
Complexity in Interaction

Lena Kurzen





Complexity in Interaction



ILLC Dissertation Series DS–2011–10

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 904
1098 XH Amsterdam

phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/



Complexity in Interaction

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op vrijdag 18 november 2011, te 13.00 uur

door

Lena Maria Kurzen

geboren te Mettingen, Duitsland.



Promotiecommissie

Promotor:
Prof.dr. J.F.A.K. van Benthem

Co-promotor:
Prof.dr. P. van Emde Boas

Overige leden:
Prof.dr. P.W. Adriaans
Prof.dr. K.R. Apt
Dr. A. Baltag
Prof.dr. W. van der Hoek
Dr. C. Löding
Dr. M.E.J. Raijmakers
Dr.ir. J.W.H.M. Uiterwijk

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam
Science Park 904
1098 XH Amsterdam

The investigations were supported by the Dutch Research Organization for
Scientific Research (NWO), TACTICS project, grant number 612.000.525.

Copyright c� 2011 by Lena Kurzen

Printed and bound by Ponsen en Looijen B.V., Wageningen.

ISBN: 978–90–5776–232–1



Contents

Acknowledgments vii

1 Introduction 1
1.1 Modal logics for interaction – the basics . . . . . . . . . . . . . . 2
1.2 The basics of computational complexity . . . . . . . . . . . . . . 10
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Complexity of Reasoning about Strategic Ability using
Modal Logic 25

2 Reasoning about Cooperation, Actions and Preferences 27
2.1 Cooperation, Actions and Preferences . . . . . . . . . . . . . . . 28
2.2 Cooperation Logic with Actions (CLA) . . . . . . . . . . . . . . . 29
2.3 Cooperation Logic with Actions and Preferences . . . . . . . . . 33
2.4 Complexity of CLA+P . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Conclusions and Further Questions . . . . . . . . . . . . . . . . . 47

3 Complexity of Modal Logics for Cooperation 51
3.1 Reasoning about efficiency and stability in modal logics . . . . . 52
3.2 Three ways of modeling cooperation . . . . . . . . . . . . . . . . 53
3.3 Comparing modal logics for cooperation . . . . . . . . . . . . . 67
3.4 Conclusions and Further Questions . . . . . . . . . . . . . . . . . 85

II Complexity in the Interaction between Diverse Agents 93

4 Variations on Sabotage – Obstruction and Cooperation 95
4.1 Sabotage Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 From Obstruction to Cooperation . . . . . . . . . . . . . . . . . . 105
4.3 Allowing breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

v



4.4 Conclusions and Further Questions . . . . . . . . . . . . . . . . . 125

5 Exploring the Tractability Border in Epistemic Tasks 131
5.1 From the Complexity of Epistemic Logics to the Complexity of

Epistemic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Complexity of comparing and manipulating information . . . . 135
5.3 Conclusions and Further Questions . . . . . . . . . . . . . . . . . 154

6 The Complexity of Playing Eleusis 165
6.1 Eleusis: an inductive inference game . . . . . . . . . . . . . . . . 166
6.2 Eleusis: The rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3 Complexities in Eleusis . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4 Conclusions and Further Questions . . . . . . . . . . . . . . . . . 185

7 Conclusion 189
7.1 Summary of the chapters . . . . . . . . . . . . . . . . . . . . . . . 189
7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Bibliography 199

Index 211

Samenvatting 217

Abstract 219

vi



Acknowledgments

Writing this thesis would not have been possible, let alone enjoyable, for me
without the help and support of many people. In this section, I would like to
express my gratitude to them.

First and foremost, I would like to thank my supervisors Johan van Benthem
and Peter van Emde Boas for all their support throughout the last four years.
I could benefit a lot from their experience in supervising PhD students and
making sure that somehow things will work out in the end.

I am very grateful to Johan for sharing his never-ending enthusiasm about
logic and (un)related topics with me and for always directing me to interesting
topics and people to work with. Even while constantly traveling to other
continents, he managed to still seem to always have time for discussions and
for giving me useful feedback on my work. I am especially grateful to him for
even supporting me in exploring some topics only loosely related to the topic
of my PhD project.

I would like to thank Peter for all his help and practical advise. Irrespectively
of the topics that I had some questions about, he would magically retrieve
highly relevant articles from some decades ago (that I would have never found
otherwise) from the depth of his personal library. I am very impressed by
his ability to find flaws at high speed, even when hidden in small details.
Sometimes, when I had given him a draft of my work, almost at the same
moment he would return a list of mistakes and clarifying questions.

Thanks also to Johan and Peter for their joint efforts in turning my attempt
at writing a ‘samenvatting’ into proper Dutch.

I am extremely grateful to the members of my thesis committee, Pieter Adri-
aans, Krzysztof Apt, Alexandru Baltag, Wiebe van der Hoek, Christof Löding,
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I am grateful to Kai-Uwe Kühnberger for encouraging me to go to Amster-
dam to study logic in the first place. Also, I would like to thank Stefan Bruda
and Leen Torenvliet whose classes got me interested in complexity theory.

Throughout my PhD, I have been working in Johan’s dynamic LIRA group,
which has been an extremely inspiring environment for me, even when I was
not working on dynamic epistemic logic. Special thanks to Fer for organizing
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Chapter 1

Introduction

Looking back at the most exciting and best days of your life so far, there is a
good chance that most of these days will probably not be days of total isolation.
Most probably, they will to some extent involve interaction with other beings.
Moreover, it is not only the exciting life changing encounters but also very
basic situations in everyday life in which interaction with other individuals
plays an essential role. Examples of interaction in everyday life include having
a meeting at work, having dinner with friends or family while discussing recent
life developments and plans for the weekend, giving or attending lectures and
engaging in some sports activity after work. More abstractly, much of politics
and economics is also about the interaction of individuals or institutions.

Additionally, interaction is an interesting and up-to-date topic due to tech-
nological developments which have the effect of interaction changing form,
making the world in some sense more connected and allowing for faster com-
munication and exchange of information between individuals (cf. e.g. Friede-
wald and Raabe (2011)). Increased speed and number of participants of interac-
tive processes can lead to an increased difficulty of predicting what will be the
outcome of such processes, e.g. who will be the winner of an Internet auction,
or how long it will take until some new piece of information has reached a
certain part of the population.

The emerging networks involving computer- and communication technolo-
gies are becoming increasingly heterogeneous and complicated, which calls for
a solid foundational theory for the analysis of such systems that will help us to
get a deeper understanding of interactive processes (Ministry of Public Man-
agement, Home Affairs, Posts and Telecommunications, Japan 2004; Egawa
et al. 2007). Such a theory should provide us with

1. tools to formalize different interactive processes and

2. a measure of complexity of interaction.

1
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In this dissertation, we propose a formal study of the complexity of networks
of interaction. We choose an approach based on modal logic and computational
complexity theory. The main motivation for this the following.

1. Using modal logic we can model interaction networks on an abstract level,
and moreover various more specific frameworks have been built upon
modal logic to model more particular concepts involved in interaction.

2. Computational complexity theory provides us with tools to classify prob-
lems and tasks according to their intrinsic difficulty, abstracting away
from particular implementations.

We now present the basics of both of them and illustrate how they can be
used to study interactive processes. We start with modal logic.

1.1 Modal logics for interaction – the basics
Taking an abstract perspective on modern interaction, much of it can be repre-
sented as networks: sets of nodes with different kinds of connections between
them. Examples of this include communication networks and social networks.

In general, modal logic is a formal framework for reasoning about relational
structures. Basic relational structures are closely related to graphs as they
basically consist of a set of vertices (states, worlds, points) and binary relations
on this set; the binary relations can be seen as edges or transitions. As an
example of such a structure, think about all your friends and construct a graph
by taking all friends as vertices and adding an edge between any two persons
who are friends of each other. This will be a relational structure.

For a detailed introduction to modal logic, we refer the reader to Blackburn
et al. (2001), and to van Benthem (2010) for an introduction to different ways to
use modal logic for reasoning about interaction.

To fix the notation, in what follows, we let prop be a countable set of
propositional variables, typical members of which are denoted by p, q, . . . etc.
They will be used to represent simple facts, which can be either true or false.

Definition 1.1 (Basic Kripke models) A Basic Kripke model M is of the form
(W,R,V), where

• W � ∅ is a set of worlds (states), also referred to as the domain ofM and
also denoted by Dom(M).

• the accessibility relation R is a binary relation on W, i.e., R ⊆W ×W, and

• V : prop→ ℘(W) is a propositional valuation function, assigning to each
propositional letter a subset of W. �
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Such a model can be used to represent a network in which we have one
kind of connection. As an example, consider a computer network; i.e.,

• W is a set of computers,

• for all w, v ∈W we have (w, v) ∈ R if and only if there is a cable connecting
the computers w and v.

• Propositional letters could then e.g. represent different properties of com-
puters.

In most of this dissertation, we will be concerned with Kripke models that
have more than one accessibility relation. Mostly, we will deal with models that
are designed for formalizing a situation involving a set of individuals (which
we refer to as agents), and there will be an accessibility relation for each agent.

Definition 1.2 (Multi-agent Kripke models) A Kripke modelM for a finite set
of agents N is of the form (W, (Ri)i∈N,V), where

• W � ∅ is a set of worlds (states), also referred to as the domain of M,
denoted by Dom(M).

• for each i ∈ N, Ri is a binary relation on W, i.e., Ri ⊆W ×W, and

• V : prop→ ℘(W) is a propositional valuation function. �

The above definition is very general and allows for many different interpre-
tations as to what the accessibility relations of the agents should mean. Some
examples of possible interpretations of (w, v) ∈ Ri – sometimes also denoted by
wRiv – are the following:

• Agent i finds the state v at least as good as w (cf. Chapters 2 and 3).

• At w, agent i considers it possible that he actually is in v (cf. Chapter 5).

• At w, agent i can

– change the situation from w into v (cf. Chapter 3),
– move to v (cf. Chapter 4).

A straightforward generalization is to take an accessibility relation for each
subset of N, i.e., for each group (sometimes referred to as coalition) of agents
(cf. Chapters 2 and 3). Additionally, in Chapters 2 and 3, we will also consider
models in which we have accessibility relations for actions. These relations
then show how performing actions can change the state of a system.

More generally, we have Kripke models of the form

M = (W, (Ra)a∈Σ,V),
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where Σ is a finite set of labels, which are used to represent different kinds of
connections between the elements in W. We will now give some examples to
illustrate different kinds of Kripke models

Example 1.3 Consider a situation in which we have a competition between
three competitors C1,C2,C3 and the outcome of the competition will be a
ranking of the three candidates. As an external observer, we can then have
preferences over the six possible outcomes. The following is a graphical rep-
resentation of the situation, with the arrows representing our preferences over
the different outcomes.

A Kripke modelM = (W,R,V) can then be defined accordingly.

• W contains the six possible outcomes.

• R is defined in such a way that wRv if and only if v is preferred over w,
and

• the valuation V defined such that each propositional variable pC1pC2 , pC3 ,
is made true in exactly those outcomes in which the respective candidate
wins.

With such a formalization, we can reason e.g. about whether for some outcome
it is the case that there is some outcome which is better and for which pC1 is
true (i.e., C1 wins). �
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@

Ann

Bob

Susan

Kate
John

Example 1.4 Consider the situation in which five individuals can communicate
via a communication network represented as follows.

We can define a Kripke model M = (W, (Ra)a∈Σ,V), with Σ being the set
of labels representing the four types of connections (landline, mobile, email,
letter).

• W = {Ann, Bob, John, Kate, Susan},
• each Ra is defined as in the diagram, and

• we have one propositional letter pidea, with V(pidea) = {Bob}.
Interesting questions that arise here could e.g. be whether Bob’s idea can be

communicated to Kate even if after each communication step some connection
breaks down. We will consider such a setting in Chapter 4. �

Example 1.5 (Cards on a train) Consider a situation with four agents travel-
ing by train, sitting in positions as depicted below. They want to play a game,
and in order to determine who is the first to play they distribute four cards
among them. Three are of the suit � and one is of the suit �. The player who
gets the � wins this pre-game and will be the first to start the real game. Sup-
pose that each player has gotten one of the four cards. They each can see their
own card, and due to the positions in which they are sitting, additionally
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• both 3 and 4 can see the card of 2,

• 4 can see the card of 3.

1 2 3 4

Now, we construct a Kripke model for the four agents which represents the
information they have about who might have the �. We use propositional
letters pi to represent the fact that agent i has the card �.

w1

p1

w2

p2

w3

p3

w4

p4

1, 2, 3, 4
2, 3

1, 2, 3, 4
1

1

1, 2, 3, 4

1, 22

1, 2, 3, 4

Formally, the model is defined as follows. M = (W, (Ri)i∈N,V) with N = {1, 2, 3, 4},
where

• W = {w1,w2,w3,w4} is the set of four possible situations; wi represents the
situation in which agent i has the �,

• the accessibility relations Ri representing the uncertainty of the agents are
defined as follows

– R1 = Id ∪ {(w2,w3), (w3,w2), (w2,w4), (w4,w2), (w3,w4), (w4,w3)},
– R2 = Id ∪ {(w1,w3), (w3,w1), (w4,w1), (w1,w4), (w3,w4), (w4,w3)},
– R3 = Id ∪ {(w1,w4), (w4,w1)},
– R4 = Id,
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with Id = {(w,w) | w ∈W},

• V(pi) = wi for all i ∈ {1, 2, 3, 4}.
Now, some interesting questions come up such as e.g.

• Can we make a public announcement to the agents that has the effect that
after this all agents have the same information that they would have if
agent 1 was facing the other direction (i.e., if he was facing left instead of
right)?

• Does agent 1 have the same information about agent 2 as 2 has about 1?

Questions of this type will be investigated in Chapter 5. �

A related framework more general than the Kripke models defined above
is that of neighborhood models, which instead of a binary accessibility relation
on Dom(M) have a function ν : Dom(M) → ℘(℘(Dom(M))) assigning to every
state a set of sets of states. For the details we refer to Hansen et al. (2009).
In Chapters 2 and 3, we will consider neighborhood frameworks specifically
designed for reasoning about the strategic ability of groups.

Then a formal language for Kripke models is specified as follows.

Definition 1.6 (Multi-agent modal language) The basic modal language for
the finite set of agents N is defined as follows.

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ψ | �iϕ

with p ∈ prop and i ∈ N. �

Additionally, we will use �i, the dual operator of �i: �iϕ := ¬�i¬ϕ. For
notational convenience, we also use the following (standard) abbreviations.
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ, ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ) and
� := ¬⊥.

The language is interpreted at a state w in a multi-agent Kripke modelM
as follows.

M,w |= p iff w ∈ V(p).
M,w |= ⊥ never.
M,w |= ¬ϕ iff it is not the case thatM,w |= ϕ.
M,w |= ϕ ∨ ψ iff M,w |= ϕ orM,w |= ψ.
M,w |= �iϕ iff there is some v with (w, v) ∈ Ri andM, v |= ϕ.

Definition 1.7 (Multi-agent modal logic KN) The basic multi-agent modal
logic KN for a finite set of agents N has the following axioms.

(K) �i(p→ q)→ (�ip→ �iq)

for each i ∈ N and the following three rules of inference:
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Modus ponens: From ϕ and ϕ→ ψ conclude that ψ.

Uniform substitution: From ϕ conclude that χ, with χ being obtained from ϕ
by uniformly replacing propositional letters by formulas.

Necessitation: From ϕ, conclude that �iϕ. �

We write |M| to refer to the size of the modelM – to be more precise, the
size of a reasonable representation of the model. We refer to a pair (M,w) with
w ∈ Dom(M) as a pointed model. We will come back to this in Chapter 4.

Comparing models and reasoning about submodels

In various parts of our investigation we will need a reasonable notion of two
models being similar. We make use of the notions of simulation, simulation
equivalence and bisimulation.

Definition 1.8 (Simulation) We say that a pointed Kripke model (M,w), with
M = (W, (Ri)i∈N,V) and w ∈ W, is simulated by another pointed Kripke model
(M�,w�) (denoted by (M,w) � (M�,w�)) withM� = (W�, (R�i)i∈N,V�) and w� ∈W�

if the following holds.
There exists a binary relation Z ⊆ W ×W� such that wZw� and for any pair

of states (x, x�) ∈W ×W�, whenever xZx� then for all i ∈ N:
1. x, x� verify the same proposition letters.

2. if xRiz inM then there exists z� ∈W� with x�R�i z
� and zZz�. �

We say thatM = (W, (Ri)i∈N,V) is simulated byM� = (W�, (R�i)i∈N,V�) (denoted
byM �M�) if there are w ∈ W and w� ∈ W� such that (M,w) � (M�,w�). We
say that a simulation Z ⊆ W ×W� is total if for every w ∈ W, there is some
w� ∈ W� such that wZw�, and for every w� ∈ W�, there is some w ∈ W such
that wZw�. If M is simulated by M� by means of a total simulation, we say
M �total M�. Moreover, we say thatM = (W, (Ri)i∈N,V) andM� = (W�, (R�i)i∈N,V�)
are simulation equivalent ifM simulatesM� andM� simulatesM.

The truth of positive existential formulas in pointed models is preserved
under simulations.

Example 1.9 In order to get an intuitive idea of simulation, consider two
pointed Kripke models (M,w), (M�,w�) both with one agent (Bob), and the
accessibility relations representing the uncertainty of Bob. Then

(M,w) � (M�,w�)

means that in (M,w) Bob has more refined information than in (M�,w), i.e., in
(M�,w�) Bob has more uncertainty. �
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The following notion is stronger than simulation equivalence.

Definition 1.10 (Bisimulation) A local bisimulation between two pointed
Kripke models with set of agents N, (M,w) withM = (W, (Ri)i∈N,V) and (M�,w�)
withM� = (W�, (R�i)i∈N,V�) is a binary relation Z ⊆ W ×W� such that wZw� and
also for any pair of worlds (x, x�) ∈W ×W� whenever xZx� then for all i ∈ N:

1. x, x� verify the same proposition letters.

2. if xRiu inM then there exists u� ∈W� with x�R�iu
� and uZu�.

3. if x�R�iu
� inM� then there exists u ∈W with xRiu and uZu�. �

We say that M = (W, (Ri)i∈N,V) and M� = (W�, (R�i)i∈N,V�) are bisimilar
(M↔M�) if there are w ∈ W and w� ∈ W� such that (M,w)↔(M�,w�). A
bisimulation Z ⊆ Dom(M) × Dom(M�) is total if for every w ∈ Dom(M), there
is some w� ∈ Dom(M�) such that wZw�, and for every w� ∈ Dom(M�), there is
some w ∈ Dom(M) such that wZw�. Then we writeM↔totalM�.

Bisimilarity is an equivalence relation. Bisimilarity implies modal equiv-
alence: If two pointed models are bisimilar, they satisfy the same modal for-
mulas. We will use this primarily in Chapters 3 and 5. In Chapter 3, we also
use that invariance under bisimulation characterizes exactly those formulas
of first-order logic with one free variable that are equivalent to the standard
translation of a modal formula into first-order logic formulas (van Benthem
1976).

In order to illustrate why the notion of bisimulation is interesting for our
investigation, let us go back to Example 1.5 where we formalized the situation
of the four travelers playing cards on a train. For determining if this situation
is equivalent (with respect to the information of the players) to a situation in
which they sit in a different configuration, we basically have to check if the two
models are bisimilar.

In Example 1.5, we were also interested in whether it was possible to make
a public announcement that has the effect of reducing the uncertainty of some
agent in a certain way. A public announcement can have the effect that some
situations that were considered possible before can be eliminated. This moti-
vates why we would like to have a way to talk about parts of a model, e.g. only
those states in which some proposition is true. For this, we need the notion of
a submodel.

Definition 1.11 (Submodel) We say that M� is a submodel of M iff W� ⊆ W,
∀i ∈ N, R�i = Ri ∩ (W� ×W�), ∀p ∈ prop, V�(p) = V(p) ∩W�. �

Definition 1.12 (Generated submodel) We say that M� = (W�, (Ri)�i∈N,V
�) is a

generated submodel of M = (W, (Ri)i∈N,V) iff W� ⊆ W and ∀i ∈ N, R�i = Ri ∩
(W� ×W�), ∀p ∈ prop, V�(p) = V(p) ∩W� and if w ∈ W� and wRiv then v ∈ W�.
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The submodel ofM generated by X ⊆ W is the smallest generated submodel
M� ofMwith X ⊆ Dom(M�). �

A generated submodel is actually bisimilar to the original model: for all w� ∈
Dom(M�) we have that (M,w�)↔(M�,w�). Thus, the truth of modal formulas is
invariant under taking generated submodels.

To summarize, we have thus seen the basic ideas of how the framework
of modal logic can be used to model interaction. In Chapter 3, we will ad-
ditionally introduce some hybrid and Boolean modal extensions of modal logic
which can explicitly refer to particular states in the model and e.g. talk about
the intersection of relations.

In general, we are interested in what kind of social phenomena we can model
in modal logic. However, it is not only important whether some situation can
be modeled but if we want to actually use the formal framework of modal
logic to reason about social phenomena, computational properties also play
an important role as we want to be able to reason efficiently. This leads us to
computational complexity theory, which we will use to capture the complexity
of interaction.

1.2 The basics of computational complexity – from
the perspectives of modal logic and interaction

In our investigation of the complexity of interaction, we will use computational
complexity theory. We will now briefly present the basics that underlie the
complexity analyses that are given in Chapters 2 to 6.

First of all, we note that in this dissertation, we use complexity theory purely
as a tool for analyzing different problems with respect to how difficult it is to
solve them computationally. For the reader interested in the details of compu-
tational complexity theory itself, we refer to the literature (e.g. Papadimitriou
(1994)). To be more precise, the way in which we use computational complex-
ity theory here is to classify decision problems according to their “difficulty”. By
decision problems we mean problems that consist of some input and a yes/no-
question about the input. In order to give the reader an idea of such problems,
we will now give those decision problems which are usually used to evaluate
a logic with respect to how efficiently it can be used for reasoning.

Decision Problem 1.13 (Satisfiability of a logic) (SAT)
Input: Formula ϕ in the language L of a logic L.

Question: Is there a model of L that satisfies the formula ϕ? �
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What does the satisfiability problem actually mean for modal logics for rea-
soning about interaction?

In the context of modal logic frameworks for interaction, the satisfiability
problem is concerned with deciding whether it is possible to design a system
according to the specifications given by the formula ϕ, i.e., a system in which
ϕ holds. This is somewhat in line of what mechanism design (cf. Osborne and
Rubinstein (1994)) is about.

Decision Problem 1.14 (Model checking of a logic) (combined complexity)
Input: Formula ϕ in the language L of a logic L, a finite modelM of L.
Question: DoesM satisfy ϕ? �

Decision Problem 1.15 (Model checking a formulaϕ of some logic) (data
complexity)
Input: A finite modelM of a logic L.
Question: DoesM satisfy the formula ϕ? �

Note the difference between the two versions of model checking: In Problem
1.14, the formula is part of the input while in Problem 1.15 the formula is fixed.

What do the two model checking problems actually mean for modal logics
for reasoning about interaction?

Both problems ask whether a system has a certain property ϕ. More con-
cretely, in the context of interaction, the problems are concerned with whether
an interactive situation has the property ϕ. Interesting choices for ϕ could be

• the property of the current state of the interaction being stable in the sense
that none of the participants has an incentive to act in order to change it
(cf. Chapter 3),

• the property that a particular agent has the ability to ensure that the
interaction leads to success for her (cf. Chapter 4),

• the property that some particular fact is common knowledge among all
the agents (cf. Chapter 5).

As for Problem 1.15 the formula is not part of the input, but fixed, this problem
is independent from how succinctly the formula ϕ expresses a certain property
we are interested in. Investigating the complexity of this problem for a given
logic and a given formula ϕ of the logic’s language, thus tells us how difficult
it is to check whether the particular property ϕ holds.

Decision problem 1.14 is of a different nature. Investigating its complexity
for a given logic tells us how difficult it is in general to check if systems have
certain properties definable in the logic.
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In computational complexity theory, the difficulty of decision problems is
understood in an abstract computational way: it is understood in terms of how
much more resources (in terms of time and space) are needed to compute an
answer to the question as the size of the input gets bigger. For a classification of
problems according to their computational difficulty, a model of computation
is needed. Here, we use the Church-Turing Thesis (Church 1936; Turing 1936),
which says that a problem can be solved algorithmically if and only if this can
be done using a Turing machine.

Deterministic Turing machines are a theoretical model of computation; they
consist of an infinite tape, a head which is used to read the input from the tape
and to write on it, a transition function that specifies for every state the machine
can be in and for every symbol that it can read on the tape what it should do:
i.e., what symbol it should write or whether it should move one step further
left or right on the tape. The computation stops once a final state is reached.
Nondeterministic Turing machines differ in the way that instead of transition
functions they can have arbitrary transition relations.

The time needed for a computation is measured in terms of the number of
steps of the computation. The (memory) space needed for a computation refers
to the number of tape cells needed for the computation.

For a categorization of problems according to their complexity indepen-
dently of particular implementations of algorithms, we use the invariance thesis
which says that for reasonably encoded input and two reasonable machines
the complexity of the computation of the machines given that input differs by
at most polynomial time and constant memory space (van Emde Boas 1990).

We now give the complexity classes into which most of the problems con-
sidered in this dissertation fall.

1.2.1 Complexity classes

Deterministic logarithmic space (L) The class L (LOGSPACE) contains very
easy problems which can be solved by a deterministic Turing machine using
only memory space logarithmic in the size of the input.

Nondeterministic logarithmic space (NL) The easiest problems that we ex-
plicitly encounter in this dissertation are in the class NL, which is the class of
problems that can be solved using a nondeterministic Turing machine that uses
an amount of memory space that is logarithmic in the size of the input. An
example of such a problem is the Reachability problem, the problem of deciding
if there is a path between two given points in a graph.

As example instance of Reachability consider the following input: the graph
drawn in Example 1.4 and the vertices Bob and Ann. Then the reachability
problem asks whether there is a path from Bob to Ann in the communication
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network.
The reachability problem will be used in Chapters 4 and 5, where it will

appear in a game on a graph, and in the reasoning about whether a fact is
commonly known among a group of agents, respectively.

Deterministic polynomial time (P) The class P (PTIME) contains NL and is
the class of all problems that are solvable by a deterministic Turing machine
within polynomial many time steps with respect to the size of the input. P is
one of the most important complexity classes; problems which are in P are said
to be tractable as they can be solved in an efficient way.

An example of a problem in this class is the decision problem of given
two Kripke models to decide whether there is a bisimulation between them
(Balcázar et al. 1992), which is a problem we will examine more closely in
Chapter 5 when investigating the complexity of comparing the information
that different agents have.

Nondeterministic polynomial time (NP) NP contains all the previously men-
tioned classes. It is the class of problems solvable by a nondeterministic Turing
machine in polynomial time with respect to the size of the input. Intuitively, this
class contains problems for which a proposed positive answer can be verified
(deterministically) in polynomial time.

Problems which are at least as hard as all the problems in NP are called
NP-hard. A problem P� is NP-hard if every problem P in NP can be reduced
to it by a polynomial many-one reduction: a function which can be computed
in polynomial time that transforms instances (input) x of P into an instance
f (x) of P� such that x is a positive instance of P if and only if f (x) is a positive
instance of P�. If a problem is NP-hard and in NP, it is NP-complete. For the
details, we refer to Garey and Johnson (1990). A very prominent example of an
NP-complete problem is the satisfiability problem of propositional logic.

Polynomial space (PSPACE) PSPACE contains the problems which can be
solved by a Turing machine using only a polynomial amount of memory space,
with respect to the size of the input. PSPACE-completeness and -hardness are
defined analogously as for NP. This complexity class also plays a central role
in this dissertation as first of all for many game-like interaction processes for
two players the problem of deciding which of the players can win is PSPACE-
complete. An example of such a game will be studied in Chapter 4. Moreover,
the class also plays an important role in modal logic, as for the basic modal
logic the satisfiability problem is PSPACE-complete (Ladner 1977).

We remark that allowing for nondeterminism does not add any computa-
tional power for deterministic PSPACE Turing computations (Savitch 1970).
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Deterministic exponential time (EXPTIME), nondeterministic exponential
time (NEXPTIME)

EXPTIME is the class of problems solvable by a deterministic Turing ma-
chine within exponentially many time steps, with respect to the input size.

NEXPTIME is the class of problems solvable by a nondeterministic Turing
machine within exponentially many time steps, with respect to the size of the
input. In Chapters 2 and 3, we will encounter problems for which we only
know procedures that can solve them in nondeterministic exponential time

Undecidable problems There is also a whole hierarchy of classes of problems
which cannot be solved algorithmically. We will encounter some of those
problems in Chapter 3, when investigating the satisfiability problem of some
logics for reasoning about cooperation of agents. Also, in Chapter 6 we will
find an undecidable problem that can come up in the play of a particular card
game.

To summarize, we have thus seen some examples of how modal logic can
be used for reasoning about relevant concepts in the interaction of agents. Ex-
amples of such concepts include preferences, actions and information. Com-
putational complexity provides us with tools to classify decision problems
according to their intrinsic difficulty.

From the examples we considered, we could already see that

the choice of decision problem crucially determines to what extent we can
draw conclusions about the complexity of interactive situations.

This is something that we will pay particular attention to throughout the
remainder of this dissertation. After having introduced the setting in which
our investigations take place, we will now present the main questions that we
address.

1.3 Research questions

The basic frameworks previously introduced give rise to a variety of interesting
questions to be investigated with respect to the complexity of interaction. In
the current work, we will start with an abstract perspective, focusing on logical
theories for social actions and from there move to more concrete settings in
which we focus on the algorithmic tasks that interacting agents face.
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1.3.1 Complexity of reasoning about interaction in modal log-
ics

We have seen that using modal logic we can model various aspects of networks
of interaction. For capturing an interactive situation involving multiple agents
on an abstract level, the strategic ability of agents plays a crucial role. We can
describe an interactive situation in terms of what the abilities of the agents are,
i.e., what results they can achieve. This can then be done on different levels
of abstraction. We could for instance just focus on the abilities of different
companies to achieve a certain market share themselves and also ensure that
a certain competitor does does not get a share bigger than some percentage.
This way we will get an abstract and external description of how the power is
distributed in the interactive scenario involving the different companies. This
way, we could make predictions of what are the possible outcomes that can
arise. But sometimes this might not be enough, as an analysis at this level only
reveals what could eventually be achieved. As soon as we want to reason about
the situation on a more concrete level, the question that will come up is how
exactly the results can be achieved. If we want to be able to reason about this,
we also need to represent actions by which results can be achieved.

This illustrates that motivated by conceptual considerations, there are vari-
ous ways to model strategic interaction of individuals and groups.

Then the question arises as to what kinds of modal logic frameworks are
“best” for modeling which aspects of interaction, which is our first research
question.

Research Question 1 What formal frameworks are best suited for rea-
soning about which concepts involved in interaction?

• What should be the primitive notions a formal approach should be
based on?

We will address this question in Chapters 2 and 3 on an abstract level, for very
general modal logic frameworks for reasoning about the abilities of individuals
and groups to achieve something. Evaluating how good some framework is for
reasoning about certain aspects of cooperation can be done in different ways. A
natural way to evaluate a system for reasoning about interaction is to determine
which interesting concepts can be expressed and reasoned about. In the context
of logics for the interaction of agents, it is often desired that the formal system
can express concepts from game theory (Osborne and Rubinstein 1994), e.g. the
property that a certain state of the system is stable in the sense that there is no
incentive to act in order to change the state.

Apart from being able to express interesting concepts, also computational
properties of the logical framework play an important role in its evaluation.
The complexities of model checking and satisfiability problems tell us how
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much computational resources are needed to check if a given system has some
property, and how difficult it is to determine if there is a system that has certain
properties, respectively. For the design of modal logics for reasoning about
interacting agents, the challenge is to develop systems which are sufficiently
expressive given the particular situations to be modeled while still having good
computational properties so that reasoning can be done efficiently. This illus-
trates the need for a systematic study of the connection between expressivity
of logics with respect to concepts from game theory and social choice theory
and the computational complexity of the logics. In Chapter 3, we study this
by a semantic comparison of modal logic systems for reasoning about group
ability.

Both model checking (combined complexity) and satisfiability are problems
concerned with every formula of a logic’s language. As our aim is to investigate
the complexity of interactive processes, let us recall the main objective of this
dissertation, which is to investigate the complexity of interaction. An analy-
sis in terms of the complexity of satisfiability and model checking of logical
frameworks for interaction provides a very abstract view on the complexity of
interaction. This leads us to the following question.

What do the complexity of satisfiability and model checking really tell us
about the complexity of interaction?

Describing the complexity of interaction in terms of satisfiability and model
checking might not be very accurate in the sense that it might just be the case
that model checking and satisfiability for formulas that express interesting
concepts about interaction all live on one side of the complexity spectrum.
In other words, it might e.g. just be the case that the formulas interesting for
interaction are not the ones which make satisfiability or model checking hard.

From complexity of logics for interaction to complexity of interaction itself.
In order to get closer to the complexity of interaction itself, rather than the
general complexity of formal systems used to reason about interaction, there
are basically two possible paths to take.

1. Focus the complexity theoretical analysis of logical frameworks on those
properties that are relevant for interaction.

2. Investigate the algorithmic complexity of tasks that arise in interaction.

Let us start with the first one. For this, we will move to more concrete
settings of interaction of individual agents.
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1.3.2 Complexity of interaction of diverse agents
Coming back to frameworks of reasoning about the power and abilities of
agents, if we want to analyze how the power of agents is distributed among
the participants, the ability to achieve success plays a crucial role. In game-like
interaction processes, this can correspond to the ability to win. This then leads
us to the concept of a winning strategy. Having a winning strategy means to
have the power to ensure that the interaction process leads to success.

In the context of modern interaction, much of success of these processes
relies on information and communication networks. Such networks can be un-
stable as connections can break down. Successfully traversing such an unstable
network can then be seen as a game against an adversary opponent who causes
the failure of certain connections. Analyzing this situation leads us to deciding
whether there is a strategy to traverse the network to the final destination.

Considering the adversary player who cuts connections in the network,
this player’s objective can indeed also be seen as guiding the traversal to some
particular destination by cutting all the alternative routes. In general, such a
framework can be seen as a two-player game between one player who traverses
the network and another one who cuts connections. In this context, our next
research question arises.

Research Question 2 What is the role of cooperation vs. competition in
the complexity of interaction?

• Does analyzing an interactive situation in general become easier if
the participants cooperate?

We address this question in Chapter 4 within the framework of Sabotage
Games. Here, we will determine the complexity of deciding if a winning strat-
egy exists, while we consider different variations of objectives of the players,
distinguishing between cooperative and non-cooperative versions.

While Sabotage Games can be used as a model of information flow in net-
works with flaws, the information of the players themselves is not explicitly
considered in this framework. However, the information of agents plays a cru-
cial role in interaction. Intuitively, both the difficulty involved in interacting
and the difficulty of reasoning about interactive situations or making predic-
tions about them are affected by the underlying information structure of the
interactive process. By this we mean the information that agents have about
facts but also about the information that other agents have.

Similarly as for the complexity of deciding if a winning strategy exists,
also for information, there are specific properties that play a special role in
interaction. It is often crucial how information about facts and other agents’
information is distributed among the agents. Do they have similar informa-
tion about each other? In case of diverse agents, the question arises as to
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whether it is possible to induce information similarity of the agents by giving
information to those who have less knowledge about the actual situation. The
complexity of such questions could be investigated within fragments of exist-
ing epistemic modal logic frameworks. However, in order to proceed with our
aim to investigate interaction itself rather than properties of logical theories of
interaction, a complexity study of the algorithmic tasks that arise when ana-
lyzing information structures of agents seems more appropriate in the context
of this dissertation.

Focusing on a purely semantic perspective on how information is modeled
in modal epistemic logics, tasks involved in reasoning about agents’ infor-
mation boil down to comparing and manipulating the relational structures
that represent the knowledge and beliefs that agents have. Intuitively speak-
ing, there seems to be a difference in complexity of just reasoning about the
information that one individual agent has about facts, and reasoning about
higher-order information in a system with a large number of agents.

This leads us to the next research question.

Research Question 3 Which parameters can make interaction difficult?

• How does the complexity of an interactive situation change when
more participants enter the interaction or when we drop some sim-
plifying assumptions on the participants themselves?

We will address this question in Chapter 5 by focusing on what makes
comparing and manipulating agents’ information difficult. As we deal with
concrete tasks, as opposed to the more abstract decisions problems such as
satisfiability, many such tasks can be expected to be efficiently solvable. The
questions that arise are the following.

What tasks about information comparison and manipulation are tractable?
When do they become intractable?

Here, particular interest should be paid to the effect of certain assumptions that
are often made when formalizing knowledge, such as veridicality and positive
and negative introspection. Can these assumptions make tasks which are in
general intractable efficiently solvable?

These three research questions guide us from a high-level perspective on
interaction using modal logics to an analysis of algorithmic tasks involved when
reasoning about the information individual agents have. As our analysis is
originally motivated by the need of a formal theory underlying real interaction,
this leads us to the following last step in the analysis and thus back to interaction
in the real world.
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1.3.3 Complexity of interacting
It remains to determine whether results of a complexity theoretical analysis of
interaction also have implications for real interactive processes. Intuitively, we
would expect that it would be results about specific tasks which could have
immediate implications for real interaction in the sense that human agents face
similar tasks when interacting.

Research Question 4 Finally, to what extent can we use a formal anal-
ysis of interactive processes to draw conclusions about the complexity of
actual interaction?

• Are there concrete examples of interactions in which participants
actually encounter very high complexities which make it impossible
for them to act?

For addressing this question, we need a setting in which tasks arise which
can be analyzed formally and which are tasks that real agents also have to face.
Real (recreational) games are a natural choice here for us because recreational
game playing is a very natural process, and moreover game rules control the
interaction, which helps for a formal analysis.

If we want to analyze the complexity of tasks in games and be able to
draw conclusions about the complexity that humans face in playing the game,
it is important to focus the analysis on those tasks which players actually
encounter in real play. Tasks that arise in sophisticated strategic reasoning
such as computing if a winning strategy exists do not seem suitable candidates
here as for recreational game playing solving such tasks is not necessary during
the play. Of course such tasks do play a role also in recreational game playing
but we cannot conclude that players are actually forced to complete such a task.
Hence, we should focus on those tasks, which players are forced to face by the
rules of the game. This leads us to the very basic task of performing a legal
move. This task is at the very heart of game playing as the rules of a game
actually “force” the players to face this task.

Having determined the kind of task for the complexity analysis, it remains
to choose an appropriate class of recreational games to study. Here, the class
of inductive inference games seems to be a natural candidate. In these games a
designated player has to construct a rule about which moves of the other players
are accepted and which are rejected. Then the other players get feedback for the
moves they make and based on this inductively infer the secret rule. For our
investigation, choosing an inductive inference game has the great advantage
that it allows for a wide range of variations with respect to the complexity. There
is a direct correspondence between the chosen secret rule and the difficulties
that arise in the game. Inductive inference games exist of various kinds. For
a formal analysis, a game in which both the secret rule and the moves of
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the players can be easily defined formally would be the best. This leads us
to the card game Eleusis in which the secret rule is about sequences of cards
and moves of players consist simply of placing cards in a sequence on the
table. Additionally, Eleusis is also of interest for formal learning theory (cf.
Gold (1967)), as the game illustrates learning scenarios in which general rules
grammars are learned from inductively given data.

Fields to which this dissertation contributes. The results of this dissertation
connect up between different areas of research, such as logic (in particular,
modal logics for agency), computational complexity, game- and social choice
theory, algorithmic game theory and formal learning theory.

1.4 Outline

This dissertation is structured as follows.
In Part I, we investigate the complexity of modal logics for reasoning about

the abilities of groups of agents to achieve something.
Chapter 2 presents an example of a modal logic system for reasoning about

interaction. More precisely, this chapter focuses on the concepts of coalitional
power, actions and preferences. The logic we present is based on the coopera-
tion logic with actions (CLA) developed by Sauro et al. (2006). We extend this
framework with a fragment of the preference logic developed by van Benthem
et al. (2007) in which agents have preferences over the states. Our resulting
logic (cooperation logic with actions and preferences (CLA+P)) can distinguish
between different ways to collectively achieve some results, not only with re-
spect to how the results can be achieved but also with respect to whether or
not it can be done in a way that leads to an improvement for individual agents.
We analyze the satisfiability problem of CLA+P and show that it is decidable.
We also show that it is EXPTIME-hard as so is the underlying action logic.

Then in Chapter 3 we take a broader perspective on cooperation logics,
proposing a systematic analysis of how much expressive power and complexity
is needed for interesting reasoning about coalitional power and preferences in
different kinds of modal logics. We focus on three classes of modal logic frame-
works; a simple framework based on transition systems in which transitions are
labeled with coalitions, an action-based approach and a so called power-based
approach. Moreover, we identify a range of notions and properties involving
coalitional power and preferences and for each of these properties (ranging
from the simple group ability to ensure that some fact is true, to more involved
stability notions) we determine under what model theoretical operations it is
invariant. This way, we can determine what kind of extended modal languages
are appropriate for each of the classes of models for expressing the properties.
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The languages determined by this method lead us to extended modal logics
with certain complexities for model checking and satisfiability. Our method-
ology allows us to make precise what is the impact of design choices (e.g.
whether to make coalitional power explicit in terms of actions) on how difficult
it is to express certain kinds of properties. In addition to this analysis, we
also study the relationship between action-based models for cooperation and
power-based models. In particular, we focus on common assumptions on the
powers of coalitions and discuss their interpretations on different models.

After this formal analysis of modal logics for reasoning about the interaction
of groups of agents, Part II then analyzes the interaction between diverse agents.

In Chapter 4, we investigate a class of games played on a graph, called
Sabotage Games. These games, originally introduced by van Benthem (2005),
are two-player games in which one player (Runner) moves along the edges
of the graph and the other player (Blocker) acts in the game by removing
edges. In the standard version of this game, Runner tries to reach a goal state
while Blocker tries to prevent this. Originally motivated by the interaction
between Learner and Teacher in formal learning theory, we give two variations
of the game: one in which Runner tries to avoid reaching a goal state (while
Blocker tries to force him to move to a goal state) and a cooperative version
in which both players want Runner to reach the goal. For each version, we
analyze the complexity of deciding which player has a winning strategy. We
show that the cooperative game is the easiest (NL-complete) while both non-
cooperative games are more complex (PSPACE-complete). On the technical
side, we discuss different methods for obtaining the complexity results and
also point out which of them can lead to technical problems depending on
which exact definition of a Sabotage Game is taken. Additionally, we consider
a variation in the procedural rules of the games allowing Blocker to refrain
from removing an edge. We show that this does not affect the winning abilities
of the players.

Chapter 5 focuses on the concept of information, by analyzing different tasks
that arise when reasoning about agents that are diverse in the sense that they
have different information. This analysis takes place in the semantic structures
of (epistemic) modal logic. Instead of investigating the complexity of such
modal logic systems, this chapter analyzes concrete tasks such as determining
whether two agents have similar information (about each other), and deter-
mining whether it is possible to give some information to one of the agents
such that as a result both agents have similar information. In the complexity
analysis, we pay particular attention to tracking where the border between easy
(polynomially decidable) and hard (NP-hard) problems lies. We show that in
general most tasks about deciding if agents have similar information (about
each other) are tractable with some cases being trivial and others being among
the hardest problems known to be tractable. For more dynamic tasks involving
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information change, the situation is different. We extend some hardness-results
from graph theory in order to show that deciding if we can give some infor-
mation to one agent so that his new information state will be of a certain shape
is in general NP-complete. With the assumption of epistemic models being
based on partitions however, in the single-agent case the problem turns out to
be tractable.

Finally, Chapter 6 aims to answer the question as to what a formal com-
plexity theoretical study can tell us about interaction in practice. This is done
by investigating a particular card game: The New Eleusis, which is an inductive
inference game. In this game, one designated player takes the role of God or
Nature and constructs a secret rule about sequences of cards. Then the other
players (Scientists) play cards in a sequence and each time get feedback from
the first player about whether the card is accepted or rejected according to the
secret rule. With this information, players try to inductively infer what might
be the secret rule and test their hypotheses by playing certain cards. We exam-
ine the computational complexity of various tasks the players face during the
game such as the task for the Scientist players of determining whether some
rule might be the secret rule or the task of the first player of deciding whether
a card is accepted or rejected. We show that if before the game players agree to
only consider secret rules in a certain class, then the problems for the Scientists
are tractable. Without these additional restrictions, the game however allows
for the first player to construct a rule that is so complex that she even cannot
give accurate feedback any more as to whether a card is accepted. This chapter
thus shows that in the case of this game a complexity theoretical study indeed
allows us to draw some conclusions for the actual play of the game. Based on
this, we give some recommendations for adjusting the rules of the game.

Chapter 7 concludes this dissertation and presents some directions for fur-
ther work.

Sources of the chapters. The logical system for explicit reasoning about
groups of agents with preferences presented in Chapter 2 has been devel-
oped in Kurzen (2007). The complexity analysis given in this chapter is based
on Kurzen (2009). Earlier version of it have been presented at the 8th Confer-
ence on Logic and the Foundations of Game and Decision Theory (LOFT 8) and at
the workshop Logic and Intelligent Interaction at the European Summer School in
Logic, Language and Information 2008 (ESSLLI 2008).

Chapter 3 is based on joint work with Cédric Dégremont. The analysis of
expressive power and complexity of modal logics for cooperation presented
in this chapter is a continuation of Dégremont and Kurzen (2009a), which
has been presented at the Workshop on Knowledge Representation for Agents and
Multi-Agent Systems (KRAMAS 2008).
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Different previous versions of the work in Chapter 3 have been presented
at the workshop Logical Methods for Social Concepts at ESSLLI 2009, at the Second
International Workshop on Logic, Rationality and Interaction (LORI-II) (Dégremont
and Kurzen 2009b) and at the 9th Conference on Logic and the Foundations of Game
and Decision Theory (LOFT 9) (Dégremont and Kurzen 2010).

Chapter 4 is based on joint work with Nina Gierasimzcuk and Fernando
Velázquez-Quesada. The complexity analysis of Sabotage Games given in that
chapter 4 originally started as a formal analysis of language learning, pre-
sented at the 10th Szklarska Poreba Workshop. Follow-up versions of it, focusing
on the interactive view on learning and teaching have been presented at the
workshop Formal Approaches to Multi-Agent Systems (FAMAS 2009) (Gierasim-
czuk et al. 2009a) and at the Second International Workshop on Logic, Rationality
and Interaction (LORI-II) (Gierasimczuk et al. 2009b). The technical results on
the complexity of the different versions of Sabotage Games have also been
presented at the workshop G∀AMES 2009.

The complexity analysis of tasks involved in reasoning about information
of diverse agents as presented in Chapter 5 is based on joint work with Cédric
Dégremont and Jakub Szymanik. It has been presented at the workshop Reason-
ing about other minds: Logical and cognitive perspectives at TARK XIII and appears
in Dégremont et al. (2011).

Chapter 6 extends the complexity analysis of the recreational card game
Eleusis given in Kurzen (2010), which has been presented at the International
Workshop on Logic and Philosophy of Knowledge, Communication and Action 2010
(LogKCA-10). Earlier versions of it have been presented at the student session
of the ICCL Summer School 2010 on Cognitive Science, Computational Logic and
Connectionism and the workshop G∀AMES 2010. Joint work with Federico
Sangati and Joel Uckelman has lead to a wild ideas talk on the game Eleusis at
the first ILLC colloquium and to Federico Sangati’s online implementation of the
game (Sangati 2011).
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Complexity of Reasoning about
Strategic Ability using Modal Logic
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Chapter 2

Reasoning about Cooperation, Actions and
Preferences

We will now start our endeavor of investigating the complexity of interaction by
first taking a modal logic perspective, motivated by our first research question.

Research Question 1 What formal frameworks are best suited for rea-
soning about which concepts involved in interaction?

• What should be the primitive notions a formal approach should be
based on?

We will give a formal model of interaction which allows us to reason about
how groups can achieve results and what is the effect of actions with respect to
the preferences of individual agents.

The approach presented in this chapter is conceptually motivated by situ-
ations of strategic interaction of the type mentioned in Section 1.3.1: e.g. the
interaction between different competing companies.

Focusing primarily on their ability to achieve a certain profit, we can analyze
the power of the competitors from an abstract perspective. However, for
making predictions of what will actually happen in the interaction, it can be
necessary to go into more details of how exactly a company can reach some
goal. Here questions of the following form can arise:

Can company C achieve some profit while making sure that for all
of its current employees the resulting situation will be at least as
good as the current one?

This chapter develops a modal logic framework for reasoning about the
strategic abilities of individuals and coalitions in an explicit way. We will first
conceptually motivate the design choices that are made when developing the

27
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logic and later investigate the computational consequences of the choices by
analyzing the computational complexity of the resulting logical system.

This chapter contributes to the area of modal logics for reasoning about
social concepts, with a particular focus on coalitional power (cf. e.g. Pauly
(2002a)) and preferences (cf. e.g. Girard (2008)). On the technical side, this
chapter can be seen as a case study of combining different existing logics and
investigating the (computational) effects of this.

2.1 Cooperation, Actions and Preferences
Cooperation of agents plays a major role in many fields such as computer
science, economics, politics, social sciences and philosophy. Agents can decide
to cooperate and to form groups in order to share complementary resources
or because as a group they can achieve something better than they can do
individually.

When analyzing interactive situations involving multiple agents, we are
interested in what results agents can achieve – individually or together as
groups. There can be many ways how agents can achieve some result. They
can differ significantly, e.g. with respect to their feasibility, costs or side-effects.
Hence, it is not only relevant what results groups of agents can achieve but
also how exactly they can do so. In other words, plans and actions also play a
central role if we want to reason about cooperation in an explicit way. However,
cooperative ability of agents expressed only in terms of results and actions that
lead to these results does not tell us why a group of agents would actually
decide to achieve a certain result. For this, we also need to take into account
the preferences based on which the agents decide what to do. Summarizing
these initial motivations, we can say that in interactive situations, the following
three questions are of interest:

• What results can groups of agents achieve?

• How can they achieve something?

• Why would they want to achieve a certain result?

The above considerations show that when reasoning about the strategic abilities
of agents, the concepts of coalitional power, actions/plans and preferences play
a major role and are moreover tightly connected. Thus, we argue that a formal
theory for reasoning about agents’ cooperative abilities in an explicit way should
also take into account actions/plans of agents and their preferences.

Modal logics have been used to develop formal models for reasoning about
each of these aspects – mostly separately. Coalitional power has mainly been
investigated within the frameworks of Alternating-time Temporal Logic (ATL)
(Alur et al. 1998), Coalition Logic (CL) (Pauly 2002a) and their extensions.
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The models of CL are neighborhood models defined as follows.

Definition 2.1 (CLModel) A CL-model is a pair ((N,W,E),V) where N is a set
of agents, W � ∅ is a set of states, E : W → (℘(N) → ℘(℘(W))) is called an
effectivity structure. It satisfies the conditions of playability:

• Liveness: ∀C ⊆ N : ∅ � E(C),

• Termination: ∀C ⊆ N : W ∈ E(C),

• N-maximality. ∀X ⊆W : (W \ X � E(∅)⇒ X ∈ E(N)),

• Outcome monotonicity. ∀X ⊆ X� ⊆W,C ⊆ N : (X ∈ E(C)⇒ X� ∈ E(C)),

• Superadditivity. ∀X1,X2 ⊆ W,C1,C2 ⊆ N : ((C1 ∩ C2 = ∅ & X1 ∈
E(C1) & X2 ∈ E(C2))⇒ X1 ∩ X2 ∈ E(C1 ∪ C2)).

V : prop→ ℘(W) is a propositional valuation function. �

The language LCL of CL is a standard modal language with a modality �[C�]
for each C ⊆ N. The intended meaning of �[C�] ϕ is “coalition C has the power to
achieve that ϕ”. First, we briefly recall the semantics of CL:

M,w � �[C�] ϕ iff �ϕ�M ∈ E(w)(C),

where �ϕ�M denotes the set of states in the model M that satisfy ϕ. For the
details we refer the reader to Pauly (2002a).

More recently, there have been some attempts to develop logics for
reasoning about coalitional power that also take into account either agents’
preferences or actions. One group of such logics looks at cooperation from the
perspective of cooperative games (Ågotnes et al. 2007). In a non-cooperative
setting preferences and strategic abilities have been considered by van Otterloo
et al. (2004). Another path that has been taken in order to make coalitional
power more explicit is to combine cooperation logics with (fragments of)
action logics (Sauro et al. 2006; Borgo 2007; Walther et al. 2007).

In this chapter, a sound and complete modal logic for reasoning about
cooperation, actions and preferences (CLA+P) is developed, which is obtained
by combining the cooperation logic with actions CLA by Sauro et al. (2006)
with a preference logic (van Benthem et al. 2005, 2007). We analyze the logic’s
expressivity and computational complexity.

2.2 Cooperation Logic with Actions (CLA)
In this section, we briefly present the cooperation logic with actions (CLA)
which will be extended in the next section by combining it with a preference
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logic. The idea of CLA is to make coalitional power explicit by expressing it in
terms of the ability to perform actions instead of expressing it directly in terms
of the ability to achieve certain outcomes. The definitions we present here in
Section 2.2 are equivalent to those of Sauro et al. (2006). CLA is a modular
modal logic, consisting of an environment module for reasoning about actions
and their effects, and an agents module for reasoning about agents’ abilities
to perform actions. By combining both modules, a framework is obtained in
which cooperative ability can be made more explicit as the cooperative ability
to achieve results comes from the ability to ensure that actions of certain types
take place which have the effect of making the result happen.

The environment is modeled as a transition system whose edges are labeled
with sets of atomic actions.

Definition 2.2 (Environment model) An environment model is a set-labeled
transition system

E = �W,Ac, (→)A⊆Ac,V�.
W is a set of states, Ac is a finite set of atomic actions,→A⊆ W ×W and V is a
propositional valuation. Each→A is required to be serial, i.e., for every w ∈ W
and A ⊆ Ac, there is at least one v ∈W such that w→A v . �

The intuition behind w →A v is that if in w all and only the actions in A
are performed concurrently, then the next state can be v (note that transition
system can be nondeterministic, and there can be several states v� such that
w→A v�.

Then a modal language is defined with modalities [α], for α being a propo-
sitional formula built from atomic actions. The intended meaning of [α]ϕ is
that every transition →A such that A |= α (using the satisfaction relation of
propositional logic1) leads to a ϕ-state:
E,w |= [α]ϕ iff ∀A ⊆ Ac, v ∈W : if A |= α and w→A v then E, v |= ϕ.

In this dissertation, we do not go into the underlying philosophy of actions
but refer the reader to Broersen (2003) for a detailed discussion of modal action
logics. The restriction to a finite set of actions is reasonable for modeling many
concrete situations and also ensures that we have a finite axiomatization.

An environment logicΛE is developed, which is sound and complete (Sauro
et al. 2006). It contains seriality axioms and the K axiom for each modality [α],
for α being consistent. The environment logic can then be used for reasoning
about the effects of concurrent actions.

Then an agents module is developed for reasoning about the ability of
(groups of) agents to act. Each agent is assigned a set of atomic actions and
each coalition is assigned the set of actions its members can perform.

1That is, A |= a iff a ∈ A, A |= ¬α iff A � α, and A |= α ∧ β iff A |= α and A |= β.
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Definition 2.3 (Agents model) An agents model is a triple �N,Ac,act�, where N
is a finite set of agents, Ac is a finite set of atomic actions and act is a function act :
N→ ℘(Ac) such that

�
i∈N act(i) = Ac. For C ⊆ N, define act(C) :=

�
i∈C act(i). �

We are also interested in agents’ abilities to force more complex actions. A
language is developed with expressions �[C�] α, meaning that the group C can
force that a concurrent action is performed that satisfies α. This means that
C can perform some set of atomic actions such that no matter what the other
agents do, the resulting set of actions satisfies α.
�N,Ac,act� |= �[C�] α iff ∃A ⊆ act(C) : ∀B ⊆ act(N \ C) : A ∪ B |= α.

Then a cooperation logic for actions is developed, which is very much in
the style of Coalition Logic (Pauly 2002a) – the main difference being that it is
concerned with the cooperative ability to force actions of certain types.

Definition 2.4 (Coalition Logic for Actions) The coalition logic for actions ΛA

is defined to be the logic derived from the following set of axioms, with modus
ponens as rule of inference.

1. �[C�] �, for all C ⊆ N,

2. �[C�] α→ ¬�[N \ C�] ¬α,

3. �[C�] α→ �[C�] β if � α→ β in propositional logic,

4. �[C�] a→ �i∈C�[{i}�] a for all C ⊆ N and atomic a ∈ Ac,

5. (�[C1�] α ∧ �[C2�] β)→ �[C1 ∪ C2�] (α ∧ β), for C1 ∩ C2 = ∅,

6. (�[C�] α ∧ �[C�] β)→ �[C�] (α ∧ β) if α and β have no common atomic actions,

7. �[C�] ¬a→ �[C�] a for atomic a ∈ Ac,

8. �[C�] α→ �{�[C�] �Ψ | Ψ is a set of literals such that
�
Ψ→ α}.

�

Let us briefly discuss some of the axioms. Axiom 2 says that the abilities of
coalitions to force actions have to be consistent. Axiom 4 says that if a coalition
can perform some atomic action, this must be because one of the individuals
in the coalition can perform it. Axiom 5 says how disjoint coalitions can join
forces. Axiom 7 says that if a coalition can force that an atomic action won’t be
performed it must be the case that the coalition itself could perform this action.
This has to do with the fact that for every atomic action there has to be an agent
who can perform it. Axiom 8 makes explicit how complex action types can be
forced.
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The coalition logic for actions is sound and complete with respect to the
class of agents models (Sauro et al. 2006).

Next, agents are introduced as actors into the environment. This is done by
combining the environment models with the agents models. Then the agents
can perform actions which have the effect of changing the current state of the
environment.

Definition 2.5 (Multi-agent system) A multi-agent system (MaS) is a tuple

M = �W,Ac, (→)A⊆Ac,V, N,act�,

where �W,Ac, (→)A⊆Ac,V� is an environment model and �Ac, N,act� an agents
model. �

In these models, we can reason about what states of affairs groups can achieve
by performing certain actions. The corresponding language contains all ex-
pressions of the logics previously defined in this chapter and expressions for
saying that a group has the power to achieve ϕ, which means that the group
can make the system move into a state where ϕ is true.

Definition 2.6 (Language for MaS) The language for multi-agent systemsLcla
is generated by the following grammar:

ϕ ::= p ϕ ∧ ϕ ¬ϕ [α]ϕ �[C�] α �[C�] ϕ

for C ⊆ N and α being an action expression. �

�[C�] ϕmeans that C can force ϕ, i.e., C can perform a set of actions such that no
matter what the other agents do, the system moves to a ϕ-state.

M,w |= �[C�] ϕ iff ∃A ⊆ act(C) such that ∀B ⊆ act(N \ C), v ∈ W :
if w→A∪B v, then M, v |= ϕ.

A complete axiomatization is obtained by combining the environment logic
and the coalition logic for actions by adding two interaction axioms.

Definition 2.7 (Cooperation Logic with Actions) The cooperation logic with
actions ΛCLA combines the environment logic ΛE and the coalition logic for
actions ΛA by adding

1. (�[C�] α ∧ [α]ϕ)→ �[C�] ϕ,

2. �[C�] ϕ→ �{�[C�] α∧ [α]ϕ | α is the conjunction of a set of atomic actions or
their negations}. �
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Note how Axiom 2 makes coalitional power explicit: If a coalition can force
ϕ, then there has to be a concrete plan as to which atomic actions the members
of C perform such that the resulting action is guaranteed to lead to a state where
ϕ holds.

CLA provides us with a formal framework for reasoning about what states
of affairs groups of agents can achieve and how they can do so. A group C
being able to force ϕmeans that there has to be some set of actions A ⊆ act(C)
such that all transitions of type

�
Φ(A,C) :=

�
(A ∪ {¬a|a ∈ (act(C) \ A), a � act(N \ C)}

lead to a state where ϕ holds. For A ⊆ act(C), the action expression
�
Φ(A,C)

describes the collective actions that can occur when coalition C performs all
and only the atomic actions in A.

For a detailed discussion of CLA, the reader is referred to Sauro et al. (2006).
Now, we proceed by adding preferences to CLA.

2.3 Cooperation Logic with Actions and Preferences
In this section, a logic for reasoning about cooperation, actions and preferences
is developed. This is done by adding a preference logic to CLA. As the main
focus of this chapter is on the complexity of this logical system, for further
technical details of the logic, the reader is referred to Kurzen (2007).

2.3.1 Preference Logic
There are various ways how preferences of agents can be added to a logic for
cooperation and actions. They could e.g. range over the actions that the agents
can perform. Alternatively, we can think of each agent having preferences over
the set of successor states of the current state.

In the current work, we consider preferences of individual agents ranging
over the states of the environment. This is reasonable since by performing
actions the agents can change the current state of the environment, and the
preferences over those states can be seen as the base of how the agents decide
how to act. Such a preference relation can also be lifted in several ways to one
over formulas (van Benthem et al. 2005, 2007).

Definition 2.8 (Preference model (van Benthem et al. 2005)) A preference
model is a tuple

MP = �W, N, {�i}i∈N,V�,
where W is a set of states, N is a set of agents, for each i ∈ N,�i⊆ W ×W is

reflexive and transitive, and V is a propositional valuation. �
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We use a fragment of the preference language developed by van Benthem et al.
(2007). It has strict and non-strict preference modalities.

Definition 2.9 (Preference Language) Given a set of propositional variables
and a finite set of agents N, define the preference languageLp to be the language
generated by the following syntax:

ϕ := p ¬ϕ ϕ ∨ ϕ ��iϕ �≺iϕ. �

��iϕ says that there is a state satisfying ϕ that agent i considers to be at least
as good as the current one. The semantics is defined as follows.

MP,w |= ��iϕ iff ∃v : w �i v and MP, v |= ϕ.
MP,w |= �≺iϕ iff ∃v : w �i v, v �i w and MP, v |= ϕ.

The preference relation� is a preorder and≺ is its largest irreflexive subrelation.
Hence, the following axiomatization.

Definition 2.10 (Preference Logic ΛP) For a given set of agents N, letΛP be the
logic generated by the following axioms for each i ∈ N: For ��i and �≺i , we
have K and for��i also reflexivity and transitivity axioms. Moreover, there are
four interaction axioms specifying the relationship between strict and non-strict
preferences:

1. �≺iϕ→ ��iϕ,

2. ��i�≺ϕ→ �≺iϕ,

3. �≺i��iϕ→ �≺iϕ,

4. ϕ ∧��iψ→ (�≺iψ ∨��i(ψ ∧��iϕ)).

The inference rules are modus ponens, necessitation and substitution. �

Note that transitivity for �≺i follows. We can show soundness and complete-
ness. The bulldozing technique (Blackburn et al. 2001) is used to deal with ≺.
For details, we refer to van Benthem et al. (2007).

Theorem 2.11 ΛP is sound and complete with respect to the class of preference models.

Proof. Follows from Theorem 3.9 of van Benthem et al. (2007). �

Our main motivations for choosing this preference logic is its ability to
distinguish between weak and strict preference which plays a major role in
many concepts for reasoning about interaction in multi-agent systems. This
makes the logic quite powerful but due to its simplicity it still has the modal
character and talks about preferences from a local forwards looking perspective.
A modality for talking about states being at least as bad would have increased the
expressive power but we would have lost the local perspective since this would
have resulted in a global existential modality with respect to all comparable
states.



2.3. Cooperation Logic with Actions and Preferences 35

2.3.2 Environment Logic with Preferences

As an intermediate step towards a logic for reasoning about cooperation, ac-
tions and preferences, we first combine the preference logic and the environ-
ment logic. The two models are combined by identifying their sets of states.
Then the preferences of the agents range over the states of the environment. In
such a system, the agents cannot act in the environment, but they can rather
be seen as observers that observe the environment from the outside and have
preferences over its states.

Definition 2.12 (Environment with Preferences) An environment model with
preferences is a tuple

E� = �W,Ac, (→)A⊆Ac, {�i}i∈N,V�,

where �W,Ac, (→)A⊆Ac, {�i}i∈N,V� is an environment model and �W, N, {�i}i∈N,V�
is a preference model. �

We combine the languages for the environment and the preferences and add
expressions for saying that “every state accessible by an α transition is (strictly)
preferred by agent i over the current state”. The main motivation for adding
such expressions is that our aim is to be able to express properties inspired
by game theoretical solution concepts, which very often involve statements
saying that groups can(not) achieve an outcome better for (some of) its mem-
bers. Since we want to make explicit by which actions groups can(not) achieve
improvements we introduce this expression saying that actions of type α are
guaranteed to lead to an improvement.

Notation We will write the symbol � in statements that hold for both � and ≺,
each uniformly substituted for �. �

Definition 2.13 (Environment Language with Preferences) The language Lep
contains all expressions of the environment language and the preference lan-
guage and additionally formulas of the forms α ⊆�i and α ⊆≺i, for α being an
action expression.

Boolean combinations and expressions of the previously defined languages
are interpreted in the standard way. For the newly introduced expressions, we
have:

E�,w |= α ⊆�i iff ∀A ⊆ Ac, v ∈W : if w→A v and A |= α then w �i v. �

Expressions of the form α ⊆�i cannot be defined just in terms of the pref-
erence language and the environment language. To see this, note that α ⊆�i
says that for every state accessible by an α-transition it holds that this same
state is accessible by �i. Thus, we would have to be able to refer to particular
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states. Therefore, we add two inference rules for deriving the newly introduced
expressions.

(PREF-ACT) �
�iϕ→[α]ϕ
α⊆�i

(STRICT PREF-ACT) �
≺iϕ→[α]ϕ
α⊆≺i

In order to obtain a complete axiomatization, two axioms are added which
correspond to the converse of the inference rules.

Theorem 2.14 Let ΛEP be the logic generated by all axioms of the environment logic
ΛE, all axioms of the preference logic ΛP, and

1. α ⊆�i→ (��iϕ→ [α]ϕ),

2. α ⊆≺i→ (�≺iϕ→ [α]ϕ).

The inference rules are modus ponens, substitution, necessitation PREF-ACT and
STRICT PREF-ACT. Then ΛEP is sound and complete with respect to the class of
environment models with preferences.

Proof. Soundness is straightforward. We sketch the proof for completeness.
Details can be found in Kurzen (2007). The canonical model is constructed in
the usual way, with the maximally consistent sets being closed also under the
new inference rules. A truth lemma can then be shown by induction on ϕ. The
only interesting cases are those for α ⊆�i and α ⊆≺i. The others follow from
completeness of the sublogics. We give a sketch for α ⊆�i. We have to show
that for every maximally consistent set Σ it holds that α ⊆�i∈ Σ iff Σ |= α ⊆�i.
The left-to-right direction uses Axiom 1. The other direction first uses the fact
that α ⊆�i characterizes the property that states accessible by α-transitions are
a subset of the states accessible by �i. Then we can use the closure under the
rule PREF-ACT to conclude that α ⊆�i∈ Σ. The case of α ⊆≺i is analogous. �

In the environment logic with preferences, the performance of concurrent ac-
tions changes the current state of the system also with respect to the agents’
“happiness”: A transition from one state to another can also correspond to a
transition up or down in the preference orderings of the agents.

2.3.3 Cooperation Logic with Actions and Preferences
Now, agents are introduced as actors by combining the environment models
with preferences with agents models. The resulting model is then called a
multi-agent system with preferences (henceforth MaSP).

Definition 2.15 (Multi-agent system with preferences) A multi-agent system
with preferences (MaSP) M� is a tuple

M� = �W,Ac, (→)A⊆Ac, N,act, {�i}i∈N,V�,
where �W,Ac, (→)A⊆Ac,V, N,act� is a MaS, �W, N, {�i}i∈N,V� is a preference model
and �W,Ac, (→)A⊆Ac, {�i}i∈N,V� is an environment with preferences. �
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Remark 2.16 Note that given a deterministic MaSP in which each preference
relation �i is total, we can consider each state w as having a strategic game
(Osborne and Rubinstein 1994) Gs attached to it.

Gw = �N, (℘(act(i)))i∈N, (�i)i∈N�,

×n
i=1Ai �i ×n

i=1A�i iff v �i v� for w→�i∈N Ai v and w→�i∈N A�i v�. �

For talking about the cooperative ability of agents with respect to prefer-
ences, we introduce two expressions saying that a group can force the system
to move into a ϕ-state that some agent (strictly) prefers.

Definition 2.17 (LanguageLcla+p) The language Lcla+p extends Lcla by formu-
las of the form

��iϕ | �≺iϕ | α ⊆�i | α ⊆≺i | �[C�i�] ϕ | �[C≺i�] ϕ.

The first four expressions are interpreted as in the environment logic with
preferences and for the last two we have the following.

M�,w |= �[C�i�] ϕ iff ∃A ⊆ act(C): ∀B ⊆ act(N \C), v ∈W : if w→A∪B v,
then M�, v |= ϕ and w �i v. �

Let us now look at how coalitional power to achieve an improvement for an
agent is made explicit in CLA+P. We can show that �[C�i�] ϕ is equivalent to the
existence of an action expression α that C can force and that has the property
that all transitions of type α are guaranteed to lead to a ϕ-state preferred by
agent i.

Observation 2.18 Given a MaSP M� and a state w of its environment,

M�,w |= �[C�i�] ϕ iff there exists an action expression α such that M�,w |=
�[C�] α ∧ [α]ϕ ∧ (α ⊆�i).

Proof. Analogous to that of Observation 14 of Sauro et al. (2006). For the left-
to-right direction, use the action expression

�
Φ(A,C)

with
�
Φ(A,C) :=

�
(A ∪ {¬a|a ∈ (act(C) \ A), a � act(N \ C)}) and A being a

joint action of C that is the ’witness’ of �[C�i�] ϕ. �

Now we need axioms establishing a relationship between the newly added
formulas and the expressions of the sublogics.
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Definition 2.19 (Cooperation Logic with Actions and Preferences) ΛCLA+P is
defined to be the smallest logic generated by the axioms of the cooperation
logic with actions, the environment logic with preferences and

1. (�[C�] α ∧ [α]ϕ ∧ (α ⊆�i))→ �[C�i�] ϕ,

2. (�[C�] α ∧ [α]ϕ ∧ (α ⊆≺i))→ �[C≺i�] ϕ,

3. �[C�i�] ϕ→ �{�[C�] α ∧ [α]ϕ ∧ (α ⊆�i)|α is a conjunction of action literals},

4. �[C≺i�] ϕ→ �{�[C�] α ∧ [α]ϕ ∧ (α ⊆≺i)|α is a conjunction of action literals}.

The inference rules are modus ponens, necessitation for action modali-
ties and preference modalities (��i ,�≺i), substitution of logical equivalents,
PREF −ACT and STRICT PREF −ACT. �

The axioms specify the interaction between the coalitional power, actions and
preferences. The last two axioms make explicit how a group can achieve that
the system moves into a state preferred by an agent, where ϕ is true.

Theorem 2.20 The logic ΛCLA+P is sound and complete with respect to the class of
MaSP’s.

Proof. Soundness of the axioms is straightforward. We sketch the proof of
completeness. The details can be found in Kurzen (2007). The canonical model
is constructed in the standard way. Then a truth lemma is shown, where the
interesting cases are �[C�i�] ϕ and �[C≺i�] ϕ. We sketch the case of �[C�i�] ϕ. Assume
that for a maximally consistent set Σ we have that Σ |= �[C�i�] ϕ. Then by
Observation 2.18, there has to be an action expression α such that Σ |= �[C�] α,
Σ |= [α]ϕ and Σ |= α ⊆�i. Using the induction hypothesis, the maximality of Σ
and Axiom 1, it follows that �[C�i�] ϕ ∈ Σ. For the other direction, let �[C�i�] ϕ ∈ Σ.
Then by maximality of Σ and Axiom 3, there is a set of action literals A such
that [

�A]ϕ ∈ Σ�A ⊆�i∈ Σ and [
�A]ϕ ∈ Σ. Using the induction hypothesis

and the previous cases, we can then apply Observation 2.18 and conclude that
Σ |= �[C�i�] ϕ. �

After this overview of the technical specifications of the logic, we will now
look at what the combination of explicit coalitional power in terms of actions
and preferences allows us to express.

2.3.4 Expressivity of CLA+P

We now show that in CLA+P, we can express some concepts relevant for
reasoning about game-like interaction in multi-agent systems.
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Stability. Given a MaSP, M� = �W,Ac, (→)A⊆Ac, N,act, {�i}i∈N,V�, the following
formula characterizes the states that are individually stable (group stable),
i.e., no individual (group) has the power to achieve a strict improvement
(for all its members).

ψind. stable :=
�

i∈N
¬�[{i}≺i�] �.

ψgr. stable :=
�

C⊆N

�

A⊆act(C)



�

i∈C

¬
���

Φ(A,C)
�
⊆≺i

�

 .

Analogously, we can also express a stronger form of stability by replacing
� by ≺, which then means that no (group of) agent(s) can achieve that the
system moves to a state at least as good for all its members.

Dictatorship. We can express that an agent d is a (strong) dictator in the sense
that coalitions can only achieve what d (strictly) prefers.

ψd=dict. :=
�

C⊆N

�

A⊆act(C)

���
Φ(C,A)

�
⊆�d

�
.

Then, we can also say that there is no (strong) dictator:

ψno dict. :=
�

i∈N
¬


�

C⊆N

�

A⊆act(C)

���
Φ(C,A)

�
⊆�i

�

 .

Enforcing Unanimity. In some situations we might want to impose the condi-
tion on a MaSP that groups should only be able to achieve something if
they can do so by making all its members happy:

�

C⊆N


�[C�] ϕ→



�

A⊆act(C)



�

i∈C

���
Φ(A,C)

�
⊆ ≺i

�
∧
��
Φ(A,C)

�
ϕ








 .

Note that the length of the last four formulas is exponential in the number of
agents (and atomic actions).

2.3.5 CLA+P and Coalition Logic
Let us now briefly discuss the relation between CLA+P and Pauly’s Coalition
Logic (CL) in order to illustrate how CLA+P builds upon existing frameworks
for reasoning about coalitional power and how exactly the underlying actions
that are only implicitly represented in the semantics of CL are made explicit.
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Given a fixed set of agents N, a coalition model M = �(W,E),V� with W being
a set of states, E : W → (℘(N) → ℘(℘(W)) being a truly playable2 effectivity
function and V being a propositional valuation, we can we use Theorem 7 of
Goranko et al. (2011) and obtain a corresponding game frame, i.e., each state has
an associated strategic game form in which each outcome corresponds to some
accessible state. Looking back at Remark 2.16, it is now easy to see how we can
construct a corresponding MaS: We take the same set of states and add actions
for each of the strategies in the attached games and define the accessibility
relation in accordance with the outcome function.

If we add preferences to the game forms in the game frame we obtained
from the coalition model, then we can transform it into a MaSP in an analogous
way.

This shows that the framework of CLA+P is a natural way to make coali-
tional power as modeled in CL and its extensions more explicit.

2.4 Complexity of CLA+P

In this section, we analyze the complexity of SAT of CLA+P. We will first show
decidability before studying lower bounds.

2.4.1 Decidability of CLA+P

We show that SAT of CLA+P is decidable. The first step is to show that only a
restricted class of models of CLA+P needs to be considered.

We start by looking at how we can restrict the class of models with respect
to the set of agents. Let N(ϕ) denote the set of agents occurring in ϕ. Now, we
ask: Is every satisfiable ϕ also satisfiable in a MaSP with set of agents N(ϕ)? In
Coalition Logic, the answer is negative: the formula ψ = ¬�[{1}�] p ∧ ¬�[{1}�] q ∧
�[{1}�] (p∨ q) is only satisfiable in models with at least two agents (Pauly 2002b).
However, as in CLA+P the environment models can be nondeterministic, here
ψ can indeed be satisfied in a model with only one agent.

It can be shown that every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a
MaSP with set of agents N(ϕ) ∪ {k}, for k being a new agent. k takes the role
of all opponents of N(ϕ) of the model that satisfies ϕ collapsed into one: k gets
the ability to perform exactly the actions that agents not occurring in ϕ can
perform as a group.

2True playability adds the following condition to those of playability: For every X ⊆W,X ∈
E(w)(N) implies {x} ∈ E(w)(N) for some x ∈ X. We refer to Goranko et al. (2011) for other
equivalent definitions of true playability and a discussion of the relation between playability
and true playability.
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Theorem 2.21 Every satisfiable formulaϕ ∈ Lcla+p is satisfiable in the class of MaSP’s
with at most |N(ϕ)| + 1 agents.

Proof. Assume that M� = �W,Ac, (→)A⊆Ac, N,act, {�i}i∈N,V� satisfies ϕ. We only
need to consider the case in which N ⊃ N(ϕ) because if this is not the case we
are already done.

Thus, for the case that N ⊃ N(ϕ), we construct M��� = �W,Ac, (→)A⊆Ac, N(ϕ) ∪
{k},act

�, {��i}i∈N(ϕ)∪{k},V�, with act
�(k) =

�
j∈N\N(ϕ) act( j) and act

�(i) = act(i) for i � k.
The preferences are defined as follows:

• ��i=�i for i ∈ N(ϕ) and

• ��k=W ×W.

By induction, we can show that

M�,w |= ϕ iffM��� ,w |= ϕ.

For Boolean connectives and formulas without coalition modalities, this
is straightforward. The case where ϕ is of the form �[C�] α follows from the
definition of act

�. Then the other cases involving coalition modalities follow.�

Next, we want to know how many actions a model needs for satisfying
some formula. Consider e.g. ϕ = �[C�] (p ∧ q) ∧ �[C�] (¬p ∧ q) ∧ �[C�] (¬p ∧ ¬q). It
is only satisfiable in models with |Ac| ≥ 2 because C has the power to make the
system move into three disjoint sets of states and thus must be able to perform
at least three different sets of actions. The main task is to find “witnesses” for
formulas of the form �[C�] ψ in terms of concurrent actions. We can show that
every satisfiable ϕ is satisfiable in a MaSP whose set of atomic actions consists
of those in ϕ, one additional one (a dummy for ensuring that each agent can
perform an action), and for every subformula �[C�] ψ or �[C�i�] ψ, one action for
each of C’s members.

The key step in transforming a model satisfying a formulaϕ into one whose
set of actions satisfies the above condition is to appropriately define the action
distribution and the accessibility relations. For every action formula α occur-
ring in ϕ (in subformulas of the form �[C�] α or [α]ψ), we have to ensure that
two states are related by an α-transition in the new model iff they were in the
original one. Additionally, for formulas �[C�] ψ and �[C�i�] ψ, the set of actions
introduced for them serves for making explicit how C can force ϕ.

Theorem 2.22 Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a MaSP with at
most |Ac(ϕ)|+ (

�
�[C�] ψ∈Sub(ϕ) |C|)+ (

�
�[C�i �] ψ∈Sub(ϕ) |C|)+ (

�
�[C≺i �] ψ∈Sub(ϕ) |C|)+ 1 actions.

Proof. Assume that M� = �W,Ac, (→)A⊆Ac, N,act, {�i}i∈N,V� satisfies ϕ. We con-
struct a model M��� = �W,Ac�, (→�)A�⊆Ac� , N,act

�, {��i}i∈N,V� as follows.
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Ac� := Ac(ϕ) ∪ �
�[C�] ψ∈Sub(ϕ) ACψ ∪ �

�[C�i �] ψ∈Sub(ϕ) AC�iψ ∪�
�[C≺i �] ψ∈Sub(ϕ) AC≺iψ ∪{â}.

ACψ and AC�iψ consist of newly introduced actions aCψ j, and aC�iψ j respec-
tively, for each j ∈ C. Action abilities are distributed as follows:

act
�(i) := (act(i) ∩ Ac(ϕ)) ∪ {â} ∪ {aCi|�[C�] ψ ∈ Sub(ϕ) or �[C�i�] ψ ∈

Sub(ϕ), for i ∈ C}.
For defining the accessibility relation →�A�⊆Ac� , we first define for any state

w its set of→�A�-successors Tw
A� .

v ∈ Tw
A� iff the following conditions are satisfied:

1. ∀[α]ψ ∈ Sub(ϕ) such that A� |= α : If M�,w |= [α]ψ,
then M�, v |= ψ,

2. ∀α ⊆�i∈ Sub(ϕ) such that A� |= α : If M�,w |= α ⊆�i,
then w �i v,

3. ∀�[C�] ψ ∈ Sub(ϕ) such that A� |= �Φ(ACψ,C), there is
some Ā ⊆ act(C) such that w →A v for some A ⊇ Ā
such that A |= �Φ(Ā,C), and if M�,w |= �[C�] ψ then
M�,w |= [

�
Φ(Ā,C)]ψ

4. ∀�[C�i�] ψ ∈ Sub(ϕ) such that A� |= �Φ(AC�iψ,C), there
is some Ā ⊆ act(C) such that w →A t for some A ⊇ Ā
such that A |= �Φ(Ā,C), and if M�,w |= �[C�i�] ψ then
M�,w |= [

�
Φ(Ā,C)]ψ and M�,w |= (

�
Φ(Ā,C) ⊆ �i).

For any v ∈ Tw
A� , we set w →�A� v. Then we can show by induction on

ψ ∈ Sub(ϕ) that M�,w |= ψ iffM��� ,w |= ψ. �

The next step is to show that every satisfiable formula ϕ is satisfiable in a
model with a certain number of states. Such results are usually obtained by
transforming a model into a smaller one using a transformation that preserves
the truth of all subformulas of ϕ. In the case of CLA+P, the irreflexivity of the
strict preferences and the fact that also α ⊆�i is not modally definable in a basic
modal language call for a modification of the standard techniques.

We appropriately modify the method of filtration (Blackburn et al. 2001)
and show that any satisfiable formula ϕ ∈ Lcla+p is satisfiable in a model with
exponentially many states. The idea of a filtration is to transform an infinite
model into a finite one by identifying states that agree on the truth value of
each subformula of the considered formula. So, given that we know that ϕ is
satisfied in some MaSP M� with states W, we construct an MaSPM� f with set
of states WSub(ϕ) = {|w|Sub(ϕ) | w ∈ W}, where |w|Sub(ϕ) denotes the equivalence
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class of the states that in the model M� agree with w on the truth values of all
ψ ∈ Sub(ϕ). The main task is to appropriately define the accessibility relations
for actions and preferences inM� f such that for ψ ∈ Sub(ϕ), we then have that

M�,w |= ψ iffM� f
, |w| |= ψ.

Here, it is important to note that formulas of the form �[C�] ψ and
�[C�i�] ψ are equivalent to formulas of the form

�
A⊆act(C)[

�
Φ(A,C)]ψ and�

A⊆act(C)([
�
Φ(A,C)]ψ ∧ (

�
Φ(A,C) ⊆ �i)), respectively – for

�
Φ(A,C) as in

the proof of Observation 2.18. Moreover, the transformation of the model does
not change the underlying agents model. Thus, the truth of formulas �[C�] α is
preserved.

Theorem 2.23 Every satisfiable ϕ ∈ Lcla+p is also satisfiable in a MaSP with ≤ 2|ϕ|
many states.

Proof. Given that M�,w |= ϕ for some M� = �W,Ac, (→)A⊆Ac, N,act, {�i}i∈N,V�
and w ∈ W, we obtain M� f

= �WSub(ϕ),Ac, (→ f )A⊆Ac, N,act
f , {� f

i }i∈N,V f � by
filtrating M� through Sub(ϕ), where the accessibility relations for actions and
preferences are defined as follows:

|w|→ f
A |v| iff the following conditions are satisfied:

1. ∀[α]ψ ∈ Sub(ϕ) such that A |= α : if M�,w |= [α]ψ,
then M�, v |= ψ,

2. (a) ∀α ⊆�i∈ Sub(ϕ) such that A |= α : if M�,w |=
α ⊆�i, then w �i v,

(b) ∀α ⊆≺i∈ Sub(ϕ) such that A |= α : if M�,w |=
α ⊆≺i, then w ≺i v,

3. ∀�[C�] ψ ∈ Sub(ϕ) such that A |= �Φ(A�,C) for some
A� ⊆ act(C) : if M�,w |= [

�
Φ(A�,C)]ψ, then M�, v |=

ψ,

4. (a) ∀�[C�i�] ψ ∈ Sub(ϕ) such that A |= �Φ(A�,C)
for some A� ⊆ act(C): if M�,w |= [

�
Φ(A�,C)]ψ

and M�,w |= (
�
Φ(A�,C) ⊆ �i), then M�, v |= ψ

and w �i v.

(b) ∀�[C≺i�] ψ ∈ Sub(ϕ) such that A |= �Φ(A�,C)
for some A� ⊆ act(C): if M�,w |= [

�
Φ(A�,C)]ψ

and M�,w |= (
�
Φ(A�,C) ⊆ ≺i), then M�, v |= ψ

and w ≺i v.
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|w| � f
i |v| iff the following conditions hold:

1. (a) ∀��iψ ∈ Sub(ϕ): if M�, v |= ψ ∨ ��iψ then
M�,w |= ��iψ,

(b) If there is some �≺iψ ∈ Sub(ϕ), then w �i v,

2. If there is some α ⊆�i∈ Sub(ϕ) or some α ⊆≺i∈
Sub(ϕ), then w �i v,

3. If there is some �[C�i�] ψ ∈ Sub(ϕ) or some �[C≺i�] ψ ∈
Sub(ϕ), then w �i v.

V f (p) := {|w| | M�,w |= p}, for all propositional letters p ∈ Sub(ϕ). We can
show by induction that for all ψ ∈ Sub(ϕ) and w ∈W it holds that M�,w |= ψ iff
M� f
, |w| |= ψ. This follows from the definitions of (→ f )A⊆Ac and � f , and the fact

that we do not change the underlying agents model. The interesting cases are
those involving strict preferences and those with formulas �[C�i�] ψ and α ⊆�i.
Here, what makes the proof go through is that by conditions 1 b), 2 and 3 of � f ,
|w| �i |v| implies w �i v. Similarly, due to conditions 2 and 4 of→ f

A, the truth
values of subformulas α ⊆�i and �[C�i�] ψ is as in the original model. Moreover,
M� f is a proper MaSP since each � f

i is reflexive and transitive, and each→ f
A is

serial. By definition of WSub(ϕ), |WSub(ϕ)| ≤ 2|ϕ|. �

Now, we apply the constructions of the last three proofs successively.

Corollary 2.24 Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a MaSP of size
exponential in |ϕ| satisfying the conditions |N| ≤ |N(ϕ)| + 1 and |Ac| ≤ |Ac(ϕ)| +�
�[C�] ψ∈Sub(ϕ) |C| + (

�
�[C�i �] ψ∈Sub(ϕ) |C|) + (

�
�[C≺i �] ψ∈Sub(ϕ) |C|) + 1. �

Having non-deterministically guessed a model of size exponential in |ϕ|,
we can check in time exponential in |ϕ|whether this model satisfies ϕ.

Theorem 2.25 The satisfiability problem of CLA+P is in NEXPTIME.

Proof. Givenϕ, we non-deterministically choose a model M� of size exponential
in |ϕ| satisfying the conditions |N| ≤ |N(ϕ)|+1 and |Ac| ≤ |Ac(ϕ)|+��[C�] ψ∈Sub(ϕ) |C|+
(
�
�[C�i �] ψ∈Sub(ϕ) |C|) + (

�
�[C≺i �] ψ∈Sub(ϕ) |C|) + 1. Then, given this model, we can check

in timeO(|ϕ|||M�||), for ||M�|| being the size of M�, whether M� satisfiesϕ. Thus,
given a model of size exponential in |ϕ| (the length of ϕ) that also satisfies the
conditions on its sets of agents and actions explained earlier, it can be computed
in time exponential in the length of ϕ whether it satisfies ϕ. Since it can be
checked in time linear in the size of the model whether it is a proper MaSP, we
conclude that SAT of CLA+P is in NEXPTIME. �

Adapting standard techniques for modal logic to the special properties of
CLA+P, we could thus show that SAT of CLA+P is decidable in NEXPTIME.
Now we show that the environment logic itself is already EXPTIME-hard.
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2.4.2 Lower Bound
In order to show a lower bound for the complexity of SAT of CLA+P, we show
that SAT of the environment logic is EXPTIME-hard. This is done by reduction
from the Boolean modal logic K¬∪m (Lutz and Sattler 2001; Lutz et al. 2001).

Formulas of K¬∪m are interpreted in models M = �W,R1, . . .Rm,V�, where W
is a set of states, Ri ⊆ W ×W and V is a valuation. M¬∪m denotes the class of all
such models. Intuitively, K¬∪m is a modal logic that can also talk about Boolean
combinations of accessibility relations.

Definition 2.26 Let R1, . . .Rm be atomic modal parameters. Then the set of
modal parameters of K¬∪m is the smallest set containing R1, . . .Rm that is closed
under ¬ and ∪. The language L¬∪m is generated by the following grammar:

ϕ ::= p ϕ ∧ ϕ ¬ϕ �S�ϕ S ::= Ri ¬S S1 ∪ S2. �

The extension Ex(S) ⊆W ×W of a parameter S in a model is as follows.

Ex(Ri) = Ri
Ex(¬S) = (W ×W) \ Ex(S)
Ex(S1 ∪ S2) = Ex(S1) ∪ Ex(S2)

Formulas ofL¬∪m are interpreted in a model M = �W,R1, . . .Rm,V� as follows:
Propositional letters and Boolean combinations are interpreted in the standard
way and for modal formulas we have

M,w |= �S�ϕ iff ∃w� ∈W : (w,w�) ∈ Ex(S) and M,w� |= ϕ.

We define a translation τ consisting of two components τ1 for formulas and
τ2 for models. Let us extend the environment language Le by a propositional
letter q � L¬∪m . Then the translation τ1 for formulas is defined as follows using
the translation τS inside the modalities:

τ1(p) = p τS(Ri) = ai
τ1(ϕ1 ∧ ϕ2) = τ1(ϕ1) ∧ τ1(ϕ2) τS(S1 ∪ S2) = τS(S1) ∨ τS(S2)
τ1(¬ϕ) = ¬τ1(ϕ) τS(¬S) = ¬τS(S)
τ1(�S�ϕ) = ¬[τS(S)](q ∨ ¬τ1(ϕ))

τ2 translates a model M = �W,R1, . . .Rm,V� of K¬∪m into an environment
model τ2(M) = �W ∪ {u},Ac, (→)A⊆Ac,V��with u being a newly introduced state
that will serve for making the accessibility relations for the actions serial, and
Ac = {a1, . . . am}. The accessibility relations →A relates two states if the same
states were in the relation for each Ri for ai ∈ A. As we have to make it serial,
we define→A as follows.

w→A w� iff A = {ai | (w,w�) ∈ Ri or w� = u}.
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Thus, each →A is serial and τ2(M) is an environment model. V�(q) = {u}, and
for all p � q, V�(p) = V(p). Before showing that for any ϕ ∈ L¬∪m and M ∈M¬∪

m
for any state w ∈ W : M,w |= ϕ iff τ2(M),w |= τ1(ϕ), we prove a lemma saying
that if in M the state w� is S-accessible from w, then in the model τ2(M), w� is
accessible from w by a transition of type τS(S).

Notation For M = �W,R1, . . .Rm,V� ∈ M¬∪m and τ2(M) = �W ∪ {u},Ac, (→
)A⊆Ac,V��, define Aw,w� := {ai ∈ Ac | (w,w�) ∈ Ri}. �

Lemma 2.27 Let M = �W,R1, . . .Rm,V� be a model of K¬∪m . Then for any modal
parameter S and for any states w,w� ∈W it holds that

(w,w�) ∈ Ex(S) iff in τ2(M) : ∃A ⊆ Ac : w→A w� and A |= τS(S).

Proof. Note that by definition of (→A)A⊆Ac, the righthand side is equivalent to
Aw,w� |= τS(S). Then the proof goes by induction on S. �

Theorem 2.28 For any formula ϕ ∈ L¬∪m and any model M of K¬∪m , it holds that for
any state w in M:

M,w |= ϕ iff τ2(M),w |= τ1(ϕ).

Proof. By induction. Base case and Boolean cases are straightforward. Let
ϕ = �S�ψ.
(⇒) If M,w |= �S�ψ, this means that ∃w� : (w,w�) ∈ Ex(S) and M,w� |= ψ. By

the previous lemma and induction hypothesis, τ2(M),w |= τ1(�S�ψ).

(⇐) Assume that τ2(M),w |= τ1(�S�ψ). This is equivalent to τ2(M),w |=
¬[τS(S)](q ∨ ¬τ1(ψ)). Then there is some state ∃w� ∈ W ∪ {u} and a set of
actions∃A ∈ Ac such that A |= τS(S),w→A w� and τ2(M),w� |= ¬q ∧ τ1(ψ).
Thus, w� � u. By induction hypothesis and the previous lemma, M,w� |= ψ
and (w,w�) ∈ Ex(S). Hence, M,w |= �S�ψ. �

Theorem 2.29 SAT of ΛE is EXPTIME-hard.

Proof. Follows from the fact that SAT of K¬∪m is EXPTIME-hard (Lutz and Sat-
tler 2001; Lutz et al. 2001) and Theorem 2.28, which says that SAT of K¬∪m is
polynomially reducible to SAT of ΛE. �

As the environment logic itself is already EXPTIME-hard, this thus also holds
for the full CLA+P.

Corollary 2.30 SAT of CLA+P is EXPTIME-hard. �

This section has shown that the satisfiability problem of CLA+P is EXPTIME-
hard but still decidable. This rather high complexity is due to the environment
logic which itself is already EXPTIME-hard.
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2.5 Conclusions and Further Questions
We will now summarize the main results of this chapter and then give conclu-
sions and further questions.

2.5.1 Summary
We developed a modular modal logic that allows for reasoning about the
coalitional power of agents, actions and their effects, and agents’ preferences.
The current approach is based on the logic CLA (Sauro et al. 2006) which is
combined with a preference logic (van Benthem et al. 2007). The resulting
sound and complete logic CLA+P allows us to make explicit how groups can
achieve certain results. We can also express how a group can achieve that a
transition takes place that is an improvement for some agent.

Conceptual benefits In the framework of CLA+P, it can be expressed how
the abilities to perform certain actions are distributed among the agents, what
are the effects of the concurrent performance of these actions and what are the
agents’ preferences over those effects. Moreover, in CLA+P, we can distinguish
between different ways how groups can achieve some result – not only with
respect to the actions that lead to some result, but also with respect to the
preferences. We can for instance express that a group can achieve some result
in a way that is ‘good’ for all its members in the sense that after the achievement
all of them are better off. Coming back to the strategic interaction between
rivaling companies explained on page 47, we could thus formalize and answer
the following.

Can company C achieve some profit while making sure that for all
of its current employees the resulting situation will be at least as
good as the current one?

Note that ’C making a certain profit’ can be represented by a propositional
letter and the preferences of the employees can be represented by preference
relations. Then in our formalization, this means that C can make the system
move into a state that is at least as good for all its current employees and at
which it holds that C makes a certain profit.

Thus, our framework provides a fine-grained model of cooperative ability
as we can distinguish between “good” and “bad” ways to achieve something.

This then also allows us to axiomatize properties that one might want to
impose onto a multi-agent system, e.g. the restriction that groups can only
achieve the truth of a certain formula if this can be done without making
anybody worse off. Thus, CLA+P provides a framework for reasoning about
interactive situations in an explicit way that gives us more insights into the
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cooperative abilities of agents. Comparing CLA+P to CL shows that CLA+P
naturally builds on game frames underlying the semantics of CL and makes
both the agents’ actions and the preferences explicit that are only implicitly
represented in the semantics of CL.

Computational complexity The satisfiability problem of CLA+P is shown
to be decidable and EXPTIME-hard. Keeping in mind that using CLA+P we
can talk about strict preferences, intersections of accessibility relations as well
as the property of one relation being a subset of another, EXPTIME-hardness
is not a surprising result. Even though the modular models of CLA+P are
rather special, its complexity is in accordance with general results concerning
the connection between expressive power and complexity of modal logics for
reasoning about coalitional power and preferences, as we will see in the next
chapter.

We showed that the satisfiability problem of the underlying environment
logic is by itself already EXPTIME-hard. Thus, we identified a source of the high
complexity of CLA+P. It is mostly due to the fact that the accessibility relation
of the models can be arbitrary: e.g. there does not need to be any relation
between→A,→B and→A∩B. Whereas this generality allows us to model a lot of
dynamic processes, from a computational viewpoint, it seems to be appealing
to change the environment logic in order to decrease computational complexity.
Also, when comparing our models to the game frames of CL, we can see that
restricting ourselves to deterministic environment models can be reasonable.
The same holds for assuming preference orders to be total preorders, which is
an assumption we will make in the next chapter. This assumption would also
increase the expressive power as e.g. if a coalition can perform an action that
will lead to some resultϕ, but the action does not have the effect to lead to a state
at least as good for some agent, then by the totality of the preferences we can
conclude that the action can lead to a state strictly worse for the agent (cf. the
discussion of different concepts combining coalitional power and preferences
(Dégremont and Kurzen 2009a)).

This chapter illustrated how a modal logic for actions, cooperation and pref-
erences is developed, based on the conceptual motivation to make the ability
of individuals and groups more explicit. Our complexity analysis showed the
computational consequences of the design choices made.

• Basing CLA+P on an action logic which contains the Boolean negation
on relations has the effect of making the logic EXPTIME-hard.

• The crucial steps in showing decidability of CLA+P are the following:

– to give an upper bound on the number of actions that are needed for
making implicit coalition modalities explicit.
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– to adapt the technique of filtration to show that CLA+P has the finite
model property.

2.5.2 Conclusion
Coming back to Research Question 1, we can conclude the following.

1. Combining an explicit representation of actions and preferences can have
conceptual benefits for cooperation logics if we want to reason about the
effect different joint actions have on the ’happiness’ of individuals.

2. Formalizing coalitional power in terms of the effects of concurrent actions
can be computationally expensive.

What the results of this chapter mean for the complexity of interaction in
general depends on how much of the complexity results are due to the chosen
way to combine logics for coalitional ability, effects of actions and individual
preferences. One way to determine this would be to consider other methods
for combining existing logical systems, e.g. with a fibring approach (Gabbay
1998). Alternatively, we could zoom in more into interaction itself, trying to
get a clearer view on what is the intrinsic (and thus inevitable) complexity of
certain social phenomena. In the remainder of this dissertation we will try to
follow this path.

2.5.3 Further Questions
This chapter gives rise to some questions to be further investigated. We start
with some immediate technical questions that follow from our results.

• Is the satisfiability problem of the logic developed in this chapter in
EXPTIME or NEXPTIME-hard?

The complexity bounds we have given are not tight. We would conjecture
that the procedure we gave for decidability could be made more efficient,
so that then EXPTIME-completeness could be shown.

• Is EXPTIME-hardness solely due to the underlying environment logic?

In our analysis, we have shown hardness by showing hardness of one
of the sublogics. It would be interesting to see whether hardness is only
caused by the environment logic or whether it can also be shown using
only some of the other sublogics.

The design choices we made resulted from the fact that first of all we
wanted to make coalitional power explicit and be able to distinguish between
different ways how results can be achieved, not only with respect to how the
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results can be achieved but also with respect to how good a certain choice
of collective action would be for individual agents. Additionally, we aimed
for a very general system, making only the assumptions that every action can
be performed by some agent, all actions can be performed in every state and
agents’ preferences are reflexive and transitive. The advantage of this is that a
wide range of different interactive scenarios can be modeled. However, when
we are interested in specific game-like interactions, a different methodology
might be more appropriate. Instead of starting with general considerations
concerning the conceptual motivations for choosing a certain cooperation logic,
we can start with the game theoretical concepts that we would like to be able
to reason about using the logic and then evaluate different choices w.r.t. their
computational properties.

This gives rise to the following question:

• Given that we want to develop a modal logic that can capture certain
aspects of cooperation, how much expressive power would we need for
this, and what will be the complexity of such a logic?

Clarifying and answering this question will help to make design choices when
developing logics for reasoning about interaction.



Chapter 3

Complexity and Descriptive
Difficulty of Reasoning about Cooperation
in Modal Logics

In the previous chapter, we have seen an example of a formal framework for
reasoning about strategic interaction of groups of agents in an explicit way.
Investigating the complexity of that logic has led us to the question of how we
can get a clear grip on the computational properties of logical systems designed
for reasoning about certain aspects of strategic interaction.

In this chapter, we analyze the complexity of reasoning about the strategic
abilities of groups and individuals in different modal logic frameworks. In
general, the frameworks we consider in this chapter are all designed to cap-
ture situations as the one of the rivaling companies explained in the previous
chapter.

The analysis given in this chapter is motivated by the following question
which plays a crucial role in the process of designing formal frameworks for
reasoning about interaction between agents.

• Given that we want to develop a modal logic that can capture certain
aspects of cooperation, how much expressive power would we need for
this, and what will be the complexity of such a logic?

We aim to answer this question focusing on the following three general
types of approaches to modal logics for cooperation and preferences:

1. very simple models that directly represent coalitional power,

2. action-based coalitional models that explicitly represent the actions by
which (groups of) agents can achieve something,

3. power-based coalitional models that focus on how the ability of groups
arises from that of their subgroups.

51
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For each class of models, we evaluate the following: how much expressive
power is needed for expressing certain concepts inspired from game theory
and social choice theory? And what will be the complexity of the resulting
logical systems?

Similarly to the previous chapter, this chapter contributes to the area of
modal logics for agency (cf. e.g. Horty and Belnap (1995)) and reasoning about
social concepts, with a particular focus on coalitional power (cf. e.g. Pauly
(2002a)) and preferences (cf. e.g. Girard (2008)). On the technical side, this
chapter also provides a semantic comparison of different logics by giving trans-
formations between different classes of models.

3.1 Reasoning about efficiency and stability in
modal logics

We can think of cooperative and non-cooperative game theory as theories of
stability of states of interactive systems, and social choice theory as a theory of
fairness and efficiency of such states.

This chapter contributes to the general project of bringing the perspective
of descriptive complexity to the analysis of problems raised by the analysis
of multi-agent systems in terms of stability, efficiency and connected concepts.
We are concerned with studying the expressive power required for logical
languages to reason about interactive systems in terms of such notions. Conse-
quences in computational complexity can then be drawn, paving the way for a
descriptive perspective on the complexity of certain types of game- and social
choice theoretical reasoning. In this chapter, we take an abstract perspective (as
e.g. Roux et al. (2008)) on interactive systems and represent the structures for
cooperative ability together with the preferences of individuals as simple rela-
tional structures, as it is done in modal logics for reasoning about cooperation
in multi-agent systems. We aim towards a unified perspective on modal logics
for coalitional power of agents with preferences, both on a model-theoretical
and syntactic level. It is important to note that contrary to the previous chapter,
the objective of this chapter is not to propose a new modal logic for interac-
tion but to develop a unifying perspective on different classes of existing ones.
Our work is similar in spirit to e.g. Goranko (2001), Broersen et al. (2009) and
Goranko and Jamroga (2004), aiming towards a unified perspective on differ-
ent logics for multi-agent systems modeling similar concepts. We distinguish
logics that explicitly represent the actions (such as e.g. CLA+P of Chapter 2)
and those that take coalitional power as a primitive.

Our main aim is to determine the expressive power and complexity needed
for modal logics to express concepts from game theory and social choice theory.
For qualitative coalitional games (Wooldridge and Dunne 2004) a similar anal-
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ysis has been done by Dunne et al. (2007). Our work differs in the sense that
we represent agents’ individual preferences by binary relations over the state
space instead of considering goals whose achievement leads to the satisfaction
of agents.

How much expressive power and complexity is needed for expressing cer-
tain concepts depends of course on the associated semantic structures of the
logics. We analyze three classes of models for cooperation and determine how
demanding different concepts from game theory and social choice theory are on
each class of models. Our results help to make design choices when developing
modal logics for cooperation since we clarify the impact of certain choices on
the complexity and expressive power required to express different concepts.

Let us briefly outline the methodology followed in this chapter. First of
all, we focus on classes of logics for cooperation with natural and well studied
model-theoretical properties. We consider three different normal modal logic
frameworks for reasoning about the cooperative ability of agents1 and extend
them with agents’ preferences as total preorders over the states. Then, we
analyze both the relation between these logics and also consider the relation to
CL. Next, we focus on some notions of interest for reasoning about cooperation,
and give their natural interpretations in each of the models. We then determine
the expressive power required by these notions; we do this by checking under
which operations these properties are invariant. Using characterization results
for extended modal logics, we then obtain extended modal languages that
can express the notions. Among these, we choose the ones with the lowest
expressive power and give explicit definability results for the notions in these
languages. Using known complexity results for extended modal logics, we then
also obtain upper bounds (UB) on the complexity of the satisfiability problem
(SAT) and on the combined complexity of the model checking problem (MC)
of modal logics expressing each notion.

3.2 Three ways of modeling cooperation

We consider three classes of models that are simplifications or generalizations
of models used in the literature. We choose simple and general models in
order to avoid additional complexity resulting from particular constraints on
the models. Our simple models then allow us to distinguish clearly how
expressing the notions is demanding by itself and also to evaluate from a high-
level perspective how appropriate the models are for reasoning about which
aspects of cooperation.

1Thus, our approach is similar to that of Broersen et al. (2009) who also investigate different
normal modal logics for cooperation, with the difference that we consider generalizations of
existing approaches, dropping several assumptions on the models.
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The first class of models we consider is the class of coalition-labeled transi-
tion systems (Dégremont and Kurzen 2009a; Dégremont 2010). These models
focus on the interaction between preferences and cooperation, simplifying the
computation of coalitional powers itself as they are directly represented as ac-
cessibility relations for each coalition. The second class of models, action-based
coalitional models, represents coalitional power in terms of actions. The third
class, power-based coalitional models, focuses on reasoning about and computing
coalitional power itself, representing groups’ choices as partitions of the state
space. Unless explicitly stated otherwise, preferences on all the models are
represented by total preorders (TPO) (i.e., total, reflexive and transitive binary
relations) over the states.

At this point, we note that our choice of three different approaches to mod-
eling coalitional power by no means completely covers the whole range of ap-
proaches existing in the literature2. The three approaches we consider present
three examples of how coalitional power can be modeled from different per-
spectives. There are existing approaches to coalitional power which in a sense
combine different aspects of the models we consider (e.g. Herzig and Lorini
(2010); Lorini et al. (2009)).

Our main aim is to explain how coalitional power is represented in each of
the different approaches. We also briefly give extended modal languages which
can be interpreted on the models, and also axiomatizations of the corresponding
logical systems.

The reader mainly interested in the conceptual differences of coalitional
ability in the three approaches can skip the sections with the languages and
axiomatizations and refer back to it later in Section 3.3.4, where we use the
extended modal languages to express interesting properties.

We will use the following notation in this chapter.

Notation Our models are again based on a finite set of agents N. j ranges over
N. prop is still the set of propositional letters and nom a set of nominals, which
is disjoint from prop. A nominal is true in exactly one state. We let p ∈ prop
and i ∈ nom. For R being a binary relation on a set W, i.e., R ⊆W×W, we write
R[w] := {v ∈W | wRv}.

3.2.1 Coalition-labeled transition systems

Sequential or turn-based systems – Kripke models with an accessibility relation
for each coalition – can be used for reasoning about coalitional power: in each
state a group (if it is its turn) has the power to move the system into exactly

2See e.g. Troquard et al. (2009) for an approach in which coalitional power arises from
individuals’ abilities to control the truth value of propositional letters.
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the states accessible by that group’s relation. These models generalize conver-
sion/preference games (Roux et al. 2008) and the models of agency introduced
by Segerberg (1989). The former take an abstract view on game theoretical
models, based on the idea that game theory is a theory of stable vs. unstable
states in interactive systems. Here, the focus is not on how coalitional power
arises from the powers of individuals. Rather coalitional power itself is taken
as a primitive.

Definition 3.1 (LTSmodel) A labeled transition system (LTS) indexed by coali-
tions in ℘(N) is a 5-tuple of the form �W, N, ( C→)C⊆N, (≤ j) j∈N,V�, where

• W � ∅ is a set of states,

• N is a finite set of agents,

• C→⊆ W ×W for each C ⊆ N represents the coalitional power of C: w C→ v
means that it is in the power of coalition C to change the system’s state
from w into v.

• ≤ j⊆W ×W is a TPO for each j ∈ N, which represents agent j’s preferences
over the states: w ≤ j v means that j finds v at least as good as w,

• V : prop ∪ nom → ℘(W) is a valuation function with |V(i)| = 1 for each
i ∈ nom.

We also refer to labelled transition systems indexed by coalitions in ℘(N) by
℘(N) − LTSmodels or simply as LTSmodels (if the set of agents is clear). �

Thus, an LTS models a system of agents by representing the ability of groups
of agents in terms of transitions between states of the system, over which the
individuals have preferences.

Example 3.2 Consider the following example of an LTS labelled by coalitions
of the set of agents N = {1, 2}. We let all agents be indifferent between all states,
and do not explicitly represent the preferences here.

w

u v{1, 2}

{1}

{2}

{1, 2}

p
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Then the grand coalition has the power to change the state of the system
from w into u and also into v. The singleton coalition consisting of agent 1
(agent 2) only has the power to change the state of the system from w into u
(keep the system in state w). �

As an example of an interactive situation represented in an LTS model, we
will consider a multi-agent resource allocation setting (cf. Endriss et al. (2006)).
The idea is that the state space represents the possible allocations, and the
relations for the coalitions represent the possible changes of allocations that
groups of agents can achieve by exchanging their resources.

Example 3.3 Consider a resource allocation setting as studied by Endriss et al.
(2006). Given a finite set of agents N and a finite set of resources R, an allocation
divides all resources in R amongst agents in N: An allocation is a function
A : N → ℘(R) such that for all j, j� ∈ N it holds that A( j) ∩ A( j�) = ∅ and�

j∈NA( j) = R.
Then a deal among a subset of agents is an exchange of resources among

them. Thus a deal can be seen as a transition from one allocation to a different
one. A deal is then represented as a pair δ = (A,A�) such that A � A�. Each
agent j ∈ N has a utility function uj : ℘(R) → IR that represents how much the
agent likes each set of resources.

Given a set of agents N a set of resources R, and the set A of all allocations
of R to N, we can model this scenario in a ℘(N) − LTSmodel as follows. We can
defineM = �W, N, ( C→)C⊆N, (≤ j) j∈N,V�with

• W = A,

• A C→ A� iff there is deal δ = (A,A�) that involves only agents in C,

• A ≤ j A� iff uj(A) ≤ uj(A�).

The valuation function can be chosen to fit the context of the allocation setting;
e.g. we might be interested in who is assigned a particular resource. This can
be represented by a corresponding propositional letter for each agent, which
is then made true in exactly those states in which that agent is assigned that
resource.

With our formalization, we can then study resource allocation settings from
an abstract perspective as graphs, and find logical characterizations of relevant
properties, e.g. the existence of loops of rational deals. A deal can be called
rational if it does not decrease the utility of any of the agents involved in it. In
our model, a rational deal for a set of agents would then be a transition along
the intersection of the coalition relation for that set of agents and each of the
agents’ preference relations. �
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To summarize, the class of coalition-labeled transition systems models co-
operative ability of agents in a simple way. In each state, a coalition (if it is its
turn) has the power to make the system move into exactly the states accessible
by the relation labeled with that coalition.

An interesting feature of the class of℘(N)−LTS is that except for the assump-
tion of agents’ preferences being total preorders, preferences of individuals and
coalitional ability are modeled in the same way. Both for checking if a coalition
can force that some formula is true and also for checking if an agent prefers
a state in which a formula is true, we need to check the states accessible by
the corresponding accessibility relation and check if the formula is true there.
This is interesting from a conceptual perspective, and, as we will see later, also
has interesting technical consequences concerning the expressive power and
complexity needed to reason about properties involving both coalitional power
and preferences.

Language interpreted on ℘(N) − LTS
Now we can define our basic language LLTS and some of its extensions. Note
that here and later for the other systems we will only define those fragments of
extended modal languages that we need later for expressing some interesting
properties; thus we do not give the definitions for a full hybrid extension or a
full extension with PDL modalities (cf. e.g. Fischer and Ladner (1979a); Harel
(1984)).

We start by defining a set of programs.

α ::= ≤ j | C

Then, LLTS is defined as follows.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �α�ϕ,

where j ∈ N,C ∈ ℘(N),C � ∅, p ∈ prop.
Extending the language by allowing intersections of the modality, we get

the language LLTS(∩), which is defined just as the basic language with

α ::= ≤ j | C | α ∩ α.

Another extension that we will need later is the hybrid extension ofLLTS, which
we denote byHLLTS(↓).

α ::= ≤ j | C
ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ϕ | �α�ϕ | ↓x.ϕ

where j ∈ N, C ∈ ℘(N),C � ∅, p ∈ prop, i ∈ nom, x ∈ svar. svar is a countable
set of variables.
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For all these languages, programs α are interpreted as binary relations
Rα ⊆W ×W.

R≤j = ≤ j

RC =
C→

Rα∩β = Rα ∩ Rβ
Formulas are interpreted with an assignment g : svar→W. Boolean combina-
tions are interpreted in the standard way.

M,w, g |= p iff w ∈ V(p)
M,w, g |= i iff {w} = V(i)
M,w, g |= x iff w = g(x)
M,w, g |= �α�ϕ iff ∃v : wRαv andM, v, g |= ϕ
M,w, g |=↓x.ϕ iff M,w, g[x := w] |= ϕ

Thus, the languages we consider for the class of ℘(N) − LTS models include a
hybrid extension of the basic language and also extensions that allow for inter-
sections inside the modalities, which then gives us modalities that run along
the intersections of the basic coalition relations and the preference relations of
individuals.

Axiomatization

We briefly give the axioms for the different fragments we will use later. For the
basic system, we have a multi-modal logic with the K axiom for each coalition
modality. The preference fragment is axiomatized by S4.3.

Definition 3.4 The axioms of the basic logic for the class of LTS contain the
axiom schemes of propositional logic and additionally the following axiom
schemes.

K([C]) [C](ϕ→ ψ)→ ([C]ϕ→ [C]ψ)
K([≤ j]) [≤ j](ϕ→ ψ)→ ([≤ j]ϕ→ [≤ j]ψ)
4(�≤ j�) �≤ j��≤ j�p→ �≤ j�p
T(�≤ j�) p→ �≤ j�p
.3(�≤ j�) �≤ j�p ∧ �≤ j�q→ �≤ j�(p ∧ �≤ j�q) ∨ �≤ j�(p ∧ q) ∨ �≤ j�(q ∧ �≤ j�p)

The rules of inference are modus ponens, uniform substitution and neces-
sitation. �

The hybrid and Boolean extensions of the basic system are axiomatized in
the standard way.

From the class of LTS which models coalitional power from a high-level
perspective, focusing on the distribution of power among coalitions in a social
system, we will now move on to classes of models focusing on agents making
simultaneous and independent decisions.
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3.2.2 Action-based coalitional models

In the second class of models that we consider – action-based models – coali-
tional power arises from the agents’ abilities to perform actions, just as in the
models considered in Chapter 2 and e.g. those developed by Borgo (2007) and
Walther et al. (2007).

Definition 3.5 (ABC) An action-based coalitional model (ABC model) indexed
by a finite set of agents N and a collection of finite sets of actions (Aj) j∈N is a

5-tuple of the form �W, N, ( j,a−→) j∈N,a∈Aj , (≤ j) j∈N,V�,where

• W � ∅ is a set of states,

• N is a finite set of agents,

• j,a−→⊆W×W for each j ∈ N, a ∈ Aj represents the effects of agents performing

actions: w
j,a−→ v means that if in w agent j performs action a then the system

might move into state v,

• ≤ j⊆W ×W is a TPO for each j ∈ N, which represents agent j’s preferences
over the states: w ≤ j v means that j finds v at least as good as w,

• V : prop ∪ nom → ℘(W) is a valuation function with |V(i)| = 1 for each
i ∈ nom. �

Let us now look at how the ability of agents is modeled in action-based coali-
tional models. At a state w, agent j can guarantee by doing a that the next state

is one of the states in
j,a−→ [w]. In general, at w agent j can guarantee that the next

state is in X ⊆W if and only if for some a ∈ Aj, we have that
j,a−→ [w] ⊆ X.We say

that X is in the exact power of j at w if for some a ∈ Aj, it holds that
j,a−→ [w] = X.

Power of individuals extends to power of coalitions as follows. Let C =

{ j1, . . . , j|C|}. Then, at w, C ⊆ N can force the next state to be in {� j∈C
j,aj−−→ [w] |

(a1, . . . , a|C|) ∈ × j∈CAj}. Again, X ⊆W is said to be in the exact power of coalition

C at w if X ∈ {� j∈C
j,aj−−→ [w] | (a1, . . . , a|C|) ∈ × j∈CAj}. Note that as opposed to the

previous class of models (℘(N)−LTS), with the above definitions, in action-based
coalitional models powers are additive in the sense that powers of coalitions
arise from the powers of individuals.

Example 3.6 Consider the following ABC model with N = {1, 2}, actions A =
{a, b, c} and A1 = {a, b}, A2 = {c}.
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w

t

v u p

a

b a

c

c b

In the model, we can see what are the effects of actions being performed in
state w. E.g., if action a is executed, the system will move either to u or to v. At
state w the coalition {1, 2} can make the system move into u, by 1 doing a and 2
doing c. �

The definition of ABC models is very general and allows e.g. for states in
which there are no outgoing transitions for any action. We will now consider
some reasonable assumptions on ABCmodels

Definition 3.7 We say that an ABC model is reactive if the following condition
is fulfilled:

• For any (aj) j∈N ∈ × j∈N(Aj), and for all w,
�

j∈N
j,aj−−→ [w] � ∅, i.e., for every

collective choice of actions there is some next state.

We say that an ABC model is N-determined if for all w ∈ W and all action

profiles (aj) j∈N ∈ × j∈N(Aj) j, we have that | � j∈N
j,aj−−→ [w] | = 1.

ABCNR denotes the class of N-determined reactive ABCmodels.

Thus, in reactive ABC models, in every state agents have available actions
and there is always a successor state. ABC models are N-determined if the next
state is completely determined by the choice of the grand coalition.

To summarize, in ABCNR models, agents each have a set of actions from which
they can choose. The choices of all the agents then completely determine the
next state of the system. Thus, as opposed to the models of CLA+P discussed
in the previous chapter, the grand coalition here has complete control of the
system.

Language interpreted on ABCmodels.

We now give the language for reasoning about ABC models. More precisely,
we have a family of languages indexed by collections (Aj) j∈N. We start with the
basic language LABC, which is defined as follows.

α ::= ≤ j | aj
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ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �α�ϕ
Then, the first extension we consider allows to talk about the intersection

of actions and preferences. This language LABC(∩) is defined just as the basic
language LABC with also allowing α ∩ α inside the modalities.

The first hybrid extension we need later is the extension of the basic language
with the binder ↓. This languageHLABC(↓) is defined as follows.

α ::= ≤ j | aj

ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ϕ | �α�ϕ| ↓x.ϕ.

Extending it with an intersection modality, we then getHLABC(↓,∩) with

α ::= ≤ j | aj | α ∩ α

ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ϕ | �α�ϕ| ↓x.ϕ.

Analogously, we haveHLABC(↓, −1):

α ::= ≤ j | aj | α−1

ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ϕ | �α�ϕ | ↓x.ϕ

We will also use a full hybrid extension with intersection.
HLABC(@, ↓,∩) is defined as follows

α ::= ≤ j | aj | α ∩ α

ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ϕ | �α�ϕ | @iϕ | @xϕ | ↓x.ϕ

where j ∈ N, aj ∈ Aj (the set of actions available to j) and i ∈ nom, p ∈ prop.
The modality �aj� runs along the relation

j,a−→. The other relations are defined
as for LTS.

Raj =
j,a−→

R≤j = ≤ j
Rα∩β = Rα ∩ Rβ
Rα−1 = {(v,w) | wRαv}

The semantics is now defined in the standard way.

M,w, g |= p iff w ∈ V(p)
M,w, g |= i iff {w} = V(i)
M,w, g |= x iff w = g(x)
M,w, g |= �α�ϕ iff ∃v : wRαv andM, v, g |= ϕ
M,w, g |= @iϕ iff M, v, g |= ϕ for V(i) = {v}
M,w, g |= @xϕ iff M, g(x), g |= ϕ
M,w, g |=↓x.ϕ iff M,w, g[x := w] |= ϕ
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We will make use of some shortcuts when writing big conjunc-
tions/disjunctions or intersections/unions. For C ⊆ N, we let �C := × j∈CAj. For
an action profile �aj = (aj) j∈C ∈ �C we often write

�
�aj to stand for

�
j∈C aj. As an

example, for the language indexed by A1 = {T1,M1,B1} and A2 = {L2,R2} instead
of writing [T1∩L2]p ∨ [M1∩L2]p ∨ [B1∩L2]p ∨ [T1∩R2]p ∨ [M1∩R2]p ∨ [B1∩R2]p,
we often write

�
�aj∈ �{1,2}[∩�aj]p.

Thus, the basic modalities of the hybrid Boolean modal language for ABC
run along the accessibility relations for individual actions and preferences.

Axiomatization

The axiomatization of the basic modal logic on ABC models is just as the one
for the class of LTS. We have K and Dual for each coalition modality and the
preference fragment is axiomatized by S4.3. The rules of inference are again
modus ponens, uniform substitution and necessitation.

The extensions are axiomatized in the standard way.

3.2.3 Power-based coalitional models

We will now focus on approaches that are taking coalitional power itself as
a primitive and use formal systems specifically designed to model coalitional
power. The best known of such modal systems is CL. As CL uses neighborhood
semantics, we will not work with CL itself in this chapter but rather consider
its normal simulation NCL, which uses Kripke models. This then makes a
systematic comparison with the two previously discussed approaches (LTS and
ABC) easier. We will now first give an overview of NCL (Broersen et al. 2007),
briefly discuss the computational properties of the logic and then present a
generalization of this approach, which we will then work with in this chapter.

Normal Coalition Logic

We give a brief overview of Normal Coalition Logic (NCL). Broersen et al. (2007)
show that CL can be simulated by a normal modal logic which is based on a
combination of STIT with a temporal modality. The definitions we present are
equivalent to those given in Broersen et al. (2007), adapted to our notation.

Definition 3.8 (NCLmodel) An NCLmodel is defined to be a 5-tuple of the form
�W, N, (∼C)C⊆N,FX,V�, where

• W is a set of states,

• N is a finite set of agents,
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• for each C ⊆ N, ∼C⊆ W × W is an equivalence relation, satisfying the
following conditions.

1. for all C,D ⊆ N, ∼C∪D⊆∼C,

2. ∼N= Id = {(w,w) | w ∈W},
3. NCL-Independence: for all C ⊆ N, ∼∅⊆ (∼C ◦ ∼C); for ◦ being the

composition of relations.

• FX : W →W is a total function,

• V : prop→ ℘(W) is a valuation function. �

Let us take a closer look at how the ability of groups is modeled in NCL.
The equivalence classes of ∼C represent different choices of coalition C. Each
equivalence class of ∼∅ represents one situation. The equivalence classes of ∼C
inside such a class are the choices C has in that situation.

The function FX gives the outcomes (the next state) resulting from the choices
of the agents. The three additional assumptions on the equivalence relations
correspond to natural properties about coalitional power of different coalitions.
We will now give the intuition behind each of the three conditions.

1. for all C,D ⊆ N, ∼C∪D⊆∼C.

This condition says that the choices of a coalition are at least as refined as
the choices of its subcoalitions. The power of a coalition does not decrease
as the coalition gets bigger. This corresponds to the property of Coalition
Monotonicity.

2. ∼N= Id = {(w,w) | w ∈W}.
The equivalence relation of the grand coalition being the identity relation
means that the grand coalition completely determines what will be the
next state (which is then given by FX). Put differently, once all agents have
made their choices, the outcome is completely determined. This corre-
sponds to N-maximality. Remember that also N-determined ABC models
have such a property.

3. NCL-Independence: for all C ⊆ N, ∼∅⊆ (∼C ◦ ∼C).

The states in an equivalence class [w]∼∅ each represent a possible collective
choices of all agents together. The condition then says that each of these
collective choices can be achieved by independent choices of a coalition
and its complement.

We will now give an example in which we construct an NCL model from a
simple strategic game.
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Ann

Bob
Heads Tails

Heads 1,−1 −1, 1
Tails −1, 1 1,−1

Example 3.9 Consider the matching pennies game between Ann and Bob.
We can take two propositional letters pA happy and pB happy. Now. we can

construct an NCLmodel representing the situation in which Ann and Bob play
the games once and after stay in a state in which the winner is happy and the
loser is not. The NCLmodel is depicted below.

w1 w2

w3 w4

v1

FX

v2

FX

∅

{Bob} {Bob}

{Ann}

{Ann}

{Ann, Bob} {Ann, Bob}

{Ann, Bob} {Ann, Bob}

∅, {Ann}, {Bob}, {Ann, Bob}

∅, {Ann}, {Bob}, {Ann, Bob}

pB happy

pA happy

FX

FX

FX

FX

�

Definition 3.10 The language LNCL of NCL is given by

ϕ ::= p ¬ϕ ϕ ∧ ϕ [C]ϕ Xϕ .

where j ∈ N, C ∈ ℘(N) and p ∈ prop. �

The modalities [C] run along ∼C and X runs along FX.

Definition 3.11 Propositional formulas and Boolean connectives are inter-
preted in the standard way and for the the modalities we have:

M,w |= [C]ϕ iff ∀v : if w ∼C v thenM, v |= ϕ
M,w |= Xϕ iff M,FX(w) |= ϕ. �
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Theorem 3.12 (Broersen et al. (2007)) The logic NCL based on the axiom schemes
for propositional logic, S5 schemes for every [C], additional axioms listed below and
rules of inference modus ponens and necessitation is sound and complete with respect
to the class of NCL models.

C −Mon. [C]ϕ→ [C ∪D]ϕ
Elim([∅]) �∅�ϕ→ �C��C�ϕ
Triv([N]) ϕ→ [N]ϕ
K(X) X(ϕ→ ψ)→ (Xϕ→ Xψ)
D(X) Xϕ→ ¬X¬ϕ
Det(X) ¬X¬ϕ→ Xϕ. �

In Schwarzentruber (2007) and Balbiani et al. (2008b) it is shown that the
satisfiability problem of NCL is NEXPTIME-complete. This high complexity re-
sults from the conditions on the equivalence relations which force the models
to be grid-like. As in this chapter we want to determine how much complexity
is required for being able to express different properties on power-based coali-
tional models, we will drop the assumption that forces the grid-like models and
consider a more general class of power-based coalitional models whose basic
logic is of lower complexity. The class of models we consider is basically just
as NCL models but only requires the relations ∼C to be equivalence relations,
without any further requirements. We also add preference relations for the
individual agents just as we have done for for the coalition-labeled transition
systems and action-based coalitional models.

Power-based coalitional models

Definition 3.13 (PBCmodel) A power-based coalitional model (PBCmodel) in-
dexed by a finite set of coalitions ℘(N)) is a 6-tuple of the form �W, N, (∼C
)C⊆N,FX, (≤ j) j∈N,V�,where

• W � ∅ is a set of states,

• N is a finite set of agents,

• for each C ⊆ N, ∼C⊆W ×W is an equivalence relation,

• FX : W →W is a total function,

• ≤ j⊆W ×W is a TPO for each j ∈ N, which represents agent j’s preferences
over the states: w ≤ j v means that j finds v at least as good as w,

• V : prop ∪ nom → ℘(W) is a valuation function with |V(i)| = 1 for each
i ∈ nom. �
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Language interpreted on PBCmodels

We extend LNCL with preference modalities, one for each agent, and obtain our
basic language LPBC. Note that the fact that we use �C� here as a primitive
instead of the box is for technical convenience only.

ϕ ::= p ¬ϕ ϕ ∧ ϕ �C�ϕ Xϕ �≤ j�ϕ.

The first hybrid extension we will use isHLPBC(↓), which is defined as follows.

ϕ ::= p i x ¬ϕ ϕ ∧ ϕ �C�ϕ Xϕ ↓x.ϕ

We also use the full hybrid extensionHLPBC(@, ↓):

ϕ ::= p i x ¬ϕ ϕ ∧ ϕ �C�ϕ Xϕ @iϕ @xϕ ↓x.ϕ

and the binder-extension with a converse modality for preferencesHLPBC( −1, ↓).

α ::= ≤ j α−1

ϕ ::= p i x ¬ϕ ϕ ∧ ϕ �C�ϕ Xϕ �α�ϕ ↓x.ϕ

It is important to note that, as opposed to the languages we defined for LTS
and ABC, we now only take the Boolean modal extension with respect to the
preferences.

R≤j = ≤ j
Rα−1 = {(v,w) | wRαv}

Now, the semantics is defined as follows. �C� runs along ∼C and X runs
along FX.

M,w, g |= �C�ϕ iff ∃v : w ∼C v andM, v, g |= ϕ
M,w, g |= Xϕ iff M,FX(w), g |= ϕ
M,w, g |= �α�ϕ iff ∃v : wRαv andM, v, g |= ϕ

In NCL, the power of a coalition to force the system into some set of states
involves a combination of the equivalence relations for the empty set, the
equivalence relation for the coalition itself, and also the outcome function FX.
In principle, we could thus also consider Boolean extensions that allow e.g.
for taking intersections of preferences and coalition relations, or of preferences
and the outcome function. These are however conceptually harder to motivate
and to understand. Moreover, we will see that Boolean combinations of pref-
erences alone are sufficient for expressing interesting concepts on power-based
coalitional models.
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Axiomatization

Definition 3.14 The axioms of the basic system for PBC models contain axiom
schemes for propositional logic, S5 schemes for every [C] and the axioms listed
below.

K(X) X(ϕ→ ψ)→ (Xϕ→ Xψ)
D(X) Xϕ→ ¬X¬ϕ
Det(X) ¬X¬ϕ→ Xϕ.

and additionally S4.3 for the preference fragment. The rules of inference are
modus ponens and necessitation. �

In this section, we have introduced three classes of normal modal logic
systems for reasoning about the abilities of agents. In Section 3.3, we will
then evaluate the models and determine how much expressive power and
complexity is required for reasoning about cooperative ability on each of the
classes. We start by clarifying the relationship between the different models.

3.3 Comparing modal logics for cooperation
This section gives the main results of this chapter. First we clarify the relation
between the classes of models we introduced; then we analyze how demanding
different concepts from game theory and social choice theory are on them. We
start by analyzing coalitional power as modeled in the frameworks of PBC, NCL
and CL and also determine the precise relationship between different standard
assumptions on coalitional power. For this, we take a purely semantic perspec-
tive. We note that determining the relationship between different assumptions
about coalitional power could also have been done using (extended) modal lan-
guages that can express these assumptions and then use the logics themselves
to prove certain dependencies between them.

3.3.1 Coalitional power in power-based coalitional models
We now take a closer look at properties of coalitional ability as it is modeled
in power-based coalitional models. We investigate the relationship between
some cooperation-specific assumptions that can be made on the models. On
PBCmodels, we say that a coalition C can force a set X at w iff at w it is the case
that C can guarantee that the next state is in X. On these models, this means
that there is a state v ∈ [w]∼∅ , such that for any v� ∈ [v]∼C , FX(v�) ∈ X. So
basically, this means that at w, C can choose a ∼C-equivalence class that has a
nonempty intersection with the ∼∅-equivalence class of the current state and
whose image under FX is a subset of X.
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We say that Y is in the exact power of C at w, which we denote by Y ∈ PC(w),
if for some v with w ∼∅ v, we have that Y = {F(v�) | v ∼C v�}. Thus, C can force
X at w iff there is some Y ∈ PC(w) with Y ⊆ X.

Definition 3.15 For a PBC model M = �W, N, (∼C)C⊆N,FX, (≤ j) j∈N,V�, the set of
exact powers of a coalition C ⊆ N at a state w ∈W is defined as follows.

PC(w) =
� �

v�∈[v]∼C

FX(v�) | w ∼∅ v
�

As the definition does not use preferences, we can define the set of exact powers
in an NCLmodel in the same way. �

Thus, PC(w) contains the smallest sets of states coalition C can force the
system to move into at w.

Some reasonable assumptions about the coalitional powers reflect the in-
dependence of agents and are generally assumed in the literature (e.g. Pauly
(2002a); Broersen et al. (2007); Belnap et al. (2001)). We consider three assump-
tions and show their relation. Independence of coalitions then says that two
disjoint coalitions cannot force the system to move into disjoint sets of states.

Definition 3.16 (Independence of coalitions (IC)) For all w, if C∩D = ∅ then
for all X ∈ PC(w) and all Y ∈ PD(w) we have that X ∩ Y � ∅. �

The next condition says that the powers of a coalition and its complement have
to be consistent.

Definition 3.17 (Condition about complementary coalitions (CCC)) For all
w ∈ W and all X ⊆ W, if there is some X� with X ⊇ X� ∈ PC(w), then there
is no Y ⊆W such that X ⊇ Y ∈ PC(w). �

Coalition monotonicity says that if a coalition can achieve something then so
can all supersets of this coalition.

Definition 3.18 (Coalition monotonicity (CM)) For all w ∈ W and X ⊆ W, if
C ⊆ D and there is some Y ⊆ W such that X ⊇ Y ∈ PC(w), then there is some
Z ⊆W such that X ⊇ Z ∈ PD(w). �

We now show some results about the connection between the different condi-
tions. The first result says that if for all choices of any two disjoint coalitions,
there is a next state then the powers of coalitions and their complements have
to be consistent.

Fact 3.19 IC implies CCC.
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Proof. Let w ∈ W,X ⊆ W. Assume that for some X� ∈ PC(w), X� ⊆ X. Now
suppose that there is some Y ∈ PC(w) such that Y ⊆ X. But then by IC, since
C∩C = ∅, it follows that X� ∩Y = ∅ and thus Y � X�, which contradicts Y ⊆ X
because X ⊆ X�. �

Now, we can show that under the assumption of coalition monotonicity,
also the converse holds.

Fact 3.20 CCC and CM together imply IC.

Proof. Let C,D ⊆ N such that C ∩ D = ∅, and let X ∈ PC(w) for some w ∈ W.
Now suppose towards contradiction that there is some Y ∈ PD(w) such that
X ∩ Y = ∅, i.e., Y ⊆ X. Since C ∩ D = ∅,D ⊆ C. Then by CM, there is some
Z ∈ PC(w) with Z ⊆ X. But this then contradicts CCC. �

Note that on PBC models, CCC actually says the following: For all w ∈ W and
X ⊆ W, if for some v ∈ [w]∼∅ we have that {FX(v�) | v� ∈ [v]∼C} ⊆ X, then there is
no v̇ ∈ [w]∼∅ such that {FX(v̇�) | v̇� ∈ [v̇]∼C

} ⊆ X.
NCLmodels have the property of NCL-Independence (Definition 3.8), which

says that every collective choice of the grand coalition can also be achieved by
independent choices of a coalition and its complement.

We now show that on PBC models with FX being injective, CCC and NCL-
Independence turn out to be equivalent. Injectivity of FX is needed here in
order to get the correspondence between CCC, which is about properties of the
sets of states coalitions can force the system to move into (after the application
of FX) and the property of NCL-Independence which is about the partitions from
which complementary coalitions can choose and thereby determine a set whose
FX-image are the possible next states.

Proposition 3.21 On PBCmodels with the function FX being injective, CCC is equiv-
alent to NCL-Independence.

Proof. From left to right, assume that NCL-Independence does not hold. Then
there is some model such that for two states w, v we have that w ∼∅ v and there
is no v� such that w ∼C v� and v� ∼C v. Thus, [w]∼C ∩ [v]∼C

= ∅. Now, since
FX is injective, {F(w�) | w ∼C w�} ∩ {F(v�) | v ∼C v�} = ∅. This then means that
{F(v�) | v ∼C v�} ⊆ {F(w�) | w ∼C w�}, which means that CCC does not hold.

From right to left, assume that CCC does not hold. Then there is a model
with some state w and some set of states X such that for some v ∈ [w]∼∅ it holds
that {FX(v�) | v ∼C v�} ⊆ X and there is some v̇ ∈ [w]∅ such that {FX(v̇�) | v̇ ∼C v̇�} ⊆
X. Now, as FX is injective,it follows from {FX(v�) | v ∼C v�}∩ {FX(v̇�) | v̇ ∼C v̇�} = ∅
that [v]∼C ∩ [v̇]∼C

= ∅. Therefore, we have that v ∼∅ v̇ holds but it is not the case
that v ∼C ◦ ∼C v̇, which thus means that NCL-Independence does not hold. �
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To illustrate the role of injectivity of FX in the preceding proposition, we
give an example of a PBCmodel in which FX is not injective and CCC holds but
NCL-Independence does not.

Example 3.22 Consider the PBC model illustrated below. We omit the repre-
sentation of the agents’ preferences as they are irrelevant for this example.

w1 w2 w3

FX

∅

{1}, {2}, {1, 2}

{1}, {2}, {1, 2} ∅, {1}, {2}, {1, 2}

FX

FX

NCL-Independence is violated in w1 and w2, as w1 ∼∅ w2 but it is not the case
that w1 ∼{1} ◦ ∼{2} w2, and neither that w2 ∼{1} ◦ ∼{2} w1. CCC on the other hand
is satisfied as in fact for each state it holds that the powers of all coalitions are
the same (they all can force {w3}). �

Let us sum up the preceding results.

• If the exact powers of disjoint coalitions are consistent, then so are the
powers of complementary coalitions (Fact 3.19).

• Under the assumption that coalitions can at least achieve what their sub-
coalitions can achieve, the converse of the previous result also holds: If
the powers of complementary coalitions are consistent then so are the
exact powers of disjoint coalitions (Fact 3.20).

• When FX is injective, complementary coalitions having consistent powers
then means that every possible next state can be the result of complemen-
tary coalitions making their independent choices (Proposition 3.21).

Figure 3.1 illustrates the relations between these properties of PBCmodels.
Moreover, CCC and NCL-Independence are actually equivalent if the func-

tion FX is injective.

3.3.2 On the relation between NCL and CL
In order to clarify the relationship between power-based coalitional models and
non-normal modal frameworks for cooperation such as CL, we now analyze
the relation between CL and the subclass of power-based coalitional models
without preferences NCL. In Broersen et al. (2007), a translation τ from LCL to
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Now, we can show that under the assumption of coalition monotonicity,
also the converse holds.

Fact 1.2 CCC + CM implies IC.

Proof. Let C,D ⊆ N such that C ∩ D = ∅, and let X ∈ PC(w) for some w ∈ W.
Now suppose towards contradiction that there is some Y ∈ PD(w) such that
X ∩ Y = ∅, i.e. Y ⊆ X. Since C ∩ D = ∅,D ⊆ C. Then by CM, there is some
Z ∈ PC(w) with Z ⊆ X. But this then contradicts CCC. �

Note that on PBC models, CCC actually says the following: For all w ∈ W and
X ⊆ W, if for some v ∈ [w]∼∅ we have that {FX(v�) | v� ∈ [v]∼C} ⊆ X, then there is
no v̇ ∈ [w]∼∅ such that {FX(v̇�) | v̇� ∈ [v̇]∼C

} ⊆ X.
As mentioned on page 6, for NCL, ? assume the condition of NCL-

Independence (Definition 1.4).
We now show that on PBC models with FX being injective, CCC and NCL-

Independence turn out to be equivalent. Injectivity of FX is needed here in
order to get the correspondence between CCC, which is about properties of the
sets of states coalitions can force the system to move into (after the application
of FX) and the property of CC which is about the partitions from which com-
plementary coalitions can choose and thereby determine a set whose FX-image
are the possible next states.

Proposition 1.1 On PBC models with the function FX being injective, CCC is equiv-
alent to NCL-Independence.

Proof. From left to right, assume that NCL-Independence does not hold. Then
there is some model such that for two states w, v we have that w ∼∅ v and there
is no v� such that w ∼C v� and v� ∼C v. Thus, [w]∼C ∩ [v]∼C

. Now, since FX is
injective, {F(w�) | w ∼C w�} ∩{ F(v�) | v ∼C v�} = ∅. This then means that that
{F(v�) | v ∼C v�} ⊆ {F(w�) | w ∼C w�}, which means that CCC does not hold.

From right to left, assume that CCC does not hold. Then there is a model
with some state w and some set of states X such that for some v ∈ [w]∼∅ it holds
that {FX(v�) | v ∼C v�} ⊆ X and there is some v̇ ∈ [w]∅ such that {FX(v̇�) | v̇ ∼C v̇�} ⊆
X. Now, as FX is injective,it follows from {FX(v�) | v ∼C v�}∩ {FX(v̇�) | v̇ ∼C v̇�} = ∅
that [v]∼C ∩ [v̇]∼C

= ∅. Therefore, we have that v ∼∅ v̇ holds but it is not the case
that v ∼C ◦ ∼C v̇, which thus means that NCL-Independence does not hold. �

To sum up, we have shown that IC implies CCC; and together with CM, CCC
also implies IC. Moreover, IC and NCL-Independence are actually equivalent if
the function FX is injective.
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Now, we can show that under the assumption of coalition monotonicity,
also the converse holds.

Fact 1.2 CCC + CM implies IC.

Proof. Let C,D ⊆ N such that C ∩ D = ∅, and let X ∈ PC(w) for some w ∈ W.
Now suppose towards contradiction that there is some Y ∈ PD(w) such that
X ∩ Y = ∅, i.e. Y ⊆ X. Since C ∩ D = ∅,D ⊆ C. Then by CM, there is some
Z ∈ PC(w) with Z ⊆ X. But this then contradicts CCC. �

Note that on PBC models, CCC actually says the following: For all w ∈ W and
X ⊆ W, if for some v ∈ [w]∼∅ we have that {FX(v�) | v� ∈ [v]∼C} ⊆ X, then there is
no v̇ ∈ [w]∼∅ such that {FX(v̇�) | v̇� ∈ [v̇]∼C

} ⊆ X.
As mentioned on page 6, for NCL, ? assume the condition of NCL-

Independence (Definition 1.4).
We now show that on PBC models with FX being injective, CCC and NCL-

Independence turn out to be equivalent. Injectivity of FX is needed here in
order to get the correspondence between CCC, which is about properties of the
sets of states coalitions can force the system to move into (after the application
of FX) and the property of CC which is about the partitions from which com-
plementary coalitions can choose and thereby determine a set whose FX-image
are the possible next states.

Proposition 1.1 On PBC models with the function FX being injective, CCC is equiv-
alent to NCL-Independence.

Proof. From left to right, assume that NCL-Independence does not hold. Then
there is some model such that for two states w, v we have that w ∼∅ v and there
is no v� such that w ∼C v� and v� ∼C v. Thus, [w]∼C ∩ [v]∼C

. Now, since FX is
injective, {F(w�) | w ∼C w�} ∩{ F(v�) | v ∼C v�} = ∅. This then means that that
{F(v�) | v ∼C v�} ⊆ {F(w�) | w ∼C w�}, which means that CCC does not hold.

From right to left, assume that CCC does not hold. Then there is a model
with some state w and some set of states X such that for some v ∈ [w]∼∅ it holds
that {FX(v�) | v ∼C v�} ⊆ X and there is some v̇ ∈ [w]∅ such that {FX(v̇�) | v̇ ∼C v̇�} ⊆
X. Now, as FX is injective,it follows from {FX(v�) | v ∼C v�}∩ {FX(v̇�) | v̇ ∼C v̇�} = ∅
that [v]∼C ∩ [v̇]∼C

= ∅. Therefore, we have that v ∼∅ v̇ holds but it is not the case
that v ∼C ◦ ∼C v̇, which thus means that NCL-Independence does not hold. �

To sum up, we have shown that IC implies CCC; and together with CM, CCC
also implies IC. Moreover, IC and NCL-Independence are actually equivalent if
the function FX is injective.
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Now, we can show that under the assumption of coalition monotonicity,
also the converse holds.
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Figure 3.1: Different properties of PBCmodels. White areas are empty.

LNCL is given such that for all ϕ ∈ LCL, ϕ is satisfiable in a CL model iff τ(ϕ) is
satisfiable in a NCLmodel. The crucial clauses of the definition of the translation
τ are the following.

Definition 3.23 The translation τ from LCL to LNCL is defined as follows

τ(p) = p, τ(�[C�] ϕ) = �∅�[C]Xτ(ϕ).

For Boolean combinations, the translation is defined in the standard way. �

The main result is then the following.

ϕ is a theorem of CL iff τ(ϕ) is one of NCL.

The right-to-left direction of their proof is constructive, while the left-to-
right direction uses completeness of CL and soundness of NCL to show that
whenever τ(ϕ) is satisfied in an NCL model, there is also some CL model that
satisfies ϕ.

We give a constructive proof of the right-to-left direction of this result in
order to get a clear view of how the two frameworks are related. We give
a procedure of how to translate pointed NCL models (M,w) into CL models
f (M,w) such that for all ϕ ∈ LCL,

(M,w) |= τ(ϕ) iff f (M,w) |= ϕ.



72 Chapter 3. Complexity of Modal Logics for Cooperation

We insist on the fact that the proposition itself was already proven; the novelty
is that we provide a method to construct a CL model from an NCL-Kripke
structure, and thus give a constructive proof of this proposition. This clarifies
the relationship between the two logics in purely syntactic terms. We belief
that this can have conceptual benefits for understanding the normal simulation
of CL. The idea of our proof is as follows. The effectivity functions of the CL
model are constructed such that Ew(C) contains the exact powers of C at w in
the NCLmodel and also their supersets.

Definition 3.24 We transform NCLmodels into CLmodels as follows. ForM =
�W, N, (∼C)C⊆N,FX, (≤ j) j∈N,V�, we define f (M) := �N, (W,E),V�, where

Ew(C) := {{Y|Y ⊇ FX[[w�]∼C]}|w� ∈ [w]∼∅},

with FX[[w�]∼C] := {FX(w��) | w�� ∈ [w�]∼C}. �

We now use the above transformation to give a constructive proof of the
following proposition by Broersen et al. (2007).

Proposition 3.25 For all ϕ ∈ LCL, if τ(ϕ) is satisfiable in a pointed model (M,w) of
NCL, then ϕ is satisfiable in a model f (M,w) of CL.

Proof. We define f as in Definition 3.24. First, we show that E is playable and
thus f (M) is a CLmodel. Liveness follows from the totality of FX. Termination
follows from the closure of Ew(C) under supersets. For N-maximality, let X ⊆W
such that W \ X � Ew(∅). Then there is some w� ∈ [w]∼∅ such that FX(w�) ∈ X.
Since X ⊇ FX[{w�}] = {FX(w�)}, X ∈ Ew(N). Outcome-monotonicity follows
from the closure of Ew(C) under supersets. For Superadditivity, let X1,X2 ⊆
W,C1,C2 ⊆ N, such that C1 ∩ C2 = ∅. Assume that X1 ∈ Ew(C1) and X2 ∈ Ew(C2).
Then for all i ∈ {1, 2}, ∃wi ∈ [w]∼∅ such that Xi ⊇ FX[[wi]∼Ci

]. We have that
Ew(C1 ∪ C2) = {{Y|Y ⊇ FX[[w�]∼C1∪C2

]}|w� ∈ [w]∼∅}. Thus, we have to show that
∃w+ ∈ [w]∼∅ : X1 ∩ X2 ⊇ FX[[w+]∼C1∪C2

]. We have that w1 ∼∅ w2. Thus, w1 ∼C1

◦ ∼C1
w2 and since C1∩C2 = ∅ and thus C2 ⊆ C1,∼C1

⊆∼C2 . Then w1 ∼C1 ◦ ∼C2 w2.
Thus, ∃w+ : w1 ∼C1 w+ and w+ ∼C2 w2. Thus, w+ ∈ [w1]∼C1

∩ [w2]∼C2
and therefore

[w+]∼C1
= [w1]∼C1

and [w+]∼C2
= [w2]∼C2

. Since ∼C1∪C2⊆ (∼C1 ∩ ∼C2), [w+]∼C1∪C2
⊆

[w+]∼C1
∩[w+]∼C2

. Hence, FX[[w+]∼C1∪C2
] ⊆ X1∩X2, and thus X1∩X2 ⊆ Ew(C1∪C2).

This shows that f (M) is a CL model. Now, we show by induction that for
all ϕ ∈ LCL, for an NCL modelM,M,w |= τ(ϕ) iff f (M,w) |= ϕ. The interesting
case is ϕ := �[C�] ψ. Let M,w |= �∅�[C]Xτ(ψ). Then there is some w� ∈ [w]∼∅
such that for all w�� ∈ [w�]∼C , M,FX(w��) |= τ(ψ). By induction hypothesis,
f (M,FX(w��)) |= ψ. Now, �ψ� f (M,w) ∈ Ew(C) follows from the fact that for all
w�� ∈ [w�]∼C , f (M,FX(w��)) |= ψ. For the other direction, let f (M,w) |= �[C�] ψ.
Then, there is some X ∈ Ew(C) such that X ⊆ �ψ� f (M,w). By definition of f (M,w),
there is some w� ∈ [w]∼∅ such that X ⊇ FX[[w�]∼C]. Since by inductive hypothesis,
�τ(ψ)�M,w = �ψ� f (M,w), X ⊆ �τ(ψ)�M,w. Hence,M,w |= �∅�[C]Xτ(ψ). �
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So, we have shown how to transform NCL models into corresponding CL
models by transforming the partitions of the equivalence relations ∼C and the
function FX together into corresponding effectivity functions. The key of the
transformation is to construct the effectivity functions from the exact powers
and their supersets. Our proof thus sheds some light on the relation between CL
and its normal simulation by clarifying the relationship between the semantic
structures of both logics.

3.3.3 Coalitional power in action-based coalitional models
Let us now take a closer look at coalitional power as it is modeled by action-
based coalitional models. In this section, we will try to position action-based
coalitional models with respect to power-based approaches. This way we can
clarify how coalitional power is made explicit in ABC, and also determine the
role of some natural assumptions on ABC models such as being N-determined
or reactive.

In order to determine the relationship between power– and action-based
coalitional models, we will show how to construct a power-based coalitional
model from a given action-based coalitional model in such a way that coalitions
have the same powers in the models.

Definition 3.26 For every pointed ABCNR model (M,w) which is given byM =
�W, N, ( j,a−→) j∈N,a∈Aj , (≤ j) j∈N,V�, and w ∈ W, we construct the following PBC model
M�. M� = �W�, N, (∼C)C⊆N,FX, (≤�j) j∈N,V��,where

• W� =W × �N,

• (w, (aj) j∈N) ∼C (v, (a�j) j∈N) iff w = v and for all j� ∈ C, ((aj) j∈N) j� = ((a�j) j∈N) j� ,

• FX((w, (aj) j∈N)) = (v, (aj) j∈N)) for {v} = � j∈N
j,aj−−→ [w],

• (w, (aj�) j�∈N) ≤ j (v, (a�j�) j�∈N) iff w ≤ j v,

• for each p ∈ prop, V�(p) = V(p) × �N. �

The reason why we only transform reactive N-determined ABCmodels instead of
arbitrary ABCmodels is that the two conditions help to define the total function
FX.

Fact 3.27 If M is reactive and N-determined, M� is an NCL model extended with
preferences.

Proof. We first show thatM� is indeed a proper PBCmodel. It is easy to see that
∼C is an equivalence relation for each C. The fact that FX is a function follows
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fromM being N-determined. FX being total follows fromM being reactive. As
for every j ∈ N the preference relation ≤ j is a total preorder, this also holds for
each ≤�j. Lastly, we note that V� is a proper valuation function but it will have
to be adapted for nominals, to ensure that they cannot be true in more than one
state. This could be done by adding for each nominal i a new nominal i(aj) j∈N for
each (aj) j∈N ∈ �N and setting V�(i(aj) j∈N) = {(w, (aj) j∈N)}, for V(i) = {w}.

We now show that indeedM� is an NCLmodel (extended with preferences).
We show that M� satisfies the three additional conditions on the powers of
coalitions.

1. for all C,D ⊆ N, ∼C∪D⊆∼C

2. ∼N= Id = {(w,w) | w ∈W�}.

3. NCL-Independence: for all C ⊆ N, ∼∅⊆ (∼C ◦ ∼C),

The first two follow immediately from the definition of ∼C for each C ⊆ N.
For NCL-Independence let us first look at how ∼∅ is defined inM�. From our
definition it follows that (w, (aj) j∈N) ∼∅ (v, (a�j) j∈N) iff w = v. So, take two states
(w, (aj) j∈N), (w, (a�j) j∈N) ∈W�. Then it follows that these are also related by∼C ◦ ∼C
because (w, (aj) j∈N) ∼C (w, (a��j ) j∈N) with a��j = aj for all j ∈ C and a��j = a�j for all j ∈
C. Analogously, (w, (a��j ) j∈N) ∼C (w, (a�j) j∈N). Hence, (w, (aj) j∈N) ∼C ◦ ∼C (w, (a�j) j∈N).
Thus, NCL-Independence holds, which concludes the proof that M� is an NCL
model with preferences. �

Now, by definition of ∼C and FX we immediately get the following fact.

Fact 3.28 Let C � ∅. Then X is in the exact power of C at w if and only if inM� it
holds that X × �N is in the exact power of C at every state in {w} × �N. �

Note that we focused purely on the semantic relationship between NCL and
ABCwith respect to the powers of coalitions. On a more syntactic level, we thus
have a correspondence between formulas of the following form

Fact 3.29

M,w |=
�

�aj∈�C

��
�aj

�
p iff for all (aj) j∈N ∈ �N, M�, (w, (aj) j∈N) |= �∅�[C]Xp.

�

After we have clarified the relationship between different approaches to
modeling cooperative ability of agents, we will now evaluate how much com-
plexity and expressive power is needed for reasoning about interesting con-
cepts.
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3.3.4 What game– and social choice theoretical notions de-
mand: complexity and expressivity.

This section analyzes the complexity of describing and reasoning about interac-
tive systems from an abstract perspective. We summarize the main results that
we obtained when investigating how much expressive power and complexity
is required for reasoning about coalitional power. As mentioned before, we
obtain our results by determining under which operations on models certain
properties are invariant.

All the properties that we will discuss are definable in first-order logic with
one free variable. Table 3.1 gives an overview of the characterization results
that we use.

For the definitions of these operations and a detailed discussion of the
underlying characterization results, the reader is referred to Blackburn et al.
(2001) and ten Cate (2005). Figure 3.2 illustrates the expressive power hierarchy
of some extended modal logics.

Invariance Modal Language

Bisimulation basic modal language LML, (van Benthem 1976)

∩-bisimulation LML(∩)

generated submodels HLML(↓,@), (Feferman 1969; Areces et al. 2001)

Table 3.1: Characterization Results.

Table 3.2 summarizes the results we use for upper bounds on the complexity
of modal logics with different expressive powers. HLML(↓) − � ↓� denotes the
fragment of HLML(↓) without occurrences of alternations of the form � ↓ �,
where � stands for a box-modality. Note that these complexity results (the
upper bounds) also transfer to the classes of LTS, ABC and PBC. For NCL however,
this is not the case as already its basic logic has a higher complexity. As already
mentioned, all properties that we discuss are definable in first-order logic, and
therefore the data complexity of checking whether the property holds in a given
model is in LOGSPACE.

We start our analysis with the simplest notions of coalitional power and
preferences.

Simple coalitional power and preference

The property of a coalition C having the power to ensure that in the next state
some proposition p will be the case turns out to be invariant under bisimulation
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ML

ML(−1) ML(∩)

HLML(↓,∩)

HLML(↓)

HLML(↓,@)

first-order logic
HLML(↓, )

ML( )

ML( ,∩)

Figure 3.2: Expressive power hierarchy of some extended modal logics.

on LTS, PBC and NCL. Let us briefly argue why this is the case. On LTS, the
property simply says that there is a C→-successor which satisfies the proposition
p. On PBC it means the following. From the current state there is a∼∅-accessible
state such that in all states∼C-accessible from that one it holds that the FX-image
is a state that satisfies p. Even though this might look more complicated than
for LTS, note that we just needed existential and universal quantification over
accessible states.

Thus, we can conclude that for LTS, PBC and NCL the property of a coalition
having the power to force that in the next state p holds can be expressed using
the respective basic multi-modal languages. To be more precise, we can express
this property by �C�p on LTS and by �∅�[C]Xp on PBC and NCL. For LTS and
PBC, we thus get PSPACE and P as upper bounds on SAT and MC of logics
expressing the property of C being able to achieve that p. For NCL, the upper
bound for SAT are much higher: NEXPTIME (Schwarzentruber 2007). For MC

on the other hand, there is no difference as this can be done using a model
checker for the basic multi-modal logic as the models of NCL are just a special
kind of multi-agent Kripke structures. Hence, we have a P upper bound for
MC of NCL.

On ABC models on the other hand, saying that a coalition can achieve
something requires the intersection of the relations for the actions for the
agents. This is because C being able to force the system into a p-state means
that there are actions for each member of C such that all states accessible by
the intersection of these action relations satisfy p. It is not invariant under
bisimulation (see Fact 3.30) but it is under ∩-bisimulation, a bisimulation that
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Complexity of the logic

Language MC SAT

LML P (Fischer and Ladner
1979b)

PSPACE (Ladner 1977)

LML(∩) P (Lange 2006) PSPACE (Donini et al.
1991)

HLML(↓) − � ↓� PSPACE (Franceschet
and de Rijke 2003)

EXPTIME (ten Cate and
Franceschet 2005)

HLML(↓,@) PSPACE (Franceschet
and de Rijke 2003)

Π0
1 (ten Cate and

Franceschet 2005)

HLML(↓,@, −1) PSPACE Π0
1 (ten Cate and

Franceschet 2005)

Table 3.2: Complexity for different modal logics.

also checks for the intersection of the relations. Thus it can be expressed in
the basic language with intersection. This can be done using the formula�
�aj∈�C[
�
�aj]p. Even though we need more expressive power here (as we

need the intersection modality) than on the other models, the upper bounds
on SAT and MC that we obtain are still PSPACE for SAT and P for MC,
respectively. Thus, we can add intersection to the language without increasing
the complexity. To summarize, the ability of a group to force the system into
a state where some proposition holds is invariant under bisimulation on the
models of LTS and PBC. This implies that the property can thus be expressed
in the basic language on these models. On ABC, the property is invariant
under ∩-bisimulation but not under bisimulation, which then means that it
cannot be expressed in the basic language but in the language extended with
an intersection modality for modalities of basic individual actions. The results
are listed in Table 3.3.

Fact 3.30 On ABC models “C can ensure that in the next state p is true.” is not
invariant under bisimulations.

Proof. As a counter example consider the models depicted in Figure 3.3, in
which the dashed line represents the relation Z = {(w0, v0), (w1, v1)}∪ ({w2,w3}×
{v2, v3}).

We claim that Z is a bisimulation. For (w1, v1), (w2, v2), (w2, v3), (w3, v2) and
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Invariance Formula Upper bound for MC,SAT

LTS Bisimulation �C�p P,PSPACE

ABC ∩-Bisimulation
�
�aj∈�C[
�
�aj]p P,PSPACE

PBC Bisimulation �∅�[C]Xp P,PSPACE

NCL Bisimulation �∅�[C]Xp P, NEXPTIME

Table 3.3: “C can ensure that in the next state p is true.”

(w3, v3) this is easy to see. Thus, it remains to show that for (w0, v0), the back
and forth conditions are satisfied for each relation in our similarity type. To
increase readability, we give the witnesses in a table, on the left the transitions
inM1 and on the right the corresponding transitions inM2.

Forth for 1,a1−−→ Zig Zag
(w0,w1) (v0, v1)
(w0,w3) (v0, v2)

Forth for 1,b1−−→ Zig Zag
(w0,w2) (v0, v3)

Forth for 2,a2−−→ Zig Zag
(w0,w1) (v0, v1)
(w0,w2) (v0, v2)

Forth for 2,b2−−→ Zig Zag
(w0,w3) (v0, v3)

The witnesses for the back condition can also be read off the preceding table,
by switching Zigs and Zags. Thus, Z is a bisimulation. However, we have that
inM1,w0 the coalition {1, 2} can force p by agent 1 doing a1 and agent 2 doing
a2, whereas inM2, v0 the coalition cannot achieve that p because agent 1 and 2
together cannot make sure that the system moves into state v1. �

Now, let us move to basic concepts involving the other primitive in our
models: preferences. The simplest preference notion we consider here is that
of an agent finding some state at least as good in which some proposition p is
true. Since in all our models preferences are represented in the same way and
the preference fragments of the different languages we consider are the same,
we get the same results for this notion on all three classes of models.

Therefore, an agent finding a state at least as good where p is true can thus
be expressed on all models using the corresponding basic modal language
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w0

M1

w2

w1p w3 v1p

v0

M2

v2

v3

1, a1 , 2, a2

1, b1 2, a2
1, a1 , 2, b2 1, a1 , 2, a2

1, a1 2, a2
1, b1 , 2, b2

Figure 3.3: Coalitional power is not invariant under bisimulation on ABC. Note
that preference relations and the reflexive loops for all actions at w1,w2,w3, v1, v2
and v3 are omitted.

Invariance Formula Upper bound for MC,SAT

LTS, ABC, PBC Bisimulation �≤ j�p P,PSPACE

Table 3.4: “ j finds a state at least as good where p is true.”

with MC in P and SAT in PSPACE (see Table 3.4). Let us now move on
and look at more interesting properties combining coalitional power and
preferences. For a similar study of notions involving preferences, we refer the
reader to Dégremont and Kurzen (2009a) and to Chapter 7 of Dégremont (2010).

Coalition C can make agent j happy. A very basic combination of coalitional
power and individual preference – which we were also already concerned with
in the previous chapter – is the ability of a coalition to guarantee that the next
state will be one that is at least as good for some agent. Our invariance results
show that this property turns out to be easiest to express on LTS. Here, it is
invariant under ∩-bisimulation, as the ability of a group to make the system
move into a state at least as good for some agent just says that there is some state
that is accessible both by the coalition relation and by the preference relation of
the agent.

For ABC and PBC on the other hand, the property turns out to be more
complicated. For ABC, a coalition being able to force the system into a state at
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least as good for some agent means that there are actions for all members of
the coalition such that the set of states that is accessible by the intersection of
the relations for the individual actions is a subset of the set of states accessible
by the preference relation for the agent. On PBC, the property means that in the
current state, the coalition can choose a cell within the ∼∅-cell of the current
system such that no matter what the other agent chooses, the FX image of the
resulting state will be at least as good for the agent as the current state. This also
involves reasoning about the states accessible by one relation being a subset of
the states accessible by another relation. Both for ABC and PBC, the property is
not invariant under any natural kind of bisimulation. For ABC, this is shown
in Fact 3.31, and for PBC the idea is very similar. Nevertheless, the property of
a coalition being able to force the system into a state at least as good for some
agent is indeed invariant under taking generated submodels.

Fact 3.31 On ABC models, “C can move the system into a state which is as least as
good for j as the current state” is not invariant under ∩-bisimulation.

Proof. Consider the countable infinite modelsM1 andM2, both with one agent
(1) and one action (a). The accessibility relation for the action is defined as
depicted in Figure 3.4, with the preference relation for the agent running ver-
tically: In M1, 1 finds wi at least as good as wj iff i ≥ j, and analogously in
M2 1 finds vi at least as good as vj iff i ≥ j. Now, in the state w0 of M1, by
performing action a, agent 1 can force the system into a state as least as good
for her, namely into w1. InM2, on the other hand, in v0 agent 1 cannot force the
system into a state at least as good for her, as for any action she can perform
(which is only a), there is the possibility that the system moves into v−1, which
is strictly worse for her than v0. �

Both for ABC and PBC, showing that the property is invariant under taking
generated submodels is straightforward as the property only involves reason-
ing about states being accessible from the current state by different relations.
All these states will still be accessible from the current state in the generated
submodel, and moreover no states will be accessible that were not already
accessible in the original model.

Fact 3.32 On ABC and PBC the property of a coalition having the power to force that
the next state is at least as good as the current one for some agent is invariant under
generated submodels. �

Table 3.5 summarizes the results for the ability to make an individual happy.
These results nicely illustrate that the choice of models has a great impact on
how difficult it is to express certain concepts. Saying that a coalition can ensure
that an agent will be at least as happy as before can be done quite easily (by
only adding intersection to the basic language) in coalition-labeled transition
systems, while it seems to require undecidable logics on the other two classes.



3.3. Comparing modal logics for cooperation 81

v−1

M1

w0

w1

w2

w3

...

v−1

M2

v0

v1

v2

v3

...

1, a

1, a

1, a

1, a

1, a

Figure 3.4: Coalitional ability to force the system into a state at least as good
for some agent is not invariant under ∩-bisimulation. The preference relation
≤1 in both models runs from bottom to top.

Next, we investigate stability notions. To be precise, we consider two ver-
sions of Nash-stability.

Nash-stability

Nash-stability says that no single agent has the power to make the system move
into a state that is strictly better for him. In Nash-stable states, individuals thus
do not have an incentive to act in order to change the current state.

On LTS, a state being Nash-stable means that for every agent all the states
accessible by the relation for the coalition consisting of that agent have to be at
least as bad as the current one for that agent; i.e., for all of them it holds that
the current state is at least as good.

On ABC, Nash-stability means that no agent can choose an action that is
guaranteed to lead to a strictly better state for that agent. Thus, for every action
of every agent, there has to be at least one accessible state by that relation which
is at least as bad as the current state for that agent.

For PBC models, a Nash-stable state has the following property. For any
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Invariance Formula MC,SAT

LTS ∩-Bisimulation �C∩ ≤ j�� P,PSPACE

ABC GSM
�
�aj∈�C(↓x.[

�
�aj](↓ y.@x�≤ j�y)) PSPACE,Π0

1

PBC GSM ↓x.�∅�[C]X ↓ y.@x�≤ j�y PSPACE,Π0
1

Table 3.5: “C can move the system into a state at least as good for j.”

Invariance Formula MC, SAT

LTS GSM
�

j∈N ↓x.[ j]�≤ j�x PSPACE,EXPTIME

ABC GSM
�

j∈N
�

aj∈Aj
↓x.�aj��≤�x PSPACE,EXPTIME

PBC GSM
�

j∈N ↓x.[∅]�{ j}�X�≤�x PSPACE,EXPTIME

Table 3.6: “The current state is Nash-stable.”

cell that a singleton coalition (a coalition consisting of one agent only) chooses,
there is a possible next state (a FX-successor) that is not strictly better for that
agent than the current state.

On all these models, Nash-stability is invariant under taking generated
submodels. We now give the proof for ABC.

Fact 3.33 On ABC models, Nash-stability is invariant under generated submodels.

Proof. We show that if a state is not Nash-stable, then so is its image in a
generated submodel (and conversely). Assume that M,w is not Nash-stable
and without loss of generality assume that agent i is the witness. Then there
exists some action ai for i, which by definition has at least one successor, such
that for every v ∈ ai[w], w ≤i v and v �i w. By definition of a generated
submodel, w will have the same ai-successors and the preferences relations
between w and all the v ∈ ai[w] will be the same, making w not Nash-stable
either. The other direction is similar. �

The proofs for the other two classes of models are similar. The key idea is once
again that the property is only about states accessible from the current state.

On all three classes of models, Nash-stability can be expressed in a modal
logic with the combined complexity of MC in PSPACE and with SAT in
EXPTIME. Our results for Nash-stability are summarized in Table 3.6.
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Strong Nash-stability

Strong Nash-stability says that no single agent has the power to make the
system move into a state that is at least as good for him. Thus, if a state is
strongly Nash-stable then it is also Nash-stable.

Invariance Formula MC,SAT

LTS ∩-bisimulation ∧ j∈N[{i}∩ ≤ j]⊥ P,PSPACE

ABC GSM ¬ ∨ j∈N ∨aj∈Aj ↓x.[aj]�≤−1�x PSPACE,Π0
1

PBC GSM ¬∨ j∈N ↓x.�∅�[{ j}]X�≤−1�x PSPACE,Π0
1

Table 3.7: “The current state is strongly Nash-stable.”

On LTS, strong Nash-stability is invariant under ∩-bisimulation. This is easy
to see as strong Nash-stability on LTS just says that for every agent it holds
that there is no state that is accessible by the intersection of the preference
relation and the ability relation of some agent. On ABC and PBC, strong Nash-
stability is invariant under taking generated submodels, but not under bounded
morphisms (see e.g. Blackburn et al. (2001)for a definition) or any natural
bisimulations. Comparing this to the results for Nash-stability, we can see that
on LTS strong Nash-stability is easier to express than Nash-stability while on
ABC and PBCwe get opposite results.

Fact 3.34 On NCLmodels, strong Nash-stability is not invariant under bounded mor-
phisms, and thus it is neither invariant under bounded morphisms on PBC.

Proof. Take two single-agent models with N = { j}: M = �W, N, (∼C)C⊆N,FX, (≤ j
) j∈N,V�, with W = {w, v, s, t}. and M� = �W�, N, (∼�)C⊆N,FX

�, (≤�j) j∈N,V�� with
W� = {v�, t�}. Let FX(s) = FX(w) = s and FX(t) = FX(v) = t. Let ∼{ j} be the
smallest equivalence containing (w, v), (t, s) and let the TPO ≤ j be defined such
that w ≤ j v ≤ j t ≤ j w � j s. Let the valuation functions V and V� be such
that every propositional letter is false everywhere. Let F�X(t�) = F�X(v�) = t�,
∼�{ j}= {(t�, t�), (v�, v�)} and ≤�i= (W� ×W�). Consider the function f : W →W� with
f (w) = f (v) = v� and f (s) = f (t) = t�.

The following figure illustrates the models and the function between their
domains. The preference relation runs from bottom to top. The dashed boxed
represent the cells of the equivalence relations for { j}, and the dotted boxes
those of the empty coalition.

The forth condition is trivial for ≤ j because ≤�i= W� ×W�. For ∼{ j} the forth
condition is also easily checked. For FX it holds because f (w) = f (v) = v� and
f (s) = f (t) = t� and that we have F�X(t�) = F�X(v�) = t�.
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For the back condition, ∼�j and F�X are easy. For ≤�j, note that for f (s) ≤�j v�,
we have the witnesses w and v as s ≤ j w, s ≤ j v and f (w) = f (v) = v�.

Now it should be clear that in M, at w and v agent j cannot exclude that
the next will be a state that she finds strictly worse, while in v� in W� she can
(trivially) guarantee that the next state will be at least as good. �

Table 3.7 gives our results for strong Nash-stability. At this point we have to
mention that the notions of Nash-stability used in LTS and ABC/PBC/NCLmodels
are strongly related but mathematically slightly different. Note also that our
logical definition of Nash-stability with respect to ABC models crucially draws
on the fact that the preference relation is a total preorder.

Let us summarize the main results concerning the expressive power and
complexity. First of all, we have seen that on LTS and ABC expressing the
intersection of two relations is often needed for expressing interesting concepts.
We have seen that for LTS strong Nash-stability is easier to express than weak
Nash-stability. Both for ABC and PBC, it is exactly the other way around.

Lower bounds

In the end, we would like to be able to say that if on some class of models one
wants to be able to reason about some property, then – under the assumption
that one chooses a normal modal logic with some natural property – this logic
(MC and SAT) will have at least a certain complexity. It would be very useful for
developers of modal logical frameworks for multi-agent systems to have some
guidelines that give both upper and lower bounds that can be expected for the
complexity of a modal logic system that can reason about certain interesting
concepts on a given class of models.

Such an upper bound then tells the system designer that it is possible to
build a logic that can reason about the concepts under consideration in such
a way that the logic has at most a certain complexity. A lower bound on the
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other hand would say what will be the lowest possible complexity that we can
expect from a normal modal logic that can reason about certain concepts. In
other words, such a lower bound can be interpreted as follows: Being able
to express the concept under consideration forces that the logic is of a certain
complexity (or higher).

In our analysis in this chapter, we have only given upper bounds on the
complexity of normal modal logics being able to express certain concepts that
are interesting for reasoning about the cooperative ability of groups.

Our invariance results indicate that our definability results are tight to
some extent. Indeed, they show that within a large family of known extended
modal languages with a natural model-theoretical characterization we could
not improve on them. Upper bounds on the complexity are thus accurate to
some extent. However, it is of course always possible to design ad hoc logics to
express exactly the notion of interest. This leads us to the question of whether
we can find a strategy to identify tight lower bounds. We would have to show
that for every logic interpreted on some class of structures, if the logic can
express a particular property, then its satisfiability (model-checking) problem
has at least a certain complexity. A first idea could be to use results from
the computational social choice literature to obtain lower bounds on the data
complexity of model-checking a logic that can express some notion. In general,
the difficulty is that the results from this literature often take the number of
resources (and/or number of agents) as primitives, while the data complexity
of a modal logic is usually taken relatively to the size of the model whose
domain is in general exponentially bigger than the number of resources. Recall
Example 3.3, in which the size of the LTS constructed from a resource allocation
setting is exponential in the number of resources.

3.4 Conclusions and Further Questions

We will now summarize the main results of this chapter and then give conclu-
sions and further questions.

3.4.1 Summary

In this chapter, we made a step towards a unified perspective on modal logics
for cooperation, focusing on the complexity and expressive power required
to reason about interesting concepts from social choice and game theory in
different logics. We have seen that action- and power-based models, together
with coalition-labeled transition systems, constitute three natural families of
cooperation logics with different primitives.

We now summarize the results we obtained for each class of systems.
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Coalition-labeled transition systems

The results for coalition-labeled transition systems can be found in Table 3.8.
We can see that only Nash-stability cannot be expressed in the basic language
extended with an intersection modality. The fact that coalitional power is
simplified a lot in this class of models pays off in terms of computational
complexity of the logics we determined for reasoning about various concepts.
As opposed to both action- and power-based coalitional models, on LTS all
the properties we considered could be expressed in modal logics that have a
complexity of at most EXPTIME (for SAT).

Property expressible in Upper bounds MC,SAT

Simple coalitional power LLTS P,PSPACE

Simple preference LLTS P,PSPACE

C can make j happy LLTS(∩) P,PSPACE

Nash-stability HLLTS(↓) PSPACE,EXPTIME

strong Nash-stability LLTS(∩) P,PSPACE

Table 3.8: Results for LTS.

Action-based coalitional models

The results for action-based coalitional models can be found in Table 3.9. We
notice that already for expressing that a coalition can force that a proposition
holds, the basic language is not sufficient as we need to be able to take the
intersection of action relations. Expressing the ability of a coalition to make
the system move into a state at least as good for some agent does not seem to
be possible in a decidable normal modal logic with natural model theoretical
properties. The same holds for strong Nash-stability. For regular Nash-stability
on the other hand, we identified a hybrid extension of the basic logic that can
express this property and whose satisfiability problem is in EXPTIME. The
key for getting a decidable hybrid extension here is that we can express Nash-
stability in the fragment without the alternation � ↓�.

Power-based coalitional models

Table 3.10 summarizes the results for power-based coalitional models. The
basic property of a coalition being able to force that a proposition holds can be
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Property expressible in Upper bounds MC,SAT

Simple coalitional power LABC(∩) P,PSPACE

Simple preference LABC P,PSPACE

C can make j happy HLABC(@, ↓,∩) PSPACE,Π0
1

Nash-stability HLABC(↓) PSPACE,EXPTIME

strong Nash-stability HLABC(↓, −1) PSPACE,Π0
1

Table 3.9: Results for ABC.

expressed in the basic language using three modalities (one for the equivalence
relation of the empty set, one for that of the coalition itself, and one for the
outcome function). Again, the fact that for Nash-stability the bounded fragment
without alternations � ↓� is sufficient makes this stability notion expressible
in a decidable logic. For the ability of a coalition to force the system into a state
at least as good for some agent we could only identify an undecidable hybrid
extension. The same holds for strong Nash-stability, for which we also need
the converse modality.

Property expressible in Upper bounds MC,SAT

Simple coalitional power LPBC P,PSPACE

Simple preference LPBC P,PSPACE

C can make j happy HLPBC(@, ↓) PSPACE,Π0
1

Nash-stability HLPBC(↓) PSPACE,EXPTIME

strong Nash-stability HLPBC(↓, −1) PSPACE,Π0
1

Table 3.10: Results for PBC.

3.4.2 Conclusions
We now present the conclusions that we can draw from the above results.

Intersection is crucial for reasoning about cooperation. In general, our in-
variance results show that interesting notions about coalitional power and
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preferences are often not invariant under bisimulation. However, in many
cases it is only a matter of allowing the underlying logics to reason about the
intersection of two relations. From this, we can draw the conclusion that be-
ing able to express intersection is crucial when reasoning about cooperation of
agents in normal modal logics.

On simple coalition-labeled transition systems, intersection is needed as
soon as we want to reason about coalitions having the ability to make an agent
happy (by forcing the system into a state the agent prefers). On action-based
coalitional models, the intersection of action relations is already needed for
expressing even the simplest notion involving coalitional power: the ability to
make some proposition true. The good news is that we can add an intersection
modality to the basic language without (significantly) increasing the complexity
of the logic. In general, the observation that the intersection of agents’ ability-
modalities is needed for many interesting properties of coalitional ability is not
surprising: talking e.g. about a particular state being in a certain relation for
more than one agent seems to be at the heart of reasoning about coalitions.
The same holds for the intersection of ability modalities and preferences: the
combination of ability and preference plays a central role as soon as we want
to reason about the ability to achieve an improvement of the situation for an
agent.

Choice of primitive has a great impact on whether strong or weak stability
notions are easier to express. One of our main findings is that the choice
of primitives of the modal frameworks for cooperation has a great impact on
whether strong or weak stability notions are easier to express.

• In action- and power-based models, weak stability notions require less
expressive power and complexity than strong stability notions.

• In coalition-labeled transition systems, the situation is just the opposite.

This has to do with whether coalitional power to achieve an improvement
for an agent can be expressed in a simple way such that the intersection of
relations is sufficient to express the stability notion or whether we need to
express something like a subset relation.

Let us come back to our first research question.

Research Question 1 What formal frameworks are best suited for rea-
soning about which concepts involved in interaction?

• What should be the primitive notions a formal approach should be
based on?

With our above results, we can thus draw the following conclusions for
answering the question.
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1. For a framework that makes explicit how coalitional power arises from
that of individuals which have preferences, being able to express the
intersection of relations is crucial.

2. Making coalitional power explicit in terms of the power of subcoalitions
or in terms of actions in general leads to a higher complexity than choosing
a very general approach, abstracting away from the intrinsic structure of
coalitional power.

3. In the design of modal logic frameworks for reasoning about game theo-
retical concepts, special attention needs to be paid to whether the system
should be able to reason about weak or strong stability notions.

Remarks

It is important to note that in our definability results we made use of very big
conjunctions and disjunctions. When taking conjunctions/disjunctions over all
coalitions, they will be exponentially related to the number of agents. The con-
sequences we draw about the upper bounds on the complexity of satisfiability
or of combined complexity of model checking is thus to be balanced by the fact
that we generally use very big conjunctions or disjunctions that might well be
exponential if we take the number of agents as a parameter for the complexity
results.

The fact that both for action- and power-based models for relatively basic
notions such as the ability of a group to make an agent happy we identified
very expressive logics which are undecidable could be understood as bad news
for reasoning about cooperation using modal logic. However, we note that the
models we considered are very general and for modeling specific scenarios at
hand it will often be possible to take restricted classes of models for which less
expressive power is needed.

Our invariance results indicate that our definability results are tight as far
as we are concerned with expressibility in modal logics with natural model-
theoretic characterization.

3.4.3 Further Questions
The work in this chapter gives rise to some interesting questions for further
research.

• What are natural extensions of our analysis?
The stability notions that we considered in this work express that agents
do not have an incentive to change the current state within one step. In
order to express more sophisticated stability notions for interactive sys-
tems fixed point logics such as the modal µ-calculus are needed. A central
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open problem arising from our work is to extend action-based models to
reason about transitive closure in order to simulate more powerful logics
such as ATL∗.

• How can our complexity results be interpreted in a way that takes into
account how succinctly the different properties can be expressed in the
different logical frameworks?
Here, a detailed analysis using methods from parametrized complexity
could lead to more insights, showing which are the exact parameters that
contribute to the complexity.

• How can tight lower bounds be obtained for the complexity of logics that
can express some concept?
As we have discussed on page 84, we could focus purely on the al-
gorithmic tasks of checking certain properties on the different semantic
structures. Precisely determining this complexity will then give us lower
bounds on the data complexity of model checking these properties on the
different classes of models.

3.4.4 Concluding Part I
The work in this part has clarified the impact of certain design choices for the
complexity of modal logics for cooperation. We have seen how the choice of
primitives influences the complexity required for expressing certain concepts
inspired by game theory. While we could pinpoint specific sources of the
complexity, we also note that the kind of complexity analysis that we were
concerned with in Part I is very general as we considered satisfiability and
model checking problems. These problems are concerned with any formula
of a given language. Hence, they tell us something about the complexity of
deciding whether any property expressible in some language holds in some/any
model. However, it might just be the case that the properties that are relevant
for reasoning about interaction all lie at one end of the complexity spectrum.
Thus, the complexity results given so far can rather be seen as describing the
complexity of theories of interaction than describing the complexity of interaction
itself.

In order to focus more on the complexity of interaction itself, Part II will an-
alyze the computational complexity of very interaction-specific decision prob-
lems, such as

• deciding whether a player has a winning strategy (Chapter 4),

• deciding whether the information states of two agents are in a certain
relation (Chapter 5),
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• deciding what are the legal moves in a game (Chapter 6).

While we will still use modal logic frameworks in Chapter 4 and 5, our com-
plexity analysis will be about the complexity of decision problems specifically
about the interaction of individual agents.





Part II

Complexity in the Interaction
between Diverse Agents

93





Chapter 4

Variations on Sabotage – Obstruction and
Cooperation

While in the two previous chapters, our complexity analysis of interactive
processes has focused on various forms of strategic ability in very general
models of interaction, we will now move on to investigating more concrete
interactive processes. We shift the perspective from general frameworks for
group ability to concrete settings of interaction between diverse individual
agents.

Instead of analyzing the computational complexity of logical theories for
social action, we now investigate the complexity of deciding if in a particular
interactive setting some agent has the ability to achieve success.

For the choice of interactive setting to be investigated, let us come back
to our original motivation to develop formal theories that lead to a deeper
understanding of modern interaction. Analyzing communication networks as
given in Example 1.4, an important question is how robust such a system is
against flaws in the network: do messages still reach the intended recipient
when connections can break down?

In a sense, a strategy for success can here be seen as a strategy to traverse
the network in a way that even if connections break down the destination can
be reached.

The breakdowns of the connections can be seen as the work of an adversary
agent, and the resulting interaction can be seen as a two-player game between
one player traversing the network and the other one cutting edges of the net-
work. This can be modeled in the framework of Sabotage Games, which are
two-player games played on a graph in which one player travels through the
graph while the other one cuts connections.

Sabotage Games have received attention in modal logic as they have cor-
responding modal logic extended with dynamic modalities for the removal of
edges in the model. Their complexity has been well studied and they can be
used to model various situations, including the following.

95
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• Travel through a transportation networks with trains breaking down or
flights being canceled (van Benthem 2005)

• Fault-tolerant computation and routing problems in dynamically chang-
ing networks (Klein et al. 2010)

• Process of language learning in which a learner moves from one gram-
mar to another by changing his mind in response to observations, and a
teacher acts by providing information which makes certain mind changes
impossible (Gierasimczuk et al. 2009b; Gierasimczuk 2010)

Especially in the last of the above interpretations, it also seems to be very
intuitive to think of the “adversary” player as actually having the objective of
guiding the other player to a certain destination. This consideration leads us to
new variations of Sabotage Games and thus to our second research question.

Research Question 2 What is the role of cooperation vs. competition in
the complexity of interaction?

• Does analyzing an interactive situation in general become easier if
the participants cooperate?

In Part I, we have already seen that logical theories of cooperating agents
can be rather complex if they are designed in a way that makes explicit the
internal structure of cooperation. In this chapter we investigate in how far the
complexity of Sabotage Games is sensitive to changes in the objectives of the
players.

This chapter contributes to the complexity theoretical study of games on
dynamically changing structures (cf. e.g. Rohde (2006)), while paying particular
attention to how sensitive complexity results of such games are to variations
in players’ objectives and to variations in the procedural rules. With respect to
logic, our contributions lie in the field of modal logics that have the property
that evaluating a formula can change the model (cf. e.g. Gabbay (2008)).

4.1 Sabotage Games
The framework of Sabotage Games has originally been introduced by van Ben-
them (2005). It can be used to model the dynamics of networks in which
transitions can break down. Examples of such systems include transportation
networks with flights being canceled or trains breaking down, and commu-
nication networks with unstable connections. The underlying idea is that the
breakdowns can be seen as the result of the interference of an adversary player
who is trying to obstruct the travel through the network.
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A Sabotage Game is a two-player game played on a multi-graph, i.e., a
graph that can have more than one edge between two vertices. The two players,
Runner and Blocker, move in alternation with Runner being the first to move.
Runner’s moves consist of making a transition along an edge. Blocker moves
by deleting an edge from the graph. The game ends when a player cannot move
or Runner has reached one of the designated goal vertices. To be more precise,
as Runner is the first to move, it cannot happen that the game ends because
Blocker cannot remove any edge, as the game would have already ended when
it was Runner’s turn and he could not move. Runner wins if he has reached a
goal vertex; otherwise Blocker wins.

4.1.1 Representing Sabotage Games
To define the game formally, let us first introduce the structure in which Sabo-
tage Games take place.

Definition 4.1 (Directed multi-graph) A directed multi-graph is a tuple (V,E)
where V is a finite set of vertices and E : V × V → N is a function indicating
the number of edges between any two vertices. For a given vertex v ∈ V, we
let E(v) denote the number of outgoing edges from v, i.e., E(v) := Σu∈VE(v,u).�

The Sabotage Game is then defined as follows.

Definition 4.2 (Sabotage Game (Rohde 2006)) A Sabotage Game SG =
�V,E0, v0,F� is given by a directed multi-graph (V,E0) with V � ∅, a vertex
v0 ∈ V, and F ⊆ V,F � ∅. v0 is Runner’s starting point and F is the set of goal
vertices. We let SG denote the class of all Sabotage Games.

A position of the game is then given by �τ,E, v�, where τ ∈ {0, 1} determines
whose turn it is (Runner’s turn if τ = 0 and Blocker’s turn if τ = 1), E ⊆ E0 and
v ∈ V.

Each match is played as follows. The initial position is given by �0,E0, v0�,
and each round consists of two moves, as indicated in Table 4.1. A round from
position �0,E, v� consists of the following moves.

1. First Runner chooses some vertex v� ∈ V such that E(v, v�) > 0.

2. In the resulting position �1,E, v��, Blocker picks some edge (u,u�) such
that E(u,u�) > 0.

The game continues in position �0,E−(u,u�), v��where E−(u,u�) is defined as follows
for each (w,w�) ∈ V × V:

E
−(u,u�)(w,w�) :=

�
E(w,w�) − 1 if (w,w�) = (u,u�)
E(w,w�) otherwise.



98 Chapter 4. Variations on Sabotage – Obstruction and Cooperation

Position Player Admissible moves

1. �0,E, v� Runner
�
�1,E, v�� | E(v, v�) > 0

�

2. �1,E, v�� Blocker
�
�0,E−(u,u�), v�� | E(u,u�) > 0

�

Table 4.1: A round in the Sabotage Game

Final Position Winner

�0,E, v�, with E(v) = 0 Blocker

�1,E, v�, with v ∈ F Runner

Table 4.2: Final Positions in the Sabotage Game

The match ends as soon as Runner has reached a vertex in F (in which case
he wins) or Runner cannot make a move (in which case Blocker wins). The
precise conditions are given in Table 4.2.

As in every round one edge is removed, every Sabotage Game �V,E0, v0,F�
ends after at most

�
(v,v�)∈V×V E0(v, v�) rounds. �

In the above definition, Blocker’s moves of deleting an edge are represented
by subtracting 1 from the value of E(u,u�) for the chosen pair of vertices (u,u�).
As we will see later, this definition can lead to some technical problems when
we want to interpret a modal logic over these structures. Therefore, we will now
present an alternative definition of a Sabotage Game, which we subsequently
show to be equivalent with respect to the existence of winning strategies.

Definition 4.3 (Directed labeled multi-graph) LetΣ = {a1, . . . am} be a finite set
of labels. A directed labeled multi-graph based on Σ is a tuple (V,E), where V is
a finite set of vertices and E = (Ea1 , . . . ,Eam) is a sequence of binary relations
over V, i.e., Eai ⊆ V × V for each ai ∈ Σ. For each vertex v ∈ V, we define
E(v) :=

�
a∈Σ{u ∈ V | (v,u) ∈ Ea}. Thus, E(v) denotes the set of all vertices u such

that there is an edge from v to u, labeled by a label in Σ. �

In this definition, labels fromΣ are used to represent multiple edges between
two vertices. The sequence E is simply an ordered collection of binary relations
on V with labels from Σ. Accordingly, the modified definition of Sabotage
Games is as follows.
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Definition 4.4 (Labeled Sabotage Game) A Labeled Sabotage Game SG =
�V,E0, v0,F� is given by a directed labeled multi-graph (V,E0) (based on
Σ = {a1, . . . am}) with V � ∅, a vertex v0 ∈ V and subset of vertices F ⊆ V,F � ∅.
Vertex v0 is Runner’s starting point and F is the set of goal vertices. We let SG
denote the class of all Labeled Sabotage Games.

Each match is played as follows. The initial position is given by �0,E0, v0�,
and each round consists of two moves, as indicated in Table 4.3. In words, a
round from position �0,E, v� with E = (Ea1 , . . . ,Eam) consists of the following
moves.

1. First, Runner chooses a vertex v� such that (v, v�) ∈ Eai for some ai ∈ Σ.

2. Then the game continues in position �1,E, v�� with Blocker picking some
edge (u,u�) and a label aj ∈ Σ such that (u,u�) ∈ Eaj .

The game then continues in position �0,E−(u,u�),aj , v��, where E−(u,u�),aj is given by

E−(u,u�),aj = (Ea1 , . . . ,Eaj \ {(u,u�)}, . . . ,Eam).

Position Player Admissible moves

1. �0,E, v� Runner
�
�1,E, v�� | (v, v�) ∈ Eai for some ai ∈ Σ

�

2. �1,E, v�� Blocker
�
�0,E−(u,u�),aj , v�� | (u,u�) ∈ Eaj for some aj ∈ Σ

�

Table 4.3: A round in the Labeled Sabotage Game

The match ends when Runner has reached a vertex in F or cannot make a
move. In the first case, Runner wins and in the second case Blocker wins. The
precise conditions are given in Table 4.4.

Final Position Winner

�0,E, v�, with E(v) = ∅ Blocker

�1,E, v�, with v ∈ F Runner

Table 4.4: Final Positions in the Labeled Sabotage Game

As in every round an edge is removed and the set of labels is finite, every
Labeled Sabotage Game �V,E0, v0,F� ends after at most

�
a∈Σ |Ea

0| rounds. �
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Note that due to the order in which the players make their moves, the
positions given in Table 4.4 are the only final positions.

The only difference between the two definitions of a Sabotage Game is the
way in which the multiple edges are represented: while the standard Sabotage
Game uses a function that tells us how many edges are between any given pair
of vertices, the labeled version uses relations with different labels.

Note that both games have the history-free determinacy property:

if a player has a winning strategy, (s)he has a positional winning
strategy, i.e., a winning strategy that depends only on the current
position of the game, and not on which moves have led to it.

Then, in particular, in a Labeled Sabotage Game �V,E0, v0,F�, a round from
position �0,E, v� with Runner choosing to move to v� and Blocker choosing
to let the game continue in position �0,E−(u,u�),aj , v�� can be seen as a transition
from the game �V,E, v,F� to the game �V,E−(u,u�),aj , v�,F� because all previous
moves become irrelevant. We will use this fact throughout this chapter. Also,
by edges and vertices of a game �V,E, v,F�, we will mean edges and vertices of
its underlying directed (labeled) multi-graph (V,E).

In Labeled Sabotage Games, the labels of the edges are irrelevant for the
existence of a winning strategy: Observation 4.5 shows that only the number
of edges between each pair of vertices matters.

Observation 4.5 Let SG = �V,E, v0,F� and SG� = �V,F , v0,F� be two Labeled
Sabotage Games, both based on the set of labels Σ, such that the games differ only in
the labels of the edges, i.e., given E = (Ea1 , . . . ,Eam) and F = (F a1 , . . . ,F am), we have
that for all (v, v�) ∈ V × V it holds that

����{a ∈ Σ | (v, v�) ∈ Ea}
���� =
����{a ∈ Σ | (v, v�) ∈ F a}

����.

Then Runner has a winning strategy in SG if and only if he has a wining strategy in
SG�.

Proof. Follows from the fact that between any two vertices v, v� ∈ V there are
the same number of edges in E as there are in F , and thus there is a bijection

f(v,v�) : {a ∈ Σ | (v, v�) ∈ Ea}→ {a ∈ Σ | (v, v�) ∈ F a}.

Assume that Runner has a winning strategy in SG. Now, if the strategy tells
him that in the first round, he should choose position �1,E0, v��, then in the
first round of SG� he can choose �1,F0, v�� as this is a legal move. Then, when
Blocker replies in SG� by choosing position �0,F0

−(u,u�),ai , v��, Runner can now
use the winning strategy he has for position �0,E0

−(u,u�), f−1
(u,u�)(ai), v�� in SG. If this

strategy tells him to choose position �1,E0
−(u,u�), f−1

(u,u�)(ai), v��� then in SG� he can
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choose position �1,F0
−(u,u�),ai , v���. It is clear that proceeding this way, Runner

will also be able to win SG�.
The other direction is analogous: If inSG Blocker removes an edge between

two vertices u,u� Runner can always respond by doing the move he would have
done in SG� if Blocker had removed an edge between the same two vertices
with the corresponding label (now using the function f(u,u�)). �

Using Observation 4.5, we can now prove the following theorem, which
states that Sabotage Games and Labeled Sabotage Games are equivalent w.r.t.
the existence of winning strategies. More precisely, we show the following.
First of all, for every Sabotage Game, there is a Labeled Sabotage Game that
has the same set of vertices, the same set of goal vertices and also the same
number of edges between any two vertices, and moreover the players have the
same abilities to win. Second, for every Labeled Sabotage Game, there is also
such a corresponding Sabotage game satisfying the same conditions. Thus, we
show that the games can be transformed into each other while the winning
abilities stay the same and the games are of the same size if we measure the
size as the sum of the vertices and the edges between them1.

Theorem 4.6 1. We can define a function f : SG → SG such that, for every
Sabotage Game SG = �V,E, v,F� in SG,

(a) f (SG) is based on the set of labels Σ = {1, . . . ,m}, where m is the
largest number of edges between any two vertices in SG, that is, m :=
max{E(u,u�) | (u,u�) ∈ (V × V)};

(b) SG and f (SG) have the same vertices, initial vertex and set of goal vertices;

(c) the number of edges between any two vertices is the same in SG and f (SG);

(d) Runner has a winning strategy in SG iff he has one in f (SG).

2. We can define a function g : SG → SG such that, for every Labeled Sabotage
Game SG = �V,E, v,F� in SG with Σ its set of labels,

(a) SG and g(SG) have the same vertices, initial vertex and set of goal vertices;

(b) the number of edges between any two vertices is the same inSG and g(SG);

(c) Runner has a winning strategy in SG iff he has one in g(SG).

Proof.

1At this point, it is possible to argue that encoding the multiplicity of the edges as (binary)
numbers is more succinct than using different relations, which results in a unary coding of the
multiplicity of the edges.
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1. For any Sabotage Game SG = �V,E, v,F� in SG, define Σ := {1, . . . ,m}
with m as in the theorem statement. Then, define the Σ-based Labeled
Sabotage Game f (�V,E, v,F�) as

f (�V,E, v,F�) := �V,E, v,F�

where E := (E1, . . . ,Em) and every Ei is given by

Ei := {(u,u�) ∈ V × V | E(u,u�) ≥ i}

Points (a) and (b) follow immediately from f ’s definition. For (c), the
number of edges in SG between any two vertices u,u� is given by E(u,u�),
but then the pair (u,u�) will be in every Ei such that i ≤ E(u,u�), i.e., in
exactly E(u,u�) of the relations in E. It is just left to show that Runner has
a winning strategy in SG iff he has one in f (SG).
The proof is by induction on n :=

�
(v,v�)∈V×V E(v, v�), the total number of

edges of SG which, by point (c), is also the total number of edges in f (SG).
Moreover, since f only changes the way the vertices are represented, we
will be more precise and denote f (�V,E, v,F�) as �V, f (E), v,F�.

The base case. Straightforward, since when there are no edges, in both
games Runner has a winning strategy iff v ∈ F.

The inductive step. From left to right, suppose that Runner has a winning
strategy in the game �V,E, v,F�with n+ 1 edges. If Runner wins immedi-
ately, v ∈ F and he also wins f (�V,E, v,F�) immediately. Otherwise, there
is some v� ∈ V such that E(v, v�) > 0 and Runner has a winning strategy in
all games �V,E−(u,u�), v�,F� that result from Blocker choosing to remove an
edge between u and u� with E(u,u�) > 0. Since all games �V,E−(u,u�), v�,F�
have n edges, by inductive hypothesis Runner has a winning strategy in
�V, f (E−(u,u�)), v�,F�.
But then, by Observation 4.5, Runner has also a winning strategy in all
games �V, f (E)−(u,u�),i, v�,F� that result from removing an edge from u to u�
with label i (with 1 ≤ i ≤ m and (u,u�) ∈ Ei) because the only possible
difference between �V, f (E−(u,u�)), v�,F� and �V, f (E)−(u,u�),i, v�,F� is in the
labels of the edges between u and u�: in the former, the removed label
is the largest; in the latter, the removed label is any. Since moving to v�
is also an admissible move in �V, f (E), v,F�, Runner also has a winning
strategy in this latter game.

From right to left. If Runner has a winning strategy in �V, f (E), v,F�, he
can choose some v� with (v, v�) ∈ Ei for some i with 1 ≤ i ≤ m such that he
has a winning strategy in all games �V, f (E)−(u,u�),i, v�,F� that result from
Blocker removing an edge with label i between a pair of vertices (u,u�).
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Now, by Observation 4.5, if Runner has a winning strategy in ev-
ery such �V, f (E)−(u,u�),i, v�,F� then he has a winning strategy in every
�V, f (E−(u,u�)), v�,F� because, again, the only difference between the two
games is in the labels of the edges. But then, by the inductive hypothesis,
he also has a winning strategy in every �V,E−(u,u�), v�,F�. Hence, since v� is
also an admissible move in �V,E, v,F�, Runner has a winning strategy in
this latter game.

2. For any Labeled Sabotage Game SG = �V,E, v,F� ∈ SG with Σ :=
{a1, . . . , am}, define

g(�V,E, v,F�) := �V,E, v,F�
where E is defined as follows, for every (u,u�) ∈ V × V,

E(u,u�) :=
����{a ∈ Σ | (u,u�) ∈ Ea}

����.

Point (a) is given by g’s definition. For (b), note that for every pair of
vertices (u,u�), E(u,u�) is given by the number of relations Ea that contain
(u,u�). For (c), showing that Runner has a winning strategy in SG iff
he has one in g(SG) is straightforward and can be done by induction on
the number of edges of SG, given by

�
a∈Σ |Ea|. In the inductive step, for

the left-to-right direction, the idea is that Runner can respond to Blocker
removing an edge in the same way as he would have in SG if Blocker
had removed the edge with the highest label. The other direction uses
Observation 4.5.

This concludes the proof. �

We have thus shown that Labeled Sabotage Games and Sabotage Games as
defined originally are very similar. For each game in one of the classes, there is
a corresponding one with the same vertices, same number of edges and same
winning abilities in the other class. In the remainder of this chapter, we will
work with Labeled Sabotage Games. We now continue with Sabotage Modal
Logic, a framework in which we can reason about the abilities of the players in
Sabotage Games.

4.1.2 Sabotage Modal Logic
Sabotage Modal Logic (SML) (van Benthem 2005) has been introduced to reason
about reachability-type problems in dynamic structures, such as the graph of
our Sabotage Games. Besides the standard modalities, its language contains
“transition-deleting” modalities for reasoning about model change that occurs
when an edge is removed. More precisely, we have formulas of the form −�ϕ,
expressing that it is possible to delete a pair of states from the accessibility
relation such that ϕ holds in the resulting model at the current state.
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Definition 4.7 (Sabotage Modal Language (van Benthem 2005)) Let PROP be
a countable set of propositional letters and let Σ be a finite set. Formulas
ϕ of the language of Sabotage Modal Logic are given by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | �aϕ | −�aϕ

with p ∈ PROP and a ∈ Σ. The formula −�aϕ is defined as ¬−�a¬ϕ, and we also
define the following abbreviations:

�ϕ :=
�

a∈Σ
�aϕ −�ϕ :=

�

a∈Σ
−�aϕ

�

The language of Sabotage Modal Logic is interpreted over Kripke models
that here will be called Sabotage Models.

Definition 4.8 (Sabotage Model (Löding and Rohde 2003b)) Given a count-
able set of propositional letters PROP and a finite set Σ = {a1, . . . , am}, a Sabotage
Model is a tuple M = �W, (Rai)ai∈Σ,V� where W is a non-empty set of worlds,
each Rai ⊆W ×W is an accessibility relation and V : PROP→ ℘(W) is a proposi-
tional valuation function. The pair (M,w) with w ∈W is called Pointed Sabotage
Model. �

For the semantics, we define the model resulting from removing an edge.

Definition 4.9 Let M = �W,Ra1 , . . .Ram ,V� be a Sabotage Model. The model
M−(u,u�),ai that results from removing the edge (u,u�) ∈ Rai is defined as

M−(u,u�),ai := �W,Ra1 , . . . ,Rai \ {(u,u�)}, . . .Ram ,V�. �

Definition 4.10 (Sabotage Modal Logic: Semantics (van Benthem 2005))
Given a Sabotage Model M = �W, (Ra)a∈Σ,V� and a world w ∈ W, atomic
propositions, negations, disjunctions and standard modal formulas are
interpreted as usual. For “transition-deleting” formulas, we have

(M,w) |= −�aϕ iff ∃ u,u� ∈W : (u,u�) ∈ Ra and (M−(u,u�),a,w) |= ϕ. �

Complexity of SML. The computational complexity of SML has been an-
alyzed by Löding and Rohde (2003a). The satisfiability problem of SML is
undecidable; the proof is by reduction from Post’s Correspondence Problem.
Model checking is PSPACE-complete.

We will see in Section 4.2.2 how the logic can be used to express the existence
of winning conditions in Sabotage Games and some variations, which we will
now define and analyze.
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4.2 From Obstruction to Cooperation

In this section, we look at variations of the standard Sabotage Game that differ
with respect to the attitude of the players. In the standard version, Runner
wins if and only if he reaches a goal state, and Blocker wins if and only if she
can prevent this.

However, in many game like interactions on graphs it also makes sense
to think of one player trying to avoid reaching certain bad states, and another
player trying to force him to reach such a state. This motivation is related to
the situations modeled in Cops and Robbers games (cf. e.g. Fomin et al. (2008);
Kreutzer (2011)) when we look at it from the perspective of the robbers, or in
a variation of the recreational board game Scotland Yard (Sevenster 2006), in
which we can think of the cops trying to block escape routes of the fugitive
and this way forcing him to move to the prison. We will consider a variation
on Sabotage Games with a Safety winning condition. The moves of the players
stay the same, as do the final positions of the game, but the winning conditions
change: Runner looses as soon as he reaches a vertex in F. He wins otherwise
(i.e., when the game stops in a position in which he is not at a goal state, which
is the case when he reaches a dead-end which is not in F.

Learning theoretical interpretation of Sabotage Games. In previous work
(Gierasimczuk et al. 2009b), we have shown that Sabotage Games and their
variations can also model processes which at first sight might not be so closely
related to strategic game-like interactions, namely the processes of learning
and teaching.

Here the idea is that the underlying graph of the Sabotage Game represents
the set of hypotheses or grammars, and the transitions between them represent
the ways how the learner can change his mind when he gets new information.
The set of goal states represents the correct grammars. Then in the standard
Sabotage Game, Learner (taking the role of Runner) tries to reach such a goal
state while the evil Teacher (Blocker) is trying to obstruct him by giving infor-
mation that makes certain transitions impossible (represented by cutting the
edges). Then with the safety winning condition, we can model the situation
in which Teacher wants Learner to reach the learning goal, but the learner
however is not willing to learn and is trying to stay away from the goal.

Under the interpretation of the learning scenario, also a third kind of Sabo-
tage Games makes sense because it can be seen to represent the ideal learning
situation in which both Teacher and Learner have the aim of the learner reach-
ing the goal, and both cooperate in order to make this happen. Of course, with
the learning interpretation the question arises as to what is the most natural
sabotage framework to model the interaction of Teacher and Learner. This
could lead us to new variations of Sabotage Games with a mix of competition
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and cooperation of the players, e.g. variations in which Teacher’s aim is that
Learner reaches the goal within a certain number of rounds and Learner starts
with a safety objective but switches to reachability after some rounds.

We will very briefly come back to the learning theoretical interpretation of
Sabotage Games at certain points throughout the remainder of this chapter. For
a more detailed discussion of this interpretation of Sabotage Games, the reader
is referred to Chapter 7 of Gierasimczuk (2010).

4.2.1 Complexity of three Sabotage Games

In this section, we will describe the variations of the Sabotage Games and
investigate their complexity, i.e., the complexity of deciding whether a player
has a winning strategy.

Definition 4.11 (Variations on Sabotage Games) We distinguish three differ-
ent versions of Sabotage Games,SGReach (the standard Sabotage Game),SGSafety

and SGCoop. The structure on which the games are played and the moves al-
lowed for both players remain the same as in Definition 4.4. The winning
conditions are as given in Table 4.5. �

Game Final Position Winner

SGReach �1,E, v�, with v ∈ F Runner
�0,E, v�, with E(v) = ∅ Blocker

SGSafety �1,E, v�, with v ∈ F Blocker
�0,E, v�, with E(v) = ∅ Runner

SGCoop �1,E, v�, with v ∈ F both
�0,E, v�, with E(v) = ∅ none

Table 4.5: Three Sabotage Games

The different winning conditions correspond to different levels of Blocker’s
helpfulness and Runner’s attitude towards reaching the set of vertices F. Hav-
ing defined games representing various types of Blocker-Runner interaction,
for each version of the game we now determine the complexity of deciding
whether a player has a winning strategy.

In previous works (e.g. (Gierasimczuk et al. 2009b; Löding and Rohde
2003b)) an upper bound on the complexity of the games has been obtained by
transforming the games into corresponding pointed Kripke models and then
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using a PSPACE model checking algorithm to check if a formula characterizing
the existence of a winning strategy is true.

In the current work, we also consider different approaches, following ideas
from Rohde (2006) and Klein et al. (2010), in order to show that tight complexity
bounds for all three versions of the game can be given, even without using
Sabotage Modal Logic. The decision problems that we investigate are the
following.

Decision Problem 4.12 (Winning strategy for SGReach (SGSafety))
Input: Labeled Sabotage Game SG = �V,E, v,F�.
Question: Does Runner have a winning strategy in SGReach (SGSafety)? �

Decision Problem 4.13 (Winning strategy for SGCoop))
Input: Labeled Sabotage Game SG = �V,E, v,F�.
Question: Do Runner and Blocker have a joint winning strategy in SGCoop? �

We now investigate the complexity of this problem for the three different
winning conditions.

Sabotage Game with reachability winning condition (SGReach). For the stan-
dard Sabotage Game with reachability objective in which numbers are used
to represent the multiplicity of the edges, Rohde (2006) has shown a PSPACE

upper bound for deciding which player has a winning strategy. This is done by
showing that each game can be transformed into an equivalent one in which
both the multiplicity of the edges and the size of the set of goal vertices is
bound by a constant. Then an alternating PSPACE algorithm is given to solve
the game. Exactly the same ideas can be used for the labeled version of the
game. Note that using these techniques then allows us to transform labeled
games into equivalent games in which the multiplicity of edges is bound by
a constant. This will take care of the potential problem arising from the way
the multiplicity of edges is coded in labeled games (cf. Footnote 1 on page
101). PSPACE-hardness is shown by reduction from Quantified Boolean Formula
(Löding and Rohde 2003b; Rohde 2006).

We can use these results and immediately obtain the same complexity
bounds for Labeled Sabotage Game with reachability winning condition.

Theorem 4.14 SGReach is PSPACE-complete. �

Sabotage Game with safety winning condition (SGSafety). Whereas at first
sight, SGSafety andSGReach might seem to be duals of each other, the relationship
between them is more complex due to the different nature of the players’ moves:
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Runner moves locally by choosing a state accessible from the current one, while
Blocker moves globally by removing an arbitrary edge.

This is one of the reasons why determining the complexity of the safety
game (especially the upper bound) turns out to be quite interesting in the sense
that it does not immediately follow from the complexity of the reachability
game.

We will start with discussing different options we have for obtaining an
upper bound, thus also shedding some light on the different methods which
have in general been suggested for determining the complexity of Sabotage
Games in the literature. We will discuss the following three options.

1. Reduction to Sabotage Games with reachability winning condition.

2. Using model checking of SML, as done in Gierasimczuk et al. (2009b).

3. Explicitly giving a PSPACE algorithm for solving the game.

Option 1 is a method that would fit best into the focus of this dissertation
on the complexity of different interactive processes. Being able to establish a
relationship between the games with reachability and safety winning condi-
tion would be conceptually nice as it would clarify the effect of changing the
objectives of the players. In order to compute such a reduction, we need to find
a way to transform a Sabotage Game with safety winning condition into one
with reachability winning condition such that Runner has a winning strategy
in the former if and only if he has one in the latter. The first intuition would be
to use the idea that Runner wins the safety game if and only if he can at some
point reach a vertex from which there is no path to F.

Following this line of thought would result in the following transformation.
Given a safety Sabotage Game, transform it into a reachability Sabotage Game
on exactly the same graph with the only difference that the new set of goal
vertices F� is the set of vertices from which there is no path to goal set F of the
original game.

However, this is not a correct reduction as there can be situations in which
Runner can reach a goal vertex in the reachability game and can only do it
by moving through a vertex that is in F. We illustrate this with an example.
Assume that we have the following graph for the safety game with Runner
starting in the leftmost vertex and the vertex in the middle being the goal.

x ··

Then Runner will loose the safety game once he has moved.
Using the transformation explained above we will obtain the following

graph for the reachability game, with Runner having the same starting position
and the goal vertex now being the rightmost vertex.
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x ··

As Runner is the first to move, he can indeed win this game. How could
we repair the transformation in order to make it a proper reduction? One idea
would be to remove the goal states of the original game from the graph of the
reachability game.

For our example, this would give us the a reachability game on the following
graph without any edges.

x ··

Now, Runner also looses this game as he cannot move from the initial vertex.
Nevertheless, we note that the above example is very particular in the sense
that the games end very quickly. In general, the above procedure does not
work because in general the operation of transforming a safety game into a
reachability game and the operation of one round of the game being played
do not commute. This is because of the following: once Runner has made a
move in the safety game, Blocker could decide to remove an edge that has the
effect that now there are no paths from some vertex v to F. Then transforming
the game into a reachability game will then add v to the goal vertices F� of
the reachability game. If on the other hand, we first transform the game and
Runner and Blocker make the same moves, then no vertex is added to F�. This
shows that a reduction from safety Sabotage Games to reachability Sabotage
Games cannot be done with the transformation just explained. The challenge
in constructing such a reduction lies in the dynamic nature of the game as the
set of vertices from which there is no path to the goal vertices eventually grows.

Let us discuss Option 2: reducing the problem of deciding if a player can
win the safety Sabotage Game to the model checking problem of SML. This will
indeed be discussed in detail in Section 4.2.2 where we will show how Labeled
Sabotage Games can be transformed into Kripke models such that SML can be
used to reason about the existence of winning strategies.

For Option 3 – directly designing a PSPACE procedure, we suggest methods
developed by Klein et al. (2010) who showed that for any winning condition for
the randomized Sabotage Game which can be expressed by a formula of linear
temporal logic (LTL) (interpreted over the path of vertices visited by Runner
through the game) deciding whether Runner has a winning strategy can be
done in PSPACE. In the randomized Sabotage Game, which is similar to the
games against nature introduced by Papadimitriou (1985), edges are removed
with a certain probability. The same methods can indeed also be applied for our
safety Sabotage Game. Expressing the safety winning condition as a formula
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of LTL is straightforward as it boils down to saying that the path has to satisfy
that at every state ¬goal has to be true and moreover at some point a vertex is
reached that does not have a successor.

To summarize our discussion of how a PSPACE upper bound can be shown
for the safety Sabotage Game: both SML and LTL model checkers can be used
on a formula that expresses the existence of a winning strategy for Runner. A
direct reduction from safety Sabotage Games to reachability Sabotage Games
still needs to be developed and would have the great conceptual benefit of
clarifying the (non-trivial) relationship between both games.

We also show PSPACE-hardness of SGSafety. This can be done by a reduc-
tion from Quantified Boolean Formula. The proof follows similar ideas as the one
of the reachability Sabotage Game being PSPACE-hard, as shown in Theorem
2.20 of Rohde (2006). For every formula that can be the input for QBF, we
construct a labeled multi-graph with an initial vertex and a set of goal vertices
such that the formula is true if and only if Runner has a winning strategy
in the game with safety winning condition starting in the initial vertex. The
idea of the multi-graph is that for each quantifier occurring in the formula we
have a component in the graph such that in the components for the existential
quantifiers Runner chooses a value for the respective variable and in the com-
ponents corresponding to the universal quantifiers, Blocker chooses the value.
The graph is constructed in a way that forces the players to go through the
components in the order as given by the formula. The final component of the
graph corresponds to the Boolean formula containing the variables bound by
the quantifiers. It contains subcomponents for each clause in the formula and
Blocker chooses which of the components Runner has to move to. Once Runner
is in such a clause component, he has the choice of moving to different vertices
that each represent a literal occurring in the clause. The graph is constructed
in a way that Runner can win if and only if one of the literals is true under the
assignment given earlier in the game.

Theorem 4.15 SGSafety is PSPACE-complete.

Proof. SGSafety being in PSPACE follows from Theorem 4.20 of the next section
and the fact that model-checking of SML is in PSPACE.

PSPACE-hardness is proved by showing that the Quantified Boolean Formula
(QBF) problem, known to be PSPACE-complete, can be polynomially reduced
to SGSafety. Let ϕ be an instance of QBF, i.e., a formula:

ϕ := ∃x1∀x2∃x3 . . .Qxnψ

where Q is the quantifier ∃ for n odd, and ∀ for n even, andψ is a quantifier-free
formula in conjunctive normal form.
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We will now construct a directed labeled multi-graph on which SGSafety is
played, such that Runner has a winning strategy in the game iffϕ is true. We first
describe the essential components of the graph (a ∀-gadget for each universally
quantified variable in the formula, a ∃-gadget for each existential quantifier in
the formula, and a verification gadget for the quantifier free formula ψ), and
the key properties they have with respect to how they force the course of the
game. After that we show that with this construction it holds that Runner can
win the safety game on that graph if and only if the formula is true.

The ∃-gadget. Figure 4.1 shows the subgraph corresponding to the existential
quantifier for xi, with i odd. Curly edges represent edges with a multiplicity of
five and the symbol # represents a dead end. Edges drawn as↔ represent two
edges, each going in one direction. The numbers labeling edges stand for the
multiplicity of the edges, thus an edge labeled with n represents n edges each
with a different label from 1, . . . ,n. The vertices represented by circles are the
vertices in F.

When Runner enters the gadget at A, he can choose between going towards
Xi or going to X̄i. In our interpretation, Runner moves to Xi if he wants to
make xi false and to X̄i if he wants to make xi true. Once Runner has chosen
which path to take, there is no choice for Blocker other than removing the four
edges from the variable vertex that Runner is approaching to the dead end #. If
Blocker removes an edge somewhere else in the graph, Runner will win since
when he arrives at the variable vertex (i.e., Xi or X̄i), there is still an edge left
to #. So, we can assume that when Runner reaches the variable vertex, there
is only one edge to # left, which Blocker will then remove. Then in the next
round, Runner will move to B because the only other choice would be to move
to the goal vertex in which case he would loose immediately. When Runner is
at vertex B, Blocker is forced to remove the edge from B to the other variable
vertex as that one still has four edges to #, and thus if Blocker doesn’t prevent
Runner from going there, he will win. Then in the next round Runner is forced
to exit the gadget at B, because moving back to the variable vertex he came
from is of no use for him as Blocker can then remove the edge back to B, thus
forcing Runner to move to the goal.

The ∀-gadget. Figure 4.2 shows the subgraph corresponding to the universal
quantifier for xi, with i even. In this component, Blocker can choose the value
of the variable xi. Runner enters the gadget at A, and in the next three rounds,
he moves towards C.

If Blocker wants Runner to pass through Xi (corresponding to Blocker choos-
ing to make xi false) she does the following: While Runner is on his way from
A to C, she removes the three edges from C to X̄i. Then when it is Runner’s
turn to move from C, no edge to X̄i is left and he is forced to move via D to Xi.
During these four rounds, Blocker has to remove the four edges from Xi to #,
because otherwise Runner can win by moving to # once he has arrived at Xi.
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Figure 4.1: The ∃-gadget
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Figure 4.2: The ∀-gadget

So, when it is Runner’s turn again, he will move to B because his only other
option is moving to F. Now, Blocker has to remove the edge from B to X̄i in
order to prevent Runner from moving to X̄i from where he could win, as there
are still four edges to #. So, next Runner will exit the gadget.

If Blocker wants Runner to pass through X̄i (to make xi true), the analysis is
more complicated as Runner can not actually be forced to traverse the gadget
via X̄i. In what follows, we first analyze what will happen if Runner indeed
moves as intended and then we consider the case when he does not. With
Runner starting to move along the path from A, Blocker can now remove three
of the four edges from X̄i to #. Then when it is Runner’s turn to move from
C, there is one edge left from X̄i to #. Now, there are in principle two options
for Runner: first, to move to X̄i as intended. Second, to move to D and from
there to Xi. In the first case, if Runner moves to X̄i, then Blocker has to remove
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the last edge to #. Then Runner will move to B as the only other option is to
move to F. When Runner is in B, Blocker has to remove the edge leading to Xi,
preventing Runner from reaching # via Xi. Then Runner will exit the gadget.

Now, consider the case that Runner decides to move from C to D instead of
moving to X̄i. If this happens, Blocker has to make sure that all the four edges
are removed before it is Runner’s turn again to move from Xi. Then Runner
will move from Xi to B because the only other possibility would be to move to
F. Once Runner reaches B, the gadget looks like in Figure 4.3 and it is Blocker’s
turn. Then there are three possible scenarios.

A

D

Xi

C

X̄i

#

B

·· ··

in

3

outfrom verification gadget from verification gadget

Figure 4.3: The ∀-gadget when Runner does not move to X̄i as intended, with
B being the current position of Runner, and Blocker being the one to move.

1. Blocker removes the remaining edge from X̄i to #.

2. Blocker removes the edge from B to X̄i.

3. Blocker removes an edge somewhere else in the graph.

In Case 1, Runner will leave the gadget because he would not want to go to
X̄i or Xi as Blocker could force him to move to F from there.

In Case 2, Runner will also leave the gadget since as in the first case he
would not want to move back to Xi.

In Case 3, if Runner moves to X̄i, Blocker can still remove the last edge to #,
in which case Runner will move back to B. Then it is Blocker’s turn again. No
matter what she does, if Runner does not want to loose, he will exit the gadget,
as returning to one of the variable vertices leads him to a situation in which
Blocker can force him to move to F.

Note that in Case 1, if Runner returns to one of the variable vertices later
via an edge from the verification gadget then Blocker can win by removing the
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edge to B thus forcing Runner to move to F. In the two other cases, there is
one edge left from X̄i to # and when Runner ever comes back to X̄i from the
verification gadget, Blocker can still make sure that Runner does not reach #,
and neither any other dead end.

Thus, we can conclude that in the case that Blocker chooses to make xi true
and acts as described above (i.e., she removes three of the four edges from X̄i to
#), there is no benefit for Runner in moving from C to D. Thus, we can assume
that Runner will then indeed move to X̄i as intended.

The verification gadget. Figure 4.4 shows the verification gadget for the case
that ψ consists of k clauses, i.e., ψ = c1 ∧ c2 ∧ . . . ∧ ck. Each subgraph with root
vertex Cj represents the clause cj in ψ. Accordingly, each vertex Ljh represents
the literal ljh occurring in clause cj, i.e., cj = lj1 ∨ lj2 ∨ . . . ∨ ljmj . If the literal is of
the form xi then there is an edge from Ljh to Xi in the corresponding quantifier
gadget (∃-, if i is odd and ∀- otherwise). If the literal is of the form ¬xi, then
there is an edge from Ljh to X̄i in that corresponding quantifier gadget.

Runner enters the gadget at the top, and Blocker can choose which clause
vertex Cj, Runner has to move to. He can do this by removing the edges from
Aj� to Cj� for all j� < j, and the edge from Aj to Aj+1 (or to #, if j = k). Note
that this way Runner has no choice as to where to move until he reaches Cj.
Once Runner reaches Cj, Blocker has to remove the edge from there to #. Then
Runner can choose to move to one of the literal vertices Ljh. At this point,
Blocker can remove an edge somewhere in the graph. The crucial point here
is that if ljh is true under the assignment chosen through the traversal of the
quantifier gadget for the variable in ljh, then Runner can win because there are
still at least three edges left from Xi to # in case ljh = xi, and analogously at
least three edges from X̄i to # if ljh = ¬xi. This is because in the intended play,
in the traversal of the quantifier gadgets, if xi was chosen to be true, X̄i was
visited and the edges between Xi and # remained intact, and analogously for
the case when xi was chosen to be true. For the converse, if ljh is false under
the assignment chosen through the traversal of the quantifier gadget for the
variable in ljh then Blocker can win because the variable vertex that Runner will
move to has been visited before and thus all the edges from it to # have been
removed and Blocker can force Runner to move to F.

Now, to summarize the essential properties of the construction: if ϕ is true
then in each ∃-gadget Runner can choose a truth value for xi for i odd such
that once Blocker has forced him to move to some clause vertex Cj, there is
some literal vertex that Runner can move to that leads to a variable vertex
back in one of the quantifier gadgets that has enough edges left to #, allowing
Runner to move there and win. For the other direction, ifϕ is false then Blocker
can choose truth values for the xi with i even such that when the verification
gadget is reached, she can force Runner to move to some Cj such that under the
assignment made through the traversal of the quantifier gadgets all the literals
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Figure 4.4: The verification gadget

occurring in the clause cj are false, and thus the corresponding variable vertices
have been visited already. So, no matter which literal vertex Runner chooses,
there are not enough edges left from the variable vertex that he could arrive to
#. Thus, Blocker can force him to move to F and Blocker wins.

Moreover, the construction of the graph for the game can clearly be done
in polynomial time with respect to the size of ϕ. This concludes the proof of
SGSafety being PSPACE-hard. �

Corollary 4.16 SGSafety is PSPACE-complete. �

We have thus shown that the games with reachability winning condition
(SGReach) and safety winning condition (SGSafety) for Runner have the same
complexity.

Cooperative Sabotage Game (SGCoop) Finally, let us look at SGCoop. This
game is different from the two previous ones: Runner and Blocker win or lose
together. Thus, a joint winning strategy does not need to take into account all
possible moves of an opponent. This suggests that this version should be less
complex than SGReach and SGSafety.

Note that Runner and Blocker have a joint winning strategy if and only if the
goal vertex is reachable from Runner’s position. Thus, determining whether
they can win SGCoop is equivalent to solving the Reachability (st-Connectivity)
problem, which is known to be non-deterministic logarithmic space complete
(NL-complete) (Papadimitriou 1994).

Theorem 4.17 SGCoop is NL-complete.

Proof. The equivalence of SGCoop and Reachability follows from the fact that
Runner and Blocker have a joint winning strategy if and only if there is a path
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from v to an element of F. From left to right this is obvious. From right to left,
if there is such path, then there is also one without cycles, and a joint winning
strategy is e.g. one in which Runner follows this acyclic path and at each step
Blocker removes the edge that has just been used by Runner. �

Note that Theorem 4.17 relies on the fact that Runner is the first to move. If
Blocker was the first to move, it is easy to construct a graph in which F is
reachable in one step from Runner’s initial position, and moreover this edge
is the only edge of the graph so that Blocker is actually forced to make F
unreachable.

Table 4.6 summarizes the complexity results for the different Sabotage
Games.

Game Winning Condition Complexity

SGReach Runner wins iff he reaches F, Blocker wins
otherwise

PSPACE-
complete.

SGSafety Runner wins iff he can avoid F throughout
the game, Blocker wins otherwise.

PSPACE-
complete.

SGCoop Both players win iffRunner reaches the goal
state. Both lose otherwise.

NL-
complete.

Table 4.6: Complexity Results for Sabotage Games

This section has shown that Sabotage Games with a safety objective for
Runner have the same complexity as the standard version of the game, whereas
the cooperative version of the game is easier. It is important to note here that
the results seem to crucially rely on the fact that Runner is the first to move.
Moreover, some of our constructions used directed graphs, which leads to the
question of whether the complexity for safety games changes in the case of
undirected graphs.

We will now make the connection between Sabotage Games and Sabotage
Modal Logic more precise.

4.2.2 Sabotage Games in Sabotage Modal Logic
Sabotage Modal Logic is useful for reasoning about graph-like structures where
edges can be removed; in particular, it is useful for reasoning about Sabotage
Games. In order to do that, we need to transform the structure on which
the Labeled Sabotage Game is played into a Pointed Sabotage Model where
formulas of the logic can be interpreted. The straightforward construction is as
follows.
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Definition 4.18 Let SG = �V,E, v,F� be a Labeled Sabotage Game with E =
(Ea)a∈Σ. The Pointed Sabotage Model PSM(SG) over the atomic propositions
PROP := {goal} is given by

PSM(SG) :=
�
�V,E,V�, v

�

where V(goal) := F. �

In the light of this construction, Sabotage Modal Logic becomes useful for
reasoning about players’ strategic power in Sabotage Games. Each winning
condition in Table 4.5 can be expressed by a formula of SML that characterizes
the existence of a winning strategy, that is, the formula is true in a given pointed
Sabotage Model if and only if the corresponding player has a winning strategy
in the game represented by the model.

Reachability Sabotage Game (SGReach) Consider SGReach, the original Sab-
otage Game (van Benthem 2005). Define the formula γReach

n inductively as
follows:

γReach
0 := goal, γReach

n+1 := goal ∨�−�γReach
n .

The following result is Theorem 7 of Löding and Rohde (2003b), now for
Labeled Sabotage Games. We provide a detailed proof to show how our labeled
definition avoids a technical issue present in the original proof.

Theorem 4.19 Runner has a winning strategy in theSGReach SG = �V,E, v,F� if and
only if PSM(SG) |= γReach

n , where n is the number of edges of SG, i.e., n =
�

a∈Σ | Ea |.

Proof. The proof is by induction on n.
Base case (n = 0).

(⇒) If Runner has a winning strategy in a game SG with no edges, then he
should be already in F, i.e., v ∈ F. Thus, v ∈ V(goal) so PSM(SG) |= goal and
hence, PSM(SG) |= γReach

0 .
(⇐) If PSM(SG) |= γReach

0 then PSM(SG) |= goal. But then v ∈ V(goal) so v ∈ F
and therefore Runner wins SG immediately.
Inductive case.

(⇒) SupposeSG has n+1 edges, and assume Runner has a winning strategy.
There are two possibilities: Runner’s current position is in F (i.e., v ∈ F), or it is
not.

In the first case, we get v ∈ V(goal), hence PSM(SG) |= goal and then
PSM(SG) |= γReach

n+1 . In the second case, since Runner has a winning strategy
in SG = �V,E, v0,F�, there is some state v� ∈ V with v� ∈ E(v) such that in
all games SG−(u,u�),aj = �V,E−(u,u�),aj , v�,F� that result from Blocker removing the
edge (u,u�) from a relation labeled aj, Runner as a winning strategy.
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All such games have n edges, so by inductive hypothesis we have

PSM(SG−(u,u�),aj) |= γReach
n

for every edge (u,u�) ∈ V × V and label aj ∈ Σ such that (u,u�) ∈ Eaj . Now,
the key observation is that each such PSM(SG−(u,u�),aj) is exactly the model that
results from removing edge (u,u�) with aj from the pointed model

�
�V,E,V�, v�

�
.2

Then, for all such (u,u�) and aj, we have

�
�V,E,V�−(u,u�),aj , v�

�
|= γReach

n .

It follows that
�
�V,E,V�, v�

�
|= −�γReach

n and therefore
�
�V,E,V�, v

�
|= �−�γReach

n , that
is, PSM(SG) |= γReach

n+1 .
(⇐) Suppose PSM(SG) |= goal ∨�−�γReach

n , and recall that PSM(SG) is given
by
�
�V,E,V�, v

�
. Then, v ∈ F or else there is a state v� ∈ E(v) such that�

�V,E,V�, v�
�
|= −�γReach

n , i.e.,

�
�V,E,V�−(u,u�),aj , v�

�
|= γReach

n

for all edges (u,u�) and labels aj ∈ Σwith (u,u�) ∈ Eaj . By inductive hypothesis,
Runner has a winning strategy in each game that corresponds to each pointed
model

�
�V,E,V�−(u,u�),aj , v�

�
, but these games are exactly those that result from

removing any edge from the game �V,E, v,F� after Runner moves from v to v�.
Hence, Runner has a winning strategy at �V,E, v,F�, the game that corresponds
to the pointed model PSM(SG), as required. �

We have thus seen that Sabotage Modal Logic can express the existence of
a winning strategy for Runner in SGReach; the crucial point in the proof being
the fact that with Labeled Sabotage Games the operations of removing an edge
and building the corresponding Kripke model commute. We now continue
by expressing the existence of a winning strategy in the safety game using
Sabotage Modal Logic.

2In the original definition of a Sabotage Game in which the edges are given by a function from
a pair of vertices to a natural number (Definition 4.2) this is not the case. With that definition,
transforming such a model into a Kripke model does not commute with the operation of
removing an edge. First transforming a game into a model and then removing an edge does
not always give the same result as first removing an edge and then transforming the game into
a model. This is because removing and edge from the model does not mean that we have to
remove the edge with the label corresponding to the highest number.
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Safety Sabotage Game (SGSafety) Now consider SGSafety, the game in which
Blocker tries to force Runner to go to F and Runner tries to avoid reaching F.
Inductively, we define γSafety

n as

γSafety
0 := ¬goal ∧ �⊥, γSafety

n+1 := ¬goal ∧ (�⊥ ∨�−�γSafety
n ).

We show that this formula corresponds to the existence of a winning strategy
for Runner. The idea of the proof is the same as for the reachability game.

Theorem 4.20 Runner has a winning strategy in the SGSafety SG = �V,E, v,F� if
and only if PSM(SG) |= γSafety

n , where n =
�

a∈Σ | Ea |.

Proof. The proof is by induction on n.
Base case (n = 0).

(⇒) If Runner has a winning strategy in a gameSGwith no edges, then this
means that he cannot be in F and moreover he cannot move anywhere as there
are no edges, i.e., v � F and E(v) = ∅. Thus, PSM(SG) |= ¬goal ∧ �⊥.

(⇐) If PSM(SG) |= ¬goal ∧ �⊥ then v � F and E(v) = ∅. Therefore, Runner
wins SG immediately.
Inductive case.

(⇒) Assume that
�

a∈Σ | Ea |= n + 1 and Runner has a winning strategy.
There are two possibilities: Runner wins immediately, or he doesn’t.

In the first case, we get v � V(goal) and E(v) = ∅, hence PSM(SG) |=
¬goal ∧ �⊥ and thus PSM(SG) |= γSafety

n+1 . In the second case, since Runner has
a winning strategy in SG = �V,E, v,F�, he cannot have lost immediately and
thus v � F (which means that PSM(SG) |= ¬goal) and there is some state v� ∈ V
with v� ∈ E(v) such that in all games SG−(u,u�),aj = �V,E−(u,u�),aj , v�,F� that result
from Blocker removing edge (u,u�) from the relation labeled aj, Runner has a
winning strategy.

All such games have n edges, so by inductive hypothesis we have

PSM(SG−(u,u�),aj) |= γSafety
n

for every edge (u,u�) ∈ V × V and label aj ∈ Σ such that (u,u�) ∈ Eaj . Now,
each such PSM(SG−(u,u�),aj) is exactly the model that results from removing edge
(u,u�) with label aj from the pointed model

�
�V,E,V�, v�

�
. Then, for all such (u,u�)

and aj, we have �
�V,E,V�−(u,u�),aj , v�

�
|= γSafety

n .

It follows that
�
�V,E,V�, v�

�
|= −�γSafety

n and therefore
�
�V,E,V�, v

�
|= �−�γSafety

n .

Hence,
�
�V,E,V�, v

�
|= ¬goal ∧ (�⊥ ∨�−�γSafety

n ), i.e PSM(SG) |= γSafety
n+1 .
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(⇐)Assume that PSM(SG) |= ¬goal∧(�⊥∨�−�γSafety
n , and recall that PSM(SG)

is given by
�
�V,E,V�, v

�
. Then, v � F and either E(v) = ∅ (and Runner wins SG

immediately) or there is a state v� ∈ E(v) such that
�
�V,E,V�, v�

�
|= −�γSafety

n , i.e.,
�
�V,E,V�−(u,u�),aj , v�

�
|= γSafety

n

for all edges (u,u�) and labels aj ∈ Σwith (u,u�) ∈ Eaj . By inductive hypothesis,
Runner has a winning strategy in each game that corresponds to each pointed
model

�
�V,E,V�−(u,u�),aj , v�

�
, but these games are exactly those that result from

removing any edge from the game �V,E, v,F� after Runner moves from v to v�.
Hence, Runner has a winning strategy in �V,E, v,F�, the game that corresponds
to the pointed model PSM(SG), as required. �

Cooperative Sabotage Game (SGCoop) Finally, for SGCoop, the corresponding
formula is defined as

γCoop
0 := goal, γCoop

n+1 := goal ∨�−�γCoop
n .

Theorem 4.21 Blocker and Runner have a joint winning strategy in the SGCoop

SG = �V,E, v,F� if and only if PSM(SG) |= γCoop
n , where n is the number of edges of

SG.

Proof. As argued in the proof of Theorem 4.17, Runner and Blocker have a joint
winning strategy if and only if there is a path from v to an element of F. The
theorem follows by observing that γCoop

n expresses the existence of such path,
keeping in mind that Blocker can remove edges used by Runner. �

The above results are summarized in Table 4.7.

Game Winning Condition in SML Winner

SGReach γReach
0 := goal, γReach

n+1 := goal ∨�−�γReach
n Runner

SGSafety γSafety
0 := ¬goal ∧ �⊥, γSafety

n+1 := ¬goal ∧ (�⊥ ∨�−�γSafety
n ) Runner

SGCoop γCoop
0 := goal, γCoop

n+1 := goal ∨�−�γCoop
n Both

Table 4.7: Winning Conditions for SG in SML

Thus, the existence of winning strategies for all three winning conditions
can be expressed in SML. After establishing a relationship between SML and
Sabotage Games, let us briefly come back to the learning theoretical interpre-
tation of Sabotage Games.
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Learning theoretical interpretation of the results. The existence of a winning
strategy in a Sabotage Game with learning interpretation corresponds to the
existence of a strategy for Learner, Teacher or both (depending on the variation
of the game) to ensure that the learner reaches the learning goal for the learner,
or the teacher, or both, depending on the winning condition. The complexity
results for Sabotage Games thus give us the complexity of PSPACE of deciding
whether a there is a strategy (for Learner or Teacher, depending on whether we
have a reachability or safety winning condition) that guarantees that Learner
reaches the learning goal in the non-cooperative case, and NL in the cooperative
case.

What does the undecidability of the satisfiability problem of SML mean with
the learning interpretation? As formulas of SML express the abilities of Teacher
and Learner regarding Learner’s abilities to reach a state with certain properties
(e.g. the state being the learning goal), this means that there are specifications
about the learning and teaching abilities of Learner and Teacher, respectively
such that it cannot be decided whether this is a consistent specification, i.e., we
can design a learning scenario according to the specification. Concluding the
learning theoretical interpretation of the complexity results, we can say that
the analysis of a learning scenario with respect to the learning and teaching
abilities of Learner and Teacher, respectively can be done in PSPACE and in
the cooperative case it can be done in NL. Giving a procedure for designing a
scenario from given specifications is in general impossible.

In this chapter, up to now we have considered different Sabotage Games
that differed only in the winning positions, while the available moves for the
players were exactly the same. Next, we will consider a variation in which
Blocker has additional moves to choose from.

4.3 Allowing breaks

As mentioned before, the players’ moves are asymmetric: Runner moves locally
(moving to a vertex accessible from the current one) while Blocker moves globally
(removing any edge from the graph, and thereby manipulating the space in
which Runner is moving). Intuitively, both in the case that Blocker wants
to stop Runner from reaching F and in the case that she tries to force him
to reach F, it is not always necessary for her to react to a move of Runner
immediately. This leads us to a variation of aSG in which Runner’s move does
not in principle need to be followed by Blocker’s move; i.e., Blocker has the
possibility of skipping a move.

Definition 4.22 A Sabotage Game without strict alternation (for Blocker) is a tuple
SG∗ = �V,E, v0,F�. Moves of Runner are as in SG and, once he has chosen a
vertex v�, Blocker can choose between removing an edge, in which case the next
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Position Player Admissible moves

1. �0,E, v� Runner
�
�1,E,u�� | (u,u�) ∈ Eai for some ai ∈ Σ

�

2. �1,E,u�� Blocker
�
�0,E−(v,v�),aj ,u�� | (v, v�) ∈ Eaj for some aj ∈ Σ

�
∪
�
�0,E,u��

�

Table 4.8: A round in the Labeled Sabotage Game without strict alternation

game is given as in SG, and doing nothing, in which case the game continues
as �V,E, v�,F�; Table 4.8 shows a round in this game. Again, there are three
versions with different winning conditions, now called SG∗Reach, SG∗Safety and
SG∗Coop. �

After defining the class of games SG∗, the natural question that arises
is how the winning abilities of the players change from SG to SG∗, since
in the latter Blocker can choose between removing an edge or doing noth-
ing. In the rest of this section, we show that for all three winning conditions
(SG∗Reach,SG∗Safety,SG∗Coop), the winning abilities of the players remain the same
as in the case in which players move in strict alternation. This is surprising in
the case of SGSafety, since we might expect that with the possibility of skipping
a move Blocker would not be forced to remove an edge that leads to the goal.

We start with the reachability game SG∗Reach. Note that even though in this
new setting matches can be infinite, in fact if Runner can win the game, he can
do so in a finite number of rounds. We now give a lemma stating that if Runner
can win some SGReach in some number of rounds, then he can do so also if the
underlying multi-graph has additional edges.

Definition 4.23 (Supergraph of a directed labeled multi-graph) Let
Σ = {a1, . . . , am} be a finite set of labels. For directed labeled multi-graphs,
H = (V,E) and H � = (V�,E�), we say that H � is a supergraph of H if V ⊆ V�
and Eai ⊆ E�ai for all labels ai ∈ Σ. �

Lemma 4.24 If Runner has a strategy for winning the SGReach = �V,E, v,F� in at
most n rounds, then he can also win any SGReach = �V,E�, v,F� in at most n rounds,
where (V,E�) is a supergraph of (V,E).

Proof. The proof is by induction on the number of rounds n. In the inductive
step, for the case that Blocker removes an edge which was not in the original
multi-graph, note that the resulting graph is a supergraph of the original one.
Then we can use the inductive hypothesis. �
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Theorem 4.25 Consider the SG = �V,E, v,F� with (V,E) a directed labeled multi-
graph, v a vertex and F a subset of vertices. Runner has a winning strategy in the
corresponding SGReach iff he has a wining strategy in the corresponding SG∗Reach.

Proof. From left to right, we show by induction on n that Runner can win
the SGReach in at most n rounds, then he can also win the SG∗Reach in at most n
rounds. In the inductive step, in the case that Blocker responds by not removing
any edge, we first use the previous lemma and can then apply the inductive
hypothesis.

The direction from right to left is immediate: if Runner has a winning
strategy for SG∗Reach, then he can also win the corresponding SGReach by using
the same strategy. �

The case of Runner trying to avoid reaching F, i.e., the game SG∗Safety, is
more interesting. One might expect that the additional possibility of skipping
a move gives more power to Blocker, since she could avoid removals that
would have made the goal unreachable from the current vertex. However, we
can show that this is not the case. First we state two lemmas. The first one
says that if from Runner’s current position there is a path to F and no path to a
vertex from which there is no path to F, then Blocker can win. The idea is that
wherever Runner moves, he will stay on a path to F, so Blocker can make sure
that Runner will eventually reach F.

Lemma 4.26 Consider the SG∗Safety = �V,E, v,F�. If there is a path from v to a vertex
in F and there is no path from v to a vertex from where there is no path to F then Blocker
has a winning strategy.

Proof. Suppose that all vertices reachable from v are on paths to F. Then even if
Blocker refrains from removing any edge, Runner will be on a path to F. Now,
either the path to F does not include a loop or it does. If it does not then Blocker
can simply wait until Runner is at F. If it does, Blocker can remove the edges
that lead to the loops in such a way that F is still reachable from any vertex. �

The next lemma says that if Blocker can force Runner to reach F, then she
can do so as well on a graph that is the same as the original one except that an
edge is removed which is not on a path to F.

Lemma 4.27 For all SG∗Safety = �V,E, v,F�, if Blocker has a winning strategy and
there is an edge (u,u�) ∈ Ea for some a ∈ Σ such that no path from v to a vertex in F
uses (u,u�), then Blocker also has a winning strategy in �V,E−(u,u�),a, v,F�.
Proof. If u is not reachable from v, it is easy to see that the claim holds. Assume
that u is reachable from v. Blocker’s winning strategy should prevent Runner
from moving from u to u� (otherwise Runner wins). Hence, Blocker can also
win if (u,u�) is not there. �
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Using the two previous lemmas, we now show that if Blocker can win SG∗Safety,
then she can also win by not skipping any moves.

Theorem 4.28 Blocker has a winning strategy in the SG∗Safety = �V,E, v,F�, then she
also has a winning strategy in which she removes an edge in each round.

Proof. The proof proceeds by induction on the number of edges n =
�

a∈Σ |Ea|.
The base case is straightforward. For the inductive case, assume that Blocker

has a winning strategy in SG∗Safety = �V,E, v,F�with
�

a∈Σ |Ea| = n + 1.
If v ∈ F we are done. Otherwise, since Blocker can win, there is some v� ∈ V

such that (v, v�) ∈ Ea for some a ∈ Σ and for all such v� we have:

1. there is a path from v� to F and

2. (a) Blocker can win �V,E, v�,F�, or
(b) there are (u,u�) ∈ V × V and a ∈ Σ such that (u,u�) ∈ Ea and Blocker

can win �V,E−(u,u�),a, v�,F�.
If 2b holds, since

�
a∈Σ |E�a| = n, we are done: we use the inductive hypothesis

to conclude that Blocker has a winning strategy in which she removes an edge
in each round (in particular, her first choice is to remove (v, v�) from Ea. Let us
show that 2b holds.

If there is some (u,u�) ∈ V × V such that (u,u�) ∈ Ea for some a ∈ Σ and
this edge is not part of any path from v� to F then by Lemma 4.27, Blocker can
remove this edge and 2b holds, so we are done.

If all edges in (V,E) belong to a path from v� to F, from 1, there are two cases:
either there is only one, or there is more than one path from v� to F.

In the first case (only one path), the edge (v, v�) can be chosen since it cannot
be part of the unique path from v� to F. Assume now that there is more than
one path from v� to F. Let p = (w1, . . . ,wg) with v� = w1 be the/a shortest path
from v� to a wg ∈ F. This path cannot contain any loops. Then, from this path
take wi such that i is the smallest index for which it holds that from wi there is
a path (wi,w�i+1, . . . ,w

�
g) to a w�g ∈ F that is at least as long as the path following

p from wi (i.e., (wi,wi+1, . . . ,wg)).
Intuitively, when following path p from v� to F, wi is the first point at which

Runner can deviate from p in order to take another path to F (recall that we
consider the case where every vertex in the graph is part of a path from v�
to a F-state). Now it is possible for Blocker to choose ((wi,w�i+1), a) such that
(wi,w�i+1) ∈ Ea. Then, after removing (wi,w�i+1) from Ea we are in the game
�V,E−(wi,w�i+1),a, v�,F�. Note that due to the way we chose the edge to be removed,
in the new graph it still holds that from v there is no path to a vertex from which
a F-state is not reachable (this holds because from wi F is still reachable). Then
by Lemma 4.26, Blocker can win �V,E−(wi,w�i+1),a, v,F�, which then implies 2b.

Hence, we conclude that 2b is the case and thus using the inductive hypoth-
esis, Blocker can win �V,E, v,F� also by removing an edge in every round. �
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Corollary 4.29 Blocker has a SG∗Safety winning strategy in �V,E, v,F� iff she has a
SGSafety winning strategy. �

As the reader might have noticed, the result that if Blocker can win aSG∗Safety

then she can also win the corresponding SGSafety relies on the fact that Runner
is the first to move. For instance, in a graph with two vertices, the initial v
and a single goal state vg, and one edge leading from the first to the second, if
Blocker was to move first, she can win the SG∗Safety only by skipping the move.

Finally, let us consider the cooperative case.

Theorem 4.30 If Runner and Blocker have a joint SG∗Coop-winning strategy in
�V,E, v,F� then they have a joint SGCoop-winning strategy

Proof. If the players have a joint SG∗Coop-winning strategy, then there is an
acyclic path from v to F, which Runner can follow. In each round, Blocker can
remove the just used edge. �

Let us briefly conclude this section. We have shown that in SG, allowing
Blocker to skip moves does not change the winning abilities of the players.
Using these results, both the complexity and definability results for all three
winning conditions from the previous section also apply to the games in which
Blocker can skip a move.

Allowing Runner to take a break. The reader might wonder why we did not
consider the variation in which Runner has the possibility of skipping a move.
With reachability winning condition, it is easy to see that Runner would not
want to use the option of skipping a move as this will just have the effect of the
graph getting smaller and thus restricting his way to the goal states. Similarly,
in the cooperative case Runner skipping a move does not have any advantages
for the team of Runner and Blocker. In the game with safety winning condition
on the other hand, giving Runner the possibility of skipping moves results in
a trivial game which Runner can win if and only if he starts at a vertex which
is not in F. He can do so by simply skipping all the moves and waiting until
eventually all goal vertices have become unreachable.

4.4 Conclusions and Further Questions

We will now summarize the main results of this chapter and then give conclu-
sions and further questions.
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4.4.1 Summary

This chapter has analyzed the complexity of deciding if a player has a winning
strategy in a game on a graph in which players have asymmetric kinds of
moves.

We considered three different winning conditions for Sabotage Games and
showed that the complexity of the game with safety winning condition is the
same as the complexity of the reachability version (PSPACE-complete).

We have discussed different options of getting upper bounds on the com-
plexity for the safety game, thus clarifying different methods used in the liter-
ature.

The analysis in this chapter has shown that Sabotage Games are also
PSPACE-complete when Runner has a safety objective and wants to avoid
reaching certain states. The upper bound was obtained by giving a reduction
from the standard Sabotage Games, thus clarifying the relationship between
the two games, which is interesting as roles of the players are asymmetric with
Runner moving locally and Blocker moving globally.

Moreover, we have shown that cooperation makes the Sabotage Game much
easier (NL-complete). We also considered further variations of the game that
allow Blocker to take a break and skip a move. We showed that this additional
freedom for Blocker does not have any influence on the strategic abilities of the
players and neither on the complexity of the games. We have not considered a
version in which Runner can skip some moves, as this will not help him when
he has a reachability objective and in the case of the safety game as we have
defined it here, this variation will lead to a trivial game as Runner either looses
immediately or does not have any incentive to move.

Throughout this chapter, we analyzed the complexity of deciding whether a
player has the ability to win, no matter what the other player does. Our results
of Section 4.2.2 connect this to the complexity analysis of the previous chapters
in which we were concerned with the complexity of logics for reasoning about
strategic ability of agents. We have seen that the existence of winning strategies
in Sabotage Games can be expressed in Sabotage Modal Logic. Thus, deciding
if a player has a winning strategy can be done by using a model checking
algorithm to check if the corresponding formula is true in the model that
corresponds to the game.

4.4.2 Conclusions

Let us come back to our research question.

Research Question 2 What is the role of cooperation vs. competition in
the complexity of interaction?
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• Does analyzing an interactive situation in general become easier if
the participants cooperate?

Our main conclusions towards answering this question are the following.

1. Based on the results in this chapter, we can conclude that in the context of
Sabotage Games, cooperation has the effect of making it easier to decide
if a winning strategy exists.

2. Even though the precise connection between the two different non-
cooperative versions (with safety and reachability objective) does not
seem straightforward, they are equivalent with respect to the complexity
of deciding who can win.

Complexity of logical theories of interaction vs. complexity of interaction.
This chapter was motivated by the need to study problems which are more
interaction-specific than model checking and satisfiability of logics for inter-
action, as studied in the previous two chapters. In the light of this, we note
that for Sabotage Modal Logic, model checking formulas characterizing the
winning strategies in non-cooperative safety and reachability games is among
the hardest tasks in model checking Sabotage Modal Logic.

Learning theoretical interpretation of our results. Interpreting the results of
this chapter in terms of formal learning theory, with Runner being Learner and
Blocker being Teacher, we conclude the following

1. Deciding if in the non-cooperative case learning or teaching can be suc-
cessful is PSPACE-complete.

2. Deciding if cooperative learning and teaching can be successful is easier
(NL-complete).

3. It does not matter for successful learning and teaching if Teacher does not
give feedback after each step of Learner.

4. On a more general level, considering Sabotage Modal Logic as a logic
for reasoning about Learner-Teacher interaction we conclude that the
analysis of learning scenarios with respect to the abilities of the two
participants is PSPACE-complete. The problem of deciding whether it is
possible to design a scenario according to specifications given in Sabotage
Modal Logic however is undecidable.

In the other direction, the learning theoretical perspective can also lead us
to new analyses of the complexity of Sabotage Games, inspired from learning
theory (Gierasimczuk and de Jongh 2010).
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4.4.3 Further Questions

The work in this chapter gives rise to some interesting new directions for further
research.

Let us start with some technical questions regarding the variations on Sab-
otage Games discussed in this chapter.

Technical questions about SGSafety and SGReach.

• Is SGSafety also PSPACE-hard on undirected graphs?

In our proof of Theorem 4.15 we used directed multi-graphs for showing
hardness. In fact, the directedness is crucial in the reduction that we
give. It remains to be investigated whether a similar reduction can also
be constructed for undirected multi-graphs.

• How can SGSafety be transformed into corresponding SGReach?

In Section 4.2.1, we have discussed some ideas for transforming reach-
ability games into safety games. Such a transformation still has to be
worked out and would have the great conceptual benefit of clarifying the
relationship between the two games.

Variations of Sabotage Modal Logic. The analysis of Sabotage Games given
in this chapter gives rise to some variations of Sabotage Modal Logic which are
motivated by game variations.

• From Sabotage Modal Logic to “Pacman’s Logic”.

A key feature of Sabotage Games is the asymmetry between the play-
ers as Runner acts locally while Blocker acts globally. Eliminating this
asymmetry by making Blocker’s moves also local, then leads to a game
closely related to Pacman (Heckel 2006), in which Blocker moves along
the edges and removes them by moving along them. Based on this game
variation, we can construct a variation of Sabotage Modal Logic in which
the sabotage modalities act locally. We will briefly come back to this in
the last chapter.

• From skipping a move to iterating moves.

While we have discussed the variation in which Blocker is allowed to
skip a move, there would also be the possibility to allow players to make
a sequence of moves. With respect to the corresponding logic, this would
then lead to the addition of something like a Kleene star operator.
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What is the complexity involved in actually playing Sabotage Games?
While the analysis given in this chapter does focus on more specific prob-
lems in interaction than the two previous chapters, the question as to what
we can conclude about the complexity of actually playing Sabotage Games is
mostly left open. However, we can draw some conclusions as to the complexity
of evaluating a game configuration with respect to ones own abilities to win: In
general, this is intractable (as it is PSPACE-complete) both for the reachability
game and for the safety game.

For getting better grip on the complexity involved in actually playing the
game, concrete board game implementations of Sabotage Games should be
considered; or taking this even a step further also a pervasive game version can
be constructed and investigated as has been done e.g. for Pacman (Magerkurth
et al. 2005).

Let us briefly sum up what we have done so far in our quest for getting
a better grip on the complexity of interaction. In Part I we started with log-
ical frameworks for social action and determined the complexity of some of
such theories. Our perspective on interactive processes was quite abstract and
external. The concepts that we considered in that context included coalitional
power, preferences and actions. In the current chapter we considered a concrete
type of game, but still take an external perspective from which we reason about
the abilities of players to win. For being able to draw some conclusions not
only about the difficulties of reasoning about interaction but also of interacting
itself, we have to switch perspective and zoom in more into the reasoning of
agents. This leads us to the concept of information.

From strategic ability to information. The concept of information was only
implicitly present in the previous two chapters and in the current one. From the
way the strategic abilities were distributed among the agents in modal logics
for cooperation and the way Sabotage Games are defined, we can draw some
conclusions about the uncertainty that agents have: in Sabotage Games for
instance, the players have perfect information about what has happened so far
in the game and also how the graph looks like; in CLA+P or ABC on the other
hand, at each state we can think of agents making their choices simultaneously,
thus not knowing what the others’ choices are.

We will now move on to an explicit investigation of the fine-structure of
agents’ information and concrete tasks that arise when analyzing information
structures.

With respect to our analysis of complexity in interaction, we will now inves-
tigate which parameters make reasoning about agents’ information difficult.





Chapter 5

Exploring the Tractability Border in
Epistemic Tasks

The different complexity analyses given in the previous chapters have in com-
mon that they investigate the complexity from an external perspective, focusing
on how difficult it is to describe and reason about the abilities of agents. We
will now zoom in more into the actual tasks involved in epistemic reasoning in
multi-agent scenarios.

So far, we have been concerned with the preferences and abilities of agents
to perform actions or to achieve certain outcomes. There is an important
aspect of interaction which we have not considered explicitly yet, which is that
of information. This concept was only implicitly present in the frameworks
previously discussed.

Information plays a central role in interactions. Agents have information
about the actual situation they are in, information about the information of
other agents etc. For strategic reasoning in concrete games, the level of the
higher-order reasoning about information required can also influence the types
of strategies employed (cf. Raijmakers et al. (2011)).

In this chapter, we analyze the complexity of interaction in terms of the com-
plexity of reasoning about information that agents have. To be more precise,
we investigate the complexity of comparing and manipulating the information
of agents. We do this within the semantic structures of (epistemic) modal log-
ics, i.e., structures as the Kripke model constructed in the example of the card
playing train passengers (Example 1.5). In this setting, we will address the
following research question.

Research Question 3 Which parameters can make interaction difficult?

• How does the complexity of an interactive situation change when
more participants enter the interaction or when we drop some sim-
plifying assumptions on the participants themselves?

131
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5.1 From the Complexity of Epistemic Logics to the
Complexity of Epistemic Tasks

Epistemic modal logics and their extensions are concerned with global and
abstract problems in reasoning about information. They are designed to model
a wide range of epistemic scenarios (cf. Fagin et al. (1995); Baltag and Moss
(2004)). As logics have to be quite complex in order to be able to express various
scenarios and problems in epistemic reasoning, it is not surprising that there
are many intractability and even undecidability results in the literature (see e.g.
Halpern and Vardi (1989) and van Benthem and Pacuit (2006) for a survey).
Consequently, the issue of trade-off between expressivity and complexity plays
a central role in the field of epistemic modal logics.

The existing complexity results of modal logics provide us with an overview
of the difficulty of epistemic reasoning in modal logic frameworks from an
abstract global perspective. In this chapter, we zoom in into epistemic reasoning
and take a more agent-oriented perspective. Our main aim is to initiate the
mapping of the tractability border among epistemic tasks rather than epistemic
logics. As a result, we can identify a theoretical threshold in the difficulty of
reasoning about information, similarly to how this has been done in the context
of reasoning with quantifiers (cf. Pratt-Hartmann and Moss (2009); Szymanik
(2010)). In order to do this, we shift our perspective: Instead of investigating
the complexity of a given logic that can be used to describe certain tasks in
epistemic reasoning, we turn towards a complexity study of the concrete tasks
themselves, determining what computational resources are needed in order to
perform the required reasoning.

At this point, we would like to clarify that we do not propose a new formal
model for epistemic reasoning from an internal agent-oriented perspective. For
two approaches to modeling epistemic scenarios such as the muddy children
puzzle in a more concise way than standard epistemic logic models, we refer the
reader to Gierasimczuk and Szymanik (2011) and Wang (2010). For a version
of epistemic logic in which the modeler is one of the agents, we refer to Aucher
(2010). In this chapter, we work with models from epistemic modal logic and
investigate the complexity of various interesting specific problems that arise
when reasoning about these semantic structures.

Focusing on specific problems, the complexity may be much lower since
concrete problems involved in the study of multi-agent interaction are rarely as
general as e.g. satisfiability. In most cases, checking whether a given property
is satisfied in a given (minimal) epistemic scenario is sufficient. This may
sound as if we study the model checking complexity of different properties in
epistemic logic. Indeed, some of the simpler tasks and problems we consider
boil down to model checking (data complexity) epistemic formulas. However,
we want to point out that we study the problems in purely semantic terms and
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our complexity results are thus independent of how succinctly, if at all, the
properties could be expressed in an (extended) epistemic modal logic. This is
thus different from the complexity results for model-checking that we gave in
Chapter 3, where we considered the combined complexity, taking both models
and the formula that we want to check as input of the decision problem. The
problems we consider in this chapter take epistemic models and sometimes
also additional parameters as input and ask whether the models satisfy certain
properties or whether the models are in a certain relation.

Many of the concrete problems we study turn out to be tractable. Still,
we will see that even in this perspective there are some intractable problems.
We believe that this feasibility border in epistemic tasks is an interesting new
topic for a formal study, which also has the potential of leading to an empirical
assessment of the cognitive plausibility of epistemic logic frameworks. The
cognitive plausibility of the tractability that our study aims to identify can later
be tested for its correlation with the difficulties faced by human agents solving
such tasks (cf. Verbrugge (2009); Szymanik and Zajenkowski (2010)).

So in a sense, we aim to initiate a search for an appropriate perspective and
complexity measures that describe in plausible ways the cognitive difficulties
agents face while interacting. Certain experimental results in the economics
literature explore similar directions for specific game settings (Feltovich 2000;
Weber 2001).

In this chapter we investigate the computational complexity of various
decision problems that are relevant for interactive reasoning in epistemic modal
logic frameworks. In particular, we explore the complexity of comparing and
manipulating information structures possessed by different agents.

With respect to the comparison of information structures we are interested
in whether agents have similar information (about each other) or whether one
of them has more information.

Information similarity and symmetry

• Is one agent’s information strictly less refined than another agent’s
information?

• Do two agents have the same knowledge/belief about each other’s
knowledge/belief?

In a situation with diverse agents that have different information, the ques-
tion arises as to whether it is possible that some of the agents can be provided
with information so that afterward the agents have similar information.

Information manipulation

• Given two agents, is it possible to give some information to one of
them such that as a result
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– both agents have similar information structures? (cf. van Dit-
marsch and French (2009))

– one of them has more refined information than the other?

Determining the complexity of the above questions will then help to analyze
how the complexity of various reasoning tasks is influenced by

• the choice of similarity notion taken for similarity of information struc-
tures,

• the choice of information structures,

• the number of agents involved.

5.1.1 Preliminaries
We will briefly give some preliminaries of (epistemic) modal logic. We use
relational structures from epistemic logic to model information (cf. Blackburn
et al. (2001); Fagin et al. (1995)). Kripke models can compactly represent the
information agents have about the world and about the information possessed
by the other agents. It is frequently assumed that information structures are
partition-based (Aumann 1999; Fagin et al. 1995; Osborne and Rubinstein 1994):

Definition 5.1 (Epistemic Models) An epistemic model is a (multi-agent) Kripke
model such that for all i ∈ N, Ri is an equivalence relation. (We usually write ∼i
instead of Ri). �

The associated modal logic is S5, which adds the following axioms to the
basic system KN.

• T-axiom: �ip→ p, corresponding to reflexivity

(veridicality: what is known is true),

• 4-axiom: �ip→ �i�ip, corresponding to transitivity

(positive introspection),

• S5-axiom: �i�ip→ p, corresponding to symmetry

(negative introspection).

Instead of �i, sometimes Ki is used, as �iϕ is supposed to mean that i knows that
ϕ.

In this chapter we will only work with the semantic structures of epistemic
modal logic and not with the logics itself. We refer the reader interested in
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epistemic modal logic to the literature (van Ditmarsch et al. 2007; van Benthem
2010, 2011).

Intuitively, with an epistemic interpretation, an accessibility relation Ri in a
Kripke model encodes i’s uncertainty: if wRiv, then if the actual world was w
then i would consider it possible that the actual world is v. We write Ki[w] :=
{v ∈ W | wRiv} to denote i’s information set at w. For epistemic models for one
agent, we sometimes also write [w] to denote the equivalence class of w under
the relation ∼, i.e., [w] = {w� ∈ W | w ∼ w�}. For a group of agents G we write
RG = ∪i∈GRi, and R∗G[w] := {v ∈ W | wR∗Gv}. For any non-empty set G ⊆ N, we
write R∗G for the reflexive transitive closure of

�
i∈G Ri.

The notion of horizon generalizes that of an information set:

Definition 5.2 (Horizon) The horizon of i at (M,w) (notation: (M,w)i) is the
submodel generated byKi[w]. �

The domain of (M,w)i thus contains all the states that can be reached from w
by first doing one step along the relation of agent i and then doing any number
of steps along the relations of any agents.

This chapter will not use syntactic notions. In terms of intuition, the im-
portant definition is that of knowledge Ki: at w, agent i knows that ϕ iff it is
the case that ϕ is true in all states that i considers possible at w. In equivalent
semantic terms: at w, i knows that some event E ⊆ W is the case iff Ki[w] ⊆ E.
E is common knowledge in a group G at w iff R∗G[w] ⊆ E.

In the technical parts of this chapter, we use complexity results from graph
theory (see e.g. Garey and Johnson (1990)). Here, we use the connection be-
tween Kripke models and graphs: graphs are essentially Kripke models with-
out valuations, i.e., frames (Blackburn et al. 2001).

For graphs, the notion of induced subgraph is just like that of submodel (Def-
inition 1.11) without the condition for the valuations. The notion of subgraph is
weaker than that of an induced subgraph as it allows that R�i ⊂ Ri ∩W� ×W�.

5.2 Complexity of comparing and manipulating in-
formation

In this section, we give the results we obtained when studying the complexity
of different epistemic reasoning tasks in the semantic structures of modal logics.

The tasks we investigate deal with three different aspects.

Information similarity (Section 5.2.1).
Are the information structures of two agents similar?

Information symmetry (Section 5.2.2).
Do two agents have the same (similar) information about each other?
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Information manipulation (Section 5.2.3).

Can we manipulate the information of one agent such that as a result he
knows at least as much as another agent?

5.2.1 Information similarity

The first natural question we would like to address is whether an agent in a
given situation has similar information to the one possessed by some other
agent (in a possibly different situation). One very strict way to understand
such similarity is through the use of isomorphism.

For the general problem of checking whether two Kripke models are iso-
morphic, we can give the following complexity bounds, in the sense that the
problem is equivalent to the graph isomorphism problem. The graph isomor-
phism problem is neither known to be NP-complete nor to be in P (see e.g.
Garey and Johnson (1990)) and the set of problems with a polynomial-time
reduction to the graph isomorphism problem is called GI.

Decision Problem 5.3 (Kripke model isomorphism)
Input: Pointed Kripke models (M1,w1), (M2,w2).
Question: Are (M1,w1) and (M2,w2) isomorphic, i.e., is it the case that (M1,w1) �
(M2,w2)? �

Fact 5.4 Kripke model isomorphism is GI-complete.

Proof. Kripke model isomorphism is equivalent to the variation of graph iso-
morphism with labeled vertices, which is polynomially equivalent to graph
isomorphism (see e.g. Hoffmann (1982)), and thus GI-complete.

However, isomorphism is arguably a too restrictive notion of similarity.
Bisimilarity is a weaker concept of similarity. As we take a modal logic per-
spective in this chapter and want to analyze the complexity of epistemic tasks
on the semantic structures of epistemic modal logic, bisimilarity is a very nat-
ural choice of similarity.

Here the question arises as to whether working with S5 models – a common
assumption in the epistemic logic and interactive epistemology literature –
rather than arbitrary Kripke structures has an influence on the complexity of
the task.

Decision Problem 5.5 (Epistemic model bisimilarity)
Input: Two pointed multi-agent epistemic S5 models (M1,w1), (M2,w2).
Question: Are the two models bisimilar, i.e., (M1,w1)↔(M2,w2)? �
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Balcázar et al. (1992) have shown that deciding bisimilarity is P-complete for
finite labeled transition systems. As epistemic models are just a special kind of
labeled transition systems, we can use an algorithm that solves bisimilarity for
labeled transition systems also for epistemic models. It follows that epistemic
model bisimilarity is also in P.

Fact 5.6 Multi-agent epistemic S5 model bisimilarity can be done in polynomial time
with respect to the size of the input (|M1| + |M2|). �

Thus, multi-agent epistemic S5 model bisimilarity is in P. Now, of course
the question arises if it is also P-hard.

Proposition 5.7 Multi-agent epistemic S5 model bisimilarity is P-complete.

Proof. P membership follows immediately from Fact 5.6. For P-hardness,
we can adapt the hardness proof of Balcázar et al. (1992). In the reduction
from monotone alternating circuits, the labeled transition systems that are con-
structed are irreflexive. We can transform them into corresponding S5 models
for two agents using the method also used in Halpern and Moses (1992) and
replace every edge w → v by w ∼1 w� ∼2 v, keeping the valuation of w and v
the same as before and making the valuation of w� the same as that of w. Addi-
tionally, reflexive loops have to be added. Bisimilarity of two irreflexive finite
structures is invariant under this transformation. Moreover, note that for the
replacement of the edges, we only need constant memory space. P-hardness
follows. �

To summarize, while deciding Kripke model isomorphism lies on the
tractability border, deciding whether two Kripke models are bisimilar is among
the hardest problems that are known to be in P. For S5 epistemic models with
at least two agents, we get the same results.

5.2.2 Information symmetry: knowing what others know

The preceding notions of similarity are very strong as they are about the sim-
ilarity of whole information structures. In the context of analyzing epistemic
interactions between agents, weaker notions of similarity are of interest as often
already the similarity of some relevant parts of information are sufficient for
drawing some conclusions. In general, the information that agents have about
each other’s information state plays a crucial role. We will now analyze the
problem of deciding whether two agents’ views about the interactive epistemic
structure, and in particular about the knowledge of other agents, are equiva-
lent. A first reading is simply to fix some fact E ⊆ W and ask whether E is
common knowledge in a group G. Clearly this problem is tractable.
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Fact 5.8 Given a pointed multi-agent epistemic model (M,w), some E ⊆ Dom(M)
and a subset of agents G ⊆ N, deciding whether E is common knowledge in the group
G at w can be done in polynomial time.

Proof. To decide if E is common knowledge among the agents in G, we can
use a reachability algorithm for checking if any of the states which are not in E
(i.e., any state in Dom(M) \ E) is reachable from w by a path along the relation
∪ j∈G ∼ j. If this is the case, then the answer is no, otherwise the answer is yes as
then ∼∗G [w] ⊆ E. �

If some fact is common knowledge between two agents, the information of
the two agents about this fact can be seen as symmetric, in the sense that both
agents have the same information about the fact and about the information
they have about the fact. More generally, instead of fixing some specific fact of
interest, an interesting question is whether an epistemic situation is symmetric
with respect to two given agents, say Ann and Bob. In other words, is the
interactive informational structure from Ann’s perspective similar to how it is
from Bob’s perspective? We first introduce some notation that we will use for
representing situations in which the information of two agents is exchanged,
in the sense that each of the agents gets exactly the information that the other
one had before.

Definition 5.9 For a Kripke model M = (W, (Ri)i∈N,V), with j, k ∈ N, we write
M[ j/k] to be the model (W, (R�i)i∈N,V) for R�i = Ri for i � { j, k}, R�j = Rk and
R�k = Rj. �

So, in the modelM[ j/k] agent j gets the accessibility relation of k inM and
vice versa.

The intuition is that in many multi-agent scenarios it can be interesting to
determine if the situation is symmetric w.r.t. two given agents in the sense that
those two agents have similar information about facts, other agents and also
about each other. As a typical such situation consider a two-player card game.
Here, it can be crucial for the strategic abilities of the players whether they both
know equally less about each other’s cards and whether they know the same
about each other’s information. From a modeling perspective, determining if
the information of two agents is interchangeable can also be crucial if we want
to find a succinct representation of the situation (cf. Chapter 7 of Wang (2010)),
as in some situations only explicitly representing one of the agents might be
sufficient.

To formalize this property of information symmetry, we introduce the notion
of flipped bisimulation for a pair of agents. The main difference w.r.t. a standard
bisimulation is that for each step along the accessibility relation for one agent
in one model, there has to be a corresponding step along the relation of the
other agent in the other model.
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Definition 5.10 We say that two pointed multi-agent epistemic models (M,w)
and (M�,w�) (with set of agents N) are flipped bisimilar for agents i, j ∈ N,
(M,w)↔ f

(i j)(M�,w�), iff (M,w)↔(M�[i/ j],w�).

So, two models are flipped bisimilar for two agents if after swapping the
accessibility relations of the two agents in one of the models, the resulting model
is bisimilar to the other model. To help to get an intuition of this notion, we list
two facts about flipped bisimilarity that follow directly from its definition.

Fact 5.11 For any pointed multi-agent Kripke models (M,w), (M�,w�) with set of
agents N and agents i, j ∈ N the following hold.

• (M,w)↔(ii)
f (M�,w�) iff (M,w)↔(M�,w�),

• (M,w)↔(i j)
f (M�,w�) iff (M,w)↔( ji)

f (M�,w�).

Moreover, in general we can have that (M,w)�(i j)
f (M,w), i.e., the relation of flipped

bisimilarity is not reflexive, and thus not an equivalence relation. �

Thus, flipped bisimilarity for the same agent is equivalent to regular bisim-
ilarity. While the relation of flipped bisimilarity for a pair of agents is not
reflexive, flipped bisimilarity is indeed symmetric with respect to the flipping
of the agents.

Note that it is not the case that for all models (M,w), (M�,w�), (M��,w��) with
set of agents N and agents i, j, k ∈ N, if (M,w)↔(i j)

f (M�,w�)↔( jk)
f (M��,w��), then

(M,w)↔(ik)
f (M��,w��). This is because the performing two consecutive swaps of

agents is in general not equivalent to performing one swap of agents.

In the context of epistemic multi-agent models, the following question
arises: How does flipped bisimilarity relate to knowledge of the individual
agents and common knowledge?

The following is immediate: If on a whole model it holds that everything
that two individual agents know is common knowledge among them, then
every state is flipped bisimilar (for these two agents) to itself. The intuition
here is that if everything that the two individuals know is commonly known
among them, then the two agents have exactly the same information and can
thus be swapped.

Observation 5.12 If for a multi-agent S5 model M = (W, (∼i)i∈N,V), it holds that
∼∗{i, j}⊆∼i ∩ ∼ j for some i, j ∈ N, then for all w ∈W, (M,w)↔ f

(i j)(M,w). �

Does the other direction hold? Locally, even on S5 models, flipped self-
bisimulation is much weaker than the property of individual knowledge be-
ing common knowledge: flipped self-bisimulation does not even imply that
(shared) knowledge of facts is common knowledge:
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Fact 5.13 There exists a multi-agent S5 modelM = (W, (∼i)i∈N,V), such that for some
i, j ∈ N we have that for some w ∈ W it holds that (M,w)↔(i j)

f (M,w), and for some
p ∈ prop we have thatM,w |= Kip andM,w |= Kjp but p is not common knowledge
among i and j at w.

Proof. Consider the modelM = (W, (∼i)i∈N,V), where

• W = {w−2,w−1,w0,w1,w2},

• N = {Ann,Bob},

• ∼Ann is the smallest equivalence relation on W containing {(−2,−1), (0, 1)},
and ∼Bob is the smallest equivalence relation on W containing
{(−1, 0), (1, 2)},

• V(p) = {w−1,w0,w1}.
The following figure representsM. The dashed rectangles are the equiva-

lence classes for Ann and the dotted rectangles those of Bob.

w−2 w−1 w0 w1 w2

p p p

It is easy to check that at state w0 both Ann and Bob know that p: KAnn[w0] =
{w0,w1} ⊆ V(p) and KBob[w0] = {w−1,w0} ⊆ V(p). But p is not common knowl-
edge between Ann and Bob at w0: we have that w0 ∼Ann w1 ∼Bob w2 and
w2 � V(p). Now it remains to show that (M,w0) is Ann,Bob-flipped bisimilar to
itself. We can define a flipped bisimulation as follows Z = {(wn,w−n) | wn ∈W},
i.e., Z = {(w−2,w2), (w−1,w1), (w0,w0), (w1,w−1), (w2,w−2)}. It is easy to check that
Z is indeed a flipped bisimulation for Ann and Bob. �

But required globally of every state, we do have the following converse:
If for two agents we have flipped bisimilarity of every state to itself and the
accessibility relations of the agents are transitive, then every fact that is known
by at least one of the agents is immediately also common knowledge among
the two agents.

Fact 5.14 For every Kripke modelM = (W, (Ri)i∈N,V) with Ri and Rj being transitive
for some i, j ∈ N, it holds that for each w ∈ W we have the following. Whenever the
submodel M� of M generated by {w} is such that for every state w� ∈ Dom(M�) it
holds that (M�,w�)↔(i j)

f (M�,w�), then for any p ∈ prop, if at w at least one of the two
agents i and j knows that p (i.e., V(p) ⊆ Kj[w] or V(p) ⊆ Ki[w]), then p is common
knowledge among i and j at w.
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Proof. Assume that for some modelM = (W, (Ri)i∈N,V) it holds that Ri and Rj
are transitive for some i, j ∈ N. Now, assume that p is not common knowledge
between i and j at w. It follows that we have a finite i, j-path leading to a state
where p is false. Let wRf (1)w1R f (2) . . .R f (n)wn with wn � V(p) and f (k) ∈ {i, j}
for all k ≤ n be a shortest such path. Then, by transitivity of Ri and Rj it has to
be the case that for all k with 1 ≤ k < n, f (k) � f (k + 1). W.l.o.g. assume that the
path is of the form wRiw1Rj . . .Riwn; the other cases are completely analogous.
Now, as all the states in the path wRiw1Rj . . .Riwn are inM�, by assumption for
each wk in the path we have (M�,wk)↔(i j)

f (M�,wk). Then, in particular (M�,w)
is flipped i, j-bisimilar to itself. Then there has to be a path wRjw1

1Riw1
2 . . .Rjw1

n
with w1

n � V(p). Then, we can continue this argument, as also (M�,w1
1) has to be

flipped i, j-bisimilar to itself. Thus, there has to be some path w1
1Rjw2

2Rj . . .R2
nw2

n.
Then, by transitivity of Rj, wRjw2

2. Iterating this procedure, we will finally get
that there is an Rj path from w to a state where p is false. Using the transitivity
of Rj, we then conclude that M,w �|= Kjp.

It remains to show that at w agent i does not know that p neither. By
assumption, wRiw1 and thus (M�,w1) has to be flipped i, j-bisimilar to itself.
Thus, there has to be a path a w1Riw�2Rjw�3 . . .Rjw�n with w�n � V(p) Then, by
transitivity, it follows from wRiw1Riw�2 that wRiw�2. Iterating this procedure, we
get a state which is Ri-accessible from w where p is false. Hence, we conclude
that at w neither i nor j knows that p. This concludes the proof. �

Let us recall the notion of an agent’s horizon (Definition 5.2). It is the
submodel generated by the information set of the agent: the horizon of i at
(M,w) (notation: (M,w)i) is the submodel generated by the setKi[w].

We now analyze the complexity of deciding (flipped) bisimilarity of two
agents’ horizons at the same point in a model. We distinguish between S5
models and the class of all Kripke structures.

Proposition 5.15 For horizon bisimilarity of multi-agent Kripke models we have the
following complexity results

1. For multi-agent S5 models (M,w) with set of agents N,

(a) deciding whether (M,w)i↔(M,w) j is trivial.

(b) deciding whether (M,w)i↔(i j)
f (M,w) j is in P.

2. For multi-agent Kripke models (M,w) with set of agents N,

(a) deciding whether (M,w)i↔(M,w) j is P-complete.

(b) deciding whether (M,w)i↔(i j)
f (M,w) j is P-complete.
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Proof. 1a follows from the fact that if the agents’ accessibility relations are
reflexive then the horizons of the agents are the same.

This is the case because (M,w)i is the submodel generated by Ki[w], i.e.,
the submodel generated by the set of states that i considers possible at w. If at
w, i considers w itself possible, the domain of this submodel will also contain
the domain of the submodel generated by K j[w]. The argument for the other
direction is analogous.

1b follows from the fact that deciding flipped bisimilarity of horizons in
multi-agent S5 is polynomially equivalent to deciding (flipped) bisimilarity of
multi-agent S5 models. Both decision problems of 2a and 2b are polynomially
equivalent to deciding bisimilarity of multi-agent Kripke models because in
general the horizons of two agents at a point in the model can be two completely
disjoint submodels. �

Let us summarize the results we have on the complexity of deciding in-
formation symmetry. Both, deciding whether a fact is commonly known and
deciding horizon flipped bisimilarity in Kripke models are tractable, with the
latter being among the hardest problems known to be tractable. Flipped bisim-
ilarity of horizons remains P-hard even if we consider the horizons of two
agents at the very same point in a model. For partition-based models, how-
ever, deciding bisimilarity of the horizons of two agents at the same point in a
model is trivial, whereas for flipped bisimilarity, this is harder, but still tractable
(in P).

The tasks we considered so far dealt with the comparison of agents’ infor-
mation states in given situations. Here, we were concerned with static aspects of
agents’ information. However, in many interactive situations dynamic aspects
play a central role, as the information of agents can change while the agents
interact. There are even interactive processes where information change can
be the aim of the interaction itself, e.g. interactive deliberation processes. In
such contexts the question arises as to whether it is possible to manipulate the
information state of agents in a particular way.

5.2.3 Can we reshape an agent’s mind into some desired infor-
mational state?

The problem that we investigate in this section is to decide whether new infor-
mational states (satisfying desired properties) can be achieved in certain ways.
One immediate question is whether one can give some information to an agent
(i.e., to restrict the agent’s horizon) such that after the update the horizon is
bisimilar to the horizon of some other agent. Concretely, we would like to know
if there is any type of information that could reshape some agent’s information
in order to fit some desired new informational state or at least be similar to
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it. More precisely, we will consider information that restricts the horizon of
an agent; we do not consider the process of changing an agent’s information
state by introducing more uncertainty. The processes we consider are related
to those modeled by public announcement logic (PAL), an epistemic logic with
formulas of the form [ϕ]ψ saying that after the announcement of ϕ it is the case
that ψ holds. In semantic terms this means that if the current state satisfies ϕ
(i.e., announcing ϕ is a truthful announcement) then after the model has been
restricted to all those states at which ϕ is true, it is the case that ψ holds at the
current state. Deciding whether such a formula [ϕ]ψ holds at a state in a model
(i.e., model checking this formula) thus involves first checking if ϕ holds at the
state and then relativizing the original model to the set of states where ϕ holds
and finally checking if ψ then holds at the current state. In order to put the
complexity results of this section into perspective, note that for PAL it holds
that given a pointed model and a formula, checking if the formula holds in the
model can be done in time polynomial in the length of he formula and the size
of the model (cf. Kooi and van Benthem (2004) for polynomial model checking
results for PAL with relativized common knowledge).

The model checking problem of PAL is about deciding whether getting a
particular piece of information (i.e., the information that ϕ holds) has a certain
effect (i.e., the effect of ψ being the case). In this section, we will investigate
a more general problem which is about whether it is possible to restrict the
model such that a certain effect is achieved. To be more precise, we consider
the task of checking whether there is a submodel that has certain properties.
This means that we determine if it is possible to purposely refine a model in
a certain way. This question is in line with problems addressed by arbitrary
public announcement logic (APAL) and arbitrary event modal logic (Balbiani
et al. 2008a; van Ditmarsch and French 2009)1. Looking at the complexity
results for such logics (see e.g. French and van Ditmarsch (2008) for a proof of
undecidability of SAT of APAL), we can already see that reasoning about the
existence of information whose announcement has a certain effect seems to be
hard. Our analysis will show whether this is also the case for concrete tasks
about deciding whether a given model can be restricted such that it will have
certain properties.

We start with the problem of checking whether there is a submodel of one
model that is bisimilar to another one. On graphs, this is related to the problem
of deciding if one graph contains a subgraph bisimilar to another graph. Note
that in the problem referred to in the literature as “subgraph bisimulation”
(Dovier and Piazza 2003), the subgraph can be any graph whose vertices are a
subset of the vertices of the original graph, and the edges can be any subset of
the edges of the original graph restricted to the subset of vertices. To be more

1Note that in the current work, we focus on the semantic structures only and do not require
that the submodel can be characterized by some formula in a certain epistemic modal language.
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specific, the problem investigated in Dovier and Piazza (2003) is the following:

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), is there a graph
G�2 = (V�2,E

�
2) with V�2 ⊆ V2 and E�2 ⊆ E2 such that there is a total

bisimulation between G�2 and G1?

Since we want to investigate the complexity of reasoning about epistemic in-
teraction using modal logic, we are interested in subgraphs that correspond to
relativization in modal logic: induced subgraphs. This leads us to an investiga-
tion of induced subgraph bisimulation.

Decision Problem 5.16 (Induced subgraph bisimulation)
Input: Two finite graphs G1 = (V1,E1), G2 = (V2,E2), k ∈N.
Question: Is there an induced subgraph of G2 with≥ k vertices that is totally bisimilar
to G1, i.e., is there a V� ⊆ V2 with |V�| ≥ k and (V�,E2 ∩ (V� × V�))↔totalG1? �

Even though the above problem looks very similar to the original sub-
graph bisimulation problem (NP-hardness of which is shown by reduction
from Hamiltonian Path), NP-hardness does not follow immediately.2 Never-
theless, we can show NP-hardness by reduction from Independent Set.

Proposition 5.17 Induced subgraph bisimulation is NP-complete.

Proof. Showing that the problem is in NP is straightforward. Hardness is
shown by reduction from Independent Set. First of all, let Ik = (VIk

,EIk = ∅)
with |VIk

| = k denote a graph with k vertices and no edges. Given the input of
Independent Set, i.e., a graph G = (V,E) and some k ∈ N we transform it into
(Ik,G), k, as input for Induced Subgraph Bisimulation.

Now, we claim that G has an independent set of size at least k iff there is
some V� ⊆ V with |V�| ≥ k and (V�,E ∩ (V� × V�))↔totalIk.

From left to right, assume that there is some S ⊆ V with |S| = k, and for all
v, v� ∈ S, (v, v�) � E. Now, any bijection between S and VIk is a total bisimulation
between G� = (S,E ∩ (S × S)) and Ik, since E ∩ (S × S) = ∅ and |S| = |VIk |.

For the other direction, assume that there is some V� ⊆ V with |V�| = k
such that for G� = (V�,E� = E ∩ (V� × V�)) we have that G�↔totalIk. Thus, there
is some total bisimulation Z between G� and Ik. Now, we claim that V� is an
independent set of G of size k. Let v, v� ∈ V�. Suppose that (v, v�) ∈ E. Then
since G� is an induced subgraph, we also have that (v, v�) ∈ E�. Since Z is a
total bisimulation, there has to be some w ∈ Ik with (v,w) ∈ Z and some w� with
(w,w�) ∈ EIk and (v�,w�) ∈ Z. But this is a contradiction with EIk = ∅. Thus, V�
is an independent set of size k of G. The reduction can clearly be computed in
polynomial time. This concludes the proof. �

2For induced subgraph bisimulation, a reduction from Hamiltonian Path seems to be more
difficult, as does a direct reduction from the original subgraph bisimulation problem.
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Now, an analogous result for Kripke models follows. Here, the problem is
to decide whether it is possible to ‘gently’ restrict one model without letting
its domain get smaller than k such that afterward it is bisimilar to another
model. With an epistemic/doxastic interpretation of the accessibility relation,
the intuitive interpretation is that we would like the new information to change
the informational state of the agent as little as possible.

Decision Problem 5.18 (Submodel bisimulation for Kripke models)
Input: Kripke modelsM1,M2 with set of agents N and some k ∈ IN.
Question: Is there a submodelM�

2 ofM2 with |Dom(M�
2)| ≥ k such thatM1 andM�

2
are totally bisimilar i.e.,M1↔totalM�

2? �

Corollary 5.19 Submodel bisimulation for Kripke models is NP-complete.

Proof. Checking if a proposed model is indeed a submodel and has at least k
states can be done in polynomial time. As also bisimilarity can be checked in
polynomial time, membership of NP is immediate. NP-hardness follows from
Proposition 5.17 as the problem of deciding induced subgraph bisimilarity can
be reduced to submodel bisimilarity. �

As we are interested in the complexity of reasoning about the interaction of
epistemic agents as it is modeled in (dynamic) epistemic logic, let us now see
how the complexity of induced subgraph bisimulation changes when we make
the assumption that models are partitional, i.e., that the relation is an equiva-
lence relation, as it is frequently assumed in the AI or interactive epistemology
literature. We will see that this assumption makes the problem significantly
easier.

Proposition 5.20 If for graphs G1 = (V1,E1) and G2 = (V2,E2), E1 and E2 are
reflexive, then induced subgraph bisimulation for G1 and G2 can be solved in linear
time.

Proof. In this proof, we will use the fact that G1 = (V1,E1)↔totalG2 = (V2,E2) if
and only if it is the case that V1 = ∅ iff V2 = ∅. Let us prove this. From left to
right, assume that G1 = (V1,E1)↔totalG2 = (V2,E2). Then since we have a total
bisimulation, it must be the case that either V1 = V2 = ∅ or V1 � ∅ � V2.

For the other direction, assume that V1 = ∅ iff V2 = ∅. Now, we show that
in this case, V1 × V2 is a total bisimulation between G1 and G2. If V1 = V2 = ∅,
we are done. So, consider the case where V1 � ∅ � V2. Let (v1, v2) ∈ V1 × V2,
and assume that (v1, v�1) ∈ E1 for some v�1 ∈ V1. Since E2 is reflexive, we know
that there is some v�2 ∈ V2 such that (v2, v�2) ∈ E2. Of course (v�1, v

�
2) ∈ V1 × V2.

The back condition is analogous. Since V1×V2 is total, we thus have G1↔totalG2.
Hence, G1 = (V1,E1)↔totalG2 = (V2,E2) if and only if it is the case that V1 = ∅ iff
V2 = ∅.
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Therefore, for solving the induced subgraph bisimulation problem for input
G1 and G2 with E1 and E2 being reflexive and k ∈ N, all we need to do is to
go through the input once and check whether V1 = ∅ iff V2 = ∅, and whether
|V2| ≥ k. If the answer to both is yes then we know that G1↔totalG2 and since
|V2| ≥ k, we answer yes, otherwise no. �

Assuming the edge relation in a graph to be reflexive makes induced sub-
graph bisimulation a trivial problem because, unless its set of vertices is empty,
every such graph is bisimilar to the graph ({v}, {(v, v)}). But for Kripke models,
even for S5 models, this is of course not the case, as the bisimulation takes into
account the valuation. Nevertheless, we will now show that also for single-
agent S5 models, the problem of submodel bisimulation is significantly easier
than in the case of arbitrary single-agent Kripke models. To be more precise,
we will distinguish between two problems:

The first problem is local single-agent S5 submodel bisimulation. Here, we
take as input two pointed S5 models. Then we ask whether there is a submodel
of the second model that is bisimilar to the first one. Thus, the question is
whether it is possible to restrict one of the models in such a way that there is
a state in which the agent has exactly the same information as in the situation
modeled in the other model. Note that in this problem we do not require the
resulting model be of a certain size.

Decision Problem 5.21 (Local single-agent S5 submodel bisimulation)
Input: A pointed S5 epistemic model (M1,w) withM1 = (W1,∼1,V1) and w ∈ W1,
and an S5 epistemic modelM2 = (W2,∼2,V2).
Question: Is there a submodelM�

2 = (W�
2,∼�2,V�2) ofM2 such that (M1,w)↔(M�

2,w
�)

for some w� ∈ Dom(M�
2)? �

We will show that this problem is tractable. First we introduce some notation
that we will use.

Notation LetM = (W,∼,V) be a single-agent epistemic model. For the valu-
ation function V : prop → W, we define V̂ : W → 2prop, with w �→ {p ∈ prop |
w ∈ V(p)}. Abusing notation, for X ⊆ W we sometimes write V̂(X) to denote
{V̂(w) | w ∈ X}. We let W/ ∼ denote the set of all equivalence classes of W for
the relation ∼. �

Proposition 5.22 Local submodel bisimulation for single-agent pointed epistemic
models is in P.

Proof. Given the input of the problem, i.e., a pointed epistemic model M1,w
withM1 = (W1,∼1,V1), and w ∈W1 and an epistemic modelM2 = (W2,∼2,V2),
we run the following procedure.
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1. For all [w2] ∈W2/ ∼2 do the following:

(a) Initialize the set Z := ∅.

(b) for all w� ∈ [w] do the following

i. For all w�2 ∈ [w2] check if it is the case that V̂1(w�) = V̂2(w�2). If this
is the case, set Z := Z ∪ {(w�,w�2)}.

ii. if there is no such w�2, continue with 1 with the next element in
W2/ ∼2, otherwise we return Z and we stop.

2. In case we didn’t stop at 1(b)ii, we can stop now, and return no.

This does not take more than |M1| · |M2| steps.
If the procedure has stopped at 2, there is no bisimulation with the required

properties. To see this, note that if we stopped in 2, this means that there was
no [w2] ∈ W2/ ∼2 such that for every state in [w] there is one in [w2] in which
exactly the same propositional letters are true. Thus, since we were looking for
a bisimulation that is also defined for the state w, such a bisimulation cannot
exist.

If the algorithm returned a relation Z, this is indeed a bisimulation between
M1 and the submodelM�

2 ofM2 whereM�
2 = (W�

2,∼�2,V�2), where

W�
2 = {w2 ∈W2 | there is some w1 ∈ [w] such that (w1,w2) ∈ Z}

and ∼�2 and V�2 are the usual restrictions of ∼2 and V2 to W�
2. This follows

from the following two facts: First, for all pairs in Z it holds that both states
satisfy exactly the same proposition letters. Second, since Z is total both on [w]
and on W�

2 and all the states in [w] are connected to each other by ∼1 and all
states in W�

2 are connected to each other by∼�2, both the forth and back conditions
are satisfied. This concludes the proof. �

The second problem we consider is global S5 submodel bisimulation, where
the input are two models M1 and M2 and we ask whether there exists a
submodel ofM2 such that it is totally bisimilar toM1.

Decision Problem 5.23 (Global single-agent S5 submodel bisimulation)
Input: Two S5 epistemic modelsM1 = (W1,∼1,V1),M2 = (W2,∼2,V2).
Question: Is there a submodelM�

2 = (W�
2,∼�2,V�2, ) ofM2 such thatM1↔totalM�

2?�

We can show that even though the above problem seems more complicated
than Decision Problem 5.21, it can still be solved in polynomial time. The proof
uses the fact that finding a maximum matching in a bipartite graph can be done
in polynomial time (see e.g. Papadimitriou and Steiglitz (1982)).
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Theorem 5.24 Global submodel bisimulation for single-agent epistemic models is in
P.

Before we give the proof, we do some pre-processing.

Definition 5.25 Given a single-agent epistemic modelM = (W,∼,V),Mmin cells

denote a model obtained fromM by the following procedure:

1. Initialize X with X :=W/ ∼.

2. Go through all the pairs in X × X.

(a) When you find ([w], [w�]) with [w] � [w�] such that V̂([w]) = V̂([w�]),
continue at 2 with X := X − [w�].

(b) Otherwise, stop and return the modelMmin cells := (
�

X,∼�,V�), where
∼� and V� are the usual restrictions of ∼ and V to

�
X. �

Fact 5.26 With inputM = (W,∼,V), the procedure in Definition 5.25 runs in time
polynomial in |M|.

Proof. Follows from the fact that the cardinality of W/ ∼ is bounded by |W|; we
only enter step 2 at most |W| times, and each time do at most |W|2 comparisons.�

Fact 5.27 The answer to total submodel bisimulation for single-agent epistemic models
(Decision Problem 5.23) with inputM1 = (W1,∼1,V1),M2 = (W2,∼2,V2) is yes iff
it is with inputM1

min cells = (W1,∼1,V1),M2 = (W2,∼2,V2).

Proof. From left to right, we just need to restrict the bisimulation to the states
ofM1

min cells. For the other direction, we start with the given bisimulation and
then extend it as follows. The states in a cell [w�] which was removed during
the construction ofM1

min cells can be mapped to the ones of a cell [w] inM1
min cells

with the same valuation. �

We can now prove Theorem 5.24.

Proof. By Fact 5.26 and Fact 5.27, transformingM1 intoM1
min cells can be done

in polynomial time. Thus, without loss of generality, we can assume thatM1 is
already of the right shape; i.e.,M1 =M1

min cells. Given the two models as input,
we construct a bipartite graph G = ((W1/ ∼1,W2/ ∼2),E) where E is defined as
follows.

([w1], [w2]) ∈ E iff V̂1([w1]) ⊆ V̂2([w2]).
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Claim 5.28 The following are equivalent.

(a) There is a submodelM�
2 ofM2 such thatM1↔totalM�

2

(b) G has a matching of size |W1/ ∼1 |.

Proof. Assume that there is a submodel M�
2 = (W�

2,∼�2,V�2) of M2 such that
M1↔totalM�

2. Let Z be such a total bisimulation.
Note that since we assumed thatM1 =Mmin cells the following holds:

1. For all ([w1], [w2]) ∈W1/ ∼1 ×W2/ ∼2 it is the case that whenever Z∩([w1]×
[w2]) � ∅, then for all [w�1] ∈W1/ ∼1 such that [w�1] � [w1],Z∩([w�1]×[w2]) =
∅.

Thus, the members of different equivalence classes in W1/ ∼1 are mapped by Z
to into different equivalence classes of W2/ ∼2.

Now, we construct Ė ⊆ E as follows.

([w1], [w2]) ∈ Ė iff ([w1], [w2]) ∈ E and ([w1] × [w2]) ∩ Z � ∅.

Then |Ė| ≥ |W1/ ∼1 | because of the definitions E and Ė and the fact that Z is
a bisimulation that is total on W1. Now, if |Ė| = |W1/ ∼1 | then we are done since
by definition of Ė, for each [w1] ∈W1/ ∼1 there is some [w2] ∈W2/ ∼2 such that
([w1], [w2]) ∈ Ė. Then it follows from 1, that Ė is indeed a matching.

If |Ė > |W1/ ∼1 | then we can transform Ė into a matching E� of size W1/ ∼1 |:
For each [w1] ∈ W1/ ∼1, we pick one [w2] ∈ W2/ ∼2 such that ([w1], [w2]) ∈ Ė
and put it into E� (note that such a [w2] always exists because by definition of
Ė, for each [w1] ∈ W1/ ∼1 there is some [w2] ∈ W2/ ∼2 such that ([w1], [w2]) ∈ Ė;
moreover because of 1 all the [w2] ∈ W2/ ∼2 that we pick will be different).
Then the resulting E� ⊆ Ė ⊆ E ⊆ (W1/ ∼1 ×W2/ ∼2) is a matching of G of size
|W1/ ∼1 |. Thus, we have shown that if there is a submodelM�

2 ofM2 such that
M1↔totalM�

2 then G has a matching of size |W1/ ∼1 |.
For the other direction, assume that G has a matching E� ⊆ E with |E�| =

|W1/ ∼1 |. Then, recalling the definition of E, it follows that for all [w] ∈ W1/ ∼
there is some [w�] ∈W2/ ∼2 such that ([w], [w�]) ∈ E� and thus V̂1([w]) ⊆ V̂2([w�]).

Let us define the following submodelM�
2 ofM2. M�

2 = (W�
2,∼�2,V�2), where

W�
2 = {w2 ∈W2 | there is a w ∈W1 with V̂1(w) = V̂2(w2) and ([w], [w2]) ∈ E�}

and ∼�2 and V�2 are the usual restrictions of ∼2 and V2 to W�
2.

Now, we define a relation Z ⊆ W1 ×W�
2, which we then show to be a total

bisimulation betweenM1 andM�
2

(w1,w2) ∈ Z iff V̂(w1) = V̂2(w2) and ([w1], [w2]) ∈ E�.
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Next, let us show that Z is indeed a bisimulation.
Let (w1,w2) ∈ Z. Then, by definition of Z, for every propositional letter p,

w1 ∈ V1(p) iff w2 ∈ V2(p). Next, we check the forth condition. Let w1 ∼1 w�1 for
some w�1 ∈ W1. Then since (w1,w2) ∈ Z, and thus ([w1], [w2]) ∈ E�, there has
to be some w�2 ∈ [w2] such that V̂2(w�2) = V̂1(w�1). Then since [w�1] = [w1] and
[w�2] = [w2], ([w�1], [w�2]) ∈ E�. Then w�2 ∈W�

2, and (w�1,w
�
2) ∈ Z.

For the back condition, let w2 ∼2 w�2, for some w�2 ∈ W�
2. Then by definition

of W�
2, there is some w ∈ W1 such that V̂1(w) = V̂2(w�2) and ([w], [w�2]) ∈ E�.

Thus, it follows that (w,w�2) ∈ Z. Now, we still have to show that w1 ∼1 w.
As the following hold: ([w], [w�2]) ∈ E�,[w2] = [w�2], ([w], [w2]) ∈ E� (because
(w1,w2) ∈ Z) and E� is a matching, it follows that [w] = [w1]. Thus, w1 ∼1 w.

Hence, we conclude that Z is a bisimulation. It remains to show that Z is
indeed total.

Let w1 ∈ W1. Since E� is a matching of size W1/ ∼1, there is some [w2] ∈
W2/ ∼2 such that ([w1], [w2]) ∈ E�. Thus, there is some w�2 ∈ [w2] such that
V̂1(w1) = V̂2(w�2). This means that w�2 ∈W�

2 and (w1,w�2) ∈ Z. So Z is total on W1.
Let w2 ∈ W�

2. By definition of W�
2, there is some w ∈ W1 such that V̂1(w) =

V̂2(w2) and ([w], [w2]) ∈ E�. Thus, by definition of Z, (w,w2) ∈ Z. Therefore, Z is
indeed a total bisimulation betweenM1 andM�

2. This concludes the proof of
Claim 5.28. �

Hence, given two models, we can transform the first one using the polyno-
mial procedure of Definition 5.25 and then we construct the graph G, which can
be done in polynomial time as well. Finally, we use a polynomial algorithm to
check if G has a matching of size M1

min cells. If the answer is yes, we return yes,
otherwise no. This concludes the proof of Theorem 5.24. �

Now, the question arises whether the above results also hold for the multi-
agent case.

Decision Problem 5.29 (Global multi-agent S5 submodel bisimulation)
Input: Two epistemic modelsM1 = (W1, (∼1i)i∈N,V1),M2 = (W2, (∼2i)i∈N,V2), for N
being a finite set (of agents), and k ∈N.
Question: Is there a submodel M�

2 = (W�
2, (∼2

�
i)i∈N,V�2) of M2 such that

M1↔totalM�
2? �

Open Problem 5.30 Is global multi-agent S5 submodel bisimulation NP-hard? �

We expect the answer to this question to be positive, as for S5, there seems
to be a complexity jump between the single-agent case and the two-agent case:
In case of the satisfiability problem of the logic, the one-agent logic is NP-
complete, whereas as soon as we have at least two agents, we get PSPACE
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completeness. Similarly, in Section 5.2.1, we showed in Proposition 5.7 that
also for bisimilarity, there seems to be a complexity jump for S5 models when
a second agent is added: the problem becomes P-hard and thus as hard as the
problem for arbitrary Kripke models.

The idea behind these results is that arbitrary accessibility relations can be
simulated by a concatenation of two equivalence relations. However, these
techniques, as they have been used e.g. by Halpern and Moses (1992), do not
seem to work for transforming models into S5-models for two agents such
that the existence of submodels bisimilar to some model is preserved. The
problem is caused by the fact that the resulting model has to be reflexive, in
which case several states could be collapsed whereas they could not before the
transformation. Thus, a coding of the existence of a successor and the existence
of reflexive loops in the original model would be required to take care of this
issue3.

Let us summarize our complexity results for problems related to decid-
ing whether it is possible to restrict an agent’s information structure so that
after he will have similar information as another agent in some other situa-
tion. We started by showing that induced subgraph bisimulation is intractable
(NP-complete). Using this, we could show that the same holds for submodel
bisimulation of arbitrary Kripke models.

For partition-based graphs (with the edge relations being equivalence rela-
tions) however, we showed that the problem of induced subgraph bisimilarity
is very easy: it is solvable in linear time if we are looking for a subgraph of a
certain size with a total bisimulation. Deciding whether there is any subgraph
with a total bisimulation is trivial for graphs where the edge relation is an
equivalence relation, as then all such non-empty graphs are bisimilar. In fact,
this already holds if the edge relation is reflexive.

Extending these results for S5 Kripke models, we could show that submodel
bisimulation for single-agent models is not as trivial as for graphs, but still in P.
For multi-agent S5 models, the problem remains open. We conjecture it to be
polynomially equivalent to the problem for Kripke models in general. The tech-
nical challenge in showing this lies in the simulation of arbitrary accessibility
relations by a combination of different equivalence relations. The idea would
again be to use a method similar to that used e.g. by Halpern and Moses (1992)
and replace every edge by a composition of two equivalence relations. This
technique can however not be applied in its standard way as some issues arise
due to the fact that the resulting model has to be reflexive while in the original
arbitrary Kripke structure this does not need to be the case. This means that
the existence of reflexive loops in the original model would somehow have to

3Note that the situation in Proposition 5.7 is different as there we started with models that
were irreflexive and thus we did not need to take care of coding the information about loops
and could thus apply the standard technique.
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be coded using a propositional letter so as not to loose the information during
the transformation.

In dynamic systems with diverse agents, an interesting question is whether
it is possible to give some information to one agent such that afterward she
knows at least as much as some other agent. This is captured by an asymmetric
notion, that of simulation. With this difference, the question can be raised of the
effect on tractability and intractability of requiring simulation versus requiring
bisimulation. With this motivation, we would like to explore the problem of
induced subgraph simulation.

Decision Problem 5.31 (Induced subgraph simulation)
Input: Two finite graphs G1 = (V1,E1), G2 = (V2,E2), k ∈N.
Question: Is there an induced subgraph of G2 with at least k vertices that is simulated
by G1, i.e., is there some V� ⊆ V2 with |V�| ≥ k and (V�,E2 ∩ (V� × V�)) �total G1? �

Proposition 5.32 Induced subgraph simulation is NP-complete.

Proof. Showing that the problem is in NP is straightforward. Hardness is
shown by reduction from Independent Set. First of all, let Ik = (VIk

,EIk = ∅)
with |VIk

| = k denote a graph with k vertices and no edges. Given the input of
Independent Set, i.e., a graph G = (V,E) and some k ∈ N we transform it into
(Ik,G), k, as input for Induced Subgraph Simulation.

Now, we claim that G has an independent set of size at least k iff there is
some V� ⊆ V with |V�| ≥ k and (V�,E ∩ (V� × V�)) �total Ik.

From left to right, assume that there is some S ⊆ V with |S| = k, and
for all v, v� ∈ S, (v, v�) � E. Now, any bijection between S and VIk is a total
simulation (and in fact an isomorphism) between G� = (S,E ∩ (S × S)) and Ik,
since E ∩ (S × S) = ∅ and |S| = |VIk |.

For the other direction, assume that there is some V� ⊆ V with |V�| = k such
that for G� = (V�,E� = E∩ (V� ×V�)) we have that G� �total Ik. Thus, there is some
total simulation Z between G� and Ik. Now, we claim that V� is an independent
set of G of size k. Let v, v� ∈ V�. Suppose that (v, v�) ∈ E. Then since G� is an
induced subgraph, we also have that (v, v�) ∈ E�. Since Z is a total simulation,
there has to be some w ∈ Ik with (v,w) ∈ Z and some w� with (w,w�) ∈ EIk and
(v�,w�) ∈ Z. But this is a contradiction with EIk = ∅. Thus, V� is an independent
set of size k of G. The reduction can clearly be computed in polynomial time.
This concludes the proof. �

In De Nardo et al. (2009), it has been shown that given two graphs it is also
NP-complete to decide if there is a subgraph (not necessarily an induced one)
of one such that it is simulation equivalent to the other graph. Here, we show
that this also holds if the subgraph is required to be an induced subgraph.
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Decision Problem 5.33 (Induced subgraph simulation equivalence)
Input: Two finite graphs G1 = (V1,E1), G2 = (V2,E2), k ∈N.
Question: Is there an induced subgraph of G2 with at least k vertices that is similar
to G1, i.e., is there some V� ⊆ V2 with |V�| ≥ k and (V�,E2 ∩ (V� × V�)) �total G1 and
G1 �total (V�,E2 ∩ (V� × V�))? �

Proposition 5.34 Induced subgraph simulation equivalence is NP-complete.

Proof. For showing that the problem is in NP, note that we can use a simula-
tion equivalence algorithm as provided in Henzinger et al. (1995). Hardness
can again be shown by reduction from Independent Set. Given the input for
Independent Set, i.e., a graph G = (V,E) and some k ∈ N, we transform it into
two graphs Ik = (VIk

= {v1, . . . vk},EIk = ∅) and G, and we keep the k ∈ N. This
can be done in polynomial time.

Now, we claim that G has an independent set of size k iff there is an induced
subgraph of G with k vertices that is similar to Ik. From left to right assume that
G has such an independent set S with S ⊆ V, |S| = k and E ∩ S × S = ∅. Then
(S,∅) is isomorphic to Ik since both have k vertices and no edges. Thus, they
are also simulation equivalent.

For the other direction, assume that there is an induced subgraph G� =
(V�,E�) with V� ⊆ V, |V�| = k and E� = (V� × V�) ∩ E such that G� is simulation
equivalent to Ik. Suppose that there are v, v� ∈ V� such that (v, v�) ∈ E. Since
G� is an induced subgraph, it must be the case that (v, v�) ∈ E�, but since Ik
simulates G�, this leads to a contradiction since Ik does not have any edges.
This concludes the proof. �

As a corollary of the two previous propositions we get that for arbitrary
Kripke models both submodel simulation and submodel simulation equiva-
lence are NP-hard. An NP upper bound follows from the fact that given a
relation between a model and a submodel of some other model, it can be
checked in polynomial time if this relation is indeed a simulation.

Corollary 5.35 Deciding submodel simulation and submodel equivalence for Kripke
structures is NP-complete. �

For single-agent S5, we can use the methods as used in the proof of Theorem
5.24 in order to obtain a polynomial procedure for the single-agent case.

Proposition 5.36 Deciding submodel simulation and submodel equivalence single-
agent S5 models is in P.

Proof. We use the procedure of the proof of Theorem 5.24. This also works
for simulation and simulation equivalence because of the totality constraint
and the fact that as we deal with S5 models, we only need to take care of the
different valuations occurring in the equivalence classes. �
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Let us now summarize our complexity analysis of tasks that involve whether
in one situation an agent knows at least as much as another agent in a possi-
bly different situation. We have shown that we can extend graph theoretical
complexity results about subgraph simulation equivalence to the case where
the subgraph is required to be an induced subgraph. Via this technical result,
we can then transfer the complexity bounds also for the problem of submodel
simulation (equivalence) of Kripke models, which with an epistemic interpre-
tation of the accessibility relation is the following problem: decide whether it is
possible to give information to one agent such that as a result he knows as least as much
as some other agent. In case of partition-based models (S5), for a single agent
this problem can be solved in polynomial time analogously to how we have
done it for submodel bisimulation. For the multi-agent case, the problem re-
mains open, however. As for submodel bisimulation of multi-agent S5 model,
the technical issue that would have to be solved for showing NP-hardness is
caused by the reflexivity of the underlying relations.

5.3 Conclusions and Further Questions

We will now summarize the main results of this chapter and then give conclu-
sions and further questions.

5.3.1 Summary

In this chapter, we have identified concrete epistemic tasks related to the com-
parison and manipulation of information states of agents in possibly different
situations. Interestingly, our complexity analysis shows that such tasks and
decision problems live on both sides of the border between tractability and
intractability. We now summarize our results for the different kinds of tasks
we investigated.

Information similarity. Our results for the complexity of deciding whether
information structures are similar can be found in Table 5.1.

Problem Tractable? Comments

Kripke model isomorphism unknown GI-complete

Epistemic model bisimilarity Yes P-complete in the multi-agent
case

Table 5.1: Complexity results for deciding information similarity.
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If we take isomorphism as similarity notion, then in general (without any
particular assumptions on the Kripke structures representing agents’ informa-
tion) it is open whether checking if two information structures are similar is
tractable. This follows from the fact that checking if two Kripke models are iso-
morphic is as hard as the graph isomorphism problem which is neither known
to be in P nor known to be NP-hard. Thus, we can say that given the current
knowledge, for isomorphism deciding if two information structures are similar
can be located on the border between tractability and intractability. We did not
investigate the isomorphism problem for S5 but conjecture it to become as hard
as Kripke model isomorphism (GI-complete) as soon as we have at least two
agents.

Taking bisimilarity as similarity notion, deciding if two structures are similar
is among the hardest problems known to be tractable. If the models are based
on partitions (S5), the problem is very easy in the single-agent case but also
becomes P-hard in the multi-agent case.

Information symmetry. Table 5.2 summarizes the results of our complexity
analysis of tasks concerned with deciding whether the information of agents is
symmetric, where symmetry can be understood in different ways.

Problem Tractable? Comments

Common knowledge of a fact Yes solvable using a reachability
algorithm

Horizon bisimilarity (Kripke
models)

Yes P-complete for arbitrary
models, even for horizons at
the same point in the model

Flipped horizon bisimilarity
(Kripke models)

Yes P-complete, even for horizons
at the same point in the model

Horizon bisimilarity (S5-
models)

Yes trivial for horizons at the
same point in a model

Flipped horizon bisimilarity
(S5-models)

Yes problem does not get easier
for horizons at the same point
in a model

Table 5.2: Complexity results for deciding information symmetry.

We started our investigation of information symmetry with the symmetry
of two agents’ knowledge about a given fact being true. This kind of symmetry
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arises if the fact is common knowledge among the two agents. Given an infor-
mation structure, deciding if this is the case can be done using a reachability
algorithm that checks for every state at which the fact is not true whether there
is a path to it (via the union of the two relations of the agents) from the current
state. This is the case if and only if the fact is not common knowledge by the
two agents.

We then introduced the notion of (epistemic) horizon, which represents the
submodel that is relevant for an agent at a given situation (i.e., at a given point
in the model). The horizon of an agent in a situation is the submodel that is
generated by the set of worlds the agent considers possible in that situation.
When considering the epistemic reasoning of agents, our notion of horizon
plays a crucial role as an agent’s horizon contains exactly the possible worlds
which the agent might take into consideration during his reasoning. We have
shown that in general deciding if the horizons of two agents are bisimilar is
exactly as hard as deciding bisimilarity of Kripke models. Without assuming
reflexivity of the accessibility relation, deciding about the similarity of two
agents’ horizons does not get easier in the special case in which we compare
horizons at the very same point in a model. As soon as the accessibility
relations of the two agents under consideration are reflexive however, the
problem becomes completely trivial if we compare horizons at the same point in
the model as they are always identical. Thus, if we take information structures
to be arbitrary Kripke models, then in general comparing horizons of agents in
one given situation is as hard as comparing information structures in general.
For S5 models however, the situation is slightly different as horizon bisimilarity
becomes trivial for horizons taken at the same point in a model.

For our investigation of information symmetry, we have introduced the no-
tion of flipped bisimilarity, which captures the similarity of two models after
swapping the information of two agents. For Kripke structures, in general
the complexity of deciding flipped bisimilarity is just as for bisimilarity, even
though for the special case in which two pointed structures are identical de-
ciding bisimilarity is trivial but flipped bisimilarity can be as hard as it is for
arbitrary pointed Kripke structures.

Our results for horizon comparison for arbitrary Kripke models show that
both flipped bisimilarity and regular bisimilarity are P-complete, even if we
take the horizon at the very same situation. Thus, comparing different agents’
perspectives on the very same situation is as hard as comparing structures in
general. Under the assumption of partition-based information structures (S5)
however, we observed a significant difference between bisimilarity and flipped
bisimilarity of horizons. While bisimilarity of horizons of different agents
becomes trivial if they are taken at the very same situation (i.e., at the same
point in the model), flipped bisimilarity stays as hard as it is for multi-agent S5
models in general.
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Let us briefly summarize the technical facts that explain our complexity
results as given in Table 5.2.

• Problems about information symmetry which can be solved by checking
if certain states are reachable by (combinations of) agents’ accessibility
relations are relatively easy as they boil down to solving the Reachability
problem which is NL-complete.

• Problems involving bisimilarity of arbitrary models are among the hard-
est tractable problems and thus believed to be slightly easier than prob-
lems involving isomorphism of Kripke models as for isomorphism no
polynomial algorithms are know.

• In the single-agent case, assuming S5 relations makes bisimilarity eas-
ier because checking for bisimilarity boils down to just comparing the
propositional valuations of information cells.

• While flipped bisimilarity does not seem to be more complex than regular
bisimilarity, the fact that flipped bisimilarity is in general not reflexive has
the effect of making it harder than bisimilarity in the special case where
we ask if a pointed model is flipped bisimilar to itself.

Information manipulation. Apart from the rather static problems about the
comparison of information structures we also investigated the complexity of
tasks related to more dynamic aspects of information. In many interactive
processes, the information of agents changes through time because agents can
make observations or receive new information from other agents. Then an
interesting question that arises is whether given an information state of an
agent it is possible that through incoming information, the agent’s information
structure can change such that in the end the agent has similar information to
some other agent.

Table 5.3 summarizes the results of our complexity analysis of tasks con-
cerned with the manipulation of information structures.

For determining the complexity of deciding whether it is possible to restrict
an information structure in some way such that it becomes similar to some
other structure, we started by investigating the NP-complete graph theoretical
problem subgraph bisimulation. The problem is to decide whether one of two
given graphs has a subgraph which is bisimilar to the other graph. We showed
that it remains NP-complete if we require the subgraph to be an induced
subgraph. This technical result then allowed us to show that for Kripke
models, it is also NP-complete to decide if one given model has a submodel
which is bisimilar to another given model. We then showed that this problem
does indeed get easier if we have S5 structures with one agent only: we gave
a polynomial procedure that uses the fact that computing whether there is
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Problem Tractable? Comments

Kripke submodel bisimula-
tion

No NP-complete. Reduction
from Independent Set

Single agent S5 submodel
bisimulation

Yes Local version easier; in gen-
eral an algorithm for finding
matchings in bipartite graphs
can be used

Multi-agent S5 submodel
bisimulation

Unknown Conjectured to be NP-
complete

Kripke submodel simulation
(equivalence)

No NP-complete. Reduction
from Independent Set

Single agent S5 submodel
simulation (equivalence)

Yes Similar polynomial proce-
dure as for single-agent S5
submodel bisimulation

Multi-agent S5 submodel sim-
ulation (equivalence)

Unknown Same technical issues as for S5
submodel bisimulation

Table 5.3: Complexity results for tasks about information manipulation.

a matching of a certain size in a bipartite graph can be done in polynomial
time. This shows that deciding if an agent’s information can be restricted in
a certain way is easier under the assumption of S5 information structures. It
remains open to show whether the problem also becomes intractable for S5 as
soon as we have more than one agent. The technical issue which needs to be
resolved here is to determine whether an arbitrary accessibility relation can be
simulated by the composition of two equivalence relations in such a way that
the existence of a submodel bisimilar to some other model is preserved. While
it is relatively straightforward to make sure that in the model that results from
the transformation the accessibility relations are symmetric and transitive, the
requirement of reflexivity seems to cause some problems.

Instead of asking whether it is possible to give some information to an agent
such that the resulting information structure is similar to some other structure,
in many situations it might be sufficient to know if it is possible to manipulate
the information of an agent such that he will know at least as much as some
other agent. In more general terms, this leads us to the task of deciding whether
it is possible to restrict some structure such that it becomes at least as refined
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as some other structure. Similar to the case of submodel bisimulation, we
started by investigating the problem of induced subgraph simulation, which
we showed to be NP-complete by reduction from Independent Set. Using this, we
could then show that submodel simulation is NP-complete for Kripke models.

Under the assumption of S5 models, we can adapt the polynomial procedure
that we had for single-agent S5 local submodel bisimulation for solving the
analogous problem for simulation. This means that with S5 models, it is
tractable to decide if we can restrict an information structure for one agent
such that it becomes at least as refined as that of another agent in a given
situation. We get an analogous result for simulation equivalence, a weaker
notion of similarity than bisimulation. Whether on S5 structures these problems
become intractable as soon as we have models with at least two agents is
open, and depends on the same technical issues as this problem for submodel
bisimulation.

Let us briefly summarize the technical facts that explain our complexity
results as listed in Table 5.3.

• For single-agent S5 models, submodel bisimilarity and simulation equiv-
alence turned out to be solvable in polynomial time. We used the fact
that a model has a submodel bisimilar to some other model if and only if
the bipartite graph that consists of the equivalence classes of both models
and in which edges connect information cells of the two models if and
only if the different valuations of the first occur also in the second.

• In general, submodel bisimilarity of Kripke models is NP-complete, as a
graph having an induced subgraph bisimilar to the graph of k isolated
points is equivalent to the graph having an independent set of size k.

• Whether submodel bisimilarity is NP-complete for S5 models with more
than one agent depends on how arbitrary Kripke structures can be sim-
ulated using the combination of two equivalence classes in such a way
that the existence of submodels bisimilar to another model is preserved.

5.3.2 Conclusions
From the above results, we can conclude the following for the three classes of
tasks that we have analyzed.

Information similarity

• If information of agents is modeled by simple relational structures
without any particular assumptions, then deciding if the information
of agents in two different multi-agent situations is similar will in
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general be somewhere in between tractable but hard and the border
to intractability.

• Under the assumption of S5 properties of the information structures,
the complexity jump from easy to P-hard happens with the intro-
duction of a second agent.

Information symmetry

• All problems we encountered are tractable, but nevertheless we were
able to identify significant differences in their complexity.

– Comparing the perspectives of agents in the very same situation
becomes trivial as soon as we check for bisimilarity and the
agents’ accessibility relations are reflexive.

– For checking if the agents have similar information about each
other (captured by flipped bisimilarity of horizons) however,
neither the assumption of reflexivity of the agents’ relations nor
considering horizons at the very same point in the model make
the problem easier.

– Thus, deciding if agents have similar information about each other
can in certain cases be harder than deciding if agents have similar
information.

Information manipulation

• For the problems we identified for deciding whether an information struc-
ture can be restricted in a way such that it will be in a certain relation to
another model, we get the same pattern of complexity results for simula-
tion, simulation equivalence and bisimulation.

– Deciding whether a model can be restricted such that it is in one of
those three relations to another model is tractable for single-agent S5
models and intractable in general.

– Whether for S5 models the jump from being tractable to being in-
tractable happens with the introduction of a second agent depends
on whether we can simulate arbitrary relations by a combination of
two equivalence relations while preserving the existence of submod-
els that are in a certain relationship to another model.

Comparing the three classes of tasks (about information similarity, symme-
try and manipulation), information similarity is the easiest one in general if
we stick to bisimulation as our notion of similarity. For information symme-
try, all the problems we identified are tractable, with some special cases even



5.3. Conclusions and Further Questions 161

being trivial, such as for reflexive models similarity of horizons at the same
situation. Deciding if two agents have the same information about each other
however does not become trivial unless the two agents are equal. For deciding
whether it is possible to manipulate agents’ information in a certain way, we
considered problems of a wide variety of complexities ranging from very easy
to NP-complete. Deciding if it is possible to restrict an information structure
such that it becomes similar to or at least as refined as another is easiest if we
only have one agent and assume S5 models. For arbitrary Kripke structures the
problem is NP-complete. For multi-agent S5 models we conjecture it to be NP-
complete as well. Locating the tractability border in epistemic tasks on modal
logic frameworks, we conclude that for the static tasks concerning similarity
and symmetry, most problems are tractable, whereas for the dynamic tasks in-
volving the manipulation of information intractable tasks arise when we have
multiple agents. In general, for S5 models, complexity jumps for various tasks
seem to occur when a second agent is introduced.

Let us now come back to our research question.

Research Question 3 Which parameters can make interaction difficult?

• How does the complexity of an interactive situation change when
more participants enter the interaction or when we drop some sim-
plifying assumptions on the participants themselves?

In the context of concrete tasks in reasoning about epistemic agents, we can
give the following answers.

1. The complexity of comparing the information of diverse agents crucially
depends on the notion of similarity used.

2. Under standard assumptions about knowledge (veridicality and full in-
trospection) intractable tasks can become very easy

3. Moreover, under these assumptions, for various tasks a complexity jump
occurs with the introduction of a second agent.

4. Without any assumptions on information structures reasoning about a
single agent seems to be already as hard as reasoning about multi-agent
situations.

5.3.3 Further Questions

The work in this chapter gives rise to some interesting questions for further
investigation. Let us start with some technical open problems.
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Does submodel bisimulation for S5 become intractable with two agents?
It remains open to show whether the problem also becomes intractable for

S5 as soon as we have more than one agent. The technical issue which needs to
be resolved here is to determine whether an arbitrary accessibility relation can
be simulated by the composition of two equivalence relations in such a way
that the existence of a submodel bisimilar to some other model is preserved4.

While it is relatively straightforward to make sure that in the model that
results from the transformation the accessibility relations are symmetric and
transitive, the requirement of reflexivity seems to cause some problems.

Does submodel simulation (equivalence) for S5 become intractable with
two agents? Whether on S5 structures, the problems of submodel simulation
and submodel simulation equivalence become intractable as soon as we have
models with at least two agents depends on the same technical issues as the
problem for submodel bisimulation.

A more general problem that came up in our analysis is the following.

Is for S5 models simulation (equivalence) at least as hard as bisimulation?
We did not investigate simulation and simulation equivalence of information
structures. Here, an interesting general question arises as to whether also for
epistemic (S5) models it holds that in general simulation (equivalence) is at
least as hard as bisimulation as this holds for Kripke structures (Kučera and
Mayr 2002).

Linking up to real epistemic reasoning. In addition to the technical ques-
tions above, our results also call for an empirical investigation of the tasks we
identified in order to clarify the correspondence between our results and the
cognitive difficulties involved in epistemic reasoning. For this, we note that
the formal concepts that we used in the decision problems (e.g. bisimilarity)
were mostly motivated by the fact that they come up naturally in the context
of modal logics.

However, for being able to draw conclusions about the complexity that
real agents face in epistemic reasoning, it needs to be investigated which are
cognitively adequate notions of similarity. One possibility would be to work
out the connection between the similarity notions that we considered and
those underlying analogical reasoning in interactive situations (cf. Besold et al.
(2011)).

4We stress that here we are concerned with submodels, i.e., in general these are not generated
submodels.



5.3. Conclusions and Further Questions 163

Summing up our investigation so far, we have moved from a high-level
perspective on the strategic abilities of agents to an analysis of concrete tasks
about information structures which represent the uncertainties that individuals
have about the situation they are in. Since our work is originally motivated by
the need of a formal theory of real interaction, this leads to the next and last
step of the analysis in this dissertation, and thus back to interaction in real life.

We will address the question of whether a complexity theoretical analysis
as we have provided so far can actually allow us to draw some conclusions
about real interactions, in particular about the complexity that real agents face
in interactive situations. We will investigate this in the setting of a particular
recreational game. Such a setting has the advantage that it is clearly defined
and controlled by the rules of the game.

In addition to the setting, we also have to decide which kind of problems we
would like to consider in the chosen setting. This choice should be motivated by
the aim of establishing a connection between the formal study of the problems
and the tasks that real agents face in interaction. Thus, for being able to
draw conclusions about the complexity real agents face, we should choose
tasks/problems that players will actually face when playing the game. In
particular, this means that we should not focus on problems which are only
involved in sophisticated strategic reasoning as this would first require a study
of strategic reasoning of human reasoners in the chosen game. Appropriate
tasks to be analyzed seem to be those that players cannot avoid during game
play. An example of this is the task to perform a legal move.

As for the particular game to be investigated, we will choose the class of
inductive inference games, i.e., games in which one player constructs a secret
rule and the others have to inductively infer what might be the rule based
on feedback they get for the moves they make. For our purpose, inductive
inference games have the advantage of covering a wide range of complexity,
which can be easily adapted as the complexity depends on the chosen secret
rule.





Chapter 6

The Complexity of Playing Eleusis

Throughout this dissertation, our complexity analysis of interactive processes
has moved from the study of formal logical systems to the complexity analysis
of actual tasks relevant for the interaction of agents. The next and last step in
our work is now to determine what a complexity theoretical analysis of formal
frameworks for interaction can actually tell us about the difficulties that real
agents face in interactive situations.

Research Question 4 Finally, to what extent can we use a formal anal-
ysis of interactive processes to draw conclusions about the complexity of
actual interaction?

• Are there concrete examples of interactions in which participants
actually encounter very high complexities which make it impossible
for them to act?

In this chapter, we present a concrete case study in which we investigate
the computational complexity involved in actually playing a particular recre-
ational game. It is important to mention that as opposed to e.g. Chapter 4 we
focus on the complexity which is already involved when just performing legal
moves in the game, and we are thus not so much concerned with strategic con-
siderations such as deciding whether a winning strategy exists or computing
such a winning strategy. The advantage of this is that the complexity involved
in performing a legal move in a sense cannot be avoided by the players. Hence,
a study of those tasks will allow us to draw conclusions for the complexity of
actually playing the game.

One might expect that for concrete recreational games, the tasks of deter-
mining legal moves should be tractable as this task is at the very heart of
actually playing a game. However, we will show that in the game we consider
here, which belongs to the class of inductive inference games, this is not the
case and even without strategic considerations, players can face intractable and
even undecidable problems during the play.

165
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6.1 Eleusis: an inductive inference game

In this chapter, we want to put forward the complexity theoretical analysis of
a particular class of games, called inductive inference games, which are not only
interesting from a game theoretical and computational perspective but also
from a philosophical and learning theoretical point of view as they provide a
simulation of scientific discovery. Thus, this chapter also links up with Chapter
4 where we investigated Sabotage Games, which can also be seen as a model of
learning theoretical interaction. The general idea of inductive inference games
is that players try to infer a general rule from the feedback they get to their
moves. One designated player has to come up with a rule about which moves
of the other players are accepted and which are rejected. The goal of the other
players is then to discover the rule. They make their moves (which can e.g.
be of the form of playing cards (Abbott 1977; Gardner 1977; Golden 2011) or
building configurations with objects (Looney et al. 1997)) and the first player
gives feedback as to whether a move was accepted or rejected. Then the players
use this information to inductively infer the rule.

In the card game Eleusis, Player 1 – who in the game is referred to as God or
Nature – comes up with a rule about sequences of cards. Then the other players
– called Scientists – take turn in each playing a card in a sequence. After each
move, Player 1 announces whether the card was accepted. Rejected cards are
moved out of the sequence and stay below the position for which they were
played. This way during the whole game, all players can see which cards have
been accepted or rejected at which positions.

Eleusis has received attention within the philosophy of science literature,
since it nicely illustrates scientific inquiry (Romesburg 1978): Playing the cards
can be seen as performing experiments, and the feedback given by Player 1
(i.e., the acceptance or rejection of the cards played) can be thought of as the
outcomes of the experiments. The players form hypotheses about the rule and
choose to perform experiments accordingly, after each move updating their
information state with the outcome of the experiment, and then revising their
hypotheses. The game Eleusis can thus be seen as a nice simulation of scientific
inquiry in which players employ two kinds of strategies: selection strategies,
which determine what experiment to perform (i.e., what cards to play), and
reception strategies for using the results of the experiments (i.e., the acceptance
and rejection of the cards) for constructing and choosing hypotheses about the
rule (Romesburg 1978). Eleusis has also been investigated within the computer
science and artificial intelligence literature since there is a close relationship to
pattern recognition as discovering a rule essentially means to discover a pattern
in the sequence of accepted cards. Several algorithms have been developed
taking the role of the scientist in Eleusis (Berry 1981; Diettrich and Michalski
1989; Michalski et al. 1985). Some sample secret rules have been classified
informally with respect to the difficulty for the scientist players to discover
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them (cf. Golden (2011)). However, to the best of our knowledge, there has not
been done any complexity theoretical analysis of Eleusis. In this chapter, we
show that computational complexity plays a crucial role in Eleusis and give
complexity results with a practical relevance for the actual play of the game.
Player 1’s choice of rule not only determines the difficulty of the tasks of the
other players during the game but also has an impact for herself since as we
show there are secret rules that Player 1 can choose that make it impossible for
herself to give feedback to the other players since she is faced with undecidable
problems during the play.

6.2 Eleusis: The rules
In this section, we will describe the rules of the card game Eleusis. There are
several versions of the rules (Abbott 1977; Gardner 1977; Golden 2011). In this
chapter, we will focus on The New Eleusis (Matuszek 1995). We first briefly give
the rules in order to give the reader an idea of the actual game, as it is played in
practice, and then proceed by pointing out some connections to similar games
that the reader might be familiar with.

  value:    1   2   3   4   5   6   7    8    9  10  11  12  13

Figure 6.1: Deck of cards and their associated values.

6.2.1 The New Eleusis
The New Eleusis is a card game played with decks of cards as depicted in Figure
6.1. The number of decks needed depends on the number of players but a
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(small) finite number of decks is sufficient. We now briefly go through the
rules of the game.
Beginning of the Game. One player (we call her Player 1) has the designated

role of God or Nature. She starts the game by constructing a secret rule
determining which sequences of cards are accepted. An example of such
a rule is the following: “every black card has to be followed by a card with an
even value”. Player 1 writes down the rule on a piece of paper without
any other player seeing it.

Secret Rule. The only constraints on the secret rule are that it can only take into
account the sequence of cards previously accepted and the card currently
played. Thus, whether a particular card is accepted can only depend on
the cards previously accepted and the card itself. External factors, such
as who played the card or whether the player uses his left or right hand
to play the card, have to be irrelevant.

Playing Procedure. Then each of the other players receives a number of cards
(usually 14). Player 1 draws cards from the deck until she draws one
that is accepted according to the rule; this card is called the starter card
and will be the first card of what is called the mainline. Cards that have
been rejected as starter card are placed below the starter card position,
in the sideline. Then the other players take turns in each playing one of
their cards by appending it on the right to the mainline. After each move,
Player 1 announces whether this card is accepted according to the secret
rule. If it is rejected, it is moved from the mainline to the sideline, directly
below the position at which it was played in the mainline, and the player
who played the card has to draw an additional card from the deck. In
case the card played is accepted, it stays in the mainline and the player
does not need to draw a card. If a player thinks that none of the cards
on his hand would be accepted, he can declare “no play”. In this case,
his hand of cards has to be shown to everyone, and Player 1 has to check
whether indeed none of the cards would have been accepted. If this is
the case, Player 1 gives him a new hand of cards, which should be one
card less than the hand he had before, and the old hand of cards is placed
above the mainline. If Player 1 finds a card that could have been played,
he plays it and the player has to draw five cards from the deck. Figure
6.2 shows an example of a configuration of the game.

Further Tasks of Player 1 (God). Player 1 has to keep track of the number of
accepted cards. This can be done by putting a marker every ten cards.
After 40 accepted cards, a sudden death period starts in which the other
players are expelled as soon as their card is rejected. If there is a prophet,
Player 1 has to approve/disprove of each of the prophet’s decisions con-
cerning the acceptance of cards.
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Becoming a Prophet. After playing a card, a player can declare himself
Prophet, in case the following three conditions hold.

1. There is not already a prophet.

2. The player has not been a prophet before.

3. There are still at least two other scientist players in the game.

Being a Prophet. A prophet has to take over the job of the god player and has
to announce whether played cards are accepted or rejected. After having
done this correctly 30 times, a sudden death period starts in which the
other players are expelled as soon as their card is rejected. If the prophet
makes a mistake, he is overthrown by the god player and returns to
normal play with his hand of cards and additionally five more cards.

End of the Game. The game ends in any of the following cases:

1. A player does not have any cards any more.

2. All players have been expelled during a sudden death period.

Scoring. The player with the highest score wins, where the score is calculated
as follows.

• For the scientist players:

– Everyone gets as many points as the highest number of cards
held by any player minus the cards in his/her own hand.

– Players without cards get four points bonus.
– A prophet who survived until the end gets one point for each

correctly accepted card and two points for each correctly rejected
card.

• For the god player:

– The god player’s score is the minimum of the highest score of
the other players and twice the number of cards played before
the prophet who survived until the end started being a prophet.

Note that the idea is to play repeatedly until every player has been the
god player once and add up the points of the plays.
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mainline

sideline

0 1 2 3 4 5position

Figure 6.2: Example configuration of the game with e.g. the following secret
rule “Alternate cards of odd and even value, with the following exception: if an ace
has been accepted, accept any card at the next position”.

Discussion of the rules. The winning conditions of the game as given above
seem rather complicated. The scoring rules reflect the aim of designing the
game in such a way as to achieve that Player 1 has an incentive to choose a
secret rule which is of a level of difficulty that makes the game entertaining
to play1. Player 1 gets the most points if she chooses a rule that is difficult
enough to not be discovered too quickly but still easy enough so that there is
a player who will eventually become a prophet and survive as a prophet until
the end of the game. Looking more closely into the scoring for the prophet, we
can see that both for a successful prophet and for Player 1 it is best if the other
players are still far from discovering the rule as the prophet (and eventually
also Player 1 (depending on when the successful prophet became a prophet))
get more points for cards being correctly rejected by the prophet.

From the perspective of the scientist players, discovering the rule can surely
be seen as profitable, as this allows them both to play the correct cards and
also to be come a successful prophet. In the process of discovery a scientist
player might face the problem of trade-off between playing cards which he
expects to be accepted and cards he expects to have the highest eliminative
power (Gierasimczuk and de Jongh 2010) with respect to the set of rules the
player still considers possible candidates for being the secret rule.

1This is different from Eleusis Express (Golden 2011) in which the player taking the role of
Player 1 does not get any points in that round.
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6.2.2 Connection to other games

As discovering the rule plays a crucial role in Eleusis, it is closely related to
the game Zendo (Looney et al. 1997), a game in which the goal is to inductively
infer a secret rule about the configurations of pyramid shaped pieces.

Even though in Eleusis, discovering the rule is not the main objective of the
scientist players, it still gives bonus points, and the reader familiar with the
game Mastermind might see some similarities between Eleusis for two players
and Mastermind. Mastermind is a code breaking game which has received
a lot of attention within computer science (Knuth 1976; Kooi 2005; Stuckman
and Zhang 2006) and also psychology (Best 2000; Verbrugge and Mol 2008). In
this game, one player constructs a code consisting of four pegs that can each
have one of six different colors. The other player starts by guessing the code
and gets feedback from the first player saying how many colors were at the
correct position, and how many were at wrong positions. The game continues
until Player 2 has inferred the code. Whereas the roles of the players seem
similar in Mastermind and Eleusis, there are some substantial differences. For
Mastermind, there are strategies that allow a player to infer the secret code with
certainty within a small number of rounds (e.g. five, cf. Kooi (2005)). In Eleusis,
in general this is not possible as there are rules that cannot be identified with
certainty at a finite stage of the game. Speaking in terms of formal learning
theory, there are thus rules which are not finitely identifiable (Mukouchi 1992).
To illustrate this, consider the situation in which the play seems to suggest that
the secret rule is to alternate black and red cards. Then no matter how long the
game has been going on already, it will still be possible that the rule says that
only for the first n cards (for n being some number greater than the number
of cards already accepted at the current position) black and red cards have to
alternate, and from position n + 1 only red cards will be accepted.

Another difference between Eleusis and Mastermind is the impact of the
chosen code or rule on the difficulty of the subsequent play. In Mastermind,
the difficulty for Player 2 to infer the code and for Player 1 to check the guesses
of Player 2 are similar for all the codes that Player 1 could choose. As we
illustrate in Section 6.3, in Eleusis on the other hand, the choice of secret rule
has a great influence on the difficulty of the game for both players.

6.3 Complexities in Eleusis

In this section, we will give a complexity analysis of different decision problems
and tasks involved in Eleusis. It is important to note that we do not propose
a game theoretical analysis of the game but give a complexity theoretical anal-
ysis of some decision problems involved in actually playing the game. One
motivation for our study is to investigate the complexity involved in scientific
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inquiry, trying to determine what features of rules contribute to the difficulty of
their inductive discovery. We are interested in the complexity that agents face
in interactive processes involving inductive inference. Thus, we examine the
complexity of the game Eleusis from an agent-oriented perspective focusing on
different tasks the players face during the game rather than taking an external
perspective examining the complexity of determining which player has a win-
ning strategy. There are several levels of complexity in the game of Eleusis. On
the one hand, there is the complexity or difficulty of playing the game itself, as
there is the challenge for Player 1 to choose a rule of adequate complexity. Note
that there is a close relationship between the complexity/difficulty of playing
the game and the complexity of the secret rule.

One way to determine the complexity of the secret rules would of course be
empirically, by determining how difficult it is for human subjects to discover
them. This would lead to an interesting study identifying the features of rules
about (finite) sequences that make their discovery easy or difficult. For the
moment, we leave such an analysis to future work, and in this chapter we
focus on a theoretical analysis of the complexity involved in Eleusis.

Another perspective from which we can investigate the complexity in Eleu-
sis is to capture the complexity of the secret rules using methods from descrip-
tive complexity by specifying the formal languages in which the rules can be
expressed. This way, the complexity of a rule is captured by the expressive
power required to express it in a formal language.

Example 6.1 As examples of rules of different descriptive complexity, consider
the following two rules

1. “At even positions, accept a card iff it is red, and at odd positions accept a card
iff it is black.”

2. “First accept two black cards, then three red, then five black, . . . then p2k red,
then p2k+1 black cards, etc.”, where pn is the n-th prime number. �

Then, it is easy to see that Rule 1 can be expressed by a regular ex-
pression (cf. e.g. Chapter 2 of Sudkamp (1988)) while Rule 2 cannot. Rule
1 can be expressed by the following regular expression over the alphabet
Σ = {(1,�), (1,�), (1,�), (1,�), . . . , (13,�), (13,�), (13,�), (13,�)} representing a set
of cards. Note that | stands for a Boolean “or”.

((h | d)(s | d))∗(� | (h | d)),

with h = ((1,�) | . . . | (13,�)), d = ((1,�) | . . . | (13,�)), s = ((1,�) | . . . | (13,�))
and c = ((1,�) | . . . | (13,�)). For showing that Rule 2 cannot be expressed by a
regular expression, we can use the pumping lemma (cf. e.g. pages 175–179 of
Sudkamp (1988)).
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With the only restriction of the acceptance of a card only depending on pre-
viously accepted cards, it is clear that rules from a wide range of the Chomsky
hierarchy can be taken.

The complexity of the secret rules can also be analyzed by investigating
the computational complexity of different decision problems arising from the
secret rules. We will now present some of these decision problems informally
and explain their motivation, before we will investigate them in more detail.
Consider the following decision problems related to Eleusis.

1. Given a class of rules, a configuration of the game (i.e., a finite sequence
of cards (accepted/rejected)), is there a rule in the class such that the play
so far has been consistent with the rule (i.e., a rule that could have been
the secret rule)?

2. Given a rule and a configuration of the game, is the play consistent with
the rule?

3. Given a rule, a finite sequence of previously accepted cards, and a card c,
is c accepted by the rule?

Problem 1 is the Eleusis analogue of the Mastermind-Satisfiability prob-
lem, which has been shown to be NP-complete (Stuckman and Zhang 2006).
However, an important difference of the problem for Eleusis is that we restrict
the class of secret rules. The reason for this is the following. Suppose we are
given a sequence of cards that have been accepted/rejected in the game so far.
Now, if we ask whether there is some rule that could be the secret rule that
Player 1 constructed, we only need to check if no card has been both rejected
and accepted at the same position. If there is no such card, then the answer
to the question is yes because there are rules that are consistent with the play
so far (e.g. the rule that explicitly says for each position to accept the card that
actually has been accepted and to reject the cards that have been rejected).

Problem 2 is a problem that the scientist players encounter when analyzing
the current situation in the game and deliberating whether a certain rule might
be the secret rule. Problem 3 is relevant in the game because it describes the
very task that Player 1 has to solve in each round. This problem is of course very
relevant in practice and should be kept in mind by Player 1 when constructing
the rule.

A closer investigation of these decision problems requires that we first
formalize some aspects of Eleusis. Let us start by fixing some notation.

Notation

• We let Card be a finite set, representing the set of cards; alternatively we
could also represent cards as a pair consisting of its value and its suit.
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• Card∗ is the set of finite sequences of elements of Card.

• For s ∈ Card∗, |s| denotes the length of the sequence s, defined in the
standard way.

• si denotes the i-th element of the sequence of cards s, and s<i denotes
the initial subsequence of s of length i, i.e., if s = s0s1 . . . si . . . sn, then
s<i = s0s1 . . . si−1

• For s, t ∈ Card∗, st is the sequence of cards resulting from the concatenation
of s and t.

• By Ci, we denote the set of cards that have been rejected at position i. �

Next, we want to formalize the secret rules. Considering Eleusis in practice,
human players mostly define rules in terms of certain properties or attributes
that the cards have, such as color, suit and value but also properties of having
a face (of some gender) and certain numerical properties of the value, such as
being even/odd, greater/smaller than some number or being prime. Analyzing
the reasoning involved in humans playing Eleusis requires a cognitively ad-
equate representation of the rules in terms of the attributes and properties of
the cards. Technically speaking however, all of the rules can of course also be
expressed in terms of the cards itself. This is what we will do in this chapter.

An Eleusis rule says which sequences of cards are accepted and which are
not. The way in which the rules are used in the game is that in each round
Player 1 has to check whether it is accepted to extend the current sequence
with a certain card. Thus, we represent rules as functions that tell us for every
pair consisting of a sequence of cards and a single card whether appending the
sequence with the card is allowed.

Definition 6.2 Eleusis rules ρ are functions ρ : Card∗ × Card→ {0, 1}. �

Note that with this definition, whether a card is accepted is fully determined
by the sequence of cards that have been accepted so far; the previously rejected
cards are irrelevant here. In practice, it can probably be observed that most
rules chosen by human players have the property that accepted sequences are
closed under taking prefixes, i.e., for any s ∈ Card∗, if ρ(s, c) = 1, then also for
every 0 ≤ i < |s|, ρ(s<i, si) = 1. However, in the rules of the game, this is not
required (Matuszek 1995), and therefore neither will we do here. Note however
that all rules we work with in this chapter are actually prefix-closed and our
complexity results also hold for a definition of Eleusis rules that requires the
rules to be closed under taking prefixes. To give the reader an intuition of what
it means for Eleusis rules to be prefix-closed, we give an example of a rule that
satisfies this constraint and one example of a rule that does not.
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Example 6.3 As an example of a prefix-closed secret Eleusis rule consider the
following rule.

• Accept a card iff accepting it implies that all accepted cards are red.

This rule on the other hand is not prefix-closed.

• Accept a card iff after accepting it the sum of the values of all accepted cards is
odd �

We will later see that the property of being closed under prefixes plays an
important role when we want to interpret complexity results about Eleusis
rules with respect to their impact on the difficulties for actual play.

6.3.1 Is a play consistent with a given class of rules?
In the following we will focus on several restricted classes of rules.

Definition 6.4 (Periodic Rules) We call a secret Eleusis rule ρ periodic if it
satisfies the following condition: There is some p ∈ IN such that for all s, s� ∈
Card∗, c ∈ Card, if |s| = |s�| = n and for all 0 ≤ l < |s|, it holds that if l mod p = n
mod p then sl = s�l , then it holds that ρ(s, c) = ρ(s�, c). We call the greatest such p
the number of phases of ρ. A periodic rule ρwith p phases can then be written
as a sequence of rules (ρ0, . . .ρp−1), where ρ(s, c) = ρi(s, c) if |s| mod p = i. �

Periodic rules are thus rules that can be split into different phases, each
following some rule which is independent of the other phases. Let us give
some examples of periodic rules with different numbers of phases.

Example 6.5 (Periodic Rules)

1. 1 Phase: “At every position, accept all the red cards and the black ones with a
male face. The other black cards are only accepted if they are preceded by two red
cards.”

2. 2 Phases: “On even positions only accept cards that have a face or a value
greater than or equal to the one of the card at the previous even position. At odd
positions, accept any card.”

3. 3 Phases: “Two cards of even value, then one with an odd value, then two even
ones again, etc.” �

Comparing these rules, we see that in Rule 3 we only need to look at the current
position in order to determine whether a card is accepted. In Rule 1, on the
other hand, if a black card without a male face is played, then Player 1 has to
look at the two previously accepted cards in order to determine if the card is
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accepted. In Rule 2, on even positions we also have to look at the card that is
placed at the previous even position, in order to check if a card is accepted.

This leads us to the notion of lookback, which is the length of the sequence
of previously accepted cards that are relevant when deciding whether a card
should be accepted.

Definition 6.6 (Lookback) Let ρ be an Eleusis rule ρ. Now if

min{l ∈ IN | for all c ∈ Card, s, s�, s�� ∈ Card∗ with |s��| ≤ l,ρ(ss��, c) = ρ(s�s��, c)}

is defined, we call it the lookback of ρ. �

Example 6.7 The following are example rules with lookback.

• Lookback 0: “Accept all black cards and all red cards that have a face; reject all
the others.”

• Lookback 1: “If the previous card had a female face, accept only aces.”

• Lookback 2: “Accept a card if and only if at least one of the following conditions
is satisfied

1. It is not the case that immediately before two cards with prime values have
been accepted,

2. The card is red.” �

Definition 6.8 (Periodic Rules with Lookback) We define Pp
l to be the class of

periodic rules ρ of p phases, such that the maximum lookback of ρ0, . . . ,ρp−1 is
l. �

Intuitively speaking, the simplest secret rules in Eleusis are those that ac-
cept a card only on the basis of the card itself, and neither take into account
previously played cards nor the position at which a card is played. These are
the rules in the class P1

0.

Fact 6.9 For every ρ ∈ P1
0, the following condition is satisfied: For all s, s� ∈ Card∗,

and c ∈ Card,ρ(s, c) = ρ(s�, c). Every rule ρ ∈ P1
0 can thus be expressed as a function

ρ� : Card→ {0, 1}. �

Example 6.10 The following are examples of rules in P1
0.

1. “Accept all red cards, reject all black cards.”

2. “Accept all cards with a value ≤ 7, reject all the others.”

3. “Accept all cards of clubs and all the ones of hearts that have an even value, reject
all the others.” �
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After we have introduced some formal notation and defined some classes of
Eleusis rules, we will now start investigating the complexity of decision prob-
lems related to Eleusis. We start with the Eleusis satisfiability problem ESAT,
which can be seen as an analogue to the problem investigated for Mastermind
in Stuckman and Zhang (2006). For Mastermind, the problem asks given a con-
figuration of the game, whether there is any secret code that is consistent with
the play so far. For Eleusis, the problem ESAT is to determine whether, given a
configuration of the game, there is some rule which is consistent with the play
so far. If we do not make any restrictions onto the class of rules under consid-
eration, this problem becomes easy as it boils down to just checking whether
the same card has been both rejected and accepted at the same position2.

Definition 6.11 For R being a class of Eleusis rules, the decision problem
ESAT(R) is defined as follows.

Decision Problem 6.12 ESAT(R)
Input: A sequence of cards s ∈ Card∗, and for each i, 0 ≤ i ≤ |s| a set Ci ⊆ Card
(representing the cards rejected at position i).
Question: Is there some ρ ∈ R such that for all i with 0 ≤ i < |s|, ρ(s<i, si) = 1 and
for all c� ∈ Ci,ρ(s<i, c�) = 0? �

The first class of rules for which we investigate this problem is the class of very
simple rules P1

0. Given a configuration of the game Eleusis, it is quite easy to
check whether it is possible that the secret rule that Player 1 has in mind is
in P1

0 . These rules are so simple because whether a card is accepted does not
depend on the current position of the sequence on the table, and neither on the
cards played so far. If during the play one card has ever once been accepted
and once been rejected, then the secret rule cannot be in P1

0. On the other hand,
if no card has been both accepted and rejected, then it is indeed possible that
the secret rule is in P1

0. Any rule that accepts all the cards that have previously
been accepted and rejects those who have not is a candidate.

Proposition 6.13 The problem ESAT(P1
0) can be solved in polynomial time.

Proof. Going through the sequence of cards, for each position, we check
whether the card accepted at the current position is rejected at the same position
or at a further position, and then for each card rejected at the current position,
we check if this card is accepted at any future position. As soon as we find a
card where any of this is the case, we can stop and the answer is no. If we reach
the end of the sequence, the answer is yes. Since in this procedure each card in

2This is the case because whenever there is no card accepted and rejected at the same
position, any function ρ : Card∗ × Card → {0, 1} that extends the current play (i.e., that accepts
the accepted cards at the correct positions and rejects the rejected ones) is an Eleusis rule
consistent with the game so far.
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the input is compared to at most all the other cards, this takes time at most n2

in the worst case, for n being the size of the input. �

We now look at ESAT for periodic rules without lookback.

Proposition 6.14 For any p ∈ IN, the problem ESAT(Pp
0) can be solved in polynomial

time.

Proof. First of all, if p ≥ |s|, then we only need to check if there is some position
i ≤ |s| such that si ∈ Ci. If this is the case, the answer is no, otherwise the answer
is yes. If p < |s|, then for all i, j such that i ≤ j < |s| and j mod p = i mod p, we
check if si ∈ Cj or sj ∈ Ci. If this is the case for any such i, j, then we can stop,
and the answer is yes. If there are no such i, j, then the answer is no. �

We will now move to rules that do take into account previously accepted
cards. Let us first consider ESAT(P1

1). Rules in P1
1 have the property that

whether a card is accepted is completely determined by the card accepted at
the previous position. So, we have to look for an instance where the same card
has been accepted at two positions, and at the immediate respective successors
of these positions the same card has been rejected in one case and accepted in
the other. If we find such an instance, we know that the secret rule cannot be
in P1

1.

Proposition 6.15 ESAT(P1
1) can be solved in polynomial time.

Proof. In order to solve this problem, we can go through the sequence of cards,
and for all 0 ≤ i < |s|, we check if there are i, j, i ≤ j < |s|− 1 such that si = sj and
si+1 ∈ Cj+1 or sj+1 ∈ Ci+1. If we find such i, j, then the answer is no. Otherwise,
the answer is yes. �

Note that given a sequence of cards, deciding whether there is some p such
that there is a rule in Pp

0 that could be the secret rule is trivial, as the answer is
’yes’ if and only if no card has been accepted and rejected at the same position.

A similar problem to investigate would be the problem of given a sequence
of cards and some k ∈ IN, decide whether there is some p ≤ k such that there
is a rule in Pp

0 that could be the secret rule. For this problem, it is sufficient to
check if is the case that the secret rule could consist of k independent rules.

Solving ESAT(P1
k), and in general ESAT(Pp

k) can be done analogously to
Proposition 6.15; instead of looking for positions where the same card has been
accepted, for each phase we have to look for two sequences of positions where
the same k cards have been accepted, and then check if it is the case that at the
next positions one card has been once accepted and once rejected.

Corollary 6.16 ESAT(Pp
k) can be solved in polynomial time. �
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Thus, we have seen that for several classes of rules, it can be decided in
polynomial time whether there is a rule in the class that is consistent with the
play so far. In actual play, we can think of Player 2 solving this problem for
various classes of rules, trying to restrict the set of rules that are still possible. In
other words, coming back to Eleusis as a simulation of scientific inquiry, this is
the problem describing the scientist checking whether there is some hypothesis
in a certain class that is consistent with the experimental results so far.

6.3.2 A hard task for Player 1: accept or reject?
After having discussed various tractable decision problems in Eleusis, we will
now show that Eleusis also gives rise to hard problems. We give a secret Eleusis
rule that has the property that checking whether the sequence of cards on the
table is consistent with the rule is NP-complete.

We use the Collision-Aware String Partition Problem (CA-SP) which Condon
et al. (2008) have shown to be NP-complete. CA-SP is the problem of deciding
whether a string can be partitioned into substrings of at most length k such that
no two substrings are equal.

Decision Problem 6.17 (Collision-Aware String Partition) Input: A string s ⊆
Σ∗, for Σ being a finite alphabet, and a natural number k ∈ IN.
Question: Is there a collision-free k-partition of s? That is, are there strings
p1, . . . , pl ⊆ Σ∗ such that

• p1 . . . pl = s,

• |pi| ≤ k for all i with 1 ≤ i ≤ l and

• for all i, j such that i � j and 1 ≤ i � j ≤ l it holds that pi � pj? �

Condon et al. (2008) investigate this problem also for strings over a four-
letter alphabet (i.e., |Σ| = 4) and show that it stays NP-complete. The motivation
behind studying the problem for an alphabet of size four is that it relates to
problems involved in the synthesis of long strands of DNA (sequences over
the alphabet {A,C,G,T}). We will show that CA-SP can also occur in a game of
Eleusis.

The following is the task Player 1 has to solve in each round of Eleusis
when giving feedback to Player 2. In the strategic considerations of Player 1,
the complexity of this task plays of course a crucial role since in practice she
should be able to solve it in reasonable time.

Decision Problem 6.18 E − Check(ρ)
Input: A sequence of cards s ∈ Card∗, and a card c ∈ Card.
Question: Is it the case that ρ(s, c) = 1? �
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Note that here we don’t take ρ to be part of the input but keep it fixed. This
way, we measure the complexity independently of the representation of the
rule.

We now show that there are Eleusis rules that make it NP-hard for Player 1
to check if a card should be accepted. One such example is a rule that forces
Player 1 to solve the problem CA-SP, because she has to check if the sequence
of suits of the cards accepted so far can be partitioned into k substrings such
that no two of them are equal. The parameter k will be given by the sequence
of accepted cards, or more precisely, by the position of the first King that has
been accepted. The rule we define does not force Player 1 to solve the CA-SP
problem in every round, but only whenever a so called trigger card is played.
This trigger card, (7,�) is accepted if and only if the sequence of previously
accepted cards represents a positive instance of CA-SP.

ρCA−SP(s, c) :=



1 if c � (7,�) or there is no i such that 0 ≤ i <
|s| and Valuesi = 13

or c = (7,�) and k := min{i | Value(si) = 13} is de-
fined and it holds that suit(s0)suit(s1) . . . suit(s|s|−1) can be
k-partitioned into strings of length at most k such that no
two strings are equal.

0 otherwise.

Now, the following proposition follows immediately.

Proposition 6.19 E − Check(ρCA−SP) is NP-complete.

Proof. NP membership is straightforward as it can be checked in polynomial
time if a proposed k-partitioning of the sequence of cards is indeed correct in
the sense that no substring is longer than k and no two are equal. NP-hardness
follows by reduction from CA-SP, as we will show now.

Given an instance of CA-SP over the alphabet Σ = Suit = {�,�,�,�} i.e., a
sequence s ⊆ Σ∗ and some k ∈ IN, we transform it into the following instance
f (s, k) of E − Check(ρCA−SP).

(s0,n0) . . . (s|s|−1,n|s|−1)(7,�),

where nk = 13 and for all the other ni with i � k we let ni ∈ {1, . . . , 12}.
Now, if s, k is a positive instance of CA-SP, then s can be k-partitioned into

different substrings, which then implies that (7,�) is accepted as the sequence
of the suits of the cards accepted before can be k-partitioned in the same way.

The other direction is also immediate: If (7,�) is accepted, then as there is
a King in the sequence it means that the sequence of the suits of the of cards
played before can be k-partitioned into different substrings, for k being the
position of the first King. Hence, (s, k) is also a positive instance of CA-SP. �
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The property that we used in the above proof is that the cards can be used
to code hard problems. We chose a reduction from the collision-aware string
partition problem because the transformation from a string of a four letter
alphabet to a sequence of cards of four different suits is particularly straight-
forward, showing that the coding of hard problems is not only theoretically
possible but can even be practically feasible to do in the actual play of the game.
This leads us to the question of what our analysis means for Player 1’s choices
in the game. Our hardness result shows that when Player 1 is constructing
a secret rule, she should be aware of its complexity to ensure that she won’t
be faced with intractable problems when she has to give feedback to the other
players, as it happens with the rule ρCA−SP.

6.3.3 An impossible task for Player 1: accept or reject?
We can now show that Eleusis allows for even harder rules: we give an Eleusis
rule such that it can get undecidable to compute whether a card should be
accepted. We will first introduce some notation for this.

Notation • We now use standard decks of cards, and let Card = Value×Suit,
for Value = {1, . . . , 13} and Suit = {�,�,�,�}.

• For a sequence of cards s ∈ Card∗, value(s) denotes the sequence of the
values, i.e., value(s) = value(s0) . . . value(s|s|−1).

• We define a function color : Card → {b, r}, assigning to each card its color
(black or red), defined as follows.

color(c) =
�

b if suit(c) ∈ {�,�}
r if suit(c) ∈ {�,�} �

We now define the set of black (red) words in a sequence of cards. The set of
black (red) words in a sequence of cards contains all the maximal subsequences
of black (red) cards in the sequence, i.e., the subsequences of black (red) cards
that are separated by red (black) cards. Let us illustrate this with an example.
Given the sequence s = (4,�)(3,�)(9,�)(8,�), its set of red words is the singleton
{(9,�)}, and its set of black words is {(4,�)(3,�), (8,�)}.
Definition 6.20 For a sequence s ∈ Card∗, we define the set of black words of s
BW(s) to be the set of all those w ∈ Card∗ with |s| ≥ 1 that satisfy the following
conditions.

1. ∀i such that 0 ≤ i < |w| it holds that color(wi) = b and

2. ∃i such that 0 ≤ i < |s| and ∀ j with 0 ≤ j < |w| it holds that si+ j = wj and

(i) if i > 0, then color(si−1) = r and
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(ii) if i + |w| < |s|, then color(s(i+ j)+1) = r.

The set of red words of a sequence of cards s, RW(s), is defined analogously
by swapping r and b in the above definition. Then, the multiset of black words
BW(s) of a sequence of cards s is defined as BW(s) = (BW(s),m), where m
gives the multiplicity of how many occurrences of each black word in BW(s)
there are in s. RW(s) is defined analogously. �

For constructing a rule that gives rise to an undecidable problem, we will use
the above definition and view a sequence of cards as a sequence of black and red
words. Our proof of undecidability is by reduction from Post’s Correspondence
Problem (Post 1946).

Decision Problem 6.21 Post’s Correspondence Problem
Input: A finite set of pairs of non-empty strings over a finite alphabet Σ, P =
{(x1, y1), . . . (xn, yn)}.
Question: Is there a sequence (i1, . . . im) for some m ∈ IN, with 1 ≤ ij ≤ n such that
for all 1 ≤ j ≤ m

xi1 . . . xim = yi1 . . . yim? �

Even if Σ is small (|Σ| = 2), the problem is undecidable (Ruohonen 1983).
We define an Eleusis rule that has the property that the problem of deciding

whether a card should be accepted is in general at least as hard as solving
Post’s Correspondence Problem. Before giving the formal definition, let us
explain the intuition. The idea of the rule is the following. Every card which
is not the trigger card (7,�) is accepted. The trigger card is accepted if and
only if the following holds: If we view the sequence of previously accepted
cards as a sequence of pairs, each consisting of a red word and a black word,
then it is possible to rearrange the order of these pairs (possibly using a pair
more than once or not at all) such that the resulting string of red values is the
same as the resulting sequence of black values. Let us illustrate this with an
example showing a positive instance. Consider the sequence of accepted cards
(9,�)(3,�)(9,�)(10,�)(3,�)(3,�)(10,�)(3,�)(3,�)(3,�), and assume that the next
card being played is the trigger card (7,�).Reading the sequence of previously
accepted cards as a sequence of red and black words, gives

(9,�)
����

wb
1

(3,�)(9,�)
����������������

wr
1

(10,�)(3,�)
������������������

wb
2

(3,�)(10,�)
������������������

wr
2

(3,�)(3,�)
����������������

wb
3

(3,�)
����

wr
3

.

Now, (3,2,2,1) is a solution since (value(wb
3) value(wb

2) value(wb
2) value(wb

1)) =
(3 3 10 3 10 3 9) = (value(wr

3) value(wr
2) value(wr

2) value(wr
1)). Similarly, (3, 2, 1) is

a solution. Thus, (7,�) is accepted.
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Formally, we define the rule ρPost as follows.

ρPost(s, c) :=



1 if c � (7,�) or
|BW(s)| � |RW(s)| or
|BW(s)| = |RW(s)| and s = wr

1wb
1wr

2wb
2 . . .w

r
kw

b
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wb
l ∈ BW(s) and wr

l ∈ RW(s) then ∃(i1 . . . im) with 1 ≤ ij ≤ k
and (value(wr

i1
) . . . value(wr

im
)) = (value(wb

i1
) . . . value(wb

im
)) or

|BW(s)| = |RW(s)| and s = wb
1wr

1wb
2wr

2 . . .w
b
kw

r
k with

wb
l ∈ BW(s) and wr

l ∈ RW(s) then ∃(i1 . . . im) with 1 ≤ ij ≤ k
and (value(wr

i1
) . . . value(wr

im
)) = (value(wb

i1
) . . . value(wb

im
));

0 otherwise.

Even though, this rule looks more complicated than the rules we have previ-
ously discussed, it is easy to see that it is still a proper Eleusis rule as it can
be written on a small piece of paper and moreover the acceptance of a card
only depends on the card itself and previously accepted cards. We now show
undecidability of E − Check(ρPost), the problem of deciding whether for a given
sequence s ∈ Card+, ρPost(s) = 1.

Theorem 6.22 E − Check(ρPost) is undecidable.

Proof. By reduction from Post’s Correspondence Problem with alphabet Σ =
Value = {1, . . . 13}. Given P = {(x1, y1), . . . (xn, yn)} with xj, yj ∈ Value∗,
we transform it into a sequence of cards. We define a (partial) function
g : Value∗ → (Value × Suit)∗ as follows: For each (xi, yi) ∈ P, we define
g(xi) = (xi0,�)(xi1,�) . . . (xi|xi|−1,�) and g(yi) = (yi0,�)(xi1,�) . . . (yi|yi|−1,�). Then,
let g�(P) = g(x1)g(y1) . . . g(xn)g(yn) and finally define the reduction function f
as follows: f (P) = (g�(P), (7,�)). First of all, note that f can be computed in
polynomial time since g� and g can be computed in polynomial time. Now, we
have to show that f is indeed a proper reduction.

Assume that P = {(x1, y1), . . . (xn, yn)} is a positive instance of Post’s Cor-
respondence Problem. Then there is a sequence (i1 . . . im) , with 1 ≤ ij ≤ n
such that xi1 . . . xim = yi1 . . . yim . Now, we have to show that ρPost( f (P)) =
ρPost(g�(P), (7,�)) = 1. First of all, note that by construction |BW(g�(P))| =
|RW(g(P))|. Moreover, (value(wr

i1) . . . value(wr
im)) = (value(wb

i1) . . . value(wb
im)).

Thus ρPost( f (P)) = 1.
For the other direction, assume that ρPost( f (P)) = 1, for f (P) = (g�(P), (7,�)).

By construction of g�(P), it has to be the case that |BW(g�(P))| = |RW(g�(P))|,
and g�(P) has to start with a red card. Thus, g�(P) = wr

1wb
1wr

2wb
2 . . .wr

kwb
k with

wb
l ∈ BW(g�(P)),wr

l ∈ RW(g�(P)) and there is a sequence(i1 . . . im) with 1 ≤ ij ≤ k
such that (value(wr

i1) . . . value(wr
im)) = (value(wb

i1) . . . value(wb
im)). But then it

must also be the case that xi1 . . . xim = yi1 . . . yim . This concludes the proof. �
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We have thus shown that whereas there are various tractable problems in
Eleusis, the game also gives rise to NP-complete problems and problems that
are undecidable even when played with a standard deck of cards.

This section has shown that the inductive inference game Eleusis is inter-
esting from a complexity theoretical point of view as it gives rise to decision
problems of various complexities. We also showed that there are hard decision
problems that are relevant for the actual play of the game, as they are not about
deciding which player has a winning strategy as the usual complexity results
about games, but instead describe the tasks the players face during the game.
Considering the problem E − Check(ρ), we have seen that as opposed to Mas-
termind, in Eleusis the complexity for Player 1 crucially depends on her choice
at the beginning of the game, as some choices can make it impossible for her to
make a move, i.e., to give feedback to Player 2. Therefore, we have shown that
the first player has a very active role in Eleusis, and as opposed to the literature
where the difficulty of Eleusis is only discussed with respect to the difficulty
to discover certain rules, our results show that Player 1’s first move has crucial
complexity implications also for herself. Coming back to Eleusis as a simula-
tion of scientific inquiry, our work thus fits with approaches putting forward
an interactive view on learning, with the environment or teacher having an
active role (Gierasimczuk 2010).

Linking up to previous chapters. As the current chapter presents a very
concrete setting, the reader might wonder how this relates to some of the
abstract concepts discussed in previous chapters.

Preferences In this concrete game, preference of the players can be seen as
given by the points they get at the end of the game.

Coalitional power Cooperation plays a crucial role in the game as in many
situations players can have an incentive to cooperate, e.g. in order to
stop some other player from winning or to be able to test some hypothe-
ses about the secret rule which they could not have tested individually
because they do not have the cards needed for that.

Information Players have perfect information about the course of the game
played so far but do not know what cards the other players have and
of course the Scientists do not know the secret rule. Playing a card and
getting feedback reduces the uncertainty as some hypotheses might be
discarded based on the feedback given by Player 1.
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6.4 Conclusions and Further Questions
We start by summarizing the main results of this chapter which we obtained
by giving a complexity theoretical analysis of different problems arising in the
game Eleusis.

As technical methods for showing hardness and undecidability, we used
reductions from a variation of the Partition problem which has relevance for the
synthesis of long strands of DNA, and a reduction from Post’s Correspondence
Problem, respectively.

6.4.1 Summary
This chapter brought together complexity theory, game theory and learning
theory. We investigated the inductive inference game Eleusis and gave a com-
putational complexity analysis of different tasks that players face during the
play of the game, ranging from polynomial time solvable to undecidable.

Tasks for scientists.
First of all, we have shown that for the natural class of periodic secret rules

with a fixed number of phases and lookback it can be decided in polynomial
time whether there is such a rule that is consistent with the current state of
the game. For the actual play of the game this means that if before the game
players agree to only use rules from one of these classes, it will be tractable
for the scientist players to check during the game whether a rule they have in
mind might be the secret rule.

Tasks for Player 1.
Moreover, our results also show that Eleusis can give rise to intractable

problems. We have constructed a rule that requires the players to solve the
NP-complete Collision-Aware String Partition Problem in order to decide if a
card should be accepted.

Finally, using Post’s Correspondence Problem, we showed that – even when
played with standard decks of cards – Eleusis allows for rules that make it
undecidable for Player 1 to check whether cards are accepted. This result
implies unplayability of the game in practice: Following the official rules of
the game, Player 1 can get into a situation in which she cannot decide anymore
whether a card should be accepted, and thus cannot perform a legal move any
more.

6.4.2 Conclusions
Let us come back to our research question.
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Research Question 4 Finally, to what extent can we use a formal anal-
ysis of interactive processes to draw conclusions about the complexity of
actual interaction?

• Are there concrete examples of interactions in which participants
actually encounter very high complexities which make it impossible
for them to act?

Based on our results in this chapter, we can give the following answers.

1. A complexity theoretical analysis of algorithmic tasks in recreational
games allows us to draw conclusions about the complexity that play-
ers face during play.
The main challenge for a formal complexity theoretical study to be able
to have some impact on real interaction seems to be carefully choose
appropriate problems to be analyzed. While complexity results for logical
theories or problems arising in sophisticated strategical reasoning do not
seem to have immediate practical implications3, the study of tasks in
recreational games which players cannot avoid seems to be promising.

2. In the game Eleusis we could identify undecidable problems which a
player can be forced to face after some move she has made in the first
round (i.e., constructing a secret rule which involves undecidable prob-
lems).

All our complexity results also extend to other versions of Eleusis such as
Eleusis Express (cf. Golden (2011)), but not immediately to other inductive
inference game such as Zendo (Looney et al. 1997).

Recommended rule adjustments. Based on our analysis, we give two recom-
mendations for adjusting the rules of Eleusis, restricting the set of secret rules
that Player 1 can choose from.

1. For the sake of actual playability, having in mind the limited computa-
tional power of actual players we recommend to restrict the set of Player
1’s possible choices of secret rules with respect to the complexity of check-
ing whether a card is accepted (Decision Problem 6.18).

2. For keeping the game entertaining, we suggest to explicitly require that
a secret rule should satisfy the following condition.

At every position, there is at least one card that is accepted.
3At least not without having carefully determined the precise connection between such

theories and forms of reasoning and interaction of real agents.
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The first suggestion could of course be made precise by formulating it in
terms of the computational complexity of the decision problem E − Check(ρ)
(Decision Problem 6.18). For the actual play however, simply adding an appro-
priate time-limit for Player 1 for deciding about the acceptance of a card (and
a penalty in terms of point deduction or immediate loss in case the time limit
is exceeded) would solve the potential problem, as this would make it more
apparent – especially for beginning players – to keep in mind the complexity
of the secret rule.

The second adaptation of the rules of the game ensures that it cannot happen
that at some point in the game all cards will be rejected. The following secret
rule would e.g. be forbidden by our second suggestion.

“Accept any card as the first card. Then accept a card if and only if its
value is greater than that of the previously accepted card”

This rule could be easily adapted by adding the exception “After a King has
been accepted, accept any card at the next position”. While in principle it is not
a problem to have a secret rule that at some point rejects all cards, we have
noticed that especially beginning players construct such rules without being
aware that at some point no cards will be accepted any more.

It is important to note that our recommended adjustments of the rules are
not aimed towards changing the actual game but rather to make explicit some
particularities of the game in order to make Player 1 aware of the consequences
of her choice of secret rule so that she can avoid rules that lead to undesired
pathological plays. These adjustments are probably unnecessary for experi-
enced players but certainly helpful for beginners.

6.4.3 Further Questions

From the complexity theoretical analysis of Eleusis given in this chapter, a
number of directions for further research arise.

Are there other examples of recreational games in which players can be forced
to encounter undecidable problems? The game we chose seems to be quite
special in the sense that the secret rules about sequences could in principle be
used to encode problems of arbitrary complexity. For other inductive inference
games such as Zendo, constructing very hard rules seems to be more difficult
than in Eleusis. It remains to be investigated whether there are also other
classes of recreational games which are actually being played and in which
very hard problems can arise already for just making a legal move.
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Game theoretical analysis of Eleusis. A precise game theoretical analysis of
Eleusis still has to be given. A first suggestion would be to look at versions in
which the set of rules to be chosen from is restricted. When considering the
strategic abilities of the players, the role of cooperation also needs to be taken
into account, as there could be an incentive for coalitions consisting of Player
1 and a Scientist to form, as collusion of such a form could lead to high payoff
for those two players.

Challenges for AI in games Eleusis as such presents some challenges for AI
methods for game playing due to high complexities that can arise. Considering
different simpler two-player variations in which Player 1 can only choose rules
of a certain (manageable) complexity would then allow an analysis of these
variations with respect to the existence of winning strategies for the players,
e.g. using methods from Schadd (2011).

Eleusis, complexity and formal learning theory. The work in this chapter
also promotes a categorization of secret Eleusis rules not only with respect to
their difficulty of being discovered but also with respect to how difficult it is for
the first player to give feedback to the other players. Our work thus fits with
approaches to formal learning theory that consider the learning process as an
interaction between a learner and a teacher (Gierasimczuk 2010; Gierasimczuk
et al. 2009b). Considering variations of Eleusis in which Player 1’s feedback is
more refined than simply accepting or rejecting a card, Eleusis can also be used
as a concrete setting in which different levels of helpfulness of a teacher can be
illustrated.

More generally, the current work promotes the computational complexity
analysis of inductive inference games, showing that a variety of interesting
problems arise, ranging from very easy to undecidable. This complexity the-
oretical perspective gives us new insights into the strategic abilities of agents
engaged in interactive processes that involve inductive inference and also high-
lights the special role complexity plays in inductive inference games, distin-
guishing them from other inference games such as Mastermind.

Empirical investigation of inductive inference games A natural follow-up
of our analysis would be an empirical investigation of the game being played
by human players. As a first step towards this, we refer to the webpage of
Sangati (2011) which is used to collect data of plays of the game. We will come
back to this in Section 7.3.4.
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Conclusion

This dissertation analyzed the (computational) complexity of interaction from
different perspectives. We started the investigation from an external perspec-
tive, analyzing the complexities of modal logical systems designed for reason-
ing about the strategic abilities of individuals and groups of agents involved
in interactive processes. We then zoomed in more into precisely defined game-
like interactions, focusing on the complexity of deciding whether a player has a
winning strategy. We then moved on by analyzing a different concept involved
in interactions between agents, namely that of information. We determined
the complexity involved in various tasks about comparing the information that
agents have about facts and about other agents. Finally, we gave complexity
results for tasks that are involved in actually playing a particular recreational
game in which the concept of information plays a crucial role.

We now summarize the results of each individual chapter before we will
give some general conclusions.

7.1 Summary of the chapters
Chapter 2 presented an extended modal logic framework for reasoning about
the strategic ability of groups of agents. The cooperation logic with actions
and preferences (CLA+P) was designed by extending the cooperation logic
with actions of Sauro et al. (2006) with a modal preference logic, which is a
fragment of the preference logic developed by van Benthem et al. (2007). The
particular contribution of our framework to the field of modal logics for multi-
agent systems is its combination of explicit actions and preferences, which
allows for explicitly distinguishing between different ways to achieve results,
w.r.t. whether these ways are good for the agents. We showed decidability
(in NEXPTIME) of this logic by determining an upper bound on how many
actions are needed to make coalitional power in implicit coalition modalities
explicit and by adapting the technique of filtration to handle the non-standard
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modalities of the logic such as the strict preference modality and the modality
of saying that performing a certain action leads to a (strictly) preferred state.

For a lower bound, we showed that already the fragment of CLA+P that
only deals with actions and their effects is EXPTIME-hard as it basically is a
full Boolean modal logic.

The design choices made for CLA+P were based on the conceptual motiva-
tion to keep the models very general, allowing for a wide range of situations
being modeled.

The work in Chapter 2 raised the question as to whether we can give some
guidelines for making design choices for developing modal logics that can
express certain concepts inspired by game theory or social choice theory. In
particular, Chapter 2 illustrated the need for a systematic study of the impact
that the choice of primitives of a modal logic for strategic ability has on the
complexity required for expressing interesting properties involving strategic
ability and preferences.

Chapter 3 picked up this question and focused on the computational com-
plexity required for reasoning involving game theoretical concepts. In this
chapter, we investigated three different approaches to modeling the ability
of groups in modal logic: simple coalition-labeled transition systems, action-
based coalitional models and power-based coalitional models, which are a
generalization of the simulation of Coalition Logic (Pauly 2002a) on Kripke
models. We have clarified the framework of power-based coalitional models
by showing how standard assumptions on coalitional power such as coali-
tion monotonicity, independence of coalitions and a consistency condition for
complementary coalitions relate to each other on these models. Moreover, we
gave a transformation from power-based coalitional models to corresponding
models of Coalition Logic. The existence of such a transformation follows
from earlier results by Broersen et al. (2007). The contribution of Chapter 3
is to give an explicit constructive transformation showing how the powers of
coalitions in power-based coalitional models can be transformed into effectivity
functions. Clarifying the relationship between implicit and explicit coalitional
power, we showed how a power-based coalitional model can be constructed
from an action-based coalitional model. Additionally, we showed how the
properties of an action-based model being reactive and its transitions being
determined by the choice of the grand coalition translate into a power-based
coalitional model being the normal simulation of a Coalition Logic model.

For each of the three classes of models, we determined under what model
theoretical operations certain properties about cooperation and preferences are
invariant. The properties range from the simplest notions about coalitional
power or preferences (e.g. a coalition having the ability to make a fact true, or
an individual preferring a state in which some fact is true, respectively) to more
complex combinations such as the ability of a group to make the system move
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into a state preferred by an agent, or the concept of (strict) Nash-stability.
Using the invariance results and underlying characterization results for

extended modal logics, we determined how much expressive power is needed
for expressing the different concepts on each of the three classes of models.
This way we identified extended modal logics in which the concepts can be
expressed. Then we explicitly gave formulas in the languages determined this
way that express the concepts. Finally, using complexity results for (extended)
modal logics, we could then for each concept and each class of models specify
an upper bound on the complexity (model checking and satisfiability) of modal
logics being able to express this concept.

We showed that whether the aim of the designer is to develop a formal
system for reasoning about stability notions involving strict preferences or
stability notions with weak preferences can make a crucial difference w.r.t.
which of the three classes of formal systems leads to the lowest complexity.
We showed that on simple coalition-labeled transition systems strong Nash-
stability is easier to express than Nash-stability, while on action- and power-
based models we see the opposite effect: on these classes of modes strong
Nash-stability turns out to be more demanding in terms of complexity and
expressive power.

Chapter 4 focused on the complexity analysis of the problem of deciding
which player has a winning strategy in different versions of Sabotage Games,
two-player games played on graphs. A key feature of Sabotage Games are the
asymmetric roles of the two players, Runner and Blocker: Runner moves locally
along the edges of the graph, while Blocker’s moves are of a more global nature:
she manipulates the graph by removing edges and thereby restricts possible
choices of moves by Runner. In the standard game, the goal of Runner is to reach
one of the goal vertices, while Blocker tries to prevent this from happening.
In our work, we examined the effects of different winning conditions on the
complexity. We showed that with opposite objectives (i.e., Runner trying to
avoid reaching the goal vertices, and Blocker trying to force him to move to
a goal vertex) the complexity of deciding if a player has a winning strategy
remains unchanged (PSPACE-complete). In a cooperative setting in which
both players’ aim is that Runner reaches a goal vertex however, the game
becomes easier (NL-complete).

For each of the three versions of winning conditions, we also determined
the complexity of the game in which Blocker is allowed to skip moves. Our
results show that the complexity stays the same because the winning abilities
in this game are as in the version in which Blocker has to remove an edge in
every round.

Chapter 5 is devoted to the concept of information and more specifically to
the complexity of tasks about comparing the information of different agents.
Our study took place in the semantic structures of (epistemic) modal logics. We
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focused on three different classes of decision problems: determining if agents
have similar information, if they have symmetric information in the sense that
they have similar knowledge about each other and deciding if the information
of an agent can be manipulated in a certain way.

We used the semantic structures of (epistemic) modal logics but our results
are independent of how certain properties can be expressed in the syntax of
such logics, as we purely focus on the tasks involved in reasoning about the
information of agents. Our results show that deciding information similarity
and information symmetry are in general tractable if we take similarity notions
based on the notion of bisimilarity. We introduced the notion of flipped bisim-
ilarity, which can be used to capture that two agents have similar information
about each other. We also used the notion of epistemic horizon of an agent,
which is the submodel with exactly that part of a Kripke model that is relevant
for the reasoning of an agent in a given situation. We showed that in reflexive
models (i.e., models in which it holds that whatever is known by an agent has
to be true) horizon bisimilarity becomes trivial for the horizons at the same
point in a model, while flipped horizon bisimilarity does not.

Moreover, we showed that deciding about whether it is possible to ma-
nipulate the information structure of agents in a certain way is in general
more difficult than deciding information similarity or symmetry. However,
under the assumption of information being modeled by S5 structures, deciding
whether an information structure can be restricted such that it is similar to
(at least as refined as) another structure is indeed tractable in the single-agent
case. We gave a polynomial procedure that uses a polynomial algorithm for
finding matchings in a bipartite graph. Whether for the multi-agent S5 case
the problem becomes NP-complete is still open and depends on whether we
can simulate arbitrary accessibility relations by combinations of equivalence
relations in a way that preserves the existence of submodels bisimilar to some
other model.

Concerning the location of the border between tractability and intractability,
our results show that static tasks about similarity and symmetry are tractable,
with some being among the hardest tractable problems (e.g. bisimilarity of
Kripke models or horizons of Kripke models) and others being trivial (e.g.
under the assumption of S5 models to decide whether the epistemic horizons
of two agents in the same situation are similar), while for the dynamic tasks
about information manipulation NP-hardness can arise quite quickly unless
we consider single-agent S5 structures.

Chapter 6 presented a case study of complexity in interaction by focusing on
the complexity involved in playing a concrete recreational game: the inductive
inference game The New Eleusis. This chapter served as an example of a formal
complexity analysis with implications for the actual play of a real game. Eleusis
is a card game in which one player (Player 1) constructs a rule about sequences
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of cards and the other players try to find out the rule by inductive reasoning
based on feedback they get as to whether cards they played are accepted or
rejected according to the secret rule. The game is interesting from a learning
theoretical perspective as it illustrates a form of learning with membership
queries.

We formalized the secret rules as functions that for every sequence of cards
and any card say whether it is accepted to extend the sequence with the card. We
identified different tasks that players face during the play and investigated their
complexity. We showed that for some natural classes of rules the problem of
deciding whether the secret rule might be in this class can be done in polynomial
time. For the task of Player 1 to say whether a card is accepted or rejected, we
have shown that Player 1 can choose secret rules that will make it extremely
hard – if not impossible – for her to perform this task and give feedback to the
other players. More precisely, our analysis shows that Player 1 can construct
a rule based on the NP-complete collision-aware string partition problem which
can force her to eventually solve this problem. Moreover, we showed that
indeed even undecidable problems can arise in the game, as the rules of the
game allow e.g. Player 1 to construct a secret rule that requires her to solve
Post’s correspondence problem (which is undecidable) in order to say if a card
is accepted. Based on this complexity analysis, we gave the suggestion of
restricting the set of secret rules Player 1 can choose from as to explicitly avoid
rules that make it impossible for Player 1 to perform a legal move (i.e., to give
accurate feedback). In practice, Player 1’s awareness of the impact of her choice
of secret rule could be sufficiently increased by introducing a time limit within
which she has to accept/reject cards in each round. A further constraint on the
secret rules can be to always accept at least one card. As opposed to the first
adjustment of the rules, this one is not aimed at making the game more playable
for players with restricted computational resources, but rather to ensure that
the game stays entertaining and to avoid that Player 1 chooses a rule which at
some point rejects all cards, which – as we observed during play of this game
– actually happens quite frequently with inexperienced players.

7.2 Conclusion

Let us now conclude what we have achieved with respect to answering our
four research questions.

Research Question 1 What formal frameworks are best suited for rea-
soning about which concepts involved in interaction?

• What should be the primitive notions a formal approach should be
based on?
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Part I of this dissertation has addressed this question by focusing on modal
logic frameworks for reasoning about strategic abilities of individuals and
groups. We have shown that an explicit representation of agents’ preferences
and actions by which results can be achieved can have conceptual benefits but
can also lead to high complexity of the resulting logical system, depending on
the chosen underlying logic of actions.

In Chapter 3, we presented a systematic study of different modal logic
frameworks for coalitional interaction. A model theoretical study of the invari-
ance of different game theoretical properties on modal logic models allowed us
to draw conclusions as to what kind of approaches are best suited for reasoning
about which kind of notions.

In particular, we have seen that attention has to be payed to the difference
between strict and weak preferences in stability notions that one wants to
reason about. We have seen that e.g. for Nash-stability, on action- and power-
based models its weak version is easier to express than the strong one while
for coalition-labeled transition systems the situation is just the opposite.

Research Question 2 What is the role of cooperation vs. competition in
the complexity of interaction?

• Does analyzing an interactive situation in general become easier if
the participants cooperate?

Chapter 4 has addressed this question for a class of games which represent
the travel through a network with connection failures. We have shown that
non-cooperative versions of this game are of much higher complexity than a
cooperative version. Moreover, changing the objectives of the players in the
non-cooperative case does not have any influence on the complexity as long
as the situation stays non-cooperative. Thus, while an analysis of interactive
situations with respect to strategic abilities seems to be easier with cooperation,
we also note that for modal logical frameworks for reasoning about coalitions,
sometimes the opposite effect can be observed. To be more precise, our work
in Chapters 2 and 3 has shown that if such systems are based on models in
which individuals rather than coalitions are taken as primitive notions, then
an exponential blow-up can occur when formalizing the ability of groups.

Research Question 3 Which parameters can make interaction difficult?

• How does the complexity of an interactive situation change when
more participants enter the interaction or when we drop some sim-
plifying assumptions on the participants themselves?

We have addressed this question by focusing on structures representing the in-
formation that agents have. In particular we analyzed the complexity involved
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in comparing and manipulating information structures as modeled by modal
logic. For the complexity of comparing information of agents, which in general
is tractable, we can conclude that under the assumptions of knowledge being
truthful and fully introspective, a complexity jump occurs with the introduction
of a second agent. Without any particular assumptions on knowledge, more
agents entering the situation does not significantly increase the complexity.

For the complexity of manipulating the information of agents in a certain
way, we have shown that as long as we only consider one individual whose
knowledge is truthful and fully introspective, this is easy. Dropping the as-
sumptions however makes this an intractable task.

Research Question 4 Finally, to what extent can we use a formal anal-
ysis of interactive processes to draw conclusions about the complexity of
actual interaction?

• Are there concrete examples of interactions in which participants
actually encounter very high complexities which make it impossible
for them to act?

While a complexity theoretical study of whole logical systems does not seem
to necessarily have implications for real interaction, a complexity theoretical
study of the tasks involved in interaction is more promising with respect to
implications for real interaction. Chapter 6 gave a case study of the card game
Eleusis and has shown that in general it cannot be taken for granted that
recreational games are playable in the sense that players should always be able
to find a legal move without facing any unsolvable problems. This leads us to
the conclusion that in the design of recreational games careful attention has to
be paid to the problem of deciding what are legal moves in a game, as this is
a problem that players face during the play, even without more sophisticated
strategical considerations.

Additionally, the complexity study of concrete tasks that interacting in-
dividuals face also has the benefit that such tasks can also be investigated
empirically, which can then lead to the development of new measures for the
cognitive complexity of such tasks.

In general, the work in this dissertation shows that tasks and problems
about and involved in interaction cover the whole range of the complexity
hierarchy. Moving from satisfiability of extended modal logic frameworks to
concrete tasks in playing actual games does not necessarily imply a decrease
in computational complexity. In general, we have seen that there is a need for
more game-specific characterizations of different kinds of interactive processes
according to their complexity.
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7.3 Further Work
Our work gave rise to some interesting further questions to investigate.

7.3.1 New questions for modal logics for reasoning about in-
teraction

Our analysis of different modal logic frameworks for reasoning about interac-
tion opened some interesting questions for further research of modal logic with
particular focus on complexity and game-like interaction.

Complexity of logics for multi-agent systems. The methodology we used in
Chapter 3 of systematically checking the invariance of interesting properties
on different kinds of models for determining how much expressive power is
needed to express them could be applied also to modal logic approaches for
reasoning about other kinds of concepts in multi-agent systems. This could
shed some light onto the landscape of modal logics developed for multi-agent
systems.

Additionally, our work raised the question of how lower bounds could be
obtained. To be more precise, this calls for a method of showing that for a given
property and a given class of models every modal logic (with some reasonable
properties) that is able to express this property on the class of models will have
at least a certain complexity.

Extensions of sabotage-style logics. In Chapter 4, we gave complexity re-
sults for some variations of Sabotage Games. The variations were originally
conceptually motivated by an interactive view on learning scenarios, focusing
on the interaction between Learner and Teacher. One of the key properties of
the games are the different roles of the players; one acting locally and the other
acting globally. We could also look at interesting game variations in which
the roles of the players are different and then investigate what will be the ef-
fect on the corresponding logic. A particularly interesting variation would be
the game in which Blocker also moves locally and removes edges by moving
along them. This version of a Sabotage Game could then be compared to the
game Pacman (cf. Heckel (2006)). A corresponding modal logic could then be
developed with a modality with the following semantics.

M,w |= �Pacmanϕ iff ∃v with (w, v) ∈ Ra for some a ∈ Σ andM−(w,v),a, v |= ϕ.

Thus, the Pacman-modality is a local dynamic modality, saying that it is
possible to move to a successor state while erasing that transition such that at
that state ϕ is true.
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Similarly, another variation on the game inspired by other games would be
to introduce imperfect information so that e.g. Blocker does not always know
the exact location of Runner. This would lead to a game closer connected to
the game of Scotland Yard, and accordingly to the question as to whether for
Sabotage Games it is also the case that both the version with perfect information
and that with imperfect information are of the same complexity (PSPACE), as
it is the case for Scotland Yard (Sevenster 2006).

We have shown that allowing Blocker to refrain from removing an edge does
not change the abilities of the players with respect to whether they can win.
Additionally, we could consider a version in which players are allowed to make
several moves in a row. In the logic, this would then lead to adding a Kleene
star operation for the diamond for Runner and/or the sabotage diamond for
Blocker. This then leads to the question as to what is the effect on the complexity
of the associated games and the extended Sabotage Modal Logic.

Modal logic frameworks for epistemic interaction. Taking a semantic and
agent-oriented perspective in Chapter 5 has led us to the investigation of vari-
ous tasks about comparing information structures of agents. This has led us to
an investigation of the similarity notion of flipped-bisimulation. Taking this a
step further would lead to other similarity notions that could be motivated by
a more internal agent-oriented perspective. One way to go into this direction
would be to explore both the model theoretical and the complexity theoretical
properties of weaker notions of similarity such as those underlying analogical
reasoning, on the domain of epistemic reasoning.

We have seen that both for static and dynamic tasks on information struc-
tures, increasing the number of agents involved or dropping particular assump-
tions on the epistemic accessibility relations (such as reflexivity) can cause a
complexity jump of the task under consideration. This leads us to the question
as to how far we can characterize the epistemic modal logics in which these
tasks are of certain complexity classes. As a first step, we suggest a careful
investigation of the problems for logics between K and S5.

7.3.2 New questions for complexity theory

The complexity analyses in this dissertation specifically focused on the com-
plexity that arises in interactive processes. The problems and tasks we inves-
tigated were motivated by their role in the interaction between (groups of)
agents.

More generally, our work also leads to some new paths to be explored
in the complexity analysis of graph theoretical problems. While for graph
isomorphism many variations have been investigated, much less work has
been done for problems involving graph bisimilarity. In particular, our work
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gave rise to the question as to which special cases of the NP-complete problem
of induced subgraph bisimulation can be shown to be tractable.

7.3.3 New questions for artificial intelligence in games
Our analysis of tasks in reasoning about agents’ information structures in Chap-
ter 5 is relevant for game AI for games that simulate social interaction (cf.
Chapter 4 of Witzel (2009)).

Our analysis of the game Eleusis leads to new challenges for AI for tack-
ling difficult tasks in determining what are legal moves, a task that is usually
straightforward.

7.3.4 New questions for cognitive science
Switching from an external perspective on interaction to a more internal per-
spective in which we investigated reasoning about the information of agents,
our work in Chapter 5 naturally calls for an empirical investigation as to
whether the borders of certain difficulty levels in actual reasoning about in-
formation correspond to our complexity findings.

In Chapter 6, we showed that a complexity theoretical study of interaction
can have some implications for real interaction. This was done for the game
Eleusis. In order to determine the precise impact of the complexity for actual
play of humans, some more work has to be done. As a first step for gathering
more insight into actual play of the game, data has to be gathered as e.g. in
Sangati (2011) in order to get a better idea of cognitive difficulties involved in
the game. Moreover, different strategies of inductive inference in practice can
be investigated this way.

Throughout this dissertation we have moved from a complexity analysis
of abstract general frameworks to a complexity analysis of tasks that players
face during play of a game. A natural next step would be to take this further
and focus on subtasks involved here. A complexity theoretical analysis of rea-
soning tasks involved in game playing can then also contribute to a theoretical
foundation underlying the design of games for teaching and training certain
skills such as performing arithmetic operations (Klinkenberg et al. 2011). Based
on a computational complexity analysis such tasks can be classified at a high
level.
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tions. Master’s thesis, IRIT, Université Paul Sabatier, Toulouse, 2007. Cited
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Samenvatting

Dit proefschrift geeft een formele analyse van de computationele complexiteit
van interactie van agenten.

Omdat veel interactieve scenario’s als netwerken of relationele structuren
kunnen worden gerepresenteerd, kiezen we in dit proefschrift voor modale
logica als gereedschap voor formalisatie.

Dit perspectief op interactie leidt ons tot een onderzoek naar de complex-
iteit van modale logica’s voor multi-agentensystemen. Het bepalen van de
complexiteit van interactie door middel van de complexiteit van het vervul-
baarheidsprobleem (SAT) of het model checking probleem is een te ruime aan-
pak omdat het iets zegt over hoe moeilijk die beslissingsproblemen zijn voor
willekeurige formules van een bepaalde logica en niet alleen voor die formules
die relevant zijn voor interactie.

Een meer interactie-specifiek beeld van de complexiteit in strategische in-
teracties zouden we kunnen krijgen door de complexiteit te bestuderen van
het berekenen of een speler een manier van spelen heeft die winst garandeert
(winnende strategie). Om dan de bron van deze complexiteit te bepalen kun-
nen we bestuderen welk invloed het op de complexiteit heeft als spelers andere
doelen hebben of als we de regels van het spelverloop wijzigen.

De hier genoemde complexiteitsanalyses beschouwen de complexiteit van
interactie vanuit een extern perspectief. Voor een meer interne visie op com-
plexiteit van interactie kunnen we structuren bekijken die de kennis en infor-
matie van de deelnemers van een interactief proces weergeven.

Uiteindelijk zou ook moeten worden bepaalt wat theoretische complexiteit-
sresultaten betekenen voor de moeilijkheid van interactieve processen in het
echte leven.

In hoofdstuk 2 van dit proefschrift presenteren we een modale logica voor
het redeneren over het strategische vermogen van agenten en coalities. We
doen dit op een expliciete manier door de acties en voorkeuren van de agenten
expliciet weer te geven. We bespreken de conceptuele voordelen van onze
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aanpak en bestuderen de complexiteit van het vervulbaarheidsprobleem van
de ontwikkelde logica (oplosbaar in NEXPTIME en EXPTIME-moeilijk).

In hoofdstuk 3 bestuderen we logica’s voor het redeneren over strategische
kracht op een meer algemeen niveau. We kijken naar drie soorten Kripke
modellen: eenvoudige modellen met een relatie voor elke coalitie, modellen
die acties expliciet weergeven en modellen die de interne structuur van het
strategisch vermogen van coalities weergeven. We laten zien dat de keuze van
het systeem bepaalt of sterke of zwakke evenwichtsbegrippen makkelijker zijn
om uit te drukken in de logica’s.

Hoofstuk 4 kijkt naar meer specifieke strategische interactie en de complex-
iteit van het beslissingsprobleem of een bepaalde speler een winnende strategie
heeft voor een sabotage spel. In dit tweespeler spel wandelt een speler door een
graaf met het doel om een bepaald knoop te bereiken. De tegenstander probeert
dit te voorkomen door kanten van de graaf te verwijderen. Onze resultaten to-
nen dat dit spel het makkelijkst is als de spelers samenwerken (NL-volledig) en
dat de niet-coöperatieve versies moeilijker zijn (PSPACE-volledig). Dit geldt
voor versies met een bereikbaarheidsdoelstelling maar ook voor een versie
waarin de eerste speler het doel juist niet wil bereiken.

Hoofdstuk 5 bestudeert interactie van agenten in detail. We bestuderen
de complexiteit van het vergelijken van de structuren die de informatie van
agenten weergeven zoals de semantische structuren van kennislogica’s. Onder
de aanname dat kennis altijd waar is en introspectief (positief en negatief) gaat
de complexiteit omhoog zodra we een tweede agent introduceren. Zonder die
aannames gebeurt dit niet. Voor de manipulatie van de informatie van agenten
laten we zien dat de aannames over de kennis sommige beslissingsproblemen
die in het algemeen NP-moeilijk zijn, makkelijker kunnen maken.

In hoofdstuk 6 wordt de complexiteit van het gezelschapsspel Eleusis – een
spel waarin inductief geredeneerd moet worden – bestudeert. Door middel
van het Post Correspondentieprobleem laten we zien dat spelers in het spel
Eleusis onbeslisbare problemen tegen kunnen komen bij het zoeken naar een
legale zet. Dit maakt het spel dus in feite onspeelbaar. We geven aanbevelingen
hoe de regels zouden kunnen worden aangepast om dit te voorkomen.



Abstract

This dissertation presents a formal analysis of the computational complexity
aspects of interaction of agents.

As many interactive scenarios can be represented as relational structures,
we use modal logic for formalizing them. This leads us to an investigation of
the complexity of modal logics for reasoning about interaction. Capturing the
complexity of interaction in terms of the complexity of satisfiability or model
checking however might not be very accurate as these problems are concerned
with arbitrary formulas of the associated language and not only with those
expressing relevant concepts for interaction.

In order to capture more interaction-specific complexities in game-like in-
teractive processes, we can investigate the complexity of deciding if a player
has a winning strategy in a given game. Testing the robustness of this com-
plexity with respect to small changes in the game rules or changing objectives
of the players then helps to determine the sources of the complexity.

The complexity notions discussed above capture the complexity of interac-
tion from an external perspective by focussing on how difficult it is to reason
about interaction. Taking a more agent-oriented perspective leads us to the
following question. What is the complexity of comparing agents’ information
structures and in how far is it influenced by underlying simplifying assump-
tions on the agents?

The final task arising for a formal analysis of the complexity of interaction
is then to determine to what extent the analysis has implications for real-life
interactive processes.

In this dissertation, it is shown how strategic ability of groups and individu-
als can be made explicit in modal logic in terms of actions and a representation
of agents’ preferences (Chapter 2). We discuss the conceptual benefits of such
an approach and also determine the computational consequences for the sat-
isfiability problem of the resulting logic, which turns out to be decidable in
NEXPTIME and EXPTIME-hard.
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More generally, considering simple coalition-labeled transition systems and
action- and power based normal modal logics for reasoning about cooperative
ability, Chapter 3 shows that the choice of primitive influences whether weak
or strong stability notions are easier to express.

Focussing on more specific game-like interaction and the complexity of
determining if a player has a wining strategy, Chapter 4 analyzes different
versions of Sabotage Games, two player games played on a graph with one player
moving through the graph trying to reach a goal vertex and the other player
obstructing him by removing edges. It is shown that cooperative versions
of this game are easiest (NL-complete), while the non-cooperative versions
with reachability and safety objectives for the first player are both PSPACE-
complete. The complexities are robust with respect to small changes in the
procedural rules of the games.

Zooming in onto the agents involved in interaction, Chapter 5 analyzes
the complexity of determining the relationship between different information
structures of agents. It is shown that when assuming knowledge to be truthful
and fully introspective a complexity jump occurs with the introduction of
a second agent, while in the general case more agents do not increase the
complexity. For problems related to the manipulation of agents’ information
it is shown that the assumptions on agents’ knowledge can make intractable
problems tractable.

In Chapter 6, the computational complexity of actually playing a recre-
ational game is investigated for the inductive inference game Eleusis. Using
Post’s Correspondence Problem, it is shown that players can be forced to face
undecidable problems during the game, which makes the game in principle
unplayable. Recommendations are given for adjusting the rules of the game.
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Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

ILLC DS-2006-05: Aline Honingh
The Origin and Well-Formedness of Tonal Pitch Structures

ILLC DS-2006-06: Merlijn Sevenster
Branches of imperfect information: logic, games, and computation

ILLC DS-2006-07: Marie Nilsenova
Rises and Falls. Studies in the Semantics and Pragmatics of Intonation

ILLC DS-2006-08: Darko Sarenac
Products of Topological Modal Logics

ILLC DS-2007-01: Rudi Cilibrasi
Statistical Inference Through Data Compression

ILLC DS-2007-02: Neta Spiro
What contributes to the perception of musical phrases in western classical music?

ILLC DS-2007-03: Darrin Hindsill
It’s a Process and an Event: Perspectives in Event Semantics

ILLC DS-2007-04: Katrin Schulz
Minimal Models in Semantics and Pragmatics: Free Choice, Exhaustivity, and
Conditionals

ILLC DS-2007-05: Yoav Seginer
Learning Syntactic Structure

ILLC DS-2008-01: Stephanie Wehner
Cryptography in a Quantum World

ILLC DS-2008-02: Fenrong Liu
Changing for the Better: Preference Dynamics and Agent Diversity



ILLC DS-2008-03: Olivier Roy
Thinking before Acting: Intentions, Logic, Rational Choice

ILLC DS-2008-04: Patrick Girard
Modal Logic for Belief and Preference Change

ILLC DS-2008-05: Erik Rietveld
Unreflective Action: A Philosophical Contribution to Integrative Neuroscience

ILLC DS-2008-06: Falk Unger
Noise in Quantum and Classical Computation and Non-locality

ILLC DS-2008-07: Steven de Rooij
Minimum Description Length Model Selection: Problems and Extensions

ILLC DS-2008-08: Fabrice Nauze
Modality in Typological Perspective

ILLC DS-2008-09: Floris Roelofsen
Anaphora Resolved

ILLC DS-2008-10: Marian Counihan
Looking for logic in all the wrong places: an investigation of language, literacy and
logic in reasoning

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus



ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
“Now that you mention it, I wonder. . . ”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over Com-
binatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
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