
Fixed-Point Logics on Trees

Amélie Gheerbrant

Fixed-Point Logics on Trees

ILLC Dissertation Series DS-2010-08

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

Fixed-Point Logics on Trees

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op donderdag 9 december 2010, te 12.00 uur

door

Amélie Pauline Gheerbrant

geboren te Parijs, Frankrijk.

Promotiecommissie:

Promotor: Prof.dr. J. F. A. K. van Benthem
Co-promotor: Dr. B. D. ten Cate

Overige leden:

Prof. dr. G. Gottlob
Prof. dr. E. Grädel
Prof. dr. D. H. J. de Jongh
Prof. dr. J. Väänänen
Prof. dr. Y. Venema
Dr. D. Berwanger

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The investigations were supported by a GLoRiClass fellowship of the European
Commission (Research Training Fellowship MEST-CT-2005-020841).

Copyright c© 2010 by A. Gheerbrant

Cover design by Emy (http://arrachetoiunoeil.free.fr/).
Printed and bound by http://www.printondemand-worldwide.com.

ISBN: 978–90–55776–216–1

To the O.C.C.I.I.

v

Contents

Acknowledgments xi

1 Introduction 1

2 Preliminaries 5
2.1 Trees as Relational Structures . 5

2.1.1 Different Sorts of Trees . 5
2.1.2 Fixed-Point Extensions of First-Order Logic 7
2.1.3 Expressive Power . 19

2.2 The Modal Logic Perspective on Trees 21
2.2.1 Basic Modal Logic . 21
2.2.2 Temporal and Fixed-Point Extensions of Basic Modal Logic 25
2.2.3 Expressive Power . 28

2.3 Tools and Concepts . 31
2.3.1 Decidability . 31
2.3.2 Complete Axiomatizations 34

2.4 Summary . 36

3 Complete Axiomatization of Fragments of MSO on Finite Trees 37
3.1 The Axiomatizations . 38
3.2 Henkin Completeness . 41
3.3 Operations on Henkin-Structures 48

3.3.1 Ehrenfeucht-Fräıssé Games on Henkin-Structures 54
3.3.2 Fusion Theorems on Henkin-Structures 62

3.4 Putting it Together: Completeness on Finite Trees 75
3.4.1 Forests and Operations on Forests 75
3.4.2 Main Proof of Completeness 77
3.4.3 Definability of the Class of Finite Trees 78

3.5 Finite Linear Orders . 79

vii

3.6 Conclusion . 80

4 Interpolation for Linear Temporal Languages 81
4.1 Introduction . 81
4.2 Preliminaries . 83

4.2.1 Abstract Temporal Languages 83
4.2.2 Propositional Linear Temporal Logic 84
4.2.3 Linear Time µ-Calculus 85

4.3 Projective Definability versus Definability with Fixed-Points . . . 86
4.4 Temporal Languages with Craig Interpolation 93
4.5 Interpolation Closure Results for Temporal Languages 95

4.5.1 The Interpolation Closure of LTL(F<) 95
4.5.2 The Interpolation Closure of LTL(F) 97

4.6 Finite Linear Orders . 99
4.7 Conclusion . 99

5 Complete Axiomatization of µTL(U) 101
5.1 Introduction . 101
5.2 Preliminaries . 102

5.2.1 Linear Time µ-Calculus 102
5.2.2 Stutter-Invariance . 105

5.3 The Logic µTL(♦Γ) . 107
5.4 Complete Axiomatization of µTL(♦Γ) 110
5.5 Complete Axiomatization of µTL(U) 112
5.6 Conclusion . 116

6 Fixed-point Logics on Finite Extensive Games 117
6.1 Game Solution as Rational Procedure 117
6.2 From Functional to Relational Strategies 119
6.3 Defining BI as a Unique Static Relation 122
6.4 A Dynamic-Epistemic Scenario: Iterated Announcement of Ratio-

nality . 125
6.5 Another Dynamic Scenario: Beliefs and Iterated Plausibility Upgrade129
6.6 Midway Conclusion: Dynamic Foundations 136
6.7 Test Case: Variants of Backward Induction 137

6.7.1 Defining BI’ in Partial Fixed-Point Logic 137
6.7.2 Defining BI’ in Inflationary Fixed-Point Logic 139
6.7.3 Alternative: Recursion on Well-Founded Tree Order 140

6.8 Excursion: Order-Conform Fixed-Point Logics 143
6.8.1 Order-Conform Operators 144
6.8.2 The Modal ι-Calculus . 147

6.9 Towards Well-Behaved Fixed-Point Logics on Finite Extensive Games150
6.10 Further Issues in Extended Game Logics 152

viii

6.11 Coda: Alternatives to Backward Induction and True Game Dynamics154
6.12 Conclusion . 156

7 Conclusion 157

Samenvatting 171

Abstract 173

ix

Acknowledgments

I began as a Philosophy student, wrote a PhD in Logic and just started as a
research associate in theoretical Computer Science. Hence I went “From Philo-
sophical to Industrial Logics” (taking some sort of wild path slightly reminiscent
of [131]), which was not always easy. Some people helped me and I want to
thank them. Back when I was studying Philosophy, I especially remember Su-
sana Berestovoy, Marcin Mostowski and Gabriel Sandu. I discovered logic through
Susana and she advertised model theory so well that I fell under the spell of the
topic. Marcin then convinced me that at some point, I should also try to under-
stand finite model theory and complexity theory. Finally, Gabriel advised me to
go for a PhD in Amsterdam, where I could happily learn more about Logic.

Indeed I learnt a lot in Amsterdam. I am especially indebted to my supervi-
sors, Johan van Benthem and Balder ten Cate. Balder introduced me to some
very nice topics and spent countless hours pointing out mistakes in my wanna
be proofs. Turning me into a competent logician was not an easy task and I feel
lucky that he invested so much time and energy into the (still ongoing) trans-
formation. As a friend and beyond work, I also want to thank him for cheering
me up and having been a friendly ear in difficult moments. Johan became my
supervisor only later. Johan is not only a very good logician, he is also curious
of many other things and rich in stimulating new ideas. It was both instructive
and refreshing to start looking at game theory through his eyes. Wherever I had
only blurry intuitions or feelings, he was always able to offer me a glimpse into
some higher and harder to reach standpoint.

I am also grateful to the GloRiClass coordinators (Krzysztof Apt, Johan van
Benthem, Paul Dekker, Ulle Endriss and Benedikt Löwe) for making me part of
the adventure and to the whole extended family of the ILLC staff and students (a
special word is in order for Karin Gigengack, Tanja Kassenaar, Ingrid van Loon,
Peter van Ormondt and Marjan Veldhuisen, whose help with Dutch bureaucracy
is deeply acknowledged). Among these, I remember nice parties and discus-
sions with (to name only a few) Alexandru Baltag, Nick Bezhanishvili, Cédric

xi

Dégremont, Gaëlle Fontaine, Nina Gierasimczuk, Florian Horn, Daisuke Ikegami,
Olivia Ladinig, Tadeusz Litak, Salvador Mascarenhas, Olivier Roy, Sonja Smets,
Maria Spychalska, Jakub Szymanik, Jouko Väänänen, Yde Venema, Jakob Vos-
maer, Andreas Witzel and Jonathan Zvesper. I am especially grateful to Jouko
for illuminating discussions about Ehrenfeucht Fräıssé games and for letting me
be his teaching assistant for the Model Theory course. Thank you also to my
friend Alexandru for his hospitality in Oxford, where heavenly cheese and wine
accompanied our endless discussions ranging from Philosophy and Mathematics
to the private life of robots. I am also grateful to Maarten Marx, Maarten de
Rijke and the ILPS people for welcoming me warmly and giving me an office when
Balder was still there. At least as far as work is concerned, Gaëlle also deserves
a special acknowledgment. We talked for hours about life and logic in our own
strange mix of French and English, often while seriously partying. I subscribe
both to her good mathematical taste and to her vision of life and I express all
my respect for her ability to discuss my broken proofs at completely indecent
times of the night. I also want to thank our common friends in Amsterdam: in
particular Charlotte Caldwell, Luc van Welden, Olivia Ladinig, Sjoerd Stolk and
Teun Doekes, but also the whole O.C.C.I.I. crowd. The O.C.C.I.I. is a wonderful
place for independent music and it was my (our) second home, I miss it badly. I
also loved living with the three outstanding girls that are Charlotte, Gaëlle and
Olivia (thank you Charlie for welcoming me in your flat when I was homeless,
boring and struggling to finish the thesis). I am also grateful to the people of
the LSV in Cachan. I visited the place extensively in the past year and a half
and I have been welcomed in a very friendly way. A warm thank you to Dietmar
Berwanger, Diego Figueira, Thomas Place, Luc Ségoufin and Camille Vacher for
at various times providing me with a cheerful office space. Thank you also to the
people of the IHPST (in particular my friend Alexandra Arapinis) that I kept
visiting after I left for Amsterdam. Another person in Paris to whom I want to
express my gratitude is Claire David. She introduced me both to the mysteries of
XML and to Leonid Libkin, who ended up offering me a great job in Edinburgh.
I address here an especially enthusiastic thank you to Leonid for making me part
of his group. I am also grateful to the members of my committee, who are all top
researchers and did me the great honor of accepting to read my thesis.

Finally, I want to mention my family and friends in Paris. I owe a lot to
my mother, who raised me among books with unconditional love. I am also
grateful to my father, grand-parents, brother and friends for being there. A
special thank you for those from musiquesincongrues, musikmekanikcirkus and
arrachetoiunoeil, who contribute in making Paris a great place to return. The
last three words are for Julien Daigremont a.k.a. Computer Truck: I LOVE YOU!

Edinburgh Amélie
October, 2010.

xii

Chapter 1

Introduction

Tree structures are an appealing way of representing complex hierarchical infor-
mation in a graphical form. Tree pictures are ubiquitous, from family histories to
internet documents, and from medical records to blueprints for plans. One could
make a very rich inventaire à la Prévert out of all the different species of tree
structures encountered in human activities.

Not surprisingly then, trees are also prominent in the world of academic re-
search. They are a major tool in disciplines as diverse as linguistics, mathematics,
philosophy, game theory, or computer science. And in addition to being a favorite
tool for research, finite and infinite trees are themselves the object of explicit
study, for instance, in mathematics and set theory. Specific literature references
to such areas will be made later on, when relevant to our investigation.

Trees in Logic

This thesis is about trees from the perspective of logic. Logicians use trees in
central notions of their discipline, witness the tree structure of formulas, natural
deduction proofs, or semantic tableaux. But tree structures being prominent in
many other disciplines, logicians have also found various motivations to study
trees theoretically, and the languages and logics most appropriate to describing
them. Our investigation is in the latter mode.

One striking feature, then, is that there is not one single logic of trees, there
is a whole family of approaches. Trees have been described in first-order logic, or
stronger second-order logics like MSO (first-order logic with monadic set quan-
tifiers). But they have also been studied extensively with an array of temporal
logics, in both “linear time” versions (LTL) and “branching time” versions (CTL).
And in yet another mode, they have also been studied using modal logics with
additional fixed-point operators to describe recursive notions naturally associated
with trees, such as “reachability”. In addition, a source of diversity is that trees

1

2 Chapter 1. Introduction

in practice usually have relevant additional structure, such as “sibling orders” in
linguistic parse trees, or “preference orders” in game trees.

In this broad area of logic on trees, the interests underlying this thesis are
several. First, we design and study some detailed tree logics for mainly computa-
tional purposes, such as data structures for XML documents. Usually this means
that trees have to be enriched with appropriate additional structure, where one
of our guising interests is recursion and reachability. But next, such applications
are best understood in the light of theory. We also study basic properties of the
logics that we propose, including complete axiomatizations. A view from logical
theory also has another virtue, namely, bringing to light connections between
the sometimes quite different logics proposed in practice, and maintaining an
overview of the area. We will give several examples of this coherence, in terms
of new connections between logics on trees, interpolation properties singling out
especially well-behaved systems, and notions of semantic invariance. We will be
mainly using techniques from classical model theory, also from abstract model
theory and we will sometimes rely on automata-theory, which is a common tool
in the domain. While the main thrust of this work is directed toward computer
science (database theory, formal verification), at the end of the thesis, we take a
look at a new interface, namely, game theory. The encounter between logic and
games was in fact a major theme of the “Gloriclass” Marie Curie Center at the
ILLC in Amsterdam (http://www.illc.uva.nl/GLoRiClass/), of which this thesis
project was a part. We take methods developed in fixed-point logics of computa-
tion, joint with dynamic logics of knowledge and belief, to the analysis of game
solution procedures, and find new links between logic, computation and games.

Chapter Overview

Chapter 2 In the preliminary chapter of the thesis, we list the main logical
notions, tools and results that will be used later on. These include basics of
modal logic, temporal logic, fixed-point logics, and some first-order and higher-
order logics of tree structure.

Chapter 3 In Chapter 3, we consider a specific class of tree structures that can
represent basic structures in linguistics and computer science such as XML doc-
uments, parse trees, and treebanks, namely, finite node-labelled sibling-ordered
trees. We present axiomatizations of the monadic second-order logic (MSO),
monadic transitive closure logic (FO(TC1)) and monadic least fixed-point logic
(FO(LFP1)) theories of this class of structures. These logics can express impor-
tant properties such as reachability. Using model-theoretic techniques, we show
by a uniform argument that these axiomatizations are complete, i.e., each formula
which is valid on all finite trees is provable using our axioms. As a backdrop to
our positive results, on arbitrary structures, the logics that we study are known

3

to be non-recursively axiomatizable.

Chapter 4 Next, we take a more general abstract look at temporal logics of
tree structure through their system properties. In Chapter 4, using techniques
from abstract model-theory, we propose a general viewpoint on temporal logics in
term of their Craig interpolation properties. We consider various fragments and
extensions of propositional linear temporal logic (LTL), obtained by restricting
the set of temporal connectives or by adding a least fixed-point construct to the
language. For each of these logics, we identify its smallest extension that has
Craig interpolation. Depending on the underlying set of temporal operators, this
framework turns out to be one of the following three logics: the fragment of
LTL having only the Next operator; the extension of LTL with a least fixed-point
operator µ (known as linear time µ-calculus); and the least fixed-point extension
of the “Until-only” fragment of LTL.

Chapter 5 Our next perspective on tree logics is through fixed-point operations
and semantic invariance. We focus on the logic µTL(U), the least fixed-point ex-
tension of the “Until”-only fragment of linear-time temporal logic. In the previous
chapter, we identified µTL(U) as the stutter-invariant fragment of the linear-time
µ-calculus µTL. We also identified this logic as one of the three only temporal
fragments of µTL that satisfy Craig interpolation. Complete axiom systems were
known for the two other fragments, but this was not the case for µTL(U). We
provide complete axiomatizations of µTL(U) on the class of finite words and on
the class of ω-words. For this purpose, we introduce a new logic µTL(♦Γ), a
variation of µTL where the “Next time” operator is replaced by the family of its
stutter-invariant counterparts. This logic has exactly the same expressive power
as µTL(U). Using known results for µTL, we first prove completeness for µTL(♦Γ),
which then allows us to obtain completeness for µTL(U).

Chapter 6 Finally, we take our style of analysis via modal and temporal fixed-
point logics to games. Current methods for solving games embody a form of
“procedural rationality” that invites logical analysis in its own right. This chapter
is a case study of Backward Induction for extensive games. We consider a number
of analyses from recent years in terms of knowledge and belief update in logics that
also involve preference structure, and we prove that they are all mathematically
equivalent in the perspective of fixed-point logics of trees. We then generalize our
perspective on games to an exploration of fixed-point logics on finite trees that
best fit game-theoretic equilibria. We end with a broader program for merging
computational logics to the area of game theory.

4 Chapter 1. Introduction

Origins of the Material

Chapter 3 is based on joint work with Balder ten Cate, a short version of which
was published in [70]. Chapter 4 is also based on joint work with Balder ten Cate,
which was published in [71]. The material in Chapter 5 was published in [69].
Finally, Chapter 6 is based on joint work with Johan van Benthem, a large part
of which was published in [22].

Chapter 2

Preliminaries

2.1 Trees as Relational Structures

2.1.1 Different Sorts of Trees

By a relational vocabulary1, or signature σ, we mean a finite set of relational
symbols, or predicates {R1, . . . , Rn} with associated arities ar(Ri) ∈ N. A re-
lational structure M over σ, or σ-structure, is a tuple (dom(M), RM

1 , . . . , R
M
n)

where dom(M), the domain of M, is a set and for each Ri, R
M
i ⊆ dom(M)ar(Ri).

In this thesis, we will focus on particular relational structures that are called
trees and we will be using appropriate relational symbols in order to talk about
them. A tree is a partially ordered set with a unique smallest element called the
root and such that apart from the root, each element (or node) has one unique
immediate predecessor. Often, the underlying partial order, or descendent order,
is explicitly represented by means of a binary predicate ≤, but sometimes, only
the corresponding immediate successor relation, or descending edge relation in
the graph, is represented using some binary predicate <ch. Note that <ch is not a
partial order (in particular, it is not transitive). We say that x is an ancestor of
y and y is a descendant of x whenever x ≤ y and we say that x is the parent of y
and y is the child of x whenever x <ch y. A minimal vocabulary to deal with trees
involves at least one of these two predicates. For instance, assuming dom(M) is
some finite set and ≤ has a suitable interpretation in M, (dom(M),≤M) is a
(finite) tree.

Starting from such basic tree structures, different classes of trees are relevant
in different areas and accordingly, many different optional features come into play.
First of all, from a mathematical point of view, it makes a big difference if one
assumes that dom(M) is finite or infinite. An other important distinction, both
mathematically and historically speaking (see [104]), is the distinction ranked

1In the remaining of the thesis, we will work exclusively with purely relational vocabularies,
i.e., with no individual constant or function symbols.

5

6 Chapter 2. Preliminaries

versus unranked trees. In ranked trees, all non-terminal nodes have the same
fixed number of children, 2, whereas no such constraint is put in the case of
unranked trees. The distinction can sometimes be considered as a mere technical
convenience, as any countable tree can be encoded as a binary tree. Indeed, given
some unranked tree, one can always find a binary tree which can be put in one to
one correspondence with it in the following way: each node x in the unranked tree
will correspond to a node x′ in the binary tree, the left child of x′ will correspond
to the first child of x, and the right child of x′ will correspond to x’s next sibling,
this way the nth sibling of x will correspond to some nth descendant of x′. Another
distinction related to the one ranked versus unranked is the one bounded versus
unbounded branching. All ranked trees and finite unranked trees are of (some)
bounded branching, and among infinite unranked trees, some are also of bounded
branching. An interesting case of trees which are of bounded branching is those
where every node has at most one successor. Such trees are called linear orders
and they are also ranked trees of “degree” 1. We will focus respectively on finite
unranked trees (chapter 3 and 6) and on finite linear orders and linear orders of
order type ω (chapter 4 and 5).

Many other features can also be represented by means of additional predicates.
Adding unary predicates allows for instance to label nodes in the tree, so that
different trees do not differ only by the cardinality of their domains and by their
underlying descendent order, but also by the way they are labelled. Such trees
are called node-labelled. Unary predicates can for instance be introduced to label
special nodes like the root or the leaves. In the following, we will always deal
with node-labelled trees. Often incorporated in the language is another feature,
which is implicit in the graphic representation of a tree: the sibling-order linearly
ordering the children of each node, which can be represented by means of an
additional binary predicate �. The unranked finite trees in Chapter 3 will be
considered together with such an additional feature. Many other options are of
course possible. In the case of finite trees, one could also want to consider one
or more linear orders over the leaves. We will see in the last chapter that finite
extensive games in perfect information can be represented in this way. We will
also see that such “trees” are much more complex objects than the other trees
described above. Hence, in the remaining, whenever we will say on trees, without
any other precision, we will mean on the sort of simple trees described above, but
not on game trees.

Finally, one reason for which trees are nice mathematical objects is that they
are really easy to picture. It follows that in practise, reasoning about them often
involves drawing interesting samples and trying to modify or compose them: cut-

2Sometimes, whenever trees are node labelled, the number of children can also be determined
by the label of that node. Consider for instance a tree where all non-terminal nodes are labelled
by “AND”, “OR” or “NOT”, while leaves are labelled by propositional letters. Whenever the
nodes labelled by “AND” or “OR” are all binary branching and the nodes labelled by “NOT”
are all unary branching, we say that the tree is ranked.

2.1. Trees as Relational Structures 7

ting and pasting some parts of the graph, coloring or adding edges, considering
disjoint unions of trees or even more complex generalized products like forests (as
we will do in Chapter 3). . . In this context, some important part of the mathe-
matical thinking really takes place at the picture level. Hence, let us illustrate
our quick tree typology with the following simple graphic example of a tree:

P

P

Q P

Q

P

Figure 2.1: A finite unranked node-labelled tree

Obviously the tree pictured here is finite (there are exactly six nodes in its
domain), node-labelled, unranked and its branching is bounded by 2. What is less
clear is the exact vocabulary of the structure. It could be {≤, P,Q}, {<ch, P,Q},
{≤,�, P,Q}, {≤,≺ch, P,Q}, or some other variation involving ≤, ≺ch and �.

2.1.2 Fixed-Point Extensions of First-Order Logic

In order to talk about relational structures (and, hence, about trees), one typically
uses first-order logic (FO). We will shortly recall basics notions and facts about
FO, but we will introduce also five of its extensions: monadic second-order logic
MSO, monadic transitive closure logic FO(TC1), least fixed-point logic FO(LFP),
inflationary fixed-point logic FO(IFP) and partial fixed-point logic FO(PFP). In
the remaining of the thesis (unless explicitly stated otherwise), we will always be
working with a fixed purely relational vocabulary σ and hence, with σ-structures.
We assume as usual that we have a countably infinite set of first-order variables.
In the case of MSO, FO(LFP), FO(IFP) and FO(PFP) we also assume that we
have a countably infinite set of second-order variables (only of arity 1 in the case
of MSO, of arbitrary arity otherwise). Given the fact that we will introduce in
Chapter 3 alternative semantics for some of these logics, the semantics defined in
this section we will refer to as standard semantics and the associated structures,
as standard structures.

First-Order Logic

Let us first recall the syntax and semantics of FO:

Definition 2.1.1 (Syntax and semantics of FO). Let P ∈ σ be a predicate of
arity n and x, x1, . . . , xn be first-order variables. We let At be a formula of either

8 Chapter 2. Preliminaries

the form xi = xj, or P (x1, . . . xn) and call it a first-order atomic formula. We
inductively define the set of FO formulas in the following way:

ϕ := At | ϕ ∨ ψ | ¬ϕ | ∃x ϕ

We use ∀xϕ, ϕ ∧ ψ, ϕ → ψ as shorthand for, respectively, ¬∃x¬ϕ, ¬(¬ϕ ∨ ¬ψ)
and ¬(ϕ ∧ ¬ψ). We define the quantifier depth of a FO formula as the maximal
number of nested first-order quantifiers. We interpret FO formulas in relational
structures. The truth of a FO-formula in a relational structure M is defined
modulo a valuation g of variables as objects. We let g[a/x] be the assignment
which differs from g only in assigning a to x. We inductively define the truth of
FO-formulas as follows:

M, g |= xi = xj iff g(xi) = g(xj)
M, g |= P (x1, . . . , xn) iff (g(x1), . . . , g(xn)) ∈ PM

M, g |= ¬φ iff M, w 6|= φ
M, g |= φ ∨ ψ iff M, w |= φ or M |= ψ
M, g |= ∃xφ iff there exists a ∈ dom(M) such that M, g[a/x] |= φ

We presented the semantics of FO in a general way and only assumed that
M was “some” relational structure. Still, in the remaining we want to focus on
trees. A natural question is hence the following. With the FO language at hands,
what are the interesting things that one can say about trees? Moreover, how
fine grained can one be using FO? Looking at the simple tree drawing in Figure
2.1 and assuming it corresponds to a {≤,�, P,Q}-structure, we can observe for
instance that this structure satisfies the following FO-formulas:

• ∃x(Q(x) ∧ ∀y(x ≤ y → x = y))

• ∃x∃y(P (x) ∧Q(y) ∧ x ≤ y ∧ ∀z((x ≤ z ∧ z ≤ y)→ (z = x ∨ z = y)))

The first formula says that there is a leaf labelled by Q. The second formula
says that there is a node labelled by P which has a child labelled by Q. Something
else that these formulas show is that the predicates Leaf and <ch are definable in
FO whenever one takes as basis vocabulary {≤}.3 One only needs to stipulate:

• Leaf(x) := ∀y(x ≤ y → x = y)

• x <ch y := x ≤ y ∧ ∀z((x ≤ z ∧ z ≤ y)→ z = x ∨ z = y))

A relation ≺ns of next sibling is similarly definable in FO using the relation �.
On the other hand, it is known that ≤ and � are not definable in FO by means
of <ch and ≺ns, whereas both are definable in the more expressive logics that we
are about to introduce. A classical way to show this relies on a model-theoretic
tool called the FO Ehrenfeucht-Fräıssé game (see [104] or [58]). We will present
this game, but first, we need the following notion:

3Note that we treated = as a logical constant, already present in the apparatus of FO.

2.1. Trees as Relational Structures 9

Definition 2.1.2 (Elementary Equivalence). Given two relational structures M
and N, we write M ≡ N and say that M and N are elementary-equivalent if they
satisfy the same FO-sentences. Also, for any natural number n, we write M ≡n N
and say that M and N are n-elementary equivalent if M and N satisfy the same
FO-sentences of quantifier depth at most n. In particular, M ≡ N holds iff, for
all n, M ≡n N holds.

One rather trivial sufficient condition for FO-equivalence is the existence of
an isomorphism. Clearly isomorphic structures satisfy the same FO-formulas. A
more interesting sufficient condition for elementary equivalence is that of Du-
plicator having a winning strategy in all FO Ehrenfeucht-Fräıssé games of finite
length. To define this, we first need the following notion:

Definition 2.1.3 (Finite Partial Isomorphism). A finite partial isomorphism be-
tween structures M and N is a finite relation {(a1, b1), . . . , (an, bn)} between the
domains of M and N such that for all atomic formulas ϕ(x1, . . . , xn), M |=
ϕ [a1, . . . , an] iff N |= ϕ [b1, . . . , bn]. Since equality statements are atomic formu-
las, every finite partial isomorphism is (the graph of) an injective partial function.

We will also need the following lemma:

Lemma 2.1.4 (Finiteness Lemma). Fix any set x1, . . . , xk, Xk+1, . . . , Xm. In a
finite relational vocabulary, up to logical equivalence, with these free variables,
there are only finitely many FO-formulas of quantifier depth ≤ n.

Proof. This can be shown by induction on k. In a finite relational vocabulary, with
finitely many free variables, there are only finitely many atomic formulas. Now,
any FO-formula of quantifier depth k + 1 is equivalent to a Boolean combination
of atoms and formulas of quantifier depth k prefixed by a quantifier. Applying a
quantifier to equivalent formulas preserves equivalence and the Boolean closure
of a finite set of formulas remains finite, up to logical equivalence.

We can now introduce the classical FO game:

Definition 2.1.5 (FO Ehrenfeucht-Fräıssé Game). The FO Ehrenfeucht-Fräıssé
game of length n on structures M and N (notation: EF n

FO(M,N)) is as follows.
There are two players, Spoiler and Duplicator. The game has n rounds, each of
which consists of a move of Spoiler followed by a move of Duplicator. Spoiler’s
moves consist of picking an element from one of the two structures, and Duplica-
tor’s responses consist of picking an element in the other structure. In this way,
Spoiler and Duplicator build up a finite binary relation between the domains of
the two structures: initially, the relation is empty; each round, it is extended with
another pair. The winning conditions are as follows: if at some point of the game
the constructed binary relation is not a finite partial isomorphism, then Spoiler
wins immediately. If after each round the relation is a finite partial isomorphism,
then the game is won by Duplicator.

10 Chapter 2. Preliminaries

Theorem 2.1.6 (FO Adequacy). Assume a finite relational first-order language.
Duplicator has a winning strategy in the game EF n

FO(M,N) iff M ≡nFO N. In
particular, Duplicator has a winning strategy in all EF-games of finite length
between M and N if and only if M ≡FO N.

The proof for the first-order case is classic. We refer the reader to the proof
given in [104], to the one given in [58] or to the the more elaborate FO(TC1)
adequacy proof that we give in Chapter 3 (the proof for FO can be obtained in a
straightforward way by forgetting about the TC move and TC quantifier).

With such a tool at hand, one can for instance show that the transitive closure
≤ of the <ch relation is not definable in FO and that neither is the class of finite
sibling-ordered trees. As these results are folklore, we only provide a short detailed
proof (inspired by [63]) for the first one as an example of proof using the FO-game
and we omit the proof of the second one. We refer to [104] for other detailed proofs
of simpler related propositions.

Proposition 2.1.7. On finite linear orders, the predicate ≤ is not definable in
FO with basic vocabulary {<ch}.

Proof. We assume that ≤ is definable by a FO-formula ϕ(x, y) of quantifier-depth
n, from which we will derive a contradiction. Let L be a finite linear order in
vocabulary {<ch} and ā a finite sequence of parameters in dom(L). By NLr (ā)
we mean the restriction of L to all the elements which are at distance at most
r along the <ch relation from one of the parameters in ā. This structure, which
is not necessarily a linear order can be seen as the “r-neighborhood” (see [104])
of the elements in ā. Now let rn = (3n − 1)/2 and note that rn+1 = 3rn + 1.
Consider a linear order L of length at least rn+2 with four distinguished elements
astart, aend, a∗, a

∗ ∈ dom(L) such that astart is the root, aend the last element and
a∗, a

∗ are points wich distance between them, as well as between the endpoints,
is greater than 2rn + 1, i.e., greater than 3n.4 Let L′ be copy of L, with four
parameters bstart, bend, b∗, b

∗ ∈ dom(L′) such that in L′, b∗ is interpreted as a∗

and b∗ as a∗, while bstart and bend are interpreted as astart and aend respectively.
Observe that the formula ϕ(x, y) defining ≤ is satisfied in L, a∗, a∗ if and only
if it is not satisfied in L′, b∗, b∗. We will show that (L, astart, aend, a∗, a∗) ≡nFO
(L′, bstart, bend, b∗, b∗). This will be enough, as this will contradict our assumption
that ϕ(x, y) defines ≤.

We consider the game EF n
FO((L, astart, aend, a∗, a∗), (L′, bstart, bend, b∗, b∗)) and

we let ai’s and bi’s be the elements played in L and L′, respectively. We let āi

stand for the sequence astart, aend, a∗, a
∗, a1, . . . , ai and let b̄i be defined likewise.

We show that Duplicator can play in such a way that NLrn−i(ā
i) is isomorphic

to NL
′

rn−i
(b̄i) after i rounds. It will follow that he has a winning strategy in

4Note that we could have picked a smaller model. However, the proof will be shorter with a
model of this size, as we will not need to consider any overlapping of neighborhoods.

2.1. Trees as Relational Structures 11

EF n
FO((L, astart, aend, a∗, a∗), (L′, bstart, bend, b∗, b∗)), since after n rounds a partial

isomorphism will be given by the map ān → b̄n (as NL0 (ān) will be isomorphic to
NL

′
0 (b̄n)). The proof is by induction on the length of the game n. The base case

i = 0 follows immediately from the assumption on the distance between astart
aend, a∗ and a∗ (and thus bstart, bend, b∗ and b∗). For the induction case (going
from i to i+1), let r = rn−(i+1) so that rn−i = 3r+1. The hypothesis tells us that
there is an isomorphism h : NL3r+1(āi) → NL

′
3r+1(b̄i). Assume (as it is symmetric)

that Spoiler plays in L. There are two cases.

1. Spoiler plays ai+1 ∈ NL2r+1(āi). Pick bi+1 = h(ai+1). Since h is an isomor-
phism, we have an isomorphism between NLr (āi+1) and NL

′
r (b̄i+1).

2. Spoiler plays ai+1 6∈ NL2r+1(āi). In particular, NLr (ai+1) and NLr (āi) are dis-
joint and there are no edges between them. Pick any bi+1 so that NL

′
r (bi+1)

and NL
′

r (b̄i) are disjoint; it exists because the sizes of NLr (āi) and NL
′

r (b̄i),
and the sizes of L and L′ are the same. Then clearly NLr (āi+1) and NL

′
r (b̄i+1)

are isomorphic.

Proposition 2.1.8. The class of unranked sibling-ordered finite trees is not de-
finable in FO with basic vocabulary {≤,�}.

We omit the proof of Proposition 2.1.8, but we will see in Chapter 3 that in
order to define the class of finite trees, one needs an “induction axiom” that is
beyond FO’s expressive reach. This particular restriction in expressive power is a
symptom of a more general feature of FO: it lacks a means to express recursive
properties, in other words it is “local” (see [104]). We will now introduce a few
extensions of FO which will be of particular interest to us and which are expressive
enough to define the class of finite trees (we will explain how in Chapter 3).

Monadic Second-Order Logic

A first way to extend the expressive power of FO is to allow second-order quan-
tifiers over relation symbols. We will focus here on monadic second-order logic
MSO, which only allows a restricted form of such quantification. MSO is the
extension of first-order logic in which we can quantify over the subsets of the
domain. It is a very standard and widely used logic on trees and we will see that
it has many nice features.

Definition 2.1.9 (Syntax and semantics of MSO). Let At be a first-order atomic
formula, x a first-order variable and X a set variable, we inductively define the
set of MSO formulas in the following way:

ϕ := At | Xx | ϕ ∨ ψ | ¬ϕ | ∃x ϕ | ∃X ϕ

12 Chapter 2. Preliminaries

We use ∀Xϕ as shorthand for ¬∃X¬ϕ and ∀xϕ, ϕ∧ψ, ϕ→ ψ as shorthand in
the usual way. We define the quantifier depth of a MSO formula as the maximal
number of nested first-order and second-order quantifiers. We interpret MSO
formulas in relational structures. Like for FO formulas, the truth of a MSO-
formula in a relational structure M is defined modulo a valuation g of variables
as objects. Additionally, g is also defined over set variables, to which it assigns
subsets of the domain. We let g[a/x] be the assignment which differs from g only
in assigning a to x (similarly for g[A/X]). The truth of atomic formulas is defined
by the usual FO clauses plus the following:

M, g |= Xx iff g(x) ∈ g(X) for X a set variable

The truth of compound formulas is defined by induction, with the same clauses
as in FO and an additional one:

M, g |= ∃Xϕ iff there is A ⊆ dom(M) such that M, g[A/X] |= ϕ

Observe that in MSO, ≤ and � are definable by means of <ch and ≺ns:

• x ≤ y := ∀X((Xx→ ∀u∀v((Xu ∧ u <ch v)→ Xv))→ Xy)

• x � y := ∀X((Xx→ ∀u∀v((Xu ∧ u ≺ns v)→ Xv))→ Xy)

These two formulas say that x and y are, respectively, in the reflexive transitive
closure of the relations <ch and ≺ns.

Monadic Transitive Closure Logic

The second logic we are interested in is a fragment of MSO called monadic tran-
sitive closure logic, FO(TC1), which extends FO by closing it under the reflexive
transitive closure of binary definable relations.

Definition 2.1.10 (Syntax and semantics of FO(TC1)). Let u, v, x, y be first-
order variables, ϕ(x, y) a FO(TC1) formula (which, besides x and y, possibly
contains other free variables), we inductively define the set of FO(TC1) formulas
in the following way:

ϕ := At | Xx | ϕ ∨ ψ | ¬ϕ | ∃x ϕ | [TCxyϕ(x, y)](u, v)

We use ∀xϕ, ϕ ∧ ψ, ϕ → ψ as shorthand in the usual way. We define the
quantifier depth of a FO(TC1) formula as the maximal number of nested first-
order quantifiers and TC operators. We interpret FO(TC1) formulas in relational
structures. The notion of assignation and the truth of atomic formulas is defined
as in FO. The truth of compound formulas is defined by induction, with the same
clauses as in FO and an additional one:

2.1. Trees as Relational Structures 13

M, g |= [TCxyϕ](u, v)
iff

for all A ⊆M , if g(u) ∈ A
and for all a, b ∈ dom(M), a ∈ A and M, g[a/x, b/y] |= ϕ(x, y) implies b ∈ A,

then g(v) ∈ A.

Proposition 2.1.11. On standard structures, the following semantical clause for
the TC operator is equivalent to the one given above:

M, g |= [TCxyϕ(x, y)](u, v)
iff

there exist a1 . . . an ∈M with n ≥ 0, g(u) = a1, g(v) = an
and M, g |= ϕ(ai, ai+1) for all 0 < i < n

Proof. Indeed, suppose there is a finite sequence of points a1 . . . an such that
g(u) = a1, g(v) = an, and for each i < n, M, g[x/ai; y/ai+1] |= ϕ(x, y). Then for
any subset A closed under ϕ and containing a1, we can show by induction on the
length of the sequence a1 . . . an that an belongs to A. Now, on the other hand,
suppose that there is no finite sequence like described above. To show that there
is a subset A of the required form, we simply take A to be the set of all points
that can be reached from u via ϕ by a finite sequence. By assumption, v does
not belong to this set and the set is closed under ϕ.

Intuitively this means that for a formula of the form [TCxyϕ](u, v) to hold on
a standard structure, there must be a finite “ϕ path” between the points that are
named by the variables u and v.

Observe that in FO(TC1), ≤ and � are definable in a straightforward way by
means of <ch and ≺ns:

• x ≤ y := [TCxyx <ch y](x, y)

• x � y := [TCxyx ≺ns y](x, y)

Finally, note that we talked about monadic transitive closure logic, because
FO(TC1) extends FO with the transitive closure of binary relations, but it is also
possible to define FO(TCk) by extending FO with the transitive closure of 2k-ary
relations (i.e., binary relations between k-tuples), see [58]. In the remaining, we
will focus exclusively on FO(TC1).

Fixed-Points

Finally, we will be interested in yet another way of extending FO with recursive
means. It consists in adding explicit fixed-point constructs to the FO language.

14 Chapter 2. Preliminaries

Before we move on to properly introducing the syntax and semantics of fixed-
point logics, let us first recall a few basic points concerning the theory of fixed-
point operators. Given a set U , an operator on the powerset of U is a mapping
F : ℘(U) → ℘(U). Now a set X ∈ ℘(U) is said to be a prefixed-point of F if
F (X) ⊆ X, a postfixed-point of F if F (X) ⊇ X and, finally, a fixed-point of F
if F (X) = X. Sometimes, F does not have any fixed-point at all. For instance,
the operator F defined on the powerset of the set U = {0} by F ({0}) = ∅ and
F (∅) = {0}, never reaches a fixed-point.5 On the other hand, some operators
satisfying well-known structural properties always have a fixed-point. Some even
always have a least fixed-point (a set X ⊆ U is a least fixed-point of F if it is a
fixed-point, and for every other fixed-point Y of F , X ⊆ Y). Monotone operators
are of this sort. We say that an operator F is monotone whenever:

X ⊆ Y implies F (X) ⊆ F (Y)

In the theory of monotone operators, the following key result is both classic and
convenient6:

Theorem 2.1.12 (Tarski-Knaster). Every monotone operator F : ℘(U)→ ℘(U)
has a least fixed-point lfp(F) which can be defined as

lfp(F) =
⋂
{X|F (X) ⊆ X}

.

The least fixed-point can also be constructed explicitly by considering the
following sequence of approximants sets Xα, indexed by ordinals:

X0 := ∅
Xα+1 := F (Xα)
Xλ :=

⋃
ξ<λ F (Xξ) for limit ordinals λ

Whenever F is monotone, it is also inductive, i.e. the sequence above is increasing.
Hence, it stabilizes at some step α and by Theorem 2.1.12, Xα is the least fixed-
point of F .

In this thesis, we will be mainly interested in fixed-point of monotone opera-
tors. Only in Chapter 6, we will be concerned with inflationary fixed-points. We
say that an operator F is inflationary whenever:

X ⊆ F (X) for all X ⊆ U

5We take here a very simple, if not trivial, example, where F is defined on a unique set, but
the situation is of course more interesting when more general definitions are given, i.e., when
operators are defined for larger classes of sets.

6Actually, we present here this theorem in a restricted form, as it is usually stated for
operators on complete lattices, that is, partially ordered sets (U,<) where every - finite or
infinite - subset of U has a greatest lower bound and a least upper bound in the ordering <
(see [109]). We will not need this full generality here.

2.1. Trees as Relational Structures 15

Inflationary operators are inductive, hence they always reach a fixed-point, but
contrary to monotone operators, they do not necessarily have a least fixed-point.
A very easy way to produce an inflationary operator is to pick an arbitrary
operator F : ℘(U) → ℘(U) and to consider F ′ : ℘(U) → ℘(U), given by
F ′(X) := X ∪ F (X). Obviously, F ′ is inflationary and hence inductive. The
inflationary fixed-point ifp(F) of F is given by F ′ and is explicitly constructed
by considering the following sequence of approximants sets Xα, indexed by ordi-
nals:

X0 := ∅
Xα+1 := Xα ∪ F (Xα)
Xλ :=

⋃
ξ<λ F (Xξ) for limit ordinals λ

As an example, consider again the operator F defined on the powerset of the
set U = {0} by F ({0}) = ∅ and F (∅) = {0}. The sequence F (∅), F (F (∅)), . . .
never reaches a fixed-point and keeps oscillating forever in between the value
{0} and ∅. On the other hand, the inflationary fixed-point of F is obtained by
constructing the sequence F ′(∅), F ′(F ′(∅)), . . ., which stabilizes at the first stage
of the fixed-point iteration on the value {0}.

Fixed-Point Logics

We introduced fixed-points abstractly without any reference to a logical language,
but one can also consider relational structures together with operators on the
powerset of their domain, or more generally on the powerset of the n-ary Cartesian
product of their domain. In this context, various operators are naturally induced
by corresponding formulas of matching vocabulary in a given logic. Consider for
instance a formula ϕ(X, x̄) in vocabulary σ with k free first-order variables and
one free second-order variableX of arity k. On any relational σ-structure M taken
together with a valuation g, ϕ(X, x̄) induces an operator Fϕ : ℘(dom(M)k) →
℘(dom(M)k) taking a set A ⊆ dom(M)k to the set {ā|M, g[A/X, ā/x̄] |= ϕ}.
Consider such an operator Fϕ. If ϕ is positive in X (a formula is positive in X
wheneverX only occurs in the scope of an even number of negations), the operator
Fϕ is monotone and by Theorem 2.1.12, it has a least fixed-point. FO(LFP)
extends FO with second-order variables and an explicit construct defining the
least fixed point of ϕ.

Definition 2.1.13 (Syntax and semantics of FO(LFP)). Let X be a second-
order variable of arity k, x̄ and ȳ two sequences of FO-variables of length k, ψ, ξ
FO(LFP)-formulas and ϕ(x̄, X) a FO(LFP)-formula positive in X which, besides
x̄ and X, possibly contains other free variables, we define the set of FO(LFP)-
formulas in the following way:

ψ := At | Xȳ | ψ ∨ ξ | ¬ψ | ∃x ψ | [LFPx̄,X̄ϕ(x̄, X)]ȳ

We use ∀xϕ, ϕ ∧ ψ, ϕ → ψ as shorthand in the usual way. We define the
quantifier depth of a FO(LFP)-formula as the maximal number of nested first-order

16 Chapter 2. Preliminaries

quantifiers and fixed-point operators. Again, we interpret FO(LFP)-formulas in
relational structures. The notion of assignation and the truth of atomic formulas
are defined similarly as in the MSO case (except that now, we have second-
order variables of arbitrary arity). The truth of compound formulas is defined by
induction, with the same clauses as in FO and an additional one for the least fixed-
point operator. Given a formula Φ := [LFPx,Xϕ]y and a model M taken together
with a valuation g, we consider the operator FΦ : ℘(dom(M)k) → ℘(dom(M)k)
and define the semantics of Φ in the following way:

M |= [LFPX,x̄ϕ(X, x̄)](ā) whenever ā belongs to lfp(FΦ).

Note that the LFP operator has a dual operator, denoted GFP (which stands
for greatest fixed-point). The greatest fixed-point of a positive formula can be
accessed via a similar explicit fixed-point construction as the one we presented
earlier for least fixed-points. The only difference is that we now take X0 to be
the set of all possible tuples on the domain of the models, instead of the empty
set. This way the value of the computed set keeps shrinking (instead of growing)
until it reaches a fixed-point. For more details, we refer to [58].

In Chapter 3, we will be interested in a specific fragment of FO(LFP) called
monadic least fixed-point logic (FO(LFP1)), which extends FO with unary pred-
icate variables and an explicit monadic least fixed-point operator. As this will
be useful in that chapter, we give below another, equivalent, formulation of the
semantics of FO(LFP1), which just says that a point belongs to the least fixed-
point of a formula whenever it belongs to the intersection of all its prefixed-points
(note that a similar semantics could more generally be given for FO(LFP)):

M, g |= [LFPx,Xϕ]y
iff

for all A ⊆ dom(M), if for all a ∈ dom(M), M, g[a/x,A/X] |= ϕ(x,X) implies
a ∈ A,

then g(y) ∈ A.

Remark 2.1.14. In practice we will often use an equivalent (less intuitive but
often more convenient) rephrasing:

M, g |= [LFPx,Xϕ]y
iff

for all A ⊆ dom(M), if g(y) /∈ A,
then there exists a ∈ dom(M) such that a /∈ A and M, g[a/x,A/X] |= ϕ(x,X).

a

As any positive formula yields a monotone operator, the Tarski-Knaster The-
orem can be used in the case of FO(LFP) as a convenient tool insuring that

2.1. Trees as Relational Structures 17

every operator yield by a positive formula has a least fixed-point. But we al-
ready noticed that in general, an operator induced by an arbitrary formula is not
necessarily monotone and needs not have any fixed point at all. One can still as-
sociate other types of fixed-point operators to arbitrary (not necessarily positive)
formulas. A common method to do so is to consider the inflationary fixed-point
of the formula. We already noticed that such a fixed-point need not be a fixed-
point of the formula. The correct way to think about it is rather to view it as
the inflationary operator associated to the formula. Unsurprisingly, the syntax
and semantics of inflationary fixed-point logic FO(IFP) closely resemble those of
FO(LFP) and are as follows:

Definition 2.1.15 (Syntax and semantics of FO(IFP)). Let X be a second-order
variable of arity k, x̄ and ȳ two sequences of FO-variables of length k, ψ, ξ
FO(IFP)-formulas and ϕ(x̄, X) a FO(IFP)-formula (besides x̄ and X, ϕ(x̄, X) pos-
sibly contains other free variables), we define the set of FO(IFP) formulas in the
following way:

ψ := At | Xȳ | ψ ∨ ξ | ¬ψ | ∃x ψ | [IFPx,Xϕ(x̄, X)]ȳ

We use ∀xϕ, ϕ ∧ ψ, ϕ → ψ as shorthand in the standard way. Again, we
interpret FO(IFP) formulas in relational structures. The notions of quantifier
depth, assignation and truth of atomic formulas are defined similarly as in the
FO(LFP) case. The truth of compound formulas is defined by induction, with the
same clauses as in FO and the following additional one:

M |= [IFPX,x̄ϕ(X, x̄)](ā) whenever ā belongs to ifp(Fϕ).

We denote by FO(IFP1) the monadic fragment of FO(IFP).

Like the LFP operator, the IFP operator has a dual, denoted DFP (which
stands for deflationary fixed-point). In Chapter 6, we will be using both the
GFP and the DFP operators, as well as special FO(IFP)-formulas that are called
simultaneous fixed-point formulas and that we introduce now.

Definition 2.1.16 (Simultaneous fixed-point formulas). Let X1, . . . , Xk be rela-
tion variables with associated arities ri and let x̄1, . . . , x̄k be sequence of first-order
variables of associated length ri. Simultaneous formulae are formulae of the form
Φ(x̄) := [IFPXi : S](x̄) in vocabulary σ, where 1 ≤ i ≤ k and

S :=

X1(x̄1)← ϕ1(X1, . . . , Xk, x̄1)

. . .

Xk(x̄k)← ϕk(X1, . . . , Xk, x̄k)

is a system of FO(IFP)-formulas. On a structure M, each ϕi in S induces an
operatordefina

18 Chapter 2. Preliminaries

Fϕi : ℘(dom(M)r1)× . . .× ℘(dom(M)rk)→ ℘(dom(M)ri)

which to each tuple (A1, . . . , Ak) associates

{ā|M, g[A1/X1, . . . , Ak/Xk, ā/x̄i] |= ϕi(X1, . . . , Xk, x̄i)]}

The stages Sα of an induction on such a system S of formulas are k-tuples of sets
(Xα

1 , . . . , X
α
k) defined as:

X0
i := ∅

Xα+1
i := Fϕi(X

α
1 , . . . , X

α
k)

Xλ
i :=

⋃
ξ<λX

ξ for limit ordinals λ

For every σ-structure M and any tuple ā in dom(M), M, g[ā/x̄i] |= Φ if and
only if ā ∈ X∞i , where X∞i denotes the i-th component of the simultaneous
fixed-point of S.

The following result is convenient. Its proof is classic and can for instance be
found in [104] and [97].

Theorem 2.1.17. FO(IFP) and its extension with simultaneous fixed-point for-
mulas have the same expressive power.

Remark 2.1.18 (Partial fixed-point logic). We will also encounter briefly partial
fixed-point logic FO(PFP) in Chapter 6. It is in some sense the most general fixed-
point extension of FO. Its syntax is defined as for FO(IFP), except that we write
PFP for the fixed-point operator. In order to interpret a fixed-point formula
[PFPX,x̄ϕ](x̄) in a finite model (the semantics of FO(PFP) on infinite models
is more complicated, see [97], but we will not need this full generality here),
we consider the same sequence of iteration stages as in the case of FO(LFP)
formulas. Whenever a fixed-point is reached (which need not be a least fixed-
point), then [PFPX,x̄ϕ](x̄) holds in a model under some valuation whenever the
valuation assigns to x̄ a tuple which belongs to this fixed-point. But as there are
no restrictions on formulas that can be prefixed by the fixed-point operator, this
sequence may not reach a fixed point at all. In this case, the formula is set as
equivalent to false. For more details we refer to [58]. a

Now again, like for MSO and FO(TC1), we can observe that ≤ and � are
definable by means of <ch and ≺ns in FO(LFP1):

• x ≤ y := [LFPXzx <ch z ∨ ∃u(Xu ∧ u <ch z)](y)

• x � y := [LFPXzx ≺ns z ∨ ∃u(Xu ∧ u <ch z)](y)

2.1. Trees as Relational Structures 19

Consider some finite tree and two points x and y such that x is an ancestor
of y. In the case of the definition of the ≤ operator, the fixed-point iteration on
that tree works as follows. At the first stage, the subformula x <ch z plays its role
and all the <ch-successors of x are put in the set X. Then, comes the turn of the
second disjoint ∃u(X(u) ∧ u <ch z), by which at stage i+ 1, every <ch-successor
of a point which was already in X at stage i joins itself the set. The point y
is incorporated in the set at stage n exactly whenever it is separated from x by
n− 1 nodes. The iteration goes on until a fixed-point is reached.

The same definitions can be given in FO(IFP) using similar formulas, obtained
by simply replacing LFP operators by IFP operators To see that the procedure
is correct, it is enough to look at the least and inflationary explicit fixed-point
constructions: in the least fixed-point case, as the operator is monotone, for
every stage α, F (Xα) ⊆ F (Xα+1), which entails F (Xα) = Xα ∪ F (Xα). Same
definitions can also of course be given in FO(PFP) by replacing LFP operators
by PFP operators.

2.1.3 Expressive Power

All the extensions of FO that we presented so far incorporate recursion means,
but they do so in different ways. MSO does it by allowing quantification over
subsets of the domain, while FO(TC1) and fixed-point logics are built up by
introducing explicit constructs in the language to represent recursive procedures.
We only focused on some particularly easy examples of recursion, which were the
definition of <ch and ≺ns by means of ≤ and ≺. A classical example is also very
often given: in all the strict extensions of FO that we presented, one can produce
formulas which characterize among finite linear orders exactly those which have
a domain of even cardinality (while such a counting power is known to be beyond
reach of FO). In connection with finite games in extensive form, we will also meet
other interesting examples of fixed-point computations in Chapter 6. Now are
there some sorts of fixed-point computations which can be expressed in some of
these logics and not in others? That is, how do all these different logics compare
in expressive power? In this section, we will concentrate on expressive power on
finite structures.

We can first immediately extract a few easy inclusions from the semantics.
Thus, there is a straightforward recursive procedure transforming any FO(LFP1)
formula ϕ into a MSO formula ϕ′ such that M, g |= ϕ iff M, g |= ϕ′. The
interesting clause is

([LFPx,Xϕ(x,X)]y)′ = ∀X(∀x(ϕ(x,X)′ → Xx)→ Xy)

The other clauses are all of the same type, e.g. (ϕ ∧ ψ)∗ = (ϕ∗ ∧ ψ∗). This
procedure can easily be seen adequate by considering the semantical clause for
the LFP operator.

20 Chapter 2. Preliminaries

Now there is also a straightforward recursive procedure transforming any
FO(TC1) formula ϕ into a FO(LFP1) formula ϕ′′ such that M, g |= ϕ iff M, g |= ϕ′′.
The interesting clause is

([TCxyϕ](u, v))′′ = [LFPXyy = u ∨ ∃x((Xx ∧ ϕ(x, y)′′))]v

Let us give an argument for this claim. By Proposition 2.1.11 it is enough to
show that [LFPXyy = u∨∃x(Xx∧ϕ(x, y)′′)]v holds if and only if there is a finite
ϕ′′ path from u to v. For the right to left direction, suppose there is such a path
a1 . . . an with g(u) = a1 and g(v) = an. Then, for any subset A of the domain, we
can show by induction on i that if for all ai (1 ≤ i ≤ n), ai = u∨∃x((Ax∧ϕ(x, ai)

′′)
implies ai ∈ A, then v ∈ A, i.e., [LFPXyy = u ∨ ∃x((Xx ∧ ϕ(x, y)′′))]v holds.
Now for the left to right direction, suppose there is no such ϕ′′ path. Consider
the set A of all points that can be reached from u by a finite ϕ′′ path. By
assumption, ¬Av and it holds that ∀y((y = u ∨ ∃x(Ax ∧ ϕ(x, y)′′)) → Ay), i.e.,
¬[LFPXyy = u ∨ ∃x(Xx ∧ ϕ(x, y)′′)]v.

As already pointed out before, FO(LFP) fixed-points are expressible in a
straightforward way as FO(IFP) fixed-points. FO(LFP) fixed-points can also be
expressed in FO(PFP) simply by substituting every FO(LFP) fixed-point operator
by a FO(PFP) fixed-point operator. But one can refine these first easy inclusions.
Actually, on arbitrary structures, the following strict inclusions and equalities are
known:

FO(PFP)

⊃
FO(IFP) = FO(LFP)

⊃
MSO

⊃

⊃
FO(IFP1)

FO(LFP1)

⊃
FO(TC1)

⊃
FO

Figure 2.2: Extensions of FO, relative expressive power on arbtrary structures

MSO is incomparable to both FO(IFP1) and FO(IFP). The argument is as fol-
lows. Graph 3-Colorability can be expressed in MSO, but not in FO(IFP). For
more details see [120] and [48]. On the other hand, by [49], MIC (which is a

2.2. The Modal Logic Perspective on Trees 21

fragment of FO(IFP1), as explained in the next Section) can express certain con-
text free but non-regular languages which are therefore not MSO definable (as
MSO can only define regular languages, see [127]). The strictness of the inclusion
FO ⊂ FO(TC1) follows from the previous Section, together with Chapter 3 (as
FO(TC1) can define the class of finite trees, whereas FO cannot), but also from
Proposition 2.1.7. For the strictness of the inclusions FO(TC1) ⊂ FO(LFP1) and
FO(LFP1) ⊂ MSO, we refer to [58] and [109] respectively, whereas arguments for
the strictness of the inclusion FO(IFP1) ⊂ FO(IFP) can be found in [77]. The fact
that FO(LFP) and FO(IFP) have the same expressive power follows from [98] and
[85]. Still, the two logics carry different intuitions and formalize computations of a
different nature. Also, the equivalence in expressive power does not hold anymore
whenever one restricts to the monadic fragments of these logics. And indeed, the
translation procedures given in [98] and [85] to go from a FO(IFP)-formula to a
FO(LFP)-formula involves a raise in the arity of the second order variables used in
the fixed-points. Finally, the fact that the inclusion FO(IFP) ⊂ FO(PFP) is strict
follows from the fact that trace equivalence can be expressed in FO(PFP) and
not in FO(IFP) (see [97]), also note that on ordered structures FO(IFP) captures
PTIME, whereas FO(PFP) captures PSPACE, see [104]). The situation is compa-
rable on trees, except that FO(LFP1) and MSO collapse (see [126]) and that to the
best of our knowledge, we are not aware of arguments establishing the strictness
of the inclusion of FO(IFP1) into FO(IFP) and of FO(IFP) into FO(PFP):

FO ⊂t FO(TC1) ⊂t FO(LFP1) =t MSO ⊂t FO(IFP1) ⊆t FO(IFP) ⊆t FO(PFP)

Moreover, on finite linear orders and linear orders of order type ω, FO(TC1)
and FO(LFP1) also collapse (see [126]):

FO ⊂l FO(TC1) =l FO(LFP
1) =l MSO ⊂l FO(IFP1) ⊆l FO(IFP) ⊆l FO(PFP)

2.2 The Modal Logic Perspective on Trees

2.2.1 Basic Modal Logic

Different applications call for different logics and in some contexts, modal logic
provides another interesting perspective on trees. Modal languages talk about re-
lational structures, but instead of using individual variables to quantify directly
over the domain of the structure, we will see that they adopt a more local stand-
point. Syntactically, they come as extensions of propositional logic by means
of modal operators. As in propositional logic, we assume a countable (possibly
finite) set of proposition letters {p1, p2, . . .}, but additionally, we assume a finite
set of modal operators. Let us start with the basic modal language, which is built

22 Chapter 2. Preliminaries

up around a single unary modal operator ♦. The formulas of the basic modal
language are inductively defined as follows:

φ := pi | ⊥ | ¬φ | φ ∨ ψ | ♦φ
We define a dual operator for ♦ by using 2 as shorthand for ¬♦¬, while

ϕ ∧ ψ and ϕ → ψ are introduced as shorthand in the usual way. Now we can
also interpret basic modal formulas in relational structures, but the procedure is
a bit different from what we saw in the case of extensions of FO. We first need
the notion of a Kripke frame (or frame for short), which is a pair F = (W,R)
where W is a non-empty set, called the domain of M and R is a binary relation
over W . We call the elements of W nodes, points or states. A frame for the
basic modal language is thus simply a relational structure containing one single
binary relation. A frame does not incorporate any information about the value of
proposition letters and we need to add additional information about it in order
to be able to interpret all modal formulas. A Kripke model (or simply, model) for
the basic modal language carries this information. It is a pair M = (F , V) where
F = (W,R) is a frame and V is a valuation function, which is a map assigning
to each proposition letter pi a set V (pi) ⊆ W . We say that a model M = (F , V)
is based on the frame F . Like frames, models can be seen as (richer) relational
structures of the form (W,R, V (p1), V (p2), . . .), so that from a model-theoretic
point of view, a model expands7 the frame on which it is based with additional
unary relations. Now how does one interpret the basic modal language in Kripke
models? An important specificity of modal formulas is that they are interpreted
locally at a given state in a model. Consider a model M = (W,R, V) and a point
w ∈ W , we call M, w a pointed model and we inductively define the truth, or
satisfaction of a modal formula in M at w in the following way:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= φ
M, w |= ϕ ∨ ψ iff M, w |= φ or M |= ψ
M, w |= ♦ϕ iff there exists v ∈ W such that R(w, v) and M, v |= φ

Besides this local notion of satisfaction, there is also a global notion of satis-
faction and we say that a formula is globally satisfied or valid in a model M if it
is satisfied at all points in M.

Note that formulas can also be interpreted in bare frames (see [26]). The
perspective leads to an interesting area of modal logic, where the focus is on frame
definability (see in particular the Goldblat Thomasson Theorem in [26] and the
similar results obtained for the µ-calculus - extension of basic modal logic that
we will introduce shortly - on trees in [66]). We will nevertheless restrict in this
thesis to model satisfaction and focus on definability of classes of models. This

7We will formally introduce the notion of expansion later on in the thesis.

2.2. The Modal Logic Perspective on Trees 23

being said, we will always assume that the models we are interested in are all
based on frames belonging to a specific, given, class of frames. We will be mainly
concerned with two classes of trees already mentioned at the beginning of this
chapter: finite linear orders and linear orders of order type ω. We will also at
some point discuss the case of finite unranked trees.

A natural question again arises: how far does basic modal logic’s expressive
power goes? An answer can be given via a notion of invariance called bisimulation.

Definition 2.2.1 (Bisimulation). Let M = (W,R, V) and M′ = (W ′, R′, V ′) be
two models.

A non-empty binary relation Z ⊆ W ×W ′ is called a bisimulation between
M and M′ if the following conditions are satisfied:

(i) If wZw′ then w and w′ satisfy the same proposition letters.

(ii) If wZw′ and R(w, v), then there exists v′ ∈ W ′ such that zZv′ and R′(w′, v′)
(the forth condition)

(iii) The converse of (ii): if wZw′ and R′(w′, v′), then there exists v ∈ W such
that zZv′ and R(w, v) (the back condition)

When Z is a bisimulation linking two states w in M and w′ in M′, we say that
w and w′ are bisimilar. A relation Z is a bisimulation between two pointed
models M, w and M′, w′ whenever Z is a bisimulation between M and M′ and
(w,w′) ∈ Z.

We say that a logic is invariant under bisimulation whenever it cannot distin-
guish between bisimilar models, i.e., whenever every two bisimilar points always
satisfy exactly the same formulas. The following is folklore:

Proposition 2.2.2. Basic modal logic is invariant under bisimulation.

Let us take one simple example. Consider two modal structures M and N
in vocabulary {p} such that the domain of M contains one single reflexive node
labelled by p, while N is a countable linear order isomorphic to N in which every
node is labelled by p: M and N are bisimilar. This entails that, as FO, basic
modal logic is not expressive enough to characterize the class of finite trees. But
this also shows that it is far less expressive than FO, in which these two structures
could easily be told apart (to do so, it is enough to notice that the FO-formula
∃x∃y x 6= y is satisfied in one structure and not in the other, or, equivalently, that
Spoiler has a winning strategy in two rounds in the corresponding game on the
two structures). FO is indeed not invariant under bisimulation. But then, how do
the expressive power of basic modal logic and FO relate? Are they comparable
and can FO be considered as an extension of basic modal logic? The answer to
this question is yes and we will now explain how to translate basic modal logic into
FO. The procedure is called the standard translation. First of all, we need a way

24 Chapter 2. Preliminaries

to relate the modal language to the FO language. Hence we start by specifying the
correspondence language in which we will translate our modal formulas. To each
proposition letter pi we will simply associate a unary predicate Pi and to ♦ we
will associate a binary predicate R. We can now define the standard translation.

Definition 2.2.3 (Standard Translation). Let x be a first-order variable. The
standard translation STx taking modal formulas to FO-formulas is defined as
follows:

STx(p) = P (x)
STx(¬ϕ) = ¬STx(ϕ)
STx(ϕ ∨ ϕ) = STx(ϕ) ∨ STx(ψ)
STx(♦ϕ) = ∃y(R(x, y) ∧ STx(ϕ))

The following is folklore too and can be shown via an easy induction:

Proposition 2.2.4 (Local and global correspondence on models). Let ϕ be a
modal formula. Then:

(i) For all M, all valuation g on M and all states w of M: M, w |= ϕ iff
M, g[w/x] |= STx(ϕ).

(ii) For all M: M |= ϕ iff M |= ∀xSTx(ϕ).

This yields that modal logic is some fragment of FO, but this does not show
precisely to which fragment it corresponds. It actually turns out that this frag-
ment can be elegantly characterized as a bisimulation invariant fragment. Let
us first give a precise definition to what it means for a FO-formula in one free
variable to be bisimulation invariant.

Definition 2.2.5 (Bisimulation invariance for FO). A FO-formula ϕ(x) is invari-
ant for bisimulation if for all models M and N, and all states w in M, v in N, and
all bisimulations Z between M and N such that wZv, we have M, g[x/w] |= ϕ(x)
iff N, g[x/v] |= ϕ(x).

Now the following result is classic:

Theorem 2.2.6 (Van Benthem Characterization). Let ϕ(x) be a FO-formula
in the correspondence language. Then ϕ is invariant for bisimulation iff it is
equivalent to the standard translation of a modal formula.

The proof of Theorem 2.2.6 is far from trivial, but we do not need to recall it
here and we just refer to [26]. It has many implications, but let us point out one
in particular which is of interest to us. In order to establish his characterization
result, Johan van Benthem came up with the notion of bisimulation, but it turned
out that this very notion was later on independently identified in computer science
as an important notion of equivalence for processes, capturing in some sense

2.2. The Modal Logic Perspective on Trees 25

behavioral equivalence. Temporal logics and modal fixed-point logics extend basic
modal logic while retaining bisimulation invariance. Temporal logic was originally
used in philosophical logic to study reasoning about time, but today it is widely
used in verification of programs and processes to study the behavior of systems
evolving over time. Modal fixed-point logics are extensions of temporal logics
that are also widely used in that perspective. We will now introduce the two
frameworks.

2.2.2 Temporal and Fixed-Point Extensions of Basic Modal
Logic

With only the basic modal language at hand, node-labelled trees are usually seen
as basic Kripke models in the following way. The tree shaped models considered
are unranked and the binary relation underlying the modal operator ♦ plays the
role of the relation corresponding to the <ch predicate that we considered in the
case of usual relational structures. As the descendant ≤ relation is not definable
in FO using the <ch relation, here too a modality corresponding to that relation
cannot be defined. Hence, whenever the focus is on trees, one also naturally looks
for ways to extend the basic modal language. Temporal logic takes this path by
allowing a variety of alternative modal operators. Another line is also possible:
instead of adding modal operators, one can extend the language by means of
fixed-point operators. As regards expressive power, the latter perspective is quite
powerful and we will see that the temporal logics we will be concerned with can all
be seen as fragments of the modal fixed-point logics we will also be introducing.

Temporal Logic

Considering classes of Kripke models, one often wishes to focus on a specific
class of frames. Attention can for instance be restricted to transitive relations,
equivalence relations or even to a collection of relations of a certain type (and
those can even be of any given arity). For now, we introduced only the basic
modal language, but many modal operators can also simultaneously be defined,
all based on a different relation defined on the domain of the structure. This is
the case in temporal logic, where frames are also supposed to reflect the nature
of time. Many alternative options have been considered (see [59]). Time could be
bounded (towards the past, towards the future), or not; discrete, or not; dense,
or not; linear, or branching... And actually, many other features and refinements
have been considered as well. Here we will mainly restrict to one very specific
class of frame. We will focus on linear orders of order type ω and we will consider
linear time temporal logic LTL, as well as some of its syntactic fragments. Note
that this does not necessarily has to imply a determinist vision of time, as it can
also be seen as reflecting an a posteriori view on some course of events.

26 Chapter 2. Preliminaries

Propositional Linear Temporal Logic In the context of temporal logic,
frames are called flows of time and actually there is a slight stylistic difference
here with the usual technical apparatus of modal logic, because we do not explic-
itly assume one specific accessibility relation per modality (while we could still
equivalently do so). We interpret temporal formulas in structures consisting of a
set of worlds (or, time points), a binary relation intuitively representing temporal
precedence, and a valuation of proposition letters. A flow of time is a structure
T = (W,<), where W is a non-empty set of worlds and < is a binary relation on
W . In the context of LTL, one usually focuses on Tω, the class of linear orders
of order type ω, i.e., frames (W,<) that are isomorphic to (N, <), where N is
the set of natural numbers with the natural ordering. We freely use ≤ to denote
the reflexive closure of <. We now introduce the syntax and semantics of LTL,
following the terminology of [59].

Definition 2.2.7 (LTL). Let σ be a propositional signature. The set of formulas
LTL[σ] is defined inductively, as follows:

ϕ, ψ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ϕ ∨ ψ | Xϕ | Fϕ | F<ϕ | ϕUψ

where At ∈ σ. We use G and G< as shorthand for respectively ¬F¬ and ¬F<¬.
The relation |=LTL between LTL-formulas and structures (T , V, w) is defined as
follows (we only list the clauses of the temporal operators, the others are as in
the case of classical propositional logic):

• (T , V, w) |=LTL Xϕ iff there exists w′ such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL Fϕ iff there exists w′ such that w ≤ w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL F
<ϕ iff there exists w′ such that w < w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL ϕUψ iff there exists w′ such that w ≤ w′, (T , V, w′) |= ψ and
for all w′′ such that w ≤ w′′ < w′, (T , V, w′′) |= ϕ

While the above definition in principle applies to arbitrary pointed structures,
the intended semantics will be in terms of structures based on frames in Tω.

We define fragments LTL(O) of LTL by allowing in their syntax only a subset
O ⊆ {X,F<,F,U} of temporal operators. Note that LTL(U,X) has the same
expressive power as LTL, because Fϕ can be defined as >Uϕ and F<ϕ as X(>Uϕ).
The same holds of LTL(F<,X) and LTL(F<,X,F), as Fϕ can be defined as ϕ∨F<ϕ.
Nevertheless, it is known (see [93]), that ϕUψ can be defined neither in LTL(F) nor
in LTL(F<,X). Also Xϕ and F<ϕ can be defined neither in LTL(U) nor in LTL(F)
(we will see why in Chapter 4, once we introduce the notion of stutter-invariance).

2.2. The Modal Logic Perspective on Trees 27

Modal Fixed-Point Logics

In the previous section, we discussed different types of fixed-point operators and
introduced some extensions of FO obtained by allowing corresponding fixed-point
constructs in the language. Similarly, one can extend the basic modal language
by means of least, inflationary or partial fixed-point operators. This gives rise,
respectively, to the modal µ-calculus, the modal inflationary calculus MIC and
the modal partial iteration calculus MPC. We will be mainly concerned with the
µ-calculus interpreted over linear orders of order type ω (in Chapters 4 and 5),
but in connection with the ι-calculus that we will introduce in Chapter 6, we will
also shortly encounter MIC and MPC on finite trees.

Linear Time µ-calculus A way of increasing the expressive power of LTL is
to add a least fixed-point operator to the basic modal language. Basically, this
can be seen as the modal counterpart to the extension of FO by FO(LFP). On
arbitrary structures, adding to LTL the least fixed-point operator, referred to as
µ, gives the µ-calculus (see for instance [46]). We will here restrict the class of
intended structures for the µ-calculus to those based on Tw and we will call the
resulting restricted calculus linear time µ-calculus µTL (see for instance [92]).

Definition 2.2.8 (µTL). Let σ be a propositional signature, and V = {x1, x2, . . .}
be a disjoint countably infinite stock of propositional variables. The set of µTL-
formulas in vocabulary σ is generated by the following inductive definition:

ϕ, ψ, ξ := At | > | ¬ϕ | ϕ ∨ ψ | Xϕ | Fϕ | F<ϕ | ϕUψ | µxi.ξ

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within
the scope of an even number of negations). We will use νxi.ϕ(xi) as shorthand for
¬µxi.¬ϕ(¬xi). We will also use ϕ∧ψ and ϕ→ ψ as shorthand in the usual way.
The satisfaction relation is defined between µTL-formulas and pointed structures
(T , V, w) where T ∈ Tω. In order to define it inductively, we use an auxiliary
assignment to interpret formulas with free variables. The assignment g maps each
free variable of ϕ to a set of worlds. We let g[x 7→ A] be the assignment which
differ from g only by assigning A to x and we only recall:

• (T , V, w) |= xi [g] iff w ∈ g(xi)

• (T , V, w) |= µx.ϕ [g] iff ∀A ⊆ W , if {v | (T , V, v) |= ϕ [g[x 7→ A]]} ⊆ A,
then w ∈ A

To understand this, consider a µTL-formula ϕ(x) and a structure (T , V, w)
together with a valuation g. This formula induces an operator Fϕ taking a set
A ⊆ W to the set {v : (T , V, v) |=µTL ϕ(x) g[x 7→ A]}. µTL is concerned with
least fixed-points of such operators. If ϕ(x) is positive in x, the operator Fϕ is
monotone. We already noticed that monotone operators Fϕ always have a least

28 Chapter 2. Preliminaries

fixed-point, defined as the intersection of all their prefixed-points:
⋂
{A ⊆ W :

{v : (T , V, v) |= ϕ(x) g[x 7→ A]} ⊆ A} (see [5]). The formula µx.ϕ(x) denotes
this least fixed-point.

As before, we define a fragment µTL(O) for each O ⊆ {X,F<,F,U}. µTL(X)
already as the full expressive power of TL, since ϕUψ can be defined by µy.(ψ ∨
(ϕ ∧ Xy)), F<ϕ by µy.(Xϕ ∨ Xy) and Fϕ by µy.(ϕ ∨ Xy). Another fragment of
particular interest will be µTL(U). In µTL(U), we can still define Fϕ in the usual
way by >Uϕ, but we will see in Chapter 4 that Xϕ and F<ϕ are not definable.

Other modal fixed-point logics Inspired by FO(IFP) and FO(PFP), that we
already introduced when we dealt with extensions of first-order logic, two other
modal fixed-point logics will be of interest to us in Chapter 6. The first one is
called the modal iteration calculus MIC and the second one is called the partial
iteration calculus MPC. We give here only a very rough presentation of the two
frameworks and for more details we refer to [97]. Let us also note that the
semantics we give for MPC is restricted to finite models.

Definition 2.2.9 (Modal Inflationary Calculus). MIC extends the basic modal
language by the following rule. If ϕ1, . . . , ϕk are formulae of MIC, and x1, . . . , xk
are propositional variables, then

S :=

x1 ← φ1(x1, . . . , xk)

. . .

xk ← φk(x1, . . . , xk)

is a system of rules, and for every 1 ≤ i ≤ k, (ifp xi : S) is a MIC-formula.
The semantics of (ifp xi : S) is defined in a way similar as for the simultaneous
fixed-point FO(IFP)-formulas, except that we now require that (ifp xi : S) is true
at a state if and only if that state belongs to the fixed-point of xi which is reached
via simultaneous induction.

Definition 2.2.10 (Modal Partial Iteration Calculus). The syntax of MPC is
similar to the syntax of MIC, except that we write pfp for the fixed-point operator.
We define its semantics only for finite models and we require that (pfp xi : S)
is true at a state if and only if that state belongs to the partial fixed-point of xi
which is reached via simultaneous induction.

Let us point out that both MIC and MPC are genuine modal logics, in the
sense that they are invariant under bisimulation (c.f. [97]).

2.2.3 Expressive Power

In this section, we will mainly focus on linear time structures (as they will be our
main concern in this thesis whenever we will be dealing with modal formalisms).

2.2. The Modal Logic Perspective on Trees 29

For the case of branching temporal logics and for the µ-calculus on trees, we refer
the reader to [11].

The standard translation We already noticed that, as regards expressive
power, there is a regular increase when one goes from fragments of LTL to the
linear-time µ-calculus and finally, to MIC and MPC interpreted over linear orders.
Additionally, as basic modal logic, these logics also translate to extensions of
FO in a natural way. One can consider there suitable “standard translations”
in the following way. The main difference is that now, in spite of considering
only propositional variables and the ♦ modality (which corresponds in the case
of LTL to X), the correspondence language also sends propositional variables xi
to set variables Xi. Also recall that in the case of MPC and FO(PFP), we restrict
attention to finite models.

STx(Fϕ) = ∃y(x < y ∧ STx(ϕ))
STx(F

<ϕ) = ∃y(x ≤ y ∧ STx(ϕ))
STx(ϕUψ) = ∃y(x ≤ y ∧ STy(ψ) ∧ ∀z((x ≤ z ∧ z < y)→ STz(ϕ)))
STx(Xϕ) = ∃y(x < y ∧ ¬∃zx < z < y ∧ STy(ϕ))
STx(µx.ϕ(xi)) = [LFPXi,xSTx(ϕ)](x)
STx((ifp xi : S)) = [IFPXi,xSTx(S)](x)
STx((pfp xi : S)) = [PFPXi,xSTx(S)](x)

Note that we translated µ-formulas in FO(LFP1), but we could equivalently
have translated them in MSO (remember that in the previous section, we re-
marked that these two logics were equi-expressive on trees). Let us also point
out that the translations that we give for fixed-point formulas also make sense
on trees for formulas containing as modal operators only the X-operator (which
is simply interpreted as the standard ♦-operator of the basic modal language).
We will see now, that in the style of the Van Benthem characterization Theorem,
refined characterization results exist.

Characterization results It is quite straightforward to go from the extensions
of basic modal logic we presented here to extensions of FO. The converse direction
is far less easy. The first result of this type is due to Kamp ([93]) and dates back
from 1968. Kamp originally formulated his theorem for a more general class
of linear orders, called Dedekind complete linear orders and he did not consider
satisfaction at the root, but satisfaction in general. Hence he considered an
extension of LTL with past tense operators. It is enough in our perspective
(especially Chapter 4) to consider satisfaction at the root of the linear order.
This perspective is called “initial semantics” and enables the following alternative
version of Kamp’s Teorem (see [67]):

Theorem 2.2.11 (Kamp’s Theorem for initial semantics). LTL has exactly the
same expressive power as FO over linear orders of order type ω (with monadic
vocabularies and a binary predicate for the order) with respect to initial semantics.

30 Chapter 2. Preliminaries

Kamp’s Theorem is a surprising result and it has at first been interpreted as
a sign that LTL was not a useful formalism (see [131]). Time has shown this first
impression to be wrong and LTL is now ubiquitous in the field of verification. The
point is that expressive power is not everything and LTL and FO have different
computational properties, as LTL reasoning is in PSPACE, while FO reasoning is
non-elementary (see [131]). We will not be dealing with complexity in the thesis,
but the point is still worth pointing out.

Whenever one looks a bit closer at Kamp’s Theorem, the statement can also be
slightly refined: FO can be replaced by FO3, which is the three variables fragment
of first-order logic. In that line, another result of this type has been given in 1998
by Vardi, Etessami and Wilke ([62]):

Theorem 2.2.12 (Vardi, Etessami, Wilke). Unary LTL (i.e., LTL without the
Until operator) has exactly the same expressive power as FO2 (i.e., FO with two
variables) over linear orders of order type ω with respect to initial semantics.

In the same line again, Janin and Walukiewicz identified in 1996 ([91]) the
µ-calculus as the bisimulation invariant fragment of MSO:

Theorem 2.2.13 (Janin, Walukiewicz). An MSO-formula is invariant under
bisimulation if, and only if, it is equivalent to a Lµ-formula.

This holds on arbitrary structures and also on trees. But on the linear orders
we are interested in, bisimulations are trivial and the following holds with respect
to initial semantics (see [4]):

Theorem 2.2.14. MSO on linear orders of order type ω and the linear-time
µ-calculus have the same expressive power with respect to initial semantics.

Let us note that the expressive power of MIC and MPC go far beyond MSO
(see [97]). Additionally for these logics there is no known characterization result
similar to the ones we just recalled here. What is known is simply that MIC is
contained in the bisimulation-invariant fragment of FO(IFP1), even if simultane-
ous fixed-points are not allowed and that MPC is contained in the bisimulation-
invariant fragment of FO(PFP) (see [97]).

It follows from these results that in some sense, we will actually be talking
about extensions of FO all the time. Whenever we will be talking about modal
logic, as we will mostly restrict to linear orders, one could indeed say that we
are in fact talking about extensions of FO through modal logic, and not even
modulo bisimulation. (Except when we will be mentioning modal logic on finite
trees, but this will not be the central issue.) In fact, besides the complexity
point of view, that we already mentioned in passing, the modal perspective has
other advantages. We will see in Chapter 4 and 5 that characterizing the stutter-
invariant fragment of MSO and that characterizing the fragments of MSO which
satisfy interpolation on linear orders is particularly easy whenever one goes via
modal logic.

2.3. Tools and Concepts 31

2.3 Tools and Concepts

We introduced two families of logics, as extensions of respectively, basic modal
logic and first-order logic. In order to deal with them, we will be mainly us-
ing model-theoretic techniques, but as we focus on trees, the automata-theoretic
framework will also lightly come into play. In this thesis, we will be interested in
three kinds of things: definability, complete axiomatizations and interpolation.
We already gave an account of definability and we reserve the issue of interpo-
lation for Chapter 4, so let us now shortly discuss two closely related notions,
decidability and complete axiomatizations.

2.3.1 Decidability

Now that we introduced all these logics, gave their syntax and semantics and
discussed their relative expressive power, we can ask one other natural question.
Given one of these logics, can we determine an effective procedure which, given
a formula ϕ, allows to decide whether ϕ is satisfiable? This problem is called
the satisfiability problem of the logic and - whenever the logic is closed under
negation - it can equivalently be formulated as its validity problem (can we de-
cide whether ϕ is valid?). Whenever such a procedure exists, we say that the
logic is decidable. Historically, this problem became prominent in 1928, when
David Hilbert asked a more general and ambitious question. He was interested
in whether the validity of any mathematical statement could be shown to be
decidable. He was believing that this could in some sense be the case and he
had a vast program consisting in reducing mathematics to logic. One of the first
step in that program would have been to show that FO (and hence the minimal
part of mathematics it can formalize) is decidable (it is known as the classical
decision problem, see [31]). Hilbert’s hopes were soon dashed. In 1936 and 1937,
by giving a precise mathematical meaning to the notion of effective procedure,
both Church and Turing published results implying that FO was not decidable
([43], [42] and [129]). The classical decision problem was then reconsidered and
the focus shifted on decidable fragments of FO. In that direction, Löwenheim had
for instance already proven in 1915 that the fragment of FO where only unary
predicates are allowed is decidable. Another related line of research focuses on
decidable FO-theories. Gurevich for instance showed in 1964 that the FO theory
of ordered abelian groups is decidable (see [82, 83]). He also came later to consid-
ering decidable theories formulated in extensions of FO with quantification over
some specific classes of subsets of the domain (see [84] for a discussion). In the
case where quantification is allowed over the whole powerset of the domain, this
amounts to considering decidable MSO-theories. Monadic theories are a good
source of theories that are both expressive and manageable. Consequently, a lot
of attention has been given to them in the field of theoretical computer science,
where there is a special focus on the determination of effective methods. It is

32 Chapter 2. Preliminaries

interesting to put the development of computer science in perspective with the
formulation, discussion and reformulation of the classical decision problem. This
logical problem actually contributed to the elaboration of concepts which form
now the backbone of computability theory. Also, many “industrial logics” were
designed out of logics first investigated in that context (again, see [131]). Indeed,
having practical decision procedures for classes of logical formulas is for instance
very relevant in the context of formal verification or in the context of database
theory. We will now introduce the Büchi Theorem, a logical result which is classic
in theoretical computer science and which implies that MSO is decidable on lin-
ear orders of order type ω. One of the main tools in logics on such linear orders,
or more generally on trees, is given by automata-theory. Let us now introduce
very shortly some basic notions from this framework which are needed for the
formulation of the Büchi Theorem. It is also important to keep them in mind in
order to have a good picture of the landscape of logics on trees.

Definition 2.3.1 (ω-word). Let Σ be a finite alphabet. We call ω-word any
string of letters of length ω over Σ and we represent it by a function α : ω → Σ
assigning to each position a letter. We call ω-word language any set of ω-words
over Σ.

Note that we will be using later on a similar notion of finite word. Given an
alphabet Σ, a finite word is any finite string of letters over Σ and a finite word
language is a set of finite words over Σ.

Definition 2.3.2 (Büchi-automata). To specify recognizable ω-word languages,
we refer to nondeterministic ω-automata over a finite alphabet Σ, which are
presented in the form A = (Q,Σ, q0,∆, Acc) where Q is a finite set of states, q0

the initial state, ∆ ⊆ Q× Σ×Q the transition relation, and Acc the acceptance
component. A run of A on a given input ω-word α = α(0)α(1) . . . with α(i) ∈ Σ is
a sequence ρ = ρ(0)ρ(1) . . . ∈ Qω such that ρ(0) = q0 and (ρ(i), α(i), ρ(i+1)) ∈ ∆
for i ≥ 0.

Now we write ∃ω for the quantifier “there exists infinitely many” and consider
the set

Inf(ρ) = {q ∈ Q| ∃ωi ρ(i) = q}

For a run to be accepting, the Büchi condition requires that some final state in
a set F ⊆ Q occurs infinitely often in ρ, that is Inf(ρ) ∩ F 6= ∅. An ω-word
α is accepted by A if there is an accepting run of A on α. The language L(A)
recognized by A is the set of all ω-words over Σ accepted by A.

Note that other acceptance conditions exist for automata on ω-words (for
more details see [127]). There are also corresponding notions of automata on
finite words and on other classes of trees. In order to keep things simple, we
will not develop them here and we refer the reader to [127]. One can go back
and forth from ω-words to linear orders of order type ω and here too one can

2.3. Tools and Concepts 33

have a notion of “correspondence language” (for more details we refer to Chapter
4). Hence, talking about linear orders of order type ω or talking about ω-words
amounts to adopting two different perspectives on one and the same class of
structures. Moreover, the Büchi Theorem establishes that characterizing classes
of such structures via MSO or via Büchi-automata is actually equivalent:

Theorem 2.3.3 (Büchi [35]). A language of ω-words is recognizable by a Büchi-
automaton if and only if it is MSO-definable. Both conversions, from automata
to formulas, and vice versa, are effective.

Theorem 2.3.3 has the following important corollary:

Corollary 2.3.4. MSO is decidable on linear orders of order type ω.

Proof. In order to check if a MSO-formula ϕ is satisfiable on linear orders of order
type ω, we first convert it to an equivalent Büchi-automata A. Then, we check
whether L(A) is non-empty (this is a decidable problem, see [127]). By Theorem
2.3.3, if L(A) 6= ∅, then ϕ is satisfiable, otherwise it is not satisfiable.

A version of Theorem 2.3.3 was first shown for finite words by Büchi in 1960
and by Elgot in 1961. Another version was shown for finite binary trees by
Thatcher and Wright in 1968, Doner in 1970 and for infinite binary trees by
Rabin in 1969 (see [127]). This also implies (via the decidability of the emptiness
problem of the automata involved) that MSO is decidable on these classes of
structures. The Büchi and the Rabin Theorem (which are also often referred
to as establishing the decidability of the monadic theories of one successor S1S
and two successors S2S, respectively) are key results which brought pioneering
methods in the field. In particular, many theories and many modal and temporal
logics (among which the µ-calculus) have been shown to be decidable by an
interpretation in S2S.

Theorem 2.3.5 (Rabin [127]). MSO is decidable on infinite binary trees.

Moreover, we already noted that unranked trees can be encoded as binary
trees, so MSO is also decidable over finite unranked trees and over infinite un-
ranked trees. Additionally, these results imply that all the fragments of MSO
we considered are decidable on these classes of structures (see also [134] for an
investigation of fragments of temporal logic as characterizing classes of regular
languages). On the other hand, MIC is known to be undecidable already on the
class of finite words (see for instance [1]), which entails that MPC, FO(IFP1),
FO(IFP) and FO(LFP) are also undecidable there. This clearly sets apart these
formalisms from the other logics we will be dealing with. Actually, going beyond
the expressive power of MSO while retaining decidability on trees seems to be
delicate, while it is known to be possible in some very restricted cases (see for in-
stance [47]). Enriching tree structures has also most of the time the same effect.

34 Chapter 2. Preliminaries

For instance, introducing a relation of “simultaneity”8 into the infinite binary
tree of S2S makes MSO undecidable (see [102] and see [24] more generally, for a
survey on the topic of decidability on trees).

2.3.2 Complete Axiomatizations

Another property which is related to decidability is complete axiomatizability,
which entails semi-decidability. A theory is semi-decidable if there is an effective
method which, given an arbitrary formula, will always tell correctly when the
formula is in the theory, but may give no answer at all when the formula is not
in the theory. In this thesis, we will provide some complete axomatizations for
different theories of classes of trees. An axiomatization is a set of special formulas
called axioms, which come together with a set of rules that can be used in order
to derive proofs of other formulas from the axioms. An axiomatization is sound
whenever only valid formulas can be derived in the system, i.e., whenever every
axiom is a valid formula and whenever every application of a rule to valid formulas
produces only a valid formula. Soundness is an essential property that one expect
an axiomatization to satisfy, but it is usually an easy property to check. Another
important property that is expected from a “good” axiomatization is that it is
complete, i.e., that every valid formula can be proved using the axiomatization.
Completeness results are interesting for different reasons. Axioms and rules are
usually chosen because they are simple and easy to understand. Hence, in some
sense, a logic that is completely axiomatized using intuitive axioms and rules
is well-understood. Comparing complete axiom systems is also a good way to
understand differences and common points among families of logics, witness the
classification of normal modal logics established by reference to their axiom sys-
tems. Finally, completeness results are also interesting in the way they establish
a link in between semantic validity and syntactic provability. Verifying directly
the validity of a formula is indeed generally non-constructive, whereas verifying
whether a sequence of formulas is a proof can be done very easily.

Let us now give an example of a complete axiomatization with the simple case
of basic modal logic. The proof system for basic ML is called K and it is designed
to produce all the ML theorems. A K proof is a finite sequence of formulas, all
prefixed by `, each of which is an axiom, or follows from one or more earlier items
in the sequence by applying a rule of proof. The axioms and rules of K are given
in Figure 2.3.

A formula ϕ is K-provable if ` ϕ occurs in some K-proof and it is K-consistent
if its negation is not K-provable. A set of ML-formulas Γ is K-consistent if there
does not exist ψ1, . . . , ψk ∈ Γ such that (ψ1 ∧ . . . ∧ ψk) → ⊥ is K-provable. The
completeness Theorem for K establishes that in the context of K, the relations |=

8This relation is also called the “equi-level relation” and is an equivalence relation that holds
between two points if they have the same distance from the root.

2.3. Tools and Concepts 35

Taut. ` ϕ where ϕ is a tautology of sentential calculus
K. ` 2(p→ q)→ (2p→ 2q)
Dual. ` ♦p↔ ¬2¬p
Modus Ponens if ` ϕ and ` ϕ→ ψ, then ` ψ
Uniform substitution if ` ϕ, then ` θ, where θ is obtained from ϕ by uniformly

replacing proposition letters in ϕ by arbitrary formulas
Generalization if ` ϕ, then ` 2ϕ

Figure 2.3: Axioms and rules of K

and ` are equivalent:

Theorem 2.3.6 (Completeness for K). A set of ML-formulas is K-consistent if
and only if it is satisfiable in a Kripke model.

The proof is classic (see for instance [26]) and relies on the construction of
a canonical model. Note that as ML has the finite model property (i.e., every
satisfiable ML-formula is satisfiable in a finite model, see [26]) and as its model
checking is decidable (i.e., given a formula and a model, it is decidable whether
the formula is satisfied in that model), it also follows from Theorem 2.3.6 that
ML is decidable on the class of Kripke models. Recursive enumerability of the
set of validities of a logic, together with co-recursive enumerability (i.e., recursive
enumerability of the set of non-validities of the logic) indeed entails decidability.
Recursive enumerability is given here by the complete axiomatization and co-
recursive enumerability follows from the fact that attention can be restricted to
finite models: if a formula is not valid, then it has a counter-model which can
be found in a finite amount of time simply by enumerating all finite models and
each time we list one, examining whether the formula is satisfied in it.

Similar complete axiomatizations exist for LTL (see [37]), some of its fragments
(for LTL without the X operator, see [110], for LTL with only the X operator, see
[121]) and for the modal µ-calculus (see [133] in the general case, [92] on ω-words
and [40] on finite trees, as well as on finite words). The arguments are there more
involved (especially in the case of [133]). But sometimes, constructing a canonical
model and transforming it slightly happens to be enough (this is for instance the
case in [40]). Decidability follows from these results in a similar way.

We already noted FO to be undecidable, but it is still completely axiomatiz-
able. Let us recall here this classical result (for the FO axiomatization, we refer to
Figure 3.1, which can be found in Chapter 3). A formula ϕ is FO-provable if ` ϕ
occurs in some FO-proof and it is FO-consistent if its negation is not FO-provable.
A set of FO-formulas Γ is FO-consistent if there does not exist ψ1, . . . , ψk ∈ Γ
such that (ψ1 ∧ . . . ∧ ψk)→ ⊥ is FO-provable.

Theorem 2.3.7 (Completeness of FO). A set of FO-formulas is FO-consistent if
and only if it is satisfiable in a relational structure.

36 Chapter 2. Preliminaries

The standard proof involves the construction of a Henkin model. For details
we refer to [60] or to the next chapter, where we show completeness theorems
for extensions of FO on so called Henkin structures (the FO-proof can easily be
abstracted from these more elaborate proofs).

Historically, the first logical systems considered in the foundations of mathe-
matics were actually far more expressive than FO, but it finally turned out that
no complete axiomatizations could be established for such expressive logics ([74]).
Hence the completeness theorem contributed to give a very special status to FO,
which is still used as the reference logic in model theory. We saw that the pic-
ture is a bit different on trees, where the yardstick is the more expressive logic
MSO. We will give complete axiom systems for MSO, FO(TC1) and FO(LFP1) on
a specific class of finite trees in Chapter 3. We will also show a weaker form of
completeness than the one which we just stated for K and FO and we will be
concerned with single sentences that are consistent and not with consistent sets
of sentences. This distinction is called weak versus strong completeness.

2.4 Summary

In this Chapter, we gave a general overview of temporal and fixed-point logics
on trees. We first discussed different classes of trees which are of interest in the
field and which we consider in the remainder of the thesis. Then, we introduced
the fixed-point extensions of FO that we use in Chapter 3 and Chapter 6 and we
discussed their relative expressive power on arbitrary structures, but also on trees
and linear orders. We also introduced the notion of Ehrenfeucht-Fraissé game,
which is an important model theoretic-tool used in Chapter 3. We then intro-
duced linear-time temporal logic and the linear-time µ-calculus, used in Chapter
4 and 5. We also mentioned some other modal fixed-point logics that we will
encounter in Chapter 6. We discussed the expressive power of these modal for-
malisms and recalled a few classic characterization results, like the van Benthem
Characterization Theorem, which says that modal logic is the bisimulation invari-
ant fragment of FO, or the Janin-Walukiewicz Theorem, which extends this result
by saying that the µ-calculus is the bisimulation-invariant fragment of MSO. Fi-
nally, we recalled classical results like the Büchi and the Rabin Theorems, which
entail that MSO and its fragments are decidable on important classes of trees.
We also introduced the notion of complete axiomatization, which is central in
Chapter 3 and 5.

Chapter 3

Complete Axiomatization of Fragments
of MSO on Finite Trees

In this chapter, we develop a uniform method for obtaining complete axiomati-
zations of fragments of MSO on finite trees. In particular, we obtain a complete
axiomatization for MSO, FO(TC1), and FO(LFP1) on finite node labelled sibling-
ordered trees. We take inspiration from Kees Doets, who proposed in [57] com-
plete axiomatizations of FO-theories in particular on the class of node-labelled
finite trees without sibling-order (see Section 3.2, where we discuss his work in
more details). A similar result for FO on node-labelled finite trees with sibling
order was shown in [7] in the context of model-theoretic syntax and in [41] in the
context of XML query languages. We use the signature of [41] and extend the set
of axioms proposed there to match the richer syntax of the logics we consider.

We already pointed out that finite trees are basic and ubiquitous structures
which are of interest at least to mathematicians, computer scientists (e.g. tree-
structured documents) and linguists (e.g. parse trees). We also explained that
the logics we study are known to be very well-behaved on this particular class of
structures and to have an interestingly high expressive power. In particular, they
all allow to express reachability, but at the same time, they have the advantage
of being decidable on trees.

As XML documents are tree-structured data, our results are particularly rel-
evant to XML query languages. Query languages are logical languages used to
make queries into database and information systems. In [126] and [75], MSO
and FO(TC1) have been proposed as a yardstick of expressivity on trees for such
languages. It is known that FO(LFP1) has the same expressive power as MSO
on trees, but the translations between the two are non-trivial, and hence it is
not clear whether an axiomatization for one language can be obtained from an
axiomatization for the other language in any straightforward way.

In applications to computational linguistics, finite trees are used to represent
the grammatical structure of natural language sentences. In the context of model
theoretic syntax, Rogers advocates in [118] the use of MSO in order to characterize

37

38 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

derivation trees of context free grammars. Kepser also argues in [95] that MSO
should be used in order to query treebanks. A treebank is a text corpus in which
each sentence has been annotated with its syntactic structure (represented as a
tree structure). In [96] and [128] Kepser and Tiede propose to consider various
transitive closure logics, among which FO(TC1), arguing that they constitute very
natural formalisms from the logical point of view, allowing concise and intuitive
phrasing of parse tree properties.

The remainder of the chapter is organized as follows: in Section 3.1 we start
by stating our three axiomatizations. In Section 3.2, we introduce non stan-
dard semantics called Henkin semantics for which our axiomatizations are easily
seen to be complete. We prove in details the FO(LFP1) Henkin completeness
proof. Section 3.3 introduces operations on Henkin structures: substructure for-
mation and a general operation of Henkin structures combination. We obtain
Feferman-Vaught theorems for this operation by means of Ehrenfeucht-Fräıssé
games. This section contains in particular the definitions and adequacy proofs
of the Ehrenfeucht-Fräıssé games that we also use there to prove our Feferman-
Vaught theorems. In Section 3.4, we prove real completeness (that is, on the
more restricted class of finite trees). For that purpose, we consider substructures
of trees that we call forests and use the general operation discussed in Section 3.3
to combine a set of forests into one new forest. Our Feferman-Vaught theorems
apply to such constructions and we use them in our main proof of completeness,
showing that no formula of our language can distinguish Henkin models of our
axioms from real finite trees. We also point out that every standard model of
our axioms actually is a finite tree. Finally, we notice in Section 3.5 that a sim-
plified version of our method can be used to show similar results for the class of
node-labelled finite linear orders.

3.1 The Axiomatizations

In this chapter, we are interested in finite node-labelled sibling-ordered trees : finite
trees in which the children of each node are linearly ordered. Also, the nodes can
be labelled by unary predicates. In the remaining of the chapter, we will call
these structures finite trees for short.

Definition 3.1.1 (Finite tree). Assume a fixed finite set of unary predicate sym-
bols {P1, . . . , Pn}. By a finite tree, we mean a finite structure M = (M,<,≺
, P1, . . . , Pn), where (M,<) is a tree (with < the descendant relation) and ≺
linearly orders the children of each node.

As many arguments in this chapter equally hold for MSO, FO(TC1) and
FO(LFP1), we let Λ ∈ {MSO,FO(TC1),FO(LFP1)} and use Λ as a symbol for
any one of them. The axiomatization of Λ on finite trees consists of three parts:

3.1. The Axiomatizations 39

FO1. Tautologies of sentential calculus
FO2. ` ∀xϕ→ ϕxt , where t is substitutable for x in ϕ
FO3. ` ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)
FO4. ` ϕ→ ∀xϕ, where x does not occur free in ϕ
FO5. ` x = x
FO6. ` x = y → (ϕ→ ψ), where ϕ is atomic and ψ is obtained

from ϕ by replacing x in zero or more (but not necessarily
all) places by y.

Modus Ponens if ` ϕ and ` ϕ→ ψ, then ` ψ
FO Generalization if ` ϕ, then ` ∀xϕ

Figure 3.1: Axioms and rules of FO

COMP. ` ∃X∀x(Xx↔ ϕ), where X does not occur free in ϕ
MSO1. ` ∀Xϕ→ ϕ[X/T], where T (which is either a set variable

or a monadic predicate) is substitutable in ϕ for X.
MSO2. ` ∀X(ϕ→ ψ)→ (∀Xϕ→ ∀Xψ)
MSO3. ` ϕ→ ∀Xϕ, where X does not occur free in ϕ
MSO Generalization if ` ϕ, then ` ∀Xϕ

Figure 3.2: Axioms and inference rule of MSO

FO(TC1) ` [TCxyϕ](u, v)→ ((ψ(u) ∧ ∀x∀y(ψ(x) ∧ ϕ(x, y)→ ψ(y)))→ ψ(v))
axiom where ψ is any FO(TC1) formula

FO(TC1) if ` ξ → ((P (u) ∧ ∀x∀y(P (x) ∧ ϕ(x, y)→ P (y)))→ P (v)),
Genera- and P does not occur in ξ,
lization then ` ξ → [TCxyϕ](u, v)

Figure 3.3: Axiom and inference rule of FO(TC1)

FO(LFP1) ` [LFPx,Xϕ]y → (∀x(ϕ(x, ψ)→ ψ(x))→ ψ(y))
axiom where ψ is any FO(LFP1) formula and ϕ(x, ψ) is the result

of the replacement in ϕ(x,X) of each occurrence of X by ψ
(renaming variables when needed)

FO(LFP1) if ` ξ → (∀x(ϕ(x, P)→ P (x))→ P (y)),
Generalization and P positive in ϕ does not occur in ξ,

then ` ξ → [LFPX,xϕ](y)

Figure 3.4: Axiom and inference rule of FO(LFP1)

40 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

T1. ∀x∀y∀z(x < y ∧ y < z → x < z) < is transitive

T2. ¬∃x(x < x) < is irreflexive

T3. ∀x∀y(x < y → ∃z(x <ch z ∧ z ≤ y)) immediate
child

T4. ∃x∀y¬(y < x) there is a root

T5. ∀x∀y∀z(x < z ∧ y < z → x ≤ y ∨ y ≤ x) linearly ordered
branches

T6. ∀x∀y∀z(x ≺ y ∧ y ≺ z → x ≺ z) ≺ is transitive

T7. ¬∃x(x ≺ x) ≺ is irreflexive

T8. ∀x∀y(x ≺ y → ∃z(x ≺ch z ∧ z � y)) immediate next
sibling

T9. ∀x∃y(y � x ∧ ¬∃z(z ≺ y)) there is a least
sibling

T10. ∀x∀y((x ≺ y ∨ y ≺ x)↔ (∃z(z <ch x ∧ z <ch y) ∧ x 6= y))linearly ordered
siblings

T11. ∀x∀y(x = y ∨ x < y ∨ y < x ∨ ∃x′y′(x′ < x ∧ y′ < y ∧ (x′ ≺ y′ ∨ y′ ≺ x′)))
connectedness

Ind. ∀x(∀y((x < y ∨ x ≺ y)→ ϕ(y))→ ϕ(x))→ ∀xϕ(x) induction
scheme

where

ϕ(x) ranges over Λ-formulas in one free variable x

and

x <ch y is shorthand for x < y ∧ ¬∃z(z < y ∧ x < z),
x ≺ch y is shorthand for x ≺ y ∧ ¬∃z(x ≺ z ∧ z ≺ y)

Figure 3.5: Specific axioms on finite trees

3.2. Henkin Completeness 41

the axioms of first-order logic, the specific axioms of Λ, and the specific axioms
on finite trees.

To axiomatize FO, we adopt the infinite set of logical axioms and the two
rules of inference given in Figure 3.1 (like in [60], except from the fact that we
use a generalization rule). To axiomatize MSO, the axioms and rule of Figure 3.2
are added to the axiomatization of FO and we call the resulting system `MSO.
COMP stands for “comprehension” by analogy with the comprehension axiom
of set theory. MSO1 plays a similar role as FO2, MSO2 as FO3 and MSO3 as
FO4. To axiomatize FO(TC1), the axiom and rule of Figure 3.3 are added to the
axiomatization of FO and we call the resulting system `FO(TC1). To axiomatize
FO(LFP1), the axiom and rule of Figure 3.4 are added to the axiomatization of
FO and we call the resulting system `FO(LFP1). We are interested in axiomatizing
Λ on the class of finite trees. For that purpose, we restrict the class of considered
structures by adding to `Λ the axioms given in Figure 3.5 and we call the resulting
system `treeΛ . Note that the induction scheme in Figure 3.5 allows to reason by
induction on properties definable in Λ only. Also, for technical convenience, we
adopt the following convention:

Definition 3.1.2. Let Γ be a set of Λ-formulas and ϕ a Λ-formula. By Γ `Λ ϕ we
will always mean that there are ψ1, . . . , ψn ∈ Γ such that `Λ (ψ1 ∧ . . .∧ψn)→ ϕ.

Now the main result of this chapter is that on standard structures, the Λ
theory of finite trees is completely axiomatized by `treeΛ . In the remaining sections
we will progressively build a proof of it.

3.2 Henkin Completeness

As it is well known, MSO, FO(TC1) and FO(LFP1) are highly undecidable on ar-
bitrary standard structures and hence not recursively enumerable (by arbitrary,
we mean any sort of structure: infinite trees, arbitrary graphs, partial orders. . .).
So in order to show that our axiomatizations `treeΛ are complete on finite trees,
we refine a trick used by Kees Doets in his PhD thesis [57]. We proceed in two
steps (the second step being the one inspired by Kees Doets). First, we show
completeness theorems, based on a non-standard (so called Henkin) semantics
for MSO, FO(TC1) and FO(LFP1) (on the general topic of Henkin semantics, see
[88], the original paper by Henkin and also [108]). Each semantics respectively ex-
tends the class of standard structures with non standard (Henkin) MSO, FO(TC1)
and FO(LFP1)-structures. By the Henkin completeness theorems, our axiomatic
systems `treeΛ naturally turn out to be complete on the wider class of their Henkin-
models. But we will see that compactness also follows from these completeness
results and some of these Henkin models are infinite. As a second step, we show in
Section 3.4 that no Λ-sentence can distinguish between standard and non-standard

42 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

Λ-Henkin-models among models of our axioms. Every finite Henkin model being
also a standard model, this entails that our axioms are complete on the class of
(standard) finite trees, i.e., each Λ-sentence valid on this class is provable using
the system `treeΛ .

Now let us point out that Kees Doets was interested in complete axioma-
tizations of monadic “Π1

1-theories” of various classes of linear orders and trees.
Considering such theories in fact amounts to considering first-order theories of
such structures extended with finitely many unary predicates. Thus, he was re-
lying on the FO completeness theorem and if he was working with non-standard
models of particular FO-theories, he was not concerned with non standard Henkin-
structures in our sense. In particular, he used Ehrenfeucht-Fräıssé games in order
to show that “definably well-founded” node-labelled trees have well-founded n-
equivalents for all n. In Section 3.4.2, Lemma 3.4.4 which is the key lemma to our
main completeness result, establishes a similar result for definably well-founded
Henkin-models of the Λ-theory of finite node-labelled sibling-ordered finite trees.
Hence, what makes the originality of the method developed in this chapter is its
use of Henkin semantics: we first create a Henkin model and then “massage” it in
order to obtain a model which is among our intended ones. Similar methods are
commonly used to show completeness results in modal logic, where “canonical
models” are often transformed in order to obtain intended models (see [26]). Re-
markably, the completeness proof for the µ-calculus on finite trees given in [40],
which is directly inspired by the methods used here, proceeds in that way. There
are numerous examples of that sort in modal logic (and especially, in temporal
logic), but there is also one notable example in classical model theory. In 1970,
Keisler provided a complete axiomatization of FO extended with the quantifier
“there exist uncountably many” (see [94]). His completeness proof, which is es-
tablished for standard models, is surprisingly simple, it relies on the construction
of an elementary chain of Henkin structures and then uses the omitting types the-
orem. Hence all in all, these structures seem to provide a particularly convenient
tool, not only for simple Henkin completeness proofs, but also for more refined
completeness proofs with respect to interesting subclasses of Henkin models like
standard models.

Let us now introduce Henkin structures formally. Such structures are partic-
ular cases among structures called frames (note that such frames are unrelated
to “Kripke frames”) and it is convenient to define frames before defining Henkin-
structures. In our case, a frame is simply a relational structure together with
some subset of the powerset of its domain called its set of admissible subsets. A
Henkin structure is a frame which set of admissible subsets satisfies some natural
closure conditions.

Definition 3.2.1 (Frames). Let σ be a purely relational vocabulary. A σ-frame
M consists of a non-empty domain dom(M), an interpretation in dom(M) of the
predicates in σ and a set of admissible subsets AM ⊆ ℘(dom(M)).

3.2. Henkin Completeness 43

Whenever AM = ℘(dom(M)), M can be identified to a standard structure.
Assignments g into M are defined as in standard semantics, except that if X is a
set variable, then we require that g(X) ∈ AM.

Definition 3.2.2 (Interpretation of Λ-formulas in frames). Λ-formulas are inter-
preted in frames as in standard structures, except for the three following clauses.
The set quantifier clause of MSO becomes:

M, g |= ∃Xϕ iff there is A ∈ AMΓ
such that M, g[A/X] |= ϕ

The TC clause of FO(TC1) becomes:

M, g |= [TCxyϕ](u, v)
iff

for all A ∈ AM, if g(u) ∈ A
and for all a, b ∈ dom(M), a ∈ A and M, g[x/a, b/y] |= ϕ imply b ∈ A,

then g(v) ∈ A.

And finally the LFP clause of FO(LFP1) becomes:

M, g |= [LFPx,Xϕ]y
iff

for all A ∈ AM, if for all a ∈ dom(M), M, g[a/x,A/X] |= ϕ(x,X) implies a ∈ A,
then g(y) ∈ A.

Definition 3.2.3 (Λ-Henkin-Structures). A Λ-Henkin-structure is a frame M
that is closed under parametric Λ-definability, i.e., for each Λ-formula ϕ and
assignment g into M:

{a ∈M | M, g[a/x] |= ϕ} ∈ AM

We call a Λ-Henkin-structure M standard whenever every subset in dom(M)
belongs to AM.

Remark 3.2.4. Note that any finite Λ-Henkin-structure is a standard structure,
as every subset of the domain is parametrically definable in a finite structure.
Hence, non standard Henkin structures are always infinite. a

Theorem 3.2.5. Λ is completely axiomatized on Λ-Henkin-structures by `Λ, in
fact for every set of Λ-formulas Γ and Λ-formula ϕ, ϕ is true in all Λ-Henkin-
models of Γ if and only if Γ `Λ ϕ.

We do not detail here the MSO proof, as it is a special case of the proof
of completeness for the theory of types given in [108]. We focus only on the
FO(LFP1) case, as the FO(TC1) case is very similar, except that there is no need
to consider set variables. Up to now we have been working with purely relational
vocabularies. Here we will be using individual constants in the standard way,

44 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

but only for the sake of readability (we could dispense with them and use FO
variables instead). Also, whenever this is clear from the context, we will use `
as shorthand for `FO(LFP1). Let us now begin the Henkin completeness proof for
FO(LFP1). This will achieve the proof of Theorem 3.2.5.

Lemma 3.2.6 (Generalization Lemma for FO Quantifiers). If Γ ` ϕ and x does
not occur free in Γ, then Γ ` ∀xϕ.

Proof. We refer the reader to the proof given by Enderton in [60].

Definition 3.2.7. We say that a set of FO(LFP1) formulas ∆ contains FO(LFP1)
Henkin witnesses if and only if the two following conditions hold. First, for every
formula ϕ, if ¬∀xϕ ∈ ∆, then ¬ϕ[x/t] ∈ ∆ for some term t and if ¬[LFPxXϕ]y ∈
∆, then ¬Py ∧¬∃x(¬Px∧ ϕ(P, x)) ∈ ∆ for some monadic predicate P . Second,
if ϕ ∈ ∆ and x is a free variable of ϕ, then ∀x(Px↔ ϕ(x)) ∈ ∆ for some monadic
predicate P .

Definition 3.2.8. We say that a FO(LFP1)-formula ϕ is FO(LFP1)-provable if
`FO(LFP1) ϕ occurs in some FO(LFP1)-proof and it is FO(LFP1)-consistent if its
negation is not FO(LFP1)-provable.

The originality of the FO(LFP1) case essentially lies in the notion of FO(LFP1)-
Henkin witness of Definition 3.2.7. In order to use this notion in the proof of
Lemma 3.2.10, we also need the following lemma:

Lemma 3.2.9. Let Γ be a consistent set of FO(LFP1)-formulas and θ a FO(LFP1)-
formula of the form ∀x(ϕ ↔ Px) with P a fresh monadic predicate (i.e. not
appearing in Γ). Then Γ ∪ {θ} is also consistent.

Proof. Suppose Γ∪{∀x(ϕ↔ Px)} is inconsistent, so there is some proof of⊥ from
formulas in Γ ∪ {∀x(ϕ↔ Px)}. We first rename all bound variables in the proof
with variables which had no occurrence in the proof or in ∀x(ϕ ↔ Px) (this is
possible since proofs are finite objects and we have a countable stock of variables).
Also, whenever in the proof the FO(LFP1) generalization rule is applied on some
unary predicate P , we make sure that this P is different from the unary predicate
that we want to substitute by ϕ and which does not appear in the proof; this is
always possible because we have a countable set of unary predicates. Now, we
replace in the proof all occurrences of Px by ϕ (as we renamed bound variables,
there is no accidental binding of variables by wrong quantifiers). Then, every
occurrence of ∀x(ϕ↔ Px) in the proof becomes an occurrence of ∀x(ϕ↔ ϕ), i.e.,
we have obtained a proof of ⊥ from Γ ∪ {∀x(ϕ ↔ ϕ)}, i.e., from Γ (∀x(ϕ ↔ ϕ)
is an axiom, as it can be obtained by FO generalization from a tautology of
sentential calculus). It entails that Γ is already inconsistent, which contradicts
the consistency of Γ. Now it remains to show that the replacement procedure of
all occurrences of Px by ϕ is correct, so that we still have a proof of ⊥ after it.

3.2. Henkin Completeness 45

Every time the replacement occurs in an axiom (or its generalization, which is
still an axiom as we defined it), then the result is still an instance of the given
axiom schema (even for FO(LFP1) generalizations, because we took care that P
is never used in the proof for a FO(LFP1) generalization). Also, as replacement is
applied uniformly in the proof, every application of modus ponens stays correct:
consider ψ → ξ and ψ. Obviously the result ψ∗ of the substitution will allow to
derive the result ξ∗ of the substitution from ψ∗ → ξ∗ and ψ∗. Also ⊥∗ is simply
⊥, so the procedure gives us a proof of ⊥.

Lemma 3.2.10. (FO(LFP1) Lindenbaum Lemma) Let σ∗ = σ ∪ {cn | ∈ N} ∪
{Pn | n ∈ N} with ci, Pi /∈ σ. If a set Γ of FO(LFP1)-formulas in vocabulary σ
is consistent, then there exists a maximally consistent set Γ∗ of σ∗ formulas such
that Γ ⊆ Γ∗ and Γ∗ contains FO(LFP1)-Henkin witnesses.

Proof. Let Γ be a consistent set of well formed FO(LFP1)-formulas in a countable
vocabulary. We expand the language by adding countably many new constants
and countably many new monadic predicates. Then Γ remains consistent as a
set of well formed formulas in the new language. For every pair constituted by
one formula and one FO variable of σ∗, we adopt the following fix exhaustive
enumeration:

< ϕ1, x1 >,< ϕ2, x2 >,< ϕ3, x3 >,< ϕ4, x4 >, . . .

(this is possible since the language is countable), where the ϕi are formulas and
the xi are FO variables.

• Let θ3n−2 be ¬∀xnϕn → ¬ϕ[xn/cl], where cl is the first of the new constants
neither occurring in ϕn nor in θk with k < 3n− 2.

• Let θ3n−1 be ¬[LFPxXϕn]xn → (¬Plxn ∧ ¬∃x(¬Plx ∧ ϕ(Pl, x))), where Pl
is the first of the new monadic predicates neither occurring in ϕn nor in θk
with k < 3n− 1.

• Let θ3n be ∀xn(ϕn ↔ Plxn), where Pl is the first of the new monadic predi-
cates neither occurring in ϕn nor in θk with k < 3n.

Call Θ the set of all the θi.

Claim 3.2.11. Γ ∪Θ is consistent

If not, then because deductions are finite, for somem ≥ 0, Γ∪{θ1, . . . , θm, θm+1}
is inconsistent. Take the least such m, then by the reductio ad absurdum rule
(which is, as in FO, admissible in FO(LFP1)), Γ ∪ {θ1, . . . , θm} ` ¬θm+1. Now
there are three cases:

(1) θm+1 is of the form ¬∀xϕ → ¬ϕ[x/c] i.e. either Γ ∪ {θ1, . . . , θm} ` ¬∀xϕ
and Γ ∪ {θ1, . . . , θm} ` ϕ[x/c]. Since c does not appear in any formula on
the left, by Lemma 3.2.6, Γ ∪ {θ1, . . . , θm} ` ∀xϕ, which contradicts the
minimality of m (or the consistency of Γ if m = 0).

46 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

(2) θm+1 is of the form ¬[LFPxXϕ]y → (¬Py ∧ ¬∃x(¬Px ∧ ϕ(P, x))). In such
a case both Γ ∪ {θ1 . . . θm} ` ¬[LFPxXϕ]y and Γ ∪ {θ1 . . . θm} ` ¬Py ∧
¬∃x(¬Px ∧ ϕ(P, x)) hold. Since P does not appear in any formula on
the left, by FO(LFP1) generalization, Γ ∪ {θ1 . . . θm} ` [LFPxXϕ]y, which
contradicts the minimality of m (or the consistency of Γ if m = 0).

(3) θm+1 is of the form ∀x(ϕ↔ Px). By Lemma 3.2.9, this is not possible.

We then turn Γ ∪Θ into a maximal consistent set Γ∗ in the standard way.

We will now show that if Γ∗ is maximally consistent and contains FO(LFP1)-
Henkin witnesses, then Γ∗ has a FO(LFP1)-Henkin model MΓ∗ .

Definition 3.2.12. Let Γ∗ ⊆ FORM(σ) be maximally consistent and contain
FO(LFP1)-Henkin witnesses. We define an equivalence relation on the set of FO
terms, by letting t1 ≡Γ∗ t2 iff t1 = t2 ∈ Γ∗. We denote the equivalence class of a
term t by |t|.

Proposition 3.2.13. ≡Γ∗ is an equivalence relation.

Proof. By FO5 and FO6.

Definition 3.2.14. We define MΓ∗ (together with a valuation gΓ∗) out of Γ∗.

• M = {|t| : t is a FO term }

• AMΓ∗ = {AT : T is a set variable or a monadic predicate} where AT = {|t| :
Tt ∈ Γ∗}

• (|t1|, . . . , |tn|) ∈ PM
Γ∗ iff Pt1 . . . tn ∈ Γ∗

• cMΓ∗ = |c|

• gΓ∗(x) = |x|

• gΓ∗(X) = AX

Proposition 3.2.15. MΓ∗ is a FO(LFP1)-Henkin structure.

Proof. By construction of Γ∗ this is immediate (we introduced a monadic predi-
cate for each parametrically definable subset).

Lemma 3.2.16. (Truth lemma) For every FO(LFP1) formula ϕ, MΓ∗ , gΓ∗ |= ϕ
iff ϕ ∈ Γ∗.

Proof. By induction on ϕ.
The base case follows from the definition of MΓ∗ together with the maximality

of Γ∗. Now consider the inductive step:

3.2. Henkin Completeness 47

• Boolean connectives and FO quantifier: as in FO

• LFP operator: we want to show that

MΓ∗ , gΓ∗ |= [LFPxXϕ]y iff [LFPxXϕ]y ∈ Γ∗

– We first show that

MΓ∗ , gΓ∗ |= [LFPxXϕ]y implies [LFPxXϕ]y ∈ Γ∗.

So suppose MΓ∗ , gΓ∗ |= [LFPxXϕ]y i.e. for all monadic predicates
Pi ∈ σ∗, if gΓ∗(y) /∈ APi then there exists |tk| ∈M , such that |tk| /∈ APi
and MΓ∗ , gΓ∗ [x/|tk|, X/APi] |= ϕ i.e. for all Pi such that ¬Piy there
exists tk such that MΓ∗ , gΓ∗ |= (¬Pitk ∧ ϕ(tk, Pi)) and by induction
hypothesis ¬Pitk ∧ ϕ(tk, Pi) ∈ Γ∗. And so by the same argument
as the one used in the FO quantifier step of the present induction,
¬Piy → ∃x(¬Pix ∧ ϕ(x, Pi)) ∈ Γ∗. Now suppose [LFPxXϕ]y /∈ Γ∗

i.e. ¬[LFPxXϕ]y ∈ Γ∗. Then as Γ∗ contains FO(LFP1) Henkin
witnesses, there is a predicate Pm such that ¬Pmy ∧ ¬∃x(¬Pmx ∧
ϕ(Pm, x) ∈ Γ∗. But that contradicts the maximal consistency of
Γ∗. Then ¬[LFPxXϕ]y 6∈ Γ∗ and by maximal consistency of Γ∗,
[LFPxXϕ]y ∈ Γ∗.

– We now show that [LFPxXϕ]y ∈ Γ∗ implies MΓ∗ , gΓ∗ |= [LFPxXϕ]y.
We consider the contraposition

MΓ∗ , gΓ∗ 6|= implies [LFPxXϕ]y 6∈ Γ∗.

So suppose MΓ∗ , gΓ∗ 6|= [LFPxXϕ]y i.e. MΓ∗ , gΓ∗ |= ¬[LFPxXϕ]y i.e.
there exists APi ∈ AMΓ∗ such that, g(y) /∈ APi and for all |tk| ∈ M ,
|tk| ∈ APi or MΓ∗ , gΓ∗ [x/|tk|, X/Pi] |= ¬ϕ and by induction hypoth-
esis for all for all tk, ¬Piy ∧ (Pitk ∨ ¬ϕ(Pi, tk)) ∈ Γ∗. And so by
the same argument as the one used in the FO quantifier step of the
present induction, ¬Piy ∧ ∀x(Pix ∨ ¬ϕ(Pi, x)) ∈ Γ∗ i.e. (by maxi-
mal consistency) ¬Piy ∧ ¬∃x(¬Pix ∧ ϕ(Pi, x)) ∈ Γ∗. Now suppose
[LFPxXϕ]y ∈ Γ∗. Then by the LFP axiom, for every monadic predi-
cate Pm, ¬Pmy → ∃x(¬Pm(x) ∧ ϕ(x, Pm)) ∈ Γ∗. But that contradicts
the maximal consistency of Γ∗. Then [LFPxXϕ]y 6∈ Γ∗ and by maximal
consistency of Γ∗, ¬[LFPxXϕ]y ∈ Γ∗.

Theorem 3.2.17. Every consistent set Γ of FO(LFP1)-formulas is satisfiable.

Proof. First turn Γ into a FO(LFP1) maximal consistent set Γ∗ with FO(LFP1)-
Henkin witnesses in a possibly richer signature (with extra individual constants
and monadic predicates) σ∗. Then build a structure MΓ∗ out of this Γ∗. Then

48 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

the structure MΓ∗ satisfies Γ∗ under the valuation gΓ∗ and hence it satisfies also
Γ (Γ being a subset of Γ∗).

Compactness follows directly from Definition 3.1.2 and Theorem 3.2.5, i.e.,
a possibly infinite set of Λ-sentences has a Λ-Henkin model if and only if every
finite subset of it has a Λ-Henkin model. It also follows directly from Theorem
3.2.5 that `treeΛ is complete on the class of its Λ-Henkin-models. Nevertheless, by
compactness the axioms of `treeΛ are also satisfied on infinite trees. We overcome
this problem by defining a slightly larger class of Henkin structures, which we
will call definably well-founded Λ-quasi-trees.1

Definition 3.2.18. A Λ-quasi-tree is any Λ-Henkin structure

(T,<,≺, P1, . . . , Pn,AT)

(where AT is the set of admissible subsets of T) satisfying the axioms and rules of
`Λ and the axioms T1–T11 of Figure 3.5. A Λ-quasi-tree is definably well founded
if, in addition, it satisfies all instances of the induction scheme Ind of Figure 3.5.

Corollary 3.2.19. A Λ-Henkin-structure satisfies the axioms of `treeΛ if and only
if it is a definably well-founded Λ-quasi-tree.

3.3 Operations on Henkin-Structures

Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. As noted in Remark 3.2.4, every finite
Λ-Henkin structure is also a standard structure. Hence, when working in finite
model theory, it is enough to rely on the usual FO constructions to define opera-
tions on structures. On the other hand, even though our main completeness re-
sult concerns finite trees, inside the proof we need to consider infinite (Λ-Henkin)
structures and operations on them. In this context, methods for forming new
structures out of existing ones have to be redefined carefully. We first propose a
notion of substructure of a Λ-Henkin-structure generated by one of its paramet-
rically definable admissible subsets:

Definition 3.3.1 (Λ-substructure). Let M = (dom(M), P red,AM) be a Λ-
Henkin-structure (where Pred is the interpretation of the predicates). We call
MFO = (dom(M), P red) the relational structure underlying M. Given a para-
metrically definable set A ∈ AM, the Λ-substructure of M generated by A is the
structure M � A = (〈A〉MFO

,AM�A), where 〈A〉MFO
is the relational substructure of

MFO generated by A (note that A forms the domain of 〈A〉MFO
, as the vocabulary

is purely relational) and AM�A = {X ∩ A|X ∈ AM}.

Note that in the case of MSO and FO(LFP1), we could also have defined AM�A

in an alternative way:

1For a nice picture of a quasi-tree which is not definably well-founded, see [7].

3.3. Operations on Henkin-Structures 49

Proposition 3.3.2. Take M and A as previously and consider the structure
(M � A)′ = (〈A〉MFO

,A(M�A)′), where A(M�A)′ = {X ⊆ A|X ∈ AM}. Whenever M
is a MSO-Henkin structure or a FO(LFP1)-Henkin structure, M � A and (M � A)′

are one and the same structure.

Proof. Indeed, take B ∈ AM�A. So there exists B′ ∈ AM such that B = B′ ∩ A.
We want to show that also B′ ∩ A ∈ A(M�A)′ i.e. B′ ∩ A ⊆ A (which obviously
holds) and B′ ∩A ∈ AM. The second condition holds because both B′ and A are
parametrically definable in M, so their intersection also is (B′ ∩ A = {x | M |=
Ax ∧B′x}). Conversely, consider B ∈ A(M�A)′ . As B ⊆ A and B ∈ AM it follows
that B ∈ AM�A (we can take B = B ∩ A).

Now, in order to show that Λ-substructures are Λ-Henkin-structures, we in-
troduce a notion of relativization and a corresponding relativization lemma. This
lemma establishes that for every Λ-Henkin-structure M and Λ-substructure M �
A of M (with A a set parametrically definable in M), if a set is parametrically
definable in M � A then it is also parametrically definable in M. This result will
be useful again in Section 3.4.2.

Definition 3.3.3 (Relativization mapping). Given two Λ-formulas ϕ, ψ having
no variables in common and given a FO variable x occurring free in ψ, we define
REL(ϕ, ψ, x) by induction on the complexity of ϕ and call it the relativization of
ϕ to ψ:

• If ϕ is an atom, REL(ϕ, ψ, x) = ϕ,

• If ϕ :≈ ϕ1∧ϕ2, REL(ϕ, ψ, x) = REL(ϕ1, ψ, x)∧REL(ϕ2, ψ, x) (similar for
∨,→,¬),

• If ϕ :≈ ∃yχ, REL(ϕ, ψ, x) = ∃y(ψ[y/x] ∧REL(χ, ψ, x)),

• If ϕ :≈ ∃Y χ, REL(ϕ, ψ, x) = ∃Y ((Y x→ ψ) ∧REL(χ, ψ, x)),

• If ϕ :≈ [TCyzχ](u, v),
REL(ϕ, ψ, x) = [TCyzREL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x]](u, v),

• If ϕ :≈ [LFPXyχ]z, REL(ϕ, ψ, x) = [LFPXyχ ∧ ψ[y/x]]z.

where ψ[y/x] is the formula obtained by replacing in ψ every occurrence of x by
y and similarly for ψ[z/x].

Hence for instance, REL(∃yP (y), Q(x), x) = ∃y(P (y) ∧ Q(y)), which is sat-
isfied in any model M of which the submodel induced by Q contains an element
satisfying P .

50 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

Lemma 3.3.4 (Relativization lemma). Let M be a Λ-Henkin-structure, g a valu-
ation on M, ϕ, ψ Λ-formulas having no variable in common and A = {x |M, g |=
ψ}. If g(y) ∈ A for every variable y occurring free in ϕ and g(Y) ∈ AM�A for every
set variable Y occurring free in ϕ, then M, g |= REL(ϕ, ψ, x)⇔M � A, g |= ϕ.

Proof. By induction on the complexity of ϕ. Let g be an assignment satisfying
the required conditions. Base case: ϕ is an atom and REL(ϕ, ψ, x) = ϕ. So
M, g |= ϕ ⇔ M � A, g |= ϕ (by hypothesis, g is a suitable assignment for both
models). Inductive hypothesis: the property holds for every ϕ of complexity at
most n. Now consider ϕ of complexity n+ 1.

• ϕ :≈ ϕ1 ∧ ϕ2 and REL(ϕ1 ∧ ϕ2, ψ, x) :≈ REL(ϕ1, ψ, x) ∧ REL(ϕ2, ψ, x).
By induction hypothesis, the property holds for ϕ1 and for ϕ2. By the
semantics of ∧, it also holds for ϕ1 ∧ ϕ2. (Similar for ∨,→,¬.)

• ϕ :≈ ∃yχ and REL(∃yχ) :≈ ∃y(ψ[y/x] ∧ REL(χ, ψ, x)). By inductive
hypothesis, for every node a ∈ A, M, g[a/y] |= REL(χ, ψ, x) ⇔ M �
A, g[a/y] |= χ. Hence, by the semantics of ∃ and by definition of A,
M, g |= ∃y(ψ[y/x] ∧REL(χ, ψ, x))⇔M � A, g |= ∃yχ.

• ϕ :≈ ∃Y χ and REL(∃Y χ, ψ, x) = ∃Y ((Y x→ ψ)∧REL(χ, ψ, x)). As every
admissible subset of M � A is also admissible in M (by Proposition 3.3.2)
it follows by inductive hypothesis that for every B ∈M � A, M, g[B/Y] |=
REL(χ, ψ, x)⇔M � A, g[B/Y] |= χ. Hence, by the semantics of ∃ and by
definition of A, M, g |= ∃Y ((Y x→ ψ)∧REL(χ, ψ, x))⇔M � A, g |= ∃Y χ.

• ϕ :≈ [TCyzχ](u, v) and REL([TCyzχ](u, v), ψ, x) = [TCyzREL(χ, ψ, x) ∧
ψ[y/x] ∧ ψ[z/x]](u, v). By definition of TC, the following are equivalent:

1. M � A, g |= [TCyzχ](u, v),

2. for all B ∈ AM�A, if g(u) ∈ B and for all a, b ∈ A, a ∈ B and
M � A, g[a/y, b/z] |= χ implies b ∈ B, then g(v) ∈ B.

By inductive hypothesis, for all a, b ∈ A,
M, g[a/y, b/z] |= REL(χ, ψ, x)⇔M � A, g[a/y, b/z] |= χ. Hence 2.⇔ 3.:

3. for all B ∈ AM�A, if g(u) ∈ B and for all a, b ∈ A, a ∈ B and
M, g[a/y, b/z] |= REL(χ, ψ, x) implies b ∈ B, then g(v) ∈ B,

By definition of A, 3.⇔ 4.:

4. for all B ∈ AM�A, if g(u) ∈ B and for all a, b ∈ dom(M), a ∈ B and
M, g[a/y, b/z] |= REL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x] implies b ∈ B, then
g(v) ∈ B,

We claim that 4.⇔ 5.:

3.3. Operations on Henkin-Structures 51

5. for all C ∈ AM, if g(u) ∈ C and for all a, b ∈ dom(M), a ∈ C and
M, g[a/y, b/z] |= REL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x] implies b ∈ C, then
g(v) ∈ C,

which, by the semantics of TC, is equivalent to:

6. M, g |= [TCyzREL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x]](u, v).

It is clear that 5. ⇒ 4.. For the 4. ⇒ 5. direction, assume 4.. Take
any set C ∈ AM such that g(u) ∈ C and for all a, b ∈ dom(M), a ∈ C
and M, g[a/y, b/z] |= REL(χ, ψ, x) ∧ ψ[y/x] ∧ ψ[z/x] implies b ∈ C. Let
B = A ∩ C. By Definition 3.3.1, B ∈ AM�A. Now by our assumptions
on g and by definition of A, g[a/y, b/z] only assigns points in A. So as
B = A∩C, g(u) ∈ B and for all a, b ∈ dom(M), a ∈ B and M, g[a/y, b/z] |=
REL(χ, ψ, x)∧ψ[y/x]∧ψ[z/x] implies b ∈ B. So by 4., g(v) ∈ B. As B ⊆ C,
it follows that g(v) ∈ C.

• ϕ :≈ [LFPXyχ]z and REL([LFPXyχ]z, ψ, x) :≈ [LFPXyχ ∧ ψ[y/x]]z. By
definition of LFP , the following are equivalent:

1. M � A, g |= [LFPXyχ]z,

2. for all B ∈ AM�A, if for all a ∈ A, M � A, g[a/y,B/X] |= χ implies
a ∈ B, then g(z) ∈ B.

By inductive hypothesis, for all a ∈ A, B ∈ M � A, M, g[a/y,B/X] |=
REL(χ, ψ, x)⇔M � A, g[a/y,B/X] |= χ. Hence 2. is equivalent to 3.:

3. for all B ∈ AM�A, if for all a ∈ A, M, g[a/y,B/X] |= REL(χ, ψ, x)
implies a ∈ B, then g(z) ∈ B,

By definition of A, 3.⇔ 4.:

4. for all B ∈ AM�A, if for all a ∈ dom(M),
M, g[a/y,B/X] |= REL(χ, ψ, x) ∧ ψ[y/x] implies a ∈ B,
then g(z) ∈ B,

We claim that 4.⇔ 5.:

5. for all C ∈ AM, if for all a ∈ dom(M),
M, g[a/y, C/X] |= REL(χ, ψ, x) ∧ ψ[y/x] implies a ∈ C,
then g(z) ∈ C,

which, by the semantics of LFP , is equivalent to:

6. M, g |= [LFPXyREL(χ, ψ, x) ∧ ψ[y/x]]z.

52 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

It is clear that 5.⇒ 4.. For the 4.⇒ 5. direction, assume 4.. Take any set
C ∈ AM such that for all a ∈ dom(M), M, g[a/y, C/X] |= REL(χ, ψ, x) ∧
ψ[y/x] implies a ∈ C. Let B = A∩C. By Definition 3.3.1, B ∈ AM�A. Con-
sider a ∈ dom(M) such that M, g[a/y,B/X] |= REL(χ, ψ, x) ∧ ψ[y/x]. As
REL(χ, ψ, x) is positive in X and X does not occur in ψ, M, g[a/y, C/X] |=
REL(χ, ψ, x) ∧ ψ[y/x]. Also by hypothesis a ∈ C. Now as M, g[a/y] |=
ψ[y/x], by definition of A, a ∈ A. So a ∈ A ∩ C, i.e, a ∈ B and since we
proved it for arbitrary a ∈ dom(M), by 4., g(z) ∈ B. As B ⊆ C, it follows
that g(z) ∈ C.

Theorem 3.3.5. M � A is a Λ-Henkin-structure.

Proof. Take B parametrically definable in M � A, i.e., there is a Λ-formula ϕ(y)
and an assignment g such that B = {a ∈ dom(M � A) | M � A, g[a/y] |= ϕ(y)}.
Now we know that A is also parametrically definable in M, i.e., there is a Λ-
formula ψ(x) and an assignment g′ such that A = {a ∈ dom(M) | M, g′[a/x] |=
ψ(x)}. Assume without loss of generality that ϕ and ψ have no variables in com-
mon. We define an assignment g∗ by letting g∗(z) = g′(z) for every variable z
occurring in ψ and g∗(z) = g(z) otherwise. The situation with set variables is sym-
metric. Now by Lemma 3.3.4, B = {a ∈ dom(M) | M, g∗[a/x] |= REL(ϕ, ψ, x)}
and hence B ∈ AM. By definition 3.3.1 it follows that B ∈ AM�A (because
B = B ∩ A).

There is in model theory a whole range of methods to form new structures
out of existing ones. A standard reference on the matter is [64], written in a very
general algebraic setting. Familiar constructions like disjoint unions of relational
structures are redefined as particular cases of a new notion of generalized product
of FO-structures and abstract properties of such products are studied. In par-
ticular, an important theorem now called the Feferman-Vaught theorem for FO
is proven in [64]. We are particularly interested in one of its corollaries, which
establishes that generalized products of relational structures preserve elementary
equivalence. We show an analogue of this result for a particular case of general-
ized product of Λ-Henkin-structures that we call fusion, this notion being itself a
generalization of a notion of disjoint union of Λ-Henkin-structures defined below.

Definition 3.3.6 (Disjoint union of Λ-Henkin-structures). Let σ be a purely
relational vocabulary and σ∗ = σ ∪ {Q1, . . . , Qk}, with {Q1, . . . , Qk} a set of new
monadic predicates. For any Λ-Henkin-structures M1, . . . ,Mk in vocabulary σ
with disjoint domains, define their disjoint union

⊎
1≤i≤kMi (or, direct sum) to be

the σ∗-frame that has as its domain the union of the domains of the structures Mi

and likewise for the relations, except for the predicates Qi, whose interpretations
are respectively defined as the domain of the structures Mi (we will use Qi to
label the elements of Mi). The set of admissible subsets A⊎

1≤i≤kMi
is the closure

3.3. Operations on Henkin-Structures 53

under finite union of the union of the sets of admissible subsets of the Mi. That
is:

• dom(
⊎

1≤i≤kMi) =
⋃

1≤i≤k dom(Mi)

• P
⊎

1≤i≤kMi =
⋃

1≤i≤k P
Mi (with P ∈ σ) and Q

⊎
1≤i≤kMi

i = dom(Mi)

• A ∈ A⊎
1≤i≤kMi

iff A =
⋃

1≤i≤k Ai for some Ai ∈ AMi

Definition 3.3.7 (f -fusion of Λ-Henkin-structures). Let σ be a purely rela-
tional vocabulary and σ∗ = σ ∪ {Q1, . . . , Qk}, with {Q1, . . . , Qk} a set of new
monadic predicates. Let f be a function mapping each n-ary predicate P ∈ σ
to a quantifier-free first-order formula over σ∗ in variables x1, . . . , xn. For any
Λ-Henkin-structures M1, . . . ,Mk in vocabulary σ with disjoint domains, define
their f -fusion to be the σ-frame

⊕f
1≤i≤kMi that has the same domain and set

of admissible subsets as
⊎

1≤i≤kMi. For every P ∈ σ, the interpretation of P in⊕f
1≤i≤kMi is the set of n-tuples satisfying f(P) in

⊎
1≤i≤kMi.

An easy example of f -fusion on standard structures (it is simpler to give
an example on standard structures, as we do not have to say anything about
admissible sets) is the ordered sum of two linear orders (M1, <1), (M2, <2), where
all the elements of M1 are before the elements of M2. In this case, σ consists of
a single binary relation <, the elements of M1 are indexed with Q1, those of M2

with Q2 and f maps < to x1 < x2 ∨ (Q1x1 ∧ Q2x2). Another notable example
of f -fusion is the σ ∪ {Q1, . . . , Qk}-structure

⊎
1≤i≤kMi =

⊕f
1≤i≤kM

+
i , where

f is the identity function and for each 1 ≤ i ≤ k, M+
i is the expansion of the

σ-structure Mi in which Q
M+
i

i = dom(Mi) and Q
M+
i

j = ∅ for every i 6= j. In this
sense, disjoint union as we defined it above can be seen as a special case of fusion.

We show preservation results involving f -fusions of Λ-Henkin-structures. Hence
we deal with analogues of elementary equivalence for these logics and we refer to
Λ-equivalence. Let us recall that by quantifier depth of a Λ-formula, we mean the
maximal number of nested quantifiers in the formula (by “quantifier”, we mean
FO and MSO-quantifiers, as well as TC or LFP -operators).

Definition 3.3.8. Given two Λ-Henkin-structures M and N, we write M ≡Λ N
and say that M and N are Λ-equivalent if they satisfy the same Λ-sentences.
Also, for any natural number n, we write M ≡nΛ N and say that M and N are
n-Λ-equivalent if M and N satisfy the same Λ-sentences of quantifier depth at
most n. In particular, M ≡Λ N holds iff, for all n, M ≡nΛ N holds.

Now we are ready to introduce the “Feferman-Vaught theorems” that we will
show in Section 3.3.2 and which establish that f -fusions of Λ-Henkin-structures
preserve Λ-equivalence, that is:

54 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

Theorem 3.3.9. Let M1, . . . ,Mk, N1, . . . ,Nk be Λ-Henkin structures. Whenever
Mi ≡nΛ Ni for all 1 ≤ i ≤ k, then also

⊕f
1≤i≤kMi ≡nΛ

⊕f
1≤i≤kMi.

We will also show in this section that every f -fusion of Λ-Henkin-structures is
a Λ-Henkin-structure. Comparable work had already been done by Makowski in
[106] for extensions of FO, but an important difference is that he only considered
standard structures, whereas we need to deal with Λ-Henkin-structures. Our
proofs make use of Ehrenfeucht-Fräıssé games for each of the logics Λ.

3.3.1 Ehrenfeucht-Fräıssé Games on Henkin-Structures

Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. We survey Ehrenfeucht-Fräıssé games for
FO, MSO, FO(TC1), and FO(LFP1) which are suitable to use on Henkin structures.
We also provide an adequacy proof for the FO(TC1) game. The MSO game is a
rather straightforward extension of the FO case and has already been used by
other authors (see for instance [100]). The FO(LFP1) game is borrowed from
Uwe Bosse [32]. It also applies to Henkin structures, as careful inspection shows.
The FO(TC1) game has already been mentioned in passing by Erich Grädel in
[76] as an alternative to the game he used and we show that it is adequate for
Henkin semantics. It looks also similar to a system of partial isomorphisms given
in [38]. However it is important to note that this game is very different from
the FO(TC1) game which is actually used in [76]. The two games are equivalent
when played on standard structures, but not when played on FO(TC1)-Henkin
structures. This is so because the game used in [38] relies on the alternative
semantics for the TC operator given in Proposition 2.1.11, so that only finite sets
of points can be chosen by players ; whereas the game we use involves choices
of not necessarily finite admissible subsets. These are not equivalent approaches.
Indeed, on FO(TC1)-Henkin structures a simple compactness argument shows
that the semantical clause of Proposition 2.1.11 (defined in terms of existence of
a finite path) is not adequate.

Let us first introduce basic notions connected to these games. One rather
trivial sufficient condition for Λ-equivalence is the existence of an isomorphism.
Clearly isomorphic structures satisfy the same Λ-formulas. A more interesting suf-
ficient condition for Λ-equivalence is that of Duplicator having a winning strategy
in all Λ Ehrenfeucht-Fräıssé games of finite length. To define this, we first need
this notion:

Definition 3.3.10 (Finite Partial Isomorphism). A finite partial isomorphism
between structures M and N is a finite relation {(a1, b1), . . . , (an, bn)} between
the domains of M and N such that for all atomic formulas ϕ(x1, . . . , xn), M |=
ϕ [a1, . . . , an] iff N |= ϕ [b1, . . . , bn]. Since equality statements are atomic formu-
las, every finite partial isomorphism is (the graph of) a injective partial function.

We will also need the following lemma:

3.3. Operations on Henkin-Structures 55

Lemma 3.3.11 (Finiteness Lemma). Fix any set x1, . . . , xk, Xk+1, . . . , Xm. In
a finite relational vocabulary, up to logical equivalence, with these free variables,
there are only finitely many Λ-formulas of quantifier depth ≤ n.

Proof. This can be shown by induction on k. In a finite relational vocabulary, with
finitely many free variables, there are only finitely many atomic formulas. Now,
any Λ-formula of quantifier depth k + 1 is equivalent to a Boolean combination
of atoms and formulas of quantifier depth k prefixed by a quantifier. Applying a
quantifier to equivalent formulas preserves equivalence and the Boolean closure
of a finite set of formulas remains finite, up to logical equivalence.

Now, as we are concerned with extensions of FO, every Λ-game will be defined
as an extension of the classical FO game, that we recall here:

Definition 3.3.12 (FO Ehrenfeucht-Fräıssé Game). The FO Ehrenfeucht-Fräıssé
game of length n on standard structures M and N (notation: EF n

FO(M,N)) is as
follows. There are two players, Spoiler and Duplicator. The game has n rounds,
each of which consists of a move of Spoiler followed by a move of Duplicator.
Spoiler’s moves consist of picking an element from one of the two structures,
and Duplicator’s responses consist of picking an element in the other structure.
In this way, Spoiler and Duplicator build up a finite binary relation between
the domains of the two structures: initially, the relation is empty; each round,
it is extended with another pair. The winning conditions are as follows: if at
some point of the game the constructed binary relation is not a finite partial
isomorphism, then Spoiler wins immediately. If after each round the relation is a
finite partial isomorphism, then the game is won by Duplicator.

Theorem 3.3.13 (FO Adequacy). Assume a finite relational first-order language.
Duplicator has a winning strategy in the game EF n

FO(M,N) iff M ≡nFO N. In
particular, Duplicator has a winning strategy in all EF-games of finite length
between M and N if and only if M ≡FO N.

The proof for the first order case is classic. We refer the reader to the proof
given in [58] or to the one in [104].

For technical convenience in the course of inductive proofs, we extend the no-
tion of FO parameter by considering set parameters, i.e., instead of interpreting
a set variable as a name of the admissible set A, we can add a new monadic pred-
icate A to the signature. The new predicates and the sets they name are called
set parameters. (This is similar to the FO notion which can be found in [89].) We
will work with parametrized (or expanded) Henkin-structures, that is, structures
considered together with partial valuations. This means that the assignment is
possibly non empty at the beginning of the game, which can start with some
“handicap” for Duplicator, i.e., some preliminary set of already “distinguished
objects and sets”.

56 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

We first define a necessary and sufficient condition for MSO equivalence by
extending Ehrenfeucht-Fräıssé games from FO to MSO. This game has already
been defined in the literature, see for instance [100].

Definition 3.3.14 (MSO Ehrenfeucht-Fräıssé Game). Consider two MSO-Henkin
structures M together with Ā ∈ Ar

M, ā ∈ dom(M)s and N together with B̄ ∈ Ar
N,

b̄ ∈ dom(N)s and r ≥ 0, s ≥ 0, n ≥ 0. The MSO Ehrenfeucht-Fräıssé game
EF n

MSO((M, Ā, ā), (N, B̄, b̄)) of length n on expanded structures (M, Ā, ā) and
(N, B̄, b̄) is defined as for the first-order case, except that each time she chooses
a structure, Spoiler can choose either an element or an admissible subset of its
domain. For a given Ar+1 ∈ AM chosen by Spoiler, (M, Ā, ā) is expanded to
(M, Ā, Ar+1, ā). Duplicator then responds by choosing Br+1 ∈ AN and (N, B̄, b̄)
is expanded to (N, B̄, Br+1, b̄). The game goes on with the so expanded structures.
The winning conditions are as follows: if at some point of the game ā 7→ b̄ is not
a finite partial isomorphism from (M, Ā, Ar+1) to (N, B̄, Br+1), then Spoiler wins
immediately. If after each round the relation is a finite partial isomorphism, then
the game is won by Duplicator.

Theorem 3.3.15 (MSO Adequacy). Assume a finite relational MSO language.
Given M and N, Ā ∈ Ar

M, B̄ ∈ Ar
N, ā ∈ dom(M)s, b̄ ∈ dom(N)s and r ≥ 0, s ≥ 0,

n ≥ 0, Duplicator has a winning strategy in the game EF n
MSO((M, Ā, ā), (N, B̄, b̄))

iff (M, Ā, ā) and (N, B̄, b̄) satisfy the same MSO formulas of quantifier depth n. In
particular, Duplicator has a winning strategy in all EFMSO-games of finite length
between (M, Ā, ā) and (N, B̄, b̄) if and only if (M, Ā, ā) and (N, B̄, b̄) satisfy the
same MSO formulas.

We omit the proof, because it parallels the FO case. The proof works regard-
less whether MSO is interpreted in the standard or in the Henkin way. What
matters here is that the game-theoretic meaning of a “quantification” over a
given “domain”, lies in the choice of an element from that domain (including one
consisting of “higher-order elements”, e.g., sets).

Corollary 3.3.16. For MSO-Henkin-structures M, N and n ≥ 0, Duplicator has
a winning strategy in EF n

MSO(M,N) if and only if M ≡nMSO N. In particular,
Duplicator has a winning strategy in all EFMSO-games of finite length between M
and N if and only if M ≡MSO N.

The FO(TC1) game that we will be introducing now had been already men-
tioned in passing by Erich Grädel in [76] as an alternative to the game he used.
We will show that it is adequate on Henkin-structures.

Definition 3.3.17 (FO(TC1) Ehrenfeucht-Fräıssé Game). Consider two FO(TC1)-
Henkin structures M and N together with ā ∈ dom(M)s, b̄ ∈ dom(N)s and s ≥ 0,
n ≥ 0. The FO(TC1)-game EF n

FO(TC1)
((M, ā), (N, b̄)) of length n on expanded

structures (M, ā) and (N, b̄) is defined as for the first-order case, except that

3.3. Operations on Henkin-Structures 57

each time she chooses a structure, Spoiler can either choose only one element or
an admissible subset together with two elements of its domain. In the first case
we say that she plays an ∃ (or point) move and in the second case, a TC-move
(which we will define more precisely below). Each point move results in an exten-
sion of the assignment {ā 7→ b̄} with elements as+1 ∈ dom(M), bs+1 ∈ dom(N).
Each TC-move results in an extension of the assignment {ā 7→ b̄} with elements
as+1, as+2 ∈ dom(M), bs+1, bs+2 ∈ dom(N). At each round, Spoiler chooses the
kind of move to be played.

The ∃ move is defined as in the FO case. The TC-move is as follows:
Spoiler considers two pebbles (ai, bi) and (aj, bj) on the board (i.e., corre-

sponding couples of parameters taken in each structure) and depending on the
structure that he chooses to consider, he plays:

• either a set A ∈ AM with ai ∈ A and aj /∈ A. Duplicator then answers
with a set B ∈ AN such that bi ∈ B and bj /∈ B. Spoiler now picks
bs+1 ∈ B, bs+2 /∈ B and Duplicator answers with as+1 ∈ A, as+2 /∈ A.

• or a set B ∈ AN with bi ∈ B and bj /∈ B. Duplicator then answers with a set
A ∈ AM such that ai ∈ A and aj /∈ A. Spoiler now picks as+1 ∈ A, as+2 /∈ A
and Duplicator answers with bs+1 ∈ B, bs+2 /∈ B.

In each TC-move, the assignment is extended with as+1 7→ bs+1, as+2 7→ bs+2.
After n moves, Duplicator has won if the constructed assignment ā 7→ b̄ is a
partial isomorphism (i.e. the game continues with the two new pebbles in each
structure, but the sets A and B are forgotten).

Theorem 3.3.18 (FO(TC1) Adequacy). Assume a finite relational FO(TC1) lan-
guage. Given two FO(TC1)-Henkin structures M and N, ā ∈ dom(M)s, b̄ ∈
dom(N)s and r ≥ 0, s ≥ 0, n ≥ 0, Spoiler has a winning strategy in the game
EF n

FO(TC1)
((M, ā), (N, b̄)) iff there is a FO(TC1) formula of quantifier depth n dis-

tinguishing (M, ā) and (N, b̄).

Proof.

⇒ From the existence of a winning strategy for Spoiler in the FO(TC1)-game
of length n in between (M, ā) and (N, b̄), we will infer the existence of a
FO(TC1)-formula of quantifier depth n distinguishing (M, ā) and (N, b̄).

By induction on n.

Base step: With 0 round the initial match between distinguished objects
must have failed to be a partial isomorphism for Spoiler to win. This implies
that (M, ā) and (N, b̄) disagree on some atomic formula.

Inductive step: The inductive hypothesis says that for every two structures,
if Spoiler can win their comparison game over n rounds, then the structures

58 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

disagree on some FO(TC1)-formula of quantifier depth n. Now assume that
for some structures (M, ā), (N, b̄), Spoiler has a winning strategy for the
game over n+ 1 rounds. Let us reason on Spoiler’s first move in the game.
It can either be a TC or an ∃ move.

If it is an ∃ move, then it means that Spoiler picks an element a in one of
the two structures, so that no matter what element b Duplicator picks in the
other, Spoiler has an n-round winning strategy. But then we can use the
induction hypothesis, and find for each such b a formula ϕb(x) that distin-
guishes (M, ā, a) from (N, b̄, b). In fact we can assume that in each case the
respective formula is true of (M, ā, a) and false of (N, b̄, b) (by negating the
formula if needed). Now take the big conjunction ϕ(x) of all these formulas
(which is equivalent to a finite formula according to Lemma 3.3.11) and
prefix it with an existential quantifier. Then the resulting formula is true
in (M, ā) but false in (N, b̄). It is true in (M, ā) if we pick a for the existen-
tially quantified variable. And no matter which element we pick in (N, b̄),
it will always falsify one of the conjuncts in the formula, by construction.
So, the new formula is false in (N, b̄). I.e., ∃xϕ(x) of quantifier depth n+ 1
distinguishes (M, ā) and (N, b̄).

If Spoiler’s first move is a TC-move, then it means that Spoiler picks a
subset in one structure, let say A ∈ AM (with ai ∈ A and aj 6∈ A), so
that no matter which B ∈ AN (with bi ∈ B and bj 6∈ B) Duplicator picks
in the other structure, Spoiler can pick bk ∈ B, bk+1 6∈ B such that no
matter which ak ∈ A, ak+1 6∈ A Duplicator picks, Spoiler has an n-round
winning strategy. For each B that might be chosen by Duplicator, Spoiler’s
given strategy gives a fixed couple bk, bk+1. For each response ak, ak+1 of
Duplicator, we thus obtain by inductive hypothesis a discriminating formula
ϕB,ak,ak+1

(x, y) that we can assume to be true in (N, b̄) for bk, bk+1 and false
in (M, ā) for ak, ak+1. Now for each B, let us take the big conjunction
ΦB(x, y) of all these formulas (which is finite, by Lemma 3.3.11). We can
then construct the big disjunction Φ(x, y) (again finite, by the same lemma)
of all the formulas ΦB(x, y).

Considering the first round in the game together with the inductive hypoth-
esis, note that the MSO formula ∃X(ai ∈ X ∧ aj 6∈ X ∧ ∀xy((x ∈ X ∧ y 6∈
X)→ ¬Φ(x, y))) holds in (M, ā). Indeed, by induction hypothesis, any cou-
ple ak ∈ A, ak+1 6∈ A that Duplicator might choose in dom(M) will always
falsify at least one of the conjuncts of each ΦB(x, y). Finally, the formula
Φ(x, y) being constructed as the disjunction of all the formulas ΦB(x, y),
any such couple ak, ak+1 will also falsify Φ(x, y). Now the MSO formula
∃X(ai ∈ X ∧ aj 6∈ X ∧ ∀xy((x ∈ X ∧ y 6∈ X)→ ¬Φ(x, y))) is equivalent to
∃X(ai ∈ X ∧ aj 6∈ X ∧ ¬∃xy(x ∈ X ∧Φ(x, y) ∧ y 6∈ X)), which means that
(M, ā) 6|= [TCxyΦ(x, y)](ai, aj).

3.3. Operations on Henkin-Structures 59

On the other hand for the same reasons, note that it holds in (N, b̄) that
∀X((bi ∈ X ∧ bj 6∈ X) → ∃xy(x ∈ X ∧ y 6∈ X ∧ Φ(x, y))). Indeed,
by induction hypothesis, for each B that Duplicator might choose in AN

Spoiler will always be able to find a couple bk ∈ B, bk+1 6∈ B satisfying all
the conjuncts of the corresponding formulas ΦB(x, y). Finally, the formula
Φ(x, y) being constructed as the disjunction of all the formulas ΦB(x, y),
such a couple ak, ak+1 will also satisfy Φ(x, y). Now ∀X((bi ∈ X∧bj 6∈ X)→
∃xy(x ∈ X∧y 6∈ X∧Φ(x, y))) is equivalent to ∀X(bi 6∈ X∨bj ∈ X∨∃xy(x ∈
X ∧ y 6∈ X ∧ Φ(x, y))), which means that (N, b̄) |= [TCxyΦ(x, y)](bi, bj).

Let u be a name for the parameters ai, bi and v for bi, bj. [TCxyΦ(x, y)](u, v)
of quantifier depth n+ 1 distinguishes (N, ā) and (M, b̄).

⇐ From the existence of a FO(TC1) formula of quantifier depth n distinguishing
(M, ā) and (N, b̄) we will infer the existence of a winning strategy for Spoiler
in EF n

FO+TC((M, ā), (N, b̄)).

By induction on n.

Base step: Doing nothing is a strategy for Spoiler.

Inductive step: The inductive hypothesis says that, for every two structures,
if they disagree on some FO(TC1) formula of quantifier depth n, then Dupli-
cator has a winning strategy in the n-round game. Now, assume that some
expanded structures (M, ā), (N, b̄) disagree on some FO(TC1) formula χ of
quantifier depth n+ 1. Any such formula must be equivalent to a Boolean
combination of formulas of the form ∃xψ(x) and [TCxyϕ(x, y)](u, v) with ψ,
ϕ of quantifier depth at most n. If χ distinguishes the two structures, then
there is at least one component of this Boolean combination which suffices
distinguishing them.

Let us first suppose that it is of the form ∃xψ(x). We may assume without
loss of generality that (M, ā) |= ∃xψ(x) whereas (N, b̄) 6|= ∃xψ(x). Then
it means that there exists an object a ∈ dom(M) such that (M, ā) |= ψ(a)
whereas for every object b ∈ dom(N), (N, b̄) 6|= ψ(b). But then we can
use our induction hypothesis and find for each such b a winning strategy
for Spoiler in EF n

FO(TC1)
((M, ā, a), (N, b̄, b)). We can infer that Spoiler has

a winning strategy in EF n+1
FO(TC1)

((M, ā), (N, b̄)). His first move consists

in picking the object a in dom(M) and for each response b in dom(N)
of Duplicator, the remaining of his winning strategy is the same as in
EF n

FO(TC1)
((M, ā, a), (N, b̄, b)).

Let us now suppose that [TCxyϕ(x, y)](u, v) of quantifier depth n + 1 dis-
tinguishes the two structures. We may assume without loss of generality
that (M, ā) |= [TCxyϕ(x, y)](u, v) i.e. it holds in (M, ā) that ∀X((ai ∈
X ∧ aj 6∈ X) → ∃xy(x ∈ X ∧ y 6∈ X ∧ ϕ(x, y))), whereas (N, b̄) 6|=
[TCxyϕ(x, y)](u, v) i.e. it holds in (N, b̄) that ∃X(bi ∈ X ∧ bj 6∈ X ∧

60 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

¬∃xy(x ∈ X ∧ ϕ(x, y) ∧ y 6∈ X)). We want to show that Spoiler has
a winning strategy in EF n+1

FO(TC1)
((M, ā), (N, b̄)). Let us describe her first

move. She first chooses (N, b̄) and B ∈ AN such that bi ∈ B ∧ bj 6∈
B ∧ ¬∃xy(x ∈ B ∧ ϕ(x, y) ∧ y 6∈ B). By definition of TC, such a set
exists. Duplicator has to respond by picking a set A in AM contain-
ing ai and not aj. Spoiler then picks ak ∈ A and ak+1 6∈ A such that
(M, ā) |= ϕ(ak, ak+1). This is possible because by definition of TC, for any
possible choice A of Duplicator (i.e., any set A containing ai and not aj) we
have ∃xy(x ∈ A∧ y 6∈ A∧ϕ(x, y)). But that means that Duplicator is now
stuck and has to pick bk ∈ B and bk+1 6∈ B such that (N, b̄) 6|= ϕ(bk, bk+1).
Consequently, we have (N, b̄, bk, bk+1) 6|= ϕ(x, y), whereas (M, ā, ak, ak+1) |=
ϕ(x, y). As ϕ(x, y) is of quantifier depth n, by induction hypothesis, Spoiler
has a winning strategy in EF n

FO(TC1)
((M, ā, ak, ak+1), (N, b̄, bk, bk+1)). The

remaining of Spoiler’s winning strategy in EF n+1
FO(TC1)

((M, ā), (N, b̄)) (i.e.

after her first move, that we already accounted for) is consequently as in
EF n

FO(TC1)
((M, ā, ak, ak+1), (N, b̄, bk, bk+1)).

Corollary 3.3.19. For structures M, N and n ≥ 0, Duplicator has a winning
strategy in EF n

FO(TC1)
(M,N) if and only if M ≡n

FO(TC1)
N. In particular, Duplica-

tor has a winning strategy in all EFFO(TC1)-games of finite length between M and
N if and only if M ≡FO(TC1) N.

Let us finally consider the FO(LFP1) case. There are two classical equivalent
syntactic ways of defining the syntax of FO(LFP1): the one we used in Section
2.1.2 and another one, dispensing with restrictions to positive formulas, but al-
lowing negations only in front of atomic formulas and introducing a greatest
fixed-point operator as the dual of the least fixed-point operator (also ∀ cannot
be defined using ∃ and has to be introduced separately, similarly for the Boolean
connectives). This second way of defining FO(LFP1) turns out to be more con-
venient to define an adequate Ehrenfeucht-Fräıssé game. The game is suitable
to use on Henkin structures because the semantics on which it relies is merely a
syntactical variant of the one given in Section 3.2. Now the FO(LFP1)-formulas
[LFPx,Xϕ(x,X)]y and [GFPx,Xϕ(x,X)]y, stating that a point belongs to the least
fixed-point, or respectively, to the greatest fixed-point induced by the formula ϕ
satisfy the following equations:

[LFPx,Xϕ(x,X)]y ↔ ∀X(¬Xy → ∃x(¬Xx ∧ ϕ(x,X)))
[GFPx,Xϕ(x,X)]y ↔ ∃X(Xy ∧ ∀x(Xx→ ϕ(x,X)))

Note that this holds no matter whether we be concerned with FO(LFP1) and
MSO on standard structures or on Henkin structures. The consideration of these
equations is the key idea behind an Ehrenfeucht-Fräıssé game defined by Uwe

3.3. Operations on Henkin-Structures 61

Bosse in [32] for least fixed-point logic FO(LFP) (i.e. where fixed-points are not
only considered for monadic operators, but for any n-ary operator). FO(LFP1)
being simply the monadic fragment of FO(LFP), the game for FO(LFP) can be
adapted to FO(LFP1) in a straightforward way:

Definition 3.3.20 (FO(LFP1) Ehrenfeucht-Fräıssé game). Consider FO(LFP1)-
Henkin structures M and N together with ā ∈ dom(M)s, b̄ ∈ dom(N)s, Ā ∈ Ar

M,
b̄ ∈ Ar

N, r ≥ 0, s ≥ 0, n ≥ 0. In the game EF n
FO(LFP1)

((M, Ā, ā), (N, B̄, b̄))

of length n, there are two types of moves, point and fixed-point moves. Each
move results in an extension of the assignment ā 7→ b̄, Ā 7→ B̄ with elements
as+1 ∈ dom(M), bs+1 ∈ dom(N), and possibly (in the case of fixed-point moves)
with sets Ar+1 ∈ AM, Br+1 ∈ AN. Spoiler chooses the kind of move to be played.
Now the following moves are possible:

• ∃ move: Spoiler chooses as+1 ∈ dom(M) and Duplicator bs+1 ∈ dom(N).

• ∀ move: Spoiler chooses bs+1 ∈ dom(N) and Duplicator as+1 ∈ dom(M).

In each point move, the assignment is extended by as+1 7→ bs+1.

• LFP move: Spoiler chooses Br+1 ∈ AN \ {dom(N)} with some pebble
bi 6∈ Br+1 and Duplicator responds with Ar+1 ∈ AM \ {dom(M)}.
Now Spoiler chooses in dom(M) a new element as+1 6∈ Ar+1 and Duplicator
answers in dom(N) with bs+1 6∈ Br+1.

• GFP move: Spoiler chooses Ar+1 ∈ AM \ {dom(M)} with some pebble
ai ∈ Ar+1 and Duplicator responds with Br+1 ∈ AN \ {dom(N)} such that
Br+1 6= ∅.
Now Spoiler chooses in dom(N) a new element bs+1 ∈ Br+1 and Duplicator
answers in dom(M) with as+1 ∈ Ar+1.

In each fixed-point move the assignment is extended by Ar+1 7→ Br+1, as+1 7→
bs+1.

After n moves, Duplicator has won if the constructed element assignment
ā 7→ b̄ is a partial isomorphism and for the subset assignment Ā 7→ B̄, for any
1 ≤ j ≤ r and i ≤ s:

ai ∈ Aj implies bi ∈ Bj

We call an assignment with these properties a posimorphism.

Theorem 3.3.21 (FO(LFP1) Adequacy). Assume a finite relational FO(LFP1)
language. Given two FO(LFP1)-Henkin structures M and N, Ā ∈ Ar

M, B̄ ∈ BrN,
ā ∈ dom(M)s, b̄ ∈ dom(N)s and r ≥ 0, s ≥ 0, n ≥ 0, Duplicator has a winning
strategy in the game EF n

FO(LFP1)
((M, Ā, ā), (N, B̄, b̄)) iff (M, Ā, ā) and (N, B̄, b̄)

satisfy the same FO(LFP1)-formulas of quantifier depth n.

62 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

For a proof in the case of standard structures, we refer the reader to Uwe
Bosse [32]. As pointed out earlier, the same argument works as well in the case
of Henkin structures.

3.3.2 Fusion Theorems on Henkin-Structures

Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. We show our analogues of Feferman-Vaught
theorem for fusions of Λ-Henkin-structures. We will refer to them as Λ-fusion
Theorems, even though they will sometimes be formally first stated as corollaries.
What we show is, more precisely, that fusion of Λ-Henkin-structures preserve
Λ-equivalence for all fixed quantifier-depths.

In order to give inductive proofs for MSO and FO(LFP1), it will be more
convenient to consider parametrized Λ-Henkin-structures where the set of set
parameters is closed under union, this notion being defined below. This is safe
because whenever two parametrized structures (M, Ā, ā) and (N, B̄, b̄) are n-Λ-
equivalent, it follows trivially that M and N considered together with a subset of
this set of parameters are also n-Λ-equivalent.

Definition 3.3.22. Let A1, . . . , Ak be a finite sequence of set parameters. We
define (A1, . . . , Ak)

∪ as the finite sequence of set parameters obtained by closing
the set {A1, . . . , Ak} under union in such a way that (A1, . . . , Ak)

∪ = {
⋃
i∈I Ai|I ⊆

{1, . . . , k}}. (We additionally assume that this set is ordered in a fixed canonical
way, depending on the index sets I.)

Theorem 3.3.23 (Fusion Theorem for MSO). Let āi, b̄i be sequences of first-
order parameters of the form ai1 , . . . , aim, bi1 , . . . , bim, with m ∈ N and Āi, B̄i

sequences of set parameters of the form Ai1 , . . . , Aim′ , Bi1 , . . . , Bim′
with m′ ∈ N.

Whenever

(Mi, Āi, āi) ≡nMSO (Ni, B̄i, b̄i) for all 1 ≤ i ≤ k,

then also

f⊕
1≤i≤k

Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk ≡nMSO

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k.

.

Proof. We define a winning strategy for Duplicator in the game

EF n
MSO((

f⊕
1≤i≤k

Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk), (

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k))

out of her winning strategies in the games EF n
MSO((Mi, Āi, āi), (Ni, B̄i, b̄i)) by

induction on n.

3.3. Operations on Henkin-Structures 63

Base step: n = 0, doing nothing is a strategy for Duplicator. We need to show
that

(

f⊕
1≤i≤k

Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk)

and

(

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k)

agree on all atomic formulas. Now in the fusion structures, each atomic for-
mula is defined by f in terms of a σ∗-quantifier free formula that is evaluated
in the corresponding disjoint union structure. So it is enough to show that the
disjoint union structures agree on all atomic σ∗-formulas and on their Boolean
combinations. The initial match between the distinguished objects in (Mi, Āi, āi)
and (Ni, B̄i, b̄i) is a partial isomorphism for every 1 ≤ i ≤ k, so it is also one
for

⊎
1≤i≤kMi, ā1, . . . , āk and

⊎
1≤i≤kNi, b̄1, . . . , b̄k i.e. the two disjoint union

structures extended with FO parameters agree on all σ∗-atomic formulas. We
still need to show that it is also one for

⊎
1≤i≤kMi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk and⊎
1≤i≤kNi, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k i.e. the two disjoint union structures extended
with FO parameters and the closure under union of set parameters agree on all
σ∗-atomic formulas. It is enough to point that for every parameter aij , for ev-
ery I ⊆ {i1, . . . , im′ , . . . , k1, km′} by construction of

⋃
i∈I Ai in (Ā1, . . . , Āk)

∪, the
following are equivalent:

•
⊎

1≤i≤kMi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk |=

⋃
i∈I Aiaij ,

•
⊎

1≤i≤kMi, (Ā1, . . . , Āk)
∪, Ail , ā1, . . . , āk |= Ailaij for some il in I.

Similarly for every parameter bij , by construction of
⋃
i∈I Bi in (B̄1, . . . , B̄k)

∪, the
following are equivalent:

•
⊎

1≤i≤kNi, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k |=

⋃
i∈I Bibij ,

•
⊎

1≤i≤kNi, (B̄1, . . . , B̄k)
∪, Bil , b̄1, . . . , b̄k |= Bilbij for some il in I.

But by Duplicator’s winning strategy in the small structure games, we know that
the following are equivalent:

•
⊎

1≤i≤kMi, (Ā1, . . . , Āk)
∪, Ail , ā1, . . . , āk |= Ailaij for some il in I.

•
⊎

1≤i≤kNi, (B̄1, . . . , B̄k)
∪, Bil , b̄1, . . . , b̄k |= Bilbij for some il in I.

So the following are also equivalent:

•
⊎

1≤i≤kMi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk |=

⋃
i∈I Aiaij ,

•
⊎

1≤i≤kNi, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k |=

⋃
i∈I Bibij ,

64 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

So the two extended disjoint union structures agree on all σ∗-atomic formulas.
Now relying on the semantics of Boolean connectives, it can be shown by induction
on the complexity of quantifier free sentences that they also agree on all Boolean
combinations of atomic σ∗-sentences.

Inductive step: the inductive hypothesis says that whenever Duplicator has a
winning strategy in EF n

MSO((Mi, Āi, āi), (Ni, B̄i, b̄i)) for all 1 ≤ i ≤ k, he also has
one in

EF n
MSO((

f⊕
1≤i≤k

Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk), (

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k)).

We want to show that this also holds when the length of the games is n + 1.
Suppose Duplicator has a winning strategy in EF n+1

MSO((Mi, Āi, āi), (Ni, B̄i, b̄i))
for all 1 ≤ i ≤ k. We describe Duplicator’s answer to Spoiler’s first move in
EF n+1

MSO((
⊕f

1≤i≤kMi, Ā1, . . . , Āk, ā1, . . . , āk), (
⊕f

1≤i≤kNi, B̄1, . . . , B̄k, b̄1, . . . , b̄k)).
It will then follow by induction hypothesis, that he has a winning strategy in the
remaining n-length game.

• Spoiler’s first move is a point move. Suppose Spoiler picks a in
⊕f

1≤i≤kMi.
Then a ∈ dom(Mi) for some 1 ≤ i ≤ k. So Duplicator uses his winning
strategy in EF n+1

MSO((Mi, Āi, āi), (Ni, B̄i, b̄i)) to pick b ∈ dom(Ni), so that
he still has a winning strategy in EF n

MSO((Mi, Āi, āi, a), (Ni, B̄i, b̄i, b)). By
induction hypothesis he also has one in the remaining n-length MSO game
between the following two structures:

(

f⊕
1≤i≤k

Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk, a)

and

(

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k, b)

• Spoiler’s first move is a set move. Suppose Spoiler chooses a set A in
the set of admissible subsets of

⊕f
1≤i≤kMi. Then A is necessarily of the

form A1 ∪ . . . ∪ Ak, with Ai an admissible subset of Mi. We now de-
fine locally his response B = B1 ∪ . . . ∪ Bk, using his winning strate-
gies in the small structures, so that he still has a winning strategy in
EF n

MSO((Mi, Āi, Ai, āi), (Ni, B̄i, Bi, b̄i)) for all 1 ≤ i ≤ k. By induction
hypothesis, he also has one in the remaining n-length MSO game between
the following two structures:

(

f⊕
1≤i≤k

Mi, (Ā1, A1, . . . , Āk, Ak)
∪, ā1, . . . , āk)

3.3. Operations on Henkin-Structures 65

and

(

f⊕
1≤i≤k

Ni, (B̄1, B1, . . . , B̄k, Bk)
∪, b̄1, . . . , b̄k).

(Note that this is enough, because A ∈ (Ā1, A1, . . . , Āk, Ak)
∪.)

Now an analogue of this result for disjoint unions can easily be derived as a
corollary of Theorem 3.3.23. For the convenience of the reader, we provide here
the detailed argument:

Corollary 3.3.24. Whenever (Mi, Āi, āi) ≡nMSO (Ni, B̄i, b̄i) for all 1 ≤ i ≤ k
(with āi a sequence of first-order parameters of the form ai1 , . . . , aim with m ∈ N
and Āi a sequence of set parameters of the form Ai1 , . . . , Aim′ with m′ ∈ N,
similarly for the b̄i and B̄i), then also

⊎
1≤i≤kMi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk ≡nMSO⊎
1≤i≤kNi, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k.

Proof. Let (Mi, Āi, āi) ≡nMSO (Ni, B̄i, b̄i) for all 1 ≤ i ≤ k (with āi a sequence of
first-order parameters of the form ai1 , . . . , aim with m ∈ N and Āi a sequence of
set parameters of the form Ai1 , . . . , Aim′ with m′ ∈ N, similarly for the b̄i and B̄i).

Now consider the following expansions M′
i and N′i of the σ structures Mi and

Ni to σ∗ = σ∪{Q1, . . . , Qk}: the interpretation of Qj is empty in M′
i (respectively

N′i) whenever i 6= j and it is the domain of M′
i (respectively N′i) whenever i = j.

Clearly (M′
i, Āi, āi) ≡nMSO (N′i, B̄i, b̄i) for all 1 ≤ i ≤ k.

Now consider a mapping f such that for every n-ary predicate P ∈ σ∗, f(P) =
Px1 . . . xn. By Theorem 3.3.23 we have that

f⊕
1≤i≤k

M′
i, (Ā1, . . . , Āk)

∪, ā1, . . . , āk ≡nMSO

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k.

Corollary 3.3.24 follows, because

f⊕
1≤i≤k

M′
i, (Ā1, . . . , Āk)

∪, ā1, . . . , āk and

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k

are isomorphic to⊎
1≤i≤k

Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk and

⊎
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k

respectively.

66 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

Another important corollary of Theorem 3.3.23 is the fact that fusions of
MSO-Henkin structures are also MSO-Henkin structures. Let us the stress the
importance of this fact, which is needed for the correctness of our main complete-
ness argument.

Corollary 3.3.25. A⊕f
1≤i≤kMi

is closed under MSO parametric definability and

so
⊕f

1≤i≤kMi is a MSO-Henkin structure.

Proof. First note that the following are equivalent:

• A is MSO parametrically definable in M,

• for some n, there is a finite sequence of parameters ā, Ā such that A is
defined by a MSO formula ϕ of quantifier depth n using ā, Ā,

• for some n, for every two points a and a′ in dom(M), if they are MSO
n-indistinguishable using ā, Ā, then a ∈ A iff a′ ∈ A.

Now suppose for the sake of contradiction that there is A ⊆ dom(
⊕f

1≤i≤kMi)

MSO parametrically definable in
⊕f

1≤i≤kMi using ā′, Ā′, but A /∈ A⊕f
1≤i≤kMi

. So

it means that for some 1 ≤ i ≤ k, Ai = A ∩ dom(Mi) is not MSO parametrically
definable in Mi i.e. there are two MSO parametrically indistinguishable points
a ∈ A, a′ /∈ A. So for all n, for all sequence of parameters ā, Ā in Mi,

(Mi, ā, Ā, a) ≡nFO(TC1) (Mi, ā, Ā, a
′)

and by the fusion theorem,2

f⊕
1≤i≤k

Mi, ā, Ā, ā′, Ā′, a ≡nFO(TC1)

f⊕
1≤i≤k

Mi, ā, Ā, ā′, Ā′, a
′

But this entails that A is not MSO parametrically definable in
⊕f

1≤i≤kMi using

ā′, Ā′, which is a contradiction.

Corollary 3.3.26. A⊎
1≤i≤kMi

is closed under MSO parametric definability and

so
⊎

1≤i≤kMi is a MSO-Henkin structure.

Proof. Analogous to the proof of Corollary 3.3.25 (as A⊕f
1≤i≤kMi

= A⊎
1≤i≤kMi

).

2There is no need to consider the case where ā′, Ā′ is empty, because if a set is parametrically
definable using no parameter, it is also definable using parameters.

3.3. Operations on Henkin-Structures 67

Let us now consider the FO(TC1) case. As TC moves can only be played when
there are already two pebbles on the board, it is more convenient to show first
a version of our FO(TC1) fusion theorem in which each small structure comes
with at least two parameters. This allows us to define Duplicator’s answer to
a TC move played in a big structure, by means of his winning strategies in the
corresponding small structures. We then derive as a corollary the fusion theorem
for non-parametrized structures.

Theorem 3.3.27 (Fusion Theorem for FO(TC1)). Let āi, b̄i be sequences of first-
order parameters of the form ai1 , . . . , aim, bi1 , . . . , bim, with m ∈ N and and m ≥ 2.
Whenever

(Mi, āi) ≡nFO(TC1) (Ni, b̄i) for all 1 ≤ i ≤ k,

then also
f⊕

1≤i≤k

Mi, ā1, . . . , āk ≡nFO(TC1)

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k.

As a special case, whenever dealing with single point structures (structures which
domain contains only one point), we allow the parameters to be non distinct
objects.

Proof. We define a winning strategy for Duplicator in the game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k))

out of her winning strategies in the games EF n
FO(TC1)

((Mi, āi), (Ni, b̄i)) by induc-
tion on n.

Base step: n = 0, doing nothing is a strategy for Duplicator. We need to show
that the

⊕f
1≤i≤kMi, ā1, . . . , āk and

⊕f
1≤i≤kNi, b̄1, . . . , b̄k agree on all atomic for-

mulas. Now in the fusion structures, each atomic formula is defined by f in
terms of a σ∗-quantifier free formula that is evaluated in the corresponding dis-
joint union structure. So it is enough to show that the disjoint union structures
agree on all atomic σ∗-formulas and on their Boolean combinations. The initial
match between the distinguished objects in (Mi, āi) and (Ni, b̄i) is a partial iso-
morphism for every 1 ≤ i ≤ k, so it is also one for

⊎
1≤i≤kMi, ā1, . . . , āk and⊎

1≤i≤kNi, b̄1, . . . , b̄k i.e. the two disjoint union structures agree on all σ∗-atomic
formulas. Now relying on the semantics of Boolean connectives, it can be shown
by induction on the complexity of quantifier free sentences that they also agree
on all Boolean combinations of atomic σ∗-sentences.

Inductive step: the inductive hypothesis says that whenever Duplicator has
a winning strategy in EF n

FO(TC1)
((Mi, āi), (Ni, b̄i)) for some (Mi, āi), (Ni, b̄i) sat-

isfying the required conditions on parameters and 1 ≤ i ≤ k, he also has one in
EF n

FO(TC1)
((
⊕f

1≤i≤kMi, ā1, . . . , āk), (
⊕f

1≤i≤kNi, b̄1, . . . , b̄k)).

68 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

We want to show that this also holds whenever the length of the game is
n+ 1. Suppose Duplicator has a winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i))

for all 1 ≤ i ≤ k. We describe Duplicator’s answer to Spoiler’s first move in
EF n+1

FO(TC1)
((
⊕f

1≤i≤kMi, ā1, . . . , āk), (
⊕f

1≤i≤kNi, b̄1, . . . , b̄k)). It will then follow by

induction hypothesis, that he has a winning strategy in the remaining n-length
game.

• Spoiler’s first move is an ∃ move. Suppose Spoiler chooses a point a ∈
dom(

⊕f
1≤i≤kMi), then a ∈ dom(Mi) for some 1 ≤ i ≤ k. So Duplica-

tor can use his winning strategy in EF n
FO(TC1)

((Mi, āi), (Ni, b̄i)) and pick a

corresponding point b in the other structure. Now he still has a winning
strategy in EF n

FO(TC1)
((Mi, āi, a), (Ni, b̄i, b)). So by induction hypothesis he

also has one in the remaining n length game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk, a), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k, b)).

• Spoiler’s first move is a TC move. Suppose Spoiler chooses a set A in
the set of admissible subsets of

⊕f
1≤i≤kMi. Then A is necessarily of the

form A1 ∪ . . . ∪ Ak, with Ai an admissible subset (possibly empty) of Mi.
Her response B = B1 ∪ . . . ∪ Bk can now be defined locally for each Bi

using her winning strategies in the small structures. So let Spoiler choose
A = A1 ∪ . . . ∪ Ak. Keeping in mind that each non single point small
structure comes with at least two distinct parameters, there are four cases:

a) in dom(Mi), there is a distinguished object inside, but also outside Ai,
so Duplicator considers Ai together with these two parameters and con-
structsBi by using his winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)).

b) in dom(Mi), there are only distinguished objects inside Ai
3, so Du-

plicator considers any one of these distinguished objects, let say aj
and looks at Ai\{aj} together with some parameter inside Ai, so that
he can use his winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) to con-

struct an answer that we call B′i. Now Bi = B′i ∪ {bj};
c) in dom(Mi), there are only distinguished objects outside Ai,

4 so Du-
plicator similarly considers some distinguished object aj and looks at
Ai∪{aj} together with some other parameter outside Ai, so that he can
use his winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) to construct an

answer that we call B′i. Now Bi = B′i\{bj};
d) Mi is a single point structure, then Bi = ∅ if Ai = ∅ and Bi = dom(Mi)

if Ai = dom(Ni).

3Note that as a special case we may have Ai = dom(Mi).
4Note that as a special case we may have Ai = ∅.

3.3. Operations on Henkin-Structures 69

Once B = B1 ∪ . . . ∪ Bk has been constructed, Spoiler picks two points
b ∈ B and b′ /∈ B. There are two cases:

1. b and b′ belong to the domain of one and the same small structure
Ni ; now dom(Mi) is as previously described in a), b), c) (but not d),
because two distinct points cannot belong to one and the same single
point structure) and in each case Duplicator does the following:

a) Duplicator answers with a, a′ according to his winning strategy in
EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)), so that he still has a winning strategy

in EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′)). By induction hypothesis

he also has one in the remaining n length game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk, a, a
′), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k, b, b
′));

b) suppose first that b′ 6= bj, so Duplicator considers Ai\{aj} to-
gether with aj and with some other parameter inside this set and
uses his winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)) to pick

corresponding a, a′ in Mi, so that he still has a winning strategy
in EF n

FO(TC1)
((Mi, āi, a, a

′), (Ni, b̄i, b, b
′)). By induction hypothesis

he also has one in the remaining n length game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk, a, a
′), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k, b, b
′));

Next, suppose b = bj. Then we choose a = aj. The parameter aj
already matches b i.e. Duplicator has a winning strategy in

EF n+1
FO(TC1)

((Mi, āi, a), (Ni, b̄i, b)),

so Duplicator uses it to pick a′, answering as if it was a point move
(i.e a′ has to be n-equivalent to b′), so that he still has a winning
strategy in EF n

FO(TC1)
((Mi, āi, a, a

′), (Ni, b̄i, b, b
′)). By induction

hypothesis he also has one in the remaining n length game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk, a, a
′), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k, b, b
′)).

This works, except that there is the additional condition a′ /∈ Ai
that Duplicator must also maintain in order to respect the rules
of the game. A slightly more refined argument shows, however
that there has to be an n-equivalent point to b′ which is outside

70 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

Ai. Indeed, instead of b, Spoiler could have picked any other point
b∗ ∈ Bi together with b′ /∈ Bi and Duplicator’s winning strategy
would have provided a correct answer a∗ ∈ Ai, a

′ /∈ Ai, which
means that Duplicator would have found some a′ point which is
at least n-equivalent to b′ and outside Ai (because if Duplicator has
a winning strategy in EF n

FO(TC1)
((Mi, āi, a

∗, a′), (Ni, b̄i, b
∗, b′)) then

he also has one in EF n
FO(TC1)

((Mi, āi, a
′), (Ni, b̄i, b

′)) and hence in

EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′))).

c) suppose first that b 6= bj, so Duplicator considers Ai∪{aj} together
with aj and with some other parameter outside this set and uses
his winning strategy in EF n+1

FO(TC1)
((Mi, āi), (Ni, b̄i)), so that he still

has a winning strategy in EF n
FO(TC1)

((Mi, āi, a, a
′), (Ni, b̄i, b, b

′)).

By induction hypothesis he also has one in the remaining n length
game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk, a, a
′), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k, b, b
′));

otherwise b′ = bj, then a′ = aj because the parameter aj already
matches b′ i.e. Duplicator has a winning strategy in

EF n+1
FO(TC1)

((Mi, āi, a
′), (Ni, b̄i, b

′)),

so we can show by a similar argument as the one used in the
above item, that he can use it to pick a ∈ Ai, so that he still has
a winning strategy in EF n

FO(TC1)
((Mi, āi, a, a

′), (Ni, b̄i, b, b
′)). By

induction hypothesis he also has one in the remaining n length
game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk, a, a
′), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k, b, b
′)).

2. otherwise b ∈ dom(Ni, b̄i) and b′ ∈ dom(Nj, b̄j) with i 6= j; we can
again use a similar argument to show that Duplicator can use his
winning strategy in

EF n+1
FO(TC1)

((Mi, āi), (Ni, b̄i)) and EF n+1
FO(TC1)

((Mj, āj), (Nj, b̄j))

to pick a, a′ in the right part of the structure (that is, inside or outside
Ai), so that he still has a winning strategy in the games
EF n

FO(TC1)
((Mi, āi, a), (Ni, b̄i, b)) and EF n

FO(TC1)
((Mj, āj, a

′), (Nj, b̄j, b
′))

(in the special case where for instance, Mj is a single point structure,

3.3. Operations on Henkin-Structures 71

Duplicator picks the only available point in the other structure). By
induction hypothesis he also has one in the remaining n length game

EF n
FO(TC1)((

f⊕
1≤i≤k

Mi, ā1, . . . , āk, a, a
′), (

f⊕
1≤i≤k

Ni, b̄1, . . . , b̄k, b, b
′)).

We now show a corollary of the preceding lemma, in which the small structures
do not come with any distinguished objects:

Corollary 3.3.28. Whenever Mi ≡nFO(TC1)
Ni for all 1 ≤ i ≤ k, then also⊕f

1≤i≤kMi ≡nFO(TC1)

⊕f
1≤i≤kNi.

Proof. We know that Spoiler’s first two moves in the FO(TC1)-game of length
n+ 1 bewteen

⊕f
1≤i≤kMi and

⊕f
1≤i≤kNi must be quantifier moves, because the

TC move can only be played once there are two pebbles on the board. Let us
look at the first move. Suppose Spoiler plays a point a ∈ dom(

⊕f
1≤i≤kMi).

So a ∈ dom(Mi) for some 1 ≤ i ≤ k. By Duplicator’s winning strategy in
EF n

FO(TC1)
(Mi,Ni), he has an answer b ∈ dom(Ni) such that (Mi, a) ≡n

FO(TC1)

(Ni, b). Let us rename a with ai1 and b with bi1 . Similarly, for every j 6= i such
that 1 ≤ j ≤ k, fix some random point aj1 coming from the domain of Mj, Spoiler
could have played this point and so Duplicator would have had an adequate
answer bj1 such that (Mj, aj1) ≡n

FO(TC1)
(Nj, bj1). Now for the second round in

the game, some point a′ = al2 or b′ = bl2 coming from the domain of respectively
Ml or Nl will be played by Spoiler and Duplicator will be able to answer so that
(Ml, al1 , al2) ≡n−2

FO(TC1)
(Nl, bl1 , bl2). Similarly, for each Mj such that j 6= l, we can

find points such that (Mj, aj1 , aj2) ≡n−2
FO(TC1)

(Ni, bj1 , bj2). Now as for all 1 ≤ i ≤ k,

Duplicator has a winning strategy in EF n−2
FO(TC1)

((Mi, ai1 , ai2), (Ni, bi1 , bi2)), by the

previous lemma, he has one in

EF n−2
FO(TC1)

(

f⊕
1≤i≤k

Mi, a11 , a12 , . . . , ak1 , ak2), (

f⊕
1≤i≤k

Ni, b11 , b12 , . . . , bk1 , bk2)),

so he also has one in EF n−2
FO(TC1)

(
⊕f

1≤i≤kMi, a, a
′), (

⊕f
1≤i≤kNi, b, b

′)).

Corollary 3.3.29. Whenever Mi ≡nFO(TC1)
Ni for all 1 ≤ i ≤ k, then also⊎

1≤i≤kMi ≡nFO(TC1)

⊎
1≤i≤kNi.

Proof. Analogous to the proof of Corollary 3.3.24.

Corollary 3.3.30. A⊕f
1≤i≤kMi

is closed under FO(TC1) parametric definability

and so
⊕f

1≤i≤kMi is a FO(TC1)-Henkin structure.

72 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

Proof. Analogous to the proof of Corollary 3.3.25.

Corollary 3.3.31. A⊎
1≤i≤kMi

is closed under FO(TC1) parametric definability

and so
⊎

1≤i≤kMi is a FO(TC1)-Henkin structure.

Proof. Analogous to the proof of Corollary 3.3.26.

In the FO(LFP1) case, the situation parallels the FO(TC1) case. As LFP
moves can only be played when there is already one pebble on the board, it is
more convenient to show first a version of our FO(LFP1) fusion theorem in which
each small structure comes with at least one FO parameter. This allows us to
define Duplicator’s answer to a LFP move played in the big structure, by means
of his winning strategies in the small structures. We then derive as a corollary
the fusion theorem for non-parametrized structures.

Theorem 3.3.32 (Fusion Theorem for FO(LFP1)). Let āi, b̄i be non empty se-
quences of first-order parameters of the form ai1 , . . . , aim, bi1 , . . . , bim, with m ∈ N
and Āi, B̄i sequences of set parameters of the form Ai1 , . . . , Aim′ , Bi1 , . . . , Bim′

with m′ ∈ N. Whenever

(Mi, Āi, āi) ≡nFO(LFP1) (Ni, B̄i, b̄i) for all 1 ≤ i ≤ k,

then also

f⊕
1≤i≤k

Mi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk ≡nFO(LFP1)

f⊕
1≤i≤k

Ni, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k.

Proof. We define a winning strategy for Duplicator in the FO(LFP1)-game of
length n in between the structures (

⊕f
1≤i≤kMi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk) and

(
⊕f

1≤i≤kNi, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k) out of her winning strategies in the games

EF n
FO(LFP1)

((Mi, Āi, āi), (Ni, B̄i, b̄i)) by induction on n.

Base step: n = 0, doing nothing is a strategy for Duplicator (this can be
justified by a similar argument as in the MSO case).

Inductive step: the inductive hypothesis says that whenever Duplicator has
a winning strategy in EF n

FO(LFP1)
((Mi, Āi, āi), (Ni, B̄i, b̄i)) for some pairs of struc-

tures (Mi, Āi, āi), (Ni, B̄i, b̄i) satisfying the required conditions on parameters
and 1 ≤ i ≤ k, he also has one in the FO(LFP1)-game of length n in between
(
⊕f

1≤i≤kMi, (Ā1, . . . , Āk)
∪, ā1, . . . , āk) and (

⊕f
1≤i≤kNi, (B̄1, . . . , B̄k)

∪, b̄1, . . . , b̄k).
We want to show that this also holds when the length of the games is n + 1.

Suppose Duplicator has a winning strategy in EF n+1
FO(LFP1)

((Mi, Āi, āi), (Ni, B̄i, b̄i))

for all 1 ≤ i ≤ k. We describe Duplicator’s answer to Spoiler’s first move in the
FO(LFP1)-game of length n+ 1 in between (

⊕f
1≤i≤kMi, (Ā1, . . . , Āk)

∪, ā1, . . . , āk)

and (
⊕f

1≤i≤kNi, (B̄1, . . . , B̄k)
∪, b̄1, . . . , b̄k). It then follows by induction hypothe-

sis, that he has a winning strategy in the remaining n-length game.

3.3. Operations on Henkin-Structures 73

• Spoiler’s first move is an ∃ move.

Same argument as for MSO and FO(TC1).

• Spoiler’s first move is a ∀ move.

Symmetric.

• Spoiler’s first move is a GFP move.

Suppose Spoiler chooses a setA in the set of admissible subsets of
⊕f

1≤i≤kMi

with some pebble aij ∈ A. Then A is necessarily of the form A1 ∪ . . . ∪Ak,
with Ai an admissible subset of Mi. Her response B = B1 ∪ . . . ∪ Bk can
now be defined locally for each Bi using her winning strategies in the small
structures. So let Spoiler choose A = A1 ∪ . . . ∪ Ak. Keeping in mind that
each small structure comes with at least one parameter, there are four cases:

1) in dom(Mi), there is a distinguished object insideAi andAi 6= dom(Mi),
so Duplicator considers Ai together with this parameter and constructs
Bi by using his winning strategy in EF n+1

FO(LFP1)
((Mi, Āi, āi), (Ni, B̄i, b̄i)).

2) in dom(Mi), there are only distinguished objects outside Ai and Ai 6=
∅, so Duplicator considers any one of these distinguished objects, let
say aj and looks at Ai∪{aj}, so that he can use his winning strategy in
EF n+1

FO(LFP1)
((Mi, Āi, āi), (Ni, B̄i, b̄i)) to construct an answer that we call

B′i. Now Bi = B′i\{bj}. This is a correct answer, because the (posimor-
phism) condition to be maintained is that for every pebble al on the
board at the end of the game, al ∈ Ai ⇒ bl ∈ Bi. But by Duplicator’s
winning strategy in EF n+1

FO(LFP1)
((Mi, Āi, Ai ∪ {aj}, āi), (Ni, B̄i, B

′
i, b̄i)),

we know already that for every such pebble, al ∈ Ai ∪ {aj} ⇒ bl ∈ B′i,
so also al ∈ Ai ⇒ bl ∈ B′i\{bj}, since the winning conditions will assure
that al = aj if and only if bl = bj.

3) Bi = dom(Mi). So Ai = dom(Ni). As pebbles are only chosen using
Duplicator’s winning strategies in the small structures, the posimor-
phism condition will be maintained.

4) Bi = ∅. So Ai = ∅. As no pebble can belong to this set, the posimor-
phism condition will be maintained.

Now that B = B1 ∪ . . . ∪ Bk has been constructed, Spoiler picks a new
element b ∈ B which belongs to the domain of one particular small structure
Ni (so b ∈ Bi) and dom(Mi) is as previously described either in 1), 2) or
3) (but not 4), because b cannot belong to the empty set) and in each case
Duplicator does the following:

1) Duplicator answers with a according to his winning strategy in

EF n+1
FO(LFP1)

((Mi, Āi, āi), (Ni, B̄i, b̄i));

74 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

2) Duplicator again considers Ai ∪ {aj} and answers according to his
winning strategy in EF n+1

FO(LFP1)
((Mi, Āi, Ai ∪ {aj}, āi), (Ni, B̄i, B

′
i, b̄i)).

This is safe, because the pebble to be chosen may be assumed to be
fresh, so it won’t be aj;

3) Duplicator picks some random pebble aj in dom(Mi) and considers
dom(Mi)\{aj}. His winning strategy provides him with a correct an-
swer.

So in any case (either 1), 2) or 3)), Duplicator has a winning strategy in
EF n

FO(LFP1)
((Mi, Āi, Ai, āi, a), (Ni, B̄i, Bi, b̄i, b)). Now for all j 6= i, 1 ≤ j ≤

k, he also has one in EF n
FO(LFP1)

((Mj, Āj, Aj, āj), (Nj, B̄j, Bj, b̄j)). So by

induction hypothesis, he has one in the remaining n-length FO(LFP1) game
between the following two structures:

(

f⊕
1≤i≤k

Mi, (Ā1, A1, . . . , Āk, Ak)
∪, ā1, . . . , āk, a)

and

(

f⊕
1≤i≤k

Ni, (B̄1, B1, . . . , B̄k, Bk)
∪, b̄1, . . . , b̄k, b)

• Spoiler’s first move is a LFP move.

Symmetric.

Corollary 3.3.33. Whenever Mi ≡nFO(LFP1)
Ni for all 1 ≤ i ≤ k, then also⊕f

1≤i≤kMi ≡nFO(LFP1)

⊕f
1≤i≤kNi.

Proof. We know that Spoiler’s first move in EF n+1
FO(LFP1)

(
⊕f

1≤i≤kMi,
⊕f

1≤i≤kNi)

must be a FO quantifier move, because the LFP move can only be played
once there is a pebble on the board. Let us look at the first move. Sup-
pose Spoiler plays a point a ∈ dom(

⊕f
1≤i≤kMi). So a ∈ dom(Mi) for some

1 ≤ i ≤ k. By Duplicator’s winning strategy in EF n
FO(LFP1)

(Mi,Ni), he has

an answer b ∈ dom(Ni) such that (Mi, a) ≡n
FO(LFP1)

(Ni, b). Let us rename a

with ai and b with bi. Similarly, for every j 6= i such that 1 ≤ j ≤ k, fix
some random point aj coming from the domain of Mj, Spoiler could have played
this point and so Duplicator would have had an adequate answer bj such that
(Mj, aj) ≡nFO(LFP1)

(Nj, bj). Now as for all 1 ≤ i ≤ k, Duplicator has a winning

strategy in EF n−1
FO(LFP1)

((Mi, ai), (Ni, bi)), by the previous lemma, he has one in

EF n−1
FO(LFP1)

(
⊕f

1≤i≤kMi, a1, . . . , ak), (
⊕f

1≤i≤kNi, b1, . . . , bk)), so he also has one in

EF n−1
FO(LFP1)

(
⊕f

1≤i≤kMi, a), (
⊕f

1≤i≤kNi, b)).

3.4. Putting it Together: Completeness on Finite Trees 75

Corollary 3.3.34. Whenever Mi ≡nFO(LFP1)
Ni for all 1 ≤ i ≤ k, then also⊎

1≤i≤kMi ≡nFO(LFP1)

⊎
1≤i≤kNi.

Proof. Analogous to the proof of Corollary 3.3.24.

Corollary 3.3.35. A⊕f
1≤i≤k

is closed under FO(LFP1) parametric definability and

so
⊕f

1≤i≤kMi is a FO(LFP1)-Henkin structure.

Proof. Analogous to the proof of Corollary 3.3.25.

Corollary 3.3.36. A⊎
1≤i≤kMi

is closed under FO(LFP1) parametric definability

and so
⊎

1≤i≤kMi is a FO(LFP1)-Henkin structure.

Proof. Analogous to the proof of Corollary 3.3.26.

3.4 Putting it Together: Completeness on Fi-

nite Trees

3.4.1 Forests and Operations on Forests

In Section 3.4.2, we will prove that no Λ-sentence can distinguish Λ-Henkin-
models of `treeΛ from standard models of `treeΛ . More precisely, we will show that
for each n, every definably well-founded Λ-quasi-tree is n-Λ-equivalent to a finite
tree. In order to give an inductive proof, it will be more convenient to consider
a stronger version of this result concerning a class of finite and infinite Henkin
structures that we call quasi-forests. In this section, we give the definition of
quasi-forest and we show how they can be combined into bigger quasi-forests
using the notion of fusion from Section 3.3. Whenever quasi forests are finite,
we simply call them finite forests. As a simple example, consider a finite tree
and remove the root node, then it is no longer a finite tree. Instead it is a finite
sequence of trees, whose roots stand in a linear (sibling) order.5 It does not have
a unique root, but it does have a unique left-most root. For technical reasons
it will be convenient in the definition of quasi forests to add an extra monadic
predicate R labeling the roots.

Definition 3.4.1 (Λ-quasi-forest). Let T = (dom(T), <,≺, P1, . . . , . . . Pn,AT) be
a Λ-quasi-tree. Given a node a in T , consider the Λ-substructure of T generated
by the set {x | ∃z(a � z∧z ≤ x)}, which is the set formed by a together with all its
siblings to the right and their descendants. The Λ-quasi-forest Ta is obtained by
labeling each root in this substructure with R (Rx⇔def ¬∃y y < x). Whenever
T is a tree, we simply call Ta a forest.

5Note that, as far as roots are concerned, two nodes can be siblings without sharing any
parent. This would not happen in a quasi tree.

76 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

We will show in our main proof of completeness that for each n and for each
node a in a definably well-founded Λ-quasi-tree, the Λ-quasi-forest Ta is n-Λ-
equivalent to a finite forest. Our proof will use a notion of composition of Λ-
quasi-forests which is a special case of fusion. Given a single node forest F1 and

two Λ-quasi-forests F2 and F3, we construct a new Λ-quasi-forest
⊕f4(F1, F2, F3)

by letting the unique element in F1 be the left-most root, the roots of F2 become
the children of this node and the roots of F3 become its siblings to the right. We
then derive a corollary of the Λ-fusion theorem for compositions of Λ-quasi-forests
and use it in Section 3.4.2.

Definition 3.4.2. Let σ = {<,≺, R, P1, . . . , Pn}, be a relational vocabulary with
only monadic predicates except < and ≺. Given three additional monadic predi-
cates Q1, Q2, Q3, we define a mapping f4 from σ to quantifier-free formulas over
σ ∪ {Q1, Q2, Q3} by letting

• f4(Pi) = Pi(x1)

• f4(<) = x1 < x2 ∨ (Q1(x1) ∧Q2(x2))

• f4(≺) = x1 ≺ x2 ∨ (Q1(x1) ∧Q3(x2) ∧R(x2))

• f4(R) = (Q3(x1) ∧R(x1)) ∨Q1(x1)

Corollary 3.4.3. Let F1 be a single node forest and F2, F3 Λ-quasi forests. If

F2 ≡nΛ F ′2 and F3 ≡nΛ F ′3 then
⊕f4(F1, F2, F3) ≡nΛ

⊕f4(F1, F
′
2, F

′
3).

F1

F2

F3

Figure 3.6: A composition of forests using the mapping f4

Figure 3.6 represents a composition of three forests F1, F2, F3 which uses the
mapping f4. Only new <ch-arrows are represented, linking the unique node in
F1 to the root nodes in F2. But new �-links have also been added and the roots
in F3 have became the siblings to the right of the root in F1. This is implicitly
indicated by the left to right organization of the picture.

3.4. Putting it Together: Completeness on Finite Trees 77

3.4.2 Main Proof of Completeness

Lemma 3.4.4. For all n ∈ N, every definably well-founded Λ-quasi-tree of finite
signature is n-Λ-equivalent to a finite tree. In particular, a Λ-sentence is valid on
definably well-founded Λ-quasi-trees iff it is valid on finite trees.

Proof. Let T be a Λ-quasi-tree, without loss of generality assume that a monadic
predicate R labels its root (and only that node in the tree). During this proof, it
will be convenient to work with Λ-quasi-forests. Note that finite Λ-quasi-forests
are simply finite forests and finite Λ-quasi-trees are simply finite trees. Let Xn be
the set of all nodes a of T for which it holds that Ta is n-Λ-equivalent to a finite
forest. We first show that ‘belonging to Xn” is a property definable in T (Claim
1). We then use the induction scheme to show that every node of a definably
well-founded Λ-quasi-tree (so in particular, the root) has this property (Claim 2).

Claim 1: Xn is invariant for n + 1-Λ-equivalence (i.e., (T, a) ≡Λ
n+1 (T, b) implies

that a ∈ Xn iff b ∈ Xn), and hence is defined by a Λ-formula of quantifier depth
n+ 1.

Proof of claim. Suppose that (T, a) ≡Λ
n+1 (T, b). We will show that Ta ≡Λ

n Tb,
and hence, by the definition of Xn, a ∈ Xn iff b ∈ Xn. By the definition of
Λ-quasi-forests, dom(Ta) = {x | ∃z(a � z ∧ z ≤ x)}. Let ϕ be any Λ-sentence
of quantifier depth n. We can assume without loss of generality that ϕ does not
contain the variables z and x (otherwise we can rename in ϕ these two variables).
By lemma 3.3.4, (T, a) |= REL(ϕ,∃z(a � z ∧ z ≤ x), x) iff Ta |= ϕ. Notice that
REL(ϕ,∃z(a � z ∧ z ≤ x), x) expresses precisely that ϕ holds in (T, a) within
the subforest Ta. Moreover, the quantifier depth of REL(ϕ,∃z(a � z ∧ z ≤ x)
is at most n + 1. It follows that (T, a) |= REL(ϕ,∃z(a � z ∧ z ≤ x), x) iff
(T, b) |= REL(ϕ,∃z(b � z ∧ z ≤ x), x), and hence Ta |= ϕ iff Tb |= ϕ.

For the second part of the claim, note that by Lemma 3.3.11, up to logical
equivalence, there are only finitely many Λ-formulas of any given quantifier depth,
as the vocabulary is finite. a

Claim 2: If all descendants and siblings to the right of a belong to Xn, then a
itself belongs to Xn.

Proof of claim. Let us consider the case where a has both a descendant and a
following sibling (all other cases are simpler). Then, by axioms T3, T5, T8, T9
and T10, a has a first child b, and an immediate next sibling c. Moreover, we
know that both b and c are in Xn. In other words, Tb and Tc are n-Λ-equivalent to
finite forests T ′b and T ′c. Now, we construct a finite Λ-quasi-forest T ′a by taking a
f4-fusion of T ′b, T

′
c and of the Λ-substructure of T generated by {a}, which unique

element becomes a common parent of all roots of T ′b and a left sibling of all roots of

T ′c. So we get T ′a =
⊕f4(T � {a}, T ′b, T ′c)). It is not hard to see that T ′a is again a

78 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

finite forest. Moreover, by the fusion theorem,
⊕f4(T � {a}, Tb, Tc)) ≡Λ

n T
′
a. Now

to show that
⊕f4(T � {a}, Tb, Tc)) is isomorphic to Ta (which entails Ta ≡Λ

n T
′
a i.e.

Ta is n-Λ-equivalent to a finite forest), it is enough to show ATa = A⊕f4 (T �{a},Tb,Tc)
.

It holds that A⊕f4 (T �{a},Tb,Tc)
⊆ ATa because we can define in Ta each such union

of sets by means of a disjunction. Now to show ATa ⊆ A⊕f4 (T �{a},Tb,Tc)
, take

A ∈ ATa , so A = A1∪A2∪A3 with A1 ∈ AT �{a}, A2 ∈ ATb , A3 ∈ ATc . The domain
of each of these three structures is definable in Ta. Let ϕ1 define dom(T � {a}),
ϕ2 define dom(Tb) and ϕ3 define dom(Tc). So each Ai component is definable in
Ta (just take the conjunction ϕi(x) ∧ Ax). But then Ai was already definable in⊕f4(T � {a}, Tb, Tc) (by construction of this structure). a

It follows from these two claims, by the induction scheme for definable proper-
ties, that Xn contains all nodes of the Λ-quasi-tree, including the root, and hence
T is n-Λ-equivalent to a finite tree (to a finite forest actually, but the root of the
Λ-quasi-tree being labelled by R, it can also be viewed as a Λ-quasi-forest). For
the second statement of the lemma, it suffices to note that every Λ-sentence has
a finite vocabulary and a finite quantifier depth.

Theorem 3.4.5. Let Λ ∈ {MSO,FO(TC1),FO(LFP1)}. The Λ-theory of finite
trees is completely axiomatized by `treeΛ .

Proof. Theorem 3.4.5 follows directly from Lemma 3.4.4 and Corollary 3.2.19.

3.4.3 Definability of the Class of Finite Trees

Proposition 3.4.6 below shows together with Theorem 3.4.5 that on standard
structures, the set of `treeΛ consequences actually defines the (not FO-definable)
class of finite trees. That is, `treeΛ has no infinite standard model at all.

Proposition 3.4.6. Let Λ ∈ {FO(TC1),FO(LFP1),MSO}. On standard struc-
tures, there is a Λ-formula which defines the class of finite trees.

Sketch of the proof. It is enough to show it for Λ = FO(TC1). It follows by Section
2.1.3 that it also holds for MSO and FO(LFP1).

We merely give a sketch of the proof. For additional details we refer the reader
to [96]. It can be shown that on standard structures, the finite conjunction of the
axioms T1–T11 in Figure 3.5 “almost” defines the class of finite trees, i.e., any
finite structure satisfying this conjunction is a finite tree. Now we will explain
how to construct another sentence, which together with this one, actually defines
on arbitrary standard structures the class of finite trees. Let L be a shorthand
for the formula labeling the leaves in the tree (Lx ⇔def ¬∃yx < y) and R a
shorthand for the formula labelling the root (Rx ⇔def ¬∃yy < x). Consider
the depth-first left-to-right ordering of nodes in a tree and the FO(TC1) formula
ϕ(x, y) saying “the node that comes after x in this ordering is y”:

3.5. Finite Linear Orders 79

ϕ(x, y) :≈ (¬Lx ∧ x <ch y ∧ ¬∃zz ≺ y) ∨ (Lx ∧ x ≺ch y) ∨ (Lx ∧ ¬∃zx ≺
z ∧ ∃z(z < x ∧ z ≺ch y ∧ ¬∃ww < x ∧ z < w ∧ ∃uw ≺ch u))

There is also a FO(TC1) formula which says that “x is the very last node in this
ordering”. ϕ(x, y) can be combined with this formula into an FO(TC1) formula χ
expressing that the tree is finite by saying that (we rely here for the interpretation
of χ on the alternative semantics for the TC operator given in Proposition 2.1.11)
“there is a finite sequence of nodes x1 . . . xn such that x1 is the root, xi+1 the node
that comes after xi in the above ordering, for all i, and xn is the very last node
of the tree in the above ordering”.

χ :≈ ∃u∃z(Rz ∧ [TCxyϕ](z, u) ∧ ¬∃u′(u 6= u′ ∧ [TCxyϕ](u, u′)))

Theorem 3.4.7. The set of `treeΛ consequences defines the class of finite trees.

Proof. By Proposition 3.4.6 we can express in Λ by means of some formula χ that
a structure is a finite tree. So χ is necessarily a consequence of `treeΛ (as it is a
Λ-formula valid on the class of finite trees).

3.5 Finite Linear Orders

Let us note that a simplified version of this method can be used in order to show
the completeness of MSO, FO(TC1) and FO(LFP1) on finite node-labelled linear
orders. The relevant simpler axioms are the ones listed in Figures 3.1, 3.7 and
respectively, Figures 3.2, 3.3 and 3.4.

L1. ∀xyz(x < y ∧ y < z → x < z) < is transitive
L2. ¬∃x(x < x) < is irreflexive
L3. ∀xy(x < y → ∃z(x <ch z ∧ z ≤ y)) immediate

children
L4. ∃x∀y¬(y < x) there is a root
L5. ∀xy(x = y ∨ x < y ∨ y < x) < is total
Ind. ∀x(∀y((x < y → ϕ(y))→ ϕ(x))→ ∀xϕ(x)

where
ϕ(x) ranges over Λ-formulas in one free variable x

and
x <ch y is shorthand for x < y ∧ ¬∃z(z < y ∧ x < z)

Figure 3.7: Specific axioms on finite linear orders

80 Chapter 3. Complete Axiomatization of Fragments of MSO on Finite Trees

3.6 Conclusion

In this chapter, taking inspiration from Kees Doets [57] we developed a uniform
method for obtaining complete axiomatizations of fragments of MSO on finite
trees. For that purpose, we had to adapt classical tools and notions from finite
model theory to the specificities of Henkin semantics. The presence of admis-
sible subsets called for some refinements in model theoretic constructions such
as formation of substructure or disjoint union. Also, we noticed that not ev-
ery Ehrenfeucht-Fräıssé game that has been used for FO(TC1) was suitable to
use on Henkin-structures. We focused on a game which does not seem to have
been used previously in the literature. We also established analogues of the FO
Feferman-Vaught theorem for MSO, FO(TC1) and FO(LFP1) on Henkin-structures
(let us recall that related work for the case of standard structures can be found
in [106]). We considered fusions, a particular case of the Feferman-Vaught notion
of generalized product and obtained results for Henkin-structures which might be
interesting to generalize and use in other contexts.

We applied our method to MSO, FO(TC1) and FO(LFP1), but it would be
worth also examining other fragments of MSO or logics such as monadic de-
terministic transitive closure logic (FO(DTC1), which was advocated in [128] as
particularly relevant in the context of applications to model-theoretic syntax) or
monadic alternating transitive closure logic (FO(ATC1)), see also [38].

An important feature of our main completeness argument (the idea of which
was borrowed from Kees Doets) is the way we used the inductive scheme of Figure
3.5. Hence, extending our approach to another class of finite structures would
involve finding a comparable scheme. We also know that we should focus on a logic
which is decidable on this class, as on finite structures recursive enumerability
is equivalent to decidability (as long as the model-checking is decidable). This
suggests that other natural candidates would be fragments of MSO on classes of
finite structures with bounded treewidth.

Finally, let us recall that we noted in Chapter 2 that MSO is also known to
be decidable over infinite trees and over linear orders of order type ω. It would
be interesting to look for a model-theoretic argument which would work on a
Henkin model and produce an intended model of one of these theories in a way
comparable to what we did here or to what Keisler did in [94]. Note that related
complete axiomatizations of monadic theories of classes of infinite structures can
be found in [36], [124] and [136], but that instead of relying on Henkin-semantics,
the completeness proofs there are based on automata-theoretic techniques.

Chapter 4

Interpolation for Linear Temporal
Languages

4.1 Introduction

Craig’s interpolation theorem in classical model theory dates back from the late
fifties [44]. It states that if a first-order formula ϕ (semantically) entails another
first-order formula ψ, then there is an interpolant first-order formula θ, such that
every non-logical symbol in θ occurs both in ϕ and ψ, ϕ entails θ and θ entails
ψ. The key idea of the Craig interpolation theorem is to relate different logical
theories via their common non-logical vocabulary. In his original paper, Craig
presents his work as a generalization of Beth’s definability theorem, according
to which implicit (semantic) definability is equivalent to explicit (syntactic) de-
finability. Indeed, Beth’s definability theorem follows from Craig’s interpolation
theorem, but the latter is more general.

From the point of view of applications in computer science, interpolation is
often a desirable property of a logic. For instance, in fields such as automatic
reasoning and software development, interpolation is related to modularization [2,
103], a property which allows systems or specifications to be developed efficiently
by first building component subsystems (or modules). Interpolation for temporal
logics is also an increasingly important topic. Temporal logics in general are
widely used in systems and software verification, and interpolation has proven to
be useful for building efficient model-checkers [45]. This is particularly true of a
strong form of Craig interpolation known as uniform interpolation, which is quite
rare in modal logic, but that the modal µ-calculus satisfies (see [46]), whereas
most temporal logics lack even Craig interpolation (see [107]).

We study Craig interpolation for fragments and extensions of propositional lin-
ear temporal logic (LTL). We use the framework of [12] and work with a general
notion of abstract temporal language which allows us to consider a general notion
of extension of such languages. We consider different sets of temporal connectives
and, for each, identify the smallest extension of the fragment of LTL with these

81

82 Chapter 4. Interpolation for Linear Temporal Languages

LTL(F)

%%LLLLLLLLLL
+3 LTL(U)

&&NNNNNNNNNNN
+3 µTL(U)

$$IIIIIIIII

LTL(F<)

"*NNNNNNNNNN

NNNNNNNNNN
+3 LTL(F<,U) +3 LTL +3 µTL

LTL(X) // LTL(F<,X)

4<qqqqqqqqqqq

qqqqqqqqqqq

Figure 4.1: Hierarchy of temporal languages

temporal connectives that has Craig interpolation. Depending on the set of tem-
poral connectives, the resulting logic turns out to be either the fragment of LTL
with only the Next operator, or the extension of LTL with a fixed-point operator µ
(known as linear time µ-calculus), or the fixed-point extension of the fragment of
LTL with only the Until operator (which we will show to be the stutter-invariant
fragment of the linear time µ-calculus). The diagram in Figure 4.1 summarizes
our results. A simple arrow linking two languages means that the first one is an
extension of the second one and a double arrow means that, furthermore, every
extension of the first one having Craig interpolation is an extension of the second
one. Temporal languages with Craig interpolation (in fact, uniform interpolation)
are represented in a double frame. Thus we have for instance that µTL(U) is the
least expressive extension of LTL(F) with Craig interpolation.

Outline of the chapter: In Section 4.2, we introduce a general notion of abstract
temporal language. We then introduce LTL, some of its natural fragments and its
fixed-point extension known as linear time µ-calculus (µTL) as samples of abstract
temporal languages.

Section 4.3 contains some technical results that are used in subsequent sec-
tions. One of these relates projective definability in LTL to definability in the
fixed-point extension µTL. Another result relates in a similar way LTL(U) and
µTL(U). Along the way, we show that µTL(U) is the stutter invariant fragment
of µTL. Stutter-invariance is a property that is argued by some authors [101]
to be natural and desirable for a temporal logic. Roughly, a temporal logic is
stutter-invariant if it cannot detect the addition of identical copies of a state.

In Section 4.4, we give three positive interpolation results. Among the frag-
ments of LTL obtained by restricting the set of temporal operators, we show that
only one (the “Next-only” fragment) has Craig interpolation. In fact, this frag-
ment satisfies a stronger form of interpolation, called uniform interpolation. The
logics µTL and µTL(U) also have uniform interpolation.

Section 4.5 completes the picture by showing that µTL and µTL(U) are the
least extensions of LTL(F) and LTL(F<), respectively, with Craig interpolation.

4.2. Preliminaries 83

4.2 Preliminaries

4.2.1 Abstract Temporal Languages

We will be dealing with a variety of temporal languages. They are all interpreted
in structures consisting of a set of worlds (or, time points), a binary relation
intuitively representing temporal precedence, and a valuation of proposition let-
ters. In this section, we give an abstract model-theoretic definition of temporal
languages (on the general topic of abstract model theory, we refer to [12]).

Let us recall that a flow of time, or frame, is a structure T = (W,<), where
W is a non-empty set of worlds and < is a binary relation on W . We will focus
here on Tω, the class of linear orders of order type ω, i.e., frames (D,<) that
are isomorphic to (N, <), where N is the set of natural numbers with the natural
ordering. We will also freely use ≤ to denote the reflexive closure of <.

By a propositional signature we mean a finite non-empty set of propositional
letters σ = {pi | i ∈ I}. A pointed σ-structure is a structure M = (T , V, w)
where T = (W,R) is a frame, V : σ → ℘(W) a valuation and w ∈ W a world.
The class of all pointed σ-structures is denoted by Str[σ] and we call them σ-
structures for short. Furthermore, for any class of frames T, StrT[σ] will denote
the class of σ-structures of which the underlying frame belongs to T. Let σ ⊆ τ
be propositional signatures. Given a τ -structure M = (T , V, w), we define its
σ-reduct M � σ as the σ-structure (T , V � σ,w) where V � σ is the restriction
of the valuation to the propositional letters in σ. We call M a τ -expansion of
M � σ. We also write K � σ for {M � σ |M ∈ K}. Let (T , V, w) be a σ-structure
and A ⊆ W a subset of its domain. By V [A/p], we will refer to the valuation V
extended with V (p) = A (p being a fresh proposition letter). We will refer to the
corresponding σ ∪ {p}-expansion of (T , V, w) by (T , V [A/p], w).

Definition 4.2.1 (Abstract temporal language). An abstract temporal language
(temporal language for short) is a pair L = (L, |=L), where L : σ 7→ L[σ] is a
map from propositional signatures to sets of objects that we call formulas and
|=L is a relation between formulas and pointed structures satisfying the following
conditions, for all propositional signatures σ, τ :

1. Expansion property. If σ ⊆ τ then L[σ] ⊆ L[τ]. Furthermore, for all
ϕ ∈ L[σ] and M ∈ Str[τ], M |=L ϕ iff M � σ |=L ϕ. If M ∈ Str[σ] and
M |=L ϕ, then ϕ ∈ L[σ].

2. Closure under uniform substitution. For all ψ ∈ L[σ], p /∈ σ and
ϕ ∈ L[σ ∪ {p}], there is a formula of L[σ], which we will denote by ϕ[p/ψ],
such that for every (T , V, w) ∈ Str[σ] the following holds:

(T , V, w) |=L ϕ[p/ψ] iff (T , V ′, w) |=L ϕ

where V ′ = V [{w | (T , V, w) |=L ψ}/p].

84 Chapter 4. Interpolation for Linear Temporal Languages

3. Negation property. For each ϕ ∈ L[σ] there is a formula of L[σ], which
we will denote by ¬ϕ, s.t. for all M ∈ Str[σ], M |=L ¬ϕ iff M 6|=L ϕ.

For any class of frames T, |=L,T will denote the restriction of |=L to pointed
structures based on T. For ϕ ∈ L[σ], we will use Modσ(ϕ) as shorthand for
{M ∈ Str[σ] | M |=L,T ϕ} and ModσT(ϕ) when restricting to a frame class T.
Whenever this is clear from the context, we will be omitting superscript and
subscripts in ModσT(ϕ) and |=L,T. We say that a class of pointed structures
K ⊆ StrT[σ] is definable in an abstract temporal language L (relative to the
frame class T) if there is a L-formula ϕ such that for every (T , V, w) ∈ StrT[σ],
(T , V, w) |= ϕ iff (T , V, w) ∈ K.

Definition 4.2.2 (Extension of a temporal language). Let L1 = (L1, |=L1), L2 =
(L2, |=L2) be temporal languages. L2 extends L1 (notation: L1 ⊆ L2) if for all σ,
for all ϕ ∈ L1[σ], there exists ϕ∗ ∈ L2[σ] such that Modσ(ϕ) = Modσ(ϕ∗). Also,
whenever L1 ⊆ L2, we say that L1 is a fragment of L2. Whenever restricting
attention to a frame class T we write L1 ⊆T L2.

The following notion is related to existential second-order quantification over
propositional letters. Allowing such a form of quantification in a given tempo-
ral language indeed amounts to considering its projective classes. It is a clas-
sical notion in abstract modal theory and it will be useful in the context of
∆-interpolation (see Definition 4.5.2).

Definition 4.2.3 (Projective class). Let σ be a propositional signature, T a frame
class and let K ⊆ StrT[σ]. Then K is a projective class of a temporal language
L relative to T if there is a ϕ ∈ L[τ] with τ ⊇ σ a propositional signature, such
that K = Mod(ϕ) � σ.

Lemma 4.2.4. Let T be a frame class. If L1 ⊆T L2, then every projective class
of L1 relative to T is also a projective class of L2 relative to T.

Proof. Let K be a projective class of L1 relative to a frame class T. So there is
ϕ ∈ L1[τ] with τ ⊆ σ a propositional signature, such that K = ModτL,T(ϕ) � σ.
As L1 ⊆ L2, there is also ϕ∗ ∈ L2[τ] such that ModτL1

(ϕ) = ModτL2
(ϕ∗). It follows

that K = ModτL2
(ϕ∗) � σ.

Definition 4.2.5 (Entailment). Let L be a temporal language, σ a propositional
signature, T a frame class and ϕ, ψ ∈ L[σ]. We say that ϕ entails ψ in L over T
and write ϕ |=L,T ψ if for any (T , V, w) ∈ StrT[σ], whenever (T , V, w) |=L,T ϕ,
then also (T , V, w) |=L,T ψ.

4.2.2 Propositional Linear Temporal Logic

Recall that Tω denotes the linear orders of order type ω. We now recall the
syntax and semantics of LTL, following the terminology of [59].

4.2. Preliminaries 85

Definition 4.2.6 (LTL). Let σ be a propositional signature. The set of formulas
LTL[σ] is defined inductively, as follows:

ϕ, ψ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ϕ ∨ ψ | Xϕ | Fϕ | F<ϕ | ϕUψ

where At ∈ σ. We use G and G< as shorthand for respectively ¬F¬ and ¬F<¬.
The relation |=LTL between LTL-formulas and structures (T , V, w) is defined as
follows (we only list the clauses of the temporal operators, the others are as in
the case of classical propositional logic):

• (T , V, w) |=LTL Xϕ iff there exists w′ such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL Fϕ iff there exists w′ such that w ≤ w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL F
<ϕ iff there exists w′ such that w < w′ and (T , V, w′) |= ϕ

• (T , V, w) |=LTL ϕUψ iff there exists w′ such that w ≤ w′, (T , V, w′) |= ψ and
for all w′′ such that w ≤ w′′ < w′, (T , V, w′′) |= ϕ

While the above definition in principle applies to arbitrary pointed structures,
the intended semantics will be, of course, in terms of structures based on frames
in Tω, and in what follows we will always restrict attention to such frames.

We define fragments LTL(O) of LTL by allowing in their syntax only a subset
O ⊆ {X,F<,F,U} of temporal operators. Note that LTL(U,X) has the same
expressive power as LTL, because Fϕ can be defined as >Uϕ and F<ϕ as X(>Uϕ).
The same holds of LTL(F<,X) and LTL(F<,X,F), as Fϕ can be defined as ϕ∨F<ϕ.
Nevertheless, it is known (see [93]), that ϕUψ can be defined neither in LTL(F)
nor in LTL(F<,X). Also Xϕ and F<ϕ can be defined neither in LTL(U) nor in
LTL(F) (we will see why later on in this chapter, once we introduce the notion of
stutter-invariance).

4.2.3 Linear Time µ-Calculus

A way of increasing the expressive power of temporal languages is to add a fixed-
point operator. On arbitrary structures, adding to LTL the least fixed-point
operator µ gives the µ-calculus (see for instance [46]). Here, the class of intended
structures for µ-calculus is restricted to those based on Tw and the resulting
restricted temporal language is called µTL (see for instance [92]). We also recall
here its syntax and semantics.

Definition 4.2.7 (µTL). Let σ be a propositional signature and V = {x1, x2, . . .}
a disjoint countably infinite stock of propositional variables. We define µTL[σ] as
the set of all formulas without free variables that are generated by the following
inductive definition:

ϕ, ψ, ξ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | Fϕ | F<ϕ | ϕUψ | µxi.ξ

86 Chapter 4. Interpolation for Linear Temporal Languages

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within
the scope of an even number of negations). We will use ϕ → ψ as shorthand in
the usual way and νxi.ϕ(xi) as shorthand for ¬µxi.¬ϕ(¬xi). The relation |=µTL is
defined between µTL-formulas and pointed structures (T , V, w) where T ∈ Tω. In
order to define it inductively, we use an auxiliary assignment to interpret formulas
with free variables. The assignment g maps each free variable of ϕ to a set of
worlds. We let g[x 7→ A] be the assignment which differ from g only by assigning
A to x and we only recall:

• (T , V, w) |=µTL xi [g] iff w ∈ g(xi)

• (T , V, w) |=µTL µx.ϕ [g] iff ∀A ⊆ W , if {v | (T , V, v) |=µTL ϕ [g[x 7→ A]]} ⊆
A, then w ∈ A

It is easy to see that, for formulas without free variables, the assignment
is irrelevant, and therefore |=µTL defines a binary relation between (the set of
sentences of) µTL and pointed structures. In this way, µTL is an abstract modal
language in the sense of Definition 4.2.1.

As before, we define a fragment µTL(O) for each O ⊆ {X,F<,F,U}. µTL(X)
already as the full expressive power of TL, since ϕUψ can be defined by µy.(ψ ∨
(ϕ ∧ Xy)), F<ϕ by µy.(Xϕ ∨ Xy) and Fϕ by µy.(ϕ ∨ Xy). Another fragment of
particular interest will be µTL(U). In µTL(U), we can still define Fϕ in the usual
way by >Uϕ, but we will see that Xϕ and F<ϕ are not definable.

4.3 Projective Definability versus Definability

with Fixed-Points

In this section, we discuss two results that relate projective definability in lan-
guages without fixed-point operators to explicit definability in the corresponding
language with fixed-point operators. Along the way, we also show that µTL(U)
is the stutter-invariant fragment of µTL. These results will be put to use in
Section 4.4 and 4.5.

We first state a general result relating projective definability in LTL and de-
finability in µTL. It will be convenient to consider also definability in MSO and
definability by a Büchi automaton (for background on Büchi-automata and on
MSO, we refer to Chapter 2). In order to be fully precise, we first provide the
following definition:

Definition 4.3.1. Let σ = {p1, . . . , pn} be a propositional signature. We define
Σ = ℘(σ) as the corresponding alphabet over ω-words and σFO = {<,P1, . . . , Pn}
as the corresponding FO signature over Tω. Now let T = (D,<) ∈ Tfin with
D = {w0, w1, . . .} and wi < wi+1 for all i ≥ 0. Given a σ-structure (T , V, wj), we
define the corresponding ω-word (T , V)wj in signature Σ and the corresponding
relational structure (T , V)

wj
FO in signature σFO in the following way:

4.3. Projective Definability versus Definability with Fixed-Points 87

• let wVi = {p ∈ σ | wi ∈ V (p)}, we define (T , V)wj as the word wVj w
V
j+1 . . .

(i.e., wVj is the first letter of the word and for every i ≥ j, wVi+1 is the letter
immediately following wVi)

• (T , V)
wj
FO is the relational structure (Dwj , <wj , P

wj
1 , . . . , P

wj
n) in signature

σFO with

– a domain Dwj = {wi ∈ D | i ≥ j}
– a binary relation <wj=<� {wi ∈ D | i ≥ j} (i.e., <wj is the restriction

of the relation < to the points in D that are greater or equal in < to
wj)

– for every l ≥ 1, a unary relation P
wj
l = {wi | wi ∈ V (pl) and i ≥ j}

Now we can state the general result we are interested in.

Theorem 4.3.2. Let σ be a propositional signature. For any K ⊆ StrTω [σ], the
following are equivalent:

1. there is an MSO sentence ϕ in signature σFO such that

K = {(T , V, w) | (T , V)wFO |=MSO ϕ}

2. there is a Büchi automata A over the alphabet ℘(σ) such that

K = {(T , V, w) | (T , V)w is accepted by A}

3. K is a projective class of LTL(F<,X) relative to Tω

4. there is a µTL sentence ϕ such that

K = {(T , V, w) | (T , V, w) |=µTL ϕ}

Proof.

1⇒ 2 This is a known result (see [127]).

2⇒ 3 Let A = (Q,Σ = ℘(P1, . . . , Pm),∆, q0, Acc) be a Büchi automaton. As-
sume Q = {q0, . . . , qk} and let r1, . . . , rk be pairwise distinct propositional
letters not in σ. We will construct a LTL(F<,X)-formula which holds in a
σ ∪ {r0, . . . , rk}-structure (T , V, w) (with T ∈ Tω) if and only if (T , V �
σ)w is accepted by A. Given an ω-word (T , V � σ)w ∈ L(A) of the
form α(0)α(1) . . ., the sentence will state the existence of a successful run
ρ(0), ρ(1), . . . of A, i.e., with ρ(0) = q0 (ρ(i), α(i), ρ(i + 1)) ∈ ∆ for i ≥ 0,
and Inf(ρ) ∩ F = ∅. We introduced new propositional letters because we
can code such a state sequence by a tuple of propositional letters (r0, . . . , rk)

88 Chapter 4. Interpolation for Linear Temporal Languages

of pairwise disjoint subsets of {0, 1, . . .} such that ri contains those positions
of α(0)α(1) . . . where state qi is assumed. The automaton should be able
to reach a final state infinitely often. For every α ∈ ℘(P1, . . . , Pm) let α∗ be∧
pi∈α pi ∧

∧
pi /∈α ¬pi. Thus, A accepts the nonempty word (T , V � σ)≥w iff

(T , V, w) |= (r0 ∧
∧
i>0

¬ri)

(r0 contains the first position in w, i.e., r0 is true at the first node of w)

∧(
∧
i 6=j

¬F<(ri ∧ rj))

(all other ri positions are pairwise different, i.e., if ri contains a position in
w, then if i 6= j, rj does not contain this position)

∧(G<
∨

(qi,α,qj)∈∆

(ri ∧ α∗ ∧ Xrj))

(the next position is consistent with ∆)

∧
∨
qj∈F

G<F<rj

(some state in F occurs infinitely often)

3⇒ 1 Let K be projectively definable relative to Tω by a LTL(F<,X)-formula ϕ
in an extension σ′ of σ. Construct the standard translation of ϕ (this is a
FO formula in signature σ′, see Chapter 2) and call it ϕ∗. Now consider
p1, . . . , pn ∈ σ′\σ and replace uniformly in ϕ∗ the corresponding FO pred-
icates P1, . . . , Pn ∈ σ′FO\σFO by set variables X1, . . . , Xn. We obtain the
formula ϕ∗[X1/P1, . . . , Xn/Pn] that we can now prefix with existential set
quantifiers over X1, . . . , Xn. The obtained formula

∃X1 . . . ∃Xnϕ
∗[X1/P1, . . . , Xn/Pn]

is in signature σFO and has the desired property.

4⇔ 1 This is a known result (see [111] and [5]).

Below, we will show a similar theorem linking projective definability in LTL(U)
(which was shown in [116, 61] to be the stutter-invariant fragment of LTL) to
definability in µTL(U), which we show here to be the stutter-invariant fragment of
linear time µ-calculus. Before stating this second result, we first define stuttering.

4.3. Projective Definability versus Definability with Fixed-Points 89

Intuitively, a stuttering of a linearly ordered structure M is a structure obtained
from M by replacing each world by a non-empty finite sequence of worlds, all
satisfying the same proposition letters.

Definition 4.3.3 (Stuttering). Let σ be a propositional signature and M =
((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω [σ]. We say that M′ is a stut-
tering of M if and only if there is a surjective function s : W ′ → W such that

1. s(w′) = w

2. for every wi, wj ∈ W ′, wi < wj implies s(wi) ≤ s(wj)

3. for every wi ∈ W ′ and p ∈ σ,wi ∈ V ′(p) iff s(wi) ∈ V (p)

Some notation will be useful later on. For any w ∈ W , we let s−1(w) = {w′ ∈
W ′ | s(w′) = w}. We also extend s and s−1 to subsets of W ′ in the following
way: for any A′ ⊆ W ′, A ∈ W , we let s(A′) = {s(v′) | v′ ∈ A′} and s−1(A) =⋃
v∈A s

−1(v).

Lemma 4.3.4. Let M = ((W,<), V, w), M′ = ((W ′, <), V ′, w′) be in StrTω [σ]
and M′ be a stuttering of M, then the following hold:

1. ∀v′ ∈ W ′,∀A′ ⊆ W ′ such that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′:

((W ′, <), V ′[A′/p], v′) is a stuttering of ((W,<), V [s(A′)/p], s(v′))

2. ∀v ∈ W,∀A ⊆ W,∀v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) is a stuttering of ((W,<), V [A/p], v)

Definition 4.3.5 (Stutter-Invariant Class of Pointed Structures). Let σ be a
propositional signature and K ⊆ StrTω [σ]. Then K is a stutter-invariant class
relative to Tω iff for every M ⊆ StrTω [σ] and for every stuttering M′ of M,
M ∈ K⇔M′ ∈ K.

Definition 4.3.6 (Stutter-free Pointed Structure). We say that a pointed struc-
ture M is stutter-free whenever for all M′ such that M is a stuttering of M′, M′

is isomorphic to M.

Only stutter-invariant classes of structures in StrTω [σ] are definable in LTL(U)
and µTL(U). This is known for LTL(U) (see [61, 116]), but it also holds for µTL(U).

Proposition 4.3.7. Let σ be a propositional signature. For every µTL(U)-sentence
ϕ in signature σ, Mod(ϕ) is stutter-invariant.

90 Chapter 4. Interpolation for Linear Temporal Languages

Proof. By induction on the sentence complexity. For the sake of the induction,
we can use expanded σ-structures as in classical model theory. Hence we consider
two base cases, one for propositional letters and one for propositional variables.
The propositional letter case is clear. We handle the propositional variable case
xi similarly, except that we use σ-models expanded with the value of xi (i.e.,
models considered together with a partial auxiliary valuation, so that xi can be
seen as a sentence). The induction hypothesis says that for any propositional
signature σ and µTL(U)-sentence ϕ of complexity n in signature σ, Mod(ϕ) is a
stutter-invariant invariant class. Now consider the case were ϕ is of complexity
n + 1. We handle the Boolean connectives and the U operator as in the LTL(U)
case. For the U case, suppose ϕ :≈ ψUξ. We want to show that for every
M = ((<,W), V, w) ⊆ StrT[σ] and for every stuttering M′ = ((<,W ′), V ′, w′) of
M:

M ∈ModσµLTL(U),T(ψUξ)⇔M′ ∈ModσµLTL(U),T(ψUξ)

⇒ Suppose ((W,<), V, w) |= ψUξ, i.e., there exists wi such that w = wi or w <
wi, ((W,<), V, wi) |= ξ and for all wj such that w < wj < wi, (T , V, wj) |=
ψ. Let wi be the first point such that (T , V, wi) |= ξ, then all points wj
before it are such that (T , V, wj) |= ψ. It follows from the definition of
stuttering that the minimal point s ∈ s−1(wj) is the first point such that
(T , V, s) |= ξ and all points s′ ∈ s−1(wj) (with wj before wi) are such that
(T , V, s′) |= ψ, i.e., ((W ′, <), V ′, w′) |= ψUξ.

⇐ The reasoning is similar.

Now for the fixed-point case, suppose ϕ :≈ µx.ψ(x). We want to show that for
every M ⊆ StrT[σ] and for every stuttering M′ of M:

M = ((<,W), V, w) ∈Mod(µx.ψ(x))⇔M′ = ((<,W ′), V ′, w′) ∈Mod(µx.ψ(x))

For the left to right direction, suppose ((W,<), V, w) |= µx.ψ(x), i.e., ∀A ⊆ W ,
if {v | ((W,<), V [A/p], v) |= ψ(p)} ⊆ A, then w ∈ A. Consider A′ ⊆ W ′

such that {v | ((W ′, <), V ′[A′/p], v) |= ψ(p)} ⊆ A′. We want to show that
w′ ∈ A′. Let us first show that v′ ∈ A′ implies s−1(s(v′)) ⊆ A′. For every
v′ ∈ A′, we have that ((W ′, <), V ′[A′/p], v′) |= ψ(p). Now by induction hypothesis
for any v ∈ s−1(s(v′)), ((W ′, <), V ′[A′/p], v) |= ψ(p) and by hypothesis on A′,
v ∈ A′. It follows from this property of A′ that M′ being a stuttering of M,
by Lemma 4.3.4 for any v′ ∈ W ′, ((<,W ′), V ′[A′/p], v′) is also a stuttering of
((<,W), V [s(A′)/p], s(v′)) and by induction hypothesis:

((W ′, <), V ′[A′/p], v′) |= ψ(p) iff ((<,W), V [s(A′)/p], s(v′)) |= ψ(p)

Hence {v | ((W,<), V [s(A′)/p], v) |= ψ(p)} ⊆ s(A′). But M |= µx.ψ(x). It
follows that w ∈ S(A′), so s(w) ∈ A′, i.e., w′ ∈ A′.

4.3. Projective Definability versus Definability with Fixed-Points 91

Now for the right to left direction, suppose ((W ′, <), V ′, w′) |= µx.ψ(x), i.e.,
∀A′ ⊆ W ′, if {v | (W ′, <), V ′[A′/p], v |= ψ(p)} ⊆ A′, then w′ ∈ A′. Consider
A ⊆ W such that {v | (W,<), V [A/p], v |= ψ(p)} ⊆ A. We want to show
that w ∈ A. M′ being a stuttering of M, by Lemma 4.3.4, for any v ∈ W ,
v′ ∈ s−1(v), ((<,W ′), V ′[s−1(A)/p], v′) is also a stuttering of ((<,W), V [A/p], v)
and by induction hypothesis, for any v ∈ W, v′ ∈ s−1(v):

((W ′, <), V ′[s−1(A)/p], v′) |= ψ(p) iff ((W,<), V [A/p], v) |= ψ(p)

Hence {v | ((W ′, <), V ′[s−1(A)/p], v) |= ψ(p)} ⊆ s−1(A). But M′ |= µx.ψ(x). It
follows that w′ ∈ s−1(A), so s−1(w′) ⊆ A, i.e., w ∈ A.

Corollary 4.3.8. Let K ⊆ StrTω [σ] be stutter-invariant and let ϕ ∈ µTL(U)[σ]
be a sentence such that for each stutter-free M ∈ StrTω [σ], M |= ϕ if and only if
M ∈ K. Then ϕ defines K.

We now show that (over Tω) µTL(U) is the stutter-invariant fragment of µTL.
The proof is a variant of [116], where Peled and Wilke show that stutter-invariant
LTL properties are expressible without X. We give it in detail, as the construction
procedure below will be useful again later on in the chapter.

Lemma 4.3.9. Let σ be a modal vocabulary. For every µTL sentence ϕ in vo-
cabulary σ, there exists a µTL(U) sentence ϕ∗ in vocabulary σ that agrees with ϕ
on all stutter-free σ-structures over Tω:

M |= ϕ↔ ϕ∗ for all stutter free pointed structures M ∈ StrTω [σ]

Proof. Assume σ = {p0, . . . , pn−1}. The proof goes by induction on the structure
of ϕ. For convenience, we use expanded structures. The base case is clear: p∗ = p
for any propositional variable or letter p. Now as regards the induction step, we
can set (¬ψ)∗ = ¬ψ∗, (ψ ∧ ξ)∗ = ψ∗ ∧ τ ∗, (ψUξ)∗ = ψ∗Uξ∗, (µx.ψ)∗ = µx.ψ∗. If
ϕ is of the form Xψ, we let B be the set of all possible valuations σ → {⊥,>},
and for each g ∈ B, we let βg be the formula α0 ∧ . . . ∧ αn−1 where αj = pj if
g(pj) = > and αj = ¬pj if g(pj) = ⊥. Now observe that if g, g′ ∈ B are such that
g 6= g′, then

M, w |= βg ∧ Xβg′ ↔ βgUβg′ for M ∈ StrT[σ] stutter-free

We have M, w |= Xψ if and only if every point in it satisfies the same set of
proposition letters and M, w |= ψ, or the valuation function does not send the
same set of proposition letters to w and to its immediate successor w′ and M, w′ |=
ϕ. Thus we can set:

(Xψ)∗ =
∨
g∈G

((Gβg ∧ ψ∗) ∨
∨
g 6=g′

(βg ∧ βgU(βg′ ∧ ψ∗)))

92 Chapter 4. Interpolation for Linear Temporal Languages

Theorem 4.3.10. Let ϕ ∈ µTL[σ] be a sentence such that Modσ(ϕ) is stutter-
invariant. Then there exists ϕ∗ ∈ µTL(U)[σ] such that Modσ(ϕ) = Modσ(ϕ∗).

Proof. Follows from Lemma 4.3.9 and Corollary 4.3.8.

Following [61], we now introduce a variant of the notion of projective class,
that we call harmonious projective class, which preserves stutter-invariance. Be-
fore we define it, we first introduce the notion of a harmonious expansion. For
any propositional signature σ and worlds w,w′, we write w ≡σ w′ if w and w′

satisfy the same propositions in σ.

Definition 4.3.11 (Harmonious expansion). Let σ ⊆ τ be propositional signa-
tures and M ∈ StrTω [τ]. We say that M is a harmonious expansion of M � σ
whenever ∀w,w′ ∈ W such that w′ is a direct successor of w, w ≡σ w′ implies
w ≡τ w′.

Definition 4.3.12 (Harmonious projective class). Let σ be a propositional sig-
nature and K ⊆ StrTω [σ]. Then K is a harmonious projective class of a temporal
language L relative to Tω whenever there is ϕ ∈ L[τ] with τ ⊇ σ such that for
all M ∈ StrTω [σ]: M ∈ K iff there is a harmonious τ -expansion M+ of M such
that M+ |= ϕ.

We will be using the following proposition in order to show Theorem 4.3.14.
It refers to the notion of ω-regular language (cf. [127], an ω-regular language
is a language of ω-words which is definable in MSO or, equivalently, which is
recognizable by a Büchi automata). The proof of the proposition in [61] uses a
notion of stutter-invariant ω-automata.

Proposition 4.3.13 ([61]). On Tω, harmonious projective classes of LTL(U)
define exactly the stutter-invariant ω-regular languages.

Now we are able to show the following theorem:

Theorem 4.3.14. Let σ be a propositional signature. For any K ⊆ StrT[σ], the
following are equivalent:

1. K is a harmonious projective class of LTL(U) relative to Tω

2. K is definable by a µTL(U)-sentence ϕ relative to Tω

Proof. Follows from Theorem 4.3.2 and Proposition 4.3.13, because by [61, 116],
LTL(U) is the stutter-invariant fragment of LTL and by Theorem 5.2.9, µTL(U)
is the stutter-invariant fragment of µTL.

4.4. Temporal Languages with Craig Interpolation 93

4.4 Temporal Languages with Craig Interpola-

tion

In this section, we show that three of the temporal languages previously discussed
have Craig interpolation.

Definition 4.4.1 (Craig interpolation property). Let L be a temporal language
and T a frame class. Then L has the Craig interpolation property over T when-
ever the following holds. Let ϕ ∈ L[σ], ψ ∈ L[σ′]. Whenever ϕ |=L,T ψ, then
there exists θ ∈ L[σ ∩ σ′] such that ϕ |=L,T θ and θ |=L,T ψ.

They even satisfy a stronger form of interpolation called uniform interpolation.
Intuitively if a temporal language has uniform interpolation, it means that the
interpolant can be constructed so that it depends only on the signature of the
antecedent and its intersection with the signature of the consequent.

Definition 4.4.2 (Uniform Interpolation). Let L be a temporal language and
T a frame class. L has the uniform interpolation property over T if, for all
signatures σ ⊆ τ and for each formula ϕ ∈ L[τ] there is a formula θ ∈ L[σ] such
that ϕ |=L θ and for each formula ψ ∈ L[τ ′] with τ ∩ τ ′ ⊆ σ, if ϕ |=L ψ then
θ |=L ψ.

Theorem 4.4.3. µTL has uniform interpolation over Tω.

Proof. MSO has uniform interpolation (for monadic predicates) on any class of
structures (so in particular on Tω) because it has set quantifiers (see [45]). By
[111, 5], µTL is expressively complete for MSO. Hence µTL uniform interpolants
can always be obtained via translation into MSO and back.

Theorem 4.4.4. µTL(U) has uniform interpolation over Tω.

Proof. Let σ ⊆ τ be modal signatures and let ϕ ∈ µTL(U)[τ]. By Theorem 4.4.3,
there exists θ ∈ µTL[σ] such that ϕ |= θ and for each formula ψ ∈ µTL[τ ′] with
τ ∩τ ′ ⊆ σ, if ϕ |= ψ, then θ |= ψ. Now let θ∗ ∈ µTL(U) be the formula that agrees
with θ on all stutter-free structures based on Tω (by Lemma 4.3.9, such a formula
exists). We want to show that ϕ |= θ∗ and that for each formula ψ ∈ µTL(U)[τ ′]
with τ ∩ τ ′ ⊆ σ, if ϕ |= ψ, then θ∗ |= ψ. Let SMod(ϕ) denote the set of stutter
free structures in Mod(ϕ). As Mod(ϕ) ⊆ Mod(θ), SMod(ϕ) ⊆ SMod(θ). Now
by construction of θ∗ also SMod(ϕ) ⊆ SMod(θ∗). Mod(ϕ) and Mod(θ∗) are both
stutter-invariant classes. It follows from Corollary 4.3.8 that the closure under
stuttering of SMod(ϕ) is included in the closure under stuttering of SMod(θ∗),
i.e., Mod(ϕ) ⊆Mod(θ∗), i.e., ϕ |= θ∗. The argument for θ∗ |= ψ is similar.

Theorem 4.4.5. LTL(X) has uniform interpolation over Tω.

94 Chapter 4. Interpolation for Linear Temporal Languages

Proof. We will show something much stronger, namely that every projective class
of LTL(X) is definable by a LTL(X)-formula.
Let ϕ ∈ LTL(X)[σ ∪ τ] with τ = {p1, . . . , pl}. We will show how to construct a
formula ψ ∈ LTL(X)[σ] that defines the class of σ-reducts of models of ϕ.
We first show that for every σ ∪ τ -pointed structure M, w, there exists ϕS ∈
LTL(X)[σ] such that M, w |= ϕ if and only if M � σ |= ϕS and for every σ-
pointed structure N, v, N, v |= ϕS implies that there exists a σ ∪ τ -expansion
N+ of N such that N+, v |= ϕ. Let md(ϕ) = n be the modal depth of ϕ, i.e.,
the maximal nesting depth of X-operators in ϕ. Intuitively, ϕ can only talk
about the first n worlds in the pointed structure (starting from the designated
world w). For each pi, we can represent the valuation of pi in M at these n
first worlds by a set Si ⊆ {0, . . . , n}, where k ∈ Si represents that pi is true
at the k-th world starting from w. We denote by S = (S1, . . . , Sl) the ordered
sequence of all the Si. Now we define ϕS as follows: we replace each occurrence
of pi in ϕ that is in the scope of k ≤ n X-operators by > if k ∈ Si and ⊥
otherwise. We can now show by induction on md(ϕ) that for every σ ∪ τ -pointed
structure M, w, M, w |= ϕ iff M � σ,w |= ϕS and for every σ-pointed structure
N, v, N, v |= ϕS implies that there exists a σ ∪ τ -expansion N+ of N such that
N+, v |= ϕ. Whenever md(ϕ) = 0, then we are just in the propositional case
and the property immediately follows. Now assume the property holds for all
formulas ψ with md(ψ) = n and consider ϕ with md(ϕ) = n+ 1. ϕ is equivalent
to a Boolean combination of formulas which are either of modal depth ≤ n (and to
which the inductive hypothesis applies directly), or which are of the form Xξ with
md(ξ) = n. Let w′ be the first successor of w. For every such ξ, by induction
hypothesis M, w′ |= ξ iff M � σ,w′ |= ξS

′
and for every σ-pointed structure

N, v, N, v |= ξS
′

implies that there exists a σ ∪ τ -expansion N+ of N such that
N+, v |= ξ, where S ′ encodes the valuation of the proposition letters in τ at each
of the n first states starting from w′. By the semantics of the X-operator, it follows
that M, w |= Xξ iff M � σ,w |= X(ξS

′
). Also, assuming there is a state v′ in N

which is the immediate predecessor of v, N, v′ |= XξS
′

implies that there exists
a σ ∪ τ -expansion N+ of N such that N+, v′ |= Xξ. Now it is enough to remark
that X(ξS

′
) and (Xξ)S denote one and the same formula. Hence M, w |= Xξ iff

M � σ,w |= XξS and N, v′ |= XξS
′

iff N, v′ |= XξS. So the property also follows
for ϕ.
Finally, the number of proposition variables in τ being finite, we can quantify over
the finite number of all such possible valuations S and we let ψ =

∨
S ϕ

S. Assume
ψ holds in a pointed σ-structure M, w. Then for some S there is ϕS such that
M, w |= ϕS, i.e., M+, w |= ϕ where M+ is a σ∪ τ -expansion of M, w in which the
valuation of the pi’s is as described by S. Now assume M, w has a σ∪τ -expansion
satisfying ϕ. Then the valuation of the pi’s in the first n worlds after w can be
represented by some S and M, w |= ϕS, which yields M, w |= ψ. This means that
ψ holds in a pointed σ-structure M, w iff M, w has a σ ∪ τ -expansion satisfying
ϕ , i.e., ψ defines the class of σ-reducts of models of ϕ.

4.5. Interpolation Closure Results for Temporal Languages 95

4.5 Interpolation Closure Results for Temporal

Languages

In this section, we look at the fragments of LTL that do not have Craig interpo-
lation, and we address the question how much expressive power must be added
in order to regain interpolation. We will phrase our main results in terms of
the notion of interpolation closure, which we define by taking inspiration from
abstract model theory (see [12]):

Definition 4.5.1 (Interpolation Closure). Let T be a frame class. L2 is the in-
terpolation closure of L1 over T if L1 ⊆T L2, L2 has interpolation over T, and for
every abstract temporal language L3, if L1 ⊆ L3 and L3 has Craig interpolation
on T, then L2 ⊆T L3.

4.5.1 The Interpolation Closure of LTL(F<)

A useful tool (see [12]) for proving interpolation closure results is the following
lemma:

Definition 4.5.2 (∆-interpolation property). Let L be a temporal language and
T a frame class. Then L has the ∆-interpolation property over T whenever the
following holds: let σ be a propositional signature and K ⊆ StrT[σ], if both K
and K̄ are projective classes of L relative to T, there is a L-formula ϕ such that
K = ModσT(ϕ).

Lemma 4.5.3. Let L be a temporal language with Craig interpolation on Tω.
Then L has ∆-interpolation over Tω.

Lemma 4.5.4 (∆-interpolation follows from Craig interpolation). Let L be a
temporal language with Craig interpolation on some frame class T. Then L has
∆-interpolation over T.

Proof. Let K ⊆ StrT[σ] such that both K and StrT[σ]\K are projective classes
of L relative to T. We want to show that there is a ξ ∈ L[σ] such that K =
ModL,T(ξ).

Since K and StrT[σ]\K are projective classes, there are formulas ϕ ∈ L[σ ∪
τ] such that K = ModL,T(ϕ) � σ and ψ ∈ L[σ ∪ τ ′] such that StrF[σ]\K =
ModL,T(ψ) � σ. It follows that ϕ |=L,T ¬ψ. Without loss of generality, we can
assume that τ and τ ′ are disjoint. Indeed, suppose τ∩τ ′ = p (we consider only the
case where τ ∩ τ ′ contains one single propositional letter, as the other cases only
generalize this simpler one). Now, let q be a fresh propositional letter. By closure
under uniform substitution of L, for every T ∈ T and (T , V, w) ∈ StrT[σ∪ τ] the
following holds:

(T , V, w) |= ϕ[q/p] iff (T , V ′, w) |= ϕ

96 Chapter 4. Interpolation for Linear Temporal Languages

where V ′ extends V with V (q) = V (p). Hence K = ModL,T(ϕ) � σ and so
K = ModL,T(ϕ[q/p]) � σ and the intersection of the signatures of ϕ[q/p] and ψ
does not contain any propositional letter not in σ.

Since L has interpolation, there must be a θ ∈ L[σ] such that ϕ |=L,T θ and
θ |=L,T ¬ψ. As a last step, we will show that ModL,T(θ) = K.

Suppose M ∈ K. Then M = N � σ for some N ∈ModL,T(ϕ). Since ϕ |=L,T θ,
it follows that N |= θ. By the expansion property, M |= θ. Conversely, suppose
M /∈ K. Then M = N � σ for some N ∈ModL,T(ψ). Since θ |=L,T ¬ψ, it follows
that N 6|= θ. By the expansion property, M 6|= θ.

The proof of Lemma 4.5.3 given below is similar to the one given in [39] (we
only need to remark that the substitution property assumed here of abstract
temporal languages is stronger than the renaming property assumed in [39] of
abstract modal languages).

Now we will show that LTL(F<,X) is contained in the interpolation closure of
LTL(F<) over Tω. As an intermediate step, we show that in every extension of
LTL(F<) having Craig interpolation, the property Xp is “definable”. By this, we
mean the following:

Lemma 4.5.5. Let L be an extension of LTL(F<) with Craig-interpolation over
Tω. Then there is ξ ∈ L[{p}] such that Mod(ξ) = Mod(Xp).

Proof. Let q, r be new distinct propositional letters. Consider the two following
projective classes of LTL(F<): Mod(F<(p∧q)∧¬F<F<q) � {p} and Mod((F<(¬p∧
r)∧¬F<F<r)∨G<⊥) � {p}. As LTL(F<) ⊆ L, these two classes are also projective
classes of L (by Lemma 4.2.4). They also complement each other, as a {p}-
structure belongs to the first class exactly when the first node of this structure
has a successor node where p holds and it belongs to the second class in all other
cases. By ∆-interpolation for L on T, it follows that the first class is definable
in L by means of some formula ξ in signature {p}, i.e., there is ξ ∈ L[{p}] such
that Mod(Xp) = Mod(ξ).

Theorem 4.5.6. Every extension of LTL(F<) with Craig interpolation over Tω

is an extension of LTL(F<,X) over Tω.

Proof. Let L be an extension of LTL(F<) with Craig interpolation over Tω and σ
a propositional signature. We show by induction on the complexity of ϕ (number
of Boolean and temporal operators in ϕ) that for all ϕ ∈ LTL(F<,X)[σ], there
exists ϕ′ ∈ L[σ] such that Mod(ϕ) = Mod(ϕ′). The base case is clear. The
induction hypothesis says that for all σ, for all ϕ ∈ LTL(F<,X)[σ] of complexity
at most n, there exists ϕ′ ∈ L[σ] such that Mod(ϕ) = Mod(ϕ′). Now let ϕ be of
complexity n+1. If ϕ := Xψ, by induction hypothesis there exists ψ′ ∈ L[σ] such
that Mod(ψ) = Mod(ψ′). Pick any p /∈ σ. By Lemma 4.5.5 and the expansion
property we know:

4.5. Interpolation Closure Results for Temporal Languages 97

1. There is ξ ∈ L[σ ∪ {p}] such that Mod(Xp) = Mod(ξ).

We will define ϕ′ as ξ[p/ψ′] ∈ L[σ] (by closure under uniform substitution of L,
such a formula exists). We need to show that Mod(Xψ) = Mod(ξ[p/ψ′]). From
1 we can derive as a particular case:

2. For any (T , V, w) ∈ StrT[σ ∪ {p}] where V (p) = {wi | (F, V, wi) |= ψ′},
(T , V, w) |= ξ iff there exists w′ ∈ D such that w < w′, there is no w′′ such
that w < w′′ < w′ and (T , V, w′) |= p.

Now by closure under uniform substitution of L, 2 is equivalent to the following:

3. For any (T , V, w) ∈ StrT[σ], (F, V, w) |= ξ[p/ψ′] iff there exists w′ ∈ D such
that w < w′, there is no w′′ such that w < w′′ < w′ and (F, V, w′) |= p[p/ψ′].

Finally, ψ′ and p[p/ψ′] holding exactly in the same models, we can replace p[p/ψ′]
by ψ′ in the second member of the equivalence in 3. It follows that Mod(Xψ) =
Mod(ξ[p/ψ′]). We can use similar arguments for the operator F< and for Boolean
connectives.

By putting Lemma 4.5.3 to use, we now improve Theorem 4.5.6 and identify
the interpolation closure of LTL(F<).

Theorem 4.5.7. µTL is the interpolation closure of LTL(F<,X) over Tω.

Proof. Let σ be a propositional signature. Now let K ⊆ StrTω [σ] be definable by
a µTL-sentence ϕ in signature σ. As µTL is closed under negation, there is a µTL-
sentence ¬ϕ in signature σ, which defines the complement of K over StrTω [σ]. It
follows by Theorem 4.3.2 that both K and its complement are projective classes
of LTL(F<,X). Now consider a temporal language L ⊇ LTL(F<,X) with Craig
interpolation over Tω. By Lemma 4.2.4, K and its complement are also projective
classes of L and by Lemma 4.5.3, it follows that K is definable in L.

4.5.2 The Interpolation Closure of LTL(F)

For the case of the stutter-invariant languages LTL(F) and LTL(U), we need to
refine the notion of ∆-interpolation, by considering harmonious projective classes.

Definition 4.5.8 (Harmonious ∆-interpolation property). Let L be a temporal
language. Then L has the harmonious ∆-interpolation property over Tω whenever
the following holds. Let K be a class of L-structures based on Tω. If both K and
K̄ are harmonious projective classes of L relative to Tω, there is a L-formula ϕ
such that K = ModTω(ϕ).

Lemma 4.5.9. If L1 ⊆ L2, then every harmonious projective class of L1 is also
a harmonious projective class of L2.

98 Chapter 4. Interpolation for Linear Temporal Languages

Definition 4.5.10 (Harmonious temporal language). A temporal language L
is harmonious for Tω if the following holds. For every σ ⊆ τ propositional
signatures, there is a formula ϕ ∈ L[τ] such that for every M ∈ StrTω [τ], M |= ϕ
if and only if M is an harmonious expansion of M � σ.

Proposition 4.5.11. LTL(U) and its extensions are harmonious for Tω.

Proof. Fix σ ⊆ τ with |σ| = n, |τ\σ| = m. We can represent any valuation over
σ by a finite conjunction of atoms and negations of atoms. Let {σi | i ∈ 2n} be
the set of all such conjunctions. Also, for each σi, we define the corresponding set
{τ ij | j ∈ 2m} as the set of conjunctions representing all possible ways of extending
to τ the valuation represented by σi. Now for every M ∈ StrT[τ],

M |=
∧
i,j∈2n

(σiUσj →
∨

k,l∈2m

τ ikUτ
j
l)

if and and only if M is an harmonious expansion of M � σ, i.e., LTL(U) is har-
monious. It is immediate from definition 4.2.2 that every extension of a temporal
language which is harmonious for Tω is also harmonious for Tω.

Lemma 4.5.12. Let L be a temporal language which has Craig interpolation and
is harmonious for Tω. Then L has harmonious ∆-interpolation over Tω.

Proof. L being harmonious, we can use the formula ϕ in Definition 4.5.10 and
appeal for the proof of Lemma 4.5.12 to the same classical argument as for Lemma
4.5.3. Let K ⊆ Str[σ] such that both K and StrT[σ]\K are harmonious projective
classes of L relative to T. Then there is ϕ ∈ FmlL[τ] with τ ⊇ σ such that for
all M ∈ StrT[τ], M � σ ∈ K iff M |= ϕ and M is an harmonious expansion of
M � σ. Also there is ψ ∈ FmlL[τ ′] with τ ′ ⊇ σ such that for all M ∈ StrT[τ ′],
M � σ ∈ K iff M |= ψ and M is an harmonious expansion of M � σ. As L is
harmonious for T, it follows that there is ξ such that ϕ ∧ ξ |=L,T ¬(ψ ∧ ξ). The
remaining of the proof is as in Theorem 4.5.3.

Theorem 4.5.13. Every extension of LTL(F) with Craig interpolation over Tω

is an extension of LTL(U) over Tω.

Proof. The reasoning is similar as in the case of Lemma 4.5.6 and Theorem 4.5.6,
but we consider Mod(pUq) = Mod(G(Fr → r)∧F(q∧r)∧G((r∧¬q)→ p)) � {p, q}
and Mod(¬pUq) = Mod(Fq → (F(¬p ∧ r) ∧ G(Fr → ¬q))) � {p, q}.

Theorem 4.5.14. µTL(U) is the interpolation closure of LTL(U) over Tω.

Proof. Let σ be a modal signature. Now let K ⊆ StrTω [σ] be definable by a
µTL(U)-sentence ϕ in signature σ. As µTL(U) is closed under negation, there is a
µTL(U)-sentence ¬ϕ in signature σ, which defines the complement K̄ ⊆ StrTω [σ]
of K over StrTω [σ]. By Theorem 4.3.14, both K and K̄ are harmonious projective

4.6. Finite Linear Orders 99

classes of LTL(U). Now consider a temporal language L ⊇ LTL(U) with Craig
interpolation over T. By Lemma 4.5.9, K and K̄ are also harmonious projective
classes of L. By Proposition 4.5.11, L is harmonious and by Lemma 4.5.12, it
follows that K is definable in L, i.e., L ⊇ µTL(U).

4.6 Finite Linear Orders

We restricted our attention to the frame class Tω, but our results easily extend
to finite linear orders. Let Tfin be the class of frames (D,<) where D is a finite
set and < is a strict linear order on D. All the definitions and results that we
gave relative to Tω also apply to Tfin. An analogous of Theorem 4.3.2 for Tfin can
be obtained by considering automata on finite words. The proof of Proposition
4.3.13 can similarly be adapted by considering stutter-invariant automata on finite
words. In the proof of Lemma 4.3.9, we can define (Xψ)∗ as

∨
g 6=g′(βgU(βg′ ∧ψ∗))

(i.e., we keep only the second disjoint, as no finite stutter free linear order exhibits
two successor points satisfying the same set of proposition letters). The remaining
of our arguments do not need any further adjustment.

4.7 Conclusion

In this chapter, we studied the temporal fragments of linear time µ-calculus sat-
isfying Craig interpolation, showing essentially that there are only three distinct
such fragments: µTL itself, µTL(U), and LTL(X). These results reconfirm the ro-
bustness of (linear time) µ-calculus as compared to less expressive temporal logics.
They also allow to identify µTL(U) as a particularly well-behaved linear-time logic
which does not seem to have been studied before. In particular, complete axiom-
atizations were already known for µTL and LTL(X) (see Chapter 2), but this was
not the case for µTL(U). In the next Chapter, we will study this logic further by
providing such a complete axiomatization.

We are currently working on extending our interpolation results to other flows
of time such as finite trees, infinite trees, and infinite linear orders other than
the natural numbers (as in [34]). There are some important differences in these
settings. For example, it is known (see [3]) that the branching time temporal
logic with only Since and Until has Craig interpolation, while linear time fails to
have this property. Also there is still no definitive consensus on the appropriate
notion of stuttering for infinite branching time (see [81]). Finally, let us note that
whether Propositional Dynamic Logic PDL (see [26]), which can be defined as a
semantic fragment of the µ-calculus, satisfies some form of interpolation is still
an open problem. It would be worth trying to obtain at least partial results for
PDL on finite trees by using our methods.

Chapter 5

Complete Axiomatization
of the Stutter-Invariant Fragment of the
Linear Time µ-Calculus

5.1 Introduction

In the previous chapter, we encountered the phenomenon of stutter-invariance,
which is is a property that is argued by some authors (see [101]) to be natural
and desirable for a temporal logic, especially in the context of concurrent systems.
Let us recall that, roughly, a temporal logic is stutter-invariant if it cannot de-
tect the addition of identical copies of a state. The stutter-invariant fragment of
linear-time temporal logic LTL is known to be its “Until”-only fragment LTL(U)
and is obtained by disallowing the use of the “Next” operator (see [116]). It
has been extensively studied and it is widely used as a specification language.
Nevertheless, it has been pointed out (see in particular [61]) that LTL(U) fails to
characterize the class of stutter-invariant ω-regular languages. In order to extend
the expressive power of this framework, while retaining stutter-invariance, some
ways of extending it have been proposed. In [61], Kousha Etessami proposed
for instance the logic SI-QLTL, which extends LTL(U) by means of a certain re-
stricted type of quantification over proposition letters. He showed that SI-QLTL
characterizes exactly stutter-invariant ω-regular languages.

In this chapter, we will focus on µTL(U), which we defined as the fixpoint
extension of the “Until”-only fragment of linear-time temporal logic. In the pre-
vious chapter we showed that µTL(U) has exactly the same expressive power
as SI-QLTL, which implies that it also characterizes exactly stutter-invariant ω-
regular languages. We also showed that it satisfies uniform interpolation, which
is a sign that µTL(U) is a well-behaved logic. Additionally, it is known that
LTL(U) is PSPACE complete both for model checking and for satisfiability (c.f.
[53]). It is also know that µTL is PSPACE complete both for model checking and
for satisfiability (c.f. [130]). So PSPACE completeness follows for µTL(U) in both

101

102 Chapter 5. Complete Axiomatization of µTL(U)

cases. This is another argument in favor of µTL(U): while much more expressive
than LTL(U), it has the same complexity. Here we further contribute to the study
of the logical properties of µTL(U) by completely axiomatizing it over the class
of ω-words and over the class of finite words. We introduce for this end another
logic, which we call µTL(♦Γ), and which is a variation of µTL where the Next
time operator is replaced by the family of its stutter-invariant counterparts. We
use this logic as a technical tool to show completeness results for µTL(U).

Outline of the chapter: In Section 5.2, we recall basic facts and notions
about linear-time µ-calculus µTL. We also give a precise definition of the no-
tion of stutter-invariance and introduce µTL(U), the stutter-invariant fragment
of µTL. In Section 5.3, we introduce the logic µTL(♦Γ) and show that µTL(U)
and µTL(♦Γ) have exactly the same expressive power on finite and ω-words. In
section 5.4, we give axiomatizations of µTL(♦Γ) that we respectively show to be
complete on these two classes of structures. Finally, these results are put to use
in Section 5.5, where we show similar completeness results for µTL(U).

5.2 Preliminaries

In this section, we recall the syntax and semantics of linear time µ-calculus µTL.
We also recall its axiomatization on some interesting classes of linear orders, as
well as the notion of stutter-invariance.

5.2.1 Linear Time µ-Calculus

By a propositional vocabulary we mean a countable (possibly finite) non-empty
set of propositional letters σ = {pi | i ∈ I}.

Definition 5.2.1 (Syntax of µTL). Let σ be a propositional vocabulary and
V = {x1, x2, . . .} a disjoint countably infinite set of propositional variables. We
inductively define the set of µTL-formulas in vocabulary σ as follows:

ϕ, ψ, ξ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ♦ϕ | µxi.ξ

where At ∈ σ ∪ V and, in the last clause, xi occurs only positively in ξ (i.e.,
within the scope of an even number of negations). We will use ϕ → ψ, νxi.ξ,
2ϕ, ϕUψ, Fϕ as shorthand for, respectively, ¬(ϕ ∧ ¬ψ), ¬µxi.¬ξ(¬xi), ¬♦¬ϕ,
µy.(ψ ∨ (ϕ ∧ ♦y)) and µy.(ϕ ∨ ♦y). We will also use Gϕ as shorthand for ¬F¬ϕ.

A linear flow of time is a structure L = (W,<), where W is a non-empty set
of points and < is a linear order on W . A linear time σ-structure is a structure
M = (L, V) where L = (W,R) is a linear flow of time and V : σ → ℘(W)
a valuation. Whenever w ∈ W is a point, we call M, w a pointed σ-structure.
Linear time µ-calculus is usually considered over restricted classes of linear orders.
In this paper, we will only consider it over the following classes:

5.2. Preliminaries 103

• Lω, the class of linear orders of order type ω, i.e., flows of time (W,<) that
are isomorphic to (N, <), where N is the set of natural numbers with the
natural ordering,

• Lfin, the class of finite linear orders,

• the union Lω ∪ Lfin of these two classes

We will often refer to structures based on Lω as ω-words or Lω-structures, to
structures based on Lfin as finite words or Lfin-structures and more generally, to
structures based on L as L-structures.

Definition 5.2.2 (Semantics of µTL). Given a µTL-formula ϕ, a structure M =
((W,<), V) and an assignment g : V → ℘(W), we define a subset JϕKM,g of M
that is interpreted as the set of points at which ϕ is true. This subset is defined
by induction in the usual way. Let ImSuc(w), be the set of direct successors of
the point w with respect to <, we only recall:

J♦ϕKM,g = {w ∈ W : JϕKM,g ∩ ImSuc(w) 6= ∅}

Jµx.ϕKM,g =
⋂
{A ⊆ W : JϕKM,g[x/A] ⊆ A}

where g[x/A] is the assignment defined by g[x/A](x) = A and g[x/A](y) = g(y)
for all y 6= x. If w ∈ JϕKM,g, we write M, w |=g ϕ and we say that ϕ is true at
w ∈ M under the assignment g. If ϕ is a sentence, or if M, w |=g ϕ holds for
every valuation g, we simply write M, w |= ϕ.

Note that the ♦ operator is interpreted as the “Next” operator of temporal
logic and that the temporal operators U and F that we defined as shorthand have
their usual meaning that we recall here:

• (L, V, w) |=g Fϕ iff there exists w′ such that w ≤ w′ and (L, V, w′) |=g ϕ

• (L, V, w) |=g ϕUψ iff there exists w′ such that w ≤ w′, (L, V, w′) |=g ψ and
for all w′′ such that w ≤ w′′ < w′, (L, V, w′′) |=g ϕ

Before we give the complete axiomatization of µTL on Lω, Lfin and Lω ∪Lfin,
let us first recall the axiomatization of the µ-calculus. In the µ-calculus, instead
of considering a linear order <, we consider an arbitrary binary relation R on
W . In this more general context, (W,R) can be an arbitrary graph and we
call it a frame.1 The corresponding structures are called Kripke structures. Let
RSuc(w) = {w′ : (w,w′) ∈ R}, the semantics of ♦ is now as follows:

J♦ϕKM,g = {w ∈ W : JϕKM,g ∩ RSuc(w) 6= ∅}
1Note that on arbitrary graphs, we do not introduce Fϕ, Gϕ and ϕUψ as shorthands for

µTL-formulas anymore: as we consider frames instead of linear flows of time, this would not
really map the usual meaning of these temporal operators.

104 Chapter 5. Complete Axiomatization of µTL(U)

Definition 5.2.3. Let σ be a finite propositional vocabulary and ϕ, ψ ∈ µTL
arbitrary formulas. We call BV(ϕ) and FV(ϕ) respectively, the set of bound
variables in ϕ and the set of free variables in ϕ. The Kozen system Kµ consists of
the Modus Ponens, the Substitution rule, the Necessitation rule and the following
axioms and rules:

A1 propositional tautologies,

A2 ` 2ϕ↔ ¬♦¬ϕ (dual),

A3 ` 2(ϕ→ ψ)→ (2ϕ→ 2ψ) (K),

A4 ` ϕ[x/µx.ϕ]→ µx.ϕ (fixpoint axiom),

FR If ` ϕ[x/ψ]→ ψ, then ` µx.ϕ→ ψ (fixpoint rule)

where x does not belong to BV(ϕ) and FV(ψ) ∩ BV(ϕ) = ∅.

Theorem 5.2.4. If ϕ is a µTL-formula, let Kµ + ϕ be the smallest set which
contains both Kµ and ϕ and is closed for the Modus Ponens, Substitution, fixpoint
and Necessitation rules. The following holds:

1. Kµ is complete with respect to the class of Kripke structures.

2. Kµ + ♦ϕ↔ 2ϕ is complete with respect to the class of ω-words.

3. Kµ + ♦ϕ → 2ϕ + µx.2x is complete with respect to the class of finite
words.

4. Kµ + ♦ϕ→ 2ϕ is complete with respect to the class of finite and ω-words.

Proof. (i) was shown in [133] and the three other completeness results might
actually be derivable from it. But direct (and simpler) proofs for (ii) and (iii)
can be found respectively in [92] and [40]. In order to establish (iv), we will rely
on (i), (ii) and (iii), using an argument from Johan van Benthem and Balder ten
Cate (private communication). We first show the following claim:

• Claim: Let Kx be a system extending Kµ with a finite set of axioms and
closed under Substitution, Modus Ponens and the fixpoint and Necessitation
rules. Let θ be a closed formula with Kx ` θ → 2θ. For all formulas ξ, if
Kx + θ ` ξ, then Kx ` θ → ξ.
The proof goes by induction on the length of Kx-derivations. The only
difficult case is whenever the last line in the proof is obtained via the ap-
plication of the fixpoint rule. So assume the property holds for all deriva-
tions of length n and Kx + θ ` µy.ϕ → ψ is the last line of a deriva-
tion of length n + 1. We want to show that Kx ` θ → (µy.ϕ → ψ).

5.2. Preliminaries 105

By induction hypothesis, Kx ` θ → (ϕ[x/ψ] → ψ). So by proposi-
tional tautologies also Kx ` (θ ∧ ϕ[ψ/x]) → ψ. By the fixpoint rule,
Kx ` µx.(θ ∧ ϕ) → ψ. Now from Kx ` θ → 2θ it follows by proposi-
tional tautologies that Kx ` (♦¬θ ∨ ¬θ) → ¬θ and by the fixpoint rule
Kx ` µx.(¬θ ∨ ♦x) → ¬θ, so Kx ` θ → ¬µx.(¬θ ∨ ♦x). Now it is valid
in the µ-calculus that ¬µx.(¬θ ∨ ♦x) → (µx.(θ ∧ ϕ) ↔ µx.ϕ), so it is also
derivable in Kx. It follows that Kx ` θ → (µx.ϕ→ ψ).

Now assume that ξ is valid on finite and ω-words. As it is valid on finite words,
by (iii), Kµ + ♦ϕ→ 2ϕ + µx.2x ` ξ. As µx.2x satisfies the condition of the
claim we get:

(a) Kµ + ♦ϕ→ 2ϕ ` µx.2x→ ξ

ξ is also valid on ω-words, and hence by (ii), Kµ + ♦ϕ → 2ϕ + 2ϕ →
♦ϕ ` ξ. Note that ♦> can equivalently be substituted for 2ϕ → ♦ϕ there. As
Kµ + ♦ϕ→ 2ϕ ` ¬µx.2x→ ♦>, we can also take θ to be ¬µx.2x, which also
satisfies the condition of the claim. Indeed by the ♦ϕ→ 2ϕ axiom, it is enough
to prove ¬µx.2x→ ♦¬µx.2x. But this is equivalent to 2µx.2x→ µx.2x, which
is derivable in Kµ (since µx.2x↔ 2(µx.2x)). It follows that:

(b) Kµ + ♦ϕ→ 2ϕ ` ¬(µx.2x)→ ξ

Kµ + ♦ϕ→ 2ϕ ` ξ follows from (a) and (b), which proves (iv).

5.2.2 Stutter-Invariance

We will now recall the syntax and semantics of µTL(U).We also recall our defi-
nition of stutter-invariance and recall that, in terms of expressive power, µTL(U)
is exactly the stutter-invariant fragment of µTL.

Definition 5.2.5 (Syntax of µTL(U)). Let σ be a propositional vocabulary, and
let V = {x1, x2, . . .} be a disjoint countably infinite set of propositional variables.
We inductively define the set of µTL(U)-formulas in vocabulary σ as follows:

ϕ, ψ, ξ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕUψ | µxi.ξ

where At ∈ σ∪V and, in the last clause, xi occurs only positively in ξ (i.e., within
the scope of an even number of negations). We will use ϕ → ψ, νxi.ξ, Fϕ and
Gϕ as shorthand for, respectively, ¬(ϕ∧¬ψ, ¬µxi.¬ξ(¬xi), >Uϕ and ¬(>U¬ϕ).

Note that the temporal operators F and G defined as shorthand have their
usual meaning. We interpret µTL(U)-formulas in the same type of structures as
µTL-formulas, i.e., structures of the form M = (L, V) where L ∈ Lfin ∪ Lω.

106 Chapter 5. Complete Axiomatization of µTL(U)

Definition 5.2.6 (Semantics of µTL(U)). Given a µTL(U)-formula ϕ, a structure
M = ((W,<), V) and an assignment g : V → ℘(W), we define a subset JϕKM,g

of M that is interpreted as the set of points at which ϕ is true. This subset is
defined by induction in the usual way. We only recall:

JϕUψKM,g = {w ∈ W : ∃w′ ≥ w,w′ ∈ JψKM,g and ∀w ≤ w′′ < w′, w′′ ∈ JϕKM,g}

Jµx.ϕKM,g =
⋂
{A ⊆ W : JϕKM,g[x/A] ⊆ A}

where g[x/A] is the assignment defined by g[x/A](x) = A and g[x/A](y) = g(y)
for all y 6= x.

In the remaining, we always assume L ∈ {Lω,Lfin,Lfin ∪ Lω}.

Definition 5.2.7 (Stuttering). Let σ be a propositional signature, and M =
((W,<), V, w), M′ = ((W ′, <), V ′, w′) pointed L-structures in vocabulary σ. We
say that M′ is a stuttering of M if and only if there is a surjective function
s : W ′ → W such that

1. s(w′) = w

2. for every wi, wj ∈ W ′, wi < wj implies s(wi) ≤ s(wj)

3. for every wi ∈ W ′ and p ∈ σ,wi ∈ V ′(p) iff s(wi) ∈ V (p)

We say that an L-structure M is stutter-free relative to L whenever for all M′

such that M is a stuttering of M′, M′ is isomorphic to M.

Let for instance M, w be an ω-word in vocabulary {p} with V (p) = W . M, w is
stutter-free relative to Lω, but it is not stutter-free relative to Lfin∪Lω. Indeed, let
M′, w′ be a finite word in vocabulary {p} containing one single point w′. Assume
V ′(p) = {w′}, then M, w is a stuttering of M′, w′ and relative to Lfin∪Lω, M′, w′

is stutter-free, while M, w is not.

Definition 5.2.8 (Stutter-Invariant Class of Structures). Let σ be a proposi-
tional signature and K a class of L-structures in vocabulary σ. Then K is a
stutter-invariant class iff for every L-structure M in vocabulary σ and for every
L-stuttering M′ of M, M ∈ K⇔M′ ∈ K.

We say that a sentence ϕ is stutter-invariant relative to L whenever the class
of L-structures in which ϕ is satisfied is stutter-invariant. Every µTL(U)-sentence
is stutter-invariant relative to L (see Chapter 4). To see that it is not possible
in µTL(U) to define ♦ϕ, it is hence enough to observe that the sentence ♦p is
not stutter-invariant. Also, considering a L-structure M, w, there is always a
unique (up to isomorphism) M′, w′ which is stutter-free relative to L and such
that M, w is a stuttering of M′, w′. Observe that it follows that if a µTL(U)-
formula is satisfiable in some L-structure, it is also satisfiable in a L-structure
which is stutter-free relative to L. Additionally, on L, we can show that µTL(U)
is exactly the stutter-invariant fragment of µTL:

5.3. The Logic µTL(♦Γ) 107

Theorem 5.2.9. Let ϕ be a µTL-sentence which is stutter-invariant relative to L.
Then, there exists a µTL(U)-sentence ϕ∗ which is equivalent to ϕ on L-structures.

Proof. The proof can be found in Chapter 4.

5.3 The Logic µTL(♦Γ)

In this Section, we introduce the logic µTL(♦Γ) and we show that, as far as expres-
sivity is concerned, it is a fragment of µTL. More precisely, we show that µTL(♦Γ)
has exactly the same expressive power as µTL(U). In the last Sections, we will
see that µTL(♦Γ) can be used as a very convenient tool to show completeness
results for µTL(U).

µTL(♦Γ) is a variation of µTL where instead of the regular ♦ modality, we
consider the family of its stutter-invariant counterparts. For each finite set Γ of
µTL(♦Γ)-sentences, we consider a ♦Γ operator which intuitively means “at the
next distinct point with respect to Γ” (i.e., distinct with respect to the values it
assigns to the formulas in Γ). To design this operator, we took inspiration from
[61], where a “next distinct” operator was mentioned in passing. This operator
was interpreted in σ-structures as our ♦σ operator. In order to obtain a well-
behaved operator, we relativize it here to any finite set Γ of sentences. This gives
rise to a better-behaved logic, where we can define a natural notion of substitution
and where the truth of σ-formulas in σ-structures is preserved in σ+-expansions
of these structures (with σ+ ⊇ σ).

We interpret µTL(♦Γ)-formulas in the same type of structures as µTL-formulas,
i.e., structures of the form M = (L, V) where L ∈ Lfin ∪Lω. For any finite set of
µTL(♦Γ)-formulas and for any points w,w′, we write w ≡Γ w

′ if w and w′ satisfy
the same formulas in Γ.

Definition 5.3.1. Let σ be a finite propositional signature and V = {x1, x2, . . .}
a disjoint countably infinite stock of propositional variables. We inductively define
the set of µTL(♦Γ)-formulas as follows:

ϕ, ψ, ξ := At | > | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ♦Γϕ | µxi.ξ

where At ∈ σ ∪ V , Γ is a finite set of µTL(♦Γ)-formulas and, in the last clause,
xi occurs only positively in ξ (i.e., within the scope of an even number of nega-
tions). We use 2Γϕ, ϕ → ψ and νxi.ξ(xi) as shorthand for ¬♦Γ¬ϕ, ¬(ϕ ∧ ¬ψ
and ¬xiµ¬ξ(¬xi), respectively. We interpret µTL(♦Γ)-formulas as µTL-formulas,
except that:

(L, V, w) |= ♦Γϕ if ∃w′ > w such that w 6≡Γ w
′, ∀w′′ with w < w′′ < w′, w′′ ≡Γ w

and (L, V, w′) |= ϕ

108 Chapter 5. Complete Axiomatization of µTL(U)

The resulting logic is stuttering invariant. We write Voc(ϕ) for the vocabulary
of ϕ and Voc(Γ) for

⋃
ϕ∈Γ Voc(ϕ). Note that we include in the vocabulary of a

formula all the proposition letters occurring in it, including those which occur in
the formulas contained in the sets Γ indexing its modalities. This remark par-
ticularly matters for the notion of substitution, as whenever a formula is to be
uniformly substituted for a proposition letter, the operation has to be done ev-
erywhere, including in the formulas contained in the sets indexing the modalities.
Otherwise, validity would not be preserved by uniform substitution. Consider for
instance (p ∧ ♦{p}>)→ ♦{p}¬p. It is clear that this formula is valid and that for
any µTL(♦Γ)-formula ϕ, |= (ϕ∧♦{ϕ}>)→ ♦{ϕ}¬ϕ also holds. But it is also very
clear that 6|= (ϕ ∧ ♦{p}>)→ ♦{p}¬ϕ.

We will now provide a way to compare µTL(♦Γ) and µTL(U), by defining
two recursive procedures transforming each formula from one language into an
equivalent formula from the other language.

Definition 5.3.2. Let Γ = {ϕ0, . . . , ϕn−1} be a finite set of µTL(♦Γ)-formulas.
Whenever Γ 6= ∅, we define BΓ as the set of all possible mappings Γ → {⊥,>},
and for each g ∈ BΓ, we let βg be the formula α0 ∧ . . . ∧ αn−1 where αj = ϕj if
g(ϕj) = > and αj = ¬ϕj if g(ϕj) = ⊥. By convention, we set B∅ = {⊥,>}.2

Definition 5.3.3 (µTL(U)-translation of a µTL(♦Γ)-formula). Let ϕ be a µTL(♦Γ)-
formula, we recursively define its µTL(U)-translation ϕµTL(U) via the following pro-
cedure. AtµTL(U) = At, (¬ϕ)µTL(U) = ¬ϕµTL(U), (ϕ ∧ ψ)µTL(U) = ϕµTL(U) ∧ ψµTL(U),
(µx.ϕ)µTL(U) = µx.ϕµTL(U), and (♦Γϕ)µTL(U) =

∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ ϕµTL(U))).

Proposition 5.3.4. Let L ∈ {Lω,Lfin,Lω ∪ Lfin} and ϕ be a µTL(♦Γ)-formula,
ϕ and ϕµTL(U) are equivalent on L-structures.

Proof. We show that a class of σ-structures based on Lfin ∪ Lω, is definable by
a µTL(♦Γ)-formula if and only if it is definable by its µTL(U)-translation. Let
((W,<), V, w) be a σ-structure (by induction hypothesis, we assume the property
holds for ϕ, ϕµTL(U)).

Assume ((W,<), V, w) |= ♦Γϕ, i.e., there exists w′ > w such that w 6≡Γ w′

and ∀w′′ with w < w′′ < w′, w′′ ≡Γ w and ((W,<), V, w′) |= ϕ. So there are
g 6= g′ ∈ BΓ such that M, w |= βg and there exists w′ > w with ((W,<), V, w′) |=
βg′ ∧ ϕµTL(U) and for all w′′ such that w ≤ w′′ < w′, ((W,<), V, w′′) |= βg. By
induction hypothesis, ((W,<), V, w) |=

∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ ϕµTL(U))).
Assume ((W,<), V, w) |=

∨
g∈BΓ

(βg ∧ βgU(¬βg ∧ ϕµTL(U))). So there are g 6=
g′ such that βgU(βg′ ∧ ϕµTL(U)), i.e., there exists w′ such that w ≤ w′, ((W,<
), V, w′) |= βg′ ∧ ϕµTL(U) and for all w′′ such that w ≤ w′′ < w′, ((W,<), V, w′′) |=
βg. As g 6= g′, also w 6≡Γ w

′. By induction hypothesis, ((W,<), V, w) |= ♦Γϕ.

2We adopt this convention because we allowed Γ to be empty (see the instantiation of
Axiom A6′ where Γ = ∅, our convention will guaranty that ♦∅ϕ, which is not satisfiable, is also
inconsistent), but we could also have required that Γ 6= ∅.

5.3. The Logic µTL(♦Γ) 109

Definition 5.3.5 (µTL(♦Γ)-translation of a µTL(U)-formula). Let ϕ be µTL(U)-
formula in vocabulary σ, we recursively define its µTL(♦Γ)-translation ϕµTL(♦Γ)

via the following procedure. AtµTL(♦Γ) = At, (¬ϕ)µTL(♦Γ) = ¬ϕµTL(♦Γ), (ϕ ∧
ψ)µTL(♦Γ) = ϕµTL(♦Γ) ∧ ψµTL(♦Γ), (µx.ϕ)µTL(♦Γ) = µx.ϕµTL(♦Γ), and (ϕUψ)µTL(♦Γ) =
µx.(ψµTL(♦Γ) ∨ (ϕµTL(♦Γ) ∧ ♦σx)).

Proposition 5.3.6. Let L ∈ {Lω,Lfin,Lω ∪ Lfin} and ϕ be a µTL(U)-formula.
Then ϕ and ϕµTL(♦Γ) are equivalent on L-structures.

Proof. We show that a class of σ-structures based on Lfin ∪ Lω, is definable by
a µTL(U)-formula if and only if it is definable by its µTL(♦Γ)-translation. Let
((W,<), V, w) be a σ-structure (by induction hypothesis, we assume the property
holds for ϕ, ϕµTL(♦Γ) and ψ, ψµTL(♦Γ) respectively).

Assume ((W,<), V, w) |= ϕUψ. This means either that w satisfies ψ, or w
satisfies ϕ and it is separated from some subsequent w′ satisfying ψ by a finite se-
quence of points which all satisfy ϕ. So, by induction hypothesis, ((W,<), V, w) |=
µx.(ψµTL(♦Γ) ∨ (ϕµTL(♦Γ) ∧ ♦σx)), because µx.(ψµTL(♦Γ) ∨ (ϕµTL(♦Γ) ∧ ♦σx)) states
that the current state belongs to the least fixpoint which contains all the points
satisfying ψµTL(♦Γ), together with all the points that satisfy ϕµTL(♦Γ) and which
are immediate predecessors of a point which is already in the fixpoint.

Assume µx.(ψµTL(♦Γ) ∨ (ϕµTL(♦Γ) ∧ ♦σx)), i.e., w belongs to the least fixpoint
which contains all the points satisfying ψµTL(♦Γ), together with all the points
that satisfy ϕµTL(♦Γ) and which are immediate predecessors of a point which is
already in the fixpoint. This means that either w satisfies ψµTL(♦Γ), or it satisfies
ϕµTL(♦Γ) and it is separated from some subsequent w′ satisfying ψµTL(♦Γ) by a
finite sequence of successor points which all satisfy ϕµTL(♦Γ) and by induction
hypothesis, ((W,<), V, w) |= ϕUψ.

Corollary 5.3.7. µTL(U) and µTL(♦Γ) have the same expressive power on the
class of finite and ω-words.

Proof. Follows from Propositions 5.3.4 and 5.3.6.

Remark 5.3.8. It follows that ♦Γ can be used as shorthand either in µTL or
in µTL(U), that U can be used as shorthand in µTL(♦Γ) and that µTL(♦Γ) is
definable as a semantic fragment of µTL. In the remainder of the chapter, this
will be assumed. a

Now in order to see that both µTL(♦Γ) and µTL(U) strictly extend LTL(U),
let us give an example of a class of finite words which is known to be not definable
in LTL(U), while it is definable in µTL(♦Γ) and µTL(U). The following µTL(♦Γ)-
formula is satisfied at the root of a finite word in any vocabulary σ expanding {p}
exactly whenever this word contains an even number of sequences (of arbitrary
length) of states satisfying p:

110 Chapter 5. Complete Axiomatization of µTL(U)

Φ := µx.((¬p ∧2px) ∨ (p ∧ ♦pµy.((¬p ∧ ♦py) ∨ (p ∧2px))))

By Proposition 5.3.4, ΦµTL(U) ∈ µTL(U) is equivalent to Φ. Note also that
by removing the subscripts in the modal operators in Φ, we obtain the following
µTL-formula:

Φ′ := µx.((¬p ∧2x) ∨ (p ∧ ♦µy.((¬p ∧ ♦y) ∨ (p ∧2x))))

which is satisfied at the root of a finite word in vocabulary σ exactly whenever
this word contains an even number of p (i.e., whenever p is satisfied at an even
number of states). Note also that the property defined via Φ is the closure under
stuttering of the one defined via Φ′. This suggests a natural procedure - via
indexing of the modalities in the formula - to characterize in µTL(♦Γ) the closure
under stuttering of µTL-properties, which illustrates a close connection between
the syntax of µTL and µTL(♦Γ). It is admittedly difficult to write specifications
in µTL (c.f. [131]), but the difficulty does not seem to be higher in the case of
µTL(♦Γ).

5.4 Complete Axiomatization of µTL(♦Γ)

In this Section, we show some completeness results for the logic µTL(♦Γ). We
will use them in the next Section as a tool to obtain similar results for the logic
µTL(U).

Proposition 5.4.1. Let ϕ be a µTL(♦Γ)-formula in vocabulary σ containing no
free occurrence of the variable x. On the class of finite and ω-words, the following
formulas are equivalent:

•
∨
g∈Bσ(βg ∧ µx.((¬βg ∧ ϕ) ∨ (βg ∧ ♦σx))

•
∨
g∈Bσ(βg ∧ µx.((¬βg ∧ ϕ) ∨ (βg ∧ ♦x))

• ♦σϕ

Proof. Recall that U can be defined as shorthand in µTL(♦Γ). We already noted
in Section 5.2 and in Proposition 5.3.6 that on linear orders, the formulas ϕUψ,
µx.(ψ ∨ (ϕ ∧ ♦x)) and µx.(ψ ∨ (ϕ ∧ ♦σx)) are equivalent. We also noted in
Proposition 5.3.4 that in this context, the formulas ♦σϕ and

∨
g∈Bσ(βg∧βgU(¬βg∧

ϕ)) are equivalent. The Proposition follows.

Definition 5.4.2. KµTL(♦Γ) consists of the Modus Ponens, the Substitution rule,
for each Γ, the corresponding Necessitation rule (i.e., if ` ϕ, then ` 2Γϕ) and
the following axioms and rules:

5.4. Complete Axiomatization of µTL(♦Γ) 111

A1′ propositional tautologies,

A2′ ` 2Γϕ↔ ¬♦Γ¬ϕ (dual),

A3′ ` ♦Γϕ→ 2Γϕ (linearity),

A4′ ` 2Γ(ϕ→ ψ)→ (2Γϕ→ 2Γψ) (K),

A5′ ` ϕ[x/µx.ϕ]→ µx.ϕ (fixpoint axiom),

FR′ If ` ϕ[x/ψ]→ ψ, then ` µx.ϕ→ ψ(fixpoint rule),

A6′ ` ♦Γϕ ↔
∨
g∈BΓ

(βg ∧ µx.((¬βg ∧ ϕ) ∨ (βg ∧ ♦σx))), where Voc(♦Γϕ) ⊆ σ
(inductive meaning of ♦Γ),

for each finite set Γ = {ϕ0, . . . , ϕn−1} of µTL(♦Γ)-sentences and where in the
three last Axioms, x does not belong to BV(ϕ) and FV(ψ) ∩ BV(ϕ) = ∅.

Lemma 5.4.3. Axiom A6′ is sound on the class of finite and ω-words.

Proof. Let σ be a finite vocabulary, Γ a finite set of µTL(♦Γ)-formulas and ϕ a
µTL(♦Γ)-formula with Voc(♦Γϕ) ⊆ σ and x /∈ FV(ϕ). As µTL(♦Γ) define only
stutter-invariant classes of structures, we can consider a stutter-free σ-model M
with w ∈M and it is enough to show that the following are equivalent:

1. M, w |= ♦Γϕ

2. M, w |=
∨
g∈BΓ

(βg ∧ µx.((¬βg ∧ ϕ) ∨ (βg ∧ ♦σx)))

As for Proposition 5.4.1, this follows from what was observed in Section 5.2 and
5.3.

Theorem 5.4.4. KµTL(♦Γ) is complete for µTL(♦Γ) with respect to the class of
ω-words and with respect to the class of finite and ω-words.

Proof. Let ϕ be a KµTL(♦Γ)-consistent formula in vocabulary σ. By Axiom A6′, we
can restrict our attention to σ-formulas containing only ♦σ modalities. Again by
Axiom A6′, we can define a recursive procedure transforming ϕ into a KµTL(♦Γ)-
equivalent formula ϕ′. We set At′ = At, (¬ϕ)′ = ¬ϕ′, (ϕ∧ψ)′ = ϕ′∧ψ′, (µx.ϕ)′ =
µx.ϕ′, and (♦σϕ)′ =

∨
g∈Bσ(βg ∧ µy.((¬βg ∧ ϕ′)∨ (βg ∧♦σy))). Consider now the

µTL-formula ϕ′′, which we define as the result of removing in ϕ′ all the subscripts
of the modalities. Notice that by Proposition 5.4.1, ϕ′ and ϕ′′ are equivalent. We
claim that ϕ′′ is Kµ + ♦ϕ→ 2ϕ-consistent. For suppose not. Then, there exists
a proof of ¬ϕ′′ using the axioms and rules of Kµ + ♦ϕ→ 2ϕ. Now, replace every
occurrence of the operator ♦ by ♦σ in each axiom and rule used in the proof. The
result is a correct KµTL(♦Γ)-proof, where only correct axioms and rules of KµTL(♦Γ)

are used (because the Kµ + ♦ϕ→ 2ϕ axioms and rules can be obtained from the

112 Chapter 5. Complete Axiomatization of µTL(U)

KµTL(♦Γ) ones simply by removing the indexes of the modalities). Additionally,
this is a proof of the formula ¬ϕ′ (as the original ϕ′ can also be obtained from ϕ′′

by adding the subscript σ to every ♦ in ϕ′′). But this contradicts the fact that
ϕ′ was KµTL(♦Γ)-consistent. So ϕ′′ is Kµ + ♦ϕ → 2ϕ-consistent. By Theorem
5.2.4, there is an ω-word or a finite word M such that M, w |= ϕ′′ and it follows
from Proposition 5.4.1 (by which ϕ′ and ϕ′′ are equivalent) that M, w |= ϕ′, i.e.
(by Axiom A6′), M, w |= ϕ. Completeness with respect to the class of ω-words
follows too, because every finite word has an ω-word stuttering.

Theorem 5.4.5. KµTL(♦Γ) + µx.2Γx is complete for µTL(♦Γ) with respect to
the class of finite words.

Proof. We can apply the same reasoning as for the proof of Theorem 5.4.5, using
completeness of Kµ + ♦ϕ→ 2ϕ + µx.2x on finite words, instead of completeness
of Kµ + ♦ϕ→ 2ϕ on finite and ω-words.

Let M be an ω-word. We say that M is a pseudo-finite word whenever
there exists a finite word M′ such that M is a stuttering of M′. Note that
KµTL(♦Γ) + µx.2Γx is also complete for µTL(♦Γ) with respect to the class of
finite and pseudo-finite words, as every pseudo-finite word is the stuttering of a
finite word.

Remark 5.4.6. Axiom A6′ is not derivable from the other axioms and rules.
Otherwise, every 2Γ would simply be interpreted as the regular 2 operator of µTL.
Now, more precisely, let K−A6′

µTL(♦Γ)
be the smallest set of µ(♦Γ)-formulas which is

closed under all axioms and rules in KµTL(♦Γ), except Axiom A6′. Suppose Axiom

A6′ is derivable in K−A6′

µTL(♦Γ)
. Then, K−A6′

µTL(♦Γ)
would be complete with respect to

the class of ω-words. Therefore, as on ω-words |= (p ∧ ♦{p}>) → ♦p¬p, also

in K−A6′

µTL(♦Γ)
, ` (p ∧ ♦{p}>) → ♦p¬p and there would exists a K−A6′

µTL(♦Γ)
-proof of

this formula. But now we could replace in that proof, every modal operator by
the regular ♦ operator. This would be a correct Kµ + ♦ϕ → 2ϕ-proof of
(p∧♦>)→ ♦¬p. But as on ω−words, 6|= (p∧♦>)→ ♦¬p, this contradicts the
soundness of KµTL + ♦ϕ → 2ϕ. It follows that Axiom A6′ is not derivable in
K−A6′

µTL(♦Γ)
. a

5.5 Complete Axiomatization of µTL(U)

Recall that LTL(U) is the fragment of µTL(U) where the µ-operator is disallowed.
In [110], the authors propose an axiomatization of LTL(U) which is complete on
the class of ω-words and finite words. In order to axiomatize µTL(U), we extend
here the Axioms and rules in [110] with the usual fixed-point rule and Axiom,
together with an additional axiom accounting for the way the Until operator and
the µ-operator can interact together. Using the completeness result in [110] with

5.5. Complete Axiomatization of µTL(U) 113

the completeness of KµTL(♦Γ), this allows us to derive a similar completeness The-
orem for µTL(U). Recall that, in µTL(U), we use Gϕ as shorthand for ¬(>U¬ϕ)
and ♦τϕ as shorthand for

∨
g∈Bτ βg ∧ (βgU(¬βg ∧ ϕ)).

Definition 5.5.1. The KµTL(U) system consists of the Modus Ponens, the G
Necessitation rule (i.e., if ` ϕ, then ` Gϕ) the Substitution rule and the following
axioms and rules (these rules, as well as Axioms A1′′ to A9′′, are borrowed from
[110]):

A1′′ propositional tautologies,

A2′′ The Until operator is non strict:
` ϕ→ ⊥Uϕ,

A3′′ For any consistent formula there exists a model that is a discrete linear
order:

• ` Fϕ→ ¬ϕUϕ,

• ` ϕ ∧ Fψ → ¬ψU(ϕ ∧ ϕU(¬ϕUψ)),

A4′′ Properties that hold throughout a computation hold at the initial state:
` Gϕ→ ϕ,

A5′′ Conventional logical deduction holds within individual states (K axiom):

• ` (G(ϕ→ ψ)→ (ϕUξ → ψUξ))

• ` (G(ϕ→ ψ)→ (ξUϕ→ ξUψ))

A6′′ Persistence of an Until formula until its second argument is satisfied:
` ϕUψ → (ϕUψ)Uψ

A7′′ Immediacy of satisfaction of an Until formula at the current state:
` ϕU(ϕUψ)→ ϕUψ

A8′′ States of the time line are not skipped over in evaluating an Until formula:
` ϕUψ ∧ ¬(ξUψ)→ ϕU(ϕ ∧ ¬ξ)

A9′′ Models are linearly ordered:
` ϕUψ ∧ ξUθ → ((ϕ ∧ ξ)U(ψ ∧ θ) ∨ (ϕ ∧ ξ)U(ψ ∧ ξ) ∨ (ϕ ∧ ξ)U(ϕ ∧ θ))

A10′′ ` ϕ[x/µx.ϕ]→ µx.ϕ, (fixpoint axiom),

FR′′ If ` ϕ[x/ψ]→ ψ, then ` µx.ϕ→ ψ (fixpoint rule),

A11′′ ` µx.(ψ ∨ (ϕ ∧ ♦σx)) ↔ ϕUψ, where Voc(ϕ) ∪ Voc(ψ) ⊆ σ (inductive
meaning of U),

114 Chapter 5. Complete Axiomatization of µTL(U)

where in the three last Axioms, x does not belong to BV(ϕ)∪BV(ψ) and FV(ψ)∩
BV(ϕ) = ∅.

Lemma 5.5.2. Let ϕ ∈ µTL(U). Then φ ↔ (ϕµTL(♦Γ))µTL(U) is derivable in
KµTL(U).

Proof. By induction on the complexity of ϕ (number of Boolean, modal and fixed-
point operators in ϕ). The base case is immediate. Assume the property holds for
all formulas of complexity n. Let ϕ ∈ µTL(U) of complexity n+ 1 be of the form
ξUψ for some ξ, ψ ∈ µTL(U) (otherwise, by induction hypothesis, the property
follows immediately). We have:

(ξUψ)µTL(♦Γ) := µx.(ψµTL(♦Γ) ∨ (ξµTL(♦Γ) ∧ ♦σx))

and

((ξUψ)µTL(♦Γ))µTL(U) := µx.((ψµTL(♦Γ))µTL(U)∨((ξµTL(♦Γ))µTL(U)∧
∨
g∈Bσ

(βg∧βgU(¬βg∧x))

By induction hypothesis, ((ξUψ)µTL(♦Γ))µTL(U) is provably equivalent inKµTL(U)

to:

µx.(ψ ∨ ((ξ ∧
∨
g∈Bσ

(βg ∧ βgU(¬βg ∧ x))

By Axiom A11′′ the following is derivable in KµTL(U):

µx.(ψ ∨ ((ξ ∧
∨
g∈Bσ

(βg ∧ βgU(¬βg ∧ x))↔ ξUψ

The property follows.

Lemma 5.5.3. The µTL(U)-translations of the axioms and rules of KµTL(♦Γ) are
derivable in KµTL(U).

Proof. Except for the µTL(U)-translation of the fixed-point Axiom and of the
fixed-point rule (which are both trivially derivable from KµTL(U), as they also
belong to it), as well as Axiom A6′, there is no explicit occurrence of the µ-
operator in the µTL(U)-translation of the Axioms and rules of KµTL(♦Γ). As they
are sound on the class of ω-words and finite words, by the completeness Theorem
in [110], together with Proposition 5.3.4, they are derivable in LTL(U). It follows
that they are also derivable in KµTL(U), because the Axioms and rules of KµTL(U)

simply extend those of LTL(U).
Now consider the µTL(U)-translation of Axiom A6′:∨

g∈BΓ

(βg ∧ βgU(¬βg ∧ ϕ))

5.5. Complete Axiomatization of µTL(U) 115

↔∨
g∈BΓ

(βg ∧ µy.((¬βg ∧ ϕ) ∨ (βg ∧
∨
g′∈Bσ

(βg′ ∧ βg′U(¬βg′ ∧ y)))))

This formula is derivable from propositional tautologies, together with the
substitution rule and Axiom A11′′ of KµTL(U) ` µy.(ψ∨(ϕ∧♦σx))↔ ϕUψ (which
is actually shorthand for ` µy.(ψ ∨ (ϕ ∧

∨
g∈Bσ(βg ∧ βgU(¬βg ∧ y)))) ↔ ϕUψ).

Finally, let us point out that the restriction of our axioms and rules to LTL(U)-
formulas is actually slightly stronger than the axiomatization proposed in [110].
The authors chose to prefix all their modal axioms and rules by G and to allow
the generalization rule only on propositional tautologies (our generalization rule
is a derived rule in their framework). But our axioms and rule being sound, it is
safe to use the completeness of their system as we do here.

Proposition 5.5.4. Let ϕ ∈ µTL(U) be KµTL(U)-consistent, then its µTL(♦Γ)-
translation ϕµTL(♦Γ) is KµTL(♦Γ)-consistent.

Proof. Let ϕ ∈ µTL(U) be KµTL(U)-consistent. Now suppose ϕµTL(♦Γ) is not
KµTL(♦Γ)-consistent. So there is a KµTL(♦Γ)-proof of ¬ϕµTL(♦Γ). By Lemma 5.5.2
and 5.5.3, this entails that there is a KµTL(U)-proof of ¬ϕ, which contradicts the
KµTL(U)-consistency of ϕ.

Corollary 5.5.5. KµTL(U) is complete for µTL(U) with respect to the class of
ω-words.

Proof. Let ϕ be a KµTL(U)-consistent formula. Now let ϕ′ be the µTL(♦Γ)-
translation of ϕ. By Proposition 5.5.4, ϕ′ is KµTL(♦Γ)-consistent and so, by The-
orem 5.4.4, ϕ′ is satisfied in some ω-word M, w. By Proposition 5.3.6, ϕ and ϕ′

are equivalent on ω-words. Hence also M, w |= ϕ.

Proposition 5.5.6. Let ϕ ∈ µTL(U) be KµTL(U) + µy.2Γy-consistent, then its
µTL(♦Γ)-translation ϕµTL(♦Γ) is KµTL(♦Γ) + µy.2Γy-consistent.

Proof. The proof is similar to the proof of Proposition 5.5.4.

Corollary 5.5.7. KµTL(U) + µy.2Γy is complete for µTL(U) with respect to the
class of finite words.

Proof. Similarly follows from Proposition 5.3.6, Theorem 5.4.5 and Proposition
5.5.6.

Remark 5.5.8. Let K−A11′′

µTL(U) be the smallest set of µTL(U)-formulas which is

closed under all axioms and rules in KµTL(U) except Axiom A11′′. Axiom A11′′

is not derivable in K−A11′′

µTL(U). Observe that the µTL-translation of every axiom

and rule of K−A11′′

µTL(U)6 is sound when instantiated by µTL-formulas and that, by
completeness of µTL, their µTL-translations are also derivable in µTL. So if

116 Chapter 5. Complete Axiomatization of µTL(U)

Axiom A11′′ was derivable in K−A11′′

µTL(U), its µTL-translation would be also derivable

(and hence, valid) in Kµ + ♦ϕ→ 2ϕ. But let M be a finite word in vocabulary
{p} with W = {w0, w1, w2}, wi < wi+1 and V (p) = w2. Obviously M, w0 |=
µx.(p ∨ (♦♦p ∧ ♦{p}x)), but M, w0 6|= (♦♦p)Up, i.e., M, w0 6|= µx.(p ∨ (♦♦p ∧
♦{p}x))↔ (♦♦p)Up. a

5.6 Conclusion

In this chapter, we studied the logic µTL(U). We introduced for that purpose the
logic µTL(♦Γ) as a technical tool in order to easily obtain completeness results
for µTL(U). In Chapter 4, we used a similar trick to show that µTL(U) satisfies
uniform interpolation. A number of other interesting logical properties of µTL(U)
remain to be investigated. In particular, we could examine counterparts of the
 Loś Tarski Theorem and of the Lyndon Theorem, which the µ-calculus was shown
in [46] to satisfy. More generally, the logic µTL(♦Γ) could also be used as a tool
in order to easily transfer results from µTL to languages capturing exactly its
stutter-invariant fragment (see for instance the frameworks in [61], [117], or [50]).

The method that we used here in order to show completeness results could also
be reused in other contexts. It may for instance be applicable to the extension
of µTL(U) with past tense operators or to the stutter-invariant fragment of the
µ-calculus on trees (either finite or infinite). For a discussion of stuttering on
trees, see [33] and [81], or [72], [73] and [80] in the setting of process algebra. It
should be noted, though, that on (especially infinite) trees, there is still no general
consensus on the appropriate notion of stuttering and that it is questionable
whether the “Until only” fragment and the stutter-invariant fragment of the µ-
calculus actually coincide. A further generalization would be to consider finite
game trees (as studied in the next chapter), which actually carry a bit more
structure than plain finite trees. In the context of game equivalence, the notion
of stuttering could indeed constitute an interesting alternative to the notion of
bisimulation (for a discussion see [13]).

Chapter 6

Fixed-point Logics on Finite Extensive
Games

6.1 Game Solution as Rational Procedure

In this chapter, we will focus on finite games, which can be represented in so-
called extensive form as special enriched tree structures. Logic and games form
a natural combination. On the one hand, there are “logic games” that analyze
basic notions such as truth, proof, or model comparison, while on the other
hand, standard logical systems have proved applicable to many basic issues in
the foundations of game theory (cf. [14], [114]). This chapter will concentrate on
the second aspect.

Logics that describe games In recent years, many logical analyses have been
given of both strategic and extensive games, through introducing formal languages
that describe game structure while raising logical questions of definability and
axiomatization ([29], [13], [51], [87]). A benchmark for logics in this tradition has
been the definition of Backward Induction (“BI” for short), the most common
method for solving finite extensive games of perfect information ([122], [123]). In
this same arena, basic foundational results have been obtained in epistemic game
theory, endowing bare games with epistemic assumptions about players. A pilot
result was the characterization of the BI outcome in terms of assuming common
knowledge, or common true belief, in rationality, meaning that players choose
those actions that they believe to be best for themselves ([6]).

Analyzing solution procedures Recently, [18] has suggested that the main
focus here should be shifted: away from a static assumption of known or believed
rationality to the underlying “procedural rationality” of plausible procedures that
players engage in when analyzing and playing a game, and the way these result

117

118 Chapter 6. Fixed-point Logics on Finite Extensive Games

in stable limit models where rationality becomes common knowledge.1 Thus, [13]
shows how game-theoretic equilibrium fits with the computational perspective of
fixed-point logics, and [20] gives several dynamic procedures that analyze BI. This
chapter will analyze these proposals further, and find their common mathematical
background. This will then be our starting point for suggesting a more general
line of investigation.

Basics of extensive games We assume some basic game theory, and we will
work with finite extensive games of perfect information, i.e., finite trees with la-
belled nodes, where each node is either an end node, or an intermediate node that
represents the turn of a unique player.2 We will mostly think of 2-player games,
though much of what we say generalizes to more players. While game trees with
moves are simple computational structures, the essence of rational action arises
with the way players evaluate outcomes. Thus, there is also a further preference
relation for each player between end nodes (encoding complete histories) that we
will take to be a total order in this chapter, though this requirement could be
generalized. Equivalently, such total evaluation orders may be represented in the
form of numerical utility values for players at end nodes.

Backward induction We now define our basic procedure in a bit more detail:

Definition 6.1.1 (BI procedure for “generic” extensive games). We call a game
generic when, for each player, distinct end nodes have different utility values. On
such games Backward Induction is this inductive algorithm:

“At end nodes, players already have their values marked. At further
nodes, once all daughters are marked, the player to move gets her
maximal value that occurs on a daughter, while the other, non-active
player gets his value on that maximal node.”

A strategy for a player is a map that selects one move at each turn for that
player. It is easy to see that BI generates a strategy for each player at her
turns: go to the successor node that has your highest value. The resulting set
of strategies is the “BI outcome”, that leads to a unique play of the game. We
will call the set-theoretic union of all these strategies (still a function on nodes)
bi. The BI procedure seems obvious, telling us players best course of action. And
yet, it is packed with assumptions about how players behave that are worth high-
lighting. For now, just note that the algorithm subtly changes its interpretation
of values on the way. At leaves, these values encode plain utilities or preferences,
but at nodes higher up in the game tree, the BI values clearly mix in additional
considerations of plausibility, incorporating beliefs about what others will do.

1Note that even the common word “solution” has an ambiguity between a procedure (“So-
lution is not easy”) and a static product of such a procedure (“Show me your solution”).

2Only towards the end, we will briefly consider games with imperfect information.

6.2. From Functional to Relational Strategies 119

Delicate cases BI can produce debatable outcomes, as in the next illustration:

Example 6.1.2 (A simple BI outcome). In the following game, players’ prefer-
ences are encoded in utility values, as pairs (value for A, value for E). Backward
Induction tells player E to turn left at her turn, which gives A a belief that this
will happen, and so, based on this belief about his counter-player, A should turn
left at the start, making both worse off than they might have been:3

A

1, 0 E

0, 100 99, 99 4

The fact that the BI prediction or recommendation is not always intuitive has
motivated much logical analysis of the procedure and the reasoning underpinning
it. We will not enter this debate here. We neither endorse nor reject Backward
Induction, but we merely take it as our point of entry into the logic of game solu-
tion procedures. Our starting points are three different proposals for explaining
what makes BI tick, that we will explain in due course. But before getting there,
let us first make a generalization of what we mean by Backward Induction.

6.2 From Functional to Relational Strategies

Strategies as subrelations of the move relation A game-theoretic strategy
is usually taken to be a function on nodes in a game tree, yielding a unique
recommendation for play there. But in many settings, it makes more sense to
think of strategies as nondeterministic binary subrelations of the total relation
move (the union of all labelled actions in the game) that merely constrain further
moves by selecting one or more as admissible. This is in line with the colloquial
use of the term “strategy”, it also reflects a common view of plans for action, and
technically, it facilitates logical definitions of strategies in propositional dynamic
logic [19].

3People defend this outcome by saying that the game is “competitive”, but that amounts
to giving information about the players that is not explicit in the game tree. If such extra
information is relevant to solution, we may need a richer notion of game from the start.

4Frankly, we have dramatized things a bit here to catch the reader’s attention. Since the
numbers just encode ordinal preferences, the same point might have been made with values 0, 1,
2 and 3. But the undesirable point remains that the computed outcome is not Pareto-optimal.
An outcome of a game is Pareto optimal if there is no other outcome that makes every player
at least as well off and at least one player strictly better off.

120 Chapter 6. Fixed-point Logics on Finite Extensive Games

Relational BI, first version Indeed, one common numerical formulation of BI
already has this relational flavor. We now (as for the remainder of the chapter)
drop the assumption that games are generic:

Definition 6.2.1 (Relational Backward Induction, first version). Starting from
the leaves, one now assigns values for players at nodes using the rule:

Suppose that E is to move at a node, and all values for daughters
are known. The E-value is the maximum of all the E-values on the
daughters, while the A-value is the minimum of the A-values at all
E-best daughters.5

The relation bi arising from this algorithm connects nodes to all daughters
with maximal values for the active player, of which there may be more than one.
This method focuses on minimal values that can be guaranteed when doing the
best within one’s power.

Solution algorithms make assumptions about players But while this
looks like an obvious numerical rule, it does embody special assumptions about
players. In particular, taking the minimum value is a worst-case assumption that
my counter-player does not care about my interests after her own are satisfied.
But we might also assume that she does, choosing among her maximum nodes
one that is best for me. In that case, the second numerical value in the algorithm
would be a maximum rather than a minimum. And other options are possible.6

This variety of relational versions of game solution is not a problem. It rather
highlights an important feature of game theory: mathematical “solution meth-
ods” are not neutral, they encode significant assumptions about players. But the
variety does suggest that we start by finding a general base version of BI that is
not too specific:

A minimal notion of rationality: avoid stupid moves Here is one logical
analysis of the variety for relational versions of BI. Let us first view matters from
a somewhat higher standpoint. Suppose that I need to compare different moves
of mine, each of which, given the relational nature of the procedure, still allows
for many leaves (end nodes) that can be reached via further bi-play.7 A minimal
notion of Rationality would then say that

I do not play a move when I have another move whose outcomes I prefer.

5The dual calculation for values at A’s turns is completely analogous.
6Of course, one might view such alternatives as calling for a change in players’ utilities. We

will not get into this perennial issue of game preference transformations here.
7In this perspective with total outcomes of the game, we make a shift from the original

version of the BI algorithm, which looked at daughters of the current node only.

6.2. From Functional to Relational Strategies 121

A source of variety: different set preferences This seems plausible, but
what notion of preference is involved here? It is easy to see that, in the above
first version of the BI algorithm, the following choice is made. Player i preferred
a set Y of leaves reachable by further bi-play to another set X if the minimum of
its values for i is higher. This means that we have the following ∀∃ pattern for
set preference:8

∀y ∈ Y ∃x ∈ X : x <i y

But clearly, staying with the same over-all notion of Rationality, there are
several alternatives for comparisons between reachable sets of outcomes. One
common notion of preference for Y over X in the logical literature ([135], [105])
is the ∀∀ stipulation that

∀y ∈ Y ∀x ∈ X : x <i y

Relational backward induction, second version Clearly, avoiding moves
that should not be taken under this stronger notion of preference is a weaker
constraint on behavior of players. Still, it fits with a minimal game-theoretic so-
lution procedure for strategic games called eliminating strictly dominated strate-
gies ([112]). We will take this second relational version of Backward Induction as
our running example:

Definition 6.2.2 (Relational Backward Induction, second version). First, mark
all moves as “active”. Call a move to a node x dominated if x has a sibling from
which all reachable endpoints via active moves are preferred by the current player
to all reachable endpoints via active moves from x itself. The second version of
the BI algorithm works in stages:

At each stage, it marks dominated moves in the ∀∀ sense of set pref-
erence as “passive”, leaving all others active. In this preference com-
parison between sets of outcomes, the “reachable endpoints” by an
active move are all those that can be reached via a sequence of moves
that are still active at this stage.

In another well-known terminology, players play a “best response”.
Henceforth, we will use BI to refer to this algorithm, and the subrelation of

the total move relation produced by it at the end. It is a cautious notion of game
solution making fewer assumptions about the behavior of other agents than the
earlier version. Of course, the two versions agree on generic games, for which the
subset of the move relation obtained as output is always a function.

8Given that we have finite total orders, we could also replace this by

∃x ∈ X ∀y ∈ Y : x <i y

.

122 Chapter 6. Fixed-point Logics on Finite Extensive Games

Example 6.2.3 (Some comparisons). Consider the following two games, where
the values indicated are utilities for player A. For simplicity, we assume that player
E has no preference between her moves:

A

E

1 4

E

2 3

A

1 E

1 4

In the game to the left, our first version of Backward Induction makes A go right,
since the minimum 2 is greater than the 1 on the left. But our cautious BI will
accept both moves for A, as no move strictly dominates the other.

Moreover, both versions will accept all moves in the game to the right. This
may seem strange, since most players would probably go right at the start: they
have nothing to lose, and a lot to gain. But analyzing all variants for preference
comparisons between sets of outcomes is not our focus here. We will return to
the issue of further possible solution concepts in later sections.

Important remark Our style of analysis chooses one particular line toward
generalizing Backward Induction to non-generic games. But others make sense,
too, as pointed out by Cédric Dégremont. For instance, if one thinks of strategy
profiles in Nash equilibrium, the following game would have two:

A

1, 0 E

3, 0 0, 0

a b

c d

Both profiles (a, d) and (b, c) are in equilibrium. But our algorithm will leave
both options for E, and tell A to go left. This chapter will not address the
alternative analysis of the BI-output in terms of sets of strategy profiles, leaving
this as a challenge to fixed-point logics over richer models.

6.3 Defining BI as a Unique Static Relation

Many definitions for the BI relation on generic games have been published by
logicians and game-theorists (cf. the survey in [55]). Our point of departure here
is a version involving a modal language of a-labelled moves, i.e., binary transi-
tion relations a on nodes with matching modalities 〈a〉, plus a modal preference
operator interpreted as follows at nodes of a game tree:

6.3. Defining BI as a Unique Static Relation 123

〈prefi〉ϕ: player i prefers some node where ϕ holds to the current one

The original result Here is a result from [23]:

Theorem 6.3.1. On generic games, the BI strategy is the unique function σ
which is total on non-terminal nodes and satisfies the following modal axiom for
all propositions p - viewed as sets of nodes - for all players i:

(turni ∧ 〈σ∗〉(end ∧ p))→ [move]〈σ∗〉(end ∧ 〈prefi〉p)

For a proof (a laborious but straightforward induction on finite tree depth), we
refer to the cited paper. Here we just concentrate on the meaning of the crucial
axiom, that may be brought out by a standard modal frame correspondence,
where frame truth quantifies universally over all sets of objects for proposition
letters ([26]). The frames here are games extended with one more binary relation
σ. What we find is a notion of Rationality like before:

Fact 6.3.2. An extended game makes (turni∧〈σ∗〉(end∧p))→ [move]〈σ∗〉(end∧
〈prefi〉p) true for all i at all nodes iff it has this property for all i:

RAT-1: No other available move for the current player i yields a set
of outcomes by further play using σ that has a higher minimal value
for i than the outcomes of playing σ all the way down the tree from
the current node.

Proof. This is a standard modal correspondence argument that we omit. The
correspondence language uses the reflexive-transitive closure of the relation σ,
but this is a simple extension of known techniques ([16]).

The typical picture to keep in mind here, and also later on, is this:

x

y z

σ

via σ via σ
u v

≥

RAT-1 is equivalent to this confluence property for action and preference:

124 Chapter 6. Fixed-point Logics on Finite Extensive Games

CF1 :
∧
i ∀x(turni(x)→ ∀y(σ(x, y)→ (move(x, y) ∧ ∀u((end(u) ∧ σ∗(y, u))
→ ∀z(move(x, z)→ ∃v(end(v) ∧ σ∗(z, v) ∧ v ≤i u))))))9

This ∀∀∀∃ form is a comparison between sets of outcomes that negates an earlier
notion of preference: the minimum value on the reachable endpoints after z is
not larger than that after y. It is easy to show that any relation σ which assigns
a successor to each non terminal node and which satisfies this property matches
the BI solution level by level on generic games.

Capturing BI in logical terms But now let us look at our favored relational
generalization of BI. First, we reformulate the stated non-dominance property:

RAT-2. No alternative move for the current player i guarantees out-
comes via further play using σ that are all strictly better for i than
all outcomes resulting from starting at the current move and then
playing σ all the way down the tree.

A logical formula defining this has the following ∀∀∃∃ form:

CF2 :
∧
i ∀x∀y((turni(x) ∧ σ(x, y))→ (move(x, y) ∧ ∀z(move(x, z)

→ ∃u∃v(end(u) ∧ end(v) ∧ σ∗(y, v) ∧ σ∗(z, u) ∧ u ≤i v))))

Theorem 6.3.3. BI is the largest subrelation of the move relation in a finite
game tree satisfying the two properties that (a) the relation has a successor at
each non-terminal node, and (b) CF2 holds.10

Proof. First, the given algorithm clearly leaves at least one active move at each
node, by the definition of preference. Moreover, at the final state, when no more
deactivations occur, CF2 must hold: there are no more dominated moves, and
that is what it says.

That the relation defined in this way is maximal may be seen as follows. If we
reactivate anywhere a move that is inactive, that move had disappeared at some
stage because it was dominated there by another move. But then it would still be
dominated in the whole tree by the same move. For, all that can have happened in
the further stages of the algorithm is that fewer endpoints have become reachable
through active paths from the two moves, and their ∀∀-dominance relationship
then persists.

Conversely, if we have any subrelation of the move relation with the given
two properties, it is easy to see by induction on the depth of subtrees that all its
moves survive each stage of the above main BI procedure, by the definition of the
elimination step.

9One could change the formal language for CF1 here to a more technical first-order one
avoiding the closure operator – but for our main points, such variations are not important.

10We say “largest” in this formulation because in the presence of more than one best successor,
different subrelations of the move relation might satisfy CF2. Note that there need not be a
largest relation satisfying a given structural property, but in this particular case, it does.

6.4. A Dynamic-Epistemic Scenario: Iterated Announcement of Rationality 125

We now make these same points about the procedure more syntactically, by
inspecting the syntax of CF2. We can restate this in terms of the well-known
formalism of first-order least fixed-point logic FO(LFP):11

Theorem 6.3.4. The BI relation is definable in FO(LFP).

Proof. Indeed, the definition involves just one greatest fixed-point in addition to
the transitive closure operations. This fixed-point is in the language of FO(LFP),
all occurrences of the predicate symbol X in the relevant formula are positive:

BI(x, y) = [GFPX,x,y(move(x, y) ∧
∧
i(turni(x)→ ∀z(move(x, z)

→ ∃u∃v(end(u) ∧ end(v) ∧X∗(y, v) ∧X∗(z, u) ∧ u ≤i v))))](x, y)12

(Note that we use X∗(z, u) as shorthand for [TCz,uX(z, u)](z, u), which is ex-
pressible in FO(LFP1), see Chapter 2.)

This definition will be our point of reference in what follows. Interestingly, it
is both a static description of the BI relation and also a definition of a procedure
computing it. For, we can now use the standard defining sequence for a greatest
fixed-point, starting from the total move relation, and see that its successive
decreasing approximation stages Xk are exactly the “active move stages” of the
above algorithm. We will refer to these stages Xk at several places in what follows.
In our view, fixed-point logics are attractive since they analyze both the statics
and dynamics of game solution.

In the following sections, we extend this theme by looking at two further logical
ways of construing the Backward Induction procedure that have been proposed
in recent years.

6.4 A Dynamic-Epistemic Scenario: Iterated

Announcement of Rationality

Here is another procedural line on Backward Induction as a rational process.
[18] proposed an analysis in the spirit of current dynamic-epistemic logics that
describe acts of information flow, such as public announcements or observations
([56], [21]). The following analysis of BI takes it to be a process of prior off-line
deliberation about a game by players whose minds proceed in harmony - though
they need not communicate in reality. 13

11In terms of [15], the syntax of CF2 has dual “PIA form”, guaranteeing that the union of all
relations satisfying CF2 exists, while a small extra argument gives the existence.

12We can also replace the reflexive transitive closures X∗ by definitions in FO(LFP).
13Compare also the dynamic agreement procedures studied in [68].

126 Chapter 6. Fixed-point Logics on Finite Extensive Games

Solving games by announcements of rationality The following analysis
uses the dynamic epistemic logic of public announcements of the form !ϕ, which
say that some proposition ϕ is true. These transform a current epistemic model
M into its submodel M|ϕ whose domain consists of just those worlds in M that
satisfy ϕ. [18] makes the solution process of extensive games itself the focus of a
PAL style analysis:

Definition 6.4.1 (Node rationality). As before, at a turn for player i, a move
to a node x is dominated by a move to a sibling y of x if every history through
x ends worse, in terms of i’s preference, than every history through y. Now rat
says that “at the current node, no player has chosen a strictly dominated move
in the past coming here”.

This makes an assertion about nodes in a game tree, viz. that they did not
arise through playing a dominated move. Some nodes will satisfy this, others may
not. Note that we do not say that every node in the game satisfies rat: we merely
say that it is an informative property of nodes. Thus, announcing this formula
as a fact about the players of a game is informative, and it will in general make
the current game tree smaller.

But then we get a dynamics as in famous puzzles like the Muddy Children,
where repeated assertions of ignorance eventually produce enough information to
solve the whole puzzle. In our case, in the new smaller game tree, new nodes may
become dominated, and hence announcing rat again (saying that it still holds
after this round of deliberation) makes sense, and so on. This process of iterated
announcement must always reach a limit, that is, a smallest subgame where no
node is dominated any more:

Example 6.4.2 (Solving games through iterated assertions of Rationality). Con-
sider a game with three turns, four branches, and pay-offs for A, E in that order:

A

x
1, 0

E

y
0, 5

A

z
6, 4

u
5, 5

Stage 0 of the procedure rules out point u (the only point where Rationality fails),
Stage 1 rules out z and the node above it (the new points where Rationality fails),
and Stage 2 rules out y and the node above it. In the remaining game, Rationality
holds throughout:

6.4. A Dynamic-Epistemic Scenario: Iterated Announcement of Rationality 127

A

x
1, 0

E

y
0, 5

A

z
6, 4

u
5, 5

A

x
1, 0

E

y
0, 5

A

z
6, 4

A

x
1, 0

E

A

z
6, 4

In such generic games, the BI solution emerges step by step. [18] shows that
the actual Backward Induction path for extensive games is obtained by repeated
announcement of the assertion rat to its limit. We repeat some relevant notions
from dynamic-epistemic logic:

Definition 6.4.3 (Announcement limit). For each epistemic model M and each
proposition ϕ that is true or false at points in the model, the announcement limit
(ϕ,M)# is the first model reached by successive announcements ϕ! that no longer
changes after the last announcement is made.

That such a limit exists is clear for finite models, since the sequence of sub-
models is weakly decreasing.14 There are two possibilities for the limit model.
Either it is non-empty, in which case ϕ holds in all nodes, meaning that it has
become common knowledge (the self-fulfilling case), or it is empty, meaning that
the negation ¬ϕ has become common knowledge (the self-refuting case). Both
occur in concrete puzzles, though generally speaking, rationality assertions like
rat tend to be self-fulfilling, while the ignorance statement that drives the Muddy
Children is self-refuting: at the end, it holds nowhere.

Capturing BI by iterated announcements With general relational strate-
gies, the iterated announcement scenario produces the earlier ∀∀∃∃ version of
Backward Induction:

Theorem 6.4.4. In any game tree M, (!rat,M)# is the actual subtree computed
by BI.

This can be proved directly, but it also follows from our next observations.
For a start, it turns out easier to change the definition of the driving assertion rat
a bit. We now consider rat’, wich only demands that the current node was not
arrived at directly via a dominated move for one of the players. This does not
eliminate nodes further down, and indeed, announcing this repeatedly will make
the game tree fall apart into a forest of disjoint subtrees – as is easily seen in the
above examples. These record more information.

14Announcement limits also exist in infinite models, if one takes intersection at limit ordinals.

128 Chapter 6. Fixed-point Logics on Finite Extensive Games

Sets of nodes as relations Here is an obvious fact about game trees. Each
subrelation R of the total move relation has an obvious unique corresponding
set of nodes reach(R) consisting of the set-theoretic range of R plus the root
of the tree (we add the latter for convenience). And vice versa, each set X of
nodes induces a unique corresponding subrelation of the move relation rel(X)
consisting of all moves in the tree that end in X. Incidentally this suggests that
Theorem 6.3.4 can be slightly refined:

Theorem 6.4.5. The BI relation is definable in FO(LFP1).

Proof. We simply put

BI(x, y) = Move(x, y) ∧ [GFPX,y∃x(move(x, y) ∧
∧
i

(turni(x)→ ∀z(move(x, z)

→ ∃u∃v([TCzuMove(z, u) ∧X(u)](z, u) ∧ [TCyvMove(y, v) ∧X(v)](y, v)

∧end(u) ∧ end(v) ∧ u ≤i v))))](y)

With this simple connection, we can link the earlier approximation stages BIk

for Backward Induction (i.e., the successive relations computed by our earlier
procedure) and the stages of our public announcement procedure. They are in
harmony all the way:

Fact 6.4.6. For each k, in each game model M, BIk = rel((!rat′)k,M).

Proof. By induction on k. The base case is obvious: M is still the whole tree, and
the relation BI0 equals move. Next, consider the inductive step. If we announce
rat’ again, we remove all points reached by a move that is dominated for at least
one player. These are precisely the moves cancelled by the corresponding step of
the BI algorithm.

It follows also that, for each stage k,

reach(BIk) = ((!rat′)k,M).

Either way, we conclude that the earlier algorithmic fixed-point definition of the
BI procedure and van Benthem’s iterated announcement procedure amount to the
same thing. 15

Thus, one might say that the deliberation scenario is just a way of “conversa-
tionalizing” the underlying mathematical fixed-point computation. Still, it is of
interest in the following sense. Viewing a game tree as an epistemic model with
nodes as worlds, we see how repeated announcement of Rationality eventually
makes this property true throughout the remaining limit model: in this way, it
has made itself into common knowledge.

15We leave the technical question open to which extent this is a more general technical method
for switching between different types of predicate arities with fixed-points.

6.5. Another Dynamic Scenario: Beliefs and Iterated Plausibility Upgrade 129

6.5 Another Dynamic Scenario: Beliefs and

Iterated Plausibility Upgrade

Next, in addition to knowledge, consider the equally fundamental notion of be-
lief. Many foundational studies in game theory (cf. the extensive discussion and
references for belief-based game theory in [137]) view Rationality as choosing a
best action given what one believes about the current and future behavior of the
players. Indeed, this may be the most widely adopted view of game solution
in the epistemic foundations of game theory today. We will first state a logical
analysis of game solution in these terms, and then relate it to our earlier account
of Backward Induction.

Backward Induction in a soft light An appealing take on the BI strategy
in terms of beliefs uses “soft update” that does not eliminate worlds as above
for announcements !ϕ, but rearranges the plausibility order between worlds.16 A
typical example is the radical upgrade ⇑ ϕ that makes all current ϕ-worlds best,
and then puts all ¬ϕ-worlds underneath, while keeping the old ordering inside
these two zones. Now recall our earlier observation that Backward Induction
really creates expectations for players. All the essential information produced by
the algorithm is then in the binary plausibility relations that it creates inductively
for players among non terminal nodes in the game, standing for complete histories.
To see this, consider our running example once more:

Example 6.5.1 (The debatable BI outcome, hard and soft). The hard scenario
in terms of events !rat removes nodes x from the tree that are reached via moves
which are strictly dominated by moves to siblings of x as long as this can be done,
resulting in the following sequence of stages:

A

1, 0 E

0, 100 99, 99

A

1, 0 E

0, 100

A

1, 0 E

0, 100

By contrast, a soft scenario does not remove nodes but modifies the plausi-
bility relation. We start with all endpoints of the game tree incomparable (other
versions would have them equiplausible). Next, at each stage, we compare sibling
nodes, using this notion:

16This is a technique from current dynamic epistemic logics, where acts of knowledge update
and belief revision are represented by transformations on domains of models, or their plausibility
ordering of worlds. See [17], [9], [8] for some latest developments.

130 Chapter 6. Fixed-point Logics on Finite Extensive Games

Definition 6.5.2 (Rationality in beliefs). A move to a node x for player i domi-
nates a move to a sibling y of x in beliefs if the most plausible end nodes reachable
after x along any path in the whole game tree are all better for the active player
than all the most plausible end nodes reachable in the game after y. Rationality*
(rat∗) is the assertion that no player plays a move that is dominated in beliefs.

Now we perform a relation change that is like a radical upgrade ⇑ rat∗, except
that plausibility upgrades may take place in subtrees, and hence one needs to
work with submodels of the whole set of histories:

If a move to a node x dominates a move to a sibling y of x in beliefs, we make
all end nodes reachable from x more plausible than those reachable from y,
keeping the old order inside these zones.

This changes the plausibility order, and hence the dominance pattern, so that
belief statements can change their truth values – and a genuine iteration can
start. Here are the stages for this procedure in the above example, where we use
the letters x, y, z to stand for the end nodes or histories of the game:

A

1, 0 E

0, 100 99, 99

x y z

A

1, 0 E

0, 100 99, 99

x y > z

A

1, 0 E

0, 100 99, 99

x > y > z

In the first game tree, going right is not yet dominated in beliefs for A by
going left. rat∗ only has bite at E’s turn, and an upgrade takes place that makes
(0, 100) more plausible than (99, 99). After this upgrade, however, going right
has now become dominated in beliefs, and a new upgrade takes place, making
A’s going left most plausible.17

Here is a result stated without proof in [20]:

Theorem 6.5.3. On finite trees, the Backward Induction strategy is encoded in
the final plausibility order for end nodes created by iterated radical upgrade with
rationality in belief.

At the end of this procedure, players have acquired common belief in ratio-
nality. Let us now prove the result, using an idea from [10].

17Here the plausibility relation is defined over end nodes only. Another option would have
been to define it over all nodes in the tree (see [13]).

6.5. Another Dynamic Scenario: Beliefs and Iterated Plausibility Upgrade 131

Strategies as Special Plausibility Relations We present now in details a
set-theoretical transformation which allows to go back and forth between strate-
gies and plausibility relations in the case of finite extensive games. To do so, we
characterize plausibility orders as a special sort of linear order over leaves, which
satisfy a property that we call “tree compatibility”.

Let a be a node in a finite tree. A history containing a is a path along the
Move relation which contains a, starts from the root and ends at a leaf. We
denote by RL(a) the set of leaves reachable via a history containing a. Note that
every leaf in the tree determines a unique history (given a leaf, there is a unique
path starting from the root and ending at this leaf).

Definition 6.5.4 (Relational strategy). A relation Best on a finite game tree M
is a relational strategy whenever:

• Best ⊆Move

• every non-terminal node is in the Best relation with another node in the
tree, i.e., M |= ∀x(¬end(x)→ ∃yBest(x, y))

Some linear orders over leaves satisfy some special conditions which ground
their “equivalence” (in a sense to be shown below) with relational strategies. Such
linear orders satisfy a property that we call tree-compatibility.

Definition 6.5.5 (Ancestor-connected sets of leaves). Let A, B be two sets of
leaves in a finite tree. A and B are ancestor-connected if there exists a node x
with two children z and y such that the set of z-reachable leaves is exactly A and
the set of y-reachable leaves is exactly B.

Definition 6.5.6 (Tree-compatible linear order). Let � be a linear order on the
leaves of a finite tree. � is tree-compatible if for all ancestor-connected sets A, B
in the tree, either every leaf in A is below every leaf in B relative to �, or every
leaf in B is below every leaf in A relative to �.

As an example, there can be no criss-crossing as in the following tree:

•

•

x z

•

y u
with x < y < z < u

A very natural example of tree-compatible linear order in a finite tree is the
left-right order over its leaves.

The following simple lemma will be useful in the proof of Theorem 6.5.8. It
states that if one consider the set of least common ancestors of every two pairs of
leaves formed out of three leaves, it cannot contain more than two distinct nodes.

132 Chapter 6. Fixed-point Logics on Finite Extensive Games

Lemma 6.5.7. Let u, v, w be three leaves in a finite tree, a the least common
ancestor of u and v and a′ the least common ancestor of v and w. Then, consider
a′′, the least common ancestor of u and w. Then either a = a′ or a′ = a′′.

Proof. Consider the unique histories U , V determined respectively by u and v.
The two paths start together at the root and there is a unique point where they
diverge. This point is a, the least common ancestor of u and v. Then, consider
the unique history W determined by w. Similarly, W crosses V on the unique
point where they start to diverge, which is a′. Now there are two cases, either U
and W start to diverge after U and V do, or they start before. In the first case
a′ = a and in the second case, a′ = a′′.

We first show that each relational strategy BI induces a tree-compatible linear
order �Best on leaves as follows: x �Best y iff whenever y is reached via a Best
move from the least common-ancestor of x and y, then so is x.

Theorem 6.5.8 (From strategies to plausibility orders). Let Best be a relational
strategy and let �Best be the smallest binary relation on the leaves such that for
every (a, b) ∈Move, (a, c) ∈Move, u ∈ RL(b) and v ∈ RL(c):

• (a, c) /∈ Best implies u �Best v

• (a, c) ∈ Best implies v �Best u

The defined relation �Best is a tree-compatible linear order and we say that it
corresponds to Best.

Proof. Consider a relational strategy Best on a finite tree together with the cor-
responding relation �Best.

First assume that �Best is not total. Then there are two leaves u and v
which are not connected in �Best. Let a be their least common ancestor, b its
immediate successor on the path to u and c its immediate successor on the path
to v. Consider (a, b) and (a, c). There are four possible patterns as regards their
inclusion in Best. In each case, by the definition of �Best, u and v stand together
in the �Best relation.

Now assume �Best is not transitive. Then there are three leaves u, v, w such
that u �Best v, v �Best w and w ≺Best u. Let a be the least common ancestor of
u and v, b its immediate successor on the path to u and c its immediate successor
on the path to v. Let a′ be the least common ancestor of v and w, b′ its immediate
successor on the path to v and c′ its immediate successor on the path to w. Let
a′′ be the least common ancestor of u and w, b′′ its immediate successor on the
path to u and c′′ its immediate successor on the path to w. By definition of �Best,
the following holds:

• (a, c) /∈ Best or (a, b) ∈ Best

6.5. Another Dynamic Scenario: Beliefs and Iterated Plausibility Upgrade 133

• (a′, b′) ∈ Best or (a′, c′) /∈ Best

• (a′′, c′′) ∈ Best and (a′′, b′′) /∈ Best

Now we want to consider the least common ancestor of u, v and w. By Lemma
6.5.7, there are three cases. It could either be a, a′ or a′′. Without loss of
generality (the reasoning is similar in the two other cases), let us assume it is
a′′. Then, again by Lemma 6.5.7, there are two cases, either a′′ = a (and b′′ = b,
c′′ = c), i.e., it is also the least common ancestor of u and v, either a′′ = a′ (and
b′′ = b′, c′′ = c′), i.e., it is also the least common ancestor of v and w. Let us
assume the latter (again, the former case is similar). It follows that:

• (a′′, b′′) ∈ Best or (a′′, c′′) /∈ Best

• (a′, c′) ∈ Best and (a′, b′) /∈ Best

But this contradicts our assumptions.
Finally, assume �Best is not tree-compatible. So we can assume without loss

of generality that there are two ancestor-connected sets of leaves A and B, with
u1, u2 ∈ A and v1, v2 ∈ B such that u1 ≺Best v1 and v2 �Best u2. Let a be the
least common ancestor of the leaves in A and B, b its immediate successor on the
paths to the leaves in A and c its immediate successor on the paths to the leaves
in B. As u1 ≺Best v1, by construction of ≺Best, (a, b) ∈ Best and (a, c) /∈ Best.
Similarly, by construction of �Best, as v2 �Best u2, it follows that (a, b) /∈ Best,
which is a contradiction.

Now, conversely, any tree-compatible linear order � on leaves induces a rela-
tional strategy Best� defined by selecting just those available moves at a node
z that have the following property: their further available histories lead only to
�-minimal leaves in the total set of leaves that are reachable from z.

Theorem 6.5.9 (From plausibility orders to strategies). Let � be a tree-compatible
linear order on a finite tree and let Best� be the smallest binary relation on the
tree which satisfies the following: for every (a, b) ∈ Move, (a, b) ∈ Best� when-
ever there is a leaf u reachable from b such that for every leaf v reachable from a,
u � v. Then Best� is a relational strategy and we say that it corresponds to �.

Proof. Consider a tree-compatible linear order over leaves � on a finite tree to-
gether with the corresponding relational strategy Best�. It is immediate that
Best� ⊆ Move. Now suppose Best� is not a relational strategy, i.e., there is an
non-terminal node a which does not have any Best�-successor. By linearity of
�, there is a leaf u reachable from a such that for every leaf v reachable from a,
u � v. Consider now the immediate successor b of a on the history generated by
u. By construction of Best�, (a, b) ∈ Best�.

Theorem 6.5.10. Let ≤ be a tree-compatible linear order and Best≤ the corre-
sponding relational strategy. Then ≤=�Best≤.

134 Chapter 6. Fixed-point Logics on Finite Extensive Games

Proof. Let (u, v) ∈≤. Now let a be the least common ancestor of u and v and b
the immediate successor of a on the history determined by u. By construction of
Best≤, (a, b) ∈ Best≤ and by construction of �Best≤ , (u, v) ∈�Best≤ .

Let (u, v) ∈�Best≤ . Similarly, let a be the least common ancestor of u and v
and b the immediate successor of a on the history determined by u. By construc-
tion of Best≤, (a, b) ∈ Best≤ and (u, v) ∈≤.

Theorem 6.5.11. Let S be a relational strategy and �S the corresponding tree-
compatible linear order. Then S = Best�S .

Proof. Let (a, b) ∈ S. Then, by construction of �S, for every (a, c) ∈ Move,
u ∈ RL(b) and v ∈ RL(c), (a, c) /∈ S implies u �S v and (a, c) ∈ S implies
v �S u. By construction of Best�S , it follows that (a, b) ∈ Best�S .

Let (a, b) ∈ Best�S . Then, by construction of �S, for every (a, c) ∈ Move,
u ∈ RL(b) and v ∈ RL(c), (a, c) /∈ S implies u �S v and (a, c) ∈ S implies
v �S u. By construction of Best�S , it follows that (a, b) ∈ S.

Via Theorems 6.5.11 and 6.5.10, the following definition gives a precise mean-
ing to the assertion in [10] that “strategies are the same as plausibility relations”.

Definition 6.5.12. We say that a tree-compatible linear order � and a relational
strategy Best are equivalent whenever �=�Best, or, equivalently, Best� = Best.

Now we can relate the computation in our upgrade scenario for belief and
plausibility to the earlier relational algorithm for BI. Things are in harmony stage
by stage:

Fact 6.5.13. For any game tree M and any k, ((⇑ rat∗)k,M))Best = BIk.

Proof. The key point is as demonstrated in the earlier example of a stepwise BI
solution procedure. When computing a next approximation for the BI-relation
according to CF2, we drop those moves that are dominated by another available
one. But this has the same effect as making the leaves reachable from dominated
moves less plausible than those reachable from surviving moves. And that was
precisely the earlier upgrade step.

This structural equivalence also yields immediate matching syntactic trans-
formations as follows.

Proposition 6.5.14. Let Best be a relational strategy, the corresponding plausi-
bility relation �Best can be defined as follows:

y �Best z

6.5. Another Dynamic Scenario: Beliefs and Iterated Plausibility Upgrade 135

=

∃x(LCA(x, y, z)∧(∃w(Best(x,w)∧move∗(w, z))→ ∃w′(Best(x,w′)∧move∗(w′, y))))

where LCA(x, y, z) stands for “x is the least common ancestor of the leaves y
and z”:

LCA(x, y, z) = move∗(x, y) ∧move∗(x, z) ∧ end(y) ∧ end(z)∧

¬∃w(w 6= x ∧move∗(x,w) ∧move∗(w, y) ∧move∗(w, z))

Proof. This follows by analyzing the proof of Theorem 6.5.8.

Proposition 6.5.15. Let � be a tree-compatible linear order, the corresponding
relational strategy Best� can be defined as follows:

Best�(x, y) = move(x, y) ∧ ∃z(move∗(y, z) ∧ end(z) ∧ ∀z′

((end(z′) ∧move∗(x, z′))→ z � z′))

Proof. This follows by analyzing the proof of Theorem 6.5.9.

Note that whenever a relational strategy Best, or a plausibility order � are de-
finable in a logic L extending FO(TC1), then it follows from the syntactic transla-
tions given in Proposition 6.5.14 and 6.5.15 that �Best and Best� are respectively
also definable in L.

Theorem 6.5.16. The binary relation �BI is definable in FO(LFP1).

Proof. As BI is definable in FO(LFP1), it follows from Proposition 6.5.14 that:

y �BI z

=

∃x(LCA(x, y, z)∧ (∃w(BI(x,w)∧move∗(w, z))→ ∃w′(BI(x,w′)∧move∗(w′, y))))

Remark 6.5.17. Let us point out that Theorem 6.5.16 could also be shown
by providing a more direct definition in FO(LFP) as follows. For the sake of
readability, let us first introduce the following shorthand (RL(u, x) stands for x
is a leaf which is reachable from the node u):

RL(u, x) :≈Move∗(u, x) ∧ end(x)

Now we put:

136 Chapter 6. Fixed-point Logics on Finite Extensive Games

x �BI y

=

[GFPx,y,X
∨
i

∃z∃u∃v(Turni(z)∧Move(z, u)∧Move(z, v)∧RL(u, x)∧RL(v, y)∧

∃x1∃y1(RL(u, x1) ∧RL(v, y1)∧

∀x2(RL(u, x2)→ X(x1, x2))∧

∀y2(RL(v, y2)→ X(y1, y2))∧

y1 ≤i x1) ∨ (end(x) ∧ x = y)](x, y)

I.e, x �BI y whenever x and y respectively belong to two ancestor-connected
sets of leaves X and Y (which least common-ancestor is a turn for player i) such
that the most plausible leaf in X is better for i than the most plausible leaf in
Y . Recall that x �BI y iff whenever y is reached via a BI move from the least
common ancestor of x and y, then so is x. It follows that the relation defined
here is the intended �BI relation.

a

We conclude that the algorithmic analysis of Backward Induction and its
procedural doxastic analysis in terms of forming beliefs amount to the same thing.
Still, as with the iterated announcement scenario, the iterated upgrade scenario
also has some interesting features of its own. One is that, for logicians, it yields
fine-structure to the plausibility relations that are usually treated as primitives
in models for doxastic logic. Thus games provide an underpinning for possible
worlds semantics of belief that seems of interest per se.

6.6 Midway Conclusion: Dynamic Foundations

Extensional equivalence, intensional difference We have now seen how
three different approaches to analyzing Backward Induction turn out to amount
to the same thing. To us, this means that the notion is stable, and that, in
particular, its fixed-point definition can serve as a normal form. This motivates
taking a closer look at fixed-point logics for game solution. Of course, as we have
observed, extensionally equivalent definitions can still have interesting intensional
differences in terms of what they suggest. For instance, we see the above analysis
of strategy creation and plausibility change as one more concrete case study for
a general conceptual issue: the fact that agents’ beliefs and rational action are
deeply entangled in the conceptual foundations of decision and game theory.

6.7. Test Case: Variants of Backward Induction 137

Dynamic instead of static foundations for game theory As we also said
already, one key feature of our dynamic announcement and upgrade scenarios is
this. In the terms of [18], they are self-fulfilling : ending in non-empty largest sub-
models where players have common knowledge or common belief of rationality.18

19 Thus, this dynamic style of game analysis is a big change from the usual static
characterizations of Backward Induction in the epistemic foundations of game
theory. Common knowledge or belief of rationality is not assumed, but produced
by the logic.

6.7 Test Case: Variants of Backward Induction

We analyzed our standard BI relation and found a number of things: it is definable
in fixed-point logic, it can also be analyzed alternatively as a subset of nodes and
as a plausibility relation in tightly correlated ways. But are the preceding results
just special effects for the notion of Backward Induction chosen here? As a test
case, we will now look how all these themes work for the variant BI’ defined in
Section 6.2, where preference between sets of outcomes referred to ensuring a
greater minimal value:

Definition 6.7.1. BI’ is the largest subrelation of the move relation in a finite
game tree satisfying the two properties that (a) the relation has a successor at
each non terminal node, and (b) CF1 holds.20

It turns out that the ∀∀∀∃-type syntactic definition CF1 can no longer be used
for an immediate fixed-point definition of BI’ in FO(LFP). We would get

move(x, y) ∧
∧
i(turni(x)→ ∀u((end(u) ∧X∗(y, u))

→ ∀z(move(x, z)→ ∃v(end(v) ∧X∗(z, v) ∧ v ≤i u))))

where not all occurrences of the relation symbol X are positive. But there
are two alternative candidates for general fixed-point logics that can be used:
FO(PFP) and FO(IFP) (see Chapter 2). We will show how to do this.

6.7.1 Defining BI’ in Partial Fixed-Point Logic

For a start it will be easier to compute the fixed-point we are interested in using
FO(PFP). In FO(PFP) we usually focus on finite models (an extension of the

18We forego the issue of logical languages for explicitly defining the limit submodel.
19We also forego the further analysis of the limit behavior of upgrade actions on game models.

For general models, [9] finds some curious phenomena, such as plausibility cycles, and they
prove a general result stating when at least absolute beliefs stabilize in the limit. There are
interesting general issues of fixed-point definability for predicates in limit models of dynamic
epistemic procedures, that link up with our analysis. We leave this for further work.

20The fact that there is such a relation will follow from theorem 6.7.2.

138 Chapter 6. Fixed-point Logics on Finite Extensive Games

framework to infinite structures can be found in [97]) and we can consider fixed-
points of arbitrary formulas that are reached by a similar sequence of iteration
stages as in the case of FO(LFP). We saw in Chapter 2 that the only difference
is that the resulting operator is not necessarily monotone and hence, whenever a
fixed-point is reached, it does not necessarily correspond to the least fixed-point
of this operator. Additionally, whenever no fixed-point is reached, we simply
evaluate the corresponding formula as false.

Theorem 6.7.2. The relational BI’-strategy is definable in FO(PFP).

Proof. Now we can use CF1 and prefix it with a PFP -operator, or equivalently
(as we already noticed that each subrelation of the move relation has a unique
corresponding set of nodes), we can put:

BI′(x, y)

=

move(x, y) ∧ [PFPX,y∃x(move(x, y) ∧
∧
i

(turni(x)→ ∀z(move(x, z)→

∀u((end(u) ∧ [TCyumove(y, u) ∧X(u)](y, u)→

∃v(end(v) ∧ [TCzumove(z, u) ∧X(v)](z, v) ∧ v ≤i u))))](y)

In order to see that this formula defines a unique non-empty relation, let
us rewrite the subformula that is inside the fixed-point operator, using only the
non-reflexive counterpart TC+ of the transitive closure operator TC, so that the
variable X appears only in the scope of a TC+-operator:

∃x(move(x, y) ∧
∧
i

(turni(x)→ ∀z(move(x, z)→ (ϕ2 ∨ ϕ4 ∨ ϕ1 ∨ ϕ3))))

with

• ϕ1 := end(y) ∧ end(z) ∧ z ≤i y

• ϕ2 := ∀u((end(u) ∧ [TC+
yumove(y, u) ∧X(u)](y, u))→ (end(z) ∧ z ≤i u))

• ϕ3 := end(y) ∧ ∃v(end(v) ∧ [TC+
z,vmove(z, v) ∧X(v)](z, v) ∧ v ≤i y

• ϕ4 := ∀u(((end(u)∧ [TC+
y,u∧X(u)](y, u))→ ∃v(end(v)∧ [TC+

z,vmove(z, v)∧
X(v)](z, v) ∧ v ≤i u))

The essence of the argument is that at any stage k of the fixed-point iteration,
the computed set stabilizes at points whose siblings are along the child relation
at greatest distance ≤ k to a leaf. By “stabilizes at some set of points at stage
k” we mean that for every point in that set, the point belongs to the fixed-point

6.7. Test Case: Variants of Backward Induction 139

approximant at stage k if and only if it belongs to the fixed-point approximant
at every stage greater than k. At the first stage of the fixed-point iteration, the
formula ϕ1 (which does not contain any occurrence of X) determines once and for
all whether leaves that have only leaves siblings belong to the current and later
fixed-point approximants. Then, at stage k the same is similarly determined for
points whose siblings are along the child relation at greatest distance ≤ k to a
leaf. This is ensured by the syntactic shape of the formulas ϕ2, ϕ3 and ϕ4, in
which the variable X appears only in some restricted “guarded form” inside the
formula [TC+

yumove(y, u)∧X(u)](y, u), where u refers to a point which is strictly
lower down y or inside the formula [TC+

zumove(z, u)∧X(u)](y, u), where u refers
to a point which is strictly lower down a sibling z of y.

6.7.2 Defining BI’ in Inflationary Fixed-Point Logic

In the BI’ partial fixed-point computation of the previous section, nothing was
preventing nodes which were ruled out at some stage of the induction process to
reappear at a later stage, which could at first sight suggest that the process is
not inflationary. But Theorem 6.7.2 can still be refined and BI′ can be defined
in the computationally better-behaved logic FO(IFP) as an inflationary process.21

22 The trick there is to use a simultaneous fixed-point induction, explicitly using
an additional inductive “stable” predicate in order to progressively define the
stables elements which can be safely added to the fixed-point at each stage of
the computation. Note that this is a general idea (see for instance the use of
simultaneous modal fixed-point formulas in [16]). Let us also recall that allowing
simultaneous fixed-points does not increase the expressive power of FO(IFP) (see
Chapter 2).

Theorem 6.7.3. The relational BI’-strategy is definable in FO(IFP1).

Proof. We use a simultaneous fixed-point formula [IFP X : S](y), where:

S :=

{
Xy ← Φ(X, y) ∧ Y (x)

Y w ← Ψ(Y,w)

with:
Φ(X, y) := ∃x(move(x, y) ∧

∧
i

(turni(x)→ ∀z(move(x, z)→

21This is interesting, since [18] already observed how the limits of iterated public announce-
ment procedures on modal models are definable in FO(IFP), and in fact, usually in the modal
inflationary calculus, the extension of the modal µ-calculus by means of inflationary fixed-points
([49]).

22From the preceding fact, we can conclude (using [85], [98]) that there is an equivalent
definition for BI’ in FO(LFP) after all, though the latter may involve extra predicates, with a
computation no longer matching the natural stages of our algorithm.

140 Chapter 6. Fixed-point Logics on Finite Extensive Games

∀u((end(u) ∧ [TCyumove(y, u) ∧X(u)](y, u)→
∃v(end(v) ∧ [TCzumove(z, u) ∧X(v)](z, v) ∧ v ≤i u))))

and

Ψ(Y,w) := ∃x(move(x,w) ∧ end(w) ∧ ∀y(move(x, y)→ end(y))

∨
(∀y(move+(w, y)→ Y (y))∧

∃x(move(x,w) ∧ ∀z∀z′(move(x, z) ∧move+(z, z′)→ Y (z′))))

Φ(X, y) is exactly the formula of which we considered the partial fixed-point
in the proof of Theorem 6.7.2, whereas we use Ψ(Y,w) in order to ensure that
at any stage k of the fixed-point iteration, the fixed-point approximant can only
contain points whose siblings are along the child relation at greatest distance ≤ k
to a leaf (we noticed in the proof of Theorem 6.7.2 that these points are “stable”
at stage k). It follows that this formula is equivalent to the formula in the proof
of Theorem 6.7.2.

As in the case of BI, now that we have a definition of BI’, we can apply to it
the general syntactic translation in Proposition 6.5.14 and obtain a definition of
the associated plausibility order �BI′ .

Theorem 6.7.4. �BI′ is definable in FO(IFP1).

Proof. As BI’ is definable in FO(IFP1), it follows from Proposition 6.5.14 that:

y �BI′ z

=

∃x(LCA(x, y, z)∧(∃w(BI′(x,w)∧move∗(w, z))→ ∃w′(BI′(x,w′)∧move∗(w′, y))))

It is time to conclude our analysis. We have shown how BI’, our pilot example
of an alternative game solution procedure, can indeed be defined in fixed-point
logics of trees. We were even able to do this in different formalisms. 23

6.7.3 Alternative: Recursion on Well-Founded Tree Order

We have now given a definition of BI’ in standard fixed-point logics over general
models. But let us mention that an alternative take is also possible. One major
feature of game solution procedures like Backward Induction is their exploiting
the inductive structure of extensive games, via the well-founded tree dominance
order toward the leaves.24 Such orderings allow for recursive definitions that yield

23This raises the issue of which fixed-point language is most congenial to analyzing games,
something to which we return in later sections.

24But other recursions are possible, too. Both finite and infinite trees allow for recursive
definitions over the well-founded tree order in the opposite past direction toward the root.

6.7. Test Case: Variants of Backward Induction 141

uniqueness even without positive occurrence:

Example 6.7.5 (Fixed-points in modal provability logic ([30])). On finite trees,
any modal formula of the form p ↔ ϕ(p) where p occurs only “guarded” (that
is, in the scope of at least one modality) in the formula ϕ, defines a unique
proposition p. One proves this by induction on the well-founded tree order.25

This includes examples like the following:

Example 6.7.6 (Broader well-founded recursion). Consider the definition p ↔
¬2p. On a 3-nodes linear order

1 2 3

starting from any set as a value for p, this will stabilize with p = {2}. But it
is easy to see that an inflationary bottom-up procedure for this formula stops
in the pre-fixed point {1, 2}, and the deflationary top-down procedure stops in
the post-fixed point ∅. Neither of these is even a fixed-point. What one can see
more precisely in the straightforward approximation procedure, without forcing
increasing or decreasing sets, is this: starting the iteration from any initial set
will gradually get the predicate right, successively, at all nodes lying at increasing
height from the leaves.

Of course, our analysis for Backward Induction did not use these simple modal
languages, nor did it just use the simple tree dominance order. Still, by inspection
of our earlier formulas and arguments the following result is easily seen to hold.

Fact 6.7.7. Stated as an equivalence, the Rationality principles CF1 and CF2
both define a unique subrelation of the move relation by recursion on a well-
founded order on the nodes of finite trees: viz. the composition of the relations
sibling and dominance.

And this unique relation may also be computed for other versions which like
CF1 lack positive syntax but do descend along the well-founded order. One can
start with any subrelation of the move relation, and then compute according
to the given instruction. At any stage k, the range of the fixed-point relation
stabilizes at points whose siblings are along the child relation at a greatest distance
≤ k to a leaf.

Example 6.7.8 (Computing a fixed-point for CF1). Consider this game, with
values on leaves written as pairs (value for E, value for A):

25The result was originally shown for transitive conversely well-founded frames, but the same
argument applies to finite trees. Additionally, it is known as the de Jongh Sambien Theorem
that such fixed-points are modally definable.

142 Chapter 6. Fixed-point Logics on Finite Extensive Games

A

E

1, 1 4, 3

E

3, 2 3, 2 2, 3

Let R0 be the whole move relation. Then R1 is marked in black below:

A

E

1, 1 4, 3

E

3, 2 3, 2 2, 3

This still gets the fixed-point relation wrong at the root, but in the next stage we
get the stable solution:

A

E

1, 1 4, 3

E

3, 2 3, 2 2, 3

Remark 6.7.9 (Recursion over other well-founded orders than the sibling-dom-
inance order). Let us note that we could also have shown Theorem 6.7.4 by
providing a more direct definition of �BI′ in FO(IFP). We think this is interesting,
because it gives another example of well-founded order over finite trees than the
sibling-dominance order. As in Remark 6.5.17, we use the following shorthand:

RL(u, x) :≈Move∗(u, x) ∧ end(x)

Now we put x �BI′ y = [IFP X : S](x, y), where:

S :=

{
X(x, y)← Φ(X, Y, x, y)

Y (w)← Ψ(Y,w)

with:

Φ(X, x, y) :≈
∨
i

∃z∃u∃v(Turni(z) ∧ Y (z) ∧Move(z, u) ∧Move(z, v)∧

RL(u, x) ∧RL(v, y)∧

∀x1((RL(u, x1) ∧ ∀x2(RL(u, x2)→ X(x1, x2)))→

∃y1(RL(v, y1) ∧ ∀y2(RL(v, y2)→ X(y1, y2)) ∧ y1 ≤i x1)))

6.8. Excursion: Order-Conform Fixed-Point Logics 143

∨
(end(x) ∧ x = y)

and
Ψ(Y,w) :≈ end(w) ∨ ∀y(Move+(w, y)→ Y (y))

Φ(X, x, y) corresponds to the BI’ variant of the formula in Proposition 6.5.16.
Still, the different notion of preference encoded here entails that the first occur-
rence of the variable X is negative. Hence, as in the case of BI’, we need to rely
on a trick in order to use an inflationary fixed-point computation. The simultane-
ous fixed-point formula given above ensures via the formula Ψ(Y,w) that at any
stage k of the fixed-point iteration, the computed relation stabilizes for couples
of leaves which least common ancestor lies at maximal distance ≤ k to a leaf. To
illustrate it via a simple example, this amounts to assigning numbers to nodes in
the tree as follows:

3

0 2

0 1

0 0

Leaves are labeled 0 and nodes that are at a maximal distance n to a leaf are
labeled n, so in particular the root is labelled with the length of the maximal
path in the tree. On the tree pictured above for instance, the root is labelled 3.
Hence it is only decided at stage 3 of the induction whether the first child of the
root (which is a leaf) is more plausible or less plausible than all the other leaves
in the tree. a

In the next section, we will explore the idea of recursion exploiting the pres-
ence of well-founded tree orders further. We will introduce what we call “order-
conform” operators, and show how these fit with fixed-point definitions in a nat-
ural way. This material forms a digression from the main game-oriented line of
this chapter, which will be resumed in Section 6.9.

6.8 Excursion:

Order-Conform Fixed-Point Logics

The analysis in Section 6.7.3 suggests the introduction of a logical formalism
for games that can access the well-founded tree order directly.26 But we also

26Relevant proposals in the literature include the more general “non monotone inductive
definitions” of [54]. Such definitions need not have a fixed-point at all, even though some

144 Chapter 6. Fixed-point Logics on Finite Extensive Games

believe that a more abstract analysis of conditions under which such recursions
are successful could be interesting, not only from a game-theoretical point of
view, but also from a more general logical perspective. In this section, we give a
few preliminary definitions and easy results in this direction. We first introduce a
general notion of “order-conform” operator. Such operators have the particularity
to always yield a unique fixed-point. Then, we introduce and study some of the
basic properties of the ι-calculus, a simple modal fixed-point logic on finite trees
which extends the basic modal language with a unique fixed-point construct. The
analyses in this section abstract from the later analysis of game solution concepts
by first adopting a more general standpoint, where the object of interest are fixed-
point operators defined not necessarily over finite game trees, but over some given
class of finite structures. Then, as an example of a syntactically well-defined logic
allowing only order-conform fixed-point constructs, we turn to the case of the ι-
calculus, where we restrict attention to simple (i.e., without any preference order
over the leaves) finite tree structures.

6.8.1 Order-Conform Operators

We will adopt a wider perspective than before, as we do not restrict attention
to finite game trees and we are generally interested in recursion over some given
well-founded order (we will mention the idea in connection with infinite games in
Section 6.10). We will focus here for simplicity on finite structures. We will also
restrict to monadic fixed-points. First of all, we need this very basic notion:

Definition 6.8.1 (Ordered partition of a finite set). An ordered partition Π of
a finite set X is an ordered sequence

Π(X) = X1 < . . . < Xk

of non-empty pairwise disjoint subsets of X, whose union is X.

But then, we are not only interested in isolated finite sets, but rather in classes
of finite structures and in ways of ordering their domains. We formalize this using
the following notion.

Definition 6.8.2 (Ordered partition mapping). Let C be a class of finite struc-
tures. We call ordered partition mapping on C a mapping P which to every struc-
ture M ∈ C assigns an ordered partition P(M) = X1 < . . . < Xk of dom(M).

Now we can define abstractly what it means for an operator on the powerset
of the domain of structures in C to “go along some order”. Whenever we fix a
structure and try to compute a fixed-point for such an operator, from whichever
set we begin the computation with, the membership of points which are minimal

analysis of various conditions under which they correspond to a unique fixed-point is provided.

6.8. Excursion: Order-Conform Fixed-Point Logics 145

in the order will always be fixed in the same way at the first stage of the induction.
Moreover, this will be done once and for all (i.e., these points will remain either
inside or outside the set to be computed). Similarly, the membership of points
which are at some level n in the order will be fixed once and for all at stage n of
the induction.

Definition 6.8.3 (Order-conform operator). Let C be a class of finite structures
and F an operator on the powerset of the domain of the structures in C which
for every M ∈ C assigns to each set A ⊆ dom(M) a set F (A) ⊆ dom(M).

Assume F is such that there is an ordered partition mapping P which to each
M ∈ C assigns P(M) = X1 < . . . < Xk and for all A,A′ ⊆ dom(M), for all n

F n(A) ∩
⋃
i≤n

Xi = F n(A′) ∩
⋃
i≤n

Xi

then we call F an order-conform operator based on P .

We now have as immediate consequence of our definition.

Theorem 6.8.4. Order-conform operators always have a unique fixed-point.

Proof. Let Fϕ be an order-conform operator based on P on some class C. Now
let M ∈ C and consider P(M) = X1 < . . . < Xn. It is immediate that F n

ϕ (∅) is
a fixed-point of Fϕ. Now let Y and Y ′ be two fixed points of Fϕ, i.e., Fϕ(Y) =
Y and Fϕ(Y ′) = Y ′. As Fϕ is an order-conform operator, by definition 6.8.3,
F n
ϕ (Y) ∩

⋃
i≤nXi = F n

ϕ (Y ′) ∩
⋃
i≤nXi, i.e., Y ∩ dom(M) = Y ′ ∩ dom(M), i.e.,

Y = Y ′.

Let us now come back to operators that are yield by fixed-point logic formulas.
Sometimes, an FO(IFP)-formula always has a unique fixed-point on some given
class of structures, but we already noted that this fixed-point is generally not
definable as its inflationary fixed-point. Still, we can notice that whenever the
formula yields an order-conform operator, we can simply define this unique fixed-
point in FO(PFP) (as FO(IFP) formulas are translatable in FO(PFP)):

Proposition 6.8.5. Let Φ(X, x) be an FO(IFP)-formula and FΦ an order-conform
operator on some finite class of structures C, then the unique fixed-point of Φ on
C is definable in FO(PFP).

But jumping to FO(PFP) is not very satisfying and we would like to remain
whithin the expressive power of FO(IFP). Let us then restrict to cases where the
ordered partition mapping is definable in FO(IFP).

Definition 6.8.6 (FO(IFP)-definable partition mapping). Let σ be a relational
vocabulary, C a class of finite σ-structures and P an ordered partition mapping
on C such that there exists a total order ≤P on the domains of the structures in C
(with associated strict order <P) definable by an FO(IFP)-formula in vocabulary σ
and such that for every M ∈ C with P(M) = X1 < . . . < Xk, for every valuation
g on M:

146 Chapter 6. Fixed-point Logics on Finite Extensive Games

• X1 = {a|M, g[a/y] |= ¬∃x x <P y} is the set of minimal elements in <P

•
⋃
j≤i+1Xj = {a|M, g[a/y] |= ∀x(x <P y → x ∈

⋃
j≤iXj)}

then we say that P is an FO(IFP)-definable ordered partition mapping.

We do not address here the question of whether there are FO(IFP)-formulas
yielding order-conform operators (on some given class of structures) that are
based on non FO(IFP)-definable ordered partition mappings and we leave it open
for further investigations. We only make the following easy observation.

Theorem 6.8.7. Let Φ(X, x) be an FO(IFP)-formula in vocabulary σ such that
FΦ is an FO(IFP) order-conform operator on some class of finite σ-structures C.
Assume the ordered partition mapping on which FΦ is based is FO(IFP)-definable.
Then there exists an FO(IFP)-formula Ψ(x) such that

[PFPX,xΦ(X, x)FO(PFP)](x)↔ Ψ(x)

(where Φ(X, x)FO(PFP) is the translation of Φ in FO(PFP))

Proof. The idea is similar to the one in the proof of Theorem 6.7.3 and Ψ(x) can
be written as the following simultaneous fixed-point formula:

[IFP X : S](x)

with

S :=

{
Xx← Φ(X, x) ∧ Y (x)

Y y ← (¬∃x x <P y) ∨ ∀x(x <P y → Y (x))

In the system S, we use the formula (¬∃x x <P y) ∨ ∀x(x <P y → Y (x)) in
order to ensure that at any stage n of the fixed-point iteration, the fixed-point
approximant of [IFP X : S](x) can only contain points which are in

⋃
i≤nXi

where Xi is the ith set in the ordered sequence P(M) = X1 < . . . < Xk.

Now Theorem 6.8.7 gives a clean recipe to characterize non-positive variants
of BI in FO(IFP): it is enough to mimic the simultaneous fixed-point system in
the proof of Theorem 6.7.3. Only the way we define the set X will vary, but
we will keep the same formula to define the set Y , as the recursion will always
occurs along what we earlier identified as the “sibling dominance” order in the
tree. Note that other game-theoretic notions might also be definable in FO(IFP)
using the same idea, provided that the computation from which they arise be
similarly based on some FO(IFP)-definable order on the nodes of the tree.

One further question is whether we could find natural syntactic characteriza-
tions of FO(IFP)-formulas yielding order-conform operators, for instance in the
case of finite trees. The proof of Theorem 6.7.2 suggests a few patterns, but for
now we will leave the question open. Rather, we will temporarily forget about

6.8. Excursion: Order-Conform Fixed-Point Logics 147

the player’s preferences labeling the leaves of finite game trees and we will turn to
the case of modal fixed-point logics on plain finite trees. We view this excursion
as a first step towards an understanding of the underlying action structure of
prospective more elaborate fixed-point logics of finite game trees.

6.8.2 The Modal ι-Calculus

To show how order-conform formalisms make sense, we will briefly develop one
particular modal fixed-point logic over finite Kripke models based on finite tree
frames. While this system is clearly not rich enough to define the game solution
algorithms we had earlier, it serves as a nice pilot example of what might be
achieved with simple logical languages that exploit well-founded tree orders. We
call this logic the ι-calculus (Lι), by reference to Russell’s definite description
operator ιx, which is to be read as “the unique x such that”. Lι is a simple modal
logic on finite trees which extends the basic modal language with a fixed-point
operator which can be applied to formulas that are not necessarily positive but
which satisfy a syntactic condition of “guardedness” which ensures that they yield
order-conform operators. We show in particular that this logic has exactly the
same expressive power as the modal µ-calculus on finite trees. We will restrict
here to the class of finite trees Kripke-structures, i.e., finite Kripke structures
based on a frame which belongs to the class of finite tree frames T. The question
of the ι-calculus was first raised to us by Johan van Benthem.

Definition 6.8.8 (Lι). Let σ be a propositional signature, and let V = {x1, x2, . . .}
be a disjoint countably infinite stock of propositional variables. The set of Lι-
formulas in vocabulary σ is generated by the following inductive definition:

ϕ, ψ, ξ := At | > | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ♦ϕ | ιxi.ξ

where At ∈ σ∪V and in the last clause, xi occurs only guarded in ξ (i.e., within the
scope of a ♦-operator). The satisfaction relation is inductively defined between
Lι-formulas and pointed structures (T , V, w) where T ∈ T as in the case of the
µ-calculus using an auxiliary assignment to interpret formulas with free variables.
The only difference concerns the ι-operator and we interpret ιx.ϕ as the unique
fixed-point of the operator Fϕ.

The semantics is consistent, because of the following:

Lemma 6.8.9. Let ϕ(x) be a Lι-formula in which x is guarded, then ϕ(x) has a
unique fixed-point.

Proof. The proof is by induction on the number of nested fixed-point operators
in ϕ(x). We will show that Fϕ is an order-conform operator on finite trees based
on the following ordered partition mapping of the set of nodes:

148 Chapter 6. Fixed-point Logics on Finite Extensive Games

x ∈ Xi+1 iff x lies at maximal distance i to a leaf.

The lemma will follow by Theorem 6.8.4. For the base case, let us assume ϕ(x)
is purely modal (i.e., does not contain any ι-operator). Let M be a finite tree
Kripke structure, we will show by induction on n that for all A,A′ ⊆ dom(M),
for all n:

F n
ϕ (A) ∩

⋃
i≤n

Xi = F n
ϕ (A′) ∩

⋃
i≤n

Xi

The base case is n = 1, where X1 is the set of all leaves in the tree (i.e. nodes
which lie at maximal distance 0 to a leaf). As the variable x in ϕ is guarded, it
occurs only in the scope of at least one ♦-operator. Let a ∈ X1, the fact that
a ∈ Fϕ(A) or a ∈ Fϕ(A′) depends only on the fact that points that are lower
down a in the tree belong to A or A′ respectively, but points in X1 being only
leaves, there are no such points. Hence a ∈ Fϕ(A) if and only a ∈ Fϕ(A′) and:

Fϕ(A) ∩X1 = Fϕ(A′) ∩X1

Now assume the property holds for n, then the property follows for n + 1 by a
similar argument as in the base case. Let a ∈

⋃
i≤n+1 Xi, as the variable x in ϕ is

guarded, the fact that a ∈ F n+1
ϕ (A) or a ∈ F n+1

ϕ (A′) depends only on the fact that
points that are lower down a in the tree belong to F n

ϕ (A) or F n
ϕ (A′) respectively.

By induction hypothesis, for every such point b, b ∈ F n
ϕ (A)∩

⋃
i≤nXi if and only

if b ∈ F n
ϕ (A′) ∩

⋃
i≤nXi. Hence a ∈ F n+1

ϕ (A) if and only if a ∈ F n+1
ϕ (A′) and:

F n+1
ϕ (A) ∩

⋃
i≤n+1

Xi = F n+1
ϕ (A′) ∩

⋃
i≤n+1

Xi

The inductive case for more complex formulas ϕ(x) containing nested ι-operators
is similar.

Let us point out here that the argument used in the proof of Lemma 6.8.9 is
similar to the one used in order to show the fixed-point lemma of provability logic
(see [30]), recalled in Example 6.7.5. Note that provability logic interprets basic
modal formulas on Kripke structures based on “transitive conversely well-founded
frames”, whereas we considered here finite trees. But we can simulate formulas
of provability logic on finite trees in Lι by considering the transitive closure of
the 2-operator of Lι. Hence the fact recalled in Example 6.7.5 also follows from
Lemma 6.8.9.

Now let us recall a result which immediately implies that the ι-calculus extends
the µ-calculus on finite trees. We first need the general notion of guardedness for
a modal fixed-point formula (by modal fixed-point formula we mean a formula in
a logic extending basic modal logic with a fixed-point operator):

6.8. Excursion: Order-Conform Fixed-Point Logics 149

Definition 6.8.10. A modal fixed-point formula is guarded, if all propositional
variables that are bound by and thus occur in the scope of a fixed-point operator
are also in the scope of a modality that is itself in the scope of the fixed-point
operator.

Proposition 6.8.11 ([99]). Every formula of the µ-calculus is equivalent to a
guarded formula.

We will now show that Lι and Lµ have exactly the same expressive power on
finite trees. Moreover, we show that for every Lι-formula there is an effective
procedure which computes a Lµ-formula which is equivalent on finite trees, and
vice versa.

Theorem 6.8.12. The ι-calculus and the µ-calculus on finite trees are effectively
equi-expressive.

Proof. The fact that the ι-calculus extends the µ-calculus on finite trees follows
from Proposition 6.8.11 because the ι-operator being a unique fixed-point op-
erator, it can equivalently be replaced by a µ-operator whenever it is prefixed
to a positive formula (whenever a formula has a unique fixed-point, then this
fixed-point is also its least fixed-point). Hence, for every guarded formula ϕ of
the µ-calculus there exists a formula of the ι-calculus which is equivalent to ϕ on
finite trees (simply replace every µ-operator in ϕ by a ι-operator). But using the
Janin Walukiewicz Theorem ([91], see Chapter 2), one can even refine this inclu-
sion. It is immediate that on finite trees the ι-calculus is contained in the partial
iteration calculus MPC (see Chapter 2), which is bisimulation-invariant (see [97]
and Chapter 2), so it is also bisimulation-invariant. Note that the bisimulation-
invariance of Lι also follows from the fact that there is a recursive procedure
which transforms any Lι-formula ϕ into a MIC-formula ϕMIC which is equivalent
to ϕ on finite trees. We can define the procedure by induction on the complexity
of ϕ. The only interesting clause is ιx.ϕMIC(x) := (ifp x : S) where:

S :=

{
x← ϕMIC(x) ∧ y
y ← 2⊥ ∨2y

Moreover, the ι-calculus can be embedded in MSO. This can be shown by in-
duction on the complexity of Lι-formulas using a standard translation argument
(see Chapter 2) where the new clause is STx(ιxi.ϕ(xi)) = ∃Xi((∀y(STy(ϕ(xi))↔
Xi(y))∧Xi(x)). The result then follows by the Janin Walukiewicz Theorem (see
Theorem 2.2.13 in Chapter 2), which says that, in particular on finite trees, every
bisimulation-invariant logic which is contained in MSO is also contained in the µ-
calculus. Moreover, from the fact that the translation from bisimulation-invariant
MSO-formulas to Lµ-formulas given by Theorem 2.2.13 is effective, it follows that
the translation from Lι-formulas to Lµ-formulas is effective.

150 Chapter 6. Fixed-point Logics on Finite Extensive Games

Corollary 6.8.13. Lι is decidable.

Proof. To determine whether a Lι-formula is satisfied in a finite tree model, first
translate it in MSO, then construct an equivalent finite tree automata and check
for emptiness of the language of the automata. For details on the relation in
between finite tree automata and MSO-formulas on finite trees, see [127].

Let us now list a few questions. First, it would be interesting to look at the
details of the translation procedure obtained in Theorem 6.8.12 via the Janin
Walukiewicz Theorem. As it involves translations in MSO, it is likely that there
might be more direct and efficient translation procedures. This question is closely
related to the issue of the possible greater succinctness of Lι as compared to the
µ-calculus on finite trees27, which we leave here as an open problem. Another
question is the following. Consideration of the proof used in [40] in order to show
the completeness of the µ-calculus on finite trees strongly suggests that a complete
axiomatization of Lι could easily be obtainable using a similar method. We leave
the details of this question for further work. Then, it would also be interesting to
determine more precisely general syntactic conditions satisfied by MIC formulas
for which there is a Lι-formula which is equivalent on finite trees. Such a criteria
would allow to isolate a fragment of MIC which would be decidable on finite trees
(remember that we noted in Chapter 2 that MIC is undecidable already on finite
words). Also note that the decidability of Lι immediately implies that the set of
guarded MPC-formulas is decidable on finite trees.

Finally, let us conclude this section by saying that we hope our analysis of
game solution concepts can also feed back to general fixed-point logics by raising
logical questions that are of interest per se. One such question concerns logics
featuring recursion along a well-founded order definable in structures of some
given class; as a starting point for exploring the direction, we believe the simple
modal ι-calculus introduced in the present section would deserve to be explored
further.

6.9 Towards Well-Behaved Fixed-Point Logics

on Finite Extensive Games

After our excursions into order-conform fixed-point logics on trees, we return to
the main line of this chapter: defining solution concepts for games in the sense
of game theory. Actually, we will not develop further theory here, but confine
ourselves to raising a few key questions which arise at once.

27For the notion of compared succinctness of logics which have the same expressive power on
a given class of structures, in particular on finite trees, we refer to [79] and [78].

6.9. Towards Well-Behaved Fixed-Point Logics on Finite Extensive Games 151

Finding suitable fragments Of course, game solution procedures need not use
the full power of logical languages that can define recursive procedures. Thus,
there is a question which fragments are needed in our analysis. It might make
sense to look at decidable fragments such as the modal µ-calculus - and indeed,
[18] points out how the latter suffices, e.g., for defining the game solutions needed
for Zermelo’s Theorem. This may look too poor, since we often want to define
relations on trees, and not just unary predicates. But we have already seen how
subsets of the move relation are encoded by unary predicates, so a lot can be done
in this way. Still, the intriguing issue is this. Crucially, game solution intertwines
two different relations on trees: the move relation and the preference relations for
players on endpoints. And the question is what happens to the known properties
of computational logics when we add such preference relations. In particular, the
following intriguing issue then arises.

Potential problem: the complexity of rationality In logics of action and
knowledge, it is well-known that apparently harmless assumptions such as Per-
fect Recall for agents make the bimodal logic undecidable, and sometimes even
Π1

1-complete ([86]). The reason is that these assumptions generate commuting
diagrams for actions move and epistemic uncertainty ∼ satisfying a “confluence”
property of the form

∀x∀y((move(x, y) ∧ y ∼ z)→ ∃u(x ∼ u ∧move(u, z))

that can serve as the basic grid cells in encodings of Tiling Problems in the logic.
Thus, the logical theory of games with players that have perfect memory is more
complex than that of forgetful agents ([24]).

But now consider the non-epistemic property of Rationality that mixes action
and preference. The earlier properties CF1, CF2 have a similar flavor: they express
the existence of a confluence diagram involving action and preference links. For
instance, CF1 said this:

∀x∀y((turni(x) ∧ σ(x, y))→ ∀z(move(x, z)
→ ∀u((end(u) ∧ σ∗(y, u))→ ∃v(end(v) ∧ σ∗(z, v) ∧ v ≤i u))))

So, what is the complexity of fixed-point logics for players with this kind of
behavior? Can it be that Rationality, a widely used property meant to make
behavior simple and predictable, actually makes its logical theory complex? Con-
crete instances of this open problem arise once we fix a sufficiently expressive
logical language over trees.28

28Model-checking complexity and definability on finite trees. Balder ten Cate has reminded
us of the potential use of descriptive complexity theory ([90]) for studying finite games. First,
checking for game solutions is related to model checking logical formulas, say, stating the in-
tended effects of players strategies. As an example, since both FO(LFP) and FO(IFP) capture
PTIME on finite models (given an enumeration order on the tree), it should be close to defining

152 Chapter 6. Fixed-point Logics on Finite Extensive Games

The Gist of it all: Modal Logics of Best Action We have made a plea
for analyzing game solution procedures explicitly in rich logics. This follows
the program of making strategies explicit advocated in [19]. But while this is
useful in some cases, there is also the opposite direction of judiciously hiding
information about the machinery of strategies when it is not needed. In practical
reasoning, we are often only interested in our best actions without all details
of their justification. Game solution procedures take a model with actions and
preferences, and then compute a new relation of best action. As a mathematical
abstraction, it would be good to extract a simple surface logic (a small modal
fragment of complex fixed-point logics) for reasoning with best actions, while
hiding most of the machinery:

Open problem Can we axiomatize the modal logic of finite game trees with a
move relation and its transitive closure, turns and preference relations for players,
and a new relation best as computed by Backward Induction?

We conjecture that we get a simple modal logic for the moves (these exist)
plus a basic preference logic, while the modality 〈best〉 satisfies some obvious base
laws plus one major bridge axiom that we already encountered earlier:29

Fact 6.9.1. The following modal axiom corresponds to CF2 by standard tech-
niques:

(turni ∧ 〈best〉[best∗](end→ p))→ [move]〈best∗〉(end ∧ 〈prefi〉p)

In this concrete setting, the earlier problem returns that the Rationality as-
sumption built into this logic may be a grid property leading to undecidability.
Is the modal logic of best action decidable?30

6.10 Further Issues in Extended Game Logics

In addition to the definability issues that we solved so far, game logics raise some
other questions and there are many further lines for investigation following up
on our stray observations. For instance, we want a more general view of possible

all “testable” properties of games. And other results in descriptive complexity theory may be
game-theoretically relevant as well.

29[113] has some related thoughts on “logics of solved games”.
30In our earlier analysis of Backward Induction, we look at either shrinking game trees, or

smaller sets of “best moves” as the recursive procedure unfolds. This suggest that the logic of
best moves may need a further modality: not just the above “absolute best” given the game
as it is, but also “relative best” given some constraint on the set of nodes or moves considered.
(This is similar to having conditional belief as a basic notion in doxastic logics.) If this is right,
we may need in order to get completeness more operators than just the one shown in Fact 6.9.1.

6.10. Further Issues in Extended Game Logics 153

representation languages, and on the notions of set preference that determine the
dominance relation defining rationality. More generally, it would be of interest
to connect our style of analysis for game solution more systematically with that
found in epistemic game theory (c.f. [115], [52], [137]), where epistemic models
are added describing what players know or believe about the course of the game.

In addition, some extensions to the games themselves seem natural:

Infinite games Can we extend our analysis to deal with infinite games? A
transition to infinite ordinal sequences is easy to add to our iterated announce-
ment or upgrade scenarios. Also, our general fixed-point definitions still make
sense in this setting, though the special recursion over a well-founded tree domi-
nance relation is no longer available. But there may be more to this generalization.
Typically, in infinite trees, the reasoning changes direction, from “backward” to
“forward”. Here is an illustration:

Example 6.10.1 (Weak Determinacy). The following principle holds in all infi-
nite game trees, for any condition ϕ on histories:

If player E has no strategy forcing ϕ at some stage s of the game,
then A has a strategy for achieving a set of runs from s during all of
which E never has a strategy forcing ϕ for the remaining game from
then on.

In the notation of temporal game logics with forcing modalities {}, this says

{E}ϕ ∨ {A}G¬{E}ϕ

Here the reasoning is a typical inverse of Backward Induction. Suppose that
¬{E}ϕ. A’s strategy then arises as follows. If E is to move, then no successor
available to her can guarantee a win, since she has no winning strategy now - and
so A can just “wait and see”. If A is to move, then there must be at least one
possible move leading to a state where E has no winning strategy: otherwise, E
has a winning strategy right now after all. Continuing this way, A is bound to
produce runs of the kind described.31

How would our earlier analysis extend to a setting like this, where infinite
histories themselves are the outcomes of the game, and players try to achieve
global properties of these?

31This argument has a co-algebraic flavor, cf. [132], that we do not pursue here.

154 Chapter 6. Fixed-point Logics on Finite Extensive Games

Dynamics in games with imperfect information Moreover, many if not
most games have imperfect information, with uncertainties for players where they
are in the game tree. Think of card games, or other games with restricted obser-
vation. Can’t our analysis be extended to this area, where in general, Backward
Induction no longer works? We merely illustrate the task ahead with two simple
scenarios for the reader to ponder:

Example 6.10.2 (Strategic reasoning in imperfect information games). In the
following games, outcome values are written in the order (“A-value, E-value”):

A

E

1, 1 0, 0

E

0, 1 2, 0

0, 1

E

A

2, 2 E

A

3, 2 1, 0

A

0, 1 2, 2

A

32

The game to the left seems a straightforward extension of techniques for re-
moving dominated moves, but that to the right raises tricky issues of what A
would be telling E by moving right. We leave the question what should or will
happen in both games to the reader: [52], [137] have more discussion.33

Language design and game equivalence As a final perspective, we mention
that the choice of a best language for games is also correlated with the choice
of an optimal notion of structural equivalence between games ([13]). The richer
the equivalence, the stronger the language needed to capture its invariant prop-
erties. The options for languages that we have discussed here may also reflect
the fact that there is no consensus yet on what such a structural notion of game
equivalence should be. 34

6.11 Coda: Alternatives to Backward Induction

and True Game Dynamics

Our discussion in this chapter is basically complete, but we feel that we should
mention one more issue that has received quite some attention in the literature

32The tree to the right is adapted from an example in an invited lecture by Robert Stalnaker
at the Gloriclass Farewell Event, ILLC Amsterdam, January 2010.

33Further challenges to our analysis include equilibria with coalitions of players, and simul-
taneous moves. Nothing in our logics prevent this: it has just not been done yet.

34[13] proposes notions of game bisimulation where back and forth moves occur only when
there is a switch of turns between players. This seems similar to the notion of “stuttering”
encountered in Chapter 4 and 5, but we leave this analogy to further research.

6.11. Coda: Alternatives to Backward Induction and True Game Dynamics 155

(cf. [25]). It has been claimed that the very reasoning underlying Backward In-
duction, our hitherto unproblematic running example of a game solution method,
is incoherent:

The paradox of Backward Induction

Example 6.11.1 (The “Paradox of Backward Induction”). Recall the style of
reasoning toward a Backward Induction solution, as in:

A

x
1, 0

E

y
0, 5

A

z
6, 4

u
5, 5

Backward Induction tells us that A will go left at the start, on the basis of
logical reasoning that is available to both players. But then, if A plays right
(see the black line) what should E conclude? Does not this mean that A is not
following the BI reasoning, and that all bets are off as to what he will do later on
in the game? It seems that the very basis for the above computation collapses.

Responses to this conceptual difficulty vary - and many authors doubt that
there is a genuine paradox here. The characterization result of [6] assumes that
players know that rationality prevails throughout, something that [119] calls “ra-
tionality no matter what”, a stubborn unshakable belief that players will act
rationally later on, even if they have not done so up until now.35 [10] essentially
take the same tack, deriving the BI strategy from an assumption of “stable true
belief” in Rationality, a gentler form of stubbornness stated in terms of dynamic-
epistemic logic.

Logics of actions, preference, and agent types Personally, we are more
inclined toward another analysis, in line with [125]. A richer game analysis should
add an account of the types of agent that play a game. In particular, we need
to represent the belief revision policies by the players, that determine what they
will do when making a surprising observation contradicting their beliefs in the
course of a game. There are many different options for such policies in the above
example, such as

- “It was just an error, and A will go back to being rational”,

35One can defend this by assuming that the other player only makes isolated “mistakes”.

156 Chapter 6. Fixed-point Logics on Finite Extensive Games

- “A is inviting me to go right, and I will be rewarded for that”,

- “A is an automaton with a general rightward tendency”, and so on . . . 36

Our logical analysis so far omits this type of information about players of the
game, since our algorithms make implicit uniform assumptions about what they
are going to do as the game proceeds.

Belief revision policies are not an explicit part of our models so far. Thus,
our fixed-point logics tell only a limited story. Eventually, we may need a richer
mathematical model for game solution, that can also deal with the dynamics of
how players update knowledge and revise beliefs as a game proceeds.

6.12 Conclusion

We have shown how standard logical fixed-point languages can define game solu-
tion procedures and their resulting relations of “best action”. We think that this
is a good format for more general studies of game-theoretic notions, including
finding alternatives to currently received views. But also, we hope to have shown
that the game arena poses interesting problems for existing logics of computation,
as one adds further structure that is typical for agents: preference, information,
and eventually, even “processing types” for agents. All these contacts may even-
tually lead to legitimate children of logic and game theory. The chapter has
mainly analyzed Backward Induction as a key to seeing how fixed-point logics
can be used for game solution. From a logical perspective, the issue is now how
to continue, what are the most useful fixed-point logics in the wide array that
we have brought to bear and how expressive would be interesting well-behaved
(in particular, axiomatizable) fragments of such logics. At the moment, we find
it hard to choose, though we do think that both general fixed-point logics and
special logics exploiting well-founded relations in trees make sense. We intend
to investigate further game solution concepts to get a better sense which of the
logics used in this chapter will stand the test of game-theoretic generalization.

36One reaction to these surprise events might even be a switch to an entirely new reasoning
style about the game. That might require more finely-grained syntax-based views of revision.

Chapter 7

Conclusion

In this thesis we studied model-theoretic and proof-theoretic aspects of widely
used logics on trees, including fixed-point extensions of first-order logic and linear-
time temporal logic and µ-calculus.

In Chapter 2, we gave an overview of the area by presenting the different
classes of structures and logics that we consider in the thesis. We discussed the
issues of expressive power, decidability and complete axiomatization.

In Chapter 3 we presented complete axiomatizations for MSO, FO(TC1) and
FO(LFP1) on finite node-labelled sibling-ordered trees. In order to prove com-
pleteness, we developed model-theoretic tools specifically geared towards Henkin
models. We believe that these tools are of independent interest. Indeed, since
the original publication of the results, both our axiomatizations and our proof
techniques have been applied in other settings, namely in the context of coalition
logic [27] and of the µ-calculus [40].

In Chapter 4, we essentially identified LTL(X), µTL and µTL(U) as the three
only temporal fragments of µTL that satisfy Craig interpolation (moreover, they
satisfy uniform interpolation). In this sense, our results singled out these three
temporal logics as being exceptionally well-behaved. On finite and ω-words, µTL
and µTL(U) have the same expressive power as MSO and its stutter-invariant
fragment (with respect to initial semantics), and therefore these results can also be
seen as identifying fragments of MSO that satisfy uniform interpolation on words.
Well-behaved logics on trees are often characterized with respect to the trade-off
that they provide between expressive power and complexity, but interpolation
deserves to be explored further, as it is another interesting criteria to compare
and classify these logics. In particular, extending our results to the case of MSO
on trees and branching-time temporal logics is an interesting challenge.

In Chapter 5, we gave a complete axiom system for µTL(U), which was iden-
tified in the previous chapter as one of the three fragments of µTL with Craig
interpolation, and which, it appears, has not been studied before. The results we
gave were obtained through µTL(♦Γ), a new logic that has the same expressive

157

158 Chapter 7. Conclusion

power as µTL(U), but which is syntactically extremely close to µTL. We believe
that µTL(♦Γ) could be reused as a tool to easily transfer results from µTL to
µTL(U) and to other logics characterizing the stutter-invariant fragment of MSO
on words.

In Chapter 6, we turned to an important special case of tree structures: finite
extensive games with perfect information. Such games are finite trees enriched
with additional relations representing the preferences of players. We showed how
various fixed-point logics can define standard solution concepts from game theory
while staying faithful to the underlying solution procedures. More generally, by
making a link with current dynamic-epistemic logics of knowledge update and
plausibility change, we showed how this approach can provide “dynamic founda-
tions” for game analysis that supplement the usual style of thinking. In doing
all this, we also studied fixed-point logics that exploited the special well-founded
orders available in game trees. In addition, we touched upon the issue of the
complexity of such logics, since one wants to know how the expressive power
needed for game solution balances with the potential undecidability of trees with
additional structure beyond the successor order. Finally, we identified a great
number of further issues that arise when we take our fixed-point logic perspective
to more sophisticated parts of game theory.

To conclude, let us emphasize a few general points and questions related to
fixed-point logics on trees that became more visible through the results obtained
in this thesis. First of all, the search for well-behaved systems appears as a re-
curring theme. Various criteria for identifying them were studied: expressivity,
decidability, axiomatization, interpolation and, in connection with games, proce-
dural aspects. Secondly, a general back and forth between modal and first-order
languages also characterized the perspective adopted in the thesis. As we ex-
plained in Chapter 2, this is a distinctive feature of the landscape of fixed-point
logics on trees. Indeed, as we mentioned above, the work described in Chapter 3
has inspired further work in modal logic [27, 40], whereas the results in Chapter
4 and 5, while formulated mostly in modal terms, shed light on well-behaved
fragments of MSO. For instance, we identified µTL(U) as the stutter-invariant
fragment of µTL, which is also the stutter-invariant fragment of MSO on words.
Chapter 6 explicitly dealt with both modal and quantified logics. The issue of
finding a balance between expressive power and complexity was especially high-
lighted, as the additional preference or knowledge structure carried by game trees
typically increase complexity and call for the identification of well-behaved modal
fragments of the usual logics on trees. As a final note, let us mention that similar
issues are being addressed in the context of XML query languages, where one also
need to add rich additional features to basic tree structures. Finite trees indeed
serve as the standard theoretical abstraction of XML documents, but in this con-
text it is often important to enriching the trees with additional “data structure”
consisting of data values from an infinite alphabet, and enriching the logics with

159

means to compare the data values associated to different nodes of a tree. This
increases complexity dramatically, and FO is for instance no longer decidable on
such structures. Some work has been done in order to identify decidable frag-
ments of usual logics on such enriched tree structures, also known as data trees
(see in particular [28, 65]). It might be interesting to take inspiration from the re-
sults obtained in this area in order to characterize interesting decidable fragments
of fixed-point logics on finite extensive game trees.

Bibliography

[1] Loredana Afanasiev and Balder ten Cate. On Core XPath with Inflationary
Fixed-Points. Proceedings of FICS 2009, 2009.

[2] Eyal Amir and Sheila A. McIlraith. Partition-based logical reasoning for
first-order and propositional theories. Artif. Intell., 162(1-2):49–88, 2005.

[3] Carlos Areces and Maarten de Rijke. Interpolation and bisimulation in
temporal logic. In Ruy J. Guerra B. de Queiroz and Marcelo Finger, editors,
Proceedings of WoLLIC’98, pages 15–21, 1998.

[4] Andre Arnold. Finite Transition Systems: Semantics of Communicating
Systems. Prentice Hall, 1994.

[5] André Arnold and Damian Niwinski. Rudiments of µ-Calculus, volume 146
of Studies in Logic and Foundations of Mathematics. North-Holland, 2001.

[6] Robert Aumann. Backward induction and common knowledge of rational-
ity. Games and Economic Behavior, 8:6–19, 1995.

[7] Rolf Backofen, James Rogers, and Krishnamurti Vijay-Shankar. A First-
Order Axiomatization of the Theory of Finite Trees. Journal of Logic,
Language and Information, 4(4):5–39, 1995.

[8] Alexandru Baltag and Sonja Smets. Conditional Doxastic Models: A Qual-
itative Approach to Dynamic Belief Revision. Electr. Notes Theor. Comput.
Sci., 165:5–21, 2006.

[9] Alexandru Baltag and Sonja Smets. Group belief dynamics under iterated
revision: Fixed points and cycles of joint upgrades. Proceedings of TARK
2009, pages 41–50, 2009.

161

162 BIBLIOGRAPHY

[10] Alexandru Baltag, Sonja Smets, and Jonathan Zvesper. Keep “hoping”
for rationality: A solution to the backward induction paradox. Synthese,
169(2):301–333, 2009.

[11] Pablo Barceló and Leonid Libkin. Temporal Logics over Unranked Trees.
In LICS, pages 31–40, 2005.

[12] John Barwise and Solomon Feferman. Model-Theoretic Logics. Springer,
New York, 1985.

[13] Johan van Benthem. Extensive Games as Process Models. Journal of Logic,
Language and Information, 11(3):289–313, June 2002.

[14] Johan van Benthem. Games in dynamic epistemic logic. Bulletin of Eco-
nomic Research, 53(4):219–248, 2002.

[15] Johan van Benthem. Minimal predicates, fixed-points, and definability.
Journal of Symbolic Logic, 70(3):696–712, 2005.

[16] Johan van Benthem. Modal Frame Correspondences and Fixed-Points.
Studia Logica, 83(1):133–155, 2006.

[17] Johan van Benthem. Dynamic logic of belief revision. Journal of Applied
Non-Classical Logics, 17(2):129–155, 2007.

[18] Johan van Benthem. Rational Dynamics and Epistemic Logic in Games.
International Game Theory Review (IGTR), 09(01):13–45, 2007.

[19] Johan van Benthem. In praise of strategies. to appear in J. van Eijck and R.
Verbrugge, eds., Games, Actions and Social Software, College Publications,
London, 2008.

[20] Johan van Benthem. The logic of rational agency. Invited Lecture, Third
Indian ICLA Winter School, Chennai, 2009.

[21] Johan van Benthem. Logical Dynamics of Information and Interaction.
Cambridge University Press, Cambridge, 2010.

[22] Johan van Benthem and Amélie Gheerbrant. Game Solution, Epistemic
Dynamics and Fixed-Point Logics. Fundam. Inform., 100(1-4):19–41, 2010.

[23] Johan van Benthem, Sieuwert van Otterloo, and Olivier Roy. Modality
Matters: Twenty-Five Essays in Honour of Krister Segerberg, volume 53 of
Philosophical Studies, chapter Preference Logic, Conditionals, and Solution
Concepts in Games. Lagerlund, Lindstrm and Sliwinski, Uppsala, 2006.

[24] Johan van Benthem and Eric Pacuit. The tree of knowledge in action.
Proceedings Advances in Modal Logic, pages 87–106, 2006.

BIBLIOGRAPHY 163

[25] Cristina Bicchieri and Oliver Schulte. Common Reasoning about Admissi-
bility. Erkenntnis, 45:229–325, 1997.

[26] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-
bridge University Press, Cambridge, 2000.

[27] Guido Boella, Dov M. Gabbay, Valerio Genovese, and Leendert van der
Torre. Higher-order coalition logic. In ECAI, pages 555–560, 2010.

[28] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and
Claire David. Two-Variable Logic on Words with Data. In LICS, pages
7–16, 2006.

[29] Giacommo Bonanno. The logic of rational play in games of perfect infor-
mation. Economics and Philosophy, 7:37–65, 1991.

[30] George Boolos. The Logic of Provability. Cambridge University Press,
Cambridge, 1993.

[31] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision
Problem. Universitext. Springer, Berlin, Heidelberg, New York, 1997.

[32] Uwe Bosse. An “Ehrenfeucht-Fräıssé game” for fixpoint logic and stratified
fixpoint logic. In CSL ’92: Selected Papers from the Workshop on Computer
Science Logic, pages 100–114, London, UK, 1993. Springer-Verlag.

[33] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Charac-
terizing Finite Kripke Structures in Propositional Temporal Logic. Theor.
Comput. Sci., 59:115–131, 1988.

[34] Véronique Bruyère and Olivier Carton. Automata on linear orderings. J.
Comput. System Sci., 73(1):1–24, 2007.

[35] J. Richard Büchi. Weak Second-Order Arithmetics and Finite Automata.
Z. Math. Logik Grundl. Math., 6:66–92, 1960.

[36] J. Richard Büchi and Dirk Siefkes. Decidable Theories: Vol. 2: The
Monadic Second Order Theory of All Countable Ordinals. Lectures Notes
in Mathematics. Springer, Berlin, Heidelberg, 1973.

[37] John P. Burgess. Axioms for tense logic. I. “Since” and “Until”. Notre
Dame J. Formal Logic, 23(4):367–374, 1982.

[38] A. Calo and Johann A. Makowsky. The Ehrenfeucht-Fräıssé games for
transitive closure. Lecture Notes in Computer Science, 620:57–68, 1992.

[39] Balder ten Cate. Model Theory for Extended Modal Languages. PhD thesis,
University of Amsterdam, 2005.

164 BIBLIOGRAPHY

[40] Balder ten Cate and Gaëlle Fontaine. An Easy Completeness Proof for the
Modal µ-Calculus on Finite Trees. In FOSSACS, pages 161–175, 2010.

[41] Balder ten Cate and Maarten Marx. Axiomatizing the Logical Core of
XPath 2.0. In ICDT, pages 134–148, 2007.

[42] Alonzo Church. A Note on the Entscheidungsproblem. The Journal of
Symbolic Logic, 1(1):Mar., 40-41 1936.

[43] Alonzo Church. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58(2):345–363, Apr. 1936.

[44] William Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory. Journal of Symbolic Logic, 22(3):269–285,
1957.

[45] Giovanna D’Agostino. Interpolation in non-classical logics. Synthese,
164(3):421–435, 2008.

[46] Giovanna D’Agostino and Marco Hollenberg. Logical Questions Concerning
the µ-Calculus: Interpolation, Lyndon and Lós-Tarski. Journal of Symbolic
Logic, 65(1):310–332, 2000.

[47] Max Dauchet and Sophie Tison. The Theory of Ground Rewrite Systems
is Decidable. In LICS, pages 242–248, 1990.

[48] Anuj Dawar. A Restricted Second-Order Logic for Finite Structures. Inf.
Comput., 143(2):154–174, 1998.

[49] Anuj Dawar, Erich Grädel, and Stephan Kreutzer. Inflationary Fixed-
Points in Modal Logic. ACM Transactions on Computational Logic, 5:282–
315, 2004.

[50] Christian Dax, Felix Klaedtke, and Stefan Leue. Specification Languages
for Stutter-Invariant Regular Properties. In ATVA, pages 244–254, 2009.

[51] Boudewijn de Bruin. Explaining Games: on the Logic of Game Theoretic
Explanations. PhD thesis, ILLC, University of Amsterdam, 2004.

[52] Cédric Dégremont. The Temporal Mind. Observations on the Logic of Belief
Change in Interactive Systems. PhD thesis, ILLC, University of Amster-
dam, 2010.

[53] Stéphane Demri and Philippe Schnoebelen. The Complexity of Proposi-
tional Linear Temporal Logics in Simple Cases. Information and Compu-
tation, 174(20):84–103, 2002.

BIBLIOGRAPHY 165

[54] Marc Denecker and Eugenia Ternovska. A Logic of Nonmonotone Inductive
Definitions. ACM Trans. Comput. Logic, 9(2):1–52, 2008.

[55] Wiebe van der Hoek and Marc Pauly. Handbook of Modal Logic, chapter
Modal Logic for Games and Information, pages 1077–1148. Elsevier (add
editors), Amsterdam, 2006.

[56] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic-
Epistemic Logic. Cambridge University Press, Cambridge, 2007.

[57] Kees Doets. Completeness and Definability : Applications of the Ehren-
feucht Game in Second-Order and Intensional Logic. PhD thesis, Univer-
siteit van Amsterdam, 1987.

[58] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Perspectives
in Mathematical Logic. Springer-Verlag, Berlin, 1995.

[59] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, pages 995–1072.
Elsevier, 1990.

[60] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic
Press, New York, NY, USA, 1972.

[61] Kousha Etessami. Stutter-Invariant Languages, omega-Automata, and
Temporal Logic. In Nicolas Halbwachs and Doron Peled, editors, Proceed-
ings of CAV, pages 236–248, London, UK, 1999. Springer-Verlag.

[62] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-Order Logic
with Two Variables and Unary Temporal Logic. In LICS, pages 228–235,
1997.

[63] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On Monadic
NP vs. Monadic co-NP (Extended Abstract). In Structure in Complexity
Theory Conference, pages 19–30, 1993.

[64] Solomon Feferman and Robert Vaught. The first-order properties of alge-
braic systems. Fundamenta Mathematicae, 47:57–103, 1959.

[65] Diego Figueira. Satisfiability of downward XPath with data equality tests.
In PODS, pages 197–206, 2009.

[66] Gaëlle Fontaine and Thomas Place. Frame definability for classes of trees
in the µ-calculus. In MFCS, pages 381–392, 2010.

166 BIBLIOGRAPHY

[67] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
Temporal Analysis of Fairness. Proceedings of the 7th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 163–
173, 1980.

[68] John Geanakoplos and Herakles Polemarchakis. We Can’t Disagree Forever.
Journal of Economic Theory, 28:192–200, 1982.

[69] Amélie Gheerbrant. Complete Axiomatization of the Stutter Invariant Frag-
ment of the Linear-Time µ-Calculus. to appear in the proceedings of AiML
2010, 2010.

[70] Amélie Gheerbrant and Balder ten Cate. Complete Axiomatizations of
MSO, FO(TC1) and FO(LFP1) on Finite Trees. In LFCS, pages 180–196,
2009.

[71] Amélie Gheerbrant and Balder ten Cate. Craig Interpolation for Linear
Temporal Languages. In CSL, pages 287–301, 2009.

[72] Rob J. van Glabbeek. The Linear Time - Branching Time Spectrum (Ex-
tended Abstract). In CONCUR, pages 278–297, 1990.

[73] Rob J. van Glabbeek. The Linear Time - Branching Time Spectrum II. In
CONCUR, pages 66–81, 1993.

[74] Kurt Gödel. Über eine bisher noch nicht benüzte erweiterung des finiten
standpunktes. Dialectica, 12:280287, 1958.

[75] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive
power of languages for web information extraction. In Proceedings of PODS
2002, pages 17–28, 2002.

[76] Erich Grädel. On Transitive Closure Logic. In CSL ’91: Proceedings of the
5th Workshop on Computer Science Logic, pages 149–163, London, UK,
1992. Springer-Verlag.

[77] Martin Grohe. The Structure of Fixed-Point Logics. PhD thesis, University
of Freiburg, 1994.

[78] Martin Grohe and Nicole Schweikardt. Comparing the succinctness of
monadic query languages over finite trees. ITA, 38(4):343–373, 2004.

[79] Martin Grohe and Nicole Schweikardt. The succinctness of first-order logic
on linear orders. Logical Methods in Computer Science, 1(1), 2005.

[80] Jan Friso Groote and Frits W. Vaandrager. An Efficient Algorithm for
Branching Bisimulation and Stuttering Equivalence. In ICALP, pages 626–
638, 1990.

BIBLIOGRAPHY 167

[81] Ron Gross. Invariance under Stuttering in Branching-Time Temporal Logic.
Master’s thesis, Israel Institute of Technology, Haifa, 2008.

[82] Yuri Gurevich. Elementary Properties of Oredered Abelian Groups (Rus-
sian). Algebra i Logika, 3(1):5–39, 1964.

[83] Yuri Gurevich. Elementary Properties of Oredered Abelian Groups. Amer-
ican Mathematical Society Translations, 46(1):165–192, 1965.

[84] Yuri Gurevich. Model-Theoretic Logics, chapter Chapter XIII: Monadic
Second-Order Theories, pages 479–506. Springer-Verlag, New York, NY,
USA, 1985.

[85] Yuri Gurevich and Saharon Shelah. Fixed-Point Extensions of First-Order
Logic. Annals of Pure and Applied Logic, 32:265–280, 1986.

[86] Joseph Halpern and Moshe Vardi. The Complexity of Reasoning about
Knowledge and Time, I: lower bounds. Journal of Computer and System
Sciences, 38(1):195–237, 1989.

[87] Paul Harrenstein. Logic in Conflict. PhD thesis, Institute of Computer
Science, University of Utrecht, 2004.

[88] Leon Henkin. Completeness in the Theory of Types. The Journal of Sym-
bolic Logic, 15(2):81–91, 1950.

[89] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press,
New York, NY, USA, 1997.

[90] Neil Immermann. Descriptive Complexity. Springer, Berlin, 1999.

[91] David Janin and Igor Walukiewicz. On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic. In
CONCUR, pages 263–277, 1996.

[92] Roope Kaivola. Using Automata to Characterise Fixed-Point Temporal
Logics. PhD thesis, University of Edinburgh, 1997.

[93] Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
UCLA, Los Angeles, 1968.

[94] Jerome Keisler. Logic with the quantifier “there exists uncountably many”.
An. Math. Logic, 1:1–93, 1970.

[95] Stephan Kepser. Querying Linguistic Treebanks with Monadic Second-
Order Logic in Linear Time. J. of Logic, Lang. and Inf., 13(4):457–470,
2004.

168 BIBLIOGRAPHY

[96] Stephan Kepser. Properties of Binary Transitive Closure Logic over Trees.
In Giorgio Satta Paola Monachesi, Gerald Penn and Shuly Wintner, editors,
Formal Grammar 2006, pages 77–89, 2006.

[97] Stephan Kreutzer. Pure and Applied Fixed-Point Logics. PhD thesis, Uni-
versity of Aachen, 2002.

[98] Stephan Kreutzer. Expressive Equivalence of Least and Inflationary Fixed-
Point Logic. Annals of Pure and Applied Logic, 130(1–3):61–78, 2004.

[99] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. J. ACM, 47(2):312–
360, 2000.

[100] Grégory Lafitte and Jacques Mazoyer. Théorie des modèles et complexité.
Technical report, Ecole Normale Supérieure de Lyon, septembre 1998.

[101] Leslie Lamport. What Good is Temporal Logic? In R. E. A. Mason,
editor, Proceedings of the IFIP 9th World Computer Congress, pages 657–
668. North-Holland/IFIP, 1983.

[102] Hans Lauchli and Christian Savioz. Monadic Second Order Definable Re-
lations on the Binary Tree. J. Symb. Log., 52(1), 1987.

[103] Gerard R. Renardel de Lavalette. Interpolation in computing science: the
semantics of modularization. Synthese, 164(3):437–450, 2008.

[104] Leonid Libkin. Elements of Finite Model Theory (Texts in Theoretical Com-
puter Science. An Eatcs Series). SpringerVerlag, 2004.

[105] Fenrong Liu. Changing for the Better, Preference Dynamics and Agent
Diversity. PhD thesis, Illc, University of Amsterdam, 2008.

[106] Johann A. Makowsky. Algorithmic uses of the Feferman Vaught Theorem.
Annals of Pure and Applied Logic, 126(1–3):159–213, 2004.

[107] Larissa Maksimova. Temporal logics with “the next” operator do not
have interpolation or the Beth property. Siberian Mathematical Journal,
32(6):989–993, 1991.

[108] Maŕıa Manzano. Extensions of First Order Logic. Cambridge University
Press, New York, NY, USA, 1996.

[109] Oliver Matz and Nicole Schweikardt. Expressive power of monadic logics on
words, trees, pictures, and graphs. In Erich Grädel Jörg Flum and Thomas
Wilke, editors, Logic and Automata: History and Perspectives, pages 531–
552. Texts in Logic and Games, Amsterdam University Press, 2007.

BIBLIOGRAPHY 169

[110] Louise E. Moser, P. M. Melliar-Smith, G. Kutty, and Y. S. Ramakrishna.
Completeness and Soundness of Axiomatizations for Temporal Logics with-
out Next. Fundamenta Informatica, 21(4):257–305, 1994.

[111] Damian Niwinski. Fixed Points vs. Infinite Generation. In Proceedings of
LICS, pages 402–409, 1988.

[112] Martin Osborne and Ariel Rubinstein. A Course in Game Theory. The
MIT Press, Cambridge (Mass.), 1994.

[113] Sieuwert van Otterloo. A Strategic Analysis of Multi-Agent Protocols. PhD
thesis, ILLC, Amsterdam, 2005.

[114] Eric Pacuit and Olivier Roy. Interactive Rationality. Lectures Notes, Uni-
versity of Groningen and University of Tilburg, 2010.

[115] Eric Pacuit and Olivier Roy. Interactive Rationality. Lecture Notes, De-
partments of Philosophy, University of Groningen and University of Tilburg,
2010.

[116] Doron Peled and Thomas Wilke. Stutter-Invariant Temporal Properties
are Expressible Without the Next-Time Operator. Inf. Process. Lett.,
63(5):243–246, 1997.

[117] Alexander Moshe Rabinovich. Expressive Completeness of Temporal Logic
of Action. In MFCS, pages 229–238, 1998.

[118] James Rogers. Descriptive Approach to Language-Theoretic Complexity.
CSLI Publications, Stanford, CA, USA, 1998.

[119] Dov Samet. Counterfactuals in Wonderland. Games and Economic Behav-
ior, 51(2):537–541, 1997.

[120] Nicole Schweikardt. On the Expressive Power of Monadic Least Fixed-Point
Logic. In ICALP, pages 1123–1135, 2004.

[121] Krister Segerberg. Modal logics with functional alternative relations. Notre
Dame Journal of Formal Logic, 27(4):504–522, 1986.

[122] Reinhard Selten. Spieltheoretische Behandlung eines Oligopolmodells mit
Nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft, 121:301–
324, 1965.

[123] Reinhard Selten. Reexamination of the Perfectness Concept for Equilibrium
Points in Extensive Games. International Journal of Game Theory, 4:25–
55, 1975.

170 BIBLIOGRAPHY

[124] Dirk Siefkes. An Axiom System for the Weak Monadic Second Order Theory
of Two Successors. Israel Journal of Mathematics, 30(3):264–284, 1978.

[125] Robert Stalnaker. Extensive and Strategic Form: Games and Models for
Games. research in Economics, 53:293–319, 1999.

[126] Balder ten Cate and Luc Segoufin. Transitive closure logic, nested tree
walking automata, and XPath. J. ACM, 57(3), 2010.

[127] Wolfgang Thomas. Handbook of formal languages, vol. 3: beyond words,
chapter Languages, automata, and logic, pages 389–455. Springer-Verlag,
New York, NY, USA, 1997.

[128] Hans-Jörg Tiede and Stephan Kepser. Monadic Second-Order Logic and
Transitive Closure Logics over Trees. Electron. Notes Theor. Comput. Sci.,
165:189–199, 2006.

[129] Alan Turing. On computable problems, with an application to the entschei-
dungsproblem. Proc. of the London Math. Soc., 42:230–265, 1937.

[130] Moshe Y. Vardi. A Temporal Fixpoint Calculus. In Proceedings of POPL,
pages 250–259, 1988.

[131] Moshe Y. Vardi. From Philosophical to Industrial Logics. In ICLA, pages
89–115, 2009.

[132] Yde Venema. Algebras and coalgebras. In P. Blackburn, F. Wolter, and
J. van Benthem, editors, Handbook of Modal Logic, pages 331–426. Elsevier,
2006.

[133] Igor Walukiewicz. A Note on the Completeness of Kozen’s Axiomatization
of the Propositional µ-Calculus. The Bulletin of Symbolic Logic, 2(3), 1996.

[134] Thomas Wilke. Classifying Discrete Temporal Properties. In STACS, pages
32–46, 1999.

[135] G. H. von Wright. The Logic of Preference. Edinburgh University Press,
Edinburgh, 1963.

[136] Charles Zaiontz. Axiomatization of the Monadic Theory of Ordinals < ω2.
Mathematical Logic Quarterly, 29(6):337–356, 1983.

[137] Jonathan Zvesper. Playing with Information. PhD thesis, ILLC, University
of Amsterdam, 2010.

Samenvatting

In dit proefschrift bestuderen we bewijstheoretische en modeltheoretische as-
pecten van enkele veelgebruikte modale en gekwantificeerde dekpuntlogica’s op
bomen.

Hoofdstuk 2 behandelt basisprincipes van modale logica, temporele logica,
dekpunt logica, en enkele eerste-orde en hogere-orde logica’s over boomstructuren.

In hoofdstuk 3 beschouwen we eindige bomen, met labels op knopen, en een
ordening op directe opvolgers. We presenteren axiomatisaties van de bijhorende
theorieën: monadische tweede-orde logica (MSO), monadische transitieve afsluit-
ingslogica (FO(TC1)) en de monadische kleinste dekpuntlogica (FO(LFP1)). Via
modeltheoretische technieken tonen we met een uniform argument aan dat deze
axiomatisaties volledig zijn. Met andere woorden, elke formule die waar is op alle
bomen kan bewezen worden met behulp van de gegeven axioma’s.

In hoofdstuk 4 bestuderen we tal van fragmenten en uitbreidingen van propo-
sitionele temporele logica (LTL). Deze fragmenten zijn gedefinieerd door ofwel de
toegestane temporele operatoren te beperken, ofwel door toevoegen van klein-
ste dekpuntoperatoren aan de taal. Voor elk van deze fragmenten identificeren
we de kleinste uitbreiding die de Craig interpolatie eigenschap heeft. We doen
dit met techieken uit de abstracte modeltheorie. Afhankelijk van de toegelaten
temporele operatoren verkrijgen we op deze manier drie logica’s: het fragment
van LTL met slechts de “Next” operator, de uitbreiding van LTL met een klein-
ste dekpuntoperator µ (beter bekend als de lineaire-tijd µ-calculus), en tenslotte
µTL, de uitbreiding met een kleinste dekpuntoperator van het fragment van LTL
dat slechts de “Until” operator bevat.

In hoofdstuk 5 concentreren we ons vervolgens op de logica µTL(U). Dit
fragment werd in het vorige hoofdstuk gëıdentificeerd als het stotter-invariante
fragment van de lineare-tijd µ-calculus µTL. Daarenboven was dit fragment één
van de drie temporele fragmenten van µTL die aan de Craig interpolatie eigen-
schap voldoet. Hoewel een volledige axiomatisatie voor de twee andere frag-
menten reeds bekend is, is dit niet het geval voor µTL(U). Daarom geven we

171

172 Samenvatting

volledige axiomatisaties voor µTL(U) op zowel de klasse van eindige woorden als
de klasse van ω-woorden. Hiertoe introduceren we een nieuwe temporele log-
ica, µTL(♦Γ), een variant van µTL waarin de “Next” operator vervangen is door
de corresponderende familie van stotter-invariante operatoren. Deze logica heeft
dezelfde uitdrukkingskracht als µTL(U). Gebruikmakende van reeds bekende re-
sultaten over µTL, tonen we eerst de volledigheid aan van µTL(♦Γ), waaruit dan
de vo! lledigheid van µTL(U) wordt verkregen.

Tenslotte brengen we in hoofdstuk 6 onze analysemethoden, gebruikmak-
end van modale en temporele dekpuntlogica’s, over naar de speltheorie. De
huidige oplossingsmethoden voor spelen bevatten een vorm van “procedurele ra-
tionaliteit” en deze vraagt om een logische analyse op zichzelf. Meer in het bi-
jzonder bestudeert dit hoofdstuk de speciale casus van “Terugwaartse Inductie”
voor extensieve spelen. We analyzeren een aantal recente versies van dit algoritme
in termen van kennis en geloofsherziening in logica’s die tevens voorkeuren van
spelers kunnen beschrijven. We tonen aan dat elk van deze analyses wiskundig
equivalent is vanuit het oogpunt van dekpuntlogica’s op bomen. We generaliseren
het aldus ontstane perspectief op spelen tot een exploratie van dekpuntlogica’s op
eindige bomen die het best passen bij speltheoretische evenwichtsbegrippen. We
besluiten het hoofdstuk met een meer algemeen onderzoeksprogramma dat ten
doel heeft een synthese te vormen tussen! computationele logica’s en speltheorie.

Abstract

In this thesis, we study proof-theoretic and model-theoretic aspects of some widely
used modal and quantified fixed-point logics on trees.

Chapter 2 includes basics of modal logic, temporal logic, fixed-point logics,
and some first-order and higher-order logics of tree structures.

In Chapter 3, we consider the class of finite node-labelled sibling-ordered trees.
We present axiomatizations of its monadic second-order logic (MSO), monadic
transitive closure logic (FO(TC1)) and monadic least fixed-point logic (FO(LFP1))
theories. Using model-theoretic techniques, we show by a uniform argument that
these axiomatizations are complete, i.e., each formula which is valid on all finite
trees is provable using our axioms.

In Chapter 4 we consider various fragments and extensions of propositional
linear temporal logic (LTL), obtained by restricting the set of temporal connec-
tives or by adding a least fixed-point construct to the language. Using techniques
from abstract model-theory, for each of these logics we identify its smallest exten-
sion that has Craig interpolation. Depending on the underlying set of temporal
operators, this framework turns out to be one of the following three logics: the
fragment of LTL having only the Next operator; the extension of LTL with a least
fixed-point operator µ (known as linear time µ-calculus); and µTL(U), the least
fixed-point extension of the “Until-only” fragment of LTL.

In Chapter 5, we focus on the logic µTL(U), that we identified in the previous
chapter as the stutter-invariant fragment of the linear-time µ-calculus µTL. We
also identified this logic as one of the three only temporal fragments of µTL
that satisfy Craig interpolation. Complete axiom systems were known for the
two other fragments, but this was not the case for µTL(U). We provide complete
axiomatizations of µTL(U) on the class of finite words and on the class of ω-
words. For this purpose, we introduce a new logic µTL(♦Γ), a variation of µTL
where the “Next time” operator is replaced by the family of its stutter-invariant
counterparts. This logic has exactly the same expressive power as µTL(U). Using
known results for µTL, we first prove completeness for µTL(♦Γ), which then allows

173

174 Abstract

us to obtain completeness for µTL(U).
Finally, in Chapter 6 we take our style of analysis via modal and temporal

fixed-point logics to games. Current methods for solving games embody a form
of “procedural rationality” that invites logical analysis in its own right. This
chapter is a case study of Backward Induction for extensive games. We consider
a number of analyses from recent years in terms of knowledge and belief update
in logics that also involve preference structure, and we prove that they are all
mathematically equivalent in the perspective of fixed-point logics of trees. We
then generalize our perspective on games to an exploration of fixed-point logics
on finite trees that best fit game-theoretic equilibria. We end with a broader
program for merging computational logics to the area of game theory.

Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and Neu-
ropharmacology

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software

ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics

ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory

ILLC DS-2002-05: Rosella Gennari
Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen
A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi
Knowledge, chance, and change

ILLC DS-2003-02: Elisabeth Catherine Brouwer
Imagining Metaphors: Cognitive Representation in Interpretation and Under-
standing

ILLC DS-2003-03: Juan Heguiabehere
Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz
From Document Retrieval to Question Answering

ILLC DS-2004-01: Hein Philipp Röhrig
Quantum Query Complexity and Distributed Computing

ILLC DS-2004-02: Sebastian Brand
Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin
Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate
Model theory for extended modal languages

ILLC DS-2005-02: Willem-Jan van Hoeve
Operations Research Techniques in Constraint Programming

ILLC DS-2005-03: Rosja Mastop
What can you do? Imperative mood in Semantic Theory

ILLC DS-2005-04: Anna Pilatova
A User’s Guide to Proper names: Their Pragmatics and Semanics

ILLC DS-2005-05: Sieuwert van Otterloo
A Strategic Analysis of Multi-agent Protocols

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical
music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity, and
Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity

ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuroscience

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language, literacy
and logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Algebra and Topology. Investigations into canonical extensions, duality theory
and point-free topology.

