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Chapter 1

Introduction

This thesis is divided into two parts. In the first part, we present a game-theoretic
characterization of the Borel functions. We define a Wadge-style game, G(f), and
prove the following theorem:

1.0.1. Theorem. A function f : ωω → ωω is Borel ⇔ Player II has a winning
strategy in G(f).

In the second part of the thesis, we turn our attention to the analysis of
low-level Borel functions, summarized by the following diagram:

Λ1,3

⊂

Λ2,3

⊂ ⊂

Λ1,2 Λ3,3

⊂ ⊂
Λ2,2

⊂
Λ1,1

The notation Λm,n denotes the class of functions f : A → ωω such that A ⊆ ωω

and f−1[Y ] is Σ0
n in the relative topology of A for any Σ0

m set Y . The two main
results of the second part of the thesis are decomposition theorems for the Λ2,3

and Λ3,3 functions.

1.0.2. Theorem. A function f : ωω → ωω is Λ2,3 ⇔ there is a Π0
2 partition

〈An : n ∈ ω〉 of ωω such that f ↾ An is Baire class 1.

1.0.3. Theorem. A function f : ωω → ωω is Λ3,3 ⇔ there is a Π0
2 partition

〈An : n ∈ ω〉 of ωω such that f ↾ An is continuous.

1



2 Chapter 1. Introduction

These results extend the decomposition theorem of John E. Jayne and C. Ambrose
Rogers for the Λ2,2 functions.

1.0.4. Theorem (Jayne, Rogers). A function f : ωω → ωω is Λ2,2 ⇔ there
is a closed partition 〈An : n ∈ ω〉 of ωω such that f ↾ An is continuous.

It should be noted that Jayne and Rogers proved a more general version of The-
orem 1.0.4 [6]. In this thesis, however, we only prove decomposition theorems for
total functions on the Baire space.

The author was motivated by two questions of Alessandro Andretta:

(1) Is there a Wadge-style game for the (total) Λ3,3 functions?

(2) Is Theorem 1.0.3 true?

In the second part of the thesis, we answer both questions affirmatively. The
result for the Borel functions was obtained accidentally, while the author was
investigating questions (1) and (2).

A brief summary follows. In Chapter 2, we define the tree game and show
that it characterizes the Borel functions. In Chapter 3, we begin our analysis of
low-level Borel functions with the three simplest classes.

Λ1,2

⊂

Λ2,2

⊂
Λ1,1

In preparation for Chapters 4 and 5, we prove the Jayne-Rogers theorem and
prove that the above containments are proper. In Chapter 4, we extend the
analysis to the Λ1,3 and Λ2,3 functions.

Λ1,3

⊂

Λ2,3

⊂
Λ1,2

⊂

Λ2,2

⊂
Λ1,1
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We prove the decomposition theorem for Λ2,3 and prove that the additional con-
tainments are proper. In Chapter 5, we complete the picture with an analysis of
the Λ3,3 functions.

1.1 Background

Unless otherwise indicated, we use notation that is standard in descriptive set
theory. For all undefined terms, we refer the reader to [8].

We use the symbol ⊆ for containment and ⊂ for proper containment. For sets
A and B, we let BA denote the set of functions that map B to A. The notation
<BA denotes

⋃

b∈B

bA

and we define ≤BA := <BA∪ BA. In particular, <ωω is the set of finite sequences
of natural numbers and ≤ωω is <ωω ∪ ωω.

For a finite sequence s ∈ <ωA, we define [ s ]A := {x ∈ ωA : s ⊂ x}. If
the A is understood from the context, we may simply write [ s ]. We use the
symbol a for concatenation of sequences. For n ∈ ω, let sn denote the sequence
sasa. . .as, with s appearing n times, and let s∗ denote the infinite sequence
sasasa . . . in ωA. If s is a singleton sequence, 〈a〉, then when concatenating we
may write a instead of 〈a〉 without danger of confusion. Thus, we may write
an instead of 〈a〉n, and the reader will realize that we mean concatenation of
sequences and not exponentiation. The notation lh(s) is used for the length of s,
so lh(s) := dom(s). If s is non-empty, we define pred(s) := s ↾ lh(s) − 1 to be
the immediate predecessor of s. The set of immedate successors of s is denoted
by succA(s) := {saa : a ∈ A}. If the A is understood from the context, we may
write succ(s).

We say that a set T ⊆ <ωA is a tree if s ⊂ t ∈ T ⇒ s ∈ T . For a set
T ⊆ <ωA, we define tree(T ) := {s : ∃t ∈ T (s ⊆ t)}. For a tree T ⊆ <ωA and
s ∈ <ωA, we define T [ s ] := {t ∈ T : t ⊆ s or s ⊆ t}. The notation tn(T ) is used
to denote the terminal nodes of T , so tn(T ) := {s ∈ T : t ⊃ s ⇒ t 6∈ T}. The
notation [T ] is used to denote the set of infinite branches of T , so [T ] := {x ∈
ωA : ∀n ∈ ω (x ↾ n ∈ T )}. The tree T is linear if s ⊆ t or t ⊆ s for all s, t ∈ T .
The tree T is finitely branching if s ∈ T ⇒ succ(s) ∩ T is finite. A function
φ : T → <ωB is monotone if s ⊂ t ∈ T ⇒ φ(s) ⊆ φ(t) and length-preserving

if lh(φ(s)) = lh(s). A function φ : <ωA→ <ωB is infinitary if

⋃

s⊂ x

φ(s)

is infinite for every x ∈ ωA.
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There is a minor ambiguity regarding the [ ] notation: if ∅ is considered to
be a sequence in <ωA, then [ ∅ ] = ωA. If, however, we view ∅ as a tree, then
[ ∅ ] = ∅. From the context, it will be clear which meaning is intended.

We work in the theory ZF + DC(R): that is to say, ZF with dependent choice
over the reals. In terms of topological spaces, we will be working exclusively with
the Cantor space, the Baire space, and subspaces of the Baire space. If we are
considering a subspace A ⊆ ωω, we will always use the relative topology as the
topology of A.

For a metrizable space X, the Borel hierarchy Σ0
α(X), Π0

α(X), and ∆0
α(X) :=

Σ0
1(X)∩Π0

1(X) is defined as usual for α < ω1. If the space X is understood, then
we may write Σ0

α, Π0
α, and ∆0

α. Above the Borel sets lies the projective hierarchy
Σ1
n(X), Π1

n(X), and ∆1
n(X) := Σ1

1(X) ∩ Π1
1(X). In terms of the projective

hierarchy, we will only need the classical fact that the Borel sets are equal to ∆1
1 for

Polish spaces. If X and Y are metrizable spaces, then f : X → Y is continuous

if f−1[U ] is open for every open set U of Y , and a function f : X → Y is Baire

class 1 if f−1[U ] is Σ0
2 for every open set U of Y . Recursively, for 1 < ξ < ω1,

f : X → Y is Baire class ξ if it is the pointwise limit of functions fn : X → Y ,
where each fn is Baire class ξn with ξn < ξ. A function f : X → Y is Borel if
f−1[U ] is Borel for every open (equivalently, Borel) set of Y .

By the classical work of Lebesgue, Hausdorff, and Banach, if Y is also separa-
ble, then a function f : X → Y is Baire class ξ iff f−1[U ] is Σ0

ξ+1 in X for every
open set U of Y . So, in this case, the Borel functions are equal to the union of
the Baire class ξ functions. If, in addition, X is separable and zero-dimensional,
then f is Baire class 1 iff f is the pointwise limit of continuous functions. We will
be working with functions f : A→ ωω with A ⊆ ωω, so the above facts will hold.

We define Λm,n to be the set of functions f : A → ωω such that A ⊆ ωω

and f−1[Y ] is Σ0
n for any Σ0

m set Y . Thus, for example,“Λ1,1” is the same as
continuous, “Λ1,2” is the same as Baire class 1, and “Λ1,3” is the same as Baire
class 2.

The ⊆ containments for the Λm,n classes are trivial.

1.1.1. Proposition. For m,n ≥ 1, Λm+1,n ⊆ Λm,n and Λm,n ⊆ Λm+1,n+1.

1.1.2. Proposition. For m,n ≥ 1 and k ≥ 0, Λm,n ⊆ Λm+k,n+k.

1.1.3. Proposition. Let A ⊆ ωω, f : A → ωω, and m,n ≥ 1. Then f ∈
Λm,n ⇔ f−1[Y ] is Π0

n in the relative topology of A for any Y ∈ Π0
m ⇔ f−1[Y ]

is ∆0
n in the relative topology of A for any Y ∈ ∆0

m.

1.1.4. Lemma. Let n ≥ m ≥ 2, A ⊆ ωω, f : A→ ωω, and suppose that there is
a partition 〈Ai : i ∈ ω〉 of A such that Ai is Π0

n−1 in the relative topology of A
and f ↾ Ai is Λ1,n−m+1. Then f is Λm,n.
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Proof. Let Y ∈ Σ0
m and Yj ∈ Π0

m−1 such that Y =
⋃

j Yj. It follows that

f−1[Y ] =
⋃

i

(f ↾ Ai)
−1[Y ]

=
⋃

i

⋃

j

(f ↾ Ai)
−1[Yj ]

=
⋃

i

⋃

j

A ∩Xi,j, where Xi,j ∈ Π0
n−1

=A ∩X, where X ∈ Σ0
n.

For the second to last equality, note that f ↾ Ai ∈ Λm−1,n−1 by Proposition 1.1.2
(take k = m− 2). ⊓⊔

1.1.5. Lemma. Let n ∈ ω with n > 0. Let A ⊆ ωω, h : A → ωω, and suppose
that A = B0 ∪B1 such that B0 and B1 are Σ0

n+1 in A and B0 ∩B1 = ∅. If there
is a Π0

n partition 〈B0,m : m ∈ ω〉 of B0 and a Π0
n partition 〈B1,m : m ∈ ω〉 of B1,

then there is a Π0
n partition 〈Am : m ∈ ω〉 of A that refines the partitions B0,m

and B1,m: for every i ∈ ω, there is a b < 2 and a j ∈ ω such that Ai ⊆ Bb,j.

Proof. We begin by noting that we cannot simply take the sets Bb,m to be the
partition, since Bb,m is not necessarily Π0

n in A. For b < 2 and m ∈ ω, let B′b,m be

Π0
n in A such that Bb,m = B′b,m ∩ Bb. Let Cb,m be Π0

n in A and pairwise disjoint

such that Bb =
⋃

Cb,m. Note that for any i and j, Cb,i ∩ B
′
b,j = Cb,i ∩ Bb,j is Π0

n

in A. The sets Cb,i ∩ Bb,j form the desired partition of A. ⊓⊔

We end this section with a brief note about Γ-completeness, following the
discussion in [8] on page 169. Suppose Γ is a class of sets in Polish spaces. In
other words, for any Polish space X, Γ(X) ⊆ P(X). If Y is a Polish space, then
A ⊆ Y is Γ-complete if A ∈ Γ(Y ) and B ≤W A for any B ∈ Γ(X), where X
is a zero-dimensional Polish space. Note that if A is Γ-complete, B ∈ Γ, and
A ≤W B, then B is Γ-complete.

1.1.6. Theorem (Wadge). Let X be a zero-dimensional Polish space. Then
A ⊆ X is Σ0

ξ-complete iff A ∈ Σ0
ξ \Π0

ξ.

1.1.7. Fact. The set {x ∈ ω2 : ∃i ∀j ≥ i (x(j) = 0)} is Σ0
2-complete.

Let p·, ·q be the bijection ω × ω → ω:

p0, 0q := 0,

p0, j + 1q := pj, 0q + 1,

pi+ 1, j − 1q := pi, jq + 1.

1.1.8. Fact. The set {x ∈ ω2 : ∃i ∃∞j (x(pi, jq) = 1)} is Σ0
3-complete.





Chapter 2

A game for the Borel functions

In this chapter, we define the tree game and see that it characterizes the Borel
functions.

Let f : ωω → ωω. In the tree game G(f), there are two players who alternate
moves for ω rounds. Player I plays elements xi ∈ ω and Player II plays functions
φi : Ti →

<ωω such that Ti ⊂
<ωω is a finite tree, φi is monotone and length-

preserving, and i < j ⇒ φi ⊆ φj . After ω rounds, Player I produces x :=
〈x0, x1, . . . 〉 ∈

ωω and Player II produces φ :=
⋃

i φi.

I: x0 x1 x2 x = 〈x0, x1, . . . 〉
. . .

II: φ0 φ1 φ2 φ =
⋃

i φi

Player II wins the game if dom(φ) has a unique infinite branch z and

⋃

s⊂ z

φ(s) = f(x).

Let MOVES be the set of ψ : T → ωω such that T ⊂ <ωω is a finite tree and
ψ is monotone and length-preserving. A strategy for Player II is a function
τ : <ωω → MOVES such that p ⊂ q ⇒ τ(p) ⊆ τ(q). For x ∈ ωω and a strategy τ
for Player II, let

φx :=
⋃

p⊂ x

τ(p)

and say that τ is winning in G(f) if for all x ∈ ωω, dom(φx) has a unique infinite
branch zx and

⋃

s⊂ zx

φx(s) = f(x).

7
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2.0.9. Theorem. A function f : ωω → ωω is Borel ⇔ Player II has a winning
strategy in the game G(f).

Proof. Let F be the set of functions f : ωω → ωω such that Player II has a
winning strategy in G(f). The main part of the proof is to show that F is closed
under countable pointwise limits. Since F contains the continuous functions, this
will show that every Borel function is in F . For the reverse direction, to show
that every function in F is Borel, a simple complexity argument will suffice.

We begin by showing the closure property. Let f : ωω → ωω and fn ∈ F
such that f(x) = limn→ω fn(x) for all x ∈ ωω. We want to show that f ∈ F .
Let τn be a winning strategy for Player II in G(fn) and let zn,x be the unique
infinite branch produced by τn on input x ∈ ωω. The idea is to “squash” the
strategies τn into a single strategy τ for f . There are two difficulties. Firstly, we
do not know ahead of time what the zn,x will be. Secondly, we do not know ahead
of time the rate of convergence of the functions fn. By rate of convergence, we
mean the sequence rx ∈

ωω where rx(m) is the least natural number N satisfying
fn(x) ↾ m = fN(x) ↾ m for all n ≥ N . The idea is that if we knew the infinite
branches zn,x and the rate of convergence rx, it would be a simple matter to
compute f(x). So, we will associate to each finite sequence a finite number of
guesses about what will happen with the zn,x and rx, and from this association
we will define the strategy τ .

We define guessing functions ρ0 : <ωω → ω and ρ1 : <ωω → <ω(<ωω). The
natural number ρ0(s) will be a guess for rx(lh(s)), and for i < lh(ρ1(s)), the
sequence ρ1(s)(i) will be a guess for zi,x ↾ lh(s). For technical reasons, the function
ρ1 will satisfy lh(ρ1(s)) = max(ρ0(s), lh(s)) + 1. This will ensure that ρ0(s) is in
the domain of ρ1(s) and for any z ∈ ωω,

lim
s→z

lh(ρ1(s)) = ∞.

The definition of the guessing functions is by recursion on s. For the base case,
let ρ0(∅) := 0 and ρ1(∅) := 〈∅〉. For the recursive case, suppose ρ0(s) =
N and ρ1(s) = 〈s0, . . . , sk〉 have been defined with lh(si) = lh(s) and k =
max(N, lh(s)). Let 〈ρ0(s

aj), ρ1(s
aj)〉 enumerate all pairs 〈N ′, 〈u0, . . . , uk′〉〉 with

N ′ ≥ N , lh(ui) = lh(s) + 1, k′ = max(N ′, lh(s) + 1), and si ⊂ ui for all i,
0 ≤ i ≤ k. This completes the definition of ρ0 and ρ1.
For s, u ∈ <ωω, the following facts are easy to show:

- s ⊂ u⇒ ρ0(s) ≤ ρ0(u),

- lh(ρ1(s)) = max(ρ0(s), lh(s)) + 1,

- ∀i < lh(ρ1(s)) (lh(s) = lh(ρ1(s)(i)), and

- s ⊂ u⇒ ∀i < lh(ρ1(s)) (ρ1(s)(i) ⊂ ρ1(u)(i)).

Moreover, for any non-decreasing r ∈ ωω and any zn ∈
ωω, there is a unique

z ∈ ωω that encodes r and zn via ρ0 and ρ1. Conversely, every z ∈ ωω encodes
some r and zn.
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We proceed with the definition of τ . At each round of the game, we consider
certain sequences s ∈ <ωω to be active. Informally, s is active if it looks like
the guesses ρ1(s)(i) might be correct and are consistent with the guesses we have
made along s about the rate of convergence. Let p ∈ <ωω be a finite play of
Player I. We say that s ∈ <ωω is active if

- ∀i < lh(ρ1(s)) (ρ1(s)(i) ∈ dom(τi(p))),

- ∀m ≤ lh(s) (ρ0(s ↾ m) > 0 ⇒ tρ0(s↾m) ↾ m 6= tρ0(s↾m)−1 ↾ m),

where ti = τi(p)(ρ1(s)(i)) for i < lh(ρ1(s)), and

- ∀m ≤ lh(s) ∀i (ρ0(s ↾ m) < i < lh(ρ1(s)) ⇒ tρ0(s↾m) ↾ m = ti ↾ m).

Note that lh(ti) = lh(s) for all i < lh(ρ1(s)).
To understand the first condition, recall that si := ρ1(s)(i) is a guess for

zi,x ↾ lh(s). If si 6∈ dom(τi(p)), then we are not yet interested in this guess. For
the second condition, recall that N := ρ0(s ↾ m) is a guess for rx(m). In words,
this is the guess that the sequence of functions converges on the first m digits
precisely at the Nth function. If tN and tN−1 agree on the first m digits, then
the guess N is too big, given that the other guesses associated to s are correct.
Similarly, if tN and ti disagree on the first m digits for some i, N < i < lh(ρ1(s)),
then the guess N is too small.

Let

S(p) := {s : s is active and lh(ρ1(s)) ≤ lh(p)}.

Define τ(p) to be the function φ : S(p) → <ωω,

φ(s) := tρ0(s).

We will show that τ is winning in the game G(f). We begin by checking that
τ is indeed a strategy. Firstly, we check that dom(τ(p)) is a tree. It suffices to
show that if s ⊂ u and u is active, then s is active. To check the first condition of
activation, let i < lh(ρ1(s)). Since lh(ρ1(s)) ≤ lh(ρ1(u)) and u is active, it follows
that ρ1(u)(i) ∈ dom(τi(p)). Since ρ1(s)(i) ⊂ ρ1(u)(i) and dom(τi(p)) is a tree, it
follows that ρ1(s)(i) ∈ dom(τi(p)) as desired. For the second condition, let m ≤
lh(s), n = ρ0(s ↾ m), and suppose n > 0. For i < lh(ρ1(s)), let ti = τi(p)(ρ1(s)(i))
and vi = τi(p)(ρ1(u)(i)). It follows that ti ⊂ vi for all i < lh(ρ1(s)). By the second
condition of activation of u, vn ↾ m 6= vn−1 ↾ m. Therefore, tn ↾ m 6= tn−1 ↾ m.
For the third condition, let m ≤ lh(s), n = ρ0(s ↾ m), and ti and vi as before. Let
i such that n < i < lh(ρ1(s)). By the third condition of activation of u, it follows
that vn ↾ m = vi ↾ m and therefore tn ↾ m = ti ↾ m. This shows that dom(τ(p))
is a tree.

To show that dom(τ(p)) is finite, it suffices to show that for any p ∈ <ωω and
k ∈ ω,

{u ∈ <ωω : lh(ρ1(u)) = k and u is active}
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is finite. To that end, note that k is an upper bound for ρ0(u). By the first
condition of activation, there are only finitely many possibilities for ρ1(u) since
dom(τi(p)) is finite. For fixed n ∈ ω and 〈s0, . . . , sk〉 ∈

<ω(<ωω), there are finitely
many u such that ρ0(u) = n and ρ1(u) = 〈s0, . . . , sk〉. It follows that dom(τ(p))
is finite.

It is immediate that τ(p) is length-preserving, so let us show that τ(p) is
monotone. Let s ⊂ u ∈ dom(τ(p)), it must be shown that τ(p)(s) ⊂ τ(p)(u). Let
ti and vi as before: so ti = τi(p)(ρ1(s)(i)) and vi = τi(p)(ρ1(u)(i)). It follows that
τ(p)(s) = tρ0(s) = vρ0(s) ↾ lh(s) = vρ0(u) ↾ lh(s) = τ(p)(u) ↾ lh(s). For the third
equality, use that u is active and consider the third condition with m = lh(s) and
i = ρ0(u). Finally, it must be shown that p ⊂ q ⇒ τ(p) ⊆ τ(q), but this can
easily be checked using that p ⊂ q ⇒ τi(p) ⊆ τi(q) for all i ∈ ω. This concludes
the proof that τ is a strategy.

It remains to be shown that, on input x, τ produces a unique infinite branch
along which the value is f(x). Let rx be the rate of convergence and let zn,x be
the unique infinite branch produced by τn on input x. Let z ∈ ωω be unique such
that for all s ⊂ z, ρ0(s) = rx(lh(s)) and ρ1(s) = 〈s0, . . . , sk〉 with si ⊂ zi. In other
words, z is the unique infinite sequence along which every guess is correct. Let
φx be the function produced by τ and let s ⊂ z. It follows that s ∈ dom(φx), in
other words s will become active at some stage, and φx(s) = f(x) ↾ lh(s).

To show that z is the only infinite branch of dom(φx), let z′ ∈ ωω such that
z′ 6= z. It will be shown that there is an initial segment of z′ that is never
activated. Let z′n be the infinite branches encoded by z′ via ρ1, and let φn,x be
the function produced by τn on input x. If z′i 6= zi for some i, then there is an
s ⊂ z′i such that s 6∈ dom(φi,x). Otherwise, τi would produce two distinct infinite
branches, a contradiction. Let u ⊂ z′i such that s ⊆ ρ1(u)(i). It follows that u is
never activated.

If z′n = zn for all n, then it must be the case that ρ0(s) 6= rx(lh(s)) for some
s ⊂ z′. If ρ0(s) > rx(lh(s)), then s is never activated. If ρ0(s) < rx(lh(s)), then
there is an i such that i > ρ0(s) and fρ0(s)(x) ↾ lh(s) 6= fi(x) ↾ lh(s). Let u ∈ <ωω

with s ⊆ u ⊂ z′ and ρ1(u) = 〈u0, . . . , uk〉 with i ≤ k. Then u is never activated,
as ui witnesses that the guess ρ0(s) is too small.

This completes the proof of the closure property.

For the reverse direction, it must be shown that every function in F is Borel.
Let f ∈ F and let τ be a winning strategy for Player II in the game G(f). It
suffices to show that the preimage of a basic open set [ t ] is analytic:

f−1([ t ]) = {x ∈ ωω : ∃z ∈ ωω ∃m ∈ ω (τ(x ↾ m)(z ↾ lh(t)) = t) and

∀n ∈ ω ∃m ∈ ω (z ↾ n ∈ dom(τ(x ↾ m)))}

It follows that f−1[ t ] is analytic, since the strategy τ may be encoded as a real
parameter. ⊓⊔



Chapter 3

The Λ1,1, Λ2,2, and Λ1,2 functions

In this chapter, which begins our analysis of low-level Borel functions, we prove
the Jayne-Rogers theorem. We also show that Λ1,1 is properly contained in Λ1,2

and Λ2,2 is properly contained in Λ1,2. In preparation, we review the Wadge,
backtrack, and eraser games, developed by William W. Wadge, Robert van Wesep,
and Jacques Duparc, respectively.

Λ1,2

⊂

Λ2,2

⊂
Λ1,1

3.1 The Wadge game

The Wadge game was developed by William W. Wadge in his Ph.D. thesis [15] to
characterize the notion of continuous reduction. Given two sets A,B ⊆ ωω, A is
Wadge reducible to B (A ≤W B) if there is a continuous function f : ωω → ωω

such that f−1[B ] = A. The Wadge game GW(A,B) has two Players and is
normally defined in such a way that Player II has a winning strategy if and only
if A ≤W B. In this thesis, however, it will be convenient to drop the A’s and
B’s and present a version of the Wadge game that characterizes the notion of
continuous function instead of continuous reduction. We will also extend the
game to handle partial functions on the Baire space.

Let A ⊆ ωω and f : A → ωω. In the Wadge game GW(f), Player I plays
elements xi ∈ ω and Player II plays sequences ti ∈

<ωω such that i < j ⇒ ti ⊆ tj .
After ω rounds, Player I produces x := 〈x0, x1, . . . 〉 ∈

ωω and Player II produces
y :=

⋃

i ti.

11



12 Chapter 3. The Λ1,1, Λ2,2, and Λ1,2 functions

I: x0 x1 x2 x = 〈x0, x1, . . . 〉
. . .

II: t0 t1 t2 y =
⋃

i ti

Player II wins the game if x 6∈ A or x ∈ A and y = f(x).

A Wadge strategy for Player II is a function τ : <ωω → <ωω such that
p ⊂ q ⇒ τ(p) ⊆ τ(q). A Wadge strategy for Player II is winning in GW(f) if for
all x ∈ A,

⋃

p⊂ x

τ(p) = f(x).

3.1.1. Theorem (Wadge). A function f : A→ ωω is continuous iff Player II
has a winning strategy in GW(f).

Proof. ⇒: Define

τ(p) := (
⋂

f [ [ p ] ] ) ∩ lh(p),

so τ : <ωω → <ωω is a Wadge strategy. Furthermore, τ is winning for Player II in
GW(f). Suppose x ∈ A and t ⊂ f(x). Since f is continuous, f−1[ [ t ] ] = X∩A for
some open set X. Let pi ∈

<ωω such that X =
⋃

i [ pi ]. Let i such that x ∈ [ pi ]
and let m = max(lh(pi), lh(t)). It follows that τ(x ↾ m) ⊇ t.

⇐: Suppose that τ is the winning strategy and let t ∈ <ωω. Then

f−1[ [ t ] ] = (
⋃

{[ p ] : τ(p) ⊇ t} ) ∩A,

and therefore f is continuous. ⊓⊔

3.2 The eraser game

Let A ⊆ ωω and f : A → ωω. We define the eraser game using trees (other
definitions are also possible, for example in [11]). In the eraser game Ge(f),
Player I plays elements xi ∈ ω and Player II plays finite trees Ti ⊂

<ωω such that
i < j ⇒ Ti ⊆ Tj . After ω rounds, Player I produces x := 〈x0, x1, . . . 〉 ∈

ωω and
Player II produces T :=

⋃

i Ti.

I: x0 x1 x2 x = 〈x0, x1, . . . 〉
. . .

II: T0 T1 T2 T =
⋃

i Ti

Player II wins the game if either x 6∈ A or if T is finitely branching and f(x) is
the unique infinite branch of T .
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Let MOVES be the set of finite trees T ⊂ <ωω. An eraser strategy for Player
II is a function τ : <ωω → MOVES such that p ⊂ q ⇒ τ(p) ⊆ τ(q). If x ∈ ωω and
τ is an eraser strategy for Player II, let

Tx :=
⋃

p⊂ x

τ(p)

and say that τ for Player II is winning in Ge(f) if for all x ∈ A, Tx is finitely
branching and f(x) is the unique infinite branch of Tx.

3.2.1. Theorem (Duparc). A function f : A→ ωω is Baire class 1 iff Player
II has a winning strategy in Ge.

Proof. ⇒: Let f = limn→∞ fn with fn : A → ωω continuous and let τn be a
winning strategy for Player II in GW(fn). Define

τ(p) := tree({τn(p) ↾ n : n ≤ lh(p)})

where tree(T ) := {s : ∃t ∈ T (s ⊆ t)}. It is easy to check that τ is an eraser
strategy. We show that τ is winning in Ge(f). Let x ∈ A be a play of Player I
and let Tx be the function produced by τ on input x. It follows that

Tx = tree({fn(x) ↾ n : n ∈ ω})

and Tx is finitely branching since {t ↾ m : t ∈ Tx} = {fn(x) ↾ m : n ≥ m} is finite.
Furthermore, for any m there is an n ≥ m such that f(x) ↾ m = fn(x) ↾ m, so
f(x) is an infinite branch of Tx. If t 6⊂ f(x) then Tx ∩{v : v ⊇ t} is finite, so f(x)
is the only infinite branch of Tx.

⇐: Let τ be winning for Player II in Ge(f) and let Tx be the tree produced
by τ on input x ∈ A. For t ∈ Tx, let µx(t) be the least n such that t ∈ τ(x ↾ n).
Let ≺ be a well-ordering of <ωω and let ≺x be the well-ordering of Tx given by

s ≺x t :⇔ µx(s) < µx(t) or

µx(s) = µx(t) and s ≺ t.

Let fn(x) : A→ ωω,

fn(x) := ta0∗,

where t is the ≺x-nth element of Tx. The functions fn are continuous and fur-
thermore, f = limn→∞ fn. Let x ∈ A and t ⊂ f(x). Since Tx is finitely branching
and f(x) is its unique infinite branch, it follows that {s ∈ Tx : t 6⊆ s} is finite by
König’s lemma. Therefore, there are finitely many n such that t 6⊂ fn(x). ⊓⊔
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3.3 The backtrack game

Let A ⊆ ωω and f : A → ωω. In the backtrack game Gbt(f), Player I plays
elements xi ∈ ω and Player II plays functions φi : Di →

<ωω such that Di ⊂ ω

is finite. Player II is subject to the requirements that i < j ⇒ Di ⊆ Dj and
φi(n) ⊆ φj(n) for all n ∈ dom(φi). After ω rounds, Player I produces x =
〈x0, x1, . . . 〉 ∈

ωω and Player II produces φ : Dω →
≤ωω,

φ(n) :=
⋃

{φi(n) : i ∈ ω and n ∈ dom(φi)},

where Dω :=
⋃

iDi.

I: x0 x1 x2 x = 〈x0, x1, . . . 〉
. . .

II: φ0 φ1 φ2 φ as above

Player II wins the game if either x 6∈ A or if Dω is finite, there is an n ∈ Dω

such that φ(n) = f(x), and φ(n′) is finite for all n′ 6= n. Informally, we think of
the domain of φ as consisting of a finite number of rows. Player II’s task is to
produce an infinite sequence, namely f(x), on exactly one of the rows. We refer
to this row as the output row.

Let MOVES be the set of functions ψ : D → <ωω such that D ⊂ ω is finite.
A backtrack strategy for Player II is a function τ : <ωω → MOVES such that
p ⊂ q ⇒ dom(τ(p)) ⊆ dom(τ(q)) and τ(p)(n) ⊆ τ(q)(n) for all n ∈ dom(τ(p)).
For an infinite play x of Player I and a backtrack strategy τ for Player II, we let
Dx :=

⋃

p⊂ x dom(τ(p)) and φx : Dx →
≤ωω,

φx(n) :=
⋃

{τ(p)(n) : p ⊂ x and n ∈ dom(τ(p))}.

A backtrack strategy τ for Player II is winning in Gbt(f) if for all x ∈ A, Dx

is finite, there is an n ∈ Dx such that φx(n) = f(x), and φx(n
′) is finite for all

n′ 6= n. We will sometimes denote this n, the output row, by ox.
The next theorem is due to Alessandro Andretta.

3.3.1. Theorem (Andretta). A function f : A → ωω admits a Π0
1 partition

〈An : n ∈ ω〉 such that f ↾ An is continuous iff Player II has a winning strategy
in Gbt(f).

Proof. ⇒: Let f : A → ωω, let An be the partition, and let τn be a winning
strategy for Player II in GW(f ↾ An). Let Tn ⊆

<ωω be a tree such that An =
[Tn ]∩A. For p ∈ <ωω, let B(p) := {〈n, τn(p)〉}, where n is least such that p ∈ Tn.
Define τ(p) :

⋃

{dom(B(q)) : q ⊆ p} → <ωω,

τ(p)(n) :=
⋃

{B(q)(n) : q ⊆ p and n ∈ dom(B(q))}.
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It is easy to check that τ is a backtrack strategy and winning for Player II in
Gbt(f).

⇐: Let τ be the winning strategy for Player II in Gbt(f). For x ∈ A, let Dx,
φx, and ox as in the previous section. Define

An := {x ∈ A : ox = n}.

The Wadge strategy τn given by

τn(p) :=

{

τ(p)(n) if n ∈ dom(τ(p)),
∅ otherwise

is winning for Player II in GW(f ↾ An). Furthermore, the sets An are Σ0
2. Namely,

fix n ∈ ω and let Ti be the set of p ∈ <ωω such that
∑

m∈ dom(τ(p))
m 6=n

lh(τ(p)(m)) ≤ i.

Then An =
⋃

i [Ti ]∩A. Since we are working in the Baire space, Σ0
2 sets are the

disjoint union of countably many Π0
1 sets, completing the proof. ⊓⊔

3.4 The Jayne-Rogers theorem

To prove the Jayne-Rogers theorem, we begin with some lemmas.

3.4.1. Lemma. Let A ⊆ ωω, h : A → ωω, and suppose that τe is a winning
strategy for Player II in Ge(h). Let t1, t2 ∈

<ωω such that t1⊥ t2. If Player II
has a winning strategy τ1 in Gbt(h ↾ h−1[ [ t1 ]c ]) and a winning strategy τ2 in
Gbt(h ↾ h−1[ [ t2 ]c ]), then Player II has a winning strategy in Gbt(h).

Proof. For p ∈ <ωω, let

γ1(p) := card(τe(p) \ {v : v ⊇ t1}), and

γ2(p) := card(τe(p)[ t1 ]).

Define

τ(p) := {〈2n, t〉 : 〈n, t〉 ∈ τ1(p ↾ γ1(p))} ∪

{〈2n+ 1, t〉 : 〈n, t〉 ∈ τ2(p ↾ γ2(p))}.

It is easy to see that the backtrack strategy τ is winning for Player II in Gbt(h).
If x ∈ [ t1 ], then as p → x, γ1(p) is bounded by König’s lemma and γ2(p) → ∞.
It follows that τ will produce the value h(x) on one of its odd rows. Similarly, if
x 6∈ [ t1 ], then γ2(p) is bounded and γ1(p) →∞ as x→ p. So, τ will produce the
value h(x) on one of its even rows. ⊓⊔

We turn our attention to the eraser game, with another simple lemma.
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3.4.2. Lemma. Let A ⊆ ωω, h : A → ωω, and suppose that τe is a winning
strategy for Player II in Ge(h). For x ∈ A, let Tx ⊂

<ωω be the tree produced by
τe on input x. Let 〈tn : n ∈ ω〉 be an infinite sequence of pairwise incompatible
elements of <ωω. If tn ∈ Tx for infinitely many n, then h(x) 6∈ [ tn ] for all n.

Proof. Suppose Tx contains infinitely many tn. Fix n ∈ ω. The finitely branching
tree Tx \ {v : v ⊇ tn} is infinite and thus h(x) 6∈ [ tn ] by König’s lemma. ⊓⊔

The next lemma is the main lemma of the argument. The proof we give here
is due to Solecki.

3.4.3. Lemma. Let A ⊆ ωω, h : A → ωω, and suppose that τe is a winning
strategy for Player II in Ge(h). If Player II does not have a winning strategy in
Gbt(h), then there is an x ∈ A and a t ∈ <ωω such that t ⊂ h(x) and for all
p ⊂ x, Player II does not have a winning strategy in

Gbt(h ↾ (h−1[ [ t ]c ] ∩ [ p ])).

Proof. By contradiction. Suppose for every x ∈ A and t ⊂ h(x), there is a p ⊂ x

such that Player II has a winning strategy in

Gbt(h ↾ (h−1[ [ t ]c ] ∩ [ p ])).

Let P be the set of p ∈ <ωω such that Player II has a winning strategy in
Gbt(h ↾ [ p ]) and let U :=

⋃

{[ p ] : p ∈ P}. By assumption, Player II does
not have a winning strategy in Gbt(h). It follows that Player II does not have a
winning strategy in Gbt(h ↾ (A \U)), and therefore h ↾ (A \U) is not continuous.
Let x ∈ A \ U be a discontinuity point, so there is a t0 ⊂ h(x) such that for any
p ⊂ x, there exists y ⊃ p with y ∈ A \ U and t0 6⊂ h(y). By the failure of the
conclusion, there is a p0 ⊂ x such that Player II has a winning strategy in

Gbt(h ↾ (h−1[ [ t0 ]c ] ∩ [ p0 ])).

Let y ⊃ p0 such that y ∈ A \ U and t0 6⊂ h(y). Let t1 ⊂ h(y) such that t0⊥ t1.
Again by the failure of the conclusion, there is a p1 ⊂ y, of which we can assume
p0 ⊆ p1, such that Player II has a winning strategy in

Gbt(h ↾ (h−1[ [ t1 ]c ] ∩ [ p1 ])).

By Lemma 3.4.1, Player II has a winning strategy in Gbt(h ↾ [ p1 ]), contradicting
y 6∈ U . ⊓⊔

Before proving the Jayne-Rogers theorem, we want to generalize the idea of
Lemma 3.4.3. Fix f : ωω → ωω and suppose that τe is a winning strategy for
Player II in Ge(f). For x ∈ ωω and σ ⊆ ωω, say that x is σ-good if for every
p ⊂ x, Player II does not have a winning strategy in

Gbt(f ↾ (f−1[ σ ] ∩ [ p ])).
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3.4.4. Lemma. Let x ∈ ωω, σ ⊆ ωω, and let 〈t0, . . . , tm〉 be a sequence of pairwise
incompatible elements of <ωω. If x is σ-good, then

{i ≤ m : x is not (σ \ [ ti ])-good}

has at most one element.

Proof. Suppose there are i 6= j ≤ m such that x is not (σ \ [ ti ])-good and x is
not (σ\ [ tj ])-good. Then it follows easily from Lemma 3.4.1 that x is not σ-good,
a contradiction. ⊓⊔

3.4.5. Theorem. (Jayne, Rogers) A function f : ωω → ωω is Λ2,2 ⇔ there is a
Π0

1 partition 〈An : n ∈ ω〉 of ωω such that f ↾ An is continuous.

To prove the Jayne-Rogers theorem, we will assume that we are given f :
ωω → ωω, f ∈ Λ1,2 such that there is no closed partition An of ωω with f ↾ An
continuous. We will then define an open set Y and a continuous reduction from
a Σ0

2-complete set X to f−1[Y ]. This will show that f 6∈ Λ2,2, as desired. The
reduction will be constructed in stages, using the notion of a snake. Say that a
sequence ψn : Tn →

<ωω is a snake if

- Tn ⊂
<ω2 is a finite tree,

- ψn is monotone,

- i < j ⇒ Ti ⊆ Tj,

- i < j and p ∈ tn(Ti) ⇒ ψi(p) ⊆ ψj(p),

- i < j and p ∈ Ti \ tn(Ti) ⇒ ψi(p) = ψj(p),

-
⋃

n

Tn = <ω2, and

- the function ψ : <ω2 → <ωω,

ψ(p) :=
⋃

{ψn(p) : n ∈ ω and p ∈ dom(ψn)} is infinitary.

If ψn is a snake and ψ =
⋃

n ψn, then ψ̂ : ω2 → ωω,

ψ̂(x) :=
⋃

p⊂ x

ψ(p)

is continuous and we refer to ψ̂ as the lifting of ψn.

Proof of Theorem 3.4.5. By Lemma 1.1.4, it suffices to prove ⇒. Suppose
that there is no such partition An, we will show that f 6∈ Λ2,2. If f 6∈ Λ1,2, then
we are done, so we may let τe be a winning strategy for Player II in Ge(f).
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We will define an open set Y and a snake ψn such that the lifting ψ̂ of ψn is
a reduction from

X := {z ∈ ω2 : ∃i ∀j ≥ i (z(j) = 0)}

to f−1[Y ]. Let β : ω → <ω2 be the enumeration given by β(0) := ∅, β(2n+1) :=
β(n)a0, and β(2n+ 2) := β(n)a1. We will define by recursion:

ψn : β[n+ 1] → <ωω,

ξn : β[n+ 1] → ωω, and

ηn : β[n+ 1] → <ωω

such that i < j ⇒ ξi ⊂ ξj, i < j ⇒ ηi ⊂ ηj, and for all n and all p ∈ β[n+ 1],

- ψn(p) ⊂ ξn(p),

- ηn(p) ⊂ f(ξn(p)),

- ran(ηn) is an antichain,

- ξn(p) is σn-good, where σn :=
⋂

t∈ ran(ηn)

[ t ]c, and

- (∗) ran(ηn) ∩ τe(ψn(p)) > card({k : p(k) = 1}).

Let x and t be given by Lemma 3.4.3 applied to f , so t ⊂ f(x) and x is [ t ]c-good.
Let q ⊂ x such that t ∈ τe(q). Define

ψ0 := {〈∅, q〉},

ξ0 := {〈∅, x〉}, and

η0 := {〈∅, t〉}.

The reader should check that ψ0, ξ0, and η0 satisfy the desired requirements. For
the recursive case, suppose that ψn, ξn, and ηn have been defined.

Case A: n is even. Let p such that β(n+ 1) = pa0. Define

ψn+1 := ψn ∪ {〈p
a0, ξn(p) ↾ lh(ψn(p)) + 1〉},

ξn+1 := ξn ∪ {〈p
a0, ξn(p)〉}, and

ηn+1 := ηn ∪ {〈p
a0, ηn(p)〉}.

Case B: n is odd. Let p such that β(n+1) = pa1. We want to find x and t such
that ψn(p) ⊂ x, t ⊂ f(x), t and elements of ran(ηn) are pairwise incompatible,
and every element of ran(ξn) ∪ {x} is (σn \ [ t ])-good, with

σn :=
⋂

v∈ ran(ηn)

[ v ]c.

We will define sequences 〈x0, x1, . . . 〉 and 〈t0, t1, . . . 〉 such that xl and tl will be
the desired values of x and t for some l. Let

h := f ↾ (f−1[ σn ] ∩ [ψn(p) ]).
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By the induction hypothesis, ψn(p) ⊂ ξn(p) and ξn(p) is σn-good. Therefore,
Player II does not have a winning strategy in Gbt(h). Let x0 and t0 be given by
Lemma 3.4.3 applied to h, so ψn(p) ⊂ x0, t0 ⊂ f(x0), v 6⊆ t0 for all v ∈ ran(ηn),
and x0 is (σ \ [ t0 ])-good.

Now, suppose 〈x0, . . . , xj〉 and 〈t0, . . . tj〉 have been defined such that for all
i ≤ j, ψn(p) ⊂ xi, ti ⊂ f(xi), v 6⊆ ti for all v ∈ ran(ηn) ∪ {t0, . . . , ti−1}, and xi is

(σn ∩ [ t0 ]c ∩ · · · ∩ [ ti ]
c)-good.

Let
h := f ↾ (f−1[ σn ∩ [ t0 ]c ∩ · · · ∩ [ tj ]c ] ∩ [ψn(p) ])

and let xj+1 and tj+1 be given by Lemma 3.4.3 applied to h. It follows that
ψn(p) ⊂ xj+1, tj+1 ⊂ f(xj+1), v 6⊆ tj+1 for all v ∈ ran(ηn) ∪ {t0, . . . , tj}, and xj+1

is
(σn ∩ [ t0 ]c ∩ · · · ∩ [ tj+1 ]c)-good.

We claim that there is an l such that tl and elements of ran(ηn) are pairwise
incompatible and every element of ran(ξn) is (σ \ [ tl ])-good. Namely, we may
consider an arbitrarily long subsequence of 〈t0, t1, . . . 〉 such that the elements
of the subsequence are pairwise incompatible with themselves and elements of
ran(ηn). By Lemma 3.4.4, the claim follows. Let x := xl and t := tl. Let
q ⊃ ψn(p) such that q ⊂ x and t ∈ τe(q). Define

ψn+1 := ψn ∪ {〈p
a1, q〉},

ξn+1 := ξn ∪ {〈p
a1, x〉}, and

ηn+1 := ηn ∪ {〈p
a1, t〉}.

This completes the definition of ψn, ξn, and ηn.
Now, let ξ :=

⋃

ξn, η :=
⋃

ηn, and ψ̂ be the lifting of ψn. Let

Y :=
⋃

t∈ ran(η)

[ t ].

The continuous function ψ̂ is a reduction from X to f−1[Y ]. If x ∈ X, then let
p ⊂ x such that x = pa0∗. It follows that ψ̂(x) = ξ(p) and thus f(ψ̂(x)) ∈ Y . If
x 6∈ X, then let T be the tree produced by the eraser strategy τe on input ψ̂(x).
By (∗), it follows that T contains infinitely many elements of ran(η) and thus
f(ψ̂(x)) 6∈ Y by Lemma 3.4.2. ⊓⊔

3.5 Λ2,2 6⊆ Λ1,1 and Λ1,2 6⊆ Λ2,2

In this section, we show that the containments between these classes are proper.
These results are already known and are not difficult to prove. However, we will
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use a game-theoretic diagonalization method that will be useful in Chapters 4 and
5. The method is similar to the diagonalization methods used in computability
theory.

3.5.1. Fact. Λ2,2 6⊆ Λ1,1

Proof. Let β : <ωω → ω be a bijection. If τ : <ωω → <ωω is a Wadge strategy,
then say that x ∈ ωω is a code for τ if τ(p) = β−1(x(β(p))) for all p ∈ <ωω.
Note that for every Wadge strategy τ , there is a unique x that encodes it. For
T ⊂ <ωω, say that τ : T → <ωω is a partial Wadge strategy if s, t ∈ T and
s ⊂ t⇒ τ(s) ⊆ τ(t).

It suffices to define a backtrack strategy τbt that is winning for Player II in
Gbt(f) for some f : ωω → ωω that is not continuous. On input x, the strategy τbt

will attempt to decode x into a Wadge strategy τx and diagonalize against the
first digit of the output of τx on input x.

Fix p ∈ <ωω. Let

T := {β−1(n) : n < lh(p)}.

Let τ : T → <ωω, τ(s) := β−1(p(β(s))). If τ is a partial Wadge strategy and there
is a q ⊆ p such that q ∈ dom(τ), lh(τ(q)) > 0, and τ(q)(0) = 0, then let B(p) :=
{〈1, 1lh(p)〉}. Otherwise, let B(p) := {〈0, 0lh(p)〉}. Define τbt(p) : {0, 1} → <ωω,

τbt(p)(n) :=
⋃

{B(q)(n) : q ⊆ p and n ∈ dom(B(q))}.

Let f : ωω → {0∗, 1∗} such that τbt is winning for Player II in Gbt(f). Suppose for
contradiction that f is continuous. Let τ be a Wadge strategy that is winning for
Player II in GW(f). Let x ∈ ωω be the code of τ and consider f(x). If f(x) = 0∗

then it follows that f(x) = 1∗, and if f(x) = 1∗ then it follows that f(x) = 0∗.
Therefore, f is not continuous. ⊓⊔

Fact 3.5.1 can easily be seen without the use of games. Fix y ∈ ωω, and let
h : ωω → ωω,

h(x) :=

{

0∗ if x = y

1∗ if x 6= y.

It follows that h ∈ Λ2,2 \Λ1,1.

3.5.2. Fact. Λ1,2 6⊆ Λ2,2

Proof. As in Section 3.2, let MOVES be the set of functions ψ : D → <ωω such
that D ⊂ ω is finite. Let β : <ωω → ω and γ : ω → MOVES be bijections.
If τ : <ωω → MOVES is a backtrack strategy, then x ∈ ωω is a code for τ if
τ(p) = γ(x(β(p))) for all p ∈ <ωω. Note that for every backtrack strategy τ ,
there is a unique x that encodes it. For T ⊆ <ωω, say that τ : T → MOVES is
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a partial backtrack strategy if s, t ∈ T and s ⊂ t ⇒ dom(τ(s)) ⊆ dom(τ(t))
and τ(s)(n) ⊆ τ(t)(n) for all n ∈ dom(τ(s)).

It suffices to define an eraser strategy τe and f : ωω → ωω such that τe is
winning in Ge(f) and f 6∈ Λ2,2. On input x, the strategy τe will attempt to
decode x into a backtrack strategy τx and diagonalize against the output of τx on
input x.

Fix p ∈ <ωω. Let
T := {β−1(n) : n < lh(p)}.

Let τ : T → MOVES, τ(s) := γ(p(β(s))). If τ is a partial backtrack strategy, then
let r :=

⋃

{q : q ⊆ p and q ∈ dom(τ)} and ψ := τ(r). Let E(p) ∈ lh(p)ω,

E(p)(m) :=

{

1 if m ∈ dom(ψ), m ∈ dom(ψ(m)), and ψ(m)(m) = 0,
0 otherwise.

If τ is not a partial backtrack strategy, then let

E(p) := 0lh(p).

Define
τe(p) := tree({E(p) : q ⊆ p}).

It is easy to check that τe is an eraser strategy and that there is an f : ωω → 2ω

such that τe is winning in Ge(f). Suppose for contradiction that f ∈ Λ2,2. By
Theorems 3.3.1 and 3.4.5, there is a backtrack strategy τ that is winning for
Player II in Gbt(f). Let x ∈ ωω be the code of τ , let m be the output row of τ
on input x, and consider f(x). If f(x)(m) = 0 then it follows that f(x)(m) = 1,
and if f(x)(m) = 1 it follows that f(x)(m) = 0. Therefore, f 6∈ Λ2,2. ⊓⊔

It is also easy to show Fact 3.5.2 without using games. Let

A := {x ∈ ωω : ∃N ∀n > N x(n) = 0}

and let β : A→ ω be a bijection. Let h : ωω → ωω,

h(x) :=

{

0β(x)a1a0∗ if x ∈ A,
0∗ if x 6∈ A.

It is clear that h 6∈ Λ2,2. Namely, let Y =
⋃

{[ t ] : t = (0n)a1 for some n},
then h−1[Y ] is Σ0

2-complete. To see that h ∈ Λ1,2, it suffices to show that the
preimage of a basic open set [ t ] is Σ0

2. If t = (0n)a1a0m, then h−1[ [ t ] ] is a
singleton and thus closed. If t = 0n, then h−1[ [ t ] ] is cofinite and thus open.
Otherwise, h−1[ [ t ] ] is empty.





Chapter 4

The Λ2,3 and Λ1,3 functions

In this chapter, we extend the methods from Chapter 3 to analyze the Λ1,3 and
Λ2,3 functions.

Λ1,3

⊂

Λ2,3

⊂
Λ1,2

⊂

Λ2,2

⊂
Λ1,1

4.1 The game G1,3(f)

Let A ⊆ ωω and f : A→ ωω. As in the tree game from Chapter 2, Player I plays
elements xi ∈ ω and Player II plays functions φi : Ti →

<ωω such that Ti ⊂
<ωω

is a finite tree, φi is monotone and length-preserving, and i < j ⇒ φi ⊆ φj .
After ω rounds, Player I produces x = 〈x0, x1, . . . 〉 ∈

ωω and Player II produces
φ =

⋃

i φi.

I: x0 x1 x2 x = 〈x0, x1, . . . 〉
. . .

II: φ0 φ1 φ2 φ =
⋃

i φi

Player II wins the game if either x 6∈ A or if dom(φ) has a unique infinite branch
z, dom(φ)[ s ] is infinite ⇒ s ⊂ z, and

⋃

s⊂ z

φ(s) = f(x).

23
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This game is exactly the same as the tree game except for the extra requirement
that dom(φ)[ s ] is infinite ⇒ s ⊂ z. Alternatively, this requirement may be
stated as follows: in the tree dom(φ), any node that is not an initial segment of
the infinite branch may only be extended finitely many times. Equivalently, for
s ⊂ z, there may be infinitely many k such that sak ∈ dom(φ), but dom(φ)[ sak ]
is finite for every k 6= z(lh(s)).

We define the set MOVES, the notion of a strategy, zx and φx as in the
definition of the tree game. In the game G1,3(f), a strategy τ is winning for
Player II if for all x ∈ A, dom(φx) has a unique infinite branch zx, dom(φx)[ s ] is
infinite ⇒ s ⊂ zx, and

⋃

s⊂ zx

φx(s) = f(x).

4.1.1. Theorem. A function f : A → ωω is Baire class 2 iff Player II has a
winning strategy in G1,3(f).

Proof. ⇒: As in the proof of Theorem 2.0.9, we will define a winning strategy
for Player II by defining guessing functions. Let fn : A → ωω such that f =
limn→∞ fn and fn is Baire class 1. By Theorem 3.2.1, there is a winning strategy
τn for Player II in Ge(fn). Let Tn,x be the tree produced by τn on input x:

Tn,x :=
⋃

p⊂x

τn(p).

Note that Tn,x ⊂
<ωω is a finitely branching tree whose unique infinite branch is

fn(x), by the definition of the game Ge.
We proceed by defining guessing functions ρ0 : <ωω → <ωω, ρ1 : <ωω → ω,

and ρ2 : <ωω → ω satisfying:

- lh(ρ0(s)) = lh(s),

- s ⊂ u⇒ ρ0(s) ⊂ ρ0(u), and

- s ⊂ u⇒ ρ1(s) ≤ ρ1(u).

Let x ∈ A be an infinite play of Player I. The sequence ρ0(s) will be a guess for
f(x) ↾ lh(s), the natural number ρ1(s) will be a guess for the least N such that
fn(x) ↾ lh(s) = fN (x) ↾ lh(s) for all n ≥ N , and the natural number ρ2(s) will be
a guess for card(Tρ1(s)−1,x[ ρ0(s) ]). (If ρ1(s) = 0, then we let ρ2(s) := 0.)

We define the guessing functions as follows. Let ρ0(∅) = ∅ and ρ1(∅) =
ρ2(∅) = 0. If ρ0, ρ1 and ρ2 are defined at s ∈ <ωω, let 〈ρ0(s

ak), ρ1(s
ak), ρ2(s

ak)〉
enumerate all triples 〈t, r,m〉 ∈ <ωω×ω×ω with ρ0(s) ⊂ t, lh(t) = lh(ρ0(s))+ 1,
r ≥ ρ1(s), and m = 0 if r = 0.

For p ∈ <ωω, let S(p) be the set of s ∈ ≤lh(p)lh(p) such that for all u ⊆ s,

ρ1(u) > 0 ⇒ card(τρ1(u)−1(p)[ ρ0(u) ]) = ρ2(u)
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and for all n such that ρ1(u) ≤ n ≤ max(lh(s), ran(s)),

card(τn(p)[ ρ0(u) ]) ≥ max(lh(s), ran(s)).

Define
τ(p) :

⋃

q⊆ p

S(q) → <ωω, τ(p)(s) := ρ0(s).

It is not difficult to check that τ is a strategy. It remains to be shown that τ is
winning for Player II in G1,3(f). Fix x ∈ A, let

φx :=
⋃

p⊂x

τ(p),

and let zx ∈
ωω be the unique infinite sequence whose encoded guesses are all

correct. This means that the following holds for every s ⊂ zx: ρ0(s) = f(x) ↾

lh(s), ρ1(s) is the least N such that fn(x) ↾ lh(s) = fN(x) ↾ lh(s) for all n ≥ N ,
and ρ2(s) is the cardinality of Tρ1(s)−1,x[ ρ0(s) ] if ρ1(s) > 0 and 0 otherwise.

Note that for every s ⊂ zx, there exists a p ⊂ x such that s ∈ S(p).
Namely, let s ⊂ zx and choose p0 ⊂ x such that for all u ⊆ s, ρ1(u) >

0 ⇒ card(τρ1(u)−1(p0)[ ρ0(u) ]) = card(Tρ1(u)−1,x[ ρ0(u) ]). Such p0 exists since
Tρ1(u)−1,x[ ρ0(u) ] is finite for all such u. Now, for all u ⊆ s and n ≥ ρ1(u),
card(τn(p)[ ρ0(u) ]) →∞ as p→ x. Choose p1 ⊂ x such that card(τn(p1)[ ρ0(u) ]) ≥
max(lh(s), ran(s)) for all u ⊆ s and n such that ρ1(u) ≤ n ≤ max(lh(s), ran(s)).
Let p2 = x ↾ max(lh(s), ran(s)) and let p = p0 ∪ p1 ∪ p2. It follows that s ∈ S(p).
This shows that zx is an infinite branch of dom(φx) and

⋃

s⊂ zx

φx(s) = f(x).

To finish the proof, we show that u 6⊂ zx ⇒ dom(φx)[ u ] is finite. Note that if
u 6⊂ zx then there is a v ⊆ u and an i ∈ {0, 1, 2} such that the guess ρi(v) is
incorrect. In the case of i = 0, this implies that the guess ρ0(u) is incorrect since
ρ0(v) ⊆ ρ0(u).

Case A. The guess ρ0(u) is incorrect. Let N ≥ ρ1(u) such that TN,x[ ρ0(u) ]
is finite. Such N exists since otherwise for all n ≥ ρ1(u), we would have that
Tn,x[ ρ0(u) ] is infinite and thus fn(x) ↾ lh(u) = ρ0(u). Let m = card(TN,x[ ρ0(u) ])
and let k = max(m,N). Suppose s ⊇ u such that max(lh(s), ran(s)) > k. It
follows that s 6∈ S(p) for all p ⊂ x. Namely, for any p ⊂ x, we have that
ρ1(u) ≤ N ≤ max(lh(s), ran(s)) but card(τN (p)[ ρ0(u) ]) ≤ card(TN,x[ ρ0(u) ]) <
max(lh(s), ran(s)). It follows that dom(φx)[ u ] is finite.

Case B. The guess ρ0(u) is correct, but there is a v ⊆ u such that the guess
ρ1(v) is incorrect. If ρ1(v) is too small, then let N ≥ ρ1(v) such that TN,x[ ρ0(v) ]
is finite and argue as in Case A. If ρ1(v) is too large, then Tρ1(v)−1,x[ ρ0(v) ] is
infinite. Let p ⊂ x such that

card(τρ1(v)−1(p)[ ρ0(v) ]) > ρ2(v).
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It follows that s ∈ S[ q ] implies v 6⊆ s for all q ⊇ p with q ⊂ x, and thus
dom(φx)[ u ] is finite.

Case C. Case A and Case B do not hold, but there is a v ⊆ u such that the
guess ρ2(v) is incorrect. If ρ2(v) is too small then let p ⊂ x such that

card(τρ1(v)−1(p)[ ρ0(v) ]) > ρ2(v).

It follows that s ∈ S[ q ] ⇒ v 6⊆ s for all q ⊇ p with q ⊂ x, and thus dom(φx)[ u ]
is finite. If ρ2(v) is too large then u 6⊆ s for all s ∈ dom(φx).

⇐: Let τ be winning for Player II in G1,3(f) and define φx and zx for x ∈ A

as earlier. For x ∈ A and n ∈ ω, let snx be the least sequence s of length n in the
lexicographic ordering <lex of <ωω such that

card({u ∈ dom(φx) : u ⊇ s}) ≥ n.

Define fn(x) = φx(s
n
x)

a0∗. We claim that the functions fn are Baire class 1 (in
fact, Λ2,2) and f = limn→∞ fn. Note that f0 ∈ Λ2,2 trivially.

Fix n > 0. We will define a backtrack strategy τbt that is winning for Player
II in Gbt(fn). We will use a guessing function ρ : ω → nω, where the sequence
ρ(m) is a guess for snx. To define ρ, take any bijection ω → nω.

Let p ∈ <ωω and let s be the least sequence of length n in the lexicographic
ordering such that

card({u ∈ dom(τ(p)) : u ⊇ s}) ≥ n

if such a sequence exists and ∅ otherwise. If s is non-empty then let m = ρ−1(s).
Let

B(p) :=

{

{〈m, τ(p)(s)a0lh(p)〉} if s 6= ∅,

∅ otherwise.

Define τbt(p) :
⋃

{dom(B(q)) : q ⊆ p} → <ωω,

τbt(p)(n) :=
⋃

{B(q)(n) : q ⊆ p and n ∈ dom(B(q))}.

It is easy to check that the backtrack strategy τbt is winning for Player II in
Gbt(fn).

It remains to be shown that f = limn→∞ fn. Suppose t ⊂ f(x) and let
s = zx ↾ lh(t). It suffices to show that there is an N such that snx ⊇ s for all
n ≥ N . We may assume that s is non-empty as otherwise the statement is trivial.
For i < lh(s), let Li = {(s ↾ i)ak : k < s(i)} and let Ni ∈ ω such that for all
u ∈ Li,

card({v ∈ dom(φx) : v ⊇ u}) ≤ Ni.

Note that such Ni exists because τ is winning for Player II in G1,3(f) and every
u ∈ Li is not an initial segment of the infinite branch zx. Also note that any
u <lex s must have some element of one of the Li’s as an initial segment. Let

N = sup ({Ni + 1 : i < lh(s)} ∪ {lh(s)}).
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It follows that snx ⊇ s for all n ≥ N . Namely, let n ≥ N and consider zx ↾ n.
Since the cardinality of {v ∈ dom(φx) : v ⊇ zx ↾ n} is infinite, it follows that
snx ≤lex zx ↾ n. By choice of N , snx ↾ lh(s) cannot extend any element of any of
the Li’s, so snx ↾ lh(s) ≥lex s. But if snx ↾ lh(s) >lex s then we would have that
snx >lex zx ↾ n, a contradiction. It follows that snx ⊇ s and thus f = limn→∞ fn.

⊓⊔

4.2 The game G2,3(f)

Let A ⊆ ωω and f : A → ωω. In the game G2,3(f), Player I plays elements
xi ∈ ω and Player II plays functions φi : Di → P(<ωω) such that Di ⊂ ω is
finite and φi(n) is a finite tree. Player II is subject to the requirements that
i < j ⇒ Di ⊆ Dj and φi(n) ⊆ φj(n) for all n ∈ dom(φi). After ω rounds, Player
I produces x = 〈x0, x1, . . . 〉 ∈

ωω and Player II produces φ : Dω → P(<ωω),

φ(n) :=
⋃

{φi(n) : i ∈ ω and n ∈ dom(φi)},

where Dω :=
⋃

iDi.

I: x0 x1 x2 x = 〈x0, x1, . . . 〉
. . .

II: φ0 φ1 φ2 φ as above

Player II wins the game if either x 6∈ A or if there is a unique n ∈ Dω such
that φ(n) is infinite (so φ(n′) is finite for all n′ ∈ Dω such that n′ 6= n), φ(n)
is finitely branching, and f(x) is the unique infinite branch of φ(n). Informally,
we think of the domain of φ as consisting of countably many rows. As the game
progresses, Player II builds trees on finitely many of these rows. In the limit,
Player II may use infinitely many rows but may only play an infinite tree on one
of them. If Player I plays x ∈ A, then Player II wins if and only if this tree is
finitely branching and f(x) is its unique infinite branch.

Let MOVES be the set of functions ψ : D → P(<ωω) such that D ⊂ ω is finite
and ψ(n) is a finite tree. A Λ2,3 strategy for Player II is a function τ : <ωω →
MOVES such that p ⊂ q ⇒ dom(τ(p)) ⊆ dom(τ(q)) and τ(p)(n) ⊆ τ(q)(n) for all
n ∈ dom(τ(p)). If x ∈ A and τ is a Λ2,3 strategy for Player II, let Dx be the set
of n ∈ ω such that n ∈ dom(τ(p)) for some p ⊂ x and let φx : Dx → P(<ωω),

φx(n) =
⋃

{τ(p)(n) : p ⊂ x and n ∈ dom(τ(p))}.

A Λ2,3 strategy τ is winning for Player II in G2,3(f) if for all x ∈ A, there is a
unique n ∈ Dx such that φx(n) is infinite (so φx(n

′) is finite for all n′ ∈ Dx such
that n′ 6= n), φx(n) is finitely branching, and f(x) is the unique infinite branch
of φx(n). We will sometimes denote the output row n by ox.
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4.2.1. Theorem. A function f : A → ωω admits a Π0
2 partition 〈An : n ∈ ω〉

such that f ↾ An is Baire class 1 iff Player II has a winning strategy in G2,3(f).

Proof. ⇒: Let An be the partition and τn be a winning strategy for Player II in
Ge(f ↾ An). Let Bn,m ⊆ A be open in A such that An =

⋂

mBn,m. For p ∈ <ωω,
let

γn(p) = sup {m : [ p ] ∩A ⊆ Bn,i for all i ≤ m}.

Note that γn(p) may be a natural number or may be ω. Also note that p ⊂
q ⇒ γn(p) ≤ γn(q) and that for any x ∈ A, there is a unique n ∈ ω such that
limp→x γn(p) = ∞. Define τ(p) : lh(p) → MOVES,

τ(p)(n) = τn(p ↾ γn(p)).

It is easy to check that τ is a Λ2,3 strategy. We claim that τ is winning in G2,3(f).
Let x ∈ A, n such that x ∈ An, and let φx be defined as in the previous section.
It follows that n is unique such that φx(n) is infinite. Moreover, it is easy to see
that

φx(n) =
⋃

p⊂ x

τn(p).

It follows that φn(x) is finitely branching and f(x) is the unique infinite branch
of φx(n), since τn is winning in Ge(f ↾ An).

⇐: Let τ be the winning strategy for Player II in G2,3(f). For x ∈ A, let φx
and Dx be defined as in the previous section, and let ox denote the output row
of τ on input x. Define

An := {x ∈ A : ox = n}.

The eraser strategy τn defined by

τn(p) =

{

τ(p)(n) if n ∈ dom(τ(p)),
∅ otherwise

is winning for Player II in Ge(f ↾ An). Furthermore, it is easy to check that the
sets An are Π0

2 in A, completing the proof. ⊓⊔

4.3 Decomposing Λ2,3

In this section, we proceed with the main goal of this chapter, to prove Theorem
4.3.7.

4.3.1. Lemma. Suppose A ⊆ ωω, h : A → ωω, and that h is Baire class 2. Let
t1, t2 ∈

<ωω such that t1⊥ t2. If Player II has a winning strategy in G2,3(h ↾

h−1[ [ t1 ]c ]) and a winning strategy in G2,3(h ↾ h−1[ [ t2 ]c ]) then Player II has a
winning strategy in G2,3(h).
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Proof. Since [ t1 ] ⊂ [ t2 ]c, it follows that Player II has a winning strategy in
G2,3(h ↾ h−1[ [ t1 ] ]). Let B = h−1[ [ t1 ] ] and C = h−1[ [ t1 ]c ]. It follows that
A = B ∪ C and that B and C are Σ0

3 in A. The lemma follows from Theorem
4.2.1 and Lemma 1.1.5. A game-theoretic proof in the style of Lemma 3.4.1 is
also possible, but we leave this to the reader. ⊓⊔

4.3.2. Lemma. Suppose f : ωω → ωω and that τ1,3 is a winning strategy for
Player II in G1,3(f). Let s1, s2, t1, t2 ∈

<ωω such that lh(s1) = lh(t1), lh(s2) =
lh(t2), and t1⊥ t2. On input x ∈ ωω, let φx be the function produced by τ1,3 and
let zx be the unique infinite branch of dom(φx). Suppose T ⊆ <ωω is a non-empty
tree, p ∈ T , and for all q ⊇ p such that q ∈ T ,

{x : s1 ⊂ zx and t1 ⊂ f(x)} ∩ [T [ q ] ] 6= ∅.

Then there is a q ⊇ p such that q ∈ T and

{x : s2 ⊂ zx and t2 ⊂ f(x)} ∩ [T [ q ] ] = ∅.

Proof. If s1 is compatible with s2, then let x ∈ [T [ p ] ] such that s1 ⊂ zx and
t1 ⊂ f(x). Let q ⊇ p such that q ⊂ x and 〈s1, t1〉 ∈ τ1,3(q). Such q exists since
τ1,3 is winning for Player II in G

,1,3(f). It follows that 〈s2, t2〉 6∈ τ1,3(r) for all
r ⊇ q since t1⊥ t2.

If s1⊥ s2 then suppose for contradiction that the conclusion of the lemma
does not hold. Let p0 = p and suppose pn ∈ T has been defined. If n is even, let
pn+1 ⊃ pn such that pn+1 ∈ T and

card(dom(τ1,3(pn+1))[ s1 ]) > card(dom(τ1,3(pn))[ s1 ]).

If n is odd, let pn+1 ⊃ pn such that pn+1 ∈ T and

card(dom(τ1,3(pn+1))[ s2 ]) > card(dom(τ1,3(pn))[ s2 ]).

Let x =
⋃

pn. It follows that both dom(φx)[ s1 ] and dom(φx)[ s2 ] are infinite.
Since τ1,3 is winning for Player II in G1,3(f), it follows s1 ⊂ zx and s2 ⊂ zx. This
is a contradiction since s1 and s2 are incompatible. ⊓⊔

The following lemma is an analogue of Lemma 3.4.3.

4.3.3. Lemma. Suppose A ⊆ ωω, h : A→ ωω, and that τ1,3 is a winning strategy
for Player II in G1,3(h). On input x ∈ A, let φx be the function produced by
τ1,3 and let zx be the unique infinite branch of dom(φx). If Player II does not
have a winning strategy in G2,3(h), then there is a non-empty tree T ⊆ <ωω and
s, t ∈ <ωω such that lh(s) = lh(t) and for every p ∈ T , Player II does not have a
winning strategy in

G2,3(h ↾ (h−1[ [ t ]c ] ∩ [T [ p ] ]))
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and

{x ∈ A : s ⊂ zx and t ⊂ h(x)} ∩ [T [ p ] ] 6= ∅.

Proof. By contradiction. We assume that the conclusion of the Lemma does not
hold and give a winning strategy for Player II in G2,3(h). For each s, t ∈ <ωω with
lh(s) = lh(t), we will define by transfinite recursion a ⊆-decreasing sequence of
trees 〈Tα : α ≤ γ〉 for some γ < ω1. We will think of this sequence as an attempt
to find the T in the conclusion of the lemma. By assumption, all such attempts
will fail, and we will use this fact to define a winning strategy τ for Player II in
G2,3(h).

Fix s, t ∈ <ωω with lh(s) = lh(t). To define the transfinite sequence of trees
we will use two operations, Ξ and Ω. For a tree T ⊆ <ωω, let Ξ(T ) be the set of
p ∈ T such that Player II does not have a winning strategy in

G2,3(h ↾ (h−1[ [ t ]c ] ∩ [T [ p ] ])),

and let Ω(T ) be the set of p ∈ T such that

{x ∈ A : s ⊂ zx and t ⊂ h(x)} ∩ [T [ p ] ] 6= ∅.

It is immediate that Ξ(T ) and Ω(T ) are trees, Ξ(Ξ(T )) = Ξ(T ), and Ω(Ω(T )) =
Ω(T ). Define

T 0 := Ω(<ωω),

T α+1 := Ξ(T α) (α even),

T α+1 := Ω(T α) (α odd),

T λ := Ω(
⋂

α<λ

T α) (λ limit).

Since the T α’s are ⊆-decreasing subsets of <ωω, we may let γ < ω1 be the least
ordinal such that T γ = T γ+1. If γ is odd, then T γ = Ξ(T ) for some T and
T γ+1 = Ω(T γ) = T γ. Since Ξ(Ξ(T )) = Ξ(T ), it follows that Ξ(T γ) = T γ. If
T γ 6= ∅, then it would satisfy the requirements for T in the conclusion of the
lemma, so T γ = ∅. Similarly, if γ is odd, then Ω(T γ) = Ξ(T γ) = T γ and T γ = ∅.
We may carry out this procedure for any s and t with lh(s) = lh(t). For this, we
use the notation 〈T αs,t : α ≤ γs,t〉, Ξs,t, and Ωs,t.

For p ∈ <ωω, define ιs,t(p) to be the least α such that p 6∈ T αs,t. It is immediate
that s ∈ dom(τ1,3(p)) and τ1,3(p)(s) 6= t implies ιs,t(p) = 0. To simplify the
notation, for s ∈ dom(τ1,3(p)) and t = τ1,3(p)(s), let ιs(p) := ιs,t(p). Note that
s ∈ dom(τ1,3(p)) and p ⊆ q ⇒ ιs(p) ≥ ιs(q). It follows that for any s ∈ dom(φx),
ιs(p) must converge to some ordinal as p→ x, since otherwise there would be an
infinite descending sequence of ordinals. So, for any infinite play x of Player I,
there is an N such that for all n ≥ N , ιs(x ↾ n) = ιs(x ↾ N). Extending the ιs
notation to infinite sequences, let ιs(x) := ιs(x ↾ N).
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In general, we are interested in whether ιs(x) is even or odd. Suppose, for
example, that ιs(x) is an even successor ordinal α + 1. This means that x ∈
[Tα ] \ [ Ω(Tα) ]. In this run of the game, s may be pruned from the domain of
the function produced by τ1,3, since the infinite branch will not extend s by the
definition of Ω. Similarly, if ιs(x) is an odd ordinal α+1, then x ∈ [Tα ]\ [ Ξ(Tα) ].
In this case, we may use the fact that Player II has a winning strategy in

G2,3(h ↾ (h−1[ [ t ]c ] ∩ [Tα ] \ [ Ξ(Tα) ])).

We proceed by defining a winning strategy for Player II in G2,3(h). For each
s ∈ dom(φx), say that s is green if ιs(x) is odd and red if ιs(x) is even. Recall
that limit ordinals are considered to be even. Note that every s ⊂ zx must be
green, since by definition s 6⊂ zx if s is red. For x ∈ A, there are two cases to
consider:

Case A: φx(s) ⊂ h(x) for all green s ∈ dom(φx),

Case B: there are green s1, s2 ∈ dom(φx) such that

φx(s1)⊥φx(s2).

To handle Case A, let ≺ be a well-ordering of <ωω and fix p ∈ <ωω. Let S(p)
be the set of s ∈ dom(τ1,3(p)) such that

- ιs(p) is odd, and

- for all u ≺ s, u ∈ dom(τ1,3(p)) and ιu(p) is odd ⇒

τ1,3(p)(u) is compatible with τ1,3(p)(s).

Let
E(p) :=

⋃

s∈S(p)

τ1,3(p)(s).

It is easy to check that E(p) ∈ <ωω. Let

τA(p) := tree({E(q) : q ⊆ p}).

If Case A holds, then h(x) is the unique infinite branch of the finitely branching
tree

Tx :=
⋃

p⊂x

τA(p).

Namely, let t ⊂ h(x) and let s = zx ↾ lh(t). Let

U := {u ≺ s : u ∈ dom(φx) and φx(u)⊥φx(s)}.

It follows that U is finite and every u ∈ U is red. Let V = U ∪ {s} and let
p ⊂ x such that V ⊆ dom(τ1,3(p)) and ιv(q) = ιs(p) for every v ∈ V and every q,
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p ⊆ q ⊂ x. It follows that E(q) ⊇ t for all q ⊇ p. If Case A does not hold, then
it is easy to check that Tx is finite.

To handle Case B, let γ := sup {γs,t : s, t ∈ <ωω and lh(s) = lh(t)}. Note that
γ is a countable ordinal by the regularity of ω1. We proceed by defining guessing
functions

ρ0 : ω → <ωω,

ρ1 : ω → <ωω,

ρ2 : ω → γ,

ρ3 : ω → <ωω,

ρ4 : ω → <ωω, and

ρ5 : ω → γ.

Let 〈ρi(m) : i < 6〉 enumerate all sextuples 〈s1, t1, α1, s2, t2, α2〉 such that lh(s1) =
lh(t1), lh(s2) = lh(t2), s1⊥ s2, t1⊥ t2, α1 < γs1,t1 , α2 < γs2,t2 , and α1 and α2 are
both even. For each m ∈ ω, the sextuple 〈ρi(m) : i < 6〉 = 〈s1, t1, α1, s2, t2, α2〉
encodes guesses that s1, s2 ∈ dom(φx), φx(s1) = t1, φx(s2) = t2, ιs1(x) = α1 + 1,
and ιs2(x) = α2 +1. Since we are in Case B, there is an m whose encoded guesses
are correct. The Λ2,3 strategy we define will use the least such m to compute
h(x).

Fix m ∈ ω and suppose 〈ρi(m) : i < 6〉 = 〈s1, t1, α1, s2, t2, α2〉. For j ∈ {1, 2},
let

Aj := [T
αj

sj ,tj
] \ [T

αj+1
sj ,tj

].

It follows that Player II has a winning strategy in

G2,3(h ↾ (h−1[ [ tj ]c ] ∩ Aj))

for both j. Letting g := h ↾ (A1 ∩ A2), it follows that Player II has a winning
strategy in

G2,3(g ↾ (g−1[ [ tj ]c ])

for both j. By Lemma 4.3.1 applied to g, let πm be a winning strategy for Player
II in G2,3(g).

Now, fix p ∈ <ωω. Let m ∈ ω be least, if it exists, such that τ1,3(p)(sj) = tj
and

p ∈ T
αj

sj ,tj
\ T

αj+1
sj ,tj

,

where 〈ρi(m) : i < 6〉 = 〈s1, t1, α1, s2, t2, α2〉 and j ∈ {1, 2}. Let p·, ·q : ω×ω → ω

be a bijection and let

M(p) := {〈pm,nq, πm(p)(n)〉 : n ∈ dom(πm(p))}

if such m exists and ∅ otherwise.
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Define
τB(p) :=

⋃

{M(q)(k) : q ⊆ p and k ∈ dom(M(q))}.

It is easy to check that τB is a Λ2,3 strategy. For x ∈ A, let Dx be the set of k ∈ ω
such that k ∈ dom(τB(p)) for some p ⊂ x and let ψx : Dx → P(<ωω),

ψx(k) :=
⋃

{τB(p)(k) : p ⊂ x and k ∈ dom(τB(p))}.

Suppose that Case B holds. Let m be least such that the guesses encoded by
m are correct and let n be the output row of πm on input x. It follows that
ψx(pm,nq) is a finitely branching tree whose unique infinite branch is h(x), and
ψx(k

′) is finite for all k′ 6= pm,nq. If Case B does not hold, then ψx(k) is finite
for all k ∈ Dx. This completes the setup to handle Case B.

To complete the proof, define

τ(p) := {〈0, τA(p)〉} ∪

{〈n+ 1, T 〉 : 〈n, T 〉 ∈ τB(p)}.

The strategy τ is winning for Player II in G2,3(h). ⊓⊔

In the following, we fix f : ωω → ωω and suppose that Player II has a win-
ning strategy in G1,3(f). Let δ be a (possibly empty) finite sequence of trees
〈T0, . . . , Tk〉 with Ti ⊆

<ωω and T0 ⊇ · · · ⊇ Tk. Let σ ⊆ ωω. If δ = ∅, then say
that p ∈ <ωω is δ-σ-good. If δ = 〈T0, . . . , Tk〉 and p ∈ Tk, then p is δ-σ-good if
for all q ⊇ p with q ∈ Tk, Player II does not have a winning strategy in

G2,3(f ↾ (f−1[ σ ] ∩ [Tk[ q ] ]))

and there is an r ⊇ q such that r is pred(δ)-σ-good. (Recall that pred(s) :=
s ↾ lh(s) − 1 for non-empty finite sequences s.) Note that if p is δ-σ-good and
δ = 〈T0, . . . , Tk〉, the definition requires that p ∈ Tk.

4.3.4. Proposition. Suppose δ = 〈T0, . . . , Tk〉 and p is δ-σ-good. Then q is
δ-σ-good for all q ⊇ p with q ∈ Tk.

4.3.5. Proposition. Suppose δ = 〈T0, . . . , Tk〉, σ ⊆
ωω, and p ∈ Tk is δ-σ-good.

Then for any i < k + 1, there exists q ⊇ p such that q is (δ ↾ i)-σ-good.

4.3.6. Lemma. Let δ = 〈T0, . . . , Tk〉, σ ⊆
ωω, and let 〈t0, . . . , tm〉 be a sequence

of pairwise incompatible elements of <ωω. If p is δ-σ-good, then

{i ≤ m : no q ⊇ p is δ-(σ \ [ ti ])-good}

has at most k + 1 elements.
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Proof. Proof by induction on k. For the base case k = 0, suppose δ = 〈T0〉
and p is δ-σ-good. If p is δ-(σ \ [ ti ])-good for each i ≤ m, then there is nothing
to prove by Proposition 4.3.4. Otherwise, there is an i ≤ m such that p is not
δ-(σ\ [ ti ])-good. Let q ⊇ p with q ∈ T0 such that Player II has a winning strategy
in

G2,3(f ↾ (f−1[ σ \ [ ti ] ] ∩ [T0[ q ] ])).

Since q is δ-σ-good, for any r ⊇ q with r ∈ T0, Player II does not have a winning
strategy in

G2,3(f ↾ (f−1[ σ ] ∩ [T0[ r ] ])).

Let j ≤ m with j 6= i and let r ⊇ q with r ∈ T0. By Lemma 4.3.1, Player II does
not have a winning strategy in

G2,3(f ↾ (f−1[ σ \ [ tj ] ] ∩ [T0[ r ] ])).

Therefore, q is δ-(σ \ [ uj ])-good.
For the inductive step, let δ = 〈T0, . . . , Tk+1〉 and suppose p is δ-σ-good.

Suppose w.l.o.g. that there is an i ≤ m and a q ⊇ p with q ∈ Tk+1 such that
Player II has a winning strategy in

G2,3(f ↾ (f−1[ σ \ [ ti ] ] ∩ [Tk+1[ q ] ])).

As before, Player II does not have a winning strategy in

G2,3(f ↾ (f−1[ σ \ [ tj ] ] ∩ [Tk+1[ r ] ]))

for any j ≤ m with j 6= i and r ⊇ q with r ∈ Tk+1. Suppose there are distinct
j0, . . . , jk ≤ m with j0, . . . , jk 6= i such that for any j ∈ {j0, . . . , jk}, no r ⊇ q is
δ-(σ \ [ tj ])-good. Let l ≤ m with l 6∈ {j0, . . . , jk, i}. It will be shown that q is
δ-(σ\ [ tl ])-good, completing the proof. It suffices to show that for any r ⊇ q with
r ∈ Tk+1, there is an s ⊇ r such that s is pred(δ)-(σ \ [ tl ])-good. Let r ⊇ q with
r ∈ Tk+1. By choice of j0, there is an r0 ⊇ r with r0 ∈ Tk+1 such that no s ⊇ r0
is pred(δ)-(σ \ [ uj0 ])-good. Find r1 ⊇ r0, r2 ⊇ r1, . . . , up to rk ⊇ rk−1 such that
ri ∈ Tk+1 and for any j ∈ {j0, . . . , jk}, no s ⊇ rk is pred(δ)-(σ \ [ tj ])-good. Since
rk is δ-σ-good, there is a pred(δ)-σ-good s ⊇ rk. By the induction hypothesis,
there is a t ⊇ s such that t is pred(δ)-(σ \ [ ul ])-good. ⊓⊔

4.3.7. Theorem. A function f : ωω → ωω is Λ2,3 ⇔ there is a Π0
2 partition

〈An : n ∈ ω〉 of ωω such that f ↾ An is Baire class 1.

Proof. The ⇐ direction is immediate by Proposition 1.1.4. For the ⇒ direction,
we assume for contradiction that there is no such partition An and show that
f 6∈ Λ2,3. By Theorem 4.2.1, Player II does not have a winning strategy in
G2,3(f). Since we wish to show that f 6∈ Λ2,3, we may assume that f ∈ Λ1,3, so
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there is a winning strategy τ1,3 for Player II in G1,3(f) by Theorem 4.1.1. For
x ∈ ωω, let φx be the function produced by τ1,3 and let zx be the unique infinite
branch of dom(φx). Let p·, ·q be the bijection ω × ω → ω:

p0, 0q := 0,

p0, j + 1q := pj, 0q + 1,

pi+ 1, j − 1q := pi, jq + 1.

Let
X := {x ∈ ω2 : ∃i ∃∞j (x(pi, jq) = 1)},

so X is Σ0
3-complete.

We will define an open set Y and a snake ψn such that the lifting of ψn is
a reduction from X to f−1[Y ]. Define row(pi, jq) := i, so if row(k) = i then
row(k+ 1) = i+ 1 or row(k + 1) = 0. Let β : ω → <ω2 be the enumeration given
by β(0) := ∅, β(2n + 1) := β(n)a0, and β(2n + 2) := β(n)a1. Let D be the set
of sequences 〈T0, . . . , Tk〉 such that Ti ⊆

<ωω is a tree and T0 ⊇ · · · ⊇ Tk. We will
define by recursion

ψn : β[2n+ 1] → <ωω,

δn : β[2n+ 1] → D,

ζn : Tn →
<ωω, and

ηn : Tn →
<ωω

where Tn := {δn(p)(k) : p ∈ β[2n + 1] and k < lh(δn(p))}. So, Tn is the set of
trees that occur in the sequences δn(p). The construction will satisfy i < j ⇒
δi ⊆ δj ∧ ζi ⊆ ζj ∧ ηi ⊆ ηj , and for all n and all p ∈ tn(β[2n+ 1]),

- δn(p) 6= ∅,

- ran(ηn) is an antichain,

- lh(ζn(T )) = lh(ηn(T )) for all T ∈ Tn,

- row(lh(p)) ≤ lh(δn(p)),

- ψn(p) is δn(p)-σn-good, where σn :=
⋂

t∈ ran(ηn)

[ t ]c, and

- (∗) for all T ∈ Tn and all q ∈ T,

{x : ζn(T ) ⊂ zx and ηn(T ) ⊂ f(x)} ∩ [T [ q ] ] 6= ∅.

The following properties will hold for n, p, q and i such that q ∈ dom(ψn+1) \
dom(ψn) = {pa0, pa1} and row(lh(p)) = lh(δn(p)) = i:

- lh(δn+1(q)) = i+ 1,

- Tn+1 \ Tn = {T}, where T := δn+1(q)(i), and

- (∗∗) for all v ∈ ran(ηn) and u ∈ <ωω,

〈u, v〉 ∈ τ1,3(ψn(p)) ⇒ {x : u ⊂ zx} ∩ [T [ψn+1(q) ] ] = ∅.
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Let T , s, and t be given by Lemma 4.3.3 applied to f , so ∅ is 〈T 〉-[ t ]c-good
and for all p ∈ T , {x : s ⊂ zx and t ⊂ f(x)} ∩ [T [ p ] ] 6= ∅. Define

ψ0 := {〈∅,∅〉},

δ0 := {〈∅, 〈T 〉〉},

ζ0 := {〈T, s〉}, and

η0 := {〈T, t〉}.

The reader should check that ψ0, δ0, ζ0, and η0 satisfy the desired properties.
Now, suppose ψn, δn, ζn, and ηn have been defined. Let p such that β(2n+1) =

pa0 and let i = row(lh(p)), so i ≤ lh(δn(p)). Let

σn :=
⋂

t∈ ran(ηn)

[ t ]c.

Case A: i < lh(δn(p)). Since ψn(p) is δn(p)-σn-good, we may find q ⊇ ψn(p)
such that q is (δn(p) ↾ i + 1)-σn-good, by Proposition 4.3.5. Let T := δn(p)(i).
By (∗), we may find r ⊃ q with r ∈ T such that

card(dom(τ1,3(r)) ∩ {u : u ⊇ ζn(T )})

is strictly greater than

card(dom(τ1,3(ψn(p))) ∩ {u : u ⊇ ζn(T )}).

Define

ψn+1 := ψn ∪ {〈p
a0, ψn(p)〉} ∪ {〈p

a1, r〉},

δn+1 := δn ∪ {〈p
a0, δn(p)〉} ∪ {〈p

a1, δn(p) ↾ i+ 1〉},

ζn+1 := ζn, and

ηn+1 := ηn.

Case B: i = lh(δn(p)). In this case, we want to find a tree T ⊂ <ωω, s, t,
q ∈ <ωω, and χ : β[2n+ 1] → <ωω such that T 6∈ Tn, lh(s) = lh(t),

- ran(ηn) ∪ {t} is an antichain,

- χ(r) ⊇ ψn(r) and χ(r) is δn(r)-(σn \ [ t ])-good

for all r ∈ tn(β[2n+ 1]) \ {p},

- χ(r) = ψn(r) for all r ∈ (β[2n+ 1] \ tn(β[2n+ 1])) ∪ {p},

- q ⊃ ψn(p),

- q is (δn(p)
aT )-(σn \ [ t ])-good,

- for all r ∈ T [ q ], {x : s ⊂ zx and t ⊂ f(x)} ∩ [T [ r ] ] 6= ∅, and

- for all v ∈ ran(ηn) and u ∈ <ωω,

〈u, v〉 ∈ τ1,3(ψn(p)) ⇒ {x : u ⊂ zx} ∩ [T [ q ] ] = ∅.
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We will define sequences 〈T0, T1, . . . 〉, 〈s0, s1, . . . 〉, 〈t0, t1, . . . 〉, 〈q0, q1, . . . 〉 such
that Tl, sl, tl, and an extension of ql will be the desired values of T , s, t, and q

for some l. By the induction hypothesis, ψn(p) is δn(p)-σn-good. Let S be the
last element of the sequence δn(p) and let

h := f ↾ (f−1[ σ ] ∩ [S[ψn(p) ] ]),

so Player II does not have a winning strategy in G2,3(h). Let T , s, and t be given
by Lemma 4.3.3 applied to h and let T0 := T , s0 := s, and t0 := t. Note that
T0 ⊆ S[ψn(p) ] and v 6⊆ t0 for all v ∈ ran(ηn). Also note that ψn(p) satisfies
the first condition of being (δn(p)

aT0)-(σn \ [ t0 ])-good. Suppose that for every
r ⊇ ψn(p) with r ∈ T0, there is an r′ ⊇ r such that r′ is δn(p)-(σn \ [ t0 ])-good.
Let q0 := ψn(p). Otherwise, there is an r ⊇ ψn(p) with r ∈ T0 such that no r′ ⊇ r

is δn(p)-(σn \ [ t0 ])-good. Let q0 := r.

Suppose 〈T0, . . . , Tj〉, 〈s0, . . . sj〉, 〈t0, . . . tj〉, and 〈q0, . . . , qj〉 have been defined
such that v 6⊆ tj for all v ∈ ran(ηn) ∪ {t0, . . . , tj−1}, T0 ⊇ · · · ⊇ Tj, q0 ⊆ · · · ⊆ qj ,
qi ∈ Ti, qj satisfies the first condition of being

(δn(p)
aTj)-(σn ∩ [ t0 ]c ∩ · · · ∩ [ tj ]c)-good,

and either qj is (δn(p)
aTj)-(σn \ [ tj ])-good or no r ⊇ qj is δn(p)-(σn \ [ tj ])-good.

Let

h := f ↾ (f−1[ σn ∩ [ t0 ]c ∩ · · · ∩ [ tj ]c ] ∩ [Tj[ qj ] ]).

Let T , s, and t be given by Lemma 4.3.3 applied to h and let Tj+1 := T , sj+1 := s,
and tj+1 := t. Suppose for every r ⊇ qj with r ∈ Tj+1, there is an r′ ⊇ r such
that r′ is δn(p)-(σn \ [ tj+1 ])-good. Let qj+1 := qj . Otherwise, there is an r ⊇ qj
with r ∈ Tj+1 such that no r′ ⊇ r is δn(p)-(σn \ [ tj+1 ])-good. Let qj+1 := r.

We claim that there is an l such that tl and elements of ran(ηn) are pairwise
incompatible, ql is (δn(p)

aTl)-(σn\[ tl ])-good, and for every p′ ∈ tn(β[2n+1])\{p}
there is a δn(p

′)-(σn \ [ tl ])-good extension of ψn(p
′). Namely, we may consider an

arbitrarily long subsequence of 〈t0, t1, . . . 〉 such that the elements of the subse-
quence are pairwise incompatible with themselves and elements of ran(ηn). Using
Lemma 4.3.4, the claim follows. Let χ be as desired and let T := Tl, s := sl, and
t := tl.

As the final step, let

U := {u ∈ dom(τ1,3(ψn(p))) : τ1,3(ψn(p))(u) ∈ ran(ηn)}.

By Proposition 4.3.2, let q ⊃ ql such that q ∈ T and

{x : u ⊂ zx} ∩ [T [ q ] ] = ∅
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for all u ∈ U . Define

ψn+1 := χ ∪ {〈pa0, q〉} ∪ {〈pa1, q〉},

δn+1 := δn ∪ {〈p
a0, δn(p)

aT 〉} ∪ {〈pa1, δn(p)
aT 〉},

ζn+1 := ζn ∪ {〈T, s〉}, and

ηn+1 := ηn ∪ {〈T, t〉}.

This completes the construction of ψn, δn, ζn, and ηn. Let T :=
⋃

n Tn,

δ :=
⋃

n δn, ζ :=
⋃

n ζn, η :=
⋃

n ηn, and let ψ̂ be the lifting of the ψn. Let

Y :=
⋃

t∈ ran(η)

[ t ].

The function ψ̂ is a reduction fromX to f−1[Y ]. If x ∈ X, then let i be least such
that x(pi, jq) = 1 for infinitely many j. Let N such that x(n) = 1 ⇒ row(n) ≥ i

for all n ≥ N . Let p ∈ <ωω, x ↾ N ⊂ p ⊂ x such that lh(δ(p)) ≥ i+ 1. It follows
that lh(δ(q)) ≥ i+ 1 and δ(q)(i) = δ(p)(i) for all q, p ⊆ q ⊂ x. Let T := δ(p)(i).
It follows that card(dom(τ1,3(r)) ∩ {u : u ⊇ ζ(T )}) → ∞ as r → ψ̂(x), so

f(ψ̂(x)) ⊃ η(T ). Thus ψ̂(x) ∈ f−1[Y ].
If x 6∈ X, then for any i, there is an N such that x(n) = 1 ⇒ row(n) ≥ i for all

n ≥ N . As before, there is a p ⊂ x such that lh(δ(q)) ≥ i+1 and δ(q)(i) = δ(p)(i)
for all q, p ⊆ q ⊂ x. So, there is a δx ∈

ω(P(<ωω)) such that δ(p) → δx as p→ x

and ψ̂(x) ∈
⋂

i[ δx(i) ]. Now, suppose 〈s, t〉 ∈ φψ̂(x) and t ∈ ran(η). Let p ⊂ x

and m such that p ∈ dom(ψm) and 〈s, t〉 ∈ τ1,3(ψm(p)). Let q, p ⊆ q ⊂ x and
n ≥ m such that dom(ψn+1) \ dom(ψn) = {qa0, qa1} and Tn+1 \ Tn = {T} for
some T ∈ ran(δx). By (∗∗), it follows that

{y : s ⊂ zy} ∩ [T [ψn+1(r) ] ] = ∅

for r ∈ {qa0, qa1}. Therefore, ψ̂(x) 6∈ {y : s ⊂ zy} and thus t 6⊂ f(ψ̂(x)) for any

t ∈ ran(η). This shows that ψ̂(x) 6∈ f−1[Y ], as desired. ⊓⊔

4.4 Λ2,3 6⊆ Λ1,2 and Λ1,3 6⊆ Λ2,3

In this section, we show that the containments between Λ1,2 and Λ2,3 and between
Λ2,3 and Λ1,3 are proper.

4.4.1. Theorem. Λ2,3 6⊆ Λ1,2

Proof. As in Section 3.2, let MOVES be the set of finite trees T ⊂ <ωω. Let
β : <ωω → ω and γ : ω → MOVES be bijections. If τ : <ωω → MOVES is an
eraser strategy, then x ∈ ωω is a code for τ if τ(p) = γ(x(β(p))) for all p ∈ <ωω.
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Note that for every eraser strategy τ , there is a unique x that encodes it. For
S ⊂ <ωω, say that τ : S → MOVES is a partial eraser strategy if s, t ∈ S and
s ⊂ t⇒ τ(s) ⊆ τ(t).

It suffices to define a strategy τ2,3 and f : ωω → ωω such that τ2,3 is winning
for Player II in G2,3(f) and f 6∈ Λ1,2. On input x, the strategy τ2,3 will attempt
to decode x into an eraser strategy τx and diagonalize against the output of τx
on input x. If x is the code of a valid eraser strategy τx, then let Tx be the
tree produced by τx on input x. The strategy τ2,3 will use the following guessing
function: row 0 will correspond to the guess that x does not encode a valid eraser
strategy, row 1 will correspond to the guess that Tx[ 0 ] is infinite, and row k + 2
will correspond to the guess that card(Tx[ 0 ]) = k.

Fix p ∈ <ωω. Let

S := {β−1(n) : n < lh(p)}.

Let τ : S → <ωω, τ(s) := γ(p(β(s))). If τ is a partial eraser strategy, then let
r :=

⋃

{q : q ⊆ p and q ∈ dom(τ)}. Let T := τ(r) and k := card(T [ 0 ]). Let
M(p) := {〈1, 1k)〉} ∪ {〈k+ 2, 0lh(p)〉}. If τ is not a partial eraser strategy, then let
M(p) := {〈0, 0lh(p)〉}.

Define τ2,3(p) :
⋃

{dom(M(q)) : q ⊆ p} → P(<ωω),

τ2,3(p)(n) := tree({M(q)(n) : q ⊆ p and n ∈ dom(M(q))}).

Let f : ωω → {0∗, 1∗} such that τ2,3 is winning for Player II in G2,3(f). Suppose
for contradiction that f ∈ Λ1,2. Let τ be the eraser strategy that is winning for
Player II in G1,2(f). Let x ∈ ωω be the code of τ and consider f(x). If f(x) = 0∗

then it follows that f(x) = 1∗, and if f(x) = 1∗ then it follows that f(x) = 0∗.
Therefore, f 6∈ Λ1,2. ⊓⊔

4.4.2. Theorem. Λ1,3 6⊆ Λ2,3

Proof. As in Section 4.2, let MOVES be the set of functions ψ : D → P(<ωω) such
that D ⊂ ω is finite and ψ(n) is a finite tree for all n ∈ dom(ψ). Let β : <ωω → ω

and γ : ω → MOVES be bijections. If τ : <ωω → MOVES is a strategy for Player
II in the game G2,3, then x ∈ ωω is a code for τ if τ(p) = γ(x(β(p))) for all
p ∈ <ωω. For S ⊆ <ωω, say that τ : S → MOVES is a partial Λ2,3 strategy

if s, t ∈ S and s ⊂ t ⇒ dom(τ(s)) ⊆ dom(τ(t)) and τ(s)(n) ⊆ τ(t)(n) for all
n ∈ dom(τ(s)).

It suffices to define a strategy τ1,3 and f : ωω → ωω such that τ1,3 is winning
for Player II in G1,3(f) and f 6∈ Λ2,3. On input x, the strategy τ1,3 will attempt
to decode x into a Λ2,3 strategy τx and diagonalize against the output of τx on
input x. If x is the code of a Λ2,3 strategy, let φx be the function produced by τx
on input x and let Tn,x := φx(n).
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The strategy τ1,3 considers three cases:

Case A: The input x does not encode a valid Λ2,3 strategy.

Case B: The input x encodes a valid Λ2,3 strategy τx

and {t(n) : t ∈ Tn,x ∩
n+1ω} is infinite for some n.

Case C: The input x encodes a valid Λ2,3 strategy τx

and {t(n) : t ∈ Tn,x ∩
n+1ω} is finite for all n.

Note that if Case A holds, then τ1,3 just needs to produce a valid output.
Similarly, if Case B holds, then Tn,x is not finitely branching so τ1,3 just needs to
produce a valid output. If Case C holds, then τ1,3 will output y ∈ ωω such that
y(n) > sup {t(n) : t ∈ Tn,x ∩

n+1ω} for all n. This will ensure that y cannot be
an infinite branch of any of the Tn,x.

Fix p ∈ <ωω Let
S := {β−1(n) : n < lh(p)}.

Let τ : S → MOVES, τ(s) := γ(p(β(s))). If τ is a partial Λ2,3 strategy, then let
r :=

⋃

{q : q ⊆ p and q ∈ dom(τ)} and ψ := τ(r). Let U(p) ∈ lh(p)(ω \ {0}),

U(p)(n) := sup {t(n) : t ∈ ψ(n) ∩ n+1ω}+ 1

for all n < lh(p). Define

Z(p) := {sa0k : sak ⊆ U(p)}.

The above definition of Z(p) is under the assumption that τ is a partial Λ2,3

strategy. If τ is not a partial strategy, then let Z(p) := {0n}.
Define

τ1,3(p) :=
⋃

q⊆ p

{〈s, s〉 : s ∈ tree(Z(q))}.

It is easy to check that τ1,3 is a strategy. Note the following fact: (∗) if p encodes
a partial Λ2,3 strategy, s ∈ <ω(ω \ {0}), and sa0k ∈ Z(p), then sak ⊆ U(p). For
an infinite play x of Player I, let χx be the function produced by τ1,3 on input
x. Note a second fact: (∗∗) every u ∈ dom(χx) is of the form sa0k for some
s ∈ <ω(ω \ {0}) and k ≥ 0.

We will show that there is an f : ωω → ωω such that τ1,3 is winning in G1,3(f).
Let x be an infinite play of Player I and suppose that Case A holds. It follows
that 0∗ is an infinite branch of dom(χx) and dom(χx)[ u ] is finite for every u 6⊂ 0∗.
If Case B holds, then let n be least such that {t(n) : t ∈ Tn,x ∩

n+1ω} is infinite.
Let s ∈ nω,

s(m) := sup {t(m) : t ∈ Tm,x ∩
m+1ω}+ 1.

It follows that U(p) ↾ n converges to s and U(p)(n) → ∞ as p → x. Therefore,
sa0∗ is an infinite branch of dom(χx). Suppose u ∈ dom(χx) and u 6⊂ sa0∗.
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By (∗∗), let u = va0k with v ∈ <ω(ω \ {0}) and k ≥ 0. If v ⊂ s, then it
must be the case that k > 0. Again by (∗∗), it follows that u′ ∈ dom(χx) and
u′ ⊇ u⇒ u′ = va0k

′

for some k′ ≥ k. Thus dom(χx)[ u ] is finite as k′ is bounded
by s(lh(v)), by (∗). If v 6⊂ s, then it must be the case that either v⊥ s or
v ⊃ s. In either case, v ⊂ U(p) for finitely many p ⊂ x. By (∗), it follows that
v ∈ tree(Z(p)) ⇒ v ⊂ U(p) and thus dom(χx[ u ]) is finite. If Case C holds, then
let y ∈ ω(ω \ {0}),

y(n) := sup {t(n) : t ∈ Tn,x ∩
n+1ω}+ 1.

It follows that U(p) → y as p → x and that y is an infinite branch of dom(χx).
Suppose u ∈ dom(χx) and u 6⊂ y. Let u = va0k with v ∈ <ω(ω \ {0}) and
k ≥ 0. If k = 0, then v 6⊂ y and thus v ⊂ U(p) for finitely many p ⊂ x. As in
Case B, it follows that dom(χx)[ u ] is finite. If k > 0, then u′ ∈ dom(χx) and
u′ ⊇ u⇒ u′ = va0k

′

for some k′ ≥ k. As in Case B, dom(χx)[ u ] is finite as k′ is
bounded, this time by y(lh(v)).

Now, suppose for contradiction that f ∈ Λ2,3. By Theorems 4.2.1 and 4.3.7,
there is a strategy τ that is winning for Player II in G2,3(f). Let x ∈ ωω be the
code of τ , let φx be the function produced by τ on input x, and let m be the
output row of φx. Consider the behavior of τ1,3 on input x. Since τ is winning
for Player II in G2,3(f), it follows that Case C holds. Let y ∈ ωω be unique such
that

y(n) = sup({t(n) : t ∈ φx(n) ∩ n+1ω}) + 1

for all n. It follows that y is the output of τ1,3 on input x and y(m) = f(x)(m) >
f(x)(m), a contradiction. Therefore, f 6∈ Λ2,3. ⊓⊔





Chapter 5

The Λ3,3 functions

In this chapter, we finish up our analysis of low-level Borel functions with the
Λ3,3 class. We begin with the definition of the multitape game and show that it
characterizes the class of functions f admitting a Π0

2 partition 〈An : n < ω〉 such
that f ↾ An is continuous. It is immediate that this class is contained in Λ3,3 by
Lemma 1.1.4; the main point of this chapter is to show that the reverse inclusion
holds for total functions f : ωω → ωω. This is done in Section 5.2. In Section 5.3,
we see that neither Λ3,3 nor Λ1,2 is contained in the other.

The multitape game was first presented in [11] by the author of this thesis,
although in a different form. The name “multitape” derives from its usage in
conjunction with Turing machines where it signifies that more than one tape may
be used.

Λ1,3

⊂

Λ2,3

⊂ ⊂

Λ1,2 Λ3,3

⊂ ⊂
Λ2,2

⊂
Λ1,1

5.1 The multitape game

The multitape game is the same as the backtrack game except that the domain
of the function produced by Player II is allowed to be infinite. Let A ⊆ ωω and
f : A → ωω. In the multitape game Gmt(f), Player I plays elements xi ∈ ω and
Player II plays functions φi : Di →

<ωω such that Di ⊂ ω is finite. Player II

43
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is subject to the requirements that i < j ⇒ Di ⊆ Dj and φi(n) ⊆ φj(n) for all
n ∈ dom(φi). After ω rounds, Player I produces x = 〈x0, x1, . . . 〉 and Player II
produces φ : Dω →

≤ωω,

φ(n) :=
⋃

{φi(n) : i ∈ ω and n ∈ dom(φi)},

where Dω :=
⋃

iDi.

I: x0 x1 x2 x = 〈x0, x1, . . . 〉
. . .

II: φ0 φ1 φ2 φ as above

Player II wins the game if either x 6∈ A or if there is an n ∈ Dω such that
φ(n) = f(x) and φ(n′) is finite for all n′ 6= n. Informally, we think of Player II
as playing finite sequences on a certain number of rows. As the game progresses,
Player II may extend these finite sequences and may increase the number of rows
she is using. In the limit, Player II’s task is to produce an infinite sequence,
namely f(x), on exactly one of the rows. We refer to this row n as the output
row.

Let MOVES be the set of functions ψ : D → <ωω such that D ⊂ ω is finite.
A multitape strategy for Player II is a function τ : <ωω → MOVES such that
p ⊂ q ⇒ dom(τ(p)) ⊆ dom(τ(q)) and τ(p)(n) ⊆ τ(q)(n) for all n ∈ dom(τ(p)).
For an infinite play x of Player I and a multitape strategy τ for Player II, we let
Dx :=

⋃

p⊂ x dom(τ(p)) and φx : Dx →
≤ωω,

φx(n) :=
⋃

{τ(p)(n) : p ⊂ x and n ∈ dom(τ(p))}.

A multitape strategy τ for Player II is winning in Gmt(f) if for all x ∈ A, there
is an n ∈ Dx such that φx(n) = f(x) and φ(n′) is finite for all n′ 6= n. We will
sometimes denote this n, the output row, by ox.

5.1.1. Theorem (Andretta, S.). Suppose A ⊆ ωω and f : A → ωω. Then
there is a Π0

2 partition 〈An : n ∈ ω〉 of A such that f ↾ An is continuous iff
Player II has a winning strategy in Gmt(f).

Proof. The proof is essentially the same as the proof of Theorem 4.2.1.
⇒: Let An be the partition and τn be a winning strategy for Player II in

GW(f ↾ An). Let Bn,m be open in A such that An =
⋂

mBn,m. For p ∈ <ωω, let

γn(p) = sup {m : [ p ] ∩A ⊆ Bn,i for all i ≤ m}.

Note that γn(p) may be a natural number or may be ω. Also note that p ⊂
q ⇒ γn(p) ≤ γn(q) and that for any x ∈ A, there is a unique n ∈ ω such that
limp→x γn(p) = ∞. Define τ(p) : lh(p) → MOVES,

τ(p)(n) := τn(p ↾ γn(p)).
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It is easy to check that τ is a multitape strategy. We claim that τ is winning in
Gmt(f). Let x ∈ A, n such that x ∈ An, and let φx be defined as in the previous
section. It follows that n is unique such that φx(n) is infinite. Moreover, it is
easy to see that

φx(n) =
⋃

p⊂ x

τn(p).

It follows that φn(x) = f(x) since τn is winning in GW(f ↾ An).
⇐: Let τ be the winning strategy for Player II in Gmt(f). For x ∈ A, let φx

and Dx be defined as in the previous section, and let ox denote the output row
of τ on input x. Define

An := {x ∈ A : ox = n}.

The Wadge strategy τn defined by

τn(p) :=

{

τ(p)(n) if n ∈ dom(τ(p)),
∅ otherwise

is winning for Player II in GW(f ↾ An). Furthermore, the sets An are Π0
2 in A.

Fix n ∈ ω. Let Bm :=
⋃

{[ p ] : p ∈ <ωω, n ∈ dom(τ(p)) and lh(τ(p)(n)) ≥ m}.
Then An =

⋂

mBm ∩ A. ⊓⊔

5.2 Decomposing Λ3,3

We proceed with the main goal of this chapter, which is to prove Theorem 5.2.8.

5.2.1. Lemma. Let f : ωω → ωω. Suppose that Player II has a winning strategy
in G2,3(f) but not in Gmt(f). Then there is a Π0

2 set A ⊆ ωω such that Player II
has a winning strategy in Ge(f ↾ A) but not in Gmt(f ↾ A).

Proof. Let τ be the winning strategy for Player II in G2,3(f) and let φx, Dx, and
ox be defined as in Section 4.2. Let

An := {x ∈ ωω : ox = n},

so the sets An are Π0
2. It is clear that Player II has a winning strategy in Ge(f ↾

An) for each n, namely:

τn(p) :=

{

τ(p)(n) if n ∈ dom(τ(p)),
∅ otherwise.

Suppose for contradiction that for each n, there is a winning strategy πn for
Player II in Gmt(f ↾ An). For each n and x ∈ An, let φn,x, Dn,x, and on,x be the
φx, Dx, and ox as defined in Section 5.1 for πn. We proceed by giving a winning
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strategy for Player II in Gmt(f), by defining guessing functions ρ0 : ω → ω and
ρ1 : ω → ω. For an infinite play x of Player I, the natural numbers ρ0(k) and
ρ1(k) are guesses that

x ∈ Aρ0(k) and oρ0(k),x = ρ1(k).

To define the guessing functions, let 〈ρ0(k), ρ1(k)〉 enumerate all pairs 〈i, j〉 ∈
ω × ω. For p ∈ <ωω, let

γn(p) :=

{

card(τ(p)(n)) if n ∈ dom(τ(p)),
0 otherwise.

Define π(p) : lh(p) → <ωω,

π(p)(k) := πρ0(k)(p ↾ γρ0(k)(p))(ρ1(k)).

It is easy to check that π is a multitape strategy. It remains to be shown that
π is winning for Player II in Gmt(f). Let x and n such that x ∈ An, and let k
be unique such that ρ0(k) = n and ρ1(k) = on,x. It follows that γn(p) → ∞ as
p→ x. Therefore, on input x, π will produce the sequence φn,x(o) = f(x) on row
k.

It remains to be shown that on input x, π produces a finite sequence on every
row k′ 6= k. If the guess ρ0(k

′) is incorrect, then γρ0(k′)(p) converges to some
natural number as p → x. If ρ0(k

′) is correct but ρ1(k
′) is incorrect, then π

produces the sequence φρ0(k′),x(ρ1(k
′)) on row k′. In either case, the sequence

produced by π on row k′ is finite. ⊓⊔

5.2.2. Lemma. Let A ⊆ ωω, h : A → ωω, and suppose that Player II does not
have a winning strategy in Gmt(h). Then there is a non-empty tree T ⊆ <ωω such
that for any p ∈ T , Player II does not have a winning strategy in Gmt(h ↾ [T [ p ] ]).

Proof. Let T be the set of p ∈ <ωω such that Player II does not have a winning
strategy in Gmt(h ↾ [ p ]). Then T is a non-empty tree, as ∅ ∈ T by assumption
and T is closed under predecessors. Let p ∈ T . If there were a winning strategy
for Player II in Gmt(h ↾ [T [ p ] ]), then there would be a winning strategy for
Player II in Gmt(h ↾ [ p ]). ⊓⊔

5.2.3. Lemma. Suppose A ⊆ ωω and h : A → ωω is Baire class 2. Let t1, t2 ∈
<ωω such that t1⊥ t2. If Player II has winning strategy τ1 in Gmt(h ↾ h−1[ [ t1 ]c ])
and a winning strategy τ2 in Gmt(h ↾ h−1[ [ t2 ]c ]) then Player II has a winning
strategy in Gmt(h).

Proof. Similar to the proof of Lemma 4.3.1. Since [ t1 ] ⊂ [ t2 ]c, it follows that
Player II has a winning strategy in Gmt(h ↾ h−1[ [ t1 ] ]). Let B = h−1[ [ t1 ] ] and
C = h−1[ [ t1 ]c ]. It follows that A = B ∪ C and that B and C are Σ0

3 in A. The
lemma follows from Theorem 5.1.1 and Lemma 1.1.5. ⊓⊔

The next lemma is the main lemma of the argument. It is analogous to
Lemmas 3.4.3 and 4.3.3.
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5.2.4. Lemma. Let A ⊆ ωω, h : A → ωω, and suppose that τe is a winning
strategy for Player II in Ge(h). If Player II does not have a winning strategy in
Gmt(h) then there is a non-empty tree T ⊆ <ωω and t ∈ <ωω such that Player II
does not have a winning strategy in

Gmt(h ↾ (h−1[ [ t ] ] ∩ [T ]))

and for every p ∈ T , Player II does not have a winning strategy in

Gmt(h ↾ (h−1[ [ t ]c ] ∩ [T [ p ] ])).

Proof. By contradiction. We assume that the conclusion of the lemma does not
hold and define a winning strategy for Player II in Gmt(h).

Fix t ∈ <ωω. If Player II does not have a winning strategy in Gmt(h ↾

(h−1[ [ t ]c ])), let T t be given by the proof of Lemma 5.2.2 applied to h ↾ (h−1[ [ t ]c ]).
So, T t is the set of p ∈ <ωω such that Player II does not have a winning strategy
in

Gmt(h ↾ (h−1[ [ t ]c ] ∩ [ p ])),

and Player II does not have a winning strategy in

Gmt(h ↾ (h−1[ [ t ]c ] ∩ T t[ p ]))

for any p ∈ T t. Since we have assumed that the conclusion of the lemma does
not hold, it follows that Player II has a winning strategy in

Gmt(h ↾ (h−1[ [ t ] ] ∩ [T t ])).

If Player II does have a winning strategy in Gmt(h ↾ (h−1[ [ t ]c ])), let T t := ∅.
Again, it follows that Player II has a winning strategy in

Gmt(h ↾ (h−1[ [ t ] ] ∩ [T t ])),

namely since [T t ] = ∅. Thus, for every t ∈ <ωω, we define T t as indicated. Note
that t ⊆ v ⇒ T t ⊆ T v.

For x ∈ A, let Tx be the tree produced by τe on input x as in Section 3.2. For
each t ∈ <ωω, say that t is blue if x ∈ [T t ]. Otherwise, namely if there is a p ⊂ x

such that p 6∈ T t, say that t is red. There are three cases to consider:

Case A: there is a blue t ⊂ h(x),

Case B: there is a p ⊂ x such that Player II has a

winning strategy in Gmt(h ↾ [ p ]),

Case C: neither Case A nor Case B holds.

It is immediate that Cases A, B, and C are mutually exclusive. By Lemma 5.2.3,
if Case C holds, then all t ⊂ h(x) are red and all t 6⊂ h(x) are blue.
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To handle Case A, we define a multitape strategy τA via guessing functions
ρ0 : ω → <ωω and ρ1 : ω → ω. For t ∈ <ωω, let πt be a winning strategy for
Player II in

Gmt(h ↾ (h−1[ [ t ] ] ∩ [T t ])).

The finite sequence ρ0(n) is a guess for the ⊆-least blue initial segment of h(x),
and the natural number ρ1(n) is a guess for the output row of the strategy
πρ0(n) on input x ∈ h−1[ [ ρ0(n) ] ] ∩ [T ρ0(n) ]. To define the guessing functions,
let 〈ρ0(n), ρ1(n)〉 enumerate all pairs 〈t, k〉 ∈ <ωω × ω.

For p ∈ <ωω and t ∈ <ωω, let

γt(p) := card({v ∈ τe(p) : v ⊇ t}),

let

D(p) := {n < lh(p) : p ∈ T ρ0(n),

p 6∈ T v for all v ⊂ ρ0(n), and

ρ1(n) ∈ dom(πρ0(n)(p ↾ γρ0(n)(p)))},

and let M(p) : D(p) → <ωω,

M(p)(n) := πρ0(n)(p ↾ γρ0(n)(p))(ρ1(n)).

Define τA(p) :
⋃

{D(q) : q ⊂ p} → <ωω,

τA(p)(n) :=
⋃

{M(q)(n) : q ⊆ p and n ∈ D(q)}.

It is easy to check that τA is a multitape strategy.
We will show, if Case A holds, that τA computes h(x). In other words, we will

show that τA is winning for Player II in the game

Gmt(h ↾ {x : there is a blue t ⊂ h(x)}).

Suppose that there is a blue t ⊂ h(x). Let φA,x be the φx defined in Section 5.1
for τA and let n such that the guesses ρ0(n) and ρ1(n) are correct. It follows that
φA,x(n) = h(x). To humor the reader, we provide a proof here. Let q ⊂ x such
that n ∈ D(q), so n ∈ D(p) for all p, q ⊆ p ⊂ x. Then

φA,x(n) =
⋃

{τA(p)(n) : p ⊂ x and n ∈ dom(τA(p))}

=
⋃

{τA(p)(n) : q ⊆ p ⊂ x}

=
⋃

{πρ0(n)(p ↾ γρ0(n)(p))(ρ1(n)) : q ⊆ p ⊂ x}

=
⋃

{πρ0(n)(p)(ρ1(n)) : q ⊆ p ⊂ x}

(since γρ0(n)(p) →∞ as p→ x)

= h(x).
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If n′ 6= n then at least one of the guesses ρ0(n
′) or ρ1(n

′) is incorrect. We want
to show that φA,x(n

′) is finite. Suppose the guess ρ0(n
′) is incorrect, so ρ0(n

′)
is not the ⊆-least blue initial segment of h(x). If ρ0(n

′) is not blue, then there
is a p ⊂ x such that n′ 6∈ D(q) for all q, p ⊆ q ⊂ x. If ρ0(n

′) is not an initial
segment of h(x), then γρ0(n′)(p) converges to some natural number as p → x. If
ρ0(n

′) is a blue initial segment of h(x), but not the ⊆-least such, then n′ 6∈ D(p)
for all p ⊂ x. It follows from these observations that φA,x(n

′) is finite if the guess
ρ0(n

′) is incorrect. If the guess ρ0(n
′) is correct but the guess ρ1(n

′) is incorrect,
then φA,x(n

′) is is the finite sequence produced by πρ0(n′) on row ρ1(n
′), on input

x. We have shown that τA is a multitape strategy that computes h(x) if Case A
holds. If Case A does not hold then φA,x(n) is finite for every n ∈ dom(φA,x).

For Case B, let P be the set of p ∈ <ωω such that Player II has a winning
strategy in Gmt(h ↾ [ p ]), and let Q be the maximal antichain of P such that
p ⊂ q ∈ Q ⇒ p 6∈ P . For q ∈ Q, let τq be winning for Player II in Gmt(h ↾ [ q ]).
Define

τB(p) :=

{

τq(p) if p ⊇ q for some q ∈ Q,
∅ otherwise.

It is easy to check that τB is a multitape strategy and winning for Player II in

Gmt(h ↾ {x : Case B holds}).

If Case B does not hold then the function produced by τB is empty.
For Case C, let P as in Case B, let R(p) be the set of t ∈ τe(p) such that

Player II has a winning strategy in

Gmt(h ↾ (h−1[ [ t ]c ] ∩ [ p ])),

and let
µ(p) :=

⋃

{q ⊆ p : q 6∈ P}.

Define τC(p) : 1 → <ωω,

τC(p)(0) :=
⋃

R(µ(p)).

Note that µ(p) 6∈ P , so
⋃

R(µ(p)) ∈ <ωω by Lemma 5.2.3. If Case C holds,
then every t ⊂ h(x) is red. Since Case B does not hold, µ(p) → x as p → x

and
⋃

{τC(p)(0) : p ⊂ x} = h(x). If Case C does not hold, then it must be the
case that either Case A or Case B holds. In either case, it is easy to check that
⋃

{τC(p)(0) : p ⊂ x} is finite.
To complete the proof, define

τ(p) := τC(p)∪

{〈2n+ 1, t〉 : 〈n, t〉 ∈ τA(p)}∪

{〈2n+ 2, t〉 : 〈n, t〉 ∈ τB(p)}.

The multitape strategy τ is winning for Player II in Gmt(h), a contradiction. ⊓⊔
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In the following, we fix A ⊆ ωω, g : A → ωω, and suppose that Player II
has a winning strategy in Ge(g). Let δ be a (possibly empty) finite sequence of
trees 〈T0, . . . , Tk〉 with Ti ⊆

<ωω and T0 ⊇ · · · ⊇ Tk. Let σ be a finite sequence
〈X0, . . . , Xk〉 of pairwise disjoint subsets of ωω such that lh(δ) = lh(σ). If δ =
σ = ∅ then say that every p ∈ <ωω is δ-σ-good. If the length of δ and σ is k+1,
then say that p ∈ Tk is δ-σ-good if for all q ⊇ p with q ∈ Tk, Player II does not
have a winning strategy in

Gmt(g ↾ (g−1[Xk ] ∩ [Tk[ q ] ]))

and there is an r ⊇ q such that r is pred(δ)-pred(σ)-good. Note that if p is
δ-σ-good and δ = 〈T0, . . . , Tk〉, the definition requires that p ∈ Tk. The following
propositions are immediate.

5.2.5. Proposition. Suppose δ = 〈T0, . . . , Tk〉, σ = 〈X0, . . . , Xk〉, and p ∈ Tk is
δ-σ-good. Then q is δ-σ-good for all q ⊇ p with q ∈ Tk.

5.2.6. Proposition. Suppose δ = 〈T0, . . . , Tk〉, σ = 〈X0, . . . , Xk〉, and p ∈ Tk is
δ-σ-good. Then for any i < k+ 1, there exists q ⊇ p such that q is (δ ↾ i)-(σ ↾ i)-
good.

For σ = 〈X0, . . . , Xk〉 and t ∈ <ωω, we abuse notation and define σ \ t :=
〈X0 \ [ t ], . . . , Xk \ [ t ]〉.

5.2.7. Lemma. Let δ = 〈T0, . . . , Tk〉, σ = 〈X0, . . . , Xk〉, suppose 〈t0, . . . , tm〉 is
a sequence of pairwise incompatible elements of <ωω, and

⋃

i[ ti ] is contained in
some Xj. If p is δ-σ-good, then

{i ≤ m : no q ⊇ p is δ-(σ \ ti)-good}

has at most one element.

Proof. Proof by induction on k. For the base case k = 0, let δ = 〈T 〉, σ = 〈X〉,
and 〈t0, . . . , tm〉 be given. By assumption, the ti are pairwise incompatible, [ ti ] ⊆
X for each i ≤ m, and p ∈ T is δ-σ-good. If p is δ-(σ \ ti)-good for each i ≤ m,
then we are done. Otherwise, there is an i ≤ m such that p is not δ-(σ \ ti)-good.
Let q ⊇ p such that q ∈ T and Player II has a winning strategy in

Gmt(g ↾ (g−1[X \ [ ti ] ] ∩ [T [ q ] ])).

Since q is δ-σ-good, Player II does not have a winning strategy in

Gmt(g ↾ (g−1[X ] ∩ [T [ r ] ]))

for any r ⊇ q with r ∈ T . Let l ≤ m with l 6= i and r ⊇ q with r ∈ T . By Lemma
5.2.3, Player II does not have a winning strategy in

Gmt(g ↾ (g−1[X \ [ tl ] ] ∩ [T [ r ] ])).
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It follows that q is δ-(σ \ tl)-good.
For the inductive step, let δ = 〈T0, . . . , Tk+1〉, σ = 〈X0, . . . , Xk+1〉 and suppose

p ∈ Tk+1 is δ-σ-good. Let j ≤ k+1 such that [ ti ] ⊆ Xj for each i ≤ m. If j = k+1
then suppose that there is an i ≤ m and a q ⊇ p with q ∈ Tk+1 such that Player
II has a winning strategy in

Gmt(g ↾ (g−1[Xk+1 \ [ ti ] ] ∩ [Tk+1[ q ] ])).

Otherwise, if there is no such i and q, then p is δ-(σ \ ti)-good for all i ≤ m and
we are done. Let l ≤ m with l 6= i and r ⊇ q with r ∈ Tk+1. As before, Player II
does not have a winning strategy in

Gmt(g ↾ (g−1[Xk+1 \ [ tl ] ] ∩ [Tk+1[ r ] ])).

It follows that q is δ-(σ \ tl)-good.
If j < k+1 then suppose there is an i ≤ m such that no q ⊇ p is δ-(σ\ti)-good.

Let l ≤ m such that l 6= i. It will be shown that p is δ-(σ \ tl)-good, completing
the proof. It suffices to show that the pred(δ)-pred(σ\tl)-good nodes are dense in
Tk+1[ p ]. Let q ⊇ p with q ∈ Tk+1. By choice of i, q is not δ-(σ \ ti)-good. Since q
is δ-σ-good, it must be the second part of the definition of δ-(σ\ ti)-goodness that
fails for q. Let r ⊇ q with r ∈ Tk+1 such that no s ⊇ r is pred(δ)-pred(σ\ti)-good.
Since r is δ-σ-good, there is a pred(δ)-pred(σ)-good u ⊇ r with u ∈ Tk. By the
induction hypothesis, there is a pred(δ)-pred(σ \ tl)-good extension of u. ⊓⊔

5.2.8. Theorem. A function f : ωω → ωω is Λ3,3 ⇔ there is a Π0
2 partition

〈An : n ∈ ω〉 of ωω such that f ↾ An is continuous.

Proof. The direction ⇐ is immediate, so it suffices to prove ⇒. Suppose for
contradiction that there is no winning strategy for Player II in Gmt(f), we will
show that f 6∈ Λ3,3. By Theorems 4.2.1 and 4.3.7, we may assume that Player II
has a winning strategy in G2,3(f). Let A and τe be given by the proof of Lemma
5.2.1, so τe is winning for Player II in Ge(f ↾ A) and Player II does not have a
winning strategy in Gmt(f ↾ A). For x ∈ A, let Tx be the tree produced by τe on
input x as in Section 3.2. Let p·, ·q, X, row, β, and D as in the proof of Theorem
4.3.7.

We will define a Σ0
2 set Y and a snake ψn such that the lifting ψ̂ of ψn is a

reduction from X to f−1[Y ]. The Σ0
2 set Y will be defined using a Lusin scheme

η : <ωω → <ωω satisfying

− η(∅) = ∅,

− η(sak) ⊃ η(s), and

− {η(sak) : k ∈ ω} is an antichain.
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Note that proper containment is required for the second condition. Recursively,
we will define a sequence of functions ηn : Dn →

<ωω such that Dn ⊂
<ωω is a

finite tree and i < j ⇒ ηi ⊆ ηj. We will then let

η :=
⋃

n

ηn.

To define Y , we will let

Ym :=
⋃

s∈m+1ω

[ η(s) ],

and
Y :=

⋃

m

Ym
c.

The behavior of the strategy τe will ensure that ψ̂ is a reduction from X to
f−1[Y ]. Recall that we view each x ∈ ω2 as a two-dimensional matrix of 0’s and
1’s via the mapping p·, ·q. If we encounter infinitely many 1’s on a row of x, then
we want ψ̂ to map x inside of f−1[Y ]. This will be accomplished as follows: if m
is such a row of x, then on input ψ̂(x), the eraser strategy τe will extend η(s) for
infinitely many s ∈ m+1ω. By Lemma 3.4.2, we will have that f(ψ̂(x)) 6∈ Ym and
thus ψ̂(x) ∈ f−1[Y ].

If, on the other hand, we encounter only finitely many 1’s on each row of x,
then we want ψ̂ to map x outside of f−1[Y ]. In this case, for every row m, there
will be an s ∈ m+1ω such that τe extends η(s) infinitely many times on input
ψ̂(x). This will imply that f(ψ̂(x)) ∈ Ym for all m, so ψ̂(x) 6∈ f−1[Y ].

We define by recursion

ψn : β[2n+ 1] → <ωω,

δn : β[2n+ 1] → D,

ιn : β[2n+ 1] → Dn, and

ηn : Dn →
<ωω,

such that Dn ⊂
<ωω is a finite tree, i < j ⇒ δi ⊆ δj ∧ ιi ⊆ ιj ∧ ηi ⊆ ηj , and for

all p ∈ tn(β[2n+ 1]),

- row(lh(p)) < lh(ιn(p)) + 1 = lh(δn(p)),

- ψn(p) is δn(p)-σn(p)-good, where σn(p) := 〈X∅, Xιn(p)↾1, . . . , Xιn(p)〉,

with Xu := [ ηn(u) ] \
⋃

{[ ηn(v) ] : t ∈ succ(u) ∩Dn}, and

- the eraser strategy τe extends ηn(ιn(p)) at least once

on input ψn(p).

We must also ensure that the sequence 〈ψn : n ∈ ω〉 is a snake and that the union
of the ηn is a Lusin scheme as described above.



5.2. Decomposing Λ3,3 53

Let T and t be given by Lemma 5.2.4 applied to g := f ↾ A. Let h := g ↾

(g−1[ [ t ] ]∩ [T ]) and let U ⊆ T be the tree given by Proposition 5.2.2 applied to
h. It follows that ∅ is 〈T, U〉-〈[ t ]c, [ t ]〉-good. Let r ∈ U such that τe extends t
at least once on input r. Define

ψ0 := {〈∅, r〉},

δ0 := {〈∅, 〈T, U〉〉},

ι0 := {〈∅, 〈0〉〉}, and

η0 := {〈∅,∅〉} ∪ {〈〈0〉, t〉}.

The reader should check that ψ0, δ0, ι0, and η0 satisfy the desired requirements.
Now, suppose ψn, δn, ιn, and ηn have been defined. Let p such that β(2n+1) =

pa0 and i := row(lh(p)). For each q ∈ tn(β[2n+ 1]), let

σn(q) := 〈X∅, Xιn(q)↾1, . . . , Xιn(q)〉,

where
Xu := [ ηn(u) ] \

⋃

{[ ηn(v) ] : v ∈ succ(u) ∩ dom(ηn)}.

Now, let u := ιn(p) ↾ i. We want to find T , U , t, r, and χ : β[2n+ 1] → <ωω such
that

- t ⊃ ηn(u),

- {ηn(v) : v ∈ succ(u) ∩Dn} ∪ {t} is an antichain,

- χ(q) ⊇ ψn(q) and χ(q) is δn(q)-(σn(q) \ t)-good

for all q ∈ tn(β[2n+ 1]) \ {p},

- χ(q) = ψn(q) for all q ∈ (β[2n+ 1] \ tn(β[2n+ 1])) ∪ {p},

- r ⊃ ψn(p), and

- r is (δn(p) ↾ i)aTaU -(σn(p) ↾ i)a(σn(p)(i) \ [ t ])a[ t ]-good.

By Proposition 5.2.6, we may find q ⊇ ψn(p) such that q is

(δn(p) ↾ i+ 1)-(σn(p) ↾ i+ 1)-good.

Let S = δn(p)(i), Z := σn(p)(i), and

h := g ↾ (g−1[Z ] ∩ [S[ q ] ]),

so Player II does not have a winning strategy in Gmt(h). We will define sequences
〈T0, T1, . . . 〉 and 〈t0, t1, . . . 〉 such that Tl and tl will be the desired values of T and
t for some l. Let T0 and t0 be given by Lemma 5.2.4 applied to h. Note that
T0 ⊆ S[ q ], ηn(u) ⊂ t0, ηn(v) 6⊆ t0 for all v ∈ succ(u) ∩Dn, and q is

(δn(p) ↾ i)aT0-(σn(p) ↾ i)a(Z \ [ t0 ])-good.
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Suppose 〈T0, . . . , Tj〉 and 〈t0, . . . tj〉 have been defined such that ηn(u) ⊂ tj ,
ηn(v) 6⊆ tj for all v ∈ succ(u) ∩Dn, ti 6⊆ tj for all i < j, T0 ⊇ · · · ⊇ Tj , and q is

(δn(p) ↾ i)aTj-(σn(p) ↾ i)a(Z ∩ [ t0 ]c ∩ · · · ∩ [ tj ]c)-good.

Let
h := g ↾ (g−1[Z ∩ [ t0 ]c ∩ · · · ∩ [ tj ]c ] ∩ [Tj ])

and let Tj+1 and tj+1 be given by Lemma 5.2.4.
We claim that there is an l such that {ηn(v) : v ∈ succ(u) ∩Dn} ∪ {tl} is an

antichain and for every r ∈ tn(β[2n+ 1]) \ {p}, there is an δn(r)-(σn(r) \ tl)-good
extension of ψn(r). Namely, we may consider an arbitrarily long subsequence of
〈t0, t1, . . . 〉 such that the elements of the subsequence are pairwise incompatible
with themselves and elements of {ηn(v) : v ∈ succ(u)∩Dn}. Using Lemma 5.2.5,
the claim follows. Let χ be as desired, T := Tl, and t := tl.

As the final step, since Player II does not have a winning strategy in

h := g ↾ (g−1[ [ t ] ] ∩ [T ]),

let U ⊆ T be given by Proposition 5.2.2 applied to h. Let r ⊃ q such that r ∈ U
and τe has extended t at least once on input r. Let k := sup {j + 1 : uaj ∈
dom(ηn)}.

Case A: i = lh(ιn(p)). Note in this case that u = ιn(p). Define

ψn+1 := χ ∪ {〈pa0, r〉} ∪ {〈pa1, r〉},

δn+1 := δn ∪ {〈p
a0, (δn(p) ↾ i)aTaU〉} ∪ {〈pa1, (δn(p) ↾ i)aTaU〉},

ιn+1 := ιn ∪ {〈p
a0, uak〉} ∪ {〈pa1, uak〉},

ηn+1 := ηn ∪ {〈u
ak, t〉}.

Case B: i < lh(ιn(p)). Define

ψn+1 := χ ∪ {〈pa0, ψn(p)〉} ∪ {〈p
a1, r〉},

δn+1 := δn ∪ {〈p
a0, δn(p)} ∪ {〈p

a1, (δn(p) ↾ i)aTaU〉},

ιn+1 := ιn ∪ {〈p
a0, ιn(p)〉} ∪ {〈p

a1, uak〉},

ηn+1 := ηn ∪ {〈u
ak, t〉}.

This completes the construction of ψn, δn, ιn, and ηn. Let Ym and Y be defined
as indicated earlier, let ι =

⋃

n ιn, η =
⋃

n ηn and let ψ̂ be the lifting of ψn.

The function ψ̂ is a reduction from X to f−1[Y ]. If x ∈ X, then let i be
least such that x(pi, jq) = 1 for infinitely many j. It follows that the strategy τe
extends infinitely many t ∈ η[ i+1ω ] on input ψ̂(x). Since elements of η[ i+1ω ] are
pairwise disjoint and Yi =

⋃

{[ t ] : t ∈ η[ i+1ω ]}, it follows that f(ψ̂(x)) 6∈ Yi by
Lemma 3.4.2. Therefore, f(x) ∈ Y .
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Suppose x 6∈ X. Fix i ∈ ω and let N such that x(n) = 1 ⇒ row(n) > i for all
n ≥ N . Let p ∈ <ωω, x ↾ N ⊆ p ⊂ x such that lh(ι(p)) ≥ i + 1. It follows that
ι(q) ↾ i + 1 = ι(p) ↾ i + 1 for all q, p ⊆ q ⊂ x. Since τe extends η(ι(p) ↾ i + 1)
infinitely many times on input ψ̂(x), it follows that f(ψ̂(x)) ∈ Yi. As i ∈ ω was
arbitrary, f(ψ̂(x)) 6∈ Y . ⊓⊔

5.3 Λ3,3 6⊆ Λ1,2 and Λ1,2 6⊆ Λ3,3

These facts follow immediately from earlier proofs. To see that Λ3,3 6⊆ Λ1,2,
consider the Λ2,3 strategy τ2,3 and f : ωω → ωω given in the proof of Theorem
4.4.1. The strategy τ2,3, winning for Player II in G2,3(f), can trivially be converted
into a multitape strategy that is winning for Player II in Gmt(f). The fact that
Λ1,2 6⊆ Λ3,3 can be shown with the same eraser strategy used in the proof of
Theorem 3.5.2, using Theorems 5.1.1 and 5.2.8.





Chapter 6

Conclusion

We have seen a number of games in this thesis. In Chapter 2, we saw the tree
game and its characterization of the Borel functions. In the second part of the
thesis, we saw more games for certain subclasses of Borel functions, and we saw
that they can be used to prove decomposition theorems.

The question nautrally arises: can we obtain a result for more general sub-
classes of Borel functions? It is hoped that the game-theoretic tools we have
developed in this thesis can be generalized to obtain a more elegant characteri-
zation theorem. In particular, all of the games we have looked at can be viewed
as restricted tree games. The Wadge game can be viewed as the restricted tree
game in which Player II is required to produce φ such that dom(φ) is linear; for
the eraser game, we require that dom(φ) is finitely branching; for the backtrack
game, we require that dom(φ) branches finitely at the root and is linear therafter;
for the game G2,3, we require that dom(φ) may branch infinitely at the root but is
finitely branching thereafter; and for the multitape game, we require that dom(φ)
may branch infinitely at the root but is linear thereafter.

Thus, it would seem natural to come up with more general restrictions on
dom(φ), and work with m’s and n’s or α’s and β’s instead of numbers between
1 and 3. (The author refuses to prove any decomposition theorems with 4’s in
them.)

The tree game itself is simple and characterizes a class of functions widely
considered in descriptive set theory. Going beyond the Borel functions, one might
try to generalize the tree game to characterize classes of projective functions,
possibly by allowing Player II to produce multiple infinite branches.
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Samenvatting

Dit proefschrift gaat over klassen van functies gedefinieerd op de Baire-ruimte.
Voor een aantal belangrijke klassen van functies zijn representaties door middel
van spelen ontwikkeld, die zeer nuttig blijken te zijn. Het meest in het oog
springende voorbeeld hiervan is Wadge’s karakterisering van de continue functies,
die heeft geleid tot de theorie van de Wadge-hiërarchie. Zich baserend op een
resultaat van Jayne en Rogers heeft Andretta In 2006 een representatie door
middel van spelen gegeven van de ∆1

2 functies (in de taal van dit proefschrift
is dit de klasse Λ2,2). Karakteriseringen met behulp van spelen zijn belangrijk
omdat ze zogenaamde “Wadge-style” bewijstechnieken mogelijk maken. Andretta
en Martin klagen in hun paper over Borel-functies dat

“there is no analogue of the Wadge/Lipschitz games for Borel functions,
[and] hence many of the standard proofs for the Wadge hierarchy do not
generalize in a straightforward way to the Borel set-up.”

Dit gaf aanleiding tot twee belangrijke vragen:

1. Kunnen vergelijkbare karakteriseringen worden gegeven van andere klassen
van functies, in het bijzonder van de klasse van alle Borel-functies en de
klasse Λ3,3?

2. Bestaat er een parallel van de Jayne-Rogers stelling op het derde niveau
van de Borel-hiërarchie?

Dit proefschrift bevestigt deze vragen (stellingen 2.0.9, 5.1.1 en 5.2.8).
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Abstract

In this thesis, we deal with classes of functions on Baire space. For some important
function classes, game representations are known and proved to be very useful.
The most prominent example is Wadge’s characterization of the continuous func-
tions that allowed the development of the theory of the Wadge hierarchy; in 2006,
based on a result of Jayne and Rogers, Andretta gave a game representation for
the ∆1

2 functions (in the language of this thesis, this is the class Λ2,2). Game
characterizations are important as they allow for “Wadge-style proof techniques”.
In their paper on Borel functions, Andretta and Martin lament that

“there is no analogue of the Wadge/Lipschitz games for Borel functions,
[and] hence many of the standard proofs for the Wadge hierarchy do not
generalize in a straightforward way to the Borel set-up.”

This suggested two important questions:

1. Can similar characterizations be given for other function classes, most no-
tably for the class of all Borel functions and the class Λ3,3?

2. Is there an analogue of the Jayne-Rogers theorem at the third level of the
Borel hierarchy?

In this thesis, we give positive answers to these questions (Theorems 2.0.9,
5.1.1, and 5.2.8).
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