
More Than the Sum of Its Parts
Compact Preference Representation Over Combinatorial Domains

Joel Uckelman

More Than the Sum of Its Parts
Compact Preference Representation Over Combinatorial Domains

ILLC Dissertation Series DS-2009-12

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

mailto:illc@uva.nl
http://www.illc.uva.nl/

More Than the Sum of Its Parts
Compact Preference Representation Over Combinatorial Domains

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op vrijdag 11 december 2009, te 10.00 uur

door

Joel David Uckelman

geboren te Carroll, Iowa, Verenigde Staten van Amerika

Promotiecommissie:

Promotor: Prof. dr. K.R. Apt
Co-promotor: Dr. U. Endriss

Overige leden:
Prof. dr. J.F.A.K. van Benthem
Prof. dr. G. Dari-Mattiacci
Prof. dr. J. Lang
Prof. dr. B. Löwe
Prof. dr. F. Rossi
Prof. dr. M.J. Wooldridge

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

The work comprising this dissertation was supported by a GLoRiClass fellowship
funded by the European Commission (Early Stage Research Training Mono-Host
Fellowship MEST-CT-2005-020841).

Copyright c© 2009 by Joel Uckelman

Cover design by Matt Kuhns.
Printed and bound by Ipskamp Drukkers.

ISBN: 978–90–5776–203–1

For Sara

v

Contents

Acknowledgments xi

1 Introduction 1

2 Languages 9
2.1 Introduction . 9
2.2 Notation . 9

2.2.1 Propositional Logic . 9
2.2.2 Utility Functions, Goalbases, and Languages 11

2.3 Related Languages . 14
2.3.1 CP-Nets . 14
2.3.2 Penalty Logic . 16
2.3.3 Weighted and Distance-Based Logics for Cardinal Disutility 18
2.3.4 Propositional Languages for Ordinal Preferences 19
2.3.5 Weighted Description Logics 23
2.3.6 Boolean Games . 23
2.3.7 Valued Constraint Satisfaction Problems 24
2.3.8 Generalized Additive Independence 25
2.3.9 Coalitional Games . 26
2.3.10 Bidding Languages . 26

I Theory 29

3 Expressivity 31
3.1 Introduction . 31
3.2 Preliminaries . 32
3.3 Related Work . 34
3.4 Expressivity of Sum Languages 35

vii

3.4.1 Goalbase Equivalences . 35
3.4.2 Uniqueness . 36
3.4.3 Correspondences . 43
3.4.4 Summary . 49

3.5 Expressivity of Max Languages 49
3.5.1 Superfluous Goals . 51
3.5.2 Goalbase Equivalences . 53
3.5.3 Correspondences . 55
3.5.4 Summary . 56

3.6 Odds and Ends . 58
3.7 Conclusion . 59

4 Succinctness 61
4.1 Introduction . 61
4.2 Preliminaries . 61
4.3 Related Work . 65
4.4 Succinctness of Sum Languages 68

4.4.1 Some Basic Succinctness and Equivalence Results 68
4.4.2 Equivalence via Goalbase Translation 70
4.4.3 Strict Succinctness and Incomparability, by Counterexample 71
4.4.4 Strict Succinctness, Nonconstructively 74
4.4.5 Summary . 79

4.5 Succinctness of Max Languages 79
4.5.1 Absolute Succinctness . 79
4.5.2 Relative Succinctness . 86
4.5.3 Summary . 88

4.6 Cross-Aggregator Succinctness . 90
4.7 Conclusion . 93

5 Complexity 95
5.1 Introduction . 95
5.2 Background . 95
5.3 The Decision Problems max-util, min-util, and max-cuf . . . 100
5.4 Related Work . 101
5.5 The Complexity of max-util and min-util 103

5.5.1 Hardness Results for max-util 104
5.5.2 Easiness Results for max-util 109
5.5.3 The Complexity of min-util 111
5.5.4 Summary . 115

5.6 The Complexity of Collective Utility Maximization 116
5.6.1 Summary . 121

5.7 An Alternate Formulation of max-util 122
5.7.1 Revising the max-util Decision Problem 122

viii

5.7.2 Horn Clauses, Logic Programming, and hornsat 125
5.7.3 Finding P-Complete Goalbase Languages 126
5.7.4 Discussion . 129

5.8 Conclusion . 130

II Applications 133

6 Combinatorial Auctions 135
6.1 Introduction . 135
6.2 Auctions . 135
6.3 Bidding Languages . 138

6.3.1 The XOR, OR, and OR∗ Languages 139
6.3.2 Goalbase Bidding Languages 139
6.3.3 Succinctness . 140

6.4 Winner Determination . 145
6.4.1 Notation . 145
6.4.2 The Winner Determination Problem 146
6.4.3 An IP Formulation of the WDP 147
6.4.4 Branch-and-Bound WDP Algorithms 150

6.5 Heuristics for Winner Determination 154
6.5.1 Expansion and Branching Policies 154
6.5.2 Heuristics for Positive Cubes 155
6.5.3 Heuristics for Positive Clauses 158
6.5.4 Heuristics for Cubes . 159

6.6 Experimental Setup . 161
6.6.1 Principles for Generating Realistic Data 161
6.6.2 Data Generation . 163

6.7 Experimental Results . 166
6.7.1 First Solver . 166
6.7.2 Second Solver and CPLEX 171
6.7.3 Comparison of Solvers . 175

6.8 Conclusion . 179

7 Voting 181
7.1 Introduction . 181
7.2 Background . 181
7.3 Multi-Winner Elections . 185

7.3.1 Some Methods for Committee Election 185
7.3.2 Similar Committees Need Not Be Similarly Preferable . . . 188

7.4 Simulating Voting Methods Using Goalbases 191
7.5 The Complexity of Deciding Winning Slates 194
7.6 Extending Single-Winner Voting Methods 196

ix

7.7 Future Work . 199
7.8 Conclusion . 201

8 Conclusion 203

Bibliography 206

List of Symbols 222

Index 222

Samenvatting 223

Abstract 225

x

Acknowledgments

The first person I wish to thank is someone I can’t identify by name: whomever
wrote the course description for my high school’s freshman speech class. This
course description was so frightening for someone who disliked public speaking
as much as I did that I decided to fulfill the speech requirement the only other
way possible—by joining the debate team. Somehow it escaped me that this was
not a clever way to evade the requirement; instead of giving five speeches in a
one-quarter course, I spent every fall and winter Saturday giving speeches. . . and
kept doing it for three more years, long after I’d fulfilled the requirement. Our
coach, Bob Galligan, (who possibly wrote the scary course description) introduced
me to philosophy, and debate was what convinced me to major in philosophy at
Iowa State University.

In my second semester at Iowa State, I had the good fortune of taking the
introductory logic course from Bill Robinson. We did natural deduction for
propositional and quantifier logic, with one lecture at the end on modal logic. I
was hooked, and Prof. Robinson graciously offered to do an independent study
course with me on modal logic the next semester. Later, he (and my friend, Josh
Kortbein) encouraged me take the two-semester mathematical logic course offered
by the math department, which put me on the path to becoming a logician. Roger
Maddux’s math logic course opened my eyes to how much I didn’t know. I’m
grateful that Prof. Maddux took into account that I was a non-mathematician,
since with my background at the time, the work was quite hard for me. It was in
his course that I first understood how to prove anything, a skill without which I’d
have no dissertation. (Prof. Maddux also started me, unbeknownst to him, on my
habit of hoarding scratch paper on which to do proofs.)

My advisor at the University of Wisconsin–Madison, Mike Byrd, deserves
special thanks, on four counts: First, he showed me the best example I have ever
seen of how to teach. Mike drew in even the students who didn’t want to be
there, not by gimmicks or by watering down the material, but by sheer force of
enthusiasm. As we walked to the first lecture of his introductory logic course

xi

(for which I was several times his TA), he remarked to me in his matter-of-fact
way, “This is the seventieth time I’ve taught this course”, and smiled. Mike set
an inspiring example. Second, Mike didn’t just tell me when I’d made a mistake,
he showed me exactly where and gave me a counterexample. I’ve always been
grateful for his dedication to providing feedback; it helped me to mind the details,
in a field where details are everything. Third, Mike did all this at a difficult time
in his life, when no one would have blamed him for having his mind on matters
other than his students. Finally, Mike suggested that I apply to Amsterdam,
which is how I came to be at the ILLC.

From my time in Madison, I’d also like to thank Madeleine Arseneault, Joey
Baltimore, Sara Chant, Paul Dunn, Zach Ernst, Matt Ferkany, Tim Hansel, Fred
Harrington, Michael Humiston, Holly Kantin, Cora Lee Kleinhenz, John Koolage,
Gene Marshall, Corey Mather, Margaret Moore, Greg Novack, Tasia Persson,
Alan Rubel, Ben Sachs, Eric Stencil, Joel Velasco, Andrea Veltman, and Matt
Vickery, for good times and giving me a lot to think about. In particular, I thank
Greg for some interesting discussions about Arrow’s Theorem (which we still need
to do something about!).

In Amsterdam, there are many people to thank: At the ILLC, our adminis-
trative staff—Marjan Veldhuisen, Tanja Kassenaar, Jessica Pogorzelski, Karen
Gigengack, Ingrid van Loon, and Peter van Ormondt—have been of help on more
occasions than I can count. Rene Goedman, our doorman at Euclides, eagerly
subverted the rules to smooth our path and was always ready with some words
of wit (or to listen to me complain). My officemates Olivier Roy, Stefan Bold,
Katja Rybalko, Yurii Khomski, Brian Semmes, Umberto Grandi, Andreas Witzel,
and Jonathan Zvesper, were always ready to listen to an idea, offer advice, or
share a laugh. Stefan and Andi were also always ready to show me an interesting
web site in case I needed (or did not need) a distraction. Others at the ILLC,
without whom it would not have been the same: Stephané Airiau, Edgar Andrade-
Lotero, Martin Bentzen, Nick Bezhanishvili, Dave Cochran, Inés Crespo, Cédric
Dégremont, Tejaswini Deoskar, Ioanna Dimitriou, Fenrong Liu, Raquel Fernández,
Hartmut Fitz, Gaëlle Fontaine, Caroline Foster, Amélie Gheerbrant, Sujata Ghosh,
Nina Gierasimczuk, Patrick Girard, Davide Grossi, Jens Ulrik Hansen, Daisuke
Ikegami, Tikitu de Jager, Szymon Klarman, Jarmo Kontinen, Wouter Koolen-
Wijkstra, Lena Kurzen, Olivia Ladinig, Raul Leal Rodriguez, Henrik Nordmark,
Eric Pacuit, Daniele Porello, Petter Remen, Federico Sangati, Leigh Smith, Marc
Staudacher, Jakub Szymanik, Reut Tsarfaty, Fernando Velazquez-Quesada, Jacob
Vosmaer, Jelle Zuidema, and probably some people I’ve neglected to list. Also in
Amsterdam, but not at the ILLC: Jill Woodward and Martijn Buisman. Martijn
has been a true friend, and all the better, a fanatical devotee of good beer which I
would not have found on my own.

Two people with whom I write open-source software contributed a great deal
to helping me stay sane while working on this dissertation: Michael Kiefte and
Brent Easton. The usual suspects—Nate Ellefson, Matt Kuhns, Tom Plagge,

xii

Matt Potter—also played a significant role on this front, as well as Paul Thelen,
who offered some valuable perspective late at night (for me, not him). Additional
thanks go out to Paul for his hospitality during AAAI 2008 in Chicago, to Brent
for his hospitality after KR 2008 in Sydney, and to Matt Kuhns for designing this
dissertation’s cover.

Thanks are due to Peter van Ormondt for translating my abstract into Dutch,
for dealing with the UvA’s accounting office on my behalf in connection with the
Cabal project, and for general commiseration.

Thanks to Vangelis Markakis for discussions about approximation, and the
insight that I should try block matrices in the alternate proofs of Theorems 3.4.2
and 3.4.3; to Tuomas Sandholm for helpful pointers (and oracular pronouncements)
about branch-and-bound; to Vince Conitzer, Judy Goldsmith, and Jörg Rothe for
numerous discussions at numerous conferences; to Jon Stewart for helping me sort
out a particularly nasty bug in my branch-and-bound solver; to Leen Torenvliet
and Peter van Emde Boas for always being eager to answer my questions whenever
I poked my head into their office (though Leen, being a determinist, would say he
had no choice), and to Peter for help with editing my samenvatting, for spotting
typos, and for providing references from his gargantuan library.

Thanks to Brammert Ottens for solving a resource allocation question I had—
it’s gratifying to have another person deem a question of yours interesting enough
to spend time on it—and to Sara Ramezani for investigating an extension of
some branch-and-bound heuristics I worked on. I learned a lot from working (and
talking) with both of you, more, I think, than you learned from me.

Thanks are due to my coauthors, Yann Chevaleyre, Ulle Endriss, Jérôme Lang,
and Andreas Witzel. Much of the core of this thesis is the result of joint work
with them. A nod goes to Yann for the difficult proof of Theorem 4.4.13; for this
one Ulle and I mostly just minded the details. It’s been good working with all of
you. Memories of an afternoon spent in front of a chalkboard with Nicolas and
Ulle devising resource allocation examples (though what we were doing didn’t
work out) and, with the same two, drinking cider in a pub in Madrid, are ones I
won’t soon forget.

I want to thank Yann and Nicolas (and Akin Kazakci) for sharing their
office with me when I visited LAMSADE in April 2008, and Jérôme for helping
to organize my visit to IRIT in Toulouse in May. While in Toulouse, Sylvain
Bouveret’s assistance was indispensable—without his help, I would have had
neither meals nor a place to stay, let alone a view of the Canal du Midi from my
window. Sylvain’s (and Marianne’s) hospitality made my stay in Toulouse not
just possible, but enjoyable. Thanks also to Elise Bonzon, Florence Dupin de
Saint-Cyr, and Sylvia Estivie for interesting discussions while I was at IRIT, and
to Alexis Tsoukiàs, Denis Bouyssou, and Guillaume Ravilly-Abadie for the same
while I was at LAMSADE.

I am grateful to my committee, Johan van Benthem, Giuseppe Dari-Mattiacci,
Jérôme Lang, Benedikt Löwe, Francesca Rossi, and Mike Wooldridge, for taking the

xiii

time to read my dissertation (and in the case of Benedikt and Jérôme, providing
extensive suggestions), and to Krzysztof Apt for being my promotor and for
arranging for me the account I needed at CWI in order to conduct the experiments
in Chapter 6.

Benedikt Löwe has been particularly helpful to me while at the ILLC: One
summer day in 2006, not long after I started the work you are holding, he called (!)
to offer me the position in the GLoRiClass project which provided my funding.
Both before and after that, we have had more discussions about more things than
I can say, from set theory to German election law to typesetting, in addition to
his offering some insight into How Things Work.

My advisor, Ulle Endriss, has, I think, had a harder job than I would have
liked him to have had. Ulle has shown superhuman patience with my way of
working and with my intransigence about fixing things which are un- or poorly
explained, always gently nudging me in the right direction, and never gave up on
Chapter 6, long after I had despaired of ever finishing it. Working with Ulle has
always been easy, and that’s much appreciated. I’m thankful to have had him as
my advisor.

Finally, I want to thank my wife, Sara, not only for her ceaseless encourage-
ment, but for telling me that I could quit if I wanted to—it was that which gave
me the strength to finish.

Amsterdam
October, 2009

xiv

Chapter 1

Introduction

The whole is more than the sum of its parts.

Metaphysics, Book VIII, 1045a10
Aristotle

“I would prefer not to.”

Bartleby, The Scrivener. A Story of Wall-Street
Herman Melville

The miserable wasteland of multidimensional space was first brought
home to me in one gruesome solo lunch hour in one of MIT’s sand-
wich shops. “Wholewheat, rye, multigrain, sourdough or bagel?
Toasted, one side or two? Both halves toasted, one side or two?
Butter, polyunsaturated margarine, cream cheese or hummus? Pas-
trami, salami, lox, honey cured ham or Canadian bacon? Arugula,
iceberg, romaine, cress or alfalfa? Swiss, American, cheddar, moz-
zarella, or blue? Tomato, gherkin, cucumber, onion? Wholegrain,
French, English or American mustard? Ketchup, piccalilli, tabasco,
soy sauce? Here or to go?”

Balliol College Annual Record, 2001
Myles Aston

What are preferences? Why have them over a combinatorial domain? Why do we
want to represent them compactly? Why represent them at all? We begin this
dissertation by unpacking its subtitle and addressing these questions.

Compact Preference Representation Over Combinatorial Domains

Any entity not wholly indifferent to the state of the world has preferences. I
prefer ales to pilsners, my cat prefers to be petted in one direction over the
other, 131 million people expressed their preference for President of the United
States by voting in the 2008 general election [Federal Election Commission,
2009]. These are ordinal preferences, ranking one alternative ahead of another.
Cardinal preferences, which assign values to alternatives, are ubiquitous as well:
All monetary transactions involve cardinal preferences as prices. I would pay $300

1

2 Chapter 1. Introduction

for a camera with features X and Y , and e 2 for a coffee in Paris. Stock markets
collect the cardinal preferences of investors; auctions do the same for bidders. It
is true (though possibly trite): Preferences are everywhere.

Compact Preference Representation Over Combinatorial Domains

The ubiquity of preferences in our interactions with each other brings about the
need for us to express them. When you place a bid in an auction on the Internet
auction site eBay, your bid encodes what you are willing to pay for the item
being auctioned. My cat bats my hand away when he’d rather I leave him alone.
I say to my dinner companions that I would rather eat at the Thai than the
Indonesian restaurant. Voters mark ballots for their preferred candidates. In all
of these cases, there is a mechanism by which individuals—agents—translate their
preferences from whatever form they take inside their heads into a form which is
visible to others. This external form is the representation of an agent’s preferences.
Representations matter: Arguably, the outcome of the 2000 U.S. Presidential
election was due to a faulty preference representation method.

Compact Preference Representation Over Combinatorial Domains

If I have a basket of fruit and offer you a piece, then what I am asking you to do
is express your preferences over single pieces of fruit. The domain—that is, the
set of alternatives—is the contents of the basket. If my basket contains an apple,
a banana, a cherry, a fig, a grapefruit, a lime, a mango, a nectarine, an orange,
and a peach, then it will not be overly difficult for you give your entire preference
order over the pieces of fruit. For example, you might say that

G > C > A > P > B > F > N > M > O > L,

where > is to be read as “is preferred to”. I might need your full preference order
because I am offering fruit to others as well, and I want to ensure that no one is
stuck with their last choice. Now consider what happens if I am giving away not
just single pieces of fruit, but arbitrary collections of it. Originally, the possible
outcomes for you were ten—for each single piece of fruit, you could be given it.
Now, the space of potential outcomes has grown exponentially: You could be
given any of the 1023 (= 210 − 1) combinations of the pieces of fruit in the basket.
We have moved from a simple domain to a combinatorial one.

Compact Preference Representation Over Combinatorial Domains

We continue with the fruit basket example: If I need your complete preference
ordering over all 1023 nonempty subsets of fruit in order to make a decision about
what fruit to give you, then we are facing a serious problem. You will surely not
want to rank each of the 1023 nonempty subsets of the fruit in the basket even

3

if you are able to do so; moreover, I will not want to wait for you to do it, nor
would I want to deal with such a torrent of information even if you were able to
produce it quickly. If I added another ten pieces of fruit to my basket, the number
of subsets of fruit would already exceed one million, and with 300 pieces of fruit,
there are more subsets (2300 ≈ 2× 1090) than atoms in the observable universe
(≈ 1080). The problem being described here is known as exponential blowup, and
is a perennial issue when the space of alternatives has a combinatorial structure.
What is needed here is a more compact way of expressing your preferences over
the subsets of fruit, one which does not require you to list your ordering explicitly,
but rather takes advantage of the structure of your preferences and in so doing
permits you to convey them concisely. Even for computerized agents, handling
preferences over combinatorial domains can quickly become unmanageable without
good representations.

Having unpacked the subtitle, it should be clear why compact preference
representation over combinatorial domains is needed. Now on to the title: A little
reflection on common experience reveals that we often have complex preferences,
even over multiples of the same type of thing. For example, while I might be
willing to pay $3 for my first ice cream cone, it is unlikely that I will place as high
a value on a second, third, or fourth cone. At some point, I might even refuse to
accept additional ice cream cones offered to me at no cost. The upshot is that
my—and probably also, your—preferences over ice cream cones are such that I
will value n cones less than n times the value I place on one cone. My preferences
are subadditive.

Examples pointing in the opposite direction exist as well: Adjacent plots of
land may be worth more together than individually. Rights to use sections of
railway tracks are more valuable in combination when they link desirable locations.
Matching trucks with truckloads to prevent trucks from traveling empty in one
direction makes the loads more valuable together than singly. Complete sets of
baseball cards are worth more than the individual cards comprising them. Takeoff
and landing rights at airports are useless if not matched. All of these are examples
of superadditive preferences. (For more examples of complex preferences see [Ball,
Donohue, and Hoffman, 2006; Caplice and Sheffi, 2006; Cantillon and Pesendorfer,
2006; Sandholm, 2007].)

What these cases all have in common is that the goods involved interact to
affect their value as a collection. Together, they have value which is more (or less)
than the sum of the values of the their constituent parts—and this is where the
difficulty of preference representation over combinatorial domains lies. Modular
preferences, ones where the values of goods are independent from one another, are
simple to represent. There is no need to introduce any conceptual heavy machinery
to handle them, they may be written concisely in an obvious way, and almost
all computational problems involving them are easy. But as soon as we move
away from modular preferences—and, as we have seen, nonmodular preferences

4 Chapter 1. Introduction

are found abundantly in the real world—we are immediately confronted with
representation problems. These are the problems we tackle in this dissertation.

We return once more to the fruit basket example, to give a taste of how the
structure of an agent’s preferences can be exploited to dramatically simplify their
representation. As mentioned above, modular preferences are easy to represent.
If the values of the fruits are independent for some agent, then we can represent
his preferences over bundles of fruit by writing the agent’s value for each piece of
fruit:

{(A, 1), (B, 3), (C, 2), (F, 2), (G, 1), (L, 3), (M, 4), (N, 2), (O, 1), (P, 3)}

Then, all we need to do to determine this agent’s value for any bundle of fruit
is to sum the values of the individual pieces contained in it. For example, the
bundle {B,F,G}, containing the banana, the fig, and the grapefruit, has value 6
for an agent with these preferences.

An agent might well have more complex structure to his preferences than this.
For example, he might be allergic to cherries, and so any bundle containing cherries
is worse than one without cherries. He might intend to cook a dessert which uses
both limes and mangoes, but has no use for one without the other. Or he might
not care what fruit he gets, so long as he gets at least one piece. Look again
at the example of modular preferences over the fruit. We assigned a symbol—a
propositional variable—to each piece of fruit, and a value which accrues to the
agent for receiving that piece of fruit—for making that propositional variable
true. This suggests an extension, by which we use more complex logical formulas
instead of just single propositional variables. In this way, we can say ¬C if we
want to avoid cherries, L ∧M if we get extra value from receiving the lime and
mango together, and A ∨ B ∨ C ∨ F ∨ G ∨ L ∨M ∨ N ∨ O ∨ P to say that we
want at least one piece of fruit, but we don’t care which one. So,

{(¬C, 1), (L ∧M, 5)}

could be the preferences of an agent who wants to avoid cherries and to get
the lime and mango together. These kinds of languages, languages of weighted
formulas, are the method of compact preference representation which we pursue
in this dissertation.

Chapter Overview

The aim of this dissertation is to explore the possibilities of a particular formal-
ism for compact preference representation over combinatorial domains—sets of
weighted formulas, known as goalbases. The overall structure may be seen in
Figure 1.1. A chapter at the head of an arrow relies on results from the chapter
at the tail of the same arrow.

5

Languages

Expressivity

Succinctness Complexity

Theory

Auctions

Voting

Applications

Figure 1.1: The structure of this dissertation.

Chapter 1, Introduction is the chapter you are reading now.

Chapter 2, Languages introduces the basic formalism and notation used
throughout this dissertation. In particular, we define goalbases, goalbase languages,
and the various restrictions which may be placed on them; we show how goalbases
generate utility functions, and thereby represent cardinal preferences; and we give
a wide-ranging overview of other preference representation languages, both ordinal
and cardinal.

Part I, Theory is the heart of this dissertation, where we explore the properties
of the goalbase languages defined in Chapter 2. In particular, we examine in detail
the expressivity, succinctness, and complexity of each language.

Chapter 3, Expressivity takes up a basic question about each goalbase lan-
guage defined in Chapter 2, namely: Which utility functions are expressible in each
language? We show that many goalbase languages correspond exactly to classes
of utility functions having well-known properties. Along the way, we also prove
some results about the variety of available representations in certain languages. In
particular, we show that some goalbase languages have exactly one representation
for each utility function they are able to represent, a property we call unique
representations.

Chapter 4, Succinctness considers how compactly our goalbase languages
are able to represent utility functions. Here, we present numerous pairwise

6 Chapter 1. Introduction

comparisons between goalbase languages, in some cases showing that one language
is exponentially more succinct than another. Due to our systematic approach, this
chapter contains hundreds of results, conveniently summarized in several tables.

Chapter 5, Complexity classifies goalbase languages according to the compu-
tational complexity of deciding various questions concerning goalbases in those
languages. For many (though not all) goalbase languages, the decision problem
max-util, which asks whether an alternative exists which produces at least a
given level of utility, is NP-complete. Similarly, the problem min-util, which
asks whether all alternatives yield at least some minimum amount of utility, is
coNP-complete for many of the more expressive languages. Thirdly, we consider
the problem max-cuf, which deals with maximizing collective utility, rather
than individual utility as max-util does, and again find that for many—though,
significantly, not all—goalbase languages, max-cuf is NP-complete. Finally, we
consider an alternative version of max-util, which asks about true atoms in
optimal states instead of the existence of states yielding at least a given amount
of utility.

The chapters in Part I are based on and extend work presented at the AAAI-
2007 Workshop on Preference Handling for Artificial Intelligence (AiPref-2007)
[Uckelman and Endriss, 2007], the 11th International Conferences on Principles
of Knowledge Representation and Reasoning (KR-2008) [Uckelman and Endriss,
2008b], and in the journal article “Representing Utility Functions via Weighted
Goals” [Uckelman, Chevaleyre, Endriss, and Lang, 2009]. In turn, the latter
includes some results due to Chevaleyre, Endriss, and Lang [2006]. Section 5.7
extends work presented at the AAAI-2008 4th Multidisciplinary Workshop on
Advances in Preference Handling (MPREF-2008) [Uckelman and Witzel, 2008].

Part II, Applications highlights two areas in which goalbase languages may
be used to good effect.

Chapter 6, Auctions is the first of our two chapters showing applications of
goalbase languages. Auctions are a common way of selling goods. Unfortunately,
sequential auctions—auctions where individual goods are sold consecutively—are
inefficient when the values of goods being sold are interdependent. Combinatorial
auctions are a method of auctioning all goods simultaneously, so that synergies
among goods may be taken into account. In this chapter, we discuss existing
bidding languages for combinatorial auctions, suggest the use of goalbase languages
for bids, present two algorithms for solving the Winner Determination Problem
for combinatorial auctions when using goalbases as bids, and give experimental
results for these algorithms.

7

All save Section 6.3 of this chapter is based on and extends work presented at
the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2008) [Uckelman and Endriss, 2008a].

Chapter 7, Voting points toward elections as another area in which goalbase
languages may be useful. We consider two main problems: First, many voting
methods are insufficiently expressive to capture the preferences of voters. Second,
voting methods intended to choose only a single winner acquire undesirable prop-
erties when modified to produce multiple winners, as in elections for committees.
In this chapter, we argue that using goalbases as ballots has potential both as a
way of extending the expressivity of single-winner voting methods, and also as a
way of handling the combinatorial nature of voters’ preferences in multi-winner
voting.

Chapter 8, Conclusion is at the end, summarizing what we have shown and
suggesting some avenues for further work.

Chapter 2

Languages

2.1 Introduction

In this chapter we present the basic notation and terminology which is used
throughout this dissertation, as well as an overview of previous work on preference
representation.

2.2 Notation

In Section 2.2.1, we define some fundamental notions from propositional logic
and give names to certain classes of propositional formulas. In Section 2.2.2 we
introduce utility functions, goalbases, and goalbase languages. Goalbase languages
are the utility representation framework which we study in Chapters 3–7.

2.2.1 Propositional Logic

Though we expect that the reader is already familiar with propositional logic, we
define it here for the sake of completeness.

Definition 2.2.1 (Propositional Formulas). The set PS is a fixed, finite set
of propositional variables. We write PSn to indicate that |PS| = n. Given a
particular PS:

• Each p ∈ PS is a formula.

• If ϕ is a formula, then ¬ϕ is a formula.

• If ϕ and ψ are formulas, then ϕ ∧ ψ and ϕ ∨ ψ are formulas.

• > and ⊥ are formulas.

9

10 Chapter 2. Languages

Let LPS be the language of propositional logic over PS. That is, LPS is the
set of all formulas generated by the atoms in PS. The technical results found
here apply to formulas that contain only the connectives ¬, ∧, and ∨. We omit
→ (implication) as a Boolean connective because is it succinctly definable in
terms of ¬ and ∨. Equivalence and XOR we do not consider here; they are not
obviously useful for our purposes, though their inclusion might result in more
succinct languages.

Definition 2.2.2 (Propositional Models). A model is a set M ⊆ PS. The
satisfaction relation |= for models and formulas is defined as follows:

M |= >.
M 6|= ⊥.
M |= p iff p ∈M.

M |= ¬ϕ iff M 6|= ϕ.

M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ.

M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ.

We give names to some types of propositional formulas:

Definition 2.2.3 (Types of Formulas).

• An atom is a member of PS.

• A literal is an atom or its negation.

• A clause is a disjunction of literals.

• A cube is a conjunction of literals.

• A positive X is a satisfiable formula of type X that is free of negations.

• A strictly positive X is a non-tautologous positive X.

• A k -X is an X with at most k occurrences of atoms.

• A complete cube is a cube having every atom as a subformula exactly once.

• A Horn clause is a clause with at most one positive literal.

When discussing positive clauses, positive cubes, and positive formulas, we fre-
quently abbreviate these to pclauses, pcubes, and pforms, respectively. Addi-
tionally, we call strictly positive cubes and strictly positive formulas spcubes and
spforms, respectively. (The term spclauses is redundant because every positive
clause is falsifiable.) Atoms are 1-spclauses, 1-spcubes, and 1-spformulas (and also
1-pclauses, 1-pcubes, and 1-pformulas), while literals are 1-clauses, 1-cubes, and

2.2. Notation 11

1-formulas. Clauses, cubes, and formulas are ω-clauses, ω-cubes, and ω-formulas,
respectively, which is to say that the formulas may be of any finite length.1 Com-
plete cubes are also known as state formulas, since any complete cube is true
in precisely one state. Note that by convention

∧
∅ = > and

∨
∅ = ⊥, from

which follows that > is the unique 0-pcube and ⊥ the unique 0-clause. The
notation X +> indicates the set of formulas X ∪ {>} (e.g., pclauses +> is the
set containing all pclauses along with >).

Definition 2.2.4 (State Formulas). If X ⊆ PS, then define X̄ = PS \X, and
¬X = {¬p | p ∈ X}. Then

∧
(M ∪¬M̄) is the state formula corresponding to the

model M .

For example, if PS = {a, b, c, d}, then the state formula for the model ∅ is
¬a∧¬b∧¬c∧¬d and for {a, b} is a∧ b∧¬c∧¬d. Notice that M ′ |=

∧
(M ∪¬M̄)

iff M = M ′.

2.2.2 Utility Functions, Goalbases, and Languages

We are interested in utility functions over combinatorial domains that are the
Cartesian product of several binary domains. A generic representation of this kind
of domain is the set of all possible models for propositional formulas over a fixed
language with a finite number of propositional variables (the dimensionality of
the combinatorial domain).

Definition 2.2.5 (Utility Functions). A utility function is a mapping u : 2PS → R.

Because the utility functions we consider have sets as their domain, and
propositional models are sets, utility functions can be thought of as mapping
models to their values.

Definition 2.2.6 (Weighted Goals and Goalbases). A weighted goal is a pair
(ϕ,w), where ϕ is a formula in the language LPS and w ∈ R. A goalbase is a
finite multiset G = {(ϕi, wi)}i of weighted goals.

Goals are typically required to be satisfiable formulas. We will see in Chapter 3
that for the languages studied here this restriction does not affect expressive
power, though the presence of unsatisfiable formulas can affect the computational
complexity of some decision problems, as discussed in Chapter 5. When a particular
goalbase is under consideration, we write wϕ to mean the weight of formula ϕ in
that goalbase. For(G) is the set of formulas in G. Var(ϕ) is the set of propositional
variables in the formula ϕ and Var(G) =

⋃
ϕ∈For(G) Var(ϕ).

1Strictly speaking, we should write, e.g., <ω-cubes instead of ω-cubes, but we abuse notation
for the sake of brevity and because all formulas are assumed to have finite length.

12 Chapter 2. Languages

Definition 2.2.7 (Generated Utility Functions). A goalbase G and an aggregation
function F : NR → R generate a utility function uG,F mapping each model M ⊆
PS to uG,F (M) = F (w | (ϕ,w) ∈ G and M |= ϕ).

Aggregation functions map multisets of reals to reals.2 Because multisets are
unordered structures, any aggregation function will necessarily be associative
and commutative over weights.3 In this dissertation, we restrict ourselves to
two aggregation functions, Σ and max, the summation and maximum functions,
respectively. When F = Σ, the utility function generated from a goalbase G is

uG,Σ(M) =
∑

(ϕ,w)∈G
M |=ϕ

w,

which is to say that the value of a model is the sum of weights of formulas
made true in that model. For example, if PS = {p, q, r}, then the goalbase
G1 = {(p ∨ q ∨ r, 2), (p ∧ q, 1), (p ∧ r, 1), (q ∧ r, 1), (p ∧ q ∧ r,−2)} generates the
utility function u : X 7→ min(3, 2·|X|). When F = max, the utility function
generated from a goalbase G is

uG,max(M) = max
(ϕ,w)∈G
M |=ϕ

w.

In other words, the value of a model is the same as the largest weight had by any
formula which is true in that model.

These two aggregation functions may produce dramatically different utility
functions from the same goalbase. E.g., if G = {(a, 1) | a ∈ PS}, then uG,max is
the simple unit-demand utility function (u(X) = 1 if X 6= ∅, 0 otherwise) while
uG,Σ is the simple additive utility function (u(X) = |X|). In case max is used, we
assume max(∅) = −∞; it is often useful to include, say, (>, 0) in any goalbase
intended for use with max so as to obtain utility functions defined for all states.

2The definition of aggregation function given here differs subtly from that given by Chevaleyre
et al. [2006], Uckelman and Endriss [2007], Uckelman and Endriss [2008a], Uckelman and Endriss
[2008b], Uckelman and Witzel [2008], and Uckelman et al. [2009], in that all of these write
the aggregation function as F : 2R → R when in practice the reader is meant to understand
the aggregation function as operating on multisets. (Lafage and Lang [2000] do the same with
their definition of disuP as does Lang [2004] with the definition of F1, F2, and F3 for Rwg.) In
particular, these authors often write sums of weights as

∑
{w | stuff }, when what is intended

is
∑

stuff w. We have striven to avoid this ambiguity in the present work; in the event that we
have failed, please in all cases read sums of weights as sums of multisets (rather than sets) of
weights. That is,

∑
{1, 1} = 2 6= 1.

3If the domain were arbitrary-length tuples of reals instead of multisets of reals (R∗ instead of
NR), then there could be aggregators which are sensitive to the order in which formula weights
are aggregated. Since goalbases are unordered structures, there is no compelling reason to be
concerned with the order in which weights are aggregated, so we limit the domains of aggregators
to multisets.

2.2. Notation 13

Definition 2.2.8 (Goalbase Equivalence). Two goalbases G and G′ are equivalent
with respect to an aggregation function F (written G ≡F G′) iff they define the
same utility function. That is, G ≡F G′ iff uG,F = uG′,F .

Goalbases provide a framework for defining different languages for representing
utility functions. Any restriction we might impose on goals (e.g., we may only
want to allow clauses as formulas) or weights (e.g., we may not want to allow
negative weights) and any choice we make regarding the aggregator F give rise to
a different language. An interesting question, then, is whether there are natural
goalbase languages (defined in terms of natural restrictions) such that the utility
functions they generate enjoy simple structural properties. (This is indeed the
case, as seen in Chapter 3.)

Definition 2.2.9 (Languages and Classes of Utility Functions). Let Φ ⊆ LPS
be a set of formulas, W ⊆ R a set of weights, and F an aggregation function.
Then L(Φ,W, F) is the set of all goalbases formed by formulas in Φ with weights
from W to be aggregated by F , and U(Φ,W, F) is the class of utility functions
generated by goalbases belonging to L(Φ,W, F). More generally, we write U(L)
to mean the class of utility functions generated by goalbases in the language L.

In order to keep the reader from being overwhelmed by indices, we may
sometimes omit F and write uG, ≡, L(Φ,W), and U(Φ,W) in preference to uG,F ,
≡F , L(Φ,W, F), and U(Φ,W, F) when context makes clear which aggregation
function F is.

Regarding weights, we study the restriction to the positive reals (R+) as well
as the general case (R). For complexity questions we will restrict our attention to
the rationals (Q). We restrict formulas by their structure, according to the types
of formula defined in Definition 2.2.3. For example, the language L(cubes,R+,Σ)
consists of all goalbases which contain only positively-weighted cubes, and are
aggregated using summation. Many more examples of languages will be seen in
Chapter 3, where we investigate language expressivity.

We may occasionally wish to combine goalbases. For this purpose, we define a
notion of goalbase summation.

Definition 2.2.10 (Goalbase Summation). If G,G′ are goalbases, then

G⊕G′ =

{(
ϕ,

∑
(ϕ,a)∈G

a+
∑

(ϕ,b)∈G′
b
) ∣∣∣∣∣ ϕ ∈ For(G ∪G′)

}

is their sum.

Note that ⊕ does not combine formulas which are semantically equivalent but
syntactically distinct. E.g., {(p, 1)}⊕{(p∧p, 1)} 6= {(p, 2)}. Combining equivalent
weighted formulas would involve first checking for equivalence, which we wish to
avoid because equivalence checking is coNP-complete in the general case.

14 Chapter 2. Languages

We define a notion of uniform substitution for formulas and goalbases, which
we occasionally need when transforming them:

Definition 2.2.11 (Uniform Substitution). If ϕ, ψ1, . . . , ψk, χ1, . . . , χk are for-
mulas, then ϕ[ψ1/χ1, . . . , ψk/χk] is the result of (simultaneously) substituting
ψi for every occurrence of χi as a subformula in ϕ. If G is a goalbase, then
G[ψ1/χ1, . . . , ψk/χk] is the result of applying the substitution to each (ϕ,w) ∈ G.

Finally, a note on non-binary domains: Due to the applications we have in
mind for goalbase languages, resource allocation, auctions, voting—all binary
in the sense that an agent has an item or does not, or a candidate is a winner
or not—we have restricted our variables to have binary domains. Moreover,
restriction to binary domains is a natural one when working with propositional
logic. Nonetheless, it is possible to simulate in our framework variables which take
on a larger (but still finite) set of values, by coding single many-valued variables
into multiple binary-valued ones. For example, a three-valued variable X could
be decomposed into atoms x0, x1, where xi represents the ith bit of X’s value
(assuming that its three values are enumerated 0, 1, 2). In this case, we have
one “extra” state, the one where x0 ∧ x1 is true, corresponding to no value in
X’s domain, due to the fact that the size of X’s domain is not a power of two.
This overhang can be adjusted for in several ways, e.g., by giving x0 ∧ x1 a large
negative weight so that all “invalid” models are dominated by the “valid” ones.
(The alternative proof of Theorem 5.5.6 on p. 107 shows an example of this trick,
though in a different context.) The number of new binary variables required to
“binarize” any variable X is dlog |domX|e; so long as the size of the domain of X
does not vary with |PS|, our succinctness and complexity results in Chapters 4
and 5 will be unaffected by the use of variables with larger domains. Similarly, our
expressivity results in Chapter 3 carry over to many-valued variables, though we
must caution that the naturalness of representations may be lost in translation.

2.3 Related Languages

There are a wide variety of languages for expressing preferences. In this section,
we survey a selection of them. Some, such as CP-nets, are fundamentally ordinal
languages. Others, such as penalty logic, weighted description logics, bidding
languages, and generalized additive functions, are cardinal. Still others, such as
valued constraint satisfaction problems, as well as some of the languages discussed
by Lafage and Lang [2000], build ordinal preferences upon cardinal components.

2.3.1 CP-Nets

CP-nets are a formalism devised by Boutilier, Brafman, Geib, and Poole [1997] and
refined by Boutilier, Brafman, Hoos, and Poole [1999a] for specifying conditional

2.3. Related Languages 15

ceteris paribus preferences in a compact fashion.4 A ceteris paribus preference
for a over b means that all else being equal, a is preferred to b. For example, it
might be the case that, in the absence of other differences, I prefer the amplifier
which has 11 as its maximum volume to one which goes only to 10. A conditional
preference for a over b depends on some given state c. Conditional preferences
are common in situations where multiple issues must be resolved, the canonical
example being a diner who prefers white wine if the main course is fish, but
red wine if the main course is beef. Putting these two together, a conditional
ceteris paribus preference is one where the ordering over the domain of one option
depends on how some subset of the other options are resolved.

A CP-net is a directed graph where each vertex Xi is a variable, there is an
edge from Xi to Xj if the value of Xj depends on the value of Xi, and associated
with each variable Xi is a conditional preference table specifying which total
preorder over the domain of Xi is applicable given assignments to the variables
on which Xi depends.

To illustrate this, we repeat an example given by Boutilier, Brafman, Domshlak,
Hoos, and Poole [2004, Example 3]. Suppose that I am dressing for a fancy occasion
and can choose black or white pants, a black or red shirt, and a black or white
jacket. I unconditionally prefer the black jacket to the white, and the black
pants to the white, but my preference for what shirt I wear depends on the
combination of jacket and pants I will wear. Figure 2.1(a) shows one possible
CP-net representing my conditional preferences over the colors of my jacket, pants,
and shirt; Figure 2.1(b) shows the preference order over alternatives induced by
that CP-net. Notice that the induced order is not total—for example, the black
jacket with white pants and white shirt is incomparable to the white jacket with
white pants and red shirt—and in general there may be many total orders which
are compatible with the induced preorder.

In the previous example, the dependency graph is acyclic, but this is not an
essential feature of CP-nets. For example, I may wish to wear socks given that I
am wearing shoes instead of sandals, but also vice versa. However, once we permit
cycles, we are no longer guaranteed to have a corresponding preference order.

Under some conditions, we can use CP-nets to efficiently answer ordering and
dominance queries—whether a total ordering exists in which outcome o is strictly
better than o′, and whether in every total ordering o is strictly better than o′,
respectively [Boutilier et al., 2004, Section 4]. Individual CP-nets are intended for
the representation of individual preferences; however, there has also been a great
deal of work on aggregating the CP-nets of multiple agents in order to find group
preferences [Xia, Lang, and Ying, 2007b,a; Xia, Conitzer, and Lang, 2008; Lang
and Xia, 2009; Xia and Lang, 2009; Rossi, Venable, and Walsh, 2004; Pilotto,
Rossi, Venable, and Walsh, 2009; Apt, Rossi, and Venable, 2008].

4CP here stands for either ceteris paribus or conditional preference. Due to an unfortunate
naming collision, colored Petri nets, which are used for modeling transition systems, are also
sometimes referred to as CP-nets.

16 Chapter 2. Languages

For a thorough discussion of the properties of CP-nets, see the survey by
Boutilier et al. [2004]. CP-nets have also been extended and modified in various
ways: TCP-nets permit the expression of the relative importance of variables
[Brafman and Domshlak, 2002]; CI-nets generalize one aspect of TCP-nets by
permitting statements about the importance of sets of variables [Bouveret, Endriss,
and Lang, 2009]; UCP-nets add utilities by combining GA-decompositions of utility
functions (see Section 2.3.8) with CP-nets [Boutilier, Bacchus, and Brafman, 2001].

2.3.2 Penalty Logic

Knowledge bases are sets of propositional formulas intended to represent collec-
tions of “known” information, possibly derived from multiple sources of varying
reliability. As with any set of propositional formulas, a knowledge base may be
inconsistent. (This could occur, for example, if some formulas were generated by
a malfunctioning sensor and others were generated by properly functioning ones.)
We may wish to make inferences from an inconsistent knowledge base nonetheless,
but in order to do so we need some method for dealing with inconsistency to
prevent us from deriving nonsense. Pinkas [1991] devised penalty logic to address
this problem. Penalty logic augments the formulas in a knowledge base with
weights, which indicate the cost of falsifying the associated formula.

Following Dupin de Saint-Cyr, Lang, and Schiex [1994], a penalty knowledge
base is a finite multiset of weighted propositional formulas (ϕ,w) where w ∈
R+ ∪ {+∞}. The cost of a model M given a penalty knowledge base PK is the
sum of the penalties of the formulas in PK which M violates,

kPK (M) =
∑

(ϕ,w)∈PK
M |=¬ϕ

w,

and a preferred interpretation is a minimum-cost model.
For example, suppose I am knocked unconscious in a cycling accident and

when I awake I see what appear to be majestic snow-capped mountains. I have
as a knowledge base PK = {(h, 10), (m, 1), (h→ ¬m,+∞)}, where h stands for
“I am in Holland” and m stands for “I see mountains”. Having left my office in
Amsterdam by bike, I have a strong belief that I am still in Holland, and I have
an inviolable belief that there are no mountains there. I believe I see mountains,
but realize that my vision might be unreliable due to the accident. According to
the penalties in my knowledge base, the model with minimal cost is {h}, which
says that I am in Holland, but I am not really seeing mountains.

In addition to minimal-cost models, we might be interested in minimal-cost
subtheories—that is, minimal-cost consistent subsets of PK —or even minimal-
cost subtheories consistent with some given formula ϕ. The cost function kPK

induces a total order ≤PK on the subsets of PK . Using this, we can define a
nonmonotonic inference relation |∼cPK , where ϕ |∼cPK ψ iff for every S ⊆ PK

2.3. Related Languages 17

J

Jb > Jw

P

Pb > Pw

S

Jb ∧ Pb Sr > Sw

Jw ∧ Pb Sw > Sr

Jb ∧ Pw Sw > Sr

Jw ∧ Pw Sr > Sw

(a) A CP-net.

Jw ∧ Pw ∧ Sw

Jw ∧ Pw ∧ Sr

Jw ∧ Pb ∧ Sr Jb ∧ Pw ∧ Sr

Jw ∧ Pb ∧ SwJb ∧ Pw ∧ Sw

Jb ∧ Pb ∧ Sw

Jb ∧ Pb ∧ Sr

(b) The induced preference order.

Figure 2.1: What to wear?

18 Chapter 2. Languages

which is ≤PK -maximal among the ϕ-consistent subtheories of PK , S ∪ {ϕ} |= ψ.
Returning to the example, it is easy to see that the minimal-cost h-consistent
subtheory is {(h, 10), (h → ¬m,+∞)}. (However, in the general case, deciding
whether ϕ |∼cPK ψ is ∆p

2-complete [Cayrol, Lagasquie-Schiex, and Schiex, 1998].)
There is a simple translation between penalty knowledge bases and sum-

aggregated goalbases: A penalty knowledge base PK = {(ϕ1, w1), . . . , (ϕk, wk)}
may be translated into a goalbase G = {(¬ϕ1,−w1), . . . , (¬ϕk,−wk)}; having
done that, it will be the case that kPK (M) = −uG,Σ(M) for all models M .

2.3.3 Weighted and Distance-Based Logics for
Cardinal Disutility

Lafage and Lang [2000] introduce a framework for cardinal preferences using
what they call weighted logics. A preference profile 〈P,K〉 is a preference base
P (in our terms, a goalbase) and a consistent set of formulas K called integrity
constraints. Worlds (models) are considered possible if they satisfy all of the
integrity constraints (w |= K); the set of possible worlds is denoted by Mod(K).
An individual’s preference ordering over possible worlds is induced by a disutility
function disuP : Mod(K) → [0,+∞] such that disuP (w) = ∗{αi | w |= ¬ϕi},
where ∗ : [0,+∞] × [0,+∞] → [0,+∞] is any operation which is commutative,
nondecreasing, associative, and for which 0 is an additive identity (for all a, a∗0 =
a). The collective disutility function disuP for a collection of individual preference
bases (P1, . . . , Pn) is disuP (w) = �ni=1 disuPi

(w), where � : [0,+∞]n → [0,+∞] is
any operation which is nondecreasing in each argument and commutative. Each
pair of operators 〈∗, �〉 defines a weighted logic. Penalty logic is a special case of
this framework, which results from setting ∗ = +.

Lafage and Lang [2000] also define an alternative measure of disutility based
on distances. A distance d : Ω× Ω→ N (also known as a metric) is a mapping
which is nonnegative (d(w,w′) ≥ 0), identifies indiscernibles (d(w,w′) = 0 iff
w = w′), is symmetric (d(w,w′) = d(w′, w)), and satisfies the triangle inequality
(d(w,w′′) ≤ d(w,w′) +d(w′, w′′)). Here the w are considered to be possible worlds.
Further, d is extended to cover the distance between a world and a propositional
formula, as well as between two formulas:

d(w,ϕ) = min
w∈Mod(ϕ)

d(w,w′) d(ϕ, ψ) = min
w|=ϕ
w′|=ψ

d(w,w′)

Finally, the distance between a possible world w and a set of (unweighted) goals
G is the distance from w to each ϕ ∈ G, aggregated by ∗,

d(w,G) = ∗
ϕ∈G

d(w,ϕ)

which we identify with disuG(w). Collective disutility is aggregated as it was with
weighted goals. Lafage and Lang suggest using the Hamming distance between

2.3. Related Languages 19

worlds for the metric d. (We consider the consequences of this with regard to
committee elections in Section 7.3.2.)

2.3.4 Propositional Languages for Ordinal Preferences

Coste-Marquis, Lang, Liberatore, and Marquis [2004] consider the use of several
different propositional preference representation languages for generating prefer-
ence orderings, aiming to find ones which are more succinct than explicitly listing
M ≥M ′ for each such pair of alternatives. These languages do not originate with
Coste-Marquis et al.—for their sources, see [Coste-Marquis et al., 2004]—but are
presented there in a uniform fashion for the purpose of comparing their expressivity
and succinctness. We enumerate and describe these languages here. All languages
mentioned here are distinct; we do not provide examples of their use here, due to
their number.

Rpenalties The preference relation Rpenalties is the one induced by a penalty
goalbase, as described in Section 2.3.2.

RH The preference relation RH is based on the (weighted) Hamming distance
between models. The Hamming distance between two models M and M ′ is the
number of variables which would need to have their values negated to convert M
into M ′, and the distance between a model M and a formula ϕ is the minimum
distance between M and any M ′ such that M ′ |= ϕ:

dH(M,ϕ) = min
M ′|=ϕ

dH(M,M ′).

From there, we can extend the notion of distance to compare models with goalbases,
so that

dH(M,G) =
∑

(ϕ,w)∈G

w · dH(M,ϕ),

which induces an ordering �H
G where M �H

G M
′ iff dH(M,G) ≥ dH(M ′, G). (Notice

that the preference ordering runs in the direction opposite to that of the distance
ordering.)

Coste-Marquis et al. define three preference orderings which treat the weights
of goals as priorities, rather than as values where the satisfaction of one goal may
compensate for the violation of another. (That is, goals are not fungible: no
amount of satisfied goals with priority 2 will compensate for a single violated goal
with priority 1.)

Rbestout
prio The best-out ordering Rbestout

prio is defined by

rG(M) = min
(ϕ,w)∈G
M 6|=ϕ

w

20 Chapter 2. Languages

and so M �bo
G M ′ iff rG(M) ≥ rG(M ′).

Rdiscrimin
prio The discrimin ordering Rdiscrimin

prio is defined by

discr+
G(M,M ′) = {ϕ | (ϕ,w) ∈ G,M |= ϕ,M ′ 6|= ϕ}

discrG(M,M ′) = discr+
G(M,M ′) ∪ discr+

G(M ′,M)

so that M �discrimin
G M ′ iff

min{w | (ϕ,w) ∈ G,ϕ ∈ discr+
G(M,M ′)}

< min{w | (ϕ,w) ∈ G,ϕ ∈ discr+
G(M ′,M)}

and M �discrimin
G M ′ iff M �discrimin

G M ′ or discrG(M,M ′) = ∅.

Rleximin
prio The leximin ordering Rleximin

prio is defined by

dk(M) = |{(ϕ,w) ∈ G |M |= ϕ and w = k}|

so that M �leximin
G M ′ iff there exists a k such that dk(M) > dk(M

′) and for all
j < k, dj(M) = dj(M

′); and M �leximin
G M ′ iff M �leximin

G M ′ or dk(M) = dk(M
′)

for some k.

Coste-Marquis et al. also define two preference orderings based on conditional
logics. Here, each goal ϕ has a context χ. A conditional goal χ : ϕ is satisfied by
an ordering > iff the set of >-maximal models where χ holds are a subset of those
models where ϕ holds; a set of conditional goals is satisfied by > when all of its
members are.

RS
cond The “standard” conditional preference relation RS

cond is defined as
M �cond,S

G M ′ iff every ordering > which satisfies G has M >M ′.

RZ
cond The Z-ranking preference relation RZ

cond is much more fine-grained than
RS

cond, but also much more complex due to its procedural definition. In addition to
a set of conditional goals G, we also have a set of hard constraints K. A conditional
goal ϕ : ψ is tolerated by a set of conditional goals {ϕ1 : ψ1, . . . , ϕk : ψk} and set
of hard constraints K iff ϕ ∧ ψ ∧

∧k
i=1(ϕi → ψi) ∧

∧
K is satisfiable. Then, we

build a partition R1, . . . , Rj of G as in Figure 2.2.
Use the Ri to define a rank function where rank(ϕ : ψ) = i when ϕ : ψ ∈ Ri.

Let G′ = {(ϕ → ψ,maxrank − rank(ϕ : ψ) + 1) | ϕ : ψ ∈ G}. Then, define
M �cond,Z

G M ′ iff M �bo
G′ M

′.

Finally, Coste-Marquis et al. introduce a preference ordering for ceteris paribus
preferences:

2.3. Related Languages 21

k := 0
R := G
repeat
k := k + 1
Rk := ∅
for all ϕ : ψ ∈ R do

if ϕ : ψ is tolerated by R \ {ϕ : ψ} then
Rk := Rk ∪ {ϕ : ψ}
R := R \ {ϕ : ψ}

end if
end for

until R = ∅
maxrank := k

Figure 2.2: Algorithm for partitioning G for use in determining RZ
cond.

Rcp If ϕ, ψ, χ are formulas and V ⊇ Var(ψ) ∪ Var(χ) is a set of variables , then
the ceteris paribus desire ϕ : ψ > χ[V] means that given ϕ, ψ ∧ ¬χ is preferred to
¬ψ ∧χ, where the values of variables not in V are considered irrelevant. Similarly,
indifference between ψ∧¬χ and ¬ψ∧χ given ψ is indicated by ϕ : ψ ∼ χ[V]. The
set of preference desires is denoted by DP , the set of indifference desires by DI , and
a ceteris paribus goalbase G = DP ∪DI . A single desire D = ϕ : ψ > χ[V] induces
a preference order >D where for models M,M ′, M >D M ′ iff M |= ϕ ∧ ψ ∧ ¬χ,
M ′ |= ϕ ∧ ¬ψ ∧ χ, and M,M ′ agree on PS \ V ; the same conditions hold for
indifference desires and ∼D. The ordering �cp

G is defined so that M �cp
G M ′ iff

there is a finite chain of models M = M0,M1, . . . ,Mk−1,Mk = M ′ such that for
each 0 ≤ i < k, there is some desire D ∈ G for which Mi >D Mi+1 or Mi ∼D Mi+1.

Lang [2004] additionally defines Rbasic, R⊆, Rcard, Rwg, and Rd:

Rbasic simply distinguishes states which satisfy a single goal from states which
do not: G = {ϕ} and models M,M ′ are such that M �basic

G M iff M |= ϕ and
M ′ 6|= ϕ. Hence Rbasic is very limited, permitting the representation of dichotomous
preferences only.

R⊆ refines Rbasic: G = {ϕ1, . . . , ϕk} and models M,M ′ are such that M �⊆G M ′

iff {ϕi ∈ G | M |= ϕi} ⊇ {ϕi ∈ G | M ′ |= ϕi}. R⊆ is the Pareto ordering on
states; �⊆G-maximal states are ones where no further goals may be satisfied.

Rcard additionally counts the satisfied goals, but otherwise treats them inter-
changeably: G = {ϕ1, . . . , ϕk} and models M,M ′ are such that M �card

G M ′ iff

22 Chapter 2. Languages

|{ϕi ∈ G |M |= ϕi}| ≥ |{ϕi ∈ G |M ′ |= ϕi}|. Hence, Rcard produces a total order,
while R⊆ will in many cases be partial.

Rwg is a further generalization of weighted goal languages to three aggregators,
F2 which aggregates the weights of satisfied goals, F3 which aggregates the weights
of unsatisfied goals, and F1 which aggregates the outputs of F2 and F3. This
gives us

uF1,F2,F3

G (X) = F1(F2(α | (ϕ, α) ∈ G,X |= ϕ), F3(α | (ϕ, α) ∈ G,X 6|= ϕ))

in symbols.5 When considered this way, when F1 is the projection function for its
second argument (∀α, β, F1(α, β) = β), F2 is arbitrary, and F3 = +, we get penalty
logic; when F1 is the projection function for its first argument, F2 ∈ {+,max},
and F3 is arbitrary, we get the sum- and max-aggregated goalbase languages
considered in the present work. The induced ordering �wg

G is simply the natural
ordering on the utilities of the states as determined by G.

Rd The relation Rd is defined similarly to the distance-based measure given
by Lafage and Lang [2000]. Let d be a pseudo-distance metric. (The difference
between a distance metric and a pseudo-distance metric is that a pseudo-distance
metric need not respect the triangle inequality.) The distance between two
models d(M,M ′) is as above, as is the distance between a model and a formula
d(M,ϕ). Rather than computing disutilities as Lafage and Lang [2000] do, however,
Lang computes utilities—given a set of formulas G, the utility of a model M is
−d(M,G)—and defines �d

G,d as the natural ordering of models M induced by
−d(M,G).

Note that for both Rwg and Rd, a cardinal preference structure underlies the
ordinal one.

These orderings show the great diversity of ways in which ordinal preferences
may be represented, and especially the versatility of goalbases for inducing orders.
The investigations which we carry out in Chapters 3–5 regarding the expressivity,
succinctness, and complexity of goalbase languages for representing cardinal utility
could be repeated for any of the ordinal languages mentioned here.

5This differs in two ways from [Lang, 2004, Section 3.3.2], which has

uF1,F2,F3
G (X) = F1(F2({α | (ϕ, α) ∈ G,X |= ϕ}, F3({α | (ϕ, α) ∈ G,X 6|= ϕ})))

instead. In the main text, we do not collect weights as sets, in order to prevent the unwanted
disappearance of duplicate weights. (For a discussion of this, see also p. 12, footnote 2.) The
second difference is subtle: This way, F2 has the value of F3 as one of its arguments, whereas in
our main text F2 and F3 are computed independently. Likewise, we could make the output of
F2 an input for F3 if we wanted the aggregated value of the unsatisfied formulas to depend on
the aggregated value of the satisfied formulas. Ultimately this difference matters only if we wish
to take both satisfied and unsatisfied goals into account simultaneously.

2.3. Related Languages 23

2.3.5 Weighted Description Logics

Ragone, Noia, Donini, Sciascio, and Wellman [2009a,b] introduce a framework
similar to our own, except that formulas from description logic are used instead
of those from propositional logic. Description logics are knowledge representation
languages which provide ways to reason about concepts, roles, and individuals.
Concepts are sets of objects, individuals are particular named objects, and roles
are relations among concepts. E.g., Sandwich is a concept, joelsLunch is an
individual, and hasCheese is a role. Description logics provide operators for
intersection and union of concepts: Sandwich u Soup is the (presumably empty)
concept which contains all objects which are both soups and sandwiches at the
same time, while Sandwich t Soup is the concept containing anything which is
either a soup or a sandwich. Role restrictions may be quantified:

Sandwich u ∃hasCheese.>

is the concept of a sandwich with cheese, and similarly,

Sandwich u ∃hasCheese.> u ∀hasCheese.Münster

is the concept containing the sandwiches with Münster on them. One concept may
subsume another: BlueCheese v Cheese. An ontology T is a set of description
logic formulas indicating how concepts are related. (For more information on
description logics, see [Baader, Calvanese, McGuinness, Nardi, and Patel-Schneider,
2007].)

Ragone et al. form preference sets P of weighted concepts 〈P, v〉, where the
value of a model A is ∑

{v | 〈P, v〉 ∈ P and A vT P}.

That is, every weighted concept which subsumes the concept represented by the
model A (according to the ontology T) contributes its weight to the overall utility.

Ragone et al. [2009a, Theorem 2] consider a problem analogous to our min-
util decision problem (cf. Definition 5.3.2 and Section 5.5), and determine
that the complexity of finding minimal models is the same as the complexity of
deciding satisfiability for the particular description logic in use. (In some cases,
the complexity will go far beyond anything we consider here, since there are
description logics for which sat is, e.g., PSPACE-complete.)

2.3.6 Boolean Games

A Boolean game is one in which each player has a goal, specified as a propositional
formula, and a subset of PS over which he has exclusive control. (For example, a
player might have p ∨ (q ∧ r) as his goal, but control the values of the variables
q and s.) A player receives a payoff of 1 for satisfying his goal, and 0 otherwise.

24 Chapter 2. Languages

Bonzon, Lagasquie-Schiex, Lang, and Zanuttini [2009] propose an extension called
L-Boolean games, in which the payoff for each player is determined by some
compact preference representation language L; Bonzon et al. consider CP-nets
and prioritized goalbases using the discrimin, leximin, and best-out relations as
candidates for L. Independently, Mavronicolas, Monien, and Wagner [2007] extend
Boolean games to use weighted formulas; and Dunne, van der Hoek, Kraus, and
Wooldridge [2008] extend Boolean games to a cooperative setting.

2.3.7 Valued Constraint Satisfaction Problems

Related to penalty logic and other propositional ordinal representations are valued
constraint satisfaction problems (VCSPs). A constraint satisfaction problem (CSP)
is a tuple 〈V,D,C〉, where V = {x1, . . . , xn} is a set of variables, D = {d1, . . . , dn}
a set of domains of values for the variables, and C a set of constraints. A constraint
c is a pair 〈Vc, Rc〉, where Vc ⊆ V and Rc ⊆

∏
xi∈Vc

di. A valuation function
v : V →

⋃
D maps each variable xi to an element of its domain di. A constraint

〈{x1, . . . , xk}, R〉 is satisfied by a valuation v when (v(x1), . . . , v(xk)) ∈ R. (A
CSP where all variables have binary domains amounts to specifying constraints as
cubes.) Interesting CSPs are ones which are overconstrained, and in such cases it
is NP-hard to decide whether any given subset of constraints is satisfiable.

As defined by Bistarelli, Montanari, Rossi, Schiex, Verfaillie, and Fargier
[1999], a VCSP is a CSP augmented with a valuation structure 〈E,~,�〉, where �
totally orders the set E, there is a �-minimum element > ∈ E and a �-maximum
element ⊥ ∈ E, and ~ is an associative, commutative binary operator on E which
satisfies identity (∀a ∈ E, a ~ ⊥ = a), monotonicity (∀a, b, c ∈ E, a � b implies
(a~ c) � (b~ c)), and has an absorbing element (∀a ∈ E, a~> = >). That is,
the valuation structure is a totally ordered commutative monoid with a monotonic
operator. Each constraint c is then labeled with an element of E, which indicates
the importance of violating c.

So, a VCSP P = 〈V,D,C, S, ϕ〉, where S = 〈E,~,�〉 is a valuation structure
and the function ϕ : C → E maps constraints to their valuations. The overall
valuation V of the VCSP P given an assignment A for some subset of variables
W ⊆ V is

VP(A) = ~
c∈C, Vc⊆W
A violates c

ϕ(c).

Because ~ is an operator on E, VP(A) will also be some element of E. Since �
totally orders E, VP induces a total ordering on the allocations A. The valuation
VP(A) indicates the overall quality of the allocation A according to �.

VCSPs subsume penalty goalbases restricted to cubes (let E = N ∪ {+∞},
~ = +, ⊥ = 0, > = +∞, and � = >) as well as leximin goalbases restricted to
cubes (let E = {0, 1}∗ ∪ {>}, ~ = ∪, ⊥ = ∅, > = the symbol >, and � = the
lexicographical ordering on binary strings).

2.3. Related Languages 25

2.3.8 Generalized Additive Independence

A utility function u over PS is generalized additive decomposable over a given
collection of subsets P1, . . . , Pk which covers PS if there are ui : 2Pi → R such
that for all states X ⊆ PS,

u(X) =
k∑
i=1

ui(X ∩ Pi).

Clearly, every u is GA-decomposable over the trivial cover P1 = PS—just
let u1 = u. When u is GA-decomposable over the singleton cover {p1}, . . . , {pn},
then u is additive. More interesting cases are where a utility function may be
decomposed into the sums of utility functions over several (possibly overlapping)
nonsingleton subsets of PS. For example, suppose that PS = {a, b, c, d}. Then
the following complexly-structured utility function u is GA-decomposable over
{a, b}, {a, c, d}, {b} using the following three utility functions

u{a,b}(X) =

3 if X = {a, b}
1 if X = {a}
0 otherwise

u{a,c,d}(X) =

{
1 if X = {a, c, d}
0 otherwise

u{b}(X) =

{
−2 if X = {b}

2 otherwise

which together sum to the value of u:

u
{a
,b
}

u
{a
,c
,d
}

u
{b
}

u
{a
,b
}

u
{a
,c
,d
}

u
{b
}

u(∅) = 0 + 0 + 2 = 2 u({d}) = 0 + 0 + 2 = 2
u({a}) = 1 + 0 + 2 = 3 u({a, d}) = 1 + 0 + 2 = 3
u({b}) = 0 + 0 − 2 =−2 u({b, d}) = 0 + 0 − 2 =−2
u({a, b}) = 3 + 0 − 2 = 1 u({a, b, d}) = 3 + 0 − 2 = 1
u({c}) = 0 + 0 + 2 = 2 u({c, d}) = 0 + 0 + 2 = 2
u({a, c}) = 1 + 0 + 2 = 3 u({a, c, d}) = 1 + 1 + 2 = 4
u({b, c}) = 0 + 0 − 2 =−2 u({b, c, d}) = 0 + 0 − 2 =−2
u({a, b, c}) = 3 + 0 − 2 = 1 u({a, b, c, d}) = 3 + 1 − 2 = 2

Here, decomposing u into u{a,b}, u{a,c,d}, and u{b} reveals some structure in u which
is not apparent on the surface, and also provides some space savings over the
explicit representation of u. Note, however, that the utility functions which form
a GA-decomposition may still be arbitrarily complex over their restricted domains.
GA-decomposition may also be done for utility functions over variables with more
than just binary domains, though this requires a more general definition than we
have given here; for that, see [Gonzales, Perny, and Queiroz, 2006, Definition 1].

26 Chapter 2. Languages

GA-decomposition was introduced by Fishburn [1970] and has more recently
been used by Gonzales and Perny [2004] and Gonzales et al. [2006] for constructing
GAI-nets, and by Brafman, Domshlak, and Kogan [2004] for eliciting preferences
using GA-decomposable CP- and TCP-nets; related notions are the conditional
additive independence of Bacchus and Grove [1995] and conditional expected
utility independence of La Mura and Shoham [1999].

All utility functions representable in L(forms,R,Σ) have a natural (though
possibly suboptimal) GA-decomposition, namely the ones suggested by the goal-
bases which generates it: Given a goalbase G, the utility function uG,Σ is GA-
decomposable over Var(ϕ1), . . . ,Var(ϕk) for (ϕi, wi) ∈ G, using the u{(ϕi,wi)},Σ as
the component utility functions.

2.3.9 Coalitional Games

A coalitional game is one in which a group of agents receives some payoff for joint
action. The payoff received depends on which agents join the coalition. Formally,
a coalitional game with transferable utility 〈N, v〉 is a set of agents N and a
valuation function v : S ⊆ N → R which indicates the value of any coalition S to
its members. The game specifies only how much utility a coalition receives, not
how its members should divide it; this is what distinguishes a coalitional game
with transferable utility from one without.

Ieong and Shoham [2005] introduce marginal contribution nets (MC-nets) as a
way of modeling coalitional games with transferable utility. An MC-net is a set of
rules of the form ϕ→ w, where ϕ is a cube and w ∈ R. A rule ϕ→ w is said to
apply to a coalition S iff all of the positive literals in ϕ and none of the negative
literals in ϕ are members of S; the value of a coalition S is the sum of weights of
all rules which apply to S. It is easy to see that the language of MC-nets is exactly
L(cubes,R,Σ) in disguise. Elkind, Goldberg, Goldberg, and Wooldridge [2009]
further generalize basic MC-nets to general MC-nets, by additionally permitting
arbitrary Boolean connectives in their rules. See Section 4.3 for further discussion
of MC-nets.

2.3.10 Bidding Languages

Auctions are a method of allocating items and costs to bidders. Bidders in auctions
need some way of expressing their valuations to the auctioneer; the method by
which they do this is called a bidding language. Any bidding language may be
thought of as a scheme for representing cardinal preferences over sets of goods.
Bidding languages for traditional single-item auctions tend to be simple, as in
single-item auctions it is only possible to express preferences which are modular.
(When the left shoe is auctioned separately from the right shoe in a single-item
auction, there is no way to tell the auctioneer through your bids that the value you
place on one shoe depends on whether you win the auction for the other shoe.)

2.3. Related Languages 27

Combinatorial auctions are a type of auction in which all items are sold simul-
taneously, rather than sequentially as in traditional auctions. (For a discussion of
combinatorial auctions, see Section 6.2.) Because combinatorial auctions simulta-
neously auction many items, the possibility arises for bidders to express preferences
over bundles of items. The simplest bidding language, in which a bidder lists every
possible combination of goods along with the price he is willing to pay for each
one, clearly permits the full range of expression (limited only by the divisibility of
the currency being used) but is too verbose to be used for any but the smallest
auctions. A bidder wishing to bid in a ten-item combinatorial auction would need
to list his price for 1023 bundles (the 210 − 1 nonempty subsets of ten items),
which is surely beyond the desire, if not the capacity of any human bidder; and
an auction with a hundred items would overwhelm even a computerized bidder
were it forced to place explicit bids.

We might try to improve the explicit form somewhat by adopting the convention
that any bundle which has no listed value is assumed to be worth nothing to
the bidder; however, this will be cold comfort for bidders who place a nonzero
value for every single-item bundle, as it will save them no effort at all. Clearly,
we need a less näıve approach, one which saves space by taking advantage of the
internal structure of bidders’ preferences. Rather than assuming that the value
of an unlisted bundle is zero, we might instead assume that it has the value of
its greatest-valued subset. This bidding language, known as the XOR language,
is demonstrably better than the explicit form. Further space efficiency may be
gained by assigning not the value of its single highest-valued subset to a bundle,
but rather by taking the greatest sum of values of subsets which partition it.
This language, known as the OR language, is even more space-efficient than the
XOR language, but cannot express all utility functions, and moreover computing
with it is more difficult than with the XOR language. Further variations of these
languages have been studied—for example, the OR∗ language, which is the OR
language with dummy items, and the OR-of-XORs language, which permits XOR
bids to be ORed together—and are discussed in detail by Nisan [2006]. We discuss
the family of OR/XOR languages further in Section 6.3.1 and examine their
succinctness with respect to our own goalbase languages in Section 6.3.3.

In addition to the OR/XOR family of bidding languages, some logic-based
bidding languages have been proposed. Hoos and Boutilier [2000] introduce what
they call CNF bids, which are weighted positive formulas in conjunctive normal
form, as well as extended CNF bids, where a k-of operator is introduced into the
language. (The formula k-of(S) is satisfied by any subset S ′ ⊆ S where |S ′| ≥ k.)
Hoos and Boutilier’s CNF bidding language is L(CNF,R+,Σ) in our terms.

Boutilier and Hoos [2001] introduce generalized logical bids (GLBs), formed as
follows: 〈p, w〉 is a bid for any good p ∈ PS and weight w ∈ R+ ∪ {0}, and if b1

and b2 are bids, then 〈b1 ∧ b2, w〉, 〈b1 ∨ b2, w〉, and 〈b1 ⊕ b2, w〉 are bids also. Let
Φ(b) be the formula formed by stripping all weights from a bid b. A bid will be
satisfied or not, depending on the allocation of items. Satisfaction conditions are

28 Chapter 2. Languages

defined recursively:

σ(Φ(p), A) =

{
1 if A allocates p to the bidder

0 otherwise

σ(Φ(ϕ ∧ ψ), A) = min(σ(ϕ,A), σ(ψ,A))

σ(Φ(ϕ ∨ ψ), A) = max(σ(ϕ,A), σ(ψ,A))

σ(Φ(ϕ⊕ ψ), A) = max(σ(ϕ,A), σ(ψ,A))

The value of a bid given an allocation is also defined recursively: Let Ψ(b, A) be
the value of bid b given allocation A. Then:

Ψ(〈p, w〉) = w · σ(p,A),

Ψ(〈b1 ∧ b2, w〉) = Ψ(b1, A) + Ψ(b2, A) + w · σ(Φ(b1) ∧ Φ(b2), A),

Ψ(〈b1 ∨ b2, w〉) = Ψ(b1, A) + Ψ(b2, A) + w · σ(Φ(b1) ∨ Φ(b2), A),

Ψ(〈b1 ⊕ b2, w〉) = max(Ψ(b1, A),Ψ(b2, A)) + w · σ(Φ(b1) ∨ Φ(b2), A).

The ∨ and ⊕ connective differ not in their truth conditions, but in how they
combine the values of “inner” bids, which is why Boutilier and Hoos call ⊕
“valuative XOR” (VXOR). The GLB language does not contain a logical XOR
connective, or any other nonmonotone connective.

To see how GLBs work, consider the bid 〈〈a, 1〉 ∧ 〈b, 1〉, 2〉. This bid expresses
that the bundles {a} and {b} are worth 1, while the bundle {a, b} is worth 4 (1 each
for a and b, plus an extra 2 for their combination). Similarly, 〈〈a, 1〉 ∨ 〈b, 1〉, 2〉
gives 3 for {a} and {b}, and 4 for both, while 〈〈a, 1〉 ⊕ 〈b, 1〉, 2〉 gives 3 for each of
{a}, {b}, and {a, b}.

For a further discussion of auctions and bidding languages, see Sections 6.2
and 6.3.

Part I

Theory

29

Chapter 3

Expressivity

3.1 Introduction

An important feature of any preference representation language is the range of
preferences which can be represented in it. This available range is known as
the expressivity of the language, and this chapter is devoted to determining the
expressivity of numerous goalbase languages.

From the point of view of the theorist, we want to know how expressive
goalbase languages are, both for their own sake and because these expressivity
results are necessary for proving succinctness results in Chapter 4. As a user of
goalbase languages, knowing the expressivity of goalbase languages can help us
choose the language which is best suited for our application. Can our language of
choice represent all functions belonging to a given class of utility functions which
interests us? Not all languages are equally expressive and not all applications
require full expressivity. Excess expressivity is often undesirable, because highly
expressive languages tend to be computationally more demanding to reason about.

We are interested in correspondence results between languages and classes of
functions. For instance, a very simple result which we present shows that the
language we obtain by restricting formulas to literals and by using summation to
aggregate weights can express all modular utility functions, and only those.

An interesting property closely related to expressivity is uniqueness of repre-
sentation. A language has the uniqueness property with respect to a given class of
utility functions if it has no more than one way of representing any function from
that class. This is an interesting property because it suggests that the language
in question is parsimonious in its expressivity. Syntactically rich languages often
lack the uniqueness property. Non-uniqueness may be considered wasteful or
useful, depending on the intended application—but from a theoretical point of
view uniqueness is a property which greatly simplifies proofs (especially those in
Chapter 4).

31

32 Chapter 3. Expressivity

This chapter is divided into two main parts, the first covering the expressivity
of languages using the sum aggregator, the second covering those using the max
aggregator. Within each section, we present some useful goalbase transformations,
followed by the expressivity results themselves. Most of the expressivity results
are correspondences between goalbase languages and classes of utility functions.
Our expressivity results for sum languages are summarized in Section 3.4.4 and
Figure 3.1, and in Section 3.5.4 and Figure 3.2 for max languages.

3.2 Preliminaries

We note here some properties of utility functions to which we make frequent
reference:

Definition 3.2.1 (Properties of Utility Functions). Suppose that u is a utility
function. Then:

• u is normalized iff u(∅) = 0.

• u is nonnegative iff u(X) ≥ 0 for all X.

• u is monotone iff u(X) ≥ u(Y) for all X ⊇ Y .

• u is submodular iff u(X ∪ Y) ≤ u(X) + u(Y)− u(X ∩ Y) for all X, Y ⊆ PS.

• u is supermodular iff u(X∪Y) ≥ u(X)+u(Y)−u(X∩Y) for all X, Y ⊆ PS.

• u is modular iff u is both sub- and supermodular.

• u is subadditive iff u(X ∪ Y) ≤ u(X) + u(Y) for all X ∩ Y = ∅, X, Y ⊆ PS.

• u is superadditive iff u(X∪Y) ≥ u(X)+u(Y) for all X∩Y = ∅, X, Y ⊆ PS.

• u is additive iff u is both sub- and superadditive.

• u is a unit-demand valuation iff u(X) = maxa∈X u({a}) and u is normalized.

• u is a simple unit-demand valuation iff u(X) = 1 for all X 6= ∅ and u is
normalized.

For further examples of utility function properties, see [Nisan, 2006] and
[Lehmann, Lehmann, and Nisan, 2006a]. Note that modularity with normaliza-
tion is equivalent to additivity, and that (super-) submodularity together with
normalization implies (super-) subadditivity.

Additionally we, define the property k-additivity:

3.2. Preliminaries 33

Definition 3.2.2. Let PS(k) be the set of all subsets of PS with at most k
elements. A utility function u is k-additive if there exists a mapping m : PS(k)→
R such that

u(X) =
∑
Y⊆X

Y ∈PS(k)

m(Y)

for each set X ⊆ PS.

The k-additive functions play an important role in fuzzy measure theory [Gra-
bisch, 1997] as well as in combinatorial auctions [Conitzer, Sandholm, and Santi,
2005] and distributed multiagent resource allocation [Chevaleyre, Endriss, Estivie,
and Maudet, 2008a]. For example, if the variables in PS are used to model whether
an agent owns certain resources, then k-additive utility functions naturally model
situations where synergies among different resources are restricted to bundles of
at most k elements.

The k-additivity property is a generalization of another property of utility
functions, namely modularity. The 1-additive utility functions are exactly the
modular ones: For a utility function to be modular, the value it assigns to each
good must be independent of the bundle it appears in, and 1-additivity enforces
just that. Modular utility functions are interesting precisely because they are very
simple and have limited expressive power. As a result, they are frequently used in
applications, e.g., in work on modeling negotiation between autonomous software
agents [Rosenschein and Zlotkin, 1994].

Supermodularity (and its counterpart, submodularity) are widely used concepts
in the economics literature [Moulin, 1988]. The traditional assumption in economics
is that goods have decreasing marginal utility—I will be willing to pay less for the
(n+1)th ice cream cone than the nth—which is to say that buyers’ utility functions
are submodular. Similarly, nonnegativity, normalization, and monotonicity are
nearly universally assumed by economists. Unit-demand valuations are often
encountered when dealing with items where only a single one is necessary to fulfil
its purpose. (For example, the typical person has unit-demand valuations for
items like stoves and mobile phones.)

Goalbases may sometimes contain formulas which fail to contribute value to
the goalbase in any state. We call these formulas superfluous.

Definition 3.2.3 (Superfluity). A weighted formula (ϕ,w) ∈ G is superfluous
under aggregator F if G ≡F G \ {(ϕ,w)}.

It is easy to see that for sum languages, the only superfluous formulas are
those equivalent to ⊥ or having zero weight; for every other formula, there would
be at least one state which would change in value if it were removed. For max
languages, the picture is more complex: While contradictions are still superfluous,
it is possible for satisfiable formulas with nonzero weight to be superfluous and
for formulas with zero weight not to be. We take up the issue of superfluity for
max languages in detail in Section 3.5.1.

34 Chapter 3. Expressivity

Some goalbase languages have a unique way of expressing a given utility
function, while others allow for several alternative representations. Here we make
this notion of uniqueness precise:

Definition 3.2.4 (Unique Representations). A utility function u is represented
in a language L if there exists a goalbase G ∈ L such that u = uG. A utility
function u is uniquely represented (modulo formula equivalence) in a language
L if, given a set of formulas Φ containing one representative formula for each
formula equivalence class in L (except ⊥), there is a unique goalbase G such
that For(G) ⊆ Φ, uG = u, and G contains no superfluous formulas. A language
L is said to have unique representations if every u represented in L is uniquely
represented.

Any language which has unique representations can be thought of as minimal
in the sense that any further restriction on permissible weighted formulas will lead
to a reduction in expressivity. Effectively this means that the set of representatives
of formula equivalence classes forms a minimal basis for the vector space in which
the goalbases live. We discuss uniqueness for sum languages in Section 3.4.2, and
for max languages in Theorem 4.5.3.

3.3 Related Work

In broad terms, the expressivity of languages has occupied mathematicians, and
logicians in particular, for quite some time. The question of whether various
figures can be constructed using only a compass and an unmarked straightedge
was a particular favorite of the ancient Greeks, and is fundamentally a question of
language expressivity. In this vein, Gauss’ celebrated proof that a heptadecagon is
constructable can be thought of as a positive expressivity result, while Wantzel’s
proof that arbitrary angles cannot be trisected shows that additional expressivity
(e.g., substituting a marked ruler for an unmarked straightedge) is needed in order
to admit such constructions. Expressivity has been a perennial issue in logic from
early in the 20th century to the present day. “What can I say in this language?”
is a natural question for logicians, and its pursuit has been fruitful. We can point
to results concerning the expressive power of quantifier logics (e.g., that there is
no first-order formula corresponding to finiteness) and the substantial literature
on correspondences between formulas in modal logic and properties of classes
of Kripke frames (Sahlqvist’s Theorem being a particularly nice example of this
[Chagrov and Zakharyaschev, 1997, Section 10.3]).

We now move closer to the topic at hand. The expressivity of some ordinal
preference representation languages has been studied by Coste-Marquis et al. [2004,
Theorem 1]. In particular, they examine the ability of eight logic-based languages
to represent classes of preorders over finite sets of objects. All of the languages
considered consist of sets of propositional formulas which are annotated with

3.4. Expressivity of Sum Languages 35

additional information. This additional information may be a weight, a penalty,
a priority, a distance, or a context, depending on the language. Boutilier et al.
[2004] discuss CP-nets, a graph-based language for representing ordinal conditional
preferences. Only consistent preference orders (and not even all of those) are
representable using acyclic CP-nets, though more (including some intransitive
ones) are representable if dependency cycles are allowed. Often CP-nets will
produce only a preorder, with which many linear orders are compatible. For more
about CP-nets, see Section 2.3.1.

Ieong and Shoham [2005, Proposition 1] prove that MC-nets are fully expressive,
which is equivalent to one part of our Corollary 3.4.9. For a discussion of MC-nets,
see Sections 2.3.9 and 4.3.

Nisan [2006] collects numerous results on the expressivity of the OR/XOR
family of languages for representing utility functions. (These languages are
discussed in detail in Section 6.3.1.) For example, the XOR language corresponds to
the monotone utility functions, while the OR language represents all superadditive
utility functions. Several succinctness results given there also entail that particular
classes of utility functions are representable in certain OR/XOR languages.

Lehmann et al. [2006a] define a syntactic hierarchy of OR/XOR languages
which they aim to characterize. The languages defined are OS (OR of singletons),
XS (XOR of singletons), OXS (OR of XS), and XOS (XOR of OS); these are
shown to have expressivity such that

OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF,

where GS is the class of gross substitutes valuations (valuations where the demand
for an item does not decrease when the prices of other items increase), SM is the
class of submodular valuations, and CF is the class of complement-free valuations
(u(X) + u(Y) ≥ u(X ∪ Y)). Though they do not further characterize these
languages, Lehmann et al. do show that there is a large gap between GS and SM
by demonstrating that each m-item subclass of GS has measure zero in (2m − 1)-
dimensional Euclidean space, while the corresponding m-item subclass of SM has
positive measure—which implies that XOS is a much more expressive language
than OXS.

3.4 Expressivity of Sum Languages

Throughout this section, when the aggregator function is omitted from the notation,
it is indented to be Σ.

3.4.1 Goalbase Equivalences

Recall (from Definition 2.2.8) that two goalbases G and G′ are equivalent (G ≡
G′) iff they generate the same utility function (i.e., uG = uG′). The following

36 Chapter 3. Expressivity

equivalences are, for convenience, stated as they are used later in this section, and
not necessarily in their most general form.

Fact 3.4.1. Given a goalbase G, formulas ϕ, ϕ1, . . . , ϕk, ψ, χ, and weight w ∈ R,
the following equivalences hold:

G ∪ {(ϕ ∧ ¬ψ,w)} ≡ G ∪ {(ϕ,w), (ϕ ∧ ψ,−w)} (3.1)

G ∪ {(ϕ ∨ ¬ψ,w)} ≡ G ∪ {(>, w), (ϕ,w), (ϕ ∨ ψ,−w)} (3.2)

G ∪ {(ϕ ∧ (ψ ∨ χ), w)} ≡ G ∪ {(ϕ ∧ ψ,w), (ϕ ∧ χ,w), (ϕ ∧ ψ ∧ χ,−w)} (3.3)

G ∪ {(ϕ ∨ (ψ ∧ χ), w)} ≡ G ∪ {(ϕ ∨ ψ,w), (ϕ ∨ χ,w), (ϕ ∨ ψ ∨ χ,−w)} (3.4)

G ∪ {(ϕ1 ∧ . . . ∧ ϕk, w)} ≡ G ∪ {(¬ϕ1 ∨ . . . ∨ ¬ϕk,−w), (ψ,w), (¬ψ,w)} (3.5)

G ∪ {(ϕ1 ∨ . . . ∨ ϕk, w)} ≡ G ∪ {(¬ϕ1 ∧ . . . ∧ ¬ϕk,−w), (ψ,w), (¬ψ,w)} (3.6)

G ∪ {(>, w)} ≡ G ∪ {(ϕ,w), (¬ϕ,w)} (3.7)

Each of these equivalences is easily verified by considering all possible combinations
of truth values for ϕ, ψ, and χ.

3.4.2 Uniqueness

It is easy to see that many sum languages lack unique representations. Nei-
ther L(cubes,R,Σ) nor L(clauses,R,Σ), for instance, have them: The two goal-
bases {(>, 3), (p, 2)} and {(p ∧ q, 5), (p ∧ ¬q, 5), (¬p ∧ q, 3), (¬p ∧ ¬q, 3)} define
the same utility function over PS = {p, q} in L(cubes,R,Σ), while the two
goalbases {(¬p, 1)} and {(p ∨ ¬p, 1), (p,−1)} yield the same utility function in
L(clauses,R,Σ). However, two sum languages (and all of their sublanguages) do
have unique representations, namely L(pcubes,R,Σ) and L(pclauses +>,R,Σ),
which we now set out to prove.

Theorem 3.4.2. L(pcubes,R,Σ) has unique representations.

Proof. Given any utility function u, the weight of each positive cube is uniquely
determined: We must have w> = u(∅), because > is the only positive cube satisfied
by the model ∅, and furthermore wV

X = u(X)−
∑

Y⊂X w
V
Y for any nonempty

set X.

The recursive definition of the weights given in the proof of Theorem 3.4.2 can
be turned into a direct rule for computing weights by using the so-called Möbius
inversion [Rota, 1964; Grabisch, 1997]:

wV
X =

∑
Y⊆X

(−1)|X\Y | · u(Y). (3.8)

3.4. Expressivity of Sum Languages 37

As an example, consider the utility function

u(∅) = 0 u({c}) = 2

u({a}) = 1 u({a, c} = 6

u({b}) = 0 u({b, c} = 0

u({a, b}) = 0 u({a, b, c}) = 7

over the three items a, b, c. We now compute the representation of u in
L(pcubes,R,Σ) using the Möbius inversion. The pattern formed by equation (3.8)
is best seen by calculating the weight for a ∧ b ∧ c:

wa∧b∧c =− u(∅)
+ u({a}) + u({b}) + u({c})
− u({a, b})− u({a, c})− u({b, c})
+ u({a, b, c})

=− 0 + 1 + 0 + 2− 0− 6− 0 + 7 = 4

Because |{a, b, c}| = 3 is odd, the utility of odd-sized subsets of {a, b, c} is added
while the utility of even-sized subsets is subtracted. For the weights of even-length
formulas, the opposite happens:

wa∧b = + u(∅)
− u({a})− u({b})
+ u({a, b})

= + 0− 1− 0 + 0 = −1

For the remaining weights, we have

wa∧c = + u(∅)− u({a})− u({c}) + u({a, c}) = +0− 1− 2 + 6 = 3

wb∧c = + u(∅)− u({b})− u({c}) + u({b, c}) = +0− 0− 2 + 0 = −2

wa =− u(∅) + u({a}) = −0 + 1 = 1

wb =− u(∅) + u({b}) = −0 + 0 = 0

wc =− u(∅) + u({c}) = −0 + 2 = 2

wV
∅ = + u(∅) = +0 = 0

which gives us the goalbase

{(a, 1), (c, 2), (a ∧ b,−1), (a ∧ c, 3), (b ∧ c,−2), (a ∧ b ∧ c, 4)}.

Note that we omit > and b, since wV
∅ and wb turned out to be zero.

As can be seen from our example, the Möbuis inversion is not an efficient
method of calculating weights, due not only to the fact that we have 2|PS| weights
to calculate, but also because for each weight we must sum a number of terms
exponential in the length of the formula being weighted.

38 Chapter 3. Expressivity

Theorem 3.4.3. L(pclauses,R,Σ) has unique representations.

Proof. Let u be any utility function represented by positive clauses with weights
wW

X (with nonempty sets X ⊆ PS). Then for any Y ⊆ PS, u(Y) must be equal
to the sum of the weights wW

X for which X and Y have a nonempty intersection:

u(Y) =
∑

X∩Y 6=∅

wW
X

=
∑

∅⊂X⊆PS

wW
X −

∑
∅⊂X⊆PS\Y

wW
X

= u(PS)−
∑

∅⊂X⊆PS\Y

wW
X

This shows that each weight wW
X is uniquely determined: For singletons X = {p},

by setting Y = PS\{p} in the above equation, we obtain wp = u(PS)−u(PS\{p}).
For general sets X, using Y = PS \X, we then obtain

wW
X = u(PS)− u(PS \X)−

∑
∅⊂X′⊂X

wW
X′ ,

which completes the proof.

By unraveling the recursive definition of the weights given in the proof above,
we can also provide a direct rule for computing weights in L(pclauses,R,Σ), similar
to the Möbius inversion:

wW
X =

∑
Y⊆X

(−1)|X\Y |+1 · u(PS \ Y) (3.9)

Furthermore, we have the following corollary due to the fact that no positive
clause is a tautology:

Corollary 3.4.4. L(pclauses +>,R,Σ) has unique representations.

Finally, we note that having unique representations is a property which is
preserved in all sublanguages of any language having the property; hence, it
follows that many other languages not explicitly mentioned in this section, e.g.,
L(atoms,R+,Σ), also have unique representations.

While we can use the Möbius inversion for demonstrating that L(pcubes,R,Σ)
has unique representations, and a similar construct for L(pclauses,R,Σ), it is also
possible to show this by application of a more general method. The problem of
determining whether a utility function u has a unique representation in a given
language L amounts to examining the system of linear equations which describes
u in L. A language L has |L/≡| = m distinct nonequivalent formulas, and over a
set of atoms PS there are 2|PS| = n states. Each state i ∈ 2PS defines a constraint

ai1w1 + ...+ aimwm = bi

3.4. Expressivity of Sum Languages 39

where aij ∈ {0, 1}, depending on whether formula j is true in state i; and
bi = u(Xi), where Xi is the set of true atoms in state i. Taken together as matrices
Ax = b, we have:

a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn

w1

w2
...
wn

 =

b1

b2
...
bm

That is, the wi are the weights, the bi are the values of the utility function, and
the aij mark which formulas are true in which states. If n = m, i.e., if the number
of formulas in the language over PS equals the number of states over PS, then
the matrix A will be square. This makes available to us a well-known fact from
linear algebra, viz. that the determinant of the square matrix A is nonzero only
when the system has a single, unique solution [Anton, 1994, Theorem 2.3.6].

Using this, we give an alternative proof of Theorem 3.4.3:

Proof. Suppose that G contains only positive clauses and generates un, where
n = |PS|. We can write one constraint for each state except ∅, so we have 2n − 1
constraints. (The constraint for ∅ can be omitted, since all positive clauses are
false in that case.) We have the clause

∨
X for each nonempty X ⊆ PS, so

also 2n − 1 distinct nonequivalent clauses, and hence 2n − 1 variables for weights.
The coefficient matrix formed by the states and formulas will be square (2n − 1
rows and columns), so the strategy described above—proving that this matrix has
nonzero determinant—is applicable.

Enumerate the positive clauses such that the index j codes for the positive
clause ϕj =

∨
{pk | j & 2k 6= 0}, where ‘&’ stands for bitwise conjunction. E.g.,

ϕ7 = p0 ∨ p1 ∨ p2, because 7 = 20 + 21 + 22. Then, let aij = 1 if i & j 6= 0, and
aij = 0 otherwise. This sets aij = 1 iff clause j is true in state i. In other words,
each row of An is a state, and the ones in a row mark the positive clauses which
are true in that state.

Now observe that A1 =
[
1
]

and An+1 is the block matrix

An+1 =

0

An
... An

0
0 . . . 0 1 1 . . . 1

1

An
... 1
1

where 1 is a matrix of the appropriate size, with every element a 1. The additional
rows in An+1 (over An) are for states in which pn, the new variable, is true. The
middle row is the state where only pn is true, and from there down pn is true in

40 Chapter 3. Expressivity

every state. With respect to the other variables, the states in the bottom half
repeat the states in the top half. The additional columns in An+1 are for positive
clauses which contain pn. The middle column is for pn, the degenerate positive
clause formed by that variable alone, and the columns thereafter repeat the first
2n−1 − 1 columns with pn as an additional disjunct. Therefore, the upper left and
upper right blocks repeat An since no state there makes pn true; the lower left
block repeats An since no clause there contains pn; and the lower right block is all
ones because every state and clause there contains pn.

Clearly, det(A1) = 1. Suppose that det(An) 6= 0. To show that det(An+1) 6= 0,
we will twice use the following fact about determinants of block matrices:

Fact 3.4.5. For the block matrix [A B
C D],

det

[
A B
C D

]
= det(A) det(D− CA−1B)

where A is m×m, B is m× n, C is n×m and D is n× n.

Slice An+1 into blocks like so,

0

A = An
... An = B
0

0 . . . 0 1 1 . . . 1
1

C = An
... 1 = D
1

and note that A = An = A−1
n (because the Ai are symmetric about their main

diagonal). Further,

CA−1 =

[
0 . . . 0

An

]
A−1 =

[
0 . . . 0

I

]

CA−1B =

[
0 . . . 0

I

]0
... An

0

 =

0 . . . 0
... An

0

D− CA−1B = 1−

0 . . . 0
... An

0

 =

1 . . . 1
... 1− An

1

where I and 1 are an identity matrix and a matrix of ones, respectively, of the
appropriate sizes.

3.4. Expressivity of Sum Languages 41

Next, slice D− CA−1B into blocks like so,

A′ = 1 1 . . . 1 = B′

1

C′ =
... 1− An = D′

1

and then by Fact 3.4.5, we have that

det(D− CA−1B) = det(A′) det(D′ − C′A′−1B′)

= det
[
1
]

det

1− An −

1
...
1

[1] [1 . . . 1
]

= det(1− An − 1)

= det(−An)

= − det(An).

Applying Fact 3.4.5 a second time, we have that

det(An+1) = det(An) det(D− CA−1B) = − det(An)2 = −1 6= 0,

which completes the induction.
Having shown that det(An) is nonzero, it follows that the system has exactly

one solution. Therefore G is the unique positive-clause generator of un.

The next proof demonstrates the generality of the method used in the previous
proof. Here we use block matrices to show that L(pcubes −>,R,Σ) has unique
representations. (This differs from Theorem 3.4.2 in that we omit > from the
language, in order that this proof may parallel the previous one. If > were to
be included, a similar proof could be carried out by adding to the An matrices a
column for the formula > and a row for the state where all atoms are false, in
order to keep these matrices square.)

Proof. Suppose that G contains only positive cubes and generates un. Proceed as
above. Let the coefficient matrix An be such that

aij =

{
1 if i | j = i

0 otherwise

where ‘|’ is bitwise disjunction. So aij = 1 iff the ‘on’ bits in j are a subset of
the ‘on’ bits in i, which can be thought of as encoding the state description for
constraint i, where each bit corresponds to one of the n atoms; j codes for the
cube ϕj =

∧
{pk | j & 2k = 1}.

42 Chapter 3. Expressivity

Now observe that A1 =
[
1
]

and An+1 is the block matrix

An+1 =

0

An
... 0
0

0 . . . 0 1 0 . . . 0
1

An
... An

1

where 0 is a matrix of the appropriate size, with every element set to 0. Slice An+1

into blocks like so,

0

A = An
... 0 = B
0

0 . . . 0 1 0 . . . 0
1

C = An
... An = D
1

noting that

CA−1B =

0 . . . 0
... 0
0

 = 0

because B is a zero matrix, and so det(D− CA−1B) = det(D− 0) = det(D).
Next, slice D into blocks like so:

A′ = 1 0 . . . 0 = B′

1

C′ =
... An = D′

1

Applying Fact 3.4.5 to D, we have

det(D) = det(A′) det(D′ − C′A′−1B′)

= det
[
1
]

det

An −

1
...
1

[1] [0 . . . 0
]

= det(An − 0)

= det(An).

3.4. Expressivity of Sum Languages 43

Applying Fact 3.4.5 a second time, we have that

det(An+1) = det(An) det(D− CA−1B) = det(An) det(D) = det(An)2 = 1 6= 0,

which completes the induction.
Having shown that det(An) is nonzero, it follows that the system has exactly

one solution. Therefore G is the unique positive-cube generator of un.

This method can be used to investigate, for any language where the formulas
and states give a square matrix, whether that language has the uniqueness property.
Though calculating determinants appears much more involved, it is in fact easier
to carry out than proving uniqueness by giving a formula for computing weights.
Calculating the coefficient matrix is entirely mechanical and the number of different
ways that it may be decomposed into blocks is finite and small; once armed with
the general insight of how to proceed, it is not difficult to compute the needed
determinants and resolve whether a language has unique representations. (Note
that had det(An) = 0, that would have been sufficient to prove that the language
in question lacked unique representations.) In contrast, finding a formula for
weights is a matter of trial and error; while the result may be more pleasing, the
process is less so.

3.4.3 Correspondences

We now address the following question: What class of utility functions can we
model using a given language? As much as possible we will strive for exact
characterization results that establish the correspondence between a natural
goalbase language and a commonly used class of utility functions.

For the next proof, and indeed much of this chapter, we will make frequent use
of the fact that whenever Φ ⊆ Φ′ and W ⊆ W ′, then U(Φ,W, F) ⊆ U(Φ′,W ′, F).

Theorem 3.4.6. Each of the following classes:

• U(k-pcubes,R,Σ)

• U(k-cubes,R,Σ)

• U(k-pclauses +>,R,Σ)

• U(k-clauses,R,Σ)

• U(k-pforms,R,Σ)

• U(k-forms,R,Σ)

is equal to the class of all k-additive utility functions.

Proof. Inspection of the definition of k-additivity shows that it is simply a nota-
tional variant of the language based on positive cubes of length ≤ k: A k-additive
function can be represented by a mapping m : PSk → R, and we can define a
bijection f from such mappings m onto goalbases G ∈ L(k-pcubes,R,Σ):

f : m 7→ {(p1 ∧ . . . ∧ pk, α) | m({p1, . . . , pk}) = α}.

44 Chapter 3. Expressivity

Clearly m = uf(m). That is, U(k-pcubes,R,Σ) is the class of all k-additive utility
functions.

Next, we show that all six languages are expressively equivalent. By language
inclusion, we have the following:

U(k-cubes,R,Σ) ⊆ U(k-forms,R,Σ) ⊇ U(k-clauses,R,Σ)

⊆ ⊆ ⊆

U(k-pcubes,R,Σ) ⊆ U(k-pforms,R,Σ) ⊇ U(k-pclauses +>,R,Σ)

Taken together, equivalences (3.1) and (3.3) from Fact 3.4.1 can be used
to transform any goalbase in L(k-forms,R,Σ) into an equivalent goalbase in
L(k-pcubes,R,Σ). (Use (3.3) to eliminate all disjunctions, then (3.1) to eliminate
all negations. While these equivalences add more formulas, they never add
longer formulas.) Thus, U(k-pcubes,R,Σ) = U(k-forms,R,Σ), which collapses
the leftmost four classes.

Equivalences (3.2) and (3.4) from Fact 3.4.1 can be used to transform any goal-
base in L(k-forms,R,Σ) into an equivalent goalbase in L(k-pclauses +>,R,Σ).
(Use (3.4) to eliminate all conjunctions, then (3.2) to eliminate all negations.)
Thus, U(k-pclauses,R,Σ) = U(k-forms,R,Σ), which collapses the rightmost four
classes.

This completes the proof, as all six classes have been collapsed together, and
one of them has been shown to equal to the class of k-additive functions.

The next lemma clarifies the effect that the ability to express tautologies in
a language has on the class of utility functions that can be defined. Roughly
speaking, any utility function u expressible in a language based on strictly positive
formulas must be normalized, i.e., will satisfy u(∅) = 0.

For the next proof, we make use of translations of utility functions. The (affine)
translation function tc shifts a utility function u such that tc(u(X)) = u(X) + c
for all X ⊆ PS. A property P is invariant under translation if, for all utility
functions u, c ∈ R, and X ⊆ PS, u has property P iff tc(u) has property P .

Lemma 3.4.7. Fix Φ as a strictly positive set of formulas and P a property of
utility functions which is invariant under translation. Then U(Φ,W,Σ) is the
class of normalized utility functions with property P iff U(Φ ∪ {>},W,Σ) is the
class of utility functions with property P .

Proof. (⇒) Suppose that U(Φ,W,Σ) is the class of normalized utility functions
with property P . First, we show that every uG ∈ U(Φ ∪ {>},W,Σ) has prop-
erty P : Fix uG ∈ U(Φ ∪ {>},W,Σ). G \ {(>, w) | w ∈ W} ∈ L(Φ,W,Σ) and
so uG\{(>,w)|w∈W} has property P by hypothesis. uG = tw

(
uG\{(>,w)|w∈W}

)
, so by

invariance uG has property P .
Next, we show that every u with property P is in U(Φ ∪ {>},W,Σ): Fix u

with property P . The translation tu(∅)(u) is normalized and has property P by

3.4. Expressivity of Sum Languages 45

invariance, so tu(∅)(u) ∈ U(Φ,W,Σ) by hypothesis. Let G represent tu(∅)(u) in
L(Φ,W,Σ). Then G ∪ {(>, u(∅))} ∈ L(Φ ∪ {>},W,Σ) and uG∪{(>,u(∅))} = u.

(⇐) Suppose that U(Φ ∪ {>},W,Σ) is the class of utility functions with
property P . First, we show that every uG ∈ U(Φ,W,Σ) is normalized and has
property P : Fix uG ∈ U(Φ,W,Σ). Normalization follows due to Φ being strictly
positive. G ∪ {(>, w)} ∈ L(Φ ∪ {>},W,Σ) for any w ∈ W , and by hypothesis
uG∪{(>,w)} has property P . uG∪{(>,w)} = tw(uG), so by invariance has property P .

Next, we show that every normalized u with property P is in U(Φ,W,Σ): Fix u
normalized and with property P . For any w ∈ W , tw(u) has property P by invari-
ance and so is in U(Φ ∪ {>},W,Σ). Let G represent tw(u) in L(Φ ∪ {>},W,Σ).
Since Φ is strictly positive, (>, w) ∈ G. Then uG\{(>,w)} = t−1

w (tw(u)) = u, and so
u ∈ U(Φ ∪ {>},W,Σ).

Finally, it is easy to see that we have the following as a corollary:

Corollary 3.4.8. Every utility function in U(Φ,W,Σ) is normalized if Φ is
strictly positive or W = {0}.

Next we explore the class of k-additive utility functions for specific values of k.
It is a well-known fact that any utility function is k-additive for some k ∈ N
(certainly for k = |PS|). (This is why we refer to general functions as ω-additive.
See Chapter 2, note 1.) Our next result is therefore an immediate corollary of
Theorem 3.4.6.

Corollary 3.4.9. Each of the following classes:

• U(pcubes,R,Σ)

• U(cubes,R,Σ)

• U(pclauses +>,R,Σ)

• U(clauses,R,Σ)

• U(pforms,R,Σ)

• U(forms,R,Σ)

is equal to the class of all utility functions.

Corollary 3.4.10. U(literals,R,Σ) and U(atoms +>,R,Σ) are the class of all
modular utility functions, and U(atoms,R,Σ) is the class of all normalized modular
utility functions.

Proof. The set of 1-pcubes is equal to the set of atoms together with >. Therefore,
by Theorem 3.4.6, U(atoms +>,R,Σ) is the class of all modular functions. The
class of 1-cubes is equal to the class of literals together with >. But by equiva-
lence (3.7) of Fact 3.4.1, literals alone have the same expressive power as literals
together with >. Hence, again by Theorem 3.4.6, U(literals,R,Σ) is the class of
all modular functions. The fact that U(atoms,R,Σ) is the class of all normalized
modular utility functions follows from Lemma 3.4.7.

46 Chapter 3. Expressivity

For the remainder of this section we consider languages where the set of weights
is restricted to the positive reals. Clearly, the utility functions that can be so
expressed will be nonnegative, i.e., u(X) ≥ 0 for all X ⊆ PS. The question is
whether we can express all nonnegative utility functions in this manner.

Theorem 3.4.11. U(cubes,R+,Σ) and U(forms,R+,Σ) are the class of all non-
negative utility functions.

Proof. Clearly every u ∈ U(forms,R+,Σ), and by inclusion, also every u ∈
U(cubes,R+,Σ), is nonnegative. For the converse, suppose that u is nonnegative.
Then define

G =
{(∧

M ∪ ¬M̄, u(M)
) ∣∣∣M ⊆ PS and u(M) 6= 0

}
and observe that uG = u and that G contains only positively-weighted cubes.

That is, general formulas as well as cubes are fully expressive over nonnegative
utility functions when weights are required to be positive. As we shall see next,
the same is not true for clauses.

Theorem 3.4.12. U(clauses,R+,Σ) is a proper subset of all nonnegative utility
functions.

Proof. By definition, L(clauses,R+,Σ) ⊂ L(forms,R+,Σ), so by Theorem 3.4.11,
U(clauses,R+,Σ) contains only nonnegative utility functions. This utility function
over PS = {p, q} demonstrates that the inclusion is strict:

u(X) =

{
1 X = {p, q}
0 otherwise.

The following five constraints must be satisfied if a G ∈ L(clauses,R+,Σ) exists
which represents u:

wp + wq + wp∨q + w¬p∨q + wp∨¬q + wp∨¬p = 1 (3.10)

wp + w¬q + wp∨q + wp∨¬q + w¬p∨¬q + wp∨¬p = 0 (3.11)

w¬p + wq + wp∨q + w¬p∨q + w¬p∨¬q + wp∨¬p = 0 (3.12)

w¬p + w¬q + w¬p∨q + wp∨¬q + w¬p∨¬q + wp∨¬p = 0 (3.13)

wϕ ≥ 0 for all clauses ϕ (3.14)

Together, constraints (3.11), (3.12), (3.13), and (3.14) force wϕ = 0 for every
clause ϕ, contradicting (3.10).

L(clauses,R+,Σ) seems not to characterize a natural class of functions. For
(strictly) positive formulas with positive weights, on the other hand, we do obtain
nice correspondences. Recall that a utility function u is monotone if, for all
X, Y ⊆ PS, u(X) ≤ u(Y) whenever X ⊆ Y .

3.4. Expressivity of Sum Languages 47

Theorem 3.4.13. U(spforms,R+,Σ) is the class of all normalized monotone
utility functions.

Proof. No strictly positive formula is a tautology, so every u ∈ U(spforms,R+,Σ)
is normalized, and because all weights and formulas are positive, it is also monotone.

For the converse: Let u be an arbitrary normalized monotone utility function.
We construct a G ∈ L(spforms,R+,Σ) for which uG = u as follows. Define a
sequence of utility functions u1, . . . , un such that

uk(X) = max{u(X ′) | X ′ ⊆ X and |X ′| ≤ k}.

In this way, u1 = maxa∈X u({a}) and un = u. Additionally, we define u0(X) = 0
for all X, for convenience. Observe that we can use the these ui to decompose u
such that u =

∑n
k=1(uk − uk−1), and so if we can construct a goalbase for each

uk−uk−1, then the union of those goalbases will be a goalbase for u. Hereafter, we
will abbreviate uk−uk−1 to u∗k. To construct Gk, a goalbase for u∗k, let X0 = ∅ and〈
X1, . . . , X(n

k)
〉

be the set of size-k subsets of PS, ordered so that u∗k(Xi) ≤ u∗k(Xj)

for i < j. Then let

Gk =

{((n
k)∨
j=i

∧
Xj, u

∗
k(Xi)− u∗k(Xi−1)

) ∣∣∣∣∣ 1 ≤ i ≤
(
n
k

)}

from which it can easily, though tediously, be checked that uGk
= u∗k. (For example,

if PS = {a, b, c} and u(a) ≤ u(b) ≤ u(c), then G1 = {(a∨ b∨ c, u(a)), (b∨ c, u(b)−
u(a)), (c, u(c)−u(b))}. View items a, b, and c as substitutes, but with b conferring
a bonus over a, and c a further bonus over b. This is the structure which can be
seen in G1. Higher-order Gis capture this same idea, but for sets of items larger
than singletons.)

Finally, let G =
⋃n
k=1Gk. Now uG = u, since for each k, uGk

= u∗k and∑n
k=1 u

∗
k = un = u. Finally, observe that every formula in G is strictly positive;

and all the weights u∗k(Xi)− u∗k(Xi−1) are nonnegative by virtue of the ordering
declared over the Xi.

Note that in the preceding theorem, we could also add nonnegative as a
property, because normalization and monotonicity together imply nonnegativity.
An application of Lemma 3.4.7 yields the following corollary:

Corollary 3.4.14. U(pforms,R+,Σ) is the class of all nonnegative monotone
utility functions.

Supermodularity seems not to correspond directly to a natural goalbase lan-
guage, but we can characterize a large subclass.

Theorem 3.4.15. U(pcubes,R+,Σ) is the class of all nonnegative utility functions
satisfying the constraint

∑
Y⊆X(−1)|X\Y | · u(Y) ≥ 0 for all X ⊆ PS.

48 Chapter 3. Expressivity

Proof. That U(pcubes,R+,Σ) is the class of all nonnegative utility functions
satisfying

∑
Y⊆X(−1)|X\Y | · u(Y) ≥ 0 immediately follows from the fact that the

weight of any positive cube is determined by the Möbius inversion as stated in
equation (3.8).

Note that the property corresponding to U(pcubes,R+,Σ) implies nonnegativ-
ity, monotonicity, and supermodularity. Nonnegativity and monotonicity follow
from Corollary 3.4.14. For supermodularity, suppose that G ∈ L(pcubes,R+,Σ).
Then

uG(X ∪ Y) =
∑

Z⊆X∪Y

wV
Z

=
∑
Z⊆X

wV
Z +

∑
Z⊆Y

wV
Z −

∑
Z⊆X∩Y

wV
Z +

∑
Z⊆X∪Y
Z*X,Y

wV
Z

≥
∑
Z⊆X

wV
X +

∑
Z⊆Y

wV
Z −

∑
Z⊆X∩Y

wV
Z

= uG(X) + uG(Y)− uG(X ∩ Y),

which is equivalent to the supermodularity condition.
The utility function u : X 7→ max(1, |X|) shows that there are supermodular

utility functions which are not in U(pcubes,R+,Σ). As can easily be checked,
if PS = {p, q, r}, then expressing u in terms of positive cubes requires the
use of a negative weight: wp∧q∧r = −1. The previous theorem holds also for
U(spcubes,R+,Σ) if “nonnegative” is replaced with “normalized”.

Theorem 3.4.16. U(pclauses,R+,Σ) is the class of all nonnegative utility func-
tions satisfying the constraint

∑
Y⊆X(−1)|X\Y |+1 · u(PS \ Y) ≥ 0 for all X ⊆ PS.

Proof. Follows from the fact that weights of positive clauses are determined by
equation (3.9).

Note that the property corresponding to U(pclauses,R+,Σ) implies monotonic-
ity, normalization, and submodularity. Normalization and monotonicity follow
from Theorem 3.4.13. To show submodularity, let G ∈ L(pclauses,R+,Σ) and let
X, Y ⊆ PS. For positive clauses ϕ, X ∪ Y |= ϕ together with X 6|= ϕ implies
Y |= ϕ. Furthermore, X 6|= ϕ implies X ∩ Y 6|= ϕ. Therefore:

{(ϕ,w) ∈ G | X ∪Y |= ϕ and X 6|= ϕ} ⊆ {(ϕ,w) ∈ G | Y |= ϕ and X ∩Y 6|= ϕ}

As all the weights w are positive, we immediately obtain the required inequality
characterizing submodularity, namely uG(X ∪ Y)− uG(X) ≤ uG(Y)− uG(X ∩ Y).

An example which confirms that not all submodular utility functions belong
to U(pclauses,R+,Σ) is the function u : X 7→ min(2, |X|) for PS = {p, q, r}. On
the one hand, u is submodular; on the other we must have wp∨q∨r = −1 if we

3.5. Expressivity of Max Languages 49

are to express u using positive clauses. The previous theorem holds also for
U(pclauses +>,R+,Σ) if “normalized” is replaced with “nonnegative”.

The functions characterized by Theorem 3.4.15 are also known as belief func-
tions, while those characterized by Theorem 3.4.16 are known as plausibility
functions (when the functions are restricted to the interval [0, 1]) [Dempster, 1967;
Shafer, 1976].

3.4.4 Summary

Our correspondence results for sum languages are summarized in Figure 3.1. In
the figure, each node represents one language we examined, and an arrow from one
node to another indicates that the tail language is included in the head language.
Within each node, the expressivity of the language is given, according to the key
below:

1 1-additive (modular) m monotone
k k-additive ? plausibility function
ω ω-additive (general) † belief function
n normalized ⊂ proper subset of
+ nonnegative ⊆ subset of

Where ⊆ (or ⊂) is indicated, the language represents a (proper) subset of the
class of utility functions with the given properties. In all other cases, the language
represents exactly the class of utility functions with the given properties. The
x-axis (increasing to the right) is the cubes axis, along which allowable cubes grow
from length 1 up to ω; the y-axis (increasing into the page) is the clauses axis,
also running from 1 to ω. The z-axis (decreasing upward) is the positivity axis
and has three steps: strictly positive, positive, and general. Each language in the
lower graph is a sublanguage of the corresponding language with general weights
in the upper graph, but we have omitted these arrows for clarity.

We have not analyzed the interplay of bounding the length of formulas and
restricting weights to positive reals in detail. By Theorem 3.4.6, any language
restricting the length of formulas to at most k atoms can only generate k-additive
utility functions. The opposite direction is less clear. While inspection of the proofs
of Theorems 3.4.15 and 3.4.16 show that these results extend to the k-additive
case in the expected manner, this is not so for Theorems 3.4.11 and 3.4.13. For
instance, we do not know whether U(k-cubes,R+,Σ) is the class of all nonnegative
k-additive functions or only a subclass thereof.

3.5 Expressivity of Max Languages

In many ways, sum is the most obvious aggregator to consider. However, there are
certain classes of utility functions—in particular, single-minded and unit-demand

50 Chapter 3. Expressivity

ωnU(pclauses,R,Σ)

ω

ωU(pclauses +>,R,Σ)

ω

U(clauses,R,Σ)

ωm
n+†U(pclauses,R+,Σ)

ω

ωm
+†U(pclauses +>,R+,Σ)

⊂+

U(clauses,R+,Σ)

1n

U(atoms,R,Σ)
1

+ kn

U(k-spcubes,R,Σ)

ωn U(spcubes,R,Σ)
ω

knU(k-pclauses,R,Σ) kn U(k-spforms,R,Σ)

ωn U(spforms,R,Σ)

1U(atoms +>,R,Σ) k

U(k-pcubes,R,Σ)

1

U(literals,R,Σ)

±

ω U(pcubes,R,Σ)

k

U(k-cubes,R,Σ)

ω U(cubes,R,Σ)

kU(k-pclauses +>,R,Σ)

k

U(k-clauses,R,Σ)

k U(k-pforms,R,Σ)

ω U(pforms,R,Σ)

k

U(k-forms,R,Σ)

ω

U(forms,R,Σ)

1m
n+

U(atoms,R+,Σ)
1

+ km
n+?

U(k-spcubes,R+,Σ)

ωm
n+? U(spcubes,R+,Σ)
ω

km
n+†U(k-pclauses,R+,Σ) ⊆k

mn+ U(k-spforms,R+,Σ)

ωm
n+ U(spforms,R+,Σ)

1m
+U(atoms +>,R+,Σ) km

+?

U(k-pcubes,R+,Σ)

1+

U(literals,R+,Σ)

±

ωm
+? U(pcubes,R+,Σ)

⊆
k+

U(k-cubes,R+,Σ)

ω+ U(cubes,R+,Σ)

km
+†U(k-pclauses +>,R+,Σ)

⊂
k+

U(k-clauses,R+,Σ)

⊆k
m+ U(k-pforms,R+,Σ)

ωm
+ U(pforms,R+,Σ)

⊆
k+

U(k-forms,R+,Σ)

ω+

U(forms,R+,Σ)

Figure 3.1: Summary of expressivity results for sum languages.

3.5. Expressivity of Max Languages 51

utility functions—which are not easily captured by sum languages. We turn
now to max languages, both to exhibit languages which capture other classes of
utility function and to serve as a study of how varying the aggregator affects the
expressivity of goalbase languages.

We begin by establishing some simple results regarding equivalences between
languages, which allow us to narrow down the range of languages to be considered
in the remainder of the section. We then characterize the expressivity of the most
important (distinct) languages.

When using a max language, only the weight of the most important goal
satisfied by a given alternative matters. An example of a simple max language is
L(atoms,R,max), which allows us to assign a value to any atomic proposition and
where the utility of a state is equal to the value of the most valuable proposition
which is true in that state. The utility functions in U(atoms,R,max) are known
as unit-demand valuations (of which the aforementioned simple unit-demand
valuation is a special case) in the literature on combinatorial auctions [Nisan,
2006]. We will return to prove that U(atoms,R,max) does indeed have this
property in Theorem 3.5.10.

Throughout this section, when the aggregator function is omitted from the
notation, it is intended to be max.

3.5.1 Superfluous Goals

For max languages, some weighted goals in a goalbase may never contribute to the
utility of an alternative. Here we introduce terminology for speaking about this
kind of situation and state some simple facts about potentially superfluous goals.

Definition 3.5.1 (Properties of Weighted Goals).

• (ϕ,wϕ) ∈ G is dominated if there exists a (ψ,wψ) ∈ G such that ϕ |= ψ and
wϕ < wψ.

• (ϕ,wϕ) ∈ G is active in a state M when M |= ϕ and for all ψ, if M |= ψ
then wψ ≤ wϕ.

Recall from Definition 3.2.3 that (ϕ,w) ∈ G is superfluous if G ≡F G\{(ϕ,w)}.
Note that if there are no models for which (ϕ,w) is active, then the superfluity
condition is fulfilled vacuously, so (ϕ,w) is superfluous in that case.

Fact 3.5.2. Fix (ϕ,wϕ) ∈ G, and the aggregator as max. Then:

1. If (ϕ,wϕ) is dominated, then (ϕ,wϕ) is never active.

2. If (ϕ,wϕ) is never active, then (ϕ,wϕ) is superfluous.

3. If (ϕ,wϕ) is superfluous, for every state M where (ϕ,wϕ) is active, the set
{(ψ,wψ) |M |= ψ and wψ is maximal} is not a singleton.

52 Chapter 3. Expressivity

Note that superfluous does not imply never active: For example, in the goalbase

{(a, 1), (b, 1), (a ∧ b, 1)},

the weighted formula (a ∧ b, 1) is superfluous, but nonetheless active in the
state {a, b}.

Since superfluous formulas are useless, they may be removed without harm.
We can remove superfluous formulas from any G ∈ L(forms,R,max) as follows:

for all (ϕ,wϕ) ∈ G do
for all (ψ,wψ) ∈ G do

if wϕ ≤ wψ then
if |= ϕ→ ψ then
G := G \ {(ϕ,wϕ)}

end if
end if

end for
end for

Two aspects of this algorithm are noteworthy: First, we remove superfluous
formulas one at a time. It would not be correct to remove all superfluous formulas
in one step, as superfluity is defined relative to a particular goalbase and removal
of a formula changes the goalbase. It is possible that some formulas which were
superfluous will stop being so if another superfluous formula is removed. For
example, all formulas in {(a, 1), (¬¬a, 1)} are superfluous under max; however,
removing both produces the empty goalbase, which is not equivalent to the original.

Second, this algorithm is not efficient, as it requires a quadratic number of
calls to an unsat oracle; we would like to do better than a coNP algorithm. In
the next section, we will see that the only max languages which are (expressively)
interesting are based on cubes. This fact greatly reduces the complexity of
deciding whether a formula is superfluous, since deciding whether one cube implies
another is polynomial: Given two satisfiable cubes

∧
X and

∧
Y ,
∧
X →

∧
Y is

a tautology iff the positive literals in Y are a subset of the positive literals in X
and the negative literals in Y are a subset of the negative literals in X.

By way of comparison, it is easy to see that these concepts of domination and
activity are not useful when considering sum languages. The formula (a ∧ b, 1)
is never active in the goalbase {(a, 2), (a ∧ b, 1)}, since (a, 2) dominates it (a ∧ b
implies a, and 2 > 1), but nonetheless it is not superfluous—we cannot remove it
and retain an equivalent goalbase under the sum aggregator.

Fact 3.5.3. Under the max aggregator, if G contains no superfluous formulas
then every (ϕ,w) ∈ G has a state in which it is uniquely active.

3.5. Expressivity of Max Languages 53

3.5.2 Goalbase Equivalences

We are interested in comparing languages generated by different types of goalbases,
in particular those generated from the following restrictions on formulas: literals,
cubes, clauses, and general formulas using both conjunction and disjunction; as
well as positive formulas and those including negation. Regarding weights, we
want to consider positive and general weights. This gives rise to 4 · 2 · 2 = 16
different languages. Here we establish several equivalences amongst languages and
thereby show that we actually only need to consider a subset of all the languages
that can be defined in this manner. Furthermore, if we are interested only in
monotone utility functions, then we can further reduce the range of languages to
consider.

We first show that disjunction is not an expressively helpful connective for
max languages:

Theorem 3.5.4. G ∪ {(ϕ1 ∨ . . . ∨ ϕn, w)} ≡max G ∪ {(ϕi, w) | 1 ≤ i ≤ n}.

Proof. Fix a state X. If wϕ1∨...∨ϕn is not the maximum wψ such that X |= ψ, then
some other (ψ,wψ) ∈ G is. Since wϕi

= wϕ1∨...∨ϕn , then wψ > wϕi
for all i. In this

case, G alone determines the value of the left and right goalbases.
If wϕ1∨...∨ϕn is the maximum wψ such that X |= ψ, then some ϕi are such that

X |= ϕi. For each such ϕi, we have wϕi
= wϕ1∨...∨ϕn in the goalbase on the right,

and so both the left and right have the same maximum.

This tells us that with max as our aggregator, disjunctions as main connectives
do not contribute to a language’s expressivity. In fact, as any formula has an
equivalent representation in disjunctive normal form, this tells us that disjunction
can never increase the expressive power of a max language. In particular, from
Theorem 3.5.4 we get the following equivalences between languages:

Corollary 3.5.5. Fix W ⊆ R. Then:

1. U(pclauses,W,max) = U(atoms,W,max),

2. U(clauses,W,max) = U(literals,W,max),

3. U(pforms,W,max) = U(pcubes,W,max),

4. U(forms,W,max) = U(cubes,W,max).

Proof. For U(forms,W,max) = U(cubes,W,max): Suppose that (ϕ,w) ∈ G.
Without loss of generality, assume that ϕ = ψ1 ∨ . . . ∨ ψn is in DNF. By
Theorem 3.5.4, we may replace (ψ1 ∨ . . . ∨ ψn, w) by (ψ1, w), . . . , (ψn, w) and
preserve goalbase equivalence. Repeating this for each original formula in G
converts G to the language L(cubes,W,max), since each ψi is a cube and the
weights were left unchanged.

54 Chapter 3. Expressivity

We use the same argument for each of the other cases, noting that the same
transformation reduces a positive formula (in DNF) to a set of positive cubes, a
clause to a set of literals, and a positive clause to a set of atoms.

The same is not true for sum languages. E.g., under summation clauses are
more expressive than literals: For W = R, clauses can express all utility functions,
while literals can express only modular functions (see Corollary 3.4.10). For each
of the equivalences in Corollary 3.5.5, there is a set of weights W which violates it
under summation.

Recall that a utility function u is called monotone if M ⊆ M ′ implies
u(M) ≤ u(M ′). Monotonicity is a reasonable assumption for many applica-
tions, in particular if propositional variables are interpreted as goods. Next we
show that negation is not a helpful operation in case we are only interested in
modeling monotone functions.

Theorem 3.5.6. Fix G. Let X+ be a set of positive literals, and X− a set of
negative literals, such that no atom appears in both. If uG∪{(V

X+∪X−,w)},max is
monotone, then

G ∪
{(∧

X+ ∪X−, w
)}
≡max G ∪

{(∧
X+, w

)}
.

Proof. There are two cases to consider: states which are supersets of X+, and
states which are not.

• Write u for uG∪{(V
X+∪X−,w)},max. In states M ⊇ X+, we have that M |=∧

X+. It must be the case that u(M) ≥ w because u(X+) ≥ w and u is
monotone. Therefore, substituting (

∧
X+, w) for (

∧
X+ ∪X−, w) cannot

change the value of state M , since the value in M is already at least w.

• In states M + X+, we have that both
∧
X+ ∪ X− and

∧
X+ are false,

and so cannot be active. Thus substituting (
∧
X+, w) for (

∧
X+ ∪X−, w)

cannot change the value at M , as inactive formulas do not affect the value
of a utility function.

Therefore, in all states M we have that

uG∪{(
V
X+∪X−,w)},max(M) = uG∪{(

V
X+,w)},max(M).

The following result shows that we can further reduce the range of languages to
consider if we limit ourselves to monotone utility functions. It follows immediately
from Theorem 3.5.6 and Corollary 3.5.5. (Note that

∧
∅ = >.)

Corollary 3.5.7. Let Mono be the class of monotone utility functions. Fix
W ⊆ R. Then:

1. U(clauses,W,max) ∩Mono = U(atoms +>,W,max) ∩Mono.

2. U(forms,W,max) ∩Mono = U(pcubes,W,max) ∩Mono.

3.5. Expressivity of Max Languages 55

3.5.3 Correspondences

Corollary 3.5.5 tells us that the interesting languages, expressivity-wise, are those
based on cubes, positive cubes, literals, and atoms. We prove that cubes are
expressively complete for the full range of utility functions and that positive cubes
correspond to the class of monotone functions:

Theorem 3.5.8. U(cubes,R,max) is the class of all utility functions.

Proof. Given a utility function u, define

G =
{(∧

X ∪ ¬X̄, u(X)
) ∣∣∣ X ⊆ PS}

Since the formulas are the states, and as such are mutually exclusive, exactly one
weight will be active in each state, and so u(X) = uG(X).

Theorem 3.5.9. U(pcubes,R,max) is the class of monotone utility functions.

Proof. (⇒) Suppose that G ∈ U(pcubes,R,max) but uG is not monotone. So there
are states M ⊂M ′ such that uG(M ′) < uG(M). Then there is a (ϕ, uG(M)) ∈ G
which is active in M such that M |= ϕ but M ′ 6|= ϕ. Since M ′ ⊃M , then there is
some a ∈M ′ \M for which ϕ |= ¬a. Therefore, ϕ is not a positive formula, which
contradicts the hypothesis that ϕ is a pcube.

(⇐) If u is monotone, then let G = {(
∧
X, u(X)) | X ⊆ PS}. Note that for

Y ⊆ X, u(Y) = wV
Y ≤ wV

X = u(X) follows directly from the monotonicity of u.
In state X, uG(X) = max{wV

Y | Y ⊆ X} = wV
X . Hence uG(X) = u(X).

The class of unit-demand utility functions has no simple corresponding sum
language, but does have a corresponding max language:

Theorem 3.5.10. U(atoms,R,max) is the class of unit-demand utility functions.

Proof. Suppose that u is a unit-demand valuation, which by definition means
that u(X) = maxa∈X u({a}). Construct a G ∈ U(atoms,R,max) such that
G = {(a, w) | a ∈ PS, u({a}) = w}. Then

u(X) = max
a∈X

u({a}) = max
(a,w)∈G

w = uG,max(X).

Conversely, suppose that G ∈ U(atoms,R,max), and note that the same series of
equivalences holds.

We are not aware of a property of utility functions referred to in the literature
which would characterize U(literals,R,max). The desired property is a general-
ization of the unit-demand valuation that also allows us to specify a value for not
receiving a particular item.

56 Chapter 3. Expressivity

By restricting the set of weights W we can capture classes of utility functions
with a particular range. U(pcubes,R+,max), for instance, is the class of nonneg-
ative monotone functions. This class is known to be equal to U(pforms,R+,Σ)
(see Corollary 3.4.14).1 This is a case where a syntactically simple language is
more expressive with max than with sum.

On the other hand, some very simple classes of utility functions are hard to
capture in structurally simple languages using max aggregation. For instance, recall
that a utility function u is called modular iff u(M∪M ′) = u(M)+u(M ′)−u(M∩M ′)
for all M,M ′ ∈ 2PS . Modular functions are nicely captured by U(literals,R,Σ)
(see Corollary 3.4.10). However, there is no natural restriction to formulas that
would allow us to characterize the modular functions under max aggregation. On
the contrary, among the max languages considered here, only L(cubes,R,max)
can express all modular functions, and this language is so powerful that it can
actually express all utility functions.

In particular, L(k-pcubes,R,max) misses some modular utility functions when
k < |PS|: Suppose that u is modular and nonnegative, and at least k + 1
singleton states {p1}, . . . , {pk+1} have nonzero value. Then there is no G ∈
L(k-pcubes,R,max) such that u({p1, . . . , pk+1}) = uG({p1, . . . , pk+1}), because
uG({p1, . . . , pk+1}) is the weight of some k-pcube (because max is our aggregator)
and by assumption if X ⊂ {p1, . . . , pk+1} then u(X) < u({p1, . . . , pk+1}). The
same modular utility functions are missing from L(k-cubes,R,max), due to the
fact that the addition of negation to the language is not helpful for representing
monotone utility functions (see Theorem 3.5.6). As a result, we have the following:

Theorem 3.5.11. For all k > j, U(k-pcubes,W,max) ⊃ U(j-pcubes,W,max)
and U(k-cubes,W,max) ⊃ U(j-cubes,W,max).

3.5.4 Summary

Our correspondence results for max languages are summarized in Figure 3.2. In
the figure, each node represents one language we examined, and an arrow from one
node to another indicates that the tail language is included in the head language.
Within each node, the expressivity of the language is given, according to the key
below:

ω ω-additive (general) m monotone
+ nonnegative u unit-demand
‡ general unit-demand ⊂ proper subset of

Where ⊂ is indicated, the language represents a proper subset of the class of
utility functions with the given properties. In all other cases, the language

1To be precise, U(pcubes,R+,max) = U(pforms,R+,Σ) over total functions only. Because
the max languages can also express partially defined functions returning −∞ for some states
while sum languages cannot, if we expand our consideration to partially-defined utility functions,
then U(pcubes,R+,max) ⊃ U(pforms,R+,Σ).

3.5. Expressivity of Max Languages 57

mu

U(atoms +>,R,max)

+

1

ωm
⊂

U(k-pcubes,R,max)

ωm U(pcubes,R,max)
ω

‡

U(literals,R,max)

± ω⊂

U(k-cubes,R,max)

ω

U(cubes,R,max)

mu
+

U(atoms +>,R+,max)

+

1

ωm
+⊂

U(k-pcubes,R+,max)

ωm
+ U(pcubes,R+,max)
ω

‡+

U(literals,R+,max)

± ω+
⊂

U(k-cubes,R+,max)

ω+

U(cubes,R+,max)

Figure 3.2: Summary of expressivity results for max languages.

58 Chapter 3. Expressivity

represents exactly the class of utility functions with the given properties. The
x-axis (increasing to the right) is the cubes axis, along which allowable cubes grow
from length 1 up to ω; the y-axis (decreasing into the page) is the positivity axis
and has two steps: positive and general. Each language in the lower graph is
a sublanguage of the corresponding language with general weights in the upper
graph, but we have omitted these arrows for clarity. Note that several languages
do not appear in the figure due to being expressively equivalent to some language
which does appear there. For max languages, this is due to the fact expressed in
Corollary 3.5.5, namely that disjunction does not contribute expressivity to max
languages.

3.6 Odds and Ends

In this section, we present two results which fit nowhere else, both of which bear
on how weights affect expressivity. The first is the observation that the weights
can be limited to the range of the representable utility functions if every state
formula is in the language:

Theorem 3.6.1. If Φ contains all state formulas and F ∈ {Σ,max}, then
U(Φ,W, F) contains every utility function u such that ranu ⊆ W .

Proof. Let G = {(
∧

(M ∪ ¬M̄), u(M)) | M ⊆ PS}. Clearly uG,F = u and
G ∈ L(Φ,W,Σ), since each formula in G is a state formula, and only weights in
W are used.

Next, we examine the relationship between integer-valued utility functions and
noninteger weights:

Theorem 3.6.2. If uG,Σ : 2PS → Z and G is minimal and contains any noninteger
weight, then G contains at least three noninteger weights.

Proof. If G contains exactly one noninteger weight, w1 from (ϕ1, w1), then if
M |= ϕ1, uG,Σ(M) /∈ Z, so if there are any, there must be at least two noninteger
weights. If (ϕ2, w2) ∈ G and w2 /∈ Z, then by minimality of G we know that
ϕ1 and ϕ2 are not equivalent, and so there must be a state M such that either
M |= ϕ1 ∧ ¬ϕ2 or M |= ¬ϕ1 ∧ ϕ2. Hence if w1 and w2 are the sole noninteger
weights, uG,Σ(M) /∈ Z. Therefore, if G contains any noninteger weights, it must
contain at least three of them.

While we would like to continue the proof as an induction to show that no
finite number of noninteger weights suffices, and hence no minimal representation
of an integer-valued utility function will use noninteger weights, we cannot do
so, for the following reason: By minimality, we know that the formulas in G are
pairwise nonequivalent, and hence this gives us the needed model where exactly

3.7. Conclusion 59

one formula with a noninteger weight is true. But pairwise nonequivalence does
not guarantee that for three formulas we can find a model which makes one of the
formulas true and the other two false, and hence we do not find the needed model.

We expect that minimality does in fact entail that no noninteger weights are
needed to represent integer-valued utility functions. For example, consider the
goalbase {(>, 1

2
), (a, 1

2
), (¬a, 1

2
)}, which represents u(X) = 1 using the minimal

number of noninteger weights, but is itself clearly not minimal.

3.7 Conclusion

In this chapter we have characterized the expressivity of nearly all natural sum
and max languages. The sum languages correspond to a wide variety of classes
of utility functions, ranging from full (e.g., L(forms,R,Σ)) to rather limited
(e.g., L(atoms,R+,Σ)) expressivity, with a great many alternatives between (e.g.,
L(k-cubes,R,Σ)). The max languages are bipolar in their expressivity—there
are fully-expressive languages (e.g., L(cubes,R,max)), extremely circumscribed
ones (L(atoms +>,R+,max)), and nothing in the middle. (The k-languages,
which occupy the middle for sum, appear to have hardly more expressivity than
atoms or literals for max.) There are sum or max languages corresponding to
many common classes of utility functions, so it is likely that an appropriately
expressive one may be found for any desired application. Additionally, we have
demonstrated that some languages, such as L(pcubes,R,Σ), L(pclauses,R,Σ), and
their sublanguages, have unique representations for all utility functions which are
representable in them.

Chapter 4

Succinctness

4.1 Introduction

In this chapter, we consider how space-efficient languages are, both in absolute
terms and relative to one another. This space-efficiency is known as succinctness.
As with expressivity, the succinctness of a language is an important feature to
consider when selecting the most suitable language for any application. The more
succinct a language is, the less data will need to be conveyed and stored; on the
other hand, we pay for high succinctness with increased computational complexity
when we want to run queries on goalbases, as we shall see in Chapter 5.

Here we present several kinds of results. After introducing the definitions and
notation necessary for talking about succinctness (Section 4.2), we consider related
work (Section 4.3). In Section 4.4, we present many relative succinctness results
for sum languages, grouped according to the methods used to prove them. For
the impatient, a summary of all known succinctness results involving pairs of sum
languages appears in Table 4.1. In Section 4.5, we do the same for max languages,
though here the features of the max aggregator permit us to give some absolute
succinctness results as well. Finally, in Section 4.6 we prove some succinctness
results for pairs of languages where one uses max as its aggregator and the other
sum, in order to give some insight into how the two families of languages compare.

4.2 Preliminaries

In this section, we define succinctness and present some basic, aggregator-indepen-
dent facts about the succinctness relation. Because succinctness is a size notion,
we must first specify how to measure the sizes of formulas and goalbases.

Definition 4.2.1 (Formula Length and Goalbase Size). The length of a formula
ϕ is the number of occurrences of atoms it contains. The size of a weighted goal
(ϕ,w) is the length of ϕ plus the number of bits needed to store w (that is, logw

61

62 Chapter 4. Succinctness

bits). The size of a goalbase G, written as size(G), is the sum of the sizes of the
weighted goals in G.

Observe that the size of a goalbase may differ from its cardinality: If G =
{(a∧ b, 1)}, then size(G) = 2 (or 3, if we are not neglecting the bit used for storing
the weight) while |G| = 1.

Often we consider families of utility functions {un}n∈N, where for each n we
have that |PS| = n. Suppose that we have a corresponding family of goalbases
{Gn}n∈N for which un = uGn . Unless the number of bits required to represent the
weights in Gn grows superexponentially in n, the size contributed by the weights
can be safely ignored when considering how size(Gn) grows with n. Every family
of utility functions considered here has weights which are independent of n, so we
disregard the size of the weights in our succinctness results. (Superexponential
growth in weights affects all languages equally.)

Frequently one language contains shorter representations of some utility func-
tions than does another language. Here we offer a definition of relative succinctness
to make this notion precise. This definition is similar to ones given by Cadoli,
Donini, Liberatore, and Schaerf [2000] and Coste-Marquis et al. [2004]. Because we
wish to compare languages which differ in expressive power, we define succinctness
over only the expressive overlap of the languages being compared. This leads
to some counterintuitive results for languages with little expressive overlap and
makes the comparative succinctness relation intransitive, but it also permits us to
make comparisons where the expressive overlap is substantial, though not total.

Definition 4.2.2 (Succinctness). Let L(Φ,W, F) and L(Ψ,W ′, F ′) be goalbase
languages and U a class of utility functions for which every member is express-
ible in both languages. Then L(Φ,W, F) �U L(Ψ,W ′, F ′) iff there exists a
function f : L(Φ,W, F) → L(Ψ,W ′, F ′) and a polynomial p such that for all
G ∈ L(Φ,W, F), if uG,F ∈ U then uG,F = uf(G),F ′ and size(f(G)) ≤ p(size(G)).

Read L �U L′ as: L′ is at least as succinct as L over the class U . When L′
is strictly more succinct than L—that is, in no case are representations more
than polynomially worse, and in at least one case, they are super-polynomially
better in L′—we write L ≺U L′. When we have nonstrict succinctness in both
directions, we write L ∼U L′; when we have nonstrict succinctness in neither
direction, i.e., incomparability, we write L ⊥U L′. Whenever a succinctness
relation appears unsubscripted (i.e., without an explicit class of comparison),
then implicitly U = {uG,F | G ∈ L} ∩ {uG′,F ′ | G′ ∈ L′}, which is the expressive
intersection of L and L′.

This definition of succinctness is a generalization of those given by Chevaleyre
et al. [2006] and Uckelman and Endriss [2007]. The definition from the former
does not permit comparison of languages which differ in expressive power, while
the latter fixes the class of comparison U as the expressive intersection of the two

4.2. Preliminaries 63

languages. Later in this chapter, in Section 4.6, we illustrate some circumstances
in which being explicit about the class of comparison is important.

Finding the succinctness relation between some pairs of goalbase languages is
trivial, as when one language in a pair is a sublanguage of the other, or when the
two languages have no expressive overlap. These cases can be dismissed without
argument. Recall from Definition 3.2.4 that a goalbase language may have unique
representations: If a utility function is representable in the language, then there is
exactly one representation of it in the language. If L has unique representations
and L � L′ is true, then we can show that L � L′ as follows:

Proof strategy. We present a family of utility functions U , and construct a (small-
ish, but not necessarily optimal) representation G′ ∈ L′ for each u ∈ U . Then,
we construct a representation G ∈ L for each u ∈ U where at least one Gu is
exponentially larger than its corresponding G′u. Because we know that L′ has
unique representations, we know that we can’t find a smaller (or any other!)
representation of u in L′, so we have shown that L � L′.

This is a handy proof strategy, one which we shall make use of many times in this
chapter.

Here we state some basic properties of the succinctness relation, which we use
frequently in our proofs, often without reference.

Fact 4.2.3. For all languages L1, L2, L3:

1. If L1 ⊆ L2, then L1 � L2.

2. If L1 � L2 and L3 ⊆ L1, then L3 � L2.

3. If L1 ⊆ L2 ⊆ L3 and L1 ≺ L2 � L3, then L1 ≺ L3.

4. If L1 ⊥ L2 and L1 ∪ L2 ⊆ L3, then L1,L2 ≺ L3.

5. If L1 ∼ L2 and U(L1) = U(L2), then L1 � L3 iff L2 � L3, where � ∈
{∼,�,�,�,≺,⊥}.

Note that Fact 4.2.3.2 is useful contrapositively also, for deriving � results
for superlanguages. For Fact 4.2.3.3, it would be inadequate to require that
L1 � L2 ≺ L3 instead, since it could happen that L1 is too small to represent the
utility functions which cause L2 ≺ L3. Fact 4.2.3.5 expresses the notion that if
two languages are equal in succinctness and expressivity, then they stand in the
same succinctness relation with any third language.

Now we derive a simple succinctness result which applies to all languages which
permit formulas of no more than a fixed, finite length.

Theorem 4.2.4. For any fixed k ∈ N, arbitrary set of formulas Ψ, and arbitrary
sets of weights W,W ′ and aggregator F : If Φ ⊆ k-forms, then L(Φ,W, F) �
L(Ψ,W ′, F).

64 Chapter 4. Succinctness

Proof. There are only O(nk) formulas of length k or less, and so any utility function
u representable in L(Φ,W, F) cannot have a representation more than polynomially
larger than the best one in L(forms,R, F). Hence, L(Φ,W, F) � L(forms,R, F).
Furthermore, L(forms,R, F) ⊇ L(Ψ,W ′, F), so by Fact 4.2.3.2 we have that
L(Φ,W, F) � L(Ψ,W ′, F).

As a consequence, any two languages with bounded-length formulas and the
same aggregator are equally succinct over their expressive intersection.

Absolute succinctness, as its name implies, is not comparative. Rather, it
deals with the size of a the smallest goalbase in a language which will represent a
given utility function. To make smallest precise, we give a definition of goalbase
minimality:

Definition 4.2.5. A goalbase G ∈ L is minimal if for all G′ ∈ L such that
G′ ≡ G, size(G) ≤ size(G′).

The difficulty of recognizing whether G is minimal, or of finding a G which
is a minimal representative of some utility function u, is strongly dependent on
what L and u are. In the general case, formulas in a minimal goalbase will be
pairwise nonequivalent, but this is not a sufficient condition for minimality. For
some languages (such as L(atoms,R,Σ)) and some classes of utility functions (e.g.,
modular) we can detect minimality and generate minimal representations easily,
while for many richer languages how to do this is unobvious or unknown.

For max languages, in a minimal goalbase no formula is implied by any formula
with a smaller or equal weight; for sum languages, formulas in a minimal goalbase
will be pairwise non-equivalent.

For certain languages, due to the limited length of formulas which may appear
in minimal goalbases, it will be the case that we need not distinguish between
growth of size(G) and growth of |G|.

Theorem 4.2.6. Let L be a goalbase language. For each n ∈ N, let ϕn be the
longest formula in L in n variables with no shorter equivalent. Then if there is
a polynomial p such that size(ϕn) ∈ O(p(n)), it follows that for all families of
minimal goalbases {Gn}n∈N ⊆ L, size(Gn) is polynomial in n iff |Gn| is polynomial
in n.

Proof. (⇒) This direction is obvious, since it is impossible to form exponentially-
many formulas from polynomially-many atom instances.

(⇐) Suppose that |Gn| = p(n) is a polynomial. The longest formula ϕn in L
in n variables has size(ϕn) = q(n), for some polynomial q. The worst case is that
each of the p(n) formulas in Gn has size q(n), for a total size of p(n) · q(n), which
is still polynomial in n.

In particular, this means that size(G) and |G| are interchangeable in terms
of growth in |PS| for languages such as L(cubes,W, F) and L(clauses,W, F), but
not necessarily for languages such as L(forms,W, F).

4.3. Related Work 65

4.3 Related Work

Before proceeding to our results, we wish to point out some work which is relevant
for language succinctness, as here there is much more in the literature which
appears applicable to the problem at hand than there was in the previous chapter.
The succinctness of representations in various languages, broadly speaking, has
by now a rather long history, insofar as any problem can be said to have a long
history in the still-young field of computer science.

Succinctness of representation plays an important role in complexity theory.
The hardness of decision problems and runtime of algorithms is specified as a
function of the size of their inputs (e.g., an O(n2) algorithm will, in the worst case,
require a number of steps quadratic in the length of its input). As such, there is a
trade-off between the succinctness of the input for and worst-case hardness of a
given problem—the shorter the input, the fewer steps we may take to process it
and still remain within the realm of tractability. The canonical example of this
is representing input in unary instead of binary. Because the “tally” language
is exponentially less succinct than binary, we have exponentially more time in
which to process inputs in unary. An input with n binary digits will have O(2n)
unary digits, while an O(2n) operation on that input in binary will be only an
O(n) operation on the same input in unary.

Succinctness has appeared in the study of Boolean circuits under the guise of
circuit size. There is an enormous literature on Boolean circuits, in part due to
the now-dashed hope that circuit complexity could shed light on whether P = NP.
A cursory examination of Wegener’s book on Boolean circuits [Wegener, 1987]
reveals a wealth of results regarding upper and lower bounds on the size of Boolean
circuits for computing various Boolean-valued functions. Because propositional
formulas are themselves Boolean circuits, and likewise goalbases can be thought
of as Boolean circuits with the aggregator as the output gate, results in this
area are prima facie highly relevant for comparing the succinctness of goalbase
languages. Unfortunately, the concerns of researchers working on Boolean circuits
seem largely orthogonal to ours, as the properties which were investigated (such as
bounded depth, bounded fan-in and -out) do not map neatly onto the properties
which interest us. Nonetheless, we do make use of a circuit size result in our proof
of Theorem 4.4.13 in this chapter.

There is also a significant literature on the effect that preprocessing may
have on the complexity of decision problems. The general idea here is that some
problem instances may have enough overlap that an advantage may be gained
by preprocessing (“compiling”) the common data. There is no limit on the time
which may be spent in the compilation phase, only on the size of the compiled
output, as compilation of the fixed part of the input is considered to happen
offline. If the remaining decision problem, after compilation, is in a complexity
class C, then the original problem is said to be C-compilable. Liberatore [2001]
gives a thorough discussion of these notions. Most of the results there are negative,

66 Chapter 4. Succinctness

showing that various problems are C-hard (i.e., they are C-hard even after
permitting unlimited preprocessing time on the fixed part of the problem).

In particular, Darwiche and Marquis [2004] give compilation results for propo-
sitional weighted bases, which are the penalty-logic version of our goalbases. The
decision problems considered there, model checking and clausal inference,
are not obviously applicable to our framework, as Darwiche and Marquis interpret
their sets of weighted formulas as representing ordinal preferences, not cardinal
preferences. Similarly, there are a great many succinctness results given by Coste-
Marquis et al. [2004] for various ordinal preference notions, when represented using
weighted propositional formulas. Here again, it is not clear whether or how these
results might be applicable to our goalbase languages, as in these cases goalbases
are being used to generate preorders, while in our case we are generating utility
functions. Further work on knowledge base compilation may be found in [Cadoli,
Donini, Liberatore, and Schaerf, 1996, 1999a; Cadoli, Palopoli, and Scarcello,
1999b; Cadoli et al., 2000; Cadoli, Donini, Liberatore, and Schaerf, 2002].

Though there are dissimilarities between using goalbases in ordinal and car-
dinal contexts, the compilation literature nonetheless points us towards strict
succinctness proofs of the following sort:

Proof idea. Suppose that for the language L1, the decision problem bipartite
aardvark coloring is C-hard, but is known to be a member of the easier C ′
class for another language L2. Therefore, we know that if there were a polytime
translation from L1 to L2, then we could decide bipartite aardvark coloring
for L1 much faster by translating our input into L2 first and deciding bipartite
aardvark coloring there instead. Because the C-hardness of bipartite
aardvark coloring for L1 makes this is impossible, we conclude that there
can be no polytime translation of L1 into L2.

The careful reader will notice that this proof idea is a dead end for us: It rules
out a polytime translation from the harder language into the easier, but not a
polysize translation. It follows from the impossibility of a polysize translation
that L1 � L2, but no such thing follows from the impossibility of a polytime
translation. It might well be the case that constructing a polysize translation
involves iterating over all 2|PS| states for some goalbases. Compilation could
help us here, by moving the translation step into the fixed part of the problem.
Coste-Marquis et al. [2004, Table 1] report that this method works for ruling
out polysize translations between some of their ordinal preference representation
languages. However, we have yet to find any decision problem and pair of goalbase
languages with the required properties to make this possible, and hence we do not
use this approach for proving any of the strict succinctness results in this chapter.

Probably closest to the contents of this chapter is the work of Wachter and
Haenni [2006] on propositional directed acyclic graphs (PDAGs). A PDAG is a
rooted DAG consisting of M (AND), O (OR), and � (NOT) nodes, and leaf nodes ◦

4.3. Related Work 67

labeled with propositional letters or constants (>, ⊥). In other words, a PDAG is
a Boolean circuit composed of AND, OR, and NOT gates. Wachter and Haenni
give a succinctness definition nearly the same as the one used by Chevaleyre et al.
[2006], and proceed to prove equi- and strict succinctness results for several classes
of PDAGs, in some cases relying on knowledge compilation results of Darwiche
and Marquis [2002]. Comparing the succinctness of one class of PDAGs to another
is almost the same as comparing two classes of goalbases where every goalbase
contained in each class is of the form {(ϕ, 1)}, the difference being that PDAGs
may have a succinctness advantage over formulas which contain many copies of
the same subformula, as a single subPDAG may have multiple parents. Wachter
and Haenni [2006, Definition 2] constructed 15 sublanguages of the full PDAG
language by considering PDAGs having combinations of four circuit properties—
namely, flatness, decomposability, determinism, and simple-negation. Flatness
limits circuit depth, decomposability and determinism concern overlap between
subformulas, and simple-negation limits application of negations to subformulas
which are atoms. While these properties are useful when considering DAGs, they
are not natural properties when working with formulas: The languages we studied
are those formed by simple restrictions on formula structure; as it happens, none
of these exhibit decomposability or determinism. All of our languages except
those based on general formulas have the simple-negation property, but they are
all proper sublanguages of the language containing all simply-negated formulas.
Which of our languages are flat depends on whether AND and OR gates are
permitted to have arbitrary fan-in, or a fan-in of exactly 2, as in propositional
formulas. With arbitrary fan-in, all of our cubes and clauses languages are flat;
with a fan-in of 2, only languages up to 3-formulas are flat.1 However, regardless
of the fan-in, the set of all flat formulas corresponds to none of the sets of formulas
we examined. While it would be interesting to consider flat, decomposable,
deterministic, and simply-negated goalbase languages in order to see which results
carry over, the complexity of the restrictions on formulas they impose puts them
beyond what might be usable by people, say for preference representation in
voting or auctions. This is not to say that they might not be usable by computer
agents—they might very well be, and deserve some consideration in future work.

Ieong and Shoham [2005] introduce marginal contribution nets (MC-nets) as a
way of modeling coalitional games with transferable utility. A coalitional game
with transferable utility 〈N, v〉 is a set of agents N and a valuation function
v : S ⊆ N → R which indicates the value of any coalition S to its members. (The
game specifies only how much utility a coalition receives, not how its members
should divide it; this is what distinguishes a coalitional game with transferable
utility from one without.) An MC-net is a set of rules of the form ϕ → w,

1This is because the cube a ∧ (b ∧ (c ∧ d)) has a depth of 3. Note also that it makes no
difference that this cube could be rebalanced as (a ∧ b) ∧ (c ∧ d) and thereby made flat, since
flatness is a property of the language as a whole, not just of the flattest members of each
equivalence class.

68 Chapter 4. Succinctness

where ϕ is a cube and w ∈ R. A rule ϕ → w is said to apply to a coalition S
iff all of the positive literals in ϕ are members of S and none of the negative
literals in ϕ are members of S; the value of a coalition S is the sum of weights
of all rules which apply to S. It is easy to see that the language of MC-nets is
exactly L(cubes,R,Σ) in disguise. Ieong and Shoham [2005, Section 3.1] prove one
succinctness result which we prove independently here as part of Theorem 4.4.8,
namely that L(cubes,R,Σ) � L(pcubes,R,Σ); furthermore, they prove that MC-
nets are strictly more succinct [Ieong and Shoham, 2005, Propositions 2–3] than
the multi-issue representation of coalitional games of Conitzer and Sandholm
[2004], and are at least as succinct [Ieong and Shoham, 2005, Proposition 4] as the
weighted graphical games of Deng and Papadimitriou [1994]. Elkind et al. [2009]
further generalize basic MC-nets to general MC-nets, by additionally permitting
arbitrary Boolean connectives in their rules. We discuss two of their succinctness
results in Section 4.4.4.

Finally, we note the existence of various absolute succinctness results for the
OR/XOR family of languages, which are commonly used as bidding languages in
the combinatorial auctions literature. Many of these results exhibit rather precise
bounds. For example, Nisan proved that the OR-of-XORs language can express
any downward-sloping symmetric valuation on m items using no more than m2

atomic bids [Nisan, 2000, Lemma 3.4] and that the monochromatic valuation on
m items requires at least 2m/2+1 atomic bids [Nisan, 2000, Theorem 3.5]. These
results, and others, are surveyed by Nisan [2006]. We recapitulate two of Nisan’s
succinctness results much later, in Section 6.3.3, when we discuss the relative
succinctness of goalbase languages and the OR/XOR languages.

4.4 Succinctness of Sum Languages

In this section, we give succinctness results for many pairs of sum languages.

4.4.1 Some Basic Succinctness and Equivalence Results

Many succinctness and equivalence results can be arrived at merely by knowing
the expressivity of the languages being compared and the basic properties of the
succinctness relation contained in Fact 4.2.3.

From Theorem 4.2.4, it follows that all k-languages are pairwise equally succinct.
For example, L(k-spcubes,R,Σ) ∼ L(k-forms,R+,Σ).

Next, we establish the relationships between positive and strictly positive
languages:

Lemma 4.4.1. If Φ is a strictly positive set of formulas, then L(Φ,W,Σ) ∼
L(Φ ∪ {>},W,Σ).

4.4. Succinctness of Sum Languages 69

Proof. By inclusion, L(Φ,W,Σ) � L(Φ ∪ {>},W,Σ). For the converse: Fix
G ∈ L(Φ ∪ {>},W,Σ). If G does not contain >, then G ∈ L(Φ,W,Σ) also. If G
contains >, combine all occurrences (>, w1), . . . , (>, wk) into a single weighted
goal

(
>,
∑k

i=1 wi
)
. If

∑k
i=1 wi = 0, then remove > to again produce a goalbase in

both languages. If instead > now has nonzero weight, then uG is not representable
in L(Φ,W,Σ), since uG is not normalized and by Lemma 3.4.7 only normalized
utility functions can be represented using strictly positive formulas (let P be the
null property). Therefore, any u representable in both languages has exactly the
same representations in both.

Here we take advantage of unique representations to show that there is no
difference in succinctness between the positive and strictly positive versions of
several languages:

Theorem 4.4.2.

1. L(pforms,W,Σ) ∼ L(spforms,W,Σ),

2. L(pcubes,W,Σ) ∼ L(spcubes,W ′,Σ), and

3. L(pclauses +>,W,Σ) ∼ L(pclauses,W ′,Σ).

Proof. When W = W ′, the result is a direct consequence of Lemma 4.4.1, giving
us the first equivalence. By Theorem 3.4.2, L(pcubes,R,Σ) has unique repre-
sentations, from which follows that its sublanguages do also, and so any utility
function representable in both L(pcubes,W,Σ) and L(spcubes,W ′,Σ) has the same
representation in both, yielding the second equivalence. By Corollary 3.4.4, the
same holds for L(pclauses +>,W,Σ) and L(pclauses,W ′,Σ), giving the third
equivalence.

The languages L(spcubes,R+,Σ) and L(pclauses,R+,Σ) are equally succinct
due to their limited overlap.

Theorem 4.4.3. L(spcubes,R+,Σ) ∼ L(pclauses,R+,Σ).

Proof. Every utility function expressible in L(spcubes,R+,Σ) is supermodular,
while every utility function expressible in L(pclauses,R+,Σ) is submodular. Let u
be such a utility function. The only nonnegative utility functions which are both
supermodular and submodular are modular, and so the spcubes representation
of u is in 1-spcubes and the pclauses representation is in 1-pclauses. Since 1-
spcubes and 1-pclauses are just atoms, u has the same representation in both
L(spcubes,R+,Σ) and L(pclauses,R+,Σ).

We conclude this section on basic succinctness with an absolute result for
L(atoms,W,Σ).

70 Chapter 4. Succinctness

Theorem 4.4.4. If G ∈ L(atoms,W,Σ) and contains no duplicate formulas, then
there is no other G′ ∈ L(forms,R,Σ) such that G ≡Σ G

′ and size(G′) < size(G).

Proof. Fix a G ∈ L(atoms,W,Σ). Suppose that some G′ ∈ L(forms,W ′,Σ)
distinct from G is such that G ≡Σ G′. Because G contains only atoms and no
duplicates, the only way in which G′ could be smaller than G is if G′ entirely
omits some atom p which occurs in G (as (p, w)). Because uG,Σ is modular, we
have that uG,Σ({p}) = w, and because G is minimal in L(atoms,W,Σ), w 6= 0.

Notice that M |= ϕ is equivalent to M ∪ {p} |= ϕ when p is not a subformula
of ϕ. Therefore, since p does not occur as a subformula of any formula in G′, for
every state p /∈ X it will be the case that uG′,Σ(X) = uG′,Σ(X ∪ {p}). Therefore,
uG′,Σ(∅) = uG′,Σ({p}), while uG,Σ(∅) = 0 6= w = uG,Σ({p}), which contradicts the
hypothesis that G ≡Σ G

′.

In other words, the optimal representations for all nonnegative modular utility
functions are the obvious ones in L(atoms,W,Σ).

4.4.2 Equivalence via Goalbase Translation

It is sometimes possible to show that two languages are equally succinct by
applying a size-preserving translation to the goalbases in both directions. The
following lemma shows that a broad range of languages—those languages which
sit between cubes and the union of cubes and clauses, or between clauses and the
union of cubes and clauses—are equally succinct. Afterwards, we use this to prove
Theorem 4.4.6, which shows that L(cubes,R,Σ) ∼ L(clauses,R,Σ).

Lemma 4.4.5. Let Φ and Ψ be sets of formulas. If the following conditions hold,

• Φ ⊇ cubes or Φ ⊇ clauses,

• Ψ ⊇ cubes or Ψ ⊇ clauses,

• Φ ∪Ψ ⊆ cubes ∪ clauses,

then L(Φ,R,Σ) ∼ L(Ψ,R,Σ).

Proof. Suppose that G ∈ L(Φ,R,Σ). Enumerate (ϕi, wi) ∈ G. We construct an
equivalent goalbase G′. Let

G0 = G

Gi+1 =

{
(Gi \ {(ϕi, wi)}) ∪ {(¬ϕi,−wi), (>, wi)} if ϕi /∈ Ψ

Gi otherwise

and let G′ = G|G|.

4.4. Succinctness of Sum Languages 71

The transformation produces an equivalent goalbase: By equivalences (3.5)
and (3.6) from Fact 3.4.1, Gi ≡ Gi+1 for all i, so G = G1 ≡ G2 ≡ . . . ≡ G|G|−1 ≡
G|G| = G′.

The transformation produces a goalbase in the appropriate language: Suppose
that ϕ ∈ Φ. The set Ψ contains at least every clause or every cube. If ϕ is a
clause, then ¬ϕ is (equivalent to) a cube, and vice versa. Hence at least one of
ϕ and ¬ϕ are in Ψ. > is both a cube (

∧
∅) and a clause (p ∨ ¬p), so > ∈ Ψ

regardless. Thus G′ ∈ L(Ψ,R,Σ).
The transformation produces a goalbase as succinct as the original: If ϕ is a

cube, then ϕ requires the same number of atoms and binary connectives as as ¬ϕ
(written as a clause); similarly, if ϕ is a clause. The only increase in size between
G and G′ can come from the addition of >, so we have that |G′| ≤ |G|+ 1.

Therefore, L(Φ,R,Σ) � L(Ψ,R,Σ). By the same argument L(Φ,R,Σ) �
L(Ψ,R,Σ). So L(Φ,R,Σ) ∼ L(Ψ,R,Σ).

Theorem 4.4.6. L(cubes,R,Σ) ∼ L(clauses,R,Σ).

Proof. Follows immediately from Lemma 4.4.5.

4.4.3 Strict Succinctness and Incomparability,
by Counterexample

The most straightforward method for showing that one language is not more
succinct than another is to produce a family of utility functions whose represen-
tations grow exponentially in the first language but merely polynomially in the
second language. Here we define two families of utility functions which will be
used repeatedly for demonstrating strict succinctness and incomparability results.

Definition 4.4.7. Let u∀n and u∃n be the utility functions over PSn where

u∀n(X) =

{
1 if X = PS
0 otherwise,

and u∃n(X) =

{
1 if X 6= ∅
0 otherwise.

In all cases in this section where we show that one language is strictly less
succinct than another, we rely on the fact that the less succinct language has unique
representations in order to rule out representations smaller than the exponential
ones we will exhibit.

Theorem 4.4.8.

L(pclauses,R,Σ)
L(pclauses +>,R,Σ)

}
≺ L(clauses,R,Σ)

L(spcubes,R,Σ)
L(pcubes,R,Σ)

}
≺ L(cubes,R,Σ)

72 Chapter 4. Succinctness

Proof. L(pcubes,R,Σ) � L(cubes,R,Σ) since every pcube is a cube. Consider the
family of utility functions u∃n, which may be represented in cubes as{

(>, 1),
(∧
{¬p | p ∈ PS},−1

)}
the length of which increases linearly with n. u∃n may be represented in pcubes as

{(∧
X,wV

X

) ∣∣∣ ∅ ⊂ X ⊆ PS
}

where wV
X =

{
1 if |X| is odd

−1 if |X| is even.

Every pcube except > receives a nonzero weight, and and by Theorem 3.4.2 this
representation is unique. For any n, 2n − 1 pcubes are weighted, so the size of the
representation increases exponentially with n.

For L(pclauses +>,R,Σ) ≺ L(clauses,R,Σ), replace “∃”, “∧”, “pcubes”,
“cubes”, and “Theorem 3.4.2” in the above proof with “∀”, “∨”, “pclauses +>”,
“clauses”, and “Theorem 3.4.3”, respectively.

Corollary 4.4.9.

L(spcubes,R,Σ)
L(pclauses,R,Σ)
L(pcubes,R,Σ)

L(pclauses +>,R,Σ)

 ≺ L(forms,R,Σ)

Proof. Immediately from Fact 4.2.3.3 and Theorem 4.4.8.

Next, we exploit the fact that languages based on positive cubes favor u∀n while
languages based on positive clauses favor u∃n to show that pcubes and pclauses
languages are incomparable.

Theorem 4.4.10.

L(pcubes,R,Σ)
L(spcubes,R,Σ)

}
⊥
{
L(pclauses,R,Σ)
L(pclauses +>,R,Σ)

Proof. (⊀) The family of utility functions u∃n is represented uniquely and linearly
as {(

∨
PS, 1)} in pclauses. When representing u∃n in pcubes, the weights wV

X =
(−1)|X|+1, so the unique representation there assigns nonzero weights to 2n − 1
distinct pcubes.

(�) The family of utility functions u∀n is represented uniquely and linearly as
{(
∧
PS, 1)} in pcubes, but the representation in pclauses is exponential, as shown

in the proof of Theorem 4.4.8.

Note that from L(pcubes,R,Σ) ⊥ L(pclauses +>,R,Σ) we can also conclude,
using Fact 4.2.3.4, that L(pcubes,R,Σ),L(pclauses +>,R,Σ) ≺ L(pforms,R,Σ),

4.4. Succinctness of Sum Languages 73

because positive formulas are a superset of the union of positive cubes and positive
clauses.

We now make the same comparison as in the previous theorem, but with the
weights of one language in each pair restricted to R+. In doing so, we maintain
nonsuccinctness in one direction.

Theorem 4.4.11.

L(pclauses,R,Σ)
L(pclauses +>,R,Σ)

}
�
{
L(spcubes,R+,Σ)
L(pcubes,R+,Σ)

L(spcubes,R,Σ)
L(pcubes,R,Σ)

}
�
{
L(pclauses,R+,Σ)
L(pclauses +>,R+,Σ)

Proof. The first part is demonstrated by the u∀n family of functions, the second
part by the u∃n family.

However, it is unknown whether the � direction also holds for these languages.

The following theorem shows how even seemingly rather wasteful languages
like L(complete cubes,R,Σ) may in some cases have representational advantages
over more parsimonious ones:

Theorem 4.4.12. L(complete cubes,R,Σ) ⊥ L(pcubes,R,Σ)

Proof. This follows directly from a result of Chevaleyre et al. [2008a, Proposi-
tions 4–5], with the utility functions providing the counterexamples found by
Chevaleyre et al. [2006, p. 150]. We note that L(complete cubes,R,Σ) has unique
representations, due to the fact that no two complete cubes are ever true simulta-
neously. The necessary counterexamples are u(M) = |M |, which is represented in
L(pcubes,R,Σ) as {(a, 1) | a ∈ PS} but is the very large{(∧

(M ∪ ¬M̄), |M |
) ∣∣∣ ∅ ⊂M ⊆ PS

}
in L(complete cubes,R,Σ); and

u(M) =

{
1 if |M | = 1

0 otherwise,

which is the very large{(∧
X, |X| · (−1)|X|−1

) ∣∣∣ ∅ ⊂ X ⊆ PS
}

in L(pcubes,R,Σ) but the much smaller{(∧
(M ∪ ¬M̄), 1

) ∣∣∣ |M | = 1
}

in L(complete cubes,R,Σ).

74 Chapter 4. Succinctness

Furthermore, it follows that L(complete cubes,R,Σ) ≺ L(cubes,R,Σ), due to
Fact 4.2.3.4, since all positive cubes and complete cubes are cubes.

Finally, a comment about the method used in this section: While it has proved
a productive one for us, it has three serious drawbacks. First, this strategy requires
us to construct a family of utility functions and their representations in two different
languages, but not just any family of utility functions will do. In every case where
we have proven strict succinctness, it is not strong, i.e., we have shown that there are
no utility functions which have significantly larger representations in one language,
and some which have significantly smaller representations in the same language (in
order to get≺)—but there are also some utility functions which have similarly-sized
representations in both languages. In fact, we know of no pair of languages where
the smallest representation of every utility function in one language is exponentially
larger (or even just larger) than the smallest representation in another. Second,
proving that a language has unique representations is generally not trivial, as
seen in Section 3.4.2. Third, and most seriously, it is easy to demonstrate that
many more expressive languages lack the uniqueness property. This proof strategy
depends crucially on being able to produce a large representation in the less succinct
language while at the same time being certain that no smaller representation
exists there. When the less succinct language lacks unique representations, mere
possession of a bad representation of a utility function provides us with no
assurance that we haven’t overlooked a much smaller representation of that utility
function in the same language.

4.4.4 Strict Succinctness, Nonconstructively

It is difficult to demonstrate that a language which lacks unique representa-
tions is less succinct than another language, because the exhibition of a single
exponentially-growing family of utility functions (as above) does not preclude
the existence of better representations in the same language. Here, we take a
nonconstructive approach to produce the following strict succinctness result, due
to Yann Chevaleyre:

Theorem 4.4.13. L(cubes,R,Σ) ≺ L(forms,R,Σ).

To prove this theorem, we will introduce the Fourier transform on Boolean
domains, using the same notation as Mansour [1994]. Then, to apply the Fourier
transform on cubes, we will need two lemmas. The first one will show how the
size of cubes relates to their degree. The second lemma will show that a function
which approximates parity accurately necessarily has a high degree.

For each S ⊆ PS, the parity function χS : 2PS → {−1, 1} is defined as

χS(X) = (−1)|S∩X|.

Because these functions form an orthonormal basis for the space of real functions
on 2PS , any function f : 2PS → R can be represented as a linear combination with

4.4. Succinctness of Sum Languages 75

respect to this basis. This is known as the Fourier-Walsh expansion:

f(X) =
∑
S⊆PS

f̂(S)χS(X),

where the f̂(S) ∈ R are the Fourier coefficients, which are computed as follows:

f̂(S) =
1

2n

∑
X⊆PS

f(X)χS(X)

for all S ⊆ PS. The degree of a function f is the cardinality of the largest subset
of S with a nonzero Fourier coefficient: deg(f) = max{|S| | f̂(S) 6= 0}.

Lemma 4.4.14. If G ∈ L(k-cubes,R,Σ), then the degree of uG will be at most k.

Proof. Let us first show the lemma under the condition that G contains a single
cube of at most k literals. Let y ∈ PS be any variable not present in that cube.
For all S ⊆ PS such that y ∈ S, the Fourier coefficients ûG(S) are the following:

ûG(S) =
1

2n

∑
X⊆PS, y /∈X

uG(X)χS(X) +
1

2n

∑
X⊆PS, y∈X

uG(X)χS(X)

=
1

2n

∑
X⊆PS\{y}

χS(X)
(
uG(X)− uG(X ∪ {y})

)
= 0.

Therefore, if ûG(S) 6= 0 then S contains only variables present in the cube, thus
|S| ≤ k. Thus, the degree of uG is at most k. Suppose now that G contains more
than one cube. Then, uG can be seen as a linear combination of utilities each
generated by single cubes. Because the Fourier transform is linear (in other words,
if f = g + h then f̂ = ĝ + ĥ), the degree of uG is also bounded by k.

The next lemma is familiar from the literature on bounding the complexity
of Boolean circuits. The proof is inspired by the lecture notes of Trevisan [2004,
Lemma 4].

Lemma 4.4.15. There are some constants c > 0 and n0 > 0 (such constants
are completely independent from n) such that, if n ≥ n0, then given any function
g : 2PS → R that agrees with the parity function χPS on at least 3

4
of 2PS, the

degree of g will be at least c
√
n.

Proof. Let g : 2PS → R be a function that of 2PS . Let t be the degree of g.
Let A = {X ⊆ PS | g(X) = χPS(X)}, which by definition has the property
|A| ≥ 3

4
2n where n = |PS|. Clearly, for any S ⊆ PS and X ∈ A, we have

χS(X) = χPS(X)χPS\S(X) = g(X)χPS\S(X). Note that the function χS(X) has
a degree equal to |S|, but can be replaced over A by g(X)χPS\S(X), which has a
degree of at most t+ n− |S|. Consequently, any function χS over A with |S| ≥ n

2

76 Chapter 4. Succinctness

can be replaced by its Fourier-Walsh expansion, which is a linear combination
over the set of functions F = {χS′ | S ′ ⊆ PS, |S ′| ≤ t+ n

2
}.

The Fourier transform guarantees that any function f : A→ R can be written
as a linear combination over {χS | S ⊆ PS}. But because each of these functions
χS over A can itself be decomposed over F , f : A→ R can be written as a linear
combination over F as follows:

f(X) =
∑

S⊆PS, |S|≤t+ n
2

αS · χS(X),

with αS ∈ R. The number of αS coefficients is
∑t+ n

2
k=0

(
n
k

)
. However, because the

set of functions f : A→ R forms a vector space over the reals of dimension |A|,
the number of αS coefficients must be at least 3

4
2n. This leads to the inequality

t+ n
2∑

k= n
2

(
n

k

)
≥ 2n

4

which, after applying Stirling’s approximation and some basic formula manipula-
tion, becomes t = Ω(

√
n).

We are now in position to prove Theorem 4.4.13.

Proof. (Theorem 4.4.13.) In the first part of the proof, we will show that the
function χPS can be polynomially represented in L(forms,R,Σ), and in the second
part, we will show that this is not the case for L(cubes,R,Σ). Let us prove the
first part. It is known that the parity function can be written as a Boolean
AND/OR formula ϕparity containing at most n2 literals [Lee, 2006, p. 100]. We
can then build the goalbase G = {(>,−1), (ϕparity, 2)} which generates χPS with
a polynomial number of literals.

Let us now prove the second part. More precisely, we will show that in order
to represent χPS in L(cubes,R,Σ), at least 2Ω(

√
n) cubes are required. Consider a

goalbase G = {(ϕi, αi)}i where ϕi are cubes (possibly containing negative literals).
Let Glow be all the pairs (ϕi, αi) of G such that the number of literals in ϕi is
strictly lower than c

√
n, where the constant c is chosen as in Lemma 4.4.15. Let

Ghigh = G \Glow. Let uGlow
be the utility function generated by Glow. Together

with Lemma 4.4.14, we can now apply Lemma 4.4.15 which implies that uGlow

disagrees with χPS on at least a 1
4

fraction of 2PS . In order for uG to compute
the parity function, the cubes of Ghigh must compensate for the errors made by
those of Glow on this 1

4
fraction of 2PS , but we will show that this compensation

requires a very large number of cubes. Let us thus evaluate the fraction of 2PS

which can be affected by the cubes of Ghigh. Because each cube has at least c
√
n

literals, at most 2n−c
√
n interpretations will be affected by each of these cubes.

Thus, to affect 1
4

fraction of 2PS , Ghigh will need to have at least
2n

4

2n−c
√

n = 2c
√
n−2

cubes.

4.4. Succinctness of Sum Languages 77

Corollary 4.4.16. L(clauses,R,Σ) ≺ L(forms,R,Σ).

Proof. Follows immediately from Theorems 4.4.6 and 4.4.13, Fact 4.2.3.5, and
Corollary 3.4.9.

Elkind et al. [2009, Theorem 3.2] independently derived an entirely different
proof of our Theorem 4.4.13, in the context of representing a particular ill-behaved
family of coalitional games as basic marginal contribution nets (MC-nets). (For a
discussion of MC-nets, see Section 4.3.) Using a probabilistic argument, Elkind
et al. determined that the MC-nets generated by this family of coalitional games
required Ω((3

2
)n/2) basic rules.

Furthermore, Elkind et al. [2009, Example 3.1 and Theorem 3.2] give a suc-
cinctness result which compares Ieong and Shoham’s basic MC-nets with general
MC-nets. Because basic MC-nets are effectively goalbases in L(cubes,R,Σ) and
general MC-nets are goalbases in L(forms,R,Σ), we can adapt their proof to
arrive at another nonconstructive succinctness result:

Theorem 4.4.17. L(cubes,R+,Σ) ≺ L(forms,R+,Σ).

Proof. L(cubes,R+,Σ) � L(forms,R+,Σ) by inclusion. For strict succinctness:
Enumerate PS2n = {x1, x2, . . . , x2n−1, x2n} and define the family of utility func-
tions

u2n(X) =

{
1 if x2i−1 ∈ X or x2i ∈ X, for all 1 ≤ i ≤ n

0 otherwise.

The goalbase {((x1∨x2)∧. . .∧(x2n−1∨x2n), 1)} represents u2n ∈ L(spforms,R+,Σ)
linearly.

Because u2n is nonnegative, it has a representation G ∈ L(cubes,R+,Σ). If
(ϕ,w) ∈ G and w > 0, then for each 1 ≤ i ≤ n, ϕ contains at least one of x2i−1

and x2i as a literal: Suppose otherwise, and let X be a state where X |= ϕ but
x2i−1 and x2i are false. Then u2n(X) ≥ w since G contains no negative weights;
but u2n(X) = 0, and so w = 0, contrary to assumption. Next, consider the
states X where u2n(X) = 1 and for any state Z ⊂ X, u2n(Z) = 0. For any two
such minimal nonzero states X, Y , they must differ on at least two atoms p, q.
(If X and Y differed on only one atom, then X ⊂ Y or Y ⊂ X, contradicting
minimality.) Therefore, every (ϕ,w) ∈ G such that X |= ϕ contains a literal p but
not q and vice versa for every (ψ,w′) ∈ G such that Y |= ψ. Since each minimal
state has at least one (ϕ,w) which is true there but in no other minimal state,
and there are 2n such minimal states, |G| ≥ 2n, and so size(G) ∈ O(2|PS|).

The bulk of this proof shows that L(spforms,R+,Σ) � L(cubes,R+,Σ). This,
combined with the contrapositive of Fact 4.2.3.2, produces many of the � results
seen in Table 4.1.

78 Chapter 4. Succinctness

L
(s

pc
u

be
s,
R

+
,Σ

)
L

(p
cl

au
se

s,
R

+
,Σ

)
L

(s
pf

or
m

s,
R

+
,Σ

)
L

(p
cu

be
s,
R

+
,Σ

)
L

(p
cl

au
se

s
+
>
,R

+
,Σ

)
L

(p
fo

rm
s,
R

+
,Σ

)
L

(c
u

be
s,
R

+
,Σ

)
L

(c
la

u
se

s,
R

+
,Σ

)
L

(f
or

m
s,
R

+
,Σ

)
L

(s
pc

u
be

s,
R
,Σ

)
L

(p
cl

au
se

s,
R
,Σ

)
L

(s
pf

or
m

s,
R
,Σ

)
L

(p
cu

be
s,
R
,Σ

)
L

(p
cl

au
se

s
+
>
,R
,Σ

)
L

(p
fo

rm
s,
R
,Σ

)
L

(c
u

be
s,
R
,Σ

)
L

(c
la

u
se

s,
R
,Σ

)
L

(f
or

m
s,
R
,Σ

)

L(forms,R,Σ) � � � � � � � � � � � � � � � � � ∼
L(clauses,R,Σ) � � � � � � � � � � ∼ ∼
L(cubes,R,Σ) � � � � � � � � � � ∼
L(pforms,R,Σ) � � � � � � � � � ∼ � � ∼
L(pclauses +>,R,Σ) � ∼ � � ∼ � � � ⊥ ∼ ≺ ⊥ ∼
L(pcubes,R,Σ) ∼ � � ∼ � � � � ∼ ⊥ ≺ ∼
L(spforms,R,Σ) � � � � � � � � � ∼
L(pclauses,R,Σ) � ∼ � � ∼ � � � ⊥ ∼
L(spcubes,R,Σ) ∼ � � ∼ � � � � ∼
L(forms,R+,Σ) � � � � � � � � ∼
L(clauses,R+,Σ) � � � � ∼
L(cubes,R+,Σ) � � � � � � ∼
L(pforms,R+,Σ) � � ∼ � � ∼
L(pclauses +>,R+,Σ)∼ ∼ � ∼ ∼
L(pcubes,R+,Σ) ∼ ∼ � ∼
L(spforms,R+,Σ) � � ∼
L(pclauses,R+,Σ) ∼ ∼
L(spcubes,R+,Σ) ∼

Table 4.1: Summary of succinctness results for sum languages. Entries to be read
row first. Empty cells are open questions.

4.5. Succinctness of Max Languages 79

4.4.5 Summary

Our succinctness results for sum languages are summarized in Table 4.1. The
table contains many more results than are proved in the text, but in all cases these
are straightforward consequences of results which do appear in the text. (E.g.,
L(spcubes,R,Σ) ≺ L(clauses,R,Σ) follows immediately from Theorems 4.4.6
and 4.4.8.) There are many open questions (any cell which contains neither ≺,
�, nor ∼ has something yet to be resolved). All open questions involve at least
one language which lacks unique representations. Most cases in which nothing is
known involve a language which uses positive formulas or general formulas. We
suspect that resolving these questions will require difficult proofs, as the one for
Theorem 4.4.13 which shows that L(cubes,R,Σ) ≺ L(forms,R,Σ).

Finally, it is worth noting that ∼ is intransitive, due to the succinctness
relation being defined over languages which may differ in expressivity. E.g.,
L(atoms,R,Σ) is equally succinct as any other language, so L(atoms,R,Σ) ∼ L1

and L(atoms,R,Σ) ∼ L2, but it is still possible that L1 � L2.

4.5 Succinctness of Max Languages

In this section, we turn to the investigation of the succinctness of languages using
max as their aggregator. In addition to examining comparative succinctness of
max languages, we also address absolute succinctness for L(pcubes,W,max) and
L(cubes,W,max).

4.5.1 Absolute Succinctness

In absolute terms, there is a strong dependency of the size of representations in
max languages on the size of the range of the utility function being represented:

Theorem 4.5.1. For any goalbase G, |G| ≥ |ranuG,max|.

Proof. By definition, uG,max(X) = max{wϕ | X |= ϕ}, so for every state X there
must be some wϕ = u(X).

While the size of range of a utility function serves as a lower bound on the size
of its representation in any max language, there is no such relationship for sum
languages: E.g., if G = {(ai, 2i) | ai ∈ PS}, then uG,Σ has a large range (every
value in 0, . . . , 2|PS| − 1) despite that G is itself small (using only |PS| atoms).

By Theorem 4.5.1 we have that if |Gn| is polynomial then |ranuGn| is polyno-
mial. However, the converse does not hold: Let

Gn =
{(∧

X, 1
) ∣∣∣ |X| = n

2

}
∪ {(>, 0)}.

80 Chapter 4. Succinctness

Here, |ranuGn| = 2 but |Gn| =
(
n
n/2

)
+ 1 is superpolynomial and Gn is minimal in

L(pcubes,R+,max).
There is a clear connection between superfluity (cf. Definition 3.2.3) and

goalbase minimality:

Fact 4.5.2. If G is a minimal goalbase for a utility function u ∈ U(Φ,W,max),
then G contains no superfluous formulas.

The converse does not hold for L(forms,R,max): {(p, 1), (¬p, 1)} and {(>, 1)}
represent the same utility function u(X) = 1, yet neither formula in the larger
goalbase is superfluous.

Recall from Definition 3.2.4 that a language can have unique representations,
meaning that it is sufficiently restrictive as to have exactly one minimal represen-
tation of each representable utility function. Several sum languages have unique
representations, as discussed in Section 3.4.2. This also occurs for at least one
max language:

Theorem 4.5.3. L(pcubes,R,max) has unique representations.

Proof. Fix u ∈ U(pcubes,R,max). Let G0 = ∅. While uGi,max 6= u: Choose a least
state X for which uGi,max(X) 6= u(X). (By least, we mean that |X| is minimal.)
Let Gi+1 = Gi ∪ {(

∧
X, u(X))}. Call G the Gi at which the algorithm terminates.

Correctness: uG,max = u because each iteration ends with one more state
correct than in the previous iteration, and there are finitely many states. Setting
a weight for

∧
X cannot disturb the value of any state Y ⊂ X, as X is the least

state where
∧
X is true, and cannot prevent us from correctly setting the value

of any state Z ⊃ X during subsequent iterations, because by Theorem 3.5.9 u is
monotone. Note also that the order of choice of cubes of the same size makes no
difference in the outcome.

Minimality: For any state X, either
∧
X receives a weight or not. If

∧
X

receives a weight, then there is no state Y ⊂ X for which (
∧
Y, u(Y)) dominates

(
∧
X, u(X)). (Recall from Definition 3.5.1 that a (ϕ,wϕ) ∈ G is dominated if

there exists a (ψ,wψ) ∈ G such that ϕ |= ψ and wϕ < wψ.) Furthermore, there is
no state Z ⊃ X for which X |=

∧
Z. Hence, if the algorithm assigns a weight to∧

X, then this is the sole way in which we can make uG,max(X) = u(X). If, on
the other hand, the algorithm produces a G where

∧
X receives no weight, then

at some step i in the construction uGi,max(X) became correct before we reached
state X. If we were to set a weight for

∧
X, it would be superfluous and so G

would not be minimal. In summary: Any smaller G will give an incorrect value
for some state, and any different, yet still correct, G will necessarily contain a
superfluous formula.

Note that while this algorithm does show how to construct the minimal
representation for any representable utility function in L(pcubes,W,max), it is

4.5. Succinctness of Max Languages 81

not an efficient algorithm for finding representations, as it requires us to check
exponentially many states in order to set weights for them.

Next, we derive upper and lower bounds for the size of representations in
L(cubes,W,max), but first we prove several technical lemmas which we will need.
For the remainder of this section, we assume that all uG,max are total. First, recall
that active formulas in max-aggregated goalbases are those which have a weight
equal to the value of some state where they are true, from Definition 3.5.1.

Lemma 4.5.4. Fix a goalbase G ∈ L(cubes,W,max) and a (ϕ,w) ∈ G. If a state
X has an extension Y ⊃ X such that uG,max(Y) < uG,max(X) and (ϕ,w) is active
in X, then ϕ is not a positive cube.

Proof. Suppose otherwise. Let (ϕ,w) be such that X |= ϕ, uG,max(X) = w, ϕ a
pcube, and uG,max(Y) < uG,max(X). Then for all Y ⊃ X it follows that Y |= ϕ
because ϕ is a monotone formula. So uG,max(Y) ≥ w = uG,max(X), contrary to
hypothesis.

In words: If a cube is active in a state which can decline in value when extended,
then there must be a negative literal in that cube.

Here we define the X↑ notation for denoting the set of extensions of X, which
is used throughout the remainder of this section:

Definition 4.5.5. If X is a state, then X↑ = {Y | X ⊆ Y ⊆ PS}.

The set of states 2PS may be thought of as a Boolean lattice; then X↑ is the
sublattice rooted at X. Alternatively, X↑ may be thought of as all of the ways of
extending X.

Lemma 4.5.6. Suppose that w is the minimum value of any state in X↑. Let
(ϕ1, w), . . . , (ϕk, w) ∈ G ∈ L(cubes,W,max) be the formulas which are true in
at least one state in X↑, false outside of X↑, and have weight w. Let G′ =
G \ {(ϕi, w)}1≤i≤k ∪ {(

∧
X,w)}. Then:

1. G′ ≡max G.

2. size(G′) ≤ size(G).

Proof. For 1, we must show that the changes made to G to get G′ result in no
states being disturbed from their original values. The formula

∧
X is true exactly

in X↑ and nowhere else, so it disturbs no states outside of X↑. Adding (
∧
X,w)

disturbs no states in X↑, since (
∧
X,w) is inactive in any Y where u(Y) > w,

and provides the correct value in the remaining states in X↑ since w is minimal
there. Every ϕi |=

∧
X, so if M |= ϕi then M |=

∧
X also, which covers all states

where a ϕi was active.
For 2:

∧
X is not longer than ϕ1, . . . , ϕk:

∧
X is the shortest formula which

is true only in X↑. Each ϕi is true only in X↑ also, so size(ϕi) ≥ size(
∧
X), and

therefore
∑k

i=1 size(ϕi) ≥ size(
∧
X) (strictly larger if k > 1).

82 Chapter 4. Succinctness

This lemma permits us to reduce iteratively any goalbase in L(cubes,W,max):
Let G = G0. Apply the reduction to the smallest sublattice X↑ of Gi to which it
has not yet been applied, and let the result be Gi+1. (Starting from the smallest
sublattice means starting with PS as the root and working our way downwards
to ∅.) At some stage i, we will reach a fixed point—that is, Gi = G∞—where no
further applications of the reduction will have any effect. (The upper bound for
reaching a fixed point happens to be i = 2|PS|, though all we require here is that
it happens after finitely many applications of the reduction.) Let G′ = G∞, and
call such a G′ pcubes-minimal.

Since this reduction is never size-increasing, we may make use of it to observe
a useful fact about the formulas in minimal goalbases in L(cubes,W,max):

Lemma 4.5.7. For every G ∈ L(cubes,W,max), there is a minimal G′ ≡max G
such that (

∧
X,w) ∈ G′ iff w = minZ∈X↑ u(Z) and u(Y) < w for every Y ⊂ X.

Proof. Suppose that G′′ ≡max G and G′′ is minimal. Let G′ be the result of
exhaustively applying the reduction in Lemma 4.5.6 to G′′. Since the reduction
is equivalence-preserving and size-reducing, G′ ≡max G

′′ and size(G′) ≤ size(G′′).
Since G′′ was already minimal, G′ cannot be smaller, so size(G′) = size(G′′) and
G′ is also minimal.

(⇒) Suppose that (
∧
X,w) ∈ G′. Then (

∧
X,w) was not eliminated by the

reduction. Since
∧
X is a positive cube, it is true exactly in X↑ and nowhere else.

If there were some state Y ⊂ X for which u(Y) ≥ w, then the reduction would
have eliminated (

∧
X,w) and replaced it with (

∧
Y,w) instead, so it must be the

case that u(Y) < w for all Y ⊂ X. For the other condition, suppose that there is
a state Z ∈ X↑ such that u(Z) < w. Since Z |=

∧
X and max is our aggregator,

it follows that u(Z) ≥ w, which is a contradiction.
(⇐) Suppose that w = minZ∈X↑ u(Z) and u(Y) < w for every Y ⊂ X. Since

w is the minimal state value in X↑, it follows that there is a state Z ⊇ X for
which u(Z) = w. In order for u(Z) = w, we need a formula (ϕ,w) ∈ G′ such that
Z |= ϕ. Because u(Y) < w for all Y ⊂ X, it must also be the case that Y 6|= ϕ
for all Y ⊂ X. The only formula which meets both of these requirements which
could have survived the reduction is (

∧
X,w), since any longer formula would

have been replaced by (
∧
X,w) and any shorter formula would either be true in

some state Y ⊂ X or fail to be true in Z.

Note that w is not necessarily equal to u(X) here—in fact, if uG is nonmonotone,
then w will frequently not be u(X). For example, if

u(X) =

{
2 if X = ∅
1 otherwise,

then over PS = {p, q} the goalbase {(>, 1), (¬p ∧ ¬q, 2)} represents u in the
language L(cubes,R,max) and is pcubes-minimal, yet the minimal weight in ∅↑,
which is 1, does not equal u(∅) = 2.

4.5. Succinctness of Max Languages 83

Lemma 4.5.7 is crucial for the bounds we will derive below, as it tells us
exactly which positive cubes we will find in a minimal goalbase which is also
pcubes-minimal.

Furthermore, from Lemma 4.5.7, we have the following special case:

Lemma 4.5.8. For every G ∈ L(cubes,W,max), there is a minimal G′ ≡max G
such that (>,minX∈2PS u(X)) ∈ G′.

Proof. minX∈2PS u(X) = minZ∈∅↑ u(Z), and ∅ has no proper subsets.

It is not always that case that a G′ which results from the reduction under
discussion is uniquely minimal. E.g.,

u(X) =

{
1 if a ∈ X
0 otherwise

can be represented as either {(>, 0), (a, 1)} or {(¬a, 0), (a, 1)}, both of which are
the same size.

Now we attempt to calculate bounds on size(G) when G ∈ L(cubes,W,max).

Lemma 4.5.9. Let G ∈ L(cubes,W,max) be minimal. Let G+ ⊆ G be the set of
pcubes in G. Then

size(G+) =
∑{

max(1, |X|)
∣∣∣ ¬∃Y ⊂ X s.t. uG,max(Y) ≥ min

Z∈X↑
uG,max(Z)

}
.

Proof. By Lemma 4.5.7 we may, without loss of generality, assume that

G+ =
{(∧

X,w
) ∣∣∣ ¬∃Y ⊂ X s.t. u(Y) ≥ min

Z∈X↑
u(Z)

}
.

Therefore

size(G+) =
∑{

max(1, |X|)
∣∣∣ ¬∃Y ⊂ X s.t. uG,max(Y) ≥ min

Z∈X↑
uG,max(Z)

}
.

Note that we must have max(1, |X|) instead of simply |X|, due to the fact that
|∅| = 0 but size(

∧
∅) = size(>) = 1.

Using this and a result from Chapter 3, we can derive the exact size for every
minimal G in the monotone portion of L(cubes,W,max):

Theorem 4.5.10. If G ∈ L(cubes,W,max), G is minimal, and uG,max is mono-
tone, then

size(G) =
∑{

max(1, |X|)
∣∣∣ ¬∃Y ⊂ X s.t. uG,max(Y) ≥ uG,max(X)

}
.

84 Chapter 4. Succinctness

Proof. Since uG,max is monotone, we know by Theorem 3.5.6 that removal of
negative literals is equivalence-preserving. Since G is minimal, it follows that the
negative literals are already gone, so every formula in G is a positive cube. Hence
G = G+, so we have from Lemma 4.5.9 that

size(G) =
∑{

max(1, |X|)
∣∣∣ ¬∃Y ⊂ X s.t. uG,max(Y) ≥ min

Z∈X↑
uG,max(Z)

}
.

Finally, notice that because uG,max is monotone, minZ∈X↑ uG,max(Z) = uG,max(X),
which permits us to simplify the condition.

Now we turn to the case where uG,max is nonmonotone. For any such minimal
G, we know by Lemma 4.5.9 the precise size of G+, the positive subset of G, so
all that remains is to derive bounds for G−, the subset of G containing negative
literals. First, we derive bounds for the size of G−.

Lemma 4.5.11. Let G ∈ L(cubes,W,max) be minimal. Let G− be the set of
cubes in G containing negative literals. Then

size(G−) ≥
∣∣{p ∈ PS | uG,max(X) > uG,max(X ∪ {p})}

∣∣
and

size(G−) ≤ |PS| ·
∣∣∣{X ∣∣∣ ∃Y ⊂ X s.t. u(Y) ≥ min

Z∈X↑
u(Z)

}∣∣∣.
Proof. By Lemma 4.5.4, if there are states X and X∪{p} where uG,max(X∪{p}) <
uG,max(X), then there must be a formula (ϕ,w) active in state X that contains ¬p.
These are the formulas which comprise G−.

The best case is that every such ¬p appears in G− exactly once, which gives
us the lower bound. The worst case is to write a complete cube

∧
X ∪ ¬X̄ to

cover each pair of states X,X ∪ {p} over which there is a decline in value; every
such complete cube has length |PS|.

Now we have all of the pieces necessary for exhibiting upper and lower bounds
on the size of goalbases in L(cubes,W,max) which represent nonmonotone utility
functions.

Theorem 4.5.12. If G ∈ L(cubes,W,max), G is minimal, and uG,max is non-
monotone, then

size(G) ≥
∑{

max(1, |X|)
∣∣∣ ¬∃Y ⊂ X s.t. uG,max(Y) ≥ min

Z∈X↑
uG,max(Z)

}
+
∣∣{a ∈ PS | uG,max(X) > uG,max(X ∪ {a})}

∣∣.
Proof. Recall that G = G+ ∪ G−. Lemma 4.5.9 gives us the exact size of G+,
while Lemma 4.5.11 gives us a lower bound for the size of G−.

4.5. Succinctness of Max Languages 85

Theorem 4.5.13. If G ∈ L(cubes,W,max), G is minimal, and uG,max is non-
monotone, then

size(G) ≤
∑{

max(1, |X|)
∣∣∣ ¬∃Y ⊂ X s.t. uG,max(Y) ≥ min

Z∈X↑
uG,max(Z)

}
+ |PS| ·

∣∣∣{X ∣∣∣ ∃Y ⊂ X s.t. uG,max(Y) ≥ min
Z∈X↑

uG,max(Z)
}∣∣∣

Proof. Recall that G = G+ ∪ G−. Lemma 4.5.9 gives us the exact size of G+,
while Lemma 4.5.11 gives us an upper bound for the size of G−.

Note that neither the upper nor lower bounds given here are tight in general,
though for each bound we do have an example of a goalbase for which one of the
bounds is tight. For the upper bound, consider the utility function

u(X) = |X| mod 2,

the parity function on PS. When PS = {a, b, c}, the goalbase

{(>, 0), (a ∧ b ∧ c, 1), (a ∧ ¬b ∧ ¬c, 1), (¬a ∧ b ∧ ¬c, 1), (¬a ∧ ¬b ∧ c, 1)}

is minimal for u(X). The lower bound here is 7, the upper bound is 13, and the
actual size is also 13. For the lower bound, consider the utility function

u(X) =

{
1 if a /∈ X
0 otherwise,

for which the goalbase {(>, 0), (¬a, 1)} is minimal over PS = {a, b, c}. In this
case, both the actual size and lower bound are 2, while the upper bound is
again 13. Finally, the utility function u(X) = 3− |X| is represented minimally
over PS = {a, b, c} by the goalbase

(>, 0),

(¬a, 1), (¬b, 1), (¬c, 1),

(¬a ∧ ¬b ∧ c, 2), (¬a ∧ b ∧ ¬c, 2), (a ∧ ¬b ∧ ¬c, 2),

(¬a ∧ ¬b ∧ ¬c, 3)

which has size 16, but hits neither the lower nor the upper bound, which are 4
and 22, respectively.

Clearly these bounds could be refined by further analyzing the composition
of G− for various nonmonotone utility functions, but at present what exactly
the differences are among the three examples—what causes one to hit the lower
bound, one to hit the upper bound, and one to hit neither—is not apparent to us.
Furthermore, the bounds themselves are not easy to compute; here again, some
additional insight into the structure of such functions might be of use. We leave
these issues for future work.

86 Chapter 4. Succinctness

4.5.2 Relative Succinctness

When comparing the succinctness of any two max languages, notice that the
available weights play no role in the outcome. If L(Φ,W,max) and L(Ψ,W ′,max)
are the languages under comparison, then for any utility function u representable
in both languages, ranu ⊆ W ∩W ′. Due to this, any weighted formula (ϕ,w)
where w /∈ W ∩W ′ will be superfluous when it occurs in a representation of u in
either language. Since only minimal representations are relevant for succinctness,
we can disregard all representations of u which use weights outside of W ∩W ′:

Fact 4.5.14. For succinctness relations � ∈ {�,≺,∼,⊥}:

L(Φ,W,max)� L(Ψ,W ′,max) ⇐⇒ L(Φ,W ∩W ′,max)� L(Ψ,W ∩W ′,max).

The same does not hold for arbitrary sum languages, due to the fact that
summing weights can produce values for states which lie outside the set of weights.
(Consider that if G = {(a, 1), (b, 1)} ∈ L(atoms, {0, 1},Σ), then uG,Σ({a, b}) =
2 /∈ {0, 1}.)

Next, we show that all pcubes and cubes languages are equally succinct when
using max for our aggregator.

Theorem 4.5.15. For all j, k ∈ N ∪ {ω} and W,W ′ ⊆ R:

1. L(j-pcubes,W,max) ∼ L(k-pcubes,W ′,max).

2. L(j-pcubes,W,max) ∼ L(k-cubes,W ′,max).

3. L(j-cubes,W,max) ∼ L(k-cubes,W ′,max).

Proof. When at least one of j, k ∈ N, all three cases follow immediately from
Theorem 4.2.4. We must give a proof when j = k = ω, but here the first and
third cases trivialize, so all that remains is to show that L(pcubes,W,max) ∼
L(cubes,W ′,max). By Fact 4.5.14, we may assume without loss of generality
that W = W ′. L(pcubes,W,max) expresses only monotone utility functions, and
Theorem 3.5.6 ensures that any representation containing negative literals may be
reduced to a shorter, equivalent one by simply deleting the negative literals; the
result of such a deletion is in L(pcubes,W,max). Hence the minimal representations
for any u representable in both L(pcubes,W,max) and L(cubes,W ′,max) will be
the same, which proves that L(pcubes,W,max) ∼ L(cubes,W ′,max).

Recall that Theorem 3.5.4 shows that disjunctions as main connectives do not
affect succinctness, because the translation required to eliminate disjunction does
not affect the size of a goalbase. However, the same is not necessarily true for
disjunctions which occur within the scope of other connectives. Therefore, for
our analysis of expressivity of max languages in Chapter 3 we could safely ignore
disjunction, but for succinctness we cannot, as the next result demonstrates.

4.5. Succinctness of Max Languages 87

Theorem 4.5.16. L(pcubes,R+,max) ≺ L(pforms,R+,max).

Proof. We have that L(pcubes,R+,max) � L(pforms,R+,max) because every
pcube is a positive formula. For strict succinctness: The family of utility functions
represented by

{((p1 ∨ p2) ∧ (p3 ∨ p4) ∧ . . . ∧ (pn−1 ∨ pn), 1)}

in L(pforms,R+,max) grows linearly with n, while the minimal representation in
L(pcubes,R+,max) is{(n/2∧

k=1

pik , 1
) ∣∣∣∣∣ i1, . . . , in/2 ∈ {1, 2} × {3, 4} × . . .× {n− 1, n}

}

which has size 2n−1 for any (even) n.

More generally, the same argument shows that for any intersecting sets of
weights W,W ′, L(pcubes,W,max) ≺ L(pforms,W ′,max)—so long as there is
some w ∈ W ∩W ′, we may use that for the formula weights instead of using 1
as we do in the proof—and also that L(pcubes,W,max) ≺ L(forms,W,max) and
L(cubes,W,max) ≺ L(pforms,W,max), by virtue of Theorem 3.5.6.

When dealing with negation-containing goalbases for monotone utility func-
tions, we might wish to put all nonpositive formulas in a standard form in order
to simplify working with them. Negation normal form is a way of doing this.

Definition 4.5.17 (Negation Normal Form). A formula ϕ is in negation normal
form (NNF) if all occurrences of negation apply to atoms only.

Any formula may be rewritten to an equivalent formula in NNF without an
increase in size, by recursive application of these rewrite rules to its subformulas:

¬¬ϕ 7→ ϕ

¬(ϕ ∧ ψ) 7→ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) 7→ ¬ϕ ∧ ¬ψ

For example, ¬((p∧ q)∨ (r∧¬(s∨ t))) is not in NNF, while the equivalent formula
(¬p ∨ ¬q) ∧ (¬r ∨ (s ∨ t)) is in NNF. Once we have all formulas in a monotone
max goalbase translated to NNF, we may apply the following equivalence in order
to remove the negative literals altogether:

Lemma 4.5.18. If uG,max is monotone and every formula in G is in NNF, then
G[>/¬p1, . . . ,>/¬pn] ≡max G.

88 Chapter 4. Succinctness

Proof. To show that G[>/¬p1, . . . ,>/¬pn] ≡max G, it suffices to show for a single
(ϕ,w) ∈ G that (G \ {(ϕ,w)}) ∪ {(ϕ[>/¬p], w)} ≡max G, as we can then repeat
the process for each other formula and each other p ∈ PS.

Fix a (ϕ,wϕ) ∈ G which has ¬p as a subformula. If there is no model M
such that p /∈ M , M |= ϕ, and M ∪ {p} 6|= ϕ, then we immediately have that
|= ϕ[>/¬p] ↔ ϕ and we are done. Otherwise, let M be such a model. Since ϕ
is in NNF, ϕ[>/¬p] will remain true in every state where ϕ was true; but there
is additionally the possibility that M ∪ {p} |= ϕ[>/¬p] when M 6|= ϕ. However,
since uG,max is monotone and M |= ϕ, we know that uG,max(M ∪ {p}) ≥ wϕ,
and so there must already be some (ψ,wψ) ∈ G such that M ∪ {p} |= ψ and
wψ = uG,max(M ∪ {p}). Therefore, making it so that M ∪ {p} |= ϕ[>/¬p] will
not disturb the value of the utility function there (or in any other state). Hence,
(G \ {(ϕ,w)}) ∪ {(ϕ[>/¬p], w)} ≡max G.

With this lemma in hand, we now improve on Theorem 3.5.6 and show that
there is no succinctness gain from using negation in arbitrary formulas, not just
cubes, when representing monotone utility functions in max languages.

Theorem 4.5.19. If Φ is closed under transformation to NNF and for every G ∈
L(Φ,W,max) which is in NNF, there exists a G[>/¬p | p ∈ PS] ∈ L(Ψ,W ′,max),
then L(Φ,W,max) � L(Ψ,W ′,max).

Proof. By Lemma 4.5.18, if G is in NNF, then G ≡max G[>/¬p1, . . . ,>/¬pn].
Since transformation to NNF and substitution of > for all negative literals are
both size-preserving, size(G) = size(G[>/¬p1, . . . ,>/¬pn]), so there is always a
space-efficient translation from L(Φ,W,max) to L(Ψ,W ′,max).

Note that W ′ cannot be completely arbitrary here: The condition requiring
that G[>/¬p | p ∈ PS] ∈ L(Ψ,W ′,max) implies that W ′ ⊇ W , though it is not
stated in the theorem.

Corollary 4.5.20. L(forms,W,max) ∼ L(pforms,W ′,max), for all W,W ′ ⊆ R.

Proof. By Fact 4.5.14, we may assume without loss of generality that W =
W ′. Then L(forms,W,max) � L(pforms,W ′,max) follows by inclusion, and
L(forms,W,max) � L(pforms,W ′,max) follows from Theorem 4.5.19.

4.5.3 Summary

Our relative succinctness results for max languages are summarized in Table 4.2.
The table contains many more results than are proved in the text, but in all cases
these are straightforward consequences of results which do appear in the text. In
particular, most relations in the table are due to a combination of Fact 4.5.14,
which lets us consider the intersection of the sets of weights; Theorem 4.5.15, which
gives us equal succinctness between any pair of cubes and pcubes languages; and

4.5. Succinctness of Max Languages 89

L
(p

cu
be

s,
R

+
,m

ax
)

L
(a

to
m

s
+
>
,R

+
,m

ax
)

L
(p

fo
rm

s,
R

+
,m

ax
)

L
(c

u
be

s,
R

+
,m

ax
)

L
(l

it
er

al
s,
R

+
,m

ax
)

L
(f

or
m

s,
R

+
,m

ax
)

L
(p

cu
be

s,
R
,m

ax
)

L
(a

to
m

s
+
>
,R
,m

ax
)

L
(p

fo
rm

s,
R
,m

ax
)

L
(c

u
be

s,
R
,m

ax
)

L
(l

it
er

al
s,
R
,m

ax
)

L
(f

or
m

s,
R
,m

ax
)

L(forms,R,max) � ∼ ∼ � ∼ ∼ � ∼ ∼ � ∼ ∼
L(literals,R,max) ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
L(cubes,R,max) ∼ ∼ ≺ ∼ ∼ ≺ ∼ ∼ ≺ ∼
L(pforms,R,max) � ∼ ∼ � ∼ ∼ � ∼ ∼
L(atoms +>,R,max) ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
L(pcubes,R,max) ∼ ∼ ≺ ∼ ∼ ≺ ∼
L(forms,R+,max) � ∼ ∼ � ∼ ∼
L(literals,R+,max) ∼ ∼ ∼ ∼ ∼
L(cubes,R+,max) ∼ ∼ ≺ ∼
L(pforms,R+,max) � ∼ ∼
L(atoms +>,R+,max)∼ ∼
L(pcubes,R+,max) ∼

Table 4.2: Summary of succinctness results for max languages. Entries to be read
row first.

90 Chapter 4. Succinctness

Corollary 3.5.5, which reduces the clauses languages to simpler cubes languages.
Because these three results are much more powerful than comparable results
we proved for sum languages, the table for max languages is complete. The
most common result by an overwhelming margin is for two max languages to be
equally succinct. All differences in succinctness shown in the table are due to
Theorem 4.5.16.

Our absolute succinctness results for max languages focus primarily on
L(cubes,W,max), for which we calculate the exact size of the minimal representa-
tions of monotone utility functions (Theorem 4.5.10), and upper and lower bounds
on the size of representations of nonmonotone utility functions (Theorems 4.5.13
and 4.5.12). These results apply also to any sublanguage of L(cubes,W,max),
which includes all max languages we have examined, save L(pforms,W,max) and
its superlanguages.

4.6 Cross-Aggregator Succinctness

Here we examine the succinctness of some max languages with respect to some
sum languages. These results indicate that each aggregator favors short represen-
tations for certain kinds of utility functions; whether max or sum is better for a
particular application will depend on what utility functions agents are likely to
have. Additionally, the results in this section highlight why it was necessary to
index our succinctness relation to a particular class of comparison; a discussion of
this appears at the end of the section.

First, we use u∃n (see Definition 4.4.7) and a utility function with maximal
range to compare L(pcubes,R+,max) with L(pcubes,R,Σ):

Theorem 4.6.1. L(pcubes,R+,max) ⊥ L(pcubes,R,Σ).

Proof. (�) Let un(X) =
∑

ai∈X 2i. Then |ranun| = 2n, and so if Gmax repre-
sents un, then by Theorem 4.5.1, |Gmax| ≥ 2n. In L(atoms,R+,Σ), we have
GΣ = {(ai, 2i) | 0 ≤ i < n} which represents un. Hence L(pcubes,R+,max) �
L(pcubes,R,Σ).

(�) Recall from Definition 4.4.7 that

u∃n(X) =

{
1 if X 6= ∅
0 otherwise,

and that u∃n was shown in the proof of Theorem 4.4.8 to have a large representation
in L(pcubes,R,Σ). In L(pcubes,R+,max), u∃n is represented by G = {(p, 1) | p ∈
PS}. Therefore L(pcubes,R+,max) � L(pcubes,R,Σ).

Next, we use u∀n to arrive at a similar result for L(pcubes,R+,max) and
L(pclauses,R,Σ):

4.6. Cross-Aggregator Succinctness 91

Theorem 4.6.2. L(pcubes,R+,max) ⊥ L(pclauses,R,Σ).

Proof. (�) Recall from Definition 4.4.7 that

u∀n(X) =

{
1 if X = PS
0 otherwise,

and that u∀n was shown in the proof of Theorem 4.4.8 to be large in the language
L(pclauses,R,Σ). In L(pcubes,R+,max), u∀n is represented by {(

∧
PS, 1)}.

(�) Same argument as for L(pcubes,R,Σ).

Next we have an example of how cross-aggregator succinctness may be sur-
prising, as we show that the austere language L(atoms,R,max) is strictly more
succinct than the seemingly-richer L(pcubes,R,Σ).

Theorem 4.6.3. L(pcubes,R,Σ) ≺ L(atoms,R,max).

Proof. U(atoms,R,max) corresponds to the class of unit-demand utility functions.
Every unit-demand utility function u is expressible linearly in the language
L(atoms,R,max) as {(a, u(a))}a∈PS . In L(pcubes,R,Σ) (which is fully expressive
and has uniqueness, cf. Theorem 3.4.2 and Corollary 3.4.9), u is represented by
{(
∧
X,wV

X) | X ⊆ PS} where

wV
X = (−1)|X|+1 min

a∈X
u(a).

For any unit-demand u which is also single-minded (i.e., exactly one a ∈ PS
is such that u(a) 6= 0), G = {(a, u(a))}, the same as in L(atoms,R,max). For
non-single-minded u, let X ⊆ PS be the items which u assigns nonzero value.
Then G will contain a nonzero weight for wV

Y whenever Y ⊆ X. So, for the
family u∃n, which is the family of simple unit-demand utility functions,

u∃n(X) =

{
1 if X 6= ∅
0 otherwise,

we have that representations in L(pcubes,R,Σ) are exponential in |PS|.

Now we compare L(pclauses,R,Σ) and L(atoms,R,max). A feature of interest
here is that we establish a succinctness gap which falls below the discriminating
power of our succinctness relation, since complex unit-demand valuations are
linearly representable in L(atoms,R,max), but the best representations of the
same are quadratic in L(pclauses,R,Σ).

Theorem 4.6.4. L(pclauses,R,Σ) ∼ L(atoms,R,max).

92 Chapter 4. Succinctness

Proof. Recall that U(atoms,R,max) is the class of unit-demand utility functions.
Simple unit-demand utility functions are expressible linearly in L(pclauses,R,Σ)
as {(

∨
PS, 1)}. Consider complex unit-demand utility functions u (where items

may differ in value but the value of a bundle is the value of the best item contained
in it) expressed in L(pclauses,R,Σ). Without loss of generality, suppose that the
items are ordered a1 ≤ . . . ≤ an in value. Then{(∨

PS \ {a1, . . . , ai−1}, u(ai)− u(ai−1)
)}

1≤i≤n

is the unique minimal representative of u in L(pclauses,R,Σ), containing n(n−1)
2

atoms.

Finally, we present a result similar to Theorem 4.6.3, but with the aggrega-
tors reversed. It may at first seem surprising to find that there is a language
with a natural definition which is strictly less succinct than the extremely lim-
ited L(atoms,R+,Σ), but we get this result because max languages are poor at
representing modular utility functions.

Theorem 4.6.5. L(cubes,R+,max) ≺ L(atoms,R+,Σ).

Proof. (�) From Corollary 3.4.10 we have that U(atoms,R+,Σ) is the class
of normalized nonnegative modular utility functions. From Theorem 3.5.9,
U(cubes,R+,max) is the class of nonnegative monotone utility functions, so
L(atoms,R+,Σ) is the expressive intersection of the two languages. Every rep-
resentation in L(atoms,R+,Σ) is linear in |PS|. If u({a}) ≥ 0, then the atom
a will appear somewhere in any representation of u in L(cubes,R+,max), so no
representations which grow logarithmically in |PS| are possible there.

(�) Consider the family of utility functions u(X) = |X|. In L(atoms,R+,Σ), u
is represented by {(a, 1) | X ∈ PS}, which is linear in |PS|, while the unique rep-
resentation in L(cubes,R+,max) is {(

∧
X, |X|) | X ⊆ PS}, which is exponential

in |PS|.

We are now in position to demonstrate why the more general definition of
succinctness (subscripted by the comparison class) is needed: In Theorem 4.6.3
we showed that L(pcubes,R,Σ) ≺ L(atoms,R,max), while in Theorem 4.6.5, we
showed that L(cubes,R+,max) ≺ L(atoms,R+,Σ). Furthermore, it is obvious
that L(pcubes,R,Σ) ∼ L(atoms,R+,Σ), since the expressive intersection of the
two languages is the whole of the latter, and in the latter every representation
is small. Finally, L(atoms,R,max) ∼ L(cubes,R+,max) because their expressive
intersection is the class of nonnegative unit-demand utility functions, which have
small representations in both languages. We now have the following situation:

L(pcubes,R,Σ) ≺ L(atoms,R,max)

∼ ∼

L(atoms,R+,Σ) � L(cubes,R+,max)

4.7. Conclusion 93

From this it can be seen that the unsubscripted succinctness relation is not
transitive. This comes about because no two pairs of these four languages have the
same expressive intersection. Because the expressive intersection of the languages
can shift from comparison to comparison, we must make explicit the class of utility
functions over which the comparison is being made if we wish to do more than
pairwise comparison.

4.7 Conclusion

In this chapter we have defined a notion of succinctness of representation for
goalbase languages and presented numerous pairwise relative succinctness results.
We attempted to systematically resolve all questions of pairwise succinctness
among sum languages and among max languages, and examined the succinctness
of selected pairs of languages where one is a sum language and the other a max
language. For a summary of results for pairs of sum languages, see Table 4.1; for
pairs of max languages, see Table 4.2; for selected max-sum pairs, see Section 4.6.

The results for max languages are complete over the languages we considered.
Determining the relative succinctness of languages which use max as their aggre-
gator is dramatically simpler than for languages which use sum, due to the close
connection between a utility function’s range and the size of its representation in
any max language (cf. Sections 4.4.4 and 4.5.2).

There are still numerous open questions regarding the relative succinctness
of pairs of sum languages. In order to produce succinctness results involving
languages without unique representations, we need some way of addressing the size
of all representations of a particular utility function, not just one representation
which we happen to have constructed. It is not obvious how to do this generally.
The two results of which we are aware which show that a language without unique
representations is strictly less succinct than another language are the ones in
Section 4.4.4, along with an alternative proof of Theorem 4.4.13 by Elkind et al.
[2009, Theorem 3.3]. Unfortunately, we see no straightforward way to generalize
these results to apply to other languages, so we suspect that the remaining open
questions will require novel proofs to settle them. Among these, many revolve
around how unlimited nesting of ∧ and ∨ (as with positive formulas) compares
with the power of ¬ applied to atoms only (as with cubes and clauses). Many of
the empty cells in Table 4.1 are versions of this question.

Chapter 5

Complexity

5.1 Introduction

In this chapter, we analyze the effect that restrictions on goalbases have on the
complexity of answering questions about the utility functions they represent,
focusing specifically on the decision problems max-util, min-util, and max-
cuf, which are, respectively, the problem of deciding whether there is a model
producing at least a given amount of utility for an individual, the problem of
deciding whether every model produces at least a given amount of utility for an
individual, and the problem of deciding whether there is an allocation producing
at least a given amount of utility for a group.

We begin in Section 5.2 with the background necessary for the complexity
theory we use in this chapter. Readers already familiar with complexity theory
should feel free to skip ahead to Sections 5.3 and 5.4 where we define our decision
problems and discuss related work. The remaining sections contain our results for
max-util and min-util (Section 5.5) and max-cuf (Section 5.6), followed by
an exploration of an alternative version of max-util (Section 5.7).

5.2 Background

Every result in this chapter is a complexity-theoretic one. We present just enough
complexity theory in this section for someone unfamiliar with complexity theory to
have a barely-adequate understanding of the rest of the chapter. Anyone wanting
a more thorough grounding in complexity theory may wish to consult [Sipser,
1997, Part Three] for a gentle introduction, or [Papadimitriou, 1994a] for the
full-on treatment.

Definition 5.2.1 (Decision Problem). A decision problem is a subset of the set
of all finite binary strings {0, 1}∗.

95

96 Chapter 5. Complexity

By convention, we write names of decision problems in small caps. E.g., the
(made-up) problem widget frobnication can be recognized as decision problem
in this way. An instance of a decision problem is an object for which we might
ask whether it is a member of the decision problem. For example, we might
ask whether a particular formula ϕ is a member of sat (that is, whether it is a
satisfiable formula). If an instance is a member, then we say that it is a positive
or accepting instance, and if not a member, then a negative or rejecting instance.
We generally do not speak of members of a decision problem as binary strings, but
rather as structures which could be represented as binary strings if we wanted to
go through the trouble of doing so, since binary is too low-level a description to be
handy for our proofs. When speaking of instances which are tuples, we will often
write them as 〈X1, . . . , Xk〉 to make their structure apparent. (For all instances
of this sort, a bijection with binary strings may be found simply by enumerating
all characters we intend to use for our alphabet and then replacing them with the
binary sequences corresponding to their indices.)

Because decision problems are sets, every decision problem has a complemen-
tary decision problem, where the accepting and rejecting instances are reversed.
We overline decision problems to indicate their complementary problem. E.g.,
widget frobnication is the set of all instances which are not members of
widget frobnication. In the following, we also speak of decision problems as
languages for the reason that they are sets of strings.

Now we turn to the classification of decision problems according to the difficulty
of deciding arbitrary instances:

Definition 5.2.2 (Big-O Notation). Let f, g : N → N be arbitrary functions.
Then we say that f(n) = O(g(n)) iff there are c, n0 ∈ N such that for all n ≥ n0,
f(n) ≤ c · g(n).

Informally, saying that a function f is O(g) means that f grows no faster
than g, within a constant factor. (For example, 2n2 + 1 is an O(n2) function.)

Complexity classes are sets of languages, usually defined by bounds on the
resources which are available for deciding those languages. One way of giving such
bounds is by the runtime of optimal decision algorithms. By convention, we write
the names of complexity classes in sans-serif for easy identification.

Definition 5.2.3 (Time Complexity).

• TIME(t(n)) is the class of languages decidable by a deterministic O(t(n))-
time Turing machine.

• NTIME(t(n)) is the class of languages decidable by a nondeterministic
O(t(n))-time Turing machine.

• P =
⋃
k∈N TIME(nk).

5.2. Background 97

• NP =
⋃
k∈N NTIME(nk).

In other words, P is the class of languages for which there are deterministic
polynomial-time algorithms to decide them, and NP is the class of languages for
which there are nondeterministic polynomial-time algorithms to decide them. An
alternative characterization of NP, one of which we shall frequently make use, is
that NP is the class of languages for which examples are polynomially verifiable.
That is, if we are given a purported proof of the membership of an instance,
then if the original language is a member of NP, there will be a polynomial-time
algorithm for verifying that proof of membership.

Like decision problems, complexity classes have complements, though their
complements are not formed in the same way. (Consider that set-theoretic
complementation would not be useful here, since, e.g., the set-theoretic complement
of P would be all languages for which there is no polynomial algorithm to decide
them, and this would include not just languages for which the best algorithms are
exponential, but also languages which are not even decidable.)

Definition 5.2.4 (Complementary Complexity Classes). For a given complexity
class C, coC = {L | L ∈ C} is its complementary complexity class.

In particular, we are interested coNP, which is the class of languages for which
counterexamples are polynomially verifiable. All deterministic complexity classes
are closed under complement, so in particular we will never write coP because
coP = P.

While it is clear that P ⊆ NP, coNP, nothing further is known, though it is
strongly suspected that the inclusion is strict and also that NP is distinct from
coNP. A selection of complexity classes may be seen in Figure 5.1.1

In order to show that a decision problem is a member of some complexity
class, it suffices to exhibit an algorithm to decide the problem which respects the
resource bounds of the target class. This is an upper bound on the complexity
of the decision problem. (For example, if we can give a polynomial algorithm
which decides widget frobnication, then we know that it is no harder than
polynomial.) What this does not tell us is whether we can do better. The following
definitions are needed for describing lower bounds on the complexity of decision
problems.

As we sometimes speak of polynomial-time or logarithmic-space computable
functions, we now give a definition:

Definition 5.2.5 (Bounded Time- or Space-Computable Functions). A function
f : {0, 1}∗ → {0, 1}∗ is computable in O(g(n))-time if there is a Turing machine
which, for each input x ∈ {0, 1}∗, halts with f(x) on its tape after no more than

1The classes shown here are a minuscule sampling of those which have been defined. For
those wishing to see (hugely) more, the Complexity Zoo [2009] strives to be something of a
Jane’s All the World’s Complexity Classes.

98 Chapter 5. Complexity

EXPTIME

PSPACE

PH

Σp
2 Πp

2

∆p
2

Θp
2

DP

coNP NP

P

Figure 5.1: Some complexity classes for decision problems.

5.2. Background 99

O(g(n)) steps. Similarly, f is computable in O(g(n))-space if there is a Turing
machine which, for each input x ∈ {0, 1}∗, halts with f(x) on its tape after using
no more than the first O(g(n)) cells on the tape.

It is often possible to convert one decision problem into another without
expending much computation on the conversion. We formalize that notion here:

Definition 5.2.6 (Many-One Reductions). A language A is many-one reducible
to a language B if there is a (total) computable function f such that for every
n ∈ {0, 1}∗, n ∈ A iff f(n) ∈ B.

Intuitively, if the decision problem A is reducible to the decision problem B
it means that we can convert instances of A into instances of B, solve B, and
then recover a solution to A from the solution to B. Therefore, we can say that
deciding A is no harder than doing the reduction and then deciding B. We may
combine the notion of boundedly-computable functions with that of reductions
to limit the difficulty of reductions. Almost all reductions we use in this chapter
are polynomial-time many-one reductions, which means that the reduction itself
must be carried out in an amount of time bounded by some polynomial. Note
that the notion of polynomial-time many-one reduction only makes sense for
problems which are known (or at least thought) to be outside of P, because
within P the difficulty of the reduction itself might swamp the difficulty of two
problems involved in the reduction. Within P, more restrictive kinds of reductions
are needed: In Section 5.7.3, we use logarithmic-space reductions in order to work
with problems known to be polynomial.

If there were a decision problem to which every problem in a class C could be
reduced, we might say that this problem was at least as hard as every problem
in C.

Definition 5.2.7 (Hardness). A language A is hard for a complexity class C if
every language B ∈ C reduces to A.

A problem which is hard for C we call C-hard. For example, sat is NP-hard:
There is a way to polynomially reduce every problem in NP to sat. Hardness is a
lower bound on complexity. The method we use in this chapter for showing C-
hardness is not the direct method suggested by the definition—i.e., demonstrating
directly that arbitrary languages in C may be reduced to our target language.
Polynomial-time many-one reductions are transitive, in the sense that if A reduces
to B and B reduces to C, then A reduces to C also. We take advantage of this
fact in order to avoid doing direct hardness proofs. If A is a C-hard problem, then
by definition every problem in C reduces to it; therefore, if we can reduce A to
B, then by transitivity every problem in C reduced to B also, and hence we have
shown B to be C-hard as well. Using this approach, we only need one direct proof
to prime the pump; after that, it is much more expedient to rely on reductions
from hard problems. Cook [1971] gave the first direct proof of NP-hardness by

100 Chapter 5. Complexity

proving sat to be NP-hard. Since then, a bewildering number of other problems
have been shown to be NP-hard, and we are free to reduce from whichever is most
convenient when showing NP-hardness.

We can exactly characterize the complexity of a decision problem by showing
that it is both a member of and hard for the same complexity class. When this
happens, we say that a problem is complete for that class.

Definition 5.2.8 (Completeness). A language L is complete for a complexity
class C if both L ∈ C and L is C-hard.

A C-complete problem may be thought of as one of the most difficult problems
in class C, since it can be used to solve all problems in C, but yet is still a member
of C. The problem sat is a typical example of an NP-complete problem.

5.3 The Decision Problems max-util, min-util,

and max-cuf

Here we define the three decision problems which we analyze in this chapter.
Motivation for these problems appears in subsequent sections.

The decision problem max-util is the problem of determining whether an
agent, given his preferences, can attain at least some specified amount of utility.

Definition 5.3.1 (The Decision Problem max-util). The decision problem
max-util(Φ,W, F) is defined as: Given a goalbase G ∈ L(Φ,W, F) and an
integer K, is there a model M ∈ 2PS where uG(M) ≥ K?

The decision problem min-util is the pessimal version of max-util, asking
whether an agent will always obtain at least some specified amount of utility, no
matter what state he finds himself in.

Definition 5.3.2 (The Decision Problem min-util). The decision problem
min-util(Φ,W, F) is defined as: Given a goalbase G ∈ L(Φ,W, F) and an integer
K, are all models M ∈ 2PS such that uG(M) ≥ K?

In addition to considering individual utility, we might also consider the utility
of groups of agents.

Definition 5.3.3 (Collective Utility Functions). A collective utility function
(CUF) is a mapping σ : R∗ → R.

A collective utility function takes a tuple of individual utilities as its input,
and aggregates them into a single group utility.2 The decision problem max-cuf
is like max-util, but lifted from an individual agent to a group of agents.

2Note that all of the collective utility functions we consider are associative and commutative,
so aggregating a tuple of individual utilities is the same as aggregating a multiset of individual
utilities. Functions which are nonassociative or noncommutative tend to be less interesting as
CUFs, because they fail to treat all agents equally. See also p. 12, footnote 3.

5.4. Related Work 101

Definition 5.3.4 (The Decison Problem max-cuf). The decision problem
max-cuf(Φ,W, F, σ) for n agents is defined as: Given goalbases G1, . . . , Gn ∈
L(Φ,W, F), a collective utility function σ, and an integer K, is there a partition
〈M1, . . . ,Mn〉 of PS such that σ(uG1,F (M1), . . . , uGn,F (Mn)) ≥ K?

5.4 Related Work

The Winner Determination Problem (WDP) for combinatorial auctions is the
problem of dividing goods among bidders in such a way as to maximize revenue.
These goods may display synergies for some bidders, and usually the bidders will
have some way of expressing these synergies in their bids. (For further discussion of
combinatorial auctions and the WDP, see Sections 6.2 and 6.4, and also [Cramton,
Shoham, and Steinberg, 2006].) The complexity of the Winner Determination
Problem for combinatorial auctions has been studied extensively for the OR/XOR
family of bidding languages [Fujishima, Leyton-Brown, and Shoham, 1999; Nisan,
2000; Müller, 2006], as well as the effects of restricting bids to certain bundles due
to their structure [Rothkopf, Pekeč, and Harstad, 1998]. For certain restricted
goalbase languages—in particular, those into which the XOR language may be
embedded—our decision problem max-util is a degenerate case of the Winner
Determination Problem, where only a single bidder shows up for the auction. On
the other hand, the Winner Determination Problem is itself a special case of our
max-cuf decision problem where we restrict ourselves to using summation for
both the individual and collective aggregators.

Bouveret [2007, Section 4.2] takes up a version of max-cuf similar to the one
we discuss here. His max-cuf is both more and less general than ours. Bouveret’s
max-cuf is less general than ours in that only positive formulas, no negations,
are used in his language for specifying agent’s preferences. Because we have
languages which permit negation, not just ∧, ∨, and propositional variables, we
have some languages which are expressively different from his. Bouveret’s max-
cuf is more general in terms of the exogenous constraints which may be imposed
on outcomes. The constraint Bouveret calls preemption is built into our max-cuf,
but is a parameter for his max-cuf. We treat items as rivalrous goods—agent 1’s
possession of item a preempts any other agent from possessing item a at the same
time—but there are some cases where we might wish to allow joint possession of
outcomes and their costs. One example of this is the positioning of a satellite paid
for by multiple parties. The satellite’s position is a shared good, so it makes sense
to divide the cost of positioning the satellite among all parties who wanted it in
that position, not just the one who was willing to pay the most. Other constraints
which Bouveret permits are exclusion and volume. Exclusion constraints prevent
certain sets of object from being allocated simultaneously (e.g., perhaps we cannot
fire our thrusters and take a photo at the same time, so if one of these “goods”
is allocated, then the other must not be), while volume constraints place upper

102 Chapter 5. Complexity

bounds on the number of goods which may be allocated at one time (e.g., perhaps
there is insufficient power to run more than five of our satellite’s sensors at once).
Our max-cuf lacks the ability to handle exclusion and volume constraints directly,
though with an expressive enough language it will be possible to simulate these
using formulas with specially devised weights.3 Finally, Bouveret considers two
aggregators which we do not: in particular, he presents results for some versions
of max-cuf using min or leximin as the individual aggregator, and some using
leximin as the collective aggregator. Where there is overlap between Bouveret’s
max-cuf and ours, we make use of his results showing NP-completeness.

Lang [2004] discusses combinatorial voting, where the candidates to be voted
on have a combinatorial structure but where voting on the underlying variables
individually is made difficult by dependencies among them. The significant
difference between our max-cuf and the decision problems studied by Lang—
comparison, non-dominance, and cand-opt-sat—is that these problems are
not partitioning problems, while max-cuf is. In the combinatorial vote setting,
the fundamental problem is to select the shared result which is socially optimal;
in contrast, max-cuf is a multiagent resource allocation problem. Concretely,
the result of a combinatorial vote might be that the group will have a mushroom
risotto with fish and white wine, while a resource allocation problem over the
same domain might give one agent the risotto, another the fish, and the bottle
of wine to a third. As we shall see in Chapter 7, the two settings are strongly
connected; however, we do not exploit that connection here.

At the collective level, there are other interesting problems besides finding
allocations which maximize social welfare. For example, given an allocation, we
may wish to determine whether it is Pareto-optimal, or whether there can be a
Pareto improvement through a series of (possibly individually rational) trades
among the agents. We might also wish to consider how satisfied agents are with
the bundles they receive. An allocation is envy-free if no agent would prefer
the bundle received by another agent to his own bundle. While it is trivial to
achieve an envy-free allocation—simply burn all of the items and give every agent
nothing—it is frequently quite difficult to determine whether there is an allocation
which is both efficient and envy-free at the same time. This problem is taken up
by Bouveret [2007, Section 4.1] under the name eef existence; under various
assumptions about agents’ preferences, eef existence may range from being a
member of P or being merely NP-complete to being complete for classes in the
Boolean and polynomial hierarchies, such as coBH2, Θp

2, ∆p
2, and Σp

2. While we
present no results about eef existence ourselves, some of Bouveret’s results
should be applicable to our framework, as should some results of Bouveret and
Lang [2008] which additionally cover languages having negation as a connective.

3For example, the exclusion constraint which says that we cannot fire our thrusters and take
a photo simultaneously might be written as (t ∧ p,−∞) and added to every agent’s goalbase.
Note that we can always replace −∞ by some suitably large negative finite value. See the
alternative proofs of Theorems 5.5.6 and 5.5.7 and their accompanying Figures 5.2 and 5.3 for
an example of how this can be done.

5.5. The Complexity of max-util and min-util 103

5.5 The Complexity of max-util and min-util

Who (if anyone) needs to solve max-util depends on the context in which
our preference representation languages are being applied. Take auctions, for
example: Whether max-util needs to be solved by the center (e.g., the auctioneer)
immediately in order to determine the winner depends on his concrete algorithm;
the center does solve max-util if the resources are shareable. Specifically, max-
util is the Winner Determination Problem for combinatorial auctions where the
auctioneer has free disposal, the bidders do not have free disposal, and allocated
goods are shared among all bidders. This might at first sound like a strange sort
of auction, one where all bidders receive every good won by any bidder—but
this is precisely what an election is. The candidates are the goods, and everyone
shares whatever good (or goods, in the case of a multi-winner election) is allocated.
Solving max-util over the admissible models, i.e., the ones which elect the correct
number of candidates, tells you who has won the election. Many popular voting
methods have analogues in this framework. (For further discussion, see Chapter 7.)

Even in cases where it is not necessary to solve max-util in order to solve the
Winner Determination Problem, the complexity of max-util provides a lower
bound on how complex the Winner Determination Problem can be: Observe that in
the (degenerate) single-bidder case, the two problems coincide. If only one bidder
shows up to the auction, then determining which items he wins is precisely the
same as finding his optimal state. Therefore, the Winner Determination Problem
can never be easier than max-util, as it contains max-util as a subproblem.

Finally, for an agent herself it is useful to solve max-util if she builds her
bids not directly from an explicitly represented utility function, but instead from
constraints or through elicitation. In that case, the agent may only be able to
figure out her optimal state by solving max-util. Here, all value is measured
along a single axis, utility. Were we to consider an extension of weighted formulas
to encompass multiple, incommensurable measures, as in multi-criteria decision
making, it would be even less likely that an agent would be aware of her optimal
states, and hence solving max-util becomes even more important in that setting.

Our strategy in each of the following subsections is as follows: Where max-
util is polynomial, we show that for the most expansive languages for which
we know it holds. Where max-util is NP-hard, we show that for the most
restrictive languages we can. The rationale here is that hardness passes upwards
to superlanguages, while membership passes downwards to sublanguages, so
hardness results for small languages and easiness results for large languages permit
us to cover the ground most economically.

Note that if we permit goalbases to contain unsatisfiable formulas, then max-
util trivializes to the prototypical NP-complete problem sat, since deciding
max-util in the general case will involve determining whether any particular
formula in a given goalbase is even satisfiable. Therefore, in the cases where we
show NP-completeness, we do so even in the case where goalbases contain only

104 Chapter 5. Complexity

satisfiable formulas. In contrast, in the cases where we show that max-util is in
P, we do so without this restriction. Furthermore, we consider only cases where
the set of weights W is a subset of Q, in order to avoid issues of how to represent
irrational weights.4

5.5.1 Hardness Results for max-util

First, we provide an upper bound on the complexity of max-util for languages
with reasonable aggregation functions:

Lemma 5.5.1. For any set of formulas Φ and polynomially-computable aggregation
function F , max-util(Φ,Q, F) ∈ NP.

Proof. Any purported example—that is, a model M for which uG,F (M) ≥ K—is
polynomially checkable, since determining which (ϕ,w) ∈ G are true in M can be
done in polynomial time and by assumption applying F to the weights of true
formulas can also be done polynomially.

All of our NP-completeness results for max-util implicitly rely on this lemma
for the NP membership part of their proofs; as such, we will not mention it each
time it is invoked.

Next, we give a straightforward reduction from the decision problem maxsat
to max-util(forms,Q,Σ) in order to show that max-util is NP-complete for the
unrestricted language.

Theorem 5.5.2. max-util(forms,Q,Σ) is NP-complete.

Proof. By reduction from the well-known NP-hard problem maxsat [Garey and
Johnson, 1979]: Convert a maxsat instance containing the formulas ϕ1, . . . , ϕn
into the goalbase {(ϕ1, 1), . . . , (ϕn, 1)} and solve max-util for that goalbase,
using the same integer K from the maxsat instance.

Next, we consider the difficulty of max-util for the apparently-simpler k-cubes
family of languages, and see that we still do not avoid NP-completeness even after
this dramatic reduction in our stock of formulas.

Theorem 5.5.3. max-util(k-cubes,Q+,Σ) is NP-complete for k ≥ 2, even if
goalbases contain only satisfiable formulas.

Proof. The decision problem max k-constraint sat is defined as: Given a set
C of k-cubes in PS and an integer K, check whether there is a model M ∈ 2PS

which satisfies at least K of the k-cubes in C. max-util(k-cubes,Q+,Σ) is a
weighted version of max k-constraint sat, which is NP-complete for k ≥ 2

4As users of goalbase languages are unlikely to want to specify irrational weights, we do not
view this as a significant limitation. For applications where (p ∧ q, πe +

√
2) is required, users

will find that that Q affords them arbitrarily close rational approximations.

5.5. The Complexity of max-util and min-util 105

[Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, and Protasi, 1999,
LO12, Appendix B].

Note that we are able to prove the stronger result, namely that we have
NP-completeness even when we know that all formulas in our goalbases are
satisfiable formulas, due to the fact that unsat is polynomial for cubes. (Al-
gorithm: Sort the literals within the cube. Check whether there are adjacent p
and ¬p in the sorted cube.) Because max-util(2-cubes,Q+,Σ) is a subproblem
of max-util(forms,Q,Σ), we may state as a corollary the following even stronger
result for the unrestricted language:

Corollary 5.5.4. max-util(forms,Q,Σ) is NP-complete, even if goalbases con-
tain only satisfiable formulas.

In the remaining NP-completeness results for sum languages in this subsection,
we do not state the requirement that goalbases contain only satisfiable formulas,
as this requirement is vacuous for languages (such as clauses and strictly positive
cubes) which contain no unsatisfiable formulas.

Theorem 5.5.5. max-util(k-clauses,Q+,Σ) is NP-complete for k ≥ 2.

Proof. max-util(2-clauses,Q+,Σ) is a weighted version of the well-known NP-
complete problem max 2-sat [Garey and Johnson, 1979]. Furthermore,
max-util(k-clauses,Q+,Σ) contains max-util(k-clauses,Q+,Σ) for k ≥ 2.

We have now seen that neither short cubes nor short clauses will keep max-
util from being NP-hard. We might instead try to trade negation in our formulas
for negative weights. However, this fails for strictly positive cubes, as shown by
the following theorem:

Theorem 5.5.6. max-util(k-spcubes,Q,Σ) is NP-complete for k ≥ 2.

Proof. We show NP-hardness for k = 2 by reduction from max 2-sat [Garey
and Johnson, 1979], using a construction previously employed by Chevaleyre
et al. [2008a] to show NP-hardness of the Winner Determination Problem in
combinatorial auctions when bids are encoded using k-additive functions. Let S
be a set of 2-clauses and let K ≤ |S|. max 2-sat asks whether there exists a
subset S ′ of S with |S ′| ≥ K that is satisfiable. We construct a goalbase G as
follows:

• For any literal ` ∈ S, add (`, 1) to G.

• For any clause p ∨ q ∈ S, add (p, 1), (q, 1), and (p ∧ q,−1) to G.

• For any clause p ∨ ¬q ∈ S, add (>, 1), (q,−1), and (p ∧ q, 1) to G.

• For any clause ¬p ∨ ¬q ∈ S, add (>, 1) and (p ∧ q,−1) to G.

106 Chapter 5. Complexity

Clearly, there exists a satisfiable S ′ ⊆ S with |S ′| ≥ K iff there exists a model
M such that uG(M) ≥ K. We are not yet done, because G is not a goalbase in
strictly positive cubes. Let G′ be the result of removing all occurrences of (>, 1)
from G. If d is the number of nonpositive clauses in S, then uG′(M) = uG(M)− d
for any model M . Hence, max 2-sat for S will succeed iff there exists a model
M such that uG′(M) ≥ K − d. Therefore, max-util(2-spcubes,Q,Σ) must be at
least as hard as max 2-sat.

Similarly, we cannot avoid NP-completeness by using short positive clauses if
we want also to have negative weights.

Theorem 5.5.7. max-util(k-pclauses,Q,Σ) is NP-complete for k ≥ 2.

Proof. The proof works by reduction from max 2-sat, just as for Theorem 5.5.6,
except that now we construct G as follows:

• For any literal ` ∈ S, add (`, 1) to G.

• For any clause p ∨ q ∈ S, add (p ∨ q, 1) to G.

• For any clause p ∨ ¬q ∈ S, add (>, 1), (p, 1), and (p ∨ q,−1) to G.

• For any clause ¬p ∨¬q ∈ S, add (>, 1), (p,−1), (q,−1), and (p ∨ q, 1) to G.

As > is not a positive clause, we must eliminate all occurrences of (>, 1) in the
same way as we did in the proof of Theorem 5.5.6.

We have already seen that restricting ourselves to short clauses and positive
weights is insufficient to keep max-util polynomial (supposing that P 6= NP). We
might try to avoid NP-completeness by imposing an additional constraint on our
clauses, namely we could force them to be Horn. (Recall that a Horn clause is a
clause with at most one positive literal.) Certain problems are known to be easier
with Horn clauses than with general formulas, e.g., hornsat is only P-complete,
while sat is NP-complete [Papadimitriou, 1994a, Corollary, p. 176]. Unfortunately,
the restriction to Horn clauses is still not severe enough:

Theorem 5.5.8. max-util(k-Horn,Q+,Σ) is NP-complete for k ≥ 2.

Proof. The problem max horn 2-sat is NP-complete [Jaumard and Simeone,
1987, Proposition 3.1]. We exhibit a polynomial reduction from max horn
2-sat to max-util(2-Horn,Q+,Σ): Given a set C of 2-Horn formulas and an
integer K, construct a goal base G = {(c, 1) | c ∈ C}. Then there is a model
M satisfying at least K 2-Horn formulas in C iff there is a model M (actually,
the same M) for which uG(M) ≥ K. max-util(2-Horn,Q+,Σ) is contained in
max-util(k-Horn,Q+,Σ) for k ≥ 2, so max-util(k-Horn,Q+,Σ) is NP-complete
for k ≥ 2.

5.5. The Complexity of max-util and min-util 107

1. For each (
∧
X,w) ∈ G:

(a) Let X ′ = {x | x ∈ X} ∪ {x̄ | ¬x ∈ X}.
(b) Put (

∧
X ′, w) ∈ G′0.

2. Normalize G′0 to [−1, 1].

3. Let δ =
∑

(ϕ,w)∈G′0
|w|.

4. Let α = δ + 1, and β = −3δ − 3.

5. For each x ∈ PS, put (x, α), (x̄, α), (x ∧ x̄, β) ∈ G′1.

6. Let G′ = G′0 ⊕G′1.

Figure 5.2: Translation from L(k-cubes,Q,Σ) to L(k-pcubes,Q,Σ).

The nature of NP-completeness guarantees that there is an abundance of
different proofs reducing one NP-complete problem to another. In principle, any
two NP-complete problems, no matter how different they are on the surface, are
interreducible. How straightforward or baroque such reductions will be depends
on how structurally similar the problems involved are. (The observant reader will
notice that we have made use only of logic-based problems to this point. Having
formulas on both sides narrows the conceptual gap between the source and target
language for us, so is helpful, though not necessary. We could as well have done all
of our NP-hardness reductions from traveling salesman [Garey and Johnson,
1979] or even minesweeper [Kaye, 2000], had we wanted to produce a chapter full
of gratuitous, difficult, gnarly reductions.) That said, we offer alternative proofs
of Theorems 5.5.6 and 5.5.7, because the reductions used there are of particular
interest. In reducing max-util(k-cubes,Q,Σ) to max-util(k-pcubes,Q,Σ), we
exhibit a technique for simulating general cubes as positive cubes by converting
negative literals into new propositional variables while maintaining the correct
logical relationships through the addition of carefully selected penalty weights.

First, the alternative proof of Theorem 5.5.6:

Proof. max-util(k-cubes,Q+,Σ) is NP-complete for k ≥ 2 by Theorem 5.5.3;
max-util(k-cubes,Q,Σ) contains it for any fixed k, so is NP-complete also. Now
we exhibit a polynomial reduction from max-util(k-cubes,Q,Σ) to
max-util(k-pcubes,Q,Σ). Given a goalbase G ∈ L(k-cubes,Q,Σ), construct
G′ as in Figure 5.2.

Let PS = {p̄ | p ∈ PS}. That is, PS is purely syntactic, and contains new
atoms which differ from the old atoms by virtue of the bar drawn over them.

108 Chapter 5. Complexity

Lemma 5.5.9. Fix A ⊆ PS ∪ PS such that x, x̄ /∈ A. Then uG′(A ∪ {x, x̄}) <
uG′(A) < uG′(A ∪ {x}), uG′(A ∪ {x̄}).

Proof. Note that for any two models M , N we have that |uG′0(M)− uG′0(N)| ≤ δ.
δ is a (not necessarily tight) upper bound on the utility change in G′0 between
arbitrary models. This fact is used below to bound away the terms uG′0(A ∪ {x})
and uG′0(A ∪ {x, x̄}):

uG′(A ∪ {x}) = uG′0(A ∪ {x}) + uG′1(A ∪ {x})
= uG′0(A ∪ {x}) + uG′1(A) + wG

′
1

x

= uG′0(A ∪ {x}) + uG′1(A) + δ + 1

≥ uG′0(A)− δ + uG′1(A) + δ + 1

= uG′0(A) + uG′1(A) + 1

> uG′0(A) + uG′1(A) = uG′(A)

Similarly, uG′(A ∪ {x̄}) > uG′(A). Finally,

uG′(A ∪ {x, x̄}) = uG′0(A ∪ {x, x̄}) + uG′1(A ∪ {x, x̄})

= uG′0(A ∪ {x, x̄}) + uG′1(A) + wG
′
1

x + w
G′1
x̄ + w

G′1
x∧x̄

= uG′0(A ∪ {x, x̄}) + uG′1(A)− δ − 1

≤ uG′0(A) + δ + uG′1(A)− δ − 1

= uG′0(A) + uG′1(A)− 1

< uG′0(A) + uG′1(A) = uG′(A)

(Lemma 5.5.9)

If M ′ is a model in PS ∪PS, let M = M ′ \PS. By Lemma 5.5.9, we have that
every model optimal for uG′ will contain exactly one of x and x̄ for all x ∈ PS.
(If M ′ contains both x and x̄, we could gain at least 1 utility by removing both; if
M ′ has neither, we could gain at least 1 utility by adding one.) Call a model M ′

in PS ∪ PS full if for every x ∈ PS either x ∈M ′ or x̄ ∈M ′, and bivalent if for
every x ∈ PS either x /∈M ′ or x̄ /∈M ′. Whenever M ′ is full and bivalent, M will
be a model in PS. An operation which converts a goalbase G to another goalbase
G′ is order-preserving over models if for all M,M ′ ⊆ PS, uG(M) < uG(M ′) iff
uG′(M) < uG′(M

′).
All of the operations applied in generating G′ from G are order-preserving

over full, bivalent models: Consider G′0 prior to normalization. uG′0(X
′) = uG(X)

for all models X. Normalization is order-preserving. Every full, bivalent model
is optimal for uG′1 , since all full, bivalent models have the same value (wx = wȳ
and wx∧x̄ = wy∧ȳ for all x, y ∈ PS) and by Lemma 5.5.9 all nonfull or nonbivalent
models are strictly dominated. Adding G′1 to G′0 increases every atomic weight

5.5. The Complexity of max-util and min-util 109

1. For each (
∨
X,w) ∈ G:

(a) Let X ′ = {x | x ∈ X} ∪ {x̄ | ¬x ∈ X}.
(b) Put (

∨
X ′, w) ∈ G′0.

2. Normalize G′0 to [−1, 1].

3. Let δ =
∑

(ϕ,w)∈G′0
|w|.

4. Let α = −2δ − 2, and β = 3δ + 3.

5. For each x ∈ PS, put (x, α), (x̄, α), (x ∨ x̄, β) ∈ G′1.

6. Let G′ = G′0 ⊕G′1.

Figure 5.3: Translation from L(k-clauses,Q,Σ) to L(k-pclauses,Q,Σ).

by α, which is order-preserving; and increases wx∧x̄ by β, which has no effect at
all since x ∧ x̄ is false on every bivalent model. Therefore, if uG′(X

′) < uG′(Y
′)

where X ′ and Y ′ are full and bivalent, then uG(X) < uG(Y).
Suppose that M ′ is optimal for uG′ . It follows from the Lemma that M ′ is full

and bivalent, so it follows from the above that M is optimal for uG. This completes
the reduction of max-util(k-cubes,Q,Σ) to max-util(k-pcubes,Q,Σ). Generat-
ing G′ from G and recovering M from M ′ are operations linear in the size of G and
PS, respectively, so the reduction is polynomial. Hence max-util(k-pcubes,Q,Σ)
is NP-complete.

This method can easily be adapted to obtain the analogous NP-completeness
result for positive clauses, giving an alternative proof of Theorem 5.5.7:

Proof. Similar to the proof for the NP-completeness of max-util(k-pcubes,Q,Σ).
Given a goalbase G ∈ U(k-clauses,Q,Σ), construct G′ as in Figure 5.3.

As in the previous proof, construction of G′ from G is order-preserving over
full, bivalent models. (x ∨ x̄ is true in every full, bivalent model and hence the
disjunctive weights do not disturb the ordering.) Hence by the same argument,
max-util(k-clauses,Q,Σ) reduces polynomially to max-util(k-pclauses,Q,Σ),
and hence max-util(k-pclauses,Q,Σ) is NP-complete.

5.5.2 Easiness Results for max-util

The previous subsection might leave us wondering whether we can ever avoid
NP-completeness for max-util for sum languages, as we found NP-completeness

110 Chapter 5. Complexity

wherever we looked. For two sum languages (and all their sublanguages), however,
we can obtain easiness results. The first of these is max-util(pforms,Q+,Σ),
where we take advantage of the fact that the largest optimal state is easy to
construct.

Theorem 5.5.10. max-util(pforms,Q+,Σ) ∈ P.

Proof. Since all weights are positive, whichever state makes the most formulas true
is optimal. Because all formulas in the language are positive, we are guaranteed
that every formula we encounter is satisfiable. In particular, the state PS, in which
all atoms are true, makes every positive formula true, and hence PS is always an
optimal state. (In fact, PS is the maximal optimal state. There might also be
optimal states making fewer atoms true.) This means that the algorithm which
checks whether u(PS) ≥ K decides every instance of max-util(pforms,Q+,Σ);
furthermore, finding the value of any single state is linear.

Next, we give a constructive proof for literals. Here, we use the fact that all
utility functions in U(literals,Q,Σ) are modular to decide for each item whether
it should be in or out of an optimal model.

Theorem 5.5.11. max-util(literals,Q,Σ) ∈ P.

Proof. A simple polynomial algorithm: Fix a goalbase G ∈ L(literals,Q,Σ). Keep
for each atom p a number δp, the difference between the sum of p’s positive
occurrences and sum of p’s negative occurrences seen so far. (Initially δp = 0.)
Iterate over the formulas in G, updating the deltas as we go. (Thus, on seeing
(¬p, 5), we subtract 5 from δp.) On reaching the end of the goalbase, define a
model M = {p | δp > 0}. M will be the minimal optimal model. (The maximal
optimal model is {p | δp ≥ 0}.) This algorithm is O(n log n), since for each literal
in G, we have to retrieve the corresponding δp.

In contrast to the hardness results we have for most sum languages, solving
max-util for any max language is trivial:

Theorem 5.5.12. max-util(Φ,W,max) is linear in the size of the goalbase, for
any Φ ⊆ LPS and any W ⊆ Q, so long as goalbases contain only satisfiable
formulas.

Proof. An algorithm solving max-util for any max language simply has to iterate
over the formulas in the goalbase, answer affirmatively as soon as it encounters a
(ϕ,w) for which w ≥ K, and answer negatively otherwise.

This complexity result requires some discussion. First, without the restriction
to satisfiable formulas, max-util(Φ,W,max) is NP-complete, as lifting this re-
striction imposes the additional requirement of checking whether ϕ is satisfiable
whenever w ≥ K. Second (assuming that we retain the satisfiability condition),

5.5. The Complexity of max-util and min-util 111

we must be careful about how we interpret the low complexity of max-util. Note
that our algorithm does not compute the actual model M yielding the desired
level of utility; it only checks whether such an M exists. If we also require M
itself, then we still need to extract a satisfying model M from some goal (ϕ,w)
where w ≥ K.

The problem of finding a satisfying assignment for an arbitrary formula that
is already known to be satisfiable is probably still intractable: fsat, which is the
function problem version of sat, is complete for FNP, the extension of NP to
function problems. Given a formula ϕ, fsat will return either a satisfying model
M , or “no” if there is no satisfying model. If we somehow know already that ϕ is
satisfiable, then we know that fsat will always give us a model instead of answering
“no”. Call this subproblem of fsat where the input formulas are guaranteed to
be satisfiable tfsat (for “total” fsat). tfsat is a member of the class TFNP,
which is the subset of FNP where all problems are total—that is to say, these
problems never return “no” as an answer. Clearly, FP ⊆ TFNP ⊆ FNP, but no
more beyond that is known. If FP = TFNP, this would imply that P = NP∩ coNP,
which is considered unlikely [Papadimitriou, 1994b]. Hence, it is likely that there
is no polynomial algorithm for finding a satisfying assignment for an arbitrary
known-satisfiable formula, so in general, the low complexity of max-util for max
languages does not imply low complexity of the corresponding function problem
which finds a witness.

In contrast to this observation, for sum languages, we are not aware of any
case where the complexity of checking existence of an alternative giving at least
K utility and computing that alternative differ, so long as we restrict ourselves to
languages closed under substitution of logical constants.5 For languages with an
NP-complete max-util this is a non-issue; for all sum languages with polynomial
max-util the proofs are constructive and directly show the computation of the
top alternative to be polynomial.

Finally, we stress that both of these limitations of Theorem 5.5.12—the assump-
tion that goals are satisfiable, and the difference for L(forms,W,max) between
solving max-util and actually computing the best alternative—vanish for the
max languages considered in this chapter which do not permit arbitrary formulas.
For both cubes and clauses (and any of their sublanguages) determining the
satisfiability of single formulas and finding a model for a single satisfiable formula
are trivial tasks.

5.5.3 The Complexity of min-util

So far, we have considered optimal states, but what of pessimal states? Just as
an agent may wish to know how well he can do, he may wish to know how poorly,

5For languages which are not closed under substitution of logical constants, it is not always
the case that the decision problem can be used to solve the function problem. For a discussion
of this, see Section 5.7.1.

112 Chapter 5. Complexity

as well. min-util can be seen as the pessimistic dual of the optimistic max-util,
in the sense that it checks lower bounds instead of upper bounds. (Note that
min-util is not the complement of max-util: This can easily be seen from the
problem instance 〈{(>, 1)}, 1〉, which is a member of both decision problems, for
many different languages and choices of aggregators.)

First, we give an upper bound on the complexity of min-util for sum languages:

Lemma 5.5.13. For any Φ, min-util(Φ,Q,Σ) ∈ coNP.

Proof. Any purported counterexample—that is, a model M for which uG(M) <
K—is polynomially checkable.

With an upper bound in hand, we are in position to give a direct proof of the
complexity of min-util for the full language, using a straightforward reduction
from the problem unsat.

Theorem 5.5.14. min-util(forms,Q,Σ) is coNP-complete.

Proof. coNP membership follows from Lemma 5.5.13. For coNP-hardness: Let ϕ
be an instance of unsat, and 〈{(¬ϕ, 1)}, 1〉 an instance of min-util(forms,Q,Σ).
It is easy to see that if ϕ is not satisfiable, then u{(¬ϕ,1)}(M) = 1 for all models
M , and vice versa. Hence unsat reduces to min-util(forms,Q,Σ). unsat is a
well-known coNP-hard problem.

While we could proceed by giving an independent proof demonstrating the
complexity of min-util for each of the other sum languages, we do not do
so; instead, we prove the following lemma to exploit a connection between the
complexity of max-util and min-util for sum languages:

Lemma 5.5.15. Let C be a complexity class closed under polynomial-time many-
one reductions, W be a set of weights, and −W = {−w | w ∈ W}. Then:

1. max-util(Φ,W,Σ) ∈ C iff min-util(Φ,−W,Σ) ∈ co C.

2. max-util(Φ,W,Σ) is C-hard iff min-util(Φ,−W,Σ) is co C-hard.

Proof. Recall that

max-util(Φ,W,Σ) = {〈G,K〉 | 〈G,K〉 /∈ max-util(Φ,W,Σ)}.

Since max-util is the complementary problem to max-util we have by definition
that max-util ∈ co C iff max-util ∈ C. If G is a goalbase, let −G = {(ϕ,−w) |
(ϕ,w) ∈ G}. Clearly we have that

〈G,K〉 ∈ max-util(Φ,W,Σ) ⇐⇒ 〈−G,−K〉 ∈ min-util(Φ,−W,Σ)

which shows that max-util(Φ,W,Σ) and min-util(Φ,−W,Σ) are interreducible,
and hence that min-util(Φ,−W,Σ) ∈ co C also. Similarly, if max-util is C-hard,
then max-util is co C-hard by definition, and due to the interreducibility of
max-util(Φ,W,Σ) and min-util(Φ,−W,Σ), we have that min-util(Φ,−W,Σ)
is co C-hard as well.

5.5. The Complexity of max-util and min-util 113

This lemma permits us to immediately derive complexity results for min-util
corresponding to some of those for max-util above:

Theorem 5.5.16. min-util(k-spcubes,Q,Σ) is coNP-complete for k ≥ 2.

Theorem 5.5.17. min-util(k-pclauses,Q,Σ) is coNP-complete for k ≥ 2.

Theorem 5.5.18. min-util(literals,Q,Σ) ∈ P.

We may apply Lemma 5.5.15 in these cases because the rationals are closed
under negation (that is, Q = −Q). Theorem 5.5.18 relies on the fact that
deterministic complexity classes are closed under complementation, so we may
say P there instead of coP [Papadimitriou, 1994a, p. 142]. (Note also that
we could have used Lemma 5.5.15 to immediately derive Theorem 5.5.14; we
chose to give the reduction from unsat instead to show how a direct reduction
would look, and because the construction there is reused later in Theorem 5.5.22.
Additionally, the algorithm given for deciding max-util(literals,Q,Σ) in the
proof of Theorem 5.5.11 may be used to construct a pessimal model by taking
the complement of the maximal optimal model, so min-util(literals,Q,Σ) is
O(n log n).)

For min-util(pforms,Q+,Σ), we give a direct proof because its set of weights
is not closed under negation, so Lemma 5.5.15 is not applicable:

Theorem 5.5.19. min-util(pforms,Q+,Σ) ∈ P.

Proof. For any instance 〈G,K〉, we know that uG is monotone. Hence, the worst
state is ∅. Therefore, 〈G,K〉 ∈ min-util(pforms,Q+,Σ) iff uG(∅) ≥ K, which
can be verified polynomially.

We characterize the complexity of min-util for the remaining sum languages
using a reduction from the complement of min 2-sat:

Theorem 5.5.20. min-util(k-clauses,Q+,Σ) is coNP-complete for k ≥ 2.

Proof. coNP membership follows from Lemma 5.5.13. For coNP-hardness, we give
a reduction from (the complement of) min 2-sat, which is NP-complete [Garey
and Johnson, 1979]. An instance of min 2-sat is 〈C,K〉, where C is a set of
2-clauses and K an integer, and 〈C,K〉 ∈ min 2-sat iff there is a model M which
satisfies no more than K of the clauses. Given a min 2-sat instance 〈C,K〉,
construct the min-util(2-clauses,Q+,Σ) instance 〈{(ϕ, 1) | ϕ ∈ C}, K + 1〉. If
at least K + 1 clauses are true regardless of the model, then it is false that there
is a state where at most K clauses are true, and vice versa. Hence, 〈{(ϕ, 1) |
ϕ ∈ C}, K + 1〉 ∈ min-util(2-clauses,Q+,Σ) iff 〈C,K〉 /∈ min 2-sat. Hence
min-util(2-clauses,Q+,Σ) is coNP-complete.

Theorem 5.5.21. min-util(k-cubes,Q+,Σ) is coNP-complete for k ≥ 2, even if
goalbases contain only satisfiable formulas.

114 Chapter 5. Complexity

Proof. coNP membership follows from Lemma 5.5.13. For coNP-hardness: We
first note that min 2-constraint sat, which is the minimization analog of
max 2-constraint sat, is NP-complete: Let 〈C,K〉 be a max 2-sat instance.
Let C ′ = {¬ϕ | ϕ ∈ C}. (Since C is a set of 2-clauses, by De Morgan’s
Law C ′ is a set of 2-cubes.) Then 〈C ′, |C| − K〉 ∈ min 2-constraint sat iff
〈C,K〉 ∈ max 2-sat, since every false member of C is a true member of C ′.
Having established that min 2-constraint sat is NP-hard, its complement
may be reduced to min-util(k-cubes,Q+,Σ) using the same construction as in
Theorem 5.5.20.

We have seen that for sum languages, min-util behaves similarly to max-util.
However, this is not the case for max languages:

Theorem 5.5.22. min-util(forms,Q,max) is coNP-complete.

Proof. For coNP membership: Any purported counterexample state M is polyno-
mially checkable, simply evaluating uG,max(M) to see if it is less than K.

For coNP-hardness: The reduction from unsat to min-util(forms,Q,Σ) in
Theorem 5.5.14 relies on constructing a single-formula goalbase. For singleton
goalbases, max and sum have the same behavior, so the construction used there
reduces unsat to min-util(forms,Q,max) as well.

If we restrict the goalbases in our inputs to those containing no superfluous
formulas, however, we get a more favorable result for min-util(forms,Q,max):

Theorem 5.5.23. min-util(forms,Q,max) ∈ P, when restricted to goalbases
containing no superfluous formulas.

Proof. Since no (ϕ,w) ∈ G is superfluous, any such ϕ will determine the value
of uG(M) for some model M . Hence, the value of the worst state may be found
simply by finding the (ϕ,w) with the least w. If that w ≥ K, the min-util
instance is positive, and negative otherwise.

As with the sum languages over the same sets of formulas, there are some max
languages for which min-util remains polynomial in the absence of any further
restrictions. This may be seen in the following three theorems.

Theorem 5.5.24. min-util(pforms,Q,max) ∈ P.

Proof. Same proof as for min-util(pforms,Q,Σ) in Theorem 5.5.19. The least-
valued state is always ∅. Check whether uG,max(∅) ≥ K.

Theorem 5.5.25. min-util(literals,Q,max) ∈ P.

Proof. We present a polynomial-time algorithm: Find δp for each atom, and
construct the maximal optimal model M = {p | δp ≥ 0} as in the proof of
Theorem 5.5.18. Then PS \M will be the minimal pessimal model (the smallest
worst-case model). Check whether uG,max(PS \M) ≥ K.

5.5. The Complexity of max-util and min-util 115

Theorem 5.5.26. min-util(cubes,Q,max) ∈ P.

Proof. We argue that it is easy to identify and remove superfluous formulas from
goalbases in L(cubes,Q,max); once G contains no superfluous formulas, we may
invoke Theorem 5.5.23 to show that min-util(cubes,Q,max) ∈ P.

First, observe that when X, Y,X ′, Y ′ ⊆ PS,

|=
(∧

X ∧
∧
¬Y
)
→
(∧

X ′ ∧
∧
¬Y ′

)
is equivalent to

X ′ ⊆ X and Y ′ ⊆ Y , or X ∩ Y 6= ∅.

That is to say, testing whether one cube implies another involves only checking
whether some sets intersect or are supersets of some other sets, all of which are
O(n log n) operations. This means we can find and remove superfluous cubes from
any G ∈ L(cubes,Q,max) like so:

For each pair of cubes (
∧
X ∧

∧
¬Y,w), (

∧
X ′∧

∧
¬Y ′, w′) ∈ G, if w′ > w and

either X ′ ⊆ X and Y ′ ⊆ Y or X ∩ Y 6= ∅, then (
∧
X ∧

∧
¬Y,w) is superfluous;

remove it from G.
This algorithm is quadratic in |G|. Once G contains no superfluous formulas,

the least remaining weight w may be found and checked for whether w ≥ K.

It is worth noting the dramatic difference the choice of aggregator makes for
min-util over cubes languages: From Theorem 5.5.21, we have that min-util is
already coNP-complete for positively-weighted 2-cubes using summation, while
here we have shown that min-util for arbitrarily-weighted cubes of any length
remains polynomial when aggregating with max.

5.5.4 Summary

Theorems 5.5.3, 5.5.5, 5.5.6, and 5.5.7 show that max-util is NP-complete
for every language which contains any of L(2-pclauses,Q,Σ), L(2-spcubes,Q,Σ),
L(2-cubes,Q+,Σ), or L(2-clauses,Q+,Σ). This covers every sum language men-
tioned in Chapter 3 except L(pforms,Q+,Σ) and L(literals,Q,Σ) and their sub-
languages, for which max-util is in P. Theorem 5.5.12 shows that max-util is
in P for all max languages.

For sum languages, min-util is like max-util but reflected into complemen-
tary complexity classes—NP into coNP, P = coP into itself. For max languages,
the general case of min-util is surprisingly hard, being coNP-complete. The
full language at least, is perhaps more suitable for optimists interested in how
much utility they may hope to achieve, rather than pessimists interested in how
much utility they are guaranteed. On the other hand, as there is no difference in
expressivity between L(cubes,Q,max) and L(forms,Q,max) (see Corollary 3.5.5),

116 Chapter 5. Complexity

Decision Problem Complexity
max-util 2-pclauses Q Σ NP-complete
max-util 2-spcubes Q Σ NP-complete
max-util 2-clauses Q+ Σ NP-complete
max-util 2-cubes Q+ Σ NP-complete
max-util pforms Q+ Σ O(n)
max-util literals Q Σ O(n log n)
max-util formulas Q max O(n)
min-util 2-pclauses Q Σ coNP-complete
min-util 2-spcubes Q Σ coNP-complete
min-util 2-clauses Q+ Σ coNP-complete
min-util 2-cubes Q+ Σ coNP-complete
min-util pforms Q+ Σ O(n)
min-util literals Q Σ O(n log n)
min-util pforms Q max O(n)
min-util literals Q max O(n log n)
min-util cubes Q max O(n2)
min-util formulas Q max coNP-complete

Table 5.1: Summary of complexity results for max-util and min-util.

nothing compels us to use the additional formulas we gain by permitting disjunc-
tion; and in fact it seems that we are punished with additional complexity for
using disjunction in this case.

See Table 5.1 for a complete summary of results for max-util and min-util.

5.6 The Complexity of Collective Utility

Maximization

When there are several agents, each with a utility function encoded using the
same language, then the collective utility maximization problem (max-cuf), the
problem of finding a solution maximizing collective utility, is of interest. By
“solution” we mean a partition of the set of propositional variables among the
agents, thereby fixing a model for each of them. This definition is natural, for
instance, if we think of variables as goods.6

There are a number of ways in which to define collective utility [Moulin,
1988]; the four which are commonly encountered in the literature are egalitarian,
utilitarian, elitist, and Nash product:

6Other types of solutions, such as finding a single model which maximizes collective utility,
are also of interest, but shall not be considered here. The combinatorial vote problem of Lang
[2004] is exactly this problem, in the context of voting.

5.6. The Complexity of Collective Utility Maximization 117

Definition 5.6.1 (Common Collective Utility Functions).

• σ = max is the elitist collective utility function.

• σ = min is the egalitarian collective utility function.

• σ = Σ is the utilitarian collective utility function.

• σ = Π is the Nash product collective utility function.

The utilitarian collective utility of an alternative is the sum of the individual
utilities. Optimizing with respect to utilitarian collective utility is equivalent to the
Winner Determination Problem in combinatorial auctions, where it is interpreted
as finding an allocation of goods to bidders that would maximize the sum of the
prices offered [Lehmann, Müller, and Sandholm, 2006b]. The egalitarian collective
utility is the utility of the agent worst off. A finer-grained version of egalitarian
collective utility, the leximin ordering was advocated by Rawls [1971]. Other
options include maximizing the median of the set of individual utilities generated
by an alternative (median-rank dictator) and maximizing the utility of the agent
that is best off (elitist collective utility). Finally, the Nash product, the product of
individual utilities, attempts to strike a balance between fairness and total utility.

First, we state two lemmas bounding the complexity of max-cuf:

Lemma 5.6.2. max-cuf(Φ,W, F, σ) ∈ NP whenever F and σ are polynomially-
computable functions.

This holds because whenever F and σ are polynomially-computable functions,
we can in all cases easily check whether a given allocation does in fact produce at
least K utility.

Before proceeding to our next lemma, we need to define a reasonableness
notion for individual and collective utility functions.

Definition 5.6.3 (Singleton Consistency). A function f : R∗ → R without fixed
arity is singleton consistent if f(α) = α for all α ∈ R.

Any reasonable individual aggregator or collective utility function will be
singleton consistent. For individual aggregators, singleton consistency means that
an agent having exactly one satisfied weighted formula (ϕ,w) has utility w. For
collective utility functions, singleton consistency means that a single-agent society
has the same utility as its sole member. Singleton consistent functions give the
intuitively right answers for the utility of single agents stranded on desert islands.
All of the functions we consider here—min, max, sum, and product—are singleton
consistent.

Lemma 5.6.4. max-cuf(Φ,W, F, σ) is at least as hard as max-util(Φ,W, F)
for any singleton-consistent σ.

118 Chapter 5. Complexity

Here, singleton consistency ensures that σ behaves as the identity function
when only a single agent is involved, and hence for such σ max-cuf and max-util
coincide. The preceding two lemmas together imply that max-cuf is NP-complete
for most languages we have considered; in particular:

Theorem 5.6.5. The following problems are NP-complete for all polynomially-
computable, singleton consistent collective utility functions σ:

1. max-cuf(2-pclauses,Q,Σ, σ),

2. max-cuf(2-spcubes,Q,Σ, σ),

3. max-cuf(2-clauses,Q+,Σ, σ),

4. max-cuf(2-cubes,Q+,Σ, σ).

Therefore, the interesting cases to investigate are languages which give rise
to an easy max-util problem, to see if they remain easy under max-cuf—
L(pforms,Q+,Σ), L(literals,Q,Σ), and L(forms,Q,max)—and more restrictive
sublanguages of the ones in Theorem 5.6.5 to see if they remain hard.

First, we show that elitist collective utility remains easy for L(pforms,Q+,Σ)
and L(literals,Q,Σ):

Theorem 5.6.6.

1. max-cuf(pforms,Q+,Σ,max) ∈ P.

2. max-cuf(literals,Q,Σ,max) ∈ P.

Proof. In both cases: Decide whether 〈Gi, K〉 ∈ max-util for each agent i. If
any 〈Gi, K〉 ∈ max-util, answer affirmatively; otherwise answer negatively.

Maximizing utilitarian collective utility is also easy for L(literals,Q,Σ):

Theorem 5.6.7. max-cuf(literals,Q,Σ,Σ) ∈ P.

Proof. For each a ∈ PS, allocate a to the agent i who maximizes

uGi,Σ({a}) +
∑
a∈PS
j 6=i

uGj ,Σ(∅).

Because all representable utility functions in this language are modular, the
allocation built this way will be optimal, and all that remains is to check its
value.

max-cuf is easy for max languages when using the elitist collective utility
function, for the same reasons as those stated in support of Theorem 5.5.12.

5.6. The Complexity of Collective Utility Maximization 119

Fact 5.6.8. max-cuf(Φ,W,max,max) is linear in the combined size of the goal-
bases, for any Φ ⊆ LPS and any W ⊆ Q, so long as goalbases contain only
satisfiable formulas.

Now we turn to languages more restrictive than (or differently restrictive from)
those in Theorem 5.6.5, which nonetheless remain NP-complete. Recall that both
max-cuf(2-cubes,Q+,Σ,Σ) and max-cuf(2-spcubes,Q,Σ,Σ) are NP-complete.
We might ask whether their “intersection”, max-cuf(2-spcubes,Q+,Σ,Σ) is also
NP-complete. Let us approach from a different direction. We can say that
the max-cuf(spcubes,Q+,Σ,Σ) problem is identical to the single-minded bidder
allocation problem, proved to be NP-complete by Blumrosen and Nisan [2007,
Definition 1.4, Proposition 1.5] via a reduction from the independent set
problem. We can improve this result by showing it not just for spcubes, but for
3-spcubes:

Theorem 5.6.9. max-cuf(3-spcubes,Q+,Σ,Σ) is NP-complete.

Proof. The problem set packing asks whether given a collection C of sets and
an integer K, there are at least K mutually disjoint sets in C. set packing is
NP-complete, even when all C ∈ C have |C| = 3 [Garey and Johnson, 1979].

We reduce set packing for sets of size 3 to max-cuf(3-spcubes,Q+,Σ,Σ).
For each C ∈ C, construct a goalbase GC = {(

∧
C, 1)}. Because items cannot

be shared, there is no allocation of items to agents which will result in (
∧
C, 1)

and (
∧
C ′, 1) being satisfied at the same time if C ∩ C ′ 6= ∅. This enforces that

every allocation corresponds to a set packing; and if there is an allocation with at
least K utility, then that allocation corresponds to a set packing of at least size
K, and vice versa. Therefore 〈{GC}C∈C, K〉 ∈ max-cuf(3-spcubes,Q+,Σ,Σ) iff
〈C, K〉 ∈ set packing restricted to size-3 sets.

Note that this reduction does not go through for 2-spcubes, since set packing
is in P when all C ∈ C have |C| ≤ 2. This is tantalizingly close to the result we
were seeking, but whether max-cuf(2-spcubes,Q+,Σ,Σ) is NP-complete remains
open.

Several of the languages mentioned in Theorem 5.6.5 may be restricted quite
severely and yet max-cuf remains NP-complete for them over a variety of aggre-
gators.

Theorem 5.6.10. All of the following problems are NP-complete:

1. max-cuf(2-spcubes, {0, 1},max,Σ)

2. max-cuf(2-spcubes, {0, 1}, F, σ), where F ∈ {max,Σ} and σ ∈ {min,Π}.

Proof. For the first case, we follow van Hoesel and Müller [2001, Theorem 2]
by reducing the known NP-complete problem tripartite matching [Karp,
1972] to max-cuf(2-spcubes, {0, 1},max,Σ). Instances of tripartite matching

120 Chapter 5. Complexity

are 〈X, Y, Z, T 〉, where the sets X, Y, Z are such that |X| = |Y | = |Z| and
T ⊆ X × Y × Z. An instance 〈X, Y, Z, T 〉 is a member iff there is an M ⊆ T
which is a perfect matching (i.e., each x ∈ X, y ∈ Y , and z ∈ Z appears in exactly
one triple in M).

For the reduction, we interpret the set X as bidders and the sets Y and Z
as goods appearing in 2-spcubes. For each (x, y, z) ∈ T , put (y ∧ z, 1) ∈ Gx.
Let K = |X|. The only way to achieve K utility by allocating Y ∪ Z to the
bidders in X is to ensure that at least one bid is satisfied from each Gx; conversely,
satisfying more than one bid in any Gx does not increase collective utility, since
the individual aggregator is max. Hence 〈X, Y, Z, T 〉 ∈ tripartite matching
iff 〈{Gx}x∈X , |X|〉 ∈ max-cuf(2-spcubes, {0, 1},max,Σ).

In the other cases, use the same reduction from tripartite matching but
let K = 1.

This result subsumes parts of the NP-completeness results of Bouveret, Fargier,
Lang, and Lemâıtre [2005, Figure 1] and Bouveret [2007, Proposition 4.22] for
σ = min. As they do not consider negation, their results (by a reduction from set
packing) apply to max-cuf(pforms,Q,max,min), which contains the problem
max-cuf(2-spcubes, {0, 1},max,min) that we have just proved to be NP-complete.

Finally, we give a slightly different result for max-cuf using the Nash product
as the collective utility function. For the Nash product to be a meaningful metric of
social welfare we must restrict ourselves to positive utilities; hence, in this context
we assume that all weights are positive and that only goalbases specifying fully
defined utility functions are used (e.g., by including (>, 0) in all max goalbases).
To the best of our knowledge, the complexity of this variant of max-cuf has not
been studied before. In the case of max languages, it is possible to give a simple
reduction from the utilitarian case to this one.

Theorem 5.6.11. max-cuf(2-pcubes, {1, 2},max,Π) is NP-complete.

Proof. We first exhibit a reduction from max-cuf(2-pcubes,Q+,max,Σ) to
max-cuf(2-pcubes,Q+,max,Π). Suppose we are given an instance of the for-
mer, with goalbases Gi and bound K. We construct new goalbases G′i by replacing
each weight w in G with 2w.

Now consider the instance of max-cuf(2-pcubes,Q+,max,Π) with the new
goalbases G′i and bound 2K . Note that w1 + . . .+wn ≥ K iff 2w1 × . . .× 2wn ≥ 2K .
Hence, a model M achieves utilitarian collective utility ≥ K with respect to
goalbases Gi iff M achieves Nash collective utility ≥ 2K with respect to goalbases
G′i. So the Nash max-cuf problem must be at least as hard as the utilitarian
max-cuf problem.

Then, observe that the same reduction works for the restricted case of
max-cuf(2-pcubes, {0, 1},max,Σ) to max-cuf(2-pcubes, {1, 2},max,Π), the for-
mer of which was proven to be NP-complete in Theorem 5.6.10.

5.6. The Complexity of Collective Utility Maximization 121

Decision Problem Complexity
max-cuf pforms Q+ Σ max P
max-cuf literals Q Σ max P
max-cuf literals Q Σ Σ P
max-cuf satisfiable ϕ Q max max P
max-cuf 2-cubes Q+ Σ reasonable7 NP-complete
max-cuf 2-clauses Q+ Σ reasonable NP-complete
max-cuf 2-pclauses Q Σ reasonable NP-complete
max-cuf 2-spcubes Q Σ reasonable NP-complete
max-cuf 3-spcubes Q+ Σ Σ NP-complete
max-cuf 2-spcubes {0, 1} max Σ NP-complete
max-cuf 2-spcubes {0, 1} max min NP-complete
max-cuf 2-spcubes {0, 1} max Π NP-complete
max-cuf 2-spcubes {0, 1} Σ min NP-complete
max-cuf 2-spcubes {0, 1} Σ Π NP-complete
max-cuf 2-pcubes {1, 2} max Π NP-complete

Table 5.2: Summary of complexity results for max-cuf.

The simple reduction in the proof is possible because we are working with max
languages. In this setting, the utility of any model M will always be equal to one
of the weights in the goalbase.

5.6.1 Summary

max-cuf is significantly harder than max-util. There are numerous languages
for which max-util is polynomial, but where max-cuf is NP-complete for some
collective utility function. For example, Theorems 5.6.9, 5.6.10, and 5.6.11 each
show that a tiny fragment of a language with positive formulas and positive
weights already has an NP-complete max-cuf problem, despite that max-util is
trivial over the same languages.

Still open are the complexities of the problems max-cuf(literals,Q,Σ,min)
and max-cuf(literals,Q,Σ,Π). While max-util is easy for both of the underlying
languages, we have neither a polynomial algorithm for solving these nor a reduction
from any known NP-complete problem to either one. Additionally, the complexity
of max-cuf(2-spcubes, {0, 1},Σ,Σ) remains unknown.

See Table 5.2 for a summary of results for max-cuf.

7Reasonable here means that the collective utility function is polynomially computable and
singleton consistent.

122 Chapter 5. Complexity

5.7 An Alternate Formulation of max-util

max-util for sum languages consists in finding an assignment which maximizes the
sum of those weights which are associated with satisfied formulas. The complexity
of a decision problem version of max-util is considered in Section 5.5. The picture
which emerges is bipolar: Every language for which a positive result is presented
has either a trivial decision problem or an NP-complete one. This naturally led us
to wonder whether there are any preference representation languages which occupy
the (previously unexplored) middle ground. As we will demonstrate in this section,
the fact that we found no natural goalbase languages for which max-util has
intermediate complexity is a consequence of the design decisions we made when
we defined max-util. If we consider an alternative form of max-util—which we
will call max-util∗—that asks whether particular atoms are true in an optimal
model, then we find some languages which occupy that middle ground, where
max-util∗ is P-complete.

5.7.1 Revising the max-util Decision Problem

Here is the function problem version of max-util, corresponding to the decision
problem given in Definition 5.3.1.

Definition 5.7.1 (The Function Problem max-util). The function problem
max-util(Φ,W, F) is defined as: Given a goalbase G ∈ L(Φ,W, F), find a model
M ∈ 2PS such that uG(M) is maximized.

The relationship between the two should be apparent, the surface differences
being that there is no integer K in the input and the answer returned is a model
rather than a decision on whether K utility can be met.

In terms of computational complexity, we have already shown the decision
problem max-util(forms,Q,Σ) to be NP-complete (see Theorem 5.5.2); and it
is clear from the definition that the corresponding function problem is in TFNP,
which is the class of function problems on polytime-decidable predicates for which
there is guaranteed to be a witness. (Megiddo and Papadimitriou [1991] provide a
thorough discussion of complexity classes associated with function problems.)

Often, decision problems are used to simplify the formulation of some function
problem to a yes/no question, and hence it is desirable that the complexity of
finding a solution should be preserved in the transformation from a function
problem into a decision problem. If a function problem and its corresponding
decision problem are related in this sense, then solving one enables one to solve
the other one easily [Papadimitriou, 1994a].

We can give a general method for solving the function problem max-util
using O(|PS|) calls to a decision problem max-util oracle, by combining the
methods given for sat and tsp by Papadimitriou [1994a, Examples 10.3, 10.4]:

5.7. An Alternate Formulation of max-util 123

1. Find the value of an optimal state: The value of any state for a goalbase in
a sum language may never be less than∑

(ϕ,w)∈G
w<0

w,

nor more than ∑
(ϕ,w)∈G
w>0

w,

so it follows that Ω, the value of an optimal state for G, lies in this range.
Without loss of generality, multiply out the all fractions which appear as
weights in G. Call the resulting (integer) range of state values [`, h]. Let
n ∈ N be the least such that 2n > h − `, and then set h = 2n + `, which
ensures that Ω ∈ [`, h). Now we can use the max-util oracle to do a binary
search for Ω. Ask the oracle whether 〈G, ` + 2n−1〉 ∈ max-util. If so,
then let ` := ` + 2n−1; if not, let h := ` + 2n−1. Decrement n and repeat
while n ≥ 0. On termination, ` = Ω and h = Ω + 1. Hence, we find Ω in
O(log(h− `)) steps. Now recover the original (unmultiplied) Ω by dividing
by whatever factor we multiplied by to eliminate fractions.

2. Find an optimal state: Recall that ϕ[ν/ω] is the formula ϕ with all occur-
rences of ω replaced by ν, and G[ν/ω] the goalbase with the same substitution
applied to all of its formulas. For each item p ∈ PS: Use the max-util ora-
cle to decide whether G[>/p] can yield Ω utility. If so, then set G := G[>/p];
otherwise, set G := G[⊥/p]. Read an optimal model from the substitution
instance created once all items are assigned.

It is much more straightforward—though not much different from the point of
view of complexity theory—to solve the decision problem max-util by making a
single call to a function problem max-util oracle and then checking whether the
optimal model so returned has a value of at least K.

An objection which might be made at this point is that the procedure we
have described for solving the function problem using the decision problem works
only for languages which are closed under substitution of (formulas equivalent
to) constants. In particular: Suppose that (ϕ,w) ∈ G ∈ L(Φ,W,Σ), p ∈ PS,
and p occurs in ϕ, but that ϕ[>/p] /∈ Φ. In this case, we cannot query a
max-util(Φ,W,Σ) oracle about 〈G[>/p], K〉, because G[>/p] /∈ L(Φ,W,Σ); we
have substituted ourselves into a language which our oracle does not speak. There
is a similar problem if ϕ[⊥/p] /∈ Φ: If 〈G[>/p], K〉 /∈ max-util(Φ,W,Σ), then by
the next time we query the oracle we will have already substituted ⊥ for p, again
carrying us outside of the language.

Many of the languages we have considered are closed under substitution of
constants. All cubes languages have this property, since > is the unique 0-pcube

124 Chapter 5. Complexity

(the empty conjunction), and p∧¬p is equivalent to ⊥. Similarly, we can simulate
the effects of ⊥ for positive cubes by just eliminating any positive cube into which
⊥ would be substituted. For clauses, we may write > as p∨¬p and ⊥ as either the
unique 0-clause (the empty disjunction) or by deleting any disjuncts into which
⊥ would be substituted. For positive clauses, we may also handle ⊥ by deletion
of disjuncts, but we also lack a positive clause which is equivalent to >. There
we can remove (ϕ,w) from G instead of substituting > into it, and reset K to
K − w to account for having satisfied (ϕ,w). In other words, for such languages,
max-util is self-reducible.

There are some languages, however, where no such tricks are available. For
example, consider the following class C of goalbases:

C =
{
{(ϕi, wi)}i

∣∣∣ ∧ϕi is satisfiable and all wi ≥ 0
}
.

Here, it is possible that we might leave the class C on our first substitution.
The goalbase G = {(p → q, 1), (¬q, 1)} ∈ C, but G[>/p] clearly is not since
{> → q,¬q} is not a satisfiable set. While the decision problem for C is easily
solved—just sum the weights and check whether the sum exceeds the given K—it
gives no guidance as to the solution of the function problem.

Hence, for languages which are not closed under substitution of constants,
we need a different decision problem. Here we propose an alternative version of
max-util, one which focuses on true atoms in an optimal model rather than the
existence of models of at least a given value.

Definition 5.7.2 (The Decision Problem max-util∗). Given a goalbase G ∈ L
and an atom p ∈ PS, is p true under the maximizing assignment (fix an arbitrary
one if not unique)?

To see why it is necessary to fix one maximizing assignment in case there are
several, consider the goalbase {(p ∧ ¬q, 1), (¬p ∧ q, 1)}) and note that both p and
q are true under some maximizing assignment, but both taken together do not
maximize the utility.

It may seem ugly to fix an arbitrary assignment, and indeed one could, for
example, require the least assignment with respect to some ordering; however
by doing so the complexity of the problem may actually increase. This becomes
evident with the PLP goalbase class presented in Section 5.7.3.

By executing an algorithm to decide the max-util∗ problem |PS| times, one
can construct a solution to the original function problem. Conversely, solving
the function problem obviously enables one to solve the revised decision problem.
Hence, the revised decision problem given in Definition 5.7.2 is related to the
function problem in the proper way for all languages, not just languages closed
under substitution of constants.

5.7. An Alternate Formulation of max-util 125

5.7.2 Horn Clauses, Propositional Logic Programming,
and hornsat

In the following subsections, we frequently refer to Horn clauses, propositional
logic programming, and the decision problem hornsat, all of which we now
define.

We make use of the following notions and results from propositional logic
programming (PLP), surveyed by Dantsin, Eiter, Gottlob, and Voronkov [2001].

Definition 5.7.3 (Horn Clauses and Least Models). A strict Horn clause is a
nonempty disjunction of exactly one atom and zero or more negated atoms. A
general Horn clause is a nonempty disjunction of at most one atom and zero or
more negated atoms.

For a set S of strict Horn clauses, a least model LM(S) of S is a smallest set
M ⊆ PS such that M |= S, that is, M |= ϕ for all ϕ ∈ S.

Fact 5.7.4. Any set S of strict Horn clauses has a unique least model.

Definition 5.7.5. The PLP decision problem is as follows: Given a set S of
strict Horn clauses and some p ∈ PS, is p ∈ LM(S)?

Fact 5.7.6 (Dantsin et al. [2001, p. 385]). The PLP decision problem is P-
complete.

Finally, we will use the well-known decision problem hornsat, along with its
associated complexity result [Greenlaw, Hoover, and Ruzzo, 1992].

Definition 5.7.7. The hornsat decision problem is as follows: Given a set, S
of general Horn clauses, is S satisfiable?

Fact 5.7.8. The hornsat decision problem is P-complete.

Logically speaking, Horn clauses express facts and dependencies in the following
ways:

• Strict Horn clauses with no negated atoms, i.e., consisting only of one atom,
represent plain facts. In the context of auctions, these are statements about
single goods, in voting, single candidates: “I’ll pay $50 for the Elvis statue.”,
“I cast a vote for Obama.”

• Strict Horn clauses containing negated atoms correspond to implications. In
our context they can be viewed as statements conditioned on several goods
with one good as consequence: “If you don’t eat your meat, you can’t have
any pudding.” Additionally, strict horn clauses with negated atoms lend
themselves to describing situations in which both goods and bads must be
divided: “For $1, either I get the last piece of cake, or I don’t have to clean
the bathroom.”

126 Chapter 5. Complexity

• Non-strict Horn clauses, i.e., disjunctions containing only negated atoms,
correspond to negated conjunctions; we can think of them as “negative
synergies”, or exclusions of certain combinations of goods: “A committee
with both Alice and Bob on it would be a disaster.”, “I would appreciate not
having both my defense and my job interview today.”, “If I have to change
planes in London, it’s worth $50 to me to avoid doing it at Heathrow.”

These ways of interpreting Horn clauses have proved their usefulness in the area of
logic programming. We believe that this also makes them a versatile and powerful
base for preference representation languages.

5.7.3 Finding P-Complete Goalbase Languages

Recall that, in the general case, max-util is NP-complete; attempts to find
tractable subclasses in Section 5.5 consisted in putting natural restrictions on the
formulas and weights, e.g., by allowing only conjunctions of (negated) atoms and
positive weights. As seen in Table 5.1, for the resulting classes max-util either
remained intractable or became quite easy (either O(n) or O(n log n)). This raises
the question: Are there goalbase languages which are tractable, but nontrivial,
for max-util?

In order to seek out such languages, we now propose reversing our previous
approach: Instead of putting restrictions on the goalbases and then examining the
complexity of max-util∗ for the resulting languages, we take a problem which has
the desired complexity and find a class of goalbases whose max-util∗ problem
corresponds to it.

Intuitively, it is evident that Horn clauses are more versatile and expressive
than some of the above-mentioned restrictions. For example, (¬a∨ b, 1) translates
into positive cubes as {(>, 1), (a,−1), (a ∧ b, 1)}, while (¬a ∨ ¬b, 1) becomes
{(>, 1), (a∧ b,−1)}. While these are not cumbersome on their own, it can become
so when several Horn clauses are translated together, since in translation the
weight of each Horn clause is distributed over multiple positive cubes. Translation
into another simple language, positive clauses with positive weights, will not
typically be possible, as general Horn clauses are not monotone formulas and so
require a language which offers either negation as a connective or permits negative
weights.

Furthermore, there are various P-completeness results involving Horn clauses,
two of which we stated in the previous subsection. For these reasons, in the
following we will apply our approach to find two P-complete goalbase classes
related to Horn clauses.

5.7. An Alternate Formulation of max-util 127

PLP Goalbases

Definition 5.7.9. The language LPLP of PLP goalbases consists of all goalbases

G = {(ϕi, wi)}i ∪
{(

p,− m

|PS|+ 1

)}
p∈PS

where

• the ϕi are strict Horn clauses,

• the wi are positive, and

• m = mini{wi}.

LP(G) = {ϕi}i is the underlying logic program consisting of all positively weighted
formulas. The remaining terms are penalty terms.

The penalty terms are needed for technical reasons, and we will return to them
in the discussion which follows.

Fact 5.7.10. The weights of the penalty terms sum to an absolute value less than
any of the wi. That is, for all i,

wi >
∑
p∈PS

m

|PS|+ 1
.

Corollary 5.7.11. The (unique) maximizing valuation of any G ∈ LPLP is the
least model of the underlying logic program, i.e., LM(LP(G)).

Proof. LM(LP(G)) obviously satisfies all formulas of G that have positive weights.
Since it is a least model, due to Fact 5.7.10, none of its subsets get a higher value;
due to the penalty terms, none of its supersets get a higher value; and due to
Fact 5.7.4, it is unique.

Lemma 5.7.12. The max-util∗ decision problem for PLP goalbases is in P.

Proof. Given G ∈ LPLP and p ∈ PS, LP(G) can be computed in linear time, and
then p ∈ LM(LP(G)) is decidable in polynomial time due to Fact 5.7.6. Due to
Corollary 5.7.11, this yields the answer to the max-util∗ decision problem.

Lemma 5.7.13. PLP can be reduced in logarithmic space to the max-util∗

decision problem for PLP goalbases.

Proof. Given a logic program S = {ϕi}i and p ∈ PS, let

G =
n⋃
i=1

{(ϕi, 1)} ∪
⋃
p∈PS

{(
p,− 1

|PS|+ 1

)}
.

Obviously, G ∈ LPLP, and due to Corollary 5.7.11, solving the max-util∗ de-
cision problem instance 〈G, p〉 yields the answer to the PLP decision problem
instance (S, p).

128 Chapter 5. Complexity

Corollary 5.7.14. The max-util∗ decision problem for PLP goalbases is P-
complete.

Proof. Follows immediately from Lemmas 5.7.12 and 5.7.13.

HS Goalbases

Definition 5.7.15. The language LHS of hornsat goalbases consists of all sets
G of weighted general Horn clauses with positive weights, subject to the following
condition:

Let wi denote the weights of the strict Horn clauses in G and w′j denote the
remaining weights. Then we require that∑

j

w′j < min
i
{wi}.

That is, the sum of weights of non-strict clauses (i.e., those containing no positive
atom) is less than the weight associated with any strict clause.

This condition does not appear to be very intuitive, and we will return to it
in the discussion. For the time being, note that it is only needed to ensure that
the complexity stays within P (Lemma 5.7.16); it may be possible to find a more
intuitive condition to this effect.

Lemma 5.7.16. The max-util∗ decision problem for HS goalbases is in P.

Proof. Given G ∈ LHS, use, e.g., unit propagation [Zhang and Stickel, 1996] to
find a satisfying assignment if one exists. If it does exist, this is the maximizing
assignment since all weights are positive. If it does not exist, let G′ ⊂ G be the
subset containing all strict Horn clauses. Due to the condition in Definition 5.7.15,
LM(G′) is a maximizing assignment for G, since

• it satisfies all strict Horn clauses, and

• among all such assignments which satisfy all strict Horn clauses, it satisfies
the most non-strict Horn clauses.

The second item holds due to the fact that we have a least model of G′, that is,
one that satisfies the greatest set of negated atoms, and non-strict Horn clauses
are just disjunctions of those.

Lemma 5.7.17. hornsat can be reduced in logarithmic space to max-util∗ for
HS goalbases.

5.7. An Alternate Formulation of max-util 129

Proof. Given a set S = {ϕ1, . . . , ϕn, ϕ
′
1, . . . , ϕ

′
m} of strict (ϕi) and non-strict (ϕ′i)

Horn clauses, build the HS goalbase

G =
n⋃
i=1

{(ϕi, 1)} ∪
m⋃
i=1

{(
ϕ′i,

1

m+ 1

)}
,

obtain the maximizing assignment by solving max-util∗ for G and each p ∈ PS,
and check whether it satisfies all formulas in G. Since the assignment is maximizing
and all weights are positive, it will do so iff G is satisfiable.

Corollary 5.7.18. The max-util∗ decision problem for HS goalbases is P-
complete.

Proof. Follows from Lemmas 5.7.16 and 5.7.17.

5.7.4 Discussion

As mentioned earlier, we believe that Horn clauses form a versatile and powerful
base for preference representation languages, since their form is restricted in a
clear way, but they retain the ability to express natural forms of dependency.
The existence of various P-completeness results involving Horn clauses suggests
that they lend themselves to our approach. We therefore focused on these,
without meaning to suggest that other classes of formulas might not be worth
considering. There are certainly other P-complete fragments of the full weighted
formula language which are induced by other P-complete problems and embody
different kinds of synergies from those examined here. We leave these for future
investigation.

While some of our examples focused on auctions, an issue to which we will
return in Chapter 6, Horn clauses also have useful interpretations in multi-winner
voting. They can express dependencies among candidates, e.g., to say that Alice
should be on a committee whenever Bob is, or that Alice should not be on a
committee if Bob is. We return to this issue in detail in Chapter 7.

The goalbase classes we presented may at first glance seem artificial and
unnatural, and they may then simply be viewed as proof of concept for our
approach, and proof of existence for logic-based preference representation languages
of intermediate complexity.

However, the penalty terms which occur in PLP do reflect an intuitively
justifiable desideratum, since they make, ceteris paribus, assigning fewer items
favorable. For example, in an auction, if no one benefits from obtaining some
additional item, why should the auctioneer give that item away for nothing instead
of keeping it for some later auction where someone might benefit from having it? In
that sense, it might even be desirable to require a least maximizing assignment in
the definition of the max-util∗ problem itself. With such an alternative definition,
one could remove the penalty terms from PLP goalbases and obtain a quite natural

130 Chapter 5. Complexity

P-complete goalbase class. This also shows that, as noted under Definition 5.7.2,
requiring the least (instead of an arbitrary) maximizing assignment has an effect on
the complexity of max-util∗: With such a requirement, it would be P-complete
for PLP goalbases without penalty terms, while as it stands, it is trivially solved
by making all atoms true.

As for HS goalbases, as mentioned above, the unintuitive condition in Defini-
tion 5.7.15 is only used to prove Lemma 5.7.16, and it may be possible to find
a more intuitive condition to that effect. However, this condition might even be
acceptable if bids or preferences can be described “lexicographically” on two levels:
Strict Horn clauses (facts and implications) describe the primary bid in form of a
logic program. Then, non-strict Horn clauses (exclusions of certain combinations)
can be added for fine-tuning and favoring certain models of the logic program
over others. Note that this secondary bid matters, since HS goalbases, unlike PLP
goalbases, do not enforce least models.

5.8 Conclusion

In this chapter we have proposed, motivated, and characterized the complexity
of three decision problems, max-util, min-util, and max-cuf, over goalbase
languages. max-util, the problem of deciding whether a certain level of utility is
attainable for an individual agent, tends to be NP-complete for sum languages
which permit formulas of at least length 2 and either negation or negative weights,
but polynomial otherwise. In contrast, max-util is easy for all languages using the
max aggregator. min-util, the pessimal version of max-util, is coNP-complete
for all sum languages where max-util is NP-complete, but surprisingly is also
coNP-complete for the full max language. max-cuf, the problem of deciding
whether a certain level of collective utility is attainable, is NP-complete even for
some languages where max-util is easy.

We proposed an alternative version of max-util the decision problem, called
max-util∗, which does not require languages to be closed under substitution of
logical constants in order to use it for solving max-util the function problem.
We proceeded to find two languages for which for which max-util∗ is P-complete.

We might have considered other problems. At the individual level, the problem
of comparison is a useful problem to solve—given states A and B, does an
agent prefer A to B?—but there is nothing interesting to say about it in our
setting: comparison will be polynomial whenever the individual aggregator used
is polynomial, and both aggregators we consider, sum and max, are polynomially
computable. In other words, comparison would become theoretically interesting
only by becoming practically useless; hence we do not consider it here. One
could imagine other variants on min-util and max-util, such as mean-util
and median-util. We note that mean-util and median-util would appear to
be harder than min-util and max-util since the mean and median depend on

5.8. Conclusion 131

the whole set of states; however, we do not examine these problems at present
because they seem less compelling than min-util and max-util.

If we interpret goalbases as representing coalitional games with transferable
utility as do Ieong and Shoham [2005] and Elkind et al. [2009], rather than as
representing the utility functions of individuals, then there are various complexity
problems from coalitional game theory which can be explored. The decision
problems core-membership and core-non-emptiness, which ask questions
about the core of the coalitional game being represented, and computing the
Shapley value and Banzhaf index from a given representation are problems are
of particular interest; it would be worth investigating whether the difficulty of
these problems depends on the goalbase language used, as we have done here for
max-util, min-util, and max-cuf.

Finally, we point out two directions which we do not pursue here, namely
approximation and truthfulness. For each NP-completeness result we give in this
chapter, there are corresponding approximation results to be found. For example,
Lipton, Markakis, Mossel, and Saberi [2004] do this for envy-freeness. It would be
interesting to see how accurately max-util and max-cuf can be approximated
in the cases where they are NP-complete. When we consider max-cuf, we assume
that the goalbases we are given are truthful, in the sense that they are not a
willful misrepresentation of an agent’s preferences. There are a whole host of
issues around the issue of truthfulness, such as strategyproofness and incentive
compatibility. As should be obvious from the discussion here, there were many
directions to pursue; many which we did not pursue would make for interesting
future work.

Part II

Applications

133

Chapter 6

Combinatorial Auctions

6.1 Introduction

In this chapter we move from the purely theoretical considerations of previous
chapters to one of the intended applications of goalbase languages: as bidding
languages for combinatorial auctions. In Section 6.2, we give some background
on types of auctions and an extended example which shows the advantages of
combinatorial auctions over standard, sequential auctions. In Section 6.3, we
present the OR/XOR/OR∗ family of bidding languages, the most commonly-seen
bidding languages for combinatorial auctions, and compare them with our goalbase
languages. (In particular, Section 6.3.3 contains relative succinctness results for
some OR/XOR/OR∗ and goalbase languages.) In Section 6.4, we take up the
Winner Determination Problem (WDP) for combinatorial auctions, and present
two methods for solving it—integer programming (IP) and branch-and-bound—
when using goalbases as bids. Section 6.5 gives examples of branch-and-bound
heuristics tailored for use with specific goalbase languages. The final two sections,
Section 6.6 and 6.7, present the setup for and results of experiments we conducted
to test the feasibility of solving the WDP for goalbase languages using our IP
formulation and branch-and-bound solver.

6.2 Auctions

In the most general sense, an auction is a mechanism for allocating items and
costs among bidders. A wide variety of auctions have been studied by economists
and, increasingly, by computer scientists, which has resulted in the naming of
many features of auctions: A sealed-bid auction is one in which bidders submit
their bids privately to the auctioneer; an open-bid auction is one in which bidders
publicly announce their bids. An open-bid auction is ascending-price if the price
for an item increases until no bidder is willing to pay more, and is descending-price

135

136 Chapter 6. Combinatorial Auctions

if the price of an item decreases until some bidder announces he is willing to pay it.
An auction is first-price if the price of an item is the highest bid, and second-price
if the second-highest bid.

The traditional types of auctions are English (ascending-price open-bid),
Dutch (descending-price open-bid), and first-price sealed-bid. English auctions
are commonly used for the sale of antiques, art, wine, livestock, and land. Those
having lived in an agricultural area in the United States might recognize the
English auction as a farm sale. Dutch auctions have historically been used for
the sale of perishable products, particularly in the sale of large lots of cut flowers
in Holland. First-price sealed-bid auctions are used by some governments for
selling treasury bonds, and are also the most common method of selling houses
in Scotland. The first-price sealed-bid auction is strategically equivalent to (i.e.,
bidding strategy and results are the same as) the Dutch auction. A fourth type,
the Vickrey auction, a second-price sealed bid auction, is a 20th-century invention
and is strategically equivalent to the English auction [Vickrey, 1961]. McAfee and
McMillan [1987] and Milgrom [2004] provide wide-ranging overviews of auction
theory for those wishing to learn more.

All four of the traditional types of auction are sequential, meaning that for
each item being sold, the winner of the nth is determined before any bids are
received for the (n+ 1)th. Selling items sequentially may be problematic when
bidders do not value items independently—that is, when bidders do not have
modular utility functions. The strong synergy between the shoes in a pair is a
clear example of this. Suppose that shoes are being sold in a sequential auction
individually, rather than bundled as pairs. From the perspective of the typical
bidder—someone with two feet but not unlimited wealth—an auction for single
shoes poses a difficult strategic problem. A typical bidder places much value on
a matched pair, but presumably would prefer to pay nothing and win no shoes
instead of paying to win a single shoe. If the bidder bids too high on the first
shoe, he may win it, but then risks having too little money left to win the second
shoe. If the bidder bids too low on the first shoe, he might not win it, in which
case there is little point in bidding on the now-worthless second shoe. Sequential
auctions force bidders with nonmodular preferences to bid more conservatively
than they would like, or undertake more risk than they would like.

Sequential auctions for synergistic items are not just problematic for the bidders,
but may also be suboptimal for the auctioneer.1 If bidders bid conservatively as a
hedge against failing to win certain combinations of items, then the auctioneer will
collect less revenue from the auction than if the bidders felt comfortable bidding
more aggressively. Suppose, for example, that we are conducting an English
auction for a left (`) and a right (r) shoe, and we have two bidders with the

1The auctioneer is treated as the owner of the items in the auctions literature, which we
follow. Readers familiar with real-world auctions will note that this differs from the usage there,
where the auctioneer is a third party (e.g., Sotheby’s, eBay, or a fast-talking man with a voice
that carries well) who collects a fee for organizing and conducting the auction.

6.2. Auctions 137

following utility functions:

u1(X) =

{
$40 if X = {`, r}
$0 otherwise,

u2(X) =

$20 if X = {`, r}
$10 if X = {`} or X = {r}
$0 otherwise.

The overall utility for a bidder is the utility of the bundle he wins less the price
he paid to win it. If we auction the left shoe first, then by bidding anything at all
the first bidder risks having negative utility, in the case where he wins the left
shoe but fails to win the right shoe. If the first bidder knew the second bidder’s
utility function then it would be clear to him that could ensure that he would
win the pair by bidding $11 for each shoe and take away a handy surplus of
$18—but since he does not know the other bidder’s utility function, he cannot
be certain how to bid. For all he knows, the second bidder might value the right
shoe higher than he values the whole pair—this could happen if the second bidder
were a left-leg amputee, for example. If the first bidder is unwilling to assume any
risk, then he will simply not bid. Since the second bidder has a modular utility
function, he is able to avoid the question of risk entirely and is free to bid up to his
valuation for each shoe. As a result, the second bidder will pay $2 (assuming that
only whole-number bids are possible) and walk away with both shoes. Neither
the auctioneer nor the first bidder should be happy with this outcome, as the
auctioneer’s aim is to maximize revenue and the first bidder would have been
willing to pay significantly more than $2 for the shoes as a pair.

The obvious solution to this particular problem is the one already adopted by
shoe sellers worldwide, namely to sell shoes in pairs only. However, this merely
disadvantages a different group of buyers—amputees, people who have a cast on
one leg, people who have lost one shoe along the roadside—and so is not a general
solution.2 Furthermore, this example has as a peculiar feature that we know
beforehand something about the structure of typical bidders’ preferences: most
bidders will want matched pairs. Leaving shoes aside, there are other domains
where the synergies between goods vary greatly from bidder to bidder and cannot
be predicted beforehand by the auctioneer. In such domains, imposing constraints
on how bidders may express their preferences may lead to unexpected revenue
loss by making bidding risky for some bidders.

This is the motivation behind combinatorial auctions, which sell items simul-
taneously rather than sequentially by permitting bids on bundles rather than
just single items. Returning to our example of the shoe auction, it is easy to see
that revenue for the auctioneer would improve if the first bidder were able to
place a bid of more than $20 for the left and right shoe together, but no bids (or,
equivalently bids of $0) for each shoe alone. To do this, we must have a bidding

2Incidentally, this problem has been addressed in the United States since 1943 by the National
Odd Shoe Exchange, which serves as an intermediary for people who have purchased pairs of
shoes but need only one of them [National Odd Shoe Exchange, 2009].

138 Chapter 6. Combinatorial Auctions

language in which to specify bids for bundles, which we discuss in Section 6.3.
We anticipate the application of our goalbase languages to the problem (see
Section 6.3.2) by writing the first bidder’s bid as {(` ∧ r, $40)} and the second
bidder’s as {(`, $10), (r, $10)}. The problem now faced by the auctioneer is to
select which bids to accept. This is trivial in sequential auctions—in first-price
auctions it amounts to recognizing the largest bid, and for second-price auctions
additionally spotting the second-largest bid—but finding a revenue-maximizing
set of bids in a combinatorial auction can be quite difficult, an issue we take up in
Section 6.4.

In anticipation of needing them later, we define a few more terms: A bidder is
said to have free disposal if he is able to accept more items without losing utility—
the intuition being that a bidder who does not want the additional items may
simply discard them. In other words, a bidder with free disposal has a monotone
utility function. Free disposal may also apply to the auctioneer, however. The
auctioneer has free disposal if he may refrain from allocating some items (possibly
holding them back for the next auction, or discarding them). It will usually be the
case when allocating goods that bidders have free disposal; in the event that we are
allocating bads (e.g., tasks which the bidders wish to pay to avoid, or toxic waste
which the bidders must store) we must assume that bidders lack free disposal if
we want to ensure a sensible outcome. Similarly, in not all situations does it make
sense to assume that the auctioneer has free disposal. When auctioning perishable
goods, for example, it does not make sense for the auctioneer to have free disposal,
as there may be a real cost to disposing of spoiled items.

There has recently been a great deal of work on combinatorial auctions in
economics, operations research, and computer science. Cramton et al. [2006]
provide a thorough overview of the field; of particular relevance for us are the
chapters on bidding languages [Nisan, 2006], and the complexity of the Winner
Determination Problem [Lehmann et al., 2006b; Müller, 2006] and heuristics for
solving it [Sandholm, 2006]. We discuss other related work throughout the chapter
at the point where it becomes relevant.

6.3 Bidding Languages

The XOR/OR/OR∗ family of languages contains the typical bidding languages
found in the literature on combinatorial auctions. Each language in this family has
at least one undesirable characteristic—the XOR language is extremely verbose,
determining the value of a bundle given an OR (or OR∗) bid is NP-complete—
characteristics which a combinatorial auction designer might wish to avoid. In
this section, we compare these established bidding languages with our goalbase
languages, each exhibiting different assortments of characteristics desirable and
undesirable, with the aim of affording the combinatorial auction designer a wider
array of poisons from which to pick.

6.3. Bidding Languages 139

6.3.1 The XOR, OR, and OR∗ Languages

Here we define the XOR, OR, and OR∗ languages, which are the most commonly
used bidding languages in the combinatorial auctions literature [Fujishima et al.,
1999; Sandholm, 2002; Nisan, 2006].

Definition 6.3.1 (XOR, OR, and OR∗). Let PS be a fixed set of items. An
atomic bid is an ordered pair 〈X,w〉, where X ⊆ PS (the bundle) and w ∈ R+

(the price). A bid in the XOR language is a finite list of atomic bids

〈X1, w1〉 XOR . . . XOR 〈Xn, wn〉,

which generates the utility function

u(X) = max
Xi⊆X

wi.

A bid in the OR language consists of a finite list of atomic bids:

〈X1, w1〉OR . . .OR 〈Xn, wn〉.

A set of atomic bids F is feasible if the atomic bids in F contain pairwise disjoint
bundles. A bid B in the OR language generates the utility function

u(X) = max
F⊆B

F feasible

∑
〈Xi,wi〉∈F

wi.

A bid in the OR∗ language is an OR bid where the bundle in each atomic bid is
permitted to contain zero or more dummy items di /∈ PS.

The purpose of dummy items is to enforce overlap between bundles which
would not normally overlap. E.g., 〈{a}, 1〉OR 〈{b}, 2〉 gives value 3 for the bundle
{a, b}. If the bidder wants instead to express that he is willing to buy at most one
of a and b, then the bundles which should be mutually exclusive may be tagged
with a dummy item d, like so: 〈{a, d}, 1〉OR 〈{b, d}, 2〉.

6.3.2 Goalbase Bidding Languages

Goalbases languages may be used as bidding languages for combinatorial auctions.
Each item in an auction is associated with exactly one propositional variable in PS.
(For example, Lead Belly’s guitar might be assigned a and the ship’s bell from the
RMS Titanic might get b.) We consider a propositional variable true for a bidder
when that bidder is given the associated item. Bidders express their valuations
for items by stating propositional formulas containing the items’ propositional
variables, along with what they would be willing to pay were those formulas made
true. (A bid of (a, $500,000) means that I am willing to pay $500,000 for Lead
Belly’s guitar, and a bid of (a ∧ b, $1,000,000) means that I am willing to pay a

140 Chapter 6. Combinatorial Auctions

million dollars for the guitar and the ship’s bell together. Were I to place both
bids, that would mean that I am willing to pay $500,000 for the guitar, and an
additional one million for the guitar and bell together, i.e., a total of $1.5 million
for both.)

When used as a bidding language, L(pcubes,R+,max) is the same as the XOR
language. This is easily seen by noting that any atomic bid 〈X,w〉 is satisfied in
the same states as the weighted formula (

∧
X,w), and that the max aggregator

forces an agent’s utility to equal that of the highest weight of any satisfied formula,
the same as the XOR operator does.

6.3.3 Succinctness

When bids in one language are significantly more verbose than the same bids in
another language, that is a reason for preferring the more compact language over
the less compact one. The definition of succinctness we used in Chapter 4 to com-
pare goalbase languages is not sufficiently general to permit comparison between
goalbase languages and the XOR/OR/OR∗ family of languages. However, it is not
difficult to extend it further so that we can compare any two languages in which
utility functions over sets can be represented—so long as we are able to measure
the size of representations in bits. This ensures that we can make meaningful
comparisons between such dissimilar languages as those in the XOR/OR/OR∗

family and the goalbase languages we consider here.

A set-based utility function representation language L is a class of strings such
that each string corresponds to a single utility function over sets. We say of a
string r ∈ L that it represents a utility function u, and that u is expressible in L
because r ∈ L. The utility function ur is the utility function generated by r. The
size of a representation, size(r), is the number of bits used by r.

Definition 6.3.2 (Succinctness, Extended). Let L and L′ be utility function
representation languages, and U a class of utility functions such that every
member of U is representable in both languages. Then L �U L′ (L′ is at least
as succinct as L with respect to U) iff there exists a function f : L → L′ and a
polynomial p such that for all representations r ∈ L, if ur ∈ U then ur = uf(r)

and size(f(r)) ≤ p(size(r)).

While succinctness is frequently beneficial, it is worth noting that succinctness
is not always a blessing. Fix some class of (rational-valued) utility functions U and
enumerate them. (That is, the representations of u0, u1, . . . are just the numbers
0, 1, 2, . . . ∈ N.) The language formed by this enumeration is maximally succinct
for the class U . This language uses exactly as many bits as are needed to name
each utility function, so there is no other representation language with the same
expressivity which can beat it in terms of succinctness. No bits go to waste here,
but a direct consequence of this miserliness is that recovering a utility function

6.3. Bidding Languages 141

from its representation may involve difficult computations (or a very large lookup
table).

In terms of relative succinctness, the XOR language is inferior to both the OR
and the OR∗ languages. This follows from results given by Nisan [2006].

Theorem 6.3.3. XOR ≺ OR.

Proof. Nisan [2006, Proposition 9.3] shows XOR 6� OR by observing that the
function un(X) = |X| has a succinct representation in OR, but requires an expo-
nential number of atomic bids in XOR. It remains to be shown that XOR � OR;
that is, we need to show that any XOR representation of a utility function
representable in both languages can be translated into an equivalent OR represen-
tation, without a superpolynomial blowup in size. Nisan [2006, Proposition 9.1]
shows that the OR language corresponds to the class of superadditive utility
functions. (Recall from Definition 3.2.1 that a utility function u is superadditive if
u(X ∪ Y) ≥ u(X) + u(Y) for all disjoint X, Y .) Therefore, it suffices to point out
that whenever 〈S1, p1〉 XOR . . . XOR 〈Sn, pn〉 represents a superadditive function,
then 〈S1, p1〉OR . . .OR 〈Sn, pn〉 represents that very same function.

Theorem 6.3.4. XOR ≺ OR*.

Proof. Nisan [2006, Theorem 9.3] shows that any bid using a combination of OR-
and XOR-operators (and thereby certainly any pure XOR-bid) can be translated
into an OR∗-bid with the same number of atomic bids, introducing at most a
quadratic number of dummy items. Hence, XOR � OR∗. The same function
un(X) = |X| as above demonstrates that the succinctness relation is strict.

Note that, because the OR-language is not fully expressive, XOR ≺ OR does
not entail that XOR ≺ OR∗ (even though OR∗ subsumes OR), so the preceding
two theorems are independently interesting.

Now we present three results comparing the succinctness of the XOR, OR, and
OR∗ languages with some of our goalbase languages.

Theorem 6.3.5. OR ⊥ L(pcubes,R,Σ).

Proof. (�) Consider the family of utility functions un(X) =
(|X|

2

)
. The goalbase

{(a ∧ b, 1) | a, b ∈ PS and a 6= b} represents un in L(pcubes,R+,Σ), and is
quadratic in |PS|. The sole representation of un in the OR language,

OR
X⊆PS
|X|≥2

〈
X,

(
|X|
2

)〉
,

has size exponential in |PS|. We prove by induction that this is the only correct
representation: No atomic bids for ∅ or any singleton occur in an OR bid corre-
sponding to un, since un(∅) = un({a}) = 0, for all a ∈ PS. For every distinct

142 Chapter 6. Combinatorial Auctions

a, b ∈ PS, the atomic bid 〈{a, b}, 1〉 occurs in the OR bid, since there are no bids
for smaller bundles, and no other bid can be accepted in state {a, b}. Suppose
that every bundle X where |X| = k ≥ 2 has an atomic bid corresponding to it.
Fix some p /∈ X. Let x1, . . . , xn be the sizes of some combination of n ≥ 2 bundles
which partition X ∪ {p}. Then

∑n
i=1 xi = |X ∪ {p}|. The total value of these

smaller bundles according to their associated atomic bids is

n∑
i=1

(
xi
2

)
=

n∑
i=1

xi(xi − 1)

2
=

∑n
i=1 xi

2 −
∑n

i=1 xi
2

,

while the value of X ∪ {p} according to un is

(
|X ∪ {p}|

2

)
=

(∑n
i=1 xi
2

)
=

(∑n
i=1 xi

)2 −
∑n

i=1 xi

2
.

Observe that
∑n

i=1 xi
2 <

(∑n
i=1 xi

)2
, and hence the value of X ∪ {p} is always

greater than the sum of the values of the bids for any partition thereof. Further-
more, no atomic bids for other bundles of size ≥ k + 1 can be accepted in this
state, so we must include

〈
X ∪ {p},

(|X∪{p}|
2

)〉
as an atomic bid. Therefore, every

bundle of size k + 1 also has an atomic bid in the OR representation.

(�) The family of utility functions un(X) =
⌊ |X|

2

⌋
is quadratically representable

in the OR language as

OR
a,b∈PS
a6=b

〈{a, b}, 1〉

but in L(pcubes,R,Σ) the sole representation is

{(∧
X, (−2)|X|−2

) ∣∣∣ X ⊆ PS and |X| ≥ 2
}
,

which is exponential in |PS|.
That this is the representation in L(pcubes,R,Σ) is shown inductively. w∅ =

wa = 0, since u(∅) = u({a}) = 0, and similarly wa∧b = 1 = (−2)|{a,b}|−2. For the
inductive case, suppose that wV

X = (−2)|X|−2. We have that

wV
X∪{a} =

∑
Y⊆X∪{a}

(−1)|(X∪{a})\Y |
⌊
|Y |
2

⌋

6.3. Bidding Languages 143

by the Möbius inversion (see p. 36 and [Rota, 1964]), and continuing with that
equality, we have

=
∑
Y⊆X

(−1)|X\Y |+1

⌊
|Y |
2

⌋
+
∑
Y⊆X

(−1)|(X∪{a})\(Y ∪{a})|
⌊
|Y ∪ {a}|

2

⌋
=
∑
Y⊆X

(−1)|X\Y |
(
−
⌊
|Y |
2

⌋
+

⌊
|Y |+ 1

2

⌋)
=
∑
Y⊆X

(−1)|X\Y |(|Y | mod 2) =
∑
Y⊆X
|Y | odd

(−1)|X\Y |

= (−1)|X|+1
∑
Y⊆X
|Y | odd

1 = (−2)|X|−1 = (−2)|X∪{a}|−2,

which completes the induction.

Next, we turn to the OR∗ language:

Theorem 6.3.6. OR∗ ⊥ L(pcubes,R,Σ).

Proof. (�) By the same argument found in the � direction of Theorem 6.3.5.
Adding dummy variables to the OR language cannot make the OR representation
smaller—the OR representation given already has too much overlap between
atomic bids, and dummy variables can only increase these conflicts.

(�) The family of utility functions

u∃n(X) =

{
1 if X 6= ∅
0 otherwise

is representable linearly in the OR∗ language (with dummy item d) as

OR
a∈PS

〈{a, d}, 1〉

but the unique representation in L(pcubes,R,Σ),{(∧
X, (−1)|X|−1

) ∣∣∣ ∅ ⊂ X ⊆ PS
}
,

is exponential in |PS|, as shown in the proof of Theorem 4.4.8.

In the proofs of Theorems 6.3.5 and 6.3.6, we make use of the fact that
L(pcubes,R,Σ) has unique representations, meaning that any utility function
representable in the language is representable in exactly one way (see Theorem 3.4.2
for a proof of this fact).

144 Chapter 6. Combinatorial Auctions

Theorem 6.3.7. XOR ≺ L(pforms,R+,Σ).

Proof. (�) Let 〈X1, w1〉 XOR . . . XOR 〈Xn, wn〉 be an XOR bid such that w1 ≤
. . . ≤ wn, and for convenience let w0 = 0. Then the goalbase{(n∨

j=i

∧
Xj, wi − wi−1

) ∣∣∣∣∣ 1 ≤ i ≤ n

}

in L(pforms,R+,Σ) is equivalent to, and quadratic in the size of, the given XOR
bid. Therefore, XOR � L(pforms,R+,Σ).

(�) The family of utility functions un(X) = |X| is representable linearly in
L(atoms,R+,Σ), a sublanguage of L(pforms,R+,Σ), as {(a, 1) | a ∈ PS}, while
the sole XOR representation is

XOR
X⊆PS

〈X, |X|〉,

which is exponential in |PS|.

Theorems 6.3.5 and 6.3.6 show that some bids which are very large in OR or
OR∗ will be small in L(pcubes,R,Σ), and vice versa, and Theorem 6.3.7 shows the
advantage of L(pforms,R+,Σ) over XOR. Hoos and Boutilier [2000], Boutilier
and Hoos [2001], and Boutilier [2002] have advocated for logic-based bidding
languages before, but this is the first formal argument we have seen regarding
their succinctness with respect to the XOR/OR/OR∗ family of languages. These
three results demonstrate that logic-based languages can provide more efficient
representations of some bids than the XOR/OR/OR∗ family of languages, and
thus merit consideration when designing combinatorial auctions.

Finally, we offer some general comments on translation of OR bids: Consider
the bundle evaluation problem, in which we are asked to decide if a given bundle
is worth at least a given amount of utility.

Definition 6.3.8 (The Decision Problem L-eval). The decision problem L-eval
is defined as: Given a utility function representation R ∈ L, a model M , and an
integer K, is the value of M at least K?

It is clear that so long as we have chosen a polynomially-computable aggregator,
then for any goalbase language L, the bundle evaluation problem L-eval is in
P. This is because bundle evaluation for a goalbase language amounts to model
checking for propositional formulas, plus the application of the aggregator. The
former is always polynomial, so having a polynomially-computable aggregator
ensures that the whole procedure will be polynomial. This is not the case for
the OR language, however: or-eval is essentially just weighted set packing,
which is a well-known NP-complete problem [Garey and Johnson, 1979].

6.4. Winner Determination 145

Now, suppose that a goalbase language L is such that U(OR) ⊆ U(L). That
is, every utility function expressible in the OR language is expressible in L. Since
U(OR) ⊆ U(L), we know that for each bid in the OR language, there is an
equivalent goalbase in L. Furthermore, so long as we have chosen a polynomially-
computable aggregator, the bundle evaluation problem for L, L-eval, is in P.
Therefore, if there were an algorithm capable of finding the L-translations of
arbitrary OR bids in polynomial time, we could reduce or-eval to L-eval. Since
or-eval is NP-complete and L-eval is in P, it would follow immediately that
P = NP. Put another way: It is very unlikely that there is any fast way to translate
arbitrary OR bids into a goalbase language.3 Nonetheless, we do not view this, or
any of the results in this section, as negative results for goalbase languages. These
results merely show that the XOR/OR/OR∗ family and goalbase languages have
different representational “sweet spots”.

6.4 Winner Determination

Intuitively, the Winner Determination Problem (WDP) is the problem of finding
an optimal allocation of goods to bidders, given a set of bids. In this section, we
discuss algorithms for solving the WDP. In order to give a precise definition of
the WDP, we require some notation first.

6.4.1 Notation

Auctions are fundamentally about allocating items to bidders. If we consider a
process in which items are allocated one at a time, then at any step an item could
be allocated to a bidder or to no one.

Definition 6.4.1 (Allocations).

• A is the set of agents bidding in any given auction. Each agent i ∈ A has a
goalbase Gi defining his valuation over the goods in PS.

• An allocation A : PS → A ∪ {∗} is a function which maps goods to the
agents to which they are given. The symbol ∗ indicates no agent. We write
A(p) = ∗ when A leaves good p unallocated, and in that case A is a (strictly)
partial allocation. If A allocates all goods in PS, then A is a complete
allocation.

• The set und(A) = {p ∈ PS | A(p) = ∗} is the set of unallocated goods in
allocation A; the set und(A,ϕ) is the set of unallocated goods appearing as
propositional variables in the formula ϕ.

3Note however that this does not imply that a polysize translation is impossible. For further
discussion of this issue, see Chapter 4, p. 66.

146 Chapter 6. Combinatorial Auctions

An allocation induces a model (see Definition 2.2.2) for each agent, where
the true proposition letters in the model are those corresponding to the goods
allocated to the agent. We now give a precise definition and some notation for
this:

Definition 6.4.2 (Allocation-Induced Models).

• The model MA
i = {p ∈ PS | A(p) = i} is the set of goods assigned to

bidder i by allocation A.

• MA
i |= ϕ iff the goal ϕ is satisfied by MA

i .

• MA
i ? ϕ iff there is an allocation A′ ⊇ A such that MA

i 6|= ϕ and MA′
i |= ϕ,

or MA
i |= ϕ and MA′

i 6|= ϕ.

In previous chapters when we dealt with models, we considered them in a
static context, so had no need to represent as-of-yet unallocated items. Because
some of the algorithms we discuss later construct partial allocations, we need to
to distinguish between formulas which an allocation makes false for an agent and
formulas which are merely left undetermined at that stage. While false formulas
cannot be made true by allocating more items, undetermined formulas can. For
example, suppose that agent 1 bids {(a ∧ b, 3), (c, 2), (¬c ∨ d, 2)} and we have as
a partial allocation A = {(a, 1), (b, 2), (c, 1), (d, ∗)}. Then MA

1 = {a, c}, and we
have that MA

1 |= c because agent 1 was allocated c, MA
1 |= ¬(a∧ b) because b was

allocated to some other agent, and MA
1 ?¬c∨ d because ¬c∨ d could become true

if d, which is unallocated in A, were later allocated to agent 1.
Note that the second clause of the definition of MA

i ? ϕ, in which ϕ goes
from true in MA

i to false in some extended allocation, never obtains for positive
formulas. This clause is necessary so that undecided formulas containing negation
are handled properly.

6.4.2 The Winner Determination Problem

As the WDP is a maximization problem, we must give an objective to maximize,
which in this case is utilitarian social welfare. The utilitarian social welfare
of an allocation A of a set of goods PS to agents with goalbases {Gi}i∈A in
L(forms,R,Σ) is as follows:

sw(A) =
∑
i∈A

∑
(ϕ,w)∈Gi

MA
i |=ϕ

w.

That is, the utilitarian social welfare of an allocation is the sum of the weights
associated with all satisfied goals across all agents. Hence, the WDP (as a function
problem) is to find a complete allocation A maximizing sw(A). By restricting

6.4. Winner Determination 147

attention to complete allocations we are defining a WDP without free disposal. If
desired, we can easily model auctions with free disposal by adding to any given
auction instance a single bidder with an empty goalbase.

The decision-problem version of the WDP for almost all goalbase languages
is NP-complete: max-cuf(Φ,W, F,Σ) from Section 5.6 is the WDP for bidders
placing bids with goalbases in L(Φ,W, F), and in all cases we examined, when
the collective aggregator is sum and the language is sufficiently rich to express
synergies between pairs of items, we have NP-completeness. Therefore, we cannot
hope to have a single algorithm which will solve all WDP instances efficiently.
Because NP-hardness is a worst-case notion, however, many WDP instances are
still efficiently solvable, and there are several approaches we can take which
perform acceptably on a variety of inputs.

The brute force algorithm for solving the WDP enumerates all complete
allocations, computes the social welfare for each, and picks the one with the
highest value. Naturally, such an approach will not scale. Good (but possibly
suboptimal) results can be obtained using local search methods [Hoos and Boutilier,
2000] and simulated auctions [Fujishima et al., 1999]. For provably optimal results,
the most common approach is integer programming, taken by Boutilier [2002] for
one logic-based language [Boutilier and Hoos, 2001]. The integer programming
approach to solving WDP instances (Section 6.4.3) relies on black-box general-
purpose IP solvers like CPLEX [ILOG, 2009]. Such IP solvers are powerful tools,
but not tuned specifically for any particular problem [Andersson, Tenhunen, and
Ygge, 2000]. Another approach is to craft algorithms to solve WDP instances
directly. In Section 6.4.4, we use a branch-and-bound algorithm, similar to the
work of Sandholm [2002] and Fujishima et al. [1999]. Branch-and-bound produces
provably optimal results, and uses heuristics to guide the search and prune the
search tree. We restrict ourselves to the version of the WDP where sum is the
collective aggregator. For some exploratory results about Nash product as the
collective aggregator, see [Ramezani, 2008, Chapter 6].

Finally, we note that our IP formulation of the WDP could be easily modified
for use with max as the collective aggregators instead of sum. Adjusting it to
use max would permit it to solve the egalitarian version of the WDP studied by
Bouveret [2007]. While we could do the same for branch-and-bound—the upper
bound heuristics we develop later in this chapter are also admissible for egalitarian
social welfare—the bounds would be quite loose, and so this is likely to be less
fruitful than developing new heuristics.

6.4.3 An IP Formulation of the WDP

People wishing to solve instances of the WDP frequently resort to integer program-
ming [Schrijver, 1986; Wolsey, 1998]. Boutilier [2002] compares the performance
of an IP formulation of the WDP for generalized logical bids (GLBs, see also
Section 2.3.10), which he calls structured bids, with an IP formulation of the

148 Chapter 6. Combinatorial Auctions

WDP for equivalent XOR bids, which he calls flat bids, and presents experimental
results which indicate that the WDP can be solved faster for GLBs than for
equivalent XOR bids. Similarly, we can take advantage of IP for solving the
WDP for goalbases in L(forms,R,Σ). Here we present a fully-general integer
programming formulation of the WDP for sum languages, following that given by
Boutilier [2002].

A linear program consists of a linear function known as the objective function
and a set of linear inequalities called constraints. Linear programming is the
technique of finding values for the variables which optimize the objective function
subject to the constraints. In the standard (primal) form, we want to maximize
the objective function c1x1 + . . .+ cnxn while respecting the constraints

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a11x1 + a12x2 + . . . + a1nxn ≤ b2
...

...
...

...
...

...
...

...
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

where the ci, bi, aij ∈ R are constants and the xi are variables. Additionally, we
require that all xi ≥ 0. This formulation suggests a matrix form, which is to
maximize cTx subject to Ax ≤ b and x ≥ 0, where A is the matrix formed by the
aij and c, b, and x are the column vectors formed by the ci, bi, and xi, respectively.

Every linear program has a dual form: minimize cTy subject to ATy ≥ c and
y ≥ 0. If there are feasible solutions x∗ and y∗ for a primal and its dual such that
cTx∗ = bTy∗, then x∗ and y∗ are optima for the primal and dual, respectively. This
fact is useful as it is sometimes easier to solve the dual of an LP than it is to solve
the LP directly.

An integer program is a linear program for which the xi are required to be
integers. While LPs are solvable in polynomial time, the additional requirement
that solutions be integer makes solving IPs NP-complete. Because IPs are useful
for modeling many kinds of business problems, a great deal of research has been
applied to finding optimal solutions for them, and as a result IPs are readily
solvable despite their high computational complexity. Various methods exist
for solving IPs, such as branch-and-bound, cutting planes, branch-and-cut, and
column generation. For a survey of these methods, see [Wolsey, 1998]. A 0-1
integer program is one where the domains of all variables are binary. (Binary-
valued variables are known as decision variables.) Solving 0-1 integer programs
remains NP-complete, despite the domain restriction.

Now we define our 0-1 integer program for solving the WDP for L(forms,R,Σ)
goalbases: Let i index bidders, j index formulas, and r index goods, throughout.
The jth formula in bidder i’s goalbase Gi we refer to as ϕij. Each wij is the
weight in the goalbase Gi of the corresponding formula ϕij. That is, for bidder i,
his goalbase is Gi = {(ϕij, wij)}j. Next, we define constraints on subformulas
of the weighted formulas in a goalbase. For each good r and agent i, define a

6.4. Winner Determination 149

binary decision variable yir which is intended to equal 1 iff agent i receives good r.
For each subformula ϕ, define a binary decision variable sϕ, which is intended
to equal 1 iff the allocation satisfies ϕ. Then, define a constraint for each ϕ,
depending on its logical form:

ϕ = p : sϕ ≤ yir (6.1)

ϕ = ¬ψ : sϕ = 1− s¬ψ (6.2)

ϕ = ψ1 ∧ . . . ∧ ψn : n · sϕ ≤
n∑
k=1

sψk
(6.3)

ϕ = ψ1 ∨ . . . ∨ ψn : sϕ ≤
n∑
k=1

sψk
(6.4)

and finally,

Maximize
∑

ϕij an atomic bid

wijsϕij
subject to: (6.5)

∑
i

yir = 1 for all r, and (6.6)

A constraint for each subformula of each atomic bid ϕij. (6.7)

Note that we maximize only over the atomic bids and not their subformulas, as
subformulas have no value independent of the atomic bids which contain them.4

Additionally, we provide constraints for handling negation.5 It it worth noting
that the negation constraints are the only subformula constraints which contain
equalities. This is necessary to ensure bivalence. If, e.g., only sϕ ≤ 1− s¬ϕ were
taken as a constraint, then we would not have ruled out sϕ = s¬ϕ = 0. The
subformula constraints generated from (6.1)–(6.4) are bid satisfaction constraints,
as they ensure that bids cannot be satisfied without the appropriate items being
allocated. The constraints in (6.6) are a combination of preemption and complete
allocation. That is, the ≤ direction allocates each item to at most one agent
(preemption) and the≥ direction allocates each item to at least one agent (complete
allocation—i.e., without free disposal). The complete allocation direction of this
constraint can be dropped for languages which contain only positive formulas and
positive weights without affecting which allocations are optimal, but is necessary
in cases (like task allocation) where bads are being allocated to agents. This is
due to the fact that the objective will be maximized by the auctioneer keeping
items which all bidders wish to avoid. Only in languages which permit mixed

4This differs from Boutilier’s approach, where subformulas are permitted to have their own
weights. E.g., ((p, 5) ∧ (q, 1), 2) is a formula with subweights in Boutilier’s language, which we
would write as the three weighted formulas (p, 5), (q, 1), (p ∧ q, 2).

5Negation does not occur in the languages considered by Hoos and Boutilier [2000], Boutilier
and Hoos [2001], and Boutilier [2002], so Boutilier provides no negation rule.

150 Chapter 6. Combinatorial Auctions

weights or negation as a connective can the desire to avoid receiving an item be
expressed, so for these case we need the complete allocation constraint in order to
find nontrivial optima.

Given a set of goalbases {Gi}i in L(forms,R,Σ), the number of binary decision
variables sϕ in the IP corresponding to it is bounded by the sum of the number of
subformulas in each Gi (which is at most the sum of twice the number of formulas
in each Gi) and the number of binary decision variables yir is equal to |A| · |PS|.
Similarly, there will be one constraint for each subformula and |PS| constraints
to ensure preemption. Hence, both the number of decision variables and the
number of constraints is linear in the number of agents, items, and size of the bid
representations.

6.4.4 Branch-and-Bound WDP Algorithms

Branch-and-bound is a tree-based search algorithm which uses heuristics to prune
branches from its search tree. We first describe branch-and-bound abstractly, and
follow with an explanation of how we apply branch-and-bound to the WDP.

Consider any search problem with a finite search space. Branch-and-bound
searches by building a tree from that search space. Each node in this tree is a
subset of the search space, a set of solutions to our problem. The root of our
search tree is S0, the entire search space. We expand the tree by selecting a leaf
S and adding as its children some proper nonempty subsets S1, . . . , Sk (k ≥ 2)
which cover S. (If S is a leaf and a singleton, it cannot be further expanded.)

Each element of our search space can be measured for its “quality”, i.e., how
good a solution it is. Similarly, we can measure the quality of sets of solutions.
(How quality is measured is one of the design parameters, which will be discussed
later. Suppose for now that we have some way of measuring quality.) For each
node we build, we estimate the quality of the solutions it contains. To do this, we
have two functions, g and g + h: g(S) is a lower bound on the quality of solutions
in S, while g(S) + h(S) is an upper bound. These bounds are used to direct our
search. For each new node S we create, we calculate g(S) and h(S). If there is
some other node S ′ such that g(S ′) ≥ g(S) + h(S), then S ′ contains a solution
which weakly dominates all solutions in S. Since S ′ contains solutions which are
at least as good as the ones in S, there is no reason to continue searching in S;
we may safely prune S from our search tree.

We repeat this procedure, choosing and expanding weakly undominated leaves,
until we are left with a leaf which is a singleton {s} that weakly dominates all
leaves in the tree. If g is exact for singletons, then this solution, s, is optimal, and
our search is complete. For a schematic representation of the branch-and-bound
algorithm, see Figure 6.1.

In this description, four parts were left underspecified: First, we need a method
for choosing which leaf to expand next; second, we need a method for subdividing
the search space once we have chosen a leaf to expand; third and fourth, we need

6.4. Winner Determination 151

S∗ = S0

while ∃S a weakly undominated nonsingleton leaf do
divide S into a covering ∅ ⊂ S1, . . . , Sk ⊂ S
for all Si do

calculate g(Si), h(Si)
if g(Si) + h(Si) > g(S∗) then

add Si as a child of S
if g(Si) > g(S∗) then
S∗ := Si

end if
end if

end for
end while
return S∗

Figure 6.1: The branch-and-bound algorithm.

lower and upper bounds for the quality of subsets of the search space so that we
can prune away unpromising parts of the search tree. Any branch-and-bound
implementation must fill in these four parts.

Branch-and-bound is well suited for optimization problems where the notion
of a partial solution makes sense. A partial solution defines the set of complete
solutions which extend it, which means that partial solutions can be nodes in a
branch-and-bound tree. If we also have a way of bounding the quality of partial
solutions, then we can use branch-and-bound to incrementally build an optimal
solution.

The WDP for combinatorial auctions is just such a problem. Solutions to the
WDP are complete allocations of the set of goods. Partial allocations simply leave
some goods unallocated, and lower bounds on the values of partial allocations
are easy to calculate from the bids received. We take this approach. When a
leaf/allocation A is to be expanded/extended, we select a good p unallocated in A
and produce as children of A all allocations A′ which extend A by allocating p.
Thus each expanded node will have one child for each bidder in the auction,
since A could be extended by awarding p to any of the bidders in A.

We start with an initial tree consisting of a single node where no goods have
been allocated yet. We maintain a frontier of leaf nodes and a pointer to the
current top allocation A∗ delivering the highest social welfare so far. The algorithm
then repeatedly applies the following steps:

1. Select a node (partial allocation) A from the frontier that still has a chance
of beating the current top allocation A∗: g(A∗) < g(A) + h(A). Any A not
meeting this condition can be removed from the frontier.

152 Chapter 6. Combinatorial Auctions

2. Select a good not yet allocated in A: p ∈ und(A).

3. Produce as children of A all allocations A′ which extend A by allocating p.
Thus each expanded node will have one child for each bidder in A. Add all
children to the frontier (and remove A from it).

We stop when there are no more viable partial allocations in the frontier to choose
from (during step 1). As a solution we return (one of) the best (by now complete)
allocations in the final frontier.

A function is called admissible for the purposes of branch-and-bound if the
function is in fact a bound on the quality of a set of solutions. Whenever the
branch-and-bound algorithm is provided with admissible upper- and lower-bound
functions, it is guaranteed to eventually find an optimal solution.

For our purposes g is admissible if it never overestimates the value of the worst
completion of a partial allocation, and g+h is admissible if it never underestimates
the value of the best completion of a partial allocation. Whether a given bound
function is admissible depends on what utility functions the bidders are permitted
to have, which in turn depends on the choice of bidding language. The trivial
lower bound g(A) = −∞ is admissible for any bidding language, but will prevent
any pruning of the search space. It is easy to see that g(A) = sw(A) is admissible
so long as all agents’ utility functions are monotone: There cannot be an agent
who will become worse off by allocating him some items left unallocated in A.
Therefore, this g which calculates attained value is admissible for any bidding
language which permits the representation of monotone utility functions only. The
trivial upper bound g(A) + h(A) =∞ is admissible for any language, but, as with
the trivial lower bound, makes branch-and-bound build the entire search tree.6

Other ways of applying branch-and-bound to the WDP are possible. Our
algorithm branches on goods. Fujishima et al. [1999] and Sandholm and Suri [2003]
have designed search algorithms (CASS and BOB, respectively) where branching
decisions are taken by accepting or rejecting atomic bids (in the OR- or the XOR-
language). According to Sandholm [2006], branch-on-bids formulations of the
search problem tend to yield faster algorithms than branch-on-goods approaches.

The branch-on-bids formulation works as follows: At each node in the search
tree, we select a bid and branch such that along one branch, we accept the selected
bid and along the other we reject it. We reach a leaf in the search tree when
a branch contains a set of bids which is maximal, in the sense that were we to
accept any additional bids, we would no longer have a feasible allocation. The
bids which are available for selection at any node in the search tree are the bids
which are undecided at that node. The undecided bids at a node are the ones
which have neither been accepted nor rejected along the branch leading to that

6The trivial bounds guarantee that every one of the |PS||A|+1 nodes in the search tree will
be visited. A brute-force search will visit only the leaves of this search tree; thus a poor choice
of bounding can make branch-and-bound worse than a brute-force search.

6.4. Winner Determination 153

node, nor do they conflict with any bids which have been accepted along that
branch. In order to keep track of which nodes are available for selection, a conflict
graph is associated with each search tree node. The nodes in the conflict graph
are the undecided bids, and the (undirected) edges mark conflicts between bids.
A selected bid and its neighborhood (the bids it conflicts with) are removed from
the conflict graph which the accepting branch inherits, while only the selected bid
is removed from the conflict graph inherited by the rejecting branch. In this way,
we can easily track which bids are still undecided, and once the conflict graph
has no more edges, we have arrived at a leaf in the search tree and may finish by
accepting all remaining bids in the conflict graph.

Branch-on-bids results in narrower, deeper search trees than branch-on-items
does: A branch-on-items tree will be a |A|-ary tree of depth |PS|, while a branch-
on-bids tree will be a binary tree with depth not exceeding the number of atomic
bids.

For our bidding languages, branch-on-bids corresponds (roughly) to branching
on goals: At each branching point we would have to decide whether to satisfy
(or satisfy the negation of) a given goal of a given agent. Unfortunately, we
cannot immediately adapt the methods developed for standard bidding languages
to our situation. In the standard approach using the OR language, nodes in a
branch-on-bids search tree correspond to partial allocations, but this is not always
the case when branching on goals. For example, if agent i had p ∧ q as a goal and
we wished to branch on that goal, the accepting branch is straightforward—we
would allocate items p and q to i—but the rejecting branch is not, since there
could be many partial allocations where at least one of p and q is not given to
agent i. Either we must associate sets of partial allocations with branches, or we
must forgo binary branching.

Keeping a conflict graph is no longer straightforward, either. The negative
entailment relation for the OR language is simple and symmetric: Two atomic
bids conflict iff they overlap. Moreover, if any three bids conflict, then they do so
because some pair of them conflicts. There is no positive entailment relation among
atomic OR bids at all: There are no 〈X, a〉 and 〈Y, b〉 for which it is always the
case that the second cannot be accepted without also accepting the first. Conflict
among formulas is more complex, in that it is directed. For two formulas ϕ and ψ,
they could be contraries (|= ϕ→ ¬ψ), subcontraries (|= ¬ϕ→ ψ), contradictories
(|= ϕ↔ ¬ψ), or fail to conflict altogether. There are sets of formulas where any
pair is consistent but any three are inconsistent, which indicates that we will not
have a conflict graph, but rather a hypergraph. Finally, it can be the case that
ϕ |= ψ, and so we must also track positive entailment in our graph if we wish
to use it for clearing dead formulas. OR bids may be treated as anonymous for
the purposes of branch-and-bound. Which bidder placed which atomic bid is
irrelevant for determining which atomic bids are accepted in an optimal allocation.
When bidding with formulas it matters which formula belongs to which bidder.
Consider that a ∧ b entails b if both bids belong to the same bidder, but a ∧ b

154 Chapter 6. Combinatorial Auctions

entails ¬b if they belong to different bidders. We leave the investigation of this
alternative approach to another occasion.

Finally, it is worth noting that the A∗ algorithm for finding shortest paths
[Hart, Nilsson, and Raphael, 1968] is an instance of branch-and-bound, where
g is the actual distance from the start node to the current node and h is an
underestimate of the distance from the current node to the goal node. (h is an
underestimate because better paths are shorter. By underestimating the distance,
h overestimates the path quality.) A∗ selects the node with the least (best) g + h
as the node to expand next. The algorithm calculates g and h for each neighbor
of the current node, and they too are marked as visited. This continues until the
goal node is reached.

6.5 Heuristics for Winner Determination

In this section, we present the required heuristics for using branch-and-bound to
solve the WDP for three goalbase languages: L(pcubes,R+,Σ), L(pclauses,R+,Σ),
and L(cubes,R+,Σ). As stated in the previous section, a branch-and-bound
implementation requires:

• A lower-bound function,

• An upper-bound function,

• An expansion policy , a function which chooses which undominated node to
expand next, and

• A branching policy , a function which creates the children of nodes chosen
by the expansion policy.

NP-hardness of the WDP precludes the existence of a globally optimal ensemble of
lower- and upper-bound functions and expansion and branching policies (unless, of
course, P = NP). While we cannot find bounds and policies which always perform
well, there might still be choices for these which perform well across a broad range
of cases. For all three languages, we choose to define a lower bound function g and
a marginal upper bound function h, thus making the upper bound function g + h.

6.5.1 Expansion and Branching Policies

Our expansion and branching policies differ across the three languages only insofar
as they rely on language-specific g and h functions for input. Therefore, we present
the expansion and branching policies first, before defining upper and lower bounds
for each language.

6.5. Heuristics for Winner Determination 155

An Expansion Policy

The most obvious expansion policy for any branch-and-bound implementation
is to choose the unexpanded node with the greatest upper bound g + h as the
next node to expand. This is the node with the most potential according to our
upper-bound heuristic, and ordering nodes by their upper bounds is an inexpensive
operation. Ties may be resolved arbitrarily, though best lower bound could be
used as a tie-breaker. Unlike the upper and lower bound functions, there is no
way for an expansion policy to fail, so long as it chooses only unexpanded nodes.

Two Branching Policies

Let A be the set of strictly partial allocations. A function b : A → PS is a
branching policy if for all strictly partial allocations A, b(A) = p for some p which
A does not allocate. For each language we consider here, its marginal contribution
functions h is composed from one hp function for each p ∈ PS. In all cases, hp(A)
is an upper bound on the marginal value of allocating item p.

Definition 6.5.1. We define two branching policies:

• The lexical branching policy is the branching policy b such that b(A) = p,
where p is the lexically least good not allocated by partial allocation A.

• The best-estimate first branching policy is the branching policy b such
that b(A) = p, where p is the lexically least good such that hp(A) =
maxa∈PS h

a(A).

The lexical branching policy is equivalent to branching randomly. As with
expansion policies, no branching policy can fail, though one might direct the
search better than another.

6.5.2 Heuristics for Positive Cubes

The language L(pcubes,R+,Σ) corresponds to the so-called k-additive form for
representing utility functions [Grabisch, 1997; Chevaleyre et al., 2006].7 Intuitively,
the weight given to a cube of the form p1 ∧ · · · ∧ pm may be regarded as the
marginal utility associated with obtaining all of items p1, . . . , pm, beyond the
utility associated with any subset of these. If none of the cubes has a length
exceeding k, then the agent in question is said to have k-additive preferences.
These kinds of languages have been widely used for preference modeling, and
recently their relevance to the theory of combinatorial auctions has also been
recognized [Conitzer et al., 2005].

7To be precise, L(pcubes,R+,Σ) corresponds to the k-additive form with positive coefficients.
See Theorems 3.4.6 and 3.4.15, and Corollary 3.4.9 for details.

156 Chapter 6. Combinatorial Auctions

A Lower Bound Heuristic for Positive Cubes

Because only monotone utility functions are representable in L(pcubes,R+,Σ),
the attained value of a partial allocation, g(A) = sw(A), is an admissible lower
bound.

An Upper Bound Heuristic for Positive Cubes

We now define our upper-bound heuristic for L(pcubes,R+,Σ). For simplicity, we
assume that prior to the use of this heuristic, all goalbases have had duplicate
formulas collapsed, i.e., if (ϕ, x) and (ϕ, y) occur in Gi, they are replaced by
(ϕ, x+ y).

Definition 6.5.2. Define the heuristic function h+
∧ as

h+
∧ (A) =

∑
p∈PS

hp(A),

where

hp(A) = max
i∈A

hpi (A)

hpi (A) =
∑

(ϕ,w)∈Gi

hpi (A,ϕ)

hpi (A,ϕ) =

{
w

|und(A,ϕ)| if (ϕ,w) ∈ Gi, p ∈ und(A,ϕ), and MA
i ? ϕ

0 otherwise.

The intuition embodied here is that we can estimate the marginal value of an
item for an agent by assigning to each item a share of the weight of each positive
cube in which it appears. For example, suppose agent 1 bids {(a∧ b, 6), (a∧ c, 8)},
and agent 2 bids {(a, 6), (b ∧ c, 10)}. Under the empty partial allocation ∅, for
agent 1 we have that ha1(∅) = 6

2
+ 8

2
= 7, hb1(∅) = 6

2
= 3, and hc1(∅) = 8

2
= 4.

For agent 2, we have ha2(∅) = 6, hb2(∅) = 10
2

= 5, and hc2(∅) = 10
2

= 5. Since
each item may be allocated to only one agent, the atom-wise components of the
heuristic “award” each item to the agent for whom that item contributes most:
ha(∅) = 7 since ha1(∅) > ha2(∅), hb(∅) = 5 since hb2(∅) > hb1(∅), and hc(∅) = 5 since
hc2(∅) > hc1(∅). The marginal upper bound h+

∧ (∅) is the sum of the maximum
contributions of the atoms: h+

∧ (∅) = 7 + 5 + 5 = 17. Notice that in this case the
optimal value is 16, which is attained when agent 2 receives all three items; the
heuristic overestimates the optimal value to be 17 instead.

Theorem 6.5.3. The heuristic g + h+
∧ is an admissible upper bound for the

language L(pcubes,R+,Σ).

6.5. Heuristics for Winner Determination 157

Proof. We proceed by showing that g(A′) + h+
∧ (A′) ≤ g(A) + h+

∧ (A) for all
allocations A′ extending A, or equivalently, that g(A′)− g(A) ≤ h+

∧ (A)− h+
∧ (A′).

Fix an allocation A and an item p, where (p, ∗) ∈ A. Let A′ extend A by
assigning p to some agent k. That is, A′ = (A \ {(p, ∗)}) ∪ {(p, k)}, for some
agent k.

If agent k is indifferent to item p (i.e., p /∈
⋃

(ϕ,w)∈Gk
atoms(ϕ)), then there is

no change in utility from A to A′: g(A′)− g(A) = 0. h is a decreasing function
(as allocations are extended), so h+

∧ (A)− h+
∧ (A′) ≥ 0.

Otherwise, suppose that agent k is not indifferent to item p. We have that

g(A′)− g(A) =
∑

(ϕ,w)∈Gk

MA
k ?ϕ

MA′
k |=ϕ

w

since the attained utility of no agent other than k can change from A to A′. Only
p is allocated between A and A′, and for any ϕ which becomes true in A′ it must
be the case that p is the last undetermined atom in ϕ in A. In A, the atom p
carries all of the potential weight of ϕ. That is, hpk(A,ϕ) = wϕ, so∑

(ϕ,w)∈Gk

MA
k ?ϕ

MA′
k |=ϕ

w =
∑

(ϕ,w)∈Gk

MA
k ?ϕ

MA′
k |=ϕ

hpk(A,ϕ).

We have that ∑
(ϕ,w)∈Gk

MA
k ?ϕ

MA′
k |=ϕ

hpk(A,ϕ) ≤
∑

(ϕ,w)∈Gk

hpk(A,ϕ)

because every hpk(A,ϕ) ≥ 0. Further, it is the case that hpk(A,ϕ) ≤ maxi∈A h
p
i (A)

and maxi∈A h
p
i (A) = hp(A) by definition. Thus far, we have that g(A′)− g(A) ≤

hp(A).

Now we work from the opposite end. Observe first that∑
a∈PS
a6=p

(ha(A)− ha(A′)) ≥ 0,

from which it follows that

hp(A) ≤
(∑
a∈PS
a6=p

(ha(A)− ha(A′))
)

+ hp(A).

158 Chapter 6. Combinatorial Auctions

Now, hp(A′) = 0 because p is already allocated in A′, and so

hp(A) ≤
(∑
a∈PS
a6=p

(ha(A)− ha(A′))
)

+ hp(A)− hp(A′)

=
∑
a∈PS

(ha(A)− ha(A′))

= h+
∧ (A)− h+

∧ (A′),

which gives us that hp(A) ≤ h+
∧ (A)− h+

∧ (A′).
Together, the first and second parts of the proof show that

g(A′)− g(A) ≤ hp(A) ≤ h+
∧ (A)− h+

∧ (A′),

which was to be proved.

We note that this heuristic is similar in concept, though not in execution, to
the upper-bound heuristic for the OR language used by Fujishima et al. [1999] in
CASS and Sandholm [2002] in BOB,∑

i∈A

c(i) where c(i) = max
j|i∈Sj

pj
|Sj|

,

where the 〈Sj, pj〉 are atomic bids in the OR language andA is the set of unallocated
items along some path of the search tree. This upper bound heuristic assigns
to each unallocated item an estimated value equal to its “fair” contribution to
the best bundle which contains it. (E.g., each of items a, b, and c are considered
to contribute 14 to the bundle 〈{a, b, c}, 42〉.) Because the OR language does
not permit the acceptance of overlapping atomic bids, there is no need for the
heuristic to track which items are already allocated (all items in live bids are still
unallocated) nor to which agent the items are being allocated, which allows it to
be simpler than the one we present.

6.5.3 Heuristics for Positive Clauses

L(pclauses,Q+,Σ) is an interesting bidding language due to its ability to concisely
express substitutes of unequal quality. For example, if I have a Phillips screw I
want to turn, I would prefer to do the job with a Phillips screwdriver, though
I could use an appropriately-sized flathead screwdriver in a pinch (at the risk
of stripping the screw’s head). Therefore, in an auction for a Phillips (p) and a
flathead (f) screwdriver I might bid {(p, 5), (f ∨ p, 1)}.

A Lower Bound Heuristic for Positive Clauses

As with L(pcubes,R+,Σ), the attained value of a partial allocation is an admissible
lower bound heuristic for L(pclauses,R+,Σ), due again to the monotonicity of all
representable utility functions here.

6.5. Heuristics for Winner Determination 159

An Upper Bound Heuristic for Positive Clauses

As before, we assume that duplicate formulas have been collapsed.

Definition 6.5.4. Define the heuristic function h+
∨ as

h+
∨ (A) =

∑
p∈PS

hp(A),

where

hp(A) = max
i∈A

hpi (A)

hpi (A) =
∑

(ϕ,w)∈Gi

hpi (A,ϕ)

hpi (A,ϕ) =

{
w if (ϕ,w) ∈ Gi, p ∈ und(A,ϕ),MA

i ? ϕ

0 otherwise.

This heuristic is similar to h+
∧ ; the difference is that we do not divide by the

number of unallocated atoms in ϕ when defining hpi (A,ϕ).

Theorem 6.5.5. The upper-bound heuristic g+ h+
∨ is admissible for the language

L(pclauses,R+,Σ).

Proof. The argument exactly parallels that given for h+
∧ in the proof of Theo-

rem 6.5.3.

6.5.4 Heuristics for Cubes

L(cubes,R+,Σ) is a potentially attractive bidding language due to its ability to
express marginal utilities easily (which it inherits from L(pcubes,R+,Σ)) as well
as to indicate a desire to avoid certain bundles (useful, for example, if some items
are not goods, but instead undesirable tasks which must be completed by their
winner).

A Lower Bound Heuristic for Cubes

Unlike with L(pcubes,R+,Σ) and L(pclauses,R+,Σ), attained value of partial
allocations is not an admissible lower bound heuristic for L(cubes,R+,Σ). When
all bids are expressed with goalbases containing only positive formulas with positive
weights, the attained value of partial allocations over those bids is nondecreasing
as more items are allocated; for cubes, allocating an additional item might cause a
decline in overall value if some cubes contain negative literals. However, attained
value is admissible for cubes so long as the bids meet the following (rather complex)
condition, which is a sort of localized, conditional, item-specific free disposal:

160 Chapter 6. Combinatorial Auctions

For every partial allocation A and each item p left unallocated by A,
there exists a bidder i for whom every extension A′ ⊇ A which also

does not allocate p is such that uGi,Σ

(
M

A′∪{(p,i)}
i

)
≥ uGi,Σ(MA′

i).

That is, attained value is admissible as a lower bound for cubes so long as we
can always fob off an unwanted item onto some bidder who is not hurt by it.
Fortunately, in an auction with a large number of goods and bidders this condition
will almost always be satisfied. If for each item being auctioned, there is some
bidder whose utility function is locally monotone with respect to that item, then
the condition is met. This could happen if each item has at least one bidder
who is indifferent towards it, or if there is even a single bidder with a monotone
utility function. All test data used in the L(cubes,R+,Σ) experiments on which
we report in Section 6.7.1 meet this condition, and so we were able to use attained
value as a lower bound there.

If this condition cannot be met, then a different function must be used as a
lower bound for L(cubes,R+,Σ). Subtracting the weights of satisfied nonpositive
formulas from the attained value gives us one admissible lower bound, though
it could be rather loose if the disregarded nonpositive formulas have significant
weight. We can do better than this, however: Atoms corresponding to unallocated
items default to false in bidders’ individual models, and MA

i does not preserve
information about whether an atom a is false for agent i because a was allocated
to some agent j 6= i, or because a is still unallocated. Due to this, false atoms
may sometimes turn true for a bidder—but only those atoms which correspond to
unallocated items. Once all of the items named in a formula are allocated, the
truth value of that formula cannot change with the allocation of further items;
hence, it is safe to include in the lower bound bids whose formulas have fixed
truth values. So ∑

i∈A

∑
(ϕ,w)∈Gi,M

A
i |=ϕ

Var(ϕ)∩und(A)=∅

w

is an admissible lower bound for L(cubes,R+,Σ) without any further conditions.

An Upper Bound Heuristic for Cubes

The marginal upper bound heuristic for cubes is similar to h+
∧ for positive cubes,

though now we must take negative literals into account as well.

Definition 6.5.6. Define the heuristic function h∧ as:

h∧(A) =
∑
p∈PS

hp(A),

6.6. Experimental Setup 161

where

hp(A) = max
i∈A

(
hpi (A) +

∑
j 6=i

h¬pj (A)
)

h`i(A) =
∑

(ϕ,w)∈Gi

h`i(A,ϕ)

h`i(A,ϕ) =

{
w
|L| if MA

i ? ϕ and ` ∈ L = {ˆ̀ | ˆ̀ a literal in ϕ,MA
i ? ˆ̀}

0 otherwise.

The crucial difference from Definition 6.5.2 is for hp(A), which in this case
maximizes over the estimated contribution of the agent receiving p as well the
agents wishing to avoid p.

Theorem 6.5.7. The upper-bound heuristic g + h∧ is admissible for the language
L(cubes,R+,Σ).

Proof. Fix an allocation A and extend it to A′ by allocating p. If no agent gained
utility from A to A′, then g(A′)−g(A) ≤ h(A)−h(A′) trivially. Otherwise, suppose
that agents j1, . . . , jn experienced a gain from A to A′. g(A′)−g(A) ≤ h`1j1+. . .+h`njn ,
where `i = p if i = k, and `i = ¬p otherwise. Then

h`1j1 + . . .+ h`njn ≤ max
i∈A

(
hpi (A) +

∑
j 6=i

h¬pj (A)
)

= hp(A).

From here, the proof is as for g + h+
∧ in Theorem 6.5.3.

6.6 Experimental Setup

Here we describe some design decisions we faced in our attempts to test the
heuristics and IP described above. In particular, this section revolves around the
generation of test data.

6.6.1 Principles for Generating Realistic Data

In order to test the feasibility of the WDP algorithms detailed above, we need
data against which to test them. Data from real combinatorial auctions would be
best. While we would not expect to find data sets already expressed as goalbases,
these could be constructed from bidders’ preference information if only it were
available. Little has changed since 2000, when Andersson et al. [2000] lamented
the lack of freely-available real-world data. Hence, we are forced to test against
artificial, generated data—so we aim to make that data as realistic as possible. It
is hard to know what counts as realism when we have never seen any real data
before; absent that, we attempt to generate data in a principled way. We state
here several principles which we believe that real-world valuations would follow:

162 Chapter 6. Combinatorial Auctions

• Narrow range of values: The valuations of all bidders for a given bundle
of goods will fall within a narrow band. There should be no two agents who
have dramatically different values for the same bundle. This is the case with
everyday goods and typical bidders—the value of a bicycle to Alice will not
be ten or a hundred times what it is to Bob.8

• Few atomic bids: The number of atomic bids for a given set of goods—that
is, the number of equivalence classes of formulas over the atoms representing
those goods—can be quite large. For example, the languages L(pcubes,R,Σ),

L(cubes,R,Σ), and L(form,R,Σ) have, respectively, 2|PS|, 3|PS| and 22|PS|

distinct nonequivalent formulas which could be weighted. For large sets of
goods, bidders could not be expected to weight even a small fraction of the
available formulas.

• Short atomic bids: Bidders are likely to have values for individual goods,
and synergies among goods are more likely to be binary or ternary than they
are to be 10-ary or 100-ary. This seems to reflect common experience. E.g.,
many items have strong synergies in pairs, triples, and quadruples (shoes, a
necklace and a matching set of earrings, automobile tires), but hardly any
have noticeable synergies at much larger sizes. (Are there any 100 goods
in the world, collectibles excepted, where the set of 100 together are worth
significantly more than the value of any 99-good subset plus the value of
the hundredth good alone?)

• No good unvalued: Every good should contribute positive value to some
bundle. Supposing that we are auctioning goods (and not bads) then it
would be strange if there were some item for which no bidder was willing to
offer a nonzero bid.

We do not argue that every real-world instance of the WDP would have these
characteristics, only that it would not be incongruous if one did, and hence an
instance of the WDP having these characteristics might be considered realistic.

We ultimately settled on testing against two data sets. The design of one of
our test data sets is guided by these principles. The other data set, designed to
be simple to generate rather than realistic, was used in our initial work on winner
determination algorithms [Uckelman and Endriss, 2008a], and serves to highlight
how the performance of our branch-and-bound heuristic varies with the type of
problem instances it faces.

8We say everyday goods and typical bidders for good reason—for large differences in valuation
might be possible if, e.g., the bicycle has sentimental value for Alice, or there is some information
asymmetry among the bidders.

6.6. Experimental Setup 163

6.6.2 Data Generation

We now describe in detail three data generators—the two we used in our experi-
ments, and one which we did not.

Why We Did Not Use CATS

Combinatorial auctions researchers have devised numerous data distributions
for testing their algorithms [Sandholm, 2002; Fujishima et al., 1999; Boutilier,
Goldszmidt, and Sabata, 1999b; de Vries and Vohra, 2003; Parkes, 1999; Sandholm,
Suri, Gilpin, and Levine, 2005; Andersson et al., 2000]. Leyton-Brown, Pearson,
and Shoham [2000] argued against using these data distributions for evaluating
combinatorial auction algorithms on the grounds that they are ad hoc and have
no clear connection to real-world auctions, and that the lack of standardization
makes comparison of results difficult and so stymies progress in the field. As an
alternative, they devised the Combinatorial Auctions Test Suite (CATS) which is
able to generate test data based on five semi-realistic problems—paths in space,
proximity in space, arbitrary relationships, temporal matching, and temporal
scheduling—and can also generate data using fifteen ad hoc distributions found
in the literature [Leyton-Brown and Shoham, 2006]. After the introduction of
CATS, it was rapidly adopted by combinatorial auctions researchers for evaluating
their algorithms [Sandholm et al., 2005; Gonen and Lehmann, 2000, 2001; Holte,
2001; Schuurmans, Southey, and Holte, 2001; Kastner, Hsieh, Potkonjak, and
Sarrafzadeh, 2002; Zurel and Nisan, 2001]. The uptake of CATS has been so
extensive that today, if an experimental paper on combinatorial auctions algorithms
is submitted to a conference without testing against CATS, the authors will surely
be asked by the referees to justify that decision. As we did not use CATS for our
experiments, we now justify why not.

We did not use CATS because the output it produces is fundamentally unsuit-
able for use with algorithms which operate on goalbase languages. CATS generates
XOR bids. Our succinctness results in Section 6.3.3 indicate that translation from
XOR bids to a goalbase language sufficiently expressive to capture them could re-
sult in an exponential blow-up in bid size. In particular, Theorem 6.3.7 shows that
the XOR language is strictly less succinct than L(pforms,R+,Σ); Theorem 6.3.3
shows that XOR is strictly less succinct than OR, and Theorem 6.3.5 shows that
OR is not more succinct than L(pcubes,R,Σ), from which follows that XOR is
also not more succinct than L(pcubes,R,Σ).

The possibility for exponential blow-up of bids when translating from XOR to
goalbases poses two problems, one computational and the other methodological.
The computational problem we face when doing such translations is that the only
algorithms we know for carrying them out require exponential time. For example,
we can use the Möbius inversion for finding weights if we are translating from
XOR to L(pcubes,R,Σ), but doing so means calculating a weight for every one of

164 Chapter 6. Combinatorial Auctions

the 2|PS| positive cubes (see Theorem 3.4.2 and p. 36). Even if we already know
that there are polysize translations from XOR to our target goalbase language,
this only guarantees us that there is some PSPACE algorithm for finding such a
translation. Not only do we not have such an algorithm, but since NP ⊆ PSPACE
it could turn out to be harder to translate from XOR to our target goalbase
language than to solve the WDP in the first place! That is, even if we had optimal
algorithms for translating XOR bids into goalbases, it might be computationally
prohibitive to run them.

The methodological problem with translating from XOR to goalbases is that by
using translated input, we are measuring hammers for how well they drive screws.
There is no sense in which the goalbases which would result from translation
out of the XOR language would be natural input for goalbase WDP algorithms.
Bidders creating bids in a goalbase language are unlikely to write the huge bids
which could result from translation. What we are interested in is the performance
of our algorithms on the input for which they were designed, not on input which
is the result of translation; hence, we did not use CATS.

Random Data Generation

Our random data generators are quite simple:

• For L(pcubes,R+,Σ) and a fixed number of goods m, we generate goalbases
as follows: For each agent, we randomly choose an integer in [1, 2m] to be
the number of formulas in that agent’s goalbase, with each potential atom
appearing in a given positive cube with probability 0.5. (This makes positive
cubes of middling length more probable than very short or very long ones.)
Each cube thus constructed is given a random integer weight uniformly
chosen from [1, 10].

• For L(pclauses,R+,Σ) and a fixed number of goods m, we generate goalbases
as follows: For each agent, we randomly choose an integer in [1, 2m] to be
the number of formulas in that agent’s goalbase, with each potential atom
appearing in a given positive clause with probability 0.5. Each clause is
given a random integer weight uniformly chosen from [1, 10].

• For L(cubes,R+,Σ) and a fixed number of goods m, we generate goalbases
as follows: For each agent, we randomly choose an integer in [1, 2m] to be
the number of formulas in that agent’s goalbase, with each potential atom
appearing in a given cube with probability 0.5, and, if appearing, positive
with probability 0.5 and negative otherwise. (That is, an atom will appear
positively with probability 0.25, negatively with probability 0.25, and not
at all with probability 0.5.) Each formula is given a random integer weight
uniformly chosen from [1, 10].

6.6. Experimental Setup 165

for all agents do
for k ∈ 1, . . . , |PS| do

randomly choose
⌈
pk ·

(|PS|
k

)⌉
distinct k-pcubes

for all chosen k-pcubes ϕ do
choose a random r ∈ [0, 1]
if k = 1 then
wϕ := bin(ϕ) · basevalue · (1 + (2r · variance))

else
wϕ := uG(atoms(ϕ)) · variance · r

end if
G := G ∪ {(ϕ,wϕ)}

end for
end for

end for

Figure 6.2: Principled distribution for L(pcubes,R+,Σ).

Principled Data Generation

Here we aim for test data which follows the principles outlined in the previous
section. Because it is clearest how to follow these principles for L(pcubes,R+,Σ),
we present a data generator for that language only.

We divide the atoms into a number of bins (bins), and specify a base value
(basevalue) and variance (variance), such that the atoms in bin i have value
i · basevalue± variance%. The function bin: PS → {1, . . . , bins} maps each
atom to the bin it occupies. For each k ∈ {0, . . . , |PS|}, we specify a proportion
pk ∈ [0, 1] of the number of k-pcubes which should receive weights. Each agent
receives

⌈
p1 · |PS|

⌉
weighted atoms. Each atom is weighted by the base value of its

bin, adjusted up or down by a variance factor chosen from a uniform distribution.
For any k-pcube ϕ which is longer than a single atom, it will receive additional
weight in proportion to the weight of the state where only its constituent atoms
are true. For a formal statement of the procedure, see Figure 6.2.

The test data generator, dist2, takes as arguments the number of auction
instances to produce, the number of agents and goods for each auction, and for
each k ∈ 0, . . . , |PS|, the proportion of k-pcubes to be weighted. An example of
the output produced by dist2 is seen here, a single auction instance with two
agents and two goods, no 0-pcubes and all 1- and 2-pcubes weighted:

[juckelma@plataan wdp-c]$./dist2 1 2 2 0 1.0 1.0

[{ 01,9.97086 10,20.3416 11,1.3874 }

{ 01,9.72613 10,19.9248 11,0.0111367 }]

Auction instances are delimited by square brackets ([]), goalbases by curly

166 Chapter 6. Combinatorial Auctions

braces ({}). The pcubes are represented as binary vectors, where a 1 in position
i indicates that the atom pi occurs in the pcube. Weights are separated from
formulas by commas. The proportion of weighted k-pcubes is assumed to be zero
when not specified for some k.

6.7 Experimental Results

We conducted experiments with two different branch-and-bound solvers, the first
written in Java, and the second a reimplementation of the first in C++, as well as
with a C++ solver which feeds our IP formulation of the WDP to CPLEX. Here
we recount the results of those experiments.

6.7.1 First Solver

The first solver uses test data from the random data generator. The test program,
TestHarness.java, takes as arguments the number of goods and agents for each
auction, the number of auctions to be run, the name of a class to generate goalbases
for each auction, and a list of (class names of) WDP solvers to use for each auction.
Every solver listed is tried for every auction instance, the CPU time expended by
the solver is recorded (some solvers also record additional data), and the values of
the allocations generated by each solver are compared to ensure equality.9

In order to verify the correctness of this solver, we implemented a brute-force
search solver against which to check our branch-and-bound results. Due to the
large search space, it was possible to run the brute-force solver only for small
problem instances.

All experiments reported in this section were conducted on a Fedora 7 Linux
system, using kernel 2.6.23 with a 2 GHz Intel Core 2 Duo T7300 CPU and 2 GB
of RAM, and Sun’s Java SE JVM, version 1.6.0 02.

Results for L(pcubes,R+,Σ)

For the language L(pcubes,R+,Σ), we tested these solvers:

BruteForce A brute-force search. Iterates over all complete allocations, return-
ing the lexically first optimal one.

PCubeLex A branch-and-bound solver, using the upper-bound heuristic g + h+
∧

(given in Definition 6.5.2) and the lexical branching policy.

PCubeBF A branch-and-bound solver, using the upper-bound heuristic g + h+
∧

and the best-estimate-first branching policy.

9Because we are testing solvers which find provably optimal allocations, every allocation
returned should have the same value—though it is possible that two properly-functioning solvers
will find different, but equivalently-valued, optimal allocations.

6.7. Experimental Results 167

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

N
o

d
e

s
 c

re
a
te

d

Items

Agents

Figure 6.3: Nodes created by PCubeLex, averaged over 20 WDP instances of each
size, random data.

Our first experiment tested the BruteForce solver against PCubeLex, both as
proof-of-concept and to establish a baseline for comparison. As expected, the
BruteForce solver is rapidly overwhelmed by the size of the solution space even
for small problem instances. Instances of size (8, 8) (8 agents, 8 goods) which take
nearly 54 seconds to solve by BruteForce can be solved by PCubeLex in less than
0.01 seconds.

Our second experiment tested the branch-and-bound solvers to see how many
partial allocations (nodes) were created for each WDP instance. The number
of nodes created is a useful measure of efficiency for a branch-and-bound solver.
The worst case for any WDP instance with n agents and m goods is that every
partial allocation is built, which amounts to creating a complete n-ary tree of
depth m. (This happens for all instances if the heuristic h(A) =∞ is used, since
no pruning can ever occur.) Figure 6.3 shows the average number of nodes built
during twenty runs of PCubeLex at every size of WDP in [2, 20]× [2, 20]. What
can be seen here is that PCubeLex is quite parsimonious in building nodes. At
(20, 20), PCubeLex builds, on average, only 401 of the 5.5× 1024 possible nodes.
In general, the increase in number of nodes built is rather gentle: At (20, 70), for
example, most instances generate around 1400 nodes.

Our third experiment tested the effect on solver runtime of varying the branch-
ing policy. Intuitively, one would expect that a best-estimate-first branching policy
would produce better performance than a lexical branching policy when used with

168 Chapter 6. Combinatorial Auctions

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
P

U
 t

im
e
 (

s
e

c
o

n
d
s
)

Items

Figure 6.4: CPU time for WDP instances with 20 agents in L(pcubes,R+,Σ) using
the PCubeBF solver, random data.

an upper-bound heuristic which is inexact. (When generating goalbases randomly,
lexical branching is essentially the same as random branching.) However, for
PCubeLex and PCubeBF this turned out not to be the case—the runtime saved in
other parts of the solver by calculating which good to branch on next was usually
consumed by the calculation itself, and so seldom was any gain realized this way.
Our implementation of PCubeBF does not cache the values it calculates for hp

when determining the upper bound for a partial allocation. Essentially all of the
time spent by PCubeBF in implementing its branching policy is spent recalculating
these hps, so a caching implementation could achieve a small edge over PCubeLex,
in the neighborhood of a few percent of total runtime.

In our fourth experiment, we fixed the number of agents at twenty and varied
the number of goods from 1 to 75, and solved 100 randomly-generated (as above)
WDP instances of each size using PCubeBF, the results of which can be seen in
Figure 6.4. Due to our method of randomly generating goalbases, the number of
atomic bids (i.e., weighted formulas) present in any WDP instance will be around
|A| · |PS|. For example, the average instance with 20 agents and 75 items will
contain around 1500 atomic bids. Our best solver for L(pcubes,R+,Σ) on this
data set, PCubeBF, is capable of solving problems with nearly one hundred items
and thousands of bids in under one minute.

6.7. Experimental Results 169

Results for L(pclauses,R+,Σ)

The solvers used for L(pclauses,R+,Σ) were:

BruteForce A brute-force search, as before.

PClauseLex A branch-and-bound solver using g+h+
∨ with the lexical branching

policy.

PClauseBF A branch-and-bound solver using g + h+
∨ with the best-estimate-

first branching policy.

Our first experiment tested the BruteForce solver against the two branch-and-
bound solvers for L(pclauses,R+,Σ), PClauseLex and PClauseBF. Instances of
size (8, 8) which take nearly 98 seconds to solve by BruteForce are solvable by
PClauseLex in 0.65 seconds and by PClauseBF in 0.18 seconds.

Our second experiment compared the performance of the two branching policies.
At each size in [2, 10]× [2, 10], we solved 20 WDP instances with both PClauseLex

and PClauseBF, to compare the number of nodes generated in each case. The
results are shown in Figure 6.5. Here, unlike for our L(pcubes,R+,Σ) heuristics,
the best-estimate-first branching policy contributes dramatically to reducing the
number of nodes built. For instances of size (9, 9), we found that, on average,
PClauseBF built one-seventh the nodes that PClauseLex did.

The third experiment fixed the number of agents at twenty, and solved using the
PClauseBF solver twenty randomly-generated WDP instances with each number
of goods from 1 to 11. The results of this are shown in Figure 6.6. Of note here is
the large variance in runtime between instances of the same size. For example, at
(20, 10) the easiest instance was solved in 0.06 seconds, while the hardest took 505
seconds, i.e., the hardest instance took 8400 times longer than the easiest. (For
comparison, the hardest instances solved by PCubeBF at any given size usually
took only two to three times as long as the easiest instances.)

Results for L(cubes,R+,Σ)

Finally, we present our results for the bidding language L(cubes,R+,Σ), the
most expressive language considered in this chapter. Specifically, L(cubes,R+,Σ)
permits the use of negation, a feature not commonly found in the literature on
combinatorial auctions.

The solvers used for L(cubes,R+,Σ) were:

BruteForce A brute-force search, as before.

CubeLex A branch-and-bound solver using g+h∧ with the lexical branching
policy.

CubeBF A branch-and-bound solver using g + h∧ with the best-estimate-
first branching policy.

170 Chapter 6. Combinatorial Auctions

 2
 3

 4
 5

 6
 7

 8
 9

 10 2
 3

 4
 5

 6
 7

 8
 9

 10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
o

d
e

s
 c

re
a
te

d
PClauseLex

PClauseBF

Items

Agents

Figure 6.5: Nodes created by PClauseLex and PClauseBF, averaged over 20
instances of each size, random data.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12

C
P

U
 t
im

e
 (

s
e

c
o
n

d
s
)

Items

Figure 6.6: CPU time for WDP instances with 20 agents in L(pclauses,R+,Σ)
using the PClauseBF solver, random data.

6.7. Experimental Results 171

Our first experiment tested BruteForce against CubeBF on small instances in
order to establish baseline performance. Instances of size (8, 8) which BruteForce

solves in 70 seconds can be solved by CubeBF in only 6 seconds. The impact
which the addition of negation to the bidding language has can be seen here:
L(pcubes,R+,Σ) instances of size (8, 8) were solved in less than 0.01 seconds by
PCubeBF. Positive cubes are evaluated more rapidly in our implementation than
general cubes of the same length.10

Our second experiment tested the effect of the branching policy on runtime.
At each size in [2, 9]× [2, 9] we solved twenty WDP instances with both CubeLex

and CubeBF, with the results appearing in Figure 6.7. (Here, as elsewhere, we
display number of nodes constructed as a proxy for runtime.) Recall that in the
case of L(pcubes,R+,Σ) we found that best-estimate-first branching provides no
advantage over lexical branching when using h+

∧ as the upper-bound heuristic. Our
experimental results show that this is emphatically not the case for L(cubes,R+,Σ)
and h∧. CubeBF builds only 46% as many nodes on average as CubeLex does for
random instances of size (9, 9)—with a corresponding reduction in runtime—and
the advantage of CubeBF increases with the size of the WDP instance.

Our third experiment fixed the number of agents at twenty and varied the
number of goods from 1 to 8. We used CubeBF to solve 20 randomly-generated
WDP instances of each size, with the results displayed in Figure 6.8. Here it
can be seen again how much the addition of negation to the bidding language
magnifies the difficulty of WDP: The runtime for CubeBF increases tenfold with
each additional item, while the marginal cost in runtime of additional items has a
much gentler ascent for our PCubeBF solver (cf. Figure 6.4).

6.7.2 Second Solver and CPLEX

We tested the C++ implementation of our branch-and-bound solver, described
above, against CPLEX 10.2 and the IP formulation of the WDP, on data from
the principled data generator. The test harness program, test, reads input as
formatted by dist2 from standard input and copies the auction instance back to
standard output, followed by the results for each solver. For example:

[{ 01,9.65404 10,19.5356 11,0.0675854 }

{ 01,10.212 10,20.862 11,1.1696 }]

0:1 1:1 32.2436 32.2436 5 0

0:1 1:1 32.2436 32.2436 0 0

Each result line indicates an allocation of goods to agents, as item:agent, followed
by the lower and upper bounds achieved by the allocation, the number of nodes
built in the search tree, and the number of system clock ticks it took for the

10Our PCube class must check only two possibilities—present or not—for each atom when
evaluating a positive cube, while our Cube class must check three—positive, negative, absent.

172 Chapter 6. Combinatorial Auctions

 2
 3

 4
 5

 6
 7

 8
 9 2

 3
 4

 5
 6

 7
 8

 9

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
o

d
e

s
 c

re
a
te

d
CubeLex

CubeBF

Items

Agents

Figure 6.7: Nodes created by CubeLex and CubeBF, averaged over 20 WDP
instances of each size, random data.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

C
P

U
 t
im

e
 (

s
e

c
o
n

d
s
)

Items

Figure 6.8: CPU time for WDP instances with 20 agents in L(cubes,R+,Σ) using
the CubeBF solver, random data.

6.7. Experimental Results 173

solver to find the given allocation. The first line is the branch-and-bound solver,
the second is CPLEX. In all cases, the lower and upper bounds on the value
of the allocation should be equal to the actual value of the allocation. For the
branch-and-bound solver, this serves as a check on the correctness of the algorithm;
for CPLEX, the result it returns is simply printed twice. The number of nodes
built during the search is relevant only for the branch-and-bound solver. For
CPLEX, this is always given as zero. Finally, the number of clock ticks per second
may vary from machine to machine. In the case of the machine we used, each
clock tick is one-hundredth of a second. The example given above is so small that
it was solved by both solvers in a time below the resolution of the system clock,
hence the number of clock ticks for each is zero.

All experiments reported in this section were conducted on a Fedora 10 Linux
system, using kernel 2.6.27.12 with a 2.13 GHz Intel Core 2 Duo E6420 CPU
and 2 GB of RAM. For the generation of principled data, we used bins = 5,
basevalue = 10.0, and variance = 0.05. (See Section 6.6.2 for the meaning of
these parameters.) The effect of this is to give us five groups of similarly-valued
items, with small but significant synergies among items.

Results for L(pcubes,R+,Σ)

In the first experiment, we tested the C++ implementation of our PCubeBF solver
against CPLEX and the IP formulation of the WDP from Section 6.4.3, for
L(pcubes,R+,Σ). Each solver was run on the same collection of auction instances
to permit a direct performance comparison.

As noted above, both the branch-and-bound solver and CPLEX should always
find allocations of the same value when confronted with the same problem instance.
However, we found that this was not the case here: Sometimes our branch-and-
bound solver found an allocation which had a few tenths or hundredths of a point
of utility more than the allocation found by CPLEX. After checking several of
these by hand, we determined that both solvers were accurately reporting the
value of the allocations they had returned, and thus CPLEX was returning a
(barely) suboptimal allocation. We suspect that this is caused by imprecision in
floating-point arithmetic internal to CPLEX, but at present, we cannot conclusively
account for why CPLEX fails in this way. Though our results suggest that the
WDP can be solved in its IP formulation by CPLEX much faster than it can
be solved by our branch-and-bound solver, we cannot conclude that CPLEX is
always faster, specifically because in some cases it fails (barely) to find an optimal
allocation.

In our second experiment, we ran the CPLEX solver alone on instances much
larger than in the first experiment. As seen in Figures 6.9 and 6.10, the solution
time (both average and worst-case) for our branch-and-bound solver was already
growing dramatically for small problem sizes, while over the same range the growth
of solution time for CPLEX remained low. Using the same data distribution as

174 Chapter 6. Combinatorial Auctions

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 100

 200

 300

 400

 500

 600

 700

 800

C
P

U
 t
im

e
 (

s
e

c
o
n
d

s
)

PCubeBF avg
CPLEX avg

Items

Agents

Figure 6.9: Average CPU time for WDP instances in L(pcubes,R+,Σ) using the
C++ PCubeBF solver and CPLEX, principled data.

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 1000

 2000

 3000

 4000

 5000

 6000

C
P

U
 t
im

e
 (

s
e
c
o

n
d

s
)

PCubeBF max
CPLEX max

Items

Agents

Figure 6.10: Maximum CPU time for WDP instances in L(pcubes,R+,Σ) using
the C++ PCubeBF solver and CPLEX, principled data.

6.7. Experimental Results 175

the first experiment, we solved 100 instances of each size in [2, 50]× [2, 50]. As
we approach (50, 50), the maximum solution times have yet to exceed 90 seconds,
while average solution times are near 25 seconds. Clearly solution times are
beginning to ramp up for CPLEX as well, but at (50, 50) our IP is nowhere near
the limit of what CPLEX can handle. There is the possibility that, as in the
first experiment with CPLEX, some of the allocations returned were fractionally
suboptimal; however, in this case almost all problem instances were too large to
solve independently with our branch-and-bound solver, so we have not identified
which instances were not solved optimally.

Here (as in all experiments we ran) the separation between the best and worst
cases is quite dramatic. This indicates that our data distributions generate at
least a few trivial instances of all sizes.

6.7.3 Comparison of Solvers

It is immediately clear from comparing results for the Java PCubeBF solver on the
random distribution in the first experiment with the results for the C++ PCubeBF

solver on the realistic distribution in the second experiment that something strange
is happening: In Figure 6.4, we can see that the Java PCubeBF solver was able
to solve every (20, 20) instance in less than one second, while from Figure 6.10
we can see that instances of size (10, 10) were already taking so long for the C++
PCubeBF solver that it would never have succeeded in solving an (20, 20) instance.
What are we seeing here? Three possibilities present themselves:

• The Java PCubeBF solver is much better than the C++ version.

• The machine that the Java PCubeBF solver ran on is much faster than the
C++ version.

• The random data set is much easier than the realistic one.

The first possibility is easily ruled out, as we found that the C++ solver is ap-
proximately twice as fast as the Java solver when run on the same machine
with equivalent input.11 The second possibility is also easily ruled out, since the
apparently faster solver was run on a (slightly) slower CPU than the apparently
slower solver; there is no reason to think that running the C++ solver on a slower
CPU would speed it up.

This leaves us with the third possibility, namely that the random instances
fed to the Java PCubeBF solver are dramatically easier than the realistic instances
tackled by the C++ PCubeBF solver. In fact, the difference in difficulty is clearly
observable in Figures 6.13 and 6.14. These two figures plot, for each instance size,
the proportion of instances solved in which a single bidder was allocated all of the

11We say equivalent here because the two use a different input format, so we cannot give them
identical input and expect both to operate properly.

176 Chapter 6. Combinatorial Auctions

C
P

U
 t
im

e
 (

s
e

c
o
n
d

s
)

CPLEX avg

 5 10 15 20 25 30 35 40 45 50
Items 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

Agents

 0

 5

 10

 15

 20

 25

Figure 6.11: Average CPU time for WDP instances in L(pcubes,R+,Σ) using
CPLEX, principled data.

C
P

U
 t
im

e
 (

s
e
c
o

n
d

s
)

CPLEX max

 5 10 15 20 25 30 35 40 45 50
Items 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

Agents

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Figure 6.12: Maximum CPU time for WDP instances in L(pcubes,R+,Σ) using
CPLEX, principled data.

6.7. Experimental Results 177

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

p
o
rt

io
n
 o

f
s
in

g
le

-w
in

n
e

r
a
llo

c
a

ti
o

n
s

PCubeBF

Items

Agents

Figure 6.13: Proportion of WDP instances in L(pcubes,R+,Σ) where the optimal
allocation found by the Java PCubeBF solver awarded all goods to one agent,
random data.

goods. For the realistic data, this proportion drops very quickly as the number
of items and agents increase, and is almost zero for instances of size (10, 10) or
larger.12 For the random data, until the items began to outnumber the agents it
was virtually always the case that all items were awarded to a single agent, and
even thereafter a significant portion of the instances had a single winner. In cases
where there is a single-winner optimum, this could indicate that only one bidder
bid competitively, and in such cases most branches are pruned immediately; this
will not be the case when several bidders place similar bids, as can happen with
the realistic data.

In Sandholm’s survey of WDP algorithms, we find the claim that “[o]n easier
distributions . . . optimal winner determination scales to hundreds or thousands
of items and tens of thousands of bids in seconds” [Sandholm, 2006]. Our best
solver for L(pcubes,R+,Σ), PCubeBF, is capable of solving problems with nearly
one hundred items and thousands of bids in under one minute on our random
distribution, which, as argued above, appears to be rather easy. Improvements in
the performance of PCubeBF could likely be obtained by implementing some simple
optimizations, such as removing satisfied and falsified formulas from goalbases

12The proportions of single-winner allocations were the same for both solvers, which is why
only one series of data is visible in Figure 6.14. This is not surprising, as the proportion of
single-winner allocations is a property of the input, not of the solver.

178 Chapter 6. Combinatorial Auctions

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

p
o
rt

io
n
 o

f
s
in

g
le

-w
in

n
e

r
a

llo
c
a
ti
o
n

s
PCubeBF

CPLEX

Items

Agents

Figure 6.14: Proportion of WDP instances in L(pcubes,R+,Σ) where the optimal
allocations found by the C++ PCubeBF solver and CPLEX awarded all goods to
one agent, principled data.

 5 10 15 20 25 30 35 40 45 50

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

p
o
rt

io
n
 o

f
s
in

g
le

-w
in

n
e
r

a
llo

c
a
ti
o

n
s

CPLEX

Items

Agents

Figure 6.15: Proportion of WDP instances in L(pcubes,R+,Σ) where the allocation
found by CPLEX awarded all goods to one agent, principled data.

6.8. Conclusion 179

as we build the tree of partial allocations, though optimizations of this sort are
unlikely to garner us the several-orders-of-magnitude speedup it would take for
PCubeBF to be competitive with state-of-the-art solvers. An upper-bound heuristic
tighter than h+

∧ might deliver better performance, as might the application of
other combinatorial optimization techniques.

6.8 Conclusion

In this chapter, we set out to compare our goalbase languages with the OR/XOR
family of languages and to demonstrate the feasibility of using goalbase languages
for bidding in combinatorial auctions. As expected, neither the OR/XOR/OR∗

languages nor goalbase languages dominate in terms of succinctness. This tells us
that the combinatorial auction designer will want languages from both families
in his toolbox. Whether an OR/XOR or goalbase language should be preferred
for any particular domain may additionally depend on issues such as cognitive
relevance and ease of elicitation, and is a question we leave for future work.

In Section 6.4.4 we presented the branch-and-bound method for solving the
WDP, and in Section 6.5 we gave examples of admissible heuristics for several
goalbase languages. In Section 6.4.3 we presented a integer programming formula-
tion of the WDP for sum languages. With the WDP written as an IP, we may
take advantage of powerful off-the-shelf IP solvers such as CPLEX for finding
solutions to the WDP. All of these we proceeded to test for performance on two
kinds of data, one random and one generated according to certain principles of
realism, found in Section 6.6.1.

The results of our experiments indicate, first, that using goalbase languages for
bidding is feasible. The results for CPLEX in Section 6.7.2 show that the natural
IP formulation of the WDP for goalbase languages could be used for auctions
of moderate size without special tuning or resorting to expert knowledge about
CPLEX. An expert in integer programming, CPLEX, or both might well be able
to reduce the solution time we have achieved here. The speed of our branch-
and-bound solver depends jointly on the tightness of the upper bound heuristic
used and the speed with which the upper bound heuristic can be calculated.
Tighter heuristics will prune more of the search tree, reducing the number of
nodes which must be built before finding a provably optimal allocation. None
of our upper-bound heuristics are especially tight, and with some effort could
be tightened. What we do not know is where the balance point between gains
from better pruning and losses from increased heuristic computation time is;
further tightening would surely reduce the number of nodes built, but we do not
know if further tightening would reduce computation time. We do know that
tightening the upper bound heuristics would enable our solver to tackle larger
problem instances, even if doing so would make the solver slower: The limiting
factor for our solver on larger instances was not time—we could have allowed the

180 Chapter 6. Combinatorial Auctions

solver to run longer—but rather memory in which to store the enormous number
of nodes it generated. Furthermore, other combinatorial optimization techniques
could presumably be applied to obtain even better performance. As our goal was
to demonstrate feasibility, not to produce a state-of-the-art solver ourselves, we
are happy to leave this work to experts on combinatorial optimization.

Chapter 7

Voting

7.1 Introduction

The problem of electing a committee which satisfies as many voters as possible is
one for which good solutions are scarce. There have been numerous attempts to
devise methods for committee election, some which have their origins in single-
winner voting methods [Brams, Kilgour, and Sanver, 2004, 2006, 2007], others
of which are intended to produce outcomes which are proportional in some way
[Chamberlin and Courant, 1983; Monroe, 1995]. Single-winner voting systems
frequently fail to respect voter preferences when extended to a multi-winner
setting, due mainly to the fact that they deny voters the ability to express
interdependence among candidates. Moreover, the way in which such systems
measure the “representativeness” of committees may not be at all similar to the
way in which voters measure it.

In order to tackle the interdependence problem, we propose a voting method
which uses goalbases as ballots, in the spirit of combinatorial vote as proposed by
Lang [2004].

We begin in Section 7.2 by recalling a bit of voting theory. We present some
known methods for committee selection in Section 7.3.1, and then in Section 7.3.2
find fault with these due to their lack of expressive power. In Section 7.4 we will
show how the election methods presented earlier can be simulated and extended
using goalbases, and in Section 7.5 we consider the computational complexity of
finding winning committees using this method. In Section 7.6, we give an example
of extending approval voting using goalbases as ballots, and in Section 7.7 we
touch on several avenues for further investigation.

7.2 Background

Voting theory, as its name implies, deals with the formal properties of systems
of voting. Prior to the 18th century, there were few, isolated attempts to study

181

182 Chapter 7. Voting

voting systems, two of which resulted in the discovery of the Borda count: In
the 13th century, Ramon Llull devised an iterative version of it to be used for
selecting the abbess of a monastery [Llull, 1926], and in 1433 Nicholas of Cusa
proposed it for electing the Holy Roman Emperor [Hägele and Pukelsheim, 2008].
It was not until the two decades prior to the French Revolution that members
of the French Academy—Jean-Charles de Borda and Nicolas de Condorcet, in
particular—began a sustained and systematic study of voting methods. Since
then, there has been extensive investigation of voting rules and their properties.
We recount here only as much as we need for the present chapter. For much, much
more on the subject, see [Taylor, 2005].

In voting theory, the dramatis personae are a set of candidates and a set of
voters. The voters cast ballots indicating their preferences over the candidates;
the ballots are fed as input to a voting rule, the output of which indicates which
candidate or candidates are winners. Numerous voting rules have been devised.
Here we describe some which may be familiar, and others which figure in our
discussion later in this chapter.

Some voting rules solicit relatively little preference information from voters:

unanimity Each voter may cast at most one vote for one candidate. A candidate
is a winner iff every voter selects that candidate.

plurality Each voter may cast at most one vote for one candidate. A candidate
is a winner iff no other candidate receives more votes.

approval Each voter may cast at most one vote for each candidate. A candidate
is a winner iff no other candidate receives more votes.

The unanimity and plurality rules ask voters only to register their top choice,
while approval voting permits voters to make no finer distinction than preferred
versus nonpreferred. The plurality rule is the familiar first-past-the-post rule used
in virtually all elections in the United States. Historically, a complex iterated
version of approval voting was used during 1268–1789 by the Venetians to elect
their doge [Lines, 1986], and another iterated version was used to elect new
popes by the papal conclaves held between 1294 and 1621 [Colomer and McLean,
1998]. Modernly, numerous professional societies1 have adopted approval voting
for their elections, and the Secretary-General of the United Nations is elected by
approval voting [Brams, 2007, Sections 1.2–1.4]. Unanimity is not practical for
large groups—Poland’s Sejm (diet) demonstrated this during the latter half of the

1Among them: the Mathematical Association of America (MAA), the American Mathematical
Society (AMS), the Institute for Operations Research and Management Sciences (INFORMS),
the American Statistical Association (ASA), the Institute of Electrical and Electronics Engineers
(IEEE), the Public Choice Society, the Society for Judgment and Decision Making, the Social
Choice and Welfare Society, the European Association for Logic, Language and Information,
the Game Theory Society, the Econometric Society, and the International Joint Conference on
Artificial Intelligence (IJCAI).

7.2. Background 183

17th century [Roháč, 2008]—though a similar rule is frequently used in criminal
trials, where the jury or panel of judges are the voters and the “candidates” are
guilty and innocent.

Other voting rules require voters to supply full preference orders over the
candidates:

Condorcet Each voter gives a strict linear order over the candidates. A candidate
c is a winner iff for each other candidate c′, a majority of voters rank c above
c′ (c > c′).

Borda Each voter gives a strict linear order over the candidates. From each
ballot, a candidate c receives one point for each other candidate c′ above
whom he is ranked. A candidate is a winner iff no other candidate scores
more points.

The Condorcet and Borda rules incorporate much more of the voters’ preference
information into their results than do unanimity, plurality, and approval.

The plurality and Borda rules are instances of a class of voting rule known as
positional scoring rules. A positional scoring rule is one where voters submit strict
linear orders and ballots are scored using a scoring vector 〈s1, s2, . . . , sn−1, sn〉. A
candidate ranked ith by a voter receives si points; the winner(s) are the highest-
scoring candidate(s). The scoring vector for the plurality rule is 〈1, 0, . . . , 0〉, while
for Borda it is 〈n− 1, n− 2, . . . , 1, 0〉. We need not require that all voters use the
same scoring vector. General scoring rules are ones where each ballot induces a
score for each candidate, and winners may be determined by summing candidate
scores across all ballots. (That is, positional scoring rules use one scoring vector
globally, while general scoring rules permit each ballot to have its own scoring
vector.) Approval voting is a general scoring rule, but not a positional one; the
Condorcet rule is not a scoring rule at all.

The Borda rule does not preserve any intensity information which a voter
might provide. Borda treats a voter who strongly prefers candidate a to candidate
b the same as one who has a slight preference for a over b. A rule which we will
return to later in this chapter, known as cumulative voting, preserves intensity of
preference by asking voters to express cardinal rather than ordinal preferences:

cumulative Each voter is given k points which may be distributed among the
candidates. A candidate is a winner iff no other candidate scores more
points.

Cumulative voting is a general scoring rule, but it is not a positional scoring
rule, since each voter is free to choose his own scoring vector. (If we take the
ordering of the candidates as fixed by their order of appearance on the ballot,
then a cumulative ballot essentially is a scoring vector.)

We now move on to some properties of voting rules. The Condorcet rule is
rather weak, in the sense that it is easy to devise situations in which it will produce

184 Chapter 7. Voting

no winners; however, this means that when a candidate is the winner according to
the Condorcet rule—known as the Condorcet winner—then that candidate is quite
strong. By definition, a Condorcet winner would defeat every other candidate
in a head-to-head vote. Always electing a Condorcet winner, if one exists, is an
intuitively desirable property for a voting rule to have, and so this is one property
for which new voting rules are always examined. (Similarly, a Condorcet loser is
a candidate who would lose every head-to-head vote, and we would also like for
our voting rules never to elect a Condorcet loser.) Unfortunately, many voting
rules fail to elect the Condorcet winner in some circumstances: Young [1975]
proved that every positional scoring rule will sometimes fail to elect the Condorcet
winner.

Other properties of interest are resoluteness, anonymity, neutrality, mono-
tonicity, unanimity, non-imposition, Pareto, and strategyproofness. A rule is
resolute if it always chooses a single winner. A rule is anonymous if all voters
are treated the same; a rule is neutral if all candidates are treated the same. A
rule is monotone if winners continue to be winners if their ranking on some ballot
improves. A rule is unanimous if, when all voters have the same candidate as their
first choice, that candidate wins; a rule is non-imposing when every candidate
has some configuration of ballots which would cause him to win. A rule is Pareto
if there is never a candidate which all voters prefer to the winner. A rule is
strategyproof if voters have no incentive to misrepresent their preferences; rules
which are not strategyproof are said to be manipulable.

Finally, we mention one more voting rule, one which plays a much larger role
in voting theory than most voting theorists would like:

dictatorship Each voter may cast at most one vote for one candidate. A candi-
date is a winner iff the voter predesignated as the dictator votes for that
candidate.

It is an unfortunate fact that the preponderance of results in voting theory are
negative, sometimes of the form:

Any voting rule which satisfies desirable properties X1, . . . , Xk when
there are at least three candidates is a dictatorship.

Famous instances of this include Arrow’s Theorem [Arrow, 1970] and the Gibbard-
Satterthwaite Theorem [Gibbard, 1973; Satterthwaite, 1975]: For Arrow, the
properties are Pareto and independence of irrelevant alternatives;2 for Gibbard-Sat-
terthwaite the properties are resoluteness, non-imposition, and strategyproofness.

There are many other voting rules not mentioned here, as well as many other
properties of interest. For a thorough overview of voting rules, see [Brams and
Fishburn, 2002].

2While Arrow’s Theorem is usually stated for social welfare functions, the version for voting
rules is equivalent. See [Taylor, 2005, Section 3.4].

7.3. Multi-Winner Elections 185

7.3 Multi-Winner Elections

The voting rules mentioned in the previous section are generally intended to be
used for electing single winners, despite that some of them will occasionally produce
ties. Less studied are voting rules intended for the election of multiple winners.
In this section, we discuss some of the challenges associated with multi-winner
elections.

7.3.1 Some Methods for Committee Election

Various methods for committee elections have been proposed. (For a general
discussion of the difficulties of committee elections, see [Chevaleyre, Endriss, Lang,
and Maudet, 2008b] and [Lang and Xia, 2009].) The näıve (and perhaps for that
reason, most widely used) approach is an extension of the single-vote plurality
method. With k seats to fill from a slate of n candidates, each voter may cast up
to k votes, no more than one vote per candidate, and the top k candidates win.
A similar näıve extension of approval voting to a multi-winner setting is possible:
Again with k seats to fill from a slate of n candidates, each voter may cast up to n
votes, no more than one per candidate, and again the top k candidates win. These
two methods lie along a spectrum of voting methods where the maximum number
of votes cast per voter is varied—the approval version anchoring one end, and a
single-vote top-k method anchoring the other. We now give a formal definition:

Definition 7.3.1 (m-vote, top-k). Call a voting method m-vote if each voter may
cast single votes for up to m candidates, and top-k if the k candidates receiving
the most votes are the winners.

Standard plurality voting as used in many elections for public office is a 1-vote
top-1 method.

Top-k methods all share a feature which makes them rather unsuitable for
committee elections, namely that they tend to quash minority representation.

Theorem 7.3.2. If there are v voters in an m-vote top-k election, then a coordi-
nated block of

⌊
v
2

+ 1
⌋

voters is sufficient to dictate the top m candidates.

Proof. Strategy:
⌊
v
2

+ 1
⌋

voters cast votes for the same m candidates, c1, . . . , cm.
Result: Each ci must receive at least

⌊
v
2

+ 1
⌋

votes, and no other candidate can
receive more than

⌈
v
2
− 1
⌉

votes, thus ensuring that c1, . . . , cm are the top m
vote-getters.

(Note that while the coordinated block of voters can dictate the top m candi-
dates, it cannot dictate order among them: If the majority block skimps on votes
for one of its candidates and the minority block is also coordinated, one of the
majority’s m candidates could tie with one or more candidates receiving votes

186 Chapter 7. Voting

only form the minority block. Hence the votes which determine the order among
the top m all come from voters outside of the majority block.)

If representation of minority views on a committee is important, this fact
displays a flaw in m-vote top-k committee voting: When m ≥ k, a majority block
essentially has veto power over candidates. Only candidates supported by the
majority block will receive seats. When m < k, the majority block are guaranteed
to have all of their m candidates on the committee, which may allow voters outside
that block to succeed in electing candidates as well, but setting the number of
votes each voter may cast to be less than the number of seats available has its
own drawbacks in terms of permitting voters to express their preferences. The
fewer votes a voter is permitted to cast, the less information is gathered from his
preference order by the voting method, and moreover, we run the risk of collecting
misleading preference information. For example, if we want to fill five seats but
permit only three votes per voter (i.e., we are using a 3-vote top-5 method), then
it is hard to predict how voters will behave. Will a voter cast a ballot for the
three candidates he thinks best, or for the three-candidate subcommittee he thinks
best, or for something else? It’s easy to envision a situation in which a voter’s
preferred three-candidate subcommittee is not a part of the same voter’s preferred
five-candidate full committee.

We must not lose sight of the fact that committees are not just elected, but
elected for some purpose. Often, a committee—rather than an individual—is
chosen to carry out some task so that the diversity of views held by the committee
members may be brought to bear on the given task, or in order to have a decision-
making body which is representative of the voters as a whole, and not just some
subset of them. An m-vote top-k voting method will fail to produce a diverse
or representative committee in the face of a coordinated majority block unless
that majority block is itself committed to producing a diverse or representative
committee. As we cannot hope for this in all but the most collegial circumstances,
if we want a diverse or representative committee, then we should not elect our
committee using an m-vote top-k method.

We have seen that outcomes of m-vote top-k elections are dictated by majority
blocks regardless of what m and k are. The alternatives which we will now consider
vary the winning criterion instead of the number of votes each voter may cast.
Brams et al. [2004] describe what is known as the “minisum” method. Voters cast
ballots as in approval voting, but we do not declare the top k vote-getters to be
the winners—candidates do not win individually. Instead, winning committees
are ones which minimize the sum of the Hamming distances to the votes cast,
hence the name “minisum”. More precisely:

Consider each ballot as a binary vector b1 . . . bn, where bi = 1 if the voter
casting the ballot approves of candidate i and bi = 0 otherwise. The Hamming
distance H between two ballots is the least number of bits which must be flipped
to transform one ballot into the other. (For example, H(01010, 01101) = 3.) Thus

7.3. Multi-Winner Elections 187

we can state the minisum rule as

c is a winner ⇐⇒ ∀c′ ∈ C :
∑
b∈B

H(c, b) ≤
∑
b∈B

H(c′, b),

where C is the set of k-seat committees and B is the multiset of ballots cast, both
with their members expressed as binary vectors. (Here, we say c ∈ C . . . because
the minimum need not be unique.)

Intuitively, any winning committee is one which is as similar in membership
as it can be to as many ballots as it can be. However, this intuition is wrong.
Brams et al. [2007, Appendix, Proposition 4] show that any k-candidate minisum
solution will consist of the k candidates receiving the most approval votes. Hence,
we have the following:

Theorem 7.3.3. The voting methods m-vote k-minisum and m-vote top-k are
equivalent.

Thus the minisum method, despite that it sounds more accommodating, is
no more promising for electing representative committees than any of the m-vote
top-k plurality methods are.

Brams et al. [2007] suggest minimax as an alternative to minisum. Rather than
selecting committees which minimize the sum of Hamming distances to the ballots,
minimax minimizes the maximum Hamming distance to any ballot. Formally, the
minimax rule is

c is a winner ⇐⇒ ∀c′ ∈ C : max
b∈B

H(c, b) ≤ max
b∈B

H(c′, b),

where, as before, C is the set of k-seat committees and B is the multiset of ballots
cast, both with their members expressed as binary vectors.

The intuitive effect of minimax as a winning criterion is that it antagonizes
outliers the least; or, rather, it antagonizes the farthest outlier the least. This
gives rise to the following feature of the pure minimax criterion: The exact number
of voters casting any particular ballot is irrelevant to the outcome; only whether
particular ballots are cast matters. If one incorrigible voter casts the ballot 00101
while all others choose 11101, then it makes no difference if there are two, ten, or a
million ballots cast in total—the winning three-member committees are 10101 and
01101. Usually this is not a desirable feature, though it arguably is appropriate in
some circumstances (e.g., multilateral treaty negotiation, as described by Brams
et al. [2004]). Brams et al. [2007] suggest a useful refinement which avoids this
problem without reintroducing the tyranny of the majority, namely the addition
of proximity weights.

The proximity weight wb of a ballot b is defined as

wb =
mb∑

b′∈Bmb′ H(b, b′)
,

188 Chapter 7. Voting

where mb is the number of voters casting ballot b. The minimax criterion with
proximity weights becomes

c is a winner ⇐⇒ ∀c′ ∈ C : max
b∈B

wb H(c, b) ≤ max
b∈B

wb H(c′, b).

Weighting the Hamming distance to a ballot by its proximity to other ballots
diminishes the influence of outliers while at the same time reintroducing the
proportionality which pure minimax lacks.

Many other weightings are possible, but these are representative, and sufficient
to illustrate our point in the next section.

7.3.2 Similar Committees Need Not Be Similarly
Preferable

As Brams et al. [2006, pp. 83–84] say, ‘[w]e view the problem of identifying the most
representative committee as that of identifying the subset that is “closest” to the
collection of subsets specified by the voters.’ In m-vote top-k methods, proximity
is tied to support of individual candidates; the minisum and minimax criteria
equate proximity with average and maximum Hamming distance, respectively.
Taking the pure minimax criterion as our example, it is not hard to see that the
intent is to minimize the dissatisfaction of the farthest outlier, while the rule is to
minimize the dissimilarity between the farthest outlier’s ballot and the winning
committee. But why should we suppose that the farthest outlier (or any voter, for
that matter) actually cares about his ballot’s similarity to the winning committee?
As we shall see now, it is quite reasonable to think that for many voters their
committee preferences will not track the Hamming distance at all.

Taking the Hamming distance as a measure of similarity, we have the following
two properties: If c is a voter v’s preferred committee, then

• any substitution of n members in c is strictly better according to v than
every substitution of m members, for n < m, and

• all committees c′ which are Hamming-equidistant from c are equally preferred
by v,

both of which are dubious when applied to voters electing real committees.
For example, suppose that we are electing a three-seat committee from the

five candidates Alice, Bob, Charlie, Dave, and Elaine. Suppose further that one
of the voters believes that

• Alice and Bob are the best candidates, so any committee with one of them
is better than any committee with neither,

• Alice and Bob will fight if they are on the committee together, so any
committee with both is worse than any committee with neither,

7.3. Multi-Winner Elections 189

10110

01110 00111 11010 10011 11100 10101

01011 01101 11001

Figure 7.1: Order on ballots induced by Hamming distance from 10110.

10110

00111

10101 10011 01110 01101 01011

11100 11010 11001

Figure 7.2: A more realistic order on ballots.

190 Chapter 7. Voting

and that this voter is otherwise indifferent among potential committees.
Thus our voter ranks the committees in preference order as

ACD,ACE,ADE,BCD,BCE,BDE > CDE > ABC,ABD,ABE

as seen in Figure 7.2. This preference ordering is sensitive to small changes in
committee composition. Each of the best committees is only one substitution away
from some worst committee. (Notice that this is neither due to the size of the
committee nor to the number of candidates, but to the way that two candidates
interact in our example voter’s preferences. We use a three-seat committee with
five candidates only to keep the example manageable.) Put another way, the
Hamming distance between some pairs of best and worst committees is 2, which is
always the minimum Hamming distance between two committees of the same size.3

From our voter’s point of view, ACD ∼ BDE > ABC; but H(10110, 01011) = 4
while H(10110, 11100) = 2, and so the ordering induced by the Hamming distance
from ACD is ACD > ABC > BDE, thus putting an optimal committee last
and one of our voter’s least favored committees in second place. (Cf. Figures 7.1
and 7.2.) If we use a minisum or minimax procedure and have many voters with
preferences like this one, we risk an outcome that is similar in composition to
voters’ first choices, yet is widely disliked.

The problem we have identified is that the question of committee membership
for one candidate is not necessarily independent of the question of committee
membership for some other candidate. In the language of utility functions, some
voters have nonmodular preferences. (Benôıt and Kornhauser [1991, 1994, 2006]
identify a similar problem with the election of representative assemblies—not only
might a voter have complex preferences over the composition of the assembly, but
preferences over candidates for his district might depend on or involve candidates
for other districts where he isn’t even able to cast a vote.) It could be argued
that the problem is caused not by the voting methods we examined, but rather
because of the way they are applied: The candidates are individuals rather than
committees. If committees were raised to the status of first-class citizens—that is,
if voters were to vote for whole committees rather than for individuals—perhaps
we would not have this problem. However, this approach is unhelpful implemented
one way, and scales poorly implemented another. Brams et al. [2007] report that
the 2003 Game Theory Society election filled 12 seats from a slate of 24 candidates,
giving 2704156 possible committees for voters to consider. This is still manageable
if the voter is queried for his most preferred committee only—but then we are left
with no information about candidate interdependence, and so we are no better off
than before. It is also likely that no two voters will share the same committee

3If c, c′ are distinct k-member committees, then the least difference there could be is that
c′ is c but with one member replaced. Since committees are represented as bit vectors, a
single-member substitution turns one ‘on’ bit off and one ‘off’ bit on. Hence the Hamming
distance between two distinct committees is always even and at least 2.

7.4. Simulating Voting Methods Using Goalbases 191

as their first choice, so the result will be a many-way tie. If we ask voters for
rankings, we begin to sink into the combinatorial morass: Voters would balk at
ranking their top 0.001% of the possible committees let alone all 2.7 million of
them, and even if the voters were able to rank all of the possible committees the
vote tabulator would be overwhelmed by the data.

A more general argument for the unsuitability of single-candidate voting
systems for electing committees can be given, by way of comparing how many
voter profiles single-candidate voting methods can accommodate. The most
expressive voting method considered above is approval voting, where every subset
of candidates is a valid ballot. (All other methods mentioned restrict the set of
valid ballots to a proper subset of the powerset of candidates.) In comparison,
there are

(n
k)∑
i=1

i∑
j=1

(−1)i−j
(
i

j

)
j(

n
k)

distinct voter profiles over k-seat committees chosen from n candidates, which,
for any useful value of n, dwarfs the 2n distinct approval ballots.4 Taking the
Game Theory Society election as our example, the largest term in the sum is(

24
12

)(24
12) = 27041562704156, which is rather large.5 Clearly, we need a different

approach.

7.4 Simulating Voting Methods Using Goalbases

Many common election methods may be simulated by using goalbases as ballots,
summing them to get a single goalbase, and then using some method for finding
optimal models over the resulting goalbase.

Recall the goalbase summation operator ⊕ (see Definition 2.2.10). Suppose that
there are voters 1, . . . , n. Then we can straightforwardly simulate the following
voting methods:

• plurality: Each voter casts a single vote, with the candidate(s) receiving the
most votes as the winner(s). Define a goalbase Gi = {(cj, 1)} for each voter
i, where cj is the candidate for which i casts his vote. Then find an optimal
model for G1 ⊕ . . .⊕Gn considering single-atom models only. Alternatively,
let Gi = {(cj ∧

∧
j 6=k ¬ck, 1)} and place no constraint on models.

4A set of size n may be partitioned into k nonempty subsets
{

n
k

}
ways (where

{
n
k

}
=

1
k!

∑k
j=1(−1)k−j

(
k
j

)
jn denotes a Stirling number of the second kind [Graham, Knuth, and

Patashnik, 1994, Section 6.1]), and in each case these k subsets may themselves be strictly
ordered in k! ways. Thus the number of (not necessarily strict) linear orders on n items is∑n

k=1 k!
{

n
k

}
=
∑n

k=1

∑k
j=1(−1)k−j

(
k
j

)
jn.

5For comparison, Haub [2002] estimates that 106 billion people had ever lived as of the year
2002. The profile space is more than adequate to permit every person who has ever lived a
unique opinion on the 2003 Game Theory Society committee election.

192 Chapter 7. Voting

• unanimity: Each voter casts a single vote. Any candidate receiving all n
votes is the unique winner; otherwise, all candidates tie. Define Gi as for
plurality, and find an optimal model having n utility, considering single-atom
models only.

More generally, we can simulate the following parametrized voting rule:

• m-vote top-k: Each voter casts up to m votes. The k candidates receiving
the most votes win. Define the goalbase Gi = {(c, 1)}c∈Vi

where Vi is the
set of m or fewer candidates favored by voter i. Find an optimal model for⊕

iGi, considering k-sized models only.

Many other election procedures mentioned by Taylor [2005], such as near-
unanimity, omninomination, dictatorship, and oligarchy, may also be simulated in
this fashion. In fact, we will now show that any positional scoring rule may be
simulated using goalbases as ballots.

First, we need some notation for referring to (sets of) optimal models.

Definition 7.4.1 (Optimal Models). Given a goalbase G, define opt(G) and
optk(G) to be the sets such that

opt(G) = argmax
M⊆PS

uG(M), optk(G) = argmax
M⊆PS
|M |=k

uG(M).

Clearly,

opt(G) = argmax
{
uG(M)

∣∣∣M ∈ |PS|⋃
k=0

optk(G)
}
,

because each model in the set of optimal models must also be an optimal model
among the models of its own size. Note also that the problem of generating some
member of the set opt(G) is an instance of the function problem corresponding to
the decision problem max-util (see Definition 5.3.1).

The next theorem shows that every single-winner positional scoring rule may be
simulated by casting goalbases as ballots and finding the set of utility-maximizing
models:

Theorem 7.4.2. Let V be a single-winner (possibly nonresolute) positional scoring
rule with scoring vector 〈s1, . . . , sm〉. Let b1, . . . , bn be a sequence of ballots where
ranki(j) is the rank given to candidate j (denoted by cj) by ballot bi. Let Gi =
{(cj, sranki(j)) | 1 ≤ j ≤ m}. Then V (b1, . . . , bn) = opt1(

⊕n
i=1Gi).

Proof. Let S(x) be the score of candidate x under rule V with ballots b1, . . . , bn.
If x ∈ V (b1, . . . , bn), then since V is a positional scoring rule, this implies that
S(x) ≥ S(y) for all y ∈ A. Similarly, if {x} ∈ opt1(

⊕n
i=1Gi), then uLn

i=1Gi
({x}) ≥

uLn
i=1Gi

({y}) for all singleton models {y}. Finally, observe that for all x ∈ A,
S(x) = uLn

i=1
({x}).

7.4. Simulating Voting Methods Using Goalbases 193

Finding the set of utility-maximizing models is related to functional version of
max-util seen in Chapter 5. Though in general this is NP-complete, determining
winners for positional scoring rules is always in P, so there is clearly no complexity-
theoretic point to be made here. (The class of goalbases corresponding to positional
scoring rules represents only modular utility functions.) Rather, what is noteworthy
is that if a voting rule can be simulated using goalbases as ballots, then that
voting rule can be extended by loosening the restrictions we imposed in order to
simulate it.

Though we have defined ballots for positional scoring rules to be total preorders,
we could also have defined them cardinally. Suppose that each voter were given
a supply of points which he may assign to the candidates as he wishes, and as
with positional scoring rules, the winners are the set of candidates receiving the
maximal number of points. This voting rule is known as cumulative voting. Any
positional scoring rule may be seen as a special case of cumulative voting, wherein
the voters are not given free reign as to the assignment of points, but rather
required to award points only in predefined, indivisible blocks. (For example, the
plurality rule gives each voter a single, indivisible one-point block of votes, while
the Borda rule gives each voter blocks of size m,m− 1, . . . , 1 when there are m
candidates.) Positional scoring rules are able to use total preorders as ballots
because each voter has the same scoring vector; hence, any positional scoring rule
can use cardinal ballots simply by moving the rule’s scoring vector into the ballot
in this way.

Fact 7.4.3. If no restrictions are placed on the ballot goalbases Gi, then
opt1(

⊕n
i=1Gi) corresponds to cumulative voting without point limits.

Cumulative voting without point limits is not a practical voting method, since
for the voters it is equivalent to playing the game of which voter can write down
the largest number. However, if we restrict the weights in the ballots Gi to some
closed interval of the nonnegative reals, then we have the following correspondence:

Fact 7.4.4. If each Gi ∈ L(forms, [0,m],Σ) and Σ(ϕ,w)∈Gi
w ≤ m ∈ R+, then

opt1(
⊕n

i=1Gi) corresponds to m-vote cumulative voting.

Note that it is essential that the interval from which weights are chosen is
closed rather than open on the right—otherwise, the voters are again playing the
write-the-largest-number game, this time approaching m rather than infinity.

Many undesirable properties of voting rules—the failure to always elect a
Condorcet winner, the possibility of electing a Condorcet loser, nonmonotonicity—
are existence properties: A voting rule has them by virtue of some set of permissible
ballots for which the rule yields a pathological result. Cumulative vote contains
every positional scoring rule, in the sense that any collection of ballots which is
permissible input for some positional scoring rule is also permissible input for
cumulative voting, and on those ballots both rules will generate the same outcome.

194 Chapter 7. Voting

As a result, a collection of ballots which is pathological for some positional scoring
rule will yield the same pathological result under cumulative voting. For example:
Borda ballots are legal cumulative ballots and Borda can fail to elect the Condorcet
winner, so if all voters happen to submit ballots which would cause this defect
under the Borda rule, then the same result will occur with those ballots under
the cumulative voting rule. There is a minor subtlety here, in that what we are
holding constant when comparing positional scoring rules with cumulative voting
is the ballots cast, rather than the voters’ preferences. It might well be the case
that the same group of voters would not submit identical ballots under, say, Borda,
and cumulative voting, due to the less constrained ballot space which the latter
affords.

Though cumulative voting lacks some desirable properties, it also has a much
larger ballot space than its subrules. How this affects the likelihood of encountering
pathological ballot profiles in practice is unknown. Finally, the fact that cumulative
voting can fail to elect the Condorcet winner does not obviously preclude there
being some anonymous subrule which does always elect the Condorcet winner.
That subrule cannot be a positional scoring rule, as proved by Young [1975], but
there are many subrules of cumulative voting which are not positional scoring
rules; we have not yet eliminated the possibility that some subrule of cumulative
voting is a Condorcet rule. Whether any such rule exists we leave for future
investigation.

7.5 The Complexity of Deciding Winning Slates

Determining the winner of an election where goalbases are ballots is related to
solving max-util for the sum of those goalbases. max-util for languages with
straightforward definitions tends to be either trivial or NP-complete. (For a
thorough treatment of the complexity of max-util, see Section 5.5.)

Because we are concerned here with electing committees of a size fixed prior
to the election (as opposed to the open-ended committees discussed by Brams
et al. [2007]), we cannot apply max-util directly to the sum of voters’ goalbases
in order to determine the winners of the election. Doing that might yield a model
with the wrong number of winners. We must do something to ensure that only
models which fill k seats are potentially optimal. One approach to adapting our
winner determination problem to max-util is to augment the sum of the voters’
goalbases with formulas which increase the utility of k-sized models (or decrease
the utility of non-k-sized models).

First, some notation is required. Define the following formulas:

ϕ≥k =
∨{∧

X
∣∣∣ X ⊆ PS and |X| = k

}
ϕ≤k = ¬ϕ≥k+1

ϕ=k = ϕ≤k ∧ ϕ≥k

7.5. The Complexity of Deciding Winning Slates 195

and the quantity

δ =
∑{

|w|
∣∣∣ (ϕ,w) ∈

⊕
i

Gi

}
.

The formula ϕ=k is such that a model M |= ϕ=k iff |M | = k. The quantity δ is a
(not necessarily tight) upper bound on the utility change between arbitrary models
for uL

i Gi
. Note that ϕ≥k has

(
n
k

)
disjuncts, and so is potentially a very long

formula.6 However, in the context of committee elections n and k—the numbers
of candidates and seats—will tend to be small, and, as will be seen below, ϕ=k

appears exactly once in the goalbase which represents the voters’ preferences.

Suppose that
⊕

iGi is the sum of voter goalbases in a k-seat committee election.
Let

G =
(⊕

i

Gi

)
⊕ {(ϕ=k, δ + 1)}.

Since δ is an upper bound on utility change between models for uL
i Gi

, we can
say the following: If M,N are models such that M |= ϕ=k and N 6|= ϕ=k, then
uG(M) > uG(N), as the greatest possible utility loss of moving from N to M in
uL

i Gi
is δ, and making ϕ=k true results in a gain of δ + 1. Thus, since any model

of size k is strictly better than every model of any other size, we are guaranteed
that all models which yield maximal utility are of size k. Moreover, since ϕ=k is
true on every model of size k, it does not affect their utility relative to one another,
so augmenting

⊕
iGi with (ϕ=k, δ+ 1) preserves the ordering of (relevant) models.

Therefore, we may easily adapt the input to force size-k models to the top of
the ordering and use an off-the-shelf algorithm for deciding max-util(forms,R,Σ)
to determine winners—though this may be impractical due to the complexity
of max-util(forms,R,Σ). If

⊕
iGi is confined to something less than the full

language, however, we may be able to use that to our advantage. The following
theorem shows that when solving max-util we may always reduce a goalbase
outside a given language L to a goalbase inside the language by solving a simpler
version of max-util at most an exponential number of times:

Theorem 7.5.1. If G ∈ L, G′ /∈ L, and L is closed under substitution of logical
constants for atoms, then max-util for G⊕G′ may be solved with no more than
2|Var(G′)| calls to a max-util oracle for L.

6While it is not possible to shorten ϕ≥k using standard Boolean connectives, we can write
it more concisely if we are willing to augment our language with a cardinality operator. For
example, Benhamou, Sais, and Siegel [1994] consider a variant of propositional logic in which
there are pair formulas (ρ,L), where L is a multiset of literals and ρ specifies how many elements
of the multiset must be true in order for the (ρ,L) to be true. Clearly

(|PS|
2 ,PS

)
is equivalent

to ϕ≥|PS|/2, but exponentially shorter. Hoos and Boutilier [2000] propose a similar, though
less powerful, k-of operator—less powerful due to the fact that their (bidding) language lacks
negation, and so any k-of operates on atoms only.

196 Chapter 7. Voting

Proof. There are 2|Var(G′)| models on just the variables occurring in formulas in
G′. For each model over the variables in G′, we substitute > and ⊥ into G⊕G′
as per the model and carry out max-util on the modified G⊕G′.

If Var(G′) is small and does not depend on PS, decomposing a goalbase
containing alien formulas in this way is potentially feasible. However, the formula
ϕ=k contains every atom in PS at least once and hence the upper bound we get
is exponential in |PS|, which is unhelpful. (For a discussion of the substitution
closure condition, see Section 5.7.1.)

An alternative approach is to modify the decision problem instead of the
goalbase. Perhaps max-util is not the right decision problem unless we have the
same number of candidates as seats—in which case, why vote? Instead, we define
a variant of max-util where exactly k atoms must be true in any solution:

Definition 7.5.2 (k-max-util). The decision problem k-max-util(Φ,W, F) is
defined as: Given a goalbase G ∈ L(Φ,W, F) and an integer K, is there is a model
M ∈ 2PS such that uG(M) ≥ K and |M | = k?

k-max-util is the decision-problem version of finding members of optk, just
as max-util is the decision-problem version of finding members of opt.

Fortunately, having a fixed number of seats we are trying to fill dramatically
reduces the complexity of finding a voter’s preferred ballot:

Theorem 7.5.3. k-max-util(forms,R,Σ) ∈ P, for fixed k ∈ N.

Proof. For any given k and PS, there are
(|PS|

k

)
models of size k to check. It is

always the case that
(
n
k

)
≤ nk

k!
, which grows polynomially in n = |PS| for any

fixed k.

This makes whatever language we want for representing our voters’ ballots
computationally tractable (though not necessarily trivial) so long as the number
of seats and candidates is not too large. In particular, it is well within the
capabilities of contemporary desktop computers to determine the winners in
committee elections of a size similar to that conducted by Game Theory Society
in 2003, where there would be only 2.7 million models to check.

7.6 Extending Single-Winner Voting Methods

In this section, we consider ways in which single-winner voting methods may
be extended using goalbase ballots, and provide a concrete example where we
extend approval voting from the approval of single candidates to the approval of
properties of outcomes.

The fact that we can easily simulate many single-step voting procedures by
using goalbases and solving max-util on them suggests a way of extending

7.6. Extending Single-Winner Voting Methods 197

these methods to better register the preferences of voters. Let us extend the
expressiveness of plurality (in our terminology, 1-vote top-1) as an example. In a
standard plurality election, each voter casts a single vote for a single candidate.
This permits voters to express only single-peaked, modular, monochromatic utility
functions—that is, the only voters who can accurately express their preferences
using such a method are those who prefer all candidates equally, except for one
candidate who is preferred over the others. This is an unusual preference ordering
for a voter to have. (Think of the 2000 U.S. Presidential election: What sort of
voter would most prefer Gore, but at the same time be indifferent between Nader
and Bush?)

The goalbase simulation of plurality allows voters to weight a single atom
each. What if, instead, voters were subject to fewer restrictions on the goalbases
they submit? Suppose that we ease the restriction on our voting language so that
instead of just one, voters may specify up to n {0, 1}-weighted atoms. Now we
can additionally express preference orderings where more than one candidate is
maximally preferred, and indeed, solving max-util over singleton models will
give us approval voting instead of plurality voting.

If we move to multi-winner voting as we have when electing committees, the
fit between voter preferences and the expressivity of the voting language grows
worse, as argued above. Using goalbases, it is not difficult to simulate top-k voting
methods—in order to find the top k candidates in the aggregate preference order,
we need only solve max-util on the sum of voter goalbases, ignoring models
electing more or fewer than k candidates. In order to gain more expressivity,
we can further relax the restrictions on the formulas which may be weighted.
Examples:

• Suppose that we restrict voters to positive clauses with binary weights. This
language is sufficient for expressing any weak linear ordering of candidates,
as we shall see later this section.

• Suppose that we restrict voters to positive cubes with binary weights. This
language permits voters to assign a bonus to committees which contain
favored combinations of candidates. If a voter believes that, ceteris paribus,
committees with both A and B are preferable, then he may have a goalbase
such that (a ∧ b, 1) ∈ G.

We mention here a several classes of formulas which voters electing committees
might find useful:

• Literals: a and ¬b are useful for expressing simple preferences, e.g., “I want
Alice on the committee”, or “I don’t want Bob on the committee”.

• Positive cubes: a ∧ b is useful when the combination of some candidates
is better than those candidates individually.

198 Chapter 7. Voting

• Negative Horn clauses: ¬a ∨ ¬b is useful when the combination of some
candidates is worse than those candidates individually.

This last class, negative Horn clauses, is exactly what is needed to overcome
the difficulty described in Section 7.3.2, where two candidates may be individually
desirable but collectively undesirable. Or, equivalently, we could use positive
cubes with negative weights. The voter in our example who preferred Alice-
committees and Bob-committees over neither-committees over both-committees
could represent his preferences as G = {(a, 1), (b, 1), (a∧ b,−3), (>, 1)}. It is easily
checked that uG respects the voter’s preference ordering:

uG(X) =

2 if a ∈ X, b /∈ X or vice versa

1 if a, b /∈ X
0 if a, b ∈ X

In the general case where voters cast arbitrary goalbases Gi as ballots, we can
determine a winning committee by solving max-util for

⊕
iGi on k-seat models

only.
Now we offer one example of how a single-winner voting method may have its

expressivity extended through goalbase voting.
Call Property Approval Voting (PAV) the voting method in which properties

of the outcome (rather than individual candidates) are the objects of approval
or disapproval. Any goalbase G ∈ L(forms, {1},Σ) constitutes an admissible
PAV ballot. However, some formulas will be useless: Any formula which implies
a positive cube longer than the intended number of winners, and any formula
which implies a negative cube longer than the intended number of losers, will
effectively be equivalent to ⊥. A significant difference between AV and PAV is
the range of preorders of which they permit representation. Every AV ballot
induces a dichotomous order, while PAV supports much more. In the case where
there are three candidates a, b, c, the PAV ballot {(a, 1), (a ∨ b, 1)} induces the
(non-dichotomous) order a > b > c, since the state {a} receives two points, {b}
one point, and {c} zero points. (Only singleton states are relevant here, since we
are considering the single-winner case.)

In fact, there is a general way of representing any strict linear order a1 > a2 >
. . . > an with a PAV ballot:

(a1 ∨ . . . ∨ an−2 ∨ an−1, 1)

(a1 ∨ . . . ∨ an−2, 1)

...

(a1 ∨ a2, 1)

(a1, 1)

7.7. Future Work 199

The clause which ends with ai is the one which causes ai to be ordered strictly
above ai+1, so by omitting that clause we can get a ballot where ai ∼ ai+1. This
is sufficient to induce any weak linear order over the candidates. Thus, in the
single-winner case PAV is something like a nonresolute version of the Borda rule.

7.7 Future Work

There are a number of paths yet to be explored regarding voting with goalbases.
In this section we give an overview of those of which we are aware.

In order to use goalbase ballots for multi-winner cumulative voting, we must
place some restriction on the weights which are available to voters. As noted
after Fact 7.4.3, cumulative voting without point limits is not a sensible voting
method. Having established that restrictions are needed, we are now faced with
the problem of selecting some—it is not presently obvious which restrictions are
most suitable. The restriction which cumulative voting itself suggests is to limit
the sum of weights in any goalbase:

∑
(ϕ,w)∈Gw ≤ K.7 This is a limit on the

input space. Another approach is to restrict the output space: For example, we
might limit the utility of any admissible state: uG(M) ≤ K for all M ⊆ PS where
|M | = k.

There are advantages and disadvantages to both methods. If our voter is a
person, then he will find it easier to cast a valid sum-limited ballot than a valid
state-limited one. Input limits are not uncommon. For example, in the U.S.,
the State of Illinois used cumulative voting (over atoms) with a 3-point limit for
electing members of its House of Representatives from 1870 to 1980 [Moore, 1909;
Yale Law Journal, 1982]. Corporate boards of directors are usually elected using
cumulative voting, where the point limit for each voter is the number of shares
he owns. We know of no uses of output limits: Presumably this is because it
is hard to see when working in the input space whether output limits are being
respected; output limits expect too much of the average voter. However, output
limits on elections of the size human voters are likely to face will not be difficult
for machines to enforce, so might be useful if the voters are using a computer-aided
voting system. This is a user-interface issue.

Point limits also raise a fairness issue. For simplicity, we use a single-winner
example, though the problem it illustrates is general. The sum-limit

∑
(ϕ,w)∈Gw ≤

K will not always produce utility functions which have equal sums for singleton
models. E.g., consider the goalbase ballots G1 = {(a, 10)} and G2 = {(a ∨ b, 10)}.
The latter has a singleton state sum of 20 (uG2({a}) = 10, uG2({b}) = 10), while
singleton states for the former sum only to 10 (uG1({a}) = 10). The effect of

7If we permit negative weights, then we would need to place an upper bound on the sum
of the absolute values of the weights instead of on the sum of the weights. In this way we
avoid ballots like {(a,−21000), (b, 21000 + 10)} which the voter could claim is a 10-point ballot
according to the latter method.

200 Chapter 7. Voting

the sum-limit is to give voters with top-heavy preferences more influence on the
outcome than voters with balanced or bottom-heavy preferences. Note that this is
not a failure of anonymity, as it has nothing to do with voters’ names or order. We
could try to account for this by “normalizing” formulas based on the number of
states they affect, e.g., (a∨b, 10) could be translated to (a, 5), (b, 5), but this would
seem to disadvantage voters who have top-heavy preferences. If (

∨
PS \ {a}, 10),

after normalization, gives one point to everyone but candidate a, that is not likely
to be very effective for voters who dislike a but otherwise do not distinguish among
the other candidates. Or we could try other ways of normalizing—Lafage and
Lang [2000, Section 3.2.3] suggest postprocessing (dis)utilities to equalize entropy
across agents—which will potentially have some other differential effect on voters.

The basic question here seems to be how to set the value of preferences which
are not over single states against those which are. What is an appropriate measure
of voting power here? Input limits seem to favor top-heavy voters, output limits
seem to favor bottom-heavy voters. One way of quantifying the effect that a
proposed weight limit could have is by considering the efficacy of voters with
different preferences under that weight limit. (The efficacy of a ballot for a voter
is a measure of how often that voter will be pivotal if he casts that ballot.) Ideally,
all voters would have equally efficacious ballots to cast. Brams and Fishburn [2007,
Chapter 5] calculate the efficacy of ballots for approval voting and find that not
all ballots are equally effective. If we assume that our voters are truthful, what
this means is that approval voting is advantageous for voters with some kinds
of preference orders and disadvantageous for others. A similar analysis could be
done for cumulative voting with goalbase ballots, with an eye to which weight
restrictions treat voters most equitably.

With any voting system, there are questions about whether it encourages or
discourages strategic voting. The manipulability of a voting system must always
be considered in the context of a notion of sincerity, for we cannot say whether a
voter is misrepresenting his preferences if we cannot first say what it would be for
a voter to represent his preferences accurately.

Consider, first, voting systems with ordinal ballots. Many standard systems—
e.g., plurality, approval, Borda—use ballots which contain purely ordinal infor-
mation. In the case where there is an allowable ballot which induces the same
preorder over outcomes as the voter’s true preorder, then any reasonable notion
of sincerity should deem that ballot sincere (and any ballot which does not induce
that same preorder, insincere). This means, for example, that for voters with
strict linear orders, there will always be unique sincere plurality and Borda bal-
lots; and similarly, for voters whose preferences are dichotomous (and not wholly
indifferent), there will be a unique sincere approval ballot. However, this will not
be the case for voters with other kinds of preorders. There are no approval ballots
which express nondichotomous preferences (e.g., x > y > z); standardly, Borda
does not permit ties, so voters with weak (instead of strict) orders will have no
ballots which express their preferences exactly.

7.8. Conclusion 201

What should count as sincere in the space of cardinal ballots is not immediately
obvious. A voter’s preferences may be inexpressible as a result of restrictions on
the ballot language, and this can result in the existence of multiple sincere ballots
which the voter could cast. Endriss [2007] explores the existence of multiple
sincere ballots for approval voting and shows that the Gibbard-Satterthwaite
Theorem is avoidable in that context; Endriss, Pini, Rossi, and Venable [2009]
present several measures of sincerity for languages where ballots are preorders,
and examine the consequences for strategyproofness under these. This line of
research could be continued for goalbase ballots, first by developing reasonable
notions of sincerity, and secondly by determining which language restrictions
induce sincerity in rational voters. Meir, Procaccia, Rosenschein, and Zohar
[2008] avoid the problem of sincerity in multi-winner voting altogether by defining
manipulation as an optimization problem asking whether, given the ballots of
some other voters, there is a ballot which the manipulating voter may cast which
yields him at least t utility. The question of whether a better ballot exists is more
general than, and serves as a proxy for, the question of whether a better insincere
ballot exists—though this still leaves open the possibility that some ballot which
is optimal is nonetheless also sincere, and so does not exactly capture classical
manipulability.

Finally, we might consider questions about the difficulty of finding a sincere
ballot given a voter’s preferences. It would not be surprising to learn that for
some languages, it is always in the voter’s best interests to cast a sincere ballot,
but nonetheless quite difficult for him to determine which ballots are sincere for
him. Strategyproofness is not worth much in this case. A method for constructing
sincere ballots will be essential for any language intended for human voters.

7.8 Conclusion

In this chapter we introduced some methods for electing committees and demon-
strated that they lack certain properties which are desirable when conducting
multi-winner elections. In particular, single-winner voting methods lack the expres-
sivity to extend well to the multi-winner case. The observation that it is possible
to simulate many single-winner voting methods using goalbases and max-util
suggests one way of extending the expressivity of existing voting methods for
use in a multi-winner setting. Because multi-winner elections tend to have the
number of winners fixed beforehand, the complexity of max-util is limited, even
when the goalbase language is not. Along these lines, we suggest a multi-winner
extension of approval voting, which we call Property Approval Voting. Finally, we
discuss the possibilities for future work: the need to find useful limits on weights
in goalbase ballots; the fairness of these limits, since they may differentially affect
voters with dissimilar preferences; and issues related to sincerity and strategic
voting.

Chapter 8

Conclusion

In this dissertation we have presented a framework for compactly representing
cardinal preferences over combinatorial domains and shown the feasibility of using
this framework for auctions and voting.

Goalbase languages are formed by the parameters restricting the available
formulas and weights. Due to their parametric nature, these languages are
scattered all across the representational landscape. In order to make practical use
of goalbases, we must first know the lay of the land. In Part I, we have explored
the landscape of goalbase languages in three directions:

Expressivity. In Chapter 3, we considered this question: Given a goalbase
language, what utility functions are representable in it? Many goalbase languages
with natural definitions were revealed to correspond exactly to classes of utility
functions having well-known properties. Furthermore, we showed that some
goalbase languages have precisely one representation for any representable utility
function, and provided methods for finding these representations. For a summary
of these results, see Figures 3.1 and 3.2, and the accompanying explanatory text
in Sections 3.4.4 and 3.5.4.

Succinctness. In Chapter 4, we pursued the problem of concision. Given two
goalbase languages, are the smallest representations in one significantly smaller
than equivalent smallest representations in the other? We systematically compared
more than two hundred pairs of languages to determine which languages were
more succinct. For a summary of these results, see Tables 4.1 and 4.2.

Complexity. In Chapter 5, we examined how the structure of a goalbase lan-
guage affects the computational complexity of three decision problems: max-util,
min-util, and max-cuf. More expressive languages tended to have NP-complete
max-util and max-cuf problems, and coNP-complete min-util problems; for
those which are solvable in polynomial time, we provided algorithms demonstrating

203

204 Chapter 8. Conclusion

that. For a summary of the results for max-util and min-util, see Table 5.1,
and for max-cuf see Table 5.2. Finally, we considered an alternative version of
max-util, which focuses on true atoms in optimal states instead of the existence
of models which reach a given utility level.

In Part II of this dissertation, we considered two possible applications of
goalbase languages:

Auctions. In Chapter 6, we introduced combinatorial auctions and the widely-
studied XOR/OR family of bidding languages. Goalbase languages are sometimes
more and sometimes less succinct than languages in the XOR/OR family, depend-
ing on the utility functions to be represented. This is as expected, and supplies
some of our motivation for the investigations in Part I: An auction designer cannot
choose the most appropriate bidding language without knowing the expressivity
and succinctness characteristics of the languages on offer. We went on to describe
the Winner Determination Problem, both formulating it as an integer program and
defining branch-and-bound heuristics for solving it directly. Finally, we presented
some experimental results showing the performance of our IP formulation and
branch-and-bound solver, which demonstrated the feasibility of using goalbase
languages for auctions of moderate size.

Voting. In Chapter 7, we considered the problem of insufficiently expressive
voting methods, and suggested voting with goalbases as ballots as a possible remedy.
Common single-winner voting methods do not extend well to multi-winner settings
like committee elections due to interactions between candidates. We noted that
finding winners when goalbases are used as ballots is similar to max-util, and
that in practice the complexity will tend to be manageable due to small numbers
of candidates and seats. We suggested an extension to approval voting, where
properties of the outcome are approved (or not) rather than particular outcomes
as in standard approval voting. Finally, we discussed a number of directions for
further investigation.

Together, these chapters provide a clear view of the power of goalbase languages
for preference representation, and point to potential areas of application.

Open Questions and Future Work. Here we mention some open questions
and directions for future work:

In Chapter 2, we have presented only a limited range of restrictions on formulas.
It would be interesting to investigate other, less straightforward properties of
formulas, such as being read-once, or representable by a Boolean circuit with
certain features, to see what effect these might have on expressivity, succinctness,
and complexity. Additionally, sum and max are only the most obvious aggregators;
in principle, any function F : NR → R could be used, so there are others (e.g.,
min) which might be of interest.

205

In Chapter 3, there were a few languages for which we were unable to ex-
actly characterize their expressivity. (See Figures 3.1 and 3.2.) In particular,
L(k-forms,R+,Σ) represents some subset of the nonnegative k-additive utility
functions, but which subset or even whether the inclusion is proper is unknown.
For L(clauses,R+,Σ), it is known to represent a proper subset of the nonnegative
utility functions, but here, again, exactly what other properties that subset has is
unknown.

In Chapter 4, some open succinctness questions can be seen in Table 4.1.
We do not expect any of the proofs which would resolve the remaining open
questions to be easy, as all involve pairs of languages where neither language has
unique representations. We would particularly like to know the relation between
L(cubes,R+,Σ) and L(clauses,R+,Σ), as well as between L(pforms,R+,Σ) and
these two; but resolving any of the remaining open questions would be useful,
since the combination of Fact 4.2.3 and the numerous results we already have
mean that any new result can be leveraged to answer several open questions at
once.

In Chapter 5, we resolved for most languages whether max-util and max-cuf
are polynomial or NP-complete. What this leaves open is where the boundary is:
For the languages which have polynomial decision problems, how much can we
loosen the restrictions on their structure and still remain polynomial? Or, from
the other direction: How little can we take away from the NP-complete languages
before they become polynomial? We have also not investigated how amenable
these decision problems are to approximation, nor whether for max-cuf any of
the languages are strategyproof and if not, how hard manipulation is.

We believe that our WDP algorithms in Chapter 6 could be improved, either
through tighter heuristics or other combinatorial optimization techniques. In a
practical vein, it would be gratifying to see one of our languages used for real
combinatorial auctions.

The avenues for further work on voting in Chapter 7 are too numerous to
repeat here; for a full accounting of them, see Section 7.7. Of technical interest are
methods for finding a maximally sincere ballot when no ballot matches a voter’s
preferences and determining whether a voting rule advantages or disadvantages
voters with certain preferences. Of practical interest is how to design a goalbase
voting system which human voters would find usable.

Bibliography

A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for combinatorial
auction winner determination. In 4th International Conference on Multi-Agent
Systems (ICMAS 2000), pp. 39–46. IEEE Computer Society, 2000. Cited on
pp. 147, 161, 163.

H. Anton. Elementary Linear Algebra. Wiley & Sons, seventh ed., 1994. Cited on
p. 39.

K.R. Apt, F. Rossi, and K.B. Venable. Comparing the notions of optimality
in CP-nets, strategic games and soft constraints. Annals of Mathematics and
Artificial Intelligence, 52(1):25–54, 2008. Cited on p. 15.

K.J. Arrow. Social Choice and Individual Values. Yale University Press, second
ed., 1970. Cited on p. 184.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Springer-Verlag, 1999. Cited on
p. 105.

F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider.
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, second ed., 2007. Cited on p. 23.

F. Bacchus and A.J. Grove. Graphical models for preference and utility. In
P. Besnard and S. Hanks, eds., UAI ’95: Proceedings of the Eleventh An-
nual Conference on Uncertainty in Artificial Intelligence, August 18–20, 1995,
Montreal, Quebec, Canada, pp. 3–10. Morgan Kaufmann, 1995. Cited on p. 26.

M.O. Ball, G.L. Donohue, and K. Hoffman. Auctions for the safe, efficient, and
equitable allocation of airspace system resources. In Cramton et al. [2006], pp.
507–538. Cited on p. 3.

207

208 BIBLIOGRAPHY

B. Benhamou, L. Sais, and P. Siegel. Two proof procedures for a cardinality
based language in propositional calculus. In P. Enjalbert, E.W. Mayr, and
K.W. Wagner, eds., STACS 94, 11th Annual Symposium on Theoretical Aspects
of Computer Science, Caen, France, February 24–26, 1994, Proceedings, vol.
775 of Lecture Notes in Computer Science, pp. 71–82. Springer, 1994. Cited on
p. 195.

J.-P. Benôıt and L.A. Kornhauser. Voting simply in the election of assemblies.
Technical Report RR 91-32, New York University Starr Center for Applied
Economics, June 1991. Cited on p. 190.

J.-P. Benôıt and L.A. Kornhauser. Only a dictatorship is efficient or neutral.
Technical report, New York University School of Law, 2006. Cited on p. 190.

J.-P. Benôıt and L.A. Kornhauser. Social choice in a representative democracy.
American Political Science Review, 88(1):185–192, 1994. Cited on p. 190.

S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-based CSPs and valued CSPs: Frameworks, properties, and compari-
son. Constraints, 4(3):199–240, 1999. Cited on p. 24.

L. Blumrosen and N. Nisan. Combinatorial auctions. In N. Nisan, T. Roughgarden,
É. Tardos, and V.V. Vazirani, eds., Algorithmic Game Theory, pp. 267–300.
Cambridge University Press, 2007. Cited on p. 119.

E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, and B. Zanuttini. Compact prefer-
ence representation and Boolean games. Autonomous Agents and Multi-Agent
Systems, 18(1):1–35, 2009. Cited on p. 24.

C. Boutilier. Solving concisely expressed combinatorial auction problems. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence
and Fourteenth Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI 2002). AAAI Press, 2002. Cited on pp. 144, 147, 148, 149.

C. Boutilier, ed. Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI-2009), 2009. Cited on pp. 209, 212, 220.

C. Boutilier and H.H. Hoos. Bidding languages for combinatorial auctions. In
Nebel [2001], pp. 1211–1217. Cited on pp. 27, 28, 144, 147, 149.

C. Boutilier, R. Brafman, C. Geib, and D. Poole. A constraint-based approach
to preference elicitation and decision making. In AAAI Spring Symposium on
Qualitative Decision Theory, 1997. Cited on p. 14.

C. Boutilier, R.I. Brafman, H.H. Hoos, and D. Poole. Reasoning with conditional
ceteris paribus preference statements. In K.B. Laskey and H. Prade, eds.,

BIBLIOGRAPHY 209

UAI ’99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, Stockholm, Sweden, July 30–August 1, 1999, pp. 71–80. Morgan
Kaufmann, 1999a. Cited on p. 14.

C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential auctions for the allocation
of resources with complementarities. In T. Dean, ed., Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI 99), pp. 527–523.
Morgan Kaufmann, 1999b. Cited on p. 163.

C. Boutilier, F. Bacchus, and R.I. Brafman. UCP-networks: A directed graphical
representation of conditional utilities. In J.S. Breese and D. Koller, eds., UAI
’01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,
University of Washington, Seattle, Washington, USA, August 2–5, 2001, pp.
56–64. Morgan Kaufmann, 2001. Cited on p. 16.

C. Boutilier, R.I. Brafman, C. Domshlak, H.H. Hoos, and D. Poole. CP-nets: A
tool for representing and reasoning with conditional ceteris paribus preference
statements. Journal of Artifcial Intelligence Research (JAIR), 21:135–191, 2004.
Cited on pp. 15, 16, 35.

S. Bouveret. Allocation et partage équitables de ressources indivisibles:
modélisation, complexité et algorithmique. PhD thesis, Supaéro/University
of Toulouse, 2007. Cited on pp. 101, 102, 120, 147.

S. Bouveret and J. Lang. Efficiency and envy-freeness in fair division of indivisible
goods: Logical representation and complexity. Journal of Artifcial Intelligence
Research (JAIR), 32:525–564, 2008. Cited on p. 102.

S. Bouveret, H. Fargier, J. Lang, and M. Lemâıtre. Allocation of indivisible
goods: A general model and some complexity results. In F. Dignum, V. Dignum,
S. Koenig, S. Kraus, M.P. Singh, and M. Wooldridge, eds., 4th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2005), July 25–29, 2005, Utrecht, The Netherlands, pp. 1309–1310. ACM, 2005.
Cited on p. 120.

S. Bouveret, U. Endriss, and J. Lang. Conditional importance networks: A
graphical language for representing ordinal, monotonic preferences over sets of
goods. In Boutilier [2009], pp. 67–72. Cited on p. 16.

R.I. Brafman and C. Domshlak. Introducing variable importance tradeoffs into
CP-nets. In A. Darwiche and N. Friedman, eds., UAI ’02, Proceedings of the
18th Conference in Uncertainty in Artificial Intelligence, University of Alberta,
Edmonton, Alberta, Canada, August 1–4, 2002, pp. 69–76. Morgan Kaufmann,
2002. Cited on p. 16.

210 BIBLIOGRAPHY

R.I. Brafman, C. Domshlak, and T. Kogan. Compact value-function representa-
tions for qualitative preferences. In D.M. Chickering and J.Y. Halpern, eds., UAI
’04, Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence,
July 7–11 2004, Banff, Canada, pp. 51–59. AUAI Press, 2004. Cited on p. 26.

S. Brams and P. Fishburn. Voting procedures. In K. Arrow, A.K. Sen, and
K. Suzumura, eds., Handbook of Social Choice and Welfare, Volume 1, no. 19
in Handbooks in Economics. North-Holland, 2002. Cited on p. 184.

S.J. Brams. Mathematics and Democracy: Designing Better Voting and Fair-
Division Procedures. Princeton University Press, 2007. Cited on p. 182.

S.J. Brams and P.C. Fishburn. Approval Voting. Springer, second ed., 2007. Cited
on p. 200.

S.J. Brams, D.M. Kilgour, and M.R. Sanver. A minimax procedure for negotiating
multilateral treaties. In M. Wiberg, ed., Reasoned Choices: Essays in Honor
of Academy Professor Hannu Nurmi, pp. 108–139. Finnish Political Science
Association, Turku, Finland, 2004. Cited on pp. 181, 186, 187.

S.J. Brams, D.M. Kilgour, and M.R. Sanver. How to elect a representative
committee using approval balloting. In Mathematics and Democracy, Studies in
Choice and Welfare, pp. 83–95. Springer, 2006. Cited on pp. 181, 188.

S.J. Brams, D.M. Kilgour, and M.R. Sanver. A minimax procedure for electing
committees. Public Choice, 132(3–4):401–420, 2007. Cited on pp. 181, 187, 190,
194.

M. Cadoli, F.M. Donini, P. Liberatore, and M. Schaerf. Comparing space efficiency
of propositional knowledge representation formalisms. In Proceedings of the
Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR’96), Cambridge, Massachusetts, USA, November 5–8, 1996, pp.
364–373. Morgan Kaufmann, 1996. Cited on p. 66.

M. Cadoli, F.M. Donini, P. Liberatore, and M. Schaerf. The size of a revised
knowledge base. Artifcial Intelligence, 115(1):25–64, 1999a. Cited on p. 66.

M. Cadoli, L. Palopoli, and F. Scarcello. Propositional lower bounds: Algorithms
and complexity. Annals of Mathematics and Artificial Intelligence, 27(1–4):
129–148, 1999b. Cited on p. 66.

M. Cadoli, F.M. Donini, P. Liberatore, and M. Schaerf. Space efficiency of propo-
sitional knowledge representation formalisms. Journal of Artificial Intelligence
Research (JAIR), 13:1–31, 2000. Cited on pp. 62, 66.

M. Cadoli, F.M. Donini, P. Liberatore, and M. Schaerf. Preprocessing of intractable
problems. Information and Computation, 176(2):89–120, 2002. Cited on p. 66.

BIBLIOGRAPHY 211

E. Cantillon and M. Pesendorfer. Auctioning bus routes: The London experience.
In Cramton et al. [2006], pp. 573–591. Cited on p. 3.

C. Caplice and Y. Sheffi. Combinatorial auctions for truckload transportation. In
Cramton et al. [2006], pp. 539–571. Cited on p. 3.

C. Cayrol, M.-C. Lagasquie-Schiex, and T. Schiex. Nonmonotonic reasoning: From
complexity to algorithms. Annals of Mathematics and Artificial Intelligence, 22
(3-4):207–236, 1998. Cited on p. 18.

A. Chagrov and M. Zakharyaschev. Modal Logic, vol. 35 of Oxford Logic Guides.
Clarendon Press, 1997. Cited on p. 34.

J.R. Chamberlin and P.N. Courant. Representative deliberations and representa-
tive decisions: Proportional representation and the Borda rule. The American
Political Science Review, 77(3):718–733, 1983. Cited on p. 181.

Y. Chevaleyre, U. Endriss, and J. Lang. Expressive power of weighted propositional
formulas for cardinal preference modelling. In Doherty, Mylopoulos, and Welty
[2006], pp. 145–152. Cited on pp. 6, 12, 62, 67, 73, 155.

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource
allocation in k-additive domains: Preference representation and complexity.
Annals of Operations Research, 163(1):49–62, 2008a. Cited on pp. 33, 73, 105.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference handling in
combinatorial domains: From AI to social choice. AI Magazine, Special Issue
on Preferences, 29(4):37–46, 2008b. Cited on p. 185.

J.M. Colomer and I. McLean. Electing popes: Approval balloting and qualified-
majority rule. Journal of Interdisciplinary History, 29(1):1–22, 1998. Cited on
p. 182.

Complexity Zoo. http://qwiki.stanford.edu/wiki/Complexity_Zoo, 2009.
Cited on p. 97.

V. Conitzer and T. Sandholm. Computing Shapley values, manipulating value
division schemes, and checking core membership in multi-issue domains. In
McGuinness and Ferguson [2004], pp. 219–225. Cited on p. 68.

V. Conitzer, T.W. Sandholm, and P. Santi. Combinatorial auctions with k-wise
dependent valuations. In M.M. Veloso and S. Kambhampati, eds., Proceeings of
the 20th National Conference on Artificial Intelligence (AAAI-05), pp. 248–254.
AAAI Press, 2005. Cited on pp. 33, 155.

http://qwiki.stanford.edu/wiki/Complexity_Zoo

212 BIBLIOGRAPHY

S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158.
ACM, 1971. Cited on p. 99.

S. Coste-Marquis, J. Lang, P. Liberatore, and P. Marquis. Expressive power and
succinctness of propositional languages for preference representation. In Dubois,
Welty, and Williams [2004], pp. 203–212. Cited on pp. 19, 20, 34, 62, 66.

P. Cramton, Y. Shoham, and R. Steinberg, eds. Combinatorial Auctions. MIT
Press, 2006. Cited on pp. 101, 138, 207, 210, 215, 217, 219.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys, 33:374–425, 2001. Cited
on p. 125.

A. Darwiche and P. Marquis. Compiling propositional weighted bases. Artificial
Intelligence, 157:81–113, 2004. Cited on p. 66.

A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research (JAIR), 17:229–264, 2002. Cited on p. 67.

A.P. Dempster. Upper and lower probabilities induced by a multivaluated mapping.
Annals of Mathematical Statistics, 38(2):325–339, 1967. Cited on p. 49.

X. Deng and C.H. Papadimitriou. On the complexity of cooperative solution
concepts. Mathematics of Operations Research, 19(2):257–266, 1994. Cited on
p. 68.

P. Doherty, J. Mylopoulos, and C.A. Welty, eds. Proceedings, Tenth International
Conference on Principles of Knowledge Representation and Reasoning, Lake
District of the United Kingdom, June 2–5, 2006, 2006. AAAI Press. Cited on
pp. 211, 220.

D. Dubois, C.A. Welty, and M.-A. Williams, eds. Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Ninth International Conference
(KR-2004), Whistler, Canada, June 2–5, 2004, 2004. AAAI Press. Cited on
pp. 211, 213.

P.E. Dunne, W. van der Hoek, S. Kraus, and M. Wooldridge. Cooperative Boolean
games. In Padgham, Parkes, Müller, and Parsons [2008], pp. 1015–1022. Cited
on p. 24.

F. Dupin de Saint-Cyr, J. Lang, and T. Schiex. Penalty logic and its link with
Dempster-Shafer theory. In R. López de Mántaras and D. Poole, eds., Proceedings
of the 10th Conference on Uncertainty in Artificial Intelligence (UAI-1994), pp.
204–211. Morgan Kaufmann, 1994. Cited on p. 16.

BIBLIOGRAPHY 213

E. Elkind, L.A. Goldberg, P.W. Goldberg, and M. Wooldridge. A tractable and
expressive class of marginal contribution nets and its applications. Mathematical
Logic Quarterly, 55(4):362–376, 2009. Cited on pp. 26, 68, 77, 93, 131.

U. Endriss. Vote manipulation in the presence of multiple sincere ballots. In
Samet [2007], pp. 125–134. Cited on p. 201.

U. Endriss, M.S. Pini, F. Rossi, and K.B. Venable. Preference aggregation over
restricted ballot languages: Sincerity and strategy-proofness. In Boutilier [2009],
pp. 122–127. Cited on p. 201.

Federal Election Commission. Federal elections 2008: Election results for the U.S.
President, the U.S. Senate and the U.S. House of Representatives. http://

www.fec.gov/pubrec/fe2008/federalelections2008.pdf, July 2009. Cited
on p. 1.

P.C. Fishburn. Utility Theory for Decision Making. John Wiley & Sons, 1970.
Cited on p. 26.

Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational
complexity of combinatorial auctions: Optimal and approximate approaches.
In T. Dean, ed., Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI 99), pp. 548–553. Morgan Kaufmann, 1999. Cited
on pp. 101, 139, 147, 152, 158, 163.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., 1979. Cited on pp. 104,
105, 107, 113, 119, 144.

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41
(4):587–601, 1973. Cited on p. 184.

R. Gonen and D. Lehmann. Linear Programming helps solving large multi-unit
combinatorial auctions. In Electronic Market Design Workshop, The Proceedings
of INFORMS 2001. Institute for Operations Research and the Management
Sciences, 2001. Cited on p. 163.

R. Gonen and D.J. Lehmann. Optimal solutions for multi-unit combinatorial auc-
tions: Branch and bound heuristics. In Proceedings of the 2nd ACM Conference
on Electronic Commerce (EC-2000), pp. 13–20, 2000. Cited on p. 163.

C. Gonzales and P. Perny. GAI networks for utility elicitation. In Dubois et al.
[2004], pp. 224–234. Cited on p. 26.

C. Gonzales, P. Perny, and S. Queiroz. Preference aggregation in combinatorial
domains using GAI-nets. In D. Bouyssou, F. Roberts, and A. Tsoukiàs, eds.,

http://www.fec.gov/pubrec/fe2008/federalelections2008.pdf
http://www.fec.gov/pubrec/fe2008/federalelections2008.pdf

214 BIBLIOGRAPHY

Proceedings of the DIMACS-LAMSADE Workshop on Voting Theory And
Preference Modelling, vol. 6 of Annales du LAMSADE, pp. 165–179, Paris,
October 2006. Laboratoire d’Analyse et Modélisation de Systèmes pour l’Aide
à la Décision. Cited on pp. 25, 26.

M. Grabisch. k-order additive discrete fuzzy measures and their representation.
Fuzzy Sets and Systems, 92(2):167–189, 1997. Cited on pp. 33, 36, 155.

R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foun-
dation for Computer Science. Addison-Wesley, second ed., 1994. Cited on
p. 191.

R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. A compendium of problems complete
for P. Technical report, University of Alberta, Computer Science Department,
1992. URL http://citeseer.ist.psu.edu/greenlaw91compendium.html.
Cited on p. 125.

G. Hägele and F. Pukelsheim. The electoral systems of Nicholas of Cusa in
the Catholic Concordance and beyond. In G. Christianson, T.M. Izbicki, and
C.M. Bellitto, eds., The Church, the Councils, & Reform: The Legacy of the
Fifteenth Century, pp. 229–249. The Catholic University of America Press, 2008.
Cited on p. 182.

P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions of Systems Science and
Cybernetics, 4(2):100–107, 1968. Cited on p. 154.

C. Haub. How many people have ever lived on earth? Population Today, 30(8):
3–4, November/December 2002. Cited on p. 191.

S. van Hoesel and R. Müller. Optimization in electronic markets: examples in
combinatorial auctions. Netnomics, 3(1):23–33, 2001. Cited on p. 119.

R.C. Holte. Combinatorial auctions, knapsack problems, and hill-climbing search.
In E. Stroulia and S. Matwin, eds., Advances in Artificial Intelligence, 14th
Biennial Conference of the Canadian Society for Computational Studies of
Intelligence, AI 2001, Ottawa, Canada, June 7–9, 2001, Proceedings, vol. 2056
of Lecture Notes in Computer Science, pp. 57–66. Springer, 2001. Cited on
p. 163.

H.H. Hoos and C. Boutilier. Solving combinatorial auctions using stochastic local
search. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence (AAAI/IAAI 2000), pp. 22–29. AAAI Press, 2000. Cited on pp. 27,
144, 147, 149, 195.

http://citeseer.ist.psu.edu/greenlaw91compendium.html

BIBLIOGRAPHY 215

S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation
scheme for coalitional games. In J. Riedl, M.J. Kearns, and M.K. Reiter, eds.,
Proceedings, 6th ACM Conference on Electronic Commerce (EC-2005), pp.
193–202. ACM Press, 2005. Cited on pp. 26, 35, 67, 68, 77, 131.

ILOG, 2009. ILOG CPLEX. http://www.ilog.com/products/cplex/, 2009.
Cited on p. 147.

B. Jaumard and B. Simeone. On the complexity of the maximum satisfiability
problem for Horn formulas. Information Processing Letters, 26(1):1–4, 1987.
Cited on p. 106.

R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and
J.W. Thatcher, eds., Complexity of Computer Computations. Plenum Press,
1972. Cited on p. 119.

R. Kastner, C. Hsieh, M. Potkonjak, and M. Sarrafzadeh. On the sensitivity
of incremental algorithms for combinatorial auctions. In Proceedings of the
Fourth IEEE International Workshop on Advanced Issues of E-Commerce and
Web-Based Information Systems (WECWIS), pp. 81–88. MIT Press, 2002. Cited
on p. 163.

R. Kaye. Minesweeper is NP-complete. Mathematical Intelligencer, 22(2):9–15,
2000. Cited on p. 107.

P. La Mura and Y. Shoham. Expected utility networks. In K.B. Laskey and
H. Prade, eds., UAI ’99: Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, Stockholm, Sweden, July 30–August 1, 1999, pp. 366–
373. Morgan Kaufmann, 1999. Cited on p. 26.

C. Lafage and J. Lang. Logical representation of preferences for group decision
making. In A.G. Cohn, F. Giunchiglia, and B. Selman, eds., Proceedings of the
7th International Conference on Principles of Knowledge Representation and
Reasoning (KR-2000), pp. 457–468. Morgan Kaufmann, 2000. Cited on pp. 12,
14, 18, 22, 200.

J. Lang. Logical preference representation and combinatorial vote. Annals of
Mathematics and Artificial Intelligence, 42(1–3):37–71, 2004. Cited on pp. 12,
21, 22, 102, 116, 181.

J. Lang and L. Xia. Sequential composition of voting rules in multi-issue domains.
Mathematical Social Sciences, 57(3):304–324, 2009. Cited on pp. 15, 185.

T. Lee. Kolmogorov Complexity and Formula Size Lower Bounds. PhD thesis,
Institute for Logic, Language and Computation, University of Amsterdam, 2006.
ILLC Publication DS-2006-01. Cited on p. 76.

http://www.ilog.com/products/cplex/

216 BIBLIOGRAPHY

B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55:270–296, 2006a. Cited on
pp. 32, 35.

D. Lehmann, R. Müller, and T. Sandholm. The winner determination problem.
In Cramton et al. [2006], pp. 288–317. Cited on pp. 117, 138.

K. Leyton-Brown and Y. Shoham. A test suite for combinatorial auctions. In
Cramton et al. [2006], pp. 451–478. Cited on p. 163.

K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for
combinatorial auction algorithms. In Proceedings of the 2nd ACM Conference
on Electronic Commerce (EC-2000), pp. 66–76, 2000. Cited on p. 163.

P. Liberatore. Monotonic reductions, representative equivalence, and compilation
of intractable problems. Journal of the ACM, 48(6):1091–1125, 2001. Cited on
p. 65.

M. Lines. Approval voting and strategy analysis: A Venetian example. Theory
and Decision, 20(2):155–172, 1986. Cited on p. 182.

R.J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair
allocations of indivisible goods. In J.S. Breese, J. Feigenbaum, and M.I. Seltzer,
eds., Proceedings 5th ACM Conference on Electronic Commerce (EC-2004), pp.
125–131. ACM, 2004. Cited on p. 131.

R. Llull. Blanquerna: a thirteenth century romance. Jarrolds, London, 1926.
Translated by E.A. Peers. Cited on p. 182.

Y. Mansour. Learning Boolean functions via the Fourier transform. In V. Roy-
chowdhury, K.-Y. Siu, and A. Orlitsky, eds., Theoretical Advances in Neural
Computation and Learning. Kluwer, 1994. Cited on p. 74.

M. Mavronicolas, B. Monien, and K.W. Wagner. Weighted Boolean formula games.
In X. Deng and F.C. Graham, eds., Internet and Network Economics, Third
International Workshop, WINE 2007, San Diego, CA, USA, December 12–14,
2007, Proceedings, vol. 4858 of Lecture Notes in Computer Science, pp. 469–481.
Springer, 2007. Cited on p. 24.

R.P. McAfee and J. McMillan. Auctions and bidding. Journal of Economic
Literature, 25(2):699–738, 1987. Cited on p. 136.

D.L. McGuinness and G. Ferguson, eds. Proceedings of the Nineteenth National
Conference on Artificial Intelligence, Sixteenth Conference on Innovative Appli-
cations of Artificial Intelligence, July 25–29, 2004, San Jose, California, USA,
2004. AAAI Press / The MIT Press. Cited on pp. 211, 218.

BIBLIOGRAPHY 217

N. Megiddo and C.H. Papadimitriou. On total functions, existence theorems, and
computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.
Cited on p. 122.

R. Meir, A.D. Procaccia, J.S. Rosenschein, and A. Zohar. Complexity of strategic
behavior in multi-winner elections. Journal of Artificial Intelligence Research
(JAIR), 33:149–178, 2008. Cited on p. 201.

P. Milgrom. Putting Auction Theory to Work. Churchill Lectures in Economics.
Cambridge University Press, 2004. Cited on p. 136.

B.L. Monroe. Fully proportional representation. The American Political Science
Review, 89(4):925–940, 1995. Cited on p. 181.

B.F. Moore. The History of Cumulative Voting and Minority Representation
in Illinois, 1870–1908, vol. III.3 of The University Studies. University Press,
Urbana-Champaign, Illinois, 1909. Cited on p. 199.

H. Moulin. Axioms of Cooperative Decision Making, vol. 15 of Econometric Society
Monographs. Cambridge University Press, 1988. Cited on pp. 33, 116.

R. Müller. Tractable cases of the winner determination problem. In Cramton
et al. [2006], pp. 319–336. Cited on pp. 101, 138.

National Odd Shoe Exchange. The history of the National Odd Shoe Exchange.
http://www.oddshoe.org/history.php, 2009. Cited on p. 137.

B. Nebel, ed. Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4–10,
2001, 2001. Morgan Kaufmann. Cited on pp. 208, 219.

N. Nisan. Bidding languages for combinatorial auctions. In Cramton et al. [2006],
pp. 215–232. Cited on pp. 27, 32, 35, 51, 68, 138, 139, 141.

N. Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of the
2nd ACM Conference on Electronic Commerce, pp. 1–12, 2000. Cited on pp. 68,
101.

L. Padgham, D.C. Parkes, J. Müller, and S. Parsons, eds. 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Estoril, Portugal, May 12–16, 2008, 2008. IFAAMAS. Cited on pp. 212, 219.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994a. Cited
on pp. 95, 106, 113, 122.

C.H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532,
1994b. Cited on p. 111.

http://www.oddshoe.org/history.php

218 BIBLIOGRAPHY

D.C. Parkes. iBundle: An efficient ascending price bundle auction. In Proceedings
of the First ACM Conference on Electronic Commerce (EC-99), pp. 148–157.
ACM, 1999. Cited on p. 163.

E. Pilotto, F. Rossi, K.B. Venable, and T. Walsh. Compact preference representa-
tion in stable marriage problems. In F. Rossi and A. Tsoukias, eds., Algorithmic
Decision Theory: First International Conference, ADT 2009. Venice, Italy,
October 2009. Proceedings, vol. 5783 of Lecture Notes in Artificial Intelligence.
Springer, 2009. Cited on p. 15.

G. Pinkas. Propositional nonmonotonic reasoning and inconsistency in symmetric
neural networks. In J. Mylopoulos and R. Reiter, eds., Proceedings of the
12th International Joint Conference on Artificial Intelligence (IJCAI-1991), pp.
525–531. Morgan Kaufmann, 1991. Cited on p. 16.

A. Ragone, T.D. Noia, F.M. Donini, E.D. Sciascio, and M.P. Wellman. Computing
utility from weighted description logic preference formulas. In Declarative Agent
Languages and Technologies VII (DALT-2009), Lecture Notes in Computer
Science. Springer, 2009a. To appear. Cited on p. 23.

A. Ragone, T.D. Noia, F.M. Donini, E.D. Sciascio, and M.P. Wellman. Weighted
description logics preference formulas for multiattribute negotiation. In Scalable
Uncertainty Management. Third International Conference, SUM 2009, Wash-
ington, DC, USA, September 28–30, 2009. Proceedings, vol. 5785 of Lecture
Notes in Computer Science, pp. 193–205. Springer, 2009b. Cited on p. 23.

S. Ramezani. Nash Social Welfare in Multiagent Resource Allocation. Master’s
thesis, Institute for Logic, Language and Computation, University of Amsterdam,
2008. ILLC Publication MoL-2008-09. Cited on p. 147.

J. Rawls. A Theory of Justice. Harvard University Press, 1971. Cited on p. 117.

D. Roháč. The unanimity rule and religious fractionalisation in the Polish-
Lithuanian Republic. Constitutional Political Economy, 19(2), 2008. Cited on
p. 183.

J.S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT Press, 1994. Cited on
p. 33.

F. Rossi, K.B. Venable, and T. Walsh. mCP Nets: Representing and reasoning
with preferences of multiple agents. In McGuinness and Ferguson [2004], pp.
729–734. Cited on p. 15.

G.-C. Rota. On the foundations of combinatorial theory I: Theory of Möbius
functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2
(4):340–368, 1964. Cited on pp. 36, 143.

BIBLIOGRAPHY 219

M.H. Rothkopf, A. Pekeč, and R.M. Harstad. Computationally manageable
combinational auctions. Management Science, 44(8):1131–1147, 1998. Cited on
p. 101.

D. Samet, ed. Proceedings of the 11th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK-2007), Brussels, Belgium, June 25–27, 2007,
2007. Presses Universitaires de Louvain. Cited on pp. 212, 220.

T. Sandholm. Expressive commerce and its application to sourcing: How we
conducted $35 billion of generalized combinatorial auctions. AI Magazine, 28
(3):45–58, 2007. Cited on p. 3.

T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast optimal algorithm
for winner determination in combinatorial auctions. Management Science, 51
(3):374–390, 2005. Cited on p. 163.

T.W. Sandholm. Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, 135(1–2):1–54, 2002. Cited on pp. 139, 147,
158, 163.

T.W. Sandholm. Optimal winner determination algorithms. In Cramton et al.
[2006], pp. 337–368. Cited on pp. 138, 152, 177.

T.W. Sandholm and S. Suri. BOB: Improved winner determination in combinato-
rial auctions and generalizations. Artificial Intelligence, 145(1–2):33–58, 2003.
Cited on p. 152.

M.A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions.
Journal of Economic Theory, 10(2):187–217, 1975. Cited on p. 184.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986. Cited on p. 147.

D. Schuurmans, F. Southey, and R.C. Holte. The exponentiated subgradient
algorithm for heuristic Boolean programming. In Nebel [2001], pp. 334–341.
Cited on p. 163.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, NJ, 1976. Cited on p. 49.

M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
1997. Cited on p. 95.

A.D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge
University Press, 2005. Cited on pp. 182, 184, 192.

220 BIBLIOGRAPHY

L. Trevisan. Lecture notes 25, CS278: Computational complexity, UC-
Berkeley, 1 December 2004. http://www.cs.berkeley.edu/~luca/cs278/

notes/lecture25.pdf. Cited on p. 75.

J. Uckelman and U. Endriss. Winner determination in combinatorial auctions
with logic-based bidding languages. In Padgham et al. [2008], pp. 1617–1620.
Short Paper. Cited on pp. 7, 12, 162.

J. Uckelman and U. Endriss. Preference representation with weighted goals:
Expressivity, succinctness, complexity. In J. Doyle, J. Goldsmith, U. Junker,
and J. Lang, eds., Proceedings of the AAAI Workshop on Preference Handling
for Artificial Intelligence (AiPref-2007), pp. 85–92, Vancouver, British Columbia,
July 2007. AAAI Press. Technical Report WS-07-10. Cited on pp. 6, 12, 62.

J. Uckelman and U. Endriss. Preference modeling by weighted goals with max
aggregation. In G. Brewka and J. Lang, eds., Proceedings of the 11th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR-2008), pp. 579–587, September 2008b. Cited on pp. 6, 12.

J. Uckelman and A. Witzel. Logic-based preference languages with intermediate
complexity. In J. Chomicki, V. Conitzer, U. Junker, and P. Perny, eds., Proceed-
ings of the 4th Multidisciplinary Workshop on Advances in Preference Handling
(MPREF-2008), pp. 123–127, Chicago, 2008. AAAI Press. Cited on pp. 6, 12.

J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing utility functions
via weighted goals. Mathematical Logic Quarterly, 55(4):341–361, 2009. Cited
on pp. 6, 12.

W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal
of Finance, 16(1):8–37, 1961. Cited on p. 136.

S. de Vries and R.V. Vohra. Combinatorial auctions: A survey. INFORMS Journal
on Computing, 15(3):284–309, 2003. Cited on p. 163.

M. Wachter and R. Haenni. Propositional DAGs: A new graph-based language
for representing Boolean functions. In Doherty et al. [2006], pp. 277–285. Cited
on pp. 66, 67.

I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.
Cited on p. 65.

L.A. Wolsey. Integer Programming. Wiley-Interscience, 1998. Cited on pp. 147,
148.

L. Xia and J. Lang. A dichotomy theorem on the existence of efficient or neutral
sequential voting correspondences. In Boutilier [2009], pp. 342–347. Cited on
p. 15.

http://www.cs.berkeley.edu/~luca/cs278/notes/lecture25.pdf
http://www.cs.berkeley.edu/~luca/cs278/notes/lecture25.pdf

BIBLIOGRAPHY 221

L. Xia, J. Lang, and M. Ying. Strongly decomposable voting rules on multiattribute
domains. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22–26, 2007, Vancouver, British Columbia, Canada, pp. 776–
781. AAAI Press, 2007a. Cited on p. 15.

L. Xia, J. Lang, and M. Ying. Sequential voting rules and multiple elections
paradoxes. In Samet [2007], pp. 279–288. Cited on p. 15.

L. Xia, V. Conitzer, and J. Lang. Voting on multiattribute domains with cyclic
preferential dependencies. In D. Fox and C.P. Gomes, eds., Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago,
Illinois, USA, July 13–17, 2008, pp. 202–207. AAAI Press, 2008. Cited on p. 15.

Yale Law Journal, 1982. Alternative voting systems as remedies for unlawful
at-large systems. The Yale Law Journal, 92(1):144–160, 1982. Cited on p. 199.

H.P. Young. Social choice scoring functions. SIAM Journal on Applied Mathemat-
ics, 28(4):824–838, 1975. Cited on pp. 184, 194.

H. Zhang and M.E. Stickel. An efficient algorithm for unit propagation. In
Proceedings of the Fourth International Symposium on Artificial Intelligence
and Mathematics (AI-MATH ’96), Fort Lauderdale, Florida, USA, pp. 166–169,
1996. Cited on p. 128.

E. Zurel and N. Nisan. An efficient approximate allocation algorithm for combina-
torial auctions. In Proceedings, 3rd ACM Conference on Electronic Commerce
(EC-2001), pp. 125–136, 2001. Cited on p. 163.

List of Symbols

≡, 13
≡F , 13
&, 39
⊥, 11
|=, 10
⊕, 13
|, 41
⊥, 62, 140
⊥U , 62, 140
≺, 62, 140
≺U , 62, 140
�, 62, 140
�U , 62, 140
∼, 62, 140
∼U , 62, 140
>, 11

A, 145
A(p), 145

χS, 74
coC, 97
coNP, 97

f̂(S), 75
For(G), 11

g, 150
G−, 84
G+, 83
G[ψ/χ], 14

h, 150
H, 186
h`i , 161
hp, 156, 159, 161
hpi , 156, 159
h+
∨ , 159
h+
∧ , 156
h¬p, 161
h∧, 160

L, 13
LM(S), 125
LP(G), 127
L(Φ,W), 13
L(Φ,W, F), 13
LPS , 10

MA
i , 146

max, 12
Mono, 54

NP, 97
NTIME(t(n)), 96

O(g(n)), 96
opt(G), 192
optk(G), 192
OR, 139

P, 96
ϕ[ψ/χ], 14
Π, 117

222

LIST OF SYMBOLS 223

PS, 9
PS(k), 33
PSn, 9

Σ, 12
size(G), 62
sw, 146

TIME(t(n)), 96

u∀n, 71
u∃n, 71
uG, 13
uG,F , 12
U(L), 13
und, 145
U(Φ,W), 13
U(Φ,W, F), 13

Var(G), 11
Var(ϕ), 11

X̄, 11
XOR, 139
X↑, 81

Index

active, 51
additive, 32
aggregation function, 12
allocation, 145
Approval Voting, 182

Property, 198
A∗ algorithm, 154
atom, 10
auction, 135
AV, see Approval Voting

bidding language, 26, 35, 138
big-O notation, 96
Boolean circuit, 65
Boolean game, 23
Borda count, 183
branch-and-bound, 150
branching policy, 154
BruteForce, 166, 169

CATS, 163
clause, 10
coalitional game, 26, 67
collective utility function

egalitarian, 116
elitist, 116
Nash product, 116
utilitarian, 116

committee election, 185
compilation, 65
complete cube, 10

completeness, 100
complexity class, 96

complementary, 97
computable function, 97
Condorcet rule, 183
CP-net, 14, 35
CPLEX, 147, 166, 171, 179
cube, 10
CubeBF, 169
CubeLex, 169
CUF, see utility function,

collective
cumulative voting, 183

data generation, 161
decision problem, 95
description logic, 23
dominated, 51

expansion policy, 154
expressive intersection, 62

formula
active, 51
atom, 10
clause, 10

Horn, 10
positive, 10

cube, 10
complete, 10
positive, 10

224

INDEX 225

definition, 10
dominated, 51
Horn clause, 10
k-, 10
k-clause, 10
k-cube, 10
k-form, 10
k-Horn clause, 10
k-pclause, 10
k-pcube, 10
k-pform, 10
k-spcube, 10
k-spform, 10
length, 61
literal, 10
ω-clause, 11
ω-cube, 11
ω-formula, 11
pclause, 10
pcube, 10
pform, 10
positive, 10

strictly, 10
spclause, 10
spcube, 10
spform, 10
state, 11
superfluous, 33

Fourier coefficient, 75
Fourier transform, 74
Fourier-Walsh expansion, 75
function problem, 111

GA-decomposition, 25
generalized additive independence, 25
goalbase, 11

equivalence, 13, 35, 53
language, 13
minimality, 64
represented, 34

uniquely, 34
size, 62
summation, 13

hardness, 99
heuristic, 154

lower bound, 154
upper bound, 154

Horn clause, 10
hornsat, 125

integer program, 148
IP, see integer program

k-additive function, 33
k-clause, 10
k-cube, 10
k-form, 10
k-Horn clause, 10
k-pclause, 10
k-pcube, 10
k-pform, 10
k-spcube, 10
k-spform, 10

L-eval, 144
linear program, 147
literal, 10
logic program, 127

manipulability, 200
many-one reduction, 99
max-cuf, 101
max-util, 100

decision problem, 100
function problem, 122
k-, 196

max-util∗, 124
MC-net, 26, 67, 77
min-util, 100
model, 10

least, 125
modular, 32
Möbius inversion, 36
monotone, 32

negation normal form, 87
NNF, 87

226 INDEX

nonnegative, 32
normalized, 32

ω-clause, 11
ω-cube, 11
ω-formula, 11
OR/XOR language, 27, 35, 68, 139
OR∗ language, 139

parity function, 74
PAV, see Approval Voting, Property
pclause, 10
PClauseBF, 169
PClauseLex, 169
pcube, 10
PCubeBF, 166, 175
PCubeLex, 166
PDAG, 66
penalty logic, 16
pform, 10
PLP, see propositional logic

programming
plurality rule, 182
positive clause, 10
positive cube, 10
positive formula, 10
propositional directed acyclic

graph, see PDAG
propositional logic, 9
propositional logic programming, 125

self-reducible, 124
sincerity, 200
singleton consistency, 117
spclause, 10
spcube, 10
spform, 10
strictly positive cube, 10
strictly positive formula, 10
subadditive, 32
submodular, 32
succinctness, 62, 140

absolute, 79
cross-aggregator, 90

incomparable, 62
superadditive, 32
superfluous, 33
supermodular, 32

translation invariant, 44

unanimity rule, 182
uniform substitution, 14
unique representations, 34, 36, 80
unit-demand, 32, 51

simple, 12
utility function, 11

class of, 13
collective, 100
generated, 12

valued constraint satisfaction
problem, see VCSP

VCSP, 24
voting rule

approval, 182
Borda count, 183
Condorcet, 183
cumulative, 183
dictatorship, 184
plurality, 182
unanimity, 182

WDP, see Winner Determination
Problem

weighted goal, 11
size, 61

Winner Determination Problem, 101,
145

Samenvatting

In deze dissertatie presenteren we een theorie waarmee we compact cardinale
voorkeuren over combinatorische domeinen kunnen weergeven en tonen aan dat
het uitvoerbaar is deze theorie te gebruiken voor veilingen en stemprocedures.

Deze theorie gebruikt zogenaamde ‘goalbases’. Dit zijn verzamelingen gewogen
propositionele formules waarmee we utiliteitsfuncties kunnen representeren. We
berekenen de utiliteitswaarde van een alternatief als de geagregeerde waarde van
de gewichten van de doelen die het alternatief vervullen. Goalbase talen worden
beschreven door de formules en gewichten die in de goalbases voor kunnen komen
te beperken. Deze beperkingen laten zich zien als parameters waarmee de familie
van goalbase talen zich laat beschrijven. Voor het praktische gebruik is het nodig
eerst vast te stellen hoe de talen die bij toepassingen worden gebruikt feitelijk met
deze parameters omgaan. We zullen het landschap van goalbase talen in relatie
tot een drietal verschillende eigenschappen verkennen:

Uitdrukbaarheid: Gegeven een goalbase taal welke utiliteitsfuncties zijn hierin
te representeren? Veel goalbase talen met natuurlijke definities komen precies
overeen met klassen van utiliteitsfuncties die bekende eigenschappen hebben.
Voorts laten we zien dat somige goalbase talen een unieke representatie
hebben voor de representeerbare utiliteitsfuncties. Tevens verschaffen we
methoden om deze representaties te vinden.

Beknoptheid: Gegeven twee goalbase talen, zijn de kortste representaties in
de ene taal significant kleiner dan equivalente kortste representaties in de
andere taal? Op systematische wijze bepalen we voor meer dan tweehonderd
paren van talen wat de meer beknopte taal is.

Complexiteit: Gegeven een goalbase taal, hoe moeilijk is het om vragen te
beantwoorden over goalbases die in deze taal zijn beschreven? Dit wordt
toegespitst op een specifiek probleem. Gegeven een uitdrukking in een
goalbase taal zoeken wij naar de optimale, resp. de slechtste toestand voor

227

228 Samenvatting

individuen dan wel groepen. Dit probleem blijkt onhanteerbaar te zijn voor
de meer expressieve goalbase talen; voor het geval dat het probleem wel
effectief oplosbaar is geven wij algoritmen met een polynomiaal begrensde
rekentijd die deze effectieve oplosbaarheid aantonen.

Nadat we de eigenschappen van veel goalbase talen hebben vastgesteld be-
schouwen we twee mogelijke toepassingen:

Combinatorische veilingen: Combinatorische veilingen kunnen over het alge-
meen niet uitgevoerd worden zonder een exacte bied-taal. Goalbase talen
kunnen gebruikt worden als bied-taal en zijn, soms meer en soms minder,
beknopt dan de bied-talen die reeds in gebruik zijn. Wij presenteren een
formulering als geheeltallig lineair programmerings probleem van het Win-
ner Determination Problem (WDP) waarbij de goalbases als biedingen wor
den gebruikt, en een ‘branch-and-bound’ heuristiek voor het rechtstreeks
oplossen van het WDP. Daarnaast presenteren we experimentele resultaten
die de haalbaarheid van het gebruik van goalbase talen voor veilingen van
gemiddelde grootte aantonen.

Stemming: We beschouwen het probleem van onvoldoend expressieve stempro-
cedures en komen met een voorstel voor het stemmen met goalbases als
stembiljet als mogelijke oplossing. Gewone stemmethodes die een enkele
winnaar aanwijzen zijn niet gemakkelijk uit te breiden naar situaties waar-
bij een groep winnaars moet worden aangewezen, zoals bijvoorbeeld de
verkiezing van een comité; dit wordt veroorzaakt door de interactie tussen
de kandidaten. We stellen een uitbreiding van ‘Approval Voting’ voor, waar-
bij in plaats van oordelen over losse groepen (zoals bij ‘Approval Voting’
gebruikelijk) voorkeuren over groepen worden weergegeven via preferenties
voor eigenschappen die deze groepen al dan niet bezitten.

Samenvattend, dit proefschrift geeft een goed beeld van het nut van goalbase
talen voor het representeren van voorkeuren en een indicatie van de potentiële
toepassingsgebieden.

Abstract

In this dissertation we present a framework for compactly representing cardinal
preferences over combinatorial domains and show the feasibility of using this
framework for auctions and voting.

Our framework uses goalbases—sets of weighted propositional formulas—to
represent utility functions. We compute the utility of an alternative as the
aggregated value of the weights of the goals the alternative satisfies. Goalbase
languages are formed by restricting the formulas and weights which may appear
in goalbases. Due to their parametric nature, these languages are scattered all
across the representational landscape. In order to make practical use of goalbases,
we must first know the lay of the land. In particular, we explore the landscape of
goalbase languages in three directions:

Expressivity: Given a goalbase language, what utility functions are representable
in it? Many goalbase languages with natural definitions correspond exactly
to classes of utility functions having well-known properties. Furthermore,
we show that some goalbase languages have precisely one representation for
any representable utility function, and provide methods for finding these
representations.

Succinctness: Given two goalbase languages, are the smallest representations
in one significantly smaller than equivalent smallest representations in the
other? We systematically compare more than two hundred pairs of languages
to determine which languages are more succinct.

Complexity: Given a goalbase language, how difficult is it to answer queries
about goalbases which are its members? We consider the computational
complexity of finding optimal states for individuals and groups, and finding
pessimal states for individuals. These problems tend to be intractable for
more expressive languages; for those which are solvable in polynomial time,
we provide algorithms demonstrating that.

229

230 Abstract

After determining the properties of many goalbase languages, we consider two
possible applications of them:

Combinatorial Auctions: Combinatorial auctions cannot generally be con-
ducted without concise bidding languages. Goalbase languages may be
used as bidding languages, and are sometimes more and sometimes less
succinct than bidding languages already in use. We give an integer program-
ming formulation of the Winner Determination Problem using goalbases as
bids, as well as branch-and-bound heuristics for solving the WDP directly,
and present experimental results which demonstrate the feasibility of using
goalbase languages for auctions of moderate size.

Voting: We consider the problem of insufficiently expressive voting methods, and
suggest voting with goalbases as ballots as a possible remedy. Common
single-winner voting methods do not extend well to multi-winner settings like
committee elections due to interactions between candidates. We suggest an
extension to Approval Voting, where properties of the outcome are approved
(or not) rather than particular outcomes as in standard Approval Voting.

In summary, this dissertation provides a clear view of the power of goalbase
languages for preference representation, and points to potential areas of application.

Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and
Neuropharmacology

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software

ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics

ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory

ILLC DS-2002-05: Rosella Gennari
Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen
A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi
Knowledge, chance, and change

ILLC DS-2003-02: Elisabeth Catherine Brouwer
Imagining Metaphors: Cognitive Representation in Interpretation and Under-
standing

ILLC DS-2003-03: Juan Heguiabehere
Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz
From Document Retrieval to Question Answering

ILLC DS-2004-01: Hein Philipp Röhrig
Quantum Query Complexity and Distributed Computing

ILLC DS-2004-02: Sebastian Brand
Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin
Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate
Model theory for extended modal languages

ILLC DS-2005-02: Willem-Jan van Hoeve
Operations Research Techniques in Constraint Programming

ILLC DS-2005-03: Rosja Mastop
What can you do? Imperative mood in Semantic Theory

ILLC DS-2005-04: Anna Pilatova
A User’s Guide to Proper names: Their Pragmatics and Semanics

ILLC DS-2005-05: Sieuwert van Otterloo
A Strategic Analysis of Multi-agent Protocols

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical
music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity, and
Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity

ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuroscience

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language, literacy
and logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder...”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

	Acknowledgments
	1 Introduction
	2 Languages
	2.1 Introduction
	2.2 Notation
	2.2.1 Propositional Logic
	2.2.2 Utility Functions, Goalbases, and Languages

	2.3 Related Languages
	2.3.1 CP-Nets
	2.3.2 Penalty Logic
	2.3.3 Weighted and Distance-Based Logics for Cardinal Disutility
	2.3.4 Propositional Languages for Ordinal Preferences
	2.3.5 Weighted Description Logics
	2.3.6 Boolean Games
	2.3.7 Valued Constraint Satisfaction Problems
	2.3.8 Generalized Additive Independence
	2.3.9 Coalitional Games
	2.3.10 Bidding Languages

	I Theory
	3 Expressivity
	3.1 Introduction
	3.2 Preliminaries
	3.3 Related Work
	3.4 Expressivity of Sum Languages
	3.4.1 Goalbase Equivalences
	3.4.2 Uniqueness
	3.4.3 Correspondences
	3.4.4 Summary

	3.5 Expressivity of Max Languages
	3.5.1 Superfluous Goals
	3.5.2 Goalbase Equivalences
	3.5.3 Correspondences
	3.5.4 Summary

	3.6 Odds and Ends
	3.7 Conclusion

	4 Succinctness
	4.1 Introduction
	4.2 Preliminaries
	4.3 Related Work
	4.4 Succinctness of Sum Languages
	4.4.1 Some Basic Succinctness and Equivalence Results
	4.4.2 Equivalence via Goalbase Translation
	4.4.3 Strict Succinctness and Incomparability, by Counterexample
	4.4.4 Strict Succinctness, Nonconstructively
	4.4.5 Summary

	4.5 Succinctness of Max Languages
	4.5.1 Absolute Succinctness
	4.5.2 Relative Succinctness
	4.5.3 Summary

	4.6 Cross-Aggregator Succinctness
	4.7 Conclusion

	5 Complexity
	5.1 Introduction
	5.2 Background
	5.3 The Decision Problems max-util, min-util, and max-cuf
	5.4 Related Work
	5.5 The Complexity of max-util and min-util
	5.5.1 Hardness Results for max-util
	5.5.2 Easiness Results for max-util
	5.5.3 The Complexity of min-util
	5.5.4 Summary

	5.6 The Complexity of Collective Utility Maximization
	5.6.1 Summary

	5.7 An Alternate Formulation of max-util
	5.7.1 Revising the max-util Decision Problem
	5.7.2 Horn Clauses, Logic Programming, and hornsat
	5.7.3 Finding P-Complete Goalbase Languages
	5.7.4 Discussion

	5.8 Conclusion

	II Applications
	6 Combinatorial Auctions
	6.1 Introduction
	6.2 Auctions
	6.3 Bidding Languages
	6.3.1 The XOR, OR, and OR* Languages
	6.3.2 Goalbase Bidding Languages
	6.3.3 Succinctness

	6.4 Winner Determination
	6.4.1 Notation
	6.4.2 The Winner Determination Problem
	6.4.3 An IP Formulation of the WDP
	6.4.4 Branch-and-Bound WDP Algorithms

	6.5 Heuristics for Winner Determination
	6.5.1 Expansion and Branching Policies
	6.5.2 Heuristics for Positive Cubes
	6.5.3 Heuristics for Positive Clauses
	6.5.4 Heuristics for Cubes

	6.6 Experimental Setup
	6.6.1 Principles for Generating Realistic Data
	6.6.2 Data Generation

	6.7 Experimental Results
	6.7.1 First Solver
	6.7.2 Second Solver and CPLEX
	6.7.3 Comparison of Solvers

	6.8 Conclusion

	7 Voting
	7.1 Introduction
	7.2 Background
	7.3 Multi-Winner Elections
	7.3.1 Some Methods for Committee Election
	7.3.2 Similar Committees Need Not Be Similarly Preferable

	7.4 Simulating Voting Methods Using Goalbases
	7.5 The Complexity of Deciding Winning Slates
	7.6 Extending Single-Winner Voting Methods
	7.7 Future Work
	7.8 Conclusion

	8 Conclusion
	Bibliography
	List of Symbols
	Index
	Samenvatting
	Abstract

