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Chapter 1

Query-efficient computation

1.1 Introduction

In this thesis we address the question of how to solve computational problems
when we can only afford to look at a minuscule fraction of the data. The subject is
easily motivated by the ever-increasing need to handle large datasets. For example,
suppose we are interested in checking whether or not a list of numbers is sorted
in increasing order (such a sequence is said to be monotonically increasing, or
monotone for short). As far as algorithmic tasks go, this is usually considered one
of the easiest because it can be solved in essentially the same time it takes to scan
the input. But if the sequence is extremely long, just reading all the numbers will
take precious time, and it is reasonable to wonder if there might be a faster way.
To make any savings in running time, we would have to be able to ascertain if the
sequence is monotone without inspecting the whole of it.

At first glance, this is not really possible: if we so much as miss a single
element, we will be forced to wrongly accept some non-monotone sequences (or
reject some monotone ones). This is because we will fail to see anything wrong
with a sequence that is sorted except for the one element that we didn’t look
at. In view of this, we could ask if there is anything to be gained by allowing
randomized algorithms that have a small probability of error, instead of returning
the answer with absolute certainty. Unfortunately not much can be done, even
in this case: it can be shown that for us to succeed on every sequence at least
two thirds of the time, we need to look at half the sequence no matter what. If
we didn’t, an adversary could choose an arbitrary monotone sequence, change
one randomly located element so that the new sequence is no longer monotone,
and give it for us to test. Note that if we inspect less than half of the elements
of such an “adversarial” sequence, it will look perfectly good to us more than
half of the time, regardless of our strategy. When this happens we cannot hope
to distinguish the sequence from a truly monotone one; since we need to accept
monotone sequences with probability 2

3
, our best shot to decrease the probability

1



2 Chapter 1. Query-efficient computation

of being fooled in these situations is to flip a biased coin and accept the sequences
that “look” monotone only with probability 2

3
. But then the error probability for

the adversarial sequences would be greater than 1
2
· 2

3
= 1

3
, which is more than we

want.
What this tells us is that, unless we are willing to look at the entire data, we

cannot hope to accept valid monotone sequences and still reject those that are
very “close” to being monotone. What if we are promised that the sequence is
either monotone or “far away” from it? Call a sequence “0.1-far from monotone”
if at least 10% of the sequence needs to be modified in order to make it increasing;
otherwise say that it is “0.1-close to monotone”. Let s = s1s2 . . . sn denote the
sequence, and let us refer to each question for the element si at some particular
position i as a query. An amazingly simple algorithm of Ergün et al. solves this
problem with just about log n queries [EKK+00]: First, pick a random index
i ∈ {1, 2, . . . , n}. Then query the ith element of s, which gives us the value of si.
Next perform a binary search for si in the sequence, as though s were actually
sorted. Finally, accept if the element found was si.

The algorithm just described is very efficient because the binary search takes
time logarithmic in the sequence length. It clearly accepts if s is indeed monotone,
because this is the only precondition for binary search to work. When s is 0.1-far
from monotone, the test rejects with probability at least 0.1. The easiest way to
see the latter claim is to rephrase it in an equivalent form: any sequence that the
algorithm above accepts with probability greater than 0.9 must be 0.1-close to
increasing. This is because the set of indices for which the binary search succeeds
can be shown to be increasing, which means that we can make s monotone by
modifying only the remaining indices. To see why, let i, j (i < j) be two such
indices and consider the point at which the binary search for si diverges from the
search for sj. Since both searches are successful, si must be less than or equal to
the pivot element, and sj must be greater than or equal to it; therefore si ≤ sj.
Note that, while a rejection probability of 0.1 may look low, it can be easily
amplified to take values arbitrarily close to 1 by performing a constant number of
independent repetitions of this basic test.

Many other questions of this type are possible. In the example above we were
given “black box” (or “oracle”) access to the sequence and we wanted to minimize
the number of elements inspected (queries). We can also consider properties of
graphs; for example, we may want to check if a given graph is “essentially the
same” as a known one, where “essentially” means that the two are considered
equivalent if they are the same up to relabelling the vertices. Here each query
could be a question about a particular entry of the adjacency matrix of the graph.

Usually, however, we will be exploring the difficulty of checking properties of
functions. Our example problem of testing monotonicity of a sequence can be
thought of as testing the monotonicity of a function from [n] to [n]. Similarly,
questions about graphs can be phrased in terms of functions on [n]×[n] representing
adjacency matrices.



1.2. Sublinear-time algorithms 3

In computer science, boolean1 functions play a prominent role (these are
functions where the range of definition is the pair {0, 1}). We will be interested in
boolean functions mostly (but not exclusively). In general, a property of functions
is simply a collection P of functions, and f is said to have property P iff f ∈ P.
The simplest example of a boolean property is that of being a constant boolean
function on {0, 1}n; for f to satisfy this property we must have either f ≡ 0
or f ≡ 1, so P has only two elements in this case. The input to the tester
would be the truth table of the function (i.e., its image on all elements of its
domain), and each query would be a question for the value that f assumes on
an element x chosen by the tester. A more interesting property could be that of
being determined by just k out of n input variables; such functions are termed
k-juntas .

1.2 Sublinear-time algorithms

In the classical decision setting, the goal of an algorithm is to determine whether
the input has property P or not. Just how easy or hard it is to decide which case
it is depends on P itself; this topic is studied by the theories of computability
and complexity (a modern account of many of the highlights can be found in
the book by Arora and Barak [AB09]). The complexity parameters under study
are usually the running time of the algorithm, its space usage, the amount of
randomness or advice it requires, or the possible tradeoffs among these measures;
this reflects the intent to study the inherent computational hardness of the problem.
Remarkably, the first research along these lines was carried out by Turing before
the advent of digital computers, in his classic paper introducing the notion of
computability [Tur36]. But with the tremendous increases in processors’ speed and
computational power, the idea of what may be calculated efficiently has undergone
revisions and refinements in what might seem the “wrong” direction. Originally,
the sole existence of an algorithm to solve a problem (i.e., its being computable)
used to be considered good enough. Subsequent considerations of how running time
scales with input size led Cobham [Cob65] and Edmonds [Edm65] to develop the
more restrictive notion of polynomial-time computability. In recent times, the sheer
amount of data available for many applications, such as computational biology,
data mining, etc., has become so large that often only linear-time algorithms
(or almost linear-time) can be considered efficient (although this is a much more
model-dependent notion than that of polynomial-time computability).

Linear-time algorithms compute the answer in essentially the same time it
takes to read the input. In this sense they are optimal because a correct algorithm
for an ordinary problem is typically obliged to examine its entire input. As we

1It has been said that, while it is an honor for a mathematician to have an object named
after him, the highest honor is conferred when the word ceases to be capitalized (as in, e.g.,
“abelian group”). Hence we will always write “boolean” in lowercase.
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saw before, even if we allow randomization, a sizable portion of the input needs
to be inspected. For these reasons, linear-time algorithms have long been thought
to meet the “golden standard” of efficiency.

In spite of this, nowadays a good deal of research effort is being devoted to
obtaining sublinear-time algorithms. These are programs that make assertions as
to whether or not a certain property is satisfied by the input after reading only a
very small portion thereof (see the recent survey of Ron and Shapira [RS12]). This
entails weakening our requirements. In Property Testing , we no longer expect an
algorithm to reject at the slightest discrepancy with the property P . Instead, we
ask it to distinguish between objects that have the property and those which are
“far away” from it. In other words, we would like to accept inputs that satisfy P ,
while ensuring that we reject “corrupt” inputs that cannot be made to satisfy P
even after significant changes. It does not matter what the tester outputs for those
functions in the gray area between “P” and “far from P”. The main measure of
efficiency for property testers is their query complexity , which indicates how much
of the input an algorithm needs to inspect in order to reach a reliable decision.
Surprisingly, many natural problems admit testers of constant query complexity,
which are sometimes referred to as local testers.

Property testing has its origins in the classic paper of Blum, Luby and
Rubinfeld [BLR90], who discovered the so-called “BLR test” for the class of
linear functions (or, what amounts to the same thing, a local test for the
Hadamard code). They were motivated by questions on program verification and
self-testing/correcting. Shortly thereafter, Rubinfeld and Sudan [RS96] studied
testers for the class of low-degree polynomials over a field (see also [AS03]). These
results were instrumental in the early algebraic proofs of the celebrated PCP
Theorem of Arora, Lund, Motwani, Sudan and Szegedy [ALM+98], and in the
proof that MIP = NEXP by Babai, Fortnow and Lund [BFL91]. The systematic
study of property testing for discrete structures such as functions and graphs
was initiated by Goldreich, Goldwasser, and Ron [GGR98]. Since then a great
many properties have been found to admit efficient property testers; examples
of well-studied problems include monotonicity [DGL+99, FLN+02, GGL+00],
juntas [FKR+04, CG04, Bla09], halfspaces [MORS10, MORS09], and having
concise representations [DLM+07]. The field has been extremely active over
the last few years—see, e.g., the aforementioned survey [RS12] as well as those of
Fischer [Fis01] and Ron [Ron08, Ron10].

Many uses of property testers have been found, as the subject arises naturally
in a variety of contexts; for example, see [CSZ00] for applications in computational
geometry. Property testers can be used to perform a quick, preliminary check that
discards the input instances that are far from satisfying the property. Only when
the input is close to satisfying it do we need to run a full-fledged, and potentially
much more expensive, decision algorithm. The same ideas apply in the context of
learning. Here one tries to construct a “learner” that, from sample values of the
function, is able to come up with good predictors of the values of the function
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on all possible inputs. The predictor itself will be a function that belongs to
the so-called “hypothesis class” of the learner (see Chapter 7). If the function is
far from the hypothesis class, then there is no such predictor and the learner is
bound to be unsuccessful. A preliminary run of the property tester can detect
this situation and spare us the unnecessary investment in resources.

Property testing of boolean functions will be our model of focus in most of this
thesis. This being a work in theoretical computer science, it is sometimes deemed
advisable to include a disclaimer that the algorithms presented here are mostly
of theoretical interest, and in this sense this is no exception. The emphasis will
be in understanding and not on the practicality or usefulness of these algorithms.
However, just as it would be reckless to assume their practicality without fine-
tuning them and/or studying their performance on real-world data, so it would
be foolish to assume they are impractical only because they arose in a theoretical
context. Some of them, such as those discussed in Chapter 6, definitely are in its
current form; and some of them, such as those in Chapter 3 look like they are
because of the large constants involved. However the latter are, more likely than
not, an artifact of the proofs, and it seems entirely within the realm of possibility
that many algorithms based on junta testing and core sample extraction can be
efficiently implemented in practical applications.

1.3 Function isomorphism

In the next few chapters we will be studying the problem of boolean function
isomorphism. We say that two boolean functions f, g : {0, 1}n → {0, 1} are
isomorphic if they are equal up to relabellings of the input variables, i.e., if it is
possible to permute the n input variables of f so that the resulting function is
equal to g. For instance, the functions

f(x1x2x3) = (x1 ∧ x2) ∨ x3

and
g(x1x2x3) = (x3 ∧ x1) ∨ x2

are isomorphic. On the other hand, a symmetric function, such as the majority
function on n variables

Maj n(x1x2 . . . xn) =

{
1 iff |x| ≥ n/2

0 otherwise
,

is only isomorphic to itself, because permuting variables has no effect on Maj n.
Function isomorphism is a well-studied problem since two functions being iso-
morphic means that they are “essentially the same” and have identical circuit
realizations. (A related notion is that of structural equivalence, which allows for
complementations of variables as well.) Moreover, many function properties can
be cast in terms of isomorphism; some simple examples include the following:
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• Dictatorships. The function g is a dictator if there is i ∈ [n] such that
g(x1x2 . . . xn) = xi for all x. This amounts to saying that g is isomorphic to
the fixed function f(x1x2 . . . xn) = x1.

• Monomials. The function g is a k-monomial if and only if it is isomorphic
to f(x1x2 . . . xn) = x1 ∧ x2 · · · ∧ xk.

• Parities. The function g is a k-parity if and only if it is isomorphic to
f(x1x2 . . . xn) = x1 ⊕ x2 ⊕ · · · ⊕ xk.

The feature all these examples share is the fact that the function f is a small
junta (that is to say, it depends on a small number of variables), and indeed the
question of how the complexity is affected by the stipulation that f should be a
small junta will play a major role in the sequel.

Although most of our focus will be on the query complexity of testing
isomorphism, we start with a few words about the state of the art of the algorithms
for deciding function isomorphism and their time complexity. When considering
the decision version of the problem, we assume that truth tables for both functions
are explicitly given. As explained in Chapter 4, there is a tight connection
between function isomorphism and hypergraph isomorphism: broadly speaking,
we can identify a boolean function f with the hypergraph with vertex set [n]
and edge set given by f−1(1) (where binary vectors x ∈ {0, 1}n represent subsets
of [n] as usual). Seen this way, the problem of function isomorphism becomes
a natural generalization of the analogous problem for graphs. The problem of
graph isomorphism has no known polynomial-time solution, despite being strongly
suspected not to be NP-complete [Sch88]; hence it is a natural candidate for an NP-
intermediate problem. It should be noted that the input size for the hypergraph
variant is Θ(2n), whereas it is Θ

((
n
2

))
= Θ(n2) in the graph setting. The larger

input size of the former can (and does) allow for faster solutions, relative to
the input size. While the best known upper bounds for graph isomorphism are
exponential (taking time 2O(

√
n logn ) on graphs with n nodes [BKL83]), a brute-

force search over all permutations yields a solution for hypergraph isomorphism
that runs in time Õ(n! · 2n) = 2O(n logn) for hypergraphs with n nodes, which is
only quasipolynomial in the input size. The paper [Luk99] of Luks actually put
the problem in P by providing a solution that runs in time 2O(n). His algorithm
proceeds by computing the automorphism group of a boolean function, a concept
that will prove important to us later in Chapter 4. A recent paper of Babai and
Codenotti [BC08a] considered the related problem of isomorphism of hypergraphs
whose rank (maximum size of edges) is bounded by k, and gave a solution in time

exp(Õ(k2
√
n )).

It is also possible to consider variations where the input functions are implicitly
encoded. For example, when f and g are given as boolean formulae, deciding
isomorphism becomes coNP-hard. This problem is not known to be in coNP,
although it is contained in ΣP

2 , the second level of the polynomial hierarchy. On
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the other hand, Agrawal and Thierauf [AT00] showed that this problem is not
complete for ΣP

2 under the assumption that the polynomial hierarchy does not
collapse to the third level.

1.4 General notation

Let n, k ∈ N and x ∈ {0, 1}n. We write [n] , {1, . . . , n} and, when the symbol
[k, n] refers to a discrete set from context, we write [k, n] , {k, k + 1, . . . , n}. We
refer to the elements of {0, 1}n as n-bit binary strings or vectors, indistinctly.
Whenever convenient, we identify a binary vector x ∈ {0, 1}n with a subset
of [n] in the natural way, and vice versa. That is, x ∈ {0, 1}n is identified
with the set {i ∈ [n] | xi = 1}, and S ⊆ [n] is identified with its indicator string
x ∈ {0, 1}n satisfying xi = 1 ⇔ i ∈ S. The Hamming weight of x ∈ {0, 1}n is
|x| , |{i ∈ [n] | xi = 1}|.

Often we also identify {0, 1}n with the direct product of n copies o F2 or Z2,
and we write x⊕ y (and sometimes x+ y) for the sum of x and y over Fn2 , which
coincides with their bitwise XOR. In a similar manner, x ∧ y denotes the bitwise
AND of x and y, and x∨y their bitwise OR. Of course we may use the set-theoretic
notation for these as well: x ∩ y and x ∪ y.

Let S be a set and k ∈ N. A k-set is a set of size k, and a k-subset of S is a
k-set that is a subset of S. The collection of all k-subsets of S is denoted

(
S
k

)
, and(

S
≤k

)
is the collection of all subsets of cardinality at most k; hence

∣∣(S
k

)∣∣ =
(|S|
k

)
. A

similar notation is used for binomial coefficients:(
m

≤ k

)
,

k∑
i=0

(
m

i

)
.

An equipartition of an s-set into t parts is a partition of the set into t parts of
size bs/tc or ds/te; there must necessarily be s mod t parts of the latter size.

The symbol log denotes logarithms to the base 2, and ln denotes the natural
logarithm.

Restrictions and assignment manipulation

Let a ∈ {0, 1}n, b ∈ {0, 1}m. The symbol a t b ∈ {0, 1}n+m denotes the
concatenation of a and b.

Given x ∈ {0, 1}n and a subset I ⊆ [n], x�
I

denotes the binary string obtained
by restricting x to the indices in I, according to the natural order of [n]. Concretely,
if I = {i1, . . . , it}, i1 ≤ i2 ≤ · · · ≤ it, then x�

I
= xi1xi2 . . . xit . We also write f�

S

for the restriction of a function to a set S ⊆ dom(f). For y ∈ {0, 1}|I|, x
I←y

denotes the string z obtained by substituting y for the values in x�
I
, i.e., satisfying

z�
I

= y and z�
[n]\I = x�

[n]\I.
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Parities

A parity is a linear form on Fn2 , i.e., a function f : {0, 1}n → {0, 1} that satisfies
the identity f(x⊕ y) = f(x)⊕ f(y). (To see why this condition corresponds to
linearity, recall that the only non-zero scalar in F2 is 1, and that sum over Fn2 is
the same as bitwise XOR.) Such a function is given by

f(x) = 〈x, v〉 mod 2 =
⊕
i∈[n]

xivi

for some v ∈ {0, 1}n. The function f associated with v in this way is denoted v∗;
we sometimes refer to |v| as the size of the parity f = v∗. The set of all linear
boolean functions on {0, 1}n is denoted PARn.

We say that f = v∗ is a k-parity if its associated vector v has Hamming weight
exactly k. The set of all k-parities on n variables is denoted PARnk ; the set of all
parities of size at most k is denoted PARn≤k. Sometimes we drop the superscript n.

Distributions

The term x ∼ D represents a random variable x drawn from the distribution D.
Also, e ∈ S under the probability symbol means that an element e is chosen
uniformly at random from a set S. That is, it is understood that distributions are
uniform by default, unless stated otherwise.

We use an algebraic notation to express convex combinations of distributions.
For example, for two distributionsD1 andD2, the distribution obtained by choosing
a random element of D1 with probability half, and a random permutation of D2

with probability half is denoted (D1 +D2)/2.
We use the phrase “with high probability” to mean that some event happens

with probability at least some constant p > 1/2.

The hypercube

The directed n-dimensional hypercube (or simply n-cube) is a directed graph
Hn = (Vn, En) with Vn = {0, 1}n and En = {(x, y) | x ⊆ y and |y| = |x|+ 1}.
The hth layer(or level) of Hn contains all x ∈ Vn with |x| = h.

There is a natural partial order ≤ on the vertices of the hypercube: x ≤ y iff
there is a directed path from x to y in Hn, i.e., when (xi = 1 =⇒ yi = 1) for all
i ∈ n. This ordering is the same as that of the inclusion poset of [n]: x ≤ y iff
x ⊆ y.

Hypergraphs

Hypergraphs [Ber89, Bol86] are a straightforward generalization of graphs. Recall
that the edge set of a graph is simply a collection of pairs of vertices. An undirected



1.5. Property testing 9

hypergraph is a pair H = (V,E), where V is a set of vertices and E ⊆ P(V ) is
an arbitrary collection of hyperedges (subsets of vertices). A hypergraph is thus
essentially the same as a set system on V .

We define a directed hypergraph analogously, except that edges are now
sequences (tuples) of elements of V rather than unordered sets. (Other definitions
of directed hypergraphs are also used in the literature.)

The hypergraph H is uniform if all of its hyperedges have the same cardinality r;
the number r is called the rank or arity of H.

Other

Expressions of the form x = Θ(y)±O(z) are taken to mean that there are constants
c > c′ > 0, d ≥ 0 such that c′y − dz ≤ x ≤ cy + dz.

Tilde notation is used to hide polylogarithmic factors—for example r(n) =

Θ̃(t(n)) if there is a positive constant c such that r(n) ≥ Ω
(

t(n)
logc t(n)

)
and r(n) ≤

O(t(n) logc t(n)).

1.5 Property testing

We formalize here the concept of property testing outlined in Section 1.1, within
the context of classical computation.2

1.5.1. Definition. Given a pair f, g : D → {0, 1} of boolean functions defined
on a domain D, the distance between them is

dist(f, g) , Pr
x∈D

[f(x) 6= g(x)].

The distance from a function f to a property P is the minimum distance
between f and g over all g ∈ P , i.e.,

dist(f,P) , min
g∈P

dist(f, g).

For ε ∈ R+, f is ε-far from P if dist(f,P) ≥ ε, otherwise it is ε-close to P .

1.5.2. Definition. A (q, ε)-tester for the property P is a randomized algo-
rithm3 T that queries an unknown function f on at most q different inputs in
{0, 1}n and then

2Property testing can also be studied within the context of quantum computation. This line
of research was introduced by Buhrman, Fortnow, Newman and Röhrig [BFNR08] and continued
in many other papers, but is beyond the scope of this thesis.

3No assumption of uniformity is implied by the use of the word “algorithm” here. In any
case the distinction is inconsequential for us since all our lower bounds apply to non-uniform
algorithms, and our upper bounds are usually uniform.
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1. accepts f with probability at least 2
3

when f ∈ P (completeness);

2. rejects f with probability at least 2
3

when f is ε-far from P (soundness).

(If the property deals with a pair of input functions, the algorithm may query
both.)

The query complexity of a (q, ε)-tester T is the worst-case number of queries
it makes before making a decision, taken over all possible inputs and over the
outcomes of all internal coin tosses of T (so it is at most q). The tester T is said
to be non-adaptive if its choice of queries does not depend on the outcomes of
earlier queries; otherwise it is adaptive.

The choice of 2/3 for the success probability is arbitrary, up to constant factors
in the query complexity, by standard probability amplification arguments.

Note that a deterministic, non-adaptive tester is determined by a fixed set Q
of q = |Q| queries, together with a function from {0, 1}q to {accept, reject}. A
randomized tester can be specified with a distribution over deterministic testers,
corresponding to the different outcomes of the internal coin tosses of the tester.

On the other hand, a deterministic, adaptive tester with q queries is specified
by a decision tree of depth q. (See the paper [BW02] of Buhrman and de Wolf
for a survey article on decision trees.) Each internal node is labelled by the next
query and has two outgoing edges labelled 0 or 1, according to the outcome. Each
leave is labelled by either accept or reject. Again, a randomized, adaptive tester
can be viewed as a distribution over deterministic, adaptive testers.

A tester that always accepts functions in P has one-sided error (or perfect
completeness); otherwise it has two-sided error.4

A (q, ε)-tester is said to be δ-tolerant if it also accepts when dist(f,P) ≤ δ
with high probability (where δ < ε).

By default, in all testers (and bounds) discussed we assume adaptivity and
two-sided error, unless mentioned otherwise. We assume without loss of generality
that testers never query the same input twice.

The query complexity of a property P for a given ε > 0 is the minimum value
of q for which there is a (q, ε)-tester for P .

A property P is q-testable if, for some constant ε > 0, there is a (q, ε)-tester
for P . If q = O(1), P is said to be testable.

1.5.1 Yao’s principle and non-adaptive lower bounds

Most lower bound proofs for randomized algorithms involve Yao’s principle [Yao77],
directly or indirectly. Suppose we fix an input size n and construct a matrix

4The reader may wonder whether it is also possible to define one-sided testers with perfect
soundness, which are allowed to err on the completeness side only. The reason these are not
studied usually is that, for most natural properties, such testers would easily be seen to require
Ω(2n) queries.
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whose rows correspond to all possible deterministic algorithms with a certain
complexity c (say time complexity, or query complexity), and whose columns
correspond to all possible input instances (functions in our case). Each entry in
the matrix tells us whether a particular deterministic algorithm gives the correct
answer on a particular input or not (although it could more generally contain
some real value measuring in some way the performance of the algorithm). Then
a randomized algorithm is the same as a distribution over the rows of the matrix,
whereas a distribution over the columns corresponds to a distribution of input
instances. Let D denote an arbitrary distribution on input instances. If there is a
randomized algorithm A that always works with probability p, then in particular it
works with probability at least p when fed with inputs from D (over the combined
probability space of the algorithm’s randomness and the input drawn from D).
But the success probability of A on inputs from D can be written as a convex
combination of the success probabilities of deterministic algorithms (the rows of
the matrix) on inputs from D. Therefore simple averaging tells us that there
must also be a deterministic algorithm AD (depending on D) that works with
probability at least p under D. If we can prove that the latter is impossible, then
we have shown that there is no good randomized algorithm with complexity c for
the problem in question.

This proves the “easy direction” of Yao’s principle, which is also the most
widely used. The ubiquity of the principle in lower bound proofs can perhaps be
explained by the fact that the reverse direction also holds: if there is no randomized
algorithm with complexity c and success probability p on all inputs, then it is
possible to concoct a distribution D such that no deterministic algorithm with
complexity c can succeed with probability p when the inputs are drawn from D.
This can be proven via the minimax theorem of von Neumann [Neu28] for finite
two-person, zero-sum games, which is also a consequence of the duality of linear
programming. So from a theoretical standpoint every (non-uniform) lower bound
can be shown using this method with a judicious choice of distribution D.

In our context, this is easiest to apply to non-adaptive lower bounds, which
are often proven by upper-bounding the statistical distance between two distribu-
tions P and Q of query responses: one where the input function has the property
we are testing, and one where it is far from having the property.

1.5.3. Definition. The statistical distance (or total variation distance) between
two probability measures P and Q is the largest possible difference between the
probabilities that they can assign to the same event. If P and Q are discrete
distributions on a countable set A, this is given by

∆(P ,Q) , max
S⊆A

∣∣∣∣ Pr
P∼P

[P ∈ S]− Pr
Q∼Q

[Q ∈ S]

∣∣∣∣ .
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The L1 distance between P and Q is

|P − Q|1 ,
∑
x∈A

∣∣∣∣ Pr
P∼P

[P = a]− Pr
Q∼Q

[Q = a]

∣∣∣∣ .
The L∞ distance between P and Q is

|P − Q|∞ , max
x∈A

∣∣∣∣ Pr
P∼P

[P = a]− Pr
Q∼Q

[Q = a]

∣∣∣∣ .
The following well-known lemma relates these measures.

1.5.4. Lemma. We have |P − Q|1 ≤ |A| · |P − Q|∞ and ∆(P ,Q) = 1
2
|P − Q|1.

Proof. The first inequality is obvious. For the second, let

px = Pr
P∼P

[P = x]

P (S) = Pr
P∼P

[P ∈ S] =
∑
x∈S

px

for x ∈ A, S ⊆ A, and define qx and Q(S) analogously. Observe that absolute
values are not needed in the definition of ∆(P ,Q) because we can replace one event
S with its complement A\S. Let S ⊆ A maximize P (S)−Q(S). For all x ∈ S we
have px ≥ qx, otherwise S\{x} would increase this value; and for all x /∈ S, we have
px ≤ qx. Therefore the largest P (S)−Q(S) is attained for S = {x ∈ A | px ≥ qx}.
Also for any T we have P (T ) + P (A \ T ) = Q(T ) +Q(A \ T ) = 1, so plugging in
our choice for S we obtain

P (S)−Q(S) = Q(A \ S)− P (A \ S)

=
1

2
(P (S)−Q(S) +Q(A \ S)− P (A \ S))

=
1

2

∑
x∈A

|px − qx|,

hence ∆(P,Q) = 1
2
|P −Q|1.

Let P be a property of functions mapping T to {0, 1}. Let ε > 0 and

R ⊆ {f : T → {0, 1} | dist(f,P) ≥ ε}

be non-empty. Any ε-tester for P should, with high probability, accept inputs
from P and reject inputs from R.
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1.5.5. Corollary. Let ε,P ,R be as in the preceding discussion, and let Dyes

and Dno be distributions over P and R, respectively. If q is such that for all
Q ∈

(
T
q

)
, ∑

a∈{0,1}Q

∣∣∣∣ Pr
f∼Dyes

[f�
Q

= a]− Pr
f∼Dno

[f�
Q

= a]

∣∣∣∣ < α,

then any non-adaptive tester for P with error probability ≤ 1/2− α/4 must make
more than q queries.

With α = 2/3 we obtain a bound for testers with success probability 2/3.

Proof. The condition says that, for any deterministic tester, the statistical
difference between the response vectors when f is drawn from Dyes and Dno is
less than α/2. By definition of statistical distance, the probability of acceptance
in both cases can only differ by less than α/2, irrespective of the acceptance
condition of the tester. But then the overall success probability of the tester when
f is drawn from (Dyes + Dno)/2 is less than 1/2 + α/4. To complete the proof,
invoke Yao’s lemma.

1.5.2 A lemma for proving adaptive lower bounds

If we allow for adaptive algorithms, the condition of Corollary 1.5.5 no longer
implies a lower bound of q queries. It does imply a lower bound of log(q + 1)
adaptive queries because for properties of boolean functions, the decision tree
describing an algorithm is binary, so a depth-d decision tree can be replaced with
a non-adaptive algorithm that queries in parallel all 2d−1 query strings associated
to its nodes, and then selects the ones that it actually needs.

However, the bounds obtained in this way are normally not very tight. We use
the following lemma in various lower bound proofs for two-sided adaptive testing.
It is proven implicitly in [FNS04], and a detailed proof appears in [Fis01]. Here
we strengthen it somewhat, but the same proof still works (we reproduce it here
for completeness).

1.5.6. Lemma. Let P ,R be as in Corollary 1.5.5, and let Dyes and Dno be
distributions over P and R, respectively. If q is such that for all Q ∈

(
T
q

)
and a ∈ {0, 1}Q we have

α Pr
f∼Dyes

[f�
Q

= a] < Pr
f∼Dno

[f�
Q

= a] + β · 2−q (1.1)

for some constants 0 ≤ β ≤ α ≤ 1, then any tester for P with error probability
≤ (α− β)/2 must make more than q queries.
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The hypothesis cannot be satisfied if α = 1 and β = 0 because of the strict
inequality in (1.1), so for any choice of α, β for which the lemma is applicable we
have that (α− β)/2 is bounded away from 1/2, and this yields a lower bound of
Ω(q) queries because the error probability of any tester can be reduced from 1/3
to (α− β)/2 by a constant number of repetitions (depending only on α, β).

Proof. Let T be any attempted tester that makes no more than q queries;
without loss of generality it makes exactly q queries. Let D = (Dyes +Dno)/2 and
fix a random seed such that the tester works correctly for f ∈ D with probability at
least 1− α−β

2
; now the behaviour of the tester can be described by a deterministic

decision tree of height q. Each leaf corresponds to a set Q ∈
(
T
q

)
, along with

an evaluation a : Q → {0, 1}; the leaf is reached if and only if f satisfies the
evaluation. Consider the set L corresponding to accepting leaves; f is accepted
if and only if there is (Q, a) ∈ L such that f�

Q
= a. These |L| ≤ 2q events are

disjoint.
Let p = Prf∼Dyes [f is accepted]. By the observations above,

p =
∑

(Q,a)∈L

Pr
f∼Dyes

[f�
Q

= a].

Likewise, let r = Prf∼Dno [f is accepted] and write

r =
∑

(Q,a)∈L

Pr
f∼Dno

[f�
Q

= a].

Conditioned on f ∈ Dyes, the success probability of the tester is p. Conditioned
on f ∈ Dno, it is 1− r. Hence its overall success probability is 1+p−r

2
. By (1.1), we

can perform a term-by-term comparison between the two sums in the expressions
for p and r, which yields αp < r+β, so p−r < (1−α)p+β ≤ 1−α+β. But then
the overall success probability of T when f is taken from D is 1

2
+ p−r

2
< 1− α−β

2
,

so the error probability of T is larger than (α− β)/2.

In practice we sometimes make use of slightly different claims; their proof is
still the same.

• The same conclusion holds if instead the inequality

α Pr
f∼Dno

[f�
Q

= a] < Pr
f∼Dyes

[f�
Q

= a] + β · 2−q

is satisfied for all Q, a.

• If Dyes and Dno are distributions of functions such that

Pr
g∼Dyes

[f ∈ P ], Pr
g∼Dno

[g ∈ R] = 1− o(1),
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the lemma is not quite applicable as stated. However, in that case the
success probability of the tester can be no larger than

(1 + p− r + o(1))/2 < 1− α− β
2

+ o(1)

(where p and r are as in the proof of the lemma), so an Ω(q) lower bound
still follows.

• Finally, note that the proof of the lemma is based on an indistinguishability
result that a tester needs q queries to tell apart a random f ∼ P from a
random f ∼ R (where P or R are chosen with probability half). If we drop
the condition that R only contain functions far from P , the implication for
property testing lower bounds disappears, but the indistinguishability result
still holds.





Chapter 2

Function isomorphism: first results

The content of this chapter is based on the papers

• S. Chakraborty, D. Garćıa–Soriano, and A. Matsliah. Nearly tight bounds
for testing function isomorphism. In Proceedings of the 22nd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1683–1702, 2011.

• N. Alon, E. Blais, S. Chakraborty, D. Garćıa–Soriano and A. Matsliah.
Nearly tight bounds for testing function isomorphism. Manuscript, 2011.

The second paper above is a combined version of the first and the article [AB10]
of Alon and Blais, who independently obtained overlapping results. It is currently
under journal review.

2.1 Property testing of isomorphism

Here we concern ourselves with property testing of boolean functions. Despite
the progress in the study of the query complexity of many properties, our overall
understanding of the testability of boolean function properties still lags behind
our understanding of the testability of graph properties, whose study was initiated
by Goldreich, Goldwasser, and Ron [GGR98].

A notable example that illustrates the gap between our understanding of graph
and boolean function properties is isomorphism. There are three main variants
to the isomorphism testing problem. (In the following list, an “object” refers to
either a graph or a boolean function.)

1. Testing isomorphism to a given object O. The query complexity
required to test isomorphism in this variant depends on the object O; the
goal for this problem is to be able to characterize the query complexity of
testing isomorphism to O in terms of some natural property of O.

17
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2. Testing isomorphism to the hardest known object. A less fine-
grained variant of the first problem asks to determine the maximum query
complexity of testing isomorphism to O over objects of a given size.

3. Testing isomorphism of two unknown objects. In this variant, the
testing algorithm has query access to two unknown objects O1 and O2 and
must distinguish between the cases where they are isomorphic to each other
or far from isomorphic to each other.

Answering these questions, as suggested by [FKR+04] and [BO10], is an
important step in the research program of characterizing the testable properties of
boolean functions, which constitutes the natural next step to take after the existing
work on the testability of graph properties: In [AS08], Alon and Shapira proved
that the family of “natural” graph properties testable with one-sided error is the
class of semi-hereditary properties; and in [AFNS09], Alon, Fischer, Newman and
Shapira showed that a graph property P can be tested with a constant number of
queries iff testing P can be reduced to testing the property of satisfying one of
finitely many Szemerédi partitions.

The problem of testing graph isomorphism was first raised by Alon, Fischer,
Krivelevich, and Szegedy [AFKS00] (see also [Fis01]), who used a lower bound on
testing isomorphism of two unknown graphs to give an example of a non-testable
graph property of a certain type. Fischer [Fis05] studied the problem of testing
isomorphism to a given graph G and characterized the class of graphs to which
isomorphism can be tested with a constant number of queries. Tight asymptotic
bounds on the (worst-case) query complexity of the problem of testing isomorphism
to a known graph and testing isomorphism of two unknown graphs were then
obtained by Fischer and Matsliah [FM08]. As a result, the graph isomorphism
testing problem is well understood. To summarize,

• Graphs to which isomorphism can be tested with a constant number of
queries are those which can be approximated by an “algebra” of constantly
many cliques [Fis05]. This means that an approximation to the graph
can be obtained from the cliques by applying set intersection, union and
complementation operations (more on this in Chapter 4).

• The worst-case query complexity of testing isomorphism to a given graph
on n nodes is Θ̃(

√
n ) [FM08].

Additionally, Babai and Chakraborty [BC08b] proved lower bounds for the
query complexity of the problem of testing isomorphism between two uniform
hypergraphs.

The picture is much less complete in the setting of boolean functions. The
first problem on page 17 is particularly interesting because testing many function
properties, like those mentioned in Section 1.3, are equivalent to testing isomor-
phism to some fixed function f . More general properties can often be reduced
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to testing isomorphism to several functions (as a simple example, notice that
testing whether g depends on a single variable can be done by first testing if g
is isomorphic to f(x) ≡ x1, then testing if g is isomorphic to f(x) ≡ 1− x1, and
accepting if one of the tests accepts). The “Testing by Implicit Learning” approach
of Diakonikolas et al. [DLM+07] can also be viewed as a clever reduction from
the task of testing a wide range of properties to simultaneous testing of function
isomorphism against a number of functions. We elaborate on this technique and
how our work relates to it in Chapter 6.

There are several classes of functions for which testing isomorphism is easy.
For instance, if f is symmetric (invariant under permutations of variables), then
f -isomorphism can be tested with a constant number of queries. (Since all
permutations of a symmetric f are the same, the problem reduces to testing strict
equivalence to a given function.) More interesting functions are also known to have
testers with constant query complexity. Specifically, the fact that isomorphism to
dictatorship functions and k-monomials can be tested with O(1) queries follows
from the work of Parnas, Ron and Samorodnitsky [PRS02].

The question of testing isomorphism against a known function f was first for-
mulated explicitly by Fischer, Kindler, Ron, Safra, and Samorodnitsky [FKR+04].
They gave a general upper bound on the problem, showing that for every function f
that depends on k variables (that is, for every k-junta), the problem of testing
isomorphism to f is solvable with poly(k/ε) queries. Conversely, they showed that
when f is a parity function on k < o(

√
n ) variables, testing isomorphism to f

requires Ω(log k) queries1. No other progress was made on the problem of testing
isomorphism of boolean functions until recently, when Blais and O’Donnell [BO10]
showed that for every function f that “strongly” depends on k ≤ n/2 variables
(meaning that f is far from all juntas on k −O(1) variables), testing isomorphism
to f requires Ω(log k) non-adaptive queries, which implies a general lower bound of
Ω(log log k) queries. They also proved that there is a k-junta (namely, a majority
on k variables) against which testing isomorphism requires Ω(k1/12) non-adaptive
queries, and therefore Ω(log k) adaptive queries.

Taken together, the results in [FKR+04, BO10] give only an incomplete solution
to the problem of testing isomorphism to a given boolean function and provide
only weak bounds on the other two versions of the isomorphism testing problem.

In this chapter and the next we settle questions 2 and 3 on page 18 up to
logarithmic factors. The first question will be studied in subsequent chapters.

2.2 Notation

To fix some notational conventions, recall that Sym(Ω) denotes the symmetric
group of all permutations of Ω, and Also, Sn denotes the group of permutations

1This was shown via an Ω(
√
k ) lower bound for non-adaptive testers obtained through the

analysis of random walks in Zq
2.
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on a set of size n such as [n]. For reasons that will become apparent shortly, the
product operation we use for the elements of Sn is πσ , σ ◦ π.

We consider the right action φ : Sn → Sym({0, 1}n) of Sn on {0, 1}n defined
in the following way: if π ∈ Sn, then φ(π) ∈ Sym({0, 1}n) is the permutation
mapping each x = x1x2 . . . xn ∈ {0, 1}n to φ(π)(x) , xπ(1)xπ(2) . . . xπ(n). This is
a faithful action, i.e., |imφ| = |Sn| = n!. We identify π and φ(π) and we write
xπ (or π(x)) in place of φ(π)(x). Observe that φ(π) effectively sends the input
at position i into position π−1(x), and as a result we have (xσ)π = xπ◦σ = xσπ

(note the order reversal). We also write fπ for the function on {0, 1}n defined
by fπ(x) = f(xπ); by the observations above, (fπ)σ = fπσ. Similarly, for a set
Q ⊆ {0, 1}n we define π(Q) , Qπ = {xπ | x ∈ Q}.

In this language, the functions f and g are isomorphic (in short, f ∼= g) if there
is π ∈ Sn with f = gπ. The set of all functions isomorphic to f is denoted

Isom(f) , {fπ | π ∈ Sn}.

The distance up to permutations of variables between f and g is defined by

distiso(f, g) , min
π∈Sn

dist(fπ, g) = dist(g, Isom(f)).

Evidently, distiso is a metric.
Testing f -isomorphism is defined as the problem of testing the property Isom(f)

in the usual property testing terminology. It is thus the task of distinguishing the
case f ∼= g from the case distiso(f, g) ≥ ε.

2.3 Testing function isomorphism with one-sided

error

As we shall see, the most straightforward tester for isomorphism against a boolean
function is non-adaptive and has one-sided error. It is only natural to begin
by studying testers that operate under such restrictions. Whereas the choice of
adaptivity/non-adaptivity does not significantly affect the bounds (see Chapter 5),
the fact that the one-sided error case is strictly harder than the two-sided error
case was established in [FKR+04]. In particular, they showed the impossibility of
testing isomorphism to 2-juntas with one-sided error using a number of queries
independent of n (their lower bound is Ω(log log n), which follows from an Ω(log n)
lower bound on non-adaptive testers). Here we show that the worst-case query
complexity of testing isomorphism to a k-junta with one-sided error is Θ

(
log
(
n
k

))
,

up to k = n1−δ (for any δ > 0).

2.3.1. Theorem (Chakraborty et al. [CGM11c]).
For every integer k ∈ [2, n] and every constant 0 < ε ≤ 1

2
, there is a k-junta
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f : {0, 1}n → {0, 1} for which ε-testing f -isomorphism with one-sided error requires
Ω
(

log
(
n
≤k

))
adaptive queries. On the other hand, for any k-junta there is a one-

sided tester of isomorphism making O
(

1
ε
k log n

)
non-adaptive queries.

Regarding the lower bound, note that for k ≥ n/2 we have log
(
n
≤k

)
= Θ(n);

and for k < n/2, log
(
n
≤k

)
= Θ(log

(
n
k

)
) = Θ(k log(n/k)). The range of k in the

theorem is tight: when k = 1, as we mentioned in the introduction, testing
isomorphism to any 1-junta with one-sided error can be done with O(1/ε) many
queries [PRS02].

The lower bound in Theorem 2.3.1 holds for the special case of k-parities (at
least when k ≤ n/2). Namely, we show that for any 2 ≤ k ≤ n − 2, the query
complexity of testing with one-sided error whether a function is a k-parity (i.e, the
XOR of exactly k indices of its input) is Θ

(
log
(
n
k

))
. (This contrasts starkly with

the situation for the problem of testing with one-sided error whether a function is
a k-parity for some k, which can be solved with a constant number of queries by
the classic test of Blum, Luby and Rubinfeld [BLR90].)

2.3.1 Upper bound

The upper bound of Theorem 2.3.1 can be seen as an instantiation of the “Occam
razor” learning algorithm, which in this particular case maintains a collection of
candidate permutations, and sufficiently many random samples are drawn to weed
out the bad candidates so that only good ones remain eventually. It is well known
that certain learning algorithms imply testing algorithms because proper learning
is a strictly harder task than testing (see the survey by Ron [Ron08]). At any
rate, the correctness of this procedure is easy to prove directly.

2.3.2. Proposition. Isomorphism to any given f : {0, 1}n → {0, 1} can be ε-

tested with O
(

1+log|Isom(f)|
ε

)
non-adaptive queries and one-sided error.

Note that for any k-junta f , |Isom(f)| ≤
(
n
k

)
· k! ≤ nk. (For a k-parity f this

bound can be strengthened to |Isom(f)| = |PARk| =
(
n
k

)
.)

Proof. Consider the simple tester described in Algorithm 1. It is plain that this

Algorithm 1 (Non-adaptive one-sided-error tester for the known-unknown
setting)

1: let q ← 1
ε (2 + ln |Isom(f)|)

2: for i = 1 to q do
3: pick xi ∈ {0, 1}n uniformly at random
4: query g on xi

5: accept iff there exists h ∈ Isom(f) such that g(xi) = h(xi) for all i ∈ [q]
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is a non-adaptive one-sided error tester, and that it makes just O((log |Isom(f)|)/ε)
queries to g. So we only need to show that for any f and any g that is ε-far
from f , the probability of acceptance is small. Indeed, for a fixed h ∈ Isom(f)
the probability that g(xi) = h(xi) for all i ∈ [q] is at most (1 − ε)q. Applying
the union bound on all functions h ∈ Isom(f), we can bound the probability of
acceptance by |Isom(f)| (1− ε)q ≤ |Isom(f)| e−εq ≤ exp(−2) < 1/3.

2.3.2 Lower bound

The lower bound of Theorem 2.3.1, the most interesting part, is obtained via the
study of one-sided testers of isomorphism to k-parities. Note that if f ∈ PARk,
then testing isomorphism to f is the same as testing membership in PARk.

2.3.3. Lemma. Let f ∈ PARk, g ∈ PARk′. Then

distiso(f, g) =

{
0 if k = k′,
1
2

if k 6= k′.

Proof. It is easy to see that if k = k′ then f ∼= g, whereas if k 6= k′,

distiso(f, g) = min
π

dist(f, gπ) = min
h∈PARk′

dist(f, h) = min
h∈PARk′

dist(f ⊕ h, 0) = 1/2,

because whenever h ∈ PARk′ , k
′ 6= k, f ⊕ h is a parity on a non-empty set and

therefore takes the value one on exactly half the inputs.

Observe that testing isomorphism to k-parities is equivalent to testing isomor-
phism to (n−k)-parities. This is immediate from the fact that p = p(x) ∈ PARk if
and only if p′(x) , p(x)⊕ x1 ⊕ · · · ⊕ xn ∈ PARn−k, making it possible to simulate
queries to p by making queries to p′ and vice versa.

2.3.4. Lemma. Let ε ∈ (0, 1
2
], n ∈ N and k ∈ [0, n]. Any ε-tester for PARk can be

made into an ε-tester for PARn−k, preserving the query complexity, type of error,
and adaptivity.

Broadly speaking, we show that for a suitable choice of k′, it is hard to tell
PARk′ and PARk apart. (Note however that sometimes this is a very easy task,
even if k and k′ are very close: if k′ = k + 1, a single query to the all-ones vector
suffices.) But first we need to discuss one of the cornerstone results in extremal
set theory.
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Forbidden intersections

We say that r is a forbidden intersection size for a family of sets F if for no two
distinct A,B ∈ F is |A ∩ B| = r. If F is t-uniform (i.e., all its elements have
size t), the following theorem puts an upper bound on the size of any such family.
(Bounds for non-uniform families are also known, but are not strong enough for
our intended usage.)

2.3.5. Theorem (Frankl & Wilson [FW81, Theorem 7b]).
Let t

2
≤ r < t ≤ m be positive integers and suppose t − r is a prime power. If

F ⊆
(

[m]
t

)
is a family of sets with forbidden intersection size r, then

|F| ≤
(

2t−1−r
t

)(
2t−1−r

r

)(m
r

)
.

For the sake of completeness we present here the beautiful linear-algebraic
proof of Theorem 2.3.5 found by Alon, Babai and Suzuki [ABS91] for the case of
prime t− r (which suffices for us); the general case where t− r is a prime power
is more complicated to prove. The interested reader can learn more about the
so-called “linear algebra method” by consulting the unpublished manuscript of
Babai and Frankl [BF92] and Chapter 13 of the book by Jukna [Juk11].

The proof is based on a certain “modular version” of the theorem, which
generalizes a result of Ray–Chaudhuri and Wilson [RCW75]. Let p ∈ N and L a
set of integers. We say that a family F is (L mod p)-intersecting if for all a, b ∈ L,
a 6= b, it holds that |a ∩ b| ∈ L+ pZ.

2.3.6. Theorem. Let p be a prime and F be a t-uniform, (L mod p)-intersecting
family of subsets of [m], with t /∈ L+ pZ. Then F ≤

(
m
|L|

)
.

Proof. Let us regard F as a subset of {0, 1}m and associate with every a ∈ F
the function fa : {0, 1}m → Fp

fa(x) =
∏
l∈L

(〈a, x〉 − l).

Define, for each subset I ⊆ [m] of size |I| < |L|, the function gI : {0, 1}m → Fp

gI(x) =

( ∑
j∈[m]

xj − t

)∏
i∈I

xi.

Observe that

• For each a ∈ {0, 1}m ⊆ Fp, fa(a) 6= 0 (as 〈a, a〉 = |a| = t /∈ L+ pZ).
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• For each S ⊆ [m], gI(S) 6= 0 if and only if |S| 6≡ t (mod p) and S ⊇ I. In
particular gI(a) = 0 for a ∈ F .

• Both fa and gI can be represented as polynomials over Fp[x1, . . . , xm]
by expanding the products. Moreover we can make these multilinear by
replacing every occurrence of a power xji , j > 1 in a monomial by xi (which
doesn’t affect their evaluation on {0, 1}m).

• deg fa, deg gI ≤ |L|.

The number of polynomials we have introduced is |F|+
(

m
≤|L|−1

)
. Below we

show that they are all linearly independent over Fp. Since the set of all multilinear
polynomials of degree ≤ |L| over Fp is a vector space of dimension

(
m
≤|L|

)
(generated

by the multilinear monomials of degree ≤ |L|), we conclude

|F| ≥
(

m

≤ |L|

)
−
(

m

≤ |L| − 1

)
=

(
m

|L|

)
.

To prove linear independence, assume∑
a∈F

λafa +
∑

|I|≤|L|−1

µIgI = 0

for some sequences {λa}, {µI} of elements of Fp. Evaluating at a0 yields∑
a∈F

λafa(a0) +
∑

|I|≤|L|−1

µIgI(a0) = λa0fa0(a0) + 0 = 0,

i.e., λa0 = 0. So the linear dependence must occur among the gI ’s. It is now easy
to prove by induction on the inclusion poset (or in the size of I) that all µI ’s are
zero as well. Indeed, let |I| ≤ |L| − 1 and assume µJ = 0 for all J ⊂ I (where the
inclusion is strict). Evaluating now at I yields∑

|J |≤|L|−1

µJgJ(I) =
∑
|J |⊆I

µJgJ(I) = 0 + µIgI(I) = 0,

so µI = 0, completing the proof.

Although we will not use this fact, it is not hard to see that this modular
theorem can be applied directly to give the bound |F| ≤

(
m

t−r−1

)
in the case

t ≥ 2r + 1 of the non-modular problem, which is not covered by our statement of
Theorem 2.3.5; see [FW81, Theorem 7a] for details. The case of interest to use
requires a somewhat more involved argument:

Proof of Theorem 2.3.5 (for prime t− r). Assume otherwise. We intend
to use the previous theorem and forbid intersection sizes that are a multiple of p
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on a related set system. Write d = 2r − t + 1 ∈ [1, t − 1]. As the family F is
t-uniform, there must be a d-set D ∈

(
[m]
d

)
included in at least

|F|
(
t
d

)(
m
d

)
elements of F ; to obtain this bound, calculate the size of the set{

(A,D) | A ∈ F , D ∈
(
A

d

)}
and divide by the number of different d-subsets D of [m]. If we remove D from
all elements of this subfamily, we obtain a (t− d)-uniform set system G ⊆ [m] \D
with forbidden intersection size r − d = t− r − 1. Let a, b ∈ G be distinct; then
0 ≤ |a∩ b| < t− d = 2(t− r)− 1. Since t− r > 0, in this setting |a∩ b| ≡ t− r− 1
mod (t− r) implies |a ∩ b| = t− r − 1 = r − d. On applying Theorem 2.3.6 to G
and p = t− r, |L| = p− 1, we find that

|G| ≤
(

m− d
t− r − 1

)
=

(
m− d
r − d

)
,

implying

|F| ≤
(
m
d

)(
t
d

) (m− d
r − d

)
=

(
m

r

)
r!(t− d)!

t!(r − d)!
=

(
m

r

)(t+r−d
t

)(
t+r−d
r

) ,
which simplifies to the expression given.

It is interesting to note that the theorem ceases to hold when t−r is not a prime
power, as shown by Grolmusz [Gro99]. This suggests that this is an algebraic
phenomenon rather than a purely combinatorial one. (However, in some special
cases this assumption can be removed, as in the Frankl–Rödl theorems [FR87].)

Proof of the lower bound

The following result is implicit in [CGM11c]:

2.3.7. Theorem (Chakraborty et al.). For all positive integers k, n such
that 2 ≤ k ≤ n/2, there exists x ∈ Fn2 , |x| ≤ k/2 with the following property:

For any linear map A : Fn2 → Fq2, where q ≤ k
8

log
(
n
k

)
, there is y ∈ Fn2 , |y| = k

such that Ax = Ay.

Proof. We argue as follows. For any k we choose an appropriate ` = `(k) ∈
[k/2, k/4], define k′ = k − 2` and take an arbitrary x ∈ {0, 1}n of weight k′. Set

Z = {z ∈ {0, 1}n
∣∣ |z| = 2` and z ∩ x = ∅}.
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We show that there are z1, z2 ∈ Z with Az1 = Az2 and |z1 ∩ z2| = `. The last
equality implies |z1 ⊕ z2| = |z1|+ |z2| − 2|z1 ∩ z2| = 2` = k − k′. This gives the
result because then we can define y = x⊕ z1 ⊕ z2 (the sum over Fn2 , i.e., bitwise
XOR), which satisfies |y| = |x|+ |z1 ⊕ z2| = k and Ay = Ax⊕ Az1 ⊕ Az2 = Ax.

If k = 2 we take ` = 1, k′ = 0 and the result follows from the pigeonhole
principle: the image of each unit binary vector under A must fall into 2q holes, and
since 2q < n (for small enough c), two of the elements of Z must have the same
image. Likewise, if k = 3 we take ` = 1, k′ = 1 and use the fact that 2q <

(
n−1

2

)
.

So assume k ≥ 4 and let ` be the largest prime ≤ k/2; note that ` ≥ k/4
by Bertrand’s postulate on the existence of a prime between s + 1 and 2s − 1,
proved by Chebyshev (see [AZ10, Chapter 2]). Alternatively, if we allow ourselves
to use the full-fledged “prime power” version of Theorem 2.3.5, we can simply
let ` be the largest power of two ≤ k/2 and obtain the same bound. Also note
k′ = k − 2` ≤ k

2
.

Partition Z into disjoint subsets {Zα}α∈{0,1}q according to the different images
under A:

Zα = {z ∈ Z | Az = α}.
Fix α maximizing |Zα|. We can regard Zα as a family of 2`-subsets of [m], where

m , n− k′ = n− k + 2` ≥ 3

4
n ≥ 3`.

By our choice of α we must have

|Zα| ≥
(
m
2`

)
2q

.

If ` were a forbidden intersection size for Zα, Theorem 2.3.5 with t = 2`, r = `
would assert

|Zα| ≤
(

3l−1
2l

)(
3l−1
`

)(m
`

)
=

1

2

(
m

`

)
,

so

2q−1 ≥
(
m
2l

)(
m
`

) =
(m− `)(m− `− 1) . . . (m− 2l + 1)

(2`)(2`− 1) . . . (`+ 1)
≥
(
m− `

2`

)`
.

Since

m− `
2`

=
n− k + `

2`
=
n− k

2`
+

1

2
≥ n− k

k
+

1

2
=
n

k
− 1

2
≥ 3

4

n

k

(because n/k ≥ 2), this would imply

q − 1 ≥ ` log

(
m− `

2`

)
≥ k

4
log

(
3n

4k

)
≥ k

8
log
(n
k

)
,

contradicting our assumptions.
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Putting it all together we arrive at the following proposition, which implies
Theorem 2.3.1. (The Ω(n) lower bound for k-juntas for k ≥ n/2 is a consequence
of the Ω(n) lower bound for k′ , bn/2c because Junk′ ⊆ Junk.)

2.3.8. Proposition. Let ε = 1
2
. The following holds for all n ∈ N:

• For any k ∈ [2, n− 2], the query complexity of testing PARk with one-sided
error is Θ

(
log
(
n
k

))
. Furthermore, the upper bound is obtainable with a

non-adaptive tester, while the lower bound applies to adaptive tests, and
even to the certificate size2 for proving membership in PARk.

• For any k ∈ {0, 1, n− 1, n}, the query complexity of testing PARk with
one-sided error is Θ(1).

Proof. Recall that we can assume k ≤ n/2. The upper bound in the first item
follows by Proposition 2.3.2. It is also easy to verify that the second item holds
for k = 0 (i.e., the case when f is the constant zero function). For k = 1, the
bound follows from [PRS02], who show that one-sided-error testing of functions
for being a 1-parity (monotone dictatorship) can be done with O(1) queries. (This
also follows from the more general junta tests.)

Now we turn to the lower bound. We are left with the range 2 ≤ k ≤ n/2.
Let a1, . . . , aq be the (adaptive, random) queries made by a (q, ε)-tester on g and
take for A the map y ∈ Fn2 → (〈a1, y〉, . . . , 〈aq, y〉) ∈ Fq2. If q = o

(
log
(
n
k

))
, we can

pick x as in Theorem 2.3.7 and let k′ = |x| 6= k. Then there is y ∈ Fn2 , |y| = k
such that Ax = Ay, i.e., the result of the queries made on the parity g = x∗ are
precisely the same as if the input were the k-parity f = y∗. Hence any q-query
one-sided algorithm is forced to accept g, even though distiso(g,PARk) = 1/2.

In fact this supplies a lower bound of Ω(log
(
n
k

)
) on the number of queries

needed to provide a certificate that the number of influential variables of a parity
is k rather than k′ ≤ k/2.

2.3.9. Remark. The reader may wonder about the query complexity for smaller ε.
A lower bound of Ω(1

ε
) applies to testing any non-trivial property. In fact, it is

not hard to conclude that, for ε < 1
2
, the testing query complexities in each of the

two is are Θ
(

log
(
n
k

)
+ 1

ε

)
and Θ(1

ε
), respectively. Only the O(log

(
n
k

)
+ 1

ε
) bound

is not apparent. To see it, first run the BLR test to reject if f is 1/4-far from
linear. This test takes O(1) queries. If this test passes with high probability, then
there is a unique parity g with dist(f, g) < 1/4, therefore the distance from f to
any other parity is larger than 1/2− 1/4 ≥ 1/4. Now we make O(log

(
n
k

)
) random

queries; with high probability, no k-parity can agree with f on all of them, except
possibly g (as the analysis of the algorithm of Proposition 2.3.2 with ε = 1/4

2 By this we mean the size of the smallest set of inputs such that the evaluations of
f : {0, 1}n → {0, 1} on those inputs allow us to prove that f ∈ PARn

k , assuming f ∈ PARn.
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shows). So if some parity is consistent with the responses to all these queries, it
must be g and we can identify it. Finally, if this happens then we can take O(1/ε)
additional queries to test f for equality with g.

2.4 Linear lower bound for two-sided testers

We saw in Section 2.3.1 that, for the task of ε-testing isomorphism to a given
function f : {0, 1}n → {0, 1}, O(n logn

ε
) queries always suffice. For constant ε,

which is the primary focus here, this is Õ(n); our next result is a nearly matching
lower bound of Ω(n) that applies to almost all functions f .

2.4.1. Theorem. Fix a constant 0 < ε < 1
2
. For a 1 − o(1) fraction of the

functions f : {0, 1}n → {0, 1}, any algorithm for ε-testing isomorphism to f must
make Ω(n) queries.

As it turns out, these bounds can be generalized to Θ̃(k) for testing isomorphism
to k-juntas (see Chapter 3).

A similar theorem was found by the independent works of Alon and Blais [AB10];
and Chakraborty, Garćıa–Soriano, and Matsliah [CGM11c] (albeit the results
stated in both papers are somewhat weaker). We describe here the improved
argument presented in [ABC+11].

The proof of Theorem 2.4.1 is non-constructive, but as will be shown in
Chapter 6, the hardest functions to test isomorphism to may have relatively simple
descriptions, which allows us to derive new lower bounds for other testing tasks.
Moreover, in Chapter 5 we will see that k-parities exemplify the Ω(k) lower bound.

For the proof of Theorem 2.4.1, we fix a function f enjoying some “regularity”
properties. Then we introduce two distributions Dyes and Dno such that a
function g ∼ Dyes is isomorphic to f and a function g ∼ Dno is ε-far from isomorphic
to f with overwhelming probability, and then proceed to show indistinguishability
of the two distributions with o(n) adaptive queries. By the latter we mean that,
when faced with a function h drawn from the mixed distribution (Dyes +Dno)/2,
the tester cannot tell if h belongs to Dyes or Dno.

A first idea for Dno may be to make it uniform distribution over all boolean
functions {0, 1}n → {0, 1}. However, it is possible for a tester to collect a great deal
of information from inputs with very small or very large weight. In particular, just
by querying the n-bit strings 0 and 1 we would obtain a tester that succeeds with
probability 3/4 in distinguishing Dyes from Dno if Dno were completely uniform.
This is because 0 and 1 remain invariant under permutations, and two random
boolean functions agree on them with probability 1/4. To prevent an algorithm
from gaining information by querying inputs of very small or very large weight,
the functions appearing in both distributions are the same outside the middle
layers of the hypercube. We remark that such a “truncation” is essential for
this result to hold in full strength—one can prove that random permutations
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of any f can be distinguished from completely random functions with Õ(
√
n )

queries and high success probability. To do this one can use ideas from the graph
isomorphism tester of Fischer and Matsliah [FM08], reducing the problem to
testing the equivalence of a samplable distribution with an explicitly given one,
which can be solved by an algorithm of Batu et al. [BFF+01].

The indistinguishability result we prove is obtained via probabilistic techniques.
We borrow ideas from the work of Babai and Chakraborty [BC08b], who proved
query-complexity lower bounds for testing isomorphism to uniform hypergraphs.
However, in order to be applicable to our problem, we have to extend the method
of [BC08b] in several ways. One of the main differences is that, because of
the need to consider trimmed functions, we have to deal with general sets of
permutations (as opposed to groups of permutations) in the proof that a random
permutation “shuffles” the values of a function uniformly. To compensate for
this lack of structure, we show that any large enough set of permutations that
are “independent” in some technical sense has the regularity property we need.
Then the result for general sets is established by showing that any large enough
set of permutations can be decomposed into a number of such sets. This can be
deduced from the celebrated theorem of Hajnal and Szemerédi [HS69] on equitable
colorings.

2.4.1 Regularity and additional definitions

To prove lower bounds for ε-testing isomorphism to a function f , it suffices to
show the stronger claim that one can choose g such that both of the following
conditions hold:

1. No tester can reliably distinguish between the cases where a function h is a
random permutation of f or a random permutation of g;

2. distiso(f, g) ≥ ε.

2.4.2. Definition. Let f, g : {0, 1}n → {0, 1} be boolean functions and ε > 0.
Consider the distribution D = (Isom(f) + Isom(g))/2 obtained by choosing a
random permutation of f with probability half, and a random permutation of g
with probability half.

We say that the pair (f, g) is (q, ε)-hard if distiso(f, g) ≥ ε and no tester
with oracle access to h ∼ D can determine if h∼= f or h∼= g with overall success
probability ≥ 2/3 unless it makes more than q queries.

The existence of a q-hard pair f, g implies a lower bound of q + 1 on the query
complexity of testing isomorphism to f (or to g, for that matter). The function g
will be defined to agree with f on all unbalanced inputs, as defined below.

2.4.3. Definition. A query (or input) x ∈ {0, 1}n is balanced if n
2
− 2
√
n ≤

|x| ≤ n
2

+ 2
√
n. Otherwise, we say that x is unbalanced.
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Note that the fraction of unbalanced inputs is

2−n
∑

|i−n/2|>2
√
n

(
n

i

)
< 2 exp(−8) < 1/1000

by standard estimates on the tails of the binomial distribution.

2.4.4. Definition. For every f , a random f-truncated function is a random
function uniformly drawn from the collection of all g : {0, 1}n → {0, 1} satisfying
g(x) = f(x) for all unbalanced x.

2.4.5. Lemma. Fix 0 < ε < 1
2
(1− 10−3). For any function f : {0, 1}n → {0, 1},

a random f -truncated function g is ε-close to isomorphic to f with probability at
most o(1).

We write

{0, 1}nn
2
±h , {x ∈ {0, 1}

n | n
2
− h ≤ |x| ≤ n

2
+ h}.

Proof. Let N ,
∣∣∣{0, 1}nn

2
±2
√
n

∣∣∣ = Ω(2n) and η , 1 − (2n+1/N)ε > 0. For any

π ∈ Sn, note that distn/2±2
√
n(fπ, g) = (2n/N) dist(fπ, g), where the term on the

left-hand side denotes the relative distance when the domain is {0, 1}n
n/2±2

√
n

(and
therefore is the expected sum of N independent unbiased binary random variables).
Then, by the additive Chernoff bound,

Pr [distn/2±2
√
n(fπ, g) < (2n/N)ε] = Pr [distn/2±2

√
n(fπ, g) < (1− η)/2]

≤ exp(−Nη2/4)

≤ o( 1
n!

).

Taking the union bound over all choices of π ∈ Sn completes the proof.

In the rest of this section and all its subsections, we assume ε < 1
2
(1− 10−3).

See Remark 2.4.16 in Section 2.4.2 for the details on how to deal with any ε < 1
2
.

Let T denote any deterministic, non-adaptive algorithm that attempts to test
f -isomorphism with at most q queries to an unknown function g (where q = Ω(n)
is a parameter to be determined later). Let Q ⊆ {0, 1}n be the set of queries
performed by T on f . We partition the queries in Q in two: the set Qb of balanced
queries, and the set Qu of unbalanced queries.

The tester cannot distinguish f from g by making only unbalanced queries.
Some unbalanced queries, however, could conceivably yield useful information to
the tester and let it distinguish f from g with only a small number of balanced
queries. The reason for this concern is that the set of responses to the unbalanced
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queries might drastically reduce the number of candidate permutations that the
tester needs to consider. The next proposition shows that this is not the case, and
that little information is conveyed by the responses to unbalanced queries. We
will apply it to the case where Q is a set of unbalanced queries.

2.4.6. Definition. For a fixed function f : {0, 1}n → {0, 1}, a set Q of queries,
and a : Q→ {0, 1}, the set of permutations of f compatible with Q and a is

Πf (Q, a) , {π ∈ Sn | fπ�Q = a}

2.4.7. Lemma. For any function f : {0, 1}n → {0, 1}, any set Q of queries, and
any 0 < t < 1,

Pr
π∈Sn

[∣∣Πf (Q, f
π�
Q

)
∣∣ < t · n!

2|Q|

]
< t.

This implies that when the unknown function g is truncated according to f ,
with high probability the set Πf (Qu, g

π�
Qu

) is large, which will be useful later.

Proof. For every a ∈ {0, 1}|Q|, let Sa ⊆ Sn be the set of permutations σ for
which fσ�

Q
= a. A set Sa is t-small if |Sa| < t n!

2|Q|
. The union of all t-small sets

covers fewer than 2|Q| · t n!
2|Q|

= tn! permutations, so the probability that a randomly
chosen one belongs to a t-small set is less than t.

We now examine the balanced queries.

2.4.8. Definition. Write any set Q of queries as Q = Qu∪Qb, where the queries
in Qb are balanced and those in Qu are not.

Let n, q ∈ N. We say that a boolean function f : {0, 1}n → {0, 1} is q-regular
if for every Q = Qu ∪ Qb of total size at most q, and every pair of functions
ab : Qb → {0, 1}, au : Qu → {0, 1} such that |Πf (Qu, au)| ≥ 1

3
n!
22q ,∣∣∣∣ Pr

π∈Πf (Qu,au)

[
fπ�

Qb
= ab

]
− 2−q

∣∣∣∣ < 1
6
· 2−q.

It is easy to see that “at most q” may be replaced with “exactly q” in the
definition, as long as q does not surpass the total number of unbalanced inputs.
Also note that whether f is regular or not depends only on the values it takes on
balanced inputs. This restriction is necessary for Ω(n)-regularity to be possible,
since the condition implies in particular the existence of Ω(2q) elements in the
orbit of any 1-query set under Sn.

Definition 2.4.8 is useful because two functions f, g that are both regular and
agree on unbalanced inputs will be hard to tell apart, as they both resemble
random functions on balanced inputs. This holds no matter how f is defined on
unbalanced inputs. This is formalized in the following lemma:



32 Chapter 2. Function isomorphism: first results

2.4.9. Lemma. If f, g are q-regular with respect to, identical on unbalanced inputs,
and satisfy distiso(f, g) ≥ ε, then the pair (f, g) is (q, ε)-hard.

Proof. Consider the following two distributions:

• Dyes: pick π ∈ Sn uniformly at random, and return fπ.

• Dno: pick π ∈ Sn uniformly at random, and return gπ.

By definition, any h1 ∈ Dyes is isomorphic to f , whereas any h2 ∈ Dno is
isomorphic to g and hence ε-far from isomorphic to f .

Let Q = Qu ∪Qb be any set of at most q queries (where Qu are unbalanced
and Qb balanced), and a = (au, ab) any set of |Q| responses. We show that

Pr
π∈Sn

[
fπ�

Q
= a
]
− Pr

π∈Sn

[
gπ�

Q
= a
]
< 1

3
2−q.

There are two cases to consider.

Case 1: |Πf (Qu, au)| < 1
3
n!
22q . In this case, we have Prπ

[
fπ�

Qu
= au

]
≤ 1

3
2−q by

Lemma 2.4.7. This immediately implies that Prπ
[
fπ�

Q
= a
]
≤ 1

3
2−q also.

Case 2: |Πf (Qu, au)| ≥ 1
3
n!
22q . Note that

Pr
π

[
fπ�

Q
= a
]

= Pr
π

[
fπ�

Qu
= au

]
· Pr
π

[
fπ�

Qb
= ab | fπ�Qu = au

]
= Pr

π

[
fπ�

Qu
= au

]
· Pr
π∈Πf (Qu,au)

[
fπ�

Qb
= ab

]
= (1± δ)2−q · Pr

π

[
fπ�

Qu
= au

]
,

where δ < 1/6. The second equality transforms a probability expectation into a
uniform probability over a subset of Sn, namely Πf(Qu, au). The last line uses
the lower bound on the size of this set and the regularity of f .

Similarly, by the regularity of g,

Pr
π

[
gπ�

Q
= a
]

= (1± δ)2−q Pr
π

[
gπ�

Qu
= au

]
= (1± δ)2−q Pr

π

[
fπ�

Qu
= au

]
,

because f and g are defined identically on unbalanced inputs. (We can choose the
same δ < 1/6 for both.) Therefore, for any a : Q→ {0, 1},

Pr
π

[fπ�
Q

= a]− Pr
π

[gπ�
Q

= a] < 1
3
2−q Pr

π
[fπ�

Qu
= au] ≤ 1

3
2−q,

and an appeal to Lemma 1.5.6 establishes the claim.
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The main step of the proof of existence of regular functions in the next section
is to show that any sufficiently “uniform” family of functions contains regular
functions.

2.4.10. Definition. A distribution F of boolean functions on {0, 1}n is r-uniform
if it is r-independent and uniform on sets of r balanced inputs, i.e., if for all
Qb ∈

({0,1}nn
2±2

√
n

r

)
and a : Qb → {0, 1},

Pr
f∈F

[
f�

Qb
= a
]

= 2−r.

For example, the uniform distribution over all boolean functions is 2n-uniform.
The reason we deal with more general distributions is that they are required
to establish the existence of relatively simple functions that are hard to test
isomorphism to (see Chapter 6).

2.4.2 Existence of regular functions

The main tool we need is the following:

2.4.11. Proposition. Let F be an n4-uniform distribution over boolean func-
tions. Then a random element of F is

(
n
3
− 2dlog ne

)
-regular with probability

1− o(1).

Before providing the proof, we show how it implies Theorem 2.4.1.

2.4.12. Theorem. Fix any 0 < ε < 1
2
. Let f : {0, 1}n → {0, 1} be chosen at

random from an n4-uniform distribution F , and let g : {0, 1}n → {0, 1} be a
random f-truncated function. Then with probability 1 − o(1), the pair (f, g) is
(Ω(n), ε)-hard.

Hence, for most functions f : {0, 1}n → {0, 1}, testing f -isomorphism requires
Ω(n) queries.

Proof. Recall that we are assuming ε < 1
2
(1− 10−3); see Remark 2.4.16 below

to see how to handle larger ε. For some q = Ω(n) we can pick one q-regular
function f from F by Proposition 2.4.11. The distribution of functions drawn
from F and truncated according to f is also n4-uniform, so a random such g
is also q-regular with probability 1 − o(1). Also with probability 1 − o(1) we
have distiso(f, g) = Ω(1).3 By the union bound, g satisfies both conditions with
probability 1 − o(1). By Lemma 2.4.9, the pair f, g is (q, ε)-hard. The “hence”

3The proof is the same as that of Lemma 2.4.5, except that we use n4-independence in place
of full independence, and employ the variation of Chernoff bounds stated below in Theorem
2.4.15. This leads to a bound of exp(−Ω(n4)) instead of exp(−Ω(2n)), but is still o(1/n!).
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part follows by taking for F the uniform distribution among all functions.

Proof of Proposition 2.4.11. Let q , n
3
− 2 log n and r , n4. Fix a set

Q = Qu ∪ Qb of q queries, and functions au : Qu → {0, 1}, ab : Qb → {0, 1}. For
any f : {0, 1}n → {0, 1}, let S , Πf(Qu, au) and assume its size is |S| ≥ 1

3
n!
22q .

For each π ∈ S, define the indicator variable X(f, π) , I [fπ�
Qb

= ab] and

define A(f) , Prπ∈S[X(f, π) = 1]. We aim to compute the probability, over a
random f ∈ F , that A(f) deviates from p , 1/2q by p/6 or more. Notice that
Ef [A(f)] = Eπ Ef X(f, π) = Eπ p = p, where we made use of the r-uniformity of
F and the fact that r ≥ q.

Consider any pair σ1, σ2 ∈ S such that σ1(Qb) ∩ σ2(Qb) = ∅. Since 2q ≤
r, a random function from F assigns values independently to each element of
σ1(Qb) ∪ σ2(Qb), so the random variables X(f, σ1) and X(f, σ2), viewed as a
function of f , are independent conditioned on the choice of σ1, σ2.

More generally, for any fixed set of s permutations σ1, . . . , σs of S under which
the images ofQb are pairwise disjoint, the s random variablesX(f, σ1), . . . , X(f, σs)
are r/q ≥ n3-wise independent. We show that S can be partitioned into a number
of large sets of permutations, each of them satisfying the pairwise disjointness
property. To establish this claim we use the celebrated theorem of Hajnal and
Szemerédi. The interested reader can find an elementary proof of this theorem in
the paper [KK08].

2.4.13. Theorem (Hajnal & Szemerédi [HS69]). Let G be an undirected
graph on n vertices with maximum vertex degree ∆(G) ≤ d. Then G has a
(d+ 1)-coloring in which all the color classes have size

⌊
n
d+1

⌋
or
⌈

n
d+1

⌉
.

2.4.14. Lemma. Let S be a set of permutations on [n] (with n ≥ 30) and let Qb be
a set of at most q < n balanced queries. Then there exists a partition S1∪̇ · · · ∪̇Sm
of the permutations in S such that for i ∈ [m],

(i) |Si| ≥ |S|
n!

2n

e9n2
√
n
− 1, and

(ii) The sets Ti = {Qπ
b }π∈Si, for i ∈ [m], are pairwise disjoint.

Note that we have no control over the number m of elements of the partition,
although an upper bound is straightforward.

Proof. Construct a graph G on S where two permutations σ, τ are adjacent iff
there exist x, y ∈ Qb such that σ(x) = τ(y) or σ(y) = τ(x). By this construction,
when T is a set of permutations that form an independent set in G, the sets
{Qπ

b }π∈T are pairwise disjoint. Observe that G is a regular graph (all vertices
have the same degree), since σ(x) = τ(y) iff (τ−1 ◦ σ)(y) = x.
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Let N ,
(

n
n/2−2

√
n

)
≥ 2n

e9
√
n

for n ≥ 30. Note that for any x, y ∈ {0, 1}nn
2
±2d
√
n e,

Pr
π∈Sn

[xπ = y] =

{
0, |x| 6= |y|

1

( n|x|)
, |x| = |y|

}
≤ 1

N
.

This holds because the orbit of x under Sn (the collection of all xπ as π ranges
over Sn) is the set of all

(
n
|x|

)
strings of the same weight. So by applying the union

bound over all choices of x, y ∈ Qb, we get

Pr
π∈Sn

[∃x, y ∈ Qb | xπ = y] ≤ E
π∈Sn

[ ∑
x,y∈Qb

I [xπ = y]
]

=
∑
x,y∈Qb

Pr
π∈Sn

[xπ = y]

≤ q2

N
,

which allows us to upper bound the degree of G by d , q2n!/N < n2n!/N .
Therefore, by the Hajnal-Szemerédi Theorem, G can be colored so that each color
class has size at least ⌊

|S|
d+ 1

⌋
≥ |S|

n!

2n

2n2
√
n
− 1.

This completes the proof.

In our case |S|/n! ≥ 2−2q/3, and by our choice of q we conclude that each of
the elements of the partition has size at least |Si| ≥ n3 · 2q for large enough n.
Since A(f) is a weighted average of the m random variables Yi(f) , Eπ∈Si X(f, π),
it is enough to show that with probability 1− o(1),

|Yi(f)− 2−q| < 2−q/6

holds simultaneously for all i = 1, . . . ,m.
Each quantity Yi(f) is the average of |Si| random variables that are n3-wise

independent, each satisfying Ef X(f, π) = 2−q = p. We apply the following version
of Chernoff bounds for k-wise independent random variables:

2.4.15. Theorem (Schmidt et al. [SSS95]). Let X be the sum of s k-wise
independent random variables in the interval [0, 1], and let p = 1

s
E[X]. For any

0 ≤ δ ≤ 1,
Pr [|X − p| ≥ δp] ≤ e−Ω(min(k,δ2ps)).

Since p|Si| ≥ n3 and k = n3, using the theorem above with δ = 1
6

we obtain
that for all i ∈ [k],

Pr
f∼F

[|Yi(f)− p| ≥ pδ] ≤ 2−Ω(n3),
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hence we can bound

Pr
f∼F

[|A(f)− p| ≥ pδ] ≤ Pr
f∼F

[
∃i ∈ [m]

∣∣ |Yi(f)− p| ≥ pδ
]

≤ m · 2−Ω(n3)

≤ n! · 2−Ω(n3).

To conclude the proof we apply the union bound over all possible choices of Q
and a = (au, ab) ∈ {0, 1}Q, yielding

Pr
f∈F

[
∃ Q, a

∣∣ |A(f)− p| ≥ p/6
]
≤
(

2n

q

)
2qn!2−Ω(n3) = o(1).

2.4.16. Remark. It is not difficult to see that if one replaces n
2
± 2
√
n in the

definition of balanced inputs with n
2
± c
√
n for some other constant c > 2, the

result still holds for the same lower bound q and large enough n. We refrained
from doing so because it would introduce an additional parameter in all the
definitions and proofs. The only place where this matters is in claiming the Ω(n)
lower bound for any fixed ε < 1

2
. The value c = 2 only suffices for ε < 1

2
(1− 10−3)

because of Lemma 2.4.5, but choosing larger values can prove the theorem for any
constant ε < 1

2
.

2.5 Testing isomorphism between two unknown

functions

Finally, we examine the problem of testing two unknown functions for the property
of being isomorphic. Here the tester needs to make queries to both f and g.

2.5.1. Theorem (Alon & Blais; Chakraborty et al. [AB10, CGM11c]).
For any fixed ε > 0, the query complexity of testing isomorphism of two unknown
functions f, g : {0, 1}n → {0, 1} is Θ̃(2n/2).

More concretely,

1. There exists a non-adaptive ε-tester with one-sided error for function iso-
morphism in the unknown-unknown setting with query complexity

O(2n/2
√
n log n/ε ).

2. Any adaptive tester for function isomorphism in the unknown-unknown
setting must have query complexity Ω(2n/2/n1/4).
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Proof of the upper bound

The tester is described in Algorithm 2. (Recall that ε is a constant, so for large
enough n we have

√
n lnn/(ε2n) < 1.) Obviously it is non-adaptive, has one-

Algorithm 2 (Non-adaptive one-sided error tester for the unknown-unknown
setting)

1: generate a set Q by including every x ∈ {0, 1}n in Q with probability
√

n lnn
ε2n

independently at random

2: if |Q| > 10
√

2n

ε n lnn then accept

3: query both f and g on all inputs in Q
4: accept iff there exists π such that for all x ∈ Q, either f(x) = g(xπ) or xπ /∈ Q

sided error and makes O(2n/2
√
n log n/ε ) queries. Let f and g be ε-far up to

isomorphism; we prove that the probability of the tester accepting is o(1). We may
assume that the event |Q| ≤ 10

√
2nn lnn/ε holds, since it occurs with probability

1 − o(1). For any permutation π ∈ Sn there are at least ε2n inputs x ∈ {0, 1}n
for which f(x) 6= g(xπ). When x satisfies this inequality, the probability that
both x and xπ belong to Q is at least n lnn

ε2n
, so the permutation π passes the

acceptance condition in the last line of Algorithm 2 with probability no more than
(1− n lnn/(ε2n))ε2

n ≤ e−n lnn = n−n = o(1/n!). The claim follows by taking the
union bound over all n! permutations.

In the next chapter we will also study the running time of a generalization of
this algorithm.

Proof of the lower bound

Again we apply the Yao principle via Lemma 1.5.6. We define two distributions
Dyes and Dno on pairs of functions such that the two elements of any pair drawn
from Dyes are isomorphic, while the elements of any pair drawn from Dno are 1/8-
far from isomorphic with probability 1− o(1). The distribution Dyes is constructed
by letting the pair of functions be (f, fπ), where f ∈ Fn

2
±2
√
n is a random 0-

truncated function on {0, 1}n (see Definition 2.4.4) and π ∈ Sn is a uniformly
random permutation.

For the distribution Dno the pair of functions are two independently chosen
random 0-truncated functions f and g; with probability 1−o(1), distiso(f, g) ≥ 1/8
(Lemma 2.4.5). For any set Q = {x1, . . . , xt} ⊆ {0, 1}n of t queries and any
p, q ∈ {0, 1}t let Pr(f,g)∈Dyes [(f, g)�

Q
= (p, q)] be the probability that for all

1 ≤ i ≤ t, f(xi) = pi and g(xi) = qi when f and g are drawn according to Dyes.
Similarly we define Pr(f,g)∈Dno [(f, g)�

Q
= (p, q)].

Without loss of generality we may assume that |xi| ∈ [n
2
− 2
√
n, n

2
+ 2
√
n ] for

all i ∈ [t], since functions drawn from Dyes or Dno always take the value 0 on all
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other inputs. If the pair f, g is drawn from Dno, the answers to the queries will be
uniformly distributed by definition, so for any p, q ∈ {0, 1}t, we have

Pr
(f,g)∈Dno

[(f, g)�
Q

= (p, q)] = 1/22t.

Now let the pair be drawn according to Dyes and let π be the permutation that
defined the pair. Let EQ denote the event that Qπ and Q are disjoint, i.e., that
for all i, j ∈ [t], the inequality π(xi) 6= xj holds. Conditioned on EQ, the answers
to the queries will again be distributed uniformly, that is

Pr
(f,g)∈Dyes

[(f, g)�
Q

= (p, q) | EQ] = Pr
(f,g)∈Dno

[(f, g)�
Q

= (p, q)].

(Note that the event in question is independent of EQ when the pairs are drawn
from Dno.)

Let us now show that the EQ occurs with probability at least 3
4
. For any

fixed i, j ∈ [t], we have Prπ∈Sn [π(xi) = xj] ≤ 1/
(

n
n/2−2

√
n

)
≤ e9

√
n

2n
because xi is

balanced. So by the union bound, when t ≤ 2n/2/(200n1/4) we have

Pr [EQ] = 1− Pr [∃ i, j ∈ [t] | π(xi) = xj] ≥ 1− e9t2
√
n

2n
>

3

4
.

Therefore,

Pr
(f,g)∈Dyes

[(f, g)�
Q

= (p, q)] ≥ Pr [EQ] · Pr
(f,g)∈Dyes

[(f, g)�
Q

= (p, q) | EQ]

> 3
4
· Pr

(f,g)∈Dno

[(f, g)�
Q

= (p, q)].

By Lemma 1.5.6, this implies that the success probability of any tester that makes
fewer than 2n/2/(200n1/4) queries is at most 5/8 + o(1) < 2/3 and completes the
proof of the lower bound in Theorem 2.5.1.

2.6 Summary

We studied the problem of testing isomorphism between two boolean functions.
Our main focus is on the most well-studied case, where one of the functions is
known explicitly in advance and the other one may be queried; in this setup we
proved upper and lower bounds for testing isomorphism to functions, both with
one-sided and two-sided error. We also studied the analogous problem when both
functions are unknown. All our bounds are nearly tight.



Chapter 3

Testing and deciding junta isomorphism

The content of this chapter is based on the papers

• S. Chakraborty, D. Garćıa–Soriano, and A. Matsliah. Efficient sample
extractors for juntas with applications. In Proceedings of the 38th Inter-
national Colloquium on Automata, Languages and Programming (ICALP),
pages 545–556, 2011.

• S. Chakraborty, D. Garćıa–Soriano, Y. Goldhirsh, and A. Matsliah. Deciding
and approximating isomorphism efficiently for specific classes of boolean
functions. Manuscript, 2011.

3.1 Introduction

In this chapter we investigate the problem of testing isomorphism to k-juntas.
With this goal in mind we develop the notion of sample extractors for juntas,
which have found additional applications (see Chapter 6).

Making a slight detour from property testing per se, we also study the
complexity of the following problems (where f and g are k-juntas, or at least close
to k-juntas):

• decide if f and g are isomorphic;

• compute distiso(f, g);

• approximate distiso(f, g).

We will examine both the time and query complexities of our algorithms. Again,
both the known-known setting and the unknown-unknown setting are considered.

We comment that, in a recent work, Arvind and Vasudev [AV11] have also
studied the time complexity of deciding and approximating isomorphism of two
unknown functions from restricted function classes. They obtain bounds for the

39
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class of constant-depth circuits, based on a classical result of Linial, Mansour and
Nisan [LMN93]. Our results are incomparable to theirs.

3.2 Influence, juntas and cores

A central tool to analyze juntas is a measure of the influence that a set of
coordinates has on a function.

3.2.1. Definition. The influence of the set of coordinates A ⊆ [n] on a function
f : {0, 1}n → R is defined as

Inff (A) , Pr
x∈{0,1}n, y∈{0,1}|A|

[
f(x) 6= f(x

A←y)
]
.

Thus Inff(A) measures the probability that the value of f changes after taking
a random input x and rerandomizing the bits inside A. Note that when A is a
singleton, this value is half that of the most common definition of the influence of
one variable (see, e.g., [Wol08]); for consistency we stick to Definition 3.2.1 in this
case as well.

3.2.2. Definition. An index (variable) i ∈ [n] is relevant for f if Inff ({i}) 6= 0.
A k-junta (k ≥ 1) is a function that has at most k relevant variables; equivalently,
a function f that satisfies Inff ([n] \ J) = 0 for some J ∈

(
[n]
k

)
.

Junk will denote the class of k-juntas (on n variables), and for A ⊆ [n], JunA will
denote the class of juntas whose relevant variables are all contained in A.

To illustrate these two definitions, observe that every relevant variable of a
k-parity (k ≥ 1) has influence 1

2
(which is as large as it can get).

3.2.3. Lemma. Given A ⊆ [n] and oracle access to f : {0, 1}n → {0, 1}, there
is an O(log(1/δ)/η)-query one-sided test that accepts if Inff(A) = 0 and rejects
if Inff(A) ≥ η, with confidence 1 − δ. Its running time is O(n) times its query
complexity.

Proof. Note that Inff (A) is the expectation (over x ∈ {0, 1}n, y ∈ {0, 1}|A|) of
the indicator function

I
[
f(x) 6= f(x

A←y)
]
.

Suppose we draw a random pair of inputs x, z ∈ {0, 1}n conditioned on x[n]\A =
z[n]\A, and reject iff f(x) 6= f(z). This step always accepts if Inff (A) = 0, whereas
if Inff(A) ≥ η the pair drawn catches this fact with probability at least η. By
drawing t independent pairs we can reduce the error probability to (1− η)t < e−ηt.
The lemma follows by taking t = O(log(1/δ)/η).
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Such a test is called an independence test for A. Its outcome is said to be
positive if it accepts, meaning that no evidence was found for Inff (A) 6= 0.

Influence can be expressed in terms of the Fourier expansion of f . (See the
survey by de Wolf [Wol08] for an introduction to Fourier analysis of boolean
functions.) It is simpler for this purpose to work with the associated function h
taking values in {−1, 1} (for example, map 0 to 1 and 1 to −1 to obtain h = (−1)f ;
this does not affect the outcome of equality comparisons). The multiplicative
characters of Zn2 are represented by the symbols χS (where S ⊆ [n]) and are
defined by χS(x) = (−1)|x∩S|. Let x ⊆ [n], z ⊆ A. Note that

E
x⊆[n]

[h(x) · h(x⊕ z)] = (h ? h)(z) =
∑
S

ĥ(S)2χS(z),

where “?” denotes convolution; to see this, recall that the Fourier coefficient of a
convolution (f ? g) at S is f̂(S) · ĝ(S). Hence

E
z⊆A
x⊆[n]

[h(x)h(x⊕ z)] =
∑
S⊆[n]

ĥ(S)2

(
E
z⊆A

[χS(z)]

)
=

∑
S⊆[n]\A

ĥ(S)2, (3.1)

because the factor within brackets vanishes whenever S intersects A, and is 1
otherwise. Then

2 Pr
z⊆A
x⊆[n]

[h(x) 6= h(x⊕ z)] = 1− E
z⊆A
x⊆[n]

[h(x)h(x⊕ z)] =
∑

S∩A 6=∅

ĥ(S)2,

the last equality due to (3.1) and Parseval’s identity. Therefore

Inff (A) = Infh(A) =
1

2

∑
S⊆[n]
S∩A 6=∅

ĥ(S)2. (3.2)

3.2.4. Lemma (Fischer et al. [FKR+04]). Influence is monotone and sub-
additive.

That is, for all f : {0, 1}n → {0, 1} and A,B ⊆ [n],

Inff (A) ≤ Inff (A ∪B) ≤ Inff (A) + Inff (B).

The proof is a simple consequence of (3.2). In fact something stronger than
mere subadditivity holds:

3.2.5. Lemma (Fischer et al. [FKR+04]). Influence is monotone submodu-
lar. That is, for all A,B,C ⊆ [n],

0 ≤ Inff (A ∪B ∪ C)− Inff (A ∪B) ≤ Inff (A ∪ C)− Inff (A).
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This is also known as the law of diminishing marginal returns of influence.

Proof. For monotone functions, the condition above is equivalent to

Inff (S ∪ T ) + Inff (S ∩ T ) ≤ Inff (S) + Inff (T )

for all S, T ⊆ [n]. The difference between the right and the left hand sides is a
sum of non-negative numbers, as can be checked from (3.2):

Inff (S) + Inff (T )− (Inff (S ∪ T ) + Inff (S ∩ T )) =
1

2

∑
Z⊆[n]\(S∩T )

Z∩S 6=∅
Z∩T 6=∅

ĥ(Z)2,

because the Fourier mass of h at any Z not included in the right-hand sum is
counted an equal number of times in the sums corresponding to Inff (S) + Inff (T )
and Inff (S ∪ T ) + Inff (S ∩ T ).

Any junta is determined by its set of relevant variables together with its core.

3.2.6. Definition. Fix an arbitrary ordering of [n]. Let f : {0, 1}n → {0, 1} be
a k-junta on J . The k-core of f is the boolean function corek(f) : {0, 1}k → {0, 1}
obtained from f ∗ by dropping the (irrelevant) variables outside J , i.e., satisfying

f(x) = corek(f)(x�
J
).

Note that this definition depends on the fixed ordering of n, the number k,
and possibly on the choice of J as well (if f is actually a k′-junta for k′ < k).
Sometimes we will simply refer to the core of f , where k is clear from context
(and J is any k-set containing the relevant variables of f). Different choices for J
lead to the same k-core, up to isomorphism.

3.3 From k-juntas to n-juntas

Proposition 2.3.2 showed how to test isomorphism to f : {0, 1}n → {0, 1} with
O(n log n) queries. Assume for the moment that both the known function f and
the unknown function g are k-juntas. Then both f and g are determined by their
cores, up to isomorphism. Suppose we could query the core of g, rather than g
itself. This would enable us to approximate, in a similar way, the distance between
corek(f) and corek(g), bringing the sample complexity down to O(k log k).

The quantity distiso(corek(f), corek(g)) is a good approximation to distiso(f, g),
although in general these two measures do not need to coincide.

3.3.1. Lemma (Chakraborty et al. [CGM11c]). Let f, g : {0, 1}n → {0, 1}
be k-juntas, where 0 < k ≤ n. Then



3.3. From k-juntas to n-juntas 43

(a) distiso(corek(f), corek(g)) ∈ [distiso(f, g), 2 distiso(f, g)].

(b) If l ≥ 2k then distiso(corel(f), corel(g)) = distiso(f, g).

As regards the first part, note that both inequalities are tight. For example, if
k = n then obviously distiso(f, g) = distiso(corek(f), corek(g)). On the other hand,
consider the case n = k+ 1, f(x) = |x1 +x2 + · · ·+xk| mod 2 and g(x) = 1− f(x).
Then distiso(f, g) = 1/2 but distiso(corek(f), corek(g)) = 1.

Proof.
We can assume without loss of generality that f and g are juntas on [k], as

distiso is permutation-invariant.

(a) Let f ′ = corek(f), g′ = corek(g). We prove

distiso(f, g) ≥ 1

2
distiso(f ′, g′)

(the other inequality distiso(f, g) ≤ distiso(f ′, g′) being obvious).

Take π minimizing dist(f, gπ). The function f is a junta on [k], while gπ is
a junta on π−1([k]). Let A , π−1([k]) \ [k], B , π−1([k]) ∩ [k], C , [k] \ B;
note that |A| = |C| (because π is bijective and thus |π−1([k])| = |π(k)| = k).
Roughly speaking, if f and gπ are close then both must be close to a junta
on B, because the coordinates outside B are irrelevant to either f or gπ.

Every input x ∈ {0, 1}n is the interleaving of four strings

a ∈ {0, 1}A, b ∈ {0, 1}B, c ∈ {0, 1}C , r ∈ {0, 1}[n]−(A∪B∪C)

in the right order, i.e., x = σ(a, b, c, r) for some permutation σ : [n] → [n],
where (a, b, c, r) = a t b t c t r denotes concatenation. Hence there are
permutations σ1, σ2 of [k], independent of x, for which

f(x) = f ′σ1(b, c),

gπ(x) = g′σ2(b, a).

For every b ∈ {0, 1}B and i, j ∈ {0, 1}, let

pbij , Pr
a

[f ′σ1(b, a) = i ∧ g′σ2(b, a) = j]

= Pr
c

[f ′σ1(b, c) = i ∧ g′σ2(b, c) = j].

Obviously pb01 + pb10 = Pra [f ′σ1(b, a) 6= g′σ2(b, a)] ≤ 1, so

pb01 + pb10 ≥ (pb01 + pb10)2 ≥ 4pb01p
b
10.
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For random x, the variables a, b, c are mutually independent. For every b we
can compute

Pr
a,c

[f ′σ1(b, c) 6= g′σ2(b, a)] = Pr
c

[f ′σ1(b, c) = 0] · Pr
a

[g′σ2(b, a) = 1]

+ Pr
c

[f ′σ1(b, c) = 1] · Pr
a

[g′σ2(b, a) = 0]

= (pb00 + pb01)(pb01 + pb11) + (pb10 + pb11)(pb00 + pb10)

≥ pb01(pb00 + pb01 + pb11) + pb10(pb00 + pb10 + pb11)

= pb01(1− pb10) + pb10(1− pb01)

=
pb01 + pb10

2
+
pb01 + pb10 − 4pb01p

b
10

2

≥ pb01 + pb10

2

=
Pra [f ′σ1(b, a) 6= g′σ2(b, a)]

2
.

Hence, by taking expectations over b,

dist(f, gπ) = Pr
a,b,c

[f ′σ1(b, c) 6= g′σ2(b, a)]

≥ 1

2
Pr
b,a

[f ′σ1(b, a) 6= g′σ2(b, a)]

=
1

2
dist(f ′σ1 , g′σ2),

and we are done because distiso(f, g) = dist(f, gπ) = dist(f ′σ1 , g′σ2).

(b) It is not hard to see that

distiso(f, g) = min
C⊆[k]
|C|≤n−k
:[k]\C→[k]
 injective

E
c : C→{0,1}

[
dist(corek(f), (corek(g)�

C←c)
)
]
, (3.3)

where h�
C←c : {0, 1}

k → {0, 1} denotes the (k − |C|)-junta obtained from a

function h : {0, 1}k → {0, 1} by fixing the variable xi to the constant value
c(i) for all i ∈ C. To verify this, observe that in trying to minimize dist(f, gπ)
for two juntas f, g with relevant variables in [k], we can select the optimal
π in stages: first choose a set C ⊆ [k] such that |C| ≤ n − k, then pick an
injection  from [k] \ C to [k] and finally let π satisfy C = [k] \ π−1([k]) and
π�

[k]\C =  (the concrete choice in the last step does not actually matter).

If we substitute l for n in (3.3), the right-hand side is the same for any l ≥ 2k,
for the condition |C| ≤ l − k becomes redundant. Hence

distiso(corel(f), corel(g)) = distiso(coren(f), coren(g)) = distiso(f, g).
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The implication is that, in order to approximate distiso(f, g) between two
k-juntas f and g to within a factor of two, it suffices to compute the isomorphism
distance between their k-cores. In fact, if an exact answer is needed instead of a
2-approximation, we can reduce the problem to a calculation of the isomorphism
distance between their 2k-cores.

As a corollary of item (a) we obtain the lower bound we promised the reader
in Section 2.4.

3.3.2. Corollary. Let f, g : {0, 1}n → {0, 1} be k-juntas.
If (corek(f), corek(g)) is (q, ε)-hard, then (f, g) is (q, ε/2)-hard. Hence for any

ε′ ∈ (0, 1
4
) there are pairs of r-juntas that are (Ω(k), ε′)-hard, and it takes Ω(k)

queries to test isomorphism to them.

Proof. The “hence” part follows from the first statement on taking ε = 2ε′ ∈
(0, 1

2
) and applying Theorem 2.4.1.

Let f ′ = corek(f), g′ = corek(g). It is clear that f∼=g if f ′∼=g′. Let there be an
algorithm A capable of distinguishing a random permutation of f from a random
permutation of g with high probability. Based on A, we construct an algorithm B
that makes the same number of queries and decides whether h′ : {0, 1}k → {0, 1}
is a random permutation of f ′ or a random permutation of g′, in the following
manner. Let h(x) , h′(x1 . . . xk). The algorithm B picks a uniformly random
permutation σ ∈ Sn, and applies A to hσ. Clearly, any query to hσ can be
simulated by one query to h′ as σ is known to B. The distribution of hσ is a
random permutation of either f or g.

Together with the inequality distiso(f, g) ≥ distiso(f ′, g′)/2, this completes
the proof.

Likewise we obtain a lower bound for the unknown-unknown-case analogous to
that of Theorem 2.5.1. We omit the proof, which mimics that of Corollary 3.3.2.

3.3.3. Corollary. Testing isomorphism of two unknown k-juntas requires

Ω

(
2k/2

k1/4

)
queries.

3.4 Exact algorithms for k-juntas

In this section we give algorithms for the isomorphism decision and isomorphism
distance problem for k-juntas (where k is known). We start with a simple
randomized solution and then discuss how to derandomize it.
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One of the main issues we will be concerned with is how to obtain the truth
table of corek(g) without reading the truth table of g in its entirety (and of course,
without knowing the influential variables in advance).

3.4.1 Randomized algorithm

3.4.1. Definition. Let `, n > 0. A random (ordered) partition I = (I1, . . . , I`)
of [n] into ` sets is constructed by starting with ` empty buckets, and then putting
each coordinate i ∈ [n] into one of the buckets picked uniformly at random.

An isolating partition for a set J ⊆ [n] is a partition of [n] into sets, each of
which contains at most one coordinate in J .

Sometimes we also refer to the components of a partition as blocks or parts. Note
that the blocks in a random partition will usually have different sizes, although in
expectation the size of a block will be n/`. A random partition is well defined
even if ` > n (in which case some elements of the partition will be empty no
matter what). Unless explicitly mentioned otherwise, I will always denote a
random partition I = (I1, . . . , I`) of [n] into ` subsets, where ` is even (the only
significance of the last condition is that it allows for some cleaner equalities in
Section 3.7.2); and J = (J1, . . . , Jk) shall denote an ordered k-subset of I.

Suppose g is a junta on J , |J | ≤ k. By elementary probability estimates, with
high probability a random partition will isolate J .

3.4.2. Lemma. The probability that a random partition I into ` buckets fails to
isolate a given set J of size k is upper bounded by k(k − 1)/(2`).

Proof. For any two distinct elements a, b ∈ J , where |J | = k, the probability
that both a and b land into the same bucket of the partition is 1/` by definition.
By the union bound, the probability that there exist two such elements of J is at
most

(
k
2

)
/`.

Let J be the set of relevant variables of a k-junta g. Given an isolating partition
for J , we can extract the truth table of corek(g) (up to some permutation of the
variables) by making 2` queries to g — setting all of the variables in a block to the
same value also guarantees that the influential variable inside this block (which is
either unique or non-existent by assumption) was set to this value.

3.4.3. Definition. We say the string y ∈ {0, 1}n is I-blockwise constant if for
every block I of I, the restriction of y to I is constant; that is, if for all i ∈ [`]
and j, j′ ∈ Ii, yj = yj′ .

Given z ∈ {0, 1}`, define replicateI(z) to be the I-blockwise constant string
y ∈ {0, 1}n obtained by setting yj ← zi for all i ∈ `, j ∈ Ii;

If we assume that
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• I isolates J ;

and

• we happen to know which components of I intersect J (say Ij1 , . . . , Ijk′ ),

then we can find the truth table of corek(g) simply by looping over all 2k
′

assignments to zj1 , . . . , zjk′ , filling out the remaining bits of z arbitrarily, and
making a query for g(replicateI(z)). The first condition above is true of a
random partition, and it is also possible to satisfy the second:

3.4.4. Lemma. Let g be a junta on an unknown k-set J . Given a partition
I that isolates J , it is possible to identify all blocks of I that intersect J with
O(|I| log k · 2k) queries to g and constant success probability.

Proof. Observe that the influence of every relevant variable of a k-junta
is at least 2(1 − 2−k)2−k ≥ 2−k. So the influence of every block containing a
relevant variable is also at least 2−k. By Lemma 3.2.3, with O(log k · 2k) queries
we can determine if a block is relevant with one-sided error probability 1/(10k),
say. We perform this test for each component of I. There are no more than k
influential blocks, and by the union bound we can identify them all with overall
error probability 1/10 or less.

(As a matter of fact, it is also possible to use a junta tester with ε = 2−k to
solve this task with O(k · 2k + k log |I|) queries.)

In the next section we get around this lemma by derandomizing the algorithm.

3.4.5. Lemma. Given access to a k-junta g : {0, 1}n → {0, 1}, it is possible to
construct, with high probability, a complete truth table for (a permutation of)
corek(g) with 2k · poly(k) queries and in time n · 2k · poly(k).

Proof. Take a random partition I into Θ(k2) parts, which is isolating by
Lemma 3.4.2. Then apply Lemma 3.4.4 to find the relevant blocks and finally
make 2k queries of the form replicateI(z) as explained above.

The time bound is due to the time complexity of the tester of Lemma 3.4.4
being n · 2k · poly(k), and the time required to query the entire truth table being
O(n · 2k).

Note that we cannot hope to obtain the entire truth table of corek(g) with
fewer than 2k queries (or time less than Ω(n+ 2k)).

Now recall Luks’s function isomorphism algorithm, mentioned in Section 1.3.

3.4.6. Theorem (Luks [Luk99]). There is an algorithm ExactIso(f, g) that
decides isomorphism of two boolean functions f, g : {0, 1}k → {0, 1} in time 2O(k).
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Composing Lemma 3.4.5 with Theorem 3.4.6 yields the following theorem.
We state it for the problem of testing isomorphism between two k-juntas, but all
results of this type also hold for testing isomorphism to a fixed k-junta.

3.4.7. Theorem (Chakraborty et al. [CGGM11]). There exists a random-
ized algorithm that given two k-juntas f, g : {0, 1}n → {0, 1}, accepts with proba-
bility at least 2/3 if they are isomorphic and rejects with probability at least 2/3 if
they are not. The algorithm runs in time n · 2O(k) and makes 2k · poly(k) queries
to f and g.

Alternatively, composing it with an exhaustive search among all possible
permutations of [k] yields:

3.4.8. Theorem (Chakraborty et al. [CGGM11]). There exists a random-
ized algorithm that given two k-juntas f, g : {0, 1}n → {0, 1}, outputs distiso(f, g)
with probability at least 2/3. It runs in time n · 2O(k) + 2O(k log k) and makes
2k · poly(k) queries.

3.4.2 Deterministic algorithm

In light of the above, for a deterministic algorithm we need the truth table of the
core of a k-junta while avoiding the use of influence tests or junta testers (which
are randomized of necessity if their query complexity does not depend on n). We
use a k-perfect family of hash functions h : [n]→ [m] that are expected to map
each influential variable into a different block. We remind the reader that we are
assuming that k is a known parameter (although standard techniques based on
binary search could be used to remove such assumption).

3.4.9. Definition. A family F of functions h1, . . . , hs : [n]→ [m] is a k-perfect
hash family if for every subset J ∈

(
[n]
≤k

)
there exists some hj ∈ F that is injective

on J .

Some constructions of k-perfect hash families are given in [NSS95, SS90]. Any
function h in such a family gives rise to a partition I of [n] into m parts, the ith
block of which (i ∈ [m]) is h−1(i).

The algorithm works by iterating over all functions in the k-perfect hash family
and building a truth table based on the assumption that the function separates
the influential variables. It is given a k-junta f : {0, 1}n → {0, 1} and a explicit
k-perfect hash family h1, . . . , hs, and finds a hash function in the family that
is injective on the influential variables of f . Then it outputs a truth table for
corek(f).
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Algorithm 3 GetCoreDet(f, h1, . . . , hs)
1: for i = 1 to s do
2: construct the hi-truth table of f
3: let kfi be the number of influential variables in the hi-truth table

4: let i0 be the index maximizing kfi
5: return the hi0-truth table of f

3.4.10. Lemma. Given a k-junta f : {0, 1}n → {0, 1} and a explicitly given k-
perfect hash family h1, . . . , hs : [n] → [k], GetCoreDet outputs a truth table for
corek(f). The time complexity of GetCoreDet is O(sn · 2k), and the number of
queries to f it makes is O(s · 2k).

Proof. First, since h1, . . . , hs is a k-perfect hash family and both the input
functions are k-juntas, we are guaranteed that for each input function there is
a hash function which separates its influential variables. This is the function
which maximizes the number of influential variables in its hi-truth table, which
is therefore a truth table for a permutation of corek(f). The truth table can be
found after finding the partition of [n] defined by hi (which takes O(n) time), and
querying all 2k blockwise-constant inputs (which takes O(n · 2k) time). Then the
number of influential variables can be found in time O(k · 2k). The overall time
and query complexities result from iterating over the members of the k-perfect
hash family.

Plugging in the construction of a globally explicit k-perfect hash family of
Naor, Schulman and Srinivasan [NSS95, Theorem 3(iii)] we get s = ekkO(log k) log n
and the time complexity for constructing the family and evaluating each of its
elements on every possible input is linear in the total description size. From these
observations and Luks’s algorithm the following follows.

3.4.11. Theorem (Chakraborty et al. [CGGM11]). There exists a deter-
ministic algorithm that given two k-juntas f, g : {0, 1}n → {0, 1}, accepts if
they are isomorphic and rejects if they are not. The algorithm runs in time
n log n · 2O(k)kO(log k).

3.4.12. Theorem (Chakraborty et al. [CGGM11]). There exists a deter-
ministic algorithm that given two k-juntas f, g : {0, 1}n → {0, 1}, outputs the value
distiso(f, g). It runs in time n log n · 2O(k)kO(log k) + 2O(k log k).

3.5 Introducing sample extractors

3.5.1 Motivation

The algorithms described thus far suffer from several shortcomings. One is that
their query complexity is exponential in k, while we strive for query complexity
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Õ(k) if we are to match the lower bound of Corollary 3.3.2. (Even in the unknown-
unknown setting, their query complexity, at least 2k, goes well beyond the lower
bound of roughly 2k/2 given by Corollary 3.3.3.) Finally, we have been assuming
throughout that g is a k-junta, which needs not hold true (in which case the core
of g is not even defined).

We attempt to apply these algorithms to the function

g∗ = the closest k-junta to g.

This at least defines a k-junta whose core we would like to query, but a new problem
is introduced as we do not have access to g∗, only to a “noisy” approximation
thereof. The key to an efficient resolution is to notice that being able to query
the core of g∗ is overkill. All the tester from Proposition 2.3.2 needs is to draw
O(n log n) random samples (x, a), where x ∈ {0, 1}n is uniformly distributed and
a = g∗(x); this sufficed to obtain a good estimate for distiso(f, g∗). Therefore the
task would be solved if we somehow managed to get samples from the core of g∗.
This motivates the notion of “noisy sample extractor” (or “noisy sampler” for
short).

3.5.1. Definition. Let h : {0, 1}k → {0, 1} be a function, and let η, µ ∈ [0, 1).

An (η, µ)-noisy sample extractor for h is a probabilistic algorithm h̃ that on each
execution outputs (x, a) ∈ {0, 1}k × {0, 1} such that

• for all α ∈ {0, 1}k, Pr [x = α] = 1
2k

(1± µ);

• Pr [a = h(x)] ≥ 1− η;

• the pairs output on each execution of h̃ are mutually independent.

An η-noisy sampler is an (η, 0)-noisy sampler, i.e., one which on each execution
picks a uniformly random x.1

The next theorem will be proved shortly.

3.5.2. Theorem (Chakraborty et al. [CGM11b]).
Construction of efficient noisy samplers:

Let θ3.5.2(k, ε) = (ε/2400)6/(1026k10) = poly(k/ε).
There are algorithms AP , AS (resp. preprocessor and sampler) that have oracle

access to a function g : {0, 1}n → {0, 1}, and satisfy the following properties:
The preprocessor AP takes as input ε > 0 and n, k ∈ N, makes O(k/ε+k log k)

adaptive queries to g and can either reject, or accept and return a state α ∈
{0, 1}O(n). Assuming AP accepted, the sampler AS can be called on demand, with

1The reader familiar with [CGM11c] should beware that the usage of the parameter µ here
is slightly different from the similar definition therein.
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state α as an argument; in each call, AS makes only one query to g and outputs a
pair (x, a) ∈ {0, 1}k × {0, 1}.

On termination of the preprocessing stage AP , all the following conditions are
fulfilled simultaneously with probability at least 4/5:

• If g is θ3.5.2(k, ε)-close to a k-junta, AP accepted g;

• If g is ε/2400-far from a k-junta, AP rejected g;

• If AP accepted, AS(α) is an ε/90-noisy sampler for corek(g
∗)π (where π is

some permutation of [k]).

The running time of AP is O
(
n·k
ε

+ poly(k
ε
)
)
, and the running time of each

call to AS is O(n).

The statement is somewhat technical and calls for careful reading. The fact
that the last condition should be satisfied with high probability for any g plays
a crucial role. When θ3.5.2(k, ε) < dist(g, Junk) < ε/2400, it might be the case
that AP always accepts g, or always rejects g, or anything in between, but
with high probability either g has been rejected or an ε/90-noisy sampler for
(a permutation of) corek(g

∗) has been constructed. We prove Theorem 3.5.2 in
Section 3.7.

It is notable that such samples from the core of g∗ can indeed be efficiently
obtained (allowing for some noise), even though g is the only function we have
access to. In fact even having query access to g∗ itself would not seem to help
much on initial consideration, because the location of the relevant variables of g∗

is unknown to us, and cannot be found without introducing a dependence on n in
the query complexity.

3.5.3. Remark. The preprocessing stage makes adaptive queries, while the
sampler is non-adaptive. It is possible to make the preprocessor non-adaptive too
by switching to the non-adaptive junta tester (see Section 3.6). This incurs an
overhead of O(k4 log k) in the query complexity of the preprocessor.

3.5.2 Approximating distiso

The O(k log k/ε)-query upper bound for k-juntas would seem to be a matter of
instantiating Proposition 2.3.1 and Theorem 3.5.2. This is not quite so because
the sample extractor is allowed to make errors. So instead of Proposition 2.3.1 we
need an isomorphism tester that is still guaranteed to work when f is merely close
enough to a k-junta g. In future chapters we shall make use of a more general
result, dealing with the estimation of the distance between f and the closest
element of a class S of functions.
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3.5.4. Lemma (Chakraborty et al. [CGM11b]). There is an algorithm A
that given ε ∈ R+, k ∈ N, a set S of boolean functions on {0, 1}k, and an η-noisy
sampler g̃ for some g : {0, 1}k → {0, 1}, where η ≤ ε/90, satisfies the following:

• if dist(g,S) < ε/10, A accepts with probability at least 9/10;

• if dist(g,S) > 9ε/10, A rejects with probability at least 9/10;

• Algorithm A makes O
(

1+log |S|
ε

)
calls to the noisy sampler.

If each call to the noisy sampler takes time O(1) and every f ∈ S can be

evaluated on any given input in O(n), then A runs in time O
(
n|S| log |S|+n

ε

)
.

Proof.
Consider the following variation of Algorithm 1 (on page 21). It is clear that

Algorithm 4 Tolerant, noise-resilient isomorphism tester

1: let q ← 1
ε (90 + 800 ln |S|).

2: obtain q independent samples (x1, a1), . . . , (xq, aq) from g̃
3: accept if and only if minh∈S

∣∣{i ∈ [q] | h(xi) 6= ai}
∣∣ < εq/2

the time and query complexities are as stated.
For h ∈ S, write δh , dist(h, g) and let ∆h ⊆ {0, 1}k be the set of inputs on

which h and g disagree, where |∆h| = δh2
k. Since the x’s are independent and

uniformly distributed random variables, we have Prx [x ∈ ∆h] = δh. Also let Λh

be a random variable representing the fractional disagreement between h and g in
the sample:

Λh =

∣∣{i ∈ [q] | h(xi) 6= g(xi)}
∣∣

q
.

If distiso(g,S) > 9ε/10, then for any fixed h ∈ S the probability that Λh is at
least 4ε/5 can be bounded by using the Chernoff inequality in its multiplicative
form:

Pr [Λh < 8ε/10 ≤ (1− 1/9)δh] = e−(1/9)2(9/10)εq/2 <
1

20|S|
.

Hence with probability 19/20, Λh ≥ 8ε/10 for all h ∈ S. To relate this to the
fraction of samples (x, a) for which h(x) 6= a, we use Markov’s inequality:

Pr
[∣∣{i ∈ [q] | ai 6= g(xi)}

∣∣ ≥ (3/10)εq
]
≤ Pr

[∣∣{i ∈ [q] | ai 6= g(xi)}
∣∣ ≥ 27ηq

]
≤ 1/27. (3.4)

Hence with probability at least 9/10,

min
h∈S

∣∣{i ∈ [q] | h(xi) 6= ai}
∣∣ > εq/2.



3.5. Introducing sample extractors 53

On the other hand, if distiso(g,S) < ε/10, picking h ∈ S with dist(g, h) < ε/10
we obtain in the same way

Pr
[∣∣{i ∈ [q] | h(xi) 6= g(xi)}

∣∣ > 2ε/10 ≥ 2δhq
]
≤ e−(1/10)εq/3 <

1

20

(no union bound is needed here). As (3.4) continues to hold, we conclude in this
case that with probability at least 9/10,

min
h∈S

∣∣{i ∈ [q] | h(xi) 6= ai}
∣∣ < 2εq/5 < εq/2.

3.5.5. Remark. Note that this algorithm does not provide an estimate of
dist(g,S) with additive accuracy O(ε), because when dist(g,S) is large the
approximation obtained is only good up to constant multiplicative factors. This
meets our requirements. Nonetheless, it is equally easy to obtain an algorithm
that estimates dist(g,S) up to, say, ε/10, by turning the 1/ε factor into O(1/ε2).
The analysis would then use the additive Chernoff bounds.

3.5.6. Theorem (Chakraborty et al. [CGM11b]). Let ε > 0, k ∈ N+ and
let C[k] ⊆ Jun[k] be a class of juntas on the first k variables that is closed under
permutations of [k]. There is a randomized algorithm A3.5.6 that given ε, k and
oracle access to a function f : {0, 1}n → {0, 1} does the following:

• if distiso(f, C[k]) < θ3.5.2(k, ε), A3.5.6 accepts with probability at least 7/10;

• if distiso(f, C[k]) ≥ ε, A3.5.2 rejects with probability at least 7/10;

• A3.5.6 makes O
(
k log k +

k+log |C[k]|
ε

)
queries to f .

If every g ∈ C[k] can be evaluated on any given input in O(k), then the algorithm
runs in time

O

(
n(k + log |C[k]|)

ε
+
k|C[k]| log |C[k]|

ε
+ poly

(
k

ε

))
.

Proof. Let τ , θ3.5.6(k, ε) and let f ∗ be the closest k-junta to f . Suppose first
that distiso(f, C[k]) < τ . Then Theorem 3.5.2 asserts that, with probability at least
4/5, we can construct an ε/90-noisy sampler for corek(f

∗). Since dist(f, f ∗) ≤
dist(f, C[k]) ≤ τ , we actually obtain an ε/90-noisy sampler for a function that is
2τ < ε/10-close to the core of some g ∈ C[k]. Using this noisy sampler we may
apply the algorithm from Lemma 3.5.4 with

S = corek(C[k]) , {corek(f) | f ∈ C[k]},

which in turn will accept with probability at least 9/10. The overall acceptance
probability in this case is at least 7/10 by the union bound.

Now consider the case distiso(f, C[k]) ≥ ε. There are two possible sub-cases:
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dist(f, Junk) ≥ ε/2400: In this case f is rejected with probability at least 4/5 >
7/10.

dist(f, Junk) < ε/2400: In this case, with probability at least 4/5, either f is
rejected (in which case we are done), or an ε/90-noisy sampler has been
constructed for corek(f

∗). Since f ∗ is ε/2400-close to f , by the triangle
inequality we have dist(corek(f

∗), corek(C[k])) ≥ distiso(f, C[k])−dist(f, f ∗) >
9ε/10, and hence with probability at least 9/10 the algorithm from Lemma
3.5.4 rejects. Thus the overall rejection probability in this case is at least
7/10 too.

The assertion about the number of queries is easily seen to be correct, as
it is the sum of the number of queries made in the preprocessing stage by AP
(Theorem 3.5.2), and the number of executions of the sampler AS. As to the
time complexity, recall that the preprocessing stage takes time O(nk

ε
+ poly(k/ε)).

Each of the calls to the noisy sampler takes O(n), and the time complexity of the
Algorithm of Lemma 3.5.4 excluding these calls is O((k|S| log |S|+ k)/ε).

The next few corollaries all have a similar flavor.

3.5.7. Corollary. Let ε > 0 and suppose f : {0, 1}n → {0, 1} is a k-junta.
Then it is possible to ε-test isomorphism between g : {0, 1}n → {0, 1} and f with

O(k log k/ε) adaptive queries and time Õ(nk/ε) + poly(k!/ε).

Proof. Immediate from Theorem 3.5.6 on setting C[k] = Isom(f) ∩ Jun[k].

3.5.8. Corollary. Let ε > 0. There exists a non-adaptive ε-tester with one-
sided error for function isomorphism in the unknown-unknown setting with query
complexity

Õ

(
2k/2

ε
1
2

)
,

under the promise that both functions are k-juntas. It runs in time n · poly(k!/ε).

Proof. Combine Theorem 2.5.1 with Theorem 3.5.2.

Note that the tester of Corollary 3.5.7 is adaptive, in contrast with the tester of
Theorem 2.3.1. (The tester of Corollary 3.5.8 can easily be made non-adaptive by
switching to the non-adaptive junta tester, as the complexity of the preprocessing
stage is subsumed by the number of samples taken.) We discuss in Chapter 5 how
to obtain non-adaptive isomorphism testers.
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3.6 Junta testing

As one may expect, the testers for the property of being a k-junta play an important
role in constructing sample extractors. For this reason we need an overview of the
internal workings of junta testers; see also the survey [Bla10]. The reader looking
for full proofs should consult the original papers.

For simplicity we do not describe the testers in their full generality. Most of the
time we will be dealing with boolean functions on {0, 1}n and this is the setting
we work with in this chapter, although the need will occasionally arise to consider
arbitrary product domain distributions in subsequent chapters. We consider two
different junta testers. The first one appeared in the original paper by Fischer,
Kindler, Ron, Safra and Samorodnitsky [FKR+04] and makes O(k4 log(k + 1)/ε)
non-adaptive queries. The second one, due to Blais [Bla09], makes O(k/ε+k log k)
adaptive queries.2 The latter almost matches the Ω(k) lower bound of Chockler
and Gutfreund [CG04]. There is also an improved non-adaptive tester [Bla08]

with query complexity Õ(k3/2/ε), which shall not be discussed here.
An essential ingredient of all junta testers is the construction of random

partitions of the input variables, as in Definition 3.4.1. Let f be the function
being tested, and if f is a k-junta, let J ⊆ [n] denote its set of relevant variables.
Roughly speaking, the junta testers take an isolating partition for J and then
proceed to identify the blocks in I containing the most influential variables of g;
it is important to note, however, that there is no guarantee that all influential
variables will be detected. One way to decide if a block is relevant is to perform
an influence test on it, with a low enough threshold η. The non-adaptive junta
tester proceeds block by block in this fashion.

Of course, this only tells half of the story. When f is not a k-junta, there is no
k-set J of relevant variables to start with. We make repeated use of the following
lemma:

3.6.1. Lemma (Fischer et al. [FKR+04]). Let f : {0, 1}n → {0, 1}, A ⊆ [n].
Then

(a) The closest A-junta to f is given by

∗(x) = Maj {f(y) | y�
A

= x�
A
}

(where ties can be arbitrarily broken).

(b)
dist(f, JunA) ≤ Inff ([n] \ A) ≤ 2 · dist(f, JunA).

Proof.

2Interestingly, in the quantum world, the log k factor in the upper bound can be disposed of,
as shown by Atıcı and Servedio [AS07].



56 Chapter 3. Testing and deciding junta isomorphism

(a) Clearly ∗ is a junta on A by construction. Let  be an arbitrary junta on A.
For every x2 ∈ {0, 1}A, consider the nonnegative quantity

q(x2) , Pr
x1∈{0,1}[n]\A

[f(x1 t x2) 6= (x1 t x2)].

As (x1 t x2) does not depend on x1, choosing ∗ for  minimizes q(x2) over
all A-juntas, for any x2. Hence it also minimizes

dist(f, ) = E
x2

[q(x2)].

(b) Let  = ∗. We have, for every x2 ∈ {0, 1}A,

Pr
y1,x1∈{0,1}[n]\A

[f(x1 t x2) 6= f(y1 t x2)] = 2 · q(x2)(1− q(x2)) ∈ [q(x2), 2q(x2)]

because q(x2) ≤ 1/2 by our choice of . Since dist(f, ) = Ex2∈{0,1}A [q(x2)],
by taking expectations we conclude that

Inff ([n] \ A) ∈ [dist(f, ), 2 · dist(f, )].

Consequently, the task can be reduced to accepting k-juntas and rejecting
functions where the influence outside any set of size k is at least ε.

3.6.1 Non-adaptive junta tester

The non-adaptive tester uses its random coin flips to select a series of disjoint
subsets I1, . . . , Ir ⊆ [n] (where r = O(k2)), and performs an independence test on
each of them to some prescribed accuracy threshold η. These subsets are then
shown to satisfy the following property with high probability:

• if Inff ([n] \ A) ≥ ε for all A ⊆ [n], |A| = k, then
at least k + 1 of the independence tests will be positive.

This is enough to prove soundness (the rejection condition when f is ε-far from a
k-junta), by the reasons explained right after Lemma 3.6.1. As for completeness,
when f is a k-junta, at most k of the independence tests will be positive because
I1, . . . , Ir are disjoint.

We will not give a detailed account of how these tests are selected, but will
be content to note that the proof in [FKR+04] uses the following results about
how influence distributes over random subsets. We will make use of some of them
later.
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3.6.2. Definition. Let f : {0, 1}n → {0, 1}. The unique influence of the coordi-
nate i on f with respect to the set A ⊆ [n] is defined by

IAi , Inff (A ∩ [i])− Inff (A ∩ [i− 1]).

3.6.3. Lemma (Fischer et al. [FKR+04]). Let B ⊆ A ⊆ [n]. Then

(a) For all i ∈ [n], we have IAi ≤ Infi(f) (in particular IAi = 0 when i /∈ A).

(b) For all i ∈ B, we have IAi ≤ IBi .

(c) Inff (A) =
∑

i∈A I
A
i and Inff (B) =

∑
i∈B I

B
i ≥

∑
i∈B I

A
i .

Proof.

(a) This is a special case of (b) when B = {i}.

(b) This is the submodularity of influence (Lemma 3.2.5).

(c) The first part holds because we can express the influence of A as a telescoping
sum of unique influences:

Inff (A) = Inff (A ∩ [n])− Inff (∅) =
∑
i∈[n]

IAi =
∑
i∈A

IAi .

This also shows the equality in the second part; the inequality follows from
item (b).

The next lemma was key to the proofs of the non-adaptive junta tester. While
we will only need the claim about the expected influence, we also include a
concentration result.

3.6.4. Lemma (Fischer et al. [FKR+04]). Let f : {0, 1}n → {0, 1}, τ > 0
and let A ⊆ [n] be a subset of the variables with individual influence < τ on f .
Let ρ ∈ [0, 1] and B ⊆ρ A denote a subset of A obtained by putting each element
of A in B with probability ρ. Then

E
B⊆ρA

[Inff (B)] ≥ ρ Inff (A)

and

Pr
B⊆ρA

[
Inff (B) ≤ ρ

2
Inff (A)

]
≤ e−

ρ
8τ

Inff (A).
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Proof. When B ⊆ρ A, the quantity Inff (B) is bounded from below by a sum
of independent random variables in the interval [0, τ), the ith of which is the
product of the indicator function I [i ∈ B] and the unique influence IAi . To make
the best use of concentration inequalities, we rescale them so that they assume
values in [0, 1). That is, note that τ > 0 and for each i ∈ A define

Xi ,
1

τ
I [i ∈ B] · Ii,

where E [I [i ∈ B]] = Pr [i ∈ B] = ρ for i ∈ A. Then we have by Lemma 3.6.3

Inff (B) ≥ τ
∑
i∈A

Xi,

where Xi ∈ [0, 1),E [Xi] = ρ
τ
Ii, and

E

[∑
i∈A

Xi

]
=
ρ

τ
·
∑
i∈A

IAi =
ρ

τ
Inff (A).

By Chernoff bounds, the probability that
∑

i∈AXi is at most half its expected

value is bounded by e−
ρ
8τ

Inff (A), concluding the proof.

From this one can show that if we take a random subset B of density 1/t of a
set A and the influence of B decreases by a greater proportion than t, then most
of the influence of A comes from a subset of size t.

3.6.5. Lemma. Let 0 < t ≤ n ∈ N, f : {0, 1}n → {0, 1}, A ⊆ [n]. Then either

Pr
B⊆1/tA

[
Inff (B) ≥ Inf(A)

16t

]
≥ 1− 1

e

or

there is J ∈
(
A
≤t

)
with Inff (J) ≥ Inff (A)

2
.

Proof. Sort the elements of A by decreasing value of IAi . Without loss
of generality, A = {1, 2, . . . ,m} with IA1 ≥ IA2 ≥ . . . IAm. By Lemma 3.6.3,
Inff (A) =

∑
i∈[m] I

A
i .

If t ≥ m or
∑t

i=1 I
A
i ≥ Inff (A)/2, then we can take J = {1, . . . , t}. Otherwise

we have

Inff (A \ [t]) >
∑
i>t

IAi ≥ Inff (A)/2, (3.5)

and there are two cases to consider:
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Case 1: IAt ≥
Inff (A)

16t
. Then the probability that B ⊆1/t A fails to intersect

{1, . . . , t} is (1− 1/t)t ≤ 1
e
. So with probability at least 1− 1/e, there is i ∈ [t]

with i ∈ B, hence

Inff (B) ≥ IAi ≥ IAt ≥
Inff (A)

16t
.

Case 2: IAt <
Inff (A)

16t
. Any random subset B ⊆1/t A contains a random subset

B′ ⊆1/t A
′, where A′ , A \ [t]. By (3.5), we can apply Lemma 3.6.4 for A′ and

ρ = 1/t, τ = Inff (A
′)/(8t) ≥ ρ Inff (A)/(16t). We get

Pr
B′⊆1/tA

′

[
Inff (B

′) ≤ Inff (A
′)

8t

]
≤ e−1,

so

Pr
B⊆1/tA

[
Inff (B) ≤ Inff (A)

16t

]
≤ e−1.

3.6.2 Adaptive junta tester

The adaptive test takes a different route and we shall need a more detailed
understanding of it. Given a random partition I = I1, . . . , I` of [n], the tester
starts with an empty set J ′ = ∅, and gradually keeps adding to it the blocks Ii
that have been found to contain a relevant variable, as follows. For each of O(k/ε)
rounds, it generates two random strings x, y ∈ {0, 1}n and queries f on x and on

z , xS̄yS = x
S←y�

S
,

where S , [n] \
⋃
Ii∈J ′ Ii. (Picking x and y is the only place where randomness

is used.) If f(x) turns out to be different from f(xS̄yS), we know that there is
at least one relevant block in I \ J ′ yet to be found. In this case, we can find a
relevant block by performing a binary search on the |I \ J ′|+ 1 hybrid strings
between x and xS̄yS obtained in the following way:

Let Ii1 , . . . , Iit be the blocks in I \ J ′, where 1 ≤ i1 ≤ · · · ≤ it ≤ `. The jth
hybrid zj has the same values as y on all indices in Ii1 ∪ · · · ∪ Iij , and its values
elsewhere are the same as those of x. In particular, z0 = x and zt = z. If we know
a < b with f(za) 6= f(zb), then for any a ≤ m ≤ b at least one of f(za) 6= f(zm)
or f(zm) 6= f(zb) must hold, so if f(z0) 6= f(zt) we can use binary search to find a
relevant block Iij after making at most log(t+ 1) ≤ log(`+ 1) queries to f on the
hybrid strings.

If at some stage the tester discovers more than k relevant blocks then it rejects;
otherwise it accepts and outputs a (possibly extended) set J ⊇ J ′ of size k (see
Algorithm 5).
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Algorithm 5 T?(k, ε, I): adaptive junta tester

1: J ′ ← ∅
2: for i = 1 to d40(k + 1)/εe do
3: S ← [n] \

⋃
Ii∈J ′ Ii

4: pick x, y ∈ {0, 1}n uniformly at random
5: if f(x) 6= f(ySxS̄) then
6: use binary search to find a block Ij containing a relevant variable
7: J ′ ← J ′ ∪ {Ij}
8: if |J ′| > k, reject f

9: extend (if needed) J ′ to a set J of size k, by adding to it k − |J ′| arbitrary blocks
from I \ J ′

10: accept f and return J

Note that the algorithm needs time O(n)+poly(k/ε) to construct the partition
and O(nk/ε) to select and query all pairs x, y. To perform each of the O(k) binary
searches, the time required is only O(n + n/2 + n/4 . . . ) = O(n) (assuming we
do not have to write the whole n-bit input on a new location for each oracle call
to f).

3.6.6. Remark. There are a few minor differences between the original algorithm
of [Bla09] and the one presented here:

• The constant factors have been modified for convenience.

• The original algorithm constructs the random partition I by itself; here we
treat I as an argument passed to the algorithm (for convenience).

• The original algorithm does not actually output the set J ; instead, it
identifies a set J ′ of at most k blocks containing relevant variables. Here T?

always returns a set J of size exactly k, by extending (if necessary) the set
J ′ arbitrarily; as we show later, precisely how this extension is performed is
inconsequential.

Again, the tester’s completeness is easy to show. Its soundness is proved
through the next lemma.3

3.6.7. Lemma (Blais [Bla09, Main Lemma]). Let I = (I1, . . . , I`) denote a
random partition of [n] into ` = 1020k9/ε5 parts. With probability at least 5/6, a
function f : {0, 1}n → {0, 1} that is ε-far from being a k-junta also satisfies

Inff (A) ≥ ε/2

for all A formed by taking the union of k parts in I.

3Very recently, a new proof of a similar lemma has been found [BWY11] that shows that in
fact we can take ` = O(k2).
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On a different note, observe that the lemma gives a tolerant junta tester with
complexity exp(poly(k/ε)): simply go through all

(
`
k

)
possible k-subsets of I and

estimate the minimum influence among all of them.

3.6.3 Summary of junta testing

We summarize the junta testing results below. They are stated in greater generality
than discussed so far. Briefly speaking, it is possible to tackle real-valued functions
(as opposed to boolean functions) by replacing the notion of influence of a set A
with that of variation, which is the variance of the function when the values inside
A are random, averaged over all values outside A. This is the approach taken
in [FKR+04]. Alternatively, one can leave the definition of influence unaltered, and
then the relationship between the influence of a set on f and the Fourier expansion
of f is maintained if we replace the latter with the more general Efron-Stein
decomposition, as shown in [Bla09].

Of greater interest to us is the fact that the testers work for an arbitrary
product measure. Let Ω1, . . . ,Ωn be finite sets and µ1, . . . , µn distributions with µi
supported on Ωi. The distance between two functions f, g : Ω1 . . .Ωn → R is now
defined by the measure under µ = µ1 × µ2 · · · × µn of the set {x | f(x) 6= g(x)};
this gives rise to a notion of distance from being a k-junta. (A k-junta from
Ω1 . . .Ωn to R is still a function that depends on at most k variables.)

3.6.8. Theorem. Let {Ωi}i∈[n], {µi}i∈[n], f :
∏

i∈[n] Ωi → R as before. Let ε > 0.
For the property of being a k-junta, there exist the following ε-testers with

constant success probability:

1. A non-adaptive tester with query complexity O(k4 log(k + 1)) [FKR+04].

2. An adaptive tester with query complexity O(k/ε+ k log k) [Bla09].

3. A tolerant, non-adaptive tester with query complexity 2poly(k/ε).

All these testers have one-sided error (meaning they always accept k-juntas).

3.7 Construction of noisy sample extractors

Observe that Theorem 3.5.2 is stated for functions that are merely approximated by
juntas. Although isomorphism testers do not need this, this will be of paramount
importance for the applications discussed in Chapter 6. Unfortunately, the junta
testers are not guaranteed to accept functions that are, say, ε/10 close to juntas,
i.e., they are not tolerant. In fact, coming up with a tolerant junta tester with
polynomial query complexity is listed as an open problem in [Bla10]. We observe,
however, that the junta testers enjoy a certain (weak) form of tolerance; roughly
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speaking, θ3.5.2(k, ε) is a measure of the amount of tolerance of the adaptive tester,
i.e., how close f must be to a k-junta in order to make sure it will be accepted
with high probability. (This is Lemma 3.7.3 in Section 3.7.1.) We use the adaptive
tester because of its smaller query complexity, but it is to be noted that this is
not essential and our sampler construction can be analyzed in the same way if we
use the non-adaptive tester instead. This would lead to a slower preprocessing
stage but a better approximation threshold.

It may be useful to keep in mind that our final construction of the sample
extractor will begin by calling the junta tester with parameter k. Let f be
θ3.5.2(k, ε)-close to some k-junta f ∗. The aforementioned tolerance implies that f
is not rejected. (Note, however, that f may be θ3.5.2(k, ε)-far from any k-junta and
still be accepted with high probability, as long as it is ε-close to some k-junta.)
The tester also returns a set of k blocks that isolate the relevant variables of a
junta h sufficiently close to f . (Clearly h must itself be close to f ∗ too.)

3.7.1 Smoothness and tolerance

Consider a property P of boolean functions on {0, 1}n and an ε-tester T for P
that makes q queries and has success probability 1−δ. Let r denote a random seed
(so that we can view the tester as a deterministic algorithm with an additional
input r) and let Q(f, r) ⊆ {0, 1}n be the set of queries it makes on input f and
seed r. Define Q(r) ,

⋃
f Q(f, r); this is the set of all possible queries T may make

as f runs through all possible functions, once r is fixed. We call p , maxr |Q(r)|
the non-adaptive complexity of the tester. If q = p then the tester is essentially
non-adaptive; and clearly p ≤ 2q holds for any tester of boolean function properties.
We observe that for the adaptive junta tester, p is in fact polynomially bounded
in q. (Without loss of generality we assume that Q(r) is never empty.)

3.7.1. Definition. A tester is p-smooth if its non-adaptive complexity is at most
p and for all α ∈ {0, 1}n,

Pr
r

y∈Q(r)

[y = α] =
1

2n
.

Notice that y is picked uniformly at random from the set Q(r), regardless of the
probability y would be queried by the tester T on any particular f . In other
words, we are picking one random query of the non-adaptive version of T that
queries all of Q(r) in bulk, and requiring that the resulting string be uniformly
distributed.

3.7.2. Lemma. Let T be a p-smooth tester for P that accepts every f ∈ P with
probability at least 1− δ. Then for every f : {0, 1}n → {0, 1},

Pr [T accepts f ] ≥ 1− δ − p · dist(f,P).
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Proof. Choose any f ′ ∈ P and let ∆ , {y ∈ {0, 1}n | f(y) 6= f ′(y)}. By
the union bound, the probability (over r) that Q(r) intersects ∆ is at most
µ , p ·dist(f, f ′), and hence the probability is at least 1−µ that the tester reaches
the same decision about f as it does about f ′. But the probability that f ′ is
rejected is at most δ, hence the claim.

3.7.3. Lemma. The one-sided error junta tester T? of Algorithm 5 is θ3.7.3(k, ε)-
smooth, where θ3.7.3(k, ε) , (1025k10)/ε6. Thus, by Lemma 3.7.2, it accepts
functions that are θ3.5.6(k, ε)-close to Junk with probability at least 9/10 (since
10 · θ3.5.6(k, ε) ≤ 1/θ3.7.3(k, ε)). (It also rejects functions that are ε-far from Junk
with probability at least 2/3.)

Proof. Note that once the randomness has been fixed, the number of possible
queries that can be made in any given round is |I \ J ′| + 1 ≤ ` + 1, so
|Q(r)| ≤ 40k+1

ε
(`+ 1) (recall that ` is the number of blocks in partition I). Also,

any hybrid zj of two uniformly random strings x, y ∈ {0, 1}n is itself uniformly
random. These two things together mean that the tester is 40k+1

ε
(`+ 1)-smooth,

and we can plug in the value of ` = O(k9/ε5) from Lemma 3.6.7.

3.7.2 Extracting samples

Intuitively, the key idea to obtain the sample extractor is that the samples required
may be obtained by making queries to f on certain blockwise-constant strings,
so that we know the values that y sets on the (unknown) relevant variables of h
(which is sufficiently close to both f and f ∗). Although such strings are far from
being uniformly distributed for a fixed partition, the approach can be shown
to work most of the time if we settle for a small fraction of the samples being
incorrectly labelled.

3.7.4. Definition. Given an I-blockwise constant y ∈ {0, 1}n and an ordered
subset J = (J1, . . . , Jk) of I, define extractI,J (y) to be the string x ∈ {0, 1}k
where for every i ∈ [k], xi = yj if j ∈ Ji; and xi is a uniformly random bit if
Ji = ∅.

3.7.5. Definition. Let I denote a random partition of even size `. For any
J ⊆ I, we define a pair of distributions:

• The distribution DI on {0, 1}n: To obtain a random y ∼ DI ,

1. Pick z ∈ {0, 1}` uniformly at random among all binary vectors of weight
precisely `/2.

2. Set y ← replicateI(z).
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• The distribution DJ on {0, 1}|J |: To obtain a random x ∼ DJ ,

1. Draw y ∈ {0, 1}n at random from DI ;
2. Set x← extractI,J (y).

3.7.6. Lemma (Properties of DI and DJ ).

(a) For all α ∈ {0, 1}n, Pr
I,y∼DI

[y = α] = 1/2n;

(b) Assume ` > 4|J |2. For every I and J ⊆ I, the L∞ distance between DJ
and the uniform distribution on {0, 1}|J | is at most 4|J |2/(`2|J |). Hence the
statistical distance between DJ and uniform is bounded by 2|J |2/`.

Proof.

(a) Each choice of z ∈ {0, 1}`, |z| = `/2, in Definition 3.7.5 splits I into two
equally-sized sets I0 and I1; Ib (b ∈ {0, 1}) contains the blocks Ii that satisfy
zi = b. The bits corresponding to indices in Ib are set to b in the construction
of y. For each index i ∈ [n], the block it is assigned to is chosen independently
at random from I, and therefore falls within I0 (or I1) with probability 1/2,
independently of other j ∈ [n]. (This actually shows that the first item of the
lemma still holds if z is an arbitrarily fixed string of weight `/2, rather than a
randomly chosen one.)

(b) Let k = |J |. Let us prove the claim on the L∞ distance, which implies the
other one. We may assume that all sets Ji in J are non-empty; having empty
sets can only decrease the distance to uniform. Let w ∈ {0, 1}k. The choice
of y ∼ DI , in the process of obtaining x ∼ DJ , is independent of J ; thus, for
every i ∈ [k] we have

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≤ `/2

`− k
<

1

2
+
k

`
,

and

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≥ `/2− k
`− k

>
1

2
− k

`
.

Using the inequalities 1−my ≤ (1− y)m for all y ≤ 1,m ∈ N and (1 + y)m ≤
emy ≤ 1 + 2my for all m ∈ [0, 1/(2y)], we conclude

Pr
x∼DJ

[x = w] =

(
1

2
± k

`

)k
=

1

2k

(
1± 4k2

`

)
.

whereas a truly uniform distribution U should satisfy Prx∼U [x = w] = 1/2k.
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3.7.7. Definition. Given I,J as above and oracle access to f : {0, 1}n → {0, 1},
we define a probabilistic algorithm samplerI,J (f) that on each execution produces

a pair (x, a) ∈ {0, 1}|J | × {0, 1} as follows: it first picks a random y ∼ DI , then
queries f on y, and finally outputs the pair (extractI,J (y), f(y)).

Jumping ahead, we remark that the pair I,J will be the information encoded
in state α referred to in Lemma 3.5.2. In order to ensure that the last condition
there is satisfied, we need to impose certain conditions on I and J .

3.7.8. Definition. Given δ > 0, a function f : {0, 1}n → {0, 1}, a partition
I = I1, . . . , I` of [n] and a k-subset J of I, we call the pair (I,J ) δ-good (with
respect to f) if there exists a k-junta h : {0, 1}n → {0, 1} such that the following
conditions are satisfied:

1. Conditions on h:

(a) Every relevant variable of h is also relevant for f ∗ (recall that f ∗ denotes
the k-junta closest to f);

(b) dist(f ∗, h) < δ.

2. Conditions on I:

(a) For all j ∈ [`], Ij contains at most one variable of corek(f
∗);4

(b) Pry∼DI [f(y) 6= f ∗(y)] ≤ 10 · dist(f, f ∗);

3. Conditions on J :

(a) The set
⋃
Ij∈J Ij contains all relevant variables of h;

3.7.9. Lemma. Let δ, f, I,J be as in the preceding definition. If the pair (I,J )
is δ-good (with respect to f), then samplerI,J (f) is an (η, µ)-noisy sampler for
some permutation of corek(f

∗), with η ≤ 4δ+4k2/`+10·dist(f, f ∗) and µ ≤ 4k2/`.

Proof. By item 2b in Definition 3.7.8, it suffices to prove that

Pr
y∼DI

[f ∗(y) 6= corek(f
∗)π(extractI,J (y))] < 2δ + 4k2/`

for some π.
Let h be the k-junta witnessing the fact that the pair (I,J ) is δ-good. Let

V ⊆ [n] be the set of k variables of corek(f
∗); recall that V may actually be a

superset of the relevant variables of f ∗. Let J ′ , {Ij ∈ I : Ij ∩ V 6= ∅} be an
ordered subset respecting the order of J , and let π be the permutation whose

4Note that this, together with 1a, implies that every block Ij contains at most one relevant
variable of h, since the variables of corek(f∗) contain all relevant variables of f∗.
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inverse maps the i-th relevant variable of f ∗ (in the standard order) to the index
of the element of J ′ in which it is contained. We assume without loss of generality
that π is the identity map.

It follows from Definition 3.7.8 that |J ′| = |V | = k, since each block in I
contains at most one variable of corek(f

∗). For any I-blockwise y ∈ {0, 1}n, let x ,
extractI,J (y) and x′ , extractI,J ′(y) denote the k-bit strings corresponding
to J and J ′. We have the equalities

f ∗(y) = corek(f
∗)(x′) by Definition 3.7.4, (3.6)

corek(h)(x) = corek(h)(x′) by Definition 3.7.8. (3.7)

From item 1b of Definition 3.7.8 we also have

Pr
r∈{0,1}k

[corek(f
∗)(r) 6= corek(h)(r)] < 2δ, (3.8)

where r is picked uniformly at random. However, by the second item of Lemma
3.7.6, the distribution DJ is 2k2/` close to uniform; combining this with (3.8) we
also get

Pr
y∼DI

[corek(f
∗)(x) 6= corek(h)(x)] < 2δ + 2k2/`. (3.9)

Likewise, we have

Pr
y∼DI

[corek(f
∗)(x′) 6= corek(h)(x′)] < 2δ + 2k2/`, (3.10)

thus, using equations (3.7), (3.9), (3.10) and the union bound we get

Pr
y∼DI

[corek(f
∗)(x′) 6= corek(f

∗)(x)] < 4δ + 4k2/`. (3.11)

Combining (3.6) and (3.11) we conclude that

Pr
y∼DI

[f ∗(y) 6= corek(f
∗)(x)] < 4δ + 4k2/`,

and the claim follows.

As the lemma suggests, our next goal is to obtain a good pair (I,J ). For this
we need to prove that the adaptive junta tester satisfies certain properties.

3.7.3 Obtaining a good pair (I,J )

In the following proposition we claim that the tester T? satisfies several conditions
that we need for obtaining the aforementioned sampler.
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3.7.10. Proposition.
There is a tester T? for Junk with query complexity O(k log k + k/ε) that takes
a (random) partition I = I1, . . . , I` of [n] as input, where ` = Θ(k9/ε5) is even,
and outputs (in case of acceptance) a k-subset J of I such that for any f the
following conditions hold (the probabilities below are taken over the randomness of
the tester and the construction of I):

• if f is θ3.5.6(k, ε/2400) close to Junk, T? accepts with probability at least
9/10;

• if f is ε/2400-far from Junk, T? rejects with probability at least 9/10;

• for any f , with probability at least 4/5 either T? rejects, or it outputs J
such that the pair (I,J ) is ε/600-good (as per Definition 3.7.8).

In particular, if dist(f, Junk) ≤ θ3.5.6(k, ε), then with probability at least 4/5 T?

outputs a set J such that (I,J ) is ε/600-good.

Proof. By Lemma 3.7.3, the first two conditions are satisfied by the junta
tester, called with a value of ε′ = ε/2400.

Let J ′ = (Is1 , . . . , Is|J ′|) be the set output by the original algorithm T? and let

S = {s1, . . . , s|J ′|}. Closer inspection of Algorithm 5 shows that, with probability
at least 19/20,

(∗) either f is rejected or the set S satisfies

Inff

(
[n] \

(⋃
j∈S

Ij
))
≤ ε/4800.

This is because the main loop of algorithm runs for 40(k + 1)/ε′ rounds. Suppose
that at any of these, the influence of the remaining blocks is always ≥ ε′/2. Since
the expected number of rounds to find k + 1 relevant blocks is at most 2(k + 1)/ε′

in this case, it follows that with probability 19/20, a (k + 1)-th relevant block is
found and f is rejected.

Recall that when |S| < k the set J ′ is extended by putting in it k − |S|
additional “dummy” blocks from I \J ′ (some of them possibly empty), obtaining
a set J of size exactly k.

Now we go back to proving the third item. Let R ∈
(

[n]
≤k

)
denote the set of

relevant variables of f ∗ (the closest k-junta to f), and let V ∈
(

[n]
k

)
, V ⊇ R, denote

the set of variables of corek(f
∗). Assume5 that dist(f, Junk) ≤ ε/2400, and T?

did not reject. In this case,

5For other f ’s the third item follows from the second item.
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• by (∗), with probability at least 19/20 the set J satisfies

Inff

(
[n] \

( ⋃
Ij∈J

Ij
))
≤ Inff

(
[n] \

(⋃
j∈S

Ij
))
≤ ε/4800;

• since `� k2, with probability larger than 19/20 all elements of V fall into
different blocks of the partition I;

• by Lemma 3.7.6, PrI,y∼DI [f(y) = f ∗(y)] = dist(f, f ∗); hence by Markov’s
inequality, with probability at least 9/10 the partition I satisfies

Pr
y∼DI

[f(y) 6= f ∗(y)] ≤ 10 · dist(f, f ∗).

So with probability at least 4/5, all three of these events occur. Now we show
that conditioned on them, the pair (I,J ) is ε/600-good.

Let U = R ∩ (
⋃
Ij∈J Ij). Informally, U is the subset of the relevant variables

of f ∗ that were successfully “discovered” by T?. Since dist(f, f ∗) ≤ ε/2400,
we have Inff([n] \ V ) ≤ ε/1200 (by Lemma 3.6.1). By the subadditivity and
monotonicity of influence we get

Inff ([n] \ U) ≤ Inff ([n] \ V ) + Inff (V \ U)

≤ Inff ([n] \ V ) + Inff

(
[n] \

( ⋃
Ij∈J

Ij
))

≤ ε/960,

where the second inequality follows from V \U ⊆ [n] \ (
⋃
Ij∈J Ij). This means, by

Lemma 3.6.1, that there is a k-junta h in JunU satisfying dist(f, h) ≤ ε/960, and
by the triangle inequality, dist(f ∗, h) ≤ ε/2400 + ε/960 < ε/600. Based on this h,
we can verify that the pair (I,J ) is ε/600-good by going over the conditions in
Definition 3.7.8.

3.7.4 Flattening out the distribution

We would like to obtain a perfectly uniform distribution for the first component of
the samples (to comply with our definition of sample extractors, although allowing
small deviations from uniformity would not affect any of our applications). Using
rejection sampling, one can easily obtain an exactly uniform sampler from a slightly
non-uniform sampler at the expense of a small increase in the error probability:

3.7.11. Lemma. Let g̃ be an (η, µ)-noisy sampler for g : {0, 1}k → {0, 1}, which
on each execution picks x ∈ {0, 1}k according to some fixed distribution D. Then
we can construct an (η + µ)-noisy sampler g̃uniform for g that makes one query to
g̃ for each sample (and no queries to g itself).
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Proof. Let U denote the uniform distribution on {0, 1}k. The new sampler
g̃uniform acts as follows: first it obtains a sample (x, a) from g̃, and proceeds as
follows:

(acceptance) with probability px ,
Pry∼U [y=x]

(1+µ) Prz∼D [z=x]
it outputs (x, a);

(rejection) with probability 1− px it picks an uniformly random z ∈ {0, 1}k and
outputs (z, 0).

(Note that px ≤ 1 by definition of (n, µ)-noisy sampler.)
Let (x′, a′) denote the pairs output by g̃uniform. We can compute the overall

acceptance probability as

E
x∼D

[px] =
∑

x∈{0,1}k
Pr
z∼D

[z = x] · px = 1/(1 + µ).

Also note that for any x,

Pr
x′

[x′ = x and the sample was accepted] = Pr
z∼D

[z = x] · px =
Pry∈U [y = x]

1 + µ
.

Therefore, conditioned on acceptance (which, as we just saw, happens with
probability 1/(1 + µ)), x is uniformly distributed. In case of rejection (which
occurs with probability µ/(1 + µ)) it is uniform by definition; hence the overall
distribution of x is uniform too. Recalling that Pr [a 6= g(x)] ≤ η, we conclude
that Pr [a′ 6= g(x′)] ≤ η + µ/(1 + µ) ≤ η + µ.

We remark that the conversion made in Lemma 3.7.11 is only possible when
the distribution D is known. This is the case for the sampler that we construct
here nonetheless. We note that in this case we have Pry∼U [y = x] = 2−k and

Pr
z∼DJ

[z = x] =

(
`/2
|x|

)(
`/2
k−|x|

)(
`
k

)(
k
|x|

)
(which only depends on |x|); the preprocessor AP can precompute these k + 1
numbers in time poly(`) = poly(k/ε) by, e.g., using dynamic programming to
compute the binomial coefficients.

3.7.5 Putting it all together

Proof of Theorem 3.5.2. We start by describing how AP and AS operate:
The preprocessor AP starts by constructing a random partition I and calling
the junta tester T?. Then, in case T? accepted, AP encodes in the state α the
partition I and the subset J ⊆ I output by T? (see Proposition 3.7.10). (The
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state α, which has size O(n), can also encode O(n) precomputed values such as
those needed by the conversion to uniform.) The sampler AS, given α, obtains a
pair (x, a) ∈ {0, 1}k × {0, 1} by executing samplerI,J (f) (once).

Now we show how Lemma 3.5.2 follows from Proposition 3.7.10. The first
two items are immediate. As for the third item, notice that we only have to
analyze the case where dist(f, f ∗) ≤ ε/2400 and T? accepted; all other cases are
taken care of by the first two items. By the third item in Proposition 3.7.10,
with probability at least 4/5 the pair (I,J ) is ε/600-good. If so, by Lemma
3.7.9 samplerI,J (f) is an (η, µ)-noisy sampler for some permutation of corek(f

∗),
with η ≤ ε/150 + 4k2/` + 10 · dist(f, f ∗) ≤ ε/92 + 4k2/` and µ ≤ 4k2/`. The
final step we apply is the conversion from Lemma 3.7.11, with which we obtain a
(ε/92 + 4k2/`+ 4k2/`) ≤ (ε/90)-noisy sampler for some permutation of corek(f

∗).

Finally, apply Lemma 3.7.11 to turn it into a perfectly uniform sampler.

3.8 Final remarks

We mention here one interesting avenue for further research. We have shown
how to obtain random samples of the core of a k-junta, but there can be k-bit
inputs on which the samples are always wrong. In line with the classical works on
self-correction, one can ask whether it is possible to efficiently self-correct juntas.
That is, given oracle access to f which is promised to be δ-close to a k-junta g, we
would like an algorithm that outputs g(x) with high probability for any x. (One
could also ask the same question about the corek(g) instead.) The problem is well
defined if δ < 2−k−1.

This problem is solvable with exp(O(k)) queries in several ways for δ < c2−k

and some constant c. For example, we could identify all relevant blocks and make
blockwise-constant queries, much in the same way as in the exact randomized
algorithm of Section 3.4.1. For small enough c, any assignment to the core of g
gives rise to a subfunction that agrees on a noticeable majority with the same
subfunction of f . Another solution would be to use the more general self-corrector
for low degree polynomials of Alon et al. [AKK+03], since k-juntas are in particular
degree-k polynomials.

In the worst case, this bound cannot be improved upon, as noted by Alon and
Weinstein [AW12]. They show that if g is an AND of k randomly chosen literals
(positive or negative), self-correcting (functions close to) g requires exp(Ω(k))
queries. However, some juntas can be easily self-corrected. For example, if C is a
class of k-juntas such that for every f ∈ C, the influence of each relevant variable
in f is greater than 1/poly(k), then it is possible to self-correct C with poly(k)
queries. It would be interesting to be able to pinpoint which functions or k-juntas
can be efficiently self-corrected.
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3.9 Summary

We developed a query-efficient algorithm that extracts labelled samples from the
core of the closest k-junta to f . After a preprocessing step, which takes Õ(k)
queries, generating each sample takes only one query to f . Using this sampler,
we derived algorithms to test isomorphism to k-juntas, or to approximate the
distance between two k-juntas up to isomorphism in various settings. Aside
from being as efficient as possible in terms of query complexity, these algorithms
also run in polynomial time for k = O(log n/ log log n), and some of them even
for k = O(log n).





Chapter 4

Junto-symmetric functions and
hypergraph isomorphism

Now we touch upon the question of when it is possible to test isomorphism with
constantly many queries. We prove a characterization of the class of hypergraphs
of constant arity (rank) to which isomorphism can be efficiently tested, and make
a step towards obtaining a similar characterization for general hypergraphs and
boolean functions.

The content of this chapter is based on the paper

• S. Chakraborty, E. Fischer, D. Garćıa–Soriano, and A. Matsliah. Junto-
symmetric functions, hypergraph isomorphism, and crunching. To appear
in Proceedings of the 27th IEEE Conference on Computational Complexity
(CCC), 2012.

4.1 The size of invariance groups

The automorphism group of a function f , also known as its symmetry group or
invariance group, is the group of permutations that leave f invariant:

Aut(f) , {π ∈ Sn | fπ = f}.

Clearly Aut(f) is a subgroup of the symmetric group Sn = Sym([n]). Define an
equivalence relation between permutations by π ∼ σ iff fπ = fσ, and let

DifPerm(f) = {[π1], . . . , [πt]}

be the equivalence classes formed. There is a bijection between DifPerm(f) and
the set Sn : Aut(f) of cosets of Aut(f); therefore the number |DifPerm(f)| =
|Isom(f)| of distinct permutations of f is equal to the index of Aut(f) in Sn,
i.e., |DifPerm(f)| = |Sn : Aut(f)| = n!/ |Aut(f)|. The size of Aut(f) is a rough
measure of the amount of symmetry that f possesses: the larger Aut(f), the more
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symmetric f is. A symmetric function satisfies Aut(f) = Sn and |DifPerm(f)| = 1,
whereas a random function has, with high probability, a trivial automorphism
group Aut(f) = {1} and |DifPerm(f)| = n! (for example, see [Cla92] for a simple
proof of a stronger statement).

Not every group G ≤ Sn can arise as the automorphism group of a boolean
function on n variables; those which can are called 2-representable. For example,
it is not hard to argue that if the alternating group An (n ≥ 3) is contained in
Aut(f), then Aut(f) is indeed the whole of Sn; as a result, An is not 2-representable.
Indeed, take any x, y ∈ {0, 1}n with |x| = |y|. Then there is a permutation π ∈ Sn
mapping x to y; if n ≥ 3 then π can be assumed to be an even permutation by
performing, if necessary, one additional swap between two distinct indices i, j with
yi = yj. Then π ∈ An ⊆ Aut(f) and so f(x) = f(y). Hence An ≤ Aut(f) implies
f(x) = f(y) for all |x| = |y|, so f is actually symmetric.

The groups G ≤ Sn that can be represented as Aut(f) for some k-valued
function f : {0, 1}n → [k] are called k-representable. The representability of k-
valued functions and some generalizations are studied in [CK91, Kis98, Xia05]
(see also Chapter 3 of [CK02]). A neat paper of Babai, Beals and Takácsi-
Nagy [BBTN92] exposes a relationship between the circuit complexity of a function
f and the number of orbits of the action of Aut(f) on {0, 1}n.

We know that f -isomorphism can always be tested with O(log |DifPerm(f)|)
queries for constant ε (Proposition 2.3.2), so symmetric functions are particularly
easy to test isomorphism to (the query complexity becomes constant; in fact
the problem reduces to testing equality in this case). What is the smallest size
that DifPerm(f) can have for a non-symmetric function f? A moment’s thought
reveals that there are non-symmetric functions with only n different permutations,
like any dictatorship f(x1x2 . . . xn) = xi, and indeed this can be shown to be best
possible.1

4.1.1. Proposition. If f : {0, 1}n → {0, 1} is not symmetric and n ≥ 5, then
|DifPerm(f)| ≥ n.

Proof. The elements of Sn act on DifPerm(f) by multiplication in a natural
way: for each π ∈ Sn we define a permutation φ(π) of DifPerm(f) by

φ(π)([σ]) = [π ◦ σ]

The map φ : Sn → Sym(DifPerm(f)) is well-defined since [σ1] = [σ2] implies
fσ1 = fσ2 and hence fπ◦σ1 = fπ◦σ2 , so [π ◦ σ1] = [π ◦ σ2]. Moreover, it is a group
homomorphism (where the product operation on both Sn and Sym(DifPerm(f))
is the usual composition of permutations); this is because φ(1) = 1, and φ(π1) ◦
φ(π2) = φ(π1 ◦ π2). Therefore its kernel kerφ is a normal subgroup of Sn. The

1The claim fails for n = 4: the function f(a, b, c, d) = (a ∧ b) ∨ (c ∧ d) has three different
permutations.
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only normal subgroups of Sn (n ≥ 5) are 1, An and Sn [Art10, Theorem 7.4.4].
Clearly kerφ ≤ Aut(f) and since Aut(f) does not contain An (or else f would
be symmetric as argued before), it follows that kerφ = 1, so φ is injective. Since
the domain of φ is Sn, its image Sym(Isom(f)) must be at least as large, hence
|DifPerm(f)| ≥ n.

Even though the number of queries made by the trivial isomorphism tester
is superconstant for a non-symmetric function, it is also possible to test iso-
morphism to dictatorships with O(1) queries [PRS02], and more generally to
O(1)-juntas [FKR+04]. However, these two classes do not encompass all known
easy-to-test functions. For example, consider the parity function on the first
n − t variables out of n, χ[n−t].

2 The identity χ[n−t](x) = χ[n](x) ⊕ χ[n]\[n−t](x)
makes it possible to transform the responses to all queries made for the t-junta
χ[n]\[n−t] into the responses to queries for χ[n−t]. This transformation provides a
reduction between the two testing problems. In particular, for constant t we can
test isomorphism to (n − t)-parities with Ot(1) queries. In the same vein, the
majority function on the first n − t variables Maj [n−t] (for n large enough and
t�
√
n) is very close to the symmetric majority Maj [n], and it is not hard to see

that the standard constant-query test for equality between the tested function
and Maj [n] yields a tester for isomorphism to Maj [n−t] as well (because its queries
are uniformly distributed).

We introduce a notion generalizing all these cases.

4.1.2. Definition. Let J ⊆ [n]. A function f : {0, 1}n → {0, 1} is called J-
junto-symmetric if it can be written in the form

f(x) = f̃
(
|x|, x�

J

)
(4.1)

for some f̃ : {0, . . . , n} × {0, 1}|J | → {0, 1}. Equivalently, this means that the
restriction of f to any constant-weight layer of the cube is a junta on J .

The function f is called k-junto-symmetric if it is J-junto-symmetric on some
subset J of size k.

The function f̃ above is not completely determined by f on inputs of very small
or high weight. For example, let f be 1-junto-symmetric. Then one can define
f̃(0, 1) in two different ways that give rise to the same function f .

Let JSJ denote the class of J-junto-symmetric functions, and JSk the k-
junto-symmetric functions. Note that the definition necessitates that the junta
variables be the same on every layer, but the junta function is allowed to vary.
Also variables outside J can have noticeable influence on a J-junto-symmetric
function f .

2The symbol χ is usually reserved to a parity taking values in ±1 so it is a character of Zn
2 ,

but here we use it for {0, 1}-valued functions.
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Observe that any symmetric function is 0-junto-symmetric, and any k-junta
is k-junto-symmetric. At the other extreme, every function is (n − 1)-junto-
symmetric. Additional examples of k-junto-symmetric functions are χ[n−k] and
Maj [n−k]; in fact, the reader may verify that any k-junta whose core function is
symmetric must be min(k, n− k)-junto-symmetric.

4.1.3. Definition. Let F denote a sequence f1, f2, . . . of boolean functions with
fn : {0, 1}n → {0, 1} for each n ∈ N+.

We say that F is an O(1)-junto-symmetric family if there exists a constant k
such that each fi is k-junto-symmetric.

Interestingly, O(1)-junto-symmetric functions were studied by Shannon under the
name “partially symmetric functions” [Sha49].

The size of DifPerm(f) for any k-junto-symmetric f is upper-bounded by
(
n
k

)
k!,

because if f can be written in the form (4.1), then for any π ∈ Sn there is a k-subset
T ⊆ [n] and a permutation σ ∈ Sym(T )∼=Sk such that fπ(x) = f̃(|x|, (x�

T
)σ).

This quantity is nO(1) for constant k. Families like this were given a name in
[PS10]:

4.1.4. Definition. The family F is poly-symmetric if there exists a constant c
such that |DifPerm(fn)| ≤ nc for all n.

We will occasionally speak of such a family as an O(1)-junto-symmetric (or
poly-symmetric function when the intended meaning is clear. As it turns out, the
two notions just described are the same.

4.2 Characterizing O(1)-junto-symmetry

In the following we identify elements of Sym(T ), T ⊆ [n], with elements of
Sym([n]) that act as the identity outside T .

4.2.1. Theorem. Let F =
{
fn : {0, 1}n → {0, 1}

}
n∈N. The following are equiva-

lent:

(a) F is a poly-symmetric family;

(b) There are sets An ⊆ [n] of constant size such that Sym([n] \ An) ≤ Aut(fn)
for all n;

(c) F is an O(1)-junto-symmetric family;

(d) Each fn is a boolean combination of O(1)-many dictators and O(1)-many
symmetric functions (with the same constants for all n).
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To ease readability, we drop the subscripts in the proof, i.e., write f and A in
place of fn and An. All but one of the implications we need are straightforward:

• (b) =⇒ (c): Sym([n] \ A) ≤ Aut(f) means that f is invariant under
permutations of [n]\A, i.e., f(x) = f(y) whenever x�

A
= y�

A
and |x�

[n]\A| =
|y�

[n]\A|. These conditions are equivalent to x�
A

= y�
A

and |x| = |y|, so f

has the form f(x) = f̃(|x|, x�
A
) (where |A| = O(1) by assumption).

• (c) =⇒ (d): Let f = f̃(|x|, x�
A
), |A| = k = O(1). Define f̃ (i)(x) = f̃(i, x�

A
).

Each f̃ (i) is a junta on A. The number of A-juntas is only ` = 22k = O(1);
let 1, . . . , ` be an enumeration of them and let

hi(x) ,

{
1 if f̃ (|x|) = i

0 otherwise
.

Each hi is a symmetric function, and f can be decomposed into

f(x) =
∨
i∈[`]

hi(x) ∧ i(x),

which is a boolean combination of ` symmetric functions and the {ji}
functions, which are themselves a combination of the k dictators {xi}i∈A.

• (d) =⇒ (b): Let f(x) = f̃(s1(x), . . . , s`(x), xi1 , . . . , xik), where s1, . . . , s`
are symmetric. Set A = {i1, . . . , ik} and let π ∈ Sym([n]\A). Each function
si remains invariant under Sym([n]), and each dictatorship xij is invariant
under Sym([n] \ {i}) ⊇ Sym([n] \ A). Therefore Sym([n] \ A) ≤ Aut(f).3

• (c) =⇒ (a): As we just saw, if f ∈ JSk and k = O(1), then |DifPerm(f)| ≤(
n
k

)
k! = nO(1).

The only remaining implication, which will be shown next4, is (a) =⇒ (b).

3Note that the fact that ` = O(1) is immaterial here, and in fact yet another equivalent
definition can be given by substituting “any number of symmetric functions” for “O(1)-many
symmetric functions”.

4 This would be implied by the claim following Theorem 28 on page 586 of [CK91], but
unfortunately this claim is in error (as can be seen by taking Gn to be the alternating group
An). The mistake seems to lie near the end of the proof, after it is shown that in ≤ k and
|Sn : Gn| ≤ nk, the claim that Vn = Sn−in is unjustified. However, the lemma does hold for the
automorphism groups of boolean functions however as we show. This is the case of interest in
their paper and in this thesis.
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4.2.1 Permutation groups

We need some basic notions from the theory of permutation groups (an exposition
can be found in the books by Wielandt [Wie64] and Cameron[Cam99]). Let Ω
be a set (which will be assumed finite here, and will often be equal to [n] in our
applications). Sym(Ω) denotes the symmetric group of all permutations of Ω, and
Alt(Ω) is the subgroup of Sym(Ω) made up of even permutations. When |Ω| = n,
we occasionally write An = Alt(Ω) and Sn = Sym(Ω). The product operation we
use in Sym(Ω) is πσ , σ ◦ π.

A permutation group G on Ω is a subgroup of Sym(Ω), written G ≤ Sym(Ω).
The image π(x) of x ∈ Ω under π ∈ G is often written xπ; under our convention
we have (xπ)σ = xσ◦π = xπσ for π, σ ∈ G. The orbit of a set ∆ ⊆ Ω under an
arbitrary collection H ⊆ G is the set ∆H = {xπ | π ∈ H, x ∈ ∆}. When ∆ = {x}
or H = {h} are singletons we may simply write xH or ∆h.

G is called transitive if for every x, y ∈ Ω there is π ∈ G with xπ = y. An
intransitive group G ≤ Sym(Ω) partitions Ω into orbits: these can be characterized
as the equivalence classes of the relation ∼ given by x ∼ y iff there is π ∈ G such
that xπ = y, which occurs iff xG = yG.

A group action of a (general) group G on a set Ω is a homomorphism φ : G→
Sym(Ω). (This is what is called a right action because of our convention on
the composition law in Sym(Ω).) If kerφ = 1G, the action is faithful and G is
isomorphic (via φ) to a permutation group on Ω. It is customary to omit the
explicit reference to the chosen φ and write xg for xφ(g) (g ∈ G). Given an action
of G on Ω, we can naturally extend it to define an action on subsets of Ω: g ∈ G
acts on P(Ω) by mapping ∆ ⊆ Ω to ∆g as defined above.

A block of G is a subset ∆ of Ω such that for every π ∈ G, either ∆π = ∆
or ∆π ∩∆ = ∅. Evidently, Ω, the empty set ∅ and each of the singletons {i}i∈Ω

are always blocks; we call these the trivial blocks. The permutation group G is
said to be primitive (group) if it is transitive and has no non-trivial blocks. (Only
transitive groups are classified as being primitive or imprimitive.) The intersection
of any pair of blocks is itself a block. If ∆ is a block of G, then Ω can be partitioned
into a complete block system, where every block is of the form ∆g for some g ∈ G
(so all blocks in a complete block system have the same cardinality). Any element
of G permutes the blocks in a complete block system among themselves, and also
the elements inside each block.

The pointwise stabilizer of ∆ ⊆ Ω with regard to G is the set

G∆ , {π ∈ G | xπ = x ∀x ∈ ∆}.

4.2.2 Proof that poly-symmetric ≡ O(1)−junto-symmetric

First we need a handy result that provides a lower bound for the index of primitive
groups. The proof can be found in [Wie64, Theorem 14.2] (asymptotically better
bounds are available [Bab81, Cam81], but this one will suffice).
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4.2.2. Theorem (Bochert’s bound [Boc89]). Let G be a primitive subgroup
of Sn, other than Sn and An. Then

[Sn : G] ≥ bn/2c!.

4.2.3. Lemma. Let n ≥ 14, G ≤ Sn, G 6= Sn, An. Then

(a) If G is transitive then

[Sn : G] ≥ 1

2

(
n

bn/2c

)
.

(b) Suppose G is intransitive; let ∆ be the longest orbit of an element of [n] and
` = |∆| < n its size. Then

[Sn : G] ≥
(

n

max(n/2, `)

)
.

(c) Under the same conditions as in (b), let

H , G ∩ Sym(∆) = G ∩ S`

be the pointwise stabilizer of [n] \∆ (we identify Sym(∆) with S`). Then

[S` : H] ≤ [Sn : G](
n
`

) .

Proof.

(a) If G is primitive, Bochert’s theorem states the bound [Sn : G] ≥ bn/2c!, which
is stronger for n ≥ 14. So suppose G is transitive and imprimitive, with a
block of imprimitivity of size a (2 ≤ a ≤ n/2, a | n), and hence b = n/a ≥ 2
such blocks because of transitivity (see Section 4.2.1). Then

|G| ≤ (a!)bb! ≤ 2b(ab/2)c!d(ab/2)e! = 2bn/2cdn/2e,

The first inequality holds because there are b! ways of permuting the blocks
among themselves, and a! ways of permuting the elements inside a given block.
To prove the last inequality, observe that for a = 2 it reduces to the triviality
b! ≥ 2b−1. Hence it suffices to verify that for any b ≥ 2, the quotient

q(a) ,
a!b

b(ab/2)c!d(ab/2)e!

is a decreasing function of a. Writing the factors in the numerator and
denominator in decreasing order, we have

q(a) =

b︷ ︸︸ ︷
a · a · . . . · a

b︷ ︸︸ ︷
(a− 1) · (a− 1) · . . . · (a− 1) . . .

dab/2ebab/2cdab/2− 1ebab/2− 1c . . .
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Define the sequences {si}, {ti}, i ∈ [1, ab] by si = b(i + b − 1)/bc and ti =
b(i+ 1)/2c. Then

q(a) =
ab∏
i=1

si
ti

=

(a−1)b∏
i=1

si
ti
·

ab∏
j=(a−1)b+1

sj
tj

= q(a− 1) ·
ab∏

j=(a−1)b+1

a

tj

≤ q(a− 1),

because t(a−1)b+1 = b(a− 1)b/2c+ 1 ≥ a since b ≥ 2. Therefore

[Sn : G] =
n!

|G|
≥ 1

2

(
n

bn/2c

)
.

(b) Let A1, . . . , Am (m ≥ 2) be the orbits and ai = |Ai|. Since G only maps
elements of Ai to elements of the same Ai, we have G ≤ Sym(A1)×Sym(A2)×
· · · × Sym(Am) and therefore

|G| ≤
∏
i∈[m]

ai!.

Fix n > ` > 0 and let us consider

rn(`) , max
{ ∏
i∈[m]

ai! | m ≥ 2, ai ∈ N, 0 ≤ ai ≤ `,
∑
i∈[m]

ai = n
}

Consider the expression inside the maximum in the definition of rn(`). Without
loss of generality, we can take m = n. We claim that it attains its maximum for
some solution with ai = ` for at least one i. Take any optimal solution and sort
the values in non-increasing order: a1 ≥ a2 ≥ · · · ≥ at > at+1 = . . . am = 0.
If a1 = ` we are done. Otherwise a1 < ` and we must have t > 1 (with
at > 0) since the total sum is at least `. If we replace the pair (a1, at)
with (a1 + 1, at − 1) we obtain a feasible solution, and

∏
ai! increases since

a1!at! < (a1 + 1)!(at − 1)! (as a1 + 1 > at). This is not possible for an optimal
solution, so there is no such pair, meaning that a1 = `.

Now observe that
∏

i∈[m] ai! ≤ ai!(n− ai)! for any i. (For example, this can
be seen by noting that the left-hand side is the size of the set of permutations
Sym(A1)× · · · × Sym(Am), and this a subset of Sym(Ai)× Sym([n] \ Ai).)
So using ai = ` for some i we get

rn(`) ≤ `!(n− `)! =
n!(
n
`

)
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for any `. When ` is the size of the largest orbit, we have |G| ≤ rn(`), and
this shows that

[Sn : G] ≥ n!

rn(`)
≥
(
n

`

)
,

On the other hand, rn(`) is by definition an increasing function of `, so the
inequality

[Sn : G] ≥ n!

rn(`)
≥ n!

rn(n/2)
≥
(

n

bn/2c

)
holds when the size of the longest orbit is ` ≤ n/2.

(c) Because G ≤ H × Sym([n] \∆), we can bound

|G| ≤ |H||Sn−`| = |H|(n− `)!,

which yields

[S` : H] =
`!

|H|
≤ `!(n− `)!

|G|
=

[Sn : G](
n
`

) .

4.2.4. Lemma. Let n ≥ 14, t ≤ n/2, [Sn : G] < 1
2

(
n
t

)
, and ∆, ` as before. Then

` > n− t and Alt(∆) ≤ G.

Proof. If the action of G is transitive on [n] then [Sn : G] ≥ 1
2

(
n
bn/2c

)
by

Lemma 4.2.3(a), which contradicts our assumptions. So G is not transitive and
` < n. If ` ≤ n/2 we have, by Lemma 4.2.3(b), [Sn : G] ≥

(
n
bn/2c

)
, which again is

impossible.
We are left with the case n/2 < ` < n. In accordance with Lemma 4.2.3(b),(

n

t

)
> [Sn/G] ≥

(
n

`

)
=

(
n

n− `

)
,

so t > n− ` (since n− `, t ≤ n/2). Let H = G∩S∆. This is actually the pointwise
stabilizer of [n] \∆ in G, and since ∆ is an orbit of G it follows that H is normal
in G [Wie64, Proposition 3.1]. We demonstrate that A∆ ≤ H by contradiction.

So assume H 6= Sym(∆), Alt(∆). Then Lemma 4.2.3 applies to the group H
acting on ∆. Let ∆′ be the largest orbit of this action and `′ = |∆′|. Since G is
transitive on ∆ and H CG, it is not hard to see that the length of any orbit of H
on ∆ must divide `, i.e., `′ | `. We distinguish two cases:

• If `′ ≤ `/2, then

[S` : H] ≥
(
`

`/2

)
by part (b) of the “inner” application of Lemma 4.2.3.
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• If `′ > `/2, then as we observed that `′ | `, we must in fact have `′ = `,
meaning that H is transitive on ∆ and

[S` : H] ≥ 1

2

(
`

`/2

)
by part (a) of the “inner” application of Lemma 4.2.3.

In any case we have

[S` : H] ≥ 1

2

(
`

`/2

)
.

Together with part (c) of the “outer” application, i.e.,

[S` : H] ≤ [Sn : G](
n
`

) ,

this yields

[Sn : G] ≥ 1

2

(
`

`/2

)(
n

`

)
.

Now we bound each of these two factors. Using the inequality(
2(m+ 1)

m+ 1

)
= 2

(
2m

m

)
2m+ 1

m+ 1
≤ 4

(
2m

m

)
,

it is possible to show that (
`

`/2

)
≥ 1

2n−`

(
n

n/2

)
.

Using the fact that ` > n/2, we get(
n

`

)
=

(
n

n− `

)
≥
(

n

n− `

)n−`
≥ 2n−`.

Multiplying these two bounds we obtain the contradiction

[Sn : G] ≥ 1

2

(
`

`/2

)(
n

`

)
≥ 1

2

(
n

n/2

)
.

4.2.5. Corollary. Let n ≥ 14 and f : {0, 1}n → {0, 1} be a boolean function
with |DifPerm(f)| < 1

2

(
n
t

)
, t ≤ n/2. Then there is a set Γ of size |Γ| < t such

that f is junto-symmetric on Γ. In particular, any poly-symmetric family is
junto-symmetric on sets of size O(1).
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Proof. Let G = Aut(f). Since |DifPerm(f)| = [Sn : G], the previous lemma
states that if ∆ is the largest orbit, then |∆| ≥ n/2 ≥ 5 and Alt(∆) ≤ Aut(f).
We show that this means that f is junto-symmetric on Γ , [n] \ ∆. Indeed,
for any x ∈ {0, 1}Γ, we can define a boolean function gx : {0, 1}∆ → {0, 1}
by g(z) = f(z t x); then Alt(∆) ≤ Aut(f) ∩ Sym(∆) ≤ Aut(gx), so gx is a
boolean function on more than 4 variables whose automorphism group contains
the alternating group. Hence gx is actually symmetric for all x, and f is junto-
symmetric on Γ.

This corollary is the last piece we needed to show Theorem 4.2.1.

4.3 Testers for junto-symmetric functions

One of the main results of this chapter is an extension of the junta tester and the
isomorphism tester for juntas:

4.3.1. Theorem ([CFGM12, BWY11]). Let ε > 0 and 1/ε1/4 < k < (2n)1/12.
Let f : {0, 1}n → {0, 1} and denote f ∗ ∈ JSk the k-junto-symmetric function
closest to f .

There is a poly(k/ε)-query algorithm that takes ε, k and an oracle for f and
satisfies:

completeness If dist(f, f ∗) ≤ 1/k5, the algorithm accepts with probability ≥ 2/3.

soundness If dist(f, f ∗) ≥ ε, the algorithm rejects with probability ≥ 2/3.

See Section 4.3.3 for the proof.
We can also obtain an O(1)-query algorithm for testing isomorphism to O(1)-

junto-symmetric functions.

4.3.2. Theorem. [CFGM12, BWY11] Let k, ε, f as before. There is a poly(k/ε)-
query ε-tester for testing isomorphism between f and a known function g : {0, 1}n →
{0, 1} that is 1/k5-close to k-junto-symmetric, with constant success probability.

The proof is in Section 4.3.4.

4.3.3. Corollary. Isomorphism to any poly-symmetric function can be ε-tested
with poly(1/ε) queries.

With a view toward obtaining a possible classification, it is best to state
tolerant versions of these results. This is possible at the expense of an exponential
blowup in the query complexities (see Section 4.3.5).
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4.3.4. Theorem. There is a constant 0 < c < 1 with the following property. Let
k, ε, f as before.

There is an exp(k/ε)-query algorithm that, with high probability accepts if f is
(cε)-close to JSk and rejects if it is ε-far from JSk.

Similarly, there is an exp(k/ε)-query algorithm to test isomorphism to a
function f that is (cε)-close to JSk.

In an independent work simultaneous with ours, Blais, Weinstein and Yoshida have
also proven the results stated in this section [BWY11]. (Their query complexities
are better and the restrictions on the size of k are not present.)

It is possible to define a notion of “symmetric influence” that characterizes
closeness to junto-symmetric functions up to a factor of two, just as influence does
for closeness to juntas. The resulting definition does not enjoy the subadditivity
property, which is crucial for the proofs of the standard junta testers (Section 3.6).
Although this approach can be made to work with some technical work [BWY11],
here we take a different route.

We present a reduction from testing the properties of being k-junto-symmetric,
or being isomorphic to a given k-junto-symmetric function, to slight generalizations
of the well-studied analogous problems for k-juntas. To this end we try to
approximate the “junto-symmetric” components of the tested function f , i.e.,
the juntas determining the behaviour of f on each constant-weight layer of the
boolean cube. However, each of these juntas is defined on a very small fraction of
inputs; in order to define them on the whole of {0, 1}n we attempt use a small
“ballast” set B ⊆ [n] of variables to enable us to balance weights as needed.

4.3.1 Preliminary observations

Let ` ∈ L , {0, 1, . . . , n} and x ∈ {0, 1}n. Write xB for the string obtained from x
by flipping the bits in B ⊆ [n] and consider the set of minimal changes required
to turn x into a string of weight `:

B`,x ,
{
B ⊆ [n]

∣∣∣ ∣∣xB∣∣ = ` and |B| =
∣∣`− |x|∣∣ } .

For any B ∈ B`,x, either xB ⊆ x or x ⊆ xB holds, depending on whether |x| ≥ `
or |x| ≤ `. The set B`,x is always non-empty but consists of the single element 0n

when ` = |x|.
Let R denote the set of all possible functions r : L × {0, 1}n → {0, 1}n with

r(`, x) ∈ B`,x for all `, x. We need a lemma concerning the probability that
B = r(`, x) happens to intersect some small set A, when (`, r, x) are drawn from
the product distribution µ , L×R×{0, 1}n. Here L is endowed with a binomial
distribution B(n, 1/2) and the uniform distribution is used in R and {0, 1}n.
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4.3.5. Lemma. Let A ⊆ [n]. Then

Pr
`,x,B

[B ∩ A 6= ∅] ≤ |A|√
2n
.

Proof. Observe that for any `, the distribution of B = r(`, x) ∈ B`,x over
random x is symmetric under permutations, hence for all i ∈ [n] we have

Pr [i ∈ B] =
1

n

∑
j∈[n]

Pr [j ∈ B] =
1

n
E [|B|] .

On the other hand, the size of any element B of B`,x is |`− |x|| by definition.
We can write ` = |y| for uniformly random y ∈ {0, 1}n, so E [|B|] = E [||x| − |y||].
Recalling that E [|x|] = E [|y|] = n/2, E [|x|2] = E [|y|2] = Var [|x|] + E [|x|]2 =
1
4
n(n+ 1) and applying Cauchy-Schwarz,

(
E
[∣∣∣|x| − |y|∣∣∣] )2

≤ E
[
(|x| − |y|)2

]
= E

[
|x|2
]

+ E
[
|y|2
]
− 2E [|x|]E [|y|] =

n

2
.

Hence E
[∣∣|x| − |y|∣∣] ≤√n/2 and Pr [i ∈ B] ≤

√
1

2n
, so

Pr [B ∩ A 6= ∅] ≤
∑
i∈A

Pr [i ∈ B] ≤ |A|√
2n
.

Let us define a transformation T mapping each function f : {0, 1}n → {0, 1}
to T (f) : L ×R× {0, 1}n → {0, 1}n given by

T (f)(`, r, x) = f(xr(`,x)).

Thus the parameter r acts as a “random seed” selecting, for each pair (`, x), one
string xr(`,x) of Hamming weight ` with minimum distance to x; the choice is
independent of all choices for any other pair when r ranges uniformly over R.

We want to argue about T (f) as a function in its own right, on a larger set
of variables. We denote the input parameter variables of T (f) by V0, V1 and V2,
in order; we identify V2 with [n], the input variables of f . The reader who so

wishes may think of T (f) as a function on {0, 1}dlog(n+1)e × {0, 1}dlog |R|e × {0, 1}n,
although this is not strictly necessary; in this case V0, V1, V2 would indicate disjoint
input bit variables with sizes

|V0| = log(n+ 1), |V1| = log |R|, |V2| = n

(but note that the input distribution on {0, 1}V0 is not uniform).
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If g : L ×R× {0, 1}n is a junta on V0 ∪ V2 (that is to say, g(`, r, x) depends
only on ` and x, but not on r), we define the function ψ(g) : {0, 1}n → {0, 1} by

ψ(g)(x) = g(|x|, •, x),

where the dot emphasizes that the assignment to the second parameter is immate-
rial by assumption, i.e., the variables in V1 are irrelevant to ψ(g). The intuition is
that T maps junto-symmetric functions f on A into functions that are close to
juntas on (V0 ∪ A because V1 and V2 \ A will be nearly irrelevant to T (f)); while
ψ maps these functions on an extended domain that are juntas on V0 ∪ A into
junto-symmetric functions on A defined on {0, 1}n.

We show that the task of testing junto-symmetry of f is closely related to
that of testing T (f) for being a junta, where distances are measured under µ. Let
JunV0(A) = Jun(V0 ∪ A), and Junk(V0) = ∪|A|≤k JunV0(A).

In the next lemma, the variable symbols denote functions and sets of the
following kind:

• A ⊆ [n], |A| = k;

• f, g are arbitrary functions {0, 1}n → {0, 1};

• , 1, 2 : {0, 1}n → {0, 1} are junto-symmetric on A;

• ′ : L ×R× {0, 1}n → {0, 1} is a member of JunV0(A);

• π ∈ 1V0,V1 × Sym(V2) (we identify π with an element of Sym(V2) as well).

4.3.6. Lemma. The mappings T and ψ satisfy the following properties:

(a) T preserves distances: dist(f, g) = dist(T (f), T (g)) for all f, g.

(b) For any ′ ∈ JunV0(A), we have ψ(′) ∈ JS(A) and

dist(′, T (ψ(′))) ≤ |A|√
2n
.

(c) For any  ∈ JS(A), T () is |A|/
√

2n-close to some ′ ∈ JunV0(A). Moreover,
we can take ′ such that ψ(′) = .

(d) | dist(f,JSk)− dist(T (f), Junk(V0)) | ≤ k√
2n

.

(e) ψ preserves permutations: for any π and ′, ψ(′)π = ψ(π). Thus

distiso(1, 2) = distiso(ψ(1), ψ(2)).
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(f) The bounds

| distiso(f, g)− d | ≤ dist(f,JSk) + dist(g,JSk) +
2k√
2n
.

hold for
d , min

π∈1V0,V1
×Sym(V2)

dist(T (f)π, T (g)).

Proof.

(a) For any `, the distribution of xr(`,x) for random x, r is uniform over all strings
of weight `. Since ` ∼ B(n, 1/2) is distributed as the weight of a random
element of {0, 1}n, it follows that the overall distribution of xr(`,x) is uniform,
hence

dist(T (f), T (g)) = Pr [f(xr(`,x)) 6= g(xr(`,x))] = Pr [f(x) 6= g(x)] = dist(f, g).

(b) ψ(′)(x) = ′(|x|, •, x) is a function of |x| and xA, hence junto-symmetric on
A. We have

dist(′, T (ψ(′))) = Pr
[
′(`, r, x) 6= ψ(′)(xr(`,x)) = ′(`, •, xr(`,x))

]
≤ Pr

[
r(`, x) ∩ A 6= ∅

]
≤ |A|√

2n

by Lemma 4.3.5.

(c) This follows from (b) because any  ∈ JS(A) can be written in the form ψ(′)
for some (in fact, many) ′ ∈ JunV0(A).

(d) Let  be k-junto-symmetric and ′ ∈ Junk(V0) with ψ(′) = . Then by the
triangle inequality and parts (c) and (a),

dist(T (f), ′) ≤ dist(T (f), T ()) + dist(T (), ′) ≤ dist(f, ) +
k√
2n
,

so dist(T (f), Junk(V0)) ≤ dist(f,JSk) + k/(2
√
n ). Likewise, if ′ is a junta

on V0 ∪ A where |A| = k, then

dist(f, ψ(′)) = dist(T (f), T (ψ(′)))

≤ dist(T (f), ′) + dist(′, T (ψ(′)))

≤ dist(T (f), ′) +
k√
2n
,

which proves the inequality dist(f,JSk) ≤ dist(T (f), Junk(V0)) + k/(2
√
n ).

(e) Clear.

(f) Follows from (d), (e) and the triangle inequality for distiso.



88 Chapter 4. Junto-symmetric functions and hypergraph isomorphism

4.3.2 Generalized junta testing

Now we describe a tester for the property Junk(V0). Let µ = D1 × · · · ×Dm be
a product distribution, let us also denote by µ its support. Let T ⊆ [m]. (For
our application we could take D1 = L, D2 = R, T = {1, 2} and D3 × · · · ×Dm =
{0, 1}n.) Choose a confidence parameter p ∈ (0, 1) and a distance parameter
ε ∈ (0, 1). Let f : µ→ R denote a function.

4.3.7. Lemma. For any product distribution µ and any constant p < 1, there is
an algorithm

GeneralizedJuntaTesterµ,p(f, k, ε, T )

that, with probability at least p,

• accepts if f ∈ Junk(T ).

• rejects if dist(f, Junk(T )) ≥ ε;

• makes Θ(k4 log(k+1)/ε) non-adaptive queries, and the marginal distribution
of each query is µ.

Note that standard junta testing corresponds to T = ∅.

Proof. All known junta testers can be used in a straightforward manner for
this generalized property preserving the exact query complexity. One way to see
this is to think about providing the junta tester with a set T of relevant variables
for free, and instruct it to seek for relevant blocks outside T just as if the tester
had found the variables of T by itself. (Note however that the “partitioning step”
must be applied to [m] \ T .)

Recall from Section 3.6 that the non-adaptive junta tester produces a number
of disjoints subsets I1, . . . , Ir ⊆ [m] satisfying the property written on page 56.
For any B ⊆ [m], the same argument goes through to give a series of disjoint
independence tests on I ′1, . . . , I

′
r ⊆ B with the property

• if Inff (B \ A) ≥ ε for all A ⊆ B, |A| = k, then
at least k + 1 of the independence tests will be positive.

(In fact, I ′1, . . . , I
′
r are precisely the intervals the junta tester would use for testing

k-juntas on [m] \B).
To adapt these ideas to our task, note that if dist(f, Junk(T )) ≥ ε then

Inff([m] \ (T ∪ A)) ≥ ε for any A ∈
(

[m]\T
k

)
(Lemma 3.6.1). Let B = [m] \ T

and I ′1, . . . , I
′
r ⊆ B as before. We simply perform the independence tests of f on

I ′1, . . . , I
′
r and reject if at least k+1 were positive; both soundness and completeness

follow from the preceding comments. Finally, the query complexity remains the
same as that of the standard junta tester, and the second part of the last item
follows because it is true of the independence tests.
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4.3.3 Testing junto-symmetry

The procedure to ε-test the property of being k-junto-symmetric, for small enough
k, is described next.

1. Let q = θ(k4 log(k + 1)/ε) bound the query complexity of Step 3.

2. Make queries to T (f) to test that InfT (f)(V1) < 1
18q

with confidence > 8/9

by performing an independence test (Lemma 3.2.3): take O(q) random pairs
(`, r, x), (`, r′, x) and compare T (f) on them. If it isn’t, reject.

3. Reject iff GeneralizedJuntaTesterµ,8/9(T (f), k, ε/5, V0 ∪ V1) rejects.

Proof of Theorem 4.3.1. The algorithm is clearly non-adaptive and its query
complexity is Θ(q) = Θ(k4 log(k + 1)/ε). We assume that n is large enough for
2k/
√

2n < 1/(18q) < ε/5 to hold (small constant values for n can be dealt with
separately in the tester).

The probability that an incorrect assessment is given by either the junta
tester in step 3 or the influence test in step 2 is less than 2/9 < 2/3. So if the
overall test accepts with probability ≥ 2/3, then T (f) must be ε/5-close to a
junta ′ on V0 ∪ V1 ∪ A, |A| ≤ k. In particular InfT (f)(V2 \ A) ≤ ε/5. Moreover,
since the influence test succeeded we also have InfT (f)(V1) < ε/5. Therefore
InfT (f)(V1 ∪ (V2 \A)) ≤ 2ε/5, which means (by Lemma 3.6.1) that T (f) is in fact

4ε/5-close to a junta on V0 ∪ A. Consequently, f is 4ε/5 + k/
√

2n < ε-close to
junto-symmetric on A (Lemma 4.3.6), proving soundness.

On the other hand, suppose f is 1/(18q)-close to a junto-symmetric function .
Then there is ′ ∈ Junk(V0) with dist(T (f), ′) ≤ 1/(18q)+k/

√
2n < 1/(9q). Recall

that every query of the junta tester to T (f) follows the distribution L×R×{0, 1}n
(third item of Lemma 4.3.7), and this translates into uniform queries to f (we
showed that xr(l,x) is uniformly distributed during the course of the proof of
Lemma 4.3.6(a)). As the tester is non-adaptive, this means that the expected
number of queries exposing a difference between T (f) and ′ is 1/9, so with
probability 8/9 the tester can’t see the difference between T (f) and ′. Hence we
are effectively testing ′ for the property of being a V0 ∪ V1 ∪ A junta for some
|A| ≤ k, which it is indeed. Therefore step 3 accepts with probability 8/9; and
since Inf(V1) = 0, we also have InfT (f)(V1) ≤ 2·dist(T (f), ′) ≤ 2k/

√
2n < 1/(18q)

and step 2 also accepts with probability 8/9. This establishes completeness.

4.3.4 Testing isomorphism to junto-symmetric functions

In an analogous fashion one can reduce the problem of testing isomorphism to
g (when g is close enough to JSk) to testing isomorphism between k-juntas.
For this we can use a tolerant tester of isomorphism, except that, in view of
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Lemma 4.3.6(e), the set of permutations allowed must be restricted to those fixing
V0 and V1:

1. Use the algorithm of Theorem 4.3.1 to accept if f ∈ JSk and reject if
dist(f,JSk) > ε/30.

2. Perform a suitable test to accept if d ≤ ε/10 and reject if d ≥ 9ε/10, where

d , min
π∈1V0,V1

×Sym(V2)
dist(T (f), T (g)π)

Ignoring for the moment the implementation details of the second test, we
show that the algorithm outlined is an isomorphism tester for JSk:

Proof of Theorem 4.3.2. We use the algorithm just described. The claim
about the query complexity is clear.

Suppose the test accepts with high probability. Then dist(f,JSk) ≤ ε/30 and
d ≤ 9ε/10. Since distiso(g,JSk) ≤ 1/k5, we have

|distiso(f, g)− d| ≤ ε/30 + 1/k5 + 2k/
√

2n ≤ ε/20,

so distiso(f, g) < ε, as it should.
On the other hand, if f ∼= g then dist(f,JSk) = dist(g,JSk) < 1/k5 and d ≤

2/k5 + (2k)/
√

2n < 1/k4, meaning that both tests succeed. If distiso(f, g) < 1/k5,
then it also accepts with high probability because we can argue as before that
since the test makes O(k4) queries that are individually uniformly distributed.

Step 2 can be implemented using sample extractors. Let D = V0 × V1,
f : D×{0, 1}n → {0, 1} and let ′ ∈ JunD(A), A ∈

(
[n]
k

)
be the element of Junk(D)

closest to f . Define corek,D(′) : D × {0, 1}k → {0, 1} by

corek,D(′)(x�
D
, x�

A
) = ′(x).

A correct sample for corek,D(′) (with respect to σ ∈ 1D × Sk) is a pair (x, a) with

x ∈ D × {0, 1}k and corek,D(f)(xσ) = a. An η-noisy sampler for corek,D(′) is a
procedure to obtain an unlimited sequence of independent samples (x, a) such
that each one is correct with probability 1− η with respect to some fixed σ, and
x follows the distribution D × {0, 1}k.

The following two lemmas are all we need.

4.3.8. Lemma. Suppose dist(f, Junk(D)) < 1/k5. Then there is a poly(k, 1/ε)-
query non-adaptive algorithm to construct an ε/100-noisy sampler for corek,D(′).

Proof (sketch). This is essentially Theorem 3.5.2. We need two changes. The
first is that we substitute the adaptive junta tester for the junta tester used in
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the proof. The second one is the observation that we know how the variables
in D map to the variables in corek,D(′), so for any z ∈ {0, 1}n, we only need to
“extract” the setting of the k relevant variables sitting outside A.

4.3.9. Lemma. Let f, g : D × {0, 1}n → {0, 1}, g ∈ Junk(D). Write

d = min
π∈1D×Sn

dist(f, gπ)

Assuming access to an ε/100-noisy sampler for f , there is a poly(k/ε)-query tester
that accepts if d ≤ ε/10 and rejects if d ≥ 9ε/10.

Proof (sketch). This is essentially Lemma 3.5.4. Construct a sample for
corek,D(′) and take O(log k!/ε2) = O(k log k/ε2) random samples. These are
enough to estimate

d′ = min
π∈Sk

dist(corek,D(′), corek,D(g)π)

to within O(ε) additive error. Finally recall that d′ and d are the same up to
constant factors (this follows from Lemma 3.3.1).

4.3.5 Tolerant testers

Using the tolerant tester in the third item of Theorem 3.6.8 instead of the poly(k/ε)-
query junta tester in the proof of the previous theorems, we obtain Theorem 4.3.4.

4.4 Hypergraph isomorphism

It is possible to establish a link between function isomorphism and a generalized
form of graph isomorphism. Recall that an undirected hypergraph is a pair
H = (V,E), where V is a set of vertices and E ⊆ P(V ) is a collection of
hyperedges. Isomorphism between hypergraphs is defined in the natural way.

Now define the distance between two hypergraphs H = (V,E) and H ′ = (V,E ′)
on the same set of vertices by dist(H,H ′) = |E ⊕ E ′|/2n, where E ⊕ E ′ is the
symmetric difference between their edge sets. Testing function isomorphism is
easily seen to be equivalent to testing isomorphism between undirected hypergraphs
under this distance measure (this is the “dense hypergraphs model”). Indeed, a
boolean function f : {0, 1}n → {0, 1} can be identified with the hypergraph with
vertex set V = [n] and edge set

f−1(1) = {x ∈ {0, 1}n | f(x) = 1},
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where binary vectors x ∈ f−1(1) ⊆ {0, 1}n are themselves identified with subsets
of [n] in the natural way. Clearly this satisfies

f ∼= g ⇐⇒ f−1(1) ∼= g−1(1) as hypergraphs,

and moreover the distance between f and g coincide from both viewpoints.
Seen this way, the problem of function isomorphism becomes a natural

generalization of the analogous problem for graphs. This raises the question of
whether progress towards the characterization can be made by studying hypergraph
isomorphism in the line of previous works on graph isomorphism. One possible
line of work is the study of uniform hypergraphs. An r-uniform hypergraph is one
in which every edge e ∈ E has size precisely r; the number r is also said to be
the arity of the hypergraph. The distance between two r-uniform hypergraphs
H = (V,E), H ′ = (V,E ′) on the same vertex set of size |V | = n is defined as
|E⊕E ′|/

(
n
r

)
. Babai and Chakraborty [BC08b] studied this question and obtained

worst-case query-complexity bounds for the case of uniform hypergraphs. Yet a
characterization of the testability of isomorphism between uniform hypergraphs
remains to be found.

In this work we prove an extension of Fischer’s result that resolves the problem
for hypergraphs of constant arity. To state it, recall that a homomorphism
between H = (V,E) and H̃ = (Ṽ , Ẽ) is a mapping Π: V → Ṽ such that for all
{v1, . . . , vr} ∈ V , the implication {v1, . . . , vr} ∈ E =⇒ {Π(v1), . . . ,Π(vr)} ∈ Ẽ
holds. The homomorphism Π is called full (and H is said to be fully homomorphic
to Ĥ) if it holds in both directions, i.e., if

{v1, . . . , vr} ∈ E ⇐⇒ {Π(v1), . . . ,Π(vr)} ∈ Ẽ.

Note that the size of Ṽ may be much smaller than the size of V .

4.4.1. Definition. An r-uniform hypergraph H is k-crunchable if it is fully
homomorphic to an r-uniform hypergraph with ≤ k vertices.

The crunching number of H is the smallest k such that H is k-crunchable.
The ε-approximate crunching number of H, denoted CrunchNumε(H), is the

smallest k such that H is ε-close to a k-crunchable r-uniform hypergraph.
The ε-testing number of H, denoted TestNumε(H), is the minimum q for

which there exists an ε-tester with q queries for the property of being isomorphic
to H.

For graphs, having a constant crunching number is essentially the same as
being in the algebra of constantly many cliques, or close to it (see Lemma 4.4.6).

We prove the following.

4.4.2. Theorem (Chakraborty et al. [CFGM12]). For every r ∈ N, ε >
0 there exists a pair of functions Lε,r(t) and Uε,r(t), with limt→∞ Lε(t) =∞, such
that for every r-uniform hypergraph H we have

Lε,r(CrunchNumε(H)) ≤ TestNumε(H) ≤ Uε,r(CrunchNumε/3(H)).
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The original proof of Fischer for (a statement equivalent to) the special case
of Theorem 4.4.2 when r = 2 applied the highly acclaimed Szeméredi regularity
lemma [Sze76] for the lower bound (which is somewhat unusual as its normal use
in property testing is to obtain upper bounds). Our simpler proof shows that this
can be avoided. The lower bound method, which we call crunching, has additional
applications, as outlined in the next subsection.

Now we prove Theorem 4.4.2. The functions Lε and Uε can be extracted from
the proofs of the lower bound and the upper bound, respectively.

4.4.1 Lower bound via crunching

4.4.3. Definition. Let Π: V → V denote a mapping from V to itself. A Π-
crunch of H is a hypergraph HΠ

cr = (V,E ′) where

E ′ =
{
{v1, . . . , vk} | {Π(v1), . . . ,Π(vk)} ∈ E

}
.

A k-crunch of a hypergraph is a Π-crunch for some Π with an image of size ≤ k.

Note that every k-crunch is a k-crunchable hypergraph (as witnessed by
the same mapping Π). When Π is injective, a Π-crunch of H is a hypergraph
isomorphic to H. For a hypergraph H = (V,E) and k ≤ |V | = n, we show that
any tester will have a hard time distinguishing non-injective crunchs from injective
ones (permutations). A random k-crunch of H is a random hypergraph on V
obtained as follows:

1. pick a subset W ⊆ V of size k uniformly at random;

2. pick a mapping Π: V → W uniformly at random and output the Π-crunch
of H.

Now define the distribution DkH by drawing a random permutation of a random
k-crunch of H. Also write DH for the uniform distribution over all permutations
of H.

4.4.4. Lemma. Let H be an r-uniform hypergraph and define DH and DkH as
before. Then it is impossible to distinguish a random H̃ ∼ DH from a random
H̃ ∼ DkH with o(

√
k/r) queries.

Proof. Let q = o(
√
k/r) and e1, . . . , eq be the (adaptive, random) edge queries

made. Let Q ⊆ V be the set of at most rq vertices involved in these queries.
Conditioned on the event EQ(Π) that Π is injective on Q, the distribution of
replies to queries e1, . . . , eq is identical for DH and DkH . But EQ(Π) occurs except
with probability at most |Q|2/k = o(1) as the choice of Π is independent of Q.
This means that for any sequence e1, . . . , eq of queries and any sequence a1, . . . , aq
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of answers, the probability of obtaining answer ai to query ei for all i is, up to a
factor of Pr [EQ(Π)] = 1− o(1), the same when H̃ is drawn from DH as when it is
drawn from DkH . We conclude by Lemma 1.5.6 that the tester cannot distinguish
DH from DkH with q queries and success probability ≥ 2/3.

4.4.5. Corollary. If an r-uniform hypergraph is ε-far from being k-crunchable,
then ε-testing isomorphism to it requires Ω

(√
k/r
)

queries.

Together with the upper bound in the following subsection, this provides a
characterization of hypergraphs of constant arity that can be tested for isomor-
phism with O(1) queries. To see how this generalizes Fischer’s result for graphs,
we show that being O(1)-chunchable is equivalent to having “algebra number”
O(1) as well.

4.4.6. Definition. The algebra number of a graph G is the smallest number k
for which there exist cliques C1, . . . , Ck over subsets of the vertex set of G, such
that G can be generated from the edge sets of C1, . . . , Ck by taking set unions,
intersections and complementations (the latter with respect to the edge set of a
complete graph).

The ε-approximate algebra number is the smallest k such that H is ε-close to
some graph whose algebra number is k.

We also define the pairing number as the smallest k for which there are k
vertex-disjoint sets A1, . . . Ak ⊆ V and a subset S ⊆ [k]× [k] such that the edge
set of G is E =

{
{v, w} | v ∈ Ai, w ∈ Aj, (i, j) ∈ S, v 6= w

}
(note that i = j is

allowed but loops are not). The ε-approximate pairing number of G is defined
similarly.

4.4.7. Lemma.

1. Any graph with pairing number k has algebra number ≤ k2.

2. Any graph with algebra number k has pairing number ≤ 2k.

3. Any k-crunchable graph has pairing number k. Conversely, any graph with
pairing number k is ε-close to being k2/ε-crunchable.

Proof.

1. Let cl(A) denote the edge set of the clique with vertex set A ⊆ V . It is enough
to show that for disjoint A1, A2 ⊆ V , the set of edges between A1 and A2 is
in the algebra generated by cl(A1), cl(A2) and cl(A1∪A2). This is easy to see
because the set of edges in question is equal to cl(A1) ∪ cl(A2)∩ cl(A1 ∪A2).
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2. Let G = (V,E) be generated from the edge sets of the cliques C1, . . . , Ck ⊆ V .
For S ⊆ [k], let AS = (∩i∈SCi)

⋂
(∩i/∈SCi). These 2k sets are disjoint and

contain all vertices incident with some edge in G. For all S, T ⊆ [k], if
a1, a2 ∈ AS and b1, b2 ∈ AT , then (a1, b1) ∈ E iff (a2, b2) ∈ E (unless a1 = b1

or a2 = b2). This means G has pairing number k since it is possible to
write E in the required form.

3. We prove the second statement (the first one is obvious). Suppose G has
pairing number k and let A1, . . . , Ak be as in Definition 4.4.6. The only
reason G may not be k-crunchable is the possible existence of edges between
vertices in the same Ai. Divide each Ai into t = d1/εe subsets Ai1, . . . , Aik
of roughly equal size and remove the edges with both endpoints inside the
same Aij . If n is divisible by t, then from all

(
n
2

)
possible edges, the removed

ones constitute a fraction bounded by t · (1/t2) = 1/t ≤ ε; a simple argument
shows that the same bound still holds in the general case. Hence this graph
is ε-close to the original graph, and is also k-crunchable by construction.

4.4.2 Upper bound via partition properties

For the upper bound we need to discuss “partition properties” of hypergraphs,
which generalizes those discussed in the context of graphs by Goldreich, Goldwasser
and Ron [GGR98]. A graph partition instance ψ is composed of an integer k
specifying the number of sets in the required partition V1, . . . , Vk of the graph’s
vertex set, and intervals specifying the allowed ranges for the number of vertices
in every Vi and the number of edges between every Vi and Vj for i ≤ j. Many
problems, such as k-corolability and maximum clique, can be easily formulated in
this framework. In [GGR98] the authors presented algorithms for testing if a graph
satisfies a certain partition property. We use a similar notion for hypergraphs,
taken from the work of Fischer, Matsliah and Shapira [FMS10]. They work with
directed hypergraphs, but we state their results in terms of undirected hypergraphs.

Hypergraph partition property

Let H = (V,E) be a directed r-uniform hypergraph. be a partition of V . Let
us introduce a notation for counting the number of edges from E with a specific
placement of their vertices within the partition classes of Π. We denote by Φ the
set of all possible mappings φ : [r] → [k]. We think of every φ ∈ Φ as mapping
the vertices of an r-tuple to the components of Π. We denote by EΠ

φ ⊆ E the
following collection of r-tuples:

EΠ
φ =

{
(v1, . . . , vr) ∈ E | ∀j ∈ [r] : vj ∈ V Π

φ(j)

}
.
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4.4.8. Definition. A density tensor of order k and arity r is a sequence ψ =〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
of reals between 0 and 1. (The interpretation is that they

specify the presumed normalized sizes of |V Π
i | and |EΠ

φ | of a k-partition of a
hypergraph of arity r.) Whenever k and r are clear from context, we call ψ simply
a density tensor.

In particular, given a k-partition Π = {V Π
1 , V

Π
2 , . . . , V

Π
k } of a hypergraph H,

we set ψΠ to be the density tensor 〈〈ρΠ
j 〉j∈[k], 〈µΠ

φ 〉φ∈Φ〉 with the property that for

all j, ρΠ
j = 1

n
· |V Π

j | and for all φ, µΠ
φ = 1

nr
· |EΠ

φ |.

4.4.9. Definition. For a fixed hypergraph H of arity r, a set Ψ of density tensors
(of order k and arity r) defines a property of the k-partitions of V (H) as follows.
We say that a partition Π of V (H) (exactly) satisfies Ψ if there exists a density
tensor ψ =

〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
∈ Ψ, such that ψ and the density tensor ψΠ of Π

are equal. Namely, Π satisfies Ψ if there is ψ =
〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
∈ Ψ such that

• for all j ∈ [k], ρΠ
j = ρj;

• for all φ ∈ Φ, µΠ
φ = µφ.

We extend this notion of satisfying partitions (and equivalence between density
tensors) in two ways: one with respect to the edge density parameters 〈µφ〉, and
the other with respect to the usual closeness measures between hypergraphs.

4.4.10. Definition. A k-partition Π ε-approximately satisfies Ψ if there is
ψ =

〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
∈ Ψ such that

• for all j ∈ [k], ρΠ
j = ρj;

• for all φ ∈ Φ, µΠ
φ = µφ ± ε.

In this case ψΠ is ε-approximate to ψ.

By extension (and with a slight abuse of notation), we say that the hypergraph
H itself satisfies the property Ψ if there exists a partition Π of H’s vertices that
satisfies Ψ, and similarly we say that H itself ε-approximately satisfies the property
Ψ if there exists a partition of H’s vertices that ε-approximately satisfies the
property Ψ. In addition, we may consider a specific density tensor ψ as a singleton
set Ψ = {ψ}, and accordingly as a property of partitions.

We define one additional measure of closeness to the property Ψ. The
distance of a hypergraph H from the property Ψ is defined as dist(H,Ψ) =
minH′{dist(H,H ′) | H ′ satisfies Ψ}. For ε > 0 we say that H is ε-far from
satisfying the property Ψ when dist(H,Ψ) ≥ ε, and otherwise, H is ε-close
to Ψ. The testing algorithm follows immediately from the following theorem.

4.4.11. Theorem (Fischer, Matsliah & Shapira [FMS10]). For any two
k, r ∈ N, and any set Ψ of density tensors of order k and arity r, there exists a
randomized algorithm AT taking as inputs two parameters ε, δ > 0 and an oracle
access to a hypergraph H of arity r, such that
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• if H satisfies Ψ, then with probability at least 1− δ the algorithm AT outputs
accept;

• if H does not even ε-approximately satisfy the property Ψ, then with proba-
bility at least 1− δ the algorithm AT outputs reject.

The query complexity of AT is bounded by log3(1
δ
) · poly(kr, 1

ε
), and its running

time is bounded by log3(1
δ
) · exp

(
( r
ε
)O(r·kr)).

For us it is enough to consider set Ψ with a single partition property ψ.

Hypergraphs with small approximate crunching number

Let H = (V,E) be a directed k-crunchable r-uniform hypergraph. We can define
crunchings of directed hypergraphs in a similar manner, with the corresponding
mapping Π: V → [k] and an hypergraph H̃ = ([k], Ẽ) defining the edge patterns
of H, i.e.,

Ẽ =
{

(v1, . . . , vk) | (Π(v1), . . . ,Π(vk)) ∈ E
}
.

The algorithm above can be used as a testing algorithm in the traditional
sense on account of the following observations.

4.4.12. Lemma. Let ε0 < ε/kr. Any directed hypergraph that ε0-approximately
satisfies a partition property Ψ is also ε-close to satisfying it.

Proof. Let Π be a partition witnessing the fact that the hypergraph ε0-
approximately satisfies Ψ. For every φ ∈ Φ, we can add or remove ε0n

r edges
to/from EΠ

φ so that the resulting graph exactly satisfies Ψ. Since |Φ| = kr, this
entails changing less than an ε-fraction of all possible edges.

4.4.13. Lemma. Let H0, H1 denote directed hypergraphs on n vertices, where
H1 is the closest k-crunchable hypergraph to H0. Suppose H0 is ε/3-close to H1

and the crunch is defined via the map Π: V (H0) → V (H1). We can assume
V (H0) = V (H1) = [n]. Let ψ =

〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
denote the following density

tensor of order k and arity r:

• for all j ∈ [k], ρj = Π−1(j)
n

;

• for φ ∈ Φ, µφ =
EΠ
φ (H0)

nr
.

Let ε0 < 2ε/(9kr). Then H0 satisfies {ψ}, and every hypergraph that ε0-
approximately satisfies {ψ} is 8ε/9-close to being isomorphic to H0.
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Proof. Observe that in the density tensor above, the partition sizes ρj are
defined by H1, but the edge densities µφ are those of H0. Note that H0 satisfies {ψ}
by definition. The k-crunchable hypergraph H1 does not satisfy the property ψ,
but it does satisfy a related partition property ψ1 with the same partition sizes
{ρj} but where the edge densities {µφ} are all zero or one.

Take any hypergraph H3 that ε0-approximately satisfies ψ. By Lemma 4.4.12,
it is 2ε/9-close to some hypergraph H2 that satisfies ψ. We show that H2 is
ε/3-close to satisfying ψ1. The reason is that for any φ ∈ Φ, the number of edges
of type φ that we need to change is min(µφ, 1− µφ)nr. So by modifying∑

π∈Φ

min(µφ, 1− µφ)nr

edges we can obtain a hypergraph that satisfies ψ1. But this expression is also the
number of edges that we need to change from H0 so that it satisfies ψ1, which is
the distance between H0 and H1, hence at most ε/3.

Moreover, the only r-uniform directed hypergraph that satisfies ψ1 is H1, up
to isomorphism. Therefore H2 is ε/3-close to isomorphic to H1, and 2ε/3-close to
H0. Hence H3 is 8/9-close to begin isomorphic to H0.

For undirected hypergraphs, simply replace each edge {v1, . . . , vr} with all r!
directed edges of the form (vπ(1), . . . , vπ(r)) for a permutation π : [r] → [r], and
test isomorphism to this directed version. The following follows.

4.4.14. Theorem. Let ε ∈ (0, 1). Testing isomorphism to an r-uniform hyper-
graph that is ε/3-close to k-crunchable can be done with poly(kr/ε) queries.

4.4.3 Proof of the characterization

Proof of Theorem 4.4.2. By definition, any hypergraph H is ε-far from
(CrunchNumε(H)− 1)-crunchable, so by Lemma 4.4.5, we have

TestNumε(H) ≥ Lε,r(CrunchNumε(H))

for some Lε,r(t) = Ω
(√

t−1
r

)
. Clearly limn→∞ Lε(t) =∞.

For the upper bound, any hypergraph H is ε/3-close to CrunchNumε/3(H)-
crunchable. Hence we have by Theorem 4.4.14 that

TestNumε(H) ≤ Uε/3,r(CrunchNumε/3(H)),

for some appropriate polynomial Uε,r(t) = poly(tr/ε).
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4.5 Junto-symmetric functions vs. layered juntas

Now we address the question of what happens when we generalize our definition
of k-junto-symmetric to all functions that are k-juntas when restricted to any
constant-weight layer of the cube (we call them layered juntas), and show that
in general these functions are no longer testable for isomorphism. The proof
applies the crunching method to boolean functions. In this setting the procedure
resembles an idea used by Blais and O’Donnell [BO10].

4.5.1. Definition. A function f : {0, 1}n → {0, 1} is called a layered k-junta if
there are subsets J0, . . . , Jn ⊆ [n], each of size k, and functions f̃0, . . . f̃n : {0, 1}k →
{0, 1} so that for all x ∈ {0, 1}n,

f(x) = f̃|x|
(
x�

J|x|

)
.

Perhaps it should be stressed that layered k-juntas are not, in general, k-juntas.
Let LJ k denote the class of layered k-juntas, respectively. Note that JSk ⊆ LJ k.

We need a notion of random crunching for functions. The notion for hyper-
graphs provides a possible definition of function crunching via the equivalence
discussed in Section 4.4, but unfortunately this kind of crunching would alter
the Hamming weight of inputs, which could be easily detected by the tester for
some functions. Here we give a slightly different definition that resolves this issue,
but only applies to layered juntas, and also happens to depend on the particular
choice of each f̃i.

4.5.2. Definition. A random t-crunch of the function f defined by f(x) =
f̃|x|(x�J|x|) is a function g ∈ JSt obtained as follows:

1. pick, uniformly at random, a subset J ⊆ [n] of size t and a mapping
γ : [n]→ J ;

2. for every x ∈ {0, 1}n, let i1, . . . , ik denote the indices in J|x|; set g(x) =

f̃|x|(xγ(i1) · · ·xγ(ik)) and return g.

4.5.3. Theorem (Chakraborty et al. [CFGM12]). Fix ε > 0 and Q : N→
N, and suppose f ∈ LJ k. Then Ω(Q(k)) queries are needed to distinguish a
random permutation of f from a random permutation of a random (k · Q(k))2-
crunch of f .

In particular, if f is ε-far from JS(k·Q(k))2, then ε-testing isomorphism to f
requires Ω(Q(k)) queries.

Proof. Let Dyes denote the random permutations of f and Dno the distribution
of random permutations of t-crunchs of f . Given g ∈ Dno and its corresponding
mapping γ : [n]→ J , call a set of layers {`1, . . . , `m} collision-free if γ is injective on
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⋃
i∈[m] J`i . Let there be a deterministic tester that makes q = o(Q(k)) queries. For

every x1, . . . , xq ∈ {0, 1}n let Ex1,...,xq denote the event that the set {|x1|, . . . , |xq|}
of layers containing inputs queried is collision-free with respect to the randomly
chosen mapping γ of a function g ∼ Dno. Observe that for all x1, . . . , xq ∈ {0, 1}n
and w ∈ {0, 1}q, conditioned on Ex1,...,xq we have

Pr
h∼Dyes

[h(x1), . . . , h(xq) = w] = Pr
h∼Dno

[h(x1), . . . , h(xq) = w].

By Lemma 1.5.6 (and the ensuing remark), it is enough to show that Ex1,...,xq

occurs with probability > 2/3.
The probability (over g ∈ Dno) that γ(i) = γ(j) for a specific pair i 6= j

is (k · Q(k))−2. The number of different pairs i, j ∈
⋃
i∈[q] J|xq | is bounded by

(kq)2 = o((k · Q(k))2), hence by the union bound the probability that the set
{|x1|, . . . , |xq|} of layers is collision-free is 1− o(1).

Note that this sort of argument admits certain generalizations. For example,
we can consider functions that have few additional variables outside a known set A
(as in Section 4.3.3), as the address function on n variables (which behaves as
a 1-junta for any fixed setting of the ≈ log n addressing variables). Choosing q
small enough for address function to be far from isomorphic to a q2-crunching of
the addressee variables gives a lower bound of Ω(q) for testing isomorphism to it.

4.6 Linear isomorphism

We turn our attention now to a more general notions of isomorphism, namely
equivalence up to transformations by an arbitrary invertible linear map over Fn2
(note that isomorphism in the usual sense corresponds to the linear application
defined by a permutation matrix). We show that functions that are far from
having constant Fourier dimension are hard to test for isomorphism.

4.6.1. Definition. Two boolean functions f, g : {0, 1}n → {0, 1} are said to be
linearly isomorphic if there exists a full-rank linear transformation A : {0, 1}n →
{0, 1}n such that f = g ◦ A.

This is an equivalence relation by virtue of the requirement that A have full rank.

4.6.2. Definition. Let f(x) =
∑

S∈{0,1}n f̃(S)χS(x) be the Fourier expansion of

the function f : {0, 1}n → R. Let

A ,
{
S ∈ {0, 1}n | f̃(S) 6= 0

}
.

Then the dimension of the span of A is called the Fourier dimension of f .
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4.6.3. Lemma. The function f is linearly isomorphic to some k-junta iff its
Fourier dimension is at most k.

Proof. Suppose f has Fourier dimension k. Then it is a real linear combination
of parities whose defining vectors lie on a k-dimensional vector space V . Here
we take the parities χv to be ±1-valued. Each parity in V can be written as a
product of some parities in a basis for V . It follows that f can be written as a
function h (not necessarily linear) of k′ ≤ k linearly independent parities:

f(x) = h
(
χv1(x), . . . , χvk′ (x)

)
= g
(
〈v1, x〉, 〈v2, x〉, . . . , 〈vk′ , x〉, •

)
,

where g is a junta on the first k′ variables, the inner products are taken over Fn2 ,
and • symbolizes that the remaining n−k′ variables are irrelevant. The function g
can easily seen to be boolean-valued on {0, 1}n if f is, because all 2k

′
assignments

to χvi(x), i = 1 . . . k′ are possible. Hence there is a k′-junta g : {0, 1}n → {0, 1}
and a change of basis A : Fn2 → Fn2 such that f = g ◦A (take v1, . . . , v

′
k as the first

rows of the matrix associated with A).
Conversely, if f = g ◦A for a k-junta g, then f is a junta on a set P of k parity

functions and can be written as a polynomial on those parities. We can replace
products of parities in P by a single parity whose defining vector is in the linear
span of the defining vectors of the parities in the product. This means that f can
also be written as a linear combination of the parities in the span of P , so f has
Fourier dimension at most k.

4.6.4. Theorem. If f : {0, 1}n → {0, 1} is ε-far from having Fourier dimension
k then any adaptive ε-tester for linear isomorphism to f takes at least k − 1
queries.

Proof. Let f : {0, 1}n → {0, 1} be ε-far from having Fourier dimension k.
We will use Lemma 1.5.6 to prove the lower bound. We want to generate two
distributions of functions DY and DN for the yes-instances and no-instances
respectively:

Dyes: To generate a random function gY inDyes pick a random linear transformation
L : {0, 1}n → {0, 1}n of full rank and let gY (x) , f(Lx).

Dno: To generate a random function gN in Dno pick a random linear transformation
R : {0, 1}n → {0, 1}n of rank exactly k and let gN(x) , f(Rx).

Note that Dyes is a distribution supported on the set of those functions which
are linearly isomorphic to f . On the other hand, Dno is supported on those
functions that are ε-far from linearly isomorphic to f . This is because if gN ∈ Dno,
then there exists a linear transformation R of rank k such that gN(x) = f(Rx),
so gN has Fourier dimension k.
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Let Q ⊆ {0, 1}n and let q1, . . . , qt be a basis of the span of Q. Note that when
L is a random linear transformation of full rank then L(q1), L(q2), . . . , L(qt) are
linearly independent. In fact, given any t linearly independent vectors v1, . . . , vt,

Pr
L

[∀i : L(qi) = vi] = 1/M,

where M is the number of distinct sets of t independent vectors.
When R is a random linear transformation of rank k the set of vectors

{R(q1), . . . , R(qt)} need not be linearly independent in general, but if t < k
they are independent with high probability.

4.6.5. Lemma. If {q1, . . . , qt} is a set of linearly independent vectors then when
R is a random linear transformation of rank k, then with probability 1− 1/2k−t,
the set {R(q1), . . . , R(qt)} is linearly independent.

Proof. Let us assume that the set {R(q1), . . . , R(qt)} is not linearly independent.
So there must be a linear combination of the vectors that add up to zero. That
is there must be a1, . . . , at ∈ {0, 1} such that

∑t
i=1 aiR(qi) = 0. In other words,

there exists a vector v in the span of q1, . . . , qt such that R(v) = 0.
Because R is a randomly chosen linear transformation of rank k,

∀v ∈ {0, 1}n : Pr
R

[R(v) = 0] =
1

2k
.

So the expected number of vectors in the span of q1, . . . , qt such that R(v) = 0 is
1/2k−t. And thus by Markov’s Inequality,

Pr [R(q1), R(q2), . . . , R(qt) are linearly independent] ≥ 1− 1

2k−t
.

In fact, conditioned on the event E that {R(q1), . . . , R(qt)} are linearly inde-
pendent, any set of linearly independent vectors is equally likely. Thus, for any t
linearly independent vectors v1, . . . , vt,

Pr
R

[∀i R(qi) = vi | E] = 1/M = Pr
L

[∀i : L(qi) = vi].

And since Q is contained in the span of q1, . . . , qt, for all a ∈ {0, 1}|Q| we get

Pr
gN←Dno

[
gN�Q = a

]
≥ (1− 2t−k) Pr

gN←Dno

[
gN�Q = a | E

]
= (1− 2t−k) Pr

gY←Dyes

[
gY �Q = a

]
.

Therefore, if t ≤ k − 2 we have

Pr
gN←Dno

[
gN�Q = a

]
≥ (3/4) Pr

gY←Dyes

[
gY �Q = a

]
.
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By Lemma 1.5.6, if f is ε-far from having Fourier dimension k then any tester
(even an adaptive one) for testing linear isomorphism to f must make at least
k − 1 queries.

4.6.6. Remark. Gopalan et al [GOS+09] proved that if f : {0, 1}n → {0, 1} has
Fourier dimension k then testing linear isomorphism to f can be done using O(k2k)
queries.

4.7 Summary

We proved that isomorphism to any boolean function on the n-dimensional
hypercube with a polynomial number of distinct permutations can be tested with a
number of queries that is independent of n. To do this we introduced the notion of
junto-symmetric functions, proved its equivalence with poly-symmetric functions,
and reduced the problem to certain generalizations of junta testing. We also
showed some partial results in the converse direction. A complete characterization,
however, remains open.

We also considered isomorphism testers against a uniform hypergraph that
is given in advance. Our results regarding the latter topic generalize the known
classification of the testability of graph isomorphism, and in the process we also
provided a simpler proof of his original result which avoids the use of Szemerédi’s
regularity lemma.

Some related problems were also discussed, such as testing isomorphism up to
linear transformations.





Chapter 5

Group testing, non-adaptivity, and
explicit lower bounds

We have been making a thorough study of the difficulty of testing function
isomorphism over the previous chapters. Although we know that the complexity
is Ω̃(n) in the worst case, we are yet to offer an explicit example of a function
meeting the lower bound. We describe here a series of recent results that prove
that k-parities are hard for testing isomorphism, and subsequently delve into the
intimate connections between junta/isomorphism testing and the area of group
testing. The content of this chapter is based on the manuscripts

• S. Chakraborty, D. Garćıa–Soriano and A. Matsliah. Notes on testing
k-parities, 2011.

• D. Garćıa–Soriano, A. Matsliah and R. de Wolf. Untitled, 2011.

5.1 Measuring the size of a parity

Parities are a natural candidate of functions for which testing isomorphism is
hard. Under the additional promise that the input function is linear, testing
isomorphism to a k-parity reduces to checking if a given linear function has size
precisely k. (In the absence of such a promise, one can always self-correct f a la
BLR. This increases the complexity by a logarithmic factor, but as we shall see
this is not needed.) Another way of looking at the problem is as determining, by
making as few queries as possible to the Hadamard encoding of a word x, whether
|x| = k or not. Indeed, let f = x∗ be the parity of the bits in the support of x.
For all y ∈ {0, 1}n, we have f(y) = 〈x, y〉, which is the yth bit of the Hadamard
encoding of x. So the task is essentially how to compute |x| efficiently1 if we can
query the XOR of arbitrary subsets of the bits of x. (Decision trees where the

1Remarkably, this task can be accomplished in the quantum setup with just one query, by
deploying the Bernstein-Vazirani algorithm [BV97] (in fact, x itself can be found).
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queries are allowed to be XORs of subsets of the inputs have appeared in the
literature [ZS10].)

Deciding if the size of a parity is k is the same problem as deciding if it is n−k
because of the observation leading to Lemma 2.3.4. For even n, the case k = n/2
is particularly interesting because it enables us to verify the equality between the
sizes of two unknown parities f, g ∈ PARn. Indeed, define a parity on 2n variables
by h(x1x2) = f(1n ⊕ x1) ⊕ g(x2), where x1, x2 ∈ {0, 1}n; then h ∈ PAR2n

n if and
only if f and g are isomorphic.

A related problem is determining if a parity has size at most k (naturally,
this is equivalent to the problem of deciding if the size is at least n − k, or at
most n − k − 1). Upper bounds for this task imply upper bounds for testing
isomorphism to k-parities (one can perform one test to verify the condition |x| ≤ k
and another one for |x| ≤ k − 1). Lower bounds here do not immediately imply
lower bounds for testing isomorphism, but they do imply lower bounds for testing
k-juntas (because one way of checking if f ∈ PAR≤k is testing that f is linear and
also a k-junta).

The first step towards analyzing the hardness of these problems was taken by
Goldreich.

5.1.1. Theorem (Goldreich [Gol10, Theorem 4]). Testing if a linear func-
tion f ∈ PARn (n even) is in PARn≤n/2 requires Ω(

√
n ) queries.

5.1.2. Theorem (Goldreich). Testing if a linear function f ∈ PARn (n even)
is in PARnn/2 requires Ω(

√
n ) queries.

The second theorem was not stated in [Gol10], but follows from the proofs
therein.

He conjectured that the true bound should be Θ(n), which will be confirmed
in the next subsection. Remarkably, by using one of the other results in the very
same paper, it is possible to strengthen the bound of Theorem 5.1.1 to Ω̃(n), and
to give a simpler proof of Theorem 5.1.2 up to polylogarithmic factors.

5.1.3. Theorem (Goldreich). [Gol10, Corollary 2.2] At least Ω(n) queries
are needed to distinguish a random parity on n variables from a random parity
whose size is a multiple of three.

5.1.4. Theorem (Chakraborty et al. [CGM11d]). Testing if a linear func-

tion f ∈ PARn (n even) is in PARnn/2 requires Ω̃(n) queries.

Proof. Fix n and suppose that for every k ≤ n there is a tester Ak that can
determine, under the assumption f ∈ PARn, whether f is a parity of size ≤ k using
o(n/(log n log log n)) queries. Then, by standard binary search and probability
amplification, one could find the exact number of influential variables of f in o(n)
steps. This contradicts Theorem 5.1.3, so for every n there must be some k = k(n)
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such that deciding if f ∈ PARn≤k (for f ∈ PARn) needs Ω(n/(log n log log n))
queries. (In fact, the additional log log n factor in the denominator can be avoided
because of the results of Feige et al. [FRPU94] about noisy boolean decision trees)
If k = n/2 we are done. Since we can replace k with n− k − 1, we can assume
k > n/2.

Now we prove that determining whether some function g ∈ PAR2k belongs to
PAR2k

k requires Ω̃(n/(log n log log n)) queries. We argue by contradiction. Take
any tester for this property making o(n/(log n log log n)) queries and, for each
f ∈ PARn, let the tester’s input be the function gf : {0, 1}2k → {0, 1}, where
gf(x t y) = f(x) for any x ∈ {0, 1}n and y ∈ {0, 1}2k−n. Clearly, the number
of influential variables of f and gf is the same and hence one would be able
to determine for any f ∈ PARn whether the size of f is ≤ k or > k using
o(n/(log n log log n)) queries. But this is not possible as shown in the previous
paragraph.

Summarizing, for every n there exists some (unknown)

n′ = max(2k(n), 2(n− k(n)− 1)) = Θ(n)

such that determining whether g ∈ PARn
′

is a parity of ≤ n′/2 bits needs

Ω(n/ log n log log n) = Ω(log n′/ log log n′)

queries. Hence the lower bound holds for infinitely many n.

In fact, since Theorem 5.1.3 is a statement about random parities, and a
random parity has size circa n/2±O(

√
n ) with high probability, one can argue

(proof omitted) that this also implies an Ω̃(
√
n ) lower bound for checking if the

size of f is n/2, which almost matches Theorem 5.1.1.

5.1.1 Relationship to communication complexity

In a recent paper, Blais, Brody and Matulef noticed a nice connection with some
well-studied problems in communication complexity. In this setup, introduced
by Yao [Yao79], two parties, traditionally called Alice and Bob, each have an
input and they need to devise a protocol to determine some property of the joint
input. Unlimited access to their respective inputs and arbitrary computations are
allowed, and the measure for the protocol’s efficiency is provided by the amount of
communication they need to transmit to each other. We consider the public-coin
model, whereby Alice and Bob share a common source of randomness. (See the
book by Kushilevitz and Nisan [KN97] for a comprehensive treatment.)

In the k-set disjointness problem, Alice and Bob receive two k-sets x, y ∈
(

[n]
k

)
and would like to determine if x∩ y = ∅ or not. Furthermore, they are guaranteed
that either x∩y = ∅ or |x∩y| = 1. This problem is known to have communication
complexity Θ(k). The upper bound is due to H̊astad and Wigderson [HW07].
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The lower bound was first established by Kalyanasundaram and Schnitger [KS92],
and subsequent simplifications and generalizations of the proof were found by
Razborov [Raz92] and Bar-Yossef et al. [BJKS04].

5.1.5. Theorem (Blais, Brody & Matulef [BBM11]). Testing isomor-
phism to k-parities requires Ω(k) queries.

Proof. Let k be even (a similar argument works for odd k). To solve a k/2-set
disjointness problem with 2q bits of communication (and shared randomness),
Alice and Bob can use a q-query solution for testing isomorphism to k-parities
as indicated next. Alice forms the function f = x∗ and Bob forms the function
g = y∗. Consider the function f = (x⊕ y)∗. Since |x⊕ y| = |x|+ |y|− 2|x∩ y|, the
function f is a k-parity if x ∩ y = ∅, and a (k − 2)-parity if |x ∩ y| = 1. For every
query z ∈ {0, 1}n the testing algorithm makes, Alice and Bob can use two bits
of communication to make sure they both know h(z) = f(z)⊕ g(z). Then they
both know which query the tester makes next, because it is determined by the
shared randomness and the replies to previous queries. Hence they can simulate
the tester of isomorphism. In particular they can find out whether h is a k-parity
or a (k − 2)-parity; equivalently, they can tell whether x and y intersect or not,
under the assumptions made.

In the contrapositive form, what we have shown is that the Ω(k) lower bound
for k/2-set disjointness also applies to telling the case where h ∈ PARk apart from
the case where h ∈ PARk−2, which is always possible by a tester of isomorphism
to (k − 2)-parities.

5.1.6. Corollary. The query complexity of testing isomorphism to k-parities is
O(k log k) and Ω(k).

Of interest to us in the rest of the chapter is what the situation looks like when we
ask for non-adaptive algorithms. We will see that the query complexity becomes
Θ(k log k) in this case, and we conjecture that this bound remains valid in the
adaptive case.

5.2 Background on group testing

The field of group testing2 seeks efficient procedures to identify a set of defective
items by performing “batch” tests, whereby a collection of items are tested together
to determine if the batch contains a defective item or not. The subject originated
during the Second World War as a means of detecting diseases in soldiers’ blood
samples [Dor43], without having to test each sample individually. The problem

2Despite its name, group testing is not concerned with property testing or group theory.
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has since emerged time and again in a great many different contexts, theoretical
as well as applied, including design theory, error-correcting codes, DNA screening,
etc. A good textbook on the topic has been written by Du and Hwang [DH00];
somewhat related to our work are the papers [KS64, BGV05, PR08, INR10].

We formalize the problem as follows. We are given black-box access to a
function f : {0, 1}n → {0, 1} of the form

f(x1, . . . , xn) =
∨
i∈R

xi,

for some unknown set R (the set of relevant variables of f). (These are the
“defective items”.) We abbreviate this as f = ORR and also write

ORk =
⋃

R⊆[n],|R|=k

{ORR}

and
OR≤k =

⋃
0≤k′≤k

{ORk}.

One can regard queries to ORR as questions of the form

“Is |X ∩R| = 0 or |X ∩R| ≥ 1?”

for any X ⊆ [n]. An upper bound k on the size of R is given, and the goal is to
determine the elements of R while attempting to minimize the number of queries
made.

Most prior work on group testing comes in two flavors, probabilistic and
deterministic. The probabilistic view imposes a distribution on the location of
the k relevant variables (see, e.g.,[Mac98]), while in the deterministic setting this
is arbitrary. We work in the latter setting. A lot of effort has been put into
optimizing the constants involved, but we will focus on asymptotics as usual.

In the adaptive case, tight bounds of Θ(k log(n/k)) can easily be obtained in
various ways (we are assuming k ≤ n/2, otherwise Θ(n) bounds are trivial). For
example, for the upper bound one can query the sets [1], [2], [4] . . . , until a relevant
set has been found; then it is possible to perform a binary search for the index of
the first relevant variable. The set R can thus be determined after k iterations
of this process, and a somewhat careful analysis that we omit shows that this
makes O(k log(n/k)) queries. (Another approach would be to use the Winnow
algorithm of Littlestone [Lit88] with random samples.) On the other hand, the
lower bound is immediate from an information-theoretical argument, as there are(
n
k

)
= 2Ω(k log(n/k)) possible k-subsets of [n].
Therefore, our discussion of standard group testing in this section is limited to

non-adaptive algorithms. Associated with a deterministic, non-adaptive algorithm
is a binary query matrix M ∈ Mq×n whose rows r1, . . . , rq ∈ {0, 1}n are the
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indicator vectors of each of the (non-adaptive) queries made. For two binary
vectors a, b ∈ {0, 1}n, recall that a ∨ b represents their bitwise disjunction (which
can be thought of as the union of two sets), and a ∧ b represents their bitwise
conjunction (the intersection of two sets). When f = ORR, the response vector

M ·R , (f(r1), . . . , f(rq))
>

is then simply the disjunction of the columns of M indexed by R, which can
be interpreted as the boolean product of matrix M and a column vector R (the
characteristic vector of the set of relevant variables), where +, · correspond to
∨,∧, respectively. (Note that this departs from our convention in the rest of the
thesis that a+ b denotes addition over Fn2 .) Observe that being able to determine
R from M ·R under the promise |R| ≤ k is equivalent to the following property
being satisfied:

• the OR (union) of each set of ≤ k columns of M is unique, in the sense that
M ·R 6= M ·R′ for any R 6= R′ with |R|, |R′| ≤ k.

Such a matrix is called k-separable. Its columns are sometimes said to form
a uniquely decipherable code of order k. This name reflects the connection,
exploited by Kautz and Singleton [KS64], with certain kind of codes. Namely, the
property above guarantees unique decodability of R from the response vector of
the corresponding ≤ k-OR, although the procedure may take as much as Ω(nk)
time. Most of the constructions of k-separable matrices possess a slightly stronger
property that allows for quick decoding:

• the OR (union) of any set of ≤ k columns of M does not contain another
column of M ,

or equivalently

• every subset of k + 1 columns of M contains a (permuted) (k + 1)-sized
identity submatrix.

Such a matrix M is called k-strongly selective, or k-disjunct . The set of its
columns is also called a k-cover-free family, k-union-free family, or a zero-false-drop
code of order k (more variations include “disjunctive codes” and “superimposed
codes”). It is readily seen that any k-disjunct matrix is k-separable, and that any
k-separable matrix is (k − 1)-disjunct: if M is not (k − 1)-disjunct, then it has a
subset S of k − 1 columns whose union includes the jth column for some j 6∈ S;
but then M · S = M · (S ∪ {j}), so M is not k-separable.

Given a k-disjunct matrix, an efficient decoding algorithm runs as follows.
Observe that every negative answer (f(ri) = 0) to a query ri implies that no
element of ri (viewed as a subset of [n]) belongs to R as well. This allows us to
label some columns as irrelevant, for each query with a negative answer. We can
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safely discard these columns as no element of R will be removed in this way. The
definition of k-disjunctness simply asserts that after going through the responses to
all queries and discarding all such columns, we are left with precisely the columns
associated with R. In short,

R = [n] \
⋃
i∈[n]

ORR(ri)=0

ri

holds for any R ∈
(

[n]
k

)
(recall that we are identifying elements of {0, 1}n, such

as ri, with subsets of [n]).
Constructions are known for k-disjunct matrices where the number of rows

(which translates into the number of queries) is q = O(k2 log n) [KS64, BV03].
The best known lower bounds are q = Ω(k2 log n/ log k) [Für96, EFF82, Rus94];
the proof can also be found in [Juk11, p. 116].

5.3 Relaxed group testing: adaptive

We study the following relaxation of the group testing problem. Instead of trying
to find R itself, suppose we only want to distinguish between the cases |R| ≤ k
or |R| > k. We assume k ≤ n/2 because tight bounds are easy otherwise. This
relaxation does not appear to help much if we restrict ourselves to deterministic
algorithms (see below), but the situation looks vastly different if randomization is
allowed. As usual we consider algorithms with success probability, say, 2/3.

A straightforward O(k log k) adaptive upper bound for relaxed group testing
follows by using the random partitions introduced in Definition 3.4.1: start from
a random partition of [n] into ∼ k2 buckets and then simulate the deterministic,
adaptive group testing upper bound for n = O(k2), where single variables have
been replaced with buckets.

By now the astute reader will have noted a striking resemblance between
group testing and junta testing. All the testers we discussed in Section 3.6 used
independence tests as a building block, and this is the only way they accessed f
(except for the random choices of x and y with f(x) 6= f(y)). Suppose f : {0, 1}n →
{0, 1} is a junta with set R of relevant variables. With f we can associate the
function f ′ = ORR that takes the union of the bits in R. An independence test of f
on A is roughly the same as an OR query for f on A, except that sometimes A may
be incorrectly reported as non-influential by an independence test. So by replacing
independence tests with calls to f ′, the one-sided junta testers immediately yield
algorithms that accept if f ∈ OR≤k. The rejection conditions being different,
it would appear that there is no guarantee that they reject if f = ORR where
|R| > k, but they actually do.

For example, take the adaptive junta tester from Section 3.6. As long as k or
fewer relevant blocks have been detected, it conducts an influence test on the rest,
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and if the rest is found to be relevant, it binary searches for one more additional
block. If this process is repeated k + 1 times, then it will find k + 1 relevant
blocks for any OR of more than k variables, provided the initial random partition
separates at least k + 1 of the elements of R, which occurs with high probability.
Thus we arrive at a second O(k log k) adaptive solution for relaxed group testing;
in fact, the algorithm finds a k-isolating partition for R (see Definition 3.4.1).

An Ω(k) adaptive lower bound can be proven for relaxed group testing in
exactly the same way as for parities (Section 5.1.1). To see this, observe that to
solve a set-disjointness problem, Alice can form the function f = ORx and Bob
the function g = ORy, and then simulate queries to h , f ∨ g. (Of course, the
same kind of argument works for ANDs just as well as it does for XORs and ORs.)
All in all we have the following.

5.3.1. Theorem. The adaptive query complexity of the relaxed group testing
problem with parameter k ≤ n/2 is Ω(k) and O(k log k).

5.3.2. Remark. If we demand deterministic algorithms (which are always cor-
rect), then the adaptive complexity of the problem becomes Θ

(
log
(
n
k

))
. The

lower bound uses the same technique, since the reduction above then gives a
deterministic protocol for the k/2-set disjointness problem, the communication
complexity of which is dlog

(
n
k/2

)
e = Θ(log

(
n
k

)
) because of the rank bound [KN97,

Example 2.12].

5.3.1 Interlude: a 3-way variant

Interestingly, were we endowed with the power to perform a somewhat stronger
test of relevance, the problem would admit faster adaptive solutions. Namely,
suppose that querying for a set A allowed us to distinguish with certainty from
among the three cases |A ∩R| = 0, |A ∩R| = 1 and |A ∩R| ≥ 2, instead of only
the first from the other two. Then we claim that the problem could be solved
with O(k) queries, which gets rid of the log k factor. One notable consequence
of this fact is that many lower bound techniques with an information-theoretic
flavor cannot go beyond Ω(k) for this problem, as there is a randomized ternary
decision tree with O(k) depth that solves it.

To see this, observe that there is nothing to do if the whole set [n] is not
relevant, so assume it is. We keep a partition P of [n] such that each element of P
intersects R. Initially, P is the singleton {[n]}. At each step we take an arbitrary
A ∈ P such that |A ∩R| ≥ 2 (if there is one), and take a random partition of A
into two sets A1, A2. With probability no less than 1/2, at least one relevant
index in A lands into each of A1, A2; otherwise we draw another random pair
(this condition can be tested with two queries to the function). When we succeed
in splitting A into two relevant sets A1, A2, we replace A with A1 and A2 in the
partition to form Pnext = Pprev − {A} ∪ {A1, A2}, and go back to picking another
element of P = Pnext if possible.
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Intuitively, the reason why this works is that if we know for sure that |A∩R| ≥ 2,
then we know that it pays to persist in attempting to split A: we will succeed
promptly. Notice that if we have a test for |A ∩ R| ≥ 2 that works only with
high constant probability, then O(log k) iterations decrease the error probability
of each such test to O(1/k) (this is necessary to handle those A with |A∩R| = 1).
This leads to a third constant-success probability solution to the relaxed group
testing problem. Again, it has complexity O(k log k).

An unexpected application of these ideas, modulo some tailoring, will be
exhibited in Chapter 9 on cycle finding.

5.4 Relaxed group testing: non-adaptive

For non-adaptive testers, these algorithmic techniques do not seem to work.
Nevertheless, we show in the following section that, somewhat surprisingly, the task
can still be accomplished non-adaptively with O(k log k) queries (Theorem 5.4.7).
(Note that when n = O(k2), the best k-disjunct matrices have size between
O(k2 log k) and Ω(k2), so applying the non-adaptive group testers to a random
partition results in much worse query complexities.) Additionally, the algorithm
can handle random errors in the response vector, in the form of false negatives.
This sets the stage for applications to property testing (Section 5.5).

We can show that Ω(k log k) non-adaptive queries are necessary (Theorem 5.4.1
and its corollary). This applies even to the noiseless setting, thus showing that
our non-adaptive algorithm is optimal. It is also easy to derive from it an
Ω(k log k) lower bound for testing k-juntas non-adaptively. We should also point
out that our upper bound for relaxed group testing actually finds k blocks each
containing at most one relevant variable; it is also possible to argue that each
of these blocks has size roughly n/k. Once we know a block has one relevant
variable, we can use standard group testing with k = 1 to find the variable
itself with O(1 log(n/1)) non-adaptive queries. Hence our result also gives a 2-
stage randomized solution to the standard group testing problem with complexity
O(k log k + k log(n/k)) = O(k log n). However, this is already known, even
deterministically (see [BGV05, BV06, MT11], which are based on [CGR02]).

5.4.1 Lower bound

The first observation we need for the non-adaptive lower bound is the following.
In Section 5.3 we showed how to use a q-query solution to relaxed group testing to
yield a solution to set disjointness with 2q bits of communication. But note that
if the algorithm is non-adaptive, then we can obtain a solution to set disjointness
with only q + 1 bits of communication, all of which directed from Alice to Bob.
This is because there is no need for both parties to know h(z), since the whole
set of queries is determined already by the common source of randomness and
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each of them knows what comes next. Bob can perform all the computations and
figure out the answer. Hence it is enough to prove lower bounds for the one-way
communication complexity of the set disjointness problem.

5.4.1. Theorem (de Wolf [Wol06]). The one-way communication complex-
ity of the k-set disjointness problem is Θ(k log k) for k = O(

√
n ), and Θ(k log(n/k))

for Ω(
√
n ) ≤ k ≤ n/2.

(It is Θ(n) for k ≥ n/2.)

Proof. The upper bound follows from the relaxed group testing upper bounds,
so we only need to prove the first part. We assume for simplicity that k is a power
of two and divides n.

First consider the case k ≤
√
n/2. Let x be Alice’s n-bit input. For Alice

we restrict our attention to inputs of a particular structure. Namely, consider
partition of [n] into k consecutive sets of size n/k ≥ 2k. The inputs we allow
contain precisely a bit set to one inside each block of the partition, and moreover the
offset of the unique index set to one within the ith block is a number between 0 and
2k−1, inclusive. In this case, x describes a message M of k integers m1, . . . ,mk in
the interval {0, . . . , 2k − 1}. This is an m-bit long message, where m = k log(2k).

We can write Alice’s input as x = u(m1) . . . u(mk), where u(mi) ∈ {0, 1}n/k is the
unary expression of the number mi using n/k bits (where the rightmost n/k − k
bits of each u(mi) are always zero). For instance, the picture below illustrates the
case where n = 40, k = 4, and M = (1, 7, 0, 5):

x =

n/k︷ ︸︸ ︷
0100000000︸ ︷︷ ︸

u(m1)

n/k︷ ︸︸ ︷
0000000100︸ ︷︷ ︸

u(m2)

n/k︷ ︸︸ ︷
1000000000︸ ︷︷ ︸

u(m3)

n/k︷ ︸︸ ︷
0000010000︸ ︷︷ ︸

u(m4)

Let ρx be the q-bit message that Alice sends on this input. Below we show
that the message is a random-access code for M , i.e., it allows a user to recover
each bit of M with probability at least 1− δ (though not necessarily all bits of M
simultaneously). Then our lower bound will follow from Nayak’s random-access
code lower bound [Nay99]. This says that

q ≥ (1−H(δ))m,

where δ is the error probability of the protocol and H(δ) is its entropy.
Suppose Bob is given ρx and wants to recover some bit of x. Say this bit is

the `th bit of the binary expansion of mi. Then Bob completes the protocol using
the following y: y is 0 everywhere except on the k bits in the ith block of size
n/k whose offsets j (measured from the start of the block) satisfy the following:
0 ≤ j < 2k and the `th bit of the binary expansion of j is 1.

Recall that Alice has a 1 in block i only at position mi. Hence x and y will
intersect iff the `th bit of the binary expansion of mi is 1, and moreover, the
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size of the intersection is either 0 or 1. Also, the Hamming weight of y is k by
definition. Running the k-set disjointness protocol with confidence 1− δ will now
give Bob the sought-for bit of M with probability at least 1 − δ, which shows
that ρx is a random-access code for M .

If k >
√
n/2 then we can do basically the same proof, except that the

integers mi are now in the interval {0, . . . , n/k − 1}, m = k log(n/k), and Bob
puts only n/2k < k ones in the ith block of y (he can put his remaining k − n/2k
indices somewhere at the end of the block, at an agreed place where Alice won’t
put 1s). This gives a lower bound of Ω(k log(n/k)) = Ω

(
log
(
n
k

))
.

5.4.2. Remark. The lower bound holds even for quantum one-way communica-
tion complexity. The proof remains intact except that if we wish to allow Alice and
Bob to share entanglement, the random-access code bound needs to be replaced
with Klauck’s [Kla00] version, which is weaker by a factor of two.

5.4.3. Corollary. Let k ≤
√
n. At least Ω(k log k) queries are needed for non-

adaptive solutions to the following problems: relaxed group testing with parameter
k, testing k-juntas and testing isomorphism to k-parities.

5.4.2 Upper bound

Here we present an algorithm to solve the relaxed group testing problem in the
presence of one-sided noise of some constant rate η > 0. Let x ∈ {0, 1}n and
f = ORx. Suppose that, instead of querying f , we can only query a “noisy
version” f̃ of f . Let f̃ denote a function on {0, 1}n whose image on any input is a
0− 1 random variable, and the variables {f(x)}x∈{0,1}n are independent. Then f̃
is called a η-noisy oracle for f if the following two properties are satisfied:

1. f(x) = 0 implies f̃(x) = 0;

2. f(x) = 1 implies Pr [f̃(x) = 1] ≥ 1− η.

Different calls to f̃ ′(x) for the same x return independent copies of the same
random variable, may yield different values.

Recall that we denote the boolean product of a q×n matrix M and x ∈ {0, 1}n
by M ·x. When f = ORx, the response vector a ∈ {0, 1}q under f will be a = M ·x.
One equivalent way of modelling the response vector ã under a η-noisy oracle f̃
for f as defined above is as follows. Let e ∈ {0, 1}q be a sequence q of independent
0 − 1 variables such that Pr [ei = 1] ≥ 1 − η and let ã = a ∧ e. Our goal is to
design M so as to allow, with high probability, determining if |x| = k given ã. We
call this the noisy relaxed group testing problem.

We introduce the following variation of the notion of k-disjunct matrix.
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5.4.4. Definition. A q × n binary matrix M is (δ, ζ)-approximately k-disjunct
if, with probability at least 1− δ, the union of a random k-subset of the columns
of M and a vector in {0, 1}q of weight at most ζq {0, 1}q does not contain any
other column of M .

The reader may verify that (δ, ζ)-approximate k-disjunctness implies (δ, ζ)-ap-
proximate (k − 1)-disjunctness as well. The property can be rewritten as

(M · x) ∨ y +M · z

with probability 1− δ, for random x ∈ {0, 1}n with |x| = k (or |x| ≤ k) and any
y, z ∈ {0, 1}q with |y| ≤ ζq and z ⊆ [n] \ x, |z| = 1.

We need the following lemma.

5.4.5. Lemma. Let n = O(k2) and R be a k-subset of [n]. Let V be an (60 log k)×
n random matrix with entries in [10].

For every column index j ∈ [n] \ R, let Xj be the number of row indices
i ∈ [60 log k] for which there exists another column j′ ∈ R with Vij = Vij′. Then

Pr
V

[∀j ∈ [n] \R : Xj < 15 log k] = 1− o(1).

Proof. Let j ∈ [n] \R. For each i ∈ [60 log k],

Pr [∀j′ ∈ R : Vij 6= Vij′ ] = (1− 1/(10k))k ≥ 9/10.

Hence Xj is the sum of 60 log k independent binary random variables with
expectation ≤ 1/10, and by the Chernoff bounds

Pr [Xj ≥ 15 log k] ≤ exp(−(15/6− 1)2(1/10)60 log k/3) = o(k−2).

The claim follows from the union bound over all n−k = O(k2) elements of [n]\R.

5.4.6. Corollary. Let n = O(k2). There is a (1 − o(1), 3/32)-approximately
k-disjunct matrix M ∈ M(600k log k)×n. Furthermore, each of the columns of M
has Hamming weight 60 log k.

Proof. We use the notation of Lemma 5.4.5. Let V be a matrix such that

Pr
R

[∀j ∈ [n] \R : Xj < 15 log k] = 1− o(1);

such V can be shown to exist by the said lemma and a straightforward averaging
argument. Let V represent a code of n words of length 60 log k over an 10k-sized
alphabet. Concatenate it with the “trivial” code mapping each symbol x ∈ [10k]
to the string 0x−11010k−x ∈ {0, 1}10k and let M be an (600k log k) × n matrix
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whose columns are the words of the concatenated code. The claim follows by
observing that

Xj =
∣∣{̃i ∈ [600 log k] |Mĩj = 1 ∧ (∃j′ ∈ R |Mĩj = 1)}

∣∣ .

5.4.7. Theorem. There is a non-adaptive algorithm making O(k log k) queries
that solves the noisy relaxed testing problem with noise rate η = 1/2. It succeeds
with high constant probability and has two-sided error.

Proof. Let ` = 5(k + 1)2. First we show how to reduce the general case to the
case n < `. When n ≥ ` the algorithm proceeds as follows:

1. Partition [n] into ` buckets I1, . . . , I` at random.

2. Define the function replicate : {0, 1}` → {0, 1}n by mapping x ∈ {0, 1}`
to the string y ∈ {0, 1}n that is constant inside each bucket and takes value
xi on each element of Ii.

3. Solve the relaxed noisy group testing problem for the composition of f and
replicate.

Let f = ORx for some x ⊆ [n]. Then f ◦ replicate will be of the form ORx′
for some subset x′ ⊆ [`]. The size of x′ will always be at most that of x; in
particular it will be bounded by k whenever |x| ≤ k. When |x| ≥ k + 1, standard
arguments based on the birthday paradox yield |x′| ≥ k + 1 with probability at
least 9/10. So the reduction does indeed work with high constant probability.

Let us deal first with the case n = ` (note we can always add irrelevant
variables if n < `). We do the following.

1. Obtain a (600k log k)× ` matrix M as in Corollary 5.4.6.

2. Randomly permute the columns of M to obtain Mπ.

3. For each row ri of Mπ, query f on ri; let ãi be the answer.

4. Compute Xj ,
∣∣{i ∈ [600k log k] |Mπ

ij = 1 ∧ ãi = 1}
∣∣ for each column index

j ∈ [`].

5. Let x̃ , {j ∈ [`] | X ′j ≥ 15 log k}.

6. Accept iff |x̃| ≤ k (and if so, return the nonzero indices of x̃).



118 Chapter 5. Group testing, non-adaptivity, and explicit lower bounds

The fact that a random permutation is being applied to each of the rows of M
enables us to analyze x as a uniformly random |x|-set, while leaving M unpermuted.
Because of the one-sided nature of the error, ãi = 1 implies ri ∩ x 6= 0. It is
then immediate from the definition of approximate k-disjunct matrices that, with
probability 1− o(1) over x of size k, for any j ∈ [`] \x, it holds that X ′j < 15 log k
and hence j /∈ x̃. This shows k-ORs are accepted with high probability.

We claim now that, for any x ∈ [`], and with probability 1− o(1), x ⊆ x̃ holds;
in particular the algorithm rejects k′-ORs when k′ > k. Indeed, each column of
M has 60 log k nonzero entries. For every j ∈ x and row i containing a nonzero
entry (that is, Mij = 1), Pr [ãi = 1] ≥ 1− η ≥ 1/2. By the Chernoff bound, the
probability that the number of i with Mij = 1 and ãi = 1 is smaller than 15 log k
is bounded by exp(−(1/2)230 log k/2) = o(k2). It follows by the union bound over
all j ∈ x that x ⊆ x̃, proving our claim.

This procedure also can be used to distinguish k-ORs from any k′-OR with
k′ 6= k, whether k′ > k or k′ < k.

5.5 Strong k-juntas

Recall that an independence test for S ⊆ [n] is performed as follows. Pick ln(1/η)/δ
random pairs x, y ∈ {0, 1}n conditioned on x�

[n]\S
= y�

[n]\S
, and return f̃ ′(S) = 1 if

f(x) 6= f(y) for some pair (x, y), or else return f̃ ′(S) = 0. Independence tests have
one-sided error, so all errors are in the form of false negatives, i.e., the reported
value f̃ ′(x) is 0 but the true value of f ′(x) is 1. In fact it is clear that

1. Inff (S) = 0 implies f̃ ′(S) = 0;

2. Inff (S) ≥ δ implies Pr [f̃ ′(S) = 1] ≥ 1− η.

We call such f̃ ′ a η-noisy relevance oracle for f . As we saw, all known testers for
k-juntas can be viewed as making queries to such a relevance oracle.

Observe that the second proviso is met whenever S contains a variable of
influence ≥ δ, because influence is monotone. In fact, if f has a subset S of least
k variables of influence ≥ δ each, then f̃ is a η-noisy oracle for ORS as defined in
the previous section. (The oracle makes O(log(1/η)/δ) queries to the function f .)
This motivates the following definition:

5.5.1. Definition. A δ-strong k-junta is a function f : {0, 1}n → {0, 1} with k
variables of influence ≥ δ and n− k variables of influence 0.

Up to a factor of at most 2 in δ, this is essentially the same as a k-junta which
is δ-far from all juntas on fewer than k variables (Lemma 3.6.1). It may be
worthwhile to note that any k-junta with Fourier degree d is a 2−(d+1)-strong
k-junta by a result of Nisan and Szegedy [NS92].)
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As usual, when we speak of a δ-strong ≤ k-junta, we mean a δ-strong k′-junta
for some k′ ≤ k.

As a consequence of the discussion above we obtain the following result: there is
an algorithm making O(1

δ
k log k) non-adaptive queries that, with high probability,

accepts δ-strong ≤ k-juntas and rejects functions with at least k + 1 variables of
influence ≥ δ. We can do better however:

5.5.2. Theorem. There is a non-adaptive O
(

k log k
min(δ,ε)

)
-query tester that, with

high probability, accepts δ-strong ≤ k-juntas and rejects functions that are ε-far
from all k-juntas.

Roughly speaking, the key feature of strong k-juntas that allows simpler testing
algorithms is that every relevant variable can be easily identified, eliminating
the need to tackle sets of variables that account for a noticeable fraction of the
function’s overall influence despite each variable having individually low influence.
This allows us to strengthen (and simplify) the acceptance conditions.

Proof. Suppose for the moment that n = O(k2) (so no partitioning is necessary).
As we saw, it is possible to simulate a query to a (1/2)-noisy relevance oracle
f̃ ′ for f with O(1/δ) queries to a δ-strong k-junta f . Then we apply the test of
Theorem 5.4.7 to solve the noisy group testing problem with O(k log k) queries
to f̃ ′ and reject if it rejects. This makes O(k log k/δ) queries to f . Let S ⊆ [`],
|S| ≤ k be the set of relevant variables returned. If f is a δ-strong k-junta on R,
then with high probability R = S, f ′ = ORS, and this first step of our algorithm
accepts.

The second part is designed to make the algorithm reject when f is ε-far from
a k-junta, in which case we have Inff([n] \ S) ≥ ε. (Of course, we also need to
ensure that δ-strong k-juntas are accepted, but this will follow trivially from the
fact that Inf([n] \ S) = 0 then.) Let A = [n] \ S. We construct a (multi)set
T ⊆ {0, 1}n of 100ek log k/ε inputs with density 1/k, i.e., each of the queries B is
drawn from ⊆1/k [n] as in Lemma 3.6.4. For each B ∈ T , we query two random
strings xB, yB ∈ {0, 1}n conditioned on xB�

[n]\B = yB�
[n]\B and reject if there is

some B disjoint with S for which f(xB) 6= f(yB).
We expect 100k log k/ε of the elements of T to be all zero inside S, and by

Chernoff bounds, with probability 1− o(1) there are at least 96k log k/ε like that.
(We assume k = ω(1) or ist at least large enough; otherwise the theorem is easy.)
Let Q = {B ∈ T | B�

S
= 0} be this multiset of size ≥ 96k log k/ε. Note that

the distribution of B ⊆ρ [n] conditioned on B�
S

= 0 is exactly the same as the
distribution ⊆ρ [n] \ S. Therefore the distribution of each element of Q follows
exactly ⊆1/k A.

When taking B, x, y conditioned on B�
S

= 0 and xB�
[n]\B = yB�

[n]\B, note

that the probability that f(xB) 6= f(yB) is exactly equal to EB⊆1/k[n]\S Inff(B).
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Therefore, by Lemma 3.6.5, if f is ε-far from being a junta on S, then each
independence test associated with an element of B rejects with probability at least
ε/k. Since |B| = Ω(k log k/ε), in this case we reject with probability 1− o(1), and
we are done.

For larger n, the argument is the same except that we start with a random
partition of n into ` = O(k2) blocks and make blockwise-constant queries of
density 1/k. From then on we consider functions defined on `-bit inputs, as in
Chapter 3; there we used ` = O(k9/ε), but a recent result of Blais et al. [BWY11]
shows that we can in fact take ` = O(k2).

One consequence of the proof is that if f is a δ-strong k′-junta (with k′ ≤ k),
we return k′ blocks that isolate the relevant variables of f . Hence by using the
techniques of Chapter 3 we can test isomorphism to to Ω(1)-strong k-juntas with
O(k log k/ε) non-adaptive queries.

However, it seems that the following recent result may yield non-adaptive
testers of isomorphism to any function that make O(k log k/ε) queries.

5.5.3. Theorem (Ron & Tsur [RT11, Theorem 3.1]). There is a non-adap-
tive algorithm that makes O(k/ε) queries, accepts k-juntas and rejects functions
far from 2k-juntas (with high probability).

The reason is that to be able to apply the techniques of Chapter 3, we do not
need to reject functions that are far from k-juntas, as the junta testers do. We
can get by rejecting functions that are far from 2k-juntas, which is possible by
Theorem 5.5.3. One can then relate in a similar way the distance from f to being
a 2k-junta to the distance to the “blockwise” version of f to being a 2k-junta.
However, the resulting testers would have two-sided error.

5.6 Parities and SMP complexity

There is a recent paper of Leung, Li, and Zhang [LLZ11] whose main result follows
immediately from our O(k log k) non-adaptive upper bound for parities, and in
fact is improved by it.

The problem is about communication complexity: Alice has a string x ∈ {0, 1}n,
Bob has y ∈ {0, 1}n, and they want to compute some function f that depends
only on |x⊕ y|, i.e., f(xt y) = D(|x⊕ y|), for some known D : [n]→ {0, 1}. They
say such an f is a symmetric XOR function. The model is the Simultaneous
Message Passing (SMP) model, which means Alice and Bob can’t talk to each
other; rather, they send messages to a referee, who computes the answer at the
end.

Suppose first we are promised that |x ⊕ y| ≤ k. They proceed to give an
O(k log3 k/ log log k) upper bound for the problem of finding out |x ⊕ y|. It is
not hard to see, however, that our non-adaptive algorithm for finding the size
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of a XOR gives an O(k log k) solution. Take Q = {p1, p2, . . . , pq} to be the set
of q = O(k log k) random queries used to find the size of a parity, provided it is
at most k. Then Alice sends the bits 〈x, p1〉, 〈x, p2〉, ..., 〈x, pq〉 (where the inner
products are taken modulo 2), and Bob sends 〈y, p1〉, 〈y, p2〉, ..., 〈y, pq〉. The referee
then computes from this 〈x⊕ y, p1〉, 〈x⊕ y, p2〉, ..., 〈x⊕ y, pq〉, and this is enough
to compute the size of x⊕ y, if it is ≤ k.

They state the main result, when k is not known, in terms of a different
parameter r, but in the paper it follows from a reduction to the previous problem
with r ≤ k. Using this reduction we obtain the following.

5.6.1. Theorem. Define r0 and r1 to be the minimum integers such that r0, r1 ≤
n/2 and D(k) = D(k + 2) for all k ∈ [r0, n − r1]; set r = max(r0, r1) and
f(x t y) = D(|x⊕ y|) by a symmetric XOR function f .

Then the randomized public-coin SMP complexity of computing f is O(r log r).

5.7 Summary

We have seen that several related problems, such as testing isomorphism to k-
parities and some variations of group testing, have complexity O(k log k) and Ω(k).
We also showed that the query complexity becomes Θ(k log k) if non-adaptivity is
required.





Chapter 6

Testing by implicit learning

Now we are ready to apply the techniques developed in previous chapters to a
number of related property testing problems that fit into the “testing by implicit
learning” framework of Diakonikolas et al. [DLM+07]. In particular, for some of
these problems (including testing s-term DNF formulae, size-s decision trees, size-s
Boolean formulae, s-sparse polynomials over F2, and size-s branching programs),
we are able to improve on the query complexity of the best known testers by using
sample extractors. It is worthy of note that our methods can lead to testers that
have better query complexity than those tailored to a specific problem, such as the
tester of Parnas et al. [PRS02] for the class of monotone s-term DNF formulae.
We also establish new lower bounds for some of these problems.

The content of this chapter is based on the paper

• S. Chakraborty, D. Garćıa–Soriano, and A. Matsliah. Efficient sample
extractors for juntas with applications. In Proceedings of the 38th Inter-
national Colloquium on Automata, Languages and Programming (ICALP),
pages 545–556, 2011.

6.1 Introduction

Suppose we wish to test for the property defined by a class C of Boolean functions
over {0, 1}n; that is, we aim to distinguish the case f ∈ C from the case dist(f, C) ≥
ε. The class is parameterized by a “size” parameter s (e.g., the class of DNFs with
s terms, or circuits of size s) and, as usual, our goal is to minimize the number of
queries made to f . In particular we strive for query complexity independent of n
whenever possible.

The main observation underlying the “testing by implicit learning” paradigm
of Diakonikolas et al. [DLM+07] (see also [Ser11, DLM+08, GOS+09]) is that a
large number of interesting classes C can be well approximated by (relatively)
small juntas also belonging to C. We explain these ideas by rephrasing them in
term of testing approximate isomorphism against certain subsets of juntas.

123
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The prototypical example is obtained by taking for C the class of s-term DNFs.
Let τ > 0 be an approximation parameter (which for our purpose should be
thought of as polynomial in ε/s). Any DNF term involving more than log(s/τ)
variables may be removed from f , affecting only a τ/s fraction of its values; hence
removing all of them results in an s-term DNF f ′ that is τ -close to f and depends
on only s log(s/τ) variables (equivalently, f ′ is a s log(s/τ)-junta). Let Jun[k]

denote the subset of (k-junta) functions {0, 1}n → {0, 1} that depend only on
the first k variables. Since the class C is permutation-invariant (closed under
permutations of the variables), the foregoing observation can be rephrased as
follows: for any k ≥ s log(s/τ), the subclass C[k] , C ∩ Jun[k] is such that every
f ∈ C is τ -close to being isomorphic to some g ∈ C[k] (in short, distiso(f, C[k]) ≤ τ).

On the other hand, for every f such that dist(f, C) = distiso(f, C) ≥ ε it
also holds that distiso(f, C[k]) ≥ ε, since C[k] ⊆ C. Hence, to solve the original
problem, all we need is to differentiate the two cases (i) distiso(f, C[k]) ≤ τ and
(ii) distiso(f, C[k]) ≥ ε.

Let us denote by f ∗ the k-junta that is closest to f ; f ∗ can be identified
with its core, the Boolean function corek(f

∗) : {0, 1}k → {0, 1} obtained from
f ∗ by dropping its irrelevant variables. We saw in Chapter 3 that, by getting
random samples of the form (x, corek(f

∗)(x)) ∈ {0, 1}k × {0, 1}, we can use
standard learning algorithms to identify an element g ∈ C[k] which is close to being
isomorphic to f ∗ (if any), which essentially allows us to differentiate between the
aforementioned cases. The number of such samples required for this is roughly
logarithmic in |C[k]|.1 An important observation is that the size of C[k] , C ∩ Jun[k]

is usually very small, even compared to the size of Jun[k], which is 22k . For instance,
it is not hard to see that for the case of s-term DNFs, the size of C[k] is bounded
by (2k)k, which is exponential in k = s log(s/τ), rather than doubly exponential.

It is in the way to obtain these samples that our approach departs from that
of [DLM+07]. We mention next the two main differences that, when combined
together, lead to better query complexity bounds. The first difference is in the
junta-testing part; both algorithms start with a junta tester to identify k disjoint
subsets of variables (blocks), such that every “influential” variable of the function f
being tested lies in one of these blocks. While [DLM+07] use the non-adaptive
junta tester, we switch to the query-efficient adaptive junta tester. The key is
the fact, proven in Section 3.7.1, that the tester of Blais is sufficiently tolerant
(the level of tolerance of the tester determines how large τ can be, which in turn
determines how small k can be). The second (and the main) difference is in
sample extraction—the actual process that obtains samples from the core of f ∗.
In [DLM+07] sampling is achieved via independence tests with poly(k) queries,
whereas we saw in Chapter 3 how to accomplish this task by making just one
query to f (after some preprocessing).

1Issues of computational efficiency are usually disregarded here; however see [DLM+08].
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6.2 Notation

Given a function f : {0, 1}n → {0, 1}, we denote by f ∗ : {0, 1}n → {0, 1} the
k-junta that is closest to f (if there are several k-juntas that are equally close,
break ties using some arbitrarily fixed scheme). Clearly, if f is itself a k-junta
then f ∗ = f .

Unless explicitly mentioned otherwise, C will always denote a class of functions
f : {0, 1}n → {0, 1} that is closed under permutation of variables; that is, for
any f and permutation π of [n], f ∈ C if and only if fπ ∈ C. For any k ∈ N, let
C[k] denote the subclass C ∩ Jun[k]. Note that since C is closed under permutations
of variables, C[k] is closed under permutations of the first k variables.

6.3 Upper bounds

Coupled with the prior discussion on testing by implicit learning, Theorem 3.5.6
implies:

6.3.1. Corollary. Let ε > 0 and let C be an permutation-invariant class
of Boolean functions. In addition, let k ∈ N be such that for every f ∈ C,
distiso(f, C[k]) ≤ θ3.5.6(k, ε). Then there is an algorithm that makes

O

(
k(log k + 1) + log |C[k]|

ε

)
queries and satisfies:

• if f ∈ C, it accepts with probability at least 7/10;

• if dist(f, C) ≥ ε, it rejects with probability at least 7/10.

To minimize the query complexity, we would like to pick k as small as possible,
subject to the requirement of the theorem. Let k?(C, τ) be the smallest k ∈ N such
that for every f ∈ C, distiso(f, C[k]) ≤ τ ; intuitively, this condition means that C
is τ -approximated by C[k]. We take from [DLM+07] the bounds on k? = k?(C, τ)
and |C[k?]| for the following classes of functions:

C (class) k? , k?(C, τ) ≤ |C[k?]| ≤
1 s-term DNFs s log(s/τ) (2s log(s/τ))s log(s/τ))

2 size-s Boolean formulae s log(s/τ) (2s log(s/τ))s log(s/τ)+s

3 size-s Boolean circuits s log(s/τ) 22s2+4s

4 s-sparse polynomials over F2 s log(s/τ) (2s log(s/τ))s log(s/τ))

5 size-s decision trees s (8s)s

6 size-s branching programs s ss(s+ 1)2s

7 functions with Fourier degree at
most d

d2d 2d
222d
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These bounds hold for any approximation parameter τ ≥ 0. But to make Corollary
6.3.1 applicable, we need to pick τ and k such that the (circular) inequalities
τ ≤ θ3.5.6(k, ε) and k ≥ k?(C, τ) are satisfied.

For items 5, 6, 7 setting τ = 0 does the job; the reason these bounds are
independent of τ is the fact that the corresponding classes contain only functions
that actually are k?-juntas, rather than functions that can be well approximated
by k?-juntas. (For example, the fact that functions with Fourier degree d are
actually (d · 2d)-juntas follows from a seminal paper of Nisan and Szegedy [NS92].)

For the first 4 items we can set τ = θ3.5.6(s, ε)
2. It is easy to verify that

this satisfies the foregoing pair of inequalities. Furthermore, since θ3.5.6(s, ε) is
polynomial in ε/s, we get k = O(s(log s+ log 1/ε)). Plugging the resulting values
into Corollary 6.3.1, we obtain the following query-complexity bounds:

Class This work [DLM+07], [PRS02](∗)

s-term DNFs, size-s Boolean formulae,
s-sparse polynomials over F2, size-s de-
cision trees, size-s branching programs

Õ(s/ε) Õ(s4/ε2)

size-s Boolean circuits Õ(s2/ε) Õ(s6/ε2)
functions with Fourier degree at most
d

Õ(22d/ε) Õ(26d/ε2)

s-term monotone DNFs Õ(s/ε) Õ(s2/ε)∗

6.4 Lower bounds

In order to analyze how close to optimal our algorithms are, we in this section we
discuss lower bounds concerning the problems studied here.

For ease of exposition we make a slight generalization of the notion of k-
uniformity in Section 2.4.2. We identify the set {0, 1}n with the field with 2n

elements.

6.4.1. Definition. Let D,S be sets, S finite, and let C denote a class of functions
f : D → S. We say that C can generate k-wise independence if there is a
distribution D supported on elements of C such that the random variables
{f(x)}x∈D are k-wise independent and each of them is uniformly distributed
on S, i.e.,

Pr
f∼D

[f(x1) = α1 ∧ f(x2) = α2 ∧ · · · ∧ f(xk) = αk] = |S|−k

for any k distinct x1, . . . , xk ∈ D and any α1, . . . , αk ∈ S.

If |S| = 2 and D = {0, 1}n, this is the same as saying that some distribution over
C is k-uniform. Clearly the class of all boolean functions f : {0, 1}n → {0, 1} can
generate n-wise independence (here S = {0, 1}).
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The following observation is just a restatement of Definition 6.4.1, coupled
with Yao’s principle:

6.4.2. Lemma. If C can generate k-wise independence under distribution D, then
at least k + 1 adaptive queries are needed to distinguish, with probability > 1/2,
between a function f drawn from D and a uniformly random f : D → S.

We say class C is ε-far from uniform if a uniformly random function f : D → S
is ε-far from every element of C with probability larger than 2/3.

It follows that if C is both ε-far from uniform and capable of generating k-wise
independence, then more than k queries are necessary for testing membership in
C to accuracy ε.

Now we give some examples of simple boolean functions classes on {0, 1}n
fitting these definitions.

6.4.1 Low-degree polynomials over F2

6.4.3. Lemma. Let Fd be the set of all polynomials p : Fn2 → F2 of degree at most
d. Then the uniform distribution over Fd is (2d+1 − 1)-uniform.

In other words, polynomials of degree log(k+1)−1 over F2 can generate k-wise
independence.

Proof. It is enough to prove the following claim: for any set S ⊆ Fn2 of size
|S| < 2d+1, and any function f : S → F2, there is a polynomial q ∈ Fd such that
q�
S

= f (this fact has been generalized in the works [KS05, BEHL09]). Indeed, if
the claim holds then

Pr
p∈Fd

[p�
S

= f ] = Pr
p∈Fd

[(p⊕ q)�
S

= 0] = Pr
p′∈Fd

[p′�
S

= 0],

since the distributions of p and p′ , p ⊕ q are uniform over Fd. Therefore this
probability is the same for every f .

We prove now this claim by induction on |S| + n; it is trivial for |S| = 0
or n = 0. Suppose that, after removing the first bit of each element of S, we
still get |S| distinct vectors; then we can apply the induction hypothesis with S
and n − 1. Otherwise, there are disjoint subsets A,B,C ⊆ {0, 1}n−1 such that
S = {0, 1} × A ∪ {0} ×B ∪ {1} × C, and A 6= ∅.

We can find, by induction, a polynomial p0A,0B,1C of degree ≤ d on n − 1
variables that computes f on {0}×A∪{0}×B∪{1}×C. As |S| = 2|A|+|B|+|C|,
either |A| + |B| or |A| + |C| is at most |S|

2
< 2d; assume the latter. Then any

function g : A ∪ C → F can be evaluated by some polynomial pAC(y) of degree
≤ d− 1; consider g(y) = 0 if y ∈ C and g(y) = f(1, y)− p0A,0B,1C(1, y) if y ∈ A.
Then the polynomial p(x, y) = p0A,0B,1C(y) + xpAC(y) does the job.
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6.4.2 Small circuits

6.4.4. Lemma. Each of the following classes can generate n-wise independence:
boolean formulae of size poly(n), NC1 circuits, and branching programs of size
poly(n).

Proof. First observe that the class of all univariate polynomials of degree
≤ k − 1 over F can generate k-wise independence, because any degree ≤ k − 1
polynomial over a field can be interpolated from its values on any set of k distinct
points, and the solution is unique. From this we can obtain a family of boolean
functions on {0, 1}n that generates k-wise independence in the following way:
associate with each polynomial p : GF (2n)→ GF (2n) of degree k− 1 the function
that, on input x ∈ {0, 1}n, returns the last bit of p(x), by which we mean the
representation of p(x) ∈ GF (2n) as an n-bit string, which is uniformly distributed
among all field elements. (A different, slightly more efficient way, would be to
work on a field of size roughly 2n/n.) Clearly the resulting family can generate
k-wise independence.

By a result of Healy and Viola [HV06], field arithmetic over GF (2n) is in TC0

(see also [Ebe89] for a weaker result). This is the class of polynomial-size, constant-
depth circuits with unbounded fan-in built up from threshold gates (as well as AND,
NOT and OR gates). It is known that TC0 is contained in NC1, which corresponds
to fan-in 2 circuits of polynomial size and logarithmic depth. Altogether this
means that it is possible to evaluate any t-term polynomial p ∈ GF (2n)[x] with an
NC1 circuit of size poly(n, t), which is poly(n) if t = poly(n). It is also known that
NC1 corresponds precisely to the set of Boolean formulae of polynomial size, and
also to the set of functions computed by width-5 branching programs of polynomial
size by Barrington’s theorem [Bar89]. Summarizing, the last bit of polynomial
functions over GF (2n) of degree n (and therefore n+1 terms) can be computed by
boolean formulae of size nc and branching programs of size nc for some (small) c.

As a corollary, we obtain a result of independent interest that says that functions
for which isomorphism testing is hard can have relatively simple descriptions,
providing a partial derandomization of Theorem 2.4.1.

6.4.5. Theorem. Let 0 < ε < 1
2

and r ∈ N. For large enough n, among
the functions f : {0, 1}n → {0, 1} for which ε-testing isomorphism requires Ω(r)
queries there are:

• functions of degree O(r) (over any field F fixed in advance);

• n-variate polynomials of degree O(log r) over F2;

• functions computed by circuits of size poly(r) and depth O(log r); or boolean
formulae of size poly(r); or branching programs of size poly(r).
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Proof.

• By Corollary 3.3.2, there are r-juntas with property stated. Any r-junta has
degree r.

• Let us first consider the case r = n. In this case we can prove the result for
ε < 1

2
. By Theorem 2.4.12, it is enough to show that there is an n4-uniform

distribution among polynomials of degree O(log n); this is Lemma 6.4.3.
To show the general statement for r < n and ε < 1

4
, consider the set of

functions that depend on the first r variables. Among them there are pairs
of polynomials of degree O(log r) that are (r, 2ε)-hard; then we can extend
them to functions on n variables and use Corollary 3.3.2. This extension
does not change the degree.

• Similarly, we can consider functions that depend on the first r variables and
then extend them to n; this does not affect circuit size, etc. So we need to
prove the case r = n, and again this is implied if we show that NC1 circuits
(resp. formulae, branching programs) can generate n4-independence. This is
Lemma 6.4.4.

6.4.3 The bounds

The next theorem summarizes the lower bounds known.

6.4.6. Theorem. The following lower bounds hold for the respective testing
problems (for some constant ε and size parameter up to some polynomial of
n):

1. size-s boolean formulae, branching programs and boolean circuits: poly(s).

2. functions with F2 degree d: 2Ω(d).

3. s-sparse polynomials over GF (2): Ω(s).

4. functions with Fourier degree d: Ω(d).

5. s-term DNFs, size-s decision trees: Ω(log s).

The first bound appears in [CGM11b]. The second one was previously known [AKK+03],
but we give a new proof. The bounds 3-5 are in [BBM11].

Proof.
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1. By Lemmas 6.4.2 and 6.4.4, we only need to prove that these classes are
Ω(1)-far from uniform. This is easy to verify by counting.

2. By Lemmas 6.4.2, 6.4.3 and the fact that a random function is Ω(1)-far from
having degree < n/3.

3. This follows from the lower bounds for s-parities in Chapter 5, as any
s-parity is an s-sparse polynomial over F2, and also far from being (s− 1)-
sparse [DLM+07, BBM11]. A (weaker) Ω(

√
s ) lower bound is a consequence

of the lower bound of Theorem 5.1.3, and an Ω(s) bound follows from the
Ω(s) bound for distinguishing s-parities from (s−2)-parities (Theorem 5.1.5).

4. Again, it is enough to show that s-parities are far from having Fourier degree
< s; see [BBM11].

5. See [BBM11].

6.5 Summary

We plugged in our sample extractor in the “testing by implicit learning” framework
of Diakonikolas et al. [DLM+07], improving the query complexity of testers for
various Boolean function classes. In particular, for some of the classes considered
in [DLM+07], such as s-term DNF formulae, size-s decision trees, size-s Boolean
formulae, s-sparse polynomials over F2, and size-s branching programs, the query
complexity is reduced from Õ(s4/ε2) to Õ(s/ε). For most of these problems we
also supply lower bounds that are polynomially related to the query complexity
of our algorithms.



Chapter 7

Learning parities

The content of this chapter is based on the paper

• H. Buhrman, D. Garćıa–Soriano and A. Matsliah. Learning parities in the
mistake-bound model. Information Processing Letters, 111(1):16–21, 2010.

7.1 Overview of learning theory

Just as we studied the problem of isomorphism to parities under the property
testing viewpoint in Chapters 2 and 5, we consider now the similar problem from
the learning perspective (in the noiseless setting). We assume some familiarity with
computational learning theory; refer to the book of Kearns and Vazirani [KV94]
for an easily readable introduction to the field. Nevertheless, for the benefit of
the reader we give here a condensed and somewhat informal account.

7.1.1 Mistake-bounded learning and equivalence queries

In learning one is interested in a certain concept class C of objects to which the
learning algorithm applies. Here we will always take C to be a subset of boolean
functions. The mistake-bound model of learning is an online model introduced
by Littlestone in [Lit88]. In this setting learning proceeds in rounds. A target
function f ∈ C is selected arbitrarily by the “teacher” and is unknown to the
“learner”. In each round the teacher provides an unlabelled example x ∈ {0, 1}∗,
and the learner must predict the value f(x). Then the learner is told the correct
value of f(x), according to which it can update its current hypothesis, i.e., the
process whereby the future predictions will be made. The mistake bound of the
learner, with respect to a target function f , is the worst-case number of mistakes
that it makes over all (arbitrary, possibly infinite) sequences of examples. The
mistake bound on a concept class C is the maximum of the mistake bounds taken
over all possible target functions f ∈ C.

131
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The discussion so far ignores the running time of the learner. In order to
quantify the behaviour of learning algorithms with respect to the input size, we
need to consider a sequence of concept classes Cn, n ∈ N, one for each input size n
(the value of n being known by the learner). In this chapter we will always assume
Cn is a collection of boolean functions on {0, 1}n.

7.1.1. Definition. We say that the class C =
⋃
n∈N Cn is learnable with mistake

bound M = M(n) and running time per round t = t(n) if there is a learner L that
on each example x ∈ {0, 1}n runs in time t(n) and outputs its guess for f(x), and
has mistake bound at most M(n) on Cn.

We say that C is efficiently learnable with mistake bound M if in addition
t(n) = poly(n).

It is easily seen that, up to one additional query, this model coincides with
that of Angluin [Ang88] on learning with equivalence queries .1

Note that the learner may never know if its current hypothesis is a good
approximation to f in some sense (unless M mistakes have already been made).
For instance, suppose that the teacher gives the same example over and over again.
For this particular sequence of examples, any non-trivial learner will make one
mistake at most, but usually this will not allow us to learn anything about how f
behaves on other inputs.

7.1.2 PAC learning

The Probably Approximately Correct (PAC) model was introduced in the seminal
paper of Valiant [Val84] and has since attracted a lot of attention from researchers
in learning theory. In spite of being the first model defined it is a bit more
complicated to describe. Here we additionally need to refer to a hypothesis class H
of boolean functions; it represents the possible hypotheses the learning algorithm
may output. We assume that H ⊇ C, but in general H does not need to coincide
with C, and the choice of H has a significant impact on the learning complexity.
(When H = C, the learner is called proper .)

The PAC model is a model for “batch” learning: the learner trains on some
fixed dataset, and with this information it constructs a hypothesis that is hopefully
“good”. The dataset consists of labelled samples of some concept f ∈ Cn, by which
we mean a pair (x, f(x)), where x ∈ {0, 1}n. The input x in these samples come
from some unknown distribution D over {0, 1}n. When the learner L has collected
enough data, it outputs a representation of a hypothesis h ∈ H that must, with
high probability, be close to f . (The representation of h must be polynomial-time
evaluatable: given x, the value of h(x) must be computable in polynomial time.)

1Here the learner does not receive a particular input x to try to guess f(x); instead, it is
allowed to ask “equivalence queries” whereby it tells the teacher a representation of its guess
h for the entire function f . The teacher then tells the learner whether the guess was correct
(h = f), and if not the teacher provides a counterexample, meaning an input x with f(x) 6= h(x).
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A confidence parameter δ ∈ (0, 1) controls the error probability of the algorithm,
whereas an error parameter ε controls the error of the hypothesis h. Since we
trained the algorithm with examples from D, we can only hope for h to be a good
approximation to f for random inputs drawn from D. In other words, we want to
have distD(f, h) ≤ ε with probability at least 1− δ, where

distD(f, h) = Pr
x∼D

[f(x) 6= h(x)].

7.1.2. Definition. We say that the class C is PAC-learnable using H if there
exists an algorithm L that is provided with two real numbers δ, ε and has the
following property:

For every concept f ∈ C, every input distribution D, and all 0 < ε, δ < 1/2, L
outputs a hypothesis concept h ∈ H that, with probability at least 1− δ, satisfies
distD(f, h) ≤ ε.

The probability is taken over the random samples and the internal random
coin flips of A.

In order to define efficient PAC learning, we fix a “reasonable” representation
scheme for the elements of H and let size(h) denote the length of the shortest
description of h ∈ H under this scheme. Note that size(f) is a lower bound on
the running time of a learner when presented with target f , because at the end of
the day the learner must output a representation of its hypothesis.

7.1.3. Definition. We say that the class C =
⋃
n∈N Cn is efficiently PAC-learnable

using H if there exists a learner L for C that, when learning a target function
f ∈ Cn, runs in time poly(n, 1/ε, 1/δ, size(f)); and moreover the hypothesis h ∈ H
output by L can be evaluated on any given input in time polynomial in n and
size(h).

Note that the learning must work under any distribution D. Sometimes this
requirement is weakened so the tester only needs to work for a specific D.

If we disregard the efficiency requirements, there is a tight characterization
of the complexity of PAC learning in terms of the so-called Vapnik-Chervonenkis
dimension of the class.

7.1.4. Definition. Let C be a concept class of boolean functions on some domain
A. For a sequence of inputs S = (x1, . . . , xm) ∈ Am, define

ΠC(S) = {(f(x1), . . . , f(xm)) | f ∈ C}

Then S is said to be shattered by C if ΠC(S) = {0, 1}m, i.e., any assignment of
answers to the elements of S is consistent with some f ∈ C.
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(If we agree on an ordering of the input domain A, we can speak of sets of inputs
instead of sequences, as is usually done.)

7.1.5. Definition. The VC dimension of C is the cardinality of the largest set
of inputs shattered by C, or ∞ if there are arbitrarily large shattered sets.

7.1.6. Theorem (see [KV94, Theorems 3.3 and 3.4]). Let C be a concept
class of VC dimension d. Then C can be PAC-learned with sample complexity

O

(
d

ε
log

1

ε
+

1

ε
log

1

δ

)
On the other hand, any PAC learner for C must use Ω(d/ε) examples in the worst
case.

There are standard conversion techniques that can be used to transform any
mistake-bounded algorithm into a PAC learning algorithm. These transformations
preserve the running time of the mistake-bounded algorithm, and the sample size
required by the PAC algorithm is equal to the mistake bound, up to constant
factors that depend on its approximation and confidence parameters.

7.1.7. Theorem (Angluin [Ang88]; Littlestone [Lit89]). Any algorithm
A that learns C in the mistake-bound model with mistake bound M and maximum
running time per round t can be converted into an algorithm A′ that learns C
in the PAC model using a sample set of size O(1

ε
M + 1

ε
log 1

δ
) and running time

O(1
ε
Mt log M

δ
), where ε and δ are the approximation and confidence parameters

of A′.

Let us briefly mention how the PAC learner constructed operates. First, it takes
Θ(M

ε
+ 1

ε
log 1

δ
) random samples, and runs the mistake-bounded learner on them.

Without loss of generality, the learner only changes hypotheses after a mistake, so
at most M hypotheses are produced. The PAC learner then draws a new set of
O(1

ε
log M

δ
) samples, uses it to test the validity of each hypothesis, and selects the

best. We omit the proof.

These conversion techniques imply that positive results for mistake-bound
learning, in particular those given in this chapter, directly yield corresponding
positive results for PAC learning. We mention here that no such conversion is
known in the opposite direction. In fact, Blum [Blu94] proved that under widely
held assumptions (namely, the existence of one-way functions) the mistake-bound
model is strictly harder than the PAC model.
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7.1.3 Attribute-efficient learning

The study of attribute-efficient learning was initiated in the same paper introducing
the mistake-bound model [Lit88]. A learning algorithm L for C in the mistake-
bound model is attribute-efficient if all the foregoing conditions are met and
the mistake bound of A on any f ∈ C is bounded by a polynomial in size(f),
independent of n. Similarly, an algorithm A for learning C in the PAC model is
attribute-efficient if the sample size required for A to learn the target function
f ∈ C is polynomial in size(f), 1/δ, 1/ε.

7.2 General observations

One of the long-standing open questions in both the mistake-bound and the
PAC learning models is whether parities can be learned attribute-efficiently in
polynomial time [Blu96]. With each vector f̃ ∈ {0, 1}n we associate a parity
function f : {0, 1}n → {0, 1} defined by f(x) = 〈f̃ , x〉 ,

∑n
i=1 f̃ixi mod 2 for all

x ∈ {0, 1}n. As any two parities are 1/2-far apart, learning a parity function with
ε < 1/2 can be thought of as identifying the corresponding n-bit vector f̃ . With a
slight abuse of notation, from now on we will denote by f both the parity function
f : {0, 1}n → {0, 1} and its corresponding vector f̃ ∈ {0, 1}n; in particular we may
for instance write |f | for the Hamming weight of f̃ . The concept class PARn≤k is
defined as the class of all parity functions of Hamming weight at most k. We will
also refrain from explicitly mentioning n throughout the chapter so we will write
PAR≤k instead. The description length of any function f ∈ PAR≤k is O(k log n),
and thus ideally we would like to have poly(n)-time algorithms that learn PAR≤k
with a mistake bound (respectively sample size) of poly(k log n). This would
correspond to attribute-efficient learning as defined above.

It is well known that, in exponential time, PAR≤k can be learned attribute-
efficiently in the mistake-bound model (and hence in the PAC model too). A simple
algorithm with mistake bound at most k log n is the halving algorithm. It maintains
a set H ⊆ PAR≤k of candidate parity functions, and given an example x, it predicts
Maj {h(x) | h ∈ H}. Whenever a mistake is made, all “wrong” candidates (of
which there are at least |H|/2) are removed from H. If initially the set H was
set to be PAR≤k, then after at most log |PAR≤k| ≤ k log n mistakes the function f
is learned. The running time of the halving algorithm is dominated by the time
needed to compute the predicate Maj {h(x) | h ∈ H}. A naive computation of this
predicate requires |PAR≤k| ≥

(
n
k

)
steps, and in fact the running time of all known

algorithms that try to compute or approximate this predicate is super-polynomial
for any k = ω(1).

The question of learning juntas efficiently in the PAC setting under the uniform
distribution was raised by Mossel, O’Donnell and Servedio [MOS04]. They showed
that k-juntas are PAC-learnable under the uniform distribution in time roughly
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n
ω
ω+1

k · poly(2k, n), which is approximately n0.704 (here ω < 2.373 is the exponent
in the time bound for matrix multiplication [CW90, Sto10, Wil11]). As PARk is
a subset of the class of all juntas, this applies to parities too and yields, in this
particular case, an improvement over the halving algorithm in terms of running
time.

On the other hand, if we pay no attention to efficiency issues it is possible to
show that the halving algorithm is optimal for parities with regard to the sample
complexity/mistake bound (though it is known not to be optimal in general; see
[Lit88] for counterexamples). The reason is that any subset of PARn forms a
list-decodable code (for more detailed accounts on what this means see, e.g., the
surveys of Trevisan [Tre04] and Sudan [Sud01]).

7.2.1. Theorem.
Let C ⊆ PARn and 0 < ε < 1/2, δ < 1/6. Then any PAC learner for C must draw
Ω (log (|C| · δ(1/2− ε))) samples, even under the uniform distribution.

In particular, the VC dimension of PARk is Θ(log
(
n
k

)
), and any mistake-

bounded learner for PARk must make Ω(log
(
n
k

)
) mistakes in the worst case.

Proof. For the first part, assume there is a PAC learner for C using q(δ) samples.
With probability 1− δ, its hypothesis h is ε-close to C (although it need not be
a linear function). Let α = 1/2− ε. There is a well known bound of 1/(4α2) on
the number of Hadamard codewords (elements of PARn) at distance ≤ ε from any
given h; it can be easily proven by analyzing the Fourier coefficients of h (see
[Wol08]). By Occam’s razor (Theorem 2.2 in [KV94]), we can reduce the number of
candidates from O(1/α2) to one with O(log(1/(δα2)) additional samples and error
probability δ. Finally we can test for equality with the single remaining candidate
with confidence δ with O(log(1/δ)) samples. All in all we get an algorithm that
draws q(δ) +O(log(1/(αδ)) samples and with confidence 1− 3δ > 1/2 manages
to exactly identify f ∈ C. Yet a straightforward information-theoretic argument
shows that the latter task needs at least log |C|−1 samples, hence the lower bound.

For the “in particular” part, note that VCdim(C) ≤ log |C| always holds, and
the inequality VCdim(C) ≥ Ω(log |PARk|) follows from the first part and the upper
bound of Theorem 7.1.6 after setting constant values for δ, ε. Finally recall that
PAC learning lower bounds imply mistake-bound learning lower bounds by virtue
of Theorem 7.1.7.

On the other hand, with a mistake bound of n (respectively, a sample set of size
O(n)), parities can be learned straightforwardly in polynomial time: one can check,
for each new example, whether it is a linear combination of the previous ones; if it
is, we output the appropriate linear combination of the previous answers. At most
n mistakes will be made since this is the size of a maximum linearly independent
subset of {0, 1}n. We will call this the trivial algorithm (see also [Blu96]). Just
which tradeoffs are attainable between a learner’s running time and its mistake
bound is one of the driving questions we investigate in this chapter.
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7.3 Results and related work

Despite the simplicity of these algorithms, no other methods for learning parities
in the mistake-bound model were known prior to this work. In particular, it was
unknown whether ω(1)-parities could be learned in polynomial time with o(n)
mistakes. Our main result (stated next) is the first step in this direction.

7.3.1. Theorem (Buhrman et al. [BGM10, Main result]).
Let k, t : N→ N+ be two functions satisfying k(n) ≤ t(n) ≤ n.2 For every n ∈ N
(and the corresponding integers k = k(n) and t = t(n)) there is a deterministic
algorithm that learns PAR≤k in the mistake-bound model, with mistake bound

kdn
t
e+ dlog

(
t
k

)
e and running time per round O

((
t
k

)
(kn/t)2

)
.

Let us examine a few interesting values for the parameters in Theorem 7.3.1.
For example, putting k = log n/ log log n and t = log n yields mistake bound
of O(n/ log log n) and running time per round O(n2+o(1)). More generally, it is
interesting to find out when PAR≤k can be efficiently learned with o(n) mistakes.
On the other hand, we saw in Section 7.2 (from arguments using the VC dimension)
that for k = Ω(n) it is impossible to learn PAR≤k with sublinear mistake bound,
even disregarding computational efficiency. So we only need to consider the case
k = o(n). Recall that the running time of the halving algorithm is at least(
n
k

)
, which is super-polynomial for any super-constant k, and is 2Ω(k logn) for any

positive k = n1−Ω(1). In the following we show that, with appropriate parameters,
our main theorem can be used to outperform the halving algorithm. Specifically,

• for any k = o(log n), PAR≤k can be learned with o(n) mistakes in polynomial
time;

• for any k = o(n), PAR≤k can be learned with o(n) mistakes in time ≈
2O(k+logn).

The two items above are formalized next.

7.3.2. Corollary (Case k = O(log n)).

For any ω(1) ≤ k = O(log n) and c ∈ N, define t = t(n) = dknc/k
e
e (for large

enough n). Then PAR≤k can be learned deterministically with mistake bound
O(n1−c/k) and running time per round O(nc+2−2c/k). Consequently (see Theorem
7.1.7), PAR≤k can be learned deterministically in the PAC model with O(n1−c/k)

samples and running time Õ(n3+c−3c/k).

In particular, if k = o(log n) then the mistake bound (sample size) is o(n).

2We assume that the functions k(n), t(n) are computable in O(n2) time.
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7.3.3. Corollary (Case k = o(n)). For any ω(1) ≤ k = o(n) let t = t(n) =
o(n) be an arbitrary function with growth rate ω(k). Then PAR≤k can be learned
deterministically with mistake bound O(kn/t+ k log t

k
) = o(n), and total running

time 2O(k log t
k

+logn).
Consequently (see Theorem 7.1.7), PAR≤k can be learned deterministically

in the PAC model with O(kn/t + k log t
k
) = o(n) samples and running time

2O(k log t
k

+logn).

For example, if t = k log k then the running time is 2O(k log log k+logn).
In addition to the corollaries above, observe that Theorem 7.3.1 with t = n

log(n/k)

gives the same mistake bound as the halving algorithm with slightly better running
time. Similarly, we can obtain the features of the trivial algorithm by setting
k = t = n.

7.3.1 Learning parities in the PAC model

In the PAC model, Klivans and Servedio [KS06] were the first to show non-trivial
algorithms for learning parities with sample sets of sublinear size. (They attribute
the second item of the following theorem to Spielman, although it seems to have
previously appeared in the literature, e.g., [HB01].)

7.3.4. Theorem (Klivans & Servedio [KS06]).

1. PAR≤k can be learned in the PAC model with O(n1−1/k log n) samples in time
O(n4).

2. PAR≤k can be learned in the PAC model with O(k log n) samples in time

Õ(ndk/2e).

Since our main theorem holds in the harder mistake-bound model, using the
standard conversion techniques (Theorem 7.1.7) it also implies results similar
to those in Theorem 7.3.4, even with improved parameters. In particular, from
Corollary 7.3.2 (with c = 1) and Corollary 7.3.3 we get the following.

7.3.5. Theorem (Buhrman et al. [BGM10]).

1. PAR≤k can be learned in the PAC model with O(n1−1/k) samples in time
O(n4−3/k log n).

2. PAR≤k can be learned in the PAC model with o(n) samples in time ≈
2O(k+logn).

In the first item, the number of samples required by our algorithm is improved
by a factor of log n, and the running time is improved by a factor of n3/k. As
for Item 2, our algorithm requires more than O(k log n) samples (although still
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o(n)), but its running time is reduced to ≈ 2O(k+logn), compared to the 2Ω(k logn)

time required by both the halving algorithm and the algorithm from Item 2 of
Theorem 7.3.4. In addition to these features, our algorithms are deterministic
whereas the algorithms from [KS06] are probabilistic.

7.3.2 Extending the Õ(nk/2) algorithm to the MB model

The second item in Theorem 7.3.4 improves on the halving algorithm, bringing
down the running time to roughly O(nk/2), but it still uses a sample set of the same
size (up to constant factors). It is natural to ask whether such an improvement
is attainable in the mistake-bound model too. Our main result does not directly
imply such an improvement; however, using similar ideas it is possible to extend
Item 2 of Theorem 7.3.4 to the mistake-bound model as well. Specifically, the
following theorem is proved in Section 7.5.

7.3.6. Theorem. PAR≤k can be learned in the mistake-bound model with mistake
bound O(k log n) and maximum running time per round O(ndk/2e).

After our work, algorithms with similar time complexities for the noisy
version of this problem have been studied by Grigorescu et al. [GRV11] and
by Valiant [Val12].

7.4 Proof of the main theorem

The algorithm from Theorem 7.3.1 is based on an idea that was recently used by
Alon, Panigrahy and Yekhanin, who gave elegant deterministic approximation
algorithms for the Nearest Codeword and Remote Point problems (see [APY09]
for details). First we outline the main idea in this algorithm, and then provide its
formal description together with the proof.

7.4.1 Informal description of the algorithm

Recall that, in the halving algorithm, a set H of candidate parity functions is
maintained, and given an example x, the prediction of the learner is

Maj {h(x) | h ∈ H}.

The problem with this method is that for any k = ω(1), the initial set H = PAR≤k
is of super-polynomial size, and we have no efficient algorithm to compute the
majority vote.

In order to overcome this problem, we use a special set of affine spaces that
enables a compact representation of (a superset of) the candidate parity functions,
while at the same time enabling efficient approximation of their majority vote,
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for any example x. Specifically, our learning algorithm begins by obtaining a set
of affine spaces N1, N2, · · · ⊆ {0, 1}n, at least one of them containing the target
parity function f . In every step of the the learning process, these sets of affine
spaces are updated according to the response given by the teacher. The way these
updates are performed guarantees:

• the running time is polynomial in n and linear in the number of affine spaces
Ni;

• after every mistake, some sets Ni get shrunk, so that the quantity
∑

i |Ni|
is at least halved (this is ensured by approximating the majority vote);

• the target function f is never removed from any Ni.

Since
∑

i |Ni| ≥ |
⋃
iNi|, after at most a logarithmic (in

∑
i |Ni|) number of

mistakes the target function f is the only element left in
⋃
iNi, and hence f is

learned.

7.4.2 Formal description and proof

Fix n and t = t(n). Define S ⊆ 2[t] as S = {s ⊆ [t] | |s| = k}, hence |S| =
(
t
k

)
.

Let π = C1, . . . , Ct be an equipartition of {e1, e2 . . . , en} (the standard basis of
{0, 1}n) into t parts. For every s ∈ S we define the linear subspace (over Fn2 )
Ms = span(Us), where Us is a set of unit vectors defined as

Us ,
⋃
i∈s

Ci.

That is, Ms consists of all binary vectors whose nonzero entries belong to the
parts that are indexed by the elements of s. Notice that for every s ∈ S, Ms is a
span of at most kdn

t
e vectors, and hence

|Ms| ≤ 2kdn/te.

Let ` = kdn
t
e. For every affine space N ⊆ {0, 1}`, x ∈ {0, 1}` and z ∈ {0, 1}, we

define the affine space N(x, z) , {y ∈ N | 〈y, x〉 = z mod 2}. Given x ∈ {0, 1}`,
z ∈ {0, 1} and a representation for N as a system LinN of independent linear
equations in triangular form, the corresponding representation of N(x, z) (and
the cardinality |N(x, z)|) can be computed in time O(`2). This is done by adding
x′ = x t z ∈ {0, 1}`+1 as a row to LinN and performing only one step of the
Gaussian elimination procedure to bring the matrix back into triangular form.
Notice that this procedure has three possible outcomes:

(i) x′ is inconsistent with LinN , and hence |N(x, z)| = 0;

(ii) x′ is a linear combination of equations in LinN , and hence |N(x, z)| = |N |;
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(iii) x′ is linearly independent of LinN , and hence |N(x, z)| = |N |/2.

7.4.1. Proposition.

1. Every f ∈ {0, 1}n with |f | ≤ k is contained in
⋃
s∈SMs;

2. |
⋃
s∈SMs| ≤

(
t
k

)
2kdn/te.

3. Let {Ns | s ∈ S} be a family of affine subspaces of {0, 1}n. For any x ∈
{0, 1}n there exists z ∈ {0, 1} for which

∑
s∈S |Ns(x, z)| ≥ 1

2

∑
s∈S |Ns|.

Proof.

1. This follows from the fact that every set of k unit vectors is contained in
the union of some d ≤ k subsets Ci1 , . . . , Cid in the partition π. Let s ⊆ [t],
|s| = k be a set that contains i1, . . . , id. Then f ∈Ms. .

2. |
⋃
s∈SMs| ≤

∑
s∈S |Ms| ≤

(
t
k

)
2kdn/te.

3. This is a consequence of the equality |Ns(x, 0)|+ |Ns(x, 1)| = |Ns|.

The learner proceeds as follows:

Initialization:
Obtain a system of equations describing each of the linear spaces Ms as
defined above; and then initialize the affine spaces Ns = Ms for all s ∈ S.

On example x ∈ {0, 1}n:
Compute n0 =

∑
s∈S |Ns(x, 0)| and n1 =

∑
s∈S |Ns(x, 1)|. If n0 ≥ n1 output

0, else output 1.

On answer l = 〈f, x〉:
Update Ns := Ns(x, l) for each s ∈ S.

It might be helpful for the reader to think that each Ms runs an independent
instance of the trivial algorithm of Section 7.3. Each instance assumes that
all relevant parity bits of f belong to the corresponding Ms, and Ns is the set
of candidates (parities consistent with the answers to previous examples) left
under this assumption. Some of these candidate sets will vanish as new values
of f are learned, but at least one of them contains f and hence will always
remain non-empty. The prediction made by the algorithm can be viewed as a
weighted majority of all “surviving” instances, where the weight of an instance
is proportional to the number of candidates left for it. Thus, whenever a new
sample is, when restricted to a set Ms, linearly independent of the prior ones,
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we “penalize” the sth instance by halving its weight; while if the new example is
inconsistent we remove the sth instance from consideration.

Proof of Theorem 7.3.1. First notice that the invariant f ∈
⋃
s∈S Ns holds

at any stage of the learning algorithm. Initially it holds by Item 1 of Proposition
7.4.1, and every time the algorithm shrinks the sets Ns, only elements that are
not equal to f are removed.

Since all the subspaces Ns contain vectors of Hamming weight at most ` = kdn
t
e,

we can treat them as affine subspaces of {0, 1}` by truncating all their irrelevant
coordinates. In addition, for any Ns, an example x ∈ {0, 1}n can be truncated to
the corresponding `-bit vector by removing all the irrelevant coordinates (with

respect to Ns). Making this observation, the O
((

t
k

)
(kn/t)2

)
bound on the running

time (per round) of the algorithm now follows from the remarks above on Gaussian
elimination and the fact that |S| ≤

(
t
k

)
.

Finally, we have to show that the number of mistakes that the learner makes is
bounded by kdn

t
e+dlog

(
t
k

)
e. Notice that by the definition of the output value, and

by Item 3 of Proposition 7.4.1, every time the learner makes a mistake the quantity∑
s∈S |Ns| reduces by a factor of at least 2. Since at every step 0 <

∣∣⋃
s∈S Ns

∣∣ ≤∑
s∈S |Ns|, and since initially we started with

∑
s∈S |Ns| =

∑
s∈S |Ms| ≤

(
t
k

)
2kdn/te

(see Item 2 of Proposition 7.4.1), after at most

log
(∑
s∈S

|Ms|
)
≤ k

⌈n
t

⌉
+

⌈
log

(
t

k

)⌉
mistakes the size of

⋃
s∈S Ns will decrease to 1, which by the invariant above will

imply that
⋃
s∈S Ns = {f}, and the learner will no longer make any errors.

7.4.3 Optimality of the system of affine spaces

To recap, we have constructed a set A of m =
(
t
k

)
affine spaces of dimension

d = kn/t ≤ 3n
m1/k that together “cover” all vectors of weight ≤ k, in that every

such vector belongs to one of the elements of A. The mistake bound we get is
log
∑

A∈A |A| = logm + d ≤ logm + 3n/m1/k. One may ask whether this value
can be improved upon by finding a better system of affine spaces. It turns out
that such a possibility can be ruled out:

7.4.2. Proposition. Let 1 ≤ k ≤ n/100 and suppose A is a collection of m ≤(
n

100k

)k
affine spaces over {0, 1}n such that every x ∈ {0, 1}n with |x| ≤ k belongs

to some A ∈ A. Then

log

(∑
A∈A

|A|

)
≥ logm+

n

3m1/k
.
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7.4.3. Lemma. If V ∈ {0, 1}n is an affine subspace of dimension d, then the
number of vectors in V of weight at most k is upper bounded by(

d

≤ k

)
=

(
d

0

)
+

(
d

1

)
+ · · ·+

(
d

k

)
.

Proof. As V is a d-dimensional affine subspace, there is a set D ⊆ [n], |D| = d
such that the projection πD(x) of each element x ∈ V onto the coordinates
of D uniquely determines x. Consider the set Vk , {x ∈ V | |x| ≤ k} and write
πD(Vk) , {πD(x) | x ∈ Vk}; we have just seen that |πD(Vk)| = |Vk|. But no element
of πD(Vk) has weight greater than k by construction, so |πD(Vk)| ≤

∑k
i=0

(
d
i

)
.

Proof of Proposition 7.4.2. Write A = {A1, . . . , Am} and di , dimAi, so
|Ai| = 2di . In order to cover all vectors of weight at most k, simple counting
(along with the preceding lemma) tells us that the following inequality must hold:

m∑
i=1

(
di
≤ k

)
≥
(
n

≤ k

)
.

Suppose there are r subspaces of dimension larger than 2k and let d1, . . . , dr >
2k ≥ dr+1, . . . , dm. For the small subspaces we can compute

∑
di≤2k

(
di
≤k

)
≤ m4k.

Hence
r∑
i=1

(
di
≤ k

)
≥
(
n

≤ k

)
−m4k ≥

(
n

≤ k

)
−
( n

25k

)k
by our bound on m. Together with the well-known inequality (a/b)b ≤

(
a
≤b

)
≤

(ae/b)b, this implies that

r∑
i=1

dki ≥
(n
e

)k
−
( n

25e

)k
≥
(n

3

)k
.

The function f : [ek−1,∞]→ R+ defined by f(x) = (log x)k is concave if k ≥ 1,
therefore Jensen’s inequality [CT91] applied to the sequence {2di}i∈[r] yields

f

(
1

r

r∑
i=1

xi

)
≥ 1

r

r∑
i=1

f(xi) ≥
1

r

(n
3

)k
,

from which one obtains (by taking kth roots)

log

(∑
di>2k

2di

)
≥ log r +

n

3r1/k
≥ logm+

n

3m1/k
,

where the last step made use of the fact that the function g(r) = log r + n/(3r1/k)
is decreasing in a range containing [1,m].
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7.5 Analysis of the Õ(nk/2) algorithm

As mentioned previously, the possibility to improve the running time of the halving
algorithm to roughly O(nk/2) has been noted by several authors [KS06, HB01].
In this section we explain how to extend the ideas to derive a mistake-bounded
algorithm.

Proof of Theorem 7.3.6. Let A = PAR≤dk/2e × PAR≤dk/2e. Then |A| =
O(nk+1). We can associate each element (p, q) ∈ A with the “parity pair” p⊕ q;
each parity r ∈ PAR≤k will then correspond to several pairs in A, namely those
such that r(x) = p(x)⊕q(x) for all x ∈ {0, 1}n. Thus, we can view A as a multiset
of ≤ (k + 1)-parities (as well as a set of parity pairs). The answer of a parity pair
(p, q) on x is defined as p(x)⊕ q(x).

We will show that, given any input x, we can compute the majority vote
of the answers of all parity pairs in A that agree with all previous examples in
O(ndk/2e) time, effectively simulating the halving algorithm over the multiset A.
This implies that the number of mistakes will be bounded by log |A| = O(k log n).

In order to compute this majority, it is enough to know how many parity
pairs in A are consistent with all the examples seen so far and would output
0 for the new example (and how many of them would output 1). Assume we

have been given the examples x = x1, x2, . . . , xm−1 ∈ {0, 1}n×(m−1) with answers
y = y1, y2, . . . , ym−1 ∈ {0, 1}m−1, together with the new example xm ∈ {0, 1}n,
and we are required to output our prediction for f(xm), where f is the unknown
parity function. Let a , y1y2 . . . ym−10 be the m-bit vector that contains the
answers to all previous m− 1 examples and whose last entry is 0 (representing
that we are trying to count how many consistent parity pairs would answer 0 for
xm). Each parity p ∈ PAR≤dk/2e will give an answer for examples x1, . . . , xm−1, xm;

let p(x) , p(x1)p(x2) . . . p(xm) ∈ {0, 1}m be their concatenation. Consider the
multisets

V , {p(x) | p ∈ PAR≤dk/2e)}

and
Wa , {p(x)⊕ a | p ∈ PAR≤dk/2e)}

(where ⊕ denotes bitwise addition mod 2). Sort the multiset V ∪Wa in, say,
lexicographical order, keeping track of whether each vector comes from V or from
Wa. For each range of (consecutive) equal elements in the sorted sequence V ∪Wa

(equal to some vector c ∈ {0, 1}m), count how many of them are from V and how
many are from Wa; call these numbers r and s respectively. What this means is
that there are dk/2e-parities p1, p2, . . . , pr, q1, . . . , qs such that

c = p1(x) = p2(x) = · · · = pr(x) = q1(x)⊕ a = q2(x)⊕ a = · · · = qs(x)⊕ a,

and p1, . . . , pr are distinct (as are q1, . . . , qs).
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Thus, there are exactly rs pairs of parities in PAR≤dk/2e such that p(x)⊕q(x) = a
and p(x) = c. For each range of equal elements in the sorted sequence V ∪Wa,
we will find a possible value of c. Summing rs over all these ranges we obtain
the number of pairs (p, q) ∈ A such that p(x)⊕ q(x) = a. We can compute this
in linear time by making one pass over the sorted sequence. We can similarly
compute the number of parity pairs consistent with previous examples that output
1, and then predict the bit that agrees with the majority of consistent parity pairs.

For the implementation, note that we can go through all PAR≤dk/2e parities

and compute their answers on xm in O
((

n
≤dk/2e

))
time (a naive implementation

might give an additional factor of n, but this factor can be avoided with some care,
for example by backtracking). Note also that before any example has been given,
the sequence V ∪Wa can be regarded as a multiset of empty vectors, and is thus
sorted; and given a new example, if we keep the multiset V ∪Wa corresponding to
our answer from the previous round, we can update the sequence in O(|V |) time
by performing one step of radix sort, since it is already sorted with respect to the
first m− 1 bits and we only need to sort it with respect to the newly computed bit
(the answer of the parity to xm), which we can consider the most significant one.

Hence, the total running time per round is O(|V |) = O
((

n
d≤k/2e

))
.

7.6 Summary

We developed new deterministic algorithms for learning parities in both the
mistake-bound and the PAC models of learning. For the mistake-bound model we
showed the first efficient algorithm that learns k parities for non-constant k while
making a sublinear number of mistakes.

The mistake bound of our algorithm is still far from the value achieved by the
halving algorithm. It remains a major open problem to determine whether parities
can be learned attribute-efficiently in polynomial time. The halving algorithm has
no known efficient implementation, but if P = NP it can be converted into one that
runs in polynomial time, and has approximately the same mistake bound. (This
follows from the result of Stockmeyer [Sto83] that if one is provided with access to
an NP oracle, then it is possible to use a randomized polynomial-time algorithm
to approximate, to within a constant factor, the number of solutions to an NP
predicate.) Two possible avenues of research remain open: either construct an
efficient algorithm with improved mistake bound (ideally approaching the bounds
of the halving algorithm), or show that the existence of such an algorithm is
unlikely by relating it to hardness assumptions from classical complexity theory.





Chapter 8

Monotonicity testing and shortest-path
routing

The content of this chapter is based on the paper

• J. Briët, S. Chakraborty, D. Garćıa–Soriano, and A. Matsliah. Monotonicity
testing and shortest-path routing on the cube. Combinatorica, 32:1–19,
2012. Earlier version in Proceedings of the 14th International Workshop on
Randomization and Computation (RANDOM), pages 462–475, 2010.

8.1 Introduction

Testing monotonicity of functions [DGL+99, Ras99, GGL+00, EKK+00, Fis04,
FLN+02, AC06, Bha08, HK08] is one of the oldest and most studied problems in
Property Testing. The problem is defined as follows: Let D be a finite, partially
ordered set (poset) and let R ⊆ Z. A function f : D → R is monotone if for
every (comparable) pair x, y ∈ D, x ≤ y implies f(x) ≤ f(y). By the standard
definitions, a function f is ε-far from monotone if it has to be changed on at
least an ε-fraction of the domain D to become monotone. A one-sided (q, ε)-
monotonicity tester for domain D and range R is a probabilistic algorithm that,
given oracle access to a function f : D → R, satisfies the following: (a) it makes at
most q queries to f ; (b) it accepts with probability at least 2/3 if f is monotone;
(c) it rejects with probability at least 2/3 if f is ε-far from monotone.

The simplest monotonicity testers are those which specify all their queries in
advance (non-adaptively) and reject if and only if the responses reveal a violation,
i.e., if f(x) > f(y) for some comparable pair x ≤ y of points from D. These non-
adaptive testers with one-sided error are the only ones considered in this chapter,
unless explicitly stated otherwise. We note that nearly all known monotonicity
testers are non-adaptive and have one-sided error. Furthermore, it is also known

147
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that if D is totally ordered then non-adaptive testers with one-sided error are as
powerful (in terms of query complexity) as general ones [Fis04].

For general domains D, Fischer et al. [FLN+02] proved that testing mono-
tonicity is equivalent to several natural problems, including testing certain graph
properties and testing assignments for boolean formulae. Domains of the form
{0, 1, . . . ,m}n, however, received most of the attention [DGL+99, EKK+00, GGL+00,
Fis04, Ras99, Bha08, BGJ+09a, BGJ+09b]. Here the order relation x ≤ y is
defined to hold for x, y ∈ {0, . . . ,m}n when xi ≤ yi for all i ∈ [n]. In this chapter
we focus on a well-studied subcase of the above, where m = 1: integer-valued
functions with domain {0, 1}n.

8.2 Preliminaries

Recall from Section 1.4 that Hn = (Vn, En) is the graph of the directed n-
dimensional hypercube.

Given R ⊆ Z, a finite poset (D,≤), and a function f : D → R, we say
that a pair (x, y) ∈ D × D is violated by f if x ≤ y and f(x) > f(y). An
edge is a pair (x, y) ∈ D × D with x < y and such that there is no z with
x < z < y; when (D,≤) = (Vn,⊆), this is tantamount to saying that (x, y) ∈ En.
The set of all violated pairs of f is denoted Viol(f), and the set of all violated
edges is denoted EdgeViol(f). Clearly, the function f is monotone if and only if
Viol(f) = EdgeViol(f) = ∅.

We denote by εM(f) ∈ [0, 1] the relative distance of f from being monotone,
i.e., the minimum of Prx∈D[f(x) 6= g(x)] taken over all monotone functions
g : D → R (the minimum exists even if R is infinite, but we shall not need this).
Let δM(f) ∈ [0, 1] denote the fraction of edges violated by f ; for the hypercube
poset this is |EdgeViol(f)| /|En| = |EdgeViol(f)| /(n2n−1).

8.2.1. Definition. A non-empty set P ⊆ Vn×Vn of ` pairs {(si, ti)}`i=1 is called
a source-sink pairing (of size `), with sources s1, . . . , s` and sinks t1, . . . , t`, if

• si ( ti for all i ∈ [`] and

• si 6= sj, si 6= tj and ti 6= tj for all i, j ∈ [`], i 6= j.

P is aligned if in addition |si| = |sj| and |ti| = |tj| for all i, j ∈ [`].

Notice that P is a source-sink pairing if and only if it forms a (partial) matching
in the transitive closure of Hn. Throughout this chapter we denote by P only sets
of pairs that form a source-sink pairing, even when not explicitly mentioned.

A (directed) path in Hn is called a P-path if it connects some source si from
P to its sink ti. A subset C ⊆ En is called a P-cut if every P-path in Hn uses at
least one edge from C. Similarly, a subset S ⊆ Vn is called a P-vertex-cut if every
P-path uses at least one vertex from S. We write maxflow(P) for the size of the
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largest set of edge-disjoint P-paths, mincut(P) for the size of the smallest P-cut
and minvertexcut(P) for the size of the smallest P-vertex-cut. Clearly mincut(P)
is an upper bound on both minvertexcut(P) and maxflow(P). Unlike the case with
a single pair in P , the quantities mincut(P) and maxflow(P) need not coincide.

We define the terms sparsity and meagerness as in [RL05], [ABY08], [HKL06].
The sparsity of P is the ratio mincut(P)/|P|, and the vertex sparsity of P is
the ratio minvertexcut(P)/|P|. In other words, sparsity is the average number
of edges per source-sink pair that one has to remove to disconnect every source
from its sink, whereas vertex sparsity is the average number of vertices per source-
sink pair that one has to remove to disconnect every source from its sink. The
definitions of meagerness and vertex meagerness are similar, except for the stronger
requirement that the corresponding cuts disconnect all sources si from all sinks tj .
The sparsity and the vertex sparsity of Hn are defined as minP{mincut(P)/|P|}
and minP{minvertexcut(P)/|P|}, respectively (where P ranges over all pairings
P ⊆ Vn × Vn).

Observe that

1. sparsity ≥ vertex sparsity;

2. meagerness ≥ vertex meagerness;

3. meagerness ≥ sparsity;

4. vertex meagerness ≥ vertex sparsity.

8.3 From sparsity bounds to monotonicity testers

One of the earliest upper bounds on the query complexity of monotonicity testing
on the hypercube used an approach based on the concepts of meagerness and
sparsity. In particular, Goldreich et al. [GGLR98] observed that if the meagerness
of Hn is at least 1, then monotonicity of boolean functions would be testable with
O(n/ε) queries. They reasoned as follows. It can be shown that a function f which
is Ω(1)-far from monotone induces a pairing P of violated pairs of cardinality Ω(2n).
Being a boolean function, each of these pairs (si, ti) must then satisfy f(si) = 1
and f(ti) = 0. By transitivity, if si ⊆ tj, then there must be some violated edge
in any path from si to tj, even if i 6= j. If the meagerness of P is at least one,
then there are at least |P| = Ω(2n) edges witnessing the non-monotonicity of f :
at least one per path in the optimal set of paths that disconnect all sources from
all sinks in P. This would mean that a random edge in Hn belongs to Viol(f)
with probability at least |P|/|En| = Ω(1/n). Then the following simple algorithm
would be a one-sided tester of monotonicity: pick an edge from En at random,
reject if it is violated, and repeat O(n) times.

What they proved is that vertex meagerness (and hence meagerness too) is 1
if the possible pairings P are restricted to aligned sets, satisfying |si| = |sj| and
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|ti| = |tj| for all i, j (see also [LR01] for a detailed proof). This was still good
enough to derive an upper bound for boolean monotonicity testing of O(n/ε), and
an upper bound of O(n2/ε) for general ranges.

While a lower bound on meagerness implies query-complexity upper bounds
for boolean functions, a lower bound on sparsity implies query-complexity upper
bounds for functions with general range. (In this case we are only guaranteed
violations between si and ti but not between si and tj.) In particular, we will
presently see that if the sparsity of Hn is at least µ = µ(n), then monotonicity of
functions with any linearly ordered range can be tested with O(n/(εµ)) queries. In
[LR01], Lehman and Ron asked whether the sparsity of any P (or even just of the
aligned ones) is at least 1, noting that this would imply the existence of efficient
monotonicity testers as well as progress on some long-standing questions regarding
routing on the hypercube network. As they wrote, it appears that a counterexample
must be sizable, if one exists at all. We prove that a counterexample does exist
and the answer to both of their questions is no.

The basic combinatorial interpretation of εM (f) is given in the following lemma:

8.3.1. Lemma ([FLN+02, Corollary 2];[DGL+99, Lemma 7]). Let f : D →
R be a function, and define the violation graph of f as the undirected graph
G = (D, E), where {x, y} ∈ E if either (x, y) or (y, x) is in Viol(f). Then
εM(f)2n is exactly the size of a minimum vertex cover of G. Consequently, there
is a matching in G of size at least εM(f)2n−1.

Proof. Let g be monotone and εM(f)-close to f , and write T , {x ∈ D |
f(x) 6= g(x)}; we have |T | = εM(f)2n. Let C be a minimum vertex cover of the
violation graph G. We show that |C| = |T |; the “consequently” part then follows
from the easy fact that the size of any maximal matching in a graph is at least half
the size of the minimum vertex cover, as the endpoints of any maximal matching
form a vertex cover.1

Clearly T must be a vertex cover of G, otherwise g wouldn’t be monotone.
Hence |T | ≥ |C|. To prove |C| ≤ |T |, we show how that if S is a vertex cover of
the violation graph of f (not necessarily smallest), then f can be made monotone
by redefining it on S. We proceed by induction on the size of S. The base
case, S = ∅, is trivial. If S is nonempty, take any minimal element x ∈ S
(according to the ordering of D). Consider the sets x< , {y ∈ D | y < x} and
x> , {y ∈ D | y > x}. Modifying f(x) only affects the violations occurring
among elements of x< ∪ {x} ∪ x>. Let us define f̃ to be equal to f except on
input x, where we let

f̃(x) , max{f(y) | y ∈ x<},
1 If the function is boolean, something stronger holds. In this case G is bipartite because

violations only occur among pairs x, y ∈ D with x ≤ y, f(x) = 1 and f(y) = 0. Therefore, by
König’s Theorem [Die05, Theorem 2.1.1], the size of the maximum matching equals |C|, the size
of the minimum cover.
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where we adopt the convention that the maximum of the empty set is the smallest
element of the range R. By definition there are no violations in the new function f̃
between the elements of x< and the input x. Nor are there any violations between
x< and x>, because f̃ equals f on them and S is a vertex cover of the violation
graph of f that does not intersect x<. There cannot be a violation either between
x and x> because by definition, f(x) = f(y) for some y ∈ x<, which means there
would be a violation between x< and x> too. Hence S − {x} is a vertex cover of
the violation graph of f̃ , and we are done by induction.

Regarding functions defined on the hypercube, an important observation is
that since G is a subgraph of the transitive closure of Hn, the matching of violated
pairs in Lemma 8.3.1 forms a source-sink pairing P (see Definition 8.2.1) of size
εM(f)2n−1.

As we mentioned earlier, the best known upper bounds for testing monotonicity
over hypercubes are obtained by a simple edge-tester, which picks a set of edges
from Hn uniformly at random, queries f on their endpoints, and rejects if one
of them is violated. Recall that δM(f) denotes the fraction of edges in Hn that
are violated by f ; thus the success probability of the edge-tester is determined by
δM(f). Goldreich et al. prove the following:

8.3.2. Theorem. [GGLR98, GGL+00] For any f : {0, 1}n → {0, 1},

δM(f) ≥ εM(f)

n
.

More generally, [DGL+99] use their range-reduction lemma to conclude that for

any f : {0, 1}n → R, δM(f) ≥ εM (f)
n log |R| . Since without loss of generality |R| ≤ 2n,

this gives an upper bound of O(n2/ε) queries for testing monotonicity of all
functions f : {0, 1}n → R.

Clearly, obtaining better lower bounds on δM (f) is sufficient for improving the
upper bounds on the query complexity of testing monotonicity. (It may even be
the case that Theorem 8.3.2 holds for any R.) The next lemma states that this
can also be done by proving lower bounds on the sparsity of Hn.

8.3.3. Lemma. Let µ(n) denote the sparsity of Hn. For any ε > 0 and R ⊆ Z,
monotonicity of functions f : {0, 1}n → R can be tested with O( n

εµ(n)
) queries.

Proof. Let ε > 0 and let f : {0, 1}n → R be ε-far from monotone. Let P be
the set of εM(f)2n−1 ≥ ε2n−1 vertex-disjoint violated pairs promised by Lemma
8.3.1. By definition, P is a source-sink pairing. Notice that since every (si, ti) ∈ P
is violated, every path from si to ti must contain at least one violated edge. It
follows that the set EdgeViol(f) is a P-cut and |EdgeViol(f)| /|P| ≥ µ(n). Hence

δM(f) = |EdgeViol(f)|
|En| ≥ εµ(n)

n
. We can thus conclude that O

(
n

εµ(n)

)
edge queries

suffice to find an edge-violation with constant probability.
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8.4 Upper bounds on sparsity

We prove the following theorem.

8.4.1. Theorem (Briët et al. [BCGM12]). The sparsity of Hn is at most

n−
1
2

+o(1). Furthermore, this upper bound on sparsity can be demonstrated both
with aligned sets and with Ω(2n)-sized sets:

• for any δ > 0 and large enough n there is an aligned pairing P in Hn with
sparsity at most n−

1
2

+δ;

• for any δ > 0 there is ε > 0, such that for large enough n there is a pairing
P in Hn of size |P| ≥ ε2n with sparsity at most n−

1
2

+δ.

We use a number of properties of the structure of perfect binary Hamming
codes (see, e.g., [MS77, Lin98]), which we now describe. For an integer k ≥ 1,
let the strings y ∈ {0, 1}k \ {0}k represent indices to bit positions of binary
strings of length n = 2k − 1. The Hamming code is a linear code consisting of
the n-bit strings x ∈ {0, 1}n that, for every i ∈ [k], have an even number of
positions y for which yi = 1 and xy = 1. We are, however, more interested in
the properties of the parity check matrix p of the code. This is a k × n binary
matrix whose columns are all possible nonzero k-bit vectors y; it represents a
linear map p : {0, 1}n → {0, 1}k over GF(2). Therefore, for any unit vector ey
(i.e., the element of {0, 1}n having 1 at position y and 0 elsewhere), p(ey) = y.
Consequently, for all x, y, p(x⊕ ey) = p(x)⊕ y.

Codewords of the Hamming code correspond to strings satisfying p(x) = 0 (here
and in what follows we use 0 to denote the all-zero vector of the appropriate size).
We refer to the k positions of the form 2i (i.e., 1, 2, 4, . . . , (n+ 1)/2, corresponding
to vectors of the form ei = 0i−110k−i), as the redundancy bits of the code; in a
codeword x, the k values xei , i = 1 . . . k are determined by the remaining n− k
bits of x. Moreover, for general a ∈ {0, 1}n, they are determined by the remaining
n− k bits and the parity vector p(a).

8.4.1 Warm-up

To showcase the main ideas in the construction, we first show that the sparsity of
the hypercube is at most O

(
1

n1/3

)
; better bounds are derived later in this section.

8.4.2. Proposition. Let k > 0 be a multiple of three, and n = 2k − 1. There is
a pairing P ⊆ Vn × Vn in Hn of size |P| = Ω(2n) that admits a P-cut C ⊆ En of
size |C| = O(2n/n1/3).

Proof. For a ∈ {0, 1}n, consider the k parity bits p(a) and divide them into
three groups of size k/3 each, denoted x(a), y(a) and z(a). For convenience, we will

write (v1, v2, v3) to denote the concatenation of three vectors v1, v2, v3 ∈ {0, 1}k/3,
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and whenever no confusion may arise, we interpret every v ∈ {0, 1}k as an element
of {0} ∪ [n]. With this convention, we have p(a) = (x(a), y(a), z(a)), and if at

least one of v1, v2, v3 ∈ {0, 1}k/3 is nonzero, then (v1, v2, v3) ∈ [n].
The set S of sources of P is the set of all s ∈ {0, 1}n that satisfy(

x(s) 6= 0 ∧ y(s) 6= 0 ∧ z(s) 6= 0
)
∧
(
s(x(s),y(s),0) = s(x(s),0,z(s)) = s(0,y(s),z(s)) = 0

)
.

For each source s ∈ S, we define its sink t = t(s) as

t = s ∪ {(x(s), y(s), 0), (x(s), 0, z(s)), (0, y(s), z(s))}.

Note t is at distance 3 from s, and the three directions leading from s to t are
(x(s), y(s), 0), (x(s), 0, z(s)) and (x(s), 0, z(s)). The first clause in the conditions
on a member s of S ensures that all three directions are (1) distinct; and (2) have
a k-bit binary representation with Hamming weight strictly greater than one (in
particular they represent proper directions, i.e., they are nonzero). The second
clause ensures that the relevant bits of s take the value zero.

The pairing P will be given by all pairs (s, t) defined in this way. Clearly s ⊆ t
and |t− s| = 3. It is easy to verify that

|S| =
(
2k/3 − 1

)3
2n−k−3 = 2n−3 (2k/3 − 1)3

2k
= Ω(2n),

as follows. There are (2k/3−1)3 ways to pick x, y, z ∈ {0, 1}k/3−{0}. For each such
choice, we can construct a source s by letting s(x,y,0) = s(x,0,z) = s(0,y,z) = 0 and
setting the remaining n−k−3 non-redundant bits arbitrarily; there are 2n−k−3 ways
to accomplish this. (Note none of the directions used corresponds to a redundancy
bit, i.e., none of them is a power of 2 because their binary representations have
at least two ones.) Finally, the values s takes on the redundancy bits are now
determined by the values already set and the condition p(s) = (x, y, z). The last
equality also implies that different choices of x, y, z, along with the remaining
non-redundant bits, lead to different sources; putting all together we get the
equality stated on the size of S.

To prove that P is a pairing, it remains to show that all sinks are distinct, and
that no source is also a sink. Recall that one of the properties of map p is that
p(a⊕ e(x,y,z)) = p(a)⊕ (x, y, z). So after flipping, e.g.,bit (x, y, 0) from a source s
with parity vector (x, y, z), we reach a vertex with parity vector (0, 0, z). Thus,
we see that the parity vectors of the eight vertices in the cube from s to t are:

• Level 3 (sink): (x, y, z).

• Level 2: (x, 0, 0), (0, y, 0), (0, 0, z).

• Level 1: (0, 0, z), (0, y, 0), (x, 0, 0).
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• Level 0 (source): (x, y, z).

Observe that, while the source s is different from its sink t, the two parity vectors
are the same. Also notice that the parity vectors at level 1 are distinct, as are the
parity vectors at level 2.

The three directions from s to t, i.e., the indices of the support of t− s, are
determined by p(s) = (x, y, z) = p(t). By construction, t(x,y,0) = t(x,0,z) = t(0,y,z) =
1, implying t /∈ S as it does not meet the requirements for being a source. Likewise,
if two different sources s1 and s2 were associated with the same sink t ⊃ s1, s2, we
would get p(s1) = p(t) = p(s2), so t− s1 = t− s2, implying s1 = s2. Hence P is
indeed a pairing of size |P| = |S| = Ω(2n).

Now we argue that P admits a small cut. Let Qs be the set of vertices at
level 1 or 2 in the subcube from a source s ∈ S to its sink t (that is, lying on
one of the six paths from s to t and different from s and t). Let Q =

⋃
s∈S Qs.

All vertices in Q have parity vectors of one of the forms (0, 0, z), (0, y, 0), (x, 0, 0),
hence |Q| = O(2n/n2/3). Now take the set C ⊆ En of all (directed) edges of
Hn with both endpoints in Q; it is clearly a P-cut. Besides, each vertex of Q
is incident with at most 3 · 2k/3 = O(n1/3) edges from C. To see this, consider
an arbitrary element of q ∈ Q with parity vector p(q) = (x, 0, 0), say. It can be
incident only with those edges in C that have directions corresponding to vectors
of the form (x, y, 0), (x, 0, z) or (x′, 0, 0), for various y, z, x′ ∈ {0, 1}k/3. Since x is
fixed for this particular vertex q, there are at most 3 · 2k/3 = O(n1/3) edges in C
going out of q. Therefore |C| ≤ |Q|·O(n1/3) = O(2n/n1/3), concluding the proof.

8.4.2 Improved upper bound on the edge sparsity of Hn

In the main construction, we divide the length-k strings into m equally-sized parts,
we let d be the distance between pairs in the pairing and w be the number of
nonzero length-(k/m) parts of the parity strings of the direction vectors. The
main tool is the following lemma about certain sets of vectors used to generalize
the proof in the warm-up. The reader should keep in mind that an example of
such a set of vectors for m = 3, d = 3, w = 2, is V = {110, 101, 011}, and was
implicitly used in the previous proof.

For our purposes, all parameters involved except k and n should be thought of
as constants.

8.4.3. Lemma. Suppose V ⊆ {0, 1}m, d = |V | > 0, and w ∈ N are such that:

1. 2 ≤ |v| ≤ w for all v ∈ V ,

2.
⊕

v∈V v = 0, and

3. for all W ⊆ V of size |W | = bd/2c,
∣∣⊕

v∈W v
∣∣ ≥ dm/2e.
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Let k ≥ m logm be a positive multiple of m and n = 2k − 1. Then there is a
pairing P ⊆ Vn × Vn of vertices of Hn of size

|P| ≥ 1

4
2n−d

that has a P-cut C ⊆ En of size

|C| ≤ 2n√
n+ 1

(n+ 1)w/m
√
d 2d

and with the additional property that each source in P is at distance exactly d
from its sink.

Proof. Partition [k] into m disjoint subsets G1, . . . , Gm ⊆ [k] of size k/m; e.g.,
Gi = {(i− 1)k/m+ 1, . . . , ik/m}. For a ∈ {0, 1}n, consider the k parity bits
p(a) ∈ {0, 1}k of a, and split them into m blocks according to G1, . . . , Gm;2 let us
call each of the corresponding k/m-bit substrings x1(a), . . . , xm(a). Thus, p(a) is
the concatenation of x1(a), x2(a), . . . , xm(a).

For a subset v ⊆ [m], let Zv =
⋃
i∈v Gi ⊆ [k]. Given r ⊆ [k], define the

projection of r on v to be Πv(r) = r ∩ Zv, (remember that r and Πv(x) can be
interpreted as strings in {0, 1}k as well). For example, in the preceding subsection,
we would write Π110((x, y, z)) = (x, y, 0). Consider the set

S , SV = {a ∈ {0, 1}n | ∀i ∈ [m] : xi(a) 6= 0 and ∀v∈V aΠv(p(a)) = 0}.

This will be our set of sources in P . Note that the expression aΠv(p(a)), referring
to bit number Πv(p(a)) of a, is well-defined, because the condition ∀i : xi(a) 6= 0,
along with v 6= 0, implies Πv(p(a)) 6= 0. Moreover, Πv(p(a)) 6= Πw(p(a)) for v 6= w.

The set of d directions between a source s and the corresponding sink t will
be determined by the parity vector of s alone. This set will be D(p(s)) for a
function D defined in the following way: for r ∈ {0, 1}k, let D(r) =

⋃
v∈V {Πv(r)}.

Condition 1 in the hypothesis of the lemma implies that for s ∈ S, all elements
of D(p(s)) have weight ≥ 2; note also that s is disjoint with D(p(s)) and that
|D(p(s))| = |V | = d. For each source s ∈ S, we define the sink t = s ∪D(p(s));
by construction s ⊆ t, and |t− s| = |D(p(s))| = d. The cut P is defined as the
union of all such ordered pairs (s, t): P ,

⋃
s∈S{(s, s ∪D(p(s)))}. Note that

|P| = |S| =
(
2k/m − 1

)m
2n−k−d.

We can bound

n+ 1 = 2k ≥ (2k/m − 1)m =

(
1− 1

2k/m

)m
· 2k ≥ 1

4
2k, (8.1)

2 Actually, in order to do this we first impose an arbitrary ordering on the elements of each
Gi.
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since k ≥ m logm and m ≥ 2. Hence

|P| = |S| ≥ 1

4
2n−d.

We prove now that P forms a pairing: the set of sinks is disjoint from the
set of sources, and no two different sources have the same sink. Because of the
aforementioned properties of the parity check p, for any source-sink pair (s, t) we
have

p(t) = p(s)⊕
⊕
v∈V

Πv(p(s)) = p(s)⊕ Π⊕
v∈V

(p(s)) = p(s),

where we used the second property of V and simple properties of the projection
operator. Since for every i ∈ D(p), i /∈ s but i ∈ t, it follows that no sink is a source
too. Likewise, if two sinks t1 and t2 (corresponding to sources s1 and s2) were the
same (t1 = t2), we would have p(s1) = p(s2), which implies D(p(s1)) = D(p(s2))
and therefore s1 = s2.

To conclude, we only need to upper-bound the size of a smallest P-cut. Consider
the set of vertices halfway between a source and a sink:

Q , {x ∈ {0, 1}n | ∃ (s, t) ∈ P s.t. s ⊆ x ⊆ t and |x− s| = bd/2c}

(note the slightly different definition of Q, compared to that in the warmup at the
start of the section).

The set Q is a P-vertex-cut; we use it to construct an edge cut for P . Due to
the third property of V and the definition of D(p(s)), it follows that for b ∈ Q, at
least half of x1(b), . . . , xm(b) are zero. For any b ∈ {0, 1}n, let r(b) be the m-bit
string such that for all i ∈ [m], the equality xi(b) = 0k/m holds iff r(b)i = 0. Then
the set {r(b) | b ∈ Q} has size bounded by

(
d
d/2

)
: for all s ∈ S, r(s) is the all-ones

string and for any b ∈ Q, r(b) is r(s) XOR-ed with some d/2 vectors in V . So the
set {p(b) | b ∈ Q} has size at most

(
d
d/2

)
(2k/m − 1)m/2, and does not contain unit

vectors; therefore using (8.1) we obtain

|Q| ≤ 2n−k
(

d

bd/2c

)
(2k/m − 1)m/2 ≤ 2n√

n+ 1

2d√
d
.

An edge cut is given by

C , {(b, c) ∈ En | b ∈ Q ∧ c− b ∈ D(p(S))},

where D(p(S)) =
⋃
s∈S{D(p(s))}. To verify this, observe that any path from a

source s to its sink t must go through some vertex q ∈ Q at distance bd/2c from
s, and then take one of the directions in the set D(p(s)) (or else the sink would
not be reachable from the next vertex in the path). Finally, observe that

|D(p(S))| ≤ d(2k/m − 1)w ≤ d(n+ 1)w/m,
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because every element of D(p(s)) is determined by the projection of p(s) on some
v ∈ V (with weight at most |v| ≤ w). The claim follows from our bounds on |Q|
and |D(p(s))|, since |C| ≤ |Q| · |D(p(S))|.

8.4.4. Lemma. Let w ∈ N, w ≥ 2 and set m = w2, d = 2w. Then there is a set
V ⊆ {0, 1}m of d vectors satisfying the three conditions in Lemma 8.4.3.

Proof. Arrange the w2 elements of [m] into a square matrix A ∈ {0, 1}w×w. For
each row and each column of A we form an element of {0, 1}w whose support is
that row or column (there are 2w vectors in total). The i-th row is then associated
with the subset (or vector in {0, 1}w)

Ri , {r ∈ [m] | (i− 1)w < r ≤ iw};

the j-th column will correspond to the subset

Cj , {r ∈ [m] | (r − 1) mod w = j − 1}.

Let
V ,

⋃
i∈[w]

{Ri, Ci}.

Clearly, |V | = 2w and for all v ∈ V , we have |v| = w > 1. It is also apparent that⊕
v∈V v = 0, because any k ∈ [m] belongs to exactly two vectors in V , namely Ri

and Cj, where k = (i− 1)w + j with i, j ∈ [w]. (This is a rephrasing of the fact
that every entry of the matrix A is in the intersection of precisely one row and
one column.)

Finally, we show that, for any W ⊆ V with |V | = d/2 = w,∣∣∣∣∣⊕
v∈W

v

∣∣∣∣∣ ≥ m

2
=
w2

2
.

Suppose that
W = {Ri1 , Ri2 , . . . , Ria , Cj1 , Cj2 , . . . , Cj(w−a)

};

then ∣∣∣∣∣⊕
v∈W

v

∣∣∣∣∣ = a2 + (w − a)2 ≥ w2

2

by the quadratic mean-arithmetic mean inequality.

Proof of Theorem 8.4.1. Let δ ∈ (0, 1), n > (4/δ2)4/δ2+1 and set

w , d1/δe,m , w2, d , 2w.
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Let k be the largest multiple of m which is at most log(n + 1). Note that
w ≤ 2/δ, n > mm+1 and

k > log(n+ 1)−m ≥ log(n/m) ≥ m logm.

Now set n0 , 2k − 1 > n/2m+1. By Lemmas 8.4.4 and 8.4.3, there is a pairing
Pn0 ∈ Vn0 × Vn0 of size 2n0−d−2 which admits a cut Cn0 of size

2n0

√
n0 + 1

(n0 + 1)1/w
√
d 2d

and thus Hn0 has sparsity at most

|Cn0|
|Pn0|

≤ (n0 + 1)
1
w
− 1

2 · 22(d+1)
√
d ≤ 1√

n
· nδ · 2O( 1

δ2
).

Observe that Hn can embed 2n−n0 disjoint copies of Hn0 , for example, according
to each of the settings of the last n−n0 bits of a vertex label. We can thus embed
2n−n0 copies of the pairing and its cut, and still obtain a pairing of size Ω(2n−d)
and a cut of sparsity n−1/2+δ · 2O(1/δ2). This may look slightly weaker than the
second part of the theorem, but it implies it by choosing for example δ0 = δ/2
and n = 2Ω(1/δ3).

For the first part, recall that the pairing P we obtain has the additional
property that all pairs in P have distance exactly d. Knowing this, the first part
of Theorem 8.4.1 can be proved in the following way. Let C be a P-cut of sparsity
≤ n−1/2+δ. Partition the pairs of P into d + 1 parts P1, . . . ,Pd+1 according to
the Hamming weight of their source modulo d + 1. At least one of them, say
Pi, has size ≥ |P|/(d + 1), so C is a Pi-cut with sparsity ≤ (d + 1) · n−1/2+δ. If
(sj, tj), (sk, tk) ∈ Pi and |sj| 6= |sk|, then |sj| − |sk| is a multiple of d+ 1, and since
|tj − sj| = |tk − sk| = d, we conclude that no edge in any path from sj to tj lies in
a path from sk to tk as well.

Now, for j = 0, . . . , d(n− i)/(d+ 1)e − 1, let

Aj = {x ∈ {0, 1}n | j(d+ 1) ≤ |x| − i < (j + 1)(d+ 1)}.

It follows that we can partition Pi into dn/de parts, according to which set Aj
their sources (and sinks) belong to. Moreover, there is a subset C ′ ⊆ C that is a
Pi-cut and only contains edges both of whose endpoints are inside the same Aj
(possibly different for different pairs), i.e., C ′ =

⋃
C ′j where C ′j ⊆ Aj × Aj. (The

reason is that we can safely remove any edges that do not satisfy this condition.)
From

∑
j |Cj| = |C ′| and

∑
j |Pi ∩ (Vj × Vj)| = |Pi|, it follows that there is some

j with |Cj| / |Pi ∩ (Vj × Vj)| ≤ |C ′|/|P| ≤ |C|/|P|, i.e., there is an aligned pairing
Pi ∩ (Vj × Vj) with sparsity at most (d+ 1) · n−1/2+δ. Again, choosing a smaller δ
proves the claim.
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8.4.3 Upper bound on the vertex sparsity of Hn

While it is edge sparsity that bears the strongest relationship with monotonicity
testing, it is natural to study the related quantity of vertex sparsity as well. Here
we present a simple result on the vertex sparsity of Hn.

8.4.5. Theorem (Briët et al. [BCGM12]). The vertex sparsity of Hn is
O(1/n).

Proof. Let n ≥ 4 be even. We construct an aligned source-sink pairing
P ⊆ Vn × Vn of 2n/2(n/4) disjoint pairs (si, ti), such that for all i, j, |tj| = |si|+ 2.
Then we exhibit a P-vertex-cut M of size 2n/2.

Consider the following set of pairs:

P0 = {(0001, 1011), (1000, 1101), (0010, 0111), (0100, 1110)}.

Any P0-path (of length 2) goes through one of the following vertices:

M0 = {1001, 0011, 1100, 0110}.

Using this small example, we construct the large one recursively. For i ≥ 1,
we set

Pi = {(01a, 01b) | (a, b) ∈ Pi−1} ∪ {(10a, 10b) | (a, b) ∈ Pi−1}
∪ {(00a, 11a) | a ∈Mi−1}.

Let Mi denote the set of all internal vertices that lie on some Pi-path. Notice that
Mi = {01a | a ∈Mi−1} ∪ {10a | a ∈Mi−1}. So we have:

• |Pi| = 2|Pi−1|+ |Mi−1|;

• |Mi| = 2|Mi−1|.

Solving these recurrence relations we get |Mi| = 2i|M0| and |Pi| = 2i|P0| +
i2i−1|M0|. Let P , P(n−4)/2 ⊆ Vn × Vn and M , M(n−4)/2 ⊆ Vn. Since M is a
P-vertex-cut by definition, we only need to show that the sizes of M and P are
as claimed. Indeed, |M | = 2(n−4)/2|M0| = 2n/2 and

|P| = 2(n−4)/2|P0|+ 2(n−4)/2−1

(
n− 4

2

)
|M0| = 2n/2(n/4).
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8.5 Interlude: Routing on the hypercube

The hypercube is a natural and well-studied architecture for multiprocessor systems
and networks. The ability to route arbitrary permutations on it models flow of
information in a network of processors. In this context, a doubly-directed version
of Hn is usually considered, where each edge in En is replaced with a pair of
anti-parallel edges. Let us denote the doubly-directed version of Hn by H

↑↓
n . A

permutation π of Vn is 1-realizable if there exists a set of pairwise edge-disjoint
paths in H

↑↓
n such that for every v, there is a path in the set that connects v with

π(v). Similarly, a permutation π is k-realizable if there exist paths connecting
every v with π(v) such that each edge is used in at most k paths. In terms of the
circuit-switching capability of interconnection networks this means the following. If
a computer is located at every node of the directed hypercube and two neighboring
vertices can communicate and send at most k messages simultaneously, then for
any permutation π it is possible to set up connection paths allowing us to send
messages from every computer v to its addressee π(v) without needing to send
more than k simultaneous messages between any pair of computers. Szymanski
[Szy89] conjectured that any permutation π of Vn is 1-realizable with shortest
paths. It was proved that the conjecture holds up to dimension 3, but later
Lubiw [Lub90] provided a counterexample in dimension 5 that is not 1-realizable
using shortest paths. While it is still unknown whether or not every permutation
is 1-realizable without requiring shortest paths3, the fact that any permutation
is 2-realizable follows from the classical work of Beneš [Ben65] (see [Lub90] for
details). In contrast, we prove that if we insist on the shortest-path condition,
there are permutations that are not k-realizable for any k significantly smaller
than

√
n. Specifically, the construction of Theorem 8.4.1 can be used to prove the

following.

8.5.1. Theorem (Briët et al. [BCGM12]). For any δ > 0 and large enough

n, there are permutations of Vn that cannot be n
1
2
−δ-realized in H

↑↓
n with shortest

paths.

Proof. Let P and C be the pairing and cut constructed in the proof of Theorem
8.4.1. Let π be any permutation of Vn that maps each source in P to its sink.
Notice that any shortest path in H

↑↓
n that connects a source of P to its sink must

also be a directed path in Hn, because the elements on each pair are comparable.
So such a path must intersect C. Hence any realization of P with shortest paths
must use some edge in C at least |P|/|C| = n1/2−δ times.

8.5.2. Remark. Any upper bound µ(n) on the sparsity of Hn can be used to
show that H

↑↓
n is not 1/µ(n)-realizable with shortest paths. But the opposite is

3Since the original conjecture was shown to be false, the weaker version not requiring shortest
paths is now sometimes called Szymanski’s conjecture.
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not true; in particular, the counterexample from [Lub90] does not imply that the
sparsity of H5 is less than 1.

8.6 New bounds on testing monotonicity

At the time of writing the best known query-complexity bounds for testing
monotonicity (non-adaptively with one-sided error) of functions f : {0, 1}n → R
were:

• an upper bound of O(n
ε

log |R|) for any range R, by Dodis et al. [DGL+99];

• a lower bound of Ω(
√
n/ε) for boolean ranges (and hence for wider ranges

too), by Fischer et al. [FLN+02].

The tester used in the upper bound of [DGL+99] is perhaps the most natural
one: it picks an edge (x, y) ∈ En uniformly at random, and rejects if f(x) > f(y).
Let us call this an edge-test. [DGL+99] prove that the probability that a single

execution of an edge-test rejects is Ω
( εM (f)
n log |R|

)
, by relating the distance of a function

from monotone to the number of edges that it violates.
It is an interesting open question whether the general upper bound of [DGL+99]

can be improved into one that is independent of |R| (or at least has a better
dependence on it). Since we can assume without loss of generality that |R| ≤ 2n,
any upper bound of o(n2/ε) queries would be an improvement. We make a
small step in this direction. Call a function f : {0, 1}n → R dist-k monotone
if f(y) ≥ f(x) for every y > x with |y| > |x| + k. In this terminology, “dist-0
monotone” simply means “monotone”.

In Section 8.6.1 we prove that given a dist-3 monotone function f , we can
test if f is monotone with O(n3/2/ε) queries. The reasons for considering dist-3
monotonicity here are twofold. Firstly, it is the first non-trivial case: It is easy
to see that the sparsity of any pairing contained in the set of violated pairs of
a dist-2 monotone function is one, because to disconnect any pair of points at
distance 2 from each other at least two edges must be removed, but in this case
any edge can only be involved in two pairs (and a similar argument takes care
of the pairs at distance one too). This implies (see Section 8.3) that 2-monotone
functions can be tested for monotonicity with O(n/ε) queries. Secondly, we saw
in Section 8.4 that non-trivial sparsity upper bounds can already hold for pairings
in which every source is at distance 3 from its sink.

In Section 8.6.2 we also extend the lower bound of Ω(
√
n/ε) of [FLN+02] to

Ω(n/ε), for large enough |R|. Using the “Range-Reduction Lemma” of [DGL+99],
the new bound implies an improved lower bound of Ω(n/(ε log n)) for the boolean
range, in the special case of pair testers whose query complexity can be written as
q(n)/ε for some function q. (A pair tester picks independent pairs of comparable
vertices according to some distribution, and rejects if and only if one of the pairs
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forms a violation.) We note that such testers are not overly restricted: essentially
all known query-complexity upper bounds for monotonicity testing use (or can be
easily converted into ones that use) pair tests of this kind. Furthermore, the new
lower bound almost matches the aforementioned upper bound of O(n/ε) achieved
by edge-tests (a special case of pair tests).

Section 8.6.3 describes the recent work of Blais et al., who used a clever
reduction to well-studied problems in communication complexity to show that the
Ω(n/ε) query complexity lower bound holds even for adaptive, two-sided-error
testers of monotonicity.

8.6.1 Sparsity and dist-3-monotone functions

8.6.1. Theorem (Briët et al. [BCGM12]). Let ε > 0, R ⊆ Z and consider
a dist-3 monotone function f : {0, 1}n → R. If f is ε-far from being monotone

then |EdgeViol(f)| ≥ Ω
(

2n

ε
√
n

)
.

Proof. Let ε > 0, R ⊆ Z and consider a dist-3 monotone function f : {0, 1}n →
R. If f is ε-far from being monotone, then by Lemma 8.3.1 there is a set P of
ε2n−1 vertex-disjoint pairs in Hn that are violated by f . Furthermore, since f is
dist-3 monotone, for every (si, ti) ∈ P we have |ti| ≤ |si|+ 3. To prove Theorem
8.6.1 we show that the sparsity of such P must be Ω(1/

√
n ).

Let C be a smallest P-cut, and let us prove that |C|/|P| = Ω(1/
√
n ). There

is nothing to prove if |C| ≥ |P|/2, so assume the opposite. It is possible to
assume further that C has no edges incident with any source si or sink tj from P
(and in particular, this will mean that no pair in P has distance 1 or 2): Let
p ≤ |C| < |P|/2 be the number of edges in C that are incident to some source or
sink of a pair in P . Removing these p edges from C and the corresponding pairs
from P leaves a set C ′ of size |C| − p ≥ 0 that cuts a subset P ′ ⊆ P of at least
|P| − 2p > 0 pairs. This is due to the fact that the pairs in P are disjoint, and
hence each edge can be incident with at most two pairs. We have

(|C| − p)|P| = |C||P| − |P|p ≤ |C||P| − 2|C|p = (|P| − 2p)|C|,

so the sparsity of the P ′-cut C ′ is

|C ′|
|P ′|

=
|C| − p
|P| − 2p

≤ |C|
|P|

.

Therefore it is enough to prove the claim for C , C ′ and P , P ′.
For 0 ≤ h ≤ n − 3, let Ph ⊆ P be the set of pairs (si, ti) ∈ P with |si| = h

(and |ti| = h+ 3). Clearly C is a Ph-cut for every h. Let Ch ⊆ C denote the set
of edges in C that lie on some Ph-path. Since Ch has no edges incident with any
si or tj, in order to cut Ph we must use exactly those edges between levels h+ 1
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and h + 2 that lie on some Ph-path. So the sets Ch, 0 ≤ h ≤ n− 3, are in fact
disjoint. Therefore it is sufficient to prove that Ch/|Ph| = Ω(1/

√
n) for all h.

Fix h. Each pair (si, ti) ∈ Ph defines a (directed) subcube graph H i
3 =

(V (H i
3), E(H i

3)) of dimension 3, This subcube contains all vertices and edges that
belong to one of the six possible paths from si to ti.

8.6.2. Lemma. For any two pairs (si, ti), (sj, tj) ∈ Ph, |E(H i
3) ∩ E(Hj

3)| ≤ 1.

Proof. Assume that |E(H i
3) ∩ E(Hj

3)| ≥ 2 for some i 6= j, and let e = (a, b)
and e′ = (a′, b′) be two edges in E(H i

3)∩E(Hj
3). Since the pairs (si, ti) and (sj, tj)

are disjoint, both e and e′ should connect layers h + 1 and h + 2. Therefore,
a = a′ = si ∪ sj and b = b′ = ti ∩ tj, contradicting the assumption that e 6= e′.

Consider the directed graph Gh = (V h, Eh) with V h =
⋃

(si,ti)∈Ph V (H i
3) and

Eh =
⋃

(si,ti)∈Ph E(H i
3). Since every si has out-degree 3 in Gh (and in-degree

0), the number of edges between layers h and h + 1 of Hn that belong to Gh is
exactly 3|Ph|. Let A = {a1, . . . , ak} be the set of vertices in layer h + 1 of Hn

that belong to Gh, let α1, . . . , αk denote their in-degrees in Gh and let β1, . . . , βk
denote their out-degrees in Gh. We have

∑
i∈[k] αi = 3|Ph|, and our goal is to

prove that |Ch| =
∑

i∈[k] βi = Ω(|Ph|/
√
n).

Consider vertex ai ∈ A. For every pair (sj, tj) ∈ Ph such that ai ∈ V (Hj
3) there

are two edges in Hj
3 going out of ai. Since for any two pairs (sj, tj), (sj

′
, tj
′
) ∈ Ph

we have |E(Hj
3) ∩ E(Hj′

3 )| ≤ 1, it follows that the source-sink pair (sj, tj) is
completely determined by the vertex ai and the two possible edges to take from
ai to reach the sink. In other words, for any ai ∈ A, any pair of two distinct
outgoing edges from ai “encodes” a unique ingoing edge. This implies

(
βi
2

)
≥ αi.

So βi >
√

2αi for all i and hence

|Ch| =
∑
i∈[k]

βi >
∑
i∈[k]

√
αi =

∑
i∈[k]

αi√
αi
≥ 3|Ph|√

n
,

as αi ≤ n.

8.6.2 A lower bound for general functions

8.6.3. Theorem (Briët et al. [BCGM12]). Let R ⊆ Z, |R| > 2
√
n. Test-

ing monotonicity of functions f : {0, 1}n → R non-adaptively with one-sided error
requires Ω(n/ε) queries.

Proof. We first prove a lower bound of Ω(n) for some constant ε and argue at
the end how we can achieve the promised lower bound of Ω(n/ε).

A non-adaptive q-query monotonicity tester with one-sided error queries f
on a set Q of at most q vertices and rejects if and only if one of the comparable
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pairs in Q is violated. Hence, it is sufficient to show a family Fn of functions
f : {0, 1}n → R that are ε-far from monotone (for a fixed ε > 0 and all n) and
such that, for any fixed set Q ⊆ {0, 1}n of size o(n), a uniformly random f ∼ Fn
induces a violated pair in Q with probability less than 1/3.

For every n, we will define a family Fn = {f1, . . . , fn} of n functions

fi : {0, 1}n → R

with the following properties:

• every fi is ε-far from monotone, for some absolute constant ε > 0;

• for any set Q ⊆ {0, 1}n, Pri∈[n][(Q×Q) ∩ Viol(fi) 6= ∅] ≤ |Q|−1
n

.

This implies any tester making fewer than 2n
3

queries will fail with probability
> 1/3.

As in the proof of the lower bound for boolean functions given in [FLN+02],
each fi ∈ Fn will violate only pairs differring in the i-th coordinate. But unlike
their construction, where distant vertices may cause violations, ours will take
advantage of the larger range size to make sure that only the actual edges of Hn

are violated, making it more difficult to catch violated pairs.
We formally define Fn formally. Without loss of generality, let the range

be R = {0, 1, . . . , 2
√
n} (the labels can be chosen freely, and a lower bound for

range R also holds for ranges containing R). Let h(x) , |x| − n/2 +
√
n for all

x ∈ {0, 1}n. For each i ∈ [n] we define fi : {0, 1}n → R as follows:

fi(x) =


0, h(x) < 0

2
√
n, h(x) > 2

√
n

h(x), h(x) ∈ R and xi 6= h(x) mod 2

h(x) + (−1)xi , h(x) ∈ R and xi = h(x) mod 2.

Observe that for all i ∈ [n], Viol(fi) = EdgeViol(fi) (all violated pairs in fi
are neighbouring vertices of the hypercube), and the edges in EdgeViol(fi) are
vertex-disjoint. So by Lemma 8.3.1, the functions fi ∈ Fn are ε-far from monotone
(for some fixed ε > 0) if |EdgeViol(fi)| ≥ ε2n. Indeed, |EdgeViol(fi)| equals the
number of points x ∈ {0, 1}n such that: h(x) ∈ R, h(x) ≡ 0 (mod 2) and xi = 0.
Notice that for n > 10, these constitute roughly a quarter of all points y ∈ {0, 1}n
with h(y) ∈ R. On the other hand, it follows from Chernoff bounds that for some
constant ρ > 0 and for all n > 10, the number of points y ∈ {0, 1}n with h(y) ∈ R
is at least ρ2n. Setting ε = ρ/5, we conclude that all functions fi ∈ Fn are ε-far
from monotone.

Now we prove that Pri∈[n][(Q×Q)∩Viol(fi) 6= ∅] ≤ |Q|−1
n

. Fix Q and consider
the undirected graph G = (V,E), where V = Q and

E =
{
{x, y} ∈ Q×Q | (x, y) ∈ En

}
.
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In other words, G is the undirected skeleton of the subgraph of Hn induced on Q.
For x, y ∈ {0, 1}n we write x = y(j) if x equals y in all coordinates except j. Let
T ⊆ [n] be a set of directions spanned by E, namely,

T = {j ∈ [n] | there exists {x, y} ∈ E such that x = y(j)}.

Clearly, the success probability of the test is bounded by |T |/n. To finish the
proof, we show that |T | ≤ |Q| − 1.

Consider a minimal subgraph G′ of G that spans all directions in T . Then
|E(G′)| = |T |. Since any cycle in the undirected skeleton of Hn travels along any
direction an even number of times, G′ is acyclic. So |T | = |E(G′)| ≤ |V (G′)|−1 =
|Q| − 1.

We proved a lower bound of Ω(n) queries for some constant ε > 0. To get a
lower bound of Ω(n/ε) for any ε = ε(n) we need to compose our lower bound
with a simple “hiding” procedure. Namely, we define a distribution F ′n that fools
any deterministic tester with o(n/ε) queries as follows: first, partition Hn into
disjoint subcubes, each of size ε2n (for simplicity we assume that 1/ε is a power of
two); then pick a random subcube C in this partition, and value it with a random
fi ∈ Fn−log 1/ε; value the other subcubes so that there are no violations outside C.
Now for any fixed set Q of o(n/ε) queries, the expected number of queries that hit
C is o(n), and we know that with o(n) queries it is impossible to find a violation
in a random fi.

Note the range R of the functions fi is of size O(
√
n ) - much smaller than

the 2n different values a function on the hypercube may take. Our result then
implies a query complexity lower bound of Ω(n log n/ε) for pair testers of boolean
monotonicity (see Section 8.6), by dint of the range reduction lemma of [DGL+99].
Although the lemma holds for every poset, we formulate it here for the particular
case of the n-cube:

8.6.4. Lemma (Dodis et al.: Range reduction [DGL+99, Theorem 3]).
Let c : N → N+ and suppose for some distribution Dn on pairs (x, y) ∈ Vn × Vn
with x ≤ y, and for every function f : Vn → {0, 1},

Pr
(x,y)∼Dn

[f(x) > f(y)] ≥ εM(f)

c(n)
.

Then, for every R and every function g : Vn → R,

Pr
(x,y)∼Dn

[f(x) > f(y)] ≥ εM(f)

c(n) log |R|
.

8.6.5. Corollary. Suppose there is a pair tester of boolean monotonicity over
Hn whose query complexity, for each distance parameter ε > 0, is upper bounded
by q(n)/ε. Then q(n) = Ω(n/ log n).
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This is tight up to the log n factor in view of the existing O(n/ε) upper bound
via pair testers.

Proof. Fix a distribution Dn and pick a sufficiently large range R. For each
function f : Vn → {0, 1}, let p(f) , Pr(x,y)∼Dn [f(x) > f(y)]; define in the same
way p(g) for each g : Vn → R. The probability that a violation is detected between
the values of f on two elements of the same pair after q(n)/ε samples is bounded
by p(f)q(n)/ε. Putting ε = εM(f), the existence of a tester implies p(f) ≥
(2εM(f))/(3q(n)) for any f . It follows that the range reduction lemma applies
for c(n) = O(q(n)). Choosing |R| > 2

√
n, we obtain p(g) = Ω(εM (g)/(q(n) log n))

for every g : Vn → R.
The expected number of draws of pairs from Dn before a violation of g is caught

is 1/p(g), which is the expectation of a geometric random variable with parameter
p(g). By Markov’s inequality, 3/p(g) samples suffice with probability at least 2/3.
This quantity is bounded by O(q(n) log n/ε) whenever εM(g) ≥ ε, so we obtain
a pair tester of monotonicity of functions with range R with query complexity
O(q(n) log n/ε). This contradicts Theorem 8.6.3 unless q(n) = Ω(n/ log n).

8.6.3 Recent developments

After completion of this work, the lower bound has been greatly extended in a
recent paper that exploits connections with some problems in communication
complexity (c.f. Section 5.1).

8.6.6. Theorem (Blais, Brody & Matulef [BBM11]). Any adaptive, two-
sided error ε-tester of monotonicity over the hypercube must make Ω(n/ε) queries.

(As before, the range of f can be taken to be O(
√
n ); see their paper for details.)

Proof. Let f : Hn → Z. We apply a reduction from the n-disjointness problem.
Let A,B ∈ {0, 1}n be Alice’s and Bob’s strings, respectively. As before, Alice
builds the parity defined on A, but here it is best to write it as a ±1 valued parity
χA that maps z to (−1)

∑
i∈A zi . Likewise, Bob builds the character χB. Now they

communicate to test whether the function h : {0, 1}n → Z defined by

h(z) = 2 · |x|+ χA(z) + χB(z)

is monotone.
Now we study when the function h is monotone. Suppose i /∈ z and let

us determine when h(z ∪ {i}) − h(z) is negative. The term 2 · |x| increases by
two when going from z to z ∪ {i}. If i /∈ A then χA(z) = χA(z ∪ {i}) and the
second summand stays the same; otherwise it changes by ±2. Similarly for χB(z).



8.7. Summary 167

Consequently, the only way for h(z ∪ {i}) to be less than h(z) is for i to belong to
both A and B and to have χA(z) = χB(z) = 1.

Clearly this means that h is monotone when A and B are not disjoint. It
remains to be seen that h is Ω(1)-far from monotone when A∩B = {i}. Consider
the 2n−1 edges of Hn in the ith direction. Exactly 1/4 of these edges (x, x ∪ {i})
satisfy the condition χA(x) = χB(x) = 1, and the set of those which do is vertex-
disjoint. For each of these pairs of vertices, either h(x) or h(x ∪ {i}) needs to
be modified to make h monotone, because h(x) > h(x ∪ {i}). Therefore, when
A ∩B 6= ∅, the function h is 1/8-far from monotone, as we wished to show.

8.7 Summary

We studied the problem of monotonicity testing over the hypercube. As previ-
ously observed in several works, a positive answer to a natural question about
routing properties of the hypercube network would imply the existence of efficient
monotonicity testers. We constructed a family of instances of Ω(2n) pairs in
n-dimensional hypercubes such that no more than roughly a 1√

n
fraction of the

pairs can be simultaneously connected with edge-disjoint paths. This answers an
open question of Lehman and Ron [LR01], and suggests that the aforementioned
appealing combinatorial approach for deriving query-complexity upper bounds
from routing properties cannot yield, by itself, query-complexity bounds better
than ≈ n3/2. Additionally, our construction can also be used to obtain a strong
counterexample to Szymanski’s conjecture about routing on the hypercube.

We also proved a lower bound of Ω(n/ε) queries for one-sided non-adaptive
testing of monotonicity over the n-dimensional hypercube, as well as additional
bounds for specific classes of functions and testers.

We suggest two open problems related to this line of research. The first one is
to find better upper bounds for the special case of testing monotonicity of dist-k
monotone functions, for some k ≥ 3. As we saw in Section 8.4.1, non-trivial
sparsity upper bounds can be found even if we restrict ourselves to pairings in
which all pairs are at distance 3. This seems to indicate, in our opinion, that a
better understanding of the small-distance situations will yield new insights that
may be applicable in the general case.

As to the second one, recall from Section 8.6.1 that for k ≤ 3, dist-k mono-
tonicity can be tested with O(n3/2) queries; on the other hand, the construction
in Section 8.4.1 shows that sparsity considerations alone will never yield upper
bounds better than this. In view of these results, it is natural to ask whether
these two measures need to coincide for larger k; that is, whether the complexity
of edge-testers may be better than the values derived from sparsity upper bounds.





Chapter 9

Cycle detection with jumps

In this chapter we consider the following related questions:

• Suppose you are in front of a huge roulette wheel, so large that you are only
able to see one slot at a time. The numbers written on each slot are all
different, but other than that they are arbitrary. You can turn the roulette
clockwise and perform a rotation by j slots, where j ≤ m and m is some
known quantity. You cannot read any of the numbers in between while the
rotation is underway. What is the minimum number of turns needed to
determine the total number of slots in the wheel?

• How many elements of a sequence is it necessary to inspect to decide whether
or not a cycle exists (containing distinct elements), and if so determine its
length and location?

• What is the most efficient way to identify a number n by making queries of
the form π(x mod n), where π is an unknown permutation of the residues
modulo n?

The content of this chapter is based on the paper

• S. Chakraborty, D. Garćıa–Soriano and A. Matsliah. Cycle detection, order
finding, and discrete log with jumps. In Proceedings of the second Symposium
on Innovations in Theoretical Computer Science (ITCS) (formerly known
as Innovations in Computer Science), pages 284–297, 2011.

9.1 Introduction

Let S be a finite set. Given a function f : S → S and an element a0 ∈ S, define
the ith iteration f i of f by f 0(a0) = a0 and f i(a0) = f(f i−1(a0)) for all i ≥ 1.
As S is finite, at some point there will be repeated elements in the sequence

169
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a , f 0(a0)f
1(a1) . . . of values obtained this way. Let s ≥ 0 and r > 0 be the

smallest integers such that f s(a0) = f s+r(a0); it is readily seen that both can be
simultaneously minimized, and the sequence a will consist of an initial “tail” of
length s, followed by unlimited repetitions of a cycle of length r. Determining s
and r, given a0 ∈ S and a black-box oracle to f , is the cycle-detection problem.
When f is bijective (i.e., f is a permutation of S), then the tail is empty (s = 0)
and the order-finding problem is to find the smallest r > 0 such that f r(a0) = a0,
and the discrete-log problem is, given an additional element b0 ∈ S, to find the
smallest k ≥ 0 such that fk(a0) = b0.

Cycle detection, order finding and discrete log are well-studied problems in
various settings and models. There are plenty of algorithms, lower bounds and more
general time-space tradeoff results known for these problems. Many applications
have been found, ranging from Pollard’s ρ algorithm for integer factoring [Pol75],
through detecting infinite loops in programs, to measuring the period length of
pseudorandom number generators or performing shape analysis of data structures
(some of the highlights can be found on their Wikipedia pages as of the time of
writing [Wika, Wikb]).

In most of the relevant literature, time and space complexity are the main
measures of efficiency for algorithms solving these problems. The classical “tortoise
and hare” algorithm of Floyd [Flo67] is probably the best example of a cycle-
detecting algorithm with optimal space complexity: it uses only two pointers
to elements in S, which move through the sequence a = f 0(a0)f

1(a0) . . . at
different speeds, and detects a cycle after O(s+r) steps (and function evaluations).
(Specifically, it finds the smallest i > 0 for which ai = a2i. Such i must satisfy i ≥ s
and r | i; the precise values of r and s can subsequently be easily determined.)

In the present chapter the main measure of efficiency considered is the query
complexity, i.e., the number of elements of the sequence a inspected. (This
corresponds to the number of wheel turns in our example.) Clearly, with the
standard oracle, which only allows to evaluate f on a certain input, one cannot
do better than evaluating f at least s+ r times. Here we consider more powerful
oracles, which allow longer “jumps” in the sequence a at unit cost.

There are various scenarios in which our objective to minimize the number of
such queries may make sense. One example is when S is the set of possible states
of a system and f corresponds to a program being running on it; that is, f maps
a given state a to the state f(a) reached on completion of the next execution step.
In this setting, running the program for i > 1 steps and then reading the state
f i(a) may be almost as fast as reading just the next state f(a). We are aware of a
few works that are directly related to the model we study here. First is the work
of Cleve [Cle04], where a query-complexity lower bound is shown for order-finding.
Second is the more recent work of Lachish and Newman [LN11], who study the
related problem of periodicity testing. Finally there is the paper [CFMW10] of
Chakraborty et al., who study the complexity of testing periodicity in quantum
property testing.
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Also somewhat related are the works in which S corresponds to a group, and
the complexity of these problems is measured by the number of group operations
required before obtaining the result. More on this in Section 9.5.2.

9.2 Preliminaries

Recall that the symbol log denotes logarithms to the base 2, and ln denotes the
natural logarithm. For notational brevity, instead of writing max{log x, 1}, we
redefine log x to be 1 when x < 2 in order for expressions such as log log n to be
defined for all n. Whenever we write such phrases as “a prime power p1

α1” or
“the prime factorization of t is

∏
pi
αi” we assume implicitly that each of these pi

is prime.
We write lcm(S) for the least common multiple of all elements of a set S ⊆ N.

If a ≥ 0, b > 0, we also write a mod b for the unique 0 ≤ r < b such that a ≡ r
(mod b).

The set of primes is denoted P and we write Pn , P ∩ {1, . . . , n} for n ∈ N.
The set of prime divisors of n is denoted PD(n). Finally, denote by νp(x) the
largest power of p that divides x, and if D ⊆ P , let νD(x) =

∏
p∈D νp(x), which is

the part of the prime factorization of x that uses primes from D.
We make use of the following results from number theory:

9.2.1. Theorem (Chinese remainder theorem). Let m1, . . . ,mk, a1, . . . , ak
be integers. The system of congruences x ≡ a1 (mod m1), . . . , x ≡ ak (mod mk)
has a unique solution modulo lcm(m1, . . . ,mk) iff for all i, j, the congruence
ai ≡ aj (mod gcd(mi,mj)) holds.

9.2.2. Theorem (Prime number theorem). Let π(n) = |Pn| be the number
of primes up to n. Then

π(n) =
n

lnn
±O

(
n

(lnn)2

)
.

In fact the weaker statement that |Pn| = Θ(n/ log n) is enough for us. This is
known as Chebyshev’s theorem and admits a much simpler proof by analyzing
the prime factors of binomial coefficients (see Theorem 7 of the book by Hardy
and Wright [HW08]).

The following result is also Theorem 317 of [HW08].

9.2.3. Theorem (Wigert’s Divisor bound [Wig07]). Let τ(n) be the num-
ber of positive divisors of n ∈ N. Then

τ(n) ≤ 2O(logn / log logn).

It may be worth noting that this worst-case bound is tight in that there are n for
which τ(n) = 2Ω(logn / log logn), even though the average order of τ(n) is just log n.
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9.2.1 Sequence oracles: restricted vs. m-restricted

Here S is a finite set and f an arbitrary function mapping S to itself.

9.2.4. Definition. An unrestricted oracle O∞f : S × N → S for f maps every
query (a, i) to f i(a).

Let m ∈ N,m > 0. An m-restricted oracle Om
f : S × [m]→ S for f is defined

similarly, except the restriction 0 ≤ i < m must hold.

When we want to impose the additional constraint that f be a permutation of S,
we may write π instead of f .

9.2.2 The problems

• Cycle detection: Given a0 ∈ S and oracle access to f , find the smallest
s ≥ 0 and r > 0 such that f s(a) = f s+r(a). Considering the infinite sequence
a = a0a1 . . . given by ai = f i(a), it is easily seen that a0, . . . , ar+s−1 are
distinct and ai = ai+r whenever i ≥ s. In this case an equivalent definition
avoiding an explicit mention of the function f is an oracle that allows probing
a sequence a ∈ S∞ having the property that ai = aj implies ai+1 = aj+1.
The integer r is called the length of the cycle, and s its starting position.

• Order finding: Given a0 ∈ S and oracle access to π ∈ Sym(S), find the
smallest r > 0 such that πr(a) = a; this is the length of the cycle to which
a belongs in the cycle decomposition of π. Similarly, one can view this as
the problem of finding the period length r in a purely periodic sequence a,
in which a0, . . . , ar−1 are distinct and ai = ai+r for all i ≥ 0 (i.e., s = 0).1

The m-restricted oracle is viewed in this setting as allowing one to query
position p+ i of a (where 0 ≤ i < m), provided that p = 0 or is a previously
queried position.

• Discrete log: Given a0, b0 ∈ S and oracle access to π, find the smallest
k > 0 such that πk(a0) = b0. If no such k exists (i.e., a0 and b0 belong to
different cycles), output ∞.

9.3 Order finding with unrestricted oracles

Consider the sequence a ∈ [n]∞ associated with some f : [n] → [n]. Take a
randomized q-query algorithm A for order finding; without loss of generality we

1One may also consider the problem of finding the period of a general sequence (not arising
from a permutation), where the same value may appear several times within each period. In
this case, upper and lower bounds of Θ(r) queries are straightforward (for any type of oracle).
However, in the property-testing setting, where the task is to distinguish periodic sequences
from those which are “far from periodic”, polylogarithmic bounds were obtained in [LN11].
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assume it always makes q queries (some of which may be redundant). At any
stage 0 ≤ i < q, its behaviour is determined by its random seed t and the history
sequence

Hi = ((q0, α0), . . . , (qi−1, αi−1))

of query/answer pairs received thus far (where αi = aqi). H0 starts out empty. On
history Hi, where i = |H| < q, A queries position qi , queryA,t(Hi), obtaining

αi , aqi as a response, and then the new pair (qi, αi) is appended to Hi to form
Hi+1. After the last query, A guesses at the period of a based on Hq and t. For
any a, the value returned by A is correct with probability at least 2/3 (over t).

Suppose now we are promised that the period r belongs to a known set Sn.
Construct the set Cand(Hi) of candidate periods that are consistent with Hi. It
is easy to see that

Cand(Hi) = {r ∈ Sn | ∀j, k ∈ [i] : αj = αk ⇔ r | (qj − qk)}.

This set depends only on the pairs of queries that got the same answer, and not
on the answer labels themselves. What this means is that each of the possible
responses to the i + 1st query falls into at most i + 1 equivalence classes: the
answer can either be one of α0, . . . , αi−1, or be a new one, but aside from that
the values of α0, . . . , αi−1 are irrelevant. This motivates the introduction of a new
kind of oracle.

9.3.1 Divisibility oracles

9.3.1. Definition. A divisibility oracle for an unknown integer r > 0 is an oracle
DivO(r) that keeps a record of the sequence of queries q0, . . . , qi−1 previously
made, and on the ith query qi returns the smallest index j ≤ i such that qj ≡ qk
(mod r).

It must be emphasized that, even though the indices returned by DivO(r) on
a given set of queries depends on the order in which the queries are placed, the
result of any set of equality comparisons between those indices remains the same,
as they are simply determined by equality comparisons modulo r. The results to
a series of i calls to DivO(r) induce a partition of [i], where the indices of queries
that received the same answer are put into the same component of the partition.

Divisibility oracles can be much weaker than unrestricted oracles for sequences
of a special form. For example, if a is determined from r by ai = i mod r and we
have r ≤ n for some known n, then there is a deterministic algorithm to find r
that makes the single query for position n!− 1 and returns an!−1 + 1. This works
because n! ≡ 0 (mod r), so an!−1 + 1 = ((n!− 1) mod r) + 1 = (r − 1) + 1 = r. It
is not possible to do this with a divisibility oracle; this algorithm “cheats” in that
it takes advantage of some properties of the sequence that are not shared for all
r-periodic sequences. In fact, this kind of algorithm is bound to fail in general: if
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we look for algorithms that are required to work for all sequences, then divisibility
oracles turn out to be every bit as powerful as unrestricted oracles.

9.3.2. Theorem. Suppose n is known. Any order-finding algorithm for cyclic
sequences a ∈ [n]∞ using an unrestricted oracle gives rise to an algorithm to
determine r ≤ n by calls to a divisibility oracle to r, and vice versa.

For any r, the transformations preserve the worst-case query complexity (over
all r-periodic sequences a) and the success probability.

Proof. One direction is trivial, since a query to a divisibility oracle can be
simulated with one query to an unrestricted oracle, followed by an examination of
the labels of all previous queries to determine if one of them matches the latest
one. We argue the converse.

We model the labels examined by the algorithm as sequences of length bounded
by n (as n queries always suffice). We say that two sequences α, β ∈ [n]≤n are
equivalent if they are the same up to a relabelling, i.e., if there is a permutation
σ : [n] → [n] such that β = ασ, where (ασ)i∈[n] = (σ(αi))i∈[n]. Choose one
representative for each equivalence class [α]; we denote it by [α] as well. Then
α and β are equivalent iff [α] = [β]. For any permutation π : [n] → [n], we also
consider the permuted representative function []π mapping α to [α]π.

We start with an arbitrary order-finding algorithm A and define a new
algorithm B that simulates A, except that it normalizes the labels “on the fly”
according to a random representative function []π, so that the sequence α0, . . . , αi−1

of responses kept in Hi is always “normalized” this way. The new algorithm B
will still use unrestricted oracles, albeit in a limited way. Concretely, Bt,π takes
the random seed t and an additional uniformly random permutation π, and on
history Hi does the following:

1. Make the same query qi = queryA,t(Hi) that A would make; let βi , aqi
be its answer.

2. Find the unique αi satisfying

[(α0, . . . , αi−1, βi)]
π = (α0, . . . , αi−1, αi).

3. Append (qi, αi) to Hi to form Hi+1 (that is, pretend that the answer received
was αi instead of βi).

It is important to note that for any t, a, the sequence (α0, α1, . . . ) so constructed
follows the same distribution over random π as as the sequence of labels received
by A on input aσ over a random permutation σ = σ(t, π). Also recall that all
aσ have the same period. These observations imply that Bt,π has the same query
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complexity, and also has success probability 2/3 for any a:

Pr
t,π

[Bt,π succeeds on a] = Pr
t,σ

[At succeeds on aσ]

= E
σ

Pr
t

[At succeeds on aσ]

≥ 2

3
.

By construction, the decisions of Bt,π depend only on t and [a]σ, and therefore
once the random coin tosses for t and π have been made it behaves the same for
equivalent sequences in [n]∞, i.e., sequences having the same period, say r. This
entails that the decisions of B can be written as a random variable of the responses
of DivO(r), as can be easily shown by induction on the number of queries.

9.3.2 Lower bound

9.3.3. Theorem (Chakraborty et al. [CGM11a]). Order finding requires
Ω(log r / log log r) queries with an unrestricted oracle O∞f .

Proof. We prove that for every n, order finding with DivO(r) under the
promise that the period r belongs to a known set Sn ⊆ [n/2, n] of polynomial
density (i.e., m , |Sn| = nΩ(1)) requires Ω(logm/ log logm) = Ω(log r / log log r)
queries. We apply Yao’s principle and show that no deterministic decision tree of
small depth can succeed with probability at least 2/3 over random r ∈ Sn.

Take a depth-q decision tree T with ` leaves, each of whose internal nodes
is associated with a query to DivO(r). To the ith leaf (i ∈ [`]) corresponds a
unique normalized history sequence HT (i) leading to it (as defined above) and
a candidate set CT (i) = C(HT (i)). The normalized history sequence, and hence
also CT (i), is determined by a partition of [q]. Therefore ` ≤ Bq, where Bell’s
numberBq is the number of partitions of an n-set (see, e.g., [LW01]). It is not
hard to see that Bq ≤ q!.

On the other hand, {CT (i)}i∈[`] is a family of disjoint subsets of [n] (for a given
period, precisely one of the leaves will be reached). Since the tree is deterministic,
there is only one r = ri on each leaf for which the correct period ri is returned.
As r is chosen uniformly at random from a set of cardinality m, the probability of
picking some r ∈

⋃
i∈[`]{ri} is exactly `/m. Hence for the success probability to

be no smaller than 2/3, we need to have ` ≥ (2/3)m. Then q! ≥ Bq ≥ ` ≥ (2/3)m
and q ≥ Ω(logm/ log logm), concluding the proof.

9.3.4. Remark. This is in essence an information-theoretical lower bound, and
also holds if r is drawn from any set of size nε. In particular the lower bound
still applies to the special case where r is promised to be a prime power. In this
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case the algorithms in this chapter provide a matching O(log r / log log r) upper
bound.

9.3.3 Upper bound

The main result of this section is stated next.

9.3.5. Theorem (Chakraborty et al. [CGM11a]). Assume we are given
an upper bound n on the cycle length r. Then there is a randomized algorithm
that finds r by making O(log n / log log log n) queries to a divisibility oracle for r.

Therefore there is a randomized order-finding algorithm with an unrestricted
oracle making the same queries. We will tackle the question of how to obtain
a good upper bound n in Section 9.5.3. Our techniques are inspired by junta
testers: we think of r as a junta and we attempt to find the set PD(r) of “relevant
variables”. (Here the junta core would be the product of the elements of PD(n)
raised to the appropriate powers.)

For starters observe that it is easy to find out whether a given prime power pα

divides r:

9.3.6. Lemma. Let t be the largest divisor of lcm([n]) that is not a multiple of
pα. If r ≤ n, then pα | r ⇔ r - t.

Proof. The prime factorization of t is the product of all prime powers that
are at most n, except for p, which appears with exponent min(α− 1, blogp(n)c)
instead. So any prime power appearing in the factorization of r appears in t as
well, except possibly for pα. Therefore r | t implies that p appears with exponent
at most α− 1 in r, so pα - r; conversely, pα | r implies r - t.

Since r | t is the same thing as query(0) = query(t), we can perform this
check easily. This is done by Procedure IsDivisor, which admits a straightforward
generalization HasFactor to sets D of prime powers.

If we knew a prime factor p of r, we could use IsDivisor and binary search
to compute the exponent α of p in the prime factorization of r by making at
most 1 + 2 logα queries. Procedure FindExponents takes as input D = PD(r),
computes the exponents for all prime factors of r and returns r itself. Therefore, if
we somehow managed to know the set PD(r), we could find the precise value of r
with no more than

∑k
i=1(1+2 log(αi)) additional queries, where r = Πk

i p
αi
i has been

written according to its prime factorization. In analyzing these query complexities
we shall make repeated use of the following bound on the size of PD(n):

9.3.7. Lemma. |PD(n)| ≤ 4 log n / log log n.
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Algorithm 6 – return true if r is divisible by some element of D

Require: D = {pα1
1 , . . . , pαkk } (αi ≥ 1) is a set of powers of distinct primes;

r ≤ n
1: procedure HasFactor(D,n)

2: find the prime factorization of lcm([n]) = pβ1
1 . . . pβmm

(where the first k factors correspond to the primes in D)

3: t←
∏k
i=1 p

αi−1
i

∏m
i=k+1 p

βi
i

4: return true iff query(0) 6= query(t)

5: procedure IsDivisor(pα, n) . is r divisible by prime power pα?
6: return HasFactor({pα}, n)

Proof. Up to constants, the result follows from Theorem 9.2.3 because
τ(n) ≥ 2|PD(n)|, but it can also be shown directly. Let b be the least integer
satisfying bb ≥ n; then b = (1 − o(1)) log n / log log n and in fact one can check
that b ≤ 2 log n / log log n for all n. There are at most b primes in [2, b] and since
bb ≥ n, there are at most b prime factors of n in [b, n]. Hence there are at most 2b
primes that divide n.

Observe that we also have |PD(r)| ≤ 4 log n / log log n if r ≤ n since the
function x → log x / log log x is increasing, irrespective of whether |PD(r)| <
|PD(n)|.

9.3.8. Lemma. Let Πk
i=1p

αi
i be the prime factorization of r. Then

k∑
i=1

(1 + log(αi)) = O(log r / log log r).

Proof. The number of divisors of r is τ(r) =
∏

i(αi + 1). By the divisor bound
(Theorem 9.2.3), τ(r) = 2O(log r / log log r), whence

k∑
i=1

logαi = log
k∏
i=1

αi < log τ(n) = O(log r / log log r).

Since k = |PD(r)| = O(log r / log log r), we get

k∑
i=1

(1 + logαi) = k +
k∑
i=1

logαi = O(log r / log log r).

9.3.9. Corollary. The number of queries Procedure FindExponents makes
when its requirements are met is O(log r / log log r).
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Algorithm 7 – return r, given the set D of its prime divisors
Require: D = PD(r)

1: procedure FindExponents(D,n)
2: r ← 1
3: for all p ∈ D do . compute exponent
4: α, β ← 1
5: while IsDivisor(pβ, n) do . find a strict upper bound β
6: β = 2β

7: while β − α 6= 1 do . binary search
8: γ ← bα+β

2 c
9: if IsDivisor(pγ , n) then α = γ else β = γ

10: r ← r · pα

11: return r

Thus the main task is finding the set PD(r) usingO(log n / log log log n) queries.
We divide this task into three sub-tasks. First we present an algorithm that,
given a subset D that is known to contain exactly one prime factor of r, finds it.
Building on this we give a method to isolate all prime factors of r into disjoint
subsets of [n]. Then, in order to reduce the query complexity, we partition [n]
into intervals of increasing length and find those prime factors of r inside each.
These intervals will be carefully chosen so as to guarantee that the overall query
complexity of finding all the prime factors of r remains small.

Locating one prime factor

If we are given a subset D containing precisely one prime divisor of r, it is not
difficult to see that binary search and Procedure HasFactor can be used to find p
with O(log |D|) queries. Unfortunately, this is too expensive for our purposes; we
show how to do better. The key idea is the following. Suppose that, over the
previous queries, we have obtained t distinct responses from the divisibility oracle,
corresponding to t different remainders modulo r. Further, assume for simplicity
that r is a prime contained in some set D. Then we can split D into t+ 1 parts
and query some number x that is guaranteed to leave a different remainder modulo
t depending on which of these t + 1 parts r belongs to (this is possible via the
Chinese remainder theorem). Hence we can manage to divide the search range by
a factor of t + 1, and possibly learn a new remainder modulo r. In contrast, a
binary search would always divide the size of the search range by two.

9.3.10. Lemma. Procedure FindUniquePrimeDivisor(D,n) finds the unique
p ∈ PD(r) ∩D and makes O(log |D| / log log |D|) queries.

Proof. First we show that the query complexity is O(log |D| / log log |D|). The
for loop in line 4 makes O(log |D| / log log |D|) queries. Every iteration of the
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Algorithm 8 – find the unique prime factor of r in D
Require: r ≤ n and |PD(r) ∩D| = 1

1: procedure FindUniquePrimeDivisor(D,n)
2: k ← 2blog |D| / log log |D|c
3: T ← Pn \D; a← νT (lcm([n])) . a = prime powers outside of D
4: for i = 0 to k − 1 do . loop through small candidates for p
5: vi ← query(i · a)
6: if i > 0 and vi = v0 then
7: return the only prime divisor of i

8: while |D| ≥ 2 do
9: construct an equipartition of D into k parts D1, . . . , Dk

10: D ← WhichIsRelevant({D1, . . . , Dk}, n, a, {v0, . . . , vk−1})
11: return the unique p ∈ D

12: procedure WhichIsRelevant({D1, . . . , Dk}, n, a, {v0, . . . , vk−1})
13: for i = 1 to k do ai ← a · νDi(lcm([n]))

14: find x such that x ≡ i · a (mod ai) for all i ∈ [1, k] using the CRT
15: y ← query(x)
16: find 1 ≤ i ≤ k such that vi = y, or return fail if none exists
17: return Di

while loop in line 8 divides the size of D by a factor of k (up to a floor function).
The maximum number of iterations increases with |D| and since |D| ≤ kk at the
outset, the body of the loop is executed k times at most. As only one query
is made inside each iteration, the total query complexity of the while loop is
O(log |D| / log log |D|).

Now we show the correctness of the algorithm. Let PD(r) ∩D = {p} and the
exponent of p in r be t. The condition vi = v0 in line 6 is satisfied when r | i · a,
which by our choice of a is equivalent to pt | i. So the first time line 7 will be
reached is when i attains the value pt, provided pt < k. In this case p is the only
prime divisor of i and the return value will be p. So all we need to show is that if
pt ≥ k, the while loop finds the correct Di to which p belongs.

In line 14 we need to find x such that x ≡ i ·a (mod ai) for all i. The existence
of such x is guaranteed by the Chinese Remainder Theorem because for all i 6= j,
we have gcd(ai, aj) = a and i · a ≡ j · a ≡ 0 (mod a) (some of the sets Di may be
empty, in which case ai = a). If p ∈ Di, then pt | νDi(lcm([n])) and so r | ai. This
gives x ≡ i · a (mod r), implying query(x) = query(i · a) = vi. To complete the
proof we have to show that no j 6= i can satisfy query(x) = query(j · a), which
is the same thing as x ≡ j · a (mod r). This is because x ≡ j · a (mod r) and
x ≡ i · a (mod r) together imply a(i− j) ≡ 0 (mod r), so a(i− j) ≡ 0 (mod pt)
(as pt | r); and since gcd(a, pt) = 1 we can divide by a to get i ≡ j (mod pt) and
k > |i− j| ≥ pt, which is a contradiction.
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Isolating the prime factors of r

Recall from Section 5.3.1 that it is possible to isolate the relevant variables of a
strong k-junta with O(k log k) queries. Here we take k = Θ(log n / log log n) to be
the largest possible size of PD(r). As we hope to obtain an upper bound that
is almost linear in k, we need some improvements. One of the observations of
Section 5.3 is that, if we could distinguish between a set D having two relevant
variables or only one, then we could actually solve this problem with O(k) queries.
So going back to our idea of thinking of prime powers as “relevant variables”
of r, we would like to have a procedure HasTwoPrimeDivisors to determine
whether a given set D contains at least two prime factors of r. One solution
would be to call FindUniquePrimeDivisor and check the result, but this makes
more queries than we can afford for large D. In fact we do not know of any
query-efficient deterministic solution, but a randomized one can be designed along
the lines of Procedure FindUniquePrimeDivisor. It performs better than
FindUniquePrimeDivisor does when |D| = Ω(1/δ).

Algorithm 9 – determine if D contains ≥ 2 prime divisors of r with confidence
1− δ
Require: r ≤ n

1: procedure HasTwoPrimeDivisors(D,n, δ)
2: k ← 2dlog(δ−1) / log log(δ−1)e
3: F ← {p ∈ Pk−1 | IsDivisor(p, n)} = PD(r) ∩ [k]
4: if F 6= ∅ then
5: return |F | ≥ 2 or (|F | = 1 and HasFactor(D \ F, n))

6: compute a, {v0, . . . , vk−1} as in FindUniquePrimeDivisor
7: for i = 1 to k do
8: split D into k disjoint sets D1, . . . , Dk by placing each p ∈ D in a

randomly selected Dj

9: if WhichIsRelevant({D1, . . . , Dk}, n, a, {v0, . . . , vk−1}) fails then
10: return true
11: return false

9.3.11. Lemma. Let d , |D ∩ PD(r)|.
If d ≤ 1, Procedure HasTwoPrimeDivisors(D,n, δ) always returns false.

If d ≥ 2 it returns true except with error probability δd−1 ≤ δ. It makes
O(log δ−1 / log log δ−1) queries.

Proof. Clearly, the query complexity is as stated, and if d ≤ 1 then the
algorithm always returns false. Also the correct decision is always made in line 5
if there is some element of PD(r) smaller than k.
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So assume that d ≥ 2 and PD(r) ∩ [k] = ∅. With probability 1 − (1/k)d−1,
at least two p, q ∈ D ∩ PD(r) land into different sets Di, Dj in line 8, where
1 ≤ i, j ≤ k. We claim that conditioned on this, WhichIsRelevant fails. This
happens when x 6≡ m · a (mod r) for any 1 ≤ m ≤ k.

Indeed, consider the case x ≡ i · a (mod p), x ≡ j · a (mod q) and suppose
for a contradiction that x ≡ m · a (mod r). Noting that x ≡ 0 (mod a) and
pq | r, this implies x/a ≡ i (mod p), x/a ≡ j (mod q) and x/a ≡ m (mod pq).
Therefore i ≡ m (mod p), and from 1 ≤ i,m ≤ k ≤ p we deduce i = m. Likewise,
j = m, implying i = j.

We have seen that each iteration of the for loop in line 7 returns true except
with probability (1/k)d−1. Since k independent iterations are run, the error
probability is 1/k(d−1)k ≤ δd−1 because kk ≥ 1/δ.

Algorithm 10 – isolate prime factors with probability 1− δ
Require: r ≤ n and D ⊆ Pn

1: procedure IsolateFactors(D,n, δ)
2: if HasTwoPrimeDivisors(D,n, δ/3) then
3: repeat
4: split D into two sets D1 and D2 at random
5: until HasFactor(D1, n) and HasFactor(D2, n)
6: return IsolateFactors(D1, n, δ/3) ∪ IsolateFactors(D2, n, δ/3)
7: else
8: if HasFactor(D,n) then
9: return {D}

10: else
11: return ∅

9.3.12. Lemma. Let d = |PD(r) ∩ D|. When IsolateFactors succeeds, it
returns d disjoint sets containing one element of PD(r) ∩ D each. The error
probability of IsolateFactors(D,n, δ) is at most δ, and its expected query
complexity is O(d log(d/δ) / log log(d/δ)).

Proof. Lines 10 and 11 are there only to cover the trivial case d = 0, so let
d ≥ 1. The probability that some error is ever made by some of the probabilistic
procedures employed is, using the union bound, at most the sum of the error
probabilities of the call to HasTwoPrimeDivisors in line 2 (which is at most
δ/3) and both recursive calls to FindPrimeDivisors in line 6. By induction
on the call depth, each of the latter have error probability δ/3, summing up to
3δ/3 = δ.

Provided the algorithm terminates and all these probabilistic calls were correct,
the set returned has size d and isolates PD(r) ∩ D. The call tree is then a
complete binary tree with d leaves. This means that the number of times lines
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4 and 8 are executed is precisely d− 1 and d respectively, and that the smallest
confidence parameter used is at least δ/dlog 3 = (δ/d)O(1) as the depth is bounded
by dlog de. Each execution of line 2 contributes O(log(d/δ)/ log log(d/δ)) to
the query complexity, and each execution of line 8 takes O(1) queries. Hence
the number of queries due to lines 2 and 8, which are run O(d) times, is
O(d log(d/δ) / log log(d/δ)).

It remains to bound the query complexity of line 5, which is bounded by a
constant times the expected number of iterations of the repeat loop. Because
of the one-sidedness of HasTwoPrimeDivisors, the loop is only run when
|PD(r) ∩ D| ≥ 2. Then the expected number of tries before a successful split
is at most two, and by linearity of expectation the total number of iterations is
bounded by 2(d− 1).

Partitioning

Remember that r can have as many as Ω(log n / log log n) prime divisors. Therefore
an invocation of IsolateFactors with D = [n] followed by calls to Find-
UniquePrimeDivisor might require as many as Ω((log n / log log n)2) queries on
average. To overcome this difficulty, we partition [n] into consecutive intervals of
increasing length; the intuition being that if a < b < c < d, the maximum number
of prime divisors of r the interval [c, d] can contain is smaller than the number of
divisors of r that the interval [a, b] can contain. The key is to choose a judicious
division of [n] into a sequence of intervals.

Algorithm 11 – finds the period r
Require: r ≤ n

1: procedure FindPeriod(n)
2: a = min{i | 2i log i ≥ log n}
3: b = min{i | 2i log i > n}
4: A = P2a log a−1

5: for i = a to b− 1 do
6: I = [2i log i, 2(i+1) log(i+1) − 1] ∩ [n]
7: A← A∪ IsolateFactors(I, n, 1/ log n)

8: PD = {FindUniquePrimeDivisor(D,n)| D ∈ A}
9: return FindExponents(PD, n)

Theorem 9.3.5 is a consequence of the next result.

9.3.13. Lemma. Procedure FindPeriod(n) makes an expected number of

O(log n / log log log n)

queries and returns r with high probability.
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Recall that standard techniques can convert average-case complexity into worst-
case complexity at the expense of a constant factor in the error probability owing
to Markov’s inequality.

Proof. First we show correctness. Note that a < b = Θ(log n / log log n).
Define the sequence

li , 2i log i = ii.

It is easy to see that la = Θ(log n) and lb−1 = nΘ(1). The interval [n] is partitioned
into O(log n / log log n) parts: namely π(la − 1) parts containing small primes,
then the intervals [li, li+1− 1] for a ≤ i < b− 1 and finally the interval [lb, n]. Each
call to IsolateFactors is made with error parameter δ = 1/ log n, and since
there are o(log n) such calls, with probability 1− o(1) all of them work correctly.
Then lines 4 to 6 find a collection A of sets containing at most one prime factor
of r, and lines 8 and 9 locate these factors and compute the actual period.

Now we prove the bound on the query complexity. We have la = Θ(log n),
hence by the prime number theorem there are Θ(log n / log log n) primes in the
interval [0, la − 1]. Thus we only need to consider the other intervals. Consider
an interval D ⊆ [n] of size |D| ≥ log n and set d = |PD(r) ∩ D|. For δ =
1/ log n, a call to IsolateFactors(D,n, δ) followed by the at most d calls to
FindUniquePrimeDivisor(Di, n) for each of the subintervals Di returned takes

O

(
d log |D|
log log n

)
queries on expectation. Indeed, the expected cost of IsolateFactors(D,n, δ) is

O

(
d log(d/δ)

log log(d/δ)

)
≤ O

(
d log(d/δ)

log log n

)
= O

(
d log d

log log n
+
d log log n

log log n

)
, (9.1)

and the total cost of the d calls to FindUniquePrimeDivisor(Di, n) is

O

(
d log |D|
log log n

)
. (9.2)

The expression (9.2) dominates the right-hand side of (9.1) term by term. Hence
the cost of the calls to FindUniquePrimeDivisor dominate (on average).

Let ki be the size of the interval Ii = [li, li+1−1] and ni = |PD(r)∩ [li, li+1−1]|;
then ki , li+1 − li = Θ(li+1). Let ni , |PD(r) ∩ [li, li+1 − 1]|. Since |Ii| ≥ log n
and linearity of expectation, it follows that the expected number of queries is
bounded by O(

∑b−1
i=1 ni log ki / log log n). Note that

n ≥ r ≥
b−1∏
i=1

lnii =
b−1∏
i=1

2ni i log i,



184 Chapter 9. Cycle detection with jumps

so by taking logarithms on both sides we obtain

b−1∑
i=1

ni i log i ≤ log n.

These inequalities, together with log ki = O(i log i), can be used to bound the
total expected number of queries made in the second for loop by

b−2∑
i=a

ni
log ki

log log n
≤ O(1)

log log log n

b−2∑
i=a

ni i log i

≤ O

(
log n

log log log n

)
,

as we set out to prove.

9.4 Order finding with restricted oracles

9.4.1 Lower bound

9.4.1. Theorem (Chakraborty et al. [CGM11a]). Order finding with an
m-restricted oracle requires

Ω

(
log r

log log r
+

√
r

logm log r
+

r

m

)
queries.

Recall that taking maximums is the same as taking sums from an asymptotic
point of view. The term log r / log log r follows from the bound for unrestricted
oracles, which are a special case. So we focus our efforts on analyzing how much
a restriction a small jump size m is by studying the largest index that needs to
be queried. The term r/m is clear from the mere fact that the algorithm needs
to reach position r − 1 to detect a cycle of length r. Hence, it suffices to prove a
lower bound of

q(n,m) ,
√

n

logm log n

queries for order finding under the promise that r = Θ(n). Cleve [Cle04] proved

that the query complexity of order finding with an m-restricted oracle is Ω
(
|S|1/3√
logm

)
,

and if m ≥ 2|S| then it is O(|S|1/2). Since n = |S| is clearly an upper bound on r,

we improve Cleve’s lower bound by a factor of roughly n1/6
√

logn
. In particular, for

any m = poly(n) Cleve’s bound is Ω̃(n1/3) and ours is Ω̃(n1/2), which we will see
is nearly optimal.
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For n ∈ N and 1 < r < n/2, we denote by Grn the set of all permutations
π : [n] → [n] consisting of two disjoint cycles, one of length r and the other of
length n− r > n/2 > r. Given R ⊆ [n], define GRn ,

⋃
r∈R∩(1,n/2) Grn.

Recall that for every permutation π, the m-restricted oracle Om
π maps [n]× [m]

to [n] according to π; namely, Om
π (i, j) = πj(i). Given access to Om

π corresponding

to some π ∈ G [n]
n , an order-finding algorithm should be able to compute r such

that π ∈ Grn. We show the existence of a pair of disjoint sets R1, R2 ⊆ [n/2], and
a distribution D on permutations from GR1

n ∪ GR2
n , such that no deterministic

algorithm can tell if a random π ∼ D belongs to GR1
n or GR2

n unless it makes
Ω(q(n,m)) queries to Om

π .

Formal statement

Let Q = {(i1, j1), . . . , (iq, jq)} ⊆ [n] × [m] be a set of q queries (each being a
pair (i, j) fed as input to oracle Om

π ). Let R1, R2 ⊆ (1
5
n, 1

2
n) be a pair of disjoint

non-empty sets of integers. For a ∈ {1, 2}, let Da denote the uniform distribution
over all permutations π ∈ GRan .

For the lower bound, it suffices to prove the following (see Lemma 1.5.6):

9.4.2. Proposition. There are R1, R2, with corresponding distributions D1 and
D2, satisfying the following property: for every set Q = {(i1, j1), . . . , (iq, jq)} of
q = o(q(n,m)) (distinct) queries and every α ∈ [n]q, we have

Pr
π∼D1

[Om
π (Q) = α] = (1± o(1)) · Pr

π∼D2

[Om
π (Q) = α],

where Om
π (Q) denotes the string

Om
π (i1, j1) · · ·Om

π (iq, jq) ∈ [n]q.

Outline of the proof

First, we can assume without loss of generality that any order-finding algorithm
finds a collision in π; namely, it makes a pair of queries (i, j) and (i′, j′) such that
Om
π (i, j) = Om

π (i′, j′). Indeed, once r has been determined, one additional query
suffices to find a collision.

Second, we also observe that the actual values returned by oracle Om
π are

irrelevant. Namely, as long as the algorithm finds no collisions, the values obtained
from earlier queries are just random elements from [n] (distributed uniformly
without repetitions). Therefore, we may assume that the choice of queries is
non-adaptive while no collision has been found.

Having made these observations, all we need to show is that for any fixed set
Q of o(q(n,m)) queries and a ∈ {1, 2}, the probability that Q contains a collision
with regard to π ∼ Da is o(1).
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Core lemmas

Fix Q as above, and let Q1, . . . , Q` be the partition of Q where (i, j), (i′, j′) ∈ Q
belong to the same Qh if and only if i = i′. Clearly ` ≤ q. Given π, a subset
Q′ ⊆ Q is called π-collision-free if Om

π (i, j) 6= Om
π (i′, j′) for all (i, j) 6= (i′, j′) ∈ Q′.

The query set Q′ is r-collision-free if it is π-collision-free for all π ∈ Grn. We say
that Q = Q1 ∪ · · · ∪Q` is component-wise r-collision-free if Qh is r-collision-free
for every h ∈ [`].

In the following lemmas we let Q be an arbitrary set of size q = o(q(n,m)),
and by Q1, . . . , Q` we denote the foregoing partition of Q.

9.4.3. Lemma. For infinitely many n ∈ N there exists a pair of non-empty disjoint
sets R1, R2 ⊆ (1

5
n, 1

2
n) such that for a ∈ {1, 2},

Pr
r∈Ra

[
Q is component-wise r-collision-free

]
≥ 1− o(1).

Given π and h 6= h′ ∈ [`], we say that Qh and Qh′ are π-disjoint if for all
(i, j) ∈ Qh and (i′, j′) ∈ Qh′ , O

m
π (i, j) 6= Om

π (i′, j′). We say that Q is π-disjoint if
for all h 6= h′ ∈ [`], Qh and Qh′ are π-disjoint.

9.4.4. Lemma. For every (sufficiently large) n and r, 1
5
n < r < 1

2
n,

Pr
π∈Grn

[
Q is π-disjoint

]
≥ 1− o(1).

Observe that if for some π ∈ Grn, Q is both π-disjoint and component-wise
r-collision-free, then it is π-collision-free (with regard to that particular π). Hence,
by these two lemmas we get the following.

9.4.5. Corollary. For infinitely many n ∈ N there exists a pair of non-empty
disjoint sets R1, R2 ⊆ (1

5
n, 1

2
n) such that for a ∈ {1, 2},

Pr
π∈GRan

[
Q is π-collision-free

]
≥ 1− o(1).

Proposition 9.4.2 follows from Corollary 9.4.5, as sketched in the proof outline.

Proof of Lemma 9.4.3

We start with an auxiliary lemma, the statement of which should not be feared
despite its intimidating look.

9.4.6. Lemma. There exist absolute constants δ > 0 and n0 ∈ N such that for
any n̂ ≥ n0 there is n = (1 ± 1

12
)n̂ and α, β, γ, where 1

5
< α < β < γ < 1

2
, for

which the following holds. There exist 2k ≥ δn / log2 n pairs

(p1, t1), . . . , (pk, tk), (p
′
1, t
′
1), . . . , (p′k, t

′
k)

such that for all i ∈ [k] the following holds:
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• pi, ti, p′i and t′i are all primes;

• pi 6= pj, ti 6= tj, p
′
i 6= p′j and t′i 6= t′j for all j ∈ [k] \ {i};

• pi + ti = n and p′i + t′i = n.

• αn < pi < βn and βn < p′i < γn (consequently, pi < ti and p′i < t′i);

Proof. By the Prime Number Theorem, there exists ε > 0 and n0 ∈ N such
that for any n̂ ≥ n0, the number of primes p̂ ∈ (1

4
n̂, 1

3
n̂), as well as the number of

primes t̂ ∈ (2
3
n̂, 3

4
n̂), is at least k̂ , εn̂ / log n̂. Let p̂1, . . . , p̂k̂ and t̂1, . . . , t̂k̂ denote

these primes, and consider the multiset N = {p̂i + t̂j | i, j ∈ [k̂]}. Notice that N

contains k̂2 elements, each of them between 11
12
n̂ and 13

12
n̂. Therefore, there must

exist some n ∈ N appearing in N at least ` , k̂2

n̂/6
= 6ε2n̂

log2 n̂
times.

Let (p̂i1 , t̂j1), . . . , (p̂i` , t̂j`) be the pairs corresponding to this n, namely, p̂ih +
t̂jh = n for all h ∈ [`]. It is clear that p̂ih 6= t̂jh′ for all h 6= h′ ∈ [`], since the

ranges of p̂’s and t̂’s are disjoint. Notice that p̂ih 6= p̂ih′ and t̂ih 6= t̂ih′ also hold
for all h 6= h′ ∈ [`], since all pairs must sum to n. Let β be such that exactly2

k , `/2 of the pairs (p̂ih , t̂jh) satisfy p̂ih < βn.
Denote those k pairs by (p1, t1), . . . , (pk, tk), and the remaining k pairs by

(p′1, t
′
1), . . . , (p

′
k, t
′
k). Let α be such that αn = mini∈[k] pi − 1, and let γ be such

that γn = maxi∈[k] p
′
i + 1. Clearly, α < β < γ. Since n ∈ (11

12
n̂, 13

12
n̂) and

maxi∈[k] p
′
i < n̂/3 we also have γ < 1/2. Similarly, mini∈[k] pi ≥ n̂/4 and so

α > 1/5. Setting δ = 5ε2, the bound 2k ≥ δn / log2 n follows from n ∈ (11
12
n̂, 13

12
n̂)

as well.

Proof of Lemma 9.4.3. Let n ∈ N be one of those for which Lemma 9.4.6 holds.
Let R1 = {p1, . . . , pk}, T1 = {t1, . . . , tk}, R2 = {p′1, . . . , p′k} and T2 = {t′1, . . . , t′k}.
The conditions in Lemma 9.4.6 imply R1, R2 ⊆ (1

5
n, 1

2
n) and R1 ∩R2 = ∅.

Let a ∈ {1, 2} and r ∈ Ra. Consider a single component

Qh = {(i, j1), . . . , (i, j|Qh|)}

in the partition of Q. Notice that if Qh is not r-collision-free, then there must
be a pair j 6= j′ ∈ {j1, . . . , j|Qh|} that satisfies either j − j′ ≡r 0 or j − j′ ≡n−r 0
(depending on which cycle contains element i). Let R be the set of all r ∈ Ra ∪ Ta
for which some pair j, j′ satisfies j − j′ ≡r 0. Since R contains only primes that
are greater than n/5 and j 6= j′, the inequality

|j − j′| ≥
∏
r∈R

r ≥ (n/5)|R|

2We assume without loss of generality that ` is even. If not, drop one pair.
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must hold. On the other hand |j − j′| ≤ m, so |R| ≤ logm
log(n/5)

.

Consequently, the number of different r ∈ Ra for which some pair j, j′ ∈
{j1, . . . , j|Qh|} satisfies j − j′ ≡r 0 or j − j′ ≡n−r 0 is bounded by 2|Qh|2 logm

log(n/5)
.

This means that for a random r ∈ Ra, the probability that any particular Qh is

not r-collision-free is at most 2 |Qh|
2 logm

|Ra| log(n/5)
, and by the union bound,

Pr
r∈Ra

[Q is not component-wise r-collision-free
]
≤

2(
∑

h∈[`] |Qh|2) logm

|Ra| log(n/5)
≤ 2|Q|2 logm

|Ra| log(n/5)
.

The lemma follows since |Ra| = Ω(n / log2 n) and |Q| = o

(√
n

logm logn

)
.

Proof of Lemma 9.4.4

Let n ∈ N be large enough, and let r ∈ (1
5
n, 1

2
n). Fix a pair of components

Qh = {(i, j1), . . . , (i, j|Qh|)} and Qg = {(i′, j′1), . . . , (i′, j′|Qg |)} in the aforementioned
partition of Q. We now bound the probability, taken over random π ∈ Grn, that
Qh and Qg are not π-disjoint.

Notice that when picking a random π ∈ Grn, either i and i′ belong to different
cycles in π (and therefore Qh and Qg are π-disjoint), or else π locates both i and
i′ on the same cycle, where the positions of i and i′ are distributed uniformly at
random. Both cycles in π are of length greater than n/5, hence the probability

that Qh and Qg are not disjoint is at most |Qh||Qg |
n/5

.

Taking the union bound on all pairs of components we derive an upper bound

on Prπ∈Grn

[
Q is not π-disjoint

]
of

∑
h6=g∈[`]

|Qh||Qg|
n/5

≤
(
∑

h∈[`] |Qh|)(
∑

g∈[`] |Qg|)
n/5

= 5q2/n.

The lemma follows by plugging in the value of q.

9.4.7. Remark. Notice that the lower bound we proved does not work for any
large enough n. But since the n’s for which it works are densely spread (for any
n̂ ≥ n0 there is n = (1± 1

12
)n̂ for which it works), we can extend the lower bound

to work for all sufficiently large n by padding with unit cycles (fixed points).
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9.4.2 Upper bound

We deal now with the restricted-oracle case.

9.4.8. Theorem (Chakraborty et al. [CGM11a]). Assume we are given
an upper bound n on the cycle length r. Then there is a randomized algorithm
that finds r by making

O

(
min

( n
m

+
√
n,

n

logm
+

log n

log log log n

))
queries to an m-restricted oracle.

The left bound in the min expression is better when m = 2O(
√
n ). The proof of

the theorem will follow from the next few lemmas.

9.4.9. Lemma. Let A be an adaptive algorithm that finds r by making q queries
to the unrestricted oracle and let g be the largest position that A queries. Then for
any m > 0 there is an algorithm that finds r with q+ g

m
queries to the m-restricted

oracle.

Proof. Let us start assuming, for the sake of simplicity, that A is non-adaptive.
Thus g is known at the start of the algorithm. Let g = am+ b, where b < m. The
algorithm can make queries to all positions of form cm for all c ≤ a at the start.
This takes g

m
many queries. Once all these queries are made, by the definition

of the m-restricted oracle, for any i ≤ g the algorithm can obtain the value of
query(i) with at most one call to the m-restricted oracle. Since all the queries
that the algorithm A makes are at most g, the new algorithm can simply simulate
the algorithm A while making queries to the m-restricted oracle. Thus the total
query complexity will be q + g

m
.

Note that the algorithm does not have to know g beforehand, as it can query
position cm only when the algorithm A queries some i such that i > cm. Therefore
the conversion works too when A is adaptive.

We present two algorithms for the restricted-m case. The first one is better
for m < 2O(

√
n); the second one is better for m ≥ 2Ω(

√
n).

Small jump length m

This algorithm uses the baby steps-giant steps method of Shanks [Sha71, Sut07].

9.4.10. Lemma. Let n > 0 and define a , d
√
n e, B , {0, 1, 2, . . . , a− 1} and

G , {a, 2a, 3a, . . . , a2}. If r ≤ n, then there are b ∈ B and g ∈ G such that
g − b = r.
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Algorithm 12 – find r
1: procedure FindPeriodByShortJumps(n)
2: a← d

√
n e

3: for i ∈ {0, . . . , a− 1} do
4: bi ← i
5: gi ← (i+ 1) · a.

6: query each element of
⋃
i{bi, gi}

7: return the smallest positive value of (a · (j + 1)− i) among the pairs
{(i, j) | query(bi) = query(gj)}

Proof. Clear if r ∈ G. Otherwise write r = aq + t, where 0 ≤ q < a and
0 < t < a. Taking b = a− t ∈ B and g = a(q + 1) ∈ G, we have r + b = g.

Procedure FindPeriodByShortJumps(n) needs to make |B|+|G| = O(
√
n )

queries. Note that the maximum position queried is a2 ≤ n + 2
√
n. So from

Lemma 9.4.9 we have the following lemma.

9.4.11. Lemma. For any m > 0 there is a deterministic, non-adaptive order-
finding algorithm that makes O

(√
n+ n

m

)
queries to an m-restricted oracle.

Large jump length m ≥ 2Ω(
√
n )

To begin we need the following lemma.

9.4.12. Lemma. Let c be a large enough constant. If m ≥ 2c
√
n, there exists a

partition of Pn into A0, . . . , Ak with the following properties:

1. A0 , Pn ∩ [1,
√
n ].

2. For all 0 ≤ i ≤ k, νAi(lcm([n])) <
√
m.

3. k = O(n / logm).

Proof. For any set A ⊆ Pn, we have

νA(lcm([n])) =
∏
p∈A

pblogp(n)c ≤ n|A|,

because pblog p(n) is the highest power of p that divides some integer in [n]. So
if we take A1, A2, . . . , to be consecutive subsets of Pn \ A0, each containing
blogm/(2 log n)c − 1 primes (except possibly the last), the second condition
is satisfied for all i > 0. Now the Prime Number Theorem implies that the
number of sets in such a partition is |Pn|/(logm/(2 log n)) = O(n / logm) (which
gives us the third condition), and also that |A0| = O(

√
n / log n), implying

νA0(lcm([n])) = 2O(
√
n ) ≤

√
m for large enough c.
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Algorithm 13 find r when m ≥ 2c
√
n

1: procedure FindPeriodByLongJumps(n)
2: find the partition of Pn into A0, . . . , Ak (as in Lemma 9.4.12)
3: for i = 1 to k do
4: if query(νA0∪Ai(lcm([n]))) = query(0) then
5: N ← νA0∪Ai(lcm([n]))
6: use the algorithm FindPeriod(n) from Section 9.3.3 to find r,

replacing each query(i) with query(i mod N).
7: return r
8:

9.4.13. Lemma. Let c be as in Lemma 9.4.12. If m ≥ 2c
√
n then Algorithm 13

makes O(n / logm + log n / log log log n) queries to an m-restricted oracle and
outputs the period r.

Proof. The first property of the partition implies that at most one Ai with
i > 0 contains a prime divisor of r. In any case the for loop will find an i such
that r | νA0∪Ai(lcm([n])). So after a suitable i has been found, we know that r
divides N , νA0∪AI (lcm([n])) <

√
m ×

√
m = m by the second property, and

therefore for all i, if i ≡ i′ (mod N) then query(i) = query(i′). Hence by using
the algorithm of Section 9.3.3, with each query to position i replaced by a query
to position (i mod N), r is found with O(log n / log log log n) additional queries.

It is clear that the main loop spends at most O(k) = O(n / logm) queries
(by the third property) on checking the if condition inside the for loop. So the
total number of queries made by FindPeriodByLongJumps(n) is O(n / logm+
log n / log log log n). Also note that the maximum position the algorithm queries
is

max
i
{νA0∪Ai(lcm([n]))} < m.

So from Lemma 9.4.9 we have an algorithm that finds r by making at most
O(n / logm+ log n / log log log n) queries to an m-restricted oracle.

9.5 Extensions and consequences

9.5.1 Cycle finding

In the cycle finding problem, we do not know the starting position s of the
sequence, which may be non-zero. We prove the following.

9.5.1. Theorem (Chakraborty et al. [CGM11a]). The query complexity
of cycle finding for m-restricted oracles Om

f is between

Ω(log s+ s/m+ log r / log log r +
√
r/(logm log r) + r/m)
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and

O (log s+ s/m+ log r / log log log r + r / logm) .

The query complexities for unrestricted oracles can be obtained by eliminating
the terms involving m.

Proof. In view of our bounds for order finding, we only need to justify the
added term Θ(log s+ s/m) in both the upper and lower bounds.

The term Ω(log s) is clear, even under the promise that the period is r = 1,
since the problem of determining the index of the first ‘1’ in a sequence consisting
of s zeroes followed by an infinite number of ones can be reduced to it.3 The term
Ω(s/m) is clear from the mere fact that the algorithm needs to reach position
s+ r > s to detect any cycle.

For the upper bound, assume temporarily that s is known and we can get tight
upper bounds on n within the stated query complexity, where b is said to be a tight
upper bound for a if a ≤ b = O(a). (We will see how this can be done Section 9.5.3).
Then we can replace each query(i) by FindPeriod to query(i + s), which
results in the same outcome, and find r with O(log n / log log log n + n / logm)
queries, which is of the right order as n = O(r).

9.5.2 Lower bound for discrete log via the generic group
model

In earlier work the query complexity of group properties has been studied in a
different (but related) model – the generic group model [BB99, Sut07]. In this
setting, one has access to a “black box” that allows one to find the identity element
of the group, compute the inverse of an element, and multiply two elements. The
black box returns certain labels to which the algorithm is not allowed to ascribe
any meaning, except for equality comparisons (the label determines uniquely the
group element, but the precise bijection is a priori unknown to the algorithm).

The best known algorithm to compute the order of an element in this model
was found by Sutherland [Sut07]. His algorithm runs in time O(

√
r / log log r ),

where r is the order of the group. In particular, its query complexity is bounded
by O(

√
r / log log r ). A lower bound that is polynomial in r was shown by Babai

and Beals [BB99], and Sutherland shows a lower bound of Ω(r1/3) [Sut07]. In
contrast, for the similar problem of discrete log over generic groups there are tight
Θ(
√
r) bounds (the lower bound is by Shoup [Sho97], and the upper bound by

Shanks [Sha71]). Therefore, discrete log is strictly harder than order finding in the

3Note that it is required here to identify the precise value of s. If an upper bound on s were
all that is needed, the query complexity could grow arbitrarily slowly as a function of s (albeit
not necessarily of r).
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generic group model, but their complexities are polynomially related. In contrast,
there is an exponential separation between the two in our model.

Indeed, given a ∈ G, we know that it is possible to find the order r of the
(cyclic) group generated by a with O(

√
r / log log r ) queries in the generic group

model. Afterwards, any of the “jumps” allowed in our model (of the form ai for
some i ≥ 0 and a that was obtained previously) can be simulated with O(log r)
queries to a generic group oracle by the standard logarithmic exponentiation
algorithm, after reducing i modulo r. So the existence of an algorithm making
q queries for the discrete-log problem in our model implies an algorithm for the
discrete-log problem in the generic group model making O(

√
r / log log r+ q log r)

queries; by the Ω(
√
r) lower bound of Shoup, one gets q = Ω(

√
r / log r). We have

thus proved the following.

9.5.2. Theorem (Chakraborty et al. [CGM11a]). The discrete-log prob-
lem with an unrestricted oracle requires Ω(

√
r/ log r) queries.

Interestingly, this is exponentially larger than the O(log r / log log log r) upper
bound we prove for the order-finding problem.

To apply any of the algorithms presented so far, we need to be able to
have at our disposal a good upper bound r′ on r and know the value of s.
We say that a pair (r′, s′) is a candidate if r ≤ r′ and s ≤ s′. Given a
candidate pair r′ and s′, Procedures FindPeriodByShortJumps(s, n) and
FindPeriodByLongJumps(s, n) can be used to build a deterministic procedure
check(r′, s′) to decide if the bounds r′ and s′ are valid, i.e., r ≤ r′ and s ≥ s′,
and the same can be said of FindPeriodByLongJumps(s, n)

9.5.3 Obtaining good upper bounds on r and s

To apply any of the algorithms presented so far, we need to be able to have at
our disposal a good upper r′ on r and know the value of s. Given a candidate
pair r′ and s′, Procedures FindPeriodByShortJumps(s, n) and FindPeri-
odByLongJumps(s, n) can be used to build a deterministic procedure Valid-
Bounds(r′, s′) to check if r′ and s′ are valid bounds, i.e., r ≤ r′ and s ≥ s′. We
omit the code; note that the probabilistic part of FindPeriod(s′, r′) only comes
into play when s′ and r′ are good bounds, and could in fact be skipped for this
check. The query complexity of this check is O(f(r′) + g(s′)), where

f(r′) , min(r′/m+
√
r′, r′ / logm+ log r′ / log log log r′)

and

g(s′) = s′/m.

We show that with O(f(r) + g(s) + log s) queries we can determine the precise
values of s and r.
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Algorithm 14 – find r and s
1: procedure FindPeriodAndStart
2: for i = 1 to ∞ do
3: r′ = df−1(2i)e
4: s′ = dg−1(2i)e
5: if ValidBounds(s′, r′) then
6: r ← FindPeriod(s′, r′)
7: binary search for s on [0,∞) by comparing query(s’) and query(s’+r)
8: return (r, s)

Note that f(r) and g(s) are strictly increasing functions whose growth rate is
bounded above by a polynomial. In particular their inverses satisfy f(f−1(x)+1) =
O(x) and g(g−1(y) + 1) = O(y). (We are viewing f and g as continuous,
increasing functions defined over the reals). Consider Algorithm 14. Clearly
the call to FindPeriod(s′, r′) will succeed when i reaches the value i0 =
max(dlog f(r)e, dlog g(s)e). The number of queries made at this point is

i0∑
i=1

f(df−1(2i)e) + g(dg−1(2i)e) =

i0∑
i=1

O(2i + 2i),

which is O(2i0) = O(max(f(r), g(s)). So we can determine r with O(f(r) + g(s))
queries. The next line finds s by binary search with O(log s) queries. Here
Lemma 9.4.9 is implicitly used, coupled with the fact that position r′ ≥ r has been
already inspected at this point. (Notice that the binary search must start from
scratch and find a tight upper bound on s, as the prior bound s′ might be much
larger than poly(s).) Therefore the precise values of r and s can be determined
after O(f(r) + g(s) + log s) queries with high probability.

9.6 Summary

We showed that the query complexity of cycle detection (and related problems),
when one is allowed to inspect any element of the sequence at will, is sublogarithmic
in the period length. The bounds do not quite match however; it would be
interesting to close the gap between Ω(log r/ log log r) and O(log r/ log log log r).
I strongly suspect that the lower bound is tight in this case. (Of course, it would
also be interesting to try to close the bigger, quadratic gap that appears in one of
the terms once the parameter m is introduced.)

We also provided algorithms and lower bounds for these problems in a model
when the “jump length” is limited; the lower bounds here improve on the existing
work.



Appendix A

Some frequently used estimates

We use the following well-known inequalities [Juk11].

et ≥ 1 + t

(1 + x)n ≥ 1 + xn (n ∈ Z, x ∈ R, x ≥ 1)

n! =
√

2πn
(n
e

)n(
1 + Θ

(
1

n

))
(Stirling’s formula)

2n√
n

(√
2

π
−O

(
1

n

))
≤
(

n

bn/2c

)
≤ 2n√

n
·
√

2

π(
n

k

)
=

√
n

2πk(n− k)
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k

)k ( n

n− k

)n−k
(1−O(k−1))
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k
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(
n

k

)
≤
(
n

≤ k

)
≤
(en
k

)k
(1 ≤ k)

e−k
2/n−1/(6k)

√
2πk

(en
k

)k
≤
(
n

k

)
(1 ≤ k ≤ n/2)(

n

≤ k

)
≤
(
n

k

)(
1 +

k

n− 2k + 1

)
(1 ≤ k ≤ n/2)

2n·H(k/n)−O(logn) ≤
(
n

≤ k

)
≤ 2n·H(k/n) (1 ≤ k ≤ n/2)(

n

αn

)
=

1 + o(1)√
2πα(1− α)n

· 2n·H(α) (αn ∈ N, 0 < α < 1)

Here H(x) stands for Shannon’s entropy function:

H(x) = x log

(
1

x

)
+ (1− x) log

(
1

1− x

)
for x ∈ (0, 1), and H(0) = H(1) = 0.
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Chernoff bounds

Let X1, . . . , Xn be [0, 1]-valued independent random variables with E [Xi] = pi.
Define X ,

∑n
i=1 Xi and p , 1

n
E [X] = 1

n

∑
pi. Then for any δ > 0 we have the

following inequalities:

Multiplicative bounds

Pr [X ≥ (1 + δ)pn] ≤
(

eδ

(1 + δ)1+δ

)pn
≤ e−pnδ

2/3 if δ ≤ 1

Pr [X ≤ (1− δ)pn] ≤
(

eδ

(1 + δ)1+δ

)pn
≤ e−pnδ

2/2

Pr [|X − pn| ≥ δpn] ≤ 2e−pnδ
2/3 if δ ≤ 1

Additive bounds

Pr[X ≥ n(p+ δ)] ≤ e−2nδ2

Pr[X ≤ n(p− δ)] ≤ e−2nδ2

The difference between the multiplicative and the additive forms of the bounds
is a ratio of O(p) in the exponent; multiplicative bounds are better for p = o(1),
and almost the same for constant p.

If we know E [Xi] ≤ pi instead, then the bound for Pr [X ≥ (1+δ)pn] continues
to hold; similarly in the opposite direction. See [DP09, MU05, MR95] for in-depth
treatments of concentration inequalities and their use in the analysis of randomized
algorithms.
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Nearly tight bounds for testing function isomorphism. Manuscript,
2011.

[ABS91] N. Alon, L. Babai, and H. Suzuki. Multilinear polynomials and
Frankl-Ray-Chaudhuri-Wilson type intersection theorems. Journal of
Combinatorial Theory, Series A, 58:165–180, 1991.

[ABY08] A. Al-Bashabsheh and A. Yongaçoglu. On the k-pairs problem. In
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In Proceedings of the 24th ACM Symposium on Theory of Computing
(STOC), pages 438–449, 1992.

[BC08a] L. Babai and P. Codenotti. Isomorphism of hypergraphs of low rank
in moderately exponential time. In Proceedings of the 49th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 667–
676, 2008.

[BC08b] L. Babai and S. Chakraborty. Property testing of equivalence under a
permutation group action. Technical report, Electronic Colloquium
on Computational Complexity (ECCC) TR–08–04, 2008. To appear
in ACM Transactions on Computation Theory.
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[BGM10] H. Buhrman, D. Garćıa–Soriano, and A. Matsliah. Learning parities in
the mistake-bound model. Information Processing Letters, 111(1):16–
21, 2010.

[BGV05] A. de Bonis, L. Gasieniec, and U. Vaccaro. Optimal two-stage
algorithms for group testing problems. SIAM Journal on Computing,
34:1253–1270, 2005.

[Bha08] A. Bhattacharyya. A note on the distance to monotonicity of boolean
functions. Technical report, Electronic Colloquium on Computational
Complexity (ECCC) TR–08–012, 2008.

[BJKS04] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An
information statistics approach to data stream and communication
complexity. Journal of Computer and System Sciences, 68:702–732,
2004.

[BKL83] L. Babai, W. M. Kantor, and E. M. Luks. Computational complexity
and the classification of finite simple groups. In Proceedings of the
24th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 162–171, 1983.



Bibliography 201

[Bla08] E. Blais. Improved bounds for testing juntas. In Proceedings of the
12nd International Workshop on Randomization and Computation
(RANDOM), pages 317–330, 2008.

[Bla09] E. Blais. Testing juntas nearly optimally. In Proceedings of the 41st
ACM Symposium on Theory of Computing (STOC), pages 151–158,
2009.

[Bla10] E. Blais. Testing juntas: A brief survey. In O. Goldreich, editor,
Property Testing, pages 32–40, 2010.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with
applications to numerical problems. In Proceedings of the 22nd ACM
Symposium on Theory of Computing (STOC), pages 73–83, 1990.

[Blu94] A. Blum. Separating distribution-free and mistake-bound learning
models over the boolean domain. SIAM Journal on Computing,
23(5):990–1000, 1994.

[Blu96] A. Blum. On-line algorithms in machine learning. In Proceedings of
the Workshop on On-Line Algorithms, pages 306–325, Dagstuhl, 1996.

[BO10] E. Blais and R. O’Donnell. Lower bounds for testing function isomor-
phism. In Proceedings of the 25th IEEE Conference on Computational
Complexity (CCC), pages 235–246, 2010.
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Szemerédi theorem on equitable colouring. Combinatorics, Probability
and Computing, 17:265–270, 2008.

[Kla00] H. Klauck. On quantum and probabilistic communication: Las Vegas
and one-way protocols. In Proceedings of the 32nd ACM Symposium
on Theory of Computing (STOC), pages 644–651, 2000.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[KS64] W. Kautz and R. Singleton. Nonrandom binary superimposed codes.
IEEE Transactions on Information Theory, 10(4):363–377, 1964.

[KS92] B. Kalyanasundaram and G. Schnitger. The probabilistic commu-
nication complexity of set intersection. SIAM Journal on Discrete
Mathematics, 5:545–557, 1992.

[KS05] P. Keevash and B. Sudakov. Set systems with restricted cross-
intersections and the minimum rank of inclusion matrices. SIAM
Journal on Discrete Mathematics, 18(4):713–727, 2005.

[KS06] A. R. Klivans and R. A. Servedio. Toward attribute efficient learning
of decision lists and parities. Journal of Machine Learning Research,
7:587–602, 2006.

[KV94] M. J. Kearns and U. V. Vazirani. An introduction to computational
learning theory. MIT Press, Cambridge, MA, USA, 1994.

[Lin98] J. von Lint. Introduction to Coding Theory. Springer, third edition,
1998.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound:
a new linear-threshold algorithm. Machine Learning, 2(4):285–318,
1988.

[Lit89] N. Littlestone. From on-line to batch learning. In Proceedings of the
second Conference on Learning Theory (COLT), pages 269–284, 1989.

[LLZ11] M. L. Leung, Y. Li, and S. Zhang. Tight bounds on the randomized
communication complexity of symmetric XOR functions in one-
way and SMP models. Technical report, Electronic Colloquium on
Computational Complexity (ECCC) TR–11-011, 2011.



208 Bibliography

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier
transform, and learnability. Journal of the ACM, 40:607–620, 1993.

[LN11] O. Lachish and I. Newman. Testing periodicity. Algorithmica,
60(2):401–420, 2011.

[LR01] E. Lehman and D. Ron. On disjoint chains of subsets. Journal of
Combinatorial Theory, Series A, 94(2):399–404, 2001.

[Lub90] A. Lubiw. Counterexample to a conjecture of Szymanski on hypercube
routing. Information Processing Letters, 35(2):57–61, 1990.

[Luk99] E. M. Luks. Hypergraph isomorphism and structural equivalence of
boolean functions. In Proceedings of the 21st ACM Symposium on
Theory of Computing (STOC), pages 652–658, 1999.

[LW01] J. Lint and R. Wilson. A course in combinatorics. Cambridge
University Press, 2001.

[Mac98] A. J. Macula. Probabilistic Nonadaptive and Two-Stage Group Testing
with Relatively Small Pools and DNA Library Screening. Journal of
Combinatorial Optimization, 2(4):385–397, 1998.

[MORS09] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. A. Servedio. Testing
±1-weight halfspaces. In Proceedings of the 13rd International
Workshop on Randomization and Computation (RANDOM), pages
646–657, 2009.

[MORS10] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. A. Servedio. Testing
halfspaces. SIAM Journal on Computing, 39:2004–2047, 2010.

[MOS04] E. Mossel, R. O’Donnell, and R. Servedio. Learning functions of
k relevant variables. Journal of Computer and System Sciences,
69(3):421–434, 2004. Also known as “Learning juntas”.

[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge
University Press, New York, NY, USA, 1995.

[MS77] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes.
North-Holland, 1977.
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edge testers, 151, 161, 162
edge-disjoint paths, 149
efficiency, 3, 5, 70, 71, 73, 107, 108,

110, 124, 132, 133, 135, 136,
139, 145, 150, 167, 169, 170,
180

Efron-Stein decomposition, 61
entropy function, 114, 195
equipartition, 7
equivalence queries, 132
error-correcting codes, 109
example (learning)

labelled, 132
unlabelled, 131

explicit lower bounds, 105
exponential time, 6
extract, 63

factoring, 170

faithful, see group action
field arithmetic, 128
FindExponents, 178
FindPeriod, 182
FindPeriodAndStart, 194
FindPeriodByLongJumps, 191
FindPeriodByShortJumps, 190
FindUniquePrimeDivisor, 179
finite fields, 127, 128
forbidden intersections, 23
formulae, 6, 123, 125, 128

DNF, 123, 125, 129
Fourier

degree, 125, 126, 129
dimension, 100, 101, 103
expansion, 61, 100, 136

influence and, 41
Frankl–Rödl theorem, 25
Frankl–Wilson theorem, 23
fully homomorphic, 92

games, 11
gap, 194
Gaussian elimination, 140
graph, 6, 8, 18, 92, 94, 150

isomorphism, 18, 91, 103
properties, 17, 18, 148

group action, 20, 74, 81
faithful, 20, 78

group testing, 105, 108, 121
noisy, 119
relaxed, 111

Hadamard code, 4, 105, 136
halving algorithm, 135–139, 144, 145
Hamming codes, 152
Hamming weight, 7
HasFactor, 177
hash functions

perfect family of, 48
HasTwoPrimeDivisors, 180
height, see depth
history sequence, 173–175



220 SUBJECT INDEX

hypercube, 8, 148, 150–152, 159, 160
hypergraphs, 6, 8, 73

uniform, 9, 18
hypothesis (learning), 131
hypothesis class, 5, 132

implicit learning, 19, 123, 125, 130
inclusion poset, 8, 24
independence test, 40, 41, 56
indistinguishability, 13, 29
infinite loops, 170
influence, 40, 41, 42, 47, 56, 57, 61,

75, 84, 119
properties, 41

influence test, see independence test
influential variable/block, see

relevant variable/block
interconnection networks, 160
interpolation, 128
invariance group, see automorphism

group
IsDivisor, 177
IsolateFactors, 181
isomorphism

of boolean functions, 5, 6, 74
of formulae, 6
of graphs, 6, 18
of hypergraphs, 6, 91
property testing of, 17–19
time complexity, 6

Jensen’s inequality, 143
jumps, 170, 184, 189, 190, 194
junta testers, 5, 27, 48, 55–61, 83, 84,

88, 90, 124, 176
adaptive, 59, 61
non-adaptive, 55, 56, 61

juntas, 3, 6, 40, 84, 123
layered, 99
learning, 135

junto-symmetric functions, 75, 76,
78–91, 99

k-juntas, see juntas

k-junto-symmetric, see
junto-symmetric

k-parities, see parities
König’s theorem, 150
k-set/subset, 7
k-wise independence, 35, 126, 128

L1 distance, 12
L∞ distance, 12
layer, 8
layers, see hypercube
learning, 4, 131, 135, 145

attribute-efficient, 135
proper, 132

least common multiple, 171
length (cycles), 170, 172
linear algebra method, 23
linear codes, 152
linear functions, 4, 8, see parities
linear independence, 24, 102, 136,

141
linear isomorphism, 100
linear programming, 11
linear spaces, 141
linear time, 3, 49, 145
linearity of expectation, 182, 183
linearity test, see BLR linearity test
linearly ordered range, 150
list-decodable codes, 136
logarithms, 171
longest orbit, 79, 81
Luks’s algorithm, 6, 47, 49

majority function, 5, 19, 75
majority vote, 139, 144, 145

weighted, 141
Markov’s inequality, 52, 68, 102, 166,

183
matching, 150

partial, 148
matrix multiplication, 136
meagerness, 149
measure, see distribution
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MIP, 4
mistake bound, 131, 136, 145
mistake-bounded learning, 132, 135
monomials, 6, 19, 24
monotonicity, 4, 147, 147, 149, 161,

167
of influence, see influence

monotonicity (influence), 41
multiprocessor systems, 160

NC1, 128, 129
NEXP, 4
non-adaptive complexity, 62
non-constructive, 28
NP, 145
NP oracles, 145
NP-complete, 6
NP-intermediate, 6

one-sided error, 10
online learning, 131
open problems, 61, 70, 103, 135, 145,

161, 194
oracle access, 29, 40, 50, 53, 65, 70
oracles, 83, 96, 145, 147, 170, 172

divisibility, 173, 178
for NP, 145
for sequences, 172
relevance, 115, 118
restricted, 172
restricted/unrestricted, 172
unrestricted, 172

orbit, 78
orbits, 31
order finding, 169, 170, 172

P, 3, 6
vs NP, 145

PAC learning, 132–135, 138, 145
pair testers, 161
pairing, 148

aligned, 148, 149, 150, 152, 158
pairing number, 94

parities, 6, 8, 19, 21, 22, 27, 28, 40,
75, 101, 105, 106, 108, 112,
115, 120, 121, 130, 131, 135,
136, 138, 139, 145

parity check matrix, 152
parity pairs, 144
parity vector, 152
Parseval’s identity, 41
partially ordered set, 147
partially symmetric, 76
partition properties, 96
partitions, 173, 175, 182, 186–188,

190, 191
isolating, 46, 55
of hypergraphs, 96, 97
random, 46, 47, 55, 59, 60, 69,

111–113
PCP theorem, 4
perfect completeness, see one-sided

error
period, 170
periodic, 172
periodicity testing, 170, 172
permutation groups, 78
permutation-invariant, 43, 124, 125
permutations, 6, 21, 31, 34, 43, 48,

53, 93, 99, 103, 124, 160, 170,
172, 185

compatible with Q and a, 31
product of, 20
realizable, 160

pigeonhole principle, 26
pointwise stabilizer, 78, 79, 81
Pollard’s ρ algorithm, 170
poly-symmetric family, 76, 78, 82,

83, 103
polynomial, 128
polynomial hierarchy, 6, 7
polynomial time, 3, 6, 132, 135, 137,

145
polynomials, 24, 101, 125, 127, 128

evaluation of, 128
multilinear, 24
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sparse, 123, 125, 129, 130
univariate, 128

poset, see partially ordered set
practical applications, 5
predictors, 4, 131, 141, 144
preprocessor, 50, 51, 69, 124
prime factors, 171, 176–178, 180
prime number theorem, 171
primitive, 78
projection, 143, 155
property, 3
property testing, 4, 9–15
protocols, 107
pseudorandom number generators

(PNGs), 170
public-coin model, 107
purely periodic, 172

quadratic mean vs. arithmetic mean,
157

quantum property testing, 9, 55, 105,
170

quasipolynomial time, 6
query complexity, 4, 10, 10, 17–19,

124, 170

radix sort, 145
random partition, see partitions
random seed, 173
random-access codes, 114
randomization, 4
range reduction, 151, 166
rank (hypergraphs), 9, 73

bounded, 6
reductions, 18, 19, 29, 45, 75, 84, 89,

112, 117, 121, 162, 166, 192
redundancy bits, 152, 153
regularity, 28, 29, 31, 33
relevant variable, 40
replicate, 46
k-representable, 74
restricted oracles, see oracles
restrictions, 7

roulette, 169
rounds, 131
routing, 150, 160, 167

sample complexity, 136
sample extractors, 5, 39, 50, 123
self-correction, 4, 70, 105
separable matrix, 110
separation, 193
set operations, 18, 94
shape analysis, 170
shattered sets, 133
simultaneous message passing (SMP),

120
sink, 148
size parameter, 123, 129
smoothness, 62
sorting, 80, 144
soundness, 10
source, 148
source-sink pairing, see pairing
sparse, see polynomials
sparsity, 149, 152–162, 167
stabilizer, see pointwise stabilizer
starting position, 172
states, 170
statistical distance, 11
strong juntas, 118
subadditivity, 41, 84
sublinear-time algorithms, 4
submodularity, 41, 57
success probability, 10
symmetric functions, 5, 19, 74
symmetric group, 19, 78
symmetric influence, 84
symmetric XOR, 120
Szemerédi’s regularity lemma, 93,

103
Szymanski’s conjecture, 160, 167

tail (cycles), 170
TC0, 128
telescopic sum, 57
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testers, 9
adaptive vs. non-adaptive, 10
local, 4
smooth, 62
tolerant, 10, 61, 89

testing number, 92
tolerance, 10, 61, 62, 124
tortoise and hare, 170
total variation distance, see

statistical distance
totally ordered range, see linearly

ordered range
transitive closure, 148, 151
transitive group, 78
trivial algorithm, 136, 138, 141
truncated functions, 28–31, 33
truth table, 3, 46–49

uniform

family of functions, 33, 33–36
set system, 23

uniformity, 9, 11
uniquely decipherable codes, 110
unrestricted oracles, see oracles

variation, 61
variation distance, see statistical

distance
VC dimension, 133, 136
vertex cover, 150
vertex-disjoint paths, 149
violation, 148, 151, 162
violation graph, 150

WhichIsRelevant, 179
Winnow algorithm, 109

Yao’s principle, 10–13





Samenvatting

Hoe kunnen we rekenkundige problemen oplossen wanneer we simpelweg niet
genoeg tijd hebben om alle invoer te verwerken? Bijvoorbeeld, gegeven een rij
getallen, kunnen we bepalen of deze zich gaan herhalen door slechts naar een paar
getallen te kijken? Of, gegeven toegang tot een booleaanse functie f , hoeveel
aanroepen van f hebben we nodig om te testen of deze functie monotoon is? En
hoe zouden we kunnen ontdekken of f vrijwel gelijk is aan een andere, vooraf
bekende, functie g?

Centrale doelen van de theoretische informatica zijn het inzicht krijgen in de
grenzen van de rekenkracht van verschillende rekenmodellen, en het karakteriseren
van de middelen die nodig zijn om bepaalde problemen op te lossen. Het soort
problemen hierboven genoemd is bij uitstek geschikt om bestudeerd te worden
in het property testing model (het testen van eigenschappen), en het is door
deze lens dat wij die vraagstukken onderzoeken. Bij property testing moeten
algoritmen onderscheid maken tussen objecten die een gewenste eigenschap hebben,
en objecten die daar ver vandaan zijn. We zoeken gerandomiseerde testers die
de problemen met zo min mogelijk functie-aanroepen oplossen (bovengrenzen),
samen met rigoureuze bewijzen die laten zien waarom er geen significant betere
oplossingen kunnen bestaan (ondergrenzen). De resultaten maken gebruik van
technieken uit kansrekening, grafentheorie, extremale combinatoriek, de studie
van permutatiegroepen, coderingstheorie, de analyse van booleaanse functies en
getallentheorie.

Het beginpunt is ons werk aan het probleem van het testen van functie-
isomorfisme in hoofdstuk 2. Twee booleaanse functies met n-bit invoer zijn isomorf
wanneer ze hetzelfde zijn, na een zekere permutatie van de n invoervariabelen.
Er wordt vooral gekeken naar de situatie wanneer g bekend is en f aangeroepen
wordt. Het is bekend dat deze taak uitgevoerd kan worden met Õ(n) aanroepen,
maar dit is exponentieel groter dan de beste ondergrenzen van voorgaand werk.
Hier sluiten we de kloof door een bijna-optimale adaptieve ondergrens te geven
van Ω(n) aanroepen voor de slechtst-mogelijke functies f . Verscheidene varianten

225



226 Samenvatting

van het probleem worden ook besproken.
Hiernaast laten we in hoofdstuk 3 zien dat wanneer f een k-junta is (dat

betekent dat de functiewaarde bepaald wordt door slechts k van de n invoervari-
abelen), de complexiteit van isomorfisme testen met f is gereduceerd naar Õ(k).
(In contrast, één van onze andere resultaten is dat wanneer we de schijnbaar
zwakke restrictie opleggen dat de tester slechts eenzijdige fouten kan maken, de
complexiteit van isomorfisme testen met k-juntas wordt ruwweg log

(
n
k

)
, wat veel

groter is voor kleine k.) Hierbij construeren we onafhankelijk interessante objecten
met de naam sample extractors. Dit zijn efficiënte algoritmen die ons in staat
stellen om steekproeven te doen van de waarheidstabel van de “kern”-functie op
k variabelen die de gegeven k-junta functie bepaalt.

Vervolgens geven we een gedeeltelijke karakterisatie van de verzameling functies
waartegen het onmogelijk is om isomorfisme te testen met een constant aantal
functie-aanroepen. We laten in hoofdstuk 4 zien dat, voor elke functie f met
polynomiaal veel verschillende permutaties, isomorfisme met betrekking tot f
testbaar is met een constant aantal aanroepen. Deze stelling is een uitbreiding
op voorgaande resultaten over het testen van junta’s, en beschrijft alle functies
waarvan tot nu toe bekend was dat isomorfisme testen makkelijk is. Gerelateerd hi-
eraan, en kijkende naar de overeenkomst tussen het testen van functie-isomorfisme
en het testen van hypergraaf-isomorfisme, richten we onze aandacht naar het
testen van isomorfisme voor uniforme hypergrafen. We karakteriseren de klasse
van hypergrafen van constante rang waarvoor isomorfisme efficiënt getest kan
worden, dit is een generalisatie van een resultaat van Fischer (STOC’04) over
isomorfismen in grafen.

In hoofdstuk 5 leggen we een verbinding aan met groeptesten, en zien dat ideeën
uit het testen van isomorfisme gebruikt kunnen worden bij het bestuderen van
een natuurlijke relaxatie van problemen uit groeptesten; zowel de methoden voor
het verkrijgen van ondergrenzen en de algoritmen zijn bruikbaar. We bepalen de
precieze complexiteit van het gerelaxeerde groeptest probleem voor niet-adaptieve
algoritmen, op een constante factor na. Het vraagstuk van het krijgen van
expliciete ondergrenzen voor de problemen wordt ook aangepakt; het blijkt dat
pariteitsfuncties (XOR’s van deelverzamelingen van de invoervariabelen) een
voorbeeld zijn van de ongunstigste ondergrenzen voor het testen van functie-
isomorfisme, zowel voor eenzijdige als tweezijdige testers.

We vervolgen met het bespreken van andere property testing problemen in
hoofdstuk 6. Het blijkt dat onze sample extractors gebruikt kunnen worden
ter verbetering van de beste bekende algoritmen voor vele andere problemen,
welke bepaald worden door de eigenschap van het hebben van een beknopte
representatie, zoals het testen of f berekend kan worden door kleine circuits of
door kleine beslissingsbomen. We geven ook nieuwe ondergrenzen voor sommige
van deze problemen, waarmee we diverse open vragen gesteld door Diakonikolas
et al. (FOCS’07) oplossen.

In hoofdstuk 7 onderzoeken we pariteitsfuncties op een andere manier: com-
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putationele leertheorie. Testen en leren zijn twee nauwverwante gebieden. In
plaats van testen of de functie f een pariteit is op een klein aantal variabelen,
nemen we bij testen aan dat dat zo is. Dan probeert het algoritme dan f(x) te
voorspellen voor andere invoer x met hoge nauwkeurigheid, op basis van een aantal
voorbeeldwaarden van f . We werken in het mistake-bound leermodel, welke sterker
is dan het (meer gebruikelijke) PAC-model. Het is een welbekend feit dat pariteiten
geleerd kunnen worden met foutgrens (of steekproefcomplexiteit) O(k log n), maar
geen implementatie in polynomiale tijd van een dergelijk leeralgoritme is bekend.
We ontwerpen een simpel, deterministisch, polynomiale-tijd algoritme om k-
pariteiten te leren met foutgrens O(n1− 1

k ). Dit is het eerste polynomiale-tijd
algoritme wat ω(1)-partiteiten kan leren met foutgrend o(n), en met standaard
conversie-technieken impliceert dit een verbetering van de resultaten van Klivans
and Servedio (COLT’04) voor het leren van k-pariteiten in het PAC-model.

Hiernaast beschouwen we ook één van de fundamentele problemen in property
testing: monotoniciteit van functies (niet noodzakelijk booleaanse functies). In
hoofdstuk 8 onderzoeken we functies gebaseerd op de n-dimensionale hyperkubus
en geven we een Ω(n) ondergrens voor eenzijdige, niet-adaptieve testers van
monotoniciteit. Omdat er nog steeds een aanzienlijke kloof zit tussen deze
ondergrens en de beste bekende bovengrenzen, kijken we naar een natuurlijke
aanpak voor het verkrijgen van bovengrenzen: namelijk het bestuderen van de
combinatorische eigenschappen van de hyperkubus. Er was al eerder opgemerkt
dat wanneer een verzameling van bron-uitgang paren op de gerichte hyperkubus
(waarbij alle bronnen en uitgangen verschillend zijn) verbonden kan worden
met rand-disjuncte paden, de monotoniciteit van functies op de n-dimensionale
hyperkubus testbaar is met O(n) functie-aanroepen. Bepalen of deze eigenschap
geldt, is als open vraag gesteld door Lehman en Ron (J. Comb. Theory, Ser. A,
2001), maar het antwoord was al bijna een decennium ongrijpbaar. Door het
analyseren van de combinatorische eigenschappen van de hyperkubus laten we
zien dat het antwoord negatief is, en dat deze aanpak altijd tekort schiet om de
huidige ondergrenzen te bereiken, of zelfs maar te benaderen.

In het laatste hoofdstuk gaan we in op het probleem van detecteren van
cyclussen, geschetst in het begin. We bewijzen dat, misschien contra-intüıtief,
wanneer het kleinste herhalende segment van de reeks verschillende elementen
bevat, de periode r bepaald kan worden door een aantal elementen van de rij op te
vragen, waarbij dat aantal sublogaritmisch in r is; dit is niet ver van optimaal. We
bestuderen ook varianten van het probleem waarbij directe toegang tot de reeks
niet mogelijk is, maar we in plaats daarvan kunnen “springen” tussen posities die
niet te ver van elkaar liggen. Dit is een verbetering op de verwante resultaten van
Cleve (CCC’00).





Abstract

How can we solve computational tasks when we simply don’t have enough time to
process all the data? For example, given a sequence of numbers, can we determine
if they start repeating by looking at just a few of them? Or, given query access to
some boolean function f , how many queries to f do we need to test whether it is
monotone? How about deciding if f is “essentially” the same as another, known,
function g?

One of the central goals of theoretical computer science is to understand the
limits of computation in a variety of models, and to characterize the resources
required to solve certain tasks. The kinds of problems outlined above are
particularly amenable to study in the property testing model, and it is under this
prism that we investigate them. In property testing, algorithms are required to
distinguish those objects which satisfy the desired property from those which
are far from it. We seek query-efficient randomized testers to solve them (upper
bounds), along with rigorous proofs explaining why no significantly better solutions
are possible, even in principle (lower bounds). The results presented here draw
from techniques in probability theory, graph theory, extremal combinatorics, the
theory of permutation groups, coding theory, the analysis of boolean functions,
and number theory.

The starting point is our work on the problem of testing function isomorphism
in Chapter 2. Two boolean functions on n-bit inputs are isomorphic if they are
the same up to permutations of the n input variables. The main case of interest
is when g is known and f needs to be queried. It is known that the task can
be accomplished with Õ(n) queries, but this is exponentially larger than the
best lower bounds from prior work. Here we bridge the gap by contributing an
almost-optimal adaptive lower bound of Ω(n) queries for worst-case functions f .
Several other variants of the problem are also discussed.

In addition, we show in Chapter 3 that when f is a k-junta (meaning that
it is determined by just k of the n input variables), the complexity of testing

isomorphism to f is reduced to Õ(k). (In contrast, another result of ours is that
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if we impose the seemingly weak restriction that the tester have one-sided error,
the complexity of testing isomorphism to k-juntas becomes roughly log

(
n
k

)
, which

is much larger for small k.) In the process we construct objects of independent
interest called sample extractors. These are efficient algorithms that allow us
to draw samples from the truth table of the “core” function on k variables that
determines a given k-junta function.

Next we give a partial characterization of the set of functions against which
it is possible to test isomorphism with constant query complexity. We show in
Chapter 4 that, for any function f with polynomially many different permutations,
isomorphism to f is testable with constantly many queries. This theorem extends
previous results from junta testing and in fact covers all functions known to date
for which isomorphism testing is easy. On a related note, observing the connection
between testing function isomorphism and testing hypergraph isomorphism, we
turn our attention to testing isomorphism for uniform hypergraphs. We give a
characterization of the class of hypergraphs of constant rank for which isomorphism
can be efficiently tested, generalizing a result of Fischer (STOC’04) regarding
graph isomorphism.

In Chapter 5 we establish links with the field of group testing, and observe that
ideas from isomorphism testing can be applied to the study of a naturally-arising
relaxation of group testing problems; both the lower bound methods and the
algorithms are of use. We determine the exact query complexity of the relaxed
group testing problem for non-adaptive algorithms, up to constant factors. The
question of obtaining explicit lower bounds for these problems is also addressed; it
turns out that parity functions (XORs of subsets of the input variables) exemplify
the worst-case lower bounds for testing function isomorphism, both for one-sided
and two-sided testers.

We move on to discuss other property testing problems in Chapter 6. It turns
out that our sample extractors can be used to enhance the best algorithms known
for many other testing problems, specifically those defined by the property of
having concise representations, such as testing if f can be computed by small
circuits, or decision trees of small size. We also provide new lower bounds for some
of them, resolving several open questions posed by Diakonikolas et al. (FOCS’07).

In Chapter 7 we examine parity functions under a different light: computational
learning theory. Testing and learning are two closely related areas. Instead of
testing whether the function f is a parity on a small number of variables, in
testing we assume that it is. Then, based on some example values of f , the learner
tries to predict f(x) for other inputs x with good accuracy. We work in the
mistake-bound model of learning, which is stronger than the (more usual) PAC
model. It is a standard fact that parities can be learned with mistake bound (or
sample complexity) O(k log n), but no polynomial-time implementation of such a
learning algorithm is known. We design a simple, deterministic, polynomial-time
algorithm for learning k-parities with mistake bound O(n1− 1

k ). This is the first
polynomial-time algorithm to learn ω(1)-parities with mistake bound o(n), and
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using standard conversion techniques it implies an improvement over the results
of Klivans and Servedio (COLT’04) for learning k-parities in the PAC model.

Apart from this, we also consider one of the fundamental problems in property
testing: monotonicity of functions (not necessarily boolean). In Chapter 8 we
consider functions defined on the n-dimensional hypercube, and give an Ω(n)
lower bound for one-sided, non-adaptive testers of monotonicity. As there is
still a sizable gap between this and the best upper bounds known, we look at a
natural approch to obtaining upper bounds via the study of routing properties
of the hypercube. It had been previously observed that if any set of source-
sink pairs on the directed hypercube (where all sources and sinks are distinct)
could be connected with edge-disjoint paths, then monotonicity of functions on
the n-dimensional hypercube would be testable with O(n) queries. Determining
whether this property holds was posed as an open problem by Lehman and Ron
(J. Comb. Theory, Ser. A, 2001), but the question had remained elusive for nearly
a decade. By analyzing the combinatorial properties of the hypercube, we show
that the answer is negative, and that this approach must fail short of matching
the current lower bounds, or even approaching them.

In the final chapter we address the cycle detection problem. Perhaps counter-
intuitively, we prove that if the smallest periodic part of the sequence contains
distinct elements, the period length r can be determined by making a number of
probes to the sequence that is sublogarithmic in r; moreover, this is not too far
from optimal. We also study variants of the problem where random access to the
sequence is not allowed, but we can instead “jump” between positions that are
not too far away from each other. The latter improves on the related results of
Cleve (CCC’00).
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