002).

20Labelle (1996, p. 68) has suggested that relative clauses are formed by converting a clause into a
semantic predicate and co-indexing it with its subject. On her account there is neither movement nor
deletion involved.
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component of the relative clause’s semantic structure, because the complex sentence
is formed from two autonomous simple sentences. It is omitted from expression but
persists in the conceptual structure of the complex sentence clause due to the combina-
torial nature of relative clause formation. In the Dual-path model, binding the role of
the relativized element to conceptual content makes this content available for produc-
tion. Activation of a thematic role at the gap position will activate the lexical meaning
of the gapped element which will activate a corresponding word form. Consequently,
deletion requires that the model learns to suppress the relativized constituent.

4.4.3 Alternations

The artiVcial language which the model was trained on is suXciently rich to express
complex propositions in a variety of ways. To describe complex events, a number of
structural alternatives is available and we would like to be able to bias the model to-
wards selecting one structure over another with only a minimal change in the message.
Consider the sentences

(29) a. The man kicks the dog that [the dog] chases the cat.
b. The man kicks the dog that the cat is chased by [the dog].
c. The dog that the man kicks [the dog] chases the cat.
d. The dog that [the dog] is kicked by the man chases the cat.
e. The cat is chased by the dog that the man kicks [the dog].
f. The cat is chased by the dog that [the dog] is kicked by the man.

Arguably, (29-a)–(29-f) express the same proposition. Notice, however, that the gapped
instance of dog in (29-a), the relative clause focus, becomes the overt main clause topic
in (29-c)–(29-f). In these alternations, the embedded clause becomes the main clause
(and vice versa) and a right-branching construction becomes a center-embedded con-
struction in (29-c) and (29-d). Furthermore, the dog can alternate between agent/patient
and subject/object. It was mentioned previously that the message representation of the
Dual-path model permitted clause alternation. There were no clause-specific nodes in
the what-where-system, or dedicated features in the event semantics. Hence, it was
possible to represent the diUerence between (29-a) and (29-c) simply by bringing the
comment event to the foreground, making the theme event recede in prominence. In
the topic-focus message, for example, diUerential emphasis could be placed on events
by inverting the topic/focus relation of the co-referential participants. The model could
infer which instance of dog should be the attachment and which the gapping site, and
thus which instance should get expressed or suppressed, respectively. In order for this
alternation bias to work, however, it is necessary that the thematic role node of the
gapped element carries conceptual content in just the same way as the thematic role
node of the modiVed element. The role-to-concept bindings in the what-where sys-
tem must be identical for each of the sentences (29-a) through (29-f) if an instance of the
dog that is omitted in one alternation becomes expressed in another. Consequently, the
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focus element should be represented semantically like all expressed event participants.
The semantic diUerence between the six alternations is then reduced to diUerences in
the relative prominence of events and/or event participants (active/passive alternation).

This discussion of how to represent alternations parsimoniously concludes the argu-
mentation for a conceptual link of the focus role to semantic content in the Dual-path
model’s message.

4.4.4 Performance comparison gap-link versus no gap-link

I argued that there should be a what-where binding for the gapped element in the
message (henceforth: gap-link). This gap-link might complicate learning and general-
ization because activating a message element which is available for production must
be suppressed. However, the gap-link added information to the message, so some mes-
sage types might proVt, others might suUer from it. If for some of the eight candidate
messages performance is better with the gap-link than without, this would indicate
that these candidates implement more adequate meaning representations (within the
model’s framework).

Figure 4.13 shows all message types tested on the same set of novel complex utter-
ances at epoch 100.000 in both conditions, with and without gap-link. A two-sided
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Figure 4.13: Performance comparison for the gapped element linked and disconnected in
the message.

t-test was performed for each pair of messages and signiVcant diUerences in mean are
marked with a diamond. Among the three contenders from the learning comparison, the
binding message was the only one which scored worse in the gap-link condition. Both
variants of the topic-focus message, on the other hand, scored higher in the gap-link
than the no gap-link condition. In particular there was a signiVcant eUect for linking
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the gapped concept in the simple topic-focus message (t(9) = 2.34, p < 0.05). This
observation makes the simple topic-focus message the uniquely preferred representa-
tion for further simulations. It is also worth pointing out that the event-ordermessage
proVted most from the gap-link in terms of absolute performance gain. With gap-link
this message type almost reached event-order-link message performance, suggesting
that the gap-link helped the model to establish attachment and gapping sites. The sig-
niVcant drop in sentence accuracy for the event-link message with gap-link, however,
seems to contradict this hypothesis. A closer analysis was required.

I directly compared error patterns of two model subjects from both conditions for
both messages. Without gap-link there was a total of 261 inaccurate novel complex sen-
tences produced with the event-order message. 225 (or 86%) of these were attachment
errors, all of which occurred in center-embedded structures, with 219 of these (97%) in-
volving the sentence initial subject NP. With gap-link the number of production errors
dropped to 79 which comprised only 6 attachment errors (8%). All these errors involved
attachment on the recipient of a double-object dative construction. The largest generic
group of errors occurred in embedded passives where the model was confused about
the thematic role of the gapped element (agent/patient, 30 times, or 38%). Remaining
errors involved wrong aspect, determiners, or some constituent scrambling in the dative
alternation. The nearly complete absence of attachment errors in the gap-link condition
suggests that the model (with event-order message) was able to utilize the fact that
two distinct roles were linked to the same concept in the what-where-system in order
to determine the special status of the topic/focus element in the message. Together with
information about the relative prominence of events this enabled the model to project
the attachment and gapping site: due to the event-order information in the message,
the model was able to start out producing the intended main clause. At step n in the
output sequence, the model produced the main clause topic being ignorant about this
constituent’s special status as the argument of a relative clause. Due to feedback, the
topic concept was activated in the cwhat-layer at step n+1 (provided the model had
already learned the correct word-to-meaning mapping in the comprehension direction).
Since there were two role-to-concept links in the what-where system in the gap-link
condition (one such link for the topic and one for the focus element), there were two
concept-to-role links in the inverse cwhat-cwhere-system. Consequently, the topic
concept activated two thematic roles in the cwhere-layer, the roles of the message
topic and focus, respectively. This double activation occurred at the sentence position
where thatwas to be produced next and it occurred at no other constituent. Because the
cwhere-layer fed into the hidden-layer, the model could utilize this information via its
sequencing pathway and attach the relative clause to the target element. Without the
gap-link, on the other hand, the role of the focus element did not get activated follow-
ing the production of the topic. Hence the model had no strategy to make an informed
structural choice at the attachment site. This advantage of the gap-link model explains
the large diUerence in performance for the event-order message.

With the event-link message, performance declined when the gap-link was added
to the message. Again, two model subjects were compared for their speciVc error pro-



4.4. The gapped element 111

Vle in both conditions. An attachment error occurred whenever the pronoun that was
produced in the wrong sequential position. 105 out of a total of 273 incorrect utterances
(38%) contained attachment errors when there was no gap-link, in contrast to only 5
out of 301 test errors (2%) when the gap-link was present. Thus, as with the event-
order message, the gap-link facilitated structural selection. This is attested by the fact
that despite the sentence accuracy went down from 53.3% to 38.9%, the grammaticality
of novel test sentences went up by 4% (from 70.7% to 74.7%) when the gap-link was
added to the event-link message.21 The lower overall sentence accuracy resulted from
an increase of clause order related errors. Frequently, the gap-link model confused sen-
tence initial NPs (166 times, or 55%) and clause order confusion was also manifest in
tense/aspect scrambling in structurally correct sentences. Lacking the gap-link, on the
other hand, the event-link model was using the asymmetric status of the topic/focus
element as a cue to clause order. Because the prominence of events was not explicit
in the event-link message, the model activated both clause initial roles in the where-
layer at sentence onset in both the gap-link and the no gap-link condition. Probing
conceptually disconnected thematic role nodes, however, had no overt consequences in
the message-lexical system; these nodes were causally inert. If either of the clause ini-
tial thematic roles belonged to the gapped element, there was only one NP activated at
the what-layer in the no gap-link condition, but two in the gap-link condition. Thus,
there was an unresolvable competition between two NPs with the gap-link, whereas the
model invariably started out producing the correct clause without the gap-link. Once
the determiner was produced and fed back to the cword-layer, the activated thematic
role at the cwhere-layer always belonged to the set of main clause roles, when there
was no gap-link. The model could exploit this cue to sequence the next thematicwhere
node in the main clause and thus order events appropriately in production. This explains
the higher sentence accuracy in the no gap-link condition for the event-linkmessage.22

The nature of the signiVcant diUerence in the simple topic-focusmessage with and
without gap-link was more diXcult to trace because both models made very few mis-
takes and there did not appear to be a characteristic error type in the gap-link model. In
both conditions, the largest class of errors involved confusing double-object and prep-
ositional datives. With gap-link, 40% of all errors were of this type, 33% were wrong
determiners, the rest was nondescript. Without gap-link, 64% of all errors were related
to the dative alternation. A crucial diUerence, however, was that with gap-link only 8%
dative errors involved the gapped element as indirect object whereas without gap-link
100% of all dative errors occurred in the gap position of object-relativized constructions.
For instance, a typical dative error of the gap-link model was to produce

(30) a. ...that the brother throw -s a mother instead of
b. ...that the brother throw -s to a mother

21Grammaticality was measured like accuracy but for grammatical categories rather than lexical items.
22There were several other construction-specific strategies to use the asymmetric topic/focus status

which shall not concern us here.
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The model successfully omitted the theme element but produced a double object dative
NP instead of a prepositional dative PP recipient. This error points to problems with
alternations in general but does not indicate speciVc problems with the gapped element.
The no gap-link model, on the other hand, frequently produced

(31) a. ...that a sister give -s a cherry to instead of
b. ...that a sister give -s a cherry

Here, the alternation error occurred on the gapped role itself. Furthermore, the no gap-
linkmodel generated some embedded active/passive errors (12%) which indicated that it
was confused about the thematic role of the gapped element. No such errors occurred in
the gap-link condition. In sum, 76% of all errors in the no gap-link condition involved
the message focus and were manifest either at the intended gapping site or that of an
alternation. This contrasted with only 8% of such errors in the gap-link condition. Errors
such as (31-a) could have two causes. Either the model had problems distinguishing
alternations, or it was uncertain about the thematic role of the gapped element and
continued to produce a recipient after the theme (or a combination of both factors).
That such errors on the gapped role were absent in the gap-link model suggests that
uncertainty about the gapped role was the main cause of error in the no gap-linkmodel.
It also suggests that the gap-link helped the model to identify the focus role. Once the
topic was produced, the gap-link activated the topic and focus roles in the cwhere-lay-
er. This information was maintained in the cwhere2-layer memory which accumulated
the activation states of previously produced roles. Hence, throughout relative clause
production, the hidden-layer was constantly reminded of the identity of the focus role
and this information facilitated correct relativization in the gap-link condition. Without
gap-link this cue was not available. This analysis concludes the message comparison
and the argumentation in favor of the simple topic-focusmessage with gap-link as the
most suitable meaning representation for the model.

4.5 Discussion

In order to successfully learn and generalize an artiVcial language with relative clauses,
the Dual-path model required message input which encoded

(i) the relative prominence of event participants (alternation bias) in a semantically
persistent way,

(ii) the relative prominence of atomic events (theme and comment),

(iii) the topic and focus of a relative clause, endowed with conceptual content (gap-
link).

Presenting results from this thesis on various occasions, it was suggested to me that
the Dual-path model achieved its learning task because strong assumptions were made
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about the model’s meaning representations. SpeciVcally, it was objected that the seman-
tic input was too rich in structure and that this information might not be available to a
language learning child.23

It is quite clear that a competent speaker must represent the conceptual structure
of the intended message for her utterances in similar ways as the Dual-path model. A
speaker can be ignorant about the fact that her utterances are diXcult to understand or
even create ambiguities in comprehension (Ferreira and Dell, 2000), but she must rep-
resent fundamental properties of the sentence message herself, such as constructional
meaning, topicality, and themehood. In language learning, it could be argued, a child
does not have access to such message features when constructing semantic represen-
tations. In training the Dual-path model on message-sentence pairs, it was assumed
that a child learns a language in situated comprehension in which it can infer many as-
pects of sentence meaning from a visual environment shared with the speaker through
joint attention; aspects such as who does what to whom, who is picked out by a relative
clause, main clauses convey more important information, etc. In addition to visual in-
formation, such as observed actions and events, a child might draw on other kinds of
linguistic and non-linguistic information which facilitate the reconstruction of meaning,
e.g., prosody, discourse context, and gesture. Given the richness and diversity of infor-
mation sources available to a child and given children’s remarkable capacity to establish
reference (Baldwin, 1993) and communicative intentions (Tomasello, 2003) in joint at-
tentional frames, it may be premature to contend that children do not have access to the
aspects of sentence meaning which are encoded in the Dual-path model message.

Secondly, although the model received a complete message in training, the semantic
information contained in the message is initially not interpreted for the model. Meaning
is assigned to message features by the model designer but the model itself must learn
to properly interpret these features in the training process. For instance, I referred to
feature XX in the event semantics as an agent feature, it was said that active features
XX and YY signal an agent and a patient participating in the event, and that the relative
prominence of participants was encoded in the message. For the model, however, role
features are initially meaningless and indistinguishable from other features (topic/focus,
tense/aspect); the message is an uninterpreted linear pattern of activation. The relative
prominence of participants was signalled to the model in relation to other constructions
(e.g., active/passive), but there was no information in a message in isolation which sig-
nalled the order of participants since all participant features were active from the begin-
ning. Alternation parameters as well as role features signalling the number of partici-
pants only become meaningful in comparison with other message-sentence pairs. Thus,
the model must learn to reconstruct the designer’s intentions to encode sentence mean-
ing systematically in the message. This process of reconstruction, or ‘making sense’, can
be interpreted as a way of modelling a child’s eUorts to construct representations of the
conceptual structure of the utterances in its linguistic environment. Furthermore, the

23Shimon Edelman in discussion at the Perception, Cognition and Development seminar, Cornell Uni-
versity 11/2007.
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model received no explicit instructions when and how to use chunks of information in
the message. Feedback pertained to mismatches in the predicted sentence form and the
model had to infer from this feedback what the message features signalled to use this
information appropriately. Because the entire message was given to the model at the
beginning of production, it had to learn to use message components selectively in incre-
mental processing. Parts of the message, however, were only becoming fully available
to the model once other knowledge had been established. For instance, the model could
make use of its role-to-concept bindings only to the extent that it had already learned
word meaning from the linguistic input. Moreover, role features in the event semantics
did not map one-to-one onto syntactic roles, so the model still had to learn syntactic
frames despite being provided with constructional meaning.

And Vnally, the Dual-path model did not require full access to all message features
listed in (i)–(iii) in order to acquire and generalize the grammar of the target language. I
trained the model in a condition in which 50% of all message-sentence input pairs were
incomplete in that the meaning representation was corrupted. In these pairs, features
in the event semantics and role-to-concept bindings in the what-where-system were
randomly deleted. Such incomplete messages might adequately reWect developmental
stages in which children can only make partial sense of overheard utterances in acqui-
sition.24 From this defective message-sentence input the model nonetheless learned to
produce novel relative clause constructions with 93% accuracy. Although this regime
took twice as much training as with complete semantic input, the defective messages
did not prevent the model from learning the target language eventually. This suggests
that the assumption of complete message input was unnecessarily strong. Partially com-
plete semantic representations would be suXcient for satisfactory learning given that
the model could fully ‘understand’ at least some proportion of its linguistic input, which
is not an unreasonable assumption for learning children. In all subsequent experiments
I retained complete message input to keep computational time to a minimum.

24Developmental stages could also be modelled by incremental training, e.g., starting with 100% de-
fective messages for simple utterances, followed by partially complete simple sentence messages, and so
forth. Assumptions made in incremental training, however, might be stronger than the assumption of
message completeness for randomized exposure to samples of all sentence structures from the start of
learning.



Chapter 5

Model analysis

In this chapter I diUerentiate between constructions in the input language to
the Dual-path model and determine which structures are particularly hard
to learn and why. I examine the internal representations the model develops
at various layers during learning with the topic-focus message. It will
be analyzed whether the model acquires word grammatical classes, phrasal
categories, and verb argument structure. I argue that the model constructs
sentences incrementally and investigate what the basic planning units are.
Furthermore, I take a look at clause-level processing and analyze how the
model represents hierarchical sentence structure, attachment and relativization.

5.1 Behavioral analysis

The message comparison of the previous chapter ignored the possibility that model per-
formance might vary across relative clause types. Sentence accuracy was averaged over
all complex constructions in the test set. In this section, I compare the learnability of
diUerent constructions in terms of the number of syntactic alternations they contain,
and in terms of the syntactic role of the topic/focus constituent.

5.1.1 Syntactic alternations

The artiVcial language of Chapter 4 allowed the expression of transitives in active or
passive voice and of transfer events as prepositional or double-object datives. These
syntactic alternations express similar propositions but convey diUerent perspectives on
the same event. For instance, the passive transitive topicalizes the patient by placing it
in sentence initial position. Thus, alternations assign the same semantic but diUerent
syntactic roles to participants, and change the order (and therefore relative prominence)
of participants in the sentence form. In the model’s message, alternations were en-
coded by an activation-based alternation parameter which placed emphasis on the more
prominent participant and biased the model towards choosing one form over its struc-
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tural alternative. The existence of these alternations in the language creates competi-
tion in structural selection for some event types (transitive and dative) but not others
(intransitive and oblique). It was hypothesized that this competition of sentence forms
for similar messages would lead to greater diXculty in learning constructions which
contained syntactic alternations than those which did not.

To test this, multi-clause constructions were partitioned into three classes which
together exhaust the input language. In the Vrst class were those complex sentences
which contained no alternations in both the main and the subordinate clause. In the
second class were sentences which contained alternations either in the main or the
subordinate clause. The third class had alternations in both clauses. I regarded the active
transitive and the prepositional dative as default structures relative to which the passive
transitive and the double-object dative, respectively, alter the order of participants in
the sentence form. Hence to ‘contain alternations’ here means that one or both clauses
are passive transitives or double-object datives. For example, the Vrst class comprised
complex sentences composed of intransitive, active transitive, oblique and prepositional
dative clauses, the third class contained only sentences composed of passive transitive
and double object dative clauses.

The Dual-path model is an architectural extension of a simple recurrent network
(SRN). These systems are statistical learning models which are sensitive to distribu-
tional regularities in the input (Elman, 1991, 1990). In particular, SRN are sensitive to
the frequencies of input structures. Ceteris paribus, more exposure to structure A than
to B leads to better learnability of A. In order to determine whether the Dual-path
model had more diXculties with processing alternations we therefore have to rule out
a straightforward frequency-based explanation of diUerential behavior. For example,
even if all three classes of sentences occurred with the same frequency in training, there
still might be more structural diversity in one class than in another. More diversity
entails less exposure to each structure during learning which could lead to decreased
accuracy in testing for this class. That there was indeed diUerential diversity in the
three classes of sentences is shown in Table 5.1. The top row indicates the number of

None Either clause Both clauses
Structural combinations 16 16 4
Patterns of relativization 51 58 16

Table 5.1: Structural diversity in the three alternation classes.

combinations of basic constructions in each class. Class three with alternations in both
clauses, for instance, contained only sentences composed of passives and double object
datives. Hence there were 4 possible combinations of clause types from which these sen-
tences were assembled but 16 for sentences without alternations. Moreover, the number
of participants in diUerent constructions can vary (one in intransitives, three in datives)
and the more participants, the more ways there are of modifying and relativizing noun
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phrases. The bottom row of Table 5.1 indicates the number of distinct patterns of rela-
tivization in each class. For example, in the Vrst class (without alternations), an active
transitive main clause could be combined with an oblique relative clause. Both clauses
have two animate participant roles, consequently there were four possible relativization
patterns for this clausal combination. Since all of these patterns of relativization must
be learned through training, more distinct patterns entail lower individual frequencies.
According to Table 5.1 there was more structural diversity in class one than in class
two, and more in this class than in class three (in terms of both criteria). Therefore
each structure in class one would receive less training than each structure in the other
classes, and so forth. To balance this structural diversity the size of the three classes was
made proportional to the number of relativization patterns in each class. As usual, the
training set consisted of 8.000 simple-clause and 2.000 relative clause sentences.1 The
model was trained as before and tested periodically on 600 novel sentences, 200 from
each class, during development. The results of this experiment are shown in Figure
5.1. For improved visibility of the diUerences between classes, only epochs 30–70.0000
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Figure 5.1: DiUerential learning of complex constructions depending on the number of
alternations.

are depicted. At the end of training (after exposure to 100.000 sentences), all classes
reached >95% sentence accuracy. Figure 5.1 shows that the learnability of construc-
tions depended on the number of alternations. Sentences with no alternations devel-
oped faster than sentences with one alternation, which were learned more easily than
sentences with two alternations. Hence, it seems that passive transitives and double

1The 2.000 complex sentences contained 816 sentences from class one, 928 sentences from class two,
and 256 sentences from class three.



118 Chapter 5. Model analysis

object datives exert a strong inWuence on the learnability of constructions. The fewer
alternations it contained the better a construction was learned.2

If structural competition between sentence forms is the reason why alternations
were inherently more diXcult to learn, this should reciprocally aUect active transitives
and prepositional datives. To test this, the exact same experiment was conducted for
these two structures and also for the combination of passive transitives + prepositional
datives and for active transitives + double-object datives. A three-way within subjects
ANOVAwas conducted at epoch 50.000with transitive type, dative type and number of
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Figure 5.2: Interaction of transitive type and
number of alternations.

alternations as factors and sentence ac-
curacy as the dependent measure. Nei-
ther the main eUect of transitive type
was signiVcant (F(1,9) = 0.21, p =
0.65), nor the main eUect of dative type
(F(1,9) = 0.98, p = 0.35). There was
a signiVcant main eUect for the num-
ber of alternations (F(2,18) = 157.7, p
< 0.001). Moreover, there was a sig-
niVcant interaction of transitive type
and number of alternations (F(2,18) =
7.13, p < 0.01), see Figure 5.2. While
in sentences with one alternation pas-
sive transitives lead to an improve-
ment in accuracy over active transi-
tives, passives were detrimental in sen-
tences with two alternations compared
with active transitives.

All four conditions lead to the same ordering of learnability (none > either > both)
which suggests that this ordering is robust in that sentences with two alternations are
harder to learn, regardless of which combination of transitive and dative structures we
consider. This does not entail that the explanation of this ordering is identical for each
condition. For analysis, I will return to the condition of Figure 5.1, where only passive
transitives and double-object datives occurred in sentences with two alternations.

A frequency-based explanation of the diUerential behavior was excluded on a con-
structional level by balancing the training set appropriately. However, frequencies in
the training set might be skewed on a sub-constructional level and if the Dual-path
model is sensitive to such frequencies, these might generate the ordering of Figure 5.1
in development. For example, the model might be sensitive to frequencies of word cat-
egory sequences such as THAT VERB DET NOUN and if there are large diUerences in
frequency for such sequences across the three classes of sentences this might inWuence
the learning and processing of alternations. Double object datives, for instance, contain

2A further distinction could be made between alternations in the main clause versus alternations in
the relative clause. Main clause alternations were learned slightly faster than relative clause alternations.
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the sequence VERB DET NOUN DET NOUN which does not occur in any other construc-
tion and similarly passive transitives contain the unique sequence VERB PARTICIPLE BY
DET NOUN. On the other hand, the oblique construction contains the unique sequence
VERB WITH DET NOUN and the intransitive is the only construction with an end-of-
sentence marker after the verb form. These two structures occur in combination only
in the Vrst class without alternations and did not appear to be particularly diXcult to
learn.3 The frequencies of construction-specific substructures can therefore be excluded
as an explanation of the model’s diUerential performance.

Bigram statistics

Notwithstanding, it might still be the case that the behavior of Figure 5.1 (page 117) is
caused by distributional properties of the input. For instance, the double alternation
class might contain bigrams—chunks of two consecutive words or word categories—
which are less supported by the training set than bigrams in the no alternation class.
To examine this possibility I computed the bigram statistics for the model’s training set
and determined how well the three tested classes are predicted by these transitional
probabilities. First, I converted the training and test sentences into sequences of word
categories. A passive sentence such as the man is chase -par by a dog, for example,
was represented by the sequence DET NOUN AUX VERB PARTICIPLE BY DET NOUN.4

If s was a test sentence consisting of k word categories, s = w1 . . . wk, the probability
P (s) of s was computed as the product of conditional probabilities between adjacent
word categories in s

P (s) = Πk
i=1P (wi|wi−1) (5.1)

where P (wi|wi−1) = (number of times wi follows wi−1)/(number of times wi occurs)
in the training set.5 Thus, if s is a test sentence, P (s) measures the probability that s
is correctly predicted based on the conditional probabilities for bigrams in the training
corpus. In other words, the higher P (s) of a novel test sentence s is, the better it is
supported by the model’s learning environment.6 Suppose, however, for two sentences
s1 and s2 we obtain P (s1) = P (s2) but s2 is longer than s1. Intuitively, in this case s2
would be better supported because the average bigram probabilities must be higher in s2
than in s1. A standard measure which reWects diUerential sentence length is cross-entro-
py (Chen and Goodman, 1999). For a set of sentences S = {s1, . . . , sn}, cross-entropy

3See the error analysis below.
4The prepositions by, to and with were distinguished in tagging because they are characteristic of

diUerent constructions.
5Since all sentences started with a determiner P (w1|w0), the probability that a sentence starts with

w1, was set to 1.
6All bigrams in test items occurred in the training corpus, hence no interpolation smoothing was

necessary.
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CE(S) is deVned as

CE(S) =
1
NS

n∑
i=1
− log2 P (si) (5.2)

where P (si) is the probability of sentence si and NS is the sum of the lengths of all
sentences in S. Cross-entropy is inversely related to the probabilities of deVnition 5.1.
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Figure 5.3: Cross-entropy for the
three alternation classes.

The lower the cross-entropy of a set of sen-
tences, the better this set is supported by the
training environment. To see whether this
bigram model predicted the order of acqui-
sition in the Dual-path model I calculated
the cross-entropy of the three tested classes
of sentences (Figure 5.3). The cross-entropy
measure predicts that sentences with no al-
ternations should be harder to learn than sen-
tences with one alternation in either clause.
These sentences in turn should be more dif-
Vcult than sentences with two alternations,
which had the lowest cross-entropy.7 This or-
der of diXculty is inverse to the order of ac-
quisition in the Dual-path model. Hence, the
cross-entropy model did not explain why the number of alternations correlated with the
Dual-path model performance.

Frequency of semantic roles

The Dual-path model learns a target grammar from message-sentence pairs and the
message is given to the model as input at the beginning of the prediction task. In order
to use this semantic input appropriately, the model must learn to activate thematic roles
in the intended order in the message-lexical system (see Chang, 2002). This sequencing
of roles might be sensitive to the frequencies of chunks of roles in the message-sentence
pairs of the training set. Chunks of roles, however, can be construction-specific. For ex-
ample, the passive transitive is the only construction in the artiVcial language in which
the sentence initial NP is assigned the patient role Y and the object NP the agent role
X. To produce a correct passive, the model must Vrst activate the Y role, and later the X
role. The transition from Y to X is not supported by any other construction in the tar-
get language and this might explain why passive transitives are more diXcult to learn.
Similarly, the double-object dative includes the subsequences X→Z and Z→Y of roles
which are unique to this construction. Other constructions, such as the prepositional da-
tive, require the activation of the X→Y→Z sequence at thewhere-layer. This sequence

7In terms of mean probabilities, the order was P (both) > P (either) > P (none) and Nboth >
Neither > Nnone for sentence length.
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is supported by the active transitive X→Y and the oblique Y→Z subsequences. Such se-
mantic diUerences between constructions might explain why the passive transitive and
double-object dative were more diXcult to learn and why more of these structures in
one sentence are increasingly detrimental. Counting the frequencies of two-role chunks
in the training set of the model in Figure 5.1 (page 117), the two tested alternations were
the least supported structures in this regard. I balanced two-role chunks to match the
support for active transitives and prepositional datives, respectively, across the entire
training set. This was achieved by increasing the relative frequencies of simple-clause
passives and double-object datives, while leaving all other properties of the training set
intact. Training the model in this way resulted in no qualitative and only a small quan-
titative diUerence between the two conditions. A two-way within subjects ANOVA was
conducted at epoch 50.000 with roles balanced/unbalanced and the number of alterna-
tions as factors and sentence accuracy as dependent measure. It indicated no diUerence
in overall performance between the role conditions (F(1,9) = 1.71, p = 0.22). However,
there was an interaction of condition and number (F(2,18) = 6.77, p < 0.01). There was
no diUerence in mean for two alternations, but an improvement for one alternation and,
surprisingly, also for the class of sentences without alternations. Increasing the frequen-
cies of two-role chunks which support the passive transitive and double-object dative
did not lead to improved performance for double alternations and even increased the
diUerences between the three classes of sentences. This suggests that the distribution of
chunks of semantic information does not explain the diUerential behavior of Figure 5.1.

Error analysis

In the previous sections I excluded a number of frequency-based explanations for why
alternations are particularly hard to process by the Dual-path model. Constructional
frequencies and relativization patterns were equated in training. Neither substructure
frequencies or bigram statistics in the corpus, nor the frequencies of two-role chunks
in the message explained the model’s behavior. These negative results indicate that al-
ternations are inherently harder to process because similar meaning representations are
mapped to diUerent sentence forms. To assess this possibility, the model’s error proVle
for each class of sentences was examined. Structural competition for similar messages
in alternations should be manifest in higher error rates for transitive and dative test
items and in the amount of structural conversion between alternations in the model’s
output, e.g., the conversion of active transitive target sentences to passive transitives.
For each class, the Vrst 50 errors were inspected and classiVed with respect to the ba-
sic construction type in which they occurred (e.g., intransitive versus dative), in which
clause they occurred (main or relative clause), and whether they were conversion errors
or not.8 A typical conversion from passive to active (labelled P/A error), for instance,
occurred when the model produced the subordinate verb after the pronoun in a subject-
relativized clause, i.e.,

8All examined errors occurred after the model had experienced 80.000 training sentences. A late
epoch was chosen for analysis because errors were more distinctive.
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(1) a. the mother is push -ing a girl that kick ... instead of
b. the mother is push -ing a girl that a dog is kick -par by .

The error proVles for each class of sentences are shown in Table 5.2. The ‘construction’

No Alternations
Construction Conversions

Clause I A P O PD DO A/P P/A PD/DO DO/PD
Main 0 7 0 2 7 0 5 0 5 0
RC 2 11 0 4 17 0 10 0 14 0
Percent 4% 36% - 12% 48% - 83% - 79% -
One Alternation

Construction Conversions
Clause I A P O PD DO A/P P/A PD/DO DO/PD
Main 0 3 2 1 7 6 0 1 1 4
RC 0 4 6 3 10 8 1 4 7 6
Percent - 14% 16% 8% 34% 28% 14% 63% 47% 71%
Two Alternations

Construction Conversions
Clause I A P O PD DO A/P P/A PD/DO DO/PD
Main 0 0 5 0 0 11 0 3 0 5
RC 0 0 18 0 0 16 0 10 0 12
Percent - - 46% - - 54% - 57% - 63%

Table 5.2: Error proVle for the three alternation classes. Labels mean: I = intransitive, A
= active transitive, P = passive transitive, O = oblique, PD = prepositional dative, DO =
double-object dative, RC = relative clause.

column indicates the clause type and location of the sequentially Vrst error in incorrect
productions. The ‘conversions’ column indicates the percentage of X-type errors which
was characteristic of a conversion to structure Y for each X/Y error listed. For instance,
in the no alternation class a total of 18 errors occurred in active transitive clauses out
of which 83% were conversion errors to passive transitives. The remaining 17% of er-
rors were either lexical or nondescript. In this class passives and double-object datives
were not tested and 84% of all errors occurred in active transitives and prepositional
datives. 81% of these transitive and dative errors were conversions to the corresponding
alternation structure. In the class with one alternation in either clause, the majority of
errors occurred in datives and the P/A and DO/PD conversion rates were highest. In
the class with two alternations, the majority of errors were conversions to the structures
competing with the construction types in the tested sentences.

These error distributions suggest that the model had diXculties discerning the tran-
sitive and dative pairs of alternations which lead to more errors in these constructions
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and ultimately to an increasing amount of errors in those classes which contained more
alternations (Figure 5.1, page 117). The diXculty with alternations is rooted in the sim-
ilarity of these structures in the message input to the model. Meaning representations
for alternations were composed of the same semantic features in the event semantics
and the same role-to-concept bindings in the what-where-system. They only diUered
in terms of the relative strength in the activation of participant features. This alter-
nation parameter biased the model to select the intended transitive or dative structure
but the bias was not strong enough to prevent conversion errors from occurring. Alter-
nations complicate the meaning-to-form mapping the model has to acquire since they
invert the order of semantic roles in the sentence form. To produce a correct passive,
for instance, the model must begin production by sequencing the patient role. Once the
patient has been produced, this constituents’ thematic role is maintained in the memory
of the cwhere-system due to feedback, and this facilitates the sequencing of the agent
role later on. Hence, semantic information is accreting during production and guides
the model in structural selection. At the onset of a clause, however, the model can rely
solely on its message input. Thus early uncertainty caused by highly similar messages
leads to clause-initial errors as in sentence (1-a) above. At the error position the model
knows that girl is the focus and the agent of the relative clause but is confused about
its grammatical role, leading it to produce that kick... (girl = agent, subject) rather
than that a dog kick... (girl = patient, object), or the target sequence that a dog

is kick... (girl = agent, object).
To summarize, distributional properties of the input did not explain why sentences

with more passive transitives and double-object datives were more diXcult to learn.
In transitives and datives the same role features can get mapped to distinct grammat-
ical roles and this diUerence was encoded in the conceptual structure of the message
by signalling the relative prominence of participants. Alternation messages were there-
fore very similar but mapped to dissimilar sentence forms. This complication made
alternations inherently diXcult to learn which was traceable in the high percentage
of structural conversions in the model’s error proVle and this explains the diUerential
performance for alternation classes witnessed in Figure 5.1.

5.1.2 Topic and focus

In the literature on language acquisition, relative clauses have received wide attention.
A large number of studies have investigated the order of acquisition in English-speak-
ing children, measured mainly in comprehension. In these studies it is customary to
characterize relative clause types in terms of the grammatical role of the topic and focus
elements. Four classes of relative clause structures can be distinguished in this way:

• SS-relatives in which the main clause subject is the topic of the relative clause
and the relative clause subject the focus.

• SO-relatives in which the main clause subject is the topic of the relative clause
and the relative clause object the focus.
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• OS-relatives in which the main clause object is the topic of the relative clause and
the relative clause subject the focus.

• OO-relatives in which the main clause object is the topic of the relative clause
and the relative clause object the focus.

An example of each structure from the artiVcial language is given below.

(SS) the girl that throw -ed the orange to a cat fall -ed .

(SO) the woman that a boy teach -s was push -par by a dog .

(OS) a mother was give -ing a cookie to a nurse that run -s with a man .

(OO) the brother kick -ed the dog that the teacher is approach -ing .

To test children’s comprehension abilities, most studies employed either a sentence rep-
etition task in which children had to repeat sentences with relative clauses from the
experimenter, or an act-out task in which children heard such sentences and were asked
to act out their meaning with toys. Based on children’s error rates the order of acquisi-
tion between SS-, SO-, OS-, and OO-relatives could be estimated. Table 5.3 shows the
results from four studies which have received the most interest and a Vfth more recent
study. Obviously, there is large variation in these Vndings, e.g., OS-relatives are the

Study Result
de Villiers, Flusberg, Hakuta, and Cohen (1979) (OS, SS) > OO > SO
Sheldon (1974) (SS, OO) > (SO, OS)
Smith (1974) OS > SS > OO > SO
Tavakolian (1981) SS > (OO, SO) > OS
Kidd and Bavin (2002) (OS, OO) > SS > SO

Table 5.3: Children’s comprehension of relative clauses. X>Y indicates that X was
easier to comprehend than Y.

easiest or the hardest structures, depending on the particular study. Despite plenty of
psycholinguistic experiments on this issue, no clear picture has evolved to date. In sim-
ilar vein, many interpretation strategies, which perhaps are used by children in relative
clause processing, were proposed as an explanation of diUerential behavior:9

(i) Non-interruption hypothesis (Slobin, 1973): relative clauses interrupting the main
clause are more diXcult (prediction: (OS, OO) > (SO, SS)).

(ii) Conjoined-clause hypothesis (Tavakolian, 1981): children interpret sentences with
relative clauses as a conjunction of two simple sentences (prediction: SS > (OO,
SO) > OS).

9Cf. Diessel (2004) and the detailed discussion therein.



5.1. Behavioral analysis 125

(iii) Parallel-function hypothesis (Sheldon, 1974): children assign the same syntactic
roles to the topic and focus of a relative clause (prediction: (SS, OO) > (SO, OS)).

(iv) NVN-schema hypothesis (Bever, 1970): children have less diXculty with relative
clause constructions which follow the noun-verb-noun pattern of simple transi-
tive clauses (prediction: (SS, OS) > (SO, OO)).

(v) Filler-gap hypothesis (Wanner and Maratsos, 1978): processing diXculty varies
with the distance between the topic and focus of the relative clause (prediction:
(SS, OS) > (SO, OO)).

In order to determine where in this complicated landscape of results and explana-
tions the Dual-path model Vts in, the model was trained as usual with a set of 10.000
sentences, 20% of which contained all of the four types of relative clauses (SS, OS, SO,
OO). As in the alternation experiment the input frequencies were balanced so that the
number of training items divided by the number of distinct constructions in each class
was equal. The model was periodically tested on a set of novel sentences containing 200
items of each type, drawn uniformly from the language. Figure 5.4 depicts the results
from this comparison (averaged over ten model subjects).10 In this condition, I obtained
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Figure 5.4: Comparison of SS-, SO-, OS-, and OO-relative learning.

the processing hierarchy SS > (SO, OS) > OO. Strictly speaking, this ordering is not in
line with any experimental data or any single explanatory hypothesis mentioned above.

10The model was trained for 100.000 epochs and all constructions eventually reached ceiling (>95%
sentence accuracy). For better visibility of the contrasts, only epochs 50–80.000 are displayed.
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The large diversity in these data, however, indicates that most likely there is not a sin-
gle factor responsible for children’s diUerential comprehension but rather some complex
interaction of the factors (i)–(v) and possibly several others. Overall, relative clauses at-
tached to the main clause subject (SS, SO) were learned faster by the Dual-path model
than relative clauses attached to the main clause object (OS, OO). This behavior ap-
pears to be inconsistent with the non-interruption hypothesis which predicts that object
attachment should be easier because the main clause is uninterrupted by intervening
material. Notice, however, that object attachment does not guarantee an uninterrupted
main clause. In my language, ditransitive and prepositional datives could have both
objects modiVed and relativized. As a consequence, the main clause could be disrupted
by a relative clause, but still classify as an OO-relative:

(2) a man bring -s a cat [that a woman give -ed a toy to] the apple .

Given the results from the previous section on alternations we know that such structures
are particularly hard for the Dual-path model and the interruption of the main clause
might contribute to this diXculty. Because the non-interruption hypothesis does not
predict the relative diXculty of such sentence types it might be premature to conclude
that the low performance on OO-relatives in the model is at odds with this hypothesis.
The model’s behavior is partially consistent with the conjoined-clause hypothesis in that
SS-relatives were the fastest structures to develop in the model. It is also partially con-
sistent with the parallel-function hypothesis which predicts that SO- and OS-relatives
should cause the same amount of diXculty because topic and focus assume diUerent
syntactic roles, and that both are harder than SS-relatives which assign the same role to
the head and relativized element. Furthermore, the performance in Figure 5.4 is partially
consistent with the NVN-schema hypothesis in that SS-relatives are learned faster than
SO-relatives and OS-relatives are learned faster than OO-relatives. In the same regard,
the model’s behavior is partially consistent with the Vller-gap hypothesis.

So where does this partial concordance on all fronts leave us? It would be desirable
to determine the inWuence of each of the proposed hypotheses (i)–(v) in relative clause
processing within the framework of the Dual-path model. A number of factors, how-
ever, make this a very complicated endeavor not to be undertaken here. First of all, the
experimental studies from which these hypotheses are derived were studies of relative
clause comprehension, not production. Unlike comprehension, production does not re-
quire interpretation strategies and online integration of overheard linguistic material. It
is therefore doubtful whether the Dual-path production model can be utilized to assess,
e.g., the conjoined-clause or the Vller-gap hypothesis in a straightforward way. Sec-
ondly, the lack of reliable, replicable data poses serious methodological problems for a
computational modelling approach. One explanatory route would be to make the model
match the behavioral data and work backwards from there to identify the processing
factors which bring about this behavior. But since there is no consensus on the order
of relative clause acquisition the model cannot be calibrated to match the data in the
Vrst place. In a bottom-up approach the model could be built on realistic frequencies of
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relative clause types in child-directed speech. This would yield testable predictions and
model-based explanatory strategies which might help evaluate the signiVcance of the
factors (i)–(v). Such frequency data is diXcult to obtain but in light of the large variation
in the comprehension data, a corpus-based modelling account might be more promising
than a top-down approach. Third, this variation in the child data could be an indication
that the topic/focus-taxonomy of SS-, SO-, OS-, and OO-relatives might be too coarse.
Other factors than the subject/object distinction have been shown to strongly inWuence
relative clause processing:

(a) the grammatical type of modiVed and relativized objects (de Villiers et al., 1979;
Keenan and Hawkins, 1987; Diessel and Tomasello, 2005)

(b) the animacy of head nouns and relative clause subjects/objects (Traxler et al.,
2002; Mak et al., 2002; Kidd et al., 2007; Gennari and MacDonald, 2008)

(c) semantic determinacy, verb class and relative clause voice (Gennari and MacDon-
ald, 2008)

(d) pronominal relative clause subjects (Gordon et al., 2001; Warren and Gibson,
2002; Kidd et al., 2007)

(e) the distributional properties of relative clause types and the frequencies of sub-
structures (Reali and Christiansen, 2007a,b)

(f) long-term linguistic experience and familiarity with diUerent relative clause types
(MacDonald and Christiansen, 2002; Wells et al., 2008)

This range of Vndings suggests that the classiVcation of relative clauses in terms of
the grammatical role of the topic and focus may not be Vne-grained enough and that
a universal hierarchy for SS-, SO-, OS- and OO-relative processing and development
might not be obtainable.

Another source of diXculty for assessing hypotheses (i)–(v) lies in the complexity of
the model itself. A large number of factors might inWuence diUerential learning in the
model. For instance, it was argued in the previous section that alternations are inher-
ently diXcult to process, so the number of alternations in each class (SS, SO, OS, OO)
will have an eUect on the ordering in testing. In the experiment of Figure 5.4, the num-
ber of alternations in training predicted the hierarchy SS > SO > OS > OO in testing.
Because the Dual-path model is a statistical learning mechanism it is sensitive to dis-
tributional properties of its input on many diUerent levels. Constructional diversity in
each class was balanced in the experiment, but substructure frequencies and in partic-
ular bigram statistics might inWuence learning and development as well. Cross-entropy
in the training set, for example, predicted the order OS > SS > OO > SO. Furthermore,
the model’s performance might be dependent on the total amount of training for each
semantic role and the frequency of each role in the constructions of each class. This
relation predicted the order SS > SO > OS > OO in the above experiment. SS-relatives
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tend to be shorter than OO-relatives because they can be composed of intransitives, and
sentence length is perhaps also an important factor because shorter sequences put less
strain on the model’s working memory. Sentence length predicted the order SS > (SO,
OS) > OO, which was actually observed (Figure 5.4).

Test items in the four relative clause classes could be composed of all possible combi-
nations of basic constructions, e.g., an SS-relative could have an intransitive main clause
and a dative embedding, or a passive transitive main clause and an active transitive em-
bedding. The model’s performance varied for diUerent structures within a single class.
The studies of Table 5.3 also diUered in the kinds of structures that were tested in com-
prehension which might be another reason for the variance in these results. When the
model was tested on sentences which only contained oblique main clauses and active
transitive relative clauses I obtained the processing order (SO, SS) > OS > OO.11 More-
over, the model’s performance might depend on the kinds of basic constructions in the
artiVcial language itself. For instance, there might be subtle eUects of interference and
similarity between distinct complex structures, and between these and simple-clause
constructions. Contrasts in the SS > (SO, OS) > OO processing order might be due to
such patterns of interference and facilitation in the input language, and not due to the
inherent diXculty of any one class of constructions in isolation.

The variety of factors which might have an inWuence on learning and processing
makes it diXcult to trace the cause of the model’s diUerential performance on SS-, OS-,
SO- and OO-relatives. It also makes it diXcult to isolate and test the factors proposed
in hypotheses (i)–(v). In later chapters I will take up this issue again and analyze two
aspects of relative clause development which are related to the processing hierarchy of
this section. Chapter 6 will examine the model’s diUerential behavior on center-embed-
ded and right-branching structures. In Chapter 8, I investigate how the grammatical role
of the relativized element, and in particular the type of object (direct, indirect, oblique),
inWuences the order of relative clause acquisition in the model.

5.2 Representational analysis

So far I have only looked at the overt linguistic behavior of the model by measuring
its performance for distinct constructions in various conditions. I now want to gain
a better understanding of the speciVc function each of the two model pathways—the
message-lexical system and the sequencing system—performs in order to generate this
behavior. For this purpose it is helpful to analyze the internal representations which
have developed in each pathway during learning. In the message-lexical system, I will
look at the states of thewhere-layer in the course of sentence production. At this layer,
the model has to sequence thematic roles in order to activate sentence-specific content in
the what-layer. Inspecting the activation states of the where-layer during production,
we can track incremental structural selection and obtain some insights into the model’s
units of planning.

11The test items in the study of Kidd et al. (2007) were of this form.
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In the sequencing system I examine the representations at the compress-layer which
immediately precedes the word-output layer. The question was whether this layer ac-
quired knowledge of word categories which could be interpreted as syntactic represen-
tations used by the sequencing system in sentence processing.

Both pathways of the model are fed by the central hidden-layer. I investigate
whether this layer represented traditional phrasal categories and the argument struc-
ture of basic constructions. Finally, I trace the representational similarity of clauses in
diUerent sentential structures at the hidden-layer.

5.2.1 Lexical categories

The compress-layer consisted of 20 units and formed an information bottleneck because
it was considerably smaller in size than the hidden- andword-layers. All activation in
the sequencing pathway which propagates to the word output must pass through this
layer. Consequently, the compress-layer is forced to develop generalizations which are
independent of speciVc lexical items. Activation at the compress-layer was recorded for
a single trained model (epoch 100.000) while producing a set of 4.000 test sentences,
half of which contained relative clauses. The activation vectors where averaged by word
category and verb class and quantized into Vve diUerent activation levels. Black squares
indicate an average unit activation of 0.5 or more, white squares indicate activation of
0.1 or less, and diUerent grey-scale squares lie in between (table 5.4, page 130).12 Because
unit activation was averaged, dark squares convey more useful information than lighter
squares. Black and dark squares can be found in almost every column, hence there was
little redundancy in the compress-layer. Representations for each row are distributed
over several units which means that no single unit encoded one category and diUerent
categories shared individual units. Nouns almost exclusively used units C6, C8, and
C15. Verbs mainly used units C1, C6, C11–C14, and C16. Units C6 and C12 were shared
by all verb classes, whereas other units strongly distinguished between verb classes.
For instance, units C13 and C16 separate intransitive and oblique verbs from transitive
and dative verbs. Activation patterns for intransitive and oblique verbs appear to be
very similar, only units C8 and C11 weakly distinguish both classes. This is because
several verbs in the artiVcial language could occur in intransitive as well as oblique
constructions, e.g., run and jump. Similarly, transitive and dative verbs were only
distinguished by unit C14. Although there was no overlap between these verb classes,
some transitive verbs used in the artiVcial language could also occur in prepositional
dative frames in natural language, e.g., kick in the man kicked the ball to the boy.
Moreover, the active transitive and prepositional dative construction shared the same
initial sequence of role features (XX=agent and YY=patient/theme) in the event seman-
tics. Hence, it was appropriate for the model to represent these two verb classes in
similar ways at the compress-layer.

Unlike nouns and most verbs, functional constituents such as determiners and prepo-

12This analysis follows the procedure proposed in Chang (2002).
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sitions recruited more resources by activating a larger number of units. This is an indi-
cation that the model mainly relied on the sequencing system to produce these constit-
uents (cf. Chang, 2002). An exception is the pronoun that which eUectively activated
only two units, C3 and C14. The production of this constituent must be guided by the se-
quencing system exclusively because it is not part of the sentence message in thewhat-
where system. Thus, function and content words were processed in diUerent pathways
in the model. Evidence for this separation comes from a number of studies in psycholin-
guistics, neuroscience, and aphasia research which have shown that there is a double
dissociation between these word classes in human syntactic processing (Goodglass and
Kaplan, 1983; Pulvermüller, 1995; Osterhout, 1997, Brown et al., 1999). In contrast to
other functional elements, however, the topic feature in the event semantics constrained
the position of the pronoun within a sentence. In general, the positional variation of
that in complex sentences was higher than that of prepositions but the semantic in-
formation in the message was more explicit for the pronoun position. This allowed the
sequencing system to invest fewer encoding units at the compress-layer. The average
activation of the two pronoun units was 0.92 (C3) and 0.99 (C14), respectively. Thus
neither unit represented the diUerence between subject-modifying and object-modify-
ing relative clauses. To probe this diUerence, the activation states of the compress-layer
were recorded separately for 1.000 subject-modifying and 1.000 object-modifying rel-
ative clauses. The results are depicted in Table 5.5, along with the activation pattern
averaged over the entire multi-clause fragment from Table 5.4. While the pronoun in

Complementizer compress-layer units
by structure C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Subject-modiVed

Object-modiVed

Averaged complex

Complementizer compress-layer units
by structure C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
Subject-modiVed

Object-modiVed

Averaged complex

Table 5.5: DiUerential activation of that for center-embedded and right-branching
structures at the compress-layer.

subject-modifying relative clauses used only units C3 and C14, in object-modifying rela-
tive clauses it additionally used C4, C16 and unit C17 in particular. This unit was highly
active (0.73) when that initiated a relative clause which attached to a sentence object
and almost silent (0.10) when the relative clause attached to a sentence subject. In this
manner, unit C17 encoded crucial structural properties of hierarchically distinct senten-
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tial constructions. The structural decision between subject versus object attachment
that the model had to make in sentence production was manifest in diUerent activation
patterns at the pronoun position. Consequently, the compress-layer was not limited to
representing local within-clause syntactic information such as word category and verb
class, but also represented structural distinctions between sentence types.

Overall, the activation patterns for nouns, verbs and functional constituents reported
here for multi-clause utterances conformed to those found in Chang (2002) for sin-
gle-clause utterances. Distributed representations developed at the compress-layer and
encoded syntactic categories and verb class information in essentially the same way in
both analyses. In this respect, the model scaled well for increased structural complexity
in the input language. This can be interpreted as evidence for the robustness of the
syntactic representations developed by the Dual-path model in both studies, and as a
justiVcation for the architectural assumption of separate processing pathways.

5.2.2 Thematic role sequencing

During sentence production, the model activates chains of word categories in its se-
quencing system. For example, when producing a grammatical subject-modiVed, active
transitive main clause and an oblique object-relativized embedding we would observe a
chain of activation corresponding to the sequence of categories DET NOUN PRON DET
NOUN OVERB PREP TVERB DET NOUN at the compress-layer.13 In the message-lexi-
cal system, on the other hand, the model assigns conceptual content to the positions in
these word category sequences. This is achieved by activating a corresponding chain
of thematic role units in the where-layer. These units then propagate activation along
the role-to-concept bindings to activate conceptual units in the what-layer. Units in
this layer represent the lexical-semantics of words. They project to the word-output
layer and activate a word form. At the output layer, both pathways are joined and
they compete for each sentence position. While the message-lexical pathway activates
possible word continuations, the sequencing pathways activates possible word category
continuations. Jointly, both pathways predict the next word in a production sequence.
For instance, the message-lexical system might be in a state of uncertainty and activate
several words from diUerent lexical categories. If the sequencing system has already
learned the syntactic frame for the target construction it will activate the correct word
category for the current position. The combined activation from both pathways will
then support the selection of the appropriate word at the output layer. Words which are
erroneously activated by the message-lexical system are not supported by the sequenc-
ing system and loose the competition for production.

In order for this process to work, the message-lexical system must learn to sequence
thematic roles at the where-layer in the right order. To understand the details of this
process, the activation states of the where-layer were recorded for 100 sentences with

13DET = determiner, PRON = pronoun, OVERB = oblique verb, PREP = preposition, TVERB =
transitive verb.
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an active transitive main clause and a subject-modifying, object-relativized oblique em-
bedding such as

(3) a woman that the boy play -ed with is hit -ing the father .

These activation states were averaged over ten model subjects at epoch 100.000 and
plotted in Table 5.6. Thus a representative thematic role sequence was obtained for such
structures. At the beginning of the sentence, the model activated the agent node 0X for

Word where layer (thematic roles)
Category 0A 0X 0Y 0Z 1A 1X 1Y 1Z

DET

NOUN

PRON

DET

NOUN

OVERB

PREP

TVERB

DET

NOUN

Table 5.6: where-layer activation states for 100 sentences with transitive main clause
and oblique relative clause, averaged over ten model subjects at the end of training.

the transitive clause-initial NP. If the oblique clause had been the main clause instead,
the patient node 1Y would have to be activated Vrst. Hence, the slight activation of
the 1Y node indicates that the model was not entirely certain about the order of clauses
within the sentence when producing the sentence-initial determiner.14 This uncertainty
vanished, however, when the subsequent noun was produced since the model assigned
a unique role to it (0X again). At the pronoun position, there is sporadic activation
across the where-layer. The pronoun carries no thematic role, hence no where-layer
unit is fully active (black square) when that is produced. The sequencing system alone
is responsible for Vlling this slot with a lexical item. At this crucial point in structural
selection the message-lexical system slightly activates the action role 0A and the pa-
tient role 0Y. Both choices make sense for a transitive clause which is not disrupted
by a relative clause. In this case the action role 0A would have to be sequenced now,

14Recall that the where-layer units indexed by 0/1 were not dedicated to clause order, i.e., there was
no default order. Although Table 5.6 depicts mean activation over 0-1 ordered sentences only, the reverse
order 1-0 was also admissible in training and testing.
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and given that the pronoun slot could have been the action position already, the pa-
tient role 0Y would be next. The model is also re-activating the transitive agent role
0X of the constituent which is modiVed by the relative clause and it is projecting the
relative clause-initial oblique patient role 1Y. In other words, the embedded clause sub-
ject is already available at the pronoun position and this is in line with the optional
use of that in English relative clause constructions. The non-specific activation vector
observed at the pronoun position indicates that the where-layer is in a state of uncer-
tainty in which all possible thematic role continuations (given the construction message
in the event semantics) are moderately active. To put it diUerently, multiple available
thematic roles compete for this position in the message-lexical system. The competition
for content words among various roles is overwritten by the structural choice made in
the sequencing system which leads to the production of the functional pronoun. This
behavior is consistent with the lexical-syntactic interaction model proposed by Ferreira
and Dell (2000) to account for various experimental results on that omission in com-
plement structures. Moreover, it shows that the model has retained syntactic Wexibility
despite its complete message input. It has not planned the entire sentence structure
ahead of production but incrementally assigns thematic roles in the time course of pro-
ducing an utterance (cf. Chang, 2002). Grammatical encoding is not complete before
production begins, but sentences are constructed in a piecemeal fashion from start to
Vnish. The sequential activation and deactivation of thematic roles at the where-layer
can be characterized as an attentional spotlight which selectively moves over event par-
ticipants signalled by the message. This incremental behavior is in line with a study by
GriXn and Bock (2000) who found concurrence between eye-movement and structural
choices in production.

Once the pronoun is produced, all main clause units are switched oU and the atten-
tional focus shifts to the embedded clause roles. The incremental nature of processing
in the Dual-path model can again be witnessed here in that both the action role 1A as
well as the relative clause subject 1Y are activated in the determiner position. Both a
subject- as well as an object-relativized oblique embedding are options for the model
at this point. Activation of 1A corresponds to a subject-relativized structure and activa-
tion of 1Y to an object-relativized structure. Since the oblique subject role 1Y is slightly
more active, the corresponding NP gets produced and thus the intended object-relativi-
zed oblique clause is initiated by a determiner. The model’s choice solidiVes at the next
step in processing. The determiner is fed back to the model’s input layer and activates
the 1Y role in the cwhere-system which signals to the model that an object-relativized
clause was intended. Consequently, the action role 1A is deactivated, the 1Y role is fully
activated and the subject noun is sequenced at the output layer. The slight activation of
the embedded unit 1X can be viewed as a semantic bias towards associating sentential
subjects with an agent role.

In the verb position, the embedded action role 1A wins the competition. There is
residual activation of the 1Y role and rather strong activation of the 1X role. The 1X
role is not linked to conceptual content in oblique constructions so there are no causal
consequences to activating this role. Most likely, the model is preparing to sequence this
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role in the post-verbal slot because in the passive transitive construction the agent role
1X succeeds the 1Y role. If this is the correct explanation, this behavior indicates that the
Dual-path model is sensitive to statistical regularities in two-role chunks within clauses
(cf. Subsection 5.1.1 above).

In the position of the preposition with, the main clause action role 0A is most ac-
tive. For the majority of subject-modifying, object-relativized sentences in the training
corpus this would be the appropriate continuation after the embedded verb. There is
also residual activation of the embedded action role 1A and the agent role 1X. Yet, again
the sequencing system enforces the production of the preposition here. Least active is
the oblique object role 1Z in the current sentence position. Since the thematic role of the
gapped element is linked to conceptual content in the what-where-system, the model
had to suppress activating this role. The preposition completes the relative clause and
attention shifts back to the incomplete main clause. This re-entry causes some diXcul-
ties, comparable to the clause-order uncertainty at the beginning of the sentence, as the
transitive verb is the only content word in the sentence for which active roles can be
found in both clauses. Finally, the correct patient role 0Y gets unambiguously assigned
to the clause-Vnal direct object NP which suggests that queueing the production of main
clause participant roles over the disrupting relative clause is not a source of diXculty
for the model.

By analyzing activation patterns at the where-layer for the sequence DET NOUN
PRON DET NOUN OVERB PREP TVERB DET NOUN of word categories we could identify
four interrelated characteristics of the Dual-path production model. Thematic role as-
signment is driven by activation-based competition among simultaneously active roles.
In most sentence positions, multiple roles compete for the next slot by showing some ac-
tivity and the most active role wins. The active range of possible roles in each sentence
position reWects the model’s experience of structural types in the language. For instance,
the activation of the agent role 1X after sequencing the 1Y role inside the embedding
shows that the model considers a passive transitive as a possible relative clause, despite
having received an input message for an oblique clause. The strength of activation of
competing roles which are not selected is correlated with the training frequencies of
alternative structures. Secondly, the model assigns thematic roles incrementally which
indicates that structural choices are being made in the course of production. Incremental
processing is visible at various points in the test structure and most pronounced at the
relative clause-initial determiner. Here the model has to choose between a subject-rela-
tivized and an object-relativized embedding. Both types of relative clauses are available
and considered plausible by the model in that the embedded action role and the role of
the subject NP are highly active. The tentative activation and subsequent deactivation
of roles shows that structural selection follows a step-by-step regime and is not fully
planned in advance. When multiple roles are equally active at function word positions,
in particular the pronoun, the sequencing system imposes syntactic constraints and reg-
ulates structural choice. Thus the message-lexical and the sequencing pathway interact
in the course of generating a sentence. As a consequence of activation-based compe-
tition, incremental processing, and pathway interaction, the Dual-path model remains
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syntactically Wexible throughout sentence production and is not rigidly committed to a
preconceived grammatical encoding of its semantic input.

Hierarchical planning

A long-standing controversy in language processing concerns the question what the ba-
sic units of sentence planning are. On the serial order account, planning is based solely
on the transitional probabilities between units of the same type (e.g., words). Co-oc-
currence frequencies in the experience of speakers determine the strength of sequential
connections between these units. On the hierarchical account, the syntactic structure of
a sentence is planned over larger, hierarchically connected units such as Vnite clauses.
Evidence for the latter account comes from a number of sentence production studies
(Boomer, 1965; Ford and Holmes, 1978; Holmes, 1988; Garrett, 1988; Bock and Cutting,
1992). These studies diUered in their methodologies but a common theme was to look
at error positions and frequencies in the production of structurally complex sentences
in various experimental conditions. Ford and Holmes (1978), for instance, asked sub-
jects to respond to tones while they spoke and measured the reaction times (RT) across
sentence positions. They found that RTs were longer at the end of clauses than at the
beginning. Longer reaction times indicated positions of increased processing load at
which speakers planned ahead of the current speech and they interpreted these Vndings
as evidence for clauses as a crucial planning unit. Holmes (1988) found more pauses and
hesitations at the beginning of a sentence and before embedded clauses in spontaneous
speech compared with reading out loud, indicating the clausal planning positions in
speech. Bock and Cutting (1992) elicited more agreement errors in sentences in which
the head noun-verb dependency was interrupted by a prepositional phrase rather than
an embedded clause. They argued that this error proVle supports a hierarchical account
because phrasal material in the same clause causes more interference between active
constituents than material which belongs to a diUerent clause. The processing focus
shifts to the embedded clause which then receives priority over material outside this
clause, suggesting that clauses are basic planning units.

These Vndings, and hierarchical planning in general, may at Vrst appear to be in-
consistent with production in the Dual-path model which generates utterances on a
word-by-word basis and makes decisions about thematic role assignment incrementally.
Unlike other sequential learning models, however, the Dual-path model is not relying
exclusively on transitional probabilities in word-to-word prediction. The model also
receives semantic information in the form of message input before production begins.
Since this message is provided non-incrementally it can in principle form the basis of
hierarchical planning.

Competition among active thematic roles in the where-layer indicates junctures of
uncertainty and more competition increases the likelihood of production errors. Thus,
we can interpret sentence positions at which there is strong competition as hesitations
or loci of planning in the model. In Figure 5.6 (page 133) there is more competition in the
relative clause than in the main clause. In a radically incremental, serial order model
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we would not expect such an asymmetry because positions of weak transitional proba-
bilities need not correspond to the clausal structure of sentences. If we take the function
words which are mainly produced by the sequencing system out of the equation, the
strongest competition occurs at the relative clause-initial determiner and the oblique
verb. These positions correspond to the boundaries of the embedded clause. Follow-
ing the argumentation of Holmes (1988) this suggests that the model might plan in units
which are roughly the size of a simple clause. At the beginning of the relative clause, for
example, the model is uncertain about the grammatical type of the embedding in that it
activates the action role 1A as well as the thematic role 1Y of the subject NP. Statistically
speaking, both continuations are equally likely given the model’s linguistic experience,
and the sentence initial subsequence DET NOUN THAT provides no probabilistic clue
regarding the intended type of embedding. Nonetheless, the model produced the cor-
rect object-relativized embedding for all 100 tested sentences in all ten model subjects.
This behavior suggests that it could not have relied on transitional probabilities but
might have planned ahead in some way, based on its message input. An alternative
explanation would be that the model is using its message input strictly incrementally,
feature-by-feature, whenever the relevant piece of information is needed in a sentence
position. For two reasons, however, this is not quite plausible. First, there are several
points in production at which the model appears to ‘look ahead’ from the current posi-
tion by activating the subsequent thematic role, for instance the 1Y role at the pronoun,
the 0A action role at the preposition, and the patient role 0Y at the transitive verb. The
anticipation of roles outside the current phrase indicates that the model’s planning units
might be larger than individual roles. Secondly, syntactic alternations in the language
invert the order of roles to be sequenced at thewhere-layer. In order to begin the active
transitive clause of Figure 5.6 with the correct role, the model must attend to the activa-
tion levels of the corresponding participant features in the message ahead of production.
Since the alternation bias is encoded relationally, both arguments of transitive verbs are
involved in the sequencing of thematic roles in such clauses. Responding appropriately
to this bias can be interpreted as clause-level planning.

The Dual-path model does not implement an explicit planning mechanism and as-
signs thematic roles incrementally. Nonetheless, I believe that the divide between incre-
mental processing and hierarchical planning can be reconciled in the model. Due to its
simple-recurrent architecture and word-to-word prediction mode, the model is sensitive
to transitional probabilities between lexical items and it selects thematic roles incremen-
tally based on information about the semantic value of previously produced constituents
in the cwhere-system. Due to its complete message input in the event semantics the
model can engage in hierarchical planning from the beginning of production. Jointly,
these properties create junctures of role competition in the where-layer whose loca-
tion at the beginning and end of an embedded clause is consistent with the behavioral
predictions of processing accounts which favor clauses over words as the basic units of
planning.15

15There is a caveat here, though. Competition points in Figure 5.6 are representative of this particular
structure only. There might be diUerent points of uncertainty in diUerent constructions. Local uncertainty



138 Chapter 5. Model analysis

5.2.3 Phrasal categories and argument structure

In Section 5.2.1 it was argued that the Dual-path model developed representations of
lexical categories which were traceable at the compress-layer of the sequencing sys-
tem. I will now examine more closely how the model represents aspects of the syntax
of constructions from the input language. This analysis is restricted to simple-clause
utterances, the case of relative clause constructions will be dealt with in Section 5.2.6.
SpeciVcally, I was interested in how the model partitions hidden-layer space to inter-
nally represent the constituent structure of utterances. The types of these partitioned
regions and their spatial relations might indicate in which way the model is chunking
constituents into larger syntactic units, for instance, whether it acquired intermediate
phrase structure such as verb phrases or prepositional phrases. It will be shown that the
model developed representations of verb-argument structure of basic constructions but
not traditional phrasal categories.

Linear discriminant analysis

The classiVcation technique for probing the internal representations of the model used in
the following sections is linear discriminant analysis (LDA for short). LDA is a statistical
tool for object classiVcation based on features. The basic idea is to divide a set of objects
which are characterized in a high-dimensional feature-space into classes which are as
distinct as possible. ClassiVcation is achieved by inserting hyper-planes into feature-
space which separate a set of labelled ‘training’ items into groups. These hyper-planes
are linear combinations of features (‘discriminants’) which describe the trained objects.
The discriminants obtained in this way yield a separation of feature-space on the basis
of which the class membership of novel objects can be predicted. Conversely, LDA can
be interpreted as a clustering method. Objects which do not separate well in terms of
their features form a cluster of similar objects.

5.2.4 Verb, noun and prepositional phrases

First, I wanted to determine whether the hidden-layer represents knowledge about
groups of word classes which corresponds to phrasal categories. Informally, I deVne
the coherence of a group of word classes as the amount of misclassiVcation of novel
items from this group within the group. High coherence suggests that the model is clus-
tering word classes from a group into a larger syntactic structure. For example, if the
model represents an abstract notion of verb phrase we would expect to Vnd that the
LDA yields high coherence within the group consisting of verbs, auxiliaries, inWectional
morphemes, and participles. If on the other hand the LDA strongly separates the cor-
responding word classes or misclassiVes many items into classes outside this group of

might be strongly related to the nature and frequency of competing structures in the language and not
necessarily reWect universal planning units.
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constituents, there is weak coherence and consequently the model maintains no abstract
knowledge of verb phrases.

In order to assess whether phrasal categories were represented in the model, I
recorded the hidden-layer activation states of a fully trained model subject while it
was producing a set of test sentences. The hidden-layer had 80 dimensions which cor-
responded to the features that characterize objects in LDA. In terms of sentence accuracy,
the model subject tested 100% correct on all sentences in this set, thus no potential mis-
classiVcation in the LDA could be attributed to production errors. The LDA training set
consisted of 1.000 lexical items, the word classes and their distribution are shown in
Table 5.7.16 Then, 500 novel activation vectors were classiVed using the obtained lin-

AUX BEING BY DET ED ING NOUN PAR PER SS TO VERB WITH
62 8 15 262 21 46 262 15 116 34 26 116 17

Table 5.7: LDA training classes and their frequencies.

ear discriminants. The overall LDA training accuracy was 93.3% correct classiVcation,
the testing accuracy 90.8% which is both signiVcantly above chance: when the training
set was used with randomized class tags the classiVcation accuracy dropped to 17.1%.
Within verb phrases, however, accuracy reached only 69.1% and all miscategorized con-
stituents were classiVed within the group of word classes which occur in verb phrases.
In addition, all of the total misclassiVcation of test items involved VP constituents. This
indicates that there was higher coherence within the group of word classes which form
verb phrases than outside. It is therefore warranted to infer that the model has de-
veloped representations of verb phrases (narrowly deVned, as consisting of verb stems,
inWectional morphemes, auxiliaries and participle constructions). VP coherence can be
visualized by plotting the test data in terms of the Vrst two linear discriminants (see
Figure 5.5). VP constituents all cluster around the lower left corner. The signiVcance of
this clustering should not be overstated, though, because high VP coherence arguably
does not reWect the model’s extraction of functional dependencies among verb phrase
elements. Rather, coherence within verb phrases most likely stems from the fact that
elements from diUerent word classes can occupy similar sequential positions inside a
verb phrase as illustrated by these examples:

(4) a. ...the man kick -s a dog...

b. ...the man is kick -ing a dog...

c. ...the man was being kick -par by a dog...

Positional overlap creates higher transitional uncertainty within VP structures than in
other phrases, e.g., noun and prepositional phrases, and might explain the weaker LDA-
separation of these word classes. This becomes apparent when looking at noun phrase

16Increasing the size of the training set to up to 50.000 items had no signiVcant eUect on the prediction
accuracy, and cross-validation showed that this training set was a good predictor.
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Figure 5.5: Linear discriminant analysis plot of VP coherence.

constituents in Figure 5.5. Determiners and nouns are completely LDA-separable and
there is no spatial proximity in the clustering. Determiners are clustered in the bottom
right corner whereas nouns are clustered in the top middle of the graph. Hence the
model has not developed an abstract representation of noun phrases as a larger gram-
matical unit. As a consequence, there can also not be a notion of prepositional phrase
represented at the hidden-layer, because prepositional phrases take noun phrases as
complements. Nonetheless, I took a look at the prepositional phrases which occured in
the training language to see whether the model was sensitive to aspects of their simi-
larity structure. An LDA was performed for 1.000 three-word sequences of the form

(5) a. ...to the man...
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b. ...by the boy...

c. ...with a cat...

There was 100% correct classiVcation of these types of phrases in the LDA. Since all
objects were animate nouns, the separation might be due to diUerences in the activation
states when processing prepositions and not due to speciVc knowledge about individual
nouns in the complements. In order to explore whether the model maintained a con-
cept of preposition despite this separation, I conducted a cluster analysis of the data.
Cluster analysis is an analytic tool (very similar to LDA) to group objects in such a way
that the degree of association between two objects is maximal within groups and min-
imal outside. In the absence of larger phrasal units a concept of preposition should be
visible qualitatively if prepositions are clustered together. They fall into distinct and
spatially separated clusters otherwise. Figure 5.6 shows that the former hypothesis was
conVrmed. Prepositions were grouped into adjacent positions within the same super-
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ordinate cluster. The compactness of clusters and their distinctness from neighboring
clusters provide measures for the robustness of this categorization. All preposition clus-
ters were very compact because the vertical distance between the leaves and their joint
root node was small.17 This indicates that all elements of the preposition clusters were
represented very similar to one another. Although all instances of by were in a distinct
cluster from the instances of with, the two clusters were not very distinct because of
the short distance marked with a star (*). On the other hand, the prepositions to were
not very distinct from the noun cluster (marked **) and therefore associate less tightly

17With the exception of one outlier (WITH3).
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with the other two prepositions. Despite this lack of distinctness, Figure 5.6 suggests
that the model represented the functional similarity of diUerent prepositions by spatial
proximity in hidden-layer space.

It is important to point out, however, that cluster analysis is merely a means of vi-
sualization, not an explanation of a discovered taxonomy. Prepositional phrases in the
input language shared a number of structural similarities which may account for the
proximal clustering of prepositions. All prepositions occurred post-verbal and imme-
diately preceded the clause-Vnal NP. Being function words they were not represented
in the message-lexical system but had to be activated by the sequencing system. Their
rigid sequential position may therefore have facilitated the development of similar in-
ternal representations. On the other hand, there were three participants in prepositional
datives, as opposed to two participants in passives and obliques, and activating the
preposition at the appropriate sentence position was complicated by the double-object
alternation. Both aspects create dissimilarities with the other prepositional phrases and
this may explain why the clustering is unstable with respect to the preposition to. Fi-
nally, prepositional phrases were quite frequent in the training corpus, so the model
could draw on a lot of experience to diUerentiate properties of the constructions in-
volving prepositional phrases. It can be speculated that with more structural variety in
the input there would have been more pressure to evolve representations that reWected
functional similarities among phrasal constituents.

The preceding analysis indicates that the Dual-path model did not developed robust
internal representations of phrasal categories in the sense of traditional theory of syn-
tax. I found some coherence among verb phrase elements, volatile clustering within
prepositional phrases, and perfect separation within noun phrases. Yet, the model ac-
quired a structurally complex target language with relative clauses and substantially
generated beyond its immediate linguistic experience. What this suggests, if anything,
is that the representation of phrasal categories is not required to successfully transduce
between meaning representations and grammatical sentence forms. When linguists de-
scribe syntactic categories such as phrases in their favorite representational medium,
such as trees or labelled bracket notation, they make no claim about the psychological
reality of these particular representations. According to JackendoU (2002), however,
by putting NPs into a syntactic category it is claimed “that words group hierarchically
into larger constituents that also belong to syntactic categories” and that this grouping
“must be reWected somehow in neural instantiation” (p. 24). The “linguistic state-space”
of the brain must encode “signiVcant groupings of dimensions that can in functional
terms be referred to as [...] syntax” (p. 25). In the Dual-path model I did not detect such
groupings (e.g, for noun phrases). This suggests that the syntactic categories of theoret-
ical linguistics may not map one-to-one onto the syntactic representations the human
language processor develops in learning. It is conceivable that the functional roles lin-
guists attribute to syntactic categories have no causal correlates in the architecture and
mechanisms of human language processing.
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5.2.5 Argument structure

It is a central question of contemporary linguistic theory and psycholinguistic modelling
how the properties of verbs, sentence forms and sentence meanings interact. Generally,
verbs are regarded as prominent bearers of semantic information because they specify
the type of event described by a sentence and project the event participants. On an inWu-
ential account in linguistic syntax, verbs specify the number and types of arguments—
their argument structure—on the lexical level (Chomsky, 1965). For instance the verb
kill would typically be considered to take two arguments, a subject and a transitive
object. These grammatical categories map onto the semantic categories of agent (Tom)
and patient (dog) in the sentence Tom killed the dog. It has been argued that the
correspondence of form and meaning is encoded by linking-rules which are associated
with the verb (Pinker, 1989). As Bencini and Goldberg (2000) pointed out, however, this
suggestion is problematic in at least two ways. First, verbs can occur in a multitude of
diUerent argument structure frames. For example, the prototypically intransitive verb
run can Vgure in numerous other conVgurations:

(6) a. Tom ran. (intransitive action)
b. Tom ran the show. (transitive action)
c. Tom ran with the dog. (oblique action)
d. Tom ran the car into the lake. (caused motion)
e. Tom ran into Jerry. (experiencer-theme)

This assortment of construction frames for the verb run is diXcult to handle for lexical-
ist approaches to argument structure. A diUerent verb sense would have to be posited
to account for each sentence meaning.

Secondly, there are systematic variations in meaning associated with diUerent argu-
ment structure frames:18

(7) a. I brought a glass of water to Pat. (prepositional)
b. I brought Pat a glass of water. (ditransitive)

(8) a. I brought a glass of water to the table. (prepositional)
b. *I brought the table a glass of water. (ditransitive)

Prima facie, the dative alternation (7) involves only a small change in sentence meaning.
Yet, while the prepositional dative (8-a) admits of inanimate goals, the ditransitive (8-b)
rarely does. Generally, there are more restrictions on the goal/recipient role of the
ditransitive construction than the prepositional dative construction. To capture these
systematic diUerences lexicalist approaches would again have to stipulate a separate
verb sense for each argument structure frame.

An alternative strategy to explain argument structure has been taken by Goldberg
(1995, 2006). On her account, meaning is directly assigned to abstract ‘argument struc-
ture constructions’ which are conceived of as linguistic primitives on a par with lexical

18This example is due to Partee (1965), quoted from Bencini and Goldberg (2000), p. 641.
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and phrasal categories. This approach still allows verb meaning to contribute to sentence
meaning. In many cases, when a prototypically suitable verb occurs in some argument
structure construction, sentence meaning is derived mainly from verb meaning (e.g., the
verb give in the ditransitive ‘transfer construction’) because constructional meaning
does not add a novel semantic aspect. Transfer is already implied by the particular verb
give. In other cases the argument structure construction can contribute semantic facets
to sentence meaning that are not obviously induced by verb meaning alone. For example
the intransitive verb run does not signal caused motion in isolation. When occurring in
the argument structure construction of sentence (6-d) above, however, caused motion is
implied. It is the abstract construction frame of X causing Y to move to Zwhich conveys
this aspect of meaning. The verb run only designates the speciVc manner in which mo-
tion is caused. In this way, verb meaning and constructional meaning can interact and
both contribute varying shares to overall sentence meaning. This explanatory strategy
towards argument structure has been called the constructionist approach.

By themselves lexicalist and constructionist approaches are theoretically neutral
with respect to the question whether systematic correlations between meaning and form
are learnable or innate. Typically, though, constructionists endorse the view that such
correlations can be acquired on the basis of child-directed speech. But construction-
ists diUer regarding the course of development and the nature of acquisition strategies.
While Goldberg and Sethuraman (2004) and Goldberg (2006) focussed on the early
use of abstract categorization principles to acquire argument structure generalizations,
Brooks and Tomasello (1999) and Tomasello (2003) emphasized that children’s construc-
tions are initially based on particular verbs and only expand into fully abstract argument
structure patterns gradually and at a fairly late stage in syntactic development.

Although construction grammar approaches to argument structure have received
considerable interest in descriptive linguistics, less attention has been paid to the psy-
cholinguistic processes that subserve the acquisition of argument structure and the cog-
nitive representations thereof. In this section I will utilize the Dual-path model to shed
some light on these issues. By analyzing the model’s internal representations I will try
to address the following questions:

(i) Does the model represent argument structure at all?

(ii) If so, how much of it is due to architectural constraints and message input and
how much is learned?

(iii) Are both argument structure constructions and verb-specific statistical properties
contributing to argument structure representations?

(iv) If (iii), what is the proportion each factor contributes?

As in the previous section, the activation states of the hidden-layer in a fully trained
model subject (epoch 100.000) were recorded during the production of a set of novel
single-clause utterances. These vectors were tagged with the corresponding word cate-
gory labels. Nouns were distinguished by grammatical role and construction type into
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intransitive subjects (ITS), active transitive subjects (ATS), oblique objects (OBO), and so
forth. A set of 1.000 of these sentence constituents was classiVed by a linear discrim-
inant analysis. Then 200 novel constituents not used in LDA-training were classiVed
in terms of the obtained discriminants. Figure 5.7 shows the LDA-clustering for these
constituents in terms of the Vrst two discriminants. It is apparent that all sentence sub-
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Figure 5.7: LDA of nouns distinguished by grammatical category and construction type.

Cluster of subjects

Cluster of objects

jects cluster in the lower left corner of the plot whereas the diUerent types of objects
spread over the lower right corner. The overall accuracy of the LDA in distinguishing
grammatical noun class was 90.8%. SpeciVcally, the LDA reliably distinguished subjects
from objects but also subjects by construction and objects by construction (see Table
5.8 on page 148 for details). The subject- and object-clusters of Figure 5.7 are shown in
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close-up in Figures 5.8 and 5.9, respectively.
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Figure 5.8: LDA zoom into subject-noun cluster of Figure 5.7 (page 145).

With the exception of inanimate dative themes, all nouns in the artiVcial language
could occur in all argument slots across constructions. Therefore knowledge which the
model maintained about the LDA-separable noun categories could not be noun-speciVc.
In addition, because the model tested near 100% sentence accuracy on the language frag-
ment used to obtain the hidden-layer activation states, the model correctly associated
verb class with the appropriate argument types in each test sentence. Hence, the clus-
tering in Figure 5.7was not tainted by systematic errors in verb-argument selection. For
these reasons it seems warranted to conclude that the model represented the argument
structure of constructions at the hidden-layer.

The mere fact, however, that grammatical noun classes were LDA-separable in hid-
den-layer space at an adult stage gave no indication whether these representations were
learned and to what extent they were constrained by the message input. To clarify
these issues, the same LDA was performed for three further model conditions (see Ta-
ble 5.8, page 148). In the randomized labels condition the model received no training
or message input, and the constituent labels were randomly assigned to the hidden-
layer vectors recorded during production of the test set. The classiVcation score was
0% for all noun classes. Against this chance baseline, the LDA accuracy reached a total
of 48.3% when the labels were assigned correctly in the otherwise identical untrained
+ no message condition. Thus, prior to training and without semantic input, the Du-
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Figure 5.9: LDA zoom into object-noun cluster of Figure 5.7 (page 145).

al-path model displayed an architectural propensity towards categorizing nouns into
grammatical classes.19 When the event semantics component of the sentence message
was present while recording the activation states in production prior to training, the
LDA classiVcation reached an overall accuracy of 84.3%. In particular, this message
component helped the hidden-layer to identify sentence subjects (compare columns
2–3, 6, 8–9 and 13 in the untrained + no message with the untrained + message con-
dition). With the usual model training, the LDA score went up to the 90.8% accuracy
reported earlier in this section. This relatively small increase in LDA accuracy when
the model received training was largely due to improved classiVcation of object types
compared with the untrained + message condition. Consequently, the argument struc-
ture representations of the model predominantly resulted from the message input and
to a lesser extent from learning. The LDA plots for the diUerent conditions of Table
5.8 (which are not shown here) revealed that the model completely re-organized the
hidden-layer representational topology during learning, but grammatical noun classes
were already reliably separable on the basis of constructional meaning in the event se-
mantics. The contribution of model training to argument structure representations was
most distinctly noticeable in the LDA-separation of object types.20

19I owe this observation to discussing LDA for neural networks with Morten Christiansen.
20Theories of argument structure are mainly concerned with object types because every English sen-

tence requires a subject.
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Noun grammatical classesa

Condition ATO ATS DDS DPO DSO ITS OBO
Randomized Labels 0% 0% 0% 0% 0% 0% 0%
Untrained + No Message 15.8% 0% 52.6% 42.1% 94.7% 61.9% 95%
Untrained + Message 57.8% 100% 57.8% 42.1% 94.7% 95.2% 100%
Trained + Message 84.2% 73.7% 63.2% 100% 100% 100% 100%
Condition OBS PDS PPO PSO PTO PTS Total
Randomized Labels 0% 0% 0% 0% 0% 0% 0%
Untrained + No Message 0% 0% 65.4% 100% 85.7% 0% 48.3%
Untrained + Message 100% 100% 76.9% 80.8% 92.9% 100% 84.3%
Trained + Message 100% 88.5% 76.9% 100% 100% 100% 90.8%

Table 5.8: Detailed LDA statistics for the classiVcation of novel constituents into noun
categories by grammatical and construction type.

aATO = active transitive object, ATS = active transitive subject, DDS = double-object dative subject,
DPO = double-object dative primary object, DSO = double-object dative secondary object, ITS = intran-
sitive subject, OBO = oblique object, OBS = oblique subject, PDS = prepositional dative subject, PPO =
prepositional dative primary object, PSO = prepositional dative secondary object, PTS = passive transitive
subject, PTO = passive transitive object.

What this analysis suggests is that a structured representation of constructional
meaning—such as the event semantics message component in the Dual-path model—
is already a very powerful predictor of grammatical relations within clauses. Human
language learners face the task of constructing such a sentence message from visual and
contextual information and world knowledge. This task itself is not addressed by the
Dual-path production model. Yet, what the model’s behavior indicates is that linking-
rules between meaning and form may not have to be posited as separate explananda
(or innate principles, for that matter) in the acquisition of argument structure gener-
alizations. In the Dual-path model, the sentence message enforces the development of
grammatical noun classes without the need of mediating linking principles.21 Hence,
the model suggests that syntactic-semantic mappings between argument structure and
event structure could prove to be a by-product of meaning-to-form transduction in child
language development.

It may be objected to the preceding analysis that the model’s hidden-layer does not
represent genuine grammatical categories at all but merely reWections of the semantic
content of its message input. In light of the strong event semantics inWuence on LDA
performance this is a natural objection. There are three reasons why I consider it ap-
propriate to refer to the clustering in Figure 5.7 (also Figures 5.8 and 5.9) as grammatical

21Alternatively, it could be argued that linking-rules are innate, language-unspeciVc constraints in the
model since generic semantic input and architectural propensities of the model create argument structure
representations through domain-general learning.
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categories. First, the mapping between participant features in the event semantics (XX,
YY and ZZ) and object types in the language was one-many, i.e., the same feature could
map to diUerent object types. For example, the semantic feature ZZ could map to oblique
objects and indirect objects alike. Similarly, the feature YY could map to dative primary
objects and transitive objects. Hence, the intended object type within a sentence was
not signalled to the hidden-layer by individual role features in the event semantics.
Nonetheless, the LDA distinguished both pairs of object (OBO versus PSO and DPO ver-
sus ATO) perfectly in the trained model condition (table 5.8). Secondly, the mapping
between semantic features in the message and subjects and objects, respectively, was
also one-many. For instance, the feature YY could map to intransitive subjects (ITS)
and dative objects (DPO and PSO) which were reliably separable by LDA at the hidden-
layer. And third, the same feature value (agent, patient, recipient, etc.) could map to
diUerent noun grammatical classes. In the active/passive alternation the agent of the
action could be the subject or direct object. Since the event features in the message
cut across grammatical categories in multiple ways, the representational taxonomy at
the hidden-layer did not reWect a one-one correspondence between semantic values
and noun classes. Instead these representations were induced by the speciVc pattern of
concurrent activation of features which jointly encoded the meaning of a construction.
It was the message structure as a whole, rather than isolated features in the message,
which engendered the class-separable representations displayed in Figure 5.7 (and Table
5.8). Despite being strongly inWuenced by the event semantics, it is therefore more ad-
equate to view them as representations of grammatical categories rather than semantic
projections.

To validate this point, I conducted an experiment which was designed to show that
the hidden-layer representations were sensitive to the statistical argument require-
ments of individual verbs. The idea behind this was to investigate whether the repre-
sentations of diUerent objects could be perturbed by purely structural properties of the
main verb in the intended sentence for a given message. For two utterances expressing
the same construction type, the event semantics component of the message was kept
constant while the verb class was varied. If during sentence production the hidden-
layer representations at the object position immediately succeeding the verb remained
constant across the two sentences, these representations were entirely determined by
the message input and hence semantic projections (semantic-image hypothesis). If, on
the other hand, these representations diUered signiVcantly across conditions they should
rather be considered syntactic in nature because this change must be due solely to the
structural properties of the verb (argument-structure hypothesis).

A set of test sentences was generated in which transitive verbs were placed into
prepositional dative frames, and dative verbs were placed into transitive frames, e.g.,

(9) a. *the man is teach -ing a ball to a boy .

b. *a dog was give -ing a mother .
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In training, the model experienced the verb teach only in transitive frames and the
verb give only in dative frames. Both verb classes were disjoint in the input language.
It was therefore hypothesized that the model developed distinct expectations about the
types of objects that immediately follow these verbs in a sentence. A standardly trained
model was tested on a set of 100 sentences of type (9-a) and (9-b), respectively, and
the activation states of the hidden-layer were recorded during production at the Vrst
post-verbal object position (ball and mother in the above examples). These vectors
were then compared with activation states (at the same sentence position) that resulted
from testing the model on a set of 100 ‘non-pathological’, single-clause, active transitive
and prepositional dative utterances encountered by the model in training. I labelled the
activation states as ATO for active transitive objects, as PDO for prepositional dative
primary objects, and as T\D for post-verbal objects that could either be classiVed by
the model as ATOs or PDOs in sentences such as (9-a) and (9-b). A linear discriminant
analysis was conducted to see whether T\D objects could be separated from ATOs and
PDOs or whether they would cluster inseparably with either one object type. If the LDA
yields the latter outcome this means that the event semantics message component has
overwritten verb class-speciVc structural properties and the semantic-image hypothesis
is conVrmed for the hidden-layer representations. If the LDA yields the former outcome
this would suggest that the argument-structure hypothesis is conVrmed.

Before reporting the results of this simulation, I will Vrst argue that the experiment
is meaningful and sound within the framework of the Dual-path model. The model ar-
chitecture is symbolic in its bindings between roles and concepts in the message-lexical
system. When trained suXciently, it will sequence the action role A at the where-layer
at the correct sentence position and because it has learned the mapping from lexical
meaning to word forms, the model can be expected to produce sentences which have
novel verbs placed in familiar constructions with 100% accuracy. Consequently, possible
diUerences in hidden-layer states at the object position cannot be attributed to produc-
tion errors at the verb position. Secondly, recall that active transitive patients and prep-
ositional dative themes were encoded by the same thematic role Y. After sequencing the
action role A, which produces a verb form, the model has to sequence the Y role next,
no matter whether it is uttering a prepositional dative construction with a transitive or
a dative verb.22 In other words, where-layer sequencing of the relevant initial segment
is identical for all test sentences. Therefore, possible diUerences in hidden-layer states
at the object position can also not be attributed to diUerent semantic aUordances of the
distinct verb classes. Third, the model processes sentences incrementally and each word
output is fed back to the cword-layer which projects into the hidden-layer. Thus, lex-
ical diUerences between two test sentences can potentially inWuence the hidden-layer
despite identical constructional meaning in the event semantics. Fourth, because of the
architecture of the model, verb semantics does not inWuence the hidden-layer at the
post-verbal sentence position. Even though the produced verb is fed back to the model
and activates verb meaning in the cwhat-layer, the cwhere-layer Vlters out the verb-

22Or an active transitive construction with a dative or transitive verb, for that matter.
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specific meaning and merely informs the hidden-layer about the previously sequenced
action role A. Likewise, the cwhere2-layer will recollect only the pre-verbal thematic
role which is the agent role X in all test utterances. Hence, all information that the
hidden-layer possibly receives about verb class is non-semantic and gathered via the
sequencing pathway which is separate from the message-lexical pathway. And Vnally,
in Section 5.2.1 above it was argued that the model learned to distinguish transitive and
dative verb classes at the compress-layer. We can reasonably expect similar represen-
tations having developed at the ccompress-layer which projects into the hidden-layer.
In each test sentence an inWectional morpheme and a determiner occurred between the
verb stem and the post-verbal object noun. However, the verb class information re-
ceived from the ccompress-layer will be retained in the model’s working memory—the
context-layer—over these interspersed constituents. In this way the model can still
utilize verb class information at a later stage in sentence production. To sum up, the
sketched experiment is meaningful because possible eUects of verb argument structure
on hidden-layer object representations are observable in principle, and it is sound be-
cause such eUects cannot be attributed to verb semantics.

I examined ten model subjects at an adult state (epoch 100.000). The linear discrim-
inant analysis for 100 ATO, PDO and T\D items each resulted in 100% separation for all
constituents in both conditions, the ‘dative verbs in transitive frames’ condition and the
‘transitive verbs in dative frames’ condition. The hidden-layer representations of an
exemplary model subject are plotted in Figure 5.10 with respect to the Vrst two discrim-
inants. It can be observed that the Vrst discriminant does not distinguish PDO and T\D
objects but the second discriminant clearly does. There is, however, considerable over-
lap between T\D and ATO objects on this dimension. I investigated how the T\D objects
would be classiVed when all word categories were used as predictors in LDA training.
Averaged across ten models, 91.1% of T\D objects were classiVed as ATO when a dative
verb occurred in a transitive frame (SD 17.3), and 86.1% of T\D objects were classiVed
as PDO when a transitive verb occurred in a prepositional dative frame (SD 12.6). Thus,
in both conditions the majority of T\D objects were LDA-categorized according to con-
struction type, not verb class. This shows that constructional meaning imposed stronger
constraints on argument-structure representations than verb category. Yet, to some ex-
tent this may be an artefact of the artiVcial language used to train the model in which
inWectional morphemes were treated as separate constituents, which required additional
post-verbal processing steps before the object noun was produced. Hence, inWections
weakened the inWuence of verb category by diluting the model’s working memory. If
the learning environment had inWected verb forms in the lexicon, verb category infor-
mation would presumably have a stronger eUect on T\D classiVcation. In any case,
it was more relevant to the current issue that the LDA perfectly separated ATO, PDO
and T\D objects (Figure 5.10). This result vindicates the argument-structure hypothesis
which claimed that the model’s hidden-layer representations of object types are sensi-
tive to purely structural properties of verbs-argument frames. On the other hand, it casts
doubt on the semantic-image hypothesis which claimed that these representations are
merely reWections of semantic information in the event semantics. Placing verbs in non-
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Figure 5.10: LDA plot of object nouns for transitive verbs in prepositional dative frames
(T\D).

matching construction frames altered the expectations of the model for the post-verbal
object type and this made T\D objects completely separable from the object types that
were predicted by constructional meaning. This is a purely syntactic eUect which cannot
be attributed to the model’s event semantics. The altered hidden-layer representations
solely derive from the statistical expectations of the model based on verb-class/object-
type co-occurrence in the training language. Therefore, it is justiVed to assert that the
Dual-path model maintains knowledge about syntactic argument-structure relations.

One of the most important tasks language learners have to accomplish is to distin-
guish verbs and nouns and identify verb-argument structure patterns. In the Dual-path
model this process is driven by the meaning of argument-structure constructions in the
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sense of Goldberg (2006) and by the statistical regularities in verb-argument patterns.
But because the model receives the complete constructional meaning from the onset of
learning (situated comprehension), it is diXcult to make claims about argument struc-
ture development. In fact, even at very early epochs (5.000–20.000), LDA-classiVcation
yielded results very similar to those reported for an adult state in this section. In order to
determine whether argument structure generalizations are acquired on a verb-by-verb
basis or by means of abstract categorization principles, we would have to model the
development of semantic representations as well. It can be speculated that as seman-
tic content becomes more and more structured towards full constructional meaning the
inWuence of the message on the model’s argument structure representations will grad-
ually increase over the inWuence of verb-specific statistical information in the course of
learning.

5.2.6 Clause-level analysis

In the preceding section, I looked at argument structure representations in single-clause
utterances. It was tacitly assumed that representations of complex sentences would be
combinatorial in the structure of simple sentences. It is quite possible, however, that
the model represents the syntax of complex sentences in vastly diUerent ways. In this
section I analyze the representational similarities between diUerent types of clauses and
complex sentences. The aim was to determine the relationship between simple-clause
and relative clause processing and to Vnd out how the model represented structural
properties of complex sentences, such as the subordination of clauses, attachment and
relativization.

Principal components analysis

Ideally, we would like to directly inspect the internal representations of a trained neural
network in order to Vgure out how the model solves a particular computational task.
However, we cannot easily visualize these representations because each unit in the
hidden-layer adds a dimension of information. Apart from this complication there is
no guarantee that hidden-layer dimensions pick out representational dimensions that
are relevant to the model’s solution of a task. In fact, it is the nature of distributed
representations that they cut across such dimensions.

One way of dealing with this dilemma is principal components analysis (PCA). In
essence, PCA is a coordinate transformation of experimental data (i.e., hidden-layer
activation patterns) that (a) identiVes dimensions of largest variance (and hence ex-
planatory value) and (b) can be used to compress and visualize data by reducing its
dimensionality. A data set for PCA consists of m measurement points represented by
n-dimensional vectors. Each vector is normalized (by subtracting the mean), and the
n × n covariance matrix of the normalized data set is computed. The eigenvectors of
this matrix are the principal components, the size of the corresponding eigenvalue de-
termines the rank of the principal components. The ratio of an eigenvalue to the sum



154 Chapter 5. Model analysis

of all eigenvalues yields the percentage of variance accounted for by the corresponding
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Figure 5.11: Size of the eigenvalue of
each principal component.

principal component. Multiplying the
transposed normalized data point with the
transposed principal component yields the
transformed coordinates of this data point.
PCA is a technique similar to LDA, how-
ever PCA is not used for classiVcation and
is not being trained on a set of data points
whose class membership is known to the
experimenter.

To apply PCA, a Dual-path model sub-
ject was trained as usual for 100.000
epochs on 10.000 sentences, 80% of which
were single-clause utterances, 20% of
which contained a relative clause. The
weights of the trained model were frozen
and the model tested on its entire training
set. During testing, the activation vectors
of the hidden-layer were recorded word-
by-word for each sentence in the training set, yielding a data set of roughly 99.700 vec-
tors in 80 variables. A PCA was conducted on this data. Figure 5.11 shows the ordered
size of the eigenvalues of all principal components, Table 5.9 summarizes the cumula-
tive variance explained by the Vrst 16 principal components. Together these components
accounted for 80% of all variance in the described data set.

Principal component C1 C2 C3 C4 C5 C6 C7 C8
Standard deviation 1.13 1.03 0.85 0.76 0.65 0.57 0.56 0.55

Proportion of Variance 0.16 0.13 0.09 0.07 0.05 0.04 0.04 0.04
Cumulative Proportion 0.16 0.29 0.38 0.45 0.50 0.55 0.58 0.62
Principal component C9 C10 C11 C12 C13 C14 C15 C16
Standard deviation 0.51 0.48 0.44 0.42 0.40 0.36 0.36 0.32

Proportion of Variance 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01
Cumulative Proportion 0.66 0.68 0.71 0.73 0.75 0.77 0.78 0.80

Table 5.9: Cumulative proportions of variance explained by the Vrst 16 principal compo-
nents.

Clause type comparison

We would like to know how the model encoded structural properties of complex sen-
tences such as distinct clause types, clause level, attachment and relativization. To probe
these aspects of sentential structure, the model was tested on two novel sentences
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(10) a. the nurse push -s a cat .

b. the nurse push -s a cat that was sleep -ing .

and hidden-layer activation was recorded for both sequences. During processing, both
sentences describe a trajectory through hidden unit space which represents an admis-
sible grammatical construction vis-à-vis the model’s experience. In Figure 5.12 these
trajectories are plotted in the coordinates of the Vrst two principal components. The
clausal overlap between both sentences follows very similar trajectories in terms of
these coordinates. Both noun phrases of the two transitive clauses (the nurse and
a cat) are represented in almost identical regions of hidden-layer space. The main
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Figure 5.12: hidden-layer trajectories of lexically identical single-clause sentence (10-a)
and main clause of complex sentence (10-b).

clause verb form push -s on the other hand is represented diUerently in both sen-
tences. In the complex sentence the verb positions are slightly shifted along the Vrst
principal component compared with the single-clause utterance, yet both sentences de-
scribe qualitatively identical trajectories. This suggests that the model is processing
simple-clause utterances in a similar way as main clauses of right-branching construc-
tions and indicates that the similarity structure of both sentence types is reWected in the
representations the model developed during learning. It does not treat constructions of
distinct clausal complexity as separate entities but rather builds complex structure from
simpler clausal units. The model has acquired a notion of clause and therefore a notion
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of combinatorial syntax.

Some caution should be issued here, though. The purpose of LDA was to separate
word category representations into distinct classes. When plotting results in terms of
linear discriminants, information was lost. This was not problematic because the critical
information was in the quantitative LDA-separation statistics, not in the graphs them-
selves. PCA on the other hand is used here to determine representational similarity
among structural types from data visualization. But how do we know, for instance, that
noun representations in Figure 5.12 are not separated by other principal components?
Plain and simple, unless we inspect all remaining 78 principal components we cannot
rule out this possibility. Since the Vrst two principal components explain more variance
in the data, however, we know with certainty that any noun separation along lower
principal components will be less distinct. Thus we can conclude that the two clause
types in Figure 5.12 are mainly, but perhaps not exclusively, distinguished by the model
in terms of verb form representations. And secondly, we can make PCAmore signiVcant
by looking at the same two principal components in all analyses. If similarities persist
or disappear across conditions this will render individual PCA plots more meaningful
and indirectly inform us about representational diUerences.

To illustrate this point, consider the two sentences

(11) a. the nurse that push -s a cat was sleep -ing .

b. the nurse that a cat push -s was sleep -ing .

which share the same main clause, attachment site and the same lexical material in
the subordinate clause, where (11-a) is subject-relativized and (11-b) object-relativized.
Figure 5.13 shows the hidden space trajectories of the two sentences, again in terms
of the Vrst two principal components. Here we observe virtually no positional diUer-
ence between the two main clauses (the nurse was sleep -ing) on the verb form.
Unlike in Figure 5.12 both main clause trajectories are almost congruent. Hence, the
model represents the diUerence between single-clause utterances and main clauses of
complex sentences in the verb position but does not make such a distinction between
main clauses of constructions with diUerent relative clause types. This suggests that
the main clause representations in center-embedded structures are not inWuenced by
the intervening relative clause material, indicating that the model is organizing com-
plex sentences into autonomous clausal units. The representational diUerence between
subject- and object-relativized clauses, on the other hand, is rather large. Immediately
following the pronoun, both relative clause trajectories diverge into diUerent regions of
hidden unit space. The embedded NPs (a cat) which assume distinct grammatical roles
are spatially separated, and even more so the embedded VPs (push -s). This larger rep-
resentational diUerence on the VP makes sense in terms of argument structure. While
cat is an argument of push inside the relative clause in both sentences, in sentence
(11-a) the nurse from the main clause is the agent of push whereas in (11-b) it is a cat
from the relative clause, and likewise for the patient of push.
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Figure 5.13: Subject- and object-relativized clauses in sentences with identical main
clause, (11-a) and (11-b).

To determine the similarity structure between main and embedded clauses I looked
at complex sentences in which the relative clause was lexically and sequentially iden-
tical to the main clause, and in which the arguments of both verbs were co-referential,
such as

(12) the nurse that push -s a cat push -s a cat .

Figure 5.14 shows the trajectory of sentence (12). The relative clause follows a trajectory
which is qualitatively similar to the main clause but is phase shifted in hidden-layer
space. The trajectory of the relative clause is iterated for the main clause but in a dif-
ferent region. This indicates that the model’s internal representations distinguish clause
level on all clause components, not just the verb phrase. Figures 5.12 and 5.14 jointly
suggest that the model experiences main clauses of complex sentences with a right-
branching relative clause as more similar to single-clause utterances than interrupted
main clauses to lexically identical relative clauses. It also suggests that the attachment
site may have a critical inWuence on the way clauses are represented.

I examined this issue by analysis of the following two sentences:

(13) a. the nurse push -s a cat that was sleep -ing .

b. the nurse that was sleep -ing push -s a cat .
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Figure 5.14: Complex sentence with identical main and subordinate clause.

Both sentences share the same main clause and lexically identical subordinate clauses
but in (13-a) the relative clause is attached to the main clause object while it is attached
to the main clause subject in (13-b). Thus, the sentences diUer in terms of the position,
grammatical role and lexical content of the head noun. The principal components plot
for these sentences is shown in Figure 5.15. In contrast to Figure 5.13, in which main
clause trajectories were congruent, it can be observed that subject- versus object-at-
tachment diUerentiates the representations of the main clause. Both main clauses are
qualitatively similar (imagine a dotted line from nurse to push in the subject-attached
trajectory) with noun phrases placed in roughly the same regions, but there is a con-
siderable spatial diUerence between the main clause verbs. The distinction between
subject- and object-attachment appears to be marked mainly on the verb rather than
the head noun. This observation underlines the central role of the verb in the model’s
syntactic representations. It could be argued that the verb is sequentially preceded by
diUerent lexical material in both sentences, whereas the head nouns are not, and that
this accounts for the verb spatial separation. Notice, however, that in Figure 5.14 both
direct objects are immediately preceded by the same lexical items and there is spatial
separation nonetheless. Both main clauses in Figure 5.15 start in the same region of
hidden-layer space, diverge on the main verb and converge again on the direct object.
This behavior is in line with the Vndings from Section 5.2.2. The qualitative similarity
of main clause trajectories in syntactically distinct structures suggests that clauses are a
basic processing unit for the model. The congruence of paths for the two sentence-initial
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Figure 5.15: Sentences with identical main clause but object- and subject-attached rela-
tive clause (y-axis stretched for enhanced visibility).

noun phrases (the nurse) indicates that the hierarchical structure of the two sentences
was not fully planned at the onset of processing. DiUerences in representations only
begin to unfold incrementally where and when they become relevant in structural se-
lection. Figure 5.15 also shows that the two lexically identical relative clauses that was
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sleep -ing describe very similar paths. Surprisingly, however, they are located far
apart from each other in hidden unit space. This seems to indicate that the model might
experience and represent center-embedded and right-branching relative clauses in dif-
ferent ways, as distinct clausal units. It is more plausible, however, that the dislocation
is due to the fact that these clauses modify diUerent head nouns at diUerent sentence
positions.

To summarize the results of PCA for the syntactic representations at the model’s hid-
den-layer, I propose an ordering of similarity between pairs of clause types in Table 5.10.
This ordering should be taken with a grain of salt, however, because of the methodologi-

Pairs of clause types
simple ∼ uninterrupted main

uninterrupted main ∼ interrupted main
interrupted main ∼ relative

subject-attached relative ∼ object-attached relative
subject-extracted relative ∼ object-extracted relative?

D
is
si
m
ila
ri
ty

Table 5.10: Pairwise similarity ordering by clause type.

cal limitations of PCA and because it is based on the appearance of qualitative similarity
of trajectories and their spatial separation. Whether these are the relevant parameters
to measure the model’s perception of similarity and dissimilarity between clause types,
and if so, how they should be weighted, are very diUerent issues. What further obviates
any hard conclusions to be drawn from this analysis is the question whether similarity
between representations points to facilitation or interference between similar (dissimi-
lar) clause types in learning and processing. For instance, the representational similarity
between single-clause utterances and main clauses of right-branching structures might
indicate that the former structures, which are very frequent in the input, facilitate learn-
ing of the latter. On the other hand, it might indicate that since their representations
are spatially close in hidden-layer space, the model has more diXculty distinguishing
these two structures than others. This might create competition for structural selection
and therefore sources of confusion in syntactic development. Ultimately, these issues
can only be resolved through behavioral experiments and error analysis. I now turn to
investigating the generalization capabilities of the Dual-path model.



Chapter 6

Generalization

In Chapter 4, the model generalized to a combinatorially complete language
with one embedding. In this chapter, I investigate the model’s generalization
capacities in more detail. I show that the model transfers lexical knowledge
from one clause to another, that it generalizes verb argument structure across
embeddings, that it behaves strongly systematic, and that it is recursively pro-
ductive on a clausal level. I will also argue that the model’s behavior on these
tasks resembles human sentence processing and explain why this is the case.

6.1 Introduction

With increased structural complexity in a language, the number of grammatical con-
structions grows exponentially. By means of relativization, for instance, the simple-
clause transitive construction alone can be combined into four distinct relative clause
constructions (center-embedded and right-branching, both subject- and object-relativ-
ized). For a data-driven learning system this implies that the proportion of grammatical
forms to which it is exposed decreases with more structural complexity. As a conse-
quence, the demands on the learner’s generalization mechanisms increase if the gram-
mar of the target language is to be learned to satisfaction from sparse input. In this
chapter I will argue that strong generalization can be obtained in the Dual-path model
because novel structures can be built from semantic similarities shared with experienced
structures.

6.2 Knowledge transfer

In the artiVcial language I have been studying so far, multi-clause utterances were com-
posed of single-clause constructions basic to human experience. In order for the Dual-
path model to be able to generalize syntactic knowledge to novel complex constructions
it is a prerequisite that knowledge transfers from one clause to another. The experiment
I describe in this section is designed to test the transparency of the model’s syntactic

161



162 Chapter 6. Generalization

representations. There are two hypotheses to be evaluated here. First, the model might
develop clause-specific representations, depending on whether a basic construction oc-
curs in a simple sentence, in the main clause, or in an embedded clause of a complex
sentence. If syntactic representations are separable in this way, syntactic knowledge will
not transfer between clauses and it is unlikely that the model generalizes substantially
beyond linguistic experience. Alternatively, the model might develop shared represen-
tations for basic constructions, irrespective of the locus of occurrence in the training
sentences. In this case, we have reason to expect that the model might be capable of
structural generalization, although it would be a further open question whether it can
access and utilize these representations in processing novel constructions. I tested these
hypotheses for verb-argument structure information in transitive frames in a simple
experiment. I used the language described in Chapter 4 which generated utterances
with at most one relative clause and the model received topic-focus message input in
training. In contrast to Chapter 4, however, I Vxed the order of events in the event
semantics-layer so that semantic features of embedded clauses would not be trained in
simple-clause processing. This was to exclude possible transfer resulting from feature
overlap in the message input. The model was trained on 5.000 simple-clause sentences
interleaved with 5.000 relative-clause sentences. The verb hit occurred only in simple-
clause active and passive transitive sentences, and in no complex utterance. In addition,
regardless of tense or aspect marking, the verb stem hit was always immediately fol-
lowed by the nonce word guu, as in the sentence:

(1) the man was hit guu -ing the dog .

The model develops representations of abstract syntactic frames in the sequencing sys-
tem and the experiment aimed at testing the transparency of these representations. The
nonce word guu was not represented in the message-lexical system, so that the model
could not rely on semantic information to produce it. In this way, it had to learn to se-
quence guu in the hit verb phrase (but not in other verb phrases) without drawing on
semantic cues. The model was then periodically tested on 200 multi-clause utterances
which contained a transitive relative clause with hit as the subordinate verb, e.g.,

(2) the nurse that a teacher was being hit -par by walk -s .

In the test utterances the word guu did not occur after the verb stem hit. The pro-
duction accuracy for these utterances was compared with a control condition in which
guu did not appear in any training sentence. The idea behind this design was that the
model would learn in its sequencing system that the word guu was an integral part of
transitive frames whenever the main verb was hit. If there was syntactic transfer from
simple clauses to embeddings in complex utterances we should observe disruption in
the processing of test utterances (which did not contain guu). If, on the other hand, the
model learned distinct representations for simple and embedded transitive constructions
we should observe no diUerence in production accuracy between both input conditions.

Results from this experiment are shown in Figure 6.1. The graph reveals two inter-
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Figure 6.1: Transfer of verb argument structure between clauses as witnessed by the
disruption of production in nonce word training.

esting properties of the Dual-path model. In the control condition (‘normal training’),
all test utterances are produced correctly at the end of training despite the fact that the
model never experienced the verb hit in an embedded clause during learning. This
behavior will be explained in Section 6.5 on lexical generalization. Secondly, in the
‘nonce word training’ condition, the model had considerable diXculty producing the
test utterances and did not reach above 20% accuracy. The nonce word guu in single-
clause transitive frames is severely disrupting the model’s embedded clause production
when hit is the subordinate verb. This indicates that the model developed syntactic
representations for basic constructions which are not speciVc to the occurrence of these
constructions in diUerent clausal positions within hierarchically distinct sentences. The
model’s representations are transparent in that knowledge can transfer between clauses.
We can therefore expect that learning simple clause structures supports the processing
of more complex structures. Hence the Dual-path model satisVes an important precon-
dition for all kinds of syntactic generalization that I will investigate later in this chapter.

6.3 Extension of language and semantics

For the following series of generalization experiments it was required to extend the
artiVcial language to deeper embeddings. I will brieWy describe such a language and
the modiVcations of the message input in this section. As in Chapter 4, the artiVcial
language consisted of basic constructions from which more complex constructions were
assembled through relativization. These constructions are listed with examples in Table
6.1. By attaching relative clauses to noun phrases in any permissible way (i.e., respecting
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Structure Example
Intransitive the cat was sleep -ing .

Transitive the woman kick -ed the teacher .

Transitive passive the teacher is kick -ed by the woman .

Prepositional dative a girl throw -s the stick to the cat .

Oblique the nurse is play -ing with a dog .

Table 6.1: Basic construction types in the language from which more complex sentences
were built.

animacy constraints), a combinatorially complete language with one subordinate clause
was formed. Three examples of such sentences are given in Table 6.2. Relative clause

Example Main clause Subordinate clause
(3) the mother that is walk -ing was show -ing the cherry to the boy .

Dative Intransitive
(4) a boy kick -ed the man that was push -par by a dog .

Transitive Passive
(5) the cat that a father throw -ed a ball to is jump -ing with a girl .

Table 6.2: Sentences with one relative clause from the artiVcial language.

constructions could be center-embedded (examples (3) & (5)) or right-branching (exam-
ple (4)) and could have subjects relativized (examples (3) & (4)) or objects (example (5)).
Noun phrases in these structures could then be further relativized inside the relative
clause to form sentences with two embeddings. Again the complete language with two
such embeddings was admissible. Sentences with two embeddings could then be rela-
tivized once more to form all possible sentences with triple embeddings from the basic
constructions of Table 6.1. These sentences with multiple, nested embeddings rapidly
become very diXcult to process for humans, in particular if noun-verb dependencies
are not semantically constrained. Table 6.3 depicts two examples of such sentences, one
with double and one with triple embeddings. More levels of embedding give rise to a

Examples of double and triple embedded sentences.

(6) a dog was push -ing a mother that a woman that the brother is show

-ing a milk to was being kick -par by .

(7) a father that the nurse that a girl that is being hit -par by a dog

present -ed the orange to kick -ed is being carry -par by a woman .

Table 6.3: Sample sentences with multiple nested relative clauses from the artiVcial
language.
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combinatorial explosion of construction types and an exponential increase of sentence
tokens in the language. The total number of construction types in this language was
6571. With a small lexicon of only 48 words, particles and inWectional morphemes, it
was possible to create roughly 2.49× 1018 diUerent sentence tokens from this grammar.

Accommodating the model’s message representation to this more complex language
was straightforward. As in the case of simple-clause utterances, concepts were dynam-
ically bound to thematic roles in the what-where-system. The thematic structure of
each clause was represented by event features in the event semantics-layer just as in
the single-clause case. DiUerent clauses were then linked in the event semantics by topic
and focus features as described in the discussion of the topic-focus message in Section
4.3.7 of Chapter 4. Multi-clause utterances, however, required multiple topics and foci
to be represented in the message. For instance, sentence (6) in Table 6.3 required two
topic features, one for mother in the main clause, and one for woman in the Vrst rela-
tive clause. Likewise, the meaning representation of (6) required two focus features in
order to inform the model about the intended gap sites. As before, all event participants
gapped in the target sentence were present in the message-lexical system in the form of
a synaptic binding between corresponding thematic role and concept, and represented
by an active feature in the event semantics. Thus, the message for utterances with three
or more clauses was a direct extension of the message for utterances with one relative
clause.

6.4 Structural generalization

It is beyond controversy that natural language syntax is combinatorial in the minimal
sense that simple-clause constructions can be combined into multi-clause utterances. A
construction such as sentence (6) of Table 6.3 is grammatical by virtue of the grammati-
cality of its component clauses and the grammaticality of the relativization construction.
In this sentence a relative clause modiVes the direct object of an active transitive clause.
This relative clause is a passive transitive construction in which the subject is modiVed
by another object-relativized prepositional dative clause. Although it is quite unlikely
that the reader has ever encountered the syntactic structure of sentence (6), it is possible
to process this sentence with little eUort. Thus, humans have the ability to combine
single-clause structures they already master into novel multi-clause constructions by
means of relativization. In this way, a larger repertoire of complex constructions can
be assembled from simpler units through a single procedure in production and compre-
hension.1 This procedure provides a form of structural generalization because it allows
the human language system to process combinations of simpler units that have not been
encountered in the ambient language. It is an important question whether this capacity
can be learned through linguistic experience or whether it should be assumed to be part
of our biological endowment for language. Moreover, if it can be learned, it remains to

1Whether relativization extends indeVnitely is of course an issue of much controversy, see Section 6.7
below.
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be determined whether learning is accomplished by language-specific or domain-gener-
al mechanisms.

The extended language and message from the previous section enabled me to in-
vestigate these questions in the framework of the Dual-path model. In Chapter 4 the
model learned a combinatorially complete language with one embedding. In these ex-
periments, input was sparse since the model encountered only a minute fraction of all
possible sentence tokens that the artiVcial grammar generated. The model developed ab-
stract construction frames and the dynamic bindings in thewhat-where system helped
it to correctly produce the entire target language in testing. The input was saturated,
however, in the sense that the model encountered sentence tokens of most of the con-
struction types in the language. In this section I describe an experiment in which the
model was not exposed to all construction types of the target language, in particular
not all constructions with three embeddings. The model was then tested on sentence
tokens representing novel constructions, and on sentence tokens instantiating construc-
tions that were encountered during learning. If the model is fully capable of structural
generalization we should observe similar production accuracy on both test sets and this
accuracy should be high. If the model is not capable of structural generalization we
should observe low production accuracy on novel constructions. If the model is capable
of some structural generalization we should observe moderate production accuracy on
novel constructions. The diUerence between the accuracy for novel and trained con-
structions then provides a measure of the degree of structural generalization.

I trained the Dual-path model on 10.000 sentence tokens from the language de-
scribed above. 40% of these tokens were simple sentences generated from the 5 basic
construction types of Table 6.1. 30% of the sentences in training contained one relative
clause, 20% contained two nested relative clauses, and 10% of the training items con-
tained three nested relative clauses. All utterances were randomly selected. Figure 6.2
summarizes the distribution and shows the number of diUerent construction types in
the language by the number of embeddings. This distribution does not match realistic
input to a human learner where sentences with two or even three embeddings hardly
ever occur. Rather, the experiment was intended as a proof of concept that neural net-
works can develop syntactic representations for a structurally complex language and
generalize this knowledge to novel constructions not attested in the input.

The Vrst question of interest was whether the Dual-path model could at all learn
the complex language to a satisfactory degree based on this distribution. Three factors
could be expected to prevent this. The enormous expressivity of the input language may
obstruct learning abstract syntactic frames altogether because more distinct sentence to-
kens entail less regularity in the language and hence weakened transitional probabilities
between word categories. Secondly, more clause disruption through relativization, may
impede learning to sequence thematic roles in the appropriate order in the message-lex-
ical system. And third, more clauses entail that the model has to attend to vastly more
event features in its message input. This may exhaust the model’s capacity to detect
activation diUerences between features, and to sequence clauses in the correct order.

Surprisingly, these potentially detrimental factors did not prevent the model from
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Figure 6.2: Training environment in the structural generalization task.

learning the target language to a high degree of accuracy. Not surprisingly, however,
the amount of training required was considerably larger than in previous simulations.
The model’s learning curve for the language with three embeddings is shown in Figure
6.3 by number of embeddings. Simple clause structures were learned Vrst, followed by
sentences with one relative clause. Next are sentences with two relative clauses and
sentences with three relative clauses developed slowest.2 The language fragment con-
sisting of sentences with zero, one or two nested embeddings was learned to perfection
(>95%). Sentences with three nested embeddings were learned with roughly 65% ac-
curacy.3 This is no drawback because such sentences are very diXcult to process for
humans as well, who experience processing limits at two embeddings already (Miller
and Isard, 1964).

To determine the amount of structural generalization that may have occurred at
epoch 200.000, it is necessary to analyze the composition of the set of tested utterances
in relation to the training set. The test set contained 200 utterances with three nested
embeddings. On average, 197 of these items were instantiations of diUerent construc-
tion types.4 82.6% of these unique constructions were novel constructions, i.e., the model
had not seen sentence tokens representing these construction types in training. Thus,
the model did not encounter the majority of tested construction types during learning.
In conjunction with the overall accuracy of 65%, this indicates that a substantial amount
of structural generalization has occurred. Table 6.4 depicts the model’s performance for

2Again, all results were averaged over ten model subjects which received diUerent randomized train-
ing set.

3As before, accuracy was measured in terms of a perfect word-to-word match between target utter-
ance and actual model output.

4Two constructions were classiVed as diUerent when they had a diUerent clausal proVle and/or a
diUerent relativization proVle; diUerences in tense/aspect were ignored.
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sentence tokens, and for novel and trained construction types. A repeated-measures

Tested structure Number Accuracy
Total sentences with three embeddings 200 65.11%

Total unique constructions 197 65.19%
Unique constructions in training set 35 68.46%

Unique constructions not in training set 162 65.06%

Table 6.4: Performance on the test items in detail; Vgures averaged over model subjects.

ANOVA was conducted which did not detect a diUerence in mean accuracy (F(3,36) =
0.47, p = 0.70) on these diUerent sets of sentences. In particular, there was no sta-
tistically signiVcant diUerence in whether the model had experienced a construction
in training or not (rows 3 and 4, F(1,18) = 0.88, p = 0.36). Consequently, the model
performed as well on novel constructions with three embeddings as on trained such
constructions. Because the level of accuracy was high, these results suggest that the
model is capable of productively combining basic structures into novel multi-clause
constructions. A concrete example of a construction that the model had not experienced
in learning but produced correctly is instantiated by the sentence:

(8) a woman that a man that the girl that is give -ing a beer to a dog

jump -s with hit -s is carry -par by the mother .

The combination of a transitive passive main clause with subject-relativized prepo-
sitional dative, oblique and intransitive embeddings was novel to the model, but it
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managed to correctly produce this combination of clauses based on its experience of
simpler structures in diUerent relative clause constructions. This accomplishment is
quite remarkable given that sentence (8), which contains three center-embedded rela-
tive clauses, is particularly diXcult to process for humans.

In previous experiments, the Dual-path model received sparse input in terms of
sentence tokens, but it was exposed to most construction types in the target language
and generalized syntactic knowledge to virtually all sentence tokens of these types. In
the condition described above, the model received sparse input in terms of admissible
construction types. I argued that the model is capable of generalizing familiar simple
clause units to novel combinations in construction types not experienced during learn-
ing. Such structural generalization is possible because the model learns to correctly
produce single-clause constructions and it abstracts a relativization principle based on
simpler relative clause structures. This syntactic knowledge is then used to correctly
produce novel relative clause constructions such as (8), which were not attested in the
linguistic environment. The model achieved this feat by a data-driven, domain-general
procedure. Hence, this result suggests that the ability for structural productivity in hu-
mans might be learnable from positive input, and that no language-specific biological
mechanism need to be posited to explain this aspect of human linguistic behavior.

6.5 Lexical generalization

If there is one sense in which natural language is potentially inVnite then in terms of
its lexical openness. Novel words and expressions can be introduced into a language to
coin idioms, or to denote novel entities, actions or events, and this happens every day.
Humans have the ability to rapidly incorporate these words into their active knowledge
of language. Once I have informed you, for instance, that a klikusch is a small, furry
herbivore living in the woods you are able to understand a whole range of facts about
this creature. In language acquisition, children learn the meaning of words in speciVc
contexts and are subsequently able to use these words in novel contexts. Children may
learn, e.g., that cats sleep most of the time, that cats play in the garden, and that cats
sometimes chase dogs. Grasping the concept of a cat enables children to also understand
that cats can be played with and that dogs sometimes chase cats. Familiar concepts can
be comprehended in novel semantic contexts and familiar words can be used in novel
syntactic contexts. This coherence of human thought and language has been labelled
systematicity. Systematicity has been identiVed as a prime explanandum for models of
language processing in general, and as a fundamental problem for connectionist models
in particular (Fodor and Pylyshyn, 1988). Claims about systematicity are often phrased
in terms of vague conditionals which are diXcult to translate into meaningful empirical
experiments. When framed in terms of learning, however, systematicity can be expli-
cated more precisely as a form of lexical generalization (Hadley, 1994, 2004). According
to Hadley a language processor displays

(i) weak systematicity if after learning it can process novel combinations of familiar
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words in familiar syntactic positions,

(ii) strong systematicity if (i) and it can process novel simple and embedded sentences
containing familiar words in novel syntactic positions,

(iii) strong semantic systematicity if (ii) and words tested for property (ii) occupy
novel thematic roles.5

In this section I adopt Hadley’s explication and show that the Dual-path model displays
these types of systematicity to a high degree. Based on the results from the previous
section, I argue that the model satisVes an even stronger condition than (iii), namely
super-strong semantic systematicity.

Weak systematicity was already demonstrated in Chapter 4, where the model was
exposed to a small fraction of sentence tokens with at most one embedding admissible
in the language. After learning, the model generalized to the complete language when
tested on novel sentences composed of familiar constituents. Since strong systemati-
city is implied by strong semantic systematicity, I only tested the latter property in the
model. To do this, the model was trained on the same distribution as in the previous sec-
tion on structural generalization. In the training set, however, the word cat could occur
only in the subject position and Agent role of simple-clause active transitive sentences
such as the cat chase -ed the dog. The model was then tested on six diUerent sets
of 100 sentences each. The Vrst test set contained sentences randomly drawn from the
language which had one relative clause. This clause was a prepositional dative in which
the indirect object or recipient slot could be occupied by any lexical item denoting an
animate entity, except the word cat. The second test set contained sentences which
had two relative clauses. In these sentences, the deepest embedding was a prepositional
dative with the same lexical constraints as in the Vrst test set. The third test set con-
tained sentences which had three relative clauses, and likewise had such a prepositional
dative as its deepest embedding. The remaining three test sets contained exactly the
same sentences as the Vrst three test sets, with the exception that the recipient of the
dative action in the deepest embedding was always Vlled with the word cat. Thus,
the model experienced the word cat in learning only in a one speciVc syntactic and
semantic role in one speciVc type of single-clause utterance. The question was whether
it could generalize to correctly using this word in a novel syntactic and semantic role in
relative clauses of varying depth. Schematically, the experimental set-up is depicted in
Figure 6.4. If the model can accomplish this lexical generalization, this would indicate
that it behaves systematically in the sense of deVnition (iii). By having two matched
test sets for each level of embedding, with only one critical lexical diUerence, we can
measure the model’s degree of systematicity as a function of sentence complexity. The
results of testing strong semantic systematicity are shown in Figure 6.5 (page 172). As

5Hadley’s formulation of strong semantic systematicity demands the assignment of “appropriate
meanings to all words occurring in novel test sentences which (would or could) demonstrate the strong
systematicity of the [processor]” (Hadley, 2004, p. 149). My rendition (iii) is stronger in that semantic
content assigned to words is required to extend beyond linguistic experience too.
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The cat chase -s the dog.

The man                                                                           is sleep -ing.
                that the girl                                               kick -s
                                     that give -ed the toy to the cat
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Figure 6.4: The constituent cat is trained in the Agent role of non-embedded sentences
only and the model is tested on sentences with cat in the Recipient role of prepositional
dative embeddings.

in the previous experiment, the model’s production accuracy degraded with the number
of embeddings in the test items. Sentences with one embedding were learned to perfec-
tion, sentences with two embeddings to >90%, and sentences with three embeddings
to >65%. Pairs of trajectories represent the model’s performance on two matched test
sets. One trajectory in each pair shows the accuracy on sentences with the word cat

in the recipient slot of the deepest dative embedding, the other shows the accuracy on
the same sentences but with diUerent words in this slot. It can be observed that for
each level of embedding the model’s behavior is very similar for both sets of test items,
with small diUerences of less than 10% at epoch 200.000. The model’s performance
on the three sets of ‘no cat recipient’ utterances can be interpreted as baseline behav-
ior for structures in which all lexical constituents have been observed in training in all
syntactic and semantic roles. The diUerence in performance between the three sets of
‘cat recipient’ utterances and baseline indicates the degree of generalization of familiar
lexical items to novel syntactic and semantic roles. Since these trajectories did not diUer
substantially the model displayed a high degree of strong semantic systematicity.6

The Dual-path model generalized familiar constituents (cat) from experience in
simple clause structures to novel syntactic positions (indirect object) and novel the-
matic roles (recipient) in novel sentences at novel levels of embedding. Moreover, as
in the previous experiment on structural generalization, a substantial proportion of the
tested sentences were instantiations of constructions that the model did not experience
in training (82.5% of the tested utterances). Hence, the model also performed lexical
generalization inside structural generalization. I call this property

6A minor caveat should be mentioned here. Hadley demands that for strong systematicity “a sig-
niVcant fraction of the vocabulary of the training corpus must be presented in these novel positions”
(Hadley, 2004, p. 149), whereas I only tested one lexical item. There is, however, no reason to assume
that the model could not accommodate more novelty.
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Figure 6.5: Strong semantic systematicity in the Dual-path model.

(iv) super-strong semantic systematicity if (iii) and words tested for property (iii) oc-
cur in novel constructions.

The Dual-path model can accomplish lexical generalization in the sense of (iv) for
two reasons in conjunction. First, the model acquires syntactic knowledge in the form
of argument structure constructions such as Transitive action or Dative transfer.
These abstract frames determine the properties of verb arguments in each position, e.g.,
a dative recipient is always an animate noun. If a concept is understood by the model
in that the mapping between concept and its word form is learned from examples, and
if that concept has the right properties, it can enter into an argument slot of such a
syntactic frame. And secondly, argument slots are controlled by the dynamic bindings
in the what-where-system of the model. These bindings turn the thematic role nodes
in the where-layer into semantic variables that can be instantiated by concepts not en-
countered in training. In the systematicity task, the model learned the dative frame from
sample sentences not involving the word cat. Thus, it correctly activated the Recipient
role in the where-layer after producing the preposition to. In the test utterances, this
role was bound to the concept cat in the model’s message input and activation spread
along this binding. Because the model has learned the mapping from this concept to the
word cat from simple-clause sentences in which cat occurred in subject position, it
could activate cat in a novel semantic role, within a dative embedding of a novel con-
struction. Hence, the combination of learned syntactic frames and dynamic bindings in
the message allowed the model to go behave strongly systematic.

Although these bindings enabled lexical generalization, they did not guarantee sys-
tematicity. This is because the model also formed statistical expectations about the co-
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occurrence of words in the training corpus. In learning, the model records, for instance,
that the preposition to is always followed by some nouns but not others (including
cat). And it records that the noun cat is always followed by a transitive verb and
never occurs in a dative frame. These expectations about transitional probabilities are
formed in the model’s sequencing system and this system competes for activation of
lexical items with the message-lexical system at the output layer. Whether the model
behaves systematically therefore depends on whether the information propagated via
the dynamic bindings in the message-lexical system is suXcient to overwrite the sta-
tistical expectations of the sequencing system and win the competition for word acti-
vation (Figure 6.6). That the sequencing system occasionally wins this competition can

word     cat boy dog 

Sequencing
System

what    CAT BOY DOG

where   A    X    Y    Z

Output

Learnable weights

Word meaning

Dynamic bindings

Thematic roles

Figure 6.6: Dynamic bindings enforce systematicity and both pathways compete for
word slots.

be demonstrated by detailing the model’s error proVle in the lexical generalization task.
I examined the model’s production errors in the Vrst 100 incorrect test sentences with
three embeddings which had the word cat in the recipient slot of a prepositional dative
in the deepest relative clause. Minor lexical errors, e.g., wrong articles, and errors in
tense or aspect were ignored. The error proVle is summarized in Table 6.5.7 37% of all

Before cat At cat recipient Phrase immediately Later in the Total
recipient after cat recpient sentence
37 21 33 9 100

Table 6.5: Error proVle for ‘cat recipient’ test items with three embeddings.

errors occurred in the initial segment before the cat position. 21% of all errors, how-
ever, occurred at the cat position where the model produced a diUerent noun instead
(e.g., dog, man, etc.). This substitution error can be attributed to the expectations of the
sequencing system about the class of lexical items which can occupy the recipient role
of a dative frame. Furthermore, 33% of all errors occurred in the phrase immediately
following the cat position, after cat was produced correctly. The output cat has been

7Several utterances contained multiple errors as the model sometimes starts to produce gibberish
once it made a severe grammatical mistake, such as incorrect attachment. I recorded the position of the
sequentially Vrst error in each sentence.
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fed back to the input when this phrase is produced and triggers the model’s statistical
knowledge that cat should be succeeded by a transitive verb. Since the constituent
cat completes the dative embedding, the following phrase always belongs to the clause
in which the dative is embedded. Hence, these errors indicate that the model’s lexical
expectations (based on cat feedback) conWict with the syntactic structure of the com-
plex utterance and this creates diXculty in resuming the superordinate clause. In sum,
the majority of errors the model committed occur at or right after the dative recipient.
This suggests that systematicity in the model is not a self-evident consequence of the
functionality of the what-where-system, but a falsiVable empirical observation.

In the theoretical literature on systematicity, it is often argued that systematicity
ought to be analytically derivable from the architecture of the processor and/or the na-
ture of its syntactic representations (Fodor and Pylyshyn, 1988). Sometimes systemati-
city is even required to follow by nomological necessity (Fodor and McLaughlin, 1990).
Neural networks usually do not satisfy these requirements due to their unstructured,
distributed representations. Consequently, even if these systems were demonstrated to
behave strongly systematic, they would not easily satisfy many critics of connection-
ism. In my view, it is diXcult to justify that an empirical question about the nature
of human syntactic representations should be turned into a philosophical dogma which
excludes neural network architecture by Vat. The Dual-path model oUers an interesting
alternative in this debate. Systematicity does not follow analytically from the model’s
architecture nor its syntactic representations. Dynamic bindings between thematic roles
and lexical meaning enable systematicity but whether this architectural feature is suX-
cient to overwrite statistical expectations of the learner is an empirical question. In this
way, the Dual-path model approach might help to reconcile symbolic representations
with the gradational nature of human syntactic processing.

6.6 Right-branching versus center-embedding

It was demonstrated that the Dual-path model generalized beyond its linguistic input in
interesting ways. But how natural is this generalization behavior? This question is of
critical importance if a cognitive model of syntactic development is to be considered rel-
evant to psycholinguistic research. In light of the examples given in Section 6.3, it seems
likely that humans can process complex sentences composed of novel combinations of
familiar clause structures. Yet, this data is anecdotal at best. Human generalization ca-
pacities are diXcult to determine experimentally because this would require recording
the history of linguistic experience in individuals. One way to circumvent this prob-
lem would be to measure human processing accuracy on diUerent complex structures
and to estimate generalization capacities based on suitable corpus frequencies. To my
knowledge, such studies have not been reported in the literature for the kind of struc-
tural generalization under discussion. I will therefore evaluate how natural the model’s
processing behavior is in terms of its diUerential learning and generalization of distinct
relative clause constructions.
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One dimension of distinction between relative clause constructions is their syntactic
complexity. Right-branching constructions are considered less complex than center-
embedded constructions because they can be described by a regular grammar whereas
center-embedding requires a context-free grammar.8 The relative diXculty of these two
constructions in human sentence processing has been studied extensively in psycholin-
guistics. These studies unanimously found that center-embedded structures are harder
to process than right-branching structures over a number of diUerent measures such as
accuracy in comprehension and recall or reaction times in grammaticality judgement
(Blaubergs and Braine, 1974; Blumenthal and Boakes, 1967; Caplan et al., 1994; Foss
and Cairns, 1970; Fodor and Garrett, 1967; Larkin and Burns, 1977; Marks, 1968; Miller
and Isard, 1964; Stromswold et al., 1996). Bach et al. (1986) found the same diUerential
behavior in German. Some studies also found that the degree of diXculty with cen-
ter-embedded structures increased with the number of embeddings (Marks, 1968; Miller,
1962; Miller and Isard, 1964) and that center-embedded structures are facilitated by se-
mantic constraints on noun-verb pairs in adults (Stolz, 1967) as well as children (Huang,
1983).

On the dominant view, this data can be explained by postulating performance con-
straints on human competence grammar in the form of working memory limitations
(Berwick and Weinberg, 1984; Gibson, 1998; King and Just, 1991). In center-embedded,
but not in right-branching structures, clauses are interrupted by intervening material.
While processing these embeddings, the head nouns of center-embedded relative clauses
must be held in working memory as unintegrated components of the matrix clause until
the matching verb is encountered. In right-branching structures, on the other hand, ev-
ery such noun-verb dependency is resolved before the processing of a new clause begins.
Thus center-embedded structures are taxing working memory more than right-branch-
ing structures and this might explain human diUerential processing. Furthermore, if
working memory degrades with the amount of intervening material this account might
explain why human processing diXculty correlates with depth of embedding.

In this section I Vrst investigate whether the Dual-path model behavior qualitatively
matches human diUerential performance on these two types of structures. I will then as-
sess the validity of the working memory hypothesis in the model by analyzing its error
proVle in sentence production. This simulation required extending the input language
used previously. So far this language only allowed singular nouns and verb forms and
the model did not have to maintain noun-verb agreement. Number agreement, how-
ever, creates long-distance dependencies when the language permits embeddings and
hence errors in agreement can tap into working memory failure. I implemented number
by adding a plural marker -s, a distinct simple present marker -ss and the plural aux-
iliaries are and were to the language. These markers were treated as separate lexical

8Strictly speaking, this is not true for string languages but it is true for natural language. For example,
a formal grammar can be constructed which allows center-embedding and long-distance dependencies
and generates the language {abnc |n ≥ 1} which is regular. If, however, the non-terminal S which self-
embeds is rewritten by at least two diUerent terminals to the left and right of S, the language becomes
context-free, e.g., S → aSb, S → ab which generates {anbn |n ≥ 1}.
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items as exempliVed by the sentence:

(9) the dog -s that a brother jump -ss with were push -par by a boy .

The model was trained on a set of 10.000 randomly generated sentences from this lan-
guage which again was combinatorially complete for a maximum of three embeddings.
The distribution of embedding depth in the input followed Figure 6.2 (page 167). For
each level of embedding the amount of training on center-embedded and right-branch-
ing structures was balanced. Thus, the model experienced exactly the same number of
single, double and triple embedded such structures in learning. In testing, the model
was exposed to 100 right-branching and 100 center-embedded structures for each level
of embedding. Test structures classiVed as right-branching or center-embedded, had to
be genuinely right-branching or center-embedded. Sentences which had, e.g., a center-
embedding inside a right-branching relative clause were not permitted in testing as a
center-embedded structure. Such mixed structures, however, were allowed in training
but were not counted as either structure when balancing the amount of training on each
structure. Likewise, sentences in which a relative clause was attached to a dative object
were not counted as either structure in training or testing. Because the matrix clause
is disrupted by such relative clauses these structures are not genuinely right-branching
and because one noun-verb dependency is resolved before the relative clause they do
not qualify as center-embedded either. Table 6.6 (page 178) shows examples of the kind
of structures which were tested and excluded from testing.

In sentences with three embeddings, notice that the deepest relative clause in both
structures can be subject- or object-relativized but the Vrst and second relative clause
must be subject-relativized in right-branching structures and object-relativized in cen-
ter-embedded structures. Evidence from many languages indicates that subject-relative
clauses are easier to process than object-relative clauses, for children and adults. This
processing diUerence at the clausal level might further exacerbate the processing of
center-embedded structures in humans. DiUerential performance on subject- and ob-
ject-relative clauses has also been explained in terms of working memory limitations
(Gibson, 1998; King and Just, 1991; Wanner and Maratsos, 1978), and I will look at this
contrast in more detail in Chapter 8.

When ten model subjects were trained and tested in the described way, the mean
performance data in Figure 6.7 (page 177) was obtained.9 This graph displays a num-
ber of interesting properties. First, the model’s performance degrades with the depth of
embedding. Sentences with one relative clause and sentences with two right-branching
relative clauses were learned almost to perfection. Doubly center-embedded structures
reached around 80%, triple right-branching structures around 65% and triple center-em-
bedded structures around 35% sentence accuracy. Broadly speaking, this degradation is

9In this condition more training was required for the model to reach a level of accuracy comparable
to previous experiments because the target language was more complex. It was also required to add
Gaussian noise to the connection weights which feed into the hidden-layer to elicit better generalization
behavior. See Appendix A for details on this issue.
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Figure 6.7: Comparison of sentence accuracy for right-branching and center-embedded
structures by depth of embedding.

in line with human sentence processing. It falls out of the architecture of (and input to)
the model and no external performance limitations need to be stipulated to obtain this
behavior. The more complex a structure is the harder it is for the model to extract reg-
ularities from the surface form. Since complex structures were sparse in the input and
the model learned all structures over one set of connection weights it was more diX-
cult for the model to memorize syntactic knowledge of more complex structures. These
factors—hampered extraction and memorization—explain why performance degrades
with depth. Secondly, the developmental trajectories reveal a substantial diUerence in
learnability between right-branching and center-embedded structures. For each level of
embedding, right-branching structures were learned faster and to a higher degree of ac-
curacy at the end state. In addition, performance on center-embedded structures rapidly
degraded with depth. Qualitatively this behavior matches human performance attested
in the psycholinguistic studies quoted above. And third, center-embedded structures of
depth n developed in closer proximity to right-branching structures of depth n+ 1 than
to right-branching structures of depth n. For instance, double right-branching structures
developed almost like single center-embedded structures and reached the same level of
accuracy. This indicates that sentence length and the number of embedded clauses were
not the most important determinants of the model’s performance.

In order to trace the cause of diUerential behavior, I inspected the errors the model
committed in testing on center-embedded and right-branching structures with three
embeddings. This analysis is also used to evaluate the hypothesis that working memory
limitations are responsible for the diUerential processing of these structures. In total 100
erroneous productions were examined, the Vrst 50 incorrect right-branching and cen-
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ter-embedded structures, respectively. Error classiVcation was based on the sequentially
Vrst error in each incorrect utterance. A summary of error types and their frequencies
is shown in Table 6.7.

Error proVle for right-branching constructions
Clause Verb (Number) Noun Structural Other Subtotal
Main 0 (0) 1 0 0 1
First 3 (0) 2 6 0 11

Second 3 (1) 4 3 0 10
Third 5 (2) 3 12 8 28
Total 11 (3) 10 21 8 50

Error proVle for center-embedded constructions
Clause Verb (Number) Noun Structural Other Subtotal
Main 3 (1) 0 4 0 7
First 8 (2) 0 2 0 10

Second 11 (6) 1 0 0 12
Third 5 (0) 2 12 2 21
Total 27 (9) 3 18 2 50

Table 6.7: Error classiVcation for 100 incorrect right-branching and center-embedded
structures. Verb errors comprised wrong tense, aspect, stem and number agreement.
The amount of number agreement errors is given in parentheses. Noun errors comprised
wrong articles, nouns and number. A structural error was assigned when active and
passive voice were confused, a subject-relative clause was turned into an object-relative
clause or vice versa. Errors were classiVed as other when a lexical omission, repetition,
insertion or substitution occurred which could not be interpreted as one of the other
error types. Attachment errors did not occur in any inspected utterance.

Recall that the language used to train the model had noun-verb number agreement.
Together with center-embeddings this created long-distance dependencies. After a cen-
ter-embedding is completed, clauses are resumed with verbs or auxiliaries which have to
agree in number with the head noun of the interrupted clause. If limitations on working
memory made center-embedded structures particularly diXcult to process, we should
observe many production errors at these sentence positions. Thus, we should expect

(i) head noun/matrix clause verb number agreement errors to occur frequently

in center-embedded structures. Moreover, we should observe

(ii) more such errors the larger the linear distance between the head noun and its
verb is.
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In other words, the working memory hypothesis predicts that in center-embedded struc-
tures more agreement errors should occur at the main clause verb/auxiliary position
than at verb/auxiliary positions in embedded clauses. In right-branching structures on
the other hand all noun/verb agreement is resolved within each clause before the next
embedding starts. Hence no clause is taxing working memory more than any other.
Thus we should observe that

(iii) agreement errors at verb/auxiliary positions are uniformly distributed over all
clauses

in right-branching structures. Secondly, we should Vnd that

(iv) for each clause level (except the third embedding) such errors are less frequent in
right-branching than in center-embedded structures

if working memory limitations cause the observed processing diUerences between the
two structures.

The error proVles for these two structures in Table 6.7 reveal that center-embedded
structures caused more than twice as many verb errors than right-branching structures
and three times as many agreement errors.10 Verb (agreement) errors account for 22%
(6%) of all errors in right-branching structures and for 54% (18%) in center-embedded
structures. This general picture seems to conVrm the working memory hypothesis. Fur-
thermore, agreement errors in the main clause, the Vrst and second embedding are more
frequent in in center-embedded structures than in right-branching structures. Thus,
prediction (iv) is supported by the data. When we look at predictions (i)–(iii), however,
the working memory hypothesis is not so well-supported. Both the number of verb and
agreement errors increased with clause depth in right-branching structures and no such
errors occurred in the main clause which is not in line with prediction (iii). This fact
can be explained in terms of the close similarity of right-branching main clauses and
simple-clause structures. Main clauses of right-branching structures—like simple-clause
structures—are uninterrupted by an embedding and overtly express all event partici-
pants, in contrast to embeddings in which one participant is gapped. Thus right-bran-
ching main clauses beneVt from exposure to simple-clause structures and these struc-
tures are very frequent in the input environment.

Although verb errors occurred more frequently in center-embedded than in right-
branching structures, the proportion of agreement errors out of all center-embedding
errors is still rather low (18%). In addition, the proportion of agreement errors out of
all verb errors is roughly the same for right-branching and center-embedded structures
(around 30%). Consequently, there is only weak support for prediction (i) in the data.
Moreover, prediction (ii) which most explicitly reWects the working memory hypothesis
is disconVrmed by the error proVle. Agreement as well as verb errors occurred least fre-
quently in main clauses and less frequently in the Vrst embedding than in the second.

10Neither diUerence, however, was statistically signiVcant across clauses; verb errors t(3) = 1.04, p =
0.375, number errors t(3) = 2.38, p = 0.097.
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This behavior undermines prediction (ii) for center-embeddings. Hence, the Dual-path
model does not support the claim that long-distance dependencies cause processing dif-
Vculties due to working memory limitations.

The model’s diUerential performance can be explained in a multifactorial way by a
combination of similarity and frequency considerations. The distribution of errors over
clauses is very similar for both structures, the least amount of errors occurred in the
main clause, the most in the third relative clause. The most conspicuous diUerence in
the error proVles of both structures lies in the amount and distribution of verb errors.
As remarked above, right-branching main clauses are similar to single-clause utterances
which are frequent in the input. Therefore no verb errors occurred in these clauses.
Center-embedded main clauses are interrupted by embeddings of various length and
depth and overtly express every event participant from the message. Thus, they are
structurally diUerent from clauses inside center-embeddings. But because every cen-
ter-embedding in the training language has a main clause, these structures are more
frequent than, e.g., second-level center-embedded clauses. This might explain why we
observe relatively few verb errors in the main clause despite long and nested embed-
dings disrupting the noun/verb dependency.

The deeper the level of center-embedding, the less frequent these clauses (and the
structures to which they belong) are in training. This leads to sequences of word cate-
gories which are increasingly sparse in the model’s input. In case of a triple center-em-
bedded structure, e.g., sequences of word categories such as NOUN VERB3 VERB2 VERB1
VERB0 PER can occur where verb subscripts denote clause level and PER is the end-of-
sentence marker. These sequences are speciVc to triple center-embedded structures, i.e.,
they do not occur in any other structure. Because these structures are sparse, such sub-
sequences are sparse and this causes processing diXculty in the model. In right-bran-
ching structures, on the other hand, no such unique subsequences occur. Here, verbs
are never followed by verbs but always by object nouns or the end-of-sentence marker.
These subsequences are vastly more frequent in the input because they are shared with
single-clause utterances. This diUerence in substructure similarity and frequency be-
tween right-branching and center-embedded structures can explain diUerential process-
ing at all levels of embedding. Substructure frequency can also explain the distribution
of verb errors for center-embedded structures across clauses. Substructures such as
VERB1 VERB0 PER can occur in every center-embedded structure regardless of its depth.
VERB2 VERB1 VERB0 PER, however, occurs only in double and triple embedded struc-
tures, VERB3 VERB2 VERB1 VERB0 PER only in the latter. That the second embedding is
resumed with a verb after interruption by the third embedding is only ever witnessed by
the model in triple center-embedded structures. Consequently, we observe most errors
at the verb position of the second embedding (total: 11, Table 6.7, page 179). That the
Vrst embedding is resumed with a verb after interruption by the second embedding is
witnessed by the model in double and triple center-embedded structures, hence this pat-
tern is more frequent and we observe less errors at this verb position (total: 8, Table 6.7,
page 179). Similarly, it can be argued why the lowest verb error rate occurred in main
clauses of center-embeddings. And Vnally, all clauses in right-branching structures are



182 Chapter 6. Generalization

similar to each other and to single-clause utterances in that they are non-interrupted,
whereas clauses in center-embedded structures are interrupted by embeddings of dif-
ferent length. Hence in learning the model gains more experience with all clause types
in right-branching structures than with any clause type in center-embedded structures
which facilitates better overall performance on right-branching structures at each level
of embedding.

Although the Dual-path model, which is a statistical learning mechanism, is sensi-
tive to substructure frequencies, it is not processing complex sentences as linear strings
of words. The model is also sensitive to the distinct hierarchical structure of these
two constructions. Evidence for this property can be obtained by visualizing the inter-
nal representations developed by the model during syntactic development. The model
represents abstract structural knowledge in its sequencing pathway. To Vnd represen-
tational diUerences between right-branching and center-embedded structures the com-
press-layer is therefore a natural model component to look at. Similar to the procedure
described in Section 5.2.6, I recorded the activation states of the compress-layer while
the model was correctly producing ten sentence samples with three relative clauses of
each type at the end of training. These state vectors were then averaged component-
wise and quantized into Vve discrete activation levels. Figure 6.8 displays the outcome
of this procedure for the three pronoun positions in the two utterance types. The top
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Constituent compress-layer units, right-branching structures
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
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THAT3

Figure 6.8: Comparison of activation states of the compress-layer for center-embedded
and right-branching structures at the pronoun positions.
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half of the table shows activation states for center-embedded and the bottom half for
right-branching structures. It can be observed that units C5, C13, C20 and C22 are fully
active in both structures. Of these four units C5 and C22 are highly specialized units
in that they were only active at pronoun positions, whereas C13 and C20 showed some
activation at other sentence positions as well, in particular verbs.11 We see some mi-
nor diUerences in the activation levels of units C17, C18 and C23 between these two
structures. The largest diUerence, however, occurred at unit C25. While this unit is vir-
tually silent when processing center-embedded sentences, it is fully switched on at all
pronoun positions when producing right-branching structures. In particular, this unit
is only ever active for pronouns but no other constituents and this pattern consistently
held for right-branching structures with one, two and three relative clauses.12 Since
that is a purely functional constituent which introduces embedded clauses, unit C25
is fully specialized in marking the diUerence between center-embedded and right-bran-
ching relative clause attachment. Hence, the Dual-path model was representing the
distinct hierarchical organization of the two structures in its sequencing pathway.

Standard explanations of the contrast between right-branching versus center-em-
bedding in human processing often invoke syntactic complexity and performance con-
straints such as working memory limitations. An alternative hypothesis would be that
syntactic structures which are relatively complex, such as center-embedded sentences,
are more diXcult to learn, store and produce than relatively simple structures, such
as right-branching sentences. One reason for this diXculty might be that center-em-
bedded structures are less similar at the clausal level to single-clause structures, which
are very frequent in the input, than right-branching structures. Another reason might
be that center-embedded sentences contain substructures which are not shared with
other input structures whereas right-branching sentences do not. Such asymmetries in
similarity might diUerentially facilitate (or hamper) the grammatical encoding of these
two structures during learning and lead to the observed diUerences in production. In
this way, the input distribution of a statistical learner might be skewed towards one
structure and against another despite the fact that both structures themselves occur
with the same frequency (as in the described experiment). The presented results can
be interpreted as supporting this hypothesis. In syntactic development, right-branching
sentences proVt more from exposure to other input structures than center-embedded
sentences. Therefore they are acquired, memorized and activated more easily than cen-
ter-embedded structures. This frequency-based explanation suggests that it might be
unnecessary to stipulate performance constraints on competence grammar external to
the language system—such as working memory limitations—in order to account for the
diUerential processing of right-branching and center-embedded structures in humans.

11This is not visible in Figure 6.8 but only in the full compress-layer pattern for complete sentences.
These are not reproduced here for the sake of brevity.

12Again, this is not observable in Figure 6.8 but was veriVed in the full compress-layer graphs for
right-branching structures of various depth.
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6.7 Recursive productivity

In this section I will review some recent arguments by Hauser et al. (2002) which sug-
gest that recursion in natural language is a biologically endowed category unique to
human communication. I will then sketch what in my view is the right way of look-
ing at recursion in language processing and show that the Dual-path model can explain
recursive productivity satisfactorily.

6.7.1 Is recursion uniquely human?

Mathematical recursion is a procedure to deVne objects (e.g., functions, sets) by refer-
ence to themselves. In natural language, recursion allows the embedding of one phrase,
clause or sentence within itself. According to Hauser et al. (2002), recursion is a core
property of the human language faculty. They argued that recursion is the only mecha-
nism that both distinguishes language from other human cognitive capacities and sepa-
rates human language from animal communication. In other words, except for recursion
everything about language is either not uniquely human or uniquely human but not spe-
ciVc to language. These strong claims about recursion have been criticized from many
diUerent angles. For instance, Pinker and JackendoU (2005) have argued that other as-
pects of language are not recursive but uniquely human and language-specific, such as
phonology and morphology.13 Others have questioned the evidential basis for claim-
ing that recursion is uniquely human. In support of their position Hauser, Chomsky
and Fitch adduce evidence from experiments on artiVcial grammar learning in non-hu-
man primates, e.g., their own study (Fitch and Hauser, 2004) which ostensibly shows
that cotton-top tamarin monkeys are not capable of recursion. In these experiments it
was argued that tamarins could learn membership for stringsets such as {abab, ababab}
but not stringsets such as {aabb, aaabbb}, whereas humans could learn both. The for-
mer language was considered representative for being generated by a regular grammar,
the latter representative of a context-free grammar with center-embedding.14 On the
other hand, Gentner et al. (2006) have recently argued that even starlings could learn
the {aabb, aaabbb} stringset, undermining the case for the uniqueness of human re-
cursion. But of course these are Vnite sets and syntactic complexity separates the two
sets only for inVnitary extensions of these languages. Hence, it is questionable whether
mere discrimination of sets is suXcient to claim that the capacity for recursion has been
detected. One would in addition have to exclude the possibility that the cognitive pro-
cedure to determine the grammaticality of strings is non-recursive. Corballis (2007), for
example, argues that the starlings of Gentner et al. (2006) could have accomplished this
task by a simple counting strategy without any knowledge of the dependencies indi-
cated by subscripts in {a1a2b2b1, a1a2a3b3b2b1}. The experiments which lead Fitch and
Hauser (2004) to claim that humans, in contrast to tamarins, could learn a context-free

13This criticism was followed by a rejoinder from Fitch et al. (2005) and a subsequent reply by Jacken-
doU and Pinker (2005).

14Cf. Pullum and Rogers (2006) for a criticism of this assumption.
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grammar were methodologically Wawed in similarly fundamental ways as was pointed
out by Perruchet and Rey (2005). They attempted to replicate the Fitch and Hauser
data for humans but in addition tested their subjects on strings which violated syllabic
dependencies in center-embeddings. They found that subjects were able to learn the
{aabb, aaabbb} stringset but only based on acoustic cues, they displayed no sensitiv-
ity whatsoever to the underlying grammar.15 Perruchet and Rey concluded that their
data were “consistent with the hypothesis that human participants performed the test
as a simple perceptual discrimination task” (p. 310). Needless to say, this issue requires
further study, but if this is true, not even humans draw on recursive processing to de-
termine the grammaticality of word sequences (in the framework of artiVcial grammar
learning). As a consequence, virtually every central claim made in Hauser et al. (2002)
is rendered either false or vacuous.

One might ask, then, what the epistemic status of recursion in language processing
might be. Rather than being an empirical fact, recursion has been utilized predomi-
nantly as a conceptual tool to explain other aspects language such as productivity and
inVnity. This is most obvious in the Hauser et al. (2002) paper where the authors state
that language has the “capacity for limitless expressive power, captured by the notion of
discrete inVnity” (p. 1576) and that humans have the “capacity to recombine meaning-
ful units into an unlimited variety of larger structures, each diUering systematically in
meaning” (ibid.). These properties of productivity and inVnity are taken as self-evident16

and recursion is oUered as an explanatory notion:

FLN takes a Vnite set of elements and yields a potentially inVnite array of discrete
expressions. This capacity of FLN yields discrete inVnity (a property that also
characterizes the natural numbers). (ibid., p. 1571)17

The relation between inVnity, productivity and recursion, however, is not that straight-
forward and simplistic. Recursion is neither necessary nor suXcient to explain either
inVnity or productivity. It is well-known, for instance, that every primitive recursive
function can be translated into a function which is deVned by pure iteration without
recursive calls.18 Hence recursion is not necessary to generate inVnite sets. Moreover,
the mechanism of recursion in language does not guarantee that an inVnite set is gen-
erated. A context-sensitive grammar with non-trivially recursive rules which gener-
ates only one string can easily be constructed.19 Unless recursion is assumed to never
terminate—an assumption of inVnity by itself—recursive rules in syntax do not yield

15That is, subjects could reliably classify strings based on acoustic patterns from the training phase,
but did not detect violations in syllabic dependencies, and there was no interaction between the two.

16“The core property of discrete inVnity is intuitively familiar to every language user” (Hauser et al.,
2002, p. 1571).

17FLN is Hauser, Chomsky and Fitch’s acronym for the ‘faculty of language in the narrow sense’
which, on their view, comprises but recursion.

18Cf. Odifreddi (1989).
19Cf. Pullum and Scholz (2008). The recursive grammar {S → AB,B → BB,A → a,B →

b/a__, B → c/ab__} generates the single string abc.
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linguistic inVnity. Thus, inVnity is not derivable from recursion, every argument to this
end is circular. From the point of view of linguistic theory there might be good rea-
sons to study human language in inVnitary models, especially when one is concerned
with grammatical competence within the generative tradition. It must be clear, though,
that inVnity is a modelling choice, not a consequence of recursion which itself is not an
empirically demonstrated property of human language processing.

6.7.2 Recursion and productivity

In contrast to inVnity, linguistic productivity is a rather uncontroversial notion. Un-
doubtedly, humans have the capacity to produce and understand novel utterances they
have not experienced in communication before.20 Hauser, Chomsky and Fitch seem to
assume that productivity and ‘discrete inVnity’ are interchangeable. A productive lan-
guage processor can create an inVnity of utterances from Vnite building blocks, and if it
can do so, it can be called productive. To belabor the obvious, both entailments are dis-
putable. The game of chess has an estimated upper bound on state-space complexity of
5× 1052 and a game-tree complexity of 10123, both large but Vnite numbers (Allis, 1994).
It is quite unlikely that a player of chess or in fact any two human beings will ever play
the same game twice. Although the ‘grammar’ of chess is highly constrained, creatively
productive game play is not ruled out by a Vnite number of board conVgurations. Con-
versely, formal mechanisms for generative inVnity need not qualify as productive. As
Pullum and Scholz (2008) pointed out, recursive rules such as ‘Adjective→ very Adjec-
tive’ may generate an unbounded number of phrases ‘very nice’, ‘very, . . ., very nice’,
etc., but these would hardly be considered the core of linguistic productivity (let alone
creativity).21 For these reasons inVnity is not interchangeable with productivity and
furthermore recursion is neither necessary nor suXcient for explaining productivity.

Attempting to account for productive inVnity by means of recursion is misguided
in at least two ways. Generative inVnity is a modelling assumption which cannot be
justiVed through recursion and linguistic productivity in humans is not explained by
recursion alone. Since there is no explanatory relationship between recursion and pro-
ductivity, recursion in language needs to be motivated independently. Two aspects of
recursion must be distinguished, recursion in syntactic modelling and recursion in hu-
man language processing.

Some of the appeal recursive principles have to theoretical linguists might lie in their
high level of abstraction and descriptive parsimony in the representation of natural lan-
guage syntax. The syntax of embedding one clause within another, for instance, can be
described by simple and general recursive rules. Alternatively, it can be described as the
recombination of clausal construction types by means of relativization. But this would
require listing all syntactically admissible combinations of non-embedded constructions.

20Ideally, every PhD thesis consists of novel utterances, modulo quotations, produced by the doctoral
candidate and intelligible to the dissertation committee.

21One is tempted to label the application of such recursive rules to create novel linguistic utterances
‘moronicity’ rather than productivity.
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There is, however, a price to be paid for abstraction and parsimony, which is potential
overgeneration and empirical inadequacy. Based on corpus analysis Verhagen (2008),
argued that syntactic constructions which look like paradigmatic cases of abstract recur-
sion at the clausal level (e.g., causative constructions and long-distance wh-movement)
may in fact be instances of concatenating lexically speciVc templates. No general rule
for embedding one clause within another is necessary (or even adequate) to model the
syntax of such constructions, and the usage of such rules in processing is not licensed
by the corpus data.

The psychological reality of recursion in language processing has not been demon-
strated in the literature. Results such as Perruchet and Rey (2005) rather seem to point
in the opposite direction.22 A motive for adhering to recursion in language processing
might be that recursion has been identiVed as an important organizational principle
in cognitive domains other than language, such as hierarchical decomposition in plan-
ning, navigation, problem-solving, or goal-directed action, and hierarchical composition
in grouping, object combination, or tool use. If it can be demonstrated that recursive
behavior is operant in other cognitive domains and recursion can be established as a
useful or even indispensable principle for describing natural language syntax, it is a
small step to asserting the psychological reality of recursion in language processing.
GreenVeld (1991), for instance, has suggested that the human capacities for hierarchi-
cal language production and manual action are functionally analogous and argued for
an evolutionary homologue (confer Arbib and Rizzolatti, 1997 and Steedman (2002) for
similar views). This position diUers from Hauser, Chomsky and Fitch’s view that recur-
sion, although exapted from computational mechanisms outside the domain of language
(e.g., ‘number, navigation, and social relations’), is language-specific and did not evolve
by homology (neither within the human species nor from a common ancestor). It also
diUers from Pinker and JackendoU’s view that language in general is a unique adapta-
tion for communication (Pinker and JackendoU, 2005). It must be pointed out, however,
that functional analogy does not establish an evolutionary connection between cogni-
tive domains unless strong neuroanatomical evidence is provided. More importantly,
functional analogy does not preclude the possibility that, say, motor planning and syn-
tactic processing are realized by computationally distinct mechanisms.

6.7.3 The innateness of recursion

Hauser et al. (2002) devote large parts of their paper to describing a variety of diUerent
hypotheses about the evolutionary origin of the language faculty broadly conceived,
and recursion in particular. But how did they arrive at the fundamental conviction that
recursion must be part of our biological endowment in the Vrst place? To recap, they
Vrst introduced the notion of ‘discrete inVnity’ to which language users are ‘intuitively

22These results, however, are very limited in nature because they derive from artiVcial grammar learn-
ing where nonadjacent dependencies have no semantic value. As the authors suggest themselves, the
study of recursion across species using string-languages from the Chomsky hierarchy may be a ‘concep-
tual dead-end’.
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familiar’. They invoked the concept of recursion as an explanans, without oUering any
clariVcation what exactly they mean by recursion and how recursion is generating ‘dis-
crete inVnity’. I argued above that in any case this line of reasoning was circular. Then
they suggest the non-learnability of natural language syntax based on the observation
that children only ever experience a Vnite amount of linguistic input:

[T]here are in principle inVnitely many target systems [...] consistent with the
data of experience, and unless the search space and acquisition mechanisms are
constrained, selection among them is impossible. (p. 1577)

In light of the fact that they quote results by Gold (1967) in support of this claim, this is
quite a peculiar statement since Gold, among other things, has proven the learnability
of inVnite languages from Vnite data. But suppose we grant this point and even accept
the conclusion that these constraints must be innate (which they do not argue for), then
it still remains open why these are constraints on the faculty of language in the narrow
sense (as they claim on page 1577) and not domain-general constraints on human learn-
ing mechanisms (as they suggest in the quotation above). Suppose furthermore that this
leap in argumentation can be justiVed, then these innate constraints are constraints on
recursion (since FLN is co-extensive with recursion according to Hauser, Chomsky and
Fitch). It is not clear why this should ipso facto render recursion itself an innate mech-
anism which is susceptible to biological evolution. In other words, even if we buy into
every single assumption that Hauser et al. (2002) put forth to establish recursion as a
core property of the human language faculty, their argumentation does not validate the
idea that recursion should be conceived of as an innate principle of language process-
ing rather than an acquired capacity. It is a plausible alternative worth investigating
whether productive linguistic behavior (which can be described as recursive process-
ing) is learnable through innately constrained, domain-general mechanisms, based on
linguistic experience. I will now sketch such an alternative approach and present some
evidence that this could be accomplished by a data-driven learner.

6.7.4 A proper explanandum

The powerful computational mechanism of non-terminating recursion is often postu-
lated in theoretical linguistics to account for inVnite productivity. This capacity is at-
tributed to human linguistic competence. In actual linguistic performance the ability to
produce or comprehend recursive embeddings rapidly degrades with depth (see Section
6.7). Christiansen (1992) argued that the distinction between inVnite recursive capac-
ities and observable linguistic behavior should be abandoned. His arguments against
the competence/performance distinction are based on the architecture of neural net-
work models. In these models the physical location of stored syntactic knowledge and
the language processor itself are inseparable. Hence there is no knowledge base of lin-
guistic competence which, when restricted appropriately by external constraints, yields
observable performance; the distinction collapses for architectural reasons. It could also
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be argued that the competence/performance distinction should be rejected on method-
ological grounds. What makes the distinction problematic is that competence attributes
idealized knowledge to the language system which has no measurable or observable
consequences. By deVnition, competence abstracts away from performance constraints
such as limited memory, time and attention. Thus, competence puts Turing’s ghost into
the biomechanics of our resource-constrained brains. All ‘articulations’ of competence
are Vltered through the deVciencies of our production-comprehension system. Hence,
any incompatibilities between linguistic behavior and the predictions of competence
grammar can always be attributed to the failure of the procedures which access and
utilize linguistic knowledge to produce and comprehend utterances. Non-terminating
recursion is a theoretical entity which lives in competence grammar, and since it has
no observable consequences, it is not a particularly useful assumption. For this reason,
it is not an interesting explanandum for any theory of natural language processing,
connectionist or not.

Eliminating non-terminating recursion as an explanandum does not obviate the
need for an explanation of bounded recursive productivity in humans. In my view,
the following aspects of recursive productivity need to be accounted for by any viable
model or theory of language processing:

(i) How does the human language system recombine familiar clausal constructions
into novel, hierarchically structured utterances not experienced during acquisi-
tion?

(ii) More speciVcally, how can (i) be achieved for utterance types with more levels of
embedding than encountered in learning?

(iii) Why do productive capacities such as (ii) degrade with the depth of embedding
in human performance?

(iv) Can the combination of (ii) and (iii), describable as gracefully terminating recur-
sive productivity, be achieved without learning explicit rules of recursive compo-
sition, or does it require such rules plus external constraints?

In Section 6.3 above I argued that the productive capacity (i) can be explained in the
Dual-path model for constructions with three embeddings. In this condition, the model
received input which contained some sentences with three nested relative clauses and
generalized to novel combinations of basic constructions with three nested relative
clauses. This input to the model, however, reached beyond what we can reasonably
expect to occur in child-directed speech—presumably such structures are completely ab-
sent in a child’s ambient language. Moreover, this kind of structural generalization does
not demonstrate the learnability of recursive productivity, because in training the model
had experienced sentences with the same recursive depth as in testing.
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6.7.5 Recursive generalization in the Dual-path model

To investigate whether the Dual-path model recursive capacities, I conducted an exper-
iment in which the model’s linguistic experience was limited to utterances with at most
two nested relative clauses. The model was then tested on constructions with up to
four nested relative clauses. An example of such a bizarrely complex sentence with four
embeddings from the actual test set was:

(10) the dog that was give -ing a stick that the woman that hit -ed the

man that was jump -ing is present -ing to a girl to the mother is

run -ing with a nurse .

To enable recursive generalization in the model it was necessary to slightly change the
meaning representations the model received compared to previous conditions in this
chapter. For the current task, semantic features for all clauses had to be trained si-
multaneously, otherwise the model would with certainty not be able to produce novel
embeddings correctly. In order to equally train all features in the event semantics, I ran-
domized the mapping of features to clauses for all training sentences. This contrasted
with previous experiments in which there was a Vxed spatial relation between features
and clause depth. In all other respects the message representation was identical to the
topic-focus message used throughout. This change does not invalidate any of the ear-
lier results, because it yields a semantics which is consistent with and more general than
the previous semantics. On the contrary, independent tests not reported here indicated
that many earlier generalization results could be improved upon with this semantics. It
seems, however, that generalization in the model trades oU against computational time,
i.e., the message used here required more training episodes to learn the target language.
For this reason alone I did not employ it in previous experiments.

The model was trained with this semantics on 10.000 message-sentence pairs ran-
domly drawn from a language with at most two embeddings. The basic constructions
from which these utterances were constructed were identical to the language described
in Section 6.3. To assess the extent of recursive productivity in the model, it was then
tested on 500 randomly generated, entirely novel sentences with three and four em-
beddings. Relative clauses in these test utterances could be attached to any admissible
syntactic role and also relativize any syntactic. Thus, as the example item (10) sug-
gests, relative clauses could be center-embedded or right-branching and could occur in
any possible combination. Relative clauses in each sentence, however, were genuinely
nested so that all novel test items had an embedding depth of either three or four. When
the model was trained and tested in this way the results of Figure 6.9 were obtained
(averaged over ten distinct training sets). The standard used to assess recursive gen-
eralization was grammaticality. This measure allowed minor errors in verb tense and
articles but required that the grammatical structure of the target utterance was produced
correctly. Figure 6.9 shows that all trained constructions—single-clause utterances and
sentences with one or two embeddings—were learned to perfection at the end of train-
ing. Novel constructions with more relative clauses than experienced in learning were
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Figure 6.9: Recursive productivity in testing on novel complex utterances with three
and four nested relative clauses.

produced with lower grammaticality. Utterances with three embeddings reached 60%
grammaticality and utterances with four embeddings reached 10% grammaticality.

These results suggest that the Dual-path model is capable of signiVcant recursive
generalization beyond its immediate linguistic input. Although the model had not expe-
rienced any triple or quadruple embedded structure, it managed to grammatically pro-
duce the majority of test items with three relative clauses and still a non-zero amount
of grammatical sentences with four relative clauses. Thus, the results also conVrm that
the model’s performance rapidly degraded with the depth of embedding, which quali-
tatively matches human linguistic behavior. While the model’s performance on novel
triple embedded sentences was quite impressive, 10% grammaticality on novel sentences
with four embeddings seemed rather low. Since there is little psycholinguistic data on
the comprehension/production accuracy of such sentences, it is diXcult to determine
the closeness of Vt with human processing. Recall, however, sentence (10) from above
and how diXcult it is to even judge grammatical.23 Secondly, the fragment of the artiV-
cial grammar consisting of templates for utterances with four embeddings can generate
roughly 4.8 × 1022 diUerent sentences over the lexicon used. Statistically speaking,
the model has therefore productively extended its knowledge of the target language by
4.8 × 1021 novel utterances through learning the syntax of simpler constructions. This
achievement was measured in terms of grammaticality which compares actual utter-
ances of the model with target utterances word-by-word. The average sentence length
in the test corpus was 35.9 lexical items. Yet, if only one sentence position diUered

23Miller and Isard (1964) report that their subjects were unable to learn sentences with three or four
center-embeddings.
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in word category from the target position, the utterance was discounted as ungram-
matical. Often, the model produced test sentences with four embeddings which were
almost grammatical and the performance improved as a function of training. To mea-
sure production accuracy in a more gradational way, I used a performance measure
called production error, which was more sensitive to degrees of production success or
failure than grammaticality. Production error measures the percentage of errors the
model made out of all possible errors it could have committed. Subtracting this quantity
from optimal performance yields the production accuracy score, which is a good mea-
sure of performance.24 When the model’s behavior was plotted in terms of production
accuracy (Figure 6.10), the seemingly large diUerence (as measured by grammaticality)
between trained constructions and novel test sentences diminished. Utterances with
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Figure 6.10: Production accuracy on novel third and fourth-degree embeddings, com-
pared with mean over trained constructions (zero, one, or two relative clauses).

four relative clauses reached almost 90% production accuracy compared with the per-
fect score on trained constructions with at most two relative clauses. This is because
production accuracy scaled the number of errors the model made by the length of the
tested utterance.

Based on these results I will now attempt to provide a preliminary answer to the
questions (ii)–(iv) raised in 6.7.4 above. In order to acquire the syntax of trained con-
structions (with at most two embeddings), the model had to learn to appropriately se-

24Production error is based on a string metric called edit-distance, which compares target and output
word-by-word. The edit-distance of two sequences of words is deVned as the minimum number of
primitive operations required to transform one sequence into the other, where primitive operations consist
of an insertion, deletion, or substitution of one word, cf. Rohde (2002) for more details on this measure.
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quence thematic roles for each clause type in thewhere-layer according to the intended
order. These construction types were signalled to the model by semantic features in the
event semantics. Correct production of sentences with relative clauses required that
the model learned a notion of relativization. This comprised the identiVcation of the
intended attachment site and the omission of the gapped element in the surface form.
Learning both subtasks was enabled by the topic/focus features in the message-sentence
pairs on which the model was trained. Furthermore, the model learned to associate dif-
ferent sets of semantic features in the message with diUerent clauses in the sentence’s
hierarchical structure. This allowed the model to complete clauses before superordinate
clauses were resumed (if applicable), or a new embedding started, without scrambling
constituents from multiple clauses. Thus, the model developed representations which
respected clause boundaries, clausal integrity, and the hierarchical organization of dis-
tinct complex constructions.

When tested on novel sentences with more levels of embedding than encountered in
training, the message input as a whole was a novel semantic pattern to the model.
Nonetheless, the model was familiar with message components at the clausal level
and had the syntactic knowledge to combine several clauses into complex utterances
by means of relativization. Unlike systematicity, which depended on the role-concept
weights, recursive productivity depended on another part of the message, the event se-
mantics. In training, the model learned to associate subparts of a sentence with the event
semantics of the proposition that controlled it (Figure 6.11). The model learned from sim-
ple messages how to sequence participants in single-clause transfer events (dog give
toy to cat). Other features of the event semantics controlled the position of relative
clauses (X that) and the thematic role of the head noun in the relative clause (that gap
VERB). When presented with a message for a novel construction, the model could use se-
mantic regularities in the conceptual structure of the event semantics and combine these
regularities to generate additional embeddings. From message-sentence pairs in train-
ing, the model learned which features of the event semantics controlled which aspects
of the hierarchical organization of complex sentences. Since novel messages shared fea-
tures in the event semantics with input messages, the model could generalize its learned
subpart mappings and built novel structures from relevant message components. In this
way, productivity was enabled by similarity-based meaning-to-form transduction.

There are, however, complications which can prevent this generalization. Sentences
with three embeddings contain two clauses which are hierarchically ‘sandwiched’ be-
tween the main clause and the deepest embedding. This requires that the model deter-
mines the order of these two clauses by establishing the appropriate relations of co-ref-
erence between constituents in diUerent clauses. Since conWicts of clause order did not
occur in the training language and since none of these competing clauses was marked
as more prominent in the message, the model needed to develop a policy to resolve such
conWicts in the absence of training samples. To examine how the model achieved this,
it helps to illustrate a condition in which the model failed to exhibit recursive produc-
tivity. In this experiment, I trained the model on an artiVcial language with at most
one relative clause, trying to make it generalize to sentences with two and three relative
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Message Components Sub-Structure Sentence

Give(dog,cat,toy)

Hit(girl,boy)
Chase(girl,dog)

Hit(girl,boy)
Chase(girl,dog)
Give(dog,cat,toy)

-

��
���:

-
XXXXXz

���
��:

-
XXXXXz

dog give toy to cat The dog gave a toy to the cat.

girl was hit by boy

The girl that was chasing a dog

was hit by the boy.
X that

that gap VERB

X that

that gap VERB

dog give toy to cat

The girl that was chasing a dog

that gave a toy to the cat was

hit by the boy.

I
n
p
u
t

N
o
v
e
l

Figure 6.11: DiUerent components of the message control diUerent subsequences of
words in the target structure.

clauses. The set up was identical to the experiment of Figure 6.9 in every other respect.
In this condition, the model did not produce a signiVcant amount of novel grammatical
utterances with either double or triple embeddings. Hence, no recursive generalization
to deeper embeddings occurred on the basis of exposure to sentences with one relative
clause. This was surprising, given that generalization to two embeddings should be
easier than to three or four. The model’s output revealed that there was clause order
confusion in virtually every tested sentence with two relative clauses. When trained
on sentences with at most one relative clause, clause order is easily determined by the
model because it can draw on the topic/focus features in the message. The topic feature
always marks the main clause, the focus feature always marks the subordinate clause.
Test sentences with deeper embeddings, however, had at least two such features each
and the model had not learned how to negotiate the resulting conWict. When trained on
sentences with two relative clauses, on the other hand, the model developed a strategy
to ‘chain’ clauses in the correct order and this strategy transfered to test items with
deeper embeddings. An isolated topic feature signaled the main clause to the model.
Once the head was produced and fed back to the model, activation spread to the corre-
sponding concept in the cwhat-layer. This activated the head noun’s thematic role in
the cwhere-layer, but also the thematic role of the gapped element which was linked
to the same concept. Since the cwhere-layer projected into the hidden-layer and the
gapped role was clause-specific, the model could use this cue to determine which clause
was to be sequenced next. This process repeated for the following embedding, and so
forth. In other words, deeper embeddings in the input forced the model to attend to
subtle cues in the message-lexical pathway in order to sequence clauses of the intended
structure. Since the sketched strategy is generic, it applied in recursive generalization
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beyond the model’s input as well. When these more complex structures were absent
from the learning environment, there was no need for the model to develop such a
strategy which is why it failed to generalize recursively.

Generalization to deeper embeddedings can be described as a special instance of se-
quence learning—from exposure to the syntax of zero, one, and two embeddings to the
syntax of three or more embeddings. This task involves recognizing structural regu-
larities in the observed sentences of limited depth and making syntactic predictions for
novel sentences with deeper embeddings. To answer question (ii), the Dual-path model
could accomplish this task because of its (a) sensitivity to semantic similarities between
trained and novel messages at the clausal level, because (b) it learned an abstract notion
of relativization which transferred to novel constructions, and because (c) it developed a
generic policy for ordering clauses. The combination of such knowledge, acquired from
the linguistic input, might therefore be suXcient to explain recursive productivity in
humans. When the sequence of syntactic structures that the model was exposed to was
limited to one embedding, relative clause constructions in the input were perceived as
idiosyncratic. The learning sequence, or ‘inductive basis’, for syntactic generalization
was too small. Without linguistic evidence that relativization can be iterated at least
once within a relative clause itself, the Dual-path model did not generalize recursively.
It would be an empirical prediction of the model that based on exposure to sentences
with at most one embedding, human learners cannot achieve recursive productivity
either.25

Recursive productivity in the Dual-path model degraded with the depth of embed-
ding (Figure 6.9, page 191). There might be several factors responsible for this behavior.
One factor might be sentence length. Longer sentences create longer dependencies,
which might tax the working memory of the processor. In Section 6.7, I argued that
working memory limitations did not adequately explain the model’s diUerential perfor-
mance on right-branching and center-embedded sentences. The number of errors char-
acteristic for working memory limitations did not increase with the distance between
dependent constituents. At the same time, such errors were not completely absent.
Hence, working memory might still play a minor role in the model’s behavior. Another
factor might be that sentences with more clauses contain more semantic dependencies
which have to be encoded in the model’s message. Figure 6.12 on page 196 shows some
of the complex semantic relations in test sentence (10) with four relative clauses (page
190). Some of these relations are signalled to the model by semantic features and their
relative level of activation, some relations (such as co-reference) have to be inferred by
the model during processing. In general, more clauses entail more semantic relations in
a sentence which entails more message features being involved in representing sentence
meaning. All message features are concurrently active from the beginning of produc-
tion, hence the more clauses a target utterance has, the more features are active. This

25ArtiVcial grammar learning would perhaps be a suitable paradigm to test this claim. Intuitively, it is
obvious that sequence learning from s1, s2, . . . , sj to predicting sj+1 cannot succeed if j=2 because no
tentative prediction from s1 and s2 can be tested within the learning sequence.
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information has to be processed by the hidden-layer and utilized sequentially at the
right position. But the hidden-layer is of Vxed size and consequently there are limits
to the amount of information it can process eUectively. Neural networks such as the
Dual-path model are sensitive to activation diUerences between units, but only to a
certain extent. If hidden-layer activation states become too similar for distinct inputs,
they will not lead to distinct output anymore. With deeper embeddings and more se-
mantic information exciting the hidden-layer units, diUerences in the message might
go undetected, leading to more errors in the model’s productions.

A third factor in the performance degradation lies in the way the model represents
syntactic knowledge over one set of connection weights. Although the hidden-layer
develops specialized units or assemblies of units to represent speciVc aspects of syntax,

1 1

1
1

1
-1

-1 -1

i1 i2 i3

h2h1

o1

SN1 SN2

Figure 6.13: A feed-forward net-
work with two subnetworks each
implementing the XOR-function.

these are not discrete components which are
functionally independent, because every feature
in the event semantics-layer projects into ev-
ery hidden-layer unit. Hence, additional fea-
tures in test items with more embeddings can
disturb specialized assemblies and cause less
distinct or even disruptive patterns of activa-
tion at the where and compress-layer. To il-
lustrate this point, consider the simple feed-
forward network of Figure 6.13 with a Vring
threshold of 1 for each unit. Each subnet-
work, SN1 = {i1, i2, h1, h2, o1} and SN2 =
{i2, i3, h1, h2, o1}, is implementing the logical
XOR-function.26 However, if input unit i3 (i1) is
active this will destroy the XOR behavior of SN1
(SN2) in case i1 = i2 = 1 (i2 = i3 = 1). The in-
put units {i1, i2, i3} of this network can be con-
ceived of as features in the event semantics of
the Dual-path model, the hidden units {h1, h2}
as hidden-layer units, and the output unit o1 as
a compress-layer unit. Suppose the model has been trained on sentences with two rela-
tive clauses and has developed a policy to deal with a pair of input features resembling
the XOR-function. In testing the model on utterances with more embeddings a third
feature is activated in the message which projects into one XOR-subsystem. This ad-
ditional feature might then interfere with the processing of semantic relations in other
clauses of the test utterance similar to the disruption of the XOR-behavior. As a con-
sequence, activation is erroneously propagated to the compress-layer, which represents
abstract syntactic frames. This causes the model to report wrong syntactic choices to
the word-layer (e.g., by activating an incorrect word category) and produce inaccurate
sentences. The more clauses (and thus semantic features) a novel test utterance has,

26XOR(x, y) = 1 iU x 6= y with x, y ∈ {0,1}.
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the more such interference might occur and the less accurate the model’s production
becomes.

If this explanation is correct, we should observe an increasing amount of intrusions
of spurious activation at the compress-layer with increased depth of embedding. To
test this, I recorded the activation states of the compress-layer in the way described in
Section 6.7 while the model processed genuinely right-branching test utterances with

Sequence compress-layer unit C25
of word by depth of embedding

categories 1 2 3 4
NOUN

VERB

NOUN

THAT

VERB

NOUN

THAT

VERB

NOUN

THAT

VERB

NOUN

NOUN

THAT

VERB

NOUN

NOUN

Figure 6.14: Activation of compress
unit C25 for right-branching sentences
with up to four relative clauses.

up to four relative clauses. The over-
all picture resulting from this procedure
was that the number of completely inac-
tive units decreased with the depth of em-
bedding suggesting that patterns of acti-
vation became less and less distinct at the
compress-layer. As an example, I plot-
ted the activation states of unit C25 which
was identiVed earlier as encoding syntac-
tic diUerences in the hierarchical organi-
zation of sentences (Figure 6.14). Four
sentences were picked which shared the
same initial segment of word categories
(one sentence for each of four levels of em-
bedding). While trained structures with
one and two embeddings showed a clear-
cut pattern, with all units either active or
silent, there are Vrst intrusions of activa-
tion in the triple embedded structure and
even more perturbing activation in the test
utterance with four relative clauses. This
blurring of activation diUerences caused
the model increasing diXculty to map its
message input onto the syntactically cor-
rect sentence form. It is important to point
out that less distinct patterns did not re-
sult from a failure to learn; the model was
not exposed to sentences with four em-
beddings and it learned two embeddings
to perfection. Nor do these patterns stem
from erroneous word feedback because the model produced all plotted sentences cor-
rectly. Hence, they must result from additional semantic features in the message of
novel utterances, interfering with learned procedures for sequencing clauses in simpler
structures. This interference leads to a degeneration in performance with depth of em-
bedding since deeper embeddings entail more semantic information in the message.

To summarize, the Dual-path model’s recursive productivity is degrading with in-
creased sentence complexity and this property can be explained by multiple factors in-
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cluding sentence length, the number of semantic dependencies in the sentence, and
interferences from novel combinations of message features. No stipulated constraints
on the language processor are necessary to account for this behavior. The proposed
explanation of degrading performance is broadly consistent with recent interference-
based theories of complex sentence processing in humans (Gordon et al., 2001; Lewis
and Vasishth, 2005).

In response to question (iv)—can gracefully terminating recursive productivity, be
achieved without learning explicit rules of recursive composition?—the answer should
be fairly obvious: yes, this has just been demonstrated. It might be objected that such
rules are merely ‘hidden’ but not absent in connectionist networks (see the debate be-
tween Marcus (1999a,b) and Seidenberg and Elman (1999a,b)). There are two aspects
to this kind of objection, the training environment of the Dual-path model was gener-
ated using explicit rules and the model was trained with feedback from a ‘teacher’ on
items from this environment. Weights in the model are adjusted according to behavioral
mismatches with the recursively generated training patterns. Therefore, it might be ar-
gued, recursive rules become a part of the model itself during learning; the model does
not eliminate rules but rather implement such rules when viewed as integrated system
consisting of the training items, the network and its control structure. Such objections,
however, are misguided in several ways. First, feedback links the structural properties
of the training set with model behavior, but generating feedback does not require the ap-
plication of recursive rules. The model is taught in a word-to-word prediction paradigm
in which every word output is compared with the desired target. Thus, feedback results
from a local comparison of word positions, and does not inform the model about the
grammaticality of a complete output sequence. And secondly, through such feedback,
the model is not instructed to generate sentences in the same way as the rule-based, arti-
Vcial language generator. The training signal carries no information whatsoever about
these rules of generation, although it does carry information about the extension of
these rules. Consequently, the model is not taught the recursive rules involved in gen-
erating the training environment, it is taught to behave as if it implemented such rules.
A third point of confusion concerns the notion of implementation itself.27 A connecti-
onist system such as the Dual-path model might be describable as implementing rules
of recursive syntax. But there is still an ontological diUerence between systems which
at some level of description follow linguistic rules in processing and systems which are
rule-based. The diUerence is that in the latter but not the former systems rules are
causally eXcacious components. In this sense at least, the Dual-path model approach to
recursive productivity eliminates syntactic rules in complex sentence processing.

27Elsewhere I argued that the concept of implementation is not well-deVned and in need of explication
in order to avoid fruitless debates in physical and biological computation (Fitz, 2007).
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6.8 Conclusion

Virtually everyone involved in the study of language can agree that grammars are map-
pings between meaning and phonological form. As Pullum and Scholz (2008) remark,
however, rarely does anyone seem to take this commonplace seriously in how grammar
is modelled. Certainly not the mainstream of theoretical linguistics, where grammar is
a system to generate sentences, although the view of grammar as a conventionalized
meaning-to-form mapping is a central tenet of Cognitive and Construction Grammar
(Taylor, 2002; Goldberg, 2006). In these theories, grammar is not an autonomous de-
vice which interfaces with semantics and phonology but a stored inventory of direct
associations between meaning and form. A system for language processing has to learn
such pairings of meaning and form by transducing phonological representations into
meaning representations in comprehension and vice versa in production. The Dual-path
model implements transduction in a straightforward way in that it maps message input
onto appropriate sentence forms. By learning from message-sentence pairs the model
develops internal representations which constrain this mapping. These constraints can
be viewed as the grammar of the target language, having evolved from successfully
learning to transduce between types of representations. Thus, the grammar acquired
by the Dual-path model is not a means for building syntactic representations which are
then imbued with semantic or phonological content, grammar in the model associates
such content in unmediated transduction.

In the experiments described in this chapter, I found modelling grammar as a fall-out
product of meaning-to-form transduction to be a quite powerful approach to linguistic
generalization. Unlike other neural network models which have been tested on their
ability to learn complex sentence structure (e.g., the SRNs of Elman (1991) and Christian-
sen and Chater (1999b)), the Dual-path model is not inducing grammar from sequences
of words but develops a grammar in learning to map semantic content onto sequences
of words. In this process the model draws on statistical regularities in the sentence input
(e.g., frequencies of lexical co-occurrence) but also on semantic information in the mes-
sage, such as role-to-concept bindings and the event structure of intended utterances.
As the model learns to interpret and utilize this information, transduction becomes in-
creasingly accurate to the point where the model’s grammar reWects all meaning-form
pairings of the trained language. Generalization occurs because of semantic similarities
between constructions encoded in the message input. Novel utterances are produced
correctly to the extent that they are relevantly similar in meaning to experienced utter-
ances. I argued throughout this chapter that similarity-based transduction can explain
structural generalization, strong systematicity, and recursive productivity in the Dual-
path model.28 These generalization capacities and their characteristic behavioral proVles
testify to the model’s potential as a suitable model for human language processing.

Generalization is enabled but not guaranteed by or reducible to semantic similarity

28For the remainder of this thesis I will therefore refer to the Dual-path model, modiVed for the pro-
cessing of multi-clause utterances, as the recursive Dual-path model .
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between experienced and novel utterances. Whether the model generalizes also depends
on the strength of learned meaning-form associations, i.e., on distributional properties
of the learning environment. This factor was clearly identiVable in Section 6.7 on the
diUerential processing of right-branching and center-embedded constructions. Further-
more, generalization of course depends on the model’s transduction grammar, i.e., on
the type of constructions experienced in learning. In Section 6.7 it was argued that the
model failed to be recursively productive in an impoverished input condition. Semantic
representations were identical across conditions, but the model was ‘blind’ to similari-
ties in the message.

Representations were hand-coded and feature-based similarities imposed on the
model by the experimenter may not yield optimal generalization behavior in diUer-
ent input conditions. It would therefore be a worthwhile future project to Vnd semantic
representations which maximize generalization capacities for changing learning envi-
ronments, e.g., through evolutionary programming. Based on these Vndings, it might be
possible to deVne a metric of semantic similarity which predicts diUerential generaliza-
tion and to test the sensitivity of human learners to this metric in sentence processing.





Chapter 7

Learning polar interrogatives

In this chapter I exploit the generalization properties of the recursive Dual-path
model to provide evidence for the data-driven learnability of complex polar
interrogatives. I will argue that the model favors structure-dependent over
structure-independent auxiliary fronting and identify learning conditions in
which it can produce correct complex polar interrogatives in the absence of
positive exemplars of these structures in the input. The model’s behavior is
matched against child language data and compared with other approaches to
complex question learning. Since the model does not implement a traditional
kind of language-speciVc universal grammar, these results are relevant to the
poverty of the stimulus debate.

7.1 The general controversy

The acquisition of natural language is a complex process in which children learn to
comprehend and produce utterances of their native speech community from the ambi-
ent language in their social environment. One of the most persistent controversies in
cognitive science concerns the question whether this task can reliably be accomplished
based on the linguistic input the child receives during the ’critical period’. Given some
property P of a language L, can P be known through sensory experience alone, or do
we need to posit language-specific sources of information other than the ’primary lin-
guistic data’ to account for the fact that children eventually come to know P? Many
syntactic properties are abundantly warranted in the linguistic input for children to
acquire knowledge of P from experience. Such P include word-order, branching-direc-
tion, case marking, and the morphosyntax of tense and aspect. Although word order, for
instance, diUers across languages, most languages have a preferred or dominant word
order which can be learned from the structures in the linguistic input. In other cases,
however, the experiential basis to infer P seems considerably weaker. Prime examples
of such P (in English) are subjacency constraints on forming complex wh-questions
(Chomsky, 1986), ‘want-to’ contraction (Crain and Thornton, 1998; Crain and Pietroski,
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2001), and the assignment of nominal antecedents to anaphoric one (Baker, 1978; Lidz,
Waxman, and Freedman, 2003).1 These properties diUer from, say, word order in that
they involve a generalization which has exceptions. The verbal elements want and to
can be contracted into wanna in some constructions such as:

(1) a. Who does he want to cook dinner for?
b. Who does he wanna cook dinner for?

In other constructions, however, contraction is not permissible:

(2) a. Who does he want to cook dinner?
b. *Who does he wanna cook dinner?

In acquisition, children have to form a generalization P = “want and to can be con-
tracted unless X” rather than P ′ = “want and to can be contracted”. While P ′ could
be learned from relevant examples, it has been argued that correct contraction P is not
learnable from experience because of the limited availability of input which restricts
P ′ appropriately (Crain and Pietroski, 2001). Similarly, subjacency and anaphoric one
are presented as problematic in the literature, because children could not retract from
overgeneralization. The unconstrained generalization P ′ is warranted by the linguistic
input, but the more complex property P is underdetermined by experience. The ac-
quisition problem is further exacerbated in that child-directed speech is non-uniform.
Constraining evidence might be available to some children but not others. And yet all
normally developing children rapidly converge towards knowledge of P regardless.

The contraction example illustrates the view that there are syntactic properties P
which are neither suXciently nor reliably supported by a learner’s environment. In
other words, there is a gap between the information provided by sensory experience of
L and what children end up knowing about L. This relational deVcit between learning
and experience is often referred to as the poverty of stimulus.2

Properties P of L for which such a gap exists, harbor an explanatory problem given
that children eventually acquire adult-like knowledge of P . This explanandum has
been labelled ‘hyperlearning’ (Pullum, 1996): how do children invariably settle onto
knowledge of P in the absence of suXcient evidence (either positive or negative) to iso-
late P from its competitors? Instances of hyperlearning seem to necessitate a popular
doctrine—linguistic nativism—which stipulates the innate guidance of learning through
language-specific control mechanisms (universal grammar). If knowledge of some P
does not derive from sensory experience of sentences in L, it is best explained from
within. This line of reasoning is exempliVed in Lidz et al. (2003) who contend that
knowledge of (some) syntactic properties “must derive from linguistic structure inher-
ent in the learners themselves because [...] the input to which infants are exposed does

1For more examples confer the list in MacWhinney (2004).
2Poverty of stimulus is an umbrella term for a variety of diUerent claims, including the degeneracy of

the input, the unavailability of corrective evidence, the inductive quandary of Vnite input versus produc-
tive inVnity, and the formal non-learnability results of Gold (1967).
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not unambiguously support the linguistic representations that they create” (p. B72). Na-
tivist arguments are strengthened when hyperlearning occurs in the absence of mistakes
during syntactic development (‘error-free learning’, MacWhinney, 2004).

There are several strategies to avoid the nativist “solution”. One can contest that
children unerringly arrive at knowledge of P by providing developmental data to the
contrary. This approach undermines the explanatory value of universal grammar, but it
does not answer how knowledge of P can be established from deVcient input. Secondly,
it could be demonstrated that the primary linguistic data is suXciently rich to obtain
knowledge of P from experience by showing that corpora of child-directed speech con-
tain more relevant samples which constitute direct evidence for P than claimed. In this
case, there is no poverty of the stimulus and hence no need to explain hyperlearning.
Another way to approach the learning problem is to argue that the empirical basis of a
child is broader than supposed in that it comprises linguistic structures which are not
paradigm cases but nonetheless aid the acquisition of P in relevant ways. Learning in
many domains is path-dependent, i.e., one cannot get everywhere from just any state of
knowledge. There may be a path to P which opens up once other pieces of knowledge
about L have been established through experience. If the child’s learning mechanism
draws on wider resources in the right order, the data-driven learnability of P could
become plausible even though pertinent samples of a syntactic structure may be highly
infrequent in the linguistic environment. And Vnally, one might accept that in a strict
sense the primary linguistic data is impoverished (i.e., some target structure exempli-
fying P is largely absent) and that innate learning biases are required to explain the
fact that children reach adult-like knowledge of P with high probability. Yet, it need
not be assumed initially that these biases are language-specific. It could be argued that
children’s input Vltered through the architecture of a processor which incorporates do-
main-general learning biases of some sort is suXcient to obtain knowledge ofP . Ideally,
such an argument would be based on a computational model of syntactic development
which can demonstrably and reliably acquire knowledge of P from noisy, realistic dis-
tributions.

I will now look more closely at a speciVc linguistic structure that has often been cited
as a paradigmatic example of the poverty of stimulus—yes/no-questions with relative
clauses. The controversy over the learnability of these questions forms an important
strand in the nature versus nurture debate since several decades. The strategies and
approaches described above have all been taken in this debate and will be illustrated in
more detail at work.

7.1.1 The learning problem

The issue of interest here is whether normally developing children can arrive at syntac-
tic knowledge of P in Lwhich cannot conceivably have been extracted from the speech
they were exposed to. The strongest and most frequently adduced case of such knowl-
edge concerns auxiliary fronting in English polar interrogatives. Declarative sentences
can be transformed into yes/no-questions by inverting the positions of the sentence ini-
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tial subject NP and the verb auxiliary. Suppose in acquisition a child encounters the
declarative sentence

(3) The dog is barking.

together with examples of yes/no-questions

(4) Is the dog barking?

From a purely logical point of view there are many hypotheses about the underlying
rule of grammar a child may come to entertain which are compatible with this linguistic
experience, for instance, ‘move the third word in front’ or ‘place the left-most auxiliary
in front’. For single-clause sentences such as (3), which contain only one auxiliary, the
latter rule of question formation is descriptively adequate, but only incidentally. It is
invalidated by declaratives which contain multiple clauses with auxiliaries, such as

(5) The dog that is chasing the cat is barking.

Placing the left-most auxiliary in front yields the ungrammatical question

(6) *Is the dog that chasing the cat is barking?

instead of the grammatical form

(7) Is the dog that is chasing the cat barking?

Multi-clause sentences such as (5) show that it is the auxiliary of the head (main clause)
which is moved to the initial position and not, e.g., the sequentially Vrst auxiliary. Lin-
guists call such transformations structure-dependent to emphasize that they are gov-
erned purely syntactically. That is to say, the choice of which auxiliary is placed in the
initial position does not depend on the linear order of constituents but only on the hier-
archical organization of the sentence. The structure-dependence of auxiliary fronting in
English was Vrst pointed out by Chomsky (1965) and he connected polar interrogative
learning with the insuXciency of the primary linguistic data. According to Chomsky,
complex questions such as (7) are virtually absent from child-directed speech. This claim
is expressed in Chomsky’s notorious statements that “a person might go through much
or all of his life without ever having been exposed” to complex yes/no-questions and
that “you can go over a vast amount of data of experience without ever Vnding such a
case” (see Piattelli-Palmarini, 1980). Moreover, Chomsky argued that simple questions
like (4), which are quite frequent in child-directed speech, support a structure-indepen-
dent rule because in both cases the auxiliary which is closest to the subject NP is placed
in front. Hence, children should form an erroneous generalization, and since they rarely,
if ever, hear sentences of the appropriate sort—center-embedded interrogatives of type
(7)—they will not be able to retract from it based on the sentences they hear. Because
linguistic experience is impoverished in this way but children learn structure-dependent
auxiliary fronting nonetheless, Chomsky (1975) suggested “the only reasonable conclu-
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sion is that UG contains the principle that all such rules must be structure-dependent”.
The view that structure-dependent knowledge must be innate has since been endorsed
by many linguists and psycholinguists (e.g., Crain and Nakayama, 1987; Crain and Piet-
roski, 2001; Legate and Yang, 2002).

7.1.2 Three empirical hypotheses

For the sake of argument, let’s assume that Chomsky’s claim regarding the poverty of
the stimulus is true of child-directed speech with respect to polar interrogatives; I will
summarize the empirical evidence for this claim below. Then, structure-independent
rules of auxiliary fronting are consistent with the learner’s input and readily available
from exposure to single-clause questions. Hence, such rules would be inductively sup-
ported and because they arguably are simpler than the correct rule, we would expect
children’s early productions to reveal errors deriving from the wrong choice of auxil-
iary fronting rules. Surprisingly, however, children do not seem to select any of the
incorrect alternatives, not even temporarily. Crain and Nakayama (1987) conducted
an experiment in which complex polar interrogatives were elicited from children aged
[3;2]–[5;11]. Subjects were requested to ask questions to a doll, e.g., “ask Jabba, if the
boy who is watching Mickey Mouse is happy?”, and these elicited sentences were scru-
tinized for errors. As their main result, Crain and Nakayama (1987) found that no child
produced complex yes/no-questions in which the auxiliary of the relative clause was
fronted. All of their subjects seemed to entertain a structure-dependent hypothesis and
none had overgeneralized to an incorrect structure-independent rule.3 Consequently,
according to this study, children do not commit structure-independent errors in syn-
tactic development which then require correction at a later stage; auxiliary fronting
appears to be a case of error-free learning.4 It must be pointed out, however, that this
study is neutral with respect to the question whether children develop knowledge of
syntactic structure without being exposed to the relevant kind of evidence that could
warrant such knowledge. In other words, while auxiliary fronting in polar interroga-
tives might be an example of error-free learning, it has not been established that it is a
case of hyperlearning.

One can take error-free learning as evidence for innate language-specific knowledge
(as Crain and Nakayama do), but one might just as well conclude that the very learning
problem for auxiliary fronting in its standard rendition of Section 7.1.1 is phrased in a
misleading way. The problem was formulated as a choice between two principles and

3This is not to say that these children did not make any errors in this task. I will come back to this
issue later when comparing production errors of the recursive Dual-path model with children’s error
proVles in the study of Crain and Nakayama (1987).

4The methodology of this study can be criticized, because the correct relative clause (without auxiliary
displacement) was provided by the experimenter in the elicitation instruction and could be imitated by
the subjects to yield correct questions. Furthermore, Thomas (2002) remarked that these results “only
showed that children don’t produce structure-independent questions; it didn’t prove that children reject
[them] as ungrammatical” (p. 67). For an extensive review and criticism of the Crain and Nakayama
(1987) study, confer Ambridge, Rowland, and Pine (2008).
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it was presented as a puzzle of how children could avoid the incorrect and arrive at the
correct generalization. But if children do not make mistakes which could be attributed
to an incorrect generalization, then they apparently never entertain overgeneralizations
which derive from simple polar questions in the input. In fact, if children never witness
a complex polar question, as the nativist argument assumes, why would they project
any syntactic hypothesis about such structures in the Vrst place? Similarly, if children
never witness a construction in which an auxiliary is extracted from a relative clause,
why would they ever entertain such a rule for polar questions? The formulation of
the learning problem presupposes that inductive generalization from simple to complex
polar questions would be the natural and obvious learning strategy for a child. But
the data of Crain and Nakayama suggests that this assumption is unwarranted, oth-
erwise we would observe characteristic overgeneralization errors. If syntax learning
does not proceed by inductive generalization, there is no inductive underdetermination
in choosing between competing hypotheses and the innateness of structure-dependence
would seem to be a solution to a learning problem which might not exist in the sketched
form. The question how auxiliary fronting is acquired, however, does not go away just
because the logic of the ‘classical’ formulation of the problem might be Wawed.

Nativist accounts of auxiliary fronting might rest on a misguided conceptualization
of the learning problem as an inductive choice. A number of further assumptions seem
to be implicit in the claim that children are unable to infer the correct fronting rule from
linguistic experience:

(i) polar questions are formed from declaratives by transformational rules over
strings of words, and these rules are the child’s learning target.

(ii) children require a critical amount of positive samples of complex polar interroga-
tives of type (7) to learn yes/no-question formation, and this amount is not avail-
able.5

(iii) only complex polar interrogatives of type (7) are relevant to learning yes/no-ques-
tion formation.

Furthermore, the nativist account assumes that

(iv) innate priming best explains error-free acquisition data such as Crain and Naka-
yama’s.

In computational terms, learning problems involve a target domain, a learning mech-
anism, and an information source. Trivially, the success of a learning systemwill depend
on the speciVcation of these components (and the criterion of success). In the above for-
mulation of the task, the learner must decide between competing hypotheses in the
form of monolithic syntactic rules which is claimed to be impossible without innate
priming. This inductivist approach contrasts with a constructivist approach in which

5To put it diUerently, even if there were some complex polar interrogatives in the input, children
would not be sensitive to them.
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the syntax of polar questions is assembled piecemeal from experience. If we reformu-
late the learning target in terms of simpler building blocks, it may become tractable: (a)
learn the syntax of single-clause yes/no-questions (subject/auxiliary inversion), (b) un-
derstand the function of relative clauses, (c) conjoin this knowledge to produce correct
multi-clause yes/no-questions.

In poverty of the stimulus arguments it seems to be presupposed that the acquisition
of polar questions precedes the acquisition of hierarchical clause structure. A study on
syntactic development by Diessel and Tomasello (2005) shows, however, that children of
the average age in the Crain and Nakayama (1987) study master various relative clause
constructions quite well as measured in sentence production (see also Kidd et al., 2007).
In fact, it is a methodological necessity in the Crain and Nakayama experiments that
children understand the request to produce questions which contain a relative clause.
It can therefore be assumed as plausible that children in these experiments had an un-
derstanding of the function of relative clause constructions as modiVers, to Vx a topic
and/or referent, or to provide additional information. As a consequence, they have some
knowledge of clause boundaries, clausal dependencies and hierarchical sentence struc-
ture. Furthermore, it can be assumed that children know about the pragmatic function
of simple yes/no-questions based on the primary linguistic data. On Chomsky’s view
the correct transformational rule is inaccessible to children, but if such knowledge is
brought to the table, it would rather be in need of explanation why relative clauses
should interfere with auxiliary fronting. Supposing that clausal units and dependen-
cies are recognizable by the child and that diUerent units serve diUerent communicative
functions, the structure-dependent principle may be learnable precisely because it is
structure-dependent.

In similar vein, Van Valin (1998) proposed a pragmatic motivation why the identiV-
cation of additional information may prevent a child from fronting the wrong auxiliary:

Questions are requests for information and the focus of a question signals the in-
formation desired by the speaker. It makes no sense, then for the speaker to place a
focus of the question in a part of a sentence which is presupposed, i.e., which con-
tains information which the speaker knows [...]. The content of adverbial clauses
and restrictive relative clauses is normally presupposed, and consequently con-
structing questions with the focus in one of these structures generates a pragmatic
contradiction. (p. 232)

Based on such pragmatic considerations Van Valin formulates a general restriction on
the formation of simple yes/no-questions and extends this principle to the more compli-
cated wh-questions. In this manner, the learnability problem for subjacency constraints
on wh-questions, another prime suspect for the poverty of stimulus, is reduced to ac-
quired knowledge of forming yes/no-questions with embeddings. According to Van
Valin, this learning task can in turn be grounded in experience of simple yes/no-ques-
tions plus prior semantic information and pragmatic constraints.

In a nutshell, then, instead of learning a movement rule by direct observation, chil-
dren may be capable of assembling the syntax of complex yes/no-questions from more
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basic principles of question formation and relativization:

Hypothesis-1: Complex polar interrogatives can be learned from simple
polar interrogatives and relative-clause constructions in the absence of pos-
itive exemplars in the input.

I will test this hypothesis in my computational model of syntactic development in Sec-
tion 7.2. Hypothesis-1 is rooted in doubt about whether the learning task for polar
interrogatives—assumption (i)—is adequately described in standard formulations. If
Hypothesis-1 can be validated, this would also cast doubt on assumptions (ii) and (iii),
viz that some complex polar interrogatives are required in the input and that the target
syntax could not be arrived at in other ways, e.g., by piecemeal, bottom-up construction
from simpler building blocks.

Assumption (ii) suggests that if there was suXcient and unambiguous evidence,
children could learn the proper syntactic rule for auxiliary fronting. Purely data-driven
learning could succeed if only there was enough of the right kind of examples present
in child directed speech. In this case, there would be no inductive or logical problem
involved in learning structure-dependent principles. Whether positive forms are suf-
Vciently frequent to rule out competing syntactic principles is a downright empirical
question. But what is the right kind of evidence and how much of it would be suX-
cient? Pertinent information is conspicuously absent from the nativist literature, apart
from Wat denials that there is any such evidence. Pullum (1996) attempts to debunk these
claims as unwarranted. He Vrst argues that there is more evidence for the correct gener-
alization than supposed (see also Sampson, 1989). According to Pullum, it is not merely
polar questions like (7), but also other types of questions such as

(8) If you’re done with eating, could I have your french fries?

and even wh-questions such as

(9) Why couldn’t anyone who was at home close the window?

which constitute evidence for the correct auxiliary fronting rule. In forming questions
(8) and (9) there is a similar structure-dependent auxiliary movement involved as in (7).
Placing the Vrst auxiliary of the corresponding declaratives in sentence-initial position
would result in ungrammatical questions:

(10) *Was anyone who at home could close the window?

Thus, Pullum suggests that learning complex polar interrogatives is supported by a
larger variety of positive examples in the primary linguistic data; any observed main
clause auxiliary displacement in utterances with subordinate or complement clauses
might be relevant. Although target structures such as (7) may be highly infrequent, it
is not too far-fetched to expect such mundane questions as (8) and (9) to occur in child-
directed speech. To determine the frequency of such expressions, Pullum examined the
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Wall Street Journal corpus in the Penn TreeBank and suggests that it is premature to
think

that the success rate of children at learning the structure-dependency of auxiliary
fronting cannot be explained in terms of data-driven learning. The utterance to-
kens that could provide the crucial data apparently make up between 1% and 10% of
interrogatives. A child obviously hears hundreds of thousands of sentences while
engaged in language acquisition, and thus will hear thousands of examples that
crucially conVrm the structure-dependence of auxiliary fronting (p. 509).

With auxiliary fronting, he concludes, the “strongest and best-known pillar of support”
for the poverty of the stimulus and hyperlearning collapses (ibid.).

The results of Pullum’s corpus analysis can be challenged in several ways. First, it is
debatable whether he adduces the right kind of positive evidence. His claim that ques-
tions of type (8) and (9) are relevant to the acquisition of complex polar interrogatives
has not been investigated in developmental psychology or within computational learn-
ing models. Secondly, it is unquestionable that the examined corpus is not representa-
tive as a collection of linguistic material typically available to children.6 To challenge
Pullum’s account, Legate and Yang (2002) looked at the frequency of the structures (8)
and (9) in all Vles of the Nina corpus in the Childes database (MacWhinney, 2000).
They found that the percentage of relevant sentences is actually much lower than Pul-
lum and Scholz (2002) claimed. Although 44% of all sentences were questions, only
0.068% of these were of the (8) and (9) kind. Searching multiple Childes corpora, Mac-
Whinney (2004) looked at the frequency of sentences of type (7) in conjunction with
sentences containing auxiliaries in two positions, such as

(11) Will the boy who is wearing a Yankee’s cap step forward?

He found only 1 such question in three million items. MacWhinney did not rigorously
quantify the frequency of wh-questions with relative clauses (sentences of type (9)) in
Childes. He claims, though, that “there are hundreds of input sentences of this type in
the Childes corpus” (p. 890).

Thus, frequency estimates for relevant input vary considerably across the litera-
ture. The diUerence in several orders of magnitude results from diUerent views on what
counts as relevant evidence and which corpus is analyzed. What seems more important
than the diversity of estimates, however, is the question how to test claims of relevance
and frequency. Unfortunately, none of these authors comments on the empirical signif-
icance of the detected number of occurrences of input samples. Why would 1% of type
(7)–(9) questions be suXcient to guide a child towards selecting the right kind of auxil-
iary fronting rule, but not, say, 0.001%? Is there a threshold frequency for learnability
and why? Even if there was reliable data concerning the occurrence of various types of

6Pullum (1996) and Pullum and Scholz (2002) acknowledge the inadequacy of their source but of
course some data is better than none. They concede that their corpus analysis is of preliminary nature
and does not strictly refute arguments from the poverty of stimulus.
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complex questions, this could merely undermine claims that there is not any evidence in
child-directed speech. What is required in addition is a detailed account of how this ev-
idence is processed and utilized in a concrete learning mechanism in order to determine
whether there is suXcient evidence for purely data-driven learning to succeed.7

To summarize, it has been suggested by a number of authors (Sampson, 1989; Pul-
lum, 1996; Pullum and Scholz, 2002; MacWhinney, 2004) that assumptions (ii) and (iii)
behind the poverty of stimulus argument may be misguided. Perhaps complex polar
interrogatives are suXciently frequent in child-directed speech, perhaps other question
types such as (8) and (9) are conducive to their acquisition, or even suXcient by them-
selves. Based on these suggestions I formulate

Hypothesis-2: Complex polar interrogatives can be learned from exposure
to simple polar interrogatives, relative-clause constructions, and wh-ques-
tions with embeddings.

which will be tested in the recursive Dual-path model in Section 7.3.2. This model pro-
vides an explicit learning mechanism for sentence production which may be capable of
acquiring the syntax of question formation in the absence of positive evidence. Testing
Hypothesis-2 in a computational framework, it might be possible to substantiate the
idea that auxiliary fronting can be learned from simpler and similar structures whose
occurrence is warranted in child-directed speech.

7.1.3 Statistical learning

Arguments against the data-driven learnability of complex yes/no-questions assume
that positive examples of these structures are highly infrequent in the ambient language.
While this might be the case, sparsity alone does not entail non-learnability unless it is
also presupposed that children’s learning mechanisms are not sensitive enough to ex-
ploit this evidence (assumption (ii)). In addition, such arguments often assume that by
innate structure-dependent priming best explains the fact that children learn these con-
structions nonetheless (assumption (iv)). Recently, both these assumptions have been
challenged by statistical approaches to language acquisition, in particular connectionist
learning models such as simple-recurrent networks (SRN) (Elman, 1990, 1991). These
models draw on the combined explanatory power of distributional properties of the
input and domain-general learning mechanisms. Similar to an innately constrained lan-
guage acquisition device, these models display processing biases qua architecture, but
these biases are language-unspecific and adaptive. Constraints on processing are not

7In his keynote address to the 32nd Boston University Conference on Language Development 2007,
O’Grady lamented that frequency haggling alone will not resolve the question whether some construction
is learnable or not. For the case of ‘want-to’ contraction he sketched a learning account which does not
rely on any positive evidence in the input. On this account, “the core properties of natural language
syntax follow from the operation of an efVciency-driven [...] processor” (O’Grady et al., 2008). It remains
open whether such an account could also be given for auxiliary fronting.
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biologically Vxed but can evolve in the course of learning and change with linguistic
experience.

It has been demonstrated in many cognitive domains that SRN are useful for learn-
ing various types of statistical regularities in the input. They record the frequency of
individual units of learning, e.g., lexical items, the frequency of co-occurrence of units,
e.g., pairs of words, and the transitional probabilities between units, i.e., the predictive
probability of one word, given the previous word. Accreting evidence from psycholin-
guistic research supports this approach to language learning in that children, even in-
fants, are sensitive to statistical information in the input at various levels of language
processing. For instance, Maye et al. (2002) have shown that infants’ development of
phoneme categories can be inWuenced by distinct distributions of speech sounds. In-
fants are also capable of segmenting continuous speech stream into words based on
transitional probabilities in sequences of syllables (SaUran et al., 1996, Aslin et al., 1998,
SaUran, 2001). Moreover, Gómez and Gerken (1999) have shown that infants can track
adjacent and remote sequential dependencies in word ordering, thus acquiring the syn-
tax of artiVcial Vnite-state grammars. An overview of many more recent results in
statistical language learning can be found in Gómez (2007).

Hypotheses-1 & -2 conjecture that the syntax of complex polar questions could
be assembled from more basic structures; simple yes/no-questions, relative clause con-
structions, and complex wh-questions. The process of structural generalization may be
aided by the relative frequencies of substructures in grammatical and ungrammatical
yes/no-questions in the input to a statistical learner. For example, grammatical yes/no-
questions contain substructures such as

(12) ...who AUX VERB -ING or ...who AUX ADJECTIVE

whereas yes/no-questions which were formed by some structure-independent rule con-
tain substructures such as

(13) ...who VERB -ING or ...who ADJECTIVE.

Substructures (13) from ungrammatical interrogatives, although possible substructures
of other grammatical sentences,8 may occur less frequently in a learner’s linguistic en-
vironment than substructures (12) from grammatical interrogatives. If this is true for
natural language input, and if the learner is suXciently sensitive to substructure fre-
quencies, she might form statistical expectations which facilitate the acquisition of cor-
rect polar interrogatives and interfere with the development of syntactic principles for
ungrammatical polar interrogatives:

Hypothesis-3: Distributional information in the input is suXciently rich
for statistical learners to acquire the correct auxiliary fronting principle for
yes/no-questions.

8For instance, ‘the athlete who diving killed’ or ‘the climber who hungry bears ate’.
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This hypothesis has been tested in two previous studies involving SRNs, the work of
Lewis and Elman (2001) and Reali and Christiansen (2005). These studies aimed at
showing that when trained on English language input, SRNs are biased towards prefer-
ring grammatical over ungrammatical polar interrogatives in the absence of any sample
of this construction in the learning environment. Before I describe the recursive Dual-
path model approach to question learning, I will Vrst review the results from these SRN
studies.

The Lewis & Elman model

Lewis and Elman (2001) trained an SRN on an artiVcial English-like language containing
simple polar questions and sentences with relative clauses. Then the network was tested
on complex polar questions such as

(14) Is the boy who is smoking crazy?

At each position in the target sentence the SRN predicted a vector of lexical categories
for the subsequent word in the sequence. The network’s predictions for sentence (14)
are depicted in Figure 7.1. After the initial segment Is the boy..., the SRN activated

Figure 7.1: The SRN of Lewis and Elman (2001) tested on novel polar questions. The
strength of the network’s word category predictions is represented vertically above each
target word.

the relative pronoun category at the position of who although the network had not
experienced polar questions with embeddings in the input. Following the pronoun,
the SRN activated the auxiliary category for the target is and did not activate a verb
form as would be expected had the network learned structure-independent auxiliary
fronting. Once the participle category for smokingwas predicted, the network activated
the adjective category at the relative clause boundary, even though these two word
categories never co-occurred in training. Based on these results, Lewis and Elman (2001)
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suggest that “the network has formed an abstract representation of aux-questions, and
generalized over the NP forms.”

It is diXcult to assess the signiVcance of the Lewis and Elman (2001) results for a
number of reasons. First, the authors provide too little information about their training
set. It is not clear how much lexical and structural variation there was in the artiVcial
language. One example of a declarative with relative clause is given, but it is not ex-
plained which types of relative clauses could occur in training (e.g., whether they could
be subject- and object-modiVer and relativize both roles). This example (The boy who
is smiling...) matches the embedding of Figure 7.1 in that it is subject-relativized with
a progressive verb form and this type of relative clause may have been the only one
in the training language. It can also not be ruled out from the information given, that
the language contained only embeddings attached to the Vrst NP in the sentence. This
would explain why the network activated a relative pronoun after the boy in the test
structure. It seems premature to claim that the model has acquired a notion of relative
clause or complex question formation on the basis of this input.

Secondly, Lewis and Elman report that in processing the sentence of Figure 7.1 the
network did not predict a verb form after the pronoun who. This is taken as evidence for
the correct structure-dependent rule. Presumably, however, we would expect activation
of verb forms if the input language had contained subject-relatives with other verb
tense/aspect (e.g., ...who smoked...). Thus, it seems that the result of Figure 7.1 might
be an artefact of the artiVcial language which may have been tailored to this speciVc
learning problem. What’s important is not so much what is in the language, but what
may deliberately have been left out to strengthen the relevant substructure predictions.
The network’s preference for structure-dependent activation patterns might entirely be
due to the absence of more diverse input.

Third, it seems that their model was only tested on a single complex polar interrog-
ative so that the performance data of Figure 7.1 is anecdotal at best. Lewis and Elman
(2001) do not report whether this result is even robust for diUerent randomly generated
training sets from the same language, or diUerent random initializations of the network
for the same training set. It is also unclear whether their model could handle diUerent
types of embeddings such as, e.g., object-relativized polar questions.

And Vnally, a more fundamental point of criticism of their approach. In the model’s
output proVle of Figure 7.1 there is a ’path’ of activation of correct categories that cor-
responds to a grammatical complex question. This path derives from the networks ca-
pability to overlay statistical expectations from substructures in diUerent kinds of input
sentences. This positive result by itself, however, does not show that their model has
acquired the correct rule for complex question formation. Due to the nature of SRN
mappings of words onto distributions of syntactic categories, there are many paths in
the model’s output proVle which correspond to ungrammatical sentences as well. Take,
for example, the sequence of most active categories in each sentence position of Fig-
ure 7.1, AUX PRONOUN NOUN ADJECTIVE AUX PARTICIPLE ADJECTIVE. This sequence
does not form a segment of any grammatical English sentence. By parity of reasoning,
the model has also ‘learned’ nonsense. Hence, it is not suXcient to handpick a path of
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activation which corresponds to the intended structure. Rather, it must be shown that
there is no such path of activation for an ungrammatical complex polar question, or at
least that such paths are less pronounced in terms of some reasonable error measure.
In other words, it needs to be established quantitatively that after training the model is
biased towards accepting grammatical polar interrogatives over ungrammatical ones.

The Reali & Christiansen model

Reali and Christiansen (2005) much improved on the Lewis and Elman (2001) approach
to auxiliary fronting. They present two models of statistical learning which were trained
on a more realistic, noisy input set, the Bernstein-Ratner corpus of mother-child inter-
action. This corpus did not contain any instance of a complex yes/no-question. The
Vrst model is the familiar n-gram model evaluated with cross-entropy (see Chapter 5).
After extracting bigram and trigram frequencies from the corpus, sentence probability
was computed for 100 matched pairs of grammatical and ungrammatical questions, e.g.,
the pair

(15) a. Is the boy who is hungry nearby?
b. *Is the boy who hungry is nearby?

Comparing the cross-entropy for questions (15-a) and (15-b) indicates which one is more
probable based on the distributional information in the training corpus. A question is
classiVed correctly if the grammatical form has a lower cross-entropy than the ungram-
matical form. Reali and Christiansen found that both the bigram and the trigram model
correctly classiVed 96% of the tested questions. This behavior was stable for the actual
questions that were elicited from children in the study of Crain and Nakayama (1987).
Furthermore, classiVcation was robust for both sets of questions when the n-gram mod-
els were trained on subsets of child-directed speech which corresponded to individual
children subsumed in the Bernstein-Ratner corpus.

Since this corpus did not contain examples of complex polar interrogatives, the re-
sults of Reali and Christiansen (2005) indicate that there is suXcient indirect evidence
in the primary linguistic data for children to learn the correct auxiliary fronting rule.
Grammatical questions were favored by the n-gram models because the grammatical
forms shared frequent word chunks with other sentences in the input. If children draw
on similar kinds of statistical information in language acquisition, it might be unneces-
sary to postulate innate constraints on learning structure-dependent rules for question
formation.

It has been shown that SRN are sensitive to bigram and trigram frequencies (see
the references in Reali and Christiansen, 2005). Thus, it was a natural question to ask
whether an SRN trained on the Bernstein-Ratner corpus would develop a comparable
bias for structure-dependent auxiliary fronting as the n-gram models. Reali and Chris-
tiansen trained an SRN in this way and tested the network on 30 pairs of grammati-
cal and ungrammatical questions such as (15-a)/(15-b). The trained network classiVed
more than 83% of the grammatical structures (15-a) correctly as grammatical and mis-
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classiVed less than 17% of the ungrammatical structures (15-b) as grammatical (Figure
7.2). In other words, after exposure to a corpus of child-directed speech the SRN was
strongly biased towards preferring grammatical polar questions over ungrammatical
ones. This suggests that domain-general learning mechanisms such as SRNs can reli-
ably converge towards correct auxiliary fronting by attending to the rich distributional
regularities in the learning environment. The more realistic natural language input to
SRN in the Reali and Christiansen study guarantees that these results were not ob-
tained by adjusting the training language to the speciVc learning task (e.g., by removing
untoward constructions or skewing the distribution). Moreover, given the diversity of
the corpus their results demonstrate that the SRN was able to exploit subtle statistical
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Figure 7.2: Grammaticality judge-
ment of an SRN for polar questions;
replicated from Reali and Christian-
sen (2005).

cues in the input to acquire auxiliary fronting.
On the downside, Reali and Christiansen

had to tag the input corpus with grammatical
categories in order to train the SRN. This tag-
ging removed a great deal of noisiness from
the corpus. Children are not learning from
tagged input but have to acquire syntactic
categories from the ambient language dur-
ing syntactic development. In general, the
assumption of tagged input may not be ex-
ceedingly problematic since there is evidence
that children are able to induce syntactic cat-
egories from distributional information alone
(Gerken et al., 2005; Mintz et al., 2002; Red-
ington et al., 1998). What seems slightly more
problematic is the speciVc way the corpus
was tagged in the experiment. Kam et al.
(2007) note that a single tag PRON was used
for all pronouns (interrogative, deictic and
personal). This is relevant for learning auxiliary fronting because in order to correctly
classify a test question such as Is the man who...? the model has to activate the initial
sequence AUX DET NOUN PRON of word categories and then predict an auxiliary. To
do this, the SRN must have developed statistical expectations that with some likelihood
pronouns are followed by auxiliaries. With the pronoun category being so inclusive, the
model can strengthen its expectations for the transition from pronouns to auxiliaries
from sentences such as He was hungry or What is going on? because these sentences
would have been tagged with a PRON AUX subsequence. Hence, this subsequence of
word categories is supported by sentences which are functionally quite distinct from
polar interrogatives. In successfully classifying yes/no-questions, the SRN may there-
fore have drawn on statistical information that is not available to children.

It also appears that auxiliaries were classiVed together with verbs into one category
VERB. A subsequence of categories such as NOUN PRON VERB does not distinguish
grammatical from ungrammatical complex polar questions, for instance, the pair
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(16) a. Is the boy who is watching TV hungry?
b. *Is the boy who watching TV is hungry?

The model’s activation of the VERB category after the pronoun does not warrant the
conclusion that it prefers the grammatical (16-a) over the ungrammatical form (16-b).
Here, it is precisely the issue whether the model activates an auxiliary or a verb that
determines whether it has acquired knowledge of correct auxiliary fronting. Putting
auxiliaries and verbs into one category does not admit judgement in this case and the
set of test sentences contained several sentence types such as (16-a), e.g.,

(17) Is the dog that is sleeping on the blue bench?

for which this point seems relevant. It is not clear, though, if and how this aUected the
results of Figure 7.2 because the model’s performance was measured for the entire test
questions, not just the initial segment up to the embedded auxiliary. Nonetheless, the
word immediately following the pronoun would seem to be the crucial position to assess
the model’s behavior and this position is ambiguous due to the particular tagging. This
suggests that the model’s good classiVcation performance may to some extent depend
on the categorization used to tag the training corpus. It should be emphasized again,
however, that the main results of the Reali and Christiansen (2005) paper were obtained
with an n-gram model which is more general than the SRN. The positive results on
the data-driven learnability of complex polar questions which were obtained with this
model did not in any way depend on the assumptions made in tagging.

Reali and Christiansen tested the SRN on subject-relativized polar interrogatives
(with one object-relativized exception which was classiVed correctly) and all tested
structures contained the auxiliary is in both the main and the embedded clause. It
remains to be determined whether the model’s behavior is robust with respect to more
structural variation in the test items. The distributional regularities on which the SRN
draws to judge the grammaticality of test items such as (15-a)/(15-b) may not be suX-
cient to classify other types of complex questions.

7.2 The recursive Dual-path model approach

In my own approach, I aimed at extending the results of Lewis and Elman (2001) and
Reali and Christiansen (2005) using the recursive Dual-path model. This model con-
tains an SRN as a sequencing subnetwork and should therefore be similarly sensitive to
distributional regularities in the input. The experimental work presented here, however,
diUers in important respects from the SRN studies. In these studies, the SRNs mapped
input sequences onto sequences of word categories and at each sentence position they
activated a distribution of categories which could be interpreted as possible grammati-
cal continuations according to the networks’ experience. Whether a particular structure
was learned, and how well, depended on how strong the activation of the correct word
category at each position was, compared with activations for competing structures. In
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order to measure the model’s performance, it was therefore subjected to a grammati-
cality judgement task for correct and incorrect polar question, and the resulting errors
were compared to determine whether the SRN was biased towards the grammatical or
ungrammatical sentence form. The recursive Dual-path model, on the other hand, maps
meaning representations onto sequences of lexical items. At each sentence position only
the most active lexical item is recorded as output and this property allows us to compare
actual productions word-by-word against intended productions. The model is given an
input message which it has to cast into a lexically deVnite sentence. Because this input
message is neutral between correct and incorrect polar forms, we can directly measure
syntactic choices in the model’s productions. Hence, the recursive Dual-path model
approach replaces grammaticality judgement with testing active syntactic knowledge
required to correctly produce a speciVc complex polar question from a given message.
This makes the model’s learning task considerably more diXcult than the SRN’s task.
In order to produce a correct question, it is not suXcient that the model shows some
activation of the correct lexical item at each sentence position, the level of activation
must be higher than that of any other word competing for this slot. Secondly, there
was more variation in the output range of the recursive Dual-path model because the
lexicon of the language used to train the model contained more items than there were
word categories in the Reali and Christiansen (2005) experiments. And third, the model
learned from untagged input and had to induce syntactic categories by itself, based on
co-occurrence frequencies of words in sentences of the training set.

On the other hand, the input to the recursive Dual-path model was generated from
an artiVcial grammar. Thus, it lacked the structural variation, noisiness and more re-
alistic distribution of the Bernstein-Ratner corpus employed by Reali and Christiansen.
Moreover, in contrast to the SRN approach, I assumed that children use meaning in syn-
tax acquisition. The recursive Dual-path model was learning the target language from
exposure to sentences paired with their meaning, not from sentence input alone, and
these meaning representations played a critical role in the generalization to novel utter-
ances. Semantic similarities between messages for experienced and novel constructions
enabled the model to generalize to novel constructions which were not experienced
during learning. My approach also diUered from the SRN experiments in that I tested
the model on a wide range of complex yes/no-questions with intransitive, active/passive
transitive, oblique, prepositional dative and ditransitive constructions occurring as main
and embedded clauses in all combinations. In addition, main and embedded clause aux-
iliaries were allowed to diUer, and any grammatical role could be relativized inside the
embedded clause. Thus, tested utterances could be object- as well as subject-relativized.
More variation in the test items ensured that positive results were less likely to be con-
tingent on the speciVc learning conditions, and therefore more robust and relevant to
the poverty of stimulus debate.

In the experiments, I focused on identifying an explicit learning mechanism for po-
lar interrogatives in production, not merely a bias for grammaticality. This mechanism
drew on distributional regularities in the input, such as frequent substructures, but more
importantly it relied on the presence of particular constructions from which the model
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generalized to novel constructions in a combinatory fashion because of semantic simi-
larities in the message. I sought to isolate the input factors that contribute to this goal by
systematically varying the properties of the training language. In this way I can show
that the model is able to learn polar interrogatives in some conditions but not in others
and this will help to explain why generalization occurred. I will argue that the model’s
behavior is not depending solely on n-gram statistical regularities in the input but that it
is acquiring structure-dependent knowledge of complex question formation which can
not be reduced to transitional probabilities in frequent substructures. Furthermore, I
attempt to trace the source of generalization by analyzing the hidden-layer representa-
tions the model developed during learning and I will argue that clausal integrity which
prohibits auxiliary extraction from embeddings transfers to complex polar questions by
analogy from similar structures in the input.

7.2.1 ArtiVcial language, semantics and method

The recursive Dual-path model was trained on untagged input from a structurally rich
artiVcial, English-like language which allowed the creation of simple clause sentences,
various relative clause structures, and diUerent types of questions. Table 7.1 provides an
overview of the basic constructions in the language from which more complex sentences
were assembled. Relative-clause structures in the language contained a main clause and

Structure Example
Intransitive the cat was sleep -ing .

Transitive the woman kick -ed the teacher .

Transitive passive the teacher was kick -ed by the woman .

Prepositional dative a girl throw -s the stick to the cat .

Double object dative a girl throw -s the cat the stick .

Oblique the nurse is play -ing with a dog .

Table 7.1: Basic construction types in the language to which the recursive Dual-path
model was exposed.

one subordinate clause drawn from these structures. Every combination of simple clause
types was permitted and relative clauses could be attached to any NP in the main clause,
regardless of its grammatical function. Hence, there were center-embedded and right-
branching sentences in the language and the head noun could occupy any grammatical
role in the relative clause which met its animacy constraints. Moreover, the language
allowed the formation of three classes of questions, simple polar questions (SPQ from
now on), complex polar questions (CPQ from now on), and complex wh-questions; Table
7.2 lists examples of these structures. The input grammar had verb tense and aspect, in-
Wectional morphemes were represented as separate lexical items. As others have argued
(Pullum and Scholz, 2002; MacWhinney, 2004), I suggest that the syntax of complex
yes/no-questions can be assembled piecemeal from simpler and similar constructions
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Question Type Example
Simple polar question is the cat chase -ing the dog ?

Complex polar question was the cat that is chase -ing the dog run -ing ?

Complex wh-question who is the cat that is chase -ing the dog

run -ing with ?

Table 7.2: Classes of questions admissible in the artiVcial language.

which are warranted in a child’s linguistic environment. For example, subject-auxilia-
ry inversion might be learned from simple yes/no-questions in the input, and auxiliary
extraction across a relative clause might be learned from complex wh-questions.

To examine whether the model acquires a structure-dependent or structure-inde-
pendent principle of question formation, it is suXcient to employ a language with cen-
ter-embedded yes/no-questions and progressive aspect in each clause. Nonetheless, my
language allowed complex questions to be created in which any grammatical role could
be modiVed (or relativized, for that matter), just as in the declarative structures. In
addition, verb tense and aspect of each clause could form any combination within a
complex question. For instance, I also tested the model on questions such as was the

cat chase -ing the dog that play -ed with the girl ?, a right-branching yes/no-
question with simple aspect in the relative clause, since this enabled me to analyze the
model’s behavior in more detail across the diUerent input conditions.

The artiVcial language used to train the model contained distinct 271 construction
frames. The lexicon comprised 57 words in 15 categories which Vlled appropriate slots
in these frames. This allowed the creation of roughly 11.3 × 109 diUerent sentences in
this language.9 The model was trained on a set of 10.000 sentences, which were ran-
domly generated from this language, for a total of 100.000 epochs.10 To test the model,
questions with relative clauses were generated. The language allowed the creation of
roughly 5.3× 109 diUerent CPQ. 1.000 questions were randomly selected and the model
was tested periodically on these items after every 5.000 training sentences.

Sentences generated for training and testing were paired with their corresponding
meaning, and the model was exposed to these pairs as described in Chapter 3. To rep-
resent the semantics of relative clauses, I used the simple topic-focus message with
gap-link which was discussed in Chapter 4. The message had event alternation, so that
the order of events (and therefore clauses) in complex sentences was not encoded spa-
tially. The only way the model could determine which message features corresponded
to which clause (e.g., in complex questions) was by attending to the topic/focus features
which marked the head noun and its semantic role in the relative clause. In other words,
there was no default order of events in the semantic representations, features in the mes-
sage were not clause-level speciVc. Questions were distinguished from declaratives by

9Because training conditions diUered in the experiments described subsequently, the expressivity of
the input language also varied slightly across conditions.

10One epoch corresponded to one sentence in training.
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using question features in the message. There were two types of question features, one
feature for polar questions, and several features for wh-questions. The message for SPQ
was identical with the message of the corresponding declarative, except that in addi-
tion a question feature signalled to the model that a diUerent ordering of constituents
was intended. The message for complex wh-questions was slightly more complicated.
Consider the wh-question

(18) who was a cat that the dog is give -ing a toy to walk -ing with ?

In order for the model to produce such questions correctly, the sentence message needed
to represent which main clause constituent was co-referential with the interrogative
pronoun who. Suppose it was co-referential with the girl in the declarative

(19) a cat that the dog is give -ing a toy to was walk -ing with a girl .

Then the message for question (18) would be identical to the message for the declarative
(19) except that in addition a wh-feature marked the role of the girl in the event se-
mantics. This feature would indicate that a question, not a declarative, was intended
and signal to the model that the girl had to be omitted from the surface form. And
Vnally, the message for CPQ such as

(20) was a girl that throw -s a cat the apple being push -par by a boy ?

was identical to the message for the corresponding declarative

(21) a girl that throw -s a cat the apple was being push -par by a boy .

plus the polar question feature which was also used to distinguish SPQ from single-
clause declaratives.

It is important to point out here that polar question features, unlike all other features
in the message, could not alternate between events. Polar question features were rigid
and not associated with a particular atomic event within a complex proposition. Since
events could alternate in the message, but question features could not, the model was
not aided towards associating an active question feature with a particular clause in
the sentence. In other words, in testing the model on CPQ, it received a message for
a complex declarative plus a clause-neutral question feature. In this way, the model
was unbiased with respect to which auxiliary (main or embedded) it had to produce at
sentence onset. This was crucial for testing whether the model favored a structure-de-
pendent over a structure-independent principle for auxiliary fronting.

7.3 Modelling results

Arguments against the poverty of the stimulus are often formulated as verbal theo-
ries of acquisition which are diXcult to test because no explicit learning mechanism
is provided. The recursive Dual-path model provides a such a mechanism which has
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been shown to explain several aspects of syntactic development (Chang, Dell, and Bock,
2006; Fitz and Chang, 2008). Using this model, I wanted to identify input conditions
which are suXcient to acquire the syntax of CPQ in the absence of positive exemplars
in the input. With the described language and question semantics I tested the hypothe-
ses of Section 7.1 in a series of simulations. In these experiments, every parameter of
the model was kept constant, for instance network size, random initialization, and the
learning mechanism itself. Likewise, the model was tested on the same set of randomly
generated CPQ in all conditions. The only variable across experiments was the kind of
input structures the model received in training. In this way I could determine the eUect
of the input on the learnability of CPQ. This allowed me to assess the validity of the
formulated hypotheses in a methodologically rigorous manner and to substantiate some
of the claims which have been made in the literature against the supposed non-learn-
ability of polar questions. The experiments will be described in the following sections.
All reported results were averaged over ten model subjects, which diUered in terms of
the randomly generated training items to which they were exposed in each condition.

7.3.1 Simple polar interrogatives

I Vrst looked at Hypothesis-1, viz the claim that CPQ can be learned from simple
polar questions and relative-clause constructions in the absence of positive evidence.
To test this hypothesis, the model was trained on 10.000 sentences from the artiVcial
language, with a simple- to relative-clause ratio of 1, and roughly 15% of all training
items being SPQ. The distribution was not intended to match human linguistic in-
put. It was required that the model learned all input structures to an adult degree at
the end of training. The model was tested on the critical structures, polar interroga-
tives with a center-embedded relative clause, but also on right-branching structures.
I will refer to these structures as CPQCE and CPQRB, respectively. In this condition,
the model produced no correct CPQ when measured in terms of sentence accuracy
(perfect match) or grammaticality. I therefore used the production error measure as
deVned in Chapter 6 to evaluate the model’s performance. Production error is a string-
distance measure scaled by the length of the target utterance. Unlike sentence accu-
racy, production error is sensitive to partially correct productions and to misplaced
chunks of correct constituents. Informally, production error yields the percentage of
lexical errors the model made, out of the maximal number of errors that the model
could have made in a given utterance. The results of testing the model on CPQCE and
CPQRB at an adult state are shown in Figure 7.3. The model’s performance is com-
pared with an input condition in which the training set contained only declaratives
and no questions of any kind. It is apparent that the model performed much better
on CPQRB than on CPQCE and this diUerence was statistically signiVcant in both con-
ditions (no questions: F(1,9) = 139.9, p < 0.001; simple polar questions: F(1,9) = 77.1,
p < 0.001).11 This behavior for novel interrogatives is in line with the observations

11Repeated measures ANOVA at the end of training.
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made in Chapter 6 regarding declaratives, where it was shown that the model learned
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Figure 7.3: Mean production error for
CPQCE and CPQRB with simple polar
questions in the input.

right-branching faster than center-embed-
ded constructions for diUerent levels of
embedding. Secondly, the error level on
CPQCE was equally high in both condi-
tions, with and without SPQ in the in-
put; there was no statistical diUerence de-
tectable (F(1,9) = 1.2, p = 0.3). This sug-
gests that the model was not aided in
learning auxiliary fronting for CPQCE by
being exposed to SPQ. This indicates that
Hypothesis-1 might be false in the recur-
sive Dual-path model framework. Relative
clause constructions and simple yes/no-
questions are not suXcient for the model
to assemble the syntax of CPQCE. How-
ever, it can be observed that SPQ seem to
aid the acquisition of CPQRB. The error
level on these structures dropped signiVcantly between the two input conditions (F(1,9)
= 11.4, p < 0.01). In CPQRB, the embedded clause follows the main clause. Thus it is
the Vrst auxiliary of the declarative which is placed in front when such a question is
formed, just as in SPQ. The results therefore seem to suggest that SPQ in the input might
lead the model to entertain a structure-independent rather than a structure-dependent
hypothesis about complex question formation. Not only do SPQ not help in the acqui-
sition of CPQCE, they might even be detrimental to learning these structures because
they seem to bias the model towards adopting the wrong auxiliary fronting principle.

7.3.2 Complex wh-questions

In the next condition, I examined Hypothesis-2, the claim that CPQ can be learned
from simple polar interrogatives, relative-clause constructions and wh-questions with
embeddings. Here, the idea is that a learner might be able to recruit knowledge about
the syntax of CPQ from the syntax of various other constructions with which these
questions share surface similarities. Simple questions contribute knowledge about sub-
ject-auxiliary inversion, knowledge of relative clause formation in declaratives transfers
to relative clauses in complex questions, and from complex wh-questions it might be in-
ferred that main clause auxiliaries can be fronted across a relative clause. I tested this
synthetic approach to CPQ learning in the recursive Dual-path model. As in the previous
experiment, the input language contained roughly 50% sentences with relative clauses
and 15% SPQ. Around 10% of all training items were complex wh-questions, either with
a center-embedded or a right-branching relative clause. Again, the distribution was
designed to ensure that the model acquired all input structures with more than 90%
accuracy (in terms of perfect match). The model was tested on 500 CPQCE and CPQRB,
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respectively. In this condition, we observe a performance pattern complementary to the
previous conditions (Figure 7.4; for comparison, the data of Figure 7.3 was reproduced).
Compared to these conditions, the production error for CPQCE dropped signiVcantly
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Figure 7.4: Mean production error for CPQCE and CPQRB with complex wh-questions
in the input.

when the model was exposed to complex wh-questions in training (F(1,9) = 19.9, p <
0.05). However, the error level of CPQRB remained constant (F(1,9) = 0.01, p = 0.9) be-
tween the ‘simple polars’ and ‘wh-questions’ conditions. Yet, the model still performed
superior on CPQRB than on CPQCE, although the diUerence was not statistically signif-
icant (F(1,9) = 3.9, p = 0.07). Because both these structures were entirely absent from
the input, this result adds to the robustness of the model’s preference for right-bran-
ching over center-embedded structures. The constant error level of CPQRB suggests
that the learnability of these structures did not proVt from the complex wh-questions in
the environment. Syntactic knowledge of auxiliary fronting in CPQRB that the model
needs to extract from the input is already contained in relative clause declaratives and
SPQ. Exposure to right-branching wh-questions did not seem to add information rele-
vant for the acquisition of these structures. The model’s performance on CPQCE, on
the other hand, improved signiVcantly compared to both conditions without complex
wh-questions. These questions aided the process of correctly sequencing CPQCE, as
is witnessed by a lower overall production error. This suggests that Hypothesis-2 is
supported within the framework of the recursive Dual-path model.

It remains to be determined through analysis, however, what the nature and degree
of support for this hypothesis is. The fact that production error for the entire CPQCE
test items dropped considerably only indicates that the ‘wh-questions’ condition is con-
ducive to learning these structures. The scores do not reveal what kind of errors the
model made and whether it actually produced any correct CPQCE structures. Moreover,
they do not tell us in what sense CPQCE can be learned in this input condition, and
whether the model does indeed favor a structure-dependent over a structure-indepen-
dent principle of CPQCE-formation. These issues will be addressed in the remainder of
this chapter.
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Error analysis

I examined 100 CPQCE with progressive aspect or passive voice in both clauses, which
the model produced at the end of training with wh-questions in the input.12 The domi-
nant error types classiVed into four categories. Type I errors involved the repetition of
the main clause auxiliary after the relative clause was complete, e.g., *Is a dog that was
being kicked by a sister is giving the boy the tomato? Crain and Nakayama (1987) refer
to this type of error as ‘preVxing’. When the target main clause was produced correctly
but there was any kind of scrambling in the relative clause, I call this pattern Type II
error (with the exception described as Type III next). A Type III error occurred when
the model formed CPQCE in accordance with a structure-independent hypothesis and
placed the relative clause auxiliary in front, for example in *Is a woman that a brother
walking with is throwing a man a paper? Occasionally, the model set out to produce
a wh-question instead of a yes/no-question by replacing the sentence initial auxiliary
with the interrogative pronoun who. I refer to this behavior as Type IV error. Table
7.3 summarizes the distribution of error types found in the model’s output. Mixed er-

Type I Type II Type III Type IV Other Correct
Mixed 48 47 4 1 19 8
Genuine 27 21 0 0 17 8

Table 7.3: Types of errors for 100 CPQCE test items in the trained model.

rors occurred in conjunction with other errors, genuine errors occurred as sole errors
within one test sentence. On both scales Type I errors were the most frequent. This
indicates that the model had diXculty extracting the main clause auxiliary after the
embedded clause, the sentence-initial auxiliary was merely a duplicate. Type II errors
show that relative clause integrity was diXcult to maintain for the model when relative
clauses were combined with main clause polar questions into novel complex construc-
tions. Nonetheless, for the majority of test sentences the model produced a correct
embedding despite not having been exposed to any such construction in training. This
suggests that there was substantial structural transfer from declarative sentences with
embedding (which the model learned to perfection) to interrogatives with embedding.
Genuine Type III errors did not occur in the ‘wh-questions’ condition. In other words,
the model did not displace the embedded clause auxiliary. Such errors would have in-
dicated that the model entertained a structure-independent rule of complex question
formation. The absence of these errors, however, does not entail that the model was in-
clined towards the correct principle. To establish this, a more detailed analysis of Type
I errors was required (see below). The low Type IV error rate indicates that the model
did not confuse wh- and yes/no-questions when given a message to produce a complex
interrogative. Hence, the decrease in production error in the wh-condition of Figure 7.4

12I picked the model subject which was closest to mean performance in terms of sentence accuracy and
looked at the Vrst 100 items in the test set.
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was not due to the model producing structurally similar wh-questions when tested on
CPQCE messages, but reWects a genuine improvement of yes/no-question learning.

In the Crain and Nakayama (1987) study Type I errors accounted for 58% of all er-
rors and were the most frequent errors children made (a very similar Type I error rate
was recently reported in Ambridge et al., 2008.). Type III errors did not occur in their
data. Mixed (genuine) Type I errors accounted for 40% (42%) of all errors and were
the most frequent errors in my experiment, and since in addition genuine Type III er-
rors were absent, the model’s error proVle matched the developmental data quite well.13

Crain and Nakayama argue that the types of errors they found support the claim that
children have knowledge of the correct structure-dependent rule for auxiliary fronting.
They acknowledge, however, that the high frequency of Type I errors puts this claim
in jeopardy. These errors could be the result of auxiliary duplication in the main or
embedded clause. If they derive from the latter, this would rather support the idea that
children initially entertain a structure-independent rule and retract from it later in de-
velopment. Thus, Crain and Nakayama needed to show that Type I errors resulted from
duplicating the main clause auxiliary and did not reWect a lack of syntactic competence.
They conducted a second experiment in which they exchanged the embedded clause
auxiliary with a modal verb, e.g., Is the boy who can see Mickey Mouse happy?, the
procedure remained the same. In this way, they suggest, it can be determined whether
children’s ‘preVxing’ errors resulted from fronting the embedded clause auxiliary. Be-
cause no tested child produced questions such as *Can the boy who can see Mickey
Mouse is happy? they concluded that in both experiments Type I errors were not due
to copying the leftmost auxiliary. Therefore, they argued, ‘preVxing’ errors were not
invalidating the claim that children have the correct syntactic knowledge for complex
question formation.

It is questionable, however, whether this experiment is methodologically sound be-
cause it removes the ambiguity between main/embedded clause auxiliaries in the exper-
imenter’s instruction for the task. One of the major advantages of computational models
over developmental studies with children is that we can analyze the internal representa-
tions the model has developed in the course of syntactic development. Inspecting these
representations may allow us to determine the origin of Type I errors in the model—
whether they result from preVxing the wrong auxiliary or not. For all test sentences
which led to genuine Type I errors in Table 7.3 I recorded the activation of units at the
where-layer of the model as it predicted the lexical items in these sentences. Recall
that these sentences were produced correctly up until the main clause verb in which
position a third auxiliary was erroneously inserted. I quantized activation levels into
Vve distinct states and plotted the state vectors of the where-layer units (0A, 0X, 0Y,...,
1Z) against the word category of the produced constituents. Figure 7.5 displays such a

13Crain and Nakayama’s Type II errors involved ‘restarting’ after the completed relative clause, e.g.,
*Is the boy that is watching Mickey Mouse, is he happy? My artiVcial language did not have personal
pronouns, so these errors were not discernable. Type II errors in the model did not occur in their study.
This may be due to the fact that their methodology involved the repetition of a correct relative clause
whereas the modelling experiment resembles elicited production.
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sequence of activation vectors for the question is a cat that the ball is push -par

Category where-layer (thematic roles)
0A 0X 0Y 0Z 1A 1X 1Y 1Z

AUX

DET

NOUN
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NOUN
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VERB
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VERB

Figure 7.5: where-layer activation for the preVxing error.

by chase -ing the dog ? Dark cells indicate strong activation, white cells represent
inactive units. where-layer units corresponded to thematic roles and in acquiring the
target language, the model learned to sequence these units in order to express the input
message. At the beginning of this question, the model strongly activated the action unit
(1A) and the transitive agent unit (1X) of the main clause. Furthermore, it activated the
transitive patient unit (0Y) of the embedded clause. This pattern of activation indicates
that the model was in a state of uncertainty about the sentence structure to be produced.
First, there was uncertainty about which was the main and which the embedded clause
of the target sentence. Unit 1X would be the right choice if the declarative a cat that
the ball... was to be produced, unit 1Y if the declarative the ball is push -par

by... was to be produced. Secondly, there was uncertainty whether the target sen-
tence was a declarative or an interrogative as indicated by the active action unit 1A. This
unit carried information about the tense and aspect of the main clause verb and needed
to be activated to produce the sentence-initial auxiliary in an interrogative. Thus, there
was strong competition between units at the sentence onset. Since the model correctly
produced an interrogative, the unit 1A won the competition in this case. The model pro-
ceeded with the main clause agent a cat, the pronoun that, and so forth. The crucial
aspect of this plot is that at the sentence-initial position the model displayed zero acti-
vation of the embedded clause action unit 0A. This demonstrates that the Vrst auxiliary
of the target polar question derived from the main clause verb, not the embedded clause
verb. In other words, the model was in a state of complete certainty that the embedded
clause auxiliary was not the correct constituent to initialize the production of the in-
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tended structure. Hence, the preVxing error in the model did not result from duplicating
the wrong (embedded clause) auxiliary.14 It can also be observed in Figure 7.5 that the
model activated the embedded clause action unit 0A—and only this unit—at the posi-
tion of the embedded clause auxiliary. At the position where the preVxing error was
manifest in the surface form (bottom row of Figure 7.5) the model again activated the
main clause action unit 1A and there was no sign of activation at the embedded clause
action unit. Both observations conVrm the model’s structure-dependent approach to the
formation of CPQCE in the absence of positive evidence in the input.

So far I looked at characteristic errors the model produced in testing, but Table 7.3
also shows that it generated correct CPQCE structures (rightmost column). Correctness
is measured here in terms of perfect match, i.e., the model produced the target structure
exactly, with 0% production error. Thus, the model spontaneously generated correct
CPQCE in the ‘wh-questions’ condition, i.e., without having been exposed to any such
question in the learning phase. Averaged over all subjects the accuracy of CPQCE at
the end of training was around 7%, CPQRB reached around 16%.15 Examples of ques-
tions which the model produced correctly are listed in Table 7.4. Note that embeddings

Correct complex polar questions
Center-embedded

is the boy that is being hit -par by the cat give -ing a truck to the father ?

was a father that was show -ing the sister a beer throw -ing a phone to a man ?

is the dog that a cat was present -ing a apple show -ing the brother a milk ?

Right-branching

is a girl hit -ing a mother that is walk -ing ?

is a girl run -ing with a sister that the man is jump -ing with ?

is a mother walk -ing with a man that was being push -par by the woman ?

Table 7.4: Examples of yes/no-questions with relative clause which the model produced
correctly when exposed to wh-questions in training.

in the examples of correct CPQCE comprise subject- as well as object-relatives, actives
and passives, and transitives and datives. Thus the model’s capacity to generalize was
not restricted to a narrow set of constructions, or even a single type of polar question.
Furthermore, correct productions included diUerent auxiliaries (is and was) in the main

14where-layer activation states were inspected for all other test questions in which Type I errors
occurred and showed a similar pattern. In all cases, the main clause action unit was fully active while
there never was more than the faintest activation of the embedded clause action unit.

15Confer the Appendix B (page 287) to this chapter for results which signiVcantly improved on this
accuracy.
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and embedded clause. This indicates that generalization was not contingent on the con-
struction type of the tested items which adds to the robustness of the model’s behavior.

Through a detailed error analysis I established three interesting properties of the
model’s performance in the ‘wh-questions’ condition. First, the error proVle quali-
tatively matched the types and frequencies of errors children made in the Crain and
Nakayama (1987) experiments. This suggests that the model implements learning mech-
anisms which are adequate from a psycholinguistic point of view to study the syntactic
development of auxiliary fronting. Secondly, despite producing many errors overall, the
model was strongly biased towards structure-dependent question formation. This was
witnessed by the fact that preVxing errors were exclusively due to faulty reactivation of
the main clause auxiliary at the verb position plus the absence of errors that involved
extraction of the embedded clause auxiliary. And third, the model managed to actually
produce a fair amount of correct CPQ without exposure to positive examples. Crain
and Nakayama aimed at showing that in the acquisition of complex questions, children
do not retract from false syntactic principles. Rather, they entertain the correct struc-
ture-dependent hypothesis already early in syntactic development although competing
hypotheses are simpler, consistent with, and warranted by their linguistic experience.
They argued that these Vndings can only be explained by assuming that structure-de-
pendence is an innately endowed principle of universal grammar. In my simulations, I
found that the lack of positive examples of CPQ in the input did not mislead the model
into adopting an ungrammatical, structure-independent principle either. To explain this
behavior, however, it is not necessary to stipulate a traditional notion of universal gram-
mar. The model achieved this by recruiting pieces of information from diUerent input
structures, combining them into knowledge of auxiliary fronting in polar questions.
From simple polar questions the model learned sentence-initial subject/auxiliary inver-
sion. From complex declaratives it learned how to modify noun phrases, to suppress
the head noun in the relative clause, and acquired a notion of clausal integrity. And
from complex wh-questions it learned the grammaticality of subject/auxiliary inversion
across embeddings. In this manner, the model developed dispositions to generate CPQ,
the correctness of which was manifest in the error proVle, as well as the spontaneous, er-
ror-free production of such questions. Because the structures that the model drew on to
assemble the syntax of CPQ are warranted in child-directed speech, the model provides
an alternative, data-driven explanation for the learnability of these constructions.

7.3.3 Bootstrapping

In this section I will describe a training regime designed to strengthen polar interrog-
ative learning in the model. In this regime, the model received its own spontaneous
correct productions of complex yes/no-questions as input in the subsequent learning
cycle. Since this procedure makes rather controversial assumptions about a learner’s
linguistic environment, I will Vrst attempt to motivate it and then discuss the results.
The crucial message of this chapter is that structure-dependent auxiliary fronting in in-
terrogatives can be learned from simpler and similar structures in the linguistic input.
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The previous ‘wh-condition’ provided a proof of concept for this idea although overall
sentence accuracy for CPQCE remained low.16 It should therefore be pointed out, that
the main results of this chapter do not hinge on the current section. This bootstrapping
section was intended to pinpoint some of the disadvantages the model might have com-
pared with children in that the standard learning procedure might be too rigid, and to
suggest some means of modelling a more realistic learning environment.

The guiding objective of a human language learner is to be able to engage in mean-
ingful and successful communication. The acquisition of syntax subserves this objec-
tive, but it is not the primary learning target. An important aspect of human commu-
nication is the ability to convey one’s intentions and to inWuence and manipulate the
intentions of others (Tomasello, 2003). On this view, language is a cultural skill to com-
municate intentions and desires, to initiate or prohibit actions, and to steer the attention
of others to objects or events in a joint frame of reference, rather than a conventional-
ized system to exchange facts about the world. Thus, language use is essentially goal-
directed, linguistic utterances aim at altering the mental state of others. This intentional
activity requires taking into account the intentions of others, and this is a reciprocal re-
lation between speaker and hearer. Language use therefore is interactive in a non-trivial
sense. Without an understanding of others as intentional agents there is no meaningful
communication. Moreover, due to the goal-directed nature of language use, there is a
value attached to communicative success. To achieve the goal of changing other peo-
ple’s mental states through linguistic utterances, language systems must be suXciently
aligned. The closer they are aligned the higher the chances to achieve a communica-
tive goal. In discourse, speaker and hearer will strive to increase their communicative
success. For brevity, let’s say that discourse participants attempt to maximize (the real-
ization of) some pragmatic function in communication (such as conveying one’s needs
or intentions, re-directing attention, and inWuencing mental states of others.).

In the context of child language acquisition, these general remarks may have im-
portant implications. Some syntactic constructions might be diXcult to learn because
they are not as useful as other constructions in terms of their pragmatic function. For
instance, complex polar questions are useful for children to express wishes and requests
when addressing their parents. Referring to the child’s own needs and desires, such
requests are likely to take a Vrst person pronominal subject in the main clause, for ex-
ample

(22) Can I have the cookie that’s on the table?

Relative clauses, however, rarely modify pronominal NPs; therefore center-embedded
yes/no-questions with a full subject NP such as

(23) Can the dog that’s sleeping come with us?

might be less pragmatically useful and hence less frequently used than right-branching

16Again, confer the Appendix B (page 287) to this chapter for stronger results in this condition.
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polar questions. There is ample evidence that frequency of occurrence aUects sentence
comprehension, production and language acquisition in general, because high frequency
strengthens the representations of linguistic constructions in memory which facilitates
their activation in language use (Diessel, 2007).

Yet, there is also a learning pressure to be precise in communication. The more ac-
curately a human learner is able to express his/her communicative intentions (according
to the social environment’s linguistic standards) the higher the chances that the prag-
matic function of speech will be realized (e.g., the satisfaction of a child’s needs and
wishes). This might motivate a child to acquire constructions such as (23) and use them
when they are appropriate to express some communicative intention. Once this con-
struction is produced correctly and associated with some speciVc pragmatic function, it
might then become entrenched in grammar through more frequent use in the learner’s
speech. Conversely, a construction mastered by the child increases the options for suc-
cessful communication for the parents. This might lead parents to use this construction
more frequently when pragmatically felicitous. A child might proVt in turn from this
dynamic change in the distribution of parental speech in that it helps to consolidate the
child’s memory of the underlying syntax. Thus, language learning may be mediated by
performance-related parental feedback following grammatical utterances that achieve
their communicative function. This kind of ‘covert positive reinforcement’ is not to be
confused with explicit feedback, e.g., parents overtly correcting children by telling them
the grammatical utterances they should have used.

There is some evidence that corrective parental feedback is available and eUective in
guiding the semantics of word learning (Brown and Hanlon, 1970) and that the acquisi-
tion of foreign language vocabulary is a function of diUerential reinforcement (White-
hurst and Valdez-Menchaca, 1988). The eUect of social feedback on syntactic develop-
ment is less well understood and particularly controversial (Bohannon and Stanowicz,
1988; Bohannon et al., 1990; Brown and Hanlon, 1970; Demetras et al., 1986; Hirsh-Pasek
et al., 1984; Moerk, 1991; Morgan and Travis, 1989; Morgan et al., 1995; Nelson et al.,
1984; Penner, 1987). Several of these studies, however, indicate that children’s grammat-
ical utterances are more likely to elicit exact parental repetitions than ungrammatical
utterances (Bohannon and Stanowicz, 1988; Demetras et al., 1986; Hirsh-Pasek et al.,
1984; Morgan and Travis, 1989). Bohannon and Stanowicz (1988), for instance, found
in 16 transcribed child-parent conversations that parents were diUerentially responsive
to the grammaticality of children’s speech. Exact parental repetitions occurred after
10-12% of all child utterances and followed almost exclusively children’s grammatical
utterances (90%). This data suggests that children are exposed to more grammatical
positives of some construction type in response to their own correct use. Such parental
feedback can be instantaneous, as attested by these studies, or it might be delayed and
not result from conscious parental eUort or awareness. This kind of covert positive
reinforcement through repetition might skew the distribution of child-directed speech
towards those constructions which have been uttered spontaneously by the child and
this may provide a child with the frequency of occurrence necessary to consolidate the
underlying syntax in memory. Moreover, Penner (1987) and Demetras et al. (1986) found
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that parents were far more likely to continue or expand the current topic of discourse
following grammatical utterances than after ungrammatical utterances. In other words,
parents were diUerentially responding to grammaticality in that children’s grammatical
utterances caused parents to move on in conversation whereas ungrammatical utter-
ances tended to disrupt the Wow of conversation. This tendency for topic extension to
occur more frequently after grammatical utterances might provide another subtle but
useful cue to children in language acquisition. When child-parent conversation is un-
interrupted and a grammatical utterance is followed by parental extension of the topic,
the child receives covert positive information that her utterance was comprehended and
achieved its communicative function. This kind of parental response might create a se-
lective pressure which encourages and increases children’s active use of more diXcult
and mature grammatical constructions.

In sum, several studies of child-parent interaction suggest that various types of pos-
itive parental feedback succeed grammatical utterances of children in natural discourse.
Given their existence, it is a diUerent question, however, whether these sources of im-
plicit reinforcement are suXciently robust and consistent for a child to exploit them in
syntactic development, or whether they are too sporadic and noisy to be useful (the lat-
ter view is emphatically endorsed, e.g., by Marcus, 1993). Because natural discourse is
diXcult to manipulate and control for experimental purposes, computational models of
language acquisition provide an indispensable platform to shed more light on this issue.

In the simulations described so far, crucial aspects of child-parent communication
have been left out of the picture. SpeciVcally, the model did not implement the goal-
directed, interactive and dynamic nature of human language learning. The model re-
ceived linguistic input from its environment and was periodically tested in production
on its progress in learning the target syntax. Along with the input it received mean-
ing representations which encoded the semantic content of the overheard utterances.
The model operated in a situated comprehension mode in which it had access to the
meaning of its linguistic input. These learning conditions were motivated by the idea
that children occupy a joint attentional frame with their parents and can partially infer
the meaning of their parents’ utterances from observed events in a shared visual scene.
The testing procedure for the model, on the other hand, lacked important characteris-
tics of human communication and learning. The utterances the model generated from
meaning input were not addressing a discourse participant, they were produced in iso-
lation. Thus, the model’s productions served no communicative intention or pragmatic
function and there was no incentive for the model to strive for communicative success.
Although the model received input from its environment it did not engage in interactive
conversation during acquisition. It’s own productions were merely elicited for testing
the state of syntactic development, but they were not directed at a listener from which
it could receive the kind of diUerential feedback and positive reinforcement typical for
child-parent interaction. Most importantly, the model’s learning environment did not
dynamically change in response to its own grammatical utterances. Instead, the model
went through the same static training cycle and set of Vxed input items again after
testing, regardless of its current state of knowledge, and regardless of its own correct
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productions. The invariant input that the model repeatedly received did not reWect the
changes and Wuctuations in the distribution of child-directed speech that might ensue
from successful child-parent communicative interaction.

In the condition of Section 7.3.2, the recursive Dual-path model’s learning environ-
ment consisted of single-clause declaratives, single-clause polar questions, declaratives
with relative clauses, and wh-questions with relative clauses. It was argued in the error
analysis that the model was biased towards grammatical and against ungrammatical
CPQCE and that its error proVle matched that of children. The model spontaneously
produced 8% fully correct CPQCE. However, it did not acquire CPQCE (or CPQRB, for
that matter) to a degree of accuracy which was characteristic for the structures in the
actual input. A reason might be that the model did not actively start to use CPQCE ques-
tions in communication and it did not receive positive reinforcement as a consequence
of producing grammatical polar questions in the test phase. The environment did not
reward the model in response to its correct productions by increasing the frequency of
this structure in subsequent discourse. The model’s bias towards structure-dependence
was therefore not consolidated and converted into robust knowledge of CPQCE syntax.
One approach to remedy this situation, which I explored here, was to feed back the
correct CPQCE and CPQRB productions that the model accomplished during testing into
the next training cycle. This approach is depicted schematically in Figure 7.6. Initially,
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Figure 7.6: Positive reinforcement for complex polar question learning in the recursive
Dual-path model.

the model received the same input structures as in the ‘wh-questions’ condition. At
some point in development the model produced grammatical CPQCE and CPQRB with-
out prior exposure to these constructions. From this point onwards, it received its own
correct productions in the subsequent training phase alongside the regular input. It
was conjectured that interleaving the input with this feedback would help the model
to acquire CPQ. Feedback was sparse at Vrst, because the model only produced a few
correct CPQCE/CPQRB structures in the beginning, but gradually increased over time as
more correct productions accumulated in the feedback set.17 The model had to test on

17Duplicates of correct questions from diUerent test cycles were Vltered out to keep their overall fre-
quency in the training environment low.
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CPQCE/CPQRB structures with perfect accuracy before these could enter into the next
training cycle. The model learned auxiliary fronting from the input structures it re-
ceived and was then reinforced consolidating this piece of syntactic knowledge through
exposure to its own correct productions. In this way we can model the idea that a hu-
man learner (a) may re-use constructions more frequently during development which
she has used successfully in communication before, (b) receives positive reinforcement
from discourse participants in response to grammatical and pragmatically adequate use,
and (c) navigates through an adaptive and dynamically changing environment that re-
uses structures more frequently which have already been produced successfully by the
learner before.

When I implemented this procedure, the model developed more robust representa-
tions of the syntax of auxiliary fronting than in previous conditions. Figure 7.7 shows
the model’s learning curves for all tested constructions. Single-clause utterances and
SPQ were learned the fastest, followed by relative clause constructions and complex
wh-questions. All input structures reached >95% sentence accuracy at the end of train-
ing. After exposure to approximately 10.000 sentences, the model began producing
correct CPQRB structures and after 25.000 sentences it started to test positively on the
novel CPQCE constructions. CPQCE developed slower than CPQRB but both structures
reached >50% after training was complete.
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Figure 7.7: The recursive Dual-path model bootstraps into complex polar interroga-
tives; SC = simple-clause declaratives, SPQ = simple polar questions, RC = relative clause
declaratives, WH = complex wh-questions, CPQRB = right-branching polar questions,
CPQCE = center-embedded polar questions.

Not all model subjects bootstrapped equally well into the syntax of the CPQCE
(mean accuracy: 53%, range: 20%– 87%, sd: 25%). There are several reasons for this.
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To reach a high level of accuracy it was crucial that the model spontaneously produced
correct CPQCE early in training to initiate bootstrapping. But not all model subjects
started producing correct CPQCE at the same time. When bootstrapping was delayed in
this way, the model was not able to fully recover later in training because the network’s
plasticity decreased over time.18 Secondly, positive reinforcement was not instantaneous
but occurred at some randomized point in time during the subsequent training cycle. It
proved criticalwhen reinforcement was given to the model. Even if it correctly produced
CPQCE and was later rewarded for this behavior, it was not guaranteed to acquire this
construction because at the time of reinforcement the model’s early bias towards gram-
matical CPQCE could have been erased again by other linguistic input. And third, all
structures which the model learned were represented over the same set of connection
weights. CPQCE therefore competed with the similar CPQRB structures and the latter
were easier to learn for the model because they were more similar to SPQ than CPQCE.
Thus, CPQRB reinforcement started earlier in training than CPQCE reinforcement and
this asynchrony could wipe out the model’s bias to produce correct CPQCE early in
training. Hence, CPQCE bootstrapping was delayed due to interference with CPQRB
learning.

For completeness I report the production error for all four conditions I examined in
one graph (Figure 7.8). Compared with the ‘wh-questions’ condition, the error decreased

No questions Simple polars WH−questions Bootstrapping

0
10

20
30

40

P
ro

du
ct

io
n 

E
rr

or
 (

%
)

center−embedded polar interrogatives
right−branching polar interrogatives

Figure 7.8: Mean production error for CPQCE and CPQRB in all four experimental con-
ditions.

signiVcantly in the ‘bootstrapping’ condition. In particular, the production error for
CPQCE dropped below 10%. When exposed to simple yes/no-questions, relative clause
constructions, and complex wh-questions, the model was biased towards structure-de-
pendent auxiliary fronting. When this bias was ampliVed by positive reinforcement
for the model’s spontaneous correct productions, it developed more robust syntactic
representations which allowed it to bootstrap into the syntax of polar interrogatives. I
will now take a closer look at these representations.

18The learning rate was set to gradually decay over training.
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7.4 Structure-dependence revisited

In Figure 7.8, the model’s performance was measured in terms of the production error
for the entire test utterances. This procedure might yield potentially misleading infor-
mation about diUerential performance across conditions, because a global decrease in
production error may not adequately reWect learning of structure-dependent question
formation. It is conceivable that the stepwise reduction of Figure 7.8 resulted from the
model learning to appropriately sequence chunks of words within the tested utterances
which are not relevant for the question whether structure-dependent auxiliary fronting
was acquired. For instance, it may have resulted from improved learning of relative
clause formation or post-relative clause sentence completion. The graph in Figure 7.8
does not reveal this kind of information and hence does not decide the issue whether
the model respected the integrity of embeddings with regard to auxiliary extraction. I
therefore examined only the relevant initial segments of CPQCE, up to and including
the embedded clause auxiliary (e.g., Is the boy that was...). For these segments, essen-
tially the same pattern of error reduction across conditions can be observed as for the
complete utterances (Figure 7.9); a small diUerence between ‘no questions’ and ‘simple
polars’, a larger reduction for ‘wh-questions’, and the largest drop in the ‘bootstrapping’
condition. The model clearly improved on producing correct initial segments of CPQCE
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Figure 7.9: Production error for the initial segments of CPQCE.

across conditions. Again, however, this does not conclusively exclude the possibility
that the model extracted the embedded auxiliary and merely improved on sequencing
lexical items between the two auxiliary positions. Fortunately, the design of the recur-
sive Dual-path model allows us to measure accuracy in terms of perfect match between
a target structure and the actual output word-by-word. In this way we can determine
the production rates of correct initial segments (Is the boy that was...) and incorrect
initial segments (Is the boy that kick...) and this allows us to decide in which input
condition the model favored which syntactic principle. At the end of training the model
was given 500 test messages for CPQCE structures as input and this message was neutral
between main and embedded clause auxiliary extraction. I measured how many of the
model’s utterances contained the intended initial segment AUX NP THAT AUX and how
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Figure 7.10: The recursive Dual-path model uniformly disregards linear auxiliary dis-
placement and improves on hierarchical auxiliary fronting across conditions.

many contained the erroneous initial segment AUX NP THAT VERB in which the embed-
ded auxiliary was extracted. The results for all four conditions are shown in Figure 7.10.
The amount of correct initial segments increases from 0% in the ‘no questions’ condition
to over 80% in the ‘bootstrapping’ condition and reaches 36% already in the ‘wh-ques-
tions’ condition (without positive reinforcement). The number of incorrect alternatives
in which the wrong auxiliary was fronted, on the other hand, remained constant and
was minute across conditions. This indicates that the series of input conditions was
successively more conducive to learning correct auxiliary fronting. It also suggests that
incorrect productions did not reWect the model’s preference for linear extraction in any
of the conditions. In other words, in no condition did the recursive Dual-path model
favor structure-independent auxiliary fronting. This is particularly interesting for the
‘simple polars’ condition in which the model was exposed to single-clause yes/no-ques-
tions, declaratives and relative clause sentences. Proponents of a universal grammar
approach to structure-dependence often argue that a linear formation rule should be fa-
vored by a learner because it is consistent with simple yes/no-questions in the linguistic
environment and at the same time simpler than a structure-dependent rule, which re-
spects clause boundaries and the hierarchical organization of complex questions. Figure
7.10 indicates, however, that a data-driven learner may not adopt such a generalization
from SPQ to CPQ even in the absence of any embedded questions in the input. This
suggests that the dichotomy of structure-dependent versus structure-independent prin-
ciples might not be the appropriate alternative to conceptualize the learning problem
that children face for CPQ.

SRN and the recursive Dual-path model are sensitive to local substructure regulari-
ties in their sentence input. A possible explanation for the model’s structure-dependent
preference could therefore lie in the relative frequencies of substructures. The distribu-
tion of relevant substructures might support the structure-dependent hypothesis. Recall
that the artiVcial language used to train the model had the verb stem and inWectional
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morphemes separated into two lexical items. In all conditions the model was trained on
declarative relative clause constructions including center-embedded subject-relativized
structures such as the dog that chase -ed the cat is jump -ing. Thus, the input
included many sentences which contained the substructure NP THAT VERB. This is the
critical substructure of a CPQCE initial segment that we expected the model to produce
if it had adopted a structure-independent rule of question formation. Nonetheless, the
model did not produce such sequences (Figure 7.10), despite being familiar with this it
from exposure to other sentences which shared this substructure. Consequently, the
model’s behavior cannot be explained on the basis that it might have seen no example
of the NP THAT VERB substructure but many examples of the correct NP THAT AUX
substructure.19 In the ‘simple polars’ condition, the input contained 1144 instances of NP
THAT AUX VERB which supports structure-dependence and 930 instances of NP THAT
VERB INFLECTION which supports structure-independence (averaged over ten model
subjects). Thus the substructure distribution was slightly biased in favor of correct aux-
iliary fronting. When looking only at THAT AUX versus THAT no-AUX substructures,
however, the model encountered 1369 instances of THAT AUX but 3237 instances of
THAT no-AUX, where the pronoun was immediately followed by any lexical item other
than an auxiliary.20 From this point of view, the model’s linguistic experience was
strongly biased towards substructures which had no auxiliary following the pronoun
and these substructures support linear auxiliary extraction. Similar distributions were
found in the ‘wh-questions’ and ‘bootstrapping’ conditions.

Kam et al. (2005) criticized other statistical approaches to auxiliary fronting (Lewis
and Elman, 2001; Reali and Christiansen, 2005) by pointing out that high frequency
of the bigram THAT AUX in the input might bias SRN to distinguish ungrammatical
from grammatical CPQ. They argued that an SRN might simply exploit these bigram
frequencies, rather than respect the hierarchical organization of complex questions, in
order to learn auxiliary fronting. In addition, they argued that realistic English input
would not support correct auxiliary fronting in terms of such bigram frequencies. In
the input to the recursive Dual-path model, the bigram THAT AUX was not the most
frequent bigram with an initial pronoun; for example the THAT ARTICLE was almost
twice as frequent. Thus, if sensitivity to these bigrams was the prime determinant of the
model’s behavior, we would not expect a preference for structure-dependence. When
producing an utterance from the novel CPQCE message input, the model had to either
produce an auxiliary or a verb stem after the pronoun. But both bigrams THAT AUX and
THAT VERB were almost equifrequent and in none of the four conditions did the model
produce the incorrect substructure in more than 2.4% of the tested utterances. Given the
overall parity of ‘substructure evidence’ which the model received, this suggests that

19Separating verb stem and inWectional morphemes pays oU here, because otherwise the embedded
verb forms in subject-relativized declaratives and incorrect polar interrogatives would systematically
diUer.

20THAT AUX substructures occurred in subject-relatives with progressive aspect and all subject-rela-
tivized passives, THAT no-AUX substructures were found in all object-relativized clauses and in subject-
relatives with simple aspect.
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the structure-independent principle of auxiliary fronting might just not appear simpler
and more preferable to a domain-general learner (such as a backpropagation network)
than the structure-dependent principle.

Unlike SRN, the recursive Dual-path model does not learn from word sequences
alone, but also receives a meaning representation for word sequences as input. The
model’s behavior is not fully determined by substructure frequencies in the training
corpus. Messages used generic semantic features to signal the number and relative
prominence of participants in the event semantics (see Chapters 3 and 4). They are not
idiosyncratic but composed from a few features in a systematic way. This encoding cre-
ates semantic similarities and partial meaning overlap between diUerent constructions
in the training language. These semantic similarities help the model to produce novel
utterances in generalization tasks such a polar interrogative learning. In training, the

Message Components Word Sequence

Barking(dog)?

Barking(dog)?
Chasing(dog,cat)

Playing(cat,with(?))
Chasing(cat,dog)

Barking(dog)?
Chasing(dog,cat)

-

-

-

-

-

-

-

START is the

dog is barking

that is chasing

who is the cat

that is chasing

START is the

that is chasing

Input
messages

Novel
message

Figure 7.11: DiUerent components of the meaning representations control diUerent sub-
sequences of words in the target structure.

model learns to associate subparts of a sentence with the proposition in the message
that controls it. For example, from simple-clause messages the model learns to sequence
participants in atomic events such as dative transfer (dog gives toy to cat). Other fea-
tures of the message control the position of relative clauses and the semantic role of
the head noun in the relative clause. By attending to those features, the model learns
how the generation of embeddings is controlled in the message. When presented with
a message for a novel structure, the model can use substructure regularities in its input
message and combine these regularities to generate sentences with a novel hierarchical
organization (e.g., additional embeddings). In learning the syntax of auxiliary fronting,
regularities in the message play a crucial role. Figure 7.11 illustrates the process of re-
cruiting semantic information from familiar message-sentence pairs in the construction
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of novel utterances. Sentence meaning helps the model to segment utterances into the
parts that correspond to the main clause (e.g., Is the dog barking?) and the part related
to the embedded clause (e.g., The dog that is chasing the cat is barking). Thus, the
auxiliary in the main clause is controlled by a diUerent part of the message than the
auxiliary in the embedded clause. In training on SPQ and complex wh-questions, the
model learns to associate the clause-neutral question feature with the main clause part
of the message. When a new complex question is created, the auxiliary that is controlled
by the main clause message is shifted to the front. In this way the system learns that
picking the closest auxiliary is not appropriate.

7.4.1 Hidden layer analysis

The relative frequencies of bigrams in the input did not explain the model’s perfor-
mance on novel CPQCE. Since these relative clause internal bigrams were the critical
subsequence which distinguished grammatical from ungrammatical CPQCE initial seg-
ments, this indicates that the model might not represent knowledge of auxiliary fronting
as an operation on linear sequences of lexical items. Rather, it seems that the model is
representing the hierarchical structure of complex sentences and respects the clausal in-
tegrity of the embedding when extracting the auxiliary. It was argued above that the
model learned which features of the event semantics controlled which aspects of the hi-
erarchical organization of complex sentences from message-sentence pairs in training.
Because novel messages were suXciently similar to experience, the model could built
novel structures from relevant components of familiar messages. Thus, generalization
to CPQ was enabled by similarity-based meaning-to-form transduction.

Hierarchical structure

If this is the correct explanation, we should be able to observe reWections of semantic
similarity and dissimilarity in the model’s internal representations. To test this, I ana-
lyzed the hidden-layer activation states of the model during the production of CPQCE
and CPQRB structures, respectively. SpeciVcally, I looked at the two sentences

(24) a. Is the father that was push -ing a brother walk -ing ? CPQCE
b. Is the father push -ing a brother that was walk -ing ? CPQRB

Both sentences share the lexical items is the father push -ing a brother walk

-ing but the common subsequence that was is displaced. The subsequence is the

father belongs to the main clause of both sentences. In sentence (24-a) the subse-
quence push -ing a brother, however, is part of the center-embedded relative clause,
in sentence (24-b) it is part of the main clause. In both cases, the father is the agent
of a transitive action and a brother is the patient. Similarly, the subsequence walk
-ing is the verb of the right-branching relative clause in (24-b) whereas in (24-a) it
is the main clause verb; the two occurrences of walk -ing take diUerent subjects. If
the model represents the syntax of auxiliary fronting as a linear operation over strings
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of words we would expect that it represents both sentence types in a similar way, at
least with respect to their common subsequences. In other words, we would expect that
the model does not distinguish the distinct hierarchical organization of these sentences
in terms of clausal units and dependencies. If, on the other hand, the model learned
auxiliary fronting from similarities in semantic representations it should represent the
diUerence in clausal structure between the two sentences. Then we should be able to de-
tect this diUerence by visualizing the internal representations the model has developed
at the end of training.

For a model subject trained in the ‘wh-questions’ condition, I recorded hidden-
layer activation for the entire set of test sentences. As each word of each test sentence
was passed through the model a snapshot was taken of the hidden-layer state, yielding
roughly 15.000 60-dimensional vectors. A principal components analysis was performed
to identify the hidden-layer dimensions which explained the bulk of variation in this
data. I also recorded activation states for questions (24-a) and (24-b). These particular
questions were selected because the model produced both with perfect accuracy. The
activation states obtained from the test questions were then plotted in terms of two prin-
cipal components. Figure 7.12 depicts the hidden-layer states for both questions with
respect to principal components 2 and 4. One can think of these graphs as a sentence’s
trajectory through hidden-layer space, visualized through data compression and pro-
jection onto a new coordinate system. In Figure 7.12, both trajectories start out in the
same region of state space while the model produces the common main clause sequence
Is the father. At the verb push -ing, however, a bifurcation of trajectories occurs as
this verb belongs to diUerent clauses within the two structurally distinct questions. The
separation of trajectories further ampliVes for a brother which is the embedded clause
direct object in (24-a) and the main clause direct object in (24-b). As the sentences are
completed the trajectories remain separated but approach each other again towards the
end of sentence marker (labelled ‘eos’).

This analysis supports two conclusions. First, the recursive Dual-path model rep-
resents distinct types of relative clause constructions very diUerently in hidden-state
space although there is maximal lexical overlap. Secondly, the model represents phrasal
units with the same constituents which occupy the same syntactic and semantic roles
in diUerent regions of state space depending on whether they occur in the main clause
or an embedding (e.g., a brother). This suggests that the model is not representing
knowledge of auxiliary fronting as linear operations on strings of words but in terms of
the hierarchical organization of complex sentences into clausal units.

In a recent paper, Perfors, Tenenbaum, and Regier (2008) argued that connectionist
models of syntactic development are not making a meaningful contribution to the aux-
iliary fronting debate due to the nature of their internal representations. Since these
models are not representing hierarchical sentence structure, as they claim, they cannot
on principle help to investigate the question whether the structure-dependent syntax
of polar interrogatives is learned through domain-general mechanisms, or innate and
language-specific. While this might be a valid point for SRN which learn from word
sequences alone and depend on substructure frequencies in order to acquire auxiliary
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Figure 7.12: Principal components analysis of the model’s internal representations for
the common subsequence is the father push -ing a brother walk -ing of ques-
tions (24-a) and (24-b).

fronting, the recursive Dual-path in addition draws on semantic input. The model learns
to associate subparts of this input with distinct clauses and this allows the model to
organize complex sentences into clausal units with distinct hidden-state space repre-
sentations of main and embedded clause. Subsequences common to diUerent types of
CPQ are represented in diUerent regions of state space.21 As a consequence, auxiliary
fronting in the Dual-path model is truly structure-dependent and not rooted in frequent
substructures. These Vndings cast some doubt on the validity of the judgement voiced
by Perfors et al. (2008).

21Note that the logic of principal components analysis only requires the existence of principal com-
ponents which distinguish constructions for this argument to be sound, in our case the 2nd and 4th
component.
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Generalization by analogy

It was a main result that the recursive Dual-path model was able to spontaneously
produce correct CPQ, displaying an error proVle that matched experimental data from
children, when exposed to simple questions, relative clause constructions, and complex
wh-questions. Although these questions diUer from polar questions in their syntax and
surface form, they aided the model in developing representations which allowed the
transfer of auxiliary fronting. This suggests that the model acquired a notion of struc-
ture-dependence which generalizes to novel constructions by analogy, with semantic
similarities being the basis of this analogy. According to Tomasello (2003), analogy
is one of the crucial mechanisms of child language acquisition—besides entrenchment
through repetition and preemption of ungrammatical forms (see also Goldberg, 1999;
Israel, 2002). On this view, analogy is a source of grammatical generalization (but also
overextension) when there is a good structural mapping in terms of linguistic form and
communicative function between whole utterances or constructions. If this is true, deep
structural relations as well as surface similarities should be reWected in the linguistic
representations of constructions acquired by analogy. We can test this idea again by vi-
sualizing the internal representations of the trained model when processing the complex
questions

(25) a. who is the father that was push -ing a brother walk -ing with ?

b. who is the father that was push -ing a brother walk -ing with ?

If the model draws on the semantic similarities between the two types of questions
to learn the syntax of polar interrogatives we should expect the corresponding hid-
den-state space trajectories to be similar. I plotted the model’s activation states for the
sentences (25-a) and (25-b) with respect to the same two principal components as in the
previous Section (Figure 7.13). Although the resulting trajectories do not match perfectly
they are very similar qualitatively and could be made nearly congruent by shifting the
lexical subsequence they have in common. The largest oUset between trajectories occurs
at the sentence initial segment who is and the sentence Vnal segment walk -ing with
which distinguish the two question types in terms of surface form, argument structure
and communicative function. This suggests that knowledge of auxiliary fronting trans-
fers from wh-questions to yes/no-question by analogy. Semantic similarities between
these questions in the message drive this analogical process and lead to similar internal
representations for the two constructions.22

22Note that this is an inference to the best explanation not a consequence of this analysis. Note also that
it is not suXcient, in general, for this kind of argument to look at two principal components only. The
representational similarity was investigated for the Vrst Vfteen principal components which explained
75% of the variance in the data and trajectories did not diverge along these dimensions.
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Figure 7.13: The internal representations of complex yes/no-questions and complex wh-
questions display qualitative similarity in hidden-layer space.

Questions and declaratives

Connectionist models of auxiliary fronting have been criticized for not learning the right
kind of mapping between declarative and interrogative expressions (Frank et al., 2006).
According to these authors, such models treat both types of sentences independently
and the representations they develop do not reWect their close correspondence.

On standard views in syntactic theory, declarative sentences are transformed into
questions by primitive operations such as movement, rearrangement or deletion of con-
stituents. Tomasello (1992) argued that this perspective is not accurate developmentally
because some children learn wh-questions before they learn word combinations that li-
cense transformation. Moreover, the majority of children’s early wh-questions is highly
formulaic, e.g., what NP doing?, where is THING?, etc. (Dabrowska, 2000). In con-
struction grammar, questions are treated as separate constructions with a characteristic
communicative function, which are not derivative but have to be learned just like any
other construction. Nonetheless, in this framework question constructions are combined
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from a large number of other constructions, the subject-auxiliary inversion construction,
the relativization construction, and so forth. For instance, in the polar question Is the
man giving the dog a toy? it is the same ditransitive construction for declaratives that
is used in a question form (Goldberg, 2006). The recursive Dual-path model reWects
this approach in that the meaning representation for questions is built from declarative
messages and question features. Because the semantics of questions is compositional in
this manner, we should observe a close correspondence in the model’s representations
of these two constructions. Figure 7.14 illustrates this correspondence for the sentences
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Figure 7.14: hidden-layer representations of polar interrogatives and declaratives reWect
their structural and semantic correspondence.

(26) a. is the father that was push -ing a brother is walk -ing ?

b. is the father that was push -ing a brother is walk -ing . ?

Again, the two trajectories match qualitatively with the largest divergence occurring
at the subject NP determiner. This suggests that the model represents the structural
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and semantic relationship between questions and declaratives. The semantics of both
constructions in the model’s message diUered only in one feature and this similarity
in meaning caused the model to develop very similar representations of the two struc-
tures. The representational correspondence is induced by semantic similarity, not by a
syntactic operation which transforms one structure into another.

7.5 Discussion

The aim of this chapter was to shed some light on the data-driven learnability of auxil-
iary fronting in polar interrogatives. After discussing the logic of poverty of the stimulus
arguments and the hidden assumptions behind such arguments, I formulated three em-
pirical hypotheses how polar interrogatives might be learned in the absence of positive
evidence. These hypotheses have been tested in two similar computational learning
mechanisms.

According to Hypothesis-3, distributional regularities in the input to a statistical
learning mechanism are suXcient to acquire knowledge of auxiliary fronting in the ab-
sence of complex polar interrogatives in linguistic experience. I reviewed two studies,
Lewis and Elman (2001) and Reali and Christiansen (2005), which explored this hy-
pothesis in the framework of simple recurrent networks. These studies suggest that in
principle SRN are able to avoid structure-independent generalizations based on distribu-
tional properties of the input. I argued that the Lewis and Elman (2001) model learned
from input which was deliberately impoverished to bring about this behavior whereas,
on the contrary, the Reali and Christiansen (2005) model learned from input which was
unnaturally enriched in that the speciVc corpus tagging provided the model with sub-
structure information which might not be available to a human learner. I also argued
that the range of tested structures was too narrow in both studies to warrant general
conclusions about the data-driven learnability of complex polar questions. Nonetheless,
both studies are important in that they indicate that a general-purpose learner might
become biased against structure-independent errors without corrective evidence against
overgeneralization in the form of complex polar questions in the input.

In my own modelling approach I worked with the recursive Dual-path model which
is one of the few explicit models of language production that uses meaning for syn-
tactic development. This model learns associations between parts of semantic repre-
sentations and subsequences of words, and it can combine these regularities in novel
ways. In the previous chapter, for instance, it was demonstrated that this mechanism
could explain the generalization of familiar words to novel slots, and the generaliza-
tion of subsequences to novel embeddings. I examined two hypotheses about auxiliary
fronting in this model which both involve the generalization of regularities from simpler
and similar structures to novel polar interrogatives. Hypothesis-1 suggested that these
structures might be learnable from exposure to single-clause declaratives, simple polar
questions and relative clause declaratives in a constructive, bottom-up manner. The idea
was that subject-auxiliary inversion is learned from simple questions and relativization
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from complex declaratives and that this knowledge could be combined by the model to
form complex questions, because it learned how subparts of complex sentences were
controlled by subparts of the semantic input. Since all input is processed over one set of
connection weights, similarities between experienced and novel messages would allow
the model to correctly produce novel complex questions. This constructive approach is
similar to a proposal of Ambridge et al. (2008) that children might be able to learn the
syntax of complex questions by learning to substitute complex NPs (the dog that is chas-
ing the cat) for simple NPs (the dog) in simple questions (Is the dog running?), based
on surface distributional properties of the input and the functional-semantic similarity
of these types of phrases. Within the recursive Dual-path model framework I did not
Vnd evidence which supports this proposal; simple polar questions and relative clause
constructions in the input were not suXcient for the production of complex polar ques-
tions or even a substantial amount of correct initial segments. Negative results from a
computational model can of course never invalidate a particular theory of acquisition.
Rather, they indicate that the learning mechanism may not be adequate to implement
this theory or that the modeller did not identify the optimal learning conditions for the
system.

Hypothesis-2 conjectured that polar interrogatives might be learnable if in addition
to the input under Hypothesis-1 the model was exposed to complex wh-questions. In
this condition, I found that the model was able to generate correct complex polar ques-
tions without having seen this structure in training. Moreover, the model’s error proVle
matched the developmental data of Crain and Nakayama (1987) and Ambridge et al.
(2008) in that the most frequent error type involved the duplication of the main clause
auxiliary after the embedding. This indicates that the model required exposure to other
complex questions in which subject-auxiliary inversion was non-local, i.e., occurred be-
tween non-adjacent constituents, in order to learn auxiliary fronting in polar questions.
The model’s behavior across these two condition suggested that complex wh-questions
might have been necessary in the input to block structure-independent generalization
from simple to complex polar questions. If this was the correct explanation, we should
have observed many initial segments with displaced embedded auxiliaries in the con-
dition of Hypothesis-1. However, this was not the case. In neither condition did the
model produce such ungrammatical initial segments which indicates that complex wh-
questions were not required to inhibit overgeneralization. The eUect of simple polar
questions in the input, apart from providing examples of subject-auxiliary inversion,
was visible in that the model produced less errors in right-branching than in center-
embedded polar questions in both conditions, since simple polars were more similar to
main clauses of the former than the latter structure.

Neural network models—such as SRN or the recursive Dual-path model—are better
at learning local regularities than long-distance dependencies. In simple polar questions,
auxiliaries and their corresponding verb form are separated only by the subject NP. In
complex polar questions these constituents are separated by more material, the main
clause subject NP plus an embedded clause. Such a long-distance separation is never
witnessed by the model in the condition of Hypothesis-1 and the model forms strong
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statistical expectations that auxiliaries in questions are always followed by the subject
NP and then the verb form. In the condition of Hypothesis-2, on the other hand,
complex wh-questions provide positive evidence that in questions additional material
can intervene between the subject NP and the dependent verb form and this weakens
the transitional probability between these constituents. When presented with a message
for a novel complex polar question, relativization of the main clause subject NP inside a
question is a grammatical option for the model under Hypothesis-2, whereas it is ruled
out under Hypothesis-1 by the model’s linguistic experience. In other words, complex
wh-questions appear to be necessary in the input to override the statistical expectations
of the model’s sequencing system. The model needs to witness some input structures in
which the main clause auxiliary and the verb form are separated by more material than
just the subject NP in order to be able to combine the subject-auxiliary construction
with the relativization construction in generating novel complex polar questions.

The recursive Dual-path model approach to auxiliary fronting can be criticized on
the basis of the input the model receives in learning. It might be argued, for instance,
that meaning input which corresponds to clauses in the target structure preempts the
problem of learning structure-dependence because the hierarchical organization of com-
plex questions is already encoded in the conceptual structure of the message. It should
be noted, however, that the model needs to learnwhich components of the message con-
trol which substructure of an utterance. For example, it needs to learn which parts of
the message control the generation of embeddings and which parts control the sequenc-
ing of participants inside an embedding. Once the model has learned to interpret its
semantic input in this way, it can produce relative clause declaratives and my approach
explicitly assumed that a notion of relativization in declaratives precedes learning the
syntax of complex polar questions. If it was not assumed that children in the Crain
and Nakayama (1987) study were able to comprehend relative clauses, this would entail
that the very instructions of the experimenters were unintelligible to their subjects; the
study would be methodologically Wawed and pointless. Secondly, the model was never
exposed to messages for complex polar questions in training. These messages shared se-
mantic features with the corresponding declarative, e.g., features which controlled the
embedding. Nonetheless, these messages were novel in that they combined declarative
features with question features and this combination was not experienced by the model
in learning. Based on experience with other message-sentence pairs, the model had to
utilize semantic components in the novel messages in the appropriate way to generate
polar questions. It was precisely the point of my approach that positive evidence from
which the syntax of polar questions could be learned was not restricted to simple and
complex polar questions alone but included complex declaratives and other types of
questions as well. And third, recall that polar question features in the message were
entirely neutral with respect to clause type (main or subordinate). When the model re-
ceived message input for a complex polar interrogative, the question feature could refer
to both clauses. The model was not biased by the message input to select a particular
clause as the locus of subject-auxiliary inversion and Figure 7.10 (page 238) demon-
strates that nevertheless it did not select the embedded clause auxiliary in any of the
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learning conditions. For these reasons, the conceptual structure of the model’s seman-
tic representations does not beg the question of learning structure-dependent auxiliary
fronting.

A second point of criticism might be raised against the particular input distribu-
tion in the condition of Hypothesis-2 in which 10% of the model’s training items were
complex wh-questions. This amount of exposure by far exceeds the most optimistic fre-
quency estimates for such questions in child-directed speech. I critically evaluated the
studies of Lewis and Elman (2001) and Reali and Christiansen (2005) based on the kind
of input they were exposed to but it seems that the recursive Dual-path model approach
does not fare any better in this respect. In my approach, the model received training with
an artiVcial, English-like language similar to the Lewis and Elman (2001) study. Unlike
their input environment, however, my language was combinatorially complete in that
every combination of basic constructions was admissible. Every syntactic role could be
modiVed and relativized, both in declaratives and wh-questions, and every combination
of tense and aspect could occur in the two clauses of a complex sentence. Critically, no
grammatical structure that this language could generate was omitted from training for
the purpose of creating conducive substructure frequencies. Compared with the Reali
and Christiansen (2005) study, my language lacked the structural variation and noisi-
ness of their training corpus. On the other hand, input tagging was not required and
this ensured that the model’s performance was not dependent on substructures which
may have resulted from a speciVc tag set in their study. Thus, although the input to the
recursive Dual-path model was artiVcial and lacked a realistic distribution, I believe my
results rest on less controversial assumptions about the learning environment.

It was shown that the recursive Dual-path model was able to spontaneously produce
grammatical complex polar questions without exposure to these structures in the input.
At the same time, the model did not produce a substantial amount of ungrammatical,
structure-independent initial segments in any input condition. This suggests that the ab-
sence of input patterns in which auxiliaries are extracted from an embedding provides
a strong cue for the model that structure-independent generalizations are ungrammat-
ical. Since the displacement of auxiliaries across clause boundaries is never witnessed
by the model, it does not entertain this possibility when generating complex polar ques-
tions.23 It seems that standard accounts of the learning problem for auxiliary fronting
do not factor such ‘evidence from absence’ into the equation. The behavior of my model
indicates that such negative evidence by itself might be suXcient to block overgeneral-
ization. Nativist arguments for the innateness of structure-dependence might therefore
be fundamentally Wawed. These arguments construe the learning problem as a binary
choice between right and wrong generalization of which only the latter is licensed by
the input. Consequently, children should overgeneralize and since they apparently do
not, the innateness of structure-dependence appears to be the only viable explanation.
But if there is no reason to believe that children should overgeneralize to structure-inde-

23A similar point is made in Regier and Gahl (2004) with respect to their Bayesian learning model for
anaphoric one.
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pendent auxiliary displacement based on their linguistic experience, a crucial premiss of
the argument breaks down and the poverty of the stimulus quandary becomes a straw
man which is not in need of explanation. Instead we should attempt to re-conceptu-
alize the learning problem in ways which suggest strategies how structure-dependence
might be learnable and investigate these strategies in computational mechanisms. The
recursive Dual-path model approach to auxiliary fronting conjectured that the syntax of
polar questions is learnable in a constructive fashion from simpler and similar building
blocks such as simple questions, relative clauses and other types of questions whose oc-
currence is warranted in child-directed speech. A crucial assumption of this approach,
which is shared by many psycholinguists (e.g., Pinker, 1984, Tomasello, 2003), was that
meaning plays an important role in syntactic development. Language acquisition, on
this view, is not reducible to syntax acquisition but is driven by the objective to ‘make
sense’ in learning to successfully map between meaning and form. Because the meaning
of novel questions was suXciently similar to the meanings of constructions which the
model experienced in learning it was able to generate complex polar interrogatives from
meaning representations without direct exposure to these structures. The results I pre-
sented from this approach suggest that the structure of meaning may obviate the need
for innate syntax-speciVc knowledge in the acquisition of adult-like language abilities.





Chapter 8

The accessibility hierarchy

The accessibility hierarchy (AH) stratiVes relative clause constructions in terms
of the relativized NP’s syntactic role (Keenan and Comrie, 1977) and this is con-
sidered to be an implicational universal in typology. I explore here an account
where similarity and frequency of substructures in the input are the primary
sources of the AH. This input-based account is consistent with usage-based
syntax acquisition work (Diessel and Tomasello, 2005). The recursive Dual-
path model was taught an English-like language through exposure to message-
sentence pairs and its behavior during development displayed the AH ordering.
I was able to manipulate and remove this ordering by varying properties of
the input, and this suggests that patterns of interference and facilitation among
structures can help to explain the AH in processing and development within a
connectionist learning model.

8.1 Introduction

Language universals are important in theories of language, because they suggest that
there are aspects of languages which may be innately endowed. Theoretical accounts
of language universals sometimes argue that they arise from the nature of an innately
speciVed language processor. Another possibility, that I examined here, is that these
universals arise from the mechanisms of a language learning system. One important
syntactic universal in linguistic typology is the accessibility hierarchy of relative clause
constructions. English relative clauses can be distinguished based on the grammatical
function of their head noun in the relative clause. For example, in the sentence the boy
that runs, the constituent boy functions as the subject of the intransitive clause and I
label this construction as an S-relative. Sentences with transitive subjects relativized are
called A-relatives, and so forth (other types of relative clauses are presented in Table 8.1).
I will use this labelling throughout to refer to sentence tokens in the example column.
Keenan and Comrie (1977) sampled relative clause constructions from 50 languages and
based on this data they formulated an implicational universal for all languages. If a
language knows a construction to relativize subjects (S + A) and any other grammatical
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Relativized role Example Label
Subject intransitive ... the boy that _ runs S
Subject transitive ... the boy that _ chased the dog A

Direct Object ... the cat that the dog chased _ P
Indirect Object ... the girl who the boy gave the apple to _ IO
Oblique Object ... the boy who the girl played with _ OBL

Genitive ... the man whose _ cat caught the mouse Gen
Obj. of Comparison ... the cat that few are cuter than _ OComp

Table 8.1: Summary of English relative clause constructions.

role in the ordering

(S + A) > P > IO > OBL > Gen > OComp

then it can relativize any position in between using the same construction. Any reorder-
ing of relative clause types would invalidate this implication. In linguistic typology this
ordering is known as the noun phrase accessibility hierarchy (AH). Syntactic univer-
sals such as the AH are considered prime candidates for being expressed in universal
grammar.

A syntactic construction (or ‘relativization strategy’) to relativize subjects is also
called a primary strategy. In English, most hierarchy positions can be relativized by
using the relative pronoun that and omitting the head noun in the relative clause (see
S-, A-, and P-relatives in Table 8.1). Alternatively, English can use other pronouns (who,
whose, whom) for the AH positions (except OComp). Both constructions are primary
strategies. Other languages, however, require more explicit relativization strategies on
lower positions of the hierarchy. For example, OBL-relatives in Welsh need to retain
an anaphoric pronoun (it in the example below) in the canonical position of the head
noun in the relative clause:

(1) y
the

llfyr
book

y
COMP

darllenais
read.1SG.PST

y
the

stori
story

ynddo
in.it

the book in which I read the story

Pronoun retention is a secondary strategy in Welsh because it cannot be used for subject
relativization. According to Comrie and Keenan (1979), for each position on the AH
there is a language which knows a primary strategy for this position but requires a
secondary strategy on any lower position.

Keenan and Hawkins (1987) speculated that this hierarchy may be rooted in process-
ing diXculties. The lower a construction occurs on the AH, the more diXcult it is to
process. If in some language a relativization strategy works for position k of the hierar-
chy and for subjects (primary strategy), then we would expect that the language reuses
this strategy on positions above k where relative clause constructions become succes-
sively easier to process. Conversely, if some relative clause construction is diXcult to
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process, a language user may have to employ a diUerent, more explicit relativization
strategy on positions below k to facilitate production and comprehension (secondary
strategy). In this way, both AH constraints on relativization could be explained in
terms of cognitive economy. To test the idea that the AH is correlated with processing
diXculty, Keenan and Hawkins conducted an experiment in which subjects had to Vrst
comprehend and then reproduce diUerent relative clause types. Short-term memory ef-
fects were eliminated in that subjects had to repeat random sequences of digits before
production. Repetition accuracy scores for the diUerent construction types on the hier-
archy are shown in Figure 8.1. Although not all contrasts were signiVcant, they found
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Figure 8.1: Adult relative clause comprehension accuracy matches the AH ordering
(Keenan and Hawkins, 1987).

that the order of diXculty in adults qualitatively matched the accessibility hierarchy
ordering (with the exception of the OComp construction not reproduced here).

A number of processing accounts have been proposed to explain this kind of data,
based on the syntactic structure of relative clauses and/or working memory limitations.
For instance, Hawkins (1994) deVned a metric for the processing diXculty of relative
clause types in terms of phrase-structure tree complexity. The more embedded the trace
of the head noun is within the relative clause, the more structurally complex and hence
more diXcult it is to process. This complexity metric crucially depends on the syntactic
analysis of relative clauses in some phrase-structure grammar, e.g., the principles and
parameters framework.

According to Hale (2006), the AH in sentence processing can be explained as a
function of entropy reduction in incomplete parse trees. The idea is that as a sentence is
processed incrementally in comprehension, some words carry more information about
the syntactic structure of the rest of the sentence than others. The parser has to project
the structure of the sentence based on the words it has encountered already and the
diXculty in this task is proportional to the amount of conditional uncertainty at each
sentence position. Consequently, some relative clause constructions are harder to parse
than others and the predictions derived from this metric correlate well with the data of
Keenan and Hawkins (1987).
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A prominent theory which stresses the role of working memory limitations in rel-
ative clause processing is Just and Carpenter (1992). They devised an activation-based
model of reading times for English relative clause constructions which shows that cog-
nitive capacity constrains comprehension. This model assumed that working memory is
simultaneously involved in storing partial representations of incomplete parses and in
integrating incoming constituents into these representations. The eUect of constraining
working memory resources in the model is that object-relativized structures are more
diXcult to process than subject-relativized structures.

One of the most inWuential proposals, the dependency-locality theory of Gibson
(1998), suggests that the hierarchy can be accounted for by combining two factors, the
varying distance between the head noun of the relative clause (called ‘Vller’) and the
canonical position of the head noun in the relative clause (called ‘gap’), and the num-
ber of incomplete syntactic dependencies at each sentence position.1 Both factors, it
is claimed, are taxing the human sentence processor because the Vller has to be kept

There is the man that _ runs

There is the man that a dog chases _

S-relative

P-relative

Figure 8.2: Filler-gap distances in S- and P-relatives.

in working memory until it can be integrated at the gap position, and similarly, open
dependencies induce a memory cost until they are resolved. In case of sentences with
just one relative clause, which are studied in this chapter, dependency-locality theory
reduces to Vller-gap distance as the crucial factor, the number of incomplete dependen-
cies is negligible. Thus, Gibson’s theory would adequately predict, for instance, that
S-relatives are easier to process than P-relatives (see Figure 8.2), because the distance
between the Vller (in this case man), and the gap (indicated by the underscore in the
examples) is larger in P-relatives than in S-relatives. The dependency-locality approach
is also relevant for explaining why OBL- and IO-relatives are lower on the processing
hierarchy than P-relatives.2

1Filler-gap distance as a processing factor was Vrst described in Wanner and Maratsos (1978), the
second factor is a variation on the number of incomplete phrase structure rules held in working memory,
mentioned in Chomsky and Miller (1963).

2In the psycholinguistic literature many more theories have been proposed which partially explain
processing diUerences between constructions in the AH, for instance the conjoined clause hypothesis
(Tavakolian, 1981), the non-interruption hypothesis (Slobin, 1973), the parallel function hypothesis (Shel-
don, 1974), the NVN-schema hypothesis (Bever, 1970), and the perspective keeping hypothesis (MacWhin-
ney and Pléh, 1988). For a summary and discussion see Diessel (2004) and Chapter 5.
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8.2 The accessibility hierarchy in development

There are several aspects of AH behavior which are not addressed by Vller-gap dis-
tance processing accounts. First, these accounts may not make the right cross-linguistic
predictions for relative clause processing. German relative pronouns, for example, are
marked for gender, case, and number. Hence, in most sentences with relative clauses
the grammatical role of the gap is resolved at the pronoun position already and the Vller
need not be kept in working memory until it is being integrated at the gap site. Secondly,
these processing accounts pertain to comprehension, but presumably in production no
Vller integration is required at the gap position because the speaker mentally represents
the intended message in a deVnite, unambiguous way; she knows the syntactic role of
the head inside the relative clause from sentence onset. A third issue which has not been
examined carefully concerns the relationship between Vller-gap distance processing ac-
counts and language acquisition. It is not clear whether such accounts would work with
the incomplete syntactic representations that children are using. These theories might
not predict the hierarchy behavior in development. On the other hand, if children are
not making adult-like predictions based on adult-like syntactic representations stored in
working memory, then they might not exhibit adult-like AH behavior. In a sentence
repetition study with English children [4;3-4;9], however, Diessel and Tomasello (2005)
found that the order of relative clause acquisition in production matches the adult pro-
cessing hierarchy reported by Keenan and Hawkins (Figure 8.3). The same order of

S A P IO OBL Gen

0
20

40
60

80

S
en

te
nc

e 
ac

cu
ra

cy
 (

%
)

0
10

20
30

40
50

60
70

80

Figure 8.3: The order of relative clause acquisition in English children measured in
production (Diessel and Tomasello, 2005).

acquisition was found in German children.3 Diessel and Tomasello argued that aspects
of their results were not consistent with Vller-gap distance processing accounts. For ex-
ample, dependency-locality would predict that S- and A-relatives are equally diXcult to
process, contrary to what they found in children. Moreover, dependency-locality would

3Notice that unlike Keenan and Hawkins (1987), Diessel and Tomasello (2005) distinguish subject-rel-
atives into intransitive (S-relatives) and transitive relative clauses (A-relatives).
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predict that IO-relatives are more diXcult than OBL-relatives but Diessel and Tomasello
did not Vnd a signiVcant diUerence in acquisition. To explain their data, they instead
proposed an account where frequency of structures and similarity between structures in
the primary linguistic data were responsible for creating the hierarchy in development.
On their account, subject-relatives (S + A) are easier than P-relatives, because in these
constructions the head noun expresses the actor of the relative clause just like the sen-
tence-initial NP in simple transitive clauses. Due to this similarity, S- and A-relatives
beneVt most from the high frequency of transitive single-clause sentences in child-di-
rected speech. Performance on P-, IO- and OBL-relatives is comparable, according to
Diessel and Tomasello, because they share the same subsequence of word categories (NP
THAT NP VERB). OBL- and IO-relatives are more diXcult because compared to P-rela-
tives they are highly infrequent in the input.

8.3 The recursive Dual-path model approach

In my own approach, I aimed at testing the validity of aspects of the Diessel and Toma-
sello (2005) account within a computational model of relative clause acquisition. This
learning model is exposed to message-sentence pairs from an artiVcial, English-like lan-
guage, and it displays diUerential performance which matches the relative clause hier-
archy in development. If the AH behavior is due to the nature of the model’s language
learning algorithm, then we should be able to manipulate and even remove the hierar-
chy just by changing the input.

Experimental work cannot substantially manipulate the nature of the input children
receive. Hence, it is diXcult to assess the degree to which the input shapes syntactic
behavior in development. A model of relative clause acquisition allows us to change the
input over development, measure the eUect of these changes in the model’s behavior,
and derive empirical predictions for humans. I will focus on three aspects of the model’s
account of syntax acquisition. Since the model uses an incremental learning mecha-
nism, its syntactic representations develop slowly and are sensitive to the frequency of
subsequences of syntactic categories in the input (e.g., THAT ARTICLE NOUN). If we
manipulate the input distribution and Vnd that the AH behavior is changed, this would
suggest that substructure frequencies may play a part in the construction of the hier-
archy. Another feature of the model is that it learns syntactic alternations in which
two distinct surface structures are associated with a similar meaning (e.g., active tran-
sitives the man chased the dog and passive transitives the dog was chased by the

man) and these structures interfere with each other. We can determine whether this in-
terference is related to the AH behavior by having the model learn a language without
alternations. Thus, a computational approach oUers three advantages over developmen-
tal studies with children. First, we can manipulate the frequency distribution of the
input and thereby derive predictions about the composition of children’s language input
in acquisition. Secondly, we can systematically remove constructions from the input and
thereby trace patterns of interference between constructions. And third, we can change
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the semantic representations of these constructions to determine the extent to which
semantic similarities shape the AH in development. By examining how frequency, in-
terference, and meaning relate within a particular account of syntax acquisition, we
might be able to make more explicit how language universals like the accessibility hier-
archy are inWuenced by the input.

The speciVc model of syntax acquisition which I was using is the Dual-path sen-
tence production model (Chang et al., 2006). This connectionist system is built from a
simple-recurrent network (Elman, 1990) augmented with a second processing pathway
in which the sentence message is represented for production (see Figure 3.2, page 56).
It learns the syntax of a target language by mapping meaning representations (input)
onto appropriate sentence forms (output). For the current task I extended this model to
accommodate processing of multi-clause utterances. The message input to the model
used three components, thematic roles (Agent, Patient, Recipient, etc.) which were
represented at the where-layer, concepts (lexical semantics) which were represented at
thewhat-layer, and event features (e.g., the number and relative prominence of partici-
pants) which could be activated in the event semantics-layer. To encode a message at
the beginning of production, thematic roles in thewhere-layer were temporarily bound
to concepts in the what-layer, and the appropriate features in the event semantics-
layer were activated. Most importantly, I added information about the co-reference of
participants in diUerent events to the message representation of the Chang, Dell, and
Bock (2006) model. From this information the model learned to omit the correct partic-
ipant in the relative clause event when diUerent event roles competed for relativization.
For example, the message for A-relatives (the man that chases the dog) contained a
feature which linked the head noun the man in the main clause event to the transitive
agent of the subordinate clause event. In a P-relative (the man that the dog chases),
on the other hand, a feature bound the man to the patient role in the relative clause.
In this way the model could semantically distinguish similar transitive events and learn
to map the corresponding messages onto the correct sentence forms (A- versus P-rela-
tives).4

8.4 Language and method

The language I used to train the model contained the basic structures needed to re-
produce the relative clause hierarchy in acquisition, and included the transitive and
ditransitive alternations (table 8.2). Diessel and Tomasello (2005) argued that children
of the tested age might have diXculties with relative clause constructions containing a
main clause which expresses a full proposition, and in particular with center-embedded
constructions. Therefore, similar to the test items in the Diessel and Tomasello study,
multi-clause constructions which the model was exposed to had a relative clause at-

4For details regarding the model’s architecture and message representation, see Chapters 3 and 4.
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Structure Example
Presentational there is a boy .

Transitive the woman kick -ed the teacher .

Transitive passive the teacher was kick -ed by the woman .

Intransitive the cat was sleep -ing .

Prepositional dative a girl throw -s the stick to the cat .

Double object dative a girl throw -s the cat the stick .

Oblique the nurse is play -ing with a dog .

Relative clauses there is the boy that the woman chase -s .

there is a woman that throw -s a cat the toy .

there is a man that the dog was run -ing with .

Table 8.2: Basic construction types in the language to train the recursive Dual-path
model.

tached to the predicate nominal of a presentational clause.5 Relative clauses which were
assembled from presentationals and the structures of Table 8.2 could have all partici-
pant roles relativized. The head noun of dative constructions, for example, could be the
agent, theme or recipient of the relative clause. The input grammar had verb tense and
aspect, inWectional morphemes were represented as separate lexical items. The lexicon
contained 56 words in 14 categories which allowed the creation of roughly 2.4 × 106

diUerent sentences. The model was trained on a set of 10.000 sentences from this in-
put language, and tested periodically on 500 novel sentences after every 1.000 training
items. The test sentences were randomly generated from the Vve sentence types which
were used in the Diessel and Tomasello experiment.

8.5 The accessibility hierarchy in the recursive Dual-
path model

With this input language and training conditions, I replicated the relative clause hierar-
chy in the recursive Dual-path model (Figure 8.4). Figure 8.4 and all subsequent graphs
show the results of averaging performance over 20 model subjects. Model subjects dif-
fered with respect to the randomly generated training set to which they were exposed.
The x-axis represents the number of sentences that the model has been trained on, the
y-axis represents the sentence accuracy for the Vve tested constructions. Sentence ac-
curacy was measured in terms of perfect match, ignoring minor errors such as wrong
determiners, verb tense and aspect. This measure is similar to how Diessel and Toma-
sello evaluated children’s errors in their experiments. At the end of training, the model
reached an adult state where it could accurately produce all of the sentence structures.

5The Dual-path model is suXciently general to allow the processing of utterances with full main
clauses and multiple embeddings, see Chapter 6. I therefore refer to it as recursive Dual-path model.
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We observe that relative clause constructions develop in the same order in the model as
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Figure 8.4: The order of relative clause acquisition in the recursive Dual-path model
corresponded to the positions on the accessibility hierarchy (Diessel and Tomasello data
superposed at epoch 2.500).

in children according to the Diessel and Tomasello (2005) study.
To explore what role the input played in creating the hierarchy, I manipulated the

model’s input, but used the same test set throughout. Therefore, the Vller-gap distances
remained the same across input manipulations. A processing account would predict that
the AH should be robust over small changes in the input. If it is possible, however, to
change or remove aspects of the hierarchy, that would suggest that the input might play
a larger role in the development of the hierarchy than previously thought.

8.5.1 The S>A contrast

First, I focused on the contrast between S- and A-relatives in a model which was trained
on the full language. In the AH condition, S- and A-relatives diUered on several features
such as length, frequency, binding information, and participation in alternations. If we
can determine which of these features are important in the model’s S>A behavior, that
might indicate how the human syntax acquisition system could be inWuenced by these
factors. Input in the hierarchy condition of Figure 8.4 made several assumptions about
the frequency of diUerent structures. For example, S-relatives were more frequent than
A-, P-, and IO-relatives, which all had the same frequency, and OBL-relatives were least
frequent. To see how those assumptions inWuenced the model’s S/A diUerence, I equated
the frequency of structures in the learning phase (Figure 8.5). For equal frequencies, the
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Figure 8.5: The S>A diUerence persisted when the frequency of all tested constructions
was balanced in the input.

accuracy of S- and A-relatives decreased compared to the AH condition, but S-relatives
were still learned signiVcantly faster than A-relatives.

Another diUerence between S- and A-relatives was their overall length. The recur-
sive Dual-path model contains a simple recurrent subnetwork, which is sensitive to the
length of input sequences. Thus, we might expect that the S>A diUerence could be due
to the diUerent length of these two constructions. To examine this possibility, I balanced
the sentence length in the Vve test structures by appending prepositional phrases, e.g.,

(2) there is the man that run -s in the park at night . (S-relative)

(3) there is a man that chase -s a dog down the hill . (A-relative)

When sentence length was balanced, I found a pattern similar to the conditions of Fig-
ures 8.4 and 8.5, except that the learning of both structures was delayed (Figure 8.6).
Neither input manipulation erased the diUerence between S- and A-relatives in the
model, which suggests that this diUerence is not due to overall sentence length or input
frequency.

A third diUerence between the two structures lies in the meaning information they
require. A- and P-relatives diUer in terms of the position of their gap. Therefore, to
be able to produce these structures correctly, there had to be a feature that marked the
gapped element in the message. Without this information, the model cannot determine
whether to produce an A- or a P-relative. S-relatives, on the other hand, do not create
this ambiguity, since there is only one possible role to relativize. Hence, part of the
S>A diUerence may have been due to the dependence of the A-relative on meaning
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Figure 8.6: Equating the length of all tested constructions did not erase the S>A diUer-
ence in the model’s syntactic development.

information in the message. To examine how much these constructions depended on
meaning information, I ran a simulation without role and co-reference information in
the event semantics. In this condition, the model received no information about the
number and relative prominence of event participants and no role-binding information
which would indicate the speciVc relative clause structure intended for production. As
shown in Figure 8.7, this model had trouble learning most of the constructions, except
for the S-relatives which were still learned to an adult degree. This suggests that the
model found it easier to produce messages which were unambiguously associated with
one structure versus those which competed with other structures in the language (like
A- and P-relatives). Furthermore, since relative clause acquisition also matched the
hierarchy in this condition, the hierarchy did not seem to depend on the particular
message representation used in the recursive Dual-path model.

The production accuracy of S-relatives was insensitive to the message manipulation.
To demonstrate that the input is critical for explaining the S>A diUerence, we would
like to be able to remove this diUerence by just manipulating properties of the input.
Since the S>A diUerence was robust over changes in the meaning, and when length and
frequency were equated, a more radical manipulation of the input was required. First,
I reduced the frequency of S-relatives in the input to half the frequency of A-relatives.
Events described by A-relatives have twice as many participants as events described by
S-relatives. Because the model is learning to sequence participant roles at the where-
layer and more roles entail more distinct sequences, the number of roles might be a
critical factor. Balancing S- and A-frequency in the described way controlled for this
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Figure 8.7: Removing participant roles and binding information from the message did
not eliminate the S>A diUerence in the model.

diUerence. And secondly, I removed input structures that make A-relatives diXcult to
learn, namely passive transitives. Passive transitives complicate the meaning-to-form
mapping the model has to acquire in that they invert the sequence of event participants
in the surface form of active transitives.6 Thus passives might interfere with learning A-
and P-relatives. S-relatives, however, do not participate in alternations in which similar
messages are mapped onto diUerent sentence forms, and this distinction between S-
and A-relatives might partially explain the S>A diUerence. When both factors were
combined the model learned A-relatives as fast as S-relatives (Figure 8.8). Hence, even
though the model displayed a strong bias towards S-relatives over all other structures in
the hierarchy, this bias could be erased by manipulating the model’s input distribution.
This demonstrates that the types of structures and their frequencies in the input are
crucial for the S>A contrast in the accessibility hierarchy, and suggests that the S>A
diUerence in development may not be maintained in a learning system if the input does
not also support that diUerence.

To summarize the S/A-contrast, frequency and length did not explain why S-rela-
tives were learnt faster than A-relatives. S-relatives were easier for the model because
they did not participate in alternations and did not have a main/relative clause binding
ambiguity. Thus, the S>A diUerence was due to inherent factors, like the number of
roles, but also due to the learning problem posed by the existence of multiple ways of
conveying the same meaning, as in the active/passive transitive alternation.

6See also the discussion of alternations in Chapter 5.
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Figure 8.8: S-relatives equaled A-relatives when S-frequency was reduced and passive
transitives were removed from the input language.

8.5.2 The A>P contrast

In the hierarchy condition (Figure 8.4, page 261) we observed that the model performed
signiVcantly better on A-relatives than on P-relatives despite both structures occurring
with the same frequency in the input. This behavior is in line with a large number
of comprehension studies which found that object-relativized structures are harder to
process than subject-relativized structures across languages, both for adults and children
(Hakes, Evans, and Brannon, 1976; Wanner and Maratsos, 1978; Keenan and Hawkins,
1987; King and Just, 1991; Villiers, Flusberg, Hakuta, and Cohen, 1979; Friedmann and
Novogrodsky, 2004; Frazier and Clifton, 1989; Gordon, Hendrick, and Johnson, 2001;
Tavakolian, 1981). Processing accounts such as Just and Carpenter (1992) and Gibson
(1998) argued that this asymmetry was due to a processing bias against object-relativized
structures which require more cognitive resources than subject-relativized structures.

Diessel and Tomasello (2005) suggested an alternative account of the A>P diUer-
ence based on the surface sequence of syntactic categories. A-relatives contain the
subsequence THAT VERB, whereas P-relatives contain the subsequence THAT ARTICLE
NOUN. Since all of the relative clause structures can relativize subjects, THAT VERB
substructures might be more common in a learner’s environment than THAT ARTICLE
NOUN substructures. If speakers are sensitive to the frequency of substructures, this
could help explain the A>P diUerence. To explore how substructure frequencies re-
lated to the A>P diUerence, I manipulated these frequencies in the model. The model
should be sensitive to substructures, because it used a simple-recurrent sequencing net-
work which learned statistical relationships between sequences of adjacent syntactic
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categories (Elman, 1990; Chang, 2002).
The diUerence between relevant substructure frequencies can be levelled out, for

instance, by manipulating the relativization ratios in dative structures (prepositional
dative and ditransitive) in the training set. I reduced the frequency of THAT VERB by
reducing the frequency of subject-relativized datives (there is a man that give -s

the toy to the dog) and increased the frequency of THAT ARTICLE NOUN by increas-
ing the frequency of object-relativized datives (there is the toy that a man give -s

the dog). Manipulating dative frequencies allowed me to leave the transitive A- and
P-frequencies invariant. As a consequence, I was able to remove the A>P diUerence
in development (Figure 8.9). This input manipulation demonstrates that it was not the
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Figure 8.9: A-relatives equaled P-relatives when substructure frequencies were balanced
by adjusting the dative relativization ratios while leaving the transitive frequencies in-
tact.

frequency of the whole construction which was critical, but rather the frequencies of
shared substructures that determined the A>P diUerence in the order of acquisition.

If this account is correct, we can predict that THAT VERB substructures should be
more frequent than THAT ARTICLE NOUN in the input to English speaking children.
In an analysis of the mother’s speech in a dense English corpus (Maslen, Theakston,
Lieven, and Tomasello, 2004), I found 157 examples of ARTICLE WORD THAT VERB
(where VERB comprised only verbs morphologically marked by -ed or -es). But when
searching for cases like ARTICLE WORD THAT ARTICLE, I found only 67 instances.
Hence, even without auxiliaries and plural agreement, THAT VERB is far more com-
mon than THAT ARTICLE NOUN. This provides support for the explanation of the A>P
diUerence in terms of substructure similarities and indicates that the model can be use-
ful in determining what kinds of units to search for in a corpus analysis. I therefore
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suggest, that (in analogy to the model) the A>P diUerence in children could be due to
the relative frequencies of common substructures in all of the sentences in the input,
rather than reWect a universal processing bias against object-relativized structures.

8.5.3 P-, IO-, and OBL-relatives

The performance diUerences for P-, IO- and OBL-relatives can be similarly reduced or
even inverted by changing the model’s input distribution. Each of these constructions
was inWuenced by several distinct factors in complex ways. Since these constructions
were not signiVcantly diUerent from each other in the Diessel and Tomasello (2005)
data, I only report the factors which seemed to have the strongest eUect on each con-
struction in the model. The learnability of P-relatives was inWuenced by many of the
factors I mentioned in earlier sections, but in addition, P-relatives were also strongly
inWuenced by the frequency of subject-relativized passives (e.g., there is a man that

was chase -ed by a dog) which are in direct structural competition. Although these
structures are infrequent in child-directed speech, children must hear them or related
structures in order to acquire an adult grammar. For statistical learning systems like
the recursive Dual-path model, low frequency can be detrimental. In the hierarchy con-
dition (Figure 8.4, page 261) passives were a total of 4.8% in the input. To model the
interference eUect of learning embedded passives on the development of P-relatives in
children, I had to increase their frequency in the model’s input. I found that increasing
the frequency of subject-relativized passives signiVcantly reduced the accuracy of P-rel-
atives. This eUect could further be ampliVed when I made active and passive transitives
less distinct in their message representation. This was implemented by reducing the
diUerence in activation between role features which marked the relative prominence of
participants in the event semantics. The result of this manipulation is shown in Figure
8.10 (top) after training on 5000 sentences. P-relatives in this condition went down to
the accuracy level of IO-relatives and OBL-relatives in the hierarchy condition of Figure
8.4.

As with the P-relatives, IO-relatives were sensitive to demands of mapping similar
messages onto two structures (the dative alternation). In other words, the ditransitive
construction (there is the dog that the girl give -ed a toy) complicated the ac-
quisition of IO-relatives in the model in a similar way as passive transitives complicate
the learning of A- and P-relatives. By removing the ditransitive from the input lan-
guage, I increased the accuracy of IO-relatives to the level of P-relatives in the hierarchy
condition (Figure 8.10, middle).

The OBL-relative construction, on the other hand, was most sensitive to fre-
quency because it was not in direct competition with other input structures. However,
OBL-relatives shared semantic similarities with S-relatives, because in my input lan-
guage oblique objects were treated as prepositional complements of intransitive clauses.
Therefore, I expected them to be easily learnable in the model when frequencies of con-
structions were equal, and this was indeed the case (Figure 8.10, bottom). Hence, the
model’s account of the low OBL-relative accuracy in the hierarchy condition required
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Figure 8.10: Distinct factors inWuenced the learnability of P-, IO-, and OBL-relatives in
the model after training on 5.000 items.

that these structures were much less frequent in the input than S-relatives. Support for
this account comes from a corpus study by Diessel (2004) who found that out of all of
the relative clauses in a corpus of child-directed speech, 35.6% were S/A-relatives, but
only 7.6% were OBL-relatives.

8.6 Eliminating the relative clause hierarchy

If Vller-gap distances are not crucial for creating the hierarchy, we should be able to
Vnd an input condition in which the model learns a language that does not display the
AH in development. I achieved this by creating an input environment which only con-
tained single-clause utterances (e.g., the dog chase -s the cat) and sentence tokens
of the Vve tested structures (i.e., S-, A-, P-, IO-, and OBL-relatives) in training. This ma-
nipulation removed any interference eUect of syntactic alternations (passive transitive
and ditransitive) in the model’s performance on the hierarchy structures. Secondly, this
limited the relativization possibilities for some tested constructions in that subject-rela-
tivized obliques and subject- and theme-relativized prepositional datives were removed
from the input. In Section 8.5.1 we saw that the number of participant roles in the em-
bedded clause had some inWuence on the S>A contrast. If we want to eliminate the
hierarchy we therefore need to equate for the number of roles in diUerent constructions.
Thus, I made the frequency of each relative clause construction in the input proportional
to the number of its roles. That is, for each construction, input frequency divided by the
number of its roles was identical. In this condition, the hierarchy disappeared (Figure
8.11). This experiment shows that I controlled all the relevant factors that inWuenced
the hierarchy over development in the model. When only the tested structures from the
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Figure 8.11: When the input language did not contain alternations, and no structures
with competing roles relativized, the hierarchy was erased.

accessibility hierarchy were in the input, the same model which previously matched the
order of relative clause acquisition in children (Figure 8.4) now behaved entirely neutral
with respect to the diUerent sentence structures.

The stepwise elimination of the accessibility hierarchy suggests that patterns of in-
terference and facilitation between the tested items and constructions in the language
outside the test set brought about the hierarchy in development. Processing theories
attempt to deVne some universal metric rooted in notions of syntactic complexity to
determine the processing diXculty of relative clause structures. Here it was shown that
the processing diXculty of individual constructions crucially depended on the rest of
the input language to a learning mechanism. Hence, the processing diXculty of a con-
struction can not be measured in isolation from the linguistic environment; seeking to
identify a complexity metric might be a futile endeavor. I argued instead that it was the
diversity of the total input language as Vltered through the architecture of a model of
syntax acquisition which made some structures harder than others.

The proposed account of the relative clause hierarchy is quite radical. While pro-
cessing theories largely ignore the input in their explanation, and usage-based accounts
of syntax acquisition explain some aspects of relative clause development in terms of
the input, I argued that the entire accessibility hierarchy can be reduced to properties of
the input language within the framework of a computational learning model.
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8.7 Discussion

I showed that a neural network model of syntax acquisition and sentence production
was able to exhibit evidence of the AH in syntactic development when given English-
like input. However, when that input language was distorted, such that it no longer re-
sembled a natural language, the model’s AH behavior was also distorted. I argued that
universal properties of natural languages, such as the existence of structural alterna-
tions, similarity in meaning between diUerent constructions, and consistent frequency
across diUerent languages, may play a part in making the AH a universal feature of
human languages.

In addition to providing an account for AH behavior in development, the model sug-
gests how the mechanisms proposed in experimental work (Diessel and Tomasello, 2005;
Brandt, Diessel, and Tomasello, 2008) might be implemented. For example, Diessel and
Tomasello explained structural errors in their data by stipulating that S/A-relatives are
easier to activate than other structures. The model suggests that the frequency of THAT
VERB over THAT ARTICLE NOUN across all of the constructions in the language was
partially responsible for the ease of activating S/A-relatives. These substructure rep-
resentations were learned, because the model’s simple-recurrent sequencing network
attended to local statistical regularities.

The model not only implements mechanisms that have been proposed in the liter-
ature, but also emphasizes factors in the AH that have not been considered important
for relative clause acquisition. One such factor is syntactic alternations. The model was
designed to map from meaning to forms and to handle syntactic alternations, which
were therefore included in the language input. Likewise, children have to learn the
transitive and dative alternations to become adult speakers. But what I found was that
alternations increased the competition between roles for relativization and tended to
complicate the generation of forms. This seemed to be important for explaining devel-
opmental patterns for diUerent constructions. Along the hierarchy positions, more roles
entailed more alternation options; none for intransitives, one for transitives (passives),
and two in datives (passive ditransitives). My results suggest that structural diversity in-
curred from syntactic alternations could be a crucial factor of diUerential relative clause
development in children. Therefore, experimental work on the AH might proVt from
looking at the inWuence of alternations.

Accounts of the universal nature of the AH have focused on processing diXculty as
the driving force behind the hierarchy. But the presented work with the recursive Du-
al-path model, which is a sentence processor with a limited capacity memory, indicates
that the AH is not an inevitable consequence of sentence processing. No matter how
complex a structure is, a model which learns its syntactic representations can recode
this structure in a way that requires a minimal amount of memory. This suggests that
the learning mechanism may play an important role in determining the complexity of
syntactic representations.

More generally, this work suggests that processing accounts are not the only way to
explain the universal nature of the AH. Within a computational learning model, I identi-
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Ved properties of the input language, such as substructure frequency, semantic similari-
ties among relative clause types, and the presence of syntactic alternations, which could
lead to the hierarchy in development. If these properties are universal across languages,
then this learning account provides an alternative explanation of the hierarchy’s uni-
versality. Any language which violates at least one of these three properties would be
an interesting test case for this approach to the accessibility hierarchy. Such a test case,
however, may not exist in the pool of natural languages.





Chapter 9

Conclusions

Language is the hallmark of cognition, and complex syntax might separate human from
animal communication. Complex syntax is believed by many to be out of reach of
neural network models. The present work argued that this might be a premature verdict,
if we assume that language processing involves computing with meaning. Instead of
recapitulating the results of this thesis in detail, I want to discuss in a more general
fashion what I believe are some key ideas which were explored here.

9.1 Key Vndings

9.1.1 Learning as transduction

It was a working assumption central to this research that natural language is learnable
from positive input by means of general cognitive abilities. The basic units of lan-
guage which must be learned and generalized are constructions—pairings of meaning
and form. On this view, syntax is not an autonomous device that needs to be acquired
on top of semantic or phonological devices, with interfaces between them that need
to be explained (such as syntax-semantics linking rules). Syntax arises in the learning
system because it is the very substrate that enables the system to successfully map be-
tween meaning and form. Consequently, syntax is not learned prior to or independently
of semantics but it is derivative of learning to perform meaning-to-form transduction.
The transduction device consists of a mechanism for mapping constructional meaning
to grammatical sequences of word categories and a mechanism for mapping sentence-
specific content to word forms. Moreover, syntax is not induced from meaningless
word sequences and their distributional properties. The induction paradigm in which
the learning target is to reconstruct grammars from a set of observations might be mis-
guided as a model of syntactic development in children. In the Dual-path model, syntax
forms automatically, in a self-organizing manner, on the basis of domain-general learn-
ing procedures and driven by mismatches between internal predictions and overheard
utterances. It is not the primary learning target but a byproduct of a more general task:
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to make sense of the ambient language, and to be understood in speech. Knowledge of
syntax is implicit and resides in the very processor itself rather than a knowledge base
external to the processor. The mechanisms by which syntactic knowledge develops in
acquisition continue to function in essentially the same way throughout adulthood.

Although the Dual-path model is a model of sentence production, it essentially is
a model of the relationship between meaning and word sequences and the learnable
mappings between them. The idea that language acquisition primarily involves learning
such mappings has not been explored systematically in a computational setting, and this
work provides a Vrst step in this direction.

9.1.2 Generalization with semantic similarities

It was shown that the Dual-path model could generalize in quite remarkable ways on
a number of tasks. For instance, it could combine familiar constructions into structures
with a novel hierarchical organization, and it displayed strong semantic systematicity,
the capacity to generalize familiar lexical items to novel roles across embeddings. It also
displayed recursive productivity in that it could produce grammatical sentences with
three and four nested relative clauses without prior experience, and it could produce
correct complex polar interrogatives without positive evidence of these structures in
the learning environment. These feats were accomplished despite exposure to only a
small number of sentences, typically around 10.000, from artiVcial languages that could
generate up to 4.8× 1022 diUerent tokens.

The model could achieve this because the complexity of the learning task could be
decomposed into simpler subtasks. The large number of sentence tokens generated by
the language grouped into a few hundred (or, in some cases, a few thousand) basic con-
struction types. These constructions had a distinct underlying meaning, signalled to the
model by the event semantics. From these representations of constructional semantics,
the model could learn to activate sentence-specific content in the meaning system in
the right sequence. Once lexical meaning was learned, the model could produce correct
words in the appropriate slots, and the sequencing system enforced constraints on word
class and order. But meaning was also partially overlapping for diUerent construc-
tions. DiUerent parts of the message representation controlled diUerent subsequences
of sentences, and diUerent constructions shared semantic substructures in their mes-
sage. These shared meaning components allowed the model to produce entirely novel
constructions which could be assembled from novel combinations of familiar semantic
substructures. Generalization to a large amount of sentence tokens from sparse input
was enabled by sentence-specific bindings in thewhat-where-system and by semantic
structure shared between propositions in the event semantics-layer.

This constitutes, I believe, a really novel approach to generalization in neural net-
works and computational learning systems in general. In purely syntactic approaches to
language acquisition (e.g., with simple-recurrent networks), generalization is based on
distributional properties of word sequences. In contrast to these accounts, generaliza-
tion in the Dual-path model is enabled by shared properties of the semantic structures
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underlying word sequences. This approach might have wide applicability; it is likely to
work for many languages other than English, because languages tend to reuse similar
structures to convey similar meanings. Consequently, what the Dual-path model ap-
proach to language acquisition suggests is that the structure of meaning might be a rich
and powerful source of information in children’s syntactic development.

9.1.3 DiUerential processing due to input factors

The Dual-path model was mainly applied in generalization tasks, but it could also ex-
plain diUerential learning and processing, for example the diUerence between right-
branching and center-embedded recursion, and the degradation in performance with
depth of embedding. Both Vndings were in line with human processing data. In Chap-
ter 8, I looked at more Vne grained data from the development and adult processing of
relative clauses in English. It was demonstrated that the model matched the noun phrase
accessibility hierarchy in performance. I argued that diUerential behavior was strongly
inWuenced by properties of the learning environment. The model showed a processing
bias towards simpler structures with less participants because this reduced competi-
tion for structural selection and relativization. This bias, however, could be erased by
manipulating the input distribution to the model. Individual contrasts in diUerential
processing could not be explained by constructional frequency alone, but were due to
substructure frequencies in the total input. Balancing these frequencies selectively re-
moved contrasts. When all structures that did not occur in the hierarchy itself were
excluded from the learning environment, the processing diUerences between construc-
tions disappeared. This indicated that patterns of interference and similarity between
input structures were responsible for diUerential learning and processing. These results
suggested that it was not the intrinsic syntactic complexity of constructions in conjunc-
tion with working memory limitations that made them easy or diXcult to learn and
process. Rather, it was the distributional composition of the input and the interactions
between diUerent structures which had to be learned over the same set of connection
weights that aUected the model’s syntactic development and caused diUerential behav-
ior.

This might have important implications for theories of learning and processing. To
explain the order of relative clause acquisition and diUerences in adult processing one
needs to look at the distributional properties of spoken corpora, and in particular the
semantic and sequential similarities and dissimilarities among structures in the lan-
guage. Like the Dual-path model, the human processor might be sensitive to linguistic
patterns which facilitate and encumber individual structures in diUerent ways. As a
consequence, it may be futile to account for acquisition and processing diUerences by
applying a complexity metric to structures in isolation. Moreover, what the Dual-path
model approach suggests is that it is not required to posit innate language universals
to account for seemingly universal linguistic behavior. Multifactorial, language-specific
accounts of diUerential acquisition and processing, in which the input plays a critical
role, might have more explanatory force.
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9.2 Future directions

In learning, generalization and processing, the Dual-path model behavior has been
proven consistent with a large body of data (Chang, 2002, 2008; Chang, Dell, and Bock,
2006; Fitz and Chang, 2008, 2009) and these results provide converging evidence that
the model captures important aspects of human learning and processing. Nonetheless,
many results reported in this thesis are rather preliminary in nature. Computational
models can always be improved, and experiments conducted with more methodological
rigor and systematic depth (as the appendix B shows). Apart from that, I want to sketch
a number of future research projects which naturally tie in with and extend the present
work.

9.2.1 Perspective taking

Biological factors constrain the human language system and linguistic experience in-
Wuences the way in which we learn and process language. But how do these factors
interact? On the dominant view, learning and processing are constrained by biological
factors which shape the human language system. On an alternative view, the language
system itself is adapted in learning and processing through linguistic experience (Mac-
Donald and Christiansen, 2002; Wells et al., 2008). The Dual-path model provides an
ideal platform to investigate this issue in the domain of relative clause processing.

Evidence from many languages indicates that some relative clause types are harder
to process than others. According to a popular theory these processing diUerences re-
sult from working memory limitations (King and Just, 1991; Gibson, 1998), which can be
viewed as a biological constraint. These accounts, however, do not explain why there
are diUerences between structures that induce the same memory load. Moreover, they
do not explain lexical eUects on processing, e.g., why transitive object-relatives are fa-
cilitated by pronominal relative clause subjects (Reali and Christiansen, 2007a; Kidd
et al., 2007) and inanimate head nouns (Traxler et al., 2002). Thus, a growing body of
data cannot be accommodated by memory-based approaches. Drawing on results from
Chapter 8, it might be possible to develop a novel account in which competition between
structures and their relative frequency of occurrence shape the language system during
learning. In this account, diUerential processing is caused by syntactic alternations and
modulated by their frequency.

It is a universal feature of natural languages that they allow speakers to take dif-
ferent perspectives to describe the same event. In English, transitive events can be
expressed in active or passive voice and dative events can be expressed prepositionally
or with the ditransitive. The prepositional dative can partially be passivized and the
ditransitive can be fully passivized (e.g., there is the dog that was given the toy by the
girl). These syntactic alternations convey the same meaning but change the order of
event participants in the sentence form. Thus, language users often have a structural
choice how to express a particular proposition. In general, the more participants there
are, the more alternations are available—none for intransitives, one for transitives, and
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two for datives. In addition, speakers can relativize diUerent event participants in each
construction. There is one way to express intransitive events with a relative clause, four
ways to express transitive events, and eleven ways to express dative events. The syntax
of these structures must be encoded in the human language processor through learn-
ing from examples. But the more structural variety there is, the more complicated the
correspondence between meaning and sentence form becomes. This might have several
consequences for sentence processing:

(a) More competition in grammatical encoding between structures which are suitable
to express the same meaning by diUerent sentence forms.

(b) More variety entails less exposure to each individual structure.

(c) Competition and reduced exposure impede the activation of one speciVc structure
in speech.

In Chapter 8 it was argued that similar factors inWuenced relative clause processing in
the Dual-path model, and the results suggested that syntactic alternations could par-
tially account for the diUerential processing of intransitive, transitive and dative struc-
tures. It would be interesting to investigate the validity of this explanation in human
learning and processing by means of corpus analysis and behavioral experiments. There
is some evidence that perspective taking with alternations might be an important factor
in human processing. It was shown, for instance, that passive transitives are preferred
with theme-experiencer verbs (e.g., challenge) and dispreferred with agent-patient verbs
(e.g., kick) (Ferreira, 1994). Thus, alternations are not used with equal likelihood for all
verb classes. Thematic structure makes a passive construction more preferable to ex-
press the proposition in

(1) The cowboy that the sheriU challenged was drunk.

This preference should be manifest in terms of frequencies in corpora of spoken lan-
guage, i.e., in the linguistic environment of a learner. A learner might become biased
towards using passives which are in competition with the active object-relative clauses
and this might make (1) diXcult to process. In other words, the preferred use of pas-
sive structures for some verb classes might explain why the corresponding active struc-
ture is particularly hard. Similar preferences have been observed for the prepositional
dative/ditransitive alternation. In speech, the ditransitive is vastly preferred over the
prepositional dative and the animacy of the recipient co-varies with verb type (Bres-
nan and Nikitina, 2003). Prepositional dative relative clauses are diXcult for adults and
delayed in syntactic development. This might be explained within a frequency-based
learning approach in which there is competition between structural alternatives. More
Vne-grained distributional diUerences have been found for the ditransitive in that the
lexical class of the recipient co-varies with voice. Active ditransitives most frequently
take pronominal recipients, whereas passive ditransitives take deVnite noun phrase re-
cipients (Goldberg, 2006). Since transitives align with ditransitives in terms of argument
structure, this statistical trend might aUect the processing of transitive relative clauses.
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Speakers’ preferences in the use of syntactic alternations give rise to distributional
patterns in the environment from which language is learned. These patterns inWu-
ence the way in which humans encode grammatical structure during development.
Frequency, structural competition and linguistic experience might explain performance
diUerences observed in this process. To test this idea, one would Vrst have to conduct
a large-scale corpus analysis on the diUerential use of alternations in relative clauses.
Insights from this analysis could then enter into computational experiments with the
Dual-path model. Systematic manipulations of the model’s learning environment might
yield predictions which could be tested in behavioral experiments using sentence repe-
tition and elicited production methods. The short-term priming paradigm could be used
to track interference eUects between structures. Experiments with varying exposure to
syntactic alternations over a longer period of time might elucidate the role of experience
in relative clause processing. As outlined in the introduction, in this project a compu-
tational model would be used to link corpus data with human linguistic behavior. The
model provides an explicit acquisition mechanism that is sensitive to structural com-
petition and distributional properties of the input, and allows us to derive predictions
which can be tested in human processing.

9.2.2 Cross-linguistic study

The Dual-path model account of relative clause acquisition in English suggested that
it was not intrinsic syntactic complexity, biological constraints on working memory, or
innate language universals that explained acquisition and processing data. Rather, the
noun phrase hierarchy was brought about by patterns of similarity and interference in
the language and by distributional properties of the input. It would be important to
validate this explanation in a cross-linguistic study with languages that have diUerent
relative clause systems. German relative pronouns, for instance inWect according to gen-
der, case and number and typically German relative clauses are verb-Vnal (in contrast
to single-clause sentences). Consider the two relative clause types:

(2) Da
There

ist
is

der
the-NOM

Mann
man

der
who-NOM

die
the-ACC

Katze
cat

jagte.
chased

‘There is the man who chased the cat.’

(3) Da
There

ist
is

der
the-NOM

Mann
man

den
who-ACC

die
the-NOM

Katze
cat

jagte.
chased

‘There is the man who the cat chased.’

Word order in A-relative (2) and P-relatives (3) is identical and, in contrast to English,
does not signal the grammatical role of the head noun in the relative clause. Instead,
the role of der Mann is marked on the pronoun. This can create ambiguities as in

(4) Da ist die Frau die die Katze jagte.
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because the pronoun die can either be nominative or accusative (A- or P-relative). For
these (and other) reasons, we can expect patterns of structural similarity and interfer-
ence to arise in the input which might be very diUerent from English, and it is diXcult
to predict the eUects of these patterns on learning and processing in the model without
further simulations.

Another interesting test case for the Dual-path model approach would be Japanese
in which relative clauses are prenominal and pronouns are not used. Case is marked by
postpositions and the grammatical role of the head noun in the relative clause must be
inferred from the case of the embedded complement:

(5) Uma-o
Horse-ACC

ketta
kicked

roba-ga
mule-NOM

sinda.
died

‘The mule that kicked the horse died.’

(6) Uma-ga
Horse-NOM

ketta
kicked

roba-ga
mule-NOM

sinda.
died

‘The mule that the horse kicked died.’

A- and P-relatives diUer only with respect to a case particle in their surface form. In
addition, complements need not be expressed in Japanese relative clauses which gives
rise to many possible interpretations:

(7) Hon-o
Book-ACC

katta
bought

gakusee.
student

‘The student (who) bought a book.’
‘The student (from whom) ( ) bought a book.’
‘The student (for whom) ( ) bought a book.’

As in German (but for diUerent reasons), surface form is sometimes not useful in deter-
mining the interpretation of Japanese relative clauses.1

Word order in relative clauses diUers pairwise in English, German and Japanese. The
semantic features the Dual-path model employs in its message representation, however,
are generic and work in each of these languages. The model can learn to map such
messages onto any word order, provided that meaning-form mappings are suXciently
systematic. Hence, relative clause processing and development in these languages could
be studied in the Dual-path model using similar messages across languages which map
to very diUerent sentence forms. Due to these word order diUerences, the model would
acquire distinct meaning-form mappings and, as in English, these mappings might be
inWuenced by language-specific similarities between input structures. Thus, it might
be possible to modulate diUerential performance by systematically manipulating the
learning environment in order to show that input factors similar to those isolated in
Chapter 8 drive acquisition and processing in languages other than English.

1Examples (5) and (6) taken from Ishizuka (2005), (7) from Matsumoto (1999).
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9.2.3 Dynamic message

In the conVguration studied in this thesis, the Dual-path model learned in situated com-
prehension in which it was assumed that children can infer the meaning of overheard
utterances from visual information. While this might be a realistic scenario for single-
clause utterances, it is less realistic for more complex multi-clause utterances, speciV-
cally those of Chapter 6. The complete message that was given to the model as input
provided more of the conceptual structure of utterances than can reasonably be as-
sumed to be available to children at the onset of processing. Similarly, in production it
is unlikely that the entire intended message of a sentence (with several embeddings) is
provided by an external planning system before production begins. How speakers con-
struct meaning incrementally before and during production is not well-understood, it is
conceivable that to a large extent meaning is constructed as we speak, and guided by
our own self-monitored speech output. It would therefore be an important continuation
of this thesis to dynamicize the Dual-path model’s message representation both in com-
prehension and in production. With a dynamic message, sentence meaning would only
be activated partially in the beginning and more semantic information would become
available to the model during processing. Message components would also selectively
be deactivated when they have already been utilized and begin to leave the attentional
spotlight. This might place stronger demands on the model’s working memory system
which would have to retain traces of previously activated message components. Thus,
in a dynamic version of the Dual-path model, meaning would be constructed incre-
mentally in a window of attention and gradually fade away in working memory as the
model progresses through a sentence in word prediction. Such a model could be built on
existing research of visual scene analysis which requires tracking multiple objects and
their interrelations (Cavanagh and Alvarez, 2005; Ferreira et al., 2008). In particular,
research using the eye-tracking methodology to investigate the mechanisms of thematic
role assignment in comprehension might be a fruitful source to develop and motivate
this dynamic model (Knoeferle et al., 2005; Knoeferle and Crocker, 2008).

The static message Dual-path model makes strong assumptions about the availabil-
ity of rich semantic representations in learning and processing, especially in case of
multi-clause utterances. The results of this thesis must be evaluated against the plausi-
bility of these assumptions. It should be pointed out, however, that a complete and in-
variable message might not be computationally optimal to learn meaning-to-form map-
pings which generalize well and in human ways. It was mentioned before (Chapter 5)
that the static message creates a serial order and a timing problem for the model (what
to predict next, and when to produce what), which both need to be solved by the pro-
cessor when learning from message-sentence pairs. If, on the other hand, the message is
dynamic and incremental, these tasks can partially be relegated to the attentional mech-
anism which guides meaning construction in visual processing. Message components
are activated only at and around relevant sentence positions and this locally restricts
the choice of roles, concepts and words to sequence. In the static model all semantic
features are active concurrently which makes any sentence constituent a salient choice
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for the next slot. Hence, a tight interplay between mechanisms of selective attention
and word prediction might greatly facilitate the sequencing of thematic roles and the
acquisition of syntactic frames in the model. Secondly, in Chapter 6 it was argued that
novel combinations of semantic features in the message were detrimental to generaliza-
tion. The model did not know which thematic roles to sequence when, because active
features in one clause interfered with message components in other clauses, and this
explained why production accuracy degraded rapidly with depth in recursive process-
ing. If sentence meaning becomes available to the model sequentially and in smaller
chunks, this problem might be avoided. Although an input message in its totality might
express a proposition that the model has not experienced before, exposure to segments
of semantic components might enable the model to incrementally build novel sentences
with novel meanings from chunks of feature combinations it is familiar with. In other
words, the problem of how learned meaning-to-form mappings can be extended beyond
experience might be solvable in a dynamic model in which globally novel propositions
are composed of known semantic substructures that are activated over time rather than
in parallel.

It can be speculated that a dynamic Dual-path model might be superior in a number
of generalization tasks studied in this thesis. With a Vxed message, the model cannot
genuinely be recursively productive because it cannot process sentences of unbounded
length in any speciVc set-up. More embeddings require more semantic features and the-
matic roles and these need to be represented in the model and trained in learning. A
dynamic message would allow the model to reuse the same feature set over and over
again and therefore remove architectural limitations of the current model. Secondly,
it was found that the model would not generalize from exposure to one embedding to
two or more embeddings, it only generalized from two embeddings to three and four
(Chapter 6). With a dynamic message this might be remedied because the model would
not have to develop a policy how to deal with multiple conWicting features in novel
propositions. It was also found that the diUerence in accuracy for right-branching and
center-embedded structures in the model was perhaps too small to perfectly match hu-
man behavior. A dynamic message which incrementally provides information to the
model as it moves over the sentence proposition, highlighting semantic features like
a spotlight, might create a larger performance diUerence by making center-embedded
structures harder and right-branching structures easier to learn. First results obtained
with a dynamic prototype clearly point in this direction. And Vnally, generalizing auxil-
iary fronting from simple to complex polar interrogatives might be facilitated by using a
dynamic message because semantic features which distinguish questions from declara-
tives could be activated locally and temporarily only, and this might ensure the integrity
of the embedded clause.

To summarize, it would be desirable to develop a dynamic Dual-path model which
is more faithful to the processes by which human learners construct meaning incremen-
tally in comprehension and production. The model version studied in this thesis should
be viewed as a useful simpliVcation and approximation of such a model. There is no
indication that positive results reported here are an artefact of the Vxed message rep-
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resentation. On the contrary, a dynamic model can be expected to display even better
learning and generalization capacities.



Appendix A

Dual-path model details

In this appendix a few more technical details about the Dual-path model will be pro-
vided which might be interesting to other modellers and helpful to assess the presented
results.

A.1 Model speciVcation

The size of the model’s layers depended on the artiVcial language used and the compu-
tational requirements of speciVc learning tasks; it could vary across chapters. Roughly,
the model had 40–70 word (cword) units, 30–60 what (cwhat) units, 40–100 hid-
den (context) units, and between 10 and 35 compress (ccompress) units. The number
of event semantics and where (cwhere) units depended on the maximum number of
clauses within sentences of the artiVcial language. It varied between 10 and 45 for the
event semantics and between 4 and 20 for the where (cwhere) layers.

All units in the model used the dot product as their integration function. The net
input xi to unit ui was computed as the weighted sum xi =

∑n
j=1wij · yj of all n

output signals yj which ui received as input from other units in the network. As their
activation function, most units in the model used the standard logistic function where
the output yi of unit ui is computed as yi = 1

1+e−xi
with the net input xi ∈ R and

yi ∈ [0,1]. The model’s output is a categorical variable ranging over the words in the
lexicon and we wish to interpret this output as a probability vector for the lexical items.
To achieve this, the word-layer used the soft-max activation function. Let xi again
be the net input to output unit ui, then the soft-max function computes the output yi
of unit ui as yi = exi∑n

j=1 e
xj where xj is the net input to output unit uj . Thus, the

activation of output unit ui depended on the strength of the input signal to all other
output units. In this way, the soft-max function magniVed small diUerences in net in-
put among the units, i.e., it rewarded the winning word and punished all weaker word
outputs. Moreover, it normalized the output values of all units in that they sum to 1.1 To

1Note that for two lexical items this function is equivalent to the standard logistic function.
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measure the overall error on the word units, the divergence function
∑n

i=1 ti · log( ti
yi

)
was used, where yi is the output of unit ui and ti is the target value of this unit at
the current word position. Apart from the word-layer, soft-max was also used at the
cwhere-layer to make the incremental role assignment more distinct. This reduced
the noise at the cwhere-layer deriving from the activation of several concepts at the
cwhat-layer and facilitated structural selection. The activation of event semantics
units was implemented by untrainable bias weights. The strength of the weights was
controlled by the message and determined the activation values in the event seman-
tics-layer which used linear units. A negative bias was injected into the what and
cwhat units to guarantee that their activation level was low when they received no
input. The units in the context-, cwhere2- and cword-layers were copy units which
received their activation from the previous time-step activation of units in other layers.
Incoming connections to these layers were not trainable. The context-layer received
a copy of the previous activation state of the hidden-layer to create a working mem-
ory. The cwhere2-layer time-averaged the cwhere and its own previous activation
state, creating a buUer which gradually accumulated all previously produced roles. At
the cword-layer, the activation state of the model’s output at the word-layer and the
external overheard word input were summed, and the layer was normalized.

A.2 Training procedure

At the beginning of training, the weights in the network were randomized with a Vxed
seed for all experiments. For each message-sentence pair in training, the model’s pre-
diction error for each word was collected and weights were updated after every training
pattern. Thus, one epoch in the training regime corresponded to one sentence, not the
entire training set (i.e., the batch-size was 1). Training was non-incremental through-
out. In other words, message-sentence patterns to which the model was exposed were
randomly selected from the training set and not presented in a particular order (e.g.,
ordered by syntactic complexity). Weights were updated by steepest-descent backprop-
agation of error. The learning rate was chosen in between 0.15 and 0.2 depending on the
complexity of the learning task, and it was set to decrease linearly over time to a Vnal
value of 0.02. Roughly 25% of the total training time the initial learning rate was used,
then for 50% of the time it decreased and it remained constant again for the Vnal 25%
of training time. In order to prevent weights in the network from becoming too large, I
used weight decay in all simulations (except Chapter 8). In addition to each weight up-
date by backpropagation at time t, the size of the weight was decreased by κ ·wij(t− 1)
where κ was set to 5 × 10−7 and wij(t − 1) was the weight size after the previous
update. It has been shown that weight decay improves generalization in feedforward
networks (Krogh and Hertz, 1992) and this was also observed in the recurrent Dual-path
model. Intuitively, large individual weights can create local specialization by masking
the contribution of other weights to Vnding an optimal mapping and this tendency is
balanced by the decay term. In similar vein, some simulations in which generalization
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was the critical performance measure (e.g., recursive productivity in Chapter 6) used
synaptic noise on all connections projecting into the hidden-layer. The noise was sam-
pled from a Gaussian distribution with standard deviation 0.005 centered around 1.0,
and it was applied multiplicatively, scaling the weights with the noise term. Synaptic
noise was shown to improve generalization in recurrent networks when the error sur-
face is complex (as in language learning), because it allows the network to ‘jump’ out of
local minima more easily (Jim, Giles, and Horne, 1996).

A.3 Simulation environment

All experiments were conducted using version 2.63 of the LENS neural network sim-
ulator (Rohde, 1999). The software package ran on an Intel(R) Xeon (TM) 3.06 GHz
workstation with 2 Gbyte of RAM in a SuSE v.10.1 Linux environment.





Appendix B

Improved question learning

Since the completion of Chapter 7, I managed to signiVcantly improve on the reported
results in the ‘wh-questions’ condition. Due to time constraints and the comparative
nature of Chapter 7, it was not possible to include these results since it would have
required a large amount of re-modelling and error analysis. I will therefore only brieWy
outline these results in this appendix.

B.1 New data

In the ‘wh-questions’ condition, the model received training with simple-clause and rel-
ative clause declaratives, simple yes/no questions and complex wh-questions. It was
tested on novel complex polar questions. Figure B.1 shows the learning curves for all
these structures in terms of grammaticality. Simple-clause structures and simple po-
lar questions were learned quickly, followed by relative clause constructions and wh-
questions. At the end of training, the model produced around 37% grammatical polar
questions, although these structures were not experienced in the training phase.

B.2 Analysis

Moreover, the model generalized in desirable ways. Similar to humans, it showed a
preference for right-branching over center-embedding and a preference for subject-rel-
ativized over object-relativized structures (Figure B.2). Out of all grammatical com-
plex questions which the model produced, roughly two thirds were right-branching and
roughly two thirds were subject-relativized. To compare these results with those of
Reali and Christiansen (2005), I tested the trained model on 1.000 pairs of grammatical
and ungrammatical center-embedded questions (i.e., questions in which the main or em-
bedded clause auxiliary was displaced). The model received message input which was
neutral between the two forms. The production output was then compared with both
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Figure B.1: Complex polar question learning with wh-questions in the input.

targets, and classiVed as either grammatical or ungrammatical based on a graded per-
formance measure (Figure B.3). In 89% of the tested pairs the model’s output was closer
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Figure B.3: CPQCE classiVcation
after training.

to the grammatical question. Quantitatively these results are similar to those of Reali
and Christiansen (2005). My test set, however, contained a large amount of structural
variation in the CPQCE and the results did not depend on tagging the model’s input in
a speciVc way. Structure-dependent auxiliary fronting was learned by the Dual-path
model from semantic overlap with other question types whose occurrence is warranted
in child-directed speech.

These new results are described in more detail in Fitz and Chang (2009).



List of Abbreviations

AH accessibility hierarchy DSO double-object dative
ACC accusative case secondary object
ATO active transitive object FGREP forming global
ATS active transitive subject representations
AUX auxiliary with extended
BN binding node backpropagation
BPTT backpropagation FLN faculty of language

through time in the narrow sense
CE center-embedding FSM Vnite-state machine
CFL context-free language HSD honestly signiVcant
COMP complementizer diUerence
CP complementizer phrase IO indirect object
CPQ complex polar question IP inWectional phrase
CPQCE center-embedded ITS intransitive subject

complex polar question LDA linear discriminant
CPQRB right-branching analysis

complex polar question LENS light, eXcient
CR compressed representation network simulator
CS cross-serial MCSG mildly context-sensi-
CSL context-sensitive language tive grammar
DDS double-object dative subject NP noun phrase
DE depth of embedding NOM nominative case
DET determiner NVN noun-verb-noun
DFA deterministic Vnite OBL oblique

automaton OBO oblique object
DO double-object dative OBS oblique subject
DP determiner phrase OComp object of comparison
DPO double-object dative OO object-modifying,

primary object object-relativized
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OS object-modifying, SRN simple recurrent network
subject-relativized SS subject-modifying,

PAST past tense subject-relativized
PCA principle components UG universal grammar

analysis VP verb phrase
PD prepositional dative XOR exclusive or
PDP parallel distributed XYZ thematic role coding

processing
PDS prepositional dative

subject
PER period
PP prepositional phrase
PPO prepositional dative

primary object
PRES present tense
PROG progressive aspect
PRON pronoun
PropN proper name
PSO prepositional dative

secondary object
PTS passive transitive subject
PTO passive transitive object
RAAM recursive auto-associative

memory
RB right-branching
RC relative clause
RDR recursive distributed

representation
RNN recurrent neural network
RT reaction time
SC simple clause
SCN sequential cascaded

network
SIMP simple aspect
SN subnetwork
SO subject-modifying,

object-relativized
SPEC subsymbolic parser for

embedded clauses
SPQ simple polar question
SRAAM sequential recursive

auto-associative memory
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Samenvatting

Kinderen leren hun moedertaal spontaan en zonder enige moeite door interactie met
hun omgeving; het is onnodig om hen expliciet de taal te leren. De taalervaring waaruit
kinderen moeten leren is echter in hoge mate onbepaald en beargumenteerbaar ontoe-
reikend met betrekking tot het leerdoel. Desondanks zullen de meeste zich normaal
ontwikkelende kinderen hun moedertaal snel en met groot gemak leren spreken.

Veel taalverwervingstheorieën zoeken de verklaring hiervoor in aangeboren beper-
kingen van het grammaticale ‘zoekgebied’, of zien zelfs een biologische taalspeciVeke
predispositie. Gebruiksgebaseerde theorieën van taal daarentegen leggen meer nadruk
op de rol die ervaring speelt en op domein-algemeene leermechanismen dan op aange-
boren taalspeciVeke kennis. Echter, talen zijn lexicaal onbeperkt en structureel eindeloos
te combineren, dus hun uitdrukkingskracht is niet door middel van ervaring volledig te
vangen. Gebruiksgebaseerde theorieën zullen daarom moeten verklaren hoe kinderen
in staat zijn om de eigenschappen van hun taalinformatie te generaliseren naar een
volwassen grammatica.

In deze dissertatie presenteer ik een expliciet computationeel mechanisme, waar-
mee de gebruiksgebaseerde theorieën van taal getest en geëvalueerd kunnen worden.
De nadruk van mijn werk ligt op het gebied van complexe syntax en het menselijk
vermogen om zinnen te vormen die meer dan één bewering uitdrukken door middel
van bijzinsconstructies. Deze capaciteit voor recursie is een essentieel kenmerk van een
volwassen grammatica en, zoals sommigen hebben beargumenteerd, van menselijke taal
zelf.

De dissertatie is als volgt georganiseerd. Na een introductie geef ik in het tweede
hoofdstuk een overzicht van resultaten, die de wiskundige eigenschappen van neurale
netwerken karakteriseren en herzie ik eerder onderzoek in het modelleren van de ver-
werving van complexe syntax met zulke netwerken. Het hoofdstuk schetst daarmee het
conceptuele landschap waarin het huidige werk zich bevindt.

In een derde hoofdstuk beargumenteer ik dat de constructie en het gebruik van
betekenis essentieel is, in zowel kindertaalverwerving als volwassen taalverwerking, en
dat neurale netwerkmodellen deze dimensie van menselijk taalgedrag moeten opnemen.
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Ik introduceer het Dual-path model van zinsproductie en syntactische ontwikkeling.
Het model is in staat om semantiek te representeren en het leert van invoer van zinnen
gepaard aan hun betekenis (cf. Chang et al. 2006). Ik leg de architectuur van het
model uit, geef de motivatie voor basisaannamen in het ontwerp, en bespreek bestaand
onderzoek dat is uitgevoerd met het model.

Een vierde hoofdstuk beschrijft en vergelijkt enkele uitbreidingen van de basisarchi-
tectuur die gericht zijn op de verwerking van uitingen met meerdere bijzinnen. Deze uit-
breidingen worden geëvalueerd op basis van computationele desiderata, zoals bepaalde
leer- en generaliseringsprestaties en de spaarzaamheid van semantische representaties.
Een optimale oplossing voor het coderen van betekenis van complexe zinnen met be-
trekkelijke bijzinnen is vastgesteld. Dit vormt de basis voor alle verdere simulaties.

Hoofdstuk vijf analyseert de leerdynamiek van het model in meer detail. Eerst wordt
het gedrag van het model voor verschillende types betrekkelijke bijzinnen bestudeerd.
Syntactische varianten (zoals actief/passief) blijken bijzonder moeilijk te zijn, omdat ze
de relatie tussen vorm en betekenis, die het model moet leren, ingewikkelder maken. In
het tweede deel van het hoofdstuk kijk ik naar de interne representaties die het model
ontwikkeld heeft tijdens leren. Ik beweer dat het model de argumentstructuur verwerft
van de constructievormen in de invoertaal, en dat het de hiërarchische structuren van
verschillende complexe uitingen representeert.

De kern van dit proefschrift is te vinden in de hoofdstukken zes tot en met acht.
In hoofdstuk zes wordt het generaliseringsvermogen van het Dual-path model getoetst
in diverse taken. Ik laat zien dat de syntactische representaties voldoende transparant
zijn om structurele generalisatie naar nieuwe complexe uitingen mogelijk te maken.
Semantische gelijkenissen tussen nieuwe en reeds bekende zinstypen spelen een cru-
ciale rol in deze taak. Het Dual-path model heeft ook het vermogen om bekende
woorden in nieuwe argumentposities in nieuwe constructies te kunnen generaliseren.
Dit wordt ‘sterke semantische systematiciteit’ genoemd. Daarnaast stel ik leerom-
standigheden vast waaronder het model recursieve productiviteit toont. Ik beargu-
menteer dat het gedrag van het model te vergelijken is met menselijk gedrag, in zoverre
de nauwkeurigheid van productie vermindert met de diepte van de ingebedde bijzinnen,
en rechts-ingebedde structuren sneller worden geleerd dan centraal-ingebedde struc-
turen.

In hoofdstuk zeven bestudeer ik het leren van complexe ja/nee-vragen in de afwe-
zigheid van voorbeelden in de input. Ik laat zien dat het Dual-path model de syntax
van zulke vragen kan verwerven uit soortgelijke en eenvoudigere structuren, waarvan
de aanwezigheid is aangetoond in de taalomgeving van kinderen. De fouten van het
model zijn vergelijkbaar met de fouten die kinderen maken, en ik stel voor dat er geen
taalspeciVeke aanleg in kinderen moet worden verondersteld in het leren van complexe
ja-nee vragen. Deze resultaten zijn relevant voor het poverty of the stimulus debat,
omdat het model geen traditioneele universele grammatica implementeert.

Engelse bijzinsconstructies geven aanleiding tot vergelijkbare prestatierangschik-
kingen in volwassen taalverwerking en kindertaalverwerving. Dit patroon komt
overeen met het typologische universeel die de ‘noun phrase accessibility hierarchy’
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wordt genoemd. In hoofdstuk acht stel ik een inputgebaseerde verklaring voor van deze
observatie. Het Dual-path model laat deze rangschikking zien in de syntactische ont-
wikkeling wanneer het leert van plausibele inputdistributies. Het is echter mogelijk deze
rangschikking te manipuleren en volledig te elimineren door de eigenschappen van de
input te variëren. Ik beweer dat patronen van interferentie en vereenvoudiging tussen
inputstructuren de hiërarchie kunnen verklaren wanneer alle structuren simultaan wor-
den geleerd en gerepresenteerd over een enkele verzameling van neurale verbindingen.

Tot besluit trek ik conclusies uit mijn werk, signaleer een aantal onbeantwoorde
vragen, en geef een korte vooruitblik op mogelijke onderzoeksuitbreidingen.
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