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Chapter 1

Preface

1.1 Introduction

Human language is the product of cultural evolution. This is a point of view
about language that is not accepted by all of its students, but it is a point of view
that I share with other researchers in evolutionary linguistics .

Language is not a static collection of words and grammar rules, but a complex
adaptive system. It changes over time in a way not unlike biological evolution.
Speakers of a language continuously create variations: they make mistakes, they
try to convey novel concepts. Some of these variations are more successful in
communication than others. The most successful variations will continue to be
used, other variations disappear. Just as the principles of biological evolution
explain how species continuously adapt to their environment, these principles of
cultural evolution do the same for language.

This might sound like a truism. In a post-Darwinian era, can we conceive
of any other view? But, there are quite a number of prominent linguists and
philosophers who can. Most notably, Noam Chomsky and Jerry Fodor, who
take a nativist stance: we (humans) have an innate universal grammar, a dedi-
cated mechanism in the brain that contains the basic structures of all languages1

(Chomsky, 1986; Fodor, 1983). So, there is a task for empiricists (that favor an
evolutionary view) to show that universal grammar is not a necessary assumption,
that all aspects of language can be explained as the result of cultural evolution.

Lacking empirical data, the most common methodology in this field is the
use of computer simulations. How can we show that language is the result of
cultural evolution? By repeating it. And this time we pay attention. Of course it

1The main argument of such a view is that without a universal grammar, languages would
not be learnable. If language is not constrained by a universal grammar, the discrepancy
between the amount of possible languages and the data we have for learning them is too vast.
We would never be able to learn a language. This is often referred to as the Poverty of the
stimulus argument.

3



4 Chapter 1. Preface

is not feasible, using computational simulations, to replicate the entire evolution
of language, from its genesis to the current state of every language. So, typically
researchers in the field focus their attention on one particular aspect of language.
The earliest experiments mainly argued against a nativist view by showing that
in principle it is possible for a language to emerge as a result of cultural evolution
(Steels, 1999, 2008) and that languages will automatically evolve to be learnable
(Kirby and Hurford, 2002).

But, the languages that evolved in those experiments do not get close to the
complexity of real human languages. In search of more realism, recent experi-
ments limited their focus to specific language domains. These experiments do not
simulate the evolution of language from scratch, but assume a primitive existing
language and isolate the emergence of one specific aspect of language (such as
language to express color (Bleys et al., 2009), spatial relations (Spranger, 2011),
or grammatical agreement (Beuls and Steels, 2013)).

Presently, I think we can see another step towards realism being taken, a
new development of which this dissertation is a product. Some recent studies
have started to look more carefully at the evolutionary paths themselves (van
Trijp, 2012; Beuls and Steels, 2013). Words and grammatical constructions do
not simply pop up in a language and then stay put. They come to exist as
derivations of other words and then start to live their own life: they gradually
change in function, meaning, and form. For example, the English conjunction
while, stems from the Old English noun kw̄ıl “time”. This example fits a very
common pattern in languages called grammaticalization. Grammaticalization
describes the tendency of words to become more grammatical. The Old English
kw̄ıl had a clear semantical content, whereas while has mostly a grammatical
function in English.

The process of grammaticalization is one of the central themes of this disserta-
tion. I use the example of gradable quantifiers (words such as many and few). In
English these gradable quantifiers belong to the grammatical class of quantifiers
(just as one, all, or half ). But they did not start out like that. For example,
historical linguists established that the word few finds its origins in the Old-
English feawe, which was not a quantifier, but an adjective that could also mean
“small”. In the last two chapters of this thesis I describe a cognitive mechanism
that accurately simulates this grammaticalization path called reanalysis.

This reanalysis mechanism is a general mechanism that can explain the gram-
maticalization of any word into any grammatical category. But, not all words
follow the same grammaticalization path. Some adjectives emerge as adjectives
and stay that way (such as the word big), some quantifiers have different origins
(for example several derives from the Latin verb seperare “to separate”). When
explaining why many and few follow this particular evolutionary path, we also
need to explain why other words don’t. In this dissertation I hypothesize that
this might be due to the unique cognitive properties of these gradable quantifiers.

Psycholinguists have shown that there is a close cognitive relationship between
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size and number. Judgments of size (underlying modifiers such as big and small)
depend on perceptual features of objects (or sets of objects) in the environment.
Judgments of approximate number (underlying terms like few and many) exploit
a combination of spatial features that apply exclusively to sets of objects, such as
their size and density (Durgin, 1995). This cognitive overlap between the concepts
of size and number can account for this particular grammaticalization path: the
dependence on size motivates their adjectival origins, while their application to
sets of objects works as a syntactic magnet that draws them into the grammatical
category of quantifiers.

Depending on your generosity, there are two ways to interpret the results of
this dissertation: The stingy interpretation is that I show very accurately how
and under which cognitive assumptions gradable quantifiers might emerge in a
language. A more generous interpretation is to view the gradable quantifiers as a
test case, leading to a better understanding of the process of grammaticalization.
Furthermore, this work illustrates how the inclusion of data from psycholinguis-
tics may illuminate the grammaticalization patterns found by historical linguists.
Of course, I do not claim that this thesis has the final word on grammaticaliza-
tion, or on quantifiers, or on language evolution for all that matters. The goal
of evolutionary linguistics is to show that human languages are the product of
cultural evolution. What I hope to convince you of is that using computational
models of language evolution to bridge the gap between psycholinguistics and
historical linguistics brings us closer to that goal.

1.2 Outline

Except for the present chapter and Chapter 2, all chapters in this thesis either
have been published already or will be published in the near future as independent
articles. This means that the chapters can be read (or ignored) on their own, and
they can be read in any order. The organization of the chapters in this dissertation
is therefore mainly thematic. The dissertation is divided into three parts. The
first part of this dissertation contains this introduction and a discussion of the
literature on cognition of gradable quantifiers. The second part of the dissertation
consists of three papers that discuss my contributions to the technical machinery
that is needed for conducting robotic language experiments. The final part consist
of three papers that describe the experiments themselves.

1.2.1 Part 1

There are many factors influencing the interpretation of gradable quantifiers: the
size of the type of object being quantified over, their density patterns, some
expected norm, etc. There is a vast amount of literature from different scientific
disciplines, addressing a variety of cognitive aspects of these gradable quantifiers.
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Chapter 2 provides an overview of the results of these different disciplines. It is
abundantly shown that spatial features such as size and density are essential for
the judgment of gradable quantifiers.

1.2.2 Part 2

Developing robotic experiments requires an enormous amount of technical work
that is normally skimmed over in papers on evolutionary language experiments.
This part of the dissertation is dedicated to my contributions to the technical
machinery.

Chapter 3 describes a fully operational procedural semantics that is created
for robotic communicative interactions called Incremental Recruitment Language
(IRL). IRL contains a number of mechanisms that are needed for conceptual-
ization. The goal of this chapter is to provide a detailed overview of the most
essential IRL mechanisms.

Grounding language in sensorimotor spaces is an important and difficult task.
In order for robots to be able to interpret and produce utterances about the real
world, they have to link symbolic information to continuous perceptual spaces.
This requires dealing with inherent vagueness, noise and differences in perspec-
tive in the perception of the real world. Chapter 4 presents two case studies
for spatial language that show how cognitive operations—the building blocks
of grounded procedural semantics—can be efficiently grounded in sensorimotor
spaces.

Chapter 5 studies how quantificational expressions such as few, three and all
can be grounded in real-world perception. I discuss a computational model, called
clustering quantification, designed for use in robot-robot interaction scenarios
which involve discrimination tasks for objects in the real world. The performance
of this model is compared with an alternative type-theory based model. It is
shown that clustering quantification is more suitable for real-world applications.

1.2.3 Part 3

This last part of the dissertation discusses the language evolution experiments
themselves.

The gradable quantifier many does not refer to the same amount in the ut-
terances “many students in the classroom” and “many teachers in the class-
room”. The interpretations of such quantifiers depend on an expected frequency
(a norm)—normally we expect there to be more students than teachers in a class-
room. Chapter 6 provides a cultural-evolution explanation for the emergence of
norm-dependent quantifiers, focusing in particular on the role of environmental
constraints on strategy choices. Through a series of situated interaction exper-
iments, we show how a community of robotic agents can self-organize a quan-
tification system. Environments in which the distribution of objects exhibits
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some degree of predictability creates favorable conditions for context-dependent
quantifiers.

Chapter 7 discusses a series of experiments in which it is shown that the
adjectival origins of gradable quantifiers can be explained by the cognitive overlap
between these quantifiers and adjectives such as big and small.

Chapter 8 illustrates the grammaticalization of gradable quantifiers into
quantifiers. It is shown that other existing quantifiers can create attractor posi-
tions for other modifiers to grammaticalize into and that many and few follow
this path in search of reducing cognitive effort. Thus, arguing that the shift from
qualifying to quantifying expression has a cognitive motivation.





Chapter 2

The Idea of Many - A Literature
Overview

Gradable quantifiers—i.e., words like many, few, much and little—express quan-
tity (or numerosity). And, the way they do this is radically context dependent.
Most people would consider a hundred pages many for an article but not for a
novel. There are many factors influencing the interpretation of gradable quanti-
fiers: the size of the type of object being quantified over, their density patterns,
some expected norm, etc. The way these factors influence the interpretation of
gradable quantifiers might teach us something about their cognitive status. There
is a vast amount of literature from different scientific disciplines, addressing a va-
riety of cognitive aspects of these gradable quantifiers. As of yet, little effort has
been made to compare the results of these different disciplines with each other in
one overview. The aim of this chapter is to provide such an overview.

2.1 Introduction

Gradable quantifiers like any other quantifier, are used to express numerosity
(the number of elements in a set). This is not necessarily the only role that
quantifiers have—they are also used to mark definiteness, aspect, deixis, and
inferential patterns—but as the name already suggest, numerosity is an essential
semantic dimension of quantifiers.

Many attempts to model the semantics of quantifiers, define the quantifiers
over the cardinality of sets (Barwise and Cooper, 1981). In some cases, this
mapping can take the context dependence (Fernando and Kamp, 1996) and/or
the vagueness of these quantifiers (Zadeh, 1983) into account. But, regardless of
their specific flavor, all these models presuppose the accessibility of the cardinality
of the sets that are being quantified over. However, studies in psycholinguistics
(Hormann, 1983; Moxey and Sanford, 1993b), psychophysics (Bevan et al., 1963;
Krueger, 1972; Durgin, 1995) and developmental psychology (Piaget, 1952; Mix

9
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et al., 2002) show that this assumption does not correspond to human cognition.
For big sets, humans do not perceive the number of a set of objects directly as
a feature of that set. Rather, we perceive a number of spatial features (such as
extent, density, contour, . . . ) that are used together to estimate the numerosity.

Roughly speaking there are three fields of research that study these issues
in relative isolation: The field of psychophysics (discussed in the next section)
has produced a number of studies on numerosity perception (regardless of its
effect on language). Studies in developmental psychology (Section 2.3) show how
infants acquire numerosity perception. And studies in psycholinguistics (Section
2.4) show how contextual parameters influence the interpretation of gradable
quantifiers. To the best of my knowledge there is no overview of all these studies.
This chapter aims to provide such an overview and show the remarkable overlap
in results from these different disciplines.

2.2 Numerosity perception

An utterance like “many blocks” expresses a vague amount. In order to un-
derstand the cognition of gradable quantifiers, we first need to understand how
humans perceive amount. This section provides an overview of the literature on
this numerosity perception.

Jevons (1871) argues that numerosity perception can not be attributed to one
single cognitive mechanism, but rather involves a quite heterogeneous set of cogni-
tive mechanisms. It is clear that there is a distinction between explicit counting
and estimating the number of objects. But, Jevons found another distinction:
For small sets (up to four elements) humans can instantly and accurately de-
termine the number of items. Beyond this range, accuracy drops significantly,
suggesting a different cognitive mechanism for estimating the number of small
sets (now referred to as subitizing (Kaufman et al., 1949)). Later experiments
have systematically confirmed these findings (see Mandler and Shebo (1982) for
an overview).

It is now generally agreed upon to distinguish three separate cognitive mech-
anisms that are involved with numerosity judgment: Subitizing, a very accurate
fast process that only works for small amounts (four or less); the approximate
number system (ANS) Halberda and Feigenson (2008), a fast but inaccurate pro-
cess of estimation; and a very slow but accurate process of explicit counting. Most
of the experiments that establish the different mechanisms involve reaction time
measurements. The different mechanisms are associated with different reaction
time curves.

For example, Figure 2.1 shows the graphs from an experiment presented in
Mandler and Shebo (1982). In this experiment, participants where presented with
arrays containing between one and twenty dots. They were asked to report the
number of dots in the array. The reaction time graph shows 3 different parts:
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Figure 3. Results for numerosity judgments under three exposure conditions (200, 400, and 800 msec)
for proportion of incorrect responses (top panel), reaction times (middle panel), and average number
response (bottom panel). '

after, the 200- and 400-msec conditions are
highly similar and the 800-msec condition
is clearly interior.

5

These data suggest that for the longer
presentation times subjects might attempt
to count the larger arrays, particularly in the
800-msec condition. This results in longer
reaction times, fewer errors, but also worse
average response. Additional saccadic move-
ments during the presentation of the array

would also contribute to a better scanning
of the array beyond the subitizing range, as
well as longer reaction times. Since our con-

5 The average numerical response is a rather noisy
dependent variable and should be used with caution. In
some cases the removal of one or two subjects who con-
sistently and grossly overestimate would change the rel-
evant functions. The data are primarily interesting in
showing the array sizes for which, subjects give correct
average responses.

Figure 2.1: Results reaction time experiment from Mandler and Shebo (1982) for
numerosity judgments under three exposure conditions (200, 400, and 800 msec)
for proportion of incorrect responses (top panel), reaction times (middle panel),
and average number response (bottom panel).
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Up to three of four items the reaction time does not increase much, which is
associated with subitizing. After that there is a linear increase of reaction time
(explicit counting). After seven or eight items, the reaction time stops increasing
which is associated with number estimation (ANS). It is also shown that as soon
as people start estimating the number of items, the error increases dramatically
due to systematical underestimation (confirming the findings of Kaufman et al.
(1949)). Following the same methodology, Minturn and Reese (1951) show that
subitizing is indeed a fundamentally different process from counting, and Taves
(1941); Trick and Pylyshyn (1991) confirm the difference between subitizing and
number estimation1.

For the remainder of the section I will be focussing on the research concerning
the approximate number system, the part of numerosity perception that is most
directly related to gradable quantifiers.

2.2.1 Perceptual features of approximate number

Most research in the field of ANS shows that approximate numerosity estimation
is not unitary. That is to say, the number of elements in a set is not perceived as
a single feature, but there are a number of perceptual features (e.g., density, size,
clustering and contrast) that are combined in estimating the number of objects.
In order to identify the perceptual features that are involved with numerosity
judgment most of these studies compare identical quantities in different spatial
arrangements.

A clear results of this approach is the strong influence of extent (or more
specifically, area size) on the perceived numerosity of a set. For example, Krueger
(1972) shows that the perceived numerosity of a group of dots is influenced by
size of the surface area that the group of dots occupies. In this study, participants
are confronted with a number of dots (between 25 and 200) scattered over area’s
of different sizes (56cm2, 225cm2 and 900cm2) and asked to estimate the number
of dots. The participants systematically underestimate the amount of dots in all
trials. But the reported estimations were much closer to the actual number of
dots for the larger surface area’s. These results confirm similar findings of Bevan
et al. (1963). There, the effect of numerosity judgement was tested using a jar of
beans rather than dotted surfaces.

The other important spatial influence that has been found is that of density
patterns (as initially hypothesized by Barlow (1978))—i.e., how seemingly closely
objects are clustered together in a set. Barlow (1978) do not experimentally test
this hypothesis. To the best of my knowledge, only Durgin (1995) and Durgin
(2008) provide experimental data. He confirms the hypothesis by showing that
lower perceived density results in lower numerosity judgements. The relatively

1Trick and Pylyshyn (1993) argue that subitizing is related to mechanism in the brain called
FINST, a preattentive mechanism that parallel tracks objects in our visual environment.
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small number of targeted experiments might be due to the difficulty of isolating
the density feature (i.e., controlling for influences of other spatial features such
as individual object size and total area size). Durgin does this by relying on
so called after-effects: if a trial display filled with dots is preceded by a display
with a much higher density, the density of the trial display seems much lower in
density. This way the perceived density can be manipulated without affecting the
perception of any of the other spatial features. Using these after-effects, Durgin
goes on to show that the numerosity judgments are much lower for displays with
a seemingly low density.

Other influences show that the picture might be more complicated. For exam-
ple, Ginsburg (1978) shows that item arrangement influences numerosity judg-
ments: more randomness leads to higher judgments. And, Bevan and Turner
(1964) show that figure/ground perception has a significant influence on numeros-
ity judgment. I.e., if the objects and their container are seen as a whole (i.e., the
container is part of the figure), there is a strong positive correlation between area
and perceived number (confirming Krueger (1972)). However if the container is
explicitly marked as ground, a reverse effect is found.

PERCEIVED NUMEROSITY 3 1 1 

which in turn were judged to be more numerous than the 
satellite patterns, which have a more clustered (or ag- 
gregated) appearance. 

THE OCCUPANCY MODEL 

We believe that the main thrust of the Vos et al. (1988) 
model is correct-perceived numerosity depends on the 
area of the stimulus field apparently occupied by a con- 
stellation of dots. Although the brightness of each dot is 
precisely localized, its influence is spread over a much 
wider area. Our criticism was directed against the partic- 
ular CODE algorithm whose predictions contradict the 
manifest appearance of some dot patterns (see Figure 1). 
According to the CODE algorithm, the width of the dis- 
persion function depends on the distance between each 
dot and its nearest neighbor. This appears to be incor- 
rect, at least for the estimation of numerosity. Our anal- 
ysis demonstrates that the spread function of each dot is 
independent of the spatial proximity of dots. The impact 
of any dot upon its surroundings appears to be constant, 
irrespective of the spatial arrangement of the dots. Ac- 
cording to the proposed occupancy model, each dot oc- 
cupies a circular territory of radius R centered at the dot. 
If two dots are less than distance27 apart, their individual 
territories overlap, and the contribution of the pair of dots 
is reduced proportionally to the size of the overlap of their 
occupied territories. 

In Figure 4, the separation between the dots in the left- 
hand pair (A) is shorter thafi,  and, consequently, their 
individual spaces overlap. In contrast, the distance be- 
tween the right-hand dots (B) exceeds the occupancy 
radius R, and their occupied territories are isolated. It is 
obvious that the area covered by both dots is larger in 
the second case than it is in the first one. The occupancy 
model postulates that the occupancy index (the total area 
of the stimulus field occupied by dots) provides the basis 
for the judgment of numerosity. If two patterns are 
presented, the hemifield that is apparently occupied by 

Figure 4. The basic tenet of the occupancy model: (A)  If two dots 
are close enough to each other (less than r a d i q R ) ,  the territories 
they occupy overlap. (B) If the interdot distance exceeds the radius 

ZR, there is no intersection between the two occupied territories. The 
impression of numerosity is posited to he proportional to the total 
area occupied by dots. This area is larger for Case B than for Case A. 

more dots will, as a rule, be chosen as being more 
numerous. 

The proposed model seems intuitively plausible. If a 
plane area A' is randomly bombarded by N circles with 
radius R, the expected proportion of the plane covered 
by the circles is 1 -exp(-nR2NIA2) (Schachter & Ahuja, 
1979). The shape of the figure is not critical. The propor- 
tion of the plane covered by figures will be the same for 
any collection of congruent convex figures, each of them 
with the same area nR2, randomly distributed over the 
plane. The proportion of the plane covered by circles can 
be smaller or larger for pattern-generation processes 
differing from completely random bombardment. In an 
inhibitory pattern, circles overlap less than they do in a 
random pattern, in which they in turn overlap less than 
they do in  a satellite pattern. ~ o n s e ~ u e n t l ~ ,  given the 
amount of territory occupied, the apparent numerosity of 
inhibitory patterns ought to be overestimated and that of 
satellite patterns underestimated, compared with that of 
entirely random patterns. 

Let us now describe the occupancy model more for- 
mally. When the test and reference patterns are presented, 
the observer is presumed to compute the occupancy in- 
dices for both of them. The pattern with the larger oc- 
cupancy value is chosen as being more numerousT Thus, 
the sign of the relative occupancy index (test-reference) 
determines the observer's numerosity judgments. The oc- 
cupancy index of stochastic patterns is a random variable. 
Two samples of the same dot pattern type will in general 
have different occupancy values. Given a large enough 
sample size, the distribution will be close to normal, and 
it is sufficient to know only the mean p and the variance 
u2  of the occupancy index distribution. Given these two 
values, P and a2 ,  for both members of the test and refer- 
ence pattern pairs, it is easy to find from them the test 
pattern choice probability: 

where 9 stands for the standard normal integral, and the 
indexes T and R stand for the test and reference patterns, 
respectively. It is cumbersome to obtain analytical esti- 
mates of the mean and variance of the numerosity index 
for each random pattern-generation procedure. Therefore, 
we generated 100 samples of each pattern type and de- 
termined directly for each pair of test and reference pat- 
terns its relative occupancy index h - ~ ,  and its standard 
deviation J(u; + 02,).  If numerosity judgments are indeed 
based on the relative occupancy index, the test pattern 
choice probability can be directly derived from this ob- 
jectively measured property of the pair of dot patterns. 
One of the simplest ways to test this prediction is to plot 
the relative occupancy indices as standard normal devi- 
ates (p, -PR)/ J(a; + a;) against the test pattern choice 
probabilities also expressed in standard normal deviates 
( z  scores). If the hypothesis is correct, all 234 data points 
can be described by a single linear function. 

Figure 2.2: Occupancy model from Allik and Tuulmets (1991). Dots are hypoth-
esized to occupy a region. Perceived numerosity is determined by the total area
occupied by the dots. When regions of dots partly overlap occupancy regions
overlap, the perceived numersoity is lower.

These last results might create a slightly more complicated picture than the
area/density experiments would have you believe, but they do not deny the
area/density effects. Durgin (1995) even suggests that increased randomness
might increase the perceived density and therefore the effects found by Ginsburg
(1978) can completely be interpreted within the area/density picture.) There is
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however one study (that I am aware of) that explicitly opposes the multidimen-
sional view of numerosity: Allik and Tuulmets (1991) argue for a unidimensional
model of numerosity which they call the occupancy model. In this occupancy
model, every element (dot) occupies a region. This region extends with a radius
R around the actual object. The numerosity is determined by the total area oc-
cupied by the dots. Overlapping regions causes a smaller total area, and therefor
a smaller judged number. See also Figure 2.2. An unlikely model, according to
Durgin (1995). He argues that the model might fit the data provided in Allik
and Tuulmets (1991), but in order to fit other data (i.e., the data from Durgin
(1995)) the radius R has to vary with the density patterns, thus making density
an implicit factor in this model.

2.3 Results from Developmental Psychology

Another source of evidence that supports the multidimensional view on numeros-
ity judgement comes from developmental psychological research. For example,
Pufall et al. (1973) argue that numerosity is a multidimensional concept and that
children have to learn how the different dimensions (extent and density) work to-
gether. The research in this field essentially makes two points: 1) infants do not
have an innate number concept, but they do have an innate density and extent
concept; and 2) this is because the number concept is a high-level concept that
relies on learning to combining these lower level concepts of extent and density.

2.3.1 Innate Numerosity Perception

The first point has extensively been discussed by Mix et al. (2002); Clearfield and
Mix (2001). They argue that infants can not discriminate arrays of dots based on
the number of items in them, they only respond to differences in density, length
(extent) and contour length. The experiments they report involve infants of 4 to
12 months, much too young to directly ask if they see any differences between
arrays. This problem is circumvented by using so called habituation experiments.
Habituation experiments rely on the fact that infants, presented with a number
of arrays, tend to look longer at an array that does not fit a given pattern (i.e., a
surprising result). So infants are presented with a series of habituation arrays that
keep one variable constant (e.g., density) followed by a test array that either fits
(has the same density) or breaks (has a different density) the pattern. If the test
array that does not fit the pattern results in longer looking times, than apparently
the infants are sensitive to differences of the variable in question. Figure 2.3 shows
an example.

Mix et al. (2002) show that infants indeed do respond to changes in density,
extent and contour, but if properly controlled for these spatial constraints, no ha-
bituation effects can be found. There is a number of earlier experiments that has
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Control Density Length
Habituation Array 1 • • • • •
Habituation Array 2 • • • • •
Test Array • • • • •

Figure 2.3: Habituation trials from Clearfield and Mix (2001) used to test nu-
merosity perception controlling respectively for density and extent.

NUMBER VS CONTINUOUS EXTENT 43

FIG. 2. (a) Displays and (b) looking times for Experiment 2, in which number was pitted
against continuous extent.

in age from 6 months; 12 days to 7 months; 10 days (M ! 6 months, 28 days). All participants
were healthy infants from Ithaca, New York.
Apparatus and procedure. Infants sat in front of the same puppet stage and saw the same

stimulus objects as in Experiment 1. Continuous extent was manipulated as a function of the
area of the front surface of the objects, with the large objects having twice the front surface
area of the small objects. Front surface area was chosen as the targeted measure of extent
because objects were presented directly in front of infants, and therefore the front faces of
the objects were most visible. Methods of presentation and criterion for habituation were the
same as in Experiment 1. Average interobserver reliability was .95 across all trials for a random
half of the participants.

Figure 2.4: Habituation trials from Feigenson et al. (2002) controlling for extent
and density.
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shown the contrary (e.g., Starkey and Cooper (1980); Antell and Keating (1983);
Cooper (1984); Starkey et al. (1990) all find habituation effects for number), but
as Mix et al. (2002) argue, none of these experiments manage to properly con-
trol for the spatial features. Feigenson et al. (2002) repeated the experiments
presented in Starkey et al. (1990) but controlled for extent and density by mak-
ing the size of the objects variable (as shown in Figure 2.4). They show that
by properly controlling for these spatial features, the number habituation effects
disappear.

2.3.2 Development of Numerosity Perception

So, if the findings of Mix, Clearfield and others are correct, infants do not have
an innate numerostiy concept. These findings are in line with data from devel-
opmental psychology (Piaget, 1952, 1968; Pufall et al., 1973). In these studies it
is argued that children acquire the number concept by incrementally learning to
coordinate extent and density (or “crowding”, as Piaget calls it). Piaget (1952)
identifies three different stages in which the numerosity concept is learned:

1. The child judges numerical relations purely in terms of “global” similarities
(i.e., extent or density) (Piaget, 1952). In other words, a row of chips is
judged as “more” if it is longer. Later studies show that this stage actually
comprises two substages (Mehler and Bever, 1967; Piaget, 1968):

(a) The child uses the most salient feature (density or extent) for compar-
ing sets. The used feature can differ between trials. The reported ages
for this stage differ: 2y3m-3y0m (Piaget, 1968); 2y6m-3y2m (Mehler
and Bever, 1967); 3y (Pufall and Shaw, 1972; Pufall et al., 1973).

(b) The child concentrates on one single feature across trials (i.e., extent).
The reported ages for this stage differ: 3y0m-3y10m (Piaget, 1968);
3y2m-4y0m (Mehler and Bever, 1967); 4y (Pufall and Shaw, 1972;
Pufall et al., 1973).

2. The child coordinates both length and density. However, this is only done
visually, the child cannot reason about it. At this stage, if the child has to
compare arrays where length and density are inversely related, it will revert
to using only one single feature. (Piaget, 1952, 1968; Pufall and Shaw, 1972;
Pufall et al., 1973).

3. Numerosity perception is completely developed (Piaget, 1952, 1968; Pufall
and Shaw, 1972; Pufall et al., 1973).

Similar to the experiments described above, the number conception of the
children is tested using array’s of dots or chips. The children are asked to report
which array contains more dots. Different configurations are used to expose the
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stage of numerosity perception of the child. For example, figure 2.5 shows the
different types of configurations used by Pufall and Shaw (1972). Which configu-
rations are correctly assessed depends on the development stage of the child. For
example, a child in stage 2 will have no trouble getting Configurations 1-3 right,
but Configuration 4 is problematic since the inverse relation between length and
density will make it focus on only one of the two features. Some minor difference
in ages and granularity of stages aside, Piaget (1952, 1968); Pufall and Shaw
(1972); Pufall et al. (1973) all show that in earlier stages, children tend to focus
on only one dimension (i.e., length or density) and only later learn to coordinate
them into a fully developed numerosity concept (at around the age of 7).

Configuration 1
• • • • • • •
• • • • • • •

Length and density is equal, therefore
number is equal.

Configuration 2
• • • • •
• • • • • • •

Length and density are directly related,
therefore longer/denser row is “more”.

Configuration 3
• • • • • • •
• • • • • •

Lengths are equal, densities not, there-
for denser row is “more”.

Configuration 4
• • • • • • • • •
• • • • • • •

Length and density are inversely re-
lated, therefore quantity depends on
both.

Figure 2.5: Configurations used by Pufall and Shaw (1972) to test the child’s
numerosity perception.

Piaget suggests that the different stages are the result of learning which trans-
formations preserve the number of a set (e.g., moving objects more closely to-
gether) and which transformations change the number of objects (e.g., adding
or removing objects)—i.e, conservation principles . If this is true, the question
remains how these conservation principles are learned. Strauss and Curtis (1981);
Starkey et al. (1983) independently found that within the subitizing range infants
(of respectively 10-12 months and 7 months) do in fact already perceive numeros-
ity. It could be that perception of these low numerosities provides the seed for
further development of numerical skills by establishing Piaget’s conservation laws
(Marmasse et al., 2000). Additionally, Wohlwill and Lowe (1962) speculate that
children learn conservation of number via counting2. Children learn to count well
before they learn to conserve. It might be that by counting the elements in sets
that are being manipulated, children learn to understand the relation between
density, extent and number.

2The experiments described in Wohlwill and Lowe (1962) neither confirm nor refute this so
called reinforcement hypothesis.
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2.4 Results from Psycholinguistics

The previous sections showed the effects of spatial features on numerosity per-
ception of the approximate number system (ANS). Most studies suggest that
numerosity perception requires the coordination of extent and density features.
Since gradable quantifiers rely on ANS, we expect some of the particularities of
ANS to affect the interpretation of gradable quantifiers. This section discusses
a series of studies on the judgment of gradable quantifiers. The studies expose
a number of factors that influence the judgment of gradable quantifiers, such as
expected frequency, size of the individual objects, area size of the entire group,
figure/ground effects and contrast. Though none of these studies explicitly link
these effects to ANS, some of them would be very hard to interpret in any other
terms (such as the effect of surface area on the judgment of gradable quantifiers).

2.4.1 Expected Frequency (Norm)

It is not difficult to find anecdotal evidence that the interpretation of gradable
quantifiers depends on some prior expectation. Clearly the utterances “many
people read E. L. James’ latest novel” and “many people read this thesis” do
not refer to similar amounts of people. Their interpretations depend on a prior
expectation we have about the number of readers in both cases. It is however
quite hard to come by experimental data confirming this intuition. To the best
of my knowledge, only Moxey and Sanford (1993b) explicitly addresses this issue.
In one of the experiments that the chapter describes, participants are presented
with three different snippets:

The residents’ associations Christmas party was held last night in the town
hall. QUANT of those who attended the party enjoyed what might be called
the social event of the year. [RA condition]

At yesterdays party conference, Mr Cameron spoke about the effects of edu-
cation cuts on British universities. QUANT of his audience were convinced
by his conclusions. [PC condition]

A survey has recently been carried out to find out whether or not female
students prefer to be examined by female doctors. QUANT of the local
doctors are female. [S condition]

Where QUANT can be any of the quantifiers very few, few, only a few, not many,
a few, quite a few, quite a lot, many, a lot, and very many. After hearing the
snippet, the participants were asked to report the estimated proportion of people
who went to the party/were convinced by Cameron/preferred female doctors. The
reported proportions where compared to independently established prior expected
proportions. The results are shown in Figure 2.6.
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Figure 2.6: Results from Moxey and Sanford (1993b). The influence of context
on the interpretation of quantifiers. The lines are for presentational convenience;
the groups from which each point is derived are independent. The quantifiers are
ordered post hoc in terms of ascending mean values.

For high-magnitude quantifiers (quite a few, quite a lot, many, a lot, and very
many) the results clearly illustrate the effect of different prior expectations on
the interpretation of these quantifiers. For low-magnitude quantifiers (very few,
few, only a few, not many, and a few) the results are not significant. Moxey and
Sanford attribute this to the floor effect: the proportions that are described by
the low-magnitude quantifiers are so small that variations are not measurable in
this setting.

That the prior expectation about the context is an important factor in the
interpretation of gradable quantifiers is undeniable. Hormann (1983) goes even so
far to suggest that without context gradable quantifiers are entirely meaningless.
He shows this by asking participants to report the number of paperclips they ex-
pect after hearing the contextless phrase “QUANT Büroklammern” (“QUANT
paperclips”), where QUANT is one of the quantifiers ein paar (a few), einige
(some) or mehrere (several). The quantities reported by the participants make it
impossible to distinguish the quantifiers: the resulting histograms are almost iden-
tical for all the quantifiers. However, by providing the verbal context “auf them
Tisch” (“on the table”), the interpretations of the different quantifiers diverge.
See, Figure 2.7 for the results. So, the context information of these quantifiers is
so vital for their interpretation that without it, they become entirely meaningless.
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Figure 2.7: Results from Hormann (1983). Without context there is no difference
between different gradable quantifiers.
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2.4.2 Perceptual Features

Expected frequency is only one of the contextual effects that influence the inter-
pretation of quantifiers. Since ANS is strongly influenced by spatial variations
and gradable quantifiers rely on ANS, we would logically expect the judgement
of gradable quantifiers being influenced by these spatial variations. There are
indeed a number of reports that show such spatial effects.

Hormann (1983) tries to show that the size of the individual objects being
quantified over influences their interpretation. He asked participants how many
cars they would expect after hearing the phrase “Vor dem Haus standen mehrere
[Autos/große Autos]” (“In front of the house there were several [cars/big cars]”).
Figure 2.8 shows the results. It shows that participants systematically reported
a higher number for cars than for big cars. So for the smaller object (car) there
must be more of them to be judged several.

Figure 2.8: Results from Hormann (1983).

Although not disagreeing with the results, Newstead and Coventry (2000)
argue against Horman’s methodology. The result can also be explained by ex-
pected frequencies as described by Moxey and Sanford (1993b). For example,
since big cars is a subset of cars we expect there to be less of them. In order
to control for these effects, Newstead and Coventry (2000) conducted a similar
experiment, but with abstract visual stimuli. They used bowls containing 3 to
21 balls. The sizes of these balls in the bowl were either all 5mm or all 12mm.
Participants were asked to rate the appropriateness of the statement “There are
QUANT balls in the bowl” on scale from 1 (not at all appropriate) to 7 (totally
appropriate), where QUANT was one of the quantifiers a few, few, several, many
or lots. It is shown that for the bigger balls smaller amounts are required to deem
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the quantifier appropriate. The results are shown in Figure 2.9.

eŒect on the number of balls described by the quanti®er it still seems to
aŒect the appropriateness ratings given. It is not surprising that this eŒect
fails to appear with low magnitude quanti®ers since the ratings of these
are already low when nine balls are present. The eŒect is mainly one of
slowing down the increase in appropriateness ratings of the higher magni-
tude quanti®ers.

It is not clear why the quanti®er lots should be immune to this eŒect,
since in most previous studies lots and many have been found to be
synonymous with respect to the number signi®ed (e.g., Moxey & Sanford,
1993a). A possible explanation can perhaps be found in the work of
Cooper (1996). He claims that lots of is a quanti®er that allows ``contex-
tually determined resources’’, whereas many is not. What this means is
that lots of focuses attention exclusively on the entities present in the
context, whereas many could refer to a more general set of entities. It is
possible that this focus on the set of entities described (in this case the
balls) takes attention away from more general aspects of the situation
(i.e., the fact that the balls are over¯owing from the bowl). The quanti®er
several is not speci®cally mentioned in Cooper’s analysis but it appears to
®t the same analysis as many, and the pattern of results is similar for
these two quanti®ers (see Figure 6). Such an explanation is, of course,

Figure 6. Interaction between quantifier, number of balls, and ball size in Experiment 2.
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Figure 2.9: Results from Newstead and Coventry (2000).

Though the authors do not relate their findings to findings on numerosity
perception, there seems to be a clear link. Depending on how we look at the
situation, these results can be explained by either the effect of extent or the effect
of density on numerosity perception. If we consider the bowl as part of the figure
(i.e., the bowl is an integral part of the object being quantified), then the bowl
with bigger objects is more densely populated. If, on the other hand, the bowl is
considered part of the ground (i.e., the bowl is ignored as a part of the group that
is being quantified over), then the group of bigger balls is perceived as a bigger
entity. Either way, studies in numerosity perception predict that the bowl with
the bigger balls is perceived as more numerous. Therefore, we would expect that
the bigger balls require lower (objective) quantities to be judged appropriate for
a particular quantifier. Which is precisely what Hormann (1983) and Newstead
and Coventry (2000) show.

An even more direct link between numerosity estimation and quantifier judg-
ment is found in Coventry et al. (2005). They show that the surface area of
a set influences the appropriateness of quantifiers. They presented participants
with images of fish and asked them to judge the appropriateness of the utterance
“There are QUANT fish”, where QUANT is one of the quantifiers a few, few,
several, many, or lots of. For larger quantities (> 12 fish), they found that when
objects are scattered over a larger area, quantifiers require smaller amounts of
fish to be judged appropriate. It seems very plausible that this is the result of
the effect of area size on perceived numerosity, as discussed in the first section of



2.5. Conclusion 23

this chapter (Bevan et al., 1963; Krueger, 1972). The fact that for lower quanties
there is no effect is not addressed by the authors, but perhaps can be attributed
to the same floor effect as suggested by Moxey and Sanford (1993b).

Experiments also show that quantifier judgment is not as clean-cut as one
might think at this point. Many other subtle effects on quantifier judgement
can be found. For example, the number of contrasting objects (Coventry et al.,
2010), grouping of objects (Coventry et al., 2005), and attitude (Goocher, 1965)
all influence the way these gradable quantifiers are interpreted.

2.5 Conclusion

This chapter describes research from three normally unrelated fields. To what
extent the authors in different fields are aware of the work from other fields is
unclear to me (they do not refer to each other), but all of them independently
arrive at similar conclusions: Work in psychophysics has shown that estimation
of numerosity is highly sensitive to spatial variation. Big effects have been found
of variations in extent and density on the numerosity perception. Work in devel-
opmental psychology shows that numerority is a multi-dimensional concept that
requires children to learn to coordinate the dimensions of extent and density.
The interpretation of gradable quantifiers relies strongly on numerosity percep-
tion. So, we would expect that spatial variation also influences the interpretation
of gradable quantifiers. Work in psycholinguistics shows that this is indeed the
case.

The fact that different fields with different research agendas arrive at very
similar conclusions only reinforces the general conclusion: Numerosity percep-
tion (and by extension the interpretation of gradable quantifiers) requires the
coordination of the spatial features extent and density.
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Chapter 3

Planning What To Say Next: Grounded
Language Processing

This chapter describes a fully operational language interpretation system that is
created for robotic communicative interactions called Incremental Recruitment
Language (IRL). Meaning in IRL is represented as a network (program) that
contains instructions (cognitive operations). These operations can be seen as a
set of instructions that allow an agent to fulfill a specific communicative goal.
IRL contains a number of mechanisms to define, execute, compose, compare, and
repair these IRL-programs. The goal of this chapter is to provide a detailed
overview of the most essential IRL mechanisms. For implemented examples, see
the IRL tutorial that is shipped with the Babel Lisp-package that can be found on
http://www.emergent-languages.org/. This article together with the tutorial
aim to provide the reader with enough information to start working with IRL.

This chapter is part of an ongoing effort to keep track of the evolution of the
IRL system, as discussed below. Big parts of Section 3.2 and Section 3.3 are
taken directly from the following publication: Spranger, M., Pauw, S., Loetzsch,
M., and Steels, L. (2012b). Open-ended Procedural Semantics. In Steels, L. and
Hild, M., editors, Language Grounding in Robots. Springer, New York.

3.1 Introduction

The main purpose of IRL is to bridge the gap between the continuous data that
result from sensorimotor processing and the discrete concepts of language. Al-
though IRL is often described as a language (as the name already suggests) or a
formalism (Steels and Bleys, 2005), it might be better to conceive of IRL as a set
of conceptualization mechanisms that are typically needed for robotic language
experiments. Most of the mechanisms are independent of the rest of the system,
so the experimenter can choose to only use the part of IRL that (s)he needs.

The early development of IRL took place at the end of the nineties. A first

27
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implementation by Luc Steels was used in experiments in grammar emergence
(Steels, 2000a). A second implementation was made by Wouter Van den Broeck
(Van Den Broeck, 2008). This chapter is based on a more recent implementation
by Martin Loetzsch, Simon Pauw and Michael Spranger (Spranger et al., 2010a).
The current implementation has already been used in language game experi-
ments targeting various domains including color (Bleys, 2008), spatial language
(Spranger, 2011), quantifiers (Pauw and Hilfery, 2012) and temporal language
(Gerasymova and Spranger, 2012a) on different robotic platforms, including the
Sony humanoid (Fujita et al., 2005) and the Humboldt MYON (Hild et al., 2012)
robot.

This chapter describes only the most essential mechanisms that make up IRL.
The next section shows how meaning in IRL can be represented using networks of
cognitive operations and semantic entities. The subsequent section illustrates the
execution (i.e., interpretation) of IRL networks and their automatic composition
(i.e., planning). The last section discusses the relation between IRL meaning and
language, showing how IRL networks can be mapped onto linguistic constructions
and in the case of noisy communication channels, how IRL can help to reconstruct
the intended message (i.e., flexible interpretation).

3.2 Meaning Representation

IRL can best be seen as a set of independent mechanisms that are useful for
modeling semantics grounded in the visual attention of robotic agents. As such,
it is an open-ended system in which we can implement many different semantic
paradigms. However, in order to understand the working of IRL, we focus our at-
tention on one specific semantic model, which we will illustrate using the example
utterance “the red block”.

The implementation of this example is based on robotic communicative inter-
actions, called language games (Spranger et al., 2010b, see Figure 3.1). In this
particular language game, the robot on the left takes the role of the speaker. He
picks the red block in the center of Figure 3.1 as the topic of the language game.
His communicative goal is to find an utterance that, when interpreted by the
hearer (the robot on the right), draws the attention to that object. He could for
example say: “the red block.” The hearer in turn interprets this utterance and
points at the object he thinks the speaker intended. If he points correctly the
game is a success.

In order to play such a language game, the robots are provided with compu-
tational systems for perception, conceptualization and communication that link
language to the sensorimotor interaction of artificial agents. The role of IRL
herein is to provide a mapping between the output of the perceptual system and
the conceptual structure that the language system translates into an utterance.
The perceptual systems for recognizing and tracking the objects in their envi-
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speaker hearer

obj-252

obj-253

obj-249

box-1robot-2

obj-266

obj-268

obj-265

box-1

robot-1 robot-1

robot-2

Figure 3.1: Robots scan the shared environment (center image) with the cameras
in their heads (images top left and top right) and construct world models from
these data streams (images bottom left and bottom right). The robot at the left
has the role of the speaker and tries to draw the attention of the other robot to
the red block by means of the utterance “the red block”).

ronment are described in (Spranger et al., 2012a). Although these systems are
not part of IRL, two important features of the output produced by these systems
should be noted:

1. The world model produced by the vision system consists of a set of objects
that are characterized by continuous real-valued features such as color, po-
sition, orientation, and dimensions. Part of the job of conceptualization is
to move from these continuous values to the discrete categorizations used
in language

2. The respective world models of two different robots are similar, but never
identical because of perceptual noise and different perspectives. Any con-
ceptualization mechanism used in robotic interaction experiments should
be robust against this imperfect perception.

.
In order to find an appropriate description for an object, the speaker tries to

find a particular set of operations that, when executed by the hearer, will single
out the object from the context. Consequently, the meaning of an utterance is
a set of cognitive operations or procedures that the speaker wants the hearer to
execute in order to fulfill a communicative goal. The explicit use of operations
as part of the meaning is common in procedural semantics (see Winograd, 1971;
Johnson-Laird, 1977; Woods, 1981, for original ideas).

More specifically, an utterance encodes a network of cognitive operations as
well as the relationships between their arguments. An example network for
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(get-context ?context)

(filter-set-class ?set-2 ?context ?class)

(filter-by-color ?set-1 ?set-2 ?color) (bind object-class ?class block)

(unique-entity ?referent ?set-1) (bind color-category ?color red)

Figure 3.2: An IRL network representing the meaning of “the red block”. When
executed by the hearer in the interaction shown in Figure 3.1 (right robot), the
variable ?referent (the referent of the utterance) becomes bound to the object
obj-252.

the utterance “the red block” is shown in Figure 3.2. It includes operations
such as filtering the context for blocks (filter-set-class) or finding red objects
(filter-by-color). Every node in the network evokes a cognitive operation, rep-
resented by its name and its list of arguments, for example (filter-set-class

?set-2 ?contex ?class), evokes the filter-set-class operation. The argu-
ments can be thought of as variables or slots that are bound to or will contain
specific values. These slots are represented as names preceded by question marks.
The same variable can re-occur in different cognitive operations, and this is rep-
resented by the arrows in the network.

These arrows are purely representational. The actual information about how
the operations are linked are provided by the variable names. For example
the first argument of filter-set-class is linked to the second argument of
filter-by-color through the variable ?set-2, meaning that the hearer should
first filter the context for blocks and then find all red objects in this set of blocks
(“red block”).

There is a special operation called bind which introduces concrete semantic
entities of a certain type and binds them to argument variables in the network.
Semantic entities are categories in the conceptual inventory of the agents. For
instance, the statement (bind color-category ?color red) in the example above
binds the color category red to the variable ?color. The color category itself has
its own grounded representation.

It should be pointed out here that IRL, although designed as a procedural
semantics, has some aspects that are clearly more declarative in nature. First
of all, the order of the operations has no effect on the order of execution, only
the relations between the operations influence their execution. Secondly, IRL
operations are multidirectional. From the example above, one might conclude
that cognitive operations behave like procedures as known from programming
language: computing an output from input arguments. But, as we will show in in
the remainder of this Section, they can operate in multiple directions, so that IRL
can in fact be seen as a constraint language (as pioneered in early programming
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language designs of Borning, 1981; Sussman and Steele, 1980; Steels, 1982).

3.2.1 Operations

The basic building blocks of IRL are cognitive operations and semantic entities.
The semantic entities represent any conceptual contents—such as prototypes,
predicates, relations, and sets. The cognitive operations instruct the agent what
to do with these semantic entities. In this section we describe these basic build-
ing blocks in detail. The present section discusses the working of the cognitive
operations and shows how one can implement such operations. The section to
follow focusses on the notion of semantic entities1.

A cognitive operation implements a specific cognitive function or task, for
example filtering a set with a color category, picking elements from a set, cat-
egorizing an event, performing a spatial perspective transformation, taking the
union of two sets, and so on. This is an example of how an operation for color
categorization can be declared in IRL (we will show the full implementation later):

(defoperation filter-by-color ((target-set entity-set)

(source-set entity-set)

(color color-category))

;; .. implementation of the operation

)

This operation has the three arguments target-set, source-set and color, which
are respectively of type: entity-set, entity-set and color-category.

In many ways, cognitive operations behave like functions in the sense that
they compute a set of output arguments from a set of input arguments. For the
present example we assume that color concepts are defined by a set of prototypical
colors that carve up the color space. Now, the operation filter-by-color can
be defined such that finds all the elements in source-set argument of which the
color falls in the color-space region defined by the color argument. Every object
for which this is the case, is returned in the target-set.

However, these cognitive “operations” are not really operations, but relations;
they are multi-directional. For example the operation filter-by-color can also
be defined to infer a color category from a target-set of classified objects and a
source-set. And it can be defined to compute combinations of color categories
and resulting target-set values from a source-set. As we will show later, this
ability to operate in multiple directions is crucial for flexible conceptualization
and interpretation of semantic structures.

When an operation is executed, some of its arguments are bound to a value.
This value can be any semantic entity (see next Section) with a type that is

1It should be noted that the IRL core system does not come with any built-in cognitive
operations or semantic entities. The user of IRL will have to implement them for the particular
experiment IRL only provides an interface for it.
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compatible to the type of the argument specified in the operation. Whether an
argument then is input or output of the operation depends on whether it is bound
or not. To give an idea how these different cases of input-output relationships are
concretely implemented in IRL, we will now show the complete implementation
of the filter-by-color operation as used in this example:

(defoperation filter-by-color ((target-set entity-set)

(source-set entity-set)

(color color-category))

;; Case 1

((source-set color => target-set)

(let ((filtered-set (apply-color-category

color source-set

(color-categories ontology))))

(when filtered-set

(bind (target-set 1.0 filtered-set)))))

;; Case 2

((target-set source-set => color)

(loop for category in (all-color-categories ontology)

when (equal-entity target-set

(apply-color-category

category source-set

(color-categories ontology)))

do (bind (color 1.0 category))))

;; Case 3

((source-set => color target-set)

(loop for category in (color-categories ontology)

for filtered-set = (apply-color-category

category source-set

(color-categories ontology))

when filtered-set

do (bind (target-set 1.0 filtered-set)

(color 1.0 category))))

;; Case 4

((target-set source-set color =>)

(let ((filtered-set (apply-color-category

(color-categories ontology))))

(equal-entity filtered-set target-set))))

Most of this is general Lisp code, with the IRL specific code shown underlined.
Under the definition of the operation (which we have already explained before)
there are four cases, which each implement the behavior of the operation for a
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different combination of bound/ unbound arguments. Each case starts with a
pattern that defines its applicability: when all arguments before the => symbol
are bound and all arguments after => unbound, then the code below the pattern
is executed. For example, Case 1 specifies the operation of the primitive when
source-set and color are bound, but target-set is still unbound.

Each case ‘returns’ values for all its unbound arguments with the bind com-
mand. For example in the first case, (bind (target-set 1.0 filtered-set))

assigns the computed value filtered-set with a score of 1.0 to the argument
target-set. In addition to that, an operation can call the bind command multi-
ple times and thereby create multiple hypotheses . For example in the third case,
the operation computes all possible pairs of values for the color and target-set

arguments when only the source-set is bound. When multiple hypotheses are
created, the scores are used to discern better from worse solutions.

It is also possible that an operation does not compute a value for an output
argument. For example in the second case above, it can happen that the operation
is not able to infer a color category which can account for a categorization of
source-set into target-set. The operation will then simply not call the bind

command, which invalidates the values bound to its input arguments. Finally,
when all arguments of an operation are bound, then the operation does not bind
any values at all but returns information on whether its arguments are consistent.
In the fourth case, the operation checks whether the color category applied to
the source-set is indeed the same as the given target-set.

3.2.2 Entities

The values that are bound to the arguments of cognitive operations are called se-
mantic entities . These can be any kind of data representations, including items in
the conceptual inventory of an agent (e.g. image schemata, categories, prototypes,
relations, roles, etc.), representations of the current context (e.g. the world model,
discourse information, etc.), and intermediate data structures that are exchanged
between cognitive operations (e.g. sets of things, constructed views on a scene,
etc.). In the example above, a semantic entity of type color-category consists
of three numeric values that represent a prototypical point in the YCbCr color
space. The memory of the agent contains several instances of color-category,
for example red is represented by the point in the color space [16, 56, 248]. Fur-
thermore, a semantic entity of type entity-set represents a list of objects, which
each again contain numerical values computed by the vision system. The world
model of an agent is also represented as an entity-set so that it can be used by
operations such as filter-by-color.

Semantic entities are typed, which makes it possible to explicitly model in-
tuitive distinctions between different cognitive representations. Such distinctions
could for example be rooted in a perceptual system which already distinguishes
between objects and events because they are recognized by different sub-systems.
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entity

sensory-entity

color

entity-set

spatial-category

object-class

discourse-role

selector

pose

location box

robot

block

global-reference

point

angle

color-category

sensory-context

radial-spatial-category

angular-spatial-category

Figure 3.3: Example of a type hierarchy of semantic entities.

Or it could be the difference between a color category and a discourse role, which
clearly are meant to operate in different domains. Furthermore, types can be
organized in hierarchies, which allows it to treat entities with a common super-
type the same. Technically, type hierarchies are represented using the standard
class inheritance system of Lisp (Kiczales et al., 1991), that is new types are
defined by creating classes that are directly or indirectly derived from the IRL
class entity. Using class inheritance additionally allows it to inherit properties
from other classes of semantic entities and can be used for software engineering,
in particular, designs with reuse.

An example of such a type hierarchy is shown in Figure 3.3. It shows semantic
entities that were chosen for the examples in this chapter. As mentioned before,
the vision system used here has different mechanisms for recognizing robots, boxes
and blocks. Consequently, there are different classes of semantic entities for the
output of these sub-systems, namely robot, box and block, which all are indi-
rectly derived from a common ancestor sensory-entity. In addition to that, there
is the class entity-set for sets of objects and discourse-role, color-category,
spatial-category, selector for categories that work with different kinds of cogni-
tive operations. However, this is only an example. How concrete type hierarchies
are implemented and how they interface with the rest of an agent architecture is
left to the user of IRL.

Type information is used in IRL in three different ways. First, it constrains
what semantic entities can be bound to arguments of cognitive operations: only
entities of the same type or of a sub-type of the type of the argument or can be
bound to the argument of an operation. Second, it constrains the way in which
cognitive operations can be combined in networks (see Section 3.3.2). And third,
they can provide a seed for semantic and syntactic categories in the grammar
that expresses semantic structures: an distinction on the semantic level between
objects and events could be reflected in categories such as noun and verb (see
Bleys, 2008; Spranger and Steels, 2012, for experiments in this direction).
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It is common practice to provide agents with an ontology that can be used
to access semantical entities. Every semantic entity (every object that inherits
from the object entity) has an identifier field (id). These id’s are used by the
semantic structure to refer to the semantic entities. In this example, the semantic
entity red, has the id red. The statement (bind color-category ?color red) in
Figure 3.2 uses this id to access that semantic entity.

3.2.3 Networks

Above we provided an intuitive explanation of the IRL network in Figure 3.2,
representing the utterance “the red block”. The network is repeated below as a
Lisp S-expression. We continue with this example to explain the mechanisms for
evaluation and construction of this network in more detail.

((unique-entity ?referent ?set-1)

(filter-by-color ?set-1 ?set-2 ?color)

(bind color-category ?color red)

(filter-set-class ?set-2 ?context ?class)

(bind object-class ?class block)

(get-context ?context))

It contains four cognitive operations: unique-entity, filter-by-color, filter-
-set-class and get-context, and two semantic entities: red and block. The
arguments of the operations are connected via variables (starting with a ?). Two
or more operations are linked when they share the the same variable. For exam-
ple in the network above the first argument of the filter-set-class operation
is connected to the second argument of filter-by-color through the variable
?set-2.

Semantic entities are introduced in a network with bind statements (starting
with the bind symbol) and they are also linked to cognitive operations through
variables. For example (bind color-category ?color red) binds the red color
category to the color argument of filter-by-color via the ?color variable. The
first parameter of the bind statement (here: color-category) declares the type
of the semantic entity.

Figure 3.4 (repeated from Figure 3.2) shows the graphical representation of
the network, with the links between operations and bind statements are drawn as
arrows. Note that although the arrows suggest directionality, they only represent
a canonical direction of execution, which nevertheless is often very different from
the actual data flow in the network. Furthermore, the order of operations and
bind statements in a network is not meaningful at all. All that matters is how
operations and semantic entities are linked. Two networks are equivalent when
both have the same set of operations and bind statements and when the structure
of the links between them is the same.
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(get-context ?context)

(filter-set-class ?set-2 ?context ?class)

(filter-by-color ?set-1 ?set-2 ?color) (bind object-class ?class block)

(unique-entity ?referent ?set-1) (bind color-category ?color red)

Figure 3.4: Graphical representation of an IRL network underlying “the red
block”. The get-context operation binds the set of all objects contained in the
world model to the variable ?context. Then filter-set-class filters this set for
all objects of class block and binds the result to ?set-2. This set is then filtered
by filter-by-color for objects that match the red color category into ?set-1.
Finally, unique-entity checks whether ?set-1 contains only one object and binds
the result to ?referent.

3.3 Meaning Processing

The previous section shows how to define IRL-networks and all it’s components.
This section focuses on the mechanisms for executing and automatically compos-
ing such networks.

3.3.1 Interpretation

Which particular red block in the example in Figure 3.4 is referred to, i.e. which
object is bound to the variable ?referent, is found by executing the network
within the current context of the interaction. Execution is the process by which
values are bound to the variables in the network. A set of variable-value bindings
is considered a solution, if it is complete and consistent. Complete means that
all variables are bound. A set of bindings is consistent if all operations in the
network have been executed.

The execution process starts by executing the bind statements to yield a list of
initial bindings. The semantic entities expressed in bind statements are retrieved
via their id and bound to the respective variables in the network. All other
variables are assigned an empty value (unbound). As shown in the leftmost node
of Figure 3.5, the initial bindings for the execution of our example network map
the semantic entity red to the ?color variable and block to ?class, with the rest
of the variables remaining unbound.

Execution of the network proceeds by executing all cognitive operations in the
network. In each step, an operation is picked from the list of not yet executed
operations and it is checked whether the operation can be executed given the
current set of bindings for its arguments, i.e. whether it has implemented a case
for that particular combination of bound and unbound arguments. If such a case
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?referent unbound

?color red

?class block

get-context

operations-remaining

?context context-3

?set-2 block-set-5
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?referent unbound
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?class block

filter-set-class

operations-remaining

?context context-3

?set-2 block-set-5

?set-1 entity-set-16

?referent unbound

?color red

?class block

filter-by-color

solution

?context context-3

?set-2 block-set-5

?set-1 entity-set-16

?referent obj-252

?color red

?class block

unique-entity

Figure 3.5: Example of an execution process. The network from Figure 3.4 is
executed by the hearer in the interaction of Figure 3.1 (right robot). From left to
right, each node represents a step in the execution process. From top to bottom,
the executed operation, the node status, and the current list of bindings of each
node are shown. A consistent solution with bindings for all variables is found
in the last node, and the value obj-252 is indeed a unique red block (compare
Figure 3.1).

exists, then the operation is executed (see Section 3.2.1) and newly established
bindings are added to the list of bindings. If not, then another operation is tried.
A consequence of this procedure is that the particular order in which operations
are executed, the control flow, can not be determined by the structure of a network
alone. Rather, IRL execution is data-flow driven and execution order depends on
how data spreads between cognitive operations.

In the example of Figure 3.5, the only operation that can be executed given
the initial bindings is get-context (it doesn’t require bound input arguments) and
it introduces the entity set context-3 as a value for ?context. Then filter-set-

-class can be run, and so on. Each added binding enables the execution of
more operations, until the unique-entity adds a binding for the last remaining
unbound variable ?referent. The set of bindings in the right-most node of Figure
3.5 is a consistent solution of the execution process, because all operations in the
network have been successfully executed and all variables are bound.

Of course there can be also other outcomes of executing operations than in
the example above (see Section 3.2.1). First, it can happen that an operation
returns multiple hypotheses for its unbound arguments. IRL will then add each
hypothesis to a copy of the current bindings list and then further process these
lists in parallel. Second, when all arguments of an operation are bound, then its
execution amounts to a verification or checking of consistency. If that fails, then
the complete set of bindings is invalidated and not further processed. And third,
when an operation is not able to bind a value for an unbound argument, then the
whole bindings set is also invalidated.

To illustrate this, we will now look at the execution of a second network. It
has the same operations and the same connections between them as the previous
example, but does not contain bind statements for ?color and ?class. Instead,
the ?referent variable is bound to object obj-268 (the red block in the world
model of the speaker, see Figure 3.1):
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Figure 3.6: Example of an execution process with parallel processing of multiple
hypotheses.

3.3.1. Example.

((bind sensory-entity ?referent obj-268)

(unique-entity ?referent ?set-1)

(filter-by-color ?set-1 ?set-2 ?color)

(filter-set-class ?set-2 ?context ?class)

(get-context ?context))

It is unlikely that such a semantic structure will be the result of parsing an
actual utterance, but as we will see in the next section, the execution of such
networks is heavily used in conceptualization. (The goal of conceptualization
is to find a set of concepts that best describe a specific objects.) The execu-
tion process for this network in the world model of the speaker in Figure 3.1 is
shown in Figure 3.6. Execution again starts with the get-context operation, but
then another case of filter-set-class is executed: because both its source-set

and class arguments are unbound, the operation creates combinations of object
classes and resulting filtered sets, which leads to a branching of the execution
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process. The first two of these branches (Figure 3.6 top) immediately become
invalidated, because filter-by-color cannot apply color categories to boxes and
robots. The third case, however, is further branched by filter-by-color, be-
cause the set block-set-5 bound to set-2 contains both yellow and red objects.
The first of these two hypotheses is then invalidated by unique-entity, because
entity-set-16 contains more than one object. A consistent solution is then found
with the node at the bottom right of Figure 3.6.

3.3.2 Conceptualization

We have seen how compositional semantics are represented and executed in IRL
and will now turn to the use of these mechanisms in communicative interactions,
i.e. how meanings are constructed and interpreted and how underspecified se-
mantic structures can be completed.

For structured procedural meanings such as IRL programs, conceptualization
is the process of constructing a network that, when executed, can achieve a specific
communicative goal. For instance, the communicative goal can be to discriminate
obj-268 in Figure 3.1 (i.e. the red block). This goal can be achieved by the
following network:

3.3.2. Example.

((unique-entity ?referent ?set-1)

(filter-by-color ?set-1 ?set-2 ?color-prototype)

(filter-set-class ?set-2 ?context ?class)

(get-context ?context)

(bind object-class ?class block)

(bind color-category ?color-prototype red))

The mechanism that takes care of finding such a network is called the composer.
The composer is implemented as a standard best first search algorithm. Start-
ing from an initial (usually empty) network, cognitive operations are recursively
added and linked until a useful network is found. Moreover, the composer can
also use complete or incomplete networks in the process of composition.

An example of such a composition search process is shown in Figure 3.7. Each
node in the search tree contains an (intermediate) IRL program together with a
target variable and a set of open variables and a number indicating the cost of
that node.

The target variable of the chunk in composition is the variable that is linked
to the first slot of the first operation that is added by the composer (thus there
is always only one target variable per network). Open variables are all other
variables in the network that don’t link cognitive operations. Additionally, the
types of the slots of cognitive operations that are connected to target variables
and open variables are also stored with the network. The cost of a node is used
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1 (1.00): initial
2 (5.33): unique-
entity

5 (8.00): get-context, unique-entity

3 (11.20): filter-set-
class, unique-entity

 6 (25.71)

8 (13.71): filter-set-class, get-context, unique-entity

7 (17.14): filter-by-color, filter-
set-class, unique-entity

 12 (32.00)

 13 (32.00)

15 (16.00): filter-by-color, filter-set-
class, unique-entity

14 (19.56): filter-by-color, filter-set-
class, get-context, unique-entity

4 (11.20): filter-by-
color, unique-entity

 10 (25.71)

11 (13.71): filter-by-color, get-context, unique-entity

9 (17.14): filter-by-color, filter-
set-class, unique-entity

 16 (32.00)

 17 (32.00)

19 (16.00): filter-by-color, filter-set-
class, unique-entity

18 (19.56)

Figure 3.7: Example of a search process involved in the construction of an IRL
program. Analogous to previous examples, the goal for this conceptualization
process is to find a program that can identify the red block in the scene of Figure
3.1. Each node represents one processing step and branches in the tree indicate
multiple possibilities for expansion. Node labels show the order in which nodes
were created, a score that determines which node should be expanded next, and
a list of the cognitive operations that have been incorporated into the network so
far. Starting from an empty network (node 1), cognitive operations are recursively
added and the resulting programs are tried out (nodes 2-3, 7, 9), until finally a
solution is found that can achieve the goal of identifying the red block (node 14).
By then, some nodes have not been tested yet (nodes 6,10, 12, 13, 16-18) and
some can not be further expanded (nodes 5, 8, 11, 15, 19).

to determine which node to expand next. The one with the lowest cost is the first
to be expanded. Example 3.3.3 shows the internal network of node ‘4’ in Figure
3.7:

3.3.3. Example. Node 4

((unique-entity ?topic ?set-1)

(filter-by-color ?set-1 ?set-2 ?color))

The target variable is ?topic (of type sensory-entity) and the open variables
are ?set-2 (type object-set) and ?color (type color-category).

The search process starts from an initial node. The content of the initial node
depends on the communicative goal but should always contain at least one open
variable. In our example the first node contains nothing but the open variable
?topic.

Every iteration of the search procedure consist of two phases. In a first phase
the composer checks if the current networks can achieve the communicative goal.
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For this, the conceptualizing speaker takes itself as a model for the hearer and
executes the program using his own set of categories and his own perception of the
world. This is a form of re-entrance (Steels, 2003). If one of the current networks
can achieve the communicative goal then the composer is done and the solution
is returned. The execution of a network can generate additional bindings. These
additional bindings become part of the solution. Most of the time the networks
will not provide a solution.

If no solution has been found yet, the composer tries to extend the network of
the node with the lowest cost. The composer tries to add a cognitive operation
to the existing network and links the target slot of the cognitive operation to one
of the open variables of the node. This variable can only be linked if its type
is compatible with the type of the target slot. For each possible extension, a
child node is created with the extended network, the now connected variable is
removed from the list of open variables and new open variables for the other slots
of the added operation are created.

A solution of the conceptualization process is found when the execution of a
node’s network results in a set of bindings. The processing of nodes stops and the
found program together with the bindings from execution is returned. However,
often there is more then one solution and sometimes the first solution found is
not the best solution. Therefore it is possible to ask the composition engine for
multiple (or even all) solutions up to a certain search depth.

We will turn to an example to illustrate the expansion of a node. In Ex-
ample 3.3.3, the open variable ?set-2 (of type object-set) of node ‘4’ can be
connected to the three different operations filter-set-class, get-context and
filter-by-color because their target slot is of type object-set (which is the
same as and thus compatible with the type of ?set-2). Consequently, three child
nodes are created for the three resulting networks (nodes 9-11). Node 9 contains
the following expansion:

3.3.4. Example. Node 9

((unique-entity ?topic ?set-1)

(filter-by-color ?set-1 ?set-2 ?color))

(filter-set-class ?set-2 ?set-3 ?class))

Its open variables are ?color (of type color-category), ?set-3 (type object-set)
and ?class (type object-class). The expansion of node ‘4’ removed ?set-2 from
the list of open variables but added ?set-3 and ?class. This network does can not
yet compute the topic. In order for the operation filter-set-class to compute
something it requires a value for ?set-3. But, ?set-3 is still an open variable.
However, a further expansion of node 9 into node 19 does give a solution:

3.3.5. Example. Node 19

((unique-entity ?topic ?set-1)
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(filter-by-color ?set-1 ?set-2 ?color))

(filter-set-class ?set-2 ?set-3 ?class))

(get-context ?set-3))

For the topic of this example (the red ball – obj-268 in Figure 3.1). IRL finds an
unambiguous set of bindings containing the values red and block for the variables
?color and ?class respectively, which was already hinted at in Example 3.3.2.

The composition process of IRL is highly customizable to the specific needs
of particular learning scenarios. Most importantly, the order in which nodes are
processed can be influenced by providing a function that ranks them depending
on the composed program and their depth in the search tree. Nodes with a lower
rank will be processed first (see the second number in the node representations
in Figure 3.7). By default, networks with a low depth in the tree, few duplicate
cognitive operations and a smaller number of open variables are preferred, result-
ing in a ‘best first’ search strategy. But this scoring mechanisms can also be used
to implement depth-first or breadth-first searches.

3.4 Communication

So far we have only looked at meaning representation an processing, but we have
not yet discussed how all of this relates to language. In this section we address the
question how IRL-networks are translated into utterances and vice versa. IRL
is independent of any specific language formalism, and there is more than one
way IRL meaning could be mapped onto language. However, IRL is developed
in lockstep with Fluid Construction Grammar (FCG, Steels et al., 2012a), which
makes FCG the go-to candidate for parsing and producing IRL-networks. But
any construction grammar would serve equally well (ECG for example, Bergen
and Chang, 2005), and in many cases it would even be possible to use IRL in
conjunction with categorical grammars (e.g., Steedman and Baldridge, 2009).
Rather than focussing on the implementation of IRL meaning using a specific
formalism, this section aims to illustrate at a conceptual level some common
practices in IRL grammar design.

The second part of this section focusses on an IRL-native system called flexi-
ble interpretation. IRL is designed for robotic language games. Inherent to these
language games is that communication is not always perfect. The hearer is of-
ten presented with an incomplete message—either due to transmission noise or
because the hearer doesn’t know all the words or syntactic constructions that
the speaker uses. In such cases, the hearer can only retrieve part of the intended
IRL-network. The flexible interpretation mechanism in IRL is designed to recover
the missing parts of the network.



3.4. Communication 43

3.4.1 Grammar

In order to understand how IRL meaning can be mapped onto language, it is
useful to point out that there are three different sources of information encoded
in the semantic structure: semantic entities (bind-statements), cognitive opera-
tions, and the links between operations/bind-statements. Typically, these differ-
ent sources of information all have their own particular role to play in the descrip-
tion of the grammar: Bind-statements are expressed by content words. For ex-
ample, the word block maps onto the bind-statement (bind object-class ?class

block). Cognitive operations and the variable links are expressed by grammatical
constructions. For example, the operation (filter-set-class ?set-2 ?context

?class) is associated with the grammatical class CN.

NP

CN

DET ADJ CN

the red block

Figure 3.8: Syntactic structure of “the red block”. The example grammar
contains four grammatical categories: common noun (CN, e.g., block), adjec-
tive (ADJ, e.g., red), determiner (DET, e.g., the) and noun phrase (NP, e.g.,
“the red block”). The grammar also contains two rules for contracting utter-
ance: The CN→ADJ/CN rule that constructs complex common nouns out by
adding chaining adjectives to a simple common noun (e.g., “red block”), and the
NP→DET/CN rule that constructs noun phrases by adding a determiner to a
common noun (e.g., “the red block”).

The syntactical side of the grammar that produces the utterance “the red
block” can be represented as a rewrite grammar containing rules to produce
complex common nouns and noun phrases. Figure 3.8 shows an example of
the tree structure that this grammar produces. The grammar contains a rule
(CN→ADJ/CN) that combines the ADJ red and the CN block into the complex
CN “red block”. Another rule (NP→DET/CN) adds the DET the to the common
noun to create the NP “the red block”.

The question remains: How does such a grammar map onto IRL-networks?
Traditional categorical grammars would link the grammatical categories to lambda
expressions that when combined will produce the desired meaning. Although it
would not be impossible to create IRL-networks this way, practice shows that
categorical grammars are too restrictive. Due to their more flexible nature, con-
struction grammars turn out to be more practical for this purpose. The essence
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of construction grammars is the direct link between any linguistic construction,
be it a word order constraint, a lexical item, a marker or any other syntactic
construction, and the meaning. Any linguistic construction maps onto part of
the semantic content.

Figure 3.9 shows the mapping between syntax and meaning for the NP “the
red block”. In the case of content words this mapping is fairly straightforward.
The word block maps onto the bind-statement that introduces the block proto-
type (bind object-class ?class block). Similarly the word red maps onto the
bind-statement (bind color-category ?color red). The grammatical categories
themselves provide the instructions of how the content words would be used. For
example, the fact that block is used as a noun introduces the part of the net-
work that picks all the blocks from the environment ((get-context ?context)

(filter-by-class ?set-2 ?context ?class)). The grammatical constructions
that create the syntactic structure of the utterance provide the links between
different parts of the network. For example, CN→ADJ/CN provides the variable
link (?set-2) that is responsible for linking the parts of the network from the CN
block and the ADJ red.

This is just one example of how semantic structure in IRL can be mapped
onto syntactic structure. More elaborate examples can be found in Gerasymova
and Spranger (2012b) for temporal language, in Spranger and Loetzsch (2011)
for spatial language and in Bleys (2008) for color. Approaches differ in their
implementational details, but on a conceptual level they all follow the present
outline.

3.4.2 Flexible Interpretation

One advantage of using FCG over any other language formalisms to encode lan-
guage is its robustness against imperfect communication. When parts of an utter-
ance are not recognized, by the language system, FCG proceeds to parse as much
of the utterance as it possibly can. So it will still recover a partial meaning. Such
robustness is only helpful if the agent have some mechanism to repair this partial
meaning. The presence of such a mechanism (called flexible interpretation) is one
of the thinks that makes IRL such a useful system for robotic communication.

Let us consider an example. The speaker says “the yellow block right of you”,
however the hearer for some reason hears the following phrase:

3.4.1. Example. “grrgh yellow block right krkks you ”

When the hearer knows English, this utterance has some recognizable elements
for the hearer. Like “block”, “yellow”, “you” and “right”, But misses “the”, and
“of”. A language system that parses this sentence can at best retrieve only some
of the intended network. Figure 3.10shows an example of a network that might
be the result of parsing this utterance.
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Figure 3.9: The mapping between syntax and meaning. Content words provide
the bind-statements (a). The grammatical categories provide the cognitive opera-
tions that link to those bind-staments (b). And the rules that that create syntactic
structure provide the linking between the previously created subnetworks (c).
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(filter-by-color ?color-set-4 ?source-set-17 ?category-28)

(bind color-category ?category-28 yellow)

(bind object-class ?class-15 block)

(filter-set-class ?object-set-4 ?source-set-16 ?class-15)

(get-context ?context-56)

(identify-discourse-participant ?robot-4 ?context-56 ?role-11)

(bind angular-spatial-category ?category-35 right)

(bind discourse-role ?role-11 hearer)

Figure 3.10: A partial network for ”block yellow you”.

Executing this network leads to no result (solution). However, the hearer can
actively reconstruct possible meanings using the composer. The composer starts
with an empty network, just as in conceptualization, and gradually adds cognitive
operations building up more and more complex IRL networks. If an IRL network
matches with the meaning obtained so far, then it is a possible interpretation of
the phrase. If such the IRL network, furthermore, executes then the result of
execution is considered a possible solution.

Matching

The most important operation in interpretation is matching. The matching algo-
rithm tests whether a particular IRL network built by the composer is compatible
with the meaning that the language engine parsed from an utterance. In the next
few paragraphs the word meaning is reserved for the structure parsed by the lan-
guage engine (so not the reconstructed meaning). Meaning is always matched
against the (intermediate) IRL networks constructed in composition.

The interpretation mechanism has to recover networks that were not properly
communicated. The solution that is matched with the meaning can therefore
contain additional cognitive operations and variable links. While allowing the
composer to add information, the matching process has to preserve the informa-
tion provided by the meaning. In other words, the IRL network that the composer
finds is only a valid interpretation if it contains at least as much information as
provided by the utterance.

To understand the matching process, recall that, during parsing, language
constructions add meaning to the overall interpretation in the form of 1) bind
statements, 2) cognitive operations, and 3) variable links. A solution in inter-
pretation found by the composer can include additional information, but must
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preserve these three aspects from the parsed meaning. Consequently, the com-
poser has to find a network that contains at least the cognitive operations and the
variable links of the meaning. In addition, the open variables have to match the
bind statements of the meaning. These intuitions are captured by the following
definition:

A meaning n trivially matches an IRL network c iff (1) for each bind
statement (bind type ?variable entity) in n there is a open variable
(?variable . type) in c and (2) every primitive p in n is in c.

A meaning n matches IRL network c iff there is a function f from the
variables in n to the variables in c such that n′ = f(n) trivially matches c.

where f(n) is the meaning n′ that is the result of substituting every variable x in
n for f(x).

For example, the parsed meaning for the utterance “block” is (bind object-

-class ?class block). This matches Network 3.4.2, but not Network 3.4.3. This
is because the open variable ?class in Network 3.4.2 is of type object-class which
matches the object class of the bind statement. The type of the open variable
?color in 3.4.3 is not correct.

3.4.2. Example.

((unique-entity ?referent ?set-1)

(filter-set-class ?set-1 ?context ?class)

(get-context ?context))

3.4.3. Example.

((unique-entity ?referent ?set-1)

(filter-by-color ?set-1 ?set-2 ?color)

(get-context ?context))

As a second example, consider the utterance “the block.” FCG computes the
following meaning:

3.4.4. Example.

((unique-entity ?referent ?set-1)

(filter-set-class ?set-1 ?context ?class)

(bind object-class ?class block)

(get-context ?context))

This meaning matches Network 3.4.5, but it does not match 3.4.6 and 3.4.7. In
Network 3.4.5, all the primitives and variable bindings of the meaning are also
in the network, and the open variable ?class matches the bind statement (bind

object-class ?class block) from the meaning. Network 3.4.6 does not match
because the primitive filter-set-class is present in the meaning but not in the
network. Network 3.4.7 does not match because it does not have the variable link
between filter-set-class and get-context.
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3.4.5. Example.

((unique-entity ?referent ?set-1)

(filter-set-class ?set-1 ?context ?class)

(get-context ?context))

3.4.6. Example.

((unique-entity ?referent ?context)

(get-context ?context))

3.4.7. Example.

((unique-entity ?referent ?set-1)

(filter-set-class ?set-1 ?set-2 ?class)

(filter-by-color ?set-2 ?context ?color)

(get-context ?context))

3.5 Discussion

IRL has been built to support the embodied, multi-agent experiments in language
evolution. This chapter discusses the mechanisms provided for autonomous con-
ceptualization and interpretation. Namely, a mechanism for the evaluation (or
execution) and composition of semantic structure, and a mechanism to recon-
struct incomplete semantic structure. IRL, thus, provides the needed connection
between the sensorimotor systems and the language systems, at the same time
allowing for learning and open-ended adaptation.

As suggested earlier in this chapter, IRL can be seen as a procedural semantics .
The semantic building blocks are procedures that conduct the hearer into achiev-
ing a communicative goal. And, although IRL is a novel approach to language
modeling, the notion of procedural semantics is not. The notion of procedural
semantics dates back to the seventies, to the first attempts to make comput-
ers understand human language (Winograd, 1971). The program sparked some
heated debate Johnson-Laird (1978); Fodor (1978, 1979); Winograd (1975), but
also culminated in a number of fruitful practical endeavours with actual systems
being build. One example of such a complete system for parsing and interpreting
natural language utterances is SHRDLU Winograd (1971); Hewitt (1969).

The main qualm its opponents have with procedural semantics is the lack of
formal rigor (Fodor, 1978, 1979). More recent approaches in relevance theory,
addressed this issue and provide a more formal version of procedural semantics
(Blakemore, 1992; Wilson and Sperber, 1993; Blakemore, 2002). But, these ap-
proaches loose a lot of the procedural force. They consider procedures to be
guiding the inference process of otherwise propositional meaning. Procedures, in
this view are mostly an afterthought. IRL is in that sense much more reminis-
cent of SHRDLU then of contemporary approaches. And indeed this come at the
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cost of less formal rigor. I think an important future The only argument we can
make in defense simply not required for the purpose of IRL. IRL is not meant
as theory, it is not designed to make predictions about language and language
use. IRL is meant as a collection of mechanism that are useful for conducting
grounded language experiment. And this it does well.





Chapter 4

Grounded Categorization and
Perceptual Deviation

Grounding language in sensorimotor spaces is an important and difficult task. In
order for robots to be able to interpret and produce utterances about the real
world, they have to link symbolic information to continuous perceptual spaces.
This requires dealing with inherent vagueness, noise and differences in perspective
in the perception of the real world. This chapter presents two case studies for
spatial language and quantification that show how cognitive operations – the
building blocks of grounded procedural semantics – can be efficiently grounded
in sensorimotor spaces.

This chapter is a shortened version of a paper by Michael Spranger and myself
on this subject: Spranger, M. and Pauw, S. (2012). Dealing with perceptual
deviation: Vague semantics for spatial language and quantification. In Steels, L.
and Hild, M., editors, Language Grounding in Robots, pages 173–192. Springer,
New York

4.1 Introduction

Noisy sensor readings and algorithmic estimation errors make it difficult for au-
tonomous systems to acquire stable, precise, and correct estimates of the environ-
ment. Moreover, language always happens between different individuals. When
two interlocutors interact in a spatial scene, they will each see the world from
their viewpoint and, consequently, estimate properties of objects in the world dif-
ferently. We subsume such problems under the term perceptual deviation which
denotes that two artificial agents in the same physical space estimate the prop-
erties of objects in their environment differently.

The problem of perceptual deviation is one that humans navigating the phys-
ical world face as well. For instance, people systematically estimate distance
wrongly (Foley, 1980). Humans also have vastly varying sensor precision which
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has been observed, for instance, in color vision. Even people with average color
vision, i.e. non color-blind subjects, have different retinal distribution of mid and
long wave-length cones (Roorda and Williams, 1999). Lastly, humans interacting
in spatial environments also perceive the world from their respective viewpoints.

Nevertheless, humans link symbolic information to noisy sensory information
effortlessly. How this can be achieved for artificial systems has long been ignored.
Traditional logic-based approaches to semantics focus almost entirely on the sym-
bolic level and leave details of how to link semantics to sensorimotor spaces open.
At the heart of such approaches is the notion of strict membership. A phrase
such as “left blocks” is true for all objects which are blocks and to the left, in
other words, all objects which are a member of the set of blocks and a member
of the set of left objects. Consequently, each object in the world is either part of
these sets or not. This idea can cause problems when being exposed to real-world
problems such as perceptual deviation. An object might be to the left for one
interlocutor but not to the left for another.

The classical approach has been criticized by psychologist and linguists alike.
Rosch and Lloyd (1978), Lakoff (1987) and Langacker (1987) are examples of
researchers who argue that human categorization is graded rather than strict. In
their view, objects are more or less prototypical for a concept. Some objects are
more block than others. They conclude that concepts are represented by pro-
totypes, i.e., prototypical objects which allows other objects to be compared to
them. Such a lenient view on the meaning of concepts has been used successfully
to ground lexical language in sensorimotor streams (see Steels and Spranger, 2008;
Bleys et al., 2009, for examples from action language and color). However, com-
positional semantics, the problem of how lexical items are combined into larger
compositional semantic structures, has been mostly absent from these discussions.
Furthermore, many of these proposals do not go far enough and fall back onto
some version of strict membership. This chapter introduces a particularly strong
version of lenient categorization that is exceptionally successful in dealing with
problems of perceptual deviation and that is implemented in a larger framework
for handling compositional semantics

To compare our proposal to traditional approaches, we operationalize the
different ideas for a concrete piece of natural language: spatial language. We
implemented spatial semantic primitives such as spatial categorization, perspec-
tive reversal and landmark processing, as well as quantifiers separately for the
strict and the lenient approach in a formalism called Incremental Recruitment
Language (IRL) (see Chapter 3 or Spranger et al., 2012b). We test each imple-
mentation in robot-robot interactions, called spatial language games (Spranger,
2011; Steels, 2012b) in which one robot is trying to draw attention to an object
in the environment using spatial language. Subsequently, we can measure and
quantify the success of these interactions and show why the lenient approach
outperforms the classical approach.
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Figure 4.1: Experimental setup involving robots, blocks and a box.

4.1.1 Spatial Language Games

In order to study the effect of perceptual deviation we use an experimental setup in
which two humanoid robots interact in a shared environment (spatial scene). One
robot, the speaker, is trying to draw attention to an object in the environment
using spatial language (see Figure 4.1). Here is the language game the robots
play.

1. Both agents perceive the environment using their own camera. The vision
system (Spranger et al., 2012a) computes a situation model (see Figure
4.1, left and right) which is comprised of blocks (circles), boxes (rectangle)
and other robots (arrows). The perceiving robot is always the center of
the coordinate system which is used to estimate distance and orientation
of objects. The boxes have an inherent front which is visually marked and
know by both robots.

2. The speaker picks an object from the context and conceptualizes a meaning
for discriminating it. If he succeeds in finding an appropriate meaning, the
structure is encoded in an utterance and passed to the hearer.

3. The hearer interprets the utterance by recovering the semantic structure
and trying to find the object that the utterance refers to.

4. The hearer points to the object and the speaker confirms whether he pointed
to the correct object.

Figure 4.1 shows real-world perceptual deviation problems. For the speaker,
object-1 is more to the left of the box (from the perspective of the box), whereas
for the hearer the same object is more in front of the box (the front of the box
is denoted by the small line in the rectangle). Figure 4.1 shows one scene1 from
close to 900 spatial scenes which we have recorded. Scenes differs in the number
of objects and whether boxes are present or not. Some scenes have one box, some

1Each scene consists of two situation models, one for each robot.
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feature/measure average stddev min max
distance deviation 7.2cm 6 0.002cm 59.4cm

angle deviation 8◦ 0.13 0.04◦ 51◦

Table 4.1: Average, standard deviation (stddev), min and max values of angle
and distance differences (angles in degrees) over 800 real-world spatial scenes.
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Figure 4.2: Camera noise histogram. The YCrCb values of a single pixel over time
are recorded and analyzed using histograms (left - y-channel, middle - Cr-channel,
right - Cb-channel

do not have any boxes. Some scenes have two objects, others up to 10 objects.
For such scenes, we can precisely quantify the degree of perceptual deviation by
measuring the differences in distances and angle for each perceiving robot. For
example, object-1 in the speaker world model (left image) has a distance of 81cm
to the speaker. The hearer estimates the distance of the object to the speaker
as being approx. 75cm. The estimation of the hearer is based on the distance
he thinks the speaker has to the object. The following table shows the average
differences in distance and angle measured for each robot and each object over
897 spatial scenes.

The table shows that the average perceptual deviation for the distance channel
is 7cm with outliers that diverge up to 60cm. These are high numbers, but it is
the sort of distance estimation problem one gets even with sophisticated computer
vision systems. On average, angles diverge by around 8◦ with some going up to
51◦. Based on these values we can conclude that perceptual deviation is always
present and in some cases a quite severe problem.

4.1.2 Sources of Perceptual Deviation

There are four main sources for perceptual deviation: 1) sensor deviation 2) noisy
or faulty sensors, 3) errors arising from algorithms used in estimating object
properties, 4) differences in viewpoint on the scene.
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Sensor deviation Sensors vary across individuals. We have already given an
example for human color vision earlier. The same also holds for robots.
For instance, CCD cameras from the same manufacturer have differences in
light collection stats due to manufacturing margins.

Sensor noise Every sensor is noisy. Based on the type of sensor different sources
of noise can be identified. For instance, CCD devices suffer from transfer
inefficiency and shot noise (Healey and Kondepudy, 1994). Figure 4.2 shows
color sensor readings taken by a digital camera in a static spatial scene. The
graph shows the histograms of sensor readings from a single pixel for three
different color sensors (brightness, red and blue channel). The histograms
show that color readings vary over time.

Estimation errors Another source of errors and noise is related to algorithms
used in object recognition and object feature extraction. For instance, the
algorithm for the distance estimation of objects (see Spranger et al., 2012a)
has distance estimation error properties shown in Figure 4.3. To estimate
the position of objects the algorithm combines noisy sensor readings and
integrates them over time and across different sources of information. In
the process, noise and uncertainty from different sensor sources accumulate
and potentially amplify.

Differences in perspectives Another source for perceptual deviation comes
from the fact that agents perceiving the world from different bodies neces-
sarily have different viewpoints on the scene. On the on hand, objects can
look different from different angles and light conditions might vary across
the environment. On the other hand, spatial properties are inherently ego-
centric. I can estimate the position of an object from my viewpoint, but my
distance to the object is most likely different than from another person’s
point of view.

4.2 Strict Semantics

Consider an example of spatial language that highlights the problems that per-
ceptual deviation causes for the strict approach. Suppose two robots interact in
a spatial scene such as the one in Figure 4.4. The speaker says, “the block to
the left of the box”, to draw attention to object-1. For him this is an acceptable
phrase for discriminating the object2. After all the object is the only block in the
region to the left of the box. When the hearer interprets the phrase using the
same mechanism, he fails. For him the object is to the right of the box and the set
of blocks to the left of the box is actually empty. Obviously, the problem stems

2 We assume an intrinsic interpretation of the phrase (Tenbrink, 2007).
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Figure 4.3: Measuring estimation errors. The block was put at 500, 1000 and
1500mm distance from the robot. Each time the vision system estimates the
features (width, height, x and y) of the block. The graph to the right shows the
root-mean-square-error (RMS) for each measurement. The x feature (x-axes runs
towards the front) is most heavily affected by increasing distance.

from the fact that the hearer is applying a strict interpretation of the phrase.
For him the region left has a fixed border and everything within the region is
considered left.

Strict approaches can be implemented in different ways. For instance, a spa-
tial relation can be characterized by the set of locations in space to which it
applies (highly intractable in real-world scenarios), using regions (Kelleher and
Costello, 2005), adaptive networks (Belpaeme, 2002), axioms (Eschenbach and
Kulik, 1997), exemplars (Steels and Kaplan, 2002) and centroids (Bleys et al.,
2009). Common to all attempts is that there are strict boundaries for category
membership. An object either belongs to a certain category or not. For the sake
of the argument, we only focus on centroids hereafter.

Centroids are the geometric center of convex regions in a particular sensori-
motor space. For spatial relations such as left and right, for instance, centroids
are points in the radial space around the robots. An object is considered to be
left (or member of the category), when its angle is closest to the spatial point
left, otherwise it is categorized as right. Consequently, every point in the senso-
rimotor space belongs to precisely one category from a particular set of categories
and the complete sensorimotor space is decomposed into different sets of objects
based on their category membership, a process known as Voronoi tesselation.

However, categorization is not enough. In order to refer to an object and try
to draw attention to it, one has to discriminate the object from others in the set
of objects. Therefore, a second condition is introduced. A category, say left is
discriminating an object from the context, if the object is the only member of the
category.

Here are the two conditions:

Strict category membership An object o is said to be a strict member of the
category c, iff o is closer to c than to any other category from the repertoire
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Figure 4.4: Impact of perceptual deviation. While for the robot to the left the
object is left of the box, the same object is not left of the box for the robot on
the right.

of categories C. This is known as categorization in machine learning.

Strict discriminating category A category c is said to be strictly discriminat-
ing when o, iff o is a strict member and the only member of the category.

Let us apply this to an example of compositional semantics say the meaning of
the utterance ”the left block”. Figure 4.5 (left) shows the semantic representation
of the utterance in IRL. The lexical items “the”, “left” and “block” appear as so-
called bind-statements which are pointers to the concept. All other nodes in the
network are cognitive operations which denote how these concepts are processed.
The referent of the phrase is computed (Figure 4.5, right) by going through every
operation and executing it, a process known as evaluation.

get-context Introduces the situation model via the variable ?ctx.

filter-by-class Applies the object class block by filtering objects in the context
for those of type block, i.e. those who are strict members of the category.
The result is available via the variable ?blocks.

filter-by-spatial-category-group-based Applies the spatial relation left to
further constrain the set of objects in the context for all objects that are to
the left. The result is published in the variable ?left-blocks3.

3The precise implementation of this filter operation is based on the meaning of projective
adverbs in English (Tenbrink and Moratz, 2003)
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(get-context ?ctx)

(filter-by-class ?blocks ?ctx ?class)

(bind object-class ?class block)

(filter-by-spatial-category-group-based ?left-blocks ?blocks ?cat)

(bind lateral-category ?cat left)

(filter-by-selector ?the-left-block ?left-blocks ?selector)

(bind selector ?selector unique)

?ctx

?blocks

?left-blocks

obj-230

obj-230

obj-230

Figure 4.5: On the left side, the IRL-network of the phrase “the left block” with
filter operations is shown. The images to the right show the progressive filtering
of the set of objects in the context.

filter-by-selector This operation has as input the set of left blocks. It checks
whether the input set contains only a single object (unique) and returns it
if there is only one. This operation implements the discriminating category
condition.

4.3 Lenient Semantics

Many scholars propose alternative principles guiding semantic processing. Rather
than relying on strict membership and strict discrimination, they require that an
object o is the closest object to a category c without further constraining the other
objects in the context O and their relationship to the category c. Consequently,
other objects in the context O can be strict members of the category c as long
as they are not closer to c than o. Psychologists, for instance, have found that
in many discrimination tasks the choice of categories seem to be based on the
principle of greatest distance or greatest contrast which only requires the category
to establish sufficient difference between the distance of object o and all other
objects in the context. These principles are used to explain human behavior in
general object discrimination tasks (Hermann and Grabowski, 1976) but have
also been applied to spatial language (Herskovits, 1986; Freksa, 1999). Tenbrink
(2005), for instance, found that unmodified projective terms are frequently used
by participants even though objects were far away from the prototypical axes.

Based on these observations, we propose a novel approach to implementing
semantics which we termed lenient. Our approach considers similarities to cat-
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(get-context ?ctx)

(apply-class ?blocks ?ctx ?class)

(bind object-class ?class block)

(apply-spatial-category-group-based ?left-blocks ?blocks ?cat)

(bind lateral-category ?cat left)

(apply-selector ?the-left-block ?left-blocks ?selector)

(bind selector ?selector unique)
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Figure 4.6: On the left side, the IRL-network of the phrase “der linke Block”
(the left block) with apply operations is shown. The images to the right show
the progressive scoring of objects in the context through the operations in the
network.

egories without enforcing the strict membership criteria. Figure 4.6 shows the
semantic structure for the phrase “the left block” using the lenient approach.
The IRL-network is structurally the same. Only the implementation of cognitive
operations is changed (signified by the prefix apply- instead of filter-by-).

apply-class Applies an object class by scoring each object using a similarity
measure. Here, every object in the context is scored based on its similarity
to the object class block. The result is available in ?blocks. (Note that the
membership of block is in fact strict: the similarities are either 0 or 1.)

apply-spatial-category-group-based Applies the spatial relation left by mul-
tiplying the similarity of each object with the spatial relation with the sim-
ilarity to the object class block. The result is published in ?left-blocks.

apply-selector This operation then applies the unique selector to the objects in
?left-blocks. Here, this is implemented as choosing the object with the
highest similarity score in the input.

The most important thing to note is that no filtering occurs. Rather, objects
are scored based on their similarity to concepts and spatial categories. Only at the
very end the quantifier picks the referent of the phrase. This sort of processing can
deal with the initial problem presented in Figure 4.4. Upon hearing the phrase
“the block to the left of the box” (see Figure 4.4), an interpreter is still able to
identify object-1 using the lenient interpretation, because the block object-1 is
the leftmost of all blocks.
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Figure 4.7: Lenient versus strict categorization. Top left figure: similarity
functions for left and right categories over the angle. Top right figure: decom-
position of the angular space using the strict approach. The bottom figure shows
how the lenient approach uses the similarity function of the spatial category to
retrieve the correct object.
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Figure 4.7 shows why the lenient approach solves the situation more ade-
quately than the strict approach. The top left figure shows the similarity functions
for the spatial categories left and right. The decomposition of the angular space
used in the strict approach is shown in the top right figure. The block object-1

is categorized by the speaker as being to the left, whereas the same object for the
hearer is to the right. When the speaker thus conceptualizes the object as left,
the hearer has no chance of retrieving the object using strict interpretation. On
the other hand, when applying a lenient discrimination scheme (bottom figure),
whether or not the hearer is able to discriminate the correct object depends on
whether object-1 is the most similar object to the category left (which is the
case, for this example).

4.4 Comparing Strict and Lenient Spatial Se-

mantics

The operationalization of strict and lenient semantics allows us to study the dif-
ference between the two approaches systematically. Agents interact in controlled
spatial scenes and we measure which of the two approaches performs better in
a discrimination task. Here, we concentrate on the semantics only. Therefore,
we scaffold syntactic processing and use direct meaning transfer. The hearer is
passed the IRL-network conceptualized by the speaker without going through
production and parsing of syntactic structure. This is equivalent to having a
language without uncertainty, ambiguity or loss of information.

Section 4.1.1 describes the interaction script that is the basis of our investi-
gation. Different steps of such an interaction can fail. We consider the following
four outcomes of an interaction:

Conceptualization failed (step 2) After the speaker chooses a topic, he has
to conceptualize an IRL-network that discriminates the topic. This pro-
cess fails if the speaker cannot find any IRL-network that allows him to
discriminate the object from all other objects in the context.

Interpretation failed (step 3) After the speaker successfully conceptualized a
discriminating IRL-network, the hearer interprets this structure by simply
evaluating the network. If this evaluation yields no result, the hearer is said
to have failed.

Pointing failed (step 4) When the hearer successfully interpreted the seman-
tic structure passed to him by the speaker, he points to the topic he inter-
preted. The speaker then checks whether the object pointed to is indeed
the topic. If this is not the case then pointing failed.

Success If the hearer points to the correct object then the game is a success.
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We setup two different populations of agents. In one population, agents are
equipped with lenient semantics in the second population all agents are equipped
with strict semantics. Both types of agents can handle the same complex spatial
semantics such as group-based reference (Tenbrink and Moratz, 2003), landmarks
(Mainwaring et al., 2003), frames of reference (Levinson, 1996) and perspectives
(Taylor and Tversky, 1996). Agents are given a set of English proximal (near,
far) (Kemmerer, 1999) and projective (front, back, left, right) spatial categories
(Tenbrink, 2007). The implementation of these complex semantics is part of a
larger effort on spatial language (see Spranger, 2011, for an overview).

Performance is tested on different subsets of 897 pre-recorded spatial scenes.
We consider two data sets: one containing scenes with few objects (on average 4)
and the other containing scenes with many objects (on average 10).

Figure 4.8 compares the lenient and the strict approach for the two sets of
spatial scenes. Clearly, the lenient approach has a communicative advantage
over the strict implementation. Success in interaction for the lenient approach
is consistently above 85% across the two environmental conditions, whereas the
success of strict categorization drops to 22% in the most difficult many objects
condition. This means that only approx. one in four games is a success using strict
interpretation compared to more than 4 out of 5 for the lenient case. Notably, the
lenient approach is able to successfully conceptualize the spatial scene for the topic
in question in almost all scenes. Only few cases in the many objects condition are
marked for failure in conceptualization. On the other hand, the strict approach
shows enormous problems even conceptualizing for particular objects in particular
scenes. Almost all cases of failure are either due to failures of conceptualization
or failures of interpretation, where conceptualization takes the major blame for
failure. The two conditions show that the more objects there are in a scene the
more severely the strict approach is affected.

Apart from the number of objects, the number of categories also influences
performance. Failures to conceptualize are caused entirely by insufficient cluster-
ing of the input space. The problem is that there are not enough categories to
allow the speaker to discriminate the topic object. On the other hand, failures
to interpret and pointing failures are caused by perceptual deviation. In order
to control for lack of categories, we compare four additional conditions: english,
double, triple and quadruple. The english condition is the same as used in the
previous results: agents are given sets of English categories. In the double con-
dition, the number of categories is doubled. Instead of two lateral categories left
and right there are now four. The same holds for frontal and proximal categories.
In the triple and quadruple condition, agents are equipped with three and four
times as many categories. In each condition the sensorimotor space is equally
decomposed by the categories.

Figure 4.9 shows results. The left two groups of bars show the performance of
the lenient approach versus the right two groups which show the strict approach.
Results reveal not much change for the lenient approach. However, the perfor-
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mance of the strict approach increases drastically with more categories. But, the
graph also shows a saturation effect. Success actually drops again for quadrupled
number of categories. Failures of the speaker to conceptualize are replaced by the
inability of hearers to interpret and, to a lesser extent, by errors in pointing. This
means that the more categories there are available the more impact perceptual
deviation has on the strict set approach. The reason is that the more categories,
the smaller the area of categories in the sensorimotor space. Consequently it be-
comes more likely that an object categorized as belonging to a certain category
by the speaker will be categorized differently by the hearer.

4.5 Discussion

Up to this point we have given a detailed account of our lenient approach to
semantics in search of a solution for the problem of perceptual deviation. How-
ever, in the field of linguistic vagueness the aptness of such an approach is highly
debated. Although, the problems that are being discussed in this field are of a
very different nature than our own, we feel that we can not entirely omit touching
upon this discussion.

In linguistics, the discussion of vagueness focusses mainly on gradable adjec-
tives such as “tall]’ or ‘bold’ that have no clear semantic boundaries (see van
Rooij, 2011 for an overview). Gradables can be be relative (“tall”) or absolute
(“flat”). Precise concepts can be made vague, for example by using hedging ex-
pressions (Lakoff, 1973) such as “about” and “roughly”. And, even seemingly
precise concepts are often used in a vague way. For example, a round number
such as “twenty” is often used as an approximate (Krifka, 2007).

The need for a model that can deal with vagueness is widely recognized,
however the kind of model that should be used is a point of dispute. Traditionally,
vagueness focusses on the existence of borderline cases of utterances such as “john
is tall”. An example is three valued logic where such an utterance can be true,
false or undefined. Most modern accounts of vagueness fall under one of two
approaches: Degree-based and delineation-based approaches to vagueness (van
Rooij, 2011).

Degree-based approaches (Zadeh, 1965; Stechow et al., 1984; Kennedy, 2007)
assume that category membership can be expressed in terms of degrees. Such
a degree is typically a score between 0 and 1. The model as presented in this
chapter is an example of such an approach.

Delineation approaches (Lewis, 1970; Kamp, 1975; Klein, 1980) assume that
gradable adjectives are strict predicates, but that the membership of an individual
is context dependent. For example, “tall” and “bald” do have cut-off points in
every specific context, but the actual cut-off point for all possible contexts is
underdetermined. Super-valuation is an example of such an approach.

Clearly, the model we propose is an example of a degree-based approach and is
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therefore subject to the objections that come with such approaches. Proponents
of delineation approaches point out two problems with degree-based analyses.
First of all, degree-based approaches fail to preserve necessary logical properties.
For example in Fuzzy Semantics p∧¬p is not necessarily false. Secondly, it is not
clear what the degrees reflect or where they come from. Are they probabilities?
Neuron activation levels?.

So why do we use a degree-based approach in spite of these objections? First of
all, most of the problems with degree based approaches are well beyond the scope
of the current model. The language games require the agents to discriminate ob-
jects to each other, not to establish truth. For this purpose the question if specific
logical properties are respected is not of much concern. For example, the inference
”x is taller than y” implies ”y is shorter than x” is not addressed in referential
language games. The second more important reason is of a more practical na-
ture: Degrees are the vantage point of our model. The data as described above is
continuous. The classification of a perceived object requires some sort of compar-
ison to an internal representation based on similarity measures. A degree-based
approach that directly operates on these similarity measures provides therefore
a straightforward model of semantic processing. Lastly, delineation-based ap-
proaches are not impervious to complications either. Proponents of fuzzy logic
(Lakoff, 1973; Wright, 1975; Kamp, 1981a) argue that such accounts are inade-
quate because they still rely on unnatural borders. It is cognitively implausible
that a cut-off point for the word “tall” exists, even for one particular valuation
function. And even if it does exist, the ontological status of such a valuation is
just as unclear as that of the degrees. So, it is not the case that there is a problem
free, ready to use alternative that we are omitting.

4.6 Final Remarks

Obviously, traditional approaches to semantic processing have a lot to offer and
made many important contributions, for example, related to reasoning. In our
view, the way to combine the two approaches and therefore leverage the great
results of logic-based semantic theories is by distinguishing discrimination from
description. The notion of truth makes a lot of sense in description tasks, where
an accurate description either fits a situation or not. This contrasts with discrim-
ination tasks where truth is not an immediate concern but rather the contrasting
of objects from other objects seems dominant. The lenient approach works well
in discrimination tasks and can easily be extended to work in description tasks,
for instance, by reintroducing acceptability limits. The lenient mechanisms allow
agents to track how acceptable a category is for a particular object and, hence, can
also be used to make true/false distinction thresholding the similarity landscape
and modulating the interpretation of quantifiers in determined noun phrases.

This chapter has argued for a particularly lenient way of grounding meaning
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in sensorimotor data streams. We have taken the domain of spatial language
and illustrated the practical effects and advantages of our model. We compared
the performance of the lenient approach to the dominant approach in semantic
theory and argued that our approach outperforms traditional semantic processing
in discrimination tasks. The experiments show that real world tasks require a
rethinking of deep aspects of semantic theory.
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Chapter 5

Clustering Quantifiers and Perceptual
Deviation

This chapter studies how quantificational expressions such as few, three and all
can be grounded in real-world perception. Based on findings from psycholinguis-
tics, we propose a computational model designed for use in robot-robot interaction
scenarios which involve discrimination tasks for objects in the real world. We test
the performance of our model and contrast it with a type theory based model.
We show that our design choices make our model more suitable for real-world ap-
plications. This chapter has previously been published as Pauw, S. and Spranger,
M. (2012). Embodied quantifiers. In Lassiter, D. and Slavkovik, M., editors, New
Directions in Logic, Language and Computation, pages 52–66. Springer

5.1 Introduction

The experiments reported in this chapter are part of a greater research effort
that studies human language-like communication using (artificial) robotic agents
(Steels, 2012b). Central to these studies is the question: How can the meaning
of language be grounded in real-world perception? Answers to this problem are
given for different aspects of human language such as color (Bleys et al., 2009),
space (Spranger, 2012), temporal language (Gerasymova and Spranger, 2012b)
and action language (Steels et al., 2012b; Steels and Spranger, 2012; Spranger
and Loetzsch, 2009). All of these models operationalize basic insights from pro-
totype theory (Rosch et al., 2004) about how people conceptualize objects and
relations between them and propose a degree-based semantics. In this chapter
we describe a fully operational model for natural language quantifiers such as
many, all and three that builds further on these findings. The model, termed
clustering quantification (Spranger and Pauw, 2012), employs a combination of
prototype theory and standard clustering algorithms and has been successfully
used to study the acquisition and evolution of quantificational terms (Pauw and
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Hilfery, 2012; Pauw, 2013b).

Inspired by existing psycholinguistic research on quantification (Hormann,
1983; Newstead and Coventry, 2000; Coventry et al., 2010), the model presented
in this chapter focuses on the role of quantifiers in determining a referent of
a quantified noun phrase. The quantificational information of a noun phrase
imposes constraints on the cardinality of its possible referents. For example, the
quantifier three in the utterance “the three blocks” signals that the extension of
blocks in the context contains three elements.

We test the adequacy of the clustering quantification model for real-world
perception through a series of experiments. In these experiments we contrast the
performance of our model with a model that is more in line with type theoretic
accounts of quantification which assume that nouns can be modeled as predi-
cates. Accounts falling into this class are Generalized Quantifier Theory (GQ)
(Barwise and Cooper, 1981) and Fuzzy Quantifier Theory (Zadeh, 1965, 1983).
This chapter proceeds by introducing the embodied interaction paradigm. The
section to follow introduces our model for quantification. After that, we introduce
the type theory based model. Finally, we compare both models and show that
the clustering quantification performs significantly better.

5.2 Embodied Interaction

The model presented in this chapter is designed for use in real-world situated
interaction. Figure 5.1 shows an example scene with two Sony humanoid robots
(Fujita et al., 2003) interacting in a shared environment. Each robot perceives
the world through its own onboard sensors, e.g., the camera and proprioceptive
sensors. The vision system (Spranger et al., 2012a) gathers information from the
sensors into a world model, that reflects the current belief of a robot about the
state of the environment. One of the robots is randomly chosen as the speaker
and he will choose a referent, which can be any object or subsets of objects in the
environment. The goal of the speaker is to draw the attention of the interlocutor
to the referent and make him point to it or to each of the objects that are the
referent.

We call these interactions language games (Steels, 2001). The type of lan-
guage game the agents play depends on the particular research question. For this
chapter, the two interacting agents use the following script:

1. Both agents establish a joint attentional frame (Tomasello, 2003) and a
world model using their visual and proprioceptive sensors.

2. The speaker chooses an object or a set of objects as referent R. He concep-
tualizes a meaning for discriminating R and tries to verbalize his conceptu-
alization into a string of words.
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(a) Example scene

box

speaker

hearer

object-1

object-2

(b) Speaker world model

box

speaker

hearer object-1

object-2

(c) Hearer world model

Figure 5.1: (a): Example scene consisting of various objects, e.g., robots, blocks
and boxes. (b) and (c): Top-down view of the world models as perceived by
respectively the speaker and the hearer.

3. This utterance is passed to the hearer.

4. The hearer parses and interprets the utterance and tries to find the object
or the set of objects he thinks the speaker is trying to discriminate.

5. The hearer points to the object or the set of objects.

6. The speaker checks whether the objects pointed to by the hearer were indeed
the ones he had in mind.

This language game can have two different outcomes. If the hearer points to the
correct set of objects the game is a success. Otherwise it is a failure.

Such interactions require a mapping of continuous perceptual data to discrete
symbols (language). To this end, we use the computational semantics systems
Incremental Recruitment Language (IRL) (Spranger et al., 2010a, 2012b). Since
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the communicative goal is to identify some referent, the semantics of a particular
phrase is modeled in IRL as a series of operations, i.e. a program, that the hearer
has to go through in order to single out the objects that are the referent.

(get-context ?ctx)

(apply-class ?set-21 ?ctx ?class)

(bind object-class ?class block)(apply-spatial-category ?set-32 ?set-21 ?cat)

(bind spatial-category ?cat left)(apply-selector ?topic ?set-32 ?selector)

(bind selector ?selector unique)

Figure 5.2: Semantic structure representing the meaning of the utterance the
left block. The network contains bind-statements that introduce semantic en-
tities (e.g., the object class block), as well as operations that define what to
do with these semantic entities. Links in the network are defined by vari-
ables (starting with a ?), e.g., the output of operation apply-class is linked
to apply-spatial-category through the variable ?set-21.

Figure 5.2 shows the IRL-program underlying the utterance the left block. The
program is represented as a network containing semantic entities (e.g., block and
left) and cognitive operations (e.g., apply-class). The semantics entities repre-
sent concepts and categories. The cognitive operations instruct the agents what to
do with the semantic entities. For example, apply-class takes the concept block

and applies this to the objects in the context. The result of this application is
fed to the operation apply-spatial-category, which processes the data using the
spatial category left, and finally, apply-selector computes the referent using
the selector unique for more information.

IRL provides a general framework for the automatic interpretation and com-
position of such programs, but the concrete implementation of each operation,
e.g. apply-selector is outside of IRL. IRL makes no assumptions about the in-
ner workings of these operations. Consequently, IRL is an ideal formalism for
studying different models of categorization and quantification.

5.3 Clustering Quantification

There is been substantial research in the past 10 years on grounding basic cate-
gories and relations in real world perception. We build upon an existing system
for spatial language which has been proposed for the grounding of spatial cat-
egories and quantifiers such as “the” (Spranger, 2011) and has been shown to
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be very successful in real world interactions (Spranger and Pauw, 2012). This
system is based on two psycholinguistic processing principles.

acceptability (Herskovits, 1986), also called prototypicality (Rosch and Lloyd,
1978; Lakoff, 1987), means that categories such as left apply to a certain
degree. An object can be more or less to the left of a landmark.

contrast requires speakers which are trying to discriminate objects to choose
the relation or category which maximizes acceptability of the object and
minimizes acceptability of all other objects (Tenbrink, 2005). The phrase
“the left block” refers to the leftmost block in a scene.

Starting from this model the main question is how notions of acceptability
and contrast can be extended to quantifiers which might introduce additional
constraints such as cardinality (e.g. “three”). In this section we propose to
operationalize these ideas for quantifiers using mechanisms from machine learning
and clustering. Before we jump to the quantifier model we briefly outline how
prototype-based processing is implemented for categories.

5.3.1 Acceptability

The acceptability of a concept for an object depends on a similarity function that
assigns a score to the combination of concept and object. For example a spatial
relation such as left is represented by a prototypical vector in euclidean space.
The degree to which an object is left depends on the angle between the object and
the prototypical vector for left. The similarity function maps this angle difference
to a score between 0 and 1. The following gives an example of a parameterized
similarity function used for modeling projective categories such as front and left.

s = e
0.5d(p,o)

σp (5.1)

With s being the resulting similarity score, d(p, o) a distance function between
prototype p and object o, and σp a parameter that determines the rate at which
the distance influences the similarity. In the case of projective categories such
as front and left, this distance function computes the difference in angle between
object and prototype. Similarly, functions for other concepts such block are
constructed, except that the similarity/distance space might be the set of features
of an object.

For semantic structure such as the one in Figure 5.2 this means that oper-
ations that apply categories such as apply-spatial-category and object classes
such as apply-class assign scores to the objects in the context. Scores for the
spatial category and the object class are multiplied so that in the end a single
acceptability rating in the form of a similarity score is computed for each object
in the context. In short, this is a model for spatial language which establishes
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Figure 5.3: This figure shows the results of the interpretation of the utterance
“block(s) in front”. Every object is assigned a score that is the result of multi-
plying the respective score for the categories front and block.

the acceptability of a noun phrase such as “block in front of me” for every object
in a given context (See Figure 5.3).

5.3.2 Contrast

But, how do agents use these scores to distill concrete referents? This is where
the notion of contrast comes into play. For instance, if an agent wants to dis-
criminate an object from the context then he is likely to try and maximize the
applicability contrast (the difference in similarity scores) between the object he
wants to discriminate and all other objects in the context. Hearers choose the ob-
ject that best fits the description. Speakers choose the categories that maximize
the contrast.

Similarly, if the referent is a set of objects (as for the utterance three blocks)
we require a procedure that decides for every entity whether it is part of the
referent set or not. Quantificational information constrains this process. For
example, the quantifier three signals that the referent set contains (at least) three
element, and the quantifier many signals that the referent set contains more
elements than a certain norm. To operationalize these ideas we use standard
clustering algorithms from machine learning. In particular, we apply variants
of agglomerative clustering (Mitchell, 1997) and k-means (Lloyd, 1982; Manning
et al., 2008).

The algorithms are used to implement the operation of apply-selector. The
task of this operation is to decide for every entity in the context if it is part
of the referent or not, based on the scores that were assigned by the previous
operations. In essence it has to divide the input set into two sets of objects,
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Figure 5.4: This figure shows the results of applying agglomerative clustering.
The algorithm finds two possible referents for the utterance “block(s) in front”
(cluster-1 and cluster-2). The quantificational information of the noun phrase
can be used to further constrain the possible referents of the noun. The noun
phrase “the block in front of me” signals that there is one unique referent, making
cluster-1 the most likely referent. For the noun phrase “all blocks in front of me”,
the most likely referent is cluster-2.

the objects that are part of the referent (REFSET) and the objects that are not
(COMPSET). Finding such a partitioning is precisely what clustering algorithms
are designed for. However, there are many ways to partition an input set. The
particular partition that is chosen depends on a combination of factors. First
of all, the clustering algorithms use heuristics to find good partitioning. Good
partitionings are those that maximize inter-cluster variance and minimize intra-
cluster variance. The first is a measure of how far clusters are apart (contrast).
The second is a measure how much cohesion there is in each cluster. Both k-means
and agglomerative clustering are algorithms that optimize for these two indicators
and we apply them here to similarity scores computed for the spatial relation and
the object classes. Figure 5.4 shows an example result of the clustering algorithm.
For the present experiment, the precise details of this clustering are not relevant.
With different parameter settings different clusters could have been computed.
The only constraint is that all agents use the same clustering algorithm.

Another factor that is taken into account in determining a good partitioning
is the quantificational information. The quantificational information provides in-
formation on the cardinality of the REFSET. Consider for example Figure 5.4.
For the utterance “all blocks in front of me”, the plural marker and the quantifier
all enforce that the REFSET should at least contain two (and preferably more)
elements. The REFSET for the utterance “the block in front of me” should con-
tain precisely one element. Thus depending on the quantificational information,
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Figure 5.5: Plot of the similarity functions of many and few. The prototypical value for few
and many are 1 and 6 respectively. They intersect at 3.5, meaning that for any cardinality above
3.5 the quantifier many is more acceptable, and for any cardinality under 3.5 the quantifier few
is more acceptable. In practice, the similarity function is modulated by a context parameter
which shifts the exact point where few becomes more acceptable than many. For the purpose
of this chapter, the parameter is left fixed.

a different partitioning is chosen.
The result is a flexible algorithm which allows agents to choose a partitioning

of data based on whatever quantifying criteria they want to convey. Conversely,
it allows them to find the best interpretation upon hearing a quantified noun
phrase. The precise nature of the constraints depends on the type of quantifier.
The examples above show how this works for crisp quantifiers such as all or three.
It is also possible to define constraints for gradable quantifiers such as many and
few. In this case, the quantifiers are not binarily constraining the cardinality of
the referent, but rather, they assign a score to every possible partitioning and
work as a heuristic value in the same way as the inter- and intra-cluster variance.
For example in Figure 5.4 the REFSET of the utterance “many blocks in front”
refers to cluster-2, not because the many excludes cluster-1 entirely, but because
the constraint imposed by many assigns a higher score to a set of cardinality 6
than a set of cardinality 1.

For the sake of simplicity we implemented quantifiers in the same way as
the spatial prototypes, using a prototypical value and a similarity function. The
distance function in this case is defined as the difference between the cardinality
of the REFSET and some prototypical cardinality (d(cp, cREF) = |cp−cREF|). For
the current experiment the average cardinality of the REFSET is around 3.5. For
the purpose of the present experiment, we have chosen the prototypical values
for few (cp = 1) and many (cp = 6) such that any cardinality above 3.5 is will
be more similar to many and anything under 3.5 will be more similar to few.1

1The prototypical value of 1 may seem somewhat unnatural, we have choses this value only
for the sake of this experiment. With a higher prototypical value few would be used much more
to describe groups of objects than many. This asymmetry, would make it harder to interpret
the results.
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Figure 5.5 shows a plot of the similarity functions of few and many.

In sum, this approach regards quantifiers as constraints. They help with
identifying the referent of a noun phrase. We use existing clustering methods,
that model the reification of the referent as a partitioning process that is partly
steered by pragmatic heuristics (e.g., inter- and intra-cluster variance) and partly
by semantic heuristics (quantificational expressions).

5.4 Generalized Quantifiers

To measure the performance of our approach we compare it with an implementa-
tion of a common type theoretic way of dealing with quantification (Montague,
1974). These approaches commonly consider the noun (e.g., ball) as a predicate
that together with a quantifying expression forms a (quantified) noun phrase
(e.g. all balls). Such a noun phrase is modeled as a generalized quantifier (GQ)
(Barwise and Cooper, 1981).

For those not familiar with generalized quantifiers, we provide a brief expla-
nation: A noun or verb phrase denotes a property that can be represented as a
function from entities to truth values, in other words, as the set of entities for
which the property holds. Consequently, the interpretation of ball is the set of all
balls B in a context, and are red is the set of all things that are red R. Quantify-
ing expressions then are understood as set relations. For instance, the sentence all
balls are red can be modeled as B ⊆ R. The determined noun phrase is therefore
modeled as a function from a set to truth values, in other words, a generalized
quantifier. For example, the determined noun phrase all balls is interpreted as a
function f(Q) that is true iff B ⊆ Q. The functional role of the quantifier under
this analysis is to transform the noun predicate into such a generalized quantifier.
For example, the meaning of the quantifier all is a function g(P,Q) that is true
iff P ⊆ Q. Where P is the predicate of the noun and Q the predicate of the
verb-phrase.

The essential restriction imposed by this approach is the fact that the noun
is considered to be a predicate. In light of the previous model, this means that
before applying the quantifier, we require some procedure that turns the set of
scored items into a predicate (i.e., a procedure that decides for every element if
it is part of the noun or not).

In accordance with this observation, we implement a model we will henceforth
refer to as the Generalized Quantifier approach. The main difference between the
Generalized Quantifier approach and our model as described earlier in this chap-
ter lies in the operation apply-selector (as seen in Figure 5.2). Before applying
the quantificational information, the operation establishes the set of objects that
forms the extension of the noun. Just as in the previous model, the interpretation
of the noun “block(s) in front of me” establishes a similarity score for every object
in the context. The operation apply-selector determines for every object if its
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score is high enough to be part of the noun. In order to make a fair comparison
between the two models, we employ the exact same clustering methods for the
reification of the noun as above. The main (and essential) difference with the pre-
vious model is that the reification is done before considering the quantificational
information. This difference might seem insignificant, but it is needed to stay in
line with the type theoretic approaches and, as we are about to show, has a very
important impact on the performance of the model.

Generalized Quantifiers is fundamentally a theoretical proposal which does not
propose any specific form of implementation. Therefore, one might be tempted
to question how general our modeling is. For the concrete reification operation,
other mechanisms are possible, but the main point from this section is that no
matter what the particular implementation is, type theoretic approaches rely
on the assumption that we can unambiguously establish the cardinality of the
interpretation of the noun without regarding the quantificational information.
The fact that there is no easy fix for this problem can be seen in the model
of Fuzzy Quantifiers. This model is an fuzzy extension of GQ. Here, all set
relations and predicates can be degree-based, but nonetheless, the model requires
a mechanism to establish the cardinality of the fuzzy set representing the noun.
This crisp intermezzo in the analysis of quantified noun phrases is needed to save
the GQ representation of nouns, but makes Fuzzy Quantifiers prone to the same
problem as GQ.

In sum, although type theoretic approaches do not propose a concrete oper-
ationalization, they do impose particular constraints on the way the referent is
determined. The reliance on a defined cardinality for the extension of the noun
is incompatible with our model as proposed in the previous section. And, as we
will see in the next section, it is precisely this reliance on a defined cardinality
that makes the Generalized Quantifier approach a much less suitable model for
real-world application.

5.5 Experimental Setup and Results

Since we have operational models of the two approaches we can compare their
performance in real world interactions. A population of agents play thousands
of language games. Each agent is equipped with English spatial categories such
as front, back, left, right, near and far and with the quantifiers many, few and
the cardinals one to twelve2 We consider two different populations of agents: in

21) Syntactic processing is implemented in Fluid Construction Grammar (FCG) (Steels
and De Beule, 2006). FCG maps IRL-programs to natural phrases and back given a particular
lexicon and grammar. Here we implemented lexical and grammatical. Here, we equipped agents
with lexical items for spatial categories (e.g., left, back, front, right), object classes (e.g., block,
box, robot, thing) (Spranger, 2012) and quantifiers (e.g., many, few, one, nine). Moreover, rules
for quantified adjective noun phrases, quantified noun phrases, and quantified noun phrases like
“three blocks left of the box” are provided (Spranger and Steels, 2012). 2) The scenes contain
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Figure 5.6: Average communicative success for 5000 interactions on different sets of spatial
scenes (grouped according to number of objects in each scene).
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Figure 5.7: Average communicative success for populations with vague quantifiers quantifiers
such as many and few.
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Figure 5.8: Average communicative success for cardinal only populations.
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Figure 5.9: Average communicative success for populations with all quantifiers. Here both
agents perceive the scene through the same camera. I.e., both agents have identical world
models.

one population all agents use our model; the other population uses the gener-
alized quantifier model. Each interaction is either successful (the hearer points

op to only ten objects. So the cardinal numbers one to twelve are enough any group of objects,
even if the agent’s perception is off by two objects.
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to the correct set of objects) or unsuccessful (any of the steps in the language
game script fails). The performance of the respective models is reflected by the
average communicative success (the percentage of successful interactions) over all
language games.

Scene Complexity

Figure 5.6 shows how the two approaches perform. We test performance in dif-
ferent scenes. Some contain only two objects, others up to ten. The results show
two important points: 1) the clustering approach performs much better than the
generalized quantifier approach in all experimental conditions; and 2) increasing
the complexity of the scene the difference in performance grows.

Already in the first condition, where there are only two objects in each scene,
our approach reaches ca. 95% success whereas the GQ-based model reaches only
ca. 85%. More strikingly though when the number of objects increases this
difference grows even more. In the condition where ten objects success of GQ
drops to below 50% – only every second interaction is a success. Our approach
reaches 80% success even in difficult conditions.

Cardinal vs Vague

To discern the exact performance of cardinal and vague quantifiers we tested
each of them separately. Figure 5.7 shows the result for the quantifiers few and
many. The results show a worse performance overall for our and the GQ model
when agents can not use cardinals. Also, the difference between the two models
is smaller. Only for four objects or more, the clustering approach is performing
better than GQ. And, only for 9 or more objects the difference starts to be more
than 10%. This contrasts with populations in which agents can only use cardinal
quantifiers (see Figure 5.8). The overall average communicative success is much
higher than vague-only and slightly lower than with all quantifiers. but essentially
the same result is obtained. This means that cardinals are responsible for most
of the communicative success when agents are given also vague quantifiers. The
reason cardinals perform better than just vague quantifiers is that they commu-
nicate hard constraints. If the speaker signals he is talking about three objects
this is a very clear constraint on the referent set much more so than signalling
few or many.

Perceptual Deviation

To understand why our approach performs consistently better than GQ we have
to consider another condition. Figure 5.9 shows a case where the two agents
interacting in a language game are perceiving the scene through the same robot
body. (This manipulation is possible because software agents can access the same
hardware.) In this case both approaches perform perfectly.
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In embodied interactions, each agent perceives the scene through his own
body. Often two agents estimate properties of the world differently. For instance,
the agents in Figure 5.1 each estimate the distance and angle of objects in the
scene differently. For instance, for the speaker object-1 lies at a distance of
31.6cm and an angle of −107 degrees from the box. For the hearer the same
object is 22.4cm away from the box at an angle of 81 degrees. We call this the
problem of perceptual deviation (see the previous chapter or Spranger and Pauw,
2012, for more details). This problem is one of the defining characteristics of
interactions in the real world. Importantly, these differences in perception affect
the performance of different semantic modeling approaches.

5.6 Conclusion

In this chapter, we have proposed a model for the processing of quantifiers that
is intended for use in real world situations. We have extended contrast and ac-
ceptability principles known from the psycholinguistics of spatial language and
showed how they can be incorporated into a semantics of quantifiers that fur-
ther adds cardinality constraints. We contrasted our model with a type theory
based model and showed that our model 1) is more robust against the effects
of perceptual deviation, and 2) scales better with respect to the complexity of
scenes.

Cardinality is not the only constraint important for understanding quantifiers.
Model theoretic accounts, for instance, strongly focus on the role of quantifiers
for inference – a tradition that dates back as far as Aristotle’s syllogisms – by
considering quantifiers as a functional relation between noun and verb phrase.
Our model does not deal with these aspects of quantification. It does however
provide an important first step in grounding quantified noun phrases.

An important next step could be to investigate how our model of quantification
holds up when used in full sentences. This would undoubtedly raise issues of
reasoning and scope resolution (Kurtzman and MacDonald, 1993) and eventually
its role in more complex discourse situations (Kamp, 1981b; van Eijck, 1990).
In principle it is fairly straightforward to extend the current model to be used
with entire sentences. IRL-networks can easily be extended to verify if a specific
property (such as “is red” or “rolls”) holds for (a subset of) the referent set. This
way IRL-networks can be used to assign truth-values to sentences.

When it comes to inference and scope resolution, a grounded semantics ap-
proach like ours can provide important advantages. While on the one hand,
grounding introduces complications, such as the problem of perceptual deviation
(Spranger and Pauw, 2012), grounding does allow to resolve ambiguities by ver-
ifying different possible interpretations in the context (Spranger and Loetzsch,
2011). This reduces the need for syntactic resolution. When it comes to deal-
ing with these concerns, the most obvious vantage point is to look at results in
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Discourse Representation Theory (DRT) (Kamp, 1981b; van Eijck, 1990). All se-
mantic entities that IRL introduces, become available as free variables throughout
the entire discourse. So any referent that is being introduced can freely be used
for reference later in the discourse — a treatment of referents that is quite similar
to DRT.

Of course, an in depth analysis of quantification in all its complexity is well
beyond the scope of this chapter. In spite of these reservations, the model does
what it was designed for: It models the semantics of natural language quantifiers
as expressions of quantity, grounded in real-world perception.
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Chapter 6

The Emergence of Norm Dependency in
Quantifiers

Human natural languages use quantifiers as ways to designate the number of
objects of a set. They include numerals, such as “three”, or circumscriptions, such
as “a few”. The latter are not only underdetermined but also context dependent.
We provide a cultural-evolution explanation for the emergence of such quantifiers,
focusing in particular on the role of environmental constraints on strategy choices.
Through a series of situated interaction experiments, we show how a community
of robotic agents can self-organize a quantification system. Different perceptions
of the scene make underdetermined quantifiers useful and environments in which
the distribution of objects exhibits some degree of predictability creates favorable
conditions for context-dependent quantifiers. This chapter has previously been
published as: Pauw, S. and Hilfery, J. (2012). The emergence of quantifiers. In
Steels, L., editor, Experiments in Cultural Language Evolution. John Benjamins

6.1 Introduction

Quantifiers are ways in which the speaker can indicate the number of objects in
a set. Some quantifiers are absolute and precise, such as “three”. Others are
absolute and underdetermined, such as “about three”. And some quantifiers are
underdetermined and scalable with respect to an expected number. For example,
the quantifier many does not refer to the same amount in example 1 as it does
in 2.

1. There are many students in the classroom.

2. There are many teachers in the classroom.

The intended meaning of the quantifier depends on how many students and teach-
ers are expected in the classroom. Many factors could play a role in scaling: the
size of object under consideration (Hormann, 1983; Newstead and Coventry, 2000;
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Feigenson et al., 2002), their density (Coventry et al., 2005), their contour length
(Clearfield and Mix, 2001), the amount of contrasting object (Coventry et al.,
2010).

It has been noted both from a psychological (Sapir, 1944) and a modeling
(Lappin, 2000) point of view that scalable and absolute quantifiers should be
treated as different categories. Here we are interested to understand how both
types of quantifiers are processed and how they could originate in a population
of speakers. We focus only on one particular scaling factor, namely the expected
frequency of the type of object (Moxey and Sanford, 1993a).

We follow a common approach to language evolution: Language users are as-
sumed to acquire strategies for using, acquiring and building quantifier systems
and self-organization and selection then leads the population to a shared system
adapted to the ecological conditions they encounter. We have therefore opera-
tionalised two language strategies: one strategy based on absolute quantification
and the other based on scalable quantification. We show that the predictability of
the number of a specific type of object makes scalable quantifiers more useful and
show that a selectionist dynamics at the level of strategies leads the population
to adopt such a strategy when relevant.

The experiments reported here are certainly not built from scratch. They
presuppose a lot of mechanisms that have been developed and tested in other
related experiments (Spranger et al., 2010b; Pauw and Spranger, 2010; Steels
and Loetzsch, 2009). For example we provide the agents with the mechanisms for
deriving situation models through vision, for describing objects and their spatial
relations and for counting the number of objects in a set. On the other hand, the
experiments leave the agents free to develop their own quantifier system and use
the most efficient language strategy for the environments they encounter.

In order to provide detailed insight in the dynamics of the experiments and
the mechanisms involved, both language strategies are first studied in isolation.
The examination of each strategy is broken down into three steps. The first
step involves a reconstruction experiment. We endow the agents with a fully
developed quantifier system and test its performance in a baseline experiment. In
the second step, we introduce a set of learning operators and test their adequacy
in an acquisition experiment. Finally, we show in a formation experiment how
linguistic selection based on communicative success causes a quantifier system to
emerge in the group through situated embodied interactions.

In a final experiment, we provide the agents with both strategies and show
that, if the environment displays a consistently high degree of prototypicality,
robotic agents tend towards a language strategy for scalable quantifiers. In
essence, we show that environmental constraints in themselves are enough to
bias the system towards scalable quantification.

We propose concrete cognitive constraints and use robots as a platform to
model the use, acquisition and formation for language strategies. We do not
claim that our model faithfully simulates the way humans acquire or build up
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quantifier systems. We only claim that the model is functionally effective in
the sense that it could be operationalized and explains the phenomena we are
interested in.

6.2 Embodied interaction

The experiments we describe are based on communicative interactions between
humanoid robots (see Steels (2012c) for specific details). Figure 6.1 shows an
example scene with two robotic agents interacting in a shared environment. The
setup utilized here is similar to the one used in the spatial language-game exper-
iments as described in Spranger et al. (2010b); Pauw and Spranger (2010). Each
robot perceives the world through its own onboard sensors, e.g., a camera and
proprioceptive sensors. From this multimodal sensory input (Spranger, 2008),
the robots build a world model, which reflects the robot’s current belief about
the state of the environment. Conducting experiments with actual robots is time
consuming. We therefore re-use recorded data from actual robotic interactions
to speed up our experiments while at the same time preserving the realism of
physical robot interactions.

Figure 6.1: An example of a robotic interaction. Robots are placed in an office-
like environment that contains different types of objects. This scene contains two
yellow blocks, one box and two robots themselves. The world models of the robots
are shown on the right. In the world models, the arrows represent the robots. The
direction of the arrow marks the orientation of the robot. The circles represent
the blocks and the blue square represents the box. The box has an inherent front
(much like a car or a house – which is marked by the small blue line).

The present data set contains scenes with different types of objects: boxes,
blocks, and the robots themselves. The example scene in Figure 6.1 contains one
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box, two yellow blocks, and the two interacting robots. The types of objects are
fairly consistent across scenes, but their number, position, and color varies. For
the present experiment, it is very important to keep in mind that the number of
objects, though varying, shows some level of prototypicality. In every scene, the
amount of boxes ranges from 0 to 3 (averaging at 1.39), the amount of blocks can
range from 0 to 9 (averaging at 4.8) and there are always two robots. It is precisely
these distributional patterns that allow us to investigate scalable quantifiers.

12/15/10 2:21 PMBabel web interface

Page 1 of 1http://localhost:8000/

Example scenes

Crisp quantifier

three: 1.00

absolute-quantifier

Absolute fuzzy quantifiers

some: 1.00

absolute-quantifier

many: 1.00

absolute-quantifier

Relative fuzzy quantifiers

0 1

some: 1.00

scalable-quantifier

0 1

many: 1.00

scalable-quantifier

Scaled to block

some-9: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Scaled to box

some-3.8: 1.00

scaled-quantifier

many-3.8: 1.00

scaled-quantifier

Acquisition operator

some: 1.00

absolute-quantifier

Allignment operator

(1-ra) Qn + ra Qc = Qn+1

(1-0.2)

some: 1.00

absolute-quantifier

+ 0.2

some: 1.00

absolute-quantifier

=

some: 1.00

absolute-quantifier

Convexity operator

Qalligned Qconvex

some: 1.00

absolute-quantifier

some: 1.00

absolute-quantifier

Scaling of quantifiers

scalable quantifier object class norm scaled quantifier

0 1

many: 1.00

scalable-quantifier

box 3

many-3.8: 1.00

scaled-quantifier

block 9

many-9: 1.00

scaled-quantifier

Scaling of quantifiers 2

scalable scaled to box scaled to block

0 1

some: 1.00

scalable-quantifier

some-3.8: 1.00

scaled-quantifier

some-9: 1.00

scaled-quantifier

0 1

many: 1.00

scalable-quantifier

many-3.8: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Normalize quantifiers

a) absolute-quantifier norm b) scalable-quantifier

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-quantifier

a) profiled-quantifier norm b) base quantifier
c) existing
represenation

d) alligned e) convex

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-

quantifier

0 1

some: 1.00

scalable-quantifier

0 1

some: 1.00

scalable-

quantifier

0 1

some: 1.00

scalable-

quantifier

reset

scene-3483136591/A     scene-3483136591/B

scene-3483136181/A     scene-3483136181/B

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

(a) Scene 1 Speaker

12/15/10 2:21 PMBabel web interface

Page 1 of 1http://localhost:8000/

Example scenes

Crisp quantifier

three: 1.00

absolute-quantifier

Absolute fuzzy quantifiers

some: 1.00

absolute-quantifier

many: 1.00

absolute-quantifier

Relative fuzzy quantifiers

0 1

some: 1.00

scalable-quantifier

0 1

many: 1.00

scalable-quantifier

Scaled to block

some-9: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Scaled to box

some-3.8: 1.00

scaled-quantifier

many-3.8: 1.00

scaled-quantifier

Acquisition operator

some: 1.00

absolute-quantifier

Allignment operator

(1-ra) Qn + ra Qc = Qn+1

(1-0.2)

some: 1.00

absolute-quantifier

+ 0.2

some: 1.00

absolute-quantifier

=

some: 1.00

absolute-quantifier

Convexity operator

Qalligned Qconvex

some: 1.00

absolute-quantifier

some: 1.00

absolute-quantifier

Scaling of quantifiers

scalable quantifier object class norm scaled quantifier

0 1

many: 1.00

scalable-quantifier

box 3

many-3.8: 1.00

scaled-quantifier

block 9

many-9: 1.00

scaled-quantifier

Scaling of quantifiers 2

scalable scaled to box scaled to block

0 1

some: 1.00

scalable-quantifier

some-3.8: 1.00

scaled-quantifier

some-9: 1.00

scaled-quantifier

0 1

many: 1.00

scalable-quantifier

many-3.8: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Normalize quantifiers

a) absolute-quantifier norm b) scalable-quantifier

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-quantifier

a) profiled-quantifier norm b) base quantifier
c) existing
represenation

d) alligned e) convex

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-

quantifier

0 1

some: 1.00

scalable-quantifier

0 1

some: 1.00

scalable-

quantifier

0 1

some: 1.00

scalable-

quantifier

reset

scene-3483136591/A     scene-3483136591/B

scene-3483136181/A     scene-3483136181/B

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

(b) Scene 1 Hearer

12/15/10 2:21 PMBabel web interface

Page 1 of 1http://localhost:8000/

Example scenes

Crisp quantifier

three: 1.00

absolute-quantifier

Absolute fuzzy quantifiers

some: 1.00

absolute-quantifier

many: 1.00

absolute-quantifier

Relative fuzzy quantifiers

0 1

some: 1.00

scalable-quantifier

0 1

many: 1.00

scalable-quantifier

Scaled to block

some-9: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Scaled to box

some-3.8: 1.00

scaled-quantifier

many-3.8: 1.00

scaled-quantifier

Acquisition operator

some: 1.00

absolute-quantifier

Allignment operator

(1-ra) Qn + ra Qc = Qn+1

(1-0.2)

some: 1.00

absolute-quantifier

+ 0.2

some: 1.00

absolute-quantifier

=

some: 1.00

absolute-quantifier

Convexity operator

Qalligned Qconvex

some: 1.00

absolute-quantifier

some: 1.00

absolute-quantifier

Scaling of quantifiers

scalable quantifier object class norm scaled quantifier

0 1

many: 1.00

scalable-quantifier

box 3

many-3.8: 1.00

scaled-quantifier

block 9

many-9: 1.00

scaled-quantifier

Scaling of quantifiers 2

scalable scaled to box scaled to block

0 1

some: 1.00

scalable-quantifier

some-3.8: 1.00

scaled-quantifier

some-9: 1.00

scaled-quantifier

0 1

many: 1.00

scalable-quantifier

many-3.8: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Normalize quantifiers

a) absolute-quantifier norm b) scalable-quantifier

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-quantifier

a) profiled-quantifier norm b) base quantifier
c) existing
represenation

d) alligned e) convex

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-

quantifier

0 1

some: 1.00

scalable-quantifier

0 1

some: 1.00

scalable-

quantifier

0 1

some: 1.00

scalable-

quantifier

reset

scene-3483136591/A     scene-3483136591/B

scene-3483136181/A     scene-3483136181/B

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

(c) Scene 2 Speaker

12/15/10 2:21 PMBabel web interface

Page 1 of 1http://localhost:8000/

Example scenes

Crisp quantifier

three: 1.00

absolute-quantifier

Absolute fuzzy quantifiers

some: 1.00

absolute-quantifier

many: 1.00

absolute-quantifier

Relative fuzzy quantifiers

0 1

some: 1.00

scalable-quantifier

0 1

many: 1.00

scalable-quantifier

Scaled to block

some-9: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Scaled to box

some-3.8: 1.00

scaled-quantifier

many-3.8: 1.00

scaled-quantifier

Acquisition operator

some: 1.00

absolute-quantifier

Allignment operator

(1-ra) Qn + ra Qc = Qn+1

(1-0.2)

some: 1.00

absolute-quantifier

+ 0.2

some: 1.00

absolute-quantifier

=

some: 1.00

absolute-quantifier

Convexity operator

Qalligned Qconvex

some: 1.00

absolute-quantifier

some: 1.00

absolute-quantifier

Scaling of quantifiers

scalable quantifier object class norm scaled quantifier

0 1

many: 1.00

scalable-quantifier

box 3

many-3.8: 1.00

scaled-quantifier

block 9

many-9: 1.00

scaled-quantifier

Scaling of quantifiers 2

scalable scaled to box scaled to block

0 1

some: 1.00

scalable-quantifier

some-3.8: 1.00

scaled-quantifier

some-9: 1.00

scaled-quantifier

0 1

many: 1.00

scalable-quantifier

many-3.8: 1.00

scaled-quantifier

many-9: 1.00

scaled-quantifier

Normalize quantifiers

a) absolute-quantifier norm b) scalable-quantifier

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-quantifier

a) profiled-quantifier norm b) base quantifier
c) existing
represenation

d) alligned e) convex

some-3: 1.00

absolute-quantifier

9

0 1

some-3: 1.00

norm-dependend-

quantifier

0 1

some: 1.00

scalable-quantifier

0 1

some: 1.00

scalable-

quantifier

0 1

some: 1.00

scalable-

quantifier

reset

scene-3483136591/A     scene-3483136591/B

scene-3483136181/A     scene-3483136181/B

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

(d) Scene 2 Hearer

Figure 6.2: Two example scenes from the points of view of the speaker and the
hearer. Figure 6.2(a) shows the internal representation of Scene 1 for the hearer.
Figure 6.2(b) shows how the hearer perceives the same scene. Figures 6.2(c) and
6.2(d) display the internal representations for scene 2. The arrows represent the
robots (with their respective orientation). The circles represent the blocks (with
their perceived size and color). The blue square represents the box.

The agents use a conceptualization system known as IRL (or “Incremental
Recruitment Language”). IRL is a procedural semantics in the same spirit as
Winograd’s SHRDLU framework (Winograd, 1980). Conceptualization in such a
system is a planning process that incrementally puts together cognitive operations
in order to fulfill a specific communicative goal (the interested reader is referred
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to Steels and Bleys (2005); Van Den Broeck (2008); Spranger et al. (2010a) and
Chapter 3 of this thesis for the specifics of this approach.

In the present experimental design, we use a description game similar to the
one described in van Trijp (2008): the speaker and its interlocutor are not pre-
sented with a single scene but with a number of scenes. One of the scenes is what
we will call the focus scene. The speaker attempts to find an utterance that
establishes a referent in the focus scene but not in the other scenes. Consider, for
example, Figure 6.2. The utterance “some blocks in front of me” has a referent
in the focus scene (Scene 1) but not in the other scene. The interlocutor in turn
has to interpret the utterance and find the scene which contains a referent for
that utterance. We build upon an existing system for spatial language (Spranger
et al., 2010b). This framework employs a prototype system (Rosch et al., 2004;
Lakoff, 1987) that allows the agents to calculate the representivity of both the
objects that populate their surroundings as well as the spatial relations that oc-
cur between these objects. This allows the robots to distill the correct referent of
“the block left of the box” or “the box in front of me.”

6.3 Experiment 1: Absolute quantification

The model for spatial language establishes how well an utterance such as “block
in front of me” describes an object in a given context. In complex environments,
however, there can be more than one exemplar that answers to a given description.
In such cases, the agents need to be able to deal with sets (and subsets) of
particular objects. Pauw and Spranger (2010) show how the quantificational
aspects of an utterance provide information for this selection process. Consider
the utterance “the three blocks in front of me.” The semantic operations that
are associated with the three signals that the speaker has a unique referent set
in mind of cardinality 3. Using this information the robots simply pick the three
elements from the context that best fit the description “blocks in front of me.”
However, for fuzzy quantifiers such as about three, the matter is somewhat less
straightforward.

The model we use is based on Zadeh’s fuzzy-quantification mode (Zadeh
(1983) - see Glöckner (2006) for a recent overview). This model relies on the
observation that most natural-language-type quantifiers (e.g., some or many)
cannot be interpreted in terms of absolute truth. In other words, the sentence
“Some blocks are red” is true to a certain degree. If there are three blocks in
the context that are red, the utterance is ‘more true’ than if we utter the same
sentence in a context where there are five red blocks. The degree of truth is
indicated by a score between 1 and 0, where 1 is completely, undoubtedly true
and 0 means that the utterance is entirely false. The meaning of some can be
established by answering the question: How true is the sentence “there are some
blocks” (with regard to a specific scene)? If there are three blocks in the scene,
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we assign a score of 1. If there are four, a score of 0.8. If we do so for every
cardinality, we can establish a distribution of scores that represent the meaning
of the quantifier some (see Figure 6.3). Given such a scenario, the quantifier
some might be used to allude to a referent of cardinality 2 more than it would to
a referent of cardinality 4. In this sense, the utterance “Some blocks are red” is
more readily true in a context where there are two red blocks than in a context
with four red blocks.

Crisp quantifiers can also be represented as distributions. However, in such
cases, the values of the bins are either 1 or 0 (and nothing in between). Hence,
the quantifier three assigns a score of 1 to the cardinality 3 and a score of 0 to all
other cardinalities. Under such an analysis, crisp quantifiers are merely a special
case of fuzzy quantifiers.
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Figure 6.3: Representations for the expressions some and three. The height of the
bars in the distribution reflect the scores for the associated cardinality (marked
below the bar). The quantifier three (a) assigns a score of 1 to cardinal 3 and a
score of 0 to all other cardinalities. The quantifier some (b) shows a more gradual
curve.

6.3.1 Baseline experiment

Before understanding how a system of fuzzy quantifiers can be self-organized by
a population of agents, we need to look at the behavior of a fully developed quan-
tificational system. We scaffold the agents with two fuzzy quantifiers representing
some and many. Figure 6.4 shows the chosen interpretation of these quantifiers.
For now, the agents do not invent new language items or learn anything from
other agents.

We test the performance of the quantifiers by letting two robotic agents play a
series of language games as described above. The agents are confronted with two
scenes, one of which is the focus scene. With every interaction in the language
game, one agent takes the role as a speaker, and the other, that of the hearer. The
speaker thus tries to find an utterance that has a referent in the focus scene but
not in the alternative scene. After interpreting this utterance, the hearer points
at the scene that it thinks the speaker is alluding to. The game is a success if the
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Figure 6.4: This figure shows the baseline interpretation of quantifiers some and
many if their scalar effects are disregarded. According to this “absolute” defini-
tion, six objects are considered many objects, two objects are considered some
objects, and four is a dubious case.

hearer points correctly. For example, the speaker could use the utterance “Some
blocks in front of me”, to establish Scene 1 in Figure 6.2 as the focus scene.

Figure 6.5 shows the results of the communication game. Every bar describes
the average communicative success over 500 interactions. There are three different
conditions. In the first, we let agents randomly pick from a set of recorded scenes.
Since the amount of objects in every scene is limited, there is a fair chance that
quantity alone cannot act as a differentiating factor between scenes. Given such
an environmental limitation the communication can never reach a 100% success
rate. In fact, we observe that for randomly picked scenes, the speaker manages
to correctly describe a scene in about 80% of the cases.

The second and third conditions show what happens if we cherry pick scenes
such that the objects of one specific type are guaranteed to differ in both scenes.
For the second condition we ensure that the scenes never have the same amount
of blocks. And for the third, condition we ensure that the amount of boxes always
differ. We can see that, with respect to the baseline, the communicative success
improves for the second condition (reaching about 95%). The third condition,
however, does not yield any clear improvement. Overall the scenes typically
contain between 1 and 3 boxes (averaging at 1.2 boxes per scene). This is always
best described as some boxes according to the absolute interpretation of some.
Therefore, with absolute quantifiers, the number of boxes cannot be used as a
differentiating factor. The next chapter shows that this can be solved using scaled
quantifiers.

The results of this experiment are threefold. First of all, we show how com-
municative success is influenced by manipulating the statistical properties of the
scenes. Secondly, we will use this data in the next section to show that scaled
determiners perform much better in some cases. Thirdly, it establishes a baseline
for the rest of the experiments (80%). This is important because it will allow us
to test the performance of the learning operators in the next experiment.
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Figure 6.5: Baseline communicative success for absolute quantifiers. This graph
shows the average communicative success after 500 interactions for three different
conditions. The first condition shows the average communicative success when
the agents are presented with two randomly selected scenes for every interaction.
Under the second condition, the scenes are cherry picked such that they do not
contain the same amount of blocks in every interaction. For the third conditions,
the amount of boxes differs.
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6.3.2 Acquisition experiment

We now turn to the acquisition of quantifying expressions. How can one agent
(learner) learn the absolute quantifiers of another (tutor) agent. To study this,
we scaffold only a tutor agent with quantifiers. The learner agent does not know
any quantifiers yet, but is provided with learning operators that enable him to
acquire their meanings over a series of interactions. This experiment follows the
same general approach as all the other acquisition experiments in the field. There
are two learning operators: an acquisition operator, that is used when the learner
hears a specific linguistic construct for the first time; and an alignment operator
that allows the agent to gradually shape the meaning of a linguistic construct.

6.3.3 Acquisition operator

The acquisition operator is only used when an agent has never heard a specific
quantifying expression before. For now, we presuppose that the agent knows
that the unknown lexical item is an absolute quantifier. The agent has to find
a quantifier that would isolate a referent in the focus scene, but not in any of
the other scenes. Such a quantifier is fairly straightforward to establish. Take for
example, Figure 6.2. The utterance “three blocks in front of me” has a referent in
the focus scene but not in the alternative scene. Thus, if the utterance was “some
blocks in front of me” and the hearer knows which of the scenes is the focus scene,
it can establish that 3 is an appropriate cardinal for the quantifier some. The
acquisition operator simply finds the cardinality that would best discriminate the
focus scene and creates a new quantifier with the value 1 for this cardinality and
a value 0 for all other cardinalities. Figure 6.6 shows the result of the acquisition
operator for this specific example. Of course this initial distribution only very
poorly reflects the actual meaning of the word some. The alignment operator will
gradually improve the meaning over many interactions.
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Figure 6.6: The result of the acquisition operator. This is the meaning the learner
agent acquired for the word some with the utterance “some blocks in front of me”
in the context shown in Figure 6.2. While the acquisition operator does not find
a perfect interpretation right away (i.e., some does not mean ‘precisely three’),
the alignment operator gradually shapes the representation to accord with that
of other agents.
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6.3.4 Unbiased alignment operator

The alignment operator is triggered after every unsuccessful interaction. This
presupposes that the failure of the interaction was due to a poor alignment of the
quantifier used in the communicative event. As a first step, a new quantifier is
computed in precisely the same way as the acquisition operator does, disregarding
any previously established meaning. This new quantifier is then merged with the
existing meaning. The merging is done by looping over every bin in the original
meaning and the corresponding bin in the new quantifier. A new value for the
bin is computed as a mixture by the following function:

Q(i)n+1 = (1− ra)Q(i)n + raQ(i)c (6.1)

where Q(i) denotes the value of bin i for quantifier Q. Here, Qn+1 is the updated
quantifier, Qn the previously learned quantifier, and Qc the new quantifier. The
learning rate, ra, determines at what rate the new observations influence the old
ones. If ra = 0 then the alignment operator will have no effect whatsoever. If
ra = 1 the old quantifier will be completely replaced by the new observation.
Figure 6.7 shows an example result of such an alignment iteration.
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Figure 6.7: The result of the alignment operator. The learner agent finds evi-
dence that “some somethings” can also mean “3 somethings” (apart from what it
learned already before about the quantifier some). Quantifier Qc represents the
newly acquired information, Qn the current representation and Qn+1 the result
of the alignment process.

Figure 6.8 shows the results of an acquisition experiment. The (increasing)
communicative success is plotted over 800 interactions. The graph also shows the
baseline success established in the previous experiment (i.e., the maximum com-
municative success that the agents can reach) and the variance between concepts.
The measure of variance is based on statistical variance. For two quantifiers Q1

and Q2 the variance V ar(Q1, Q2) =
∑n

i=1(Q1(i) − Q2(i))
2/n — where n is the

range of the quantifier. As can be seen in the graph, communicative success does
not reach the baseline and the variance stays at 1.7. In other words, the learner
does not properly align its concepts with the tutor. The main problem is that
the learner finds too little consistent evidence to learn the tutor’s concepts to a
“satisficing” level.
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variance

baseline

communicative 
success

Figure 6.8: Learning absolute quantifiers without any bias. The graph shows the
average result of 6 trials of 800 interactions for a community of 5 agents. The
communicative success increases but does not reach the previously established
baseline of 77% communicative success. The variance stagnates at 1.7, which is
not enough for optimal communication.
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6.3.5 Aligment with convexity assumption

The number of possible quantifiers that can be expressed by distributions as dis-
cussed above is in principle infinite since the bins can contain any value between
1 and 0. In practice this number is bounded because, in order to achieve commu-
nicative success, quantifiers do not have to be identical but just similar enough.
However, the number of possible (distinct enough) quantifiers increases exponen-
tially with the number of objects in the environment. It is therefore not surprising
that the quantifiers have to be constrained in order to be learnable (see also van
Rooij (2006)).

To constrain the possible quantifiers to those that might only naturally occur
in human language, we make use of the convexity principle (Gärdenfors, 2004).
A convex property is a domain-independent property that does not have any
“holes.” For example, the concept left is convex, because if two points belong
to the category left than any point in between also belongs to this category.
The color red is another example of a convex concept: if two different hues are
classified as red than any hue in the spectrum inbetween is also classified as red.
Gardenförs shows that there is compelling evidence that natural properties are
convex.1

In the case of quantifiers, the meaning of an even number of is not convex.
The number 2 is even, the number 4 is even, but the number 3 is not. Thus, the
distribution would show a hole at number 3 (and at 5, 7, etc. . . ). The quantifier
some, on the other hand is convex. If in a specific context, some blocks can refer
to both five blocks and seven blocks, then per force, some blocks must refer to
six blocks as well.
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Figure 6.9: Convex quantifiers have only one peak. The distribution on the left
represents a convex quantifier. The one on the right is nonconvex.

In the case of fuzzy quantifiers, such a hole appears as a valley between two

1We of course recognize that convexity is not the only way to constrain quantifiers. For
example many applications of prototype theory assume a prototypical value and a score that
depends on the distance to this prototype (normally according to a bell-curve). Another way
to constrain the quantifiers would be by assuming some (skewed) normal distribution of the
scores, or assume that they can be described by Zadeh’s S-function (Zadeh, 1983). In any event,
all of these assumptions ultimately entail convexity at the price of making more assumptions
about the specific shape of the curve. The reason to employ convexity is that it is a minimal
cognitively valid assumption.
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peaks. Thus, a convex fuzzy quantifier has only one peak. Figure 6.9 shows
the difference between a convex and a nonconvex quantifier. Gardenförs initial
formulation of convexity is intended for crisp category membership. For the fuzzy
case, we use Zadeh’s definition of convexity (Zadeh (1965)) for fuzzy sets. Applied
directly to the fuzzy quantifiers we get that:

Quantifier Q is convex iff : If x ≤ y ≤ z then Q(y) ≥ min[Q(x), Q(z)] (6.2)

where Q(x) is the value of bin x for quantifier Q. For example, if the quantifier
some assigns as score of 0.8 to cardinality 3 and a score of 0.4 to cardinality 5,
then the score of cardinality 4 has to be higher then the lowest of the two scores
0.8 and 0.4 (hence, higher than 0.4). One can verify easily that this is a minimal
definition to restrict fuzzy quantifiers to only one peak.

To employ the convexity assumption in the experiment, we introduce a con-
vexity operator that keeps all the quantifiers convex. The convexity operator is
applied directly after the previously introduced alignment operator. It essentially
functions as a fitting operator that takes the result of the alignment operator
(Qaligned) and finds a quantifier (Qconvex) that is convex and fits the updated
quantifier as well as possible.2 Figure 6.10 shows an example application of the
convexity operator.
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Figure 6.10: The result of the convexity operator. After the alignment operation
produced a new quantifier (Qalligned), the convexity operator finds a quantifier
Qconvex that is convex and resembles the original aligned quantifier (using a least
squares approximation)

Figure 6.11 shows a graph for the same acquisition experiment as described
above, but now with use of the convexity operator. The results show that the
communicative success reaches the baseline.

In sum, if we make no assumptions about the representation of natural quan-
tifiers, the dimensionality of the learning problem is too high for the amount and
dependability of the evidence that the agent gather. The convexity assumption
reduces the degrees of freedom enough to allow for almost perfect alignment.

2More precisely, Qconvex is a convex quantifier such that the squared distance between
Qconvex and Qaligned is minimized (i.e., the value sumn

i=0(Qconvex(i) − Qaligned(i))2 — where
n is the range of the quantifier). Note that there can be more then one solution. The precise
solution that is chosen, does not appear to have any effects on the end result.
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baseline

communicative success

variance

Figure 6.11: Learning absolute quantifiers with convexity assumption. The graph
shows 6 trials of 450 interactions for a community of 5 agents.. The communica-
tive success increases and reaches the previously established baseline of 77% com-
municative success. The graph also shows how the representations of the learner
and of the tutor become more similar over time (variance).
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6.3.6 Formation experiment

The previous section establishes the required operators that enable agents to
align their linguistic concepts of absolute fuzzy quantifiers. Now we can turn to
the question of how such concepts come to exist. As outlined in Steels (2012c),
linguistic innovation is a mirror image of learning. To achieve the communicative
goal (establishing a focus scene), the speaker goes through a planning process.
It is possible with the semantic concepts and procedures presented here that the
planning process cannot find an appropriate description for the focus scene. In
such a case, the agent invokes an invention operator .

The invention operator consists of two parts: When the speaker realizes that
the current set of quantifiers is not expressive enough, it can choose to either
invent a whole new quantifier or to adapt existing ones. In the first case, the
agent invents a new quantifier using the same acquisition operator as described
in the previous section. Similarly if the speaker chooses to adapt its existing
quantifiers, it simply employs the alignment operator. After the introduction of
a new quantifier, the learning operators will ensure that the invented quantifiers
will become shared by the entire population of agents when they are sufficiently
successful.

We scaffold the agents also with a memory constraint that blocks the pos-
sibility to develop an unbounded set of quantifiers. There are three reasons for
this: 1) Commensurability: It is important to keep the results of the experiments
throughout the chapter comparable; 2) Tractibility: The computational complex-
ity increases significantly with the number of available semantic concepts. To be
able to run the experiments in reasonable time, we limit the number of quanti-
fiers; And 3), plausibility: Allowing the agents to develop very specific concepts
for every possible situation would make them very successful in the long run, but
would have no correlate in human language.

For every quantifier that the agents introduce a score is kept that reflects how
often the category is successfully applied. If this score drops below a specific
threshold, the quantifier is removed from the agent’s ontology, making room for
other new candidates. As discussed above, the agents are biased to only develop
two quantifiers. This is achieved by limiting the sum of the scores of all quantifiers
together to two.

Figure 6.12 shows the results of our experiment. Note that the agents manage
to develop a stable quantifier system on the basis of the selectionistic processes:
invention of items, their adaptation and, if they are not successful, their elim-
ination. The graph clearly shows that communicative success converges to the
baseline success. This is the maximum they can achieve with only two quantifiers,
as the quantifiers in the baseline experiment were already chosen to be optimal.

Observe also that the graph shows an initial overshoot of newly invented
quantifiers. The robots try out all kinds of new quantifiers until they hit upon a
set that proves successful over time. When a set of successful quantifiers is found,
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baseline

communicative
success

average number 
of quanti�ers

Figure 6.12: Self-orgaization of absolute quantifiers with convexity assumption.
The graph show the average result of 5 batches of 2000 interactions for a com-
munity of 5 agents. The graphs shows an increase of communicative success that
converges on the baseline success after 1000 interactions. We see an initial over-
shoot of lexicon size. After about 300 interactions, the amount of quantifying
expressions starts to decrease until after 1000 interactions the agents converge on
a set of two optimal quantifiers.
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the nonsuccessful will automatically phase out.
Figure 6.13 demonstrates that the agents converge on an optimal set of quan-

tifiers. This is a very important point. The graph shows a quantifier (sosa-3,
meaning ‘an average amount of’) that is individually successful, but eventually
does not survive, because it does not perform well in combination with other
quantifiers. Eventually the agents converge on a set of two quantifiers (casa-81
and kosa-4, meaning respectively ‘some’ and ‘many’) that are more successful in
combination with each other.

1/12/11 4:04 PMBabel web interface

sosa-3: 1.00

absolute-quantifier

casa-81: 1.00

absolute-quantifier

kosa-4: 1.00

absolute-quantifier

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Babel web interface

sosa-3: 1.00

absolute-quantifier

casa-81: 1.00

absolute-quantifier

kosa-4: 1.00

absolute-quantifier

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Babel web interface

sosa-3: 1.00

absolute-quantifier

casa-81: 1.00

absolute-quantifier

kosa-4: 1.00

absolute-quantifier

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

kosa-4

casa-81

Figure 6.13: This graph shows the development of the confidence scores of every
quantifier over a series of 900 interactions in a single agent. Note that the quan-
tifier sosa-3 seems to be successful in the beginning, but does not work well in
combination with other quantifiers. After 200 interactions, two successful quan-
tifiers start to emerge (casa-81 or kosa-4) replacing sosa-3.

In sum, this experiment shows that, the agents can self-organize a quantifier
system that reaches the baseline communicative success as established above.
Since the quantifiers in the baseline experiment are chosen to be optimal for the
present data, this suggests that our learning and invention operators — which
only take individual items into account — are sufficient to allow the agents to
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develop a globally optimal set of quantifiers. Hence, though the operators are
defined locally (i.e., they never consider the system as a whole), the overall system
converges on a globally optimal solution.

6.4 Experiment 2: Scalable quantification

The previous experiment shows the dynamics of the absolute quantifier strategy.
Now we will look at the dynamics of scalable quantifiers. Recall that scalable
quantifiers are those which depend on a specific, context-dependent norm. For
instance, what counts as many in “many birds in a flock” is not likely to be the
same amount as many in “many lions in a pride”. For the following experiment,
we assume, for the sake of simplicity, that the norm of the quantifiers some and
many is solely based on the type of object under discussion.
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Figure 6.14: The scalable quantifier (a) is a function that assigns scores between
0 and 1 over the range from 0 to 1. The context-dependent (i.e., scaled) interpre-
tation is calculated by a scaling operation, which takes a representative number
of samples from the original, scalable quantifier. The number of samples depends
on the norm inherent in the context. Figures (b) and (c) show the results of the
scaling operations for the norms 3 and 9, respectively.

Just as with absolute quantifiers, we represent scalable quantifiers as distri-
butions. However, the robots use a special scaling operation that adjusts the
quantifier to a specific norm. In this experiment, the norm is provided by the
object class. Every quantifier has a base representation that can be seen as a
function that assigns scores between 0 and 1 over the range 0 to 1. This can
be seen in Figure 6.14. The scaling operation samples values from the scalable
quantifier at an interval depending on the norm. For some norm n, the scaling
of the base quantifier Qb to the scaled quantifier Qn is given by the following
equation:

Qn(x) = Qb(x/n) for x ≤ n (6.3)

Qn(x) = Qb(1) otherwise
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Above, a scalable quantifier is characterized as a function. In practice, however,
they are approximated by a discrete distribution, where the bins provide sample
values in the range of 0 and 1. The intermediate values are determined by linear
interpolation. Thus, the number of bins does not determine the range of the
quantifier, but its resolution. Representing the scalable quantifiers in the same
way as absolute quantifiers gives a clear advantage: We can use the same learning
operators for both types of quantifiers. This is not only an advantage for simplic-
ity’s sake, but also makes it easier to compare the dynamics of acquisition and
evolution for both strategies.

6.4.1 Baseline experiment

How does the above relate to the absolute version of fuzzy quantifiers? In order
to compare the two models, we repeat the same series of experiments for scaled
quantifiers: First we establish the baseline communicative success, followed by an
acquisition and an evolution experiment.

For the baseline experiment, we provide the agents with two scalable deter-
miners representing some and many and a norm for every object class. The values
are selected to be optimal. In short, this means that no other set of quantifiers
could achieve a higher communicative success for the given data (see Figure 6.15).
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Figure 6.15: This figure shows how some and many scale to the object classes
box and block. For example, three boxes are considered to be many boxes, but
three blocks not.

The robotic agents play the same language game as in previous baseline ex-
periment (see section 6.3.1). The speaker has to draw the hearer’s attention to a
focus scene by finding an utterance that only has a referent in that scene. The
agents do not try to invent new language constructions or learn the language of
the other agents. The only objective of this experiment is to establish a baseline
for communicative success.
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Figure 6.16 shows the results of the communication game. As a comparison,
the previous results of the baseline experiment for absolute quantifiers are shown
in the same figure. Every bar describes the average communicative success over
500 interactions. There are three different conditions: In the first, we randomly
pick scenes from our data set; for the second condition, we ensure that the scenes
do not have the same number of blocks; and for the third condition, we ensure
that the number of boxes differ.

Figure 6.16: Baseline communicative success for absolute quantifiers. This graph
show the average communicative success after 500 interactions for three different
conditions. The first condition shows the average communicative success when
the agents are presented with two randomly selected scenes at every interaction.
For the second condition, the scenes are cherry picked such that they do not
contain the same amount of blocks. For the third the amount of boxes differ.

We can see that the scaled quantifiers perform better for all three conditions
(90% vs 85% for the random scene condition, 99% vs 95% for the block condition
and almost 100% vs 81% for the box condition). We see a general increase in
communicative success and especially so for the box condition.

Scaled quantifiers can be adapted to the expected amount of any type of
object. Since, in our data there are never more than three boxes, the scaled
quantifiers will classify two boxes as many. The upshot of this is that the scalable
quantifiers are equally applicable to the number of boxes as to the number of
blocks. Scalable quantifiers therefore seem to be more versatile than absolute
quantifiers in the sense that they can be used in many more types of situations.
In this experiment we see how this leads to higher communicative success.
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6.4.2 Acquisition experiment

The learning operators for scalable quantifiers are more complex then those of
absolute quantifiers. The meaning of the scalable quantifiers depends on a specific
norm. Recall that, in our experiment, the norm is a prototypical scaling factor for
a particular object type. The acquisition and alignment operators have to take
this norm into consideration. This is realized by what we call a normalization
operator. The normalization operator does the inverse of the scaling operator:
given a norm and an absolute quantifier, normalization computes the associated
scalable quantifier.

As shown above, the acquisition operator for absolute quantifiers computes
an absolute quantifier for the context at hand. For scalable quantifiers, however,
the acquisition operator uses the normalization operator to translate the resul-
tant absolute quantifier into a scalable quantifier. Figure 6.17 exemplifies the
acquisition of the quantifier some.
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Figure 6.17: Extension of the acquisition operator for scalable quantifiers. The
base quantifier is the result of applying the normalization operator to the newly
acquired absolute interpretation of some. The norm in this figure is 9, which is
the norm we established for the block object class.

As with absolute quantification, with scalable quantifiers, the alignment oper-
ator builds upon the acquisition operator. If the communicative interaction fails,
the acquisition operator is used to create an alternative hypothesis for the mean-
ing of the quantifier. This alternative is subsequently merged with the initial
meaning of the quantifier in question. The merging procedure is identical to the
one used for absolute quantifiers. This is possible because we represent scalable
quantifiers in the same way as absolute quantifiers. Figure 6.18 shows an example
of this procedure.

Figure 6.19 shows the results of an acquisition experiment using these pro-
cedures. As predicted by the baseline experiment, the agents achieve a higher
communicative success with scaled quantifiers than with absolute quantifiers. The
point here, then, is that our agents achieve near-perfect alignment using the exact
same procedures as with absolute quantifiers. This guarantees commensurability
between the proposed experiments.
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Figure 6.18: Extension of the alignment operator for scalable quantifiers. This
figure shows all the steps of the alignment operator. The agent finds the most
appropriate quantifier (a). This quantifiers is normalized with respect to a given
norm (b). The existing representation of the quantifier (c) is merged with the
newly acquired base quantifier (d). The convexity operator is applied (e). As in
Figure 6.17, the norm in this figure is 9, which is the norm we established for the
block object class.

baseline

variance

communicative success

Figure 6.19: Learning scalable quantifiers. The graphs shows 6 trials of 450 inter-
actions for a community of 5 agents. The graph shows that the communicative
success increases and reaches the previously established baseline.
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6.4.3 Formation experiment

The self-organization experiment for the scalable quantifier language strategy is
identical to the one for absolute quantifiers. In this section we show that if agents
are endowed with a minimal set of invention, learning and elimination operators,
they will bootstrap an optimal (i.e., satisficing) quantifier system.

As in the previous experiment (see section 6.3), we bias agents towards a
simple system of only two quantifers. Every newly invented quantifier is provided
with a confidence score that reflects how well the quantifier performs. If that
score drops below a specific threshold, the quantifier is removed from the ontology.
Next to inventing new quantifiers, they continuously search to improve existing
quantifiers.

communicative success

baseline

average number of quanti�ers

Figure 6.20: Self-orgaization of scalable quantifiers. The graphs shows 8 trials of
2000 interactions for a community of 5 agents. The graphs shows an increase of
communicative success that converges on the baseline success after 800 interac-
tions. We see an initial overshoot of lexicon size. After about 150 interactions, the
number of quantifying expressions starts to decrease until after 800 interactions
the agents converge on a set of two optimal quantifiers.

Figure 6.20 shows the results of a language-formation experiment. The average
communicative success reaches the baseline. The baseline was established using
optimally defined quantifiers, Thus the agents find a quantifier system that is
optimal for scalable quantifiers.
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Previously we have shown that a system based on scalable quantifiers performs
better in this particular environment than a absolute-quantifier system. The
result of this experiment shows that the agents can bootstrap a scalable-quantifier
system that exploits this advantage. In the following section we build upon these
findings by showing that as a consequence, when left to their owen devices, the
robotic agents will favor a scalable- over an absolute-quantifier system.

6.5 Experiment 3: Strategy competition

The above experiments considered the absolute and scalable language strategies
in isolation. They show that for both both strategies a community of agents
can self-organize a quantifier system using the same set of general learning and
formation operations. Here we will show the results of putting both strategies in
competition.

The experimental setup is identical to the formation experiments in section
6.3.6 and 6.4.3. The agents are provided with operations for learning and expan-
sion of the language system. Every quantifier contains a confidence score that
reflects its communicative performance. If the score of a specific quantifier is 0 it
is removed. In order to keep the experiments throughout the chapter comparable,
the agents are biased towards learning a system of two quantifiers. We consider
two different environmental conditions. The first (random) condition presents the
agents with a random set of scenes from the data set. In the second (monotonic)
condition we ensure that the agents can alway discriminate the focus scene in
terms of number of blocks, thus taking away the necessity to consider the num-
ber of boxes. On the basis of the previous experiments, we hypothesize that the
random condition will give rise to a clear advantage for scalable determiners, the
reason being that the scenes from the data set prototypically contain more blocks
than boxes, thus making scalable quantifiers more useful than absolute ones.

Figure 6.21 shows the results of the experiment. Figures 6.21(a) and (b) show
different plots for the same example run of the random condition. We see that
the agents converge on a scalable quantifiers system in this scenario. Of course,
depending on the run, it is possible for the the agents to converge on different
strategies: only scalable quantifiers, only absolute quantifiers or a mixture of both.
Figure 6.22, shows the average outcome of different systems over 15 runs for the
two conditions (random and monotonic). We see that for the random conditions,
the community of agents almost always converges on a scalable language strategy.
For the monotonic condition there is no clear preference for one strategy over the
other.

These results are in line with the earlier findings in this chapter. The baseline
experiment showed that for the random condition there is a clear advantage for
scalable quantifiers. The formation experiment in the previous section shows
that agents are capable of self-organizing such a scalable quantifier system. Here
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Figure 6.21: The results of the strategy competition experiment. Graphs (a) and
(b) show different plots for the same run. Graph (a) shows the convergence of
communicative success and graph (b) shows the strategy that is being used by the
agents. In this particular run the agents converge on a quantifier system using
the scalable language strategy. Initially they use both strategies, but at around
interaction 1000 the last absolute quantifier dies out.
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Figure 6.22: Graph (c) shows the result of 15 runs for two different conditions:
random and monotonic. We see that for random scenes the agents almost always
converge on a scalable strategy. For monotonic scenes the choice of strategy is
random.

we show that the general selectionistic mechanisms exploit this advantage and
will lead agents to develop a scalable quantifier system. These result confirm
the hypothesis: The structure of the environment and the capacity of agents to
perceive this structure can by itself explain the choice for a scalable quantifier
system.

6.6 Conclusion

The present chapter demonstrates how a community of agents can self-organize
a language system for quantificational expressions. Through a series of experi-
ments we verified the hypothesis that predictability within a given environment
is required to explain the need for context-dependent quantifiers.

The first experiment shows how agents can self-organize a quantifier system
based on an absolute quantification language strategy. Such a strategy works
well so long as the various types of obects do not show prototypicality effects
regarding their numerosity. The second experiment shows how agents can self-
organize a quantifier system based on a scalable quantification language strategy.
For simple worlds that do not exhibit any structural systematicity with respect
to the amount of objects of a specific type, such a strategy does not differ from
absolute quantifiers. However, in more realistic situations, the advantage of scal-
able quantifiers becomes apparent. In the final experiment we allow the agents
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to draw from both strategies in the development of a quantifier system. This
experiment shows that the preference of a strategy depends on the predictability
of the distribution of objects in the visual context. A high level of predictability
will lead our agents to favor a scalable- over an absolute-quantifier system. The
mechanisms proposed in this chapter are based on the general principles used
throughout this book.

While the convexity constraint is a necessary (cognitive) condition, the main
focus of this chapter is on the environmental constraints. Needless to say, in prac-
tice, both cognitive and environmental constraints influence the way a language
develops. This experiment shows that the environmental constraints alone are
sufficient to explain the tendency of languages towards scalable quantifiers. A
next interesting step would be to look at the role of cognitive constraints (such
as subitizing effects).

Another interesting next step would be to extend the current experiments
beyond the domain of quantification. The principle of scalability is far from
being exclusive to the domain of quantification. Adjective such as far and near
and big and small show the same kind of scalability in their respective domains.
In fact, there are languages such as Malagasy that use the same word for the
quantifier many and the adjective big (von Fintel and Matthewson, 2007).
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6.A Data

We use prerecorded data from robotic interactions. The data itself is not publicly
available, but this section describes the relevant statistics.

The data set we use contains a total number of 681 scenes. Every scene
contains a number of objects that are represented as a list of continues feature
values (e.g. color channels, estimated position, estimated height, etc. . . ). The
precise features are not relevant for this chapter. We are mainly interested in the
number of instances of a specific object type in a scene. Figure 6.23, shows the
distributions of the two object types of interest: blocks and boxes.
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Figure 6.23: The distribution of objects in our data set.

The robots have to discriminate scenes in terms of the number of objects of
a specific type. The communicative success in doing so, depends on the precis
quantifiers and can not be established a priori. We can, however, establish a
theoretical upper limit. If the focus scene contains the same number of boxes and
blocks as the alternative, then it will not be impossible to successfully discriminate
the focus scene.

With a total of 681 there are 463761 possible combinations of scenes. The
table in Figure 6.24 shows the number of scenes pairs that can discriminated in
terms of number of blocks, boxes or either.
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object type number of pairs proportion
boxes 325636 0.70
blocks 374190 0.81
boxes or blocks 435038 0.94

Figure 6.24: The distribution of objects in our data set.

In theory this means that with an unbounded number of quantifiers, the agents
could achieve communicative success in 94% of the cases. However, in practice,
even with an unbounded number of quantifiers, this practical limit will not be
reached due to noisy perception of the robots.





Chapter 7

Size Matters: Adjectival Origins

Gradable quantifiers (e.g., many and few) have a dual nature: They can behave
both as quantifiers and adjectives. Using a framework in which agents can self-
organize a language, I examine the hypothesis that their adjectival use can be
explained by the cognitive overlap between these quantifiers and adjectives such
as big and small. This chapter is a version of a forthcoming publication: Pauw
(2013c).

7.1 Introduction

Words like many and few are syntactic hybrids: though traditionally analyzed as
quantifiers (“many of the houses”), they can also behave like gradable adjectives
(“few/fewer houses”). In fact, such terms pattern syntactically and semantically
with both quantifiers and adjectives (see Solt, 2009, for an extensive analysis of
these syntactic patterns). Why aren’t they confined to one grammatical class?
What is the cognitive basis for their dual behavior? And how might such con-
ceptual and linguistic duality have evolved?

Cross-linguistic properties of these terms (henceforth, gradable quantifiers)
suggest close ties between the functions of quantification and predication. Some
languages have no separate grammatical class for expressing number, but instead
use size-modifying adjectives, as in the extension of the Pirahã predicate hi ‘small’
to indicate ‘a small number’ (Everett, 2005). Historical evidence also suggests
that gradable quantifiers typically derive from adjectives, as illustrated by the
quantifier few, based on the Old English adjective feawe (Solt, 2009).

This chapter explores the hypothesis that the duality of gradable quantifiers
has its roots in the close cognitive relationship between size and number. Judg-
ments of size (underlying modifiers such as big and small) depend on perceptual
features of objects (or sets of objects) in the environment. Judgments of approx-
imate number (underlying terms like few and many) exploit a combination of
spatial features that apply exclusively to sets of objects, such as their size and
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density (Durgin, 1995). This cognitive overlap between the concepts of size and
number may account for the duality observed in gradable quantifiers: the depen-
dence on size motivates their adjectival uses, while their application to sets of
objects motivates their quantificational uses.

In the next section of this chapter I introduce a computational model that
captures the insight above within the evolutionary language games framework
(Steels, 2012a), in which robotic agents self-organize the means for describing ob-
jects (or in this case, groups of objects) in their perceived environment. Within
this framework, agents are encouraged to develop a system of gradable quanti-
fiers. The following section of this chapter, introduces two innovation strategies:
Agents can either develop new quantifiers from scratch or they can develop quan-
tifiers by extending the meaning of cognitively similar lexical items (e.g., gradable
adjectives). In the last part of the chapter it is shown that when left to their own
devices, the agents will prefer the latter strategy and therefor converge on a set
of quantifiers that find their origins in adjectives.

7.2 Robotic Language Games

The experiments we describe are based on communicative interactions between
humanoid robots (see (Steels, 2012a) for specific details). Figure 7.1 shows an
example scene with two robotic agents interacting in a shared environment. We
use a setup that has been used in many other experiments (Spranger, 2012; Pauw
and Hilfery, 2012; Pauw and Spranger, 2010). Each robot perceives the world
through its own on-board sensors, e.g., a camera and proprioceptive sensors. From
this multimodal sensory input, the robots build a world model, which reflects the
robot’s current belief about the state of the environment.

Conducting experiments with actual robots is time consuming. I therefore re-
use recorded data from actual robotic interactions to speed up our experiments
while at the same time preserving the realism of physical robot interactions. Every
scene contains two robots. The recorded data of the scene comprises the world
models that both robots have built from their visual input using standard machine
vision algorithms. In the world model of a scene, every object is represented as a
list of features such as their width, height, color and position. (See, for example,
Figure 7.2.)

Using this data, we let a community of agents play language games (Steels,
2012a). The type of language game the agents play depends on the particular
research question. For the purpose of this chapter we let them play Multi-Word
Guessing Games (Steels, 2012b). This game uses the following script:

1. One of the agents takes the role of a speaker, the other takes the role of
hearer.

2. The speaker has to pick an object or a group of objects as the referent. This
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Figure 7.1: An example of a robotic interaction. Robots are placed in an office-
like environment that contain different types of objects. This scene contains two
yellow blocks, one box and two robots themselves. The world models of the robots
are shown on the right. In the world models, the arrows represent the robots. The
direction of the arrow marks the orientation of the robot. The circles represent
the blocks and the blue square represents the box.

(object obj-228

((x 1868.59) (y 108.199) (z 0)

(width 138.031) (length 131.142) (height 226.175)

(average-y 85) (stdev-y 11.5768) (min-y 0) (max-y 112)

(average-u 188) (stdev-u 14.1542) (min-u 0) (max-u 208)

(average-v 122) (stdev-v 5.54406) (min-v 0) (max-v 128)))

Figure 7.2: An example representation of a block. Objects do not come pre-
classified or predicated in any way. They are a list of continuous features. For
this particular example we see its euclidean coordinates (in mm), its dimensions
(in mm), and its color coordinates (in yuv color space).
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is done randomly.

3. The speaker has to find an utterance that most clearly singles out the ref-
erent.

4. (a) If the speaker was capable of finding an utterance, the hearer has to
interpret the utterance and point to the object or group of objects that
he thinks that speaker intended.

(b) If the speaker could not find an utterance, the game is considered a
failure and ends here.

5. (a) If the hearer points correctly, the game is considered a success and
ends here.

(b) Otherwise the game is considered a failure and the speaker will point
at the intended referent (thus creating a learning opportunity for the
hearer).

So, this game can either end in a success (5a) or in a failure (4b and 5b). In
the case of failure, the agents are provided with two repair operators, a learning
and a innovation operator. The learning operator is used case of a failure on the
hearer side (5b). The innovation operators is used in the case of a failure on the
speaker side (4b). This operator extends the language of the speaker. Together
these operators allow us to look at how a language can gradually change over
time to incorporate novel communicative needs.

7.3 Model

Before looking at the experimental data, we need to have a more detailed look
at the communicative machinery of the agents. The experiments reported in
this chapter are certainly not built from scratch. They rely on mechanisms that
have been developed and tested in other related experiments (Spranger et al.,
2010b; Pauw and Spranger, 2010). The model that is described in this section is
an extension of an existing model that has been used to study spatial language
(Spranger, 2012) and quantification (Pauw and Hilfery, 2012).

For conceptualization this model uses a degree-based semantics that is built
on top of a prototype system (Rosch et al., 2004; Lakoff, 1987). This combination
of prototype theory and degree-based semantics has proven particularly success-
ful in dealing with the problems that are inherent to conceptualizing real-world
perception. (See Spranger and Pauw (2012); Pauw and Spranger (2012) for an in
depth discussion.)

This semantics is implemented in a formalism called Incremental Recruitment
Language (IRL) (Spranger et al., 2012b; Van Den Broeck, 2008; Steels, 2000b), a
procedural semantics that is designed for semantic planning in robotic language
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games. For parsing and production of language the agents rely on Fluid Con-
struction Grammar (FCG) (Steels and De Beule, 2006). IRL and FCG have been
co-developed specially for the kind of grounded language games as described in
this chapter. The rest of this section discusses the different technical aspects of
this model in more detail.

7.3.1 Conceptual system - IRL

In the present scenario, the meaning of language is grounded in the real world.
That is to say, the robotic interactions rely on data from the vision system of
these robots. This data does not come pre-classified, but rather every entity in
the environment is represented as a list of continuous features. (Figure 7.2 shows
an example representation of a block in the world model of a robot.) The task of
the conceptual system is to bridge the gap between the continuous perception of
the real world and the discrete conceptual world.

Prototype Theory

A combination of IRL and prototype theory has proven very successful in concep-
tualizing real-world perception. In prototype theory, every concept is represented
by a prototype. A prototype is a prototypical value (or vector) in the relevant
domain. For example, the concept big is defined over the surface area of an entity.
The closer the surface area is to the prototypical value for big, the more similar
it is to the concept big.

This intuition of similarity is captured by a similarity function. The similarity
function takes a prototype and an entity and returns a confidence score between
0 and 1. If the score is 0, the entity is not similar at all to the prototype, if it is
1, the entity is precisely like the prototype. Consider for example the following
similarity function for area prototypes:

Sarea(P,O) = e
1
σP
|area(P )−area(O)|

(7.1)

This is a typical similarity function in prototype theory. In this case it is defined
over the feature area, but similar functions can be defined over any feature or set
of features. The prototype defines a prototypical value for the relevant feature
(area(P )) and a rate at which the confidence score decreases with the distance to
this value (σP ).

For gradable modifiers such as big and small, however, this sketches a slightly
oversimplified picture. These modifiers require a comparison to some context-
dependent norm. In Pauw and Hilfery (2012) it is shown in detail how the notions
of prototype- and exemplar-based models can be adapted to model this norm
dependence. For every type of object, the agents know what a normal amount is
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(the average size of all objects of the specific object type)1. The prototypes are
scaled with respect to this amount. On top of that, the prototypes have an open
side (i.e., on one side of the prototype, the score is always 1). (See Figure 7.3 for
an example of the scaled prototypes for the object type block.)
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Figure 7.3: The area similarity function for blocks. The average block size is
418cm2. This is the norm. Any block that is bigger than that norm is gets higher
confidence score for the big-prototype, any block that is smaller gets a higher
confidence score for the small -prototype. The prototypes have an open side (i.e.,
on one side of the prototype, the score is always 1).

If we want to know if obj-228 in Figure 7.2 is a small or a big block, we
simply take its surface area and compare it to the small prototype using the above
similarity function. The surface area of obj-228 is 181cm2 (width = 138.031mm
and length = 131.142mm). If we enter this value in the similarity function above
together with the small prototype we get a similarity value of 1. For big the
similarity value is 0.03. So, the least we can say is that small is a much better
way to describe object obj-228 than big is.

Composition

Every concept in the agents’ ontology is defined in the same way, using prototypes
and similarity functions. And, if agents would only need one concept to describe
an object this would be the end of the story. Most utterances, however, involve
more than one concept. Take for example, the utterance “big block”, this contains
both the concept big and block. We need some mechanism to combine both
concepts. This is done by first computing the similarity scores for both concepts
individually and than using a mixture function that computes a total score.

1It should be noted that the norm has different definition here than in Chapter 6. In Chapter
6 norm is defined as the maximal observed amount. Here, the norm is taken to be an average
amount. The difference is mainly a technical design choice. The reason to change the definition
is to be in line with other semantic theories (e.g., Fernando and Kamp, 1996).
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There are many possible ways to define such a mixture function (e.g., the
product of the two scores, or their average) and in studies of degree-based seman-
tics, this is subject to much debate (van Rooij, 2011). For this experiment I have
adopted Zadeh’s definition for conjunction by using the minimum of the scores
(Zadeh, 1965). All philosophical ramifications aside, there is a very practical rea-
son to use the minimum as mixture function: The scores are likely to get lower
when there are more concepts involved, thus discouraging the agents to come up
with overly long and convoluted descriptions.

In sum, a concept (using prototypes and similarity functions) assigns a score
to every entity in the environment. Using the minimum as a mixture function the
scores of multiple concepts can be combined. So, when interpreted, an utterance
like “big block” assigns a score to every entity that reflects how well this entity
is described by the utterance.

The question remains: How are these scores being used in communication?
The goal for the hearer is to point at the referent he thinks the speaker intended.
So the hearer can just simply take the entity that has the highest score. For the
speaker the story is slightly more complicated: For conceptualization, IRL has a
search mechanism that finds a set of prototypes that together best describe the
referent. In order for a description to be good, it should not only have a high
score for the referent, but at the same time a low score for all other entities.
IRL finds the set of prototypes that together maximize the difference in score
between the referent and all other entities, a process called contrast maximization
(see Chapter 3 of this thesis for more information on the search mechanism and
Chapter 4 for an extensive study of the principle of contrast maximization in
real-world perception).

Quantifiers

The mechanism described above shows how concepts in the form of prototypes
can be used and combined to find descriptions of single objects. However, this
chapter focuses on quantifiers and quantifiers typically do not describe single
objects, but sets of objects. So, how are sets of objects modeled? And, how are
quantifiers used to describe them?

For the experiments described in this chapter, it is assumed that there is a
fixed set of object groups in the world model of the agent. So, all the groups the
agents could talk about are know before any communication has taken place. The
groups are computed directly from the visual data using a standard clustering al-
gorithm called agglomerative clustering (Mitchell, 1997). The algorithm creates
a hierarchy of groups based on their spatial arrangement. Figure 7.4 shows an
example scene containing object groups that were created using this agglomera-
tive clustering approach. The amount of groups that is created depends on the
granularity of the algorithm, in this example it happens to create three groups.

More important than how the object groups are computed is their represen-
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Figure 7.4: Top down view of an example scene. The arrows represent the speaker
(robot-1 ) and the hearer (robot-2 ). The scene contains seven blocks (loc-x) and
three object groups: group-1, containing the three leftmost blocks; group-2, con-
taining the four rightmost blocks; and group-3, containing all blocks in the scene.

tation. Objects groups are represented in exactly the same way as single objects;
i.e., a list of features. Most of the features that object groups have are the same
as those of single objects (such as width, height, position, color parameters, . . . ).
So, without any change to model, the agents can already use the concepts that
are used for single objects to describe groups of objects, using utterances such as
“the big [group of] objects”, or “the [group of] objects to the left”.

But, the objects groups, have an additional feature that single objects do not
have: the density of the object group (the total surface area of the constituents
divided by the surface area of the entire group). And, although the agents already
have means to describe groups of objects without taking this feature into account,
the agents can come across situations where it is useful to have means to take
this density feature into account. And, as we will see in a moment, it is precisely
this density feature that is being used by (gradable) quantifiers.

In order to fit the definition of the quantifiers many and few within the pro-
totype framework, Pauw and Hilfery (2012) employ a exemplar-based approach,
where the similarity between the cardinality of an object group and the concept
is determined. There is a problem with this approach however: It requires that
the agents know the precise cardinality of object groups. From a cognitive point
of view this is not very plausible. When we use an utterance like “many blocks”,
we do not explicitly count the number of relevant objects, but we estimate the
number of object. The cognitive mechanism that is responsible for number esti-
mation is often referred to as the Approximate Number System (ANS) (Halberda
and Feigenson, 2008). The precise working of the ANS is subject to much debate,
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Figure 7.5: Both single objects and groups of objects are represented as list of
features. Most prototypes that apply to single objects can just as well be used
for object groups.

but there seem to be two dominant features that influence the estimation of the
amount of objects in a group: the size (area/volume) that the group of objects as
a whole occupies (Hormann, 1983; Newstead and Coventry, 2000) and the density
of the objects in the group (Durgin, 1995). (See Chapter 2 of this thesis for an
in-depth discussion.)

In fact, when we look at the robot data, we can see that these features correlate
very strongly with the number of objects in that group. Consider Figure 7.6(a).
This figure shows both the surface area and number of objects for every possible
group in all recorded scenes. There is a strong correlation between both variables
(ρ = 0.81), making surface area a good classifier for number. But, we can do
better: Figure 7.6(b), shows that, in line with the observation above, if we also
take the density into account, we get an even better classifier. The density of an
object here is computed by dividing the total surface area of all objects by the
surface area of the group as a whole (including the space between the objects).
By multiplying this density with the surface area of the group we get a value that
correlates very strongly with the number of the group (ρ = 0.96).

Based on these observations, we can define the prototypes for the gradable
quantifiers many and few. These prototypes do not have one dimension like big
and small, but are defined over two dimensions: surface area and density. The
similarity function for the Approximate Number System (SANS) then also has
to take these two dimensions into account. The function SANS is essentially an
extension of Sarea that was used for the concepts big and small, but now also
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(b) Area×density (ρ = 0.96)

Figure 7.6: The correlations between number of objects, area and density. These
measures are taken over all 900 recorded scenes. Every point represents a group
of objects. The y-axis shows the number of objects in the group the x-axes shows
its (a) area and (b) area times density. Both measures correlate with number,
but the latter more strongly.

takes density into account:

SANS(P,O) = e
1
σp
|area(P )·density(P )−area(O)·density(O)|

(7.2)

In sum, in this model, object groups are modeled in the same way as single
objects. This means that they can be described using the same prototypes as used
for describing single objects. However, object groups have the additional density
feature that can be used to define concepts that exclusively apply to these object
groups. The gradable quantifiers many and few are examples of such concepts.
They extend the size-concepts big and small by taking the density feature into
account.

It should be mentioned that this model of quantification is very different from
most existing approaches. In most existing approaches quantifiers have a different
functional status than adjectives. For example, in Generalized Quantifier The-
ory(Barwise and Cooper, 1981) adjectives are simple predicates and quantifiers
are relations between predicates. Also earlier similar computational experiments
assumed that quantifiers and adjectives are functionally different (Pauw and Hil-
fery, 2012; Spranger and Pauw, 2012). For the present experiment however, it
is essential to let go of this functional difference because this allows gradable
quantifiers to emerge as adjectives.
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7.3.2 Grammar - FCG

The previous section describes how the agents can conceptualize the world using
prototypes and similarity functions. Here we will look at how these concepts are
communicated. In the experiments to follow the agents can use common nouns
(e.g., “big blocks”) and noun phrases (e.g., “two big blocks”) to describe the
(groups of) objects in their environment. The agents are provided with a basic
context-free grammar that allows them to recursively build common nouns and
noun phrases. The grammar is implemented in Fluid Construction Grammar
(FCG) (Steels and De Beule, 2006), a construction grammar that links the syn-
tactic structure of an utterance directly to the semantic operations of the agent.
Figure 7.7 shows the syntactic structure of the utterance “two big blocks”.

NP

CN

QN ADJ CN

two big blocks

Figure 7.7: Syntactic structure of “two big blocks”. FCG combines the adjective
(ADJ) ‘big’ and the common noun (CN) ‘blocks’ into the CN “big blocks”, which
together with the quantifier (QN) ‘two’ forms the noun phrase (NP) “two big
blocks”.

The grammar consists of lexical rules that link the labels to the concepts
(prototypes) and their respective grammatical category. For example, there is
a lexical rule which links the label ‘big’ to the category adjective and the big-
prototype. There are three grammatical categories for lexical items: adjectives
(ADJ ) such as big and left, quantifiers (QN) such as two and three, and common
nouns (CN) such as block and box.

Furthermore, the grammar contains two grammatical constructions that re-
cursively combine the lexical items into more complex CN’s and NP’s (as shown in
Figure 7.8). Note that these constructions are defined in a construction grammar,
so they do not only define the syntactic patterns, but they also have semantic
contents (Goldberg, 1995). They instruct the agent how the concepts of its con-
stituents should be interpreted.

The CN rule instructs the agents to apply both the prototypes of the ADJ
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CN

ADJ CN
(a) CN-rule

NP

QN CN
(b) NP-rule

Figure 7.8: Grammatical constructions. The CN rule The NP rule combines a
QN and a CN into a NP.

and of the CN to the context and use the mixture function (as defined above)
to combine the two. For example, in Figure 7.7, the CN instructs the agent to
apply both the block -prototype and the big-prototype to the context and com-
bine the results. The NP rule does the same thing, but additionally instructs
the agents to ignore single objects and only consider groups (sets) of objects. In
theory the length of the CN’s that this grammar produces is unbounded. How-
ever, the amount of used modifiers are limited by the conceptual system. So, in
practice, the agents will mostly construct noun phrases containing only one or
two modifiers.

7.4 Language Innovation

Now we can turn to the main topic of this chapter: The evolution of gradable
quantifiers. We provide the agents with lexical items to express spatial relations
(left, right, front, back, near and far), size (big and small), object class (block,
box and robot) and the grammatical rules to combine those items into nouns and
noun phrases such as “block in front of you”. We let the agents play language
games as described above in which the agents have to describe (groups of) ob-
jects to each other. One of the salient properties of groups of objects can be
the (approximate) number of objects it contains. Since the agents do not have
any predefined vocabulary for expressing number they will have to develop this
themselves.

To this end, I provided the agents with three operators: an innovation op-
erator, which allows an agent to invent a new language item when required; an
adoption operator, with which agents can learn the meaning of unfamiliar lan-
guage items; and an alignment operator, which keeps track of the success of a
language item.

Innovation

The innovation operator is used when an agent wants to express a meaning for
which it does not yet have a lexical item, so it has to establish a relation between
a (new) lexical item and the concept that could previously not be expressed. This
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Figure 7.9: Two contrasting formation strategies. When the need arises to
express a new meaning (P = big, Sans(O,P )), the agents can either (a) create
a new random lexical item for it (many), or (b) extend an existing lexical item
(big). The latter strategy introduces homonyms. If the ambiguity that arises
from such a homonym proves to be problematic, agents can invent a marker to
differentiate (-q).

can be done in many ways. In most existing experiments that model language
evolution, new language items are invented from scratch. I.e., as soon a novel
concept needs to be expressed, the innovation operator randomly generates a
label, which is than linked to that concept. Although fine for the purpose of
those experiment, this innovation strategy is too much of a simplification for the
present experiments. This chapter aims to test the idea that gradable quantifiers
are derived from adjectives, this means that we cannot assume that they are
invented from scratch. So, in the present chapter we compare two formation
strategies (see also Figure 7.9):

1. The (traditional) invention strategy: Every time an agents wants to express
a new meaning, a new random lexical items is created and mapped to this
meaning.

2. The extension strategy: The agent tries to find existing lexical items that
have a meaning that is similar to the new one. If it can find such a lexical
item, it will extend its meaning rather than inventing a new lexical item.
Remember that the meaning of a word is defined as a prototype and a
similarity function. Thus, two meanings are identical when they have both
the same prototype and similarity function. We say that two meanings are
similar if they contain either the same prototype or the same similarity
function.

The extension strategy introduces an additional problem: It creates am-
biguity. If a word has multiple meanings this can lead to communicative
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failure. If such is the case, the speaker will notice this and he can decide to
introduce a marker to differentiate the two interpretations.

Adoption

Once an agent has created a new lexical item, this his to be learned by other
agents in the community. This is taken care of by the adoption operator . This
operator is used every time an agent hears an unfamiliar language item. In
essence the adoption operator is the mirror-image of the innovation operator.
The operator relies on a mechanism in IRL called flexible interpretation. When
part of an utterance is missing, the agent can only derive part of the conceptual
structure. The flexible interpretation mechanism can recover the missing part of
the conceptual structure by trying out which combination of available operations
and prototypes results in the discrimination of the referent, in the given context.
The reconstructed part of the meaning is taken to be the meaning of the unfamiliar
lexical item. Most of the time this operator creates many possible solutions.

The question is remains of how to pick one of those solutions. First of all,
the amount possible solutions can be further limited. The adoption operator
looks in the lexicon of the agents for similar lexical items. If such an item is
found it is assumed that the new item was created by the extension strategy and
therefore, the meaning of the new lexical item should be similar to the meaning
of the similar lexical item. Secondly, if multiple solutions are found they can all
be added to the lexicon. In such a case, the agents will have multiple language
constructions that stand in competition.

Alignment

Using the invention operator, a community of agents will introduce new lexical
item. Most of the time, a community of agents comes up with multiple lexical
items that describe the same concept. These language items are in competition
with each other. This is where the alignment operator comes into play. The
language items are all provided with a score between 0 and 1. When the items
are newly created (either through innovation or adoption), the score is set to 0.5.
After a successful interaction the operator increases the score of all the language
constructions that were involved and, conversely, after every unsuccessful interac-
tion the scores are decreased2. The scores are updated using the following update
function:

Sn+1(l) = Sn(l) + λSn(l)(1− Sn(l))

Where Sn(l) is the original score and Sn+1(l) is the updated score of lexical item
l and λ is a rate at which a single update influences the score. For successful

2Note that the alignment operator in this chapter differs from the one described in Chapter 6.
Here the alignment operator only adapts the score of the language item, whereas the alignment
operator in Chapter 6 can also modify the underlying concept.
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interactions λ = 0.1 for unsuccessful interactions λ = −0.1. The function is
essentially a numerical approximation of an S-curve. This means that when the
score gets closer to its extreme values (0 or 1), the rate at which the score changes
gets lower. Update functions with this property have proven to be more stable
than linearly updating scores for similar experiments. (I.e., a false positive or
negative has less influence on the confidence score.)

So, when a community of agents is confronted with a novel problem (e.g.,
describing a group of objects in terms of its estimated number), these three oper-
ators assure that the community extends the existing language to accommodate
this. The innovate operator creates new lexical items, and the adoption and
alignment operator assure that the new items are spread through the community.

7.5 Experiments and Results

We can now look at how a community can use the described model and the
innovation strategies to bootstrap a system of graded quantifiers. In what follows
I will describe three experiments: A first baseline experiment establishes the
expected communicative success of the quantification system. In this experiment
the agents do not yet have to invent gradable quantifiers themselves. In a second
experiment, the performance of both innovation strategies are tested individually.
The last experiment finally shows that when the choice of strategy is left to the
agent, they will be inclined to develop quantifiers that derive from adjectives.

7.5.1 Baseline

The first part of experimental section consists of a baseline experiment. Figure
7.9 describe different stages of development for both the extension and the inven-
tion strategy. Before looking at how agents can bootstrap a quantifier system,
I implemented the language at each stage manually, considering four different
stages of language development:

1. The agents have no gradable quantifiers. This is the initial state for both
the invention and the extension strategy.

2. The agents are provided with size words that are extended to incorporate
the ANS meaning. This is the second stage of the extension strategy.

3. The polysemy of the size markers is resolved by marking the different in-
terpretations. This is the final stage of the extension strategy.

4. The estimate number is expressed using novel lexical items. This is the
second and final stage of the invention strategy.
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On top of these four different language conditions, there are two different
environmental conditions: Salient number—the context and topic is chosen such
that there is a guaranteed difference in the number of objects in the topic and any
other group of objects in the context. In this condition, quantity always the most
(and often, the only) salient feature of an object group; No manipulation—the
topics and contexts are chosen completely at random from the data set. Figure
7.10 shows the average communicative success of 2000 interactions for each of
these 2× 4 different experimental conditions.
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Figure 7.10: Results baseline, 2000 interactions, 2 environmental conditions, 4
linguistic stages. The height of the bar indicates the average communicative
success over 2000 interactions.

The results show first of all that even without quantifiers, the agents can
communicate. The number of objects is only one of the features they can use to
describe a group of objects. Also, without quantifiers the agents are much less
successful in the salient-number condition (50% success) then when there is no
environmental manipulation (73%). Secondly, for both environmental conditions
these results show that extending the size words strongly increases the commu-
nicative success (89% for the salient-number condition) and even more so when
this difference is marked (100% for the salient-number condition). This effect is
stronger for the salient-number environmental condition.

It should also be noted that there is no difference at all in communicative
success between the third and fourth language condition. In other words, the
end stages of both innovation strategies are equally successful (86% for the no-
manipulation condition, 100% success for the salient-number condition). It is
only the intermediary stage of the extension strategy which makes a difference.
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7.5.2 Strategy Comparison

Now we can look at how agents can bootstrap a language using the proposed
innovation strategies. In Figure 7.11, both the extension and invention strategies
are tested individually. The Figure contains one a graph for both environmen-
tal manipulation: no manipulation and salient number. Both graphs show the
results for both innovation strategies. For every condition I ran ten series of
1200 language game interactions. The graphs show the average progression of
communicative success and lexicon size over those ten series.

These graphs show several things. To begin with, for both environmental
conditions the community of agents reach the communicative success that was
established in the baseline experiment (86% for the no-manipulation condition,
100% success for the salient-number condition). For the final communicative
success it does not matter whether the agent employ the extension or invention
strategy. Using either strategy they converge on the same communicative success.

Second, the graphs show that there is an initial overshoot of the lexicon size.
Initially all agents invent there own way of expressing quantity. Only when the
lexicon becomes shared by the entire population (through the adoption opera-
tor) the unsuccessful lexical items gradually disappear and the language system
converges on a smaller but more effective lexicon.

Of most interest is that, although the final success of both strategies is the
same, there is a big difference in the rate at which this success is reached. Using
the extension strategy a community of agents converges on a shared quantifier
system much faster. For example in Figure 7.11(a), using the extension strategy
the community of agents reach 80% communicative success after 200 interactions,
whereas with the invention strategy this takes 800 interactions.

Finally, there is a clear difference between the two environmental conditions
in this graph. Under the salient-number condition the agents start at only 50%
success and reach 100% success in the end. This effect is much less spectacular
without manipulation of the environment (73% to 86% communicative success).
However, the advantage of the extension strategy become much more apparent
for the no-manipulation environmental condition.

7.5.3 Strategy Competition

Figure 7.12 shows what happens if we leave the agent to his own devices in choos-
ing a innovation strategy. Every time an agent needs to express a new meaning,
it can choose to either follow the invention strategy and invent a completely new
lexical item, or follow the extension strategy and adapt an existing lexical item.
When agents randomly pick a strategy every time they require a new language
item, they will wind up with a lexicon containing both gradable quantifiers that
are derived from adjectives and quantifiers that are created from scratch. Figure
7.12(a) shows and example of an experiment where initially both types of quan-
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Figure 7.11: Results strategy comparison. These graphs show the average pro-
gression of the communicative success and lexicon size of the agents over 10 series
of 1200 interactions. Both graph show the results of both the extension and in-
vention strategy. Figure (a) shows the results for the no-manipulation condition
and Figure (b) the results for the salient-number condition. The horizontal axis
shows the number of interactions; left vertical axes, the communicative success;
and the right vertical axis the lexicon size.
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tifiers are invented, but the quantifiers that survive in the end have adjectival
origins. Figure 7.12(b) shows a similar experiment, but here the community of
agents converge on quantifiers that were created from scratch.

I have conducted this experiment many times, checking at the end of each
series on which type of quantifiers the agents converged. The result strongly
depends on the likelihood of either strategy being used. Figure 7.12(c) shows the
likelihood that the converged quantifiers have adjectival origins as a function of
the likelihood that the extension strategy is being used for innovation.

The graph shows no surprising results for the extreme cases: If the agents
always use the extension innovation strategy the quantifier origins are always
adjectival. And, conversely if the agents never use the extension strategy (in
other words, always use the invention strategy) the resulting quantifiers are always
created from scratch.

Of more interest is that Figure 7.12(c) shows an overall preference for quan-
tifiers that have adjectival origins. At a likelihood of 50% for using the extension
strategy, the chance that the agents converge on quantifiers with adjectival ori-
gins is between 70% and 85% (depending on the environmental manipulation).
Overall, the likelihood of adjectival quantifiers is much higher than the likelihood
of using the extension strategy (i.e., quantifiers that have adjectival origins).

In sum, both innovation strategies, extension and invention, permit a com-
munity of agents to develop a language containing gradable quantifiers. And
for both strategies the resulting languages are equally apt in expressing number.
However, the extension strategy exploits the cognitive similarity between size and
quantifying terms. This results in an intermediary language stage in which the
community of agents use size terms to express quantity. This intermediary stage
makes it easier for novel terms to become shared in a population. So, leaving the
choice of strategy up to the agents results in a preference for quantifying terms
that are created by the extension strategy. In other words, all other things be-
ing equal, the community of agents has a strong preference for quantifiers with
adjectival origins.

7.6 Conclusion

The present results provide a motivation for adjectival origins of gradable quan-
tifiers. It was argued that these origins might be explained by a cognitive overlap
between size terms and gradable quantifiers. I provided our agents with a cogni-
tively plausible approximate number system and innovation strategies that can
exploit the cognitive overlap for the generation of new lexical items. And it is
shown that under these conditions, a community of agents is indeed inclined to
derive gradable quantifiers from gradable adjectives.

Of course, this is not the be-all and end-all answer to the duality of gradable
quantifiers. Most importantly, this chapter only addresses part of the proposed
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Figure 7.12: Results strategy competition. Figure (b) shows an example of an
experiment that results in graded quantifiers from scratch. In Figure (a) the
agents converge on graded quantifiers with adjectival origins. Figure (c) shows
the likelihood that the converged quantifiers have adjectival origins as a function
of the likelihood that the extension strategy is being used for innovation. The
result reflect the average convergence of 10 runs for every experimental condition.
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puzzle. The chapter starts with pointing out the dual use of gradable quantifiers:
Sometimes they act like adjectives and sometimes like quantifiers. This chapter
only provides some insight on the adjectival origins. The question remains of why
they can also occur as quantifiers. This could have to do with semantic overlap:
Just as more canonical quantifiers, gradable quantifiers can only be applied to
sets of objects, not to single objects. For now, I leave this as point of future
investigation.





Chapter 8

More
on Many and Few: Grammaticalization
of Gradable Quantifiers

Modifiers such as many and few are known to be syntactic hybrids, acting alter-
nately as quantifiers and adjectives. It has been argued that this duality in syntax
is the result of grammaticalization, where these modifiers originate as adjectives
and later become quantifiers. The present chapter describes an agent-based com-
putational model that combines these linguistic insights with results from cog-
nitive studies. Using this model it is shown that existing quantifiers can create
attractor positions for other modifiers to grammaticalize into and that many and
few follow this path in search of reducing cognitive effort. Thus, arguing that the
shift from qualifying to quantifying expression has a cognitive motivation. This
chapter is a version of a forthcoming publication: Pauw (2013a).

8.1 Introduction

Words such as many, few, much and little (henceforth gradable quantifiers ) are
known to be syntactic hybrids: though traditionally analyzed as quantifiers, they
can also act like adjectives (Solt, 2009). One of the main reasons for their classi-
fication as quantifiers is their position in a noun phrase: just like more canonical
quantifiers, such as all or three, they cannot follow an adjective (e.g., we can
say “many big houses”, but not “big many houses”). However there are many
constructions where gradable quantifiers behave like adjectives. Examples are
“too many” and “fewer”: we can say “too big” or “smaller”, but not “too three”
or “aller”. Why do gradable quantifiers have such a fuzzy syntax? What is the
cognitive basis for this syntactic duality?

It has been argued that the dual syntax of gradable quantifiers might be the
result of a grammaticalization process where they originate as adjectives and later
become quantifiers (Solt, 2009). In Chapter 7, I showed that gradable quantifiers

137
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are indeed likely to emerge as adjectives due to their cognitive relation with
size predicates such as big and small (perception of quantity relies on the same
cognitive mechanisms as perception of size). Gradable quantifiers are not only
cognitively related to size predicates but also to quantifiers such as all or three
(they are used to describe sets of objects, not individual objects). In the current
chapter I show that this cognitive relation will invite the (initially adjectival)
gradable quantifiers to grammaticalize into quantifiers. So together with Pauw
(2013b) this chapter shows that the syntactic duality of gradable quantifiers might
reflect an underlying cognitive duality.

This chapter describes an evolutionary linguistic treatment of this grammat-
icalization process. In evolutionary linguistics, language is seen as a complex
adaptive system that is subject to selectionist principles similar to those of bi-
ological evolution. The main agenda of this field is to identify the changes of
language that led up to the current state of language and expose the cognitive
mechanisms that are responsible for these changes. Lacking empirical data, com-
putational modeling is the most common methodology in this field (See Kirby
and Hurford, 2002; Steels, 2005). The objective of such computational experi-
ments is to take changes observed by historical linguists and recreate them using
(robotic) multi-agent simulations. This allows us to carefully study the cogni-
tive processes that are required by the agents to produce the simulated language
change. Of course it is not feasible to simulate the entire evolution of language
from its genesis to the current state of all languages. Instead, it is common prac-
tice to focus on one specific aspect of language change and expose the cognitive
mechanisms responsible for that particular change (see Bleys et al., 2009; van
Trijp, 2012; Spranger, 2012; Pauw and Hilfery, 2012; Beuls and Steels, 2013, for
recent examples).

As mentioned above, this chapter focuses on the grammaticalization path of
gradable quantifiers from adjectives to quantifiers. It describes a series of exper-
iments, in which a community of robotic agents is provided with a fully opera-
tional initial language that allows them to describe objects and sets of objects
using nouns and noun phrases such as “two big blocks” or “many boxes”. The
gradable quantifiers many and few in this language are defined as adjectives. The
agents are provided with a reanalysis mechanism that allows them to change the
grammatical categories of lexical items (Bisang, 1998). It could, for example,
change many into a quantifier.

The proposed reanalysis mechanism is a very general mechanism that could
change the grammatical category of any lexical item into any category that has
been provided by the grammar. However, in the experiments presented in this
chapter, only gradable quantifiers grammaticalize into quantifiers, the grammat-
ical categories of all other lexical items stay the same. The reason that only
gradable quantifiers are affected by the reanalysis mechanism is due to the cog-
nitive relation between gradable quantifiers and quantifiers such as all or three.
Unlike adjectives such as big and small, these gradable quantifiers can only be



8.2. Experimental Framework 139

used to describe sets of objects. It is shown that this cognitive relation makes
gradable quantifiers more prone to grammaticalization into quantifiers then other
lexical items.

The remainder of the chapter is structured as follows: The next section dis-
cusses the computational framework and the implementation of the semantic and
syntactic model. Sections 8.3 and 8.4 describes a series of experiments that show
how languages in the different stages of the grammaticalization process perform.
In a final experiment, described in Section 8.5, the agents are provided with the
reanalysis mechanism, and it is shown that this indeed gives rise to the hypothe-
sized grammaticalization path.

8.2 Experimental Framework

The experiments I describe in this chapter are based on communicative interac-
tions between humanoid robots (see (Steels, 2012a) for specific details). Figure 8.1
shows an example scene with two robotic agents interacting in a shared environ-
ment. I use a setup that has been used in many other experiments (Spranger,
2012; Pauw and Hilfery, 2012; Pauw and Spranger, 2010). Each robot perceives
the world through its own on-board sensors, e.g., a camera and proprioceptive
sensors. From this multimodal sensory input, the robots build a world model,
which reflects the robot’s current belief about the state of the environment of
gradable quantifiers from adjectives to quantifiers.

Conducting experiments with actual robots is time consuming. I therefore re-
use recorded data from actual robotic interactions to speed up our experiments
while at the same time preserving the realism of physical robot interactions. Every
scene contains two robots. The recorded data of the scene comprises the world
models that both robots have built from their visual input using standard machine
vision algorithms. In the world model of a scene, every object is represented as a
list of features such as their width, height, color and position.

Using this data, I let a community of agents play language games (Steels,
2012a). The type of language game the agents play depends on the particular
research question. For the purpose of this chapter they play a Multi-Word Guess-
ing Game (Steels, 2012b). In this game there are two agents, one of them takes
the role as a speaker, the other as hearer. The speaker has to pick an object or a
group of objects (the referent) and find an utterance to describe it to the hearer.
The hearer in turn has to interpret this utterance and point at the referent he
thinks the speaker intended. If the hearer points correctly, the game is a success.
It is a failure otherwise. If the game is a failure, the speaker points to the referent
to show the hearer what he meant.

When the speaker cannot find an appropriate utterance to describe the ref-
erent, or the hearer does not point correctly, the agent is provided with a set of
repair strategies to resolve the situation. These repair strategies allow an agent
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Figure 8.1: An example of a robotic interaction. Two robots, a speaker and a
hearer, are placed in an environment containing different types of objects. This
scene contains two yellow blocks, one box, and the two robots themselves. The
world models of the robots are shown on the right. The world as perceived by
the speaker is shown on top, the world model of the hearer is shown below. The
arrows represent the robots. The direction of the arrow marks the orientation of
the robot. They place themselves in the origin of their respective world models,
looking in the direction of the x-axis. The circles represent the blocks and the
blue square represents the box.
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to adapt the language they use to the particular communicative needs of the
situation. They are essential to this approach because they allow us to inves-
tigate language as an ever-adapting fluid system rather than a static given. In
the case of the experiments presented in this chapter, the agents are provided
with a repair strategy that allows them to reanalyze the grammatical categories
of existing lexical items. In the remainder of this chapter I will show how this
reanalysis operator gives rise to the grammaticalization of gradable quantifiers.

8.2.1 Model

Before looking at the experimental data, I will briefly discuss the communicative
machinery of the agents. The experiments reported in this chapter are certainly
not built from scratch. They rely on mechanisms that have been developed and
tested in other related experiments (Spranger et al., 2010b; Pauw and Spranger,
2010). The model that is described in this section has previously been used in
Pauw (2013b) and is an extension of an existing model that has been use to study
spatial language (Spranger, 2012) and quantification (Pauw and Hilfery, 2012).

For conceptualization this model uses a degree-based semantics that is built
on top of a prototype system (Rosch et al., 2004; Lakoff, 1987). This combination
of prototype theory and degree-based semantics has proven particularly successful
in dealing with the problems that are inherent to conceptualizing real-world per-
ception (see Spranger and Pauw, 2012; Pauw and Spranger, 2012, for an in-depth
discussion). This semantics is implemented in a formalism called Incremental Re-
cruitment Language (IRL) (Spranger et al., 2012b; Van Den Broeck, 2008; Steels,
2000b), a procedural semantics that is designed for semantic planning in robotic
language games. For parsing and production of language the agents rely on Fluid
Construction Grammar (FCG) (Steels and De Beule, 2006). IRL and FCG have
been co-developed specially for the kind of grounded language games as described
in this chapter. The rest of this section discusses the different technical aspects
of this model in more detail.

As mentioned in the introduction, the experiments reported do not study the
evolution of language from its genesis. The experiments presuppose a language
stage in which nouns, adjectives and quantifiers have developed into independent
grammatical categories. This language allows the agents to use noun phrases
(NP, e.g., “two big blocks”) and common nouns (CN, e.g., “big blocks”). This
language is an implementation of a basic context-free grammar in FCG. A CN
consists of a zero or more adjectives (ADJ) followed by a noun. A NP consists of
a quantifier (QN) followed by a CN.

Semantically, the function of a NP or CN is to assign a score to every object
in the environment that reflects how well the object is described by the utterance.
Every noun, adjective, and quantifier is associated with a prototype. IRL com-
pares the prototype of a lexical item to every object in the world model of the
agent, which results in a confidence score. When an utterance consists of multi-
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ple lexical items these scores are combined by taking the minimum (see Zadeh,
1965; Pauw and Hilfery, 2012, for details). This establishes a confidence score for
every object in the environment. During interpretation, IRL looks for the object
that has the highest score for the given utterance. During language production
(formation), IRL finds the utterance that has the highest score differential for
the referent (i.e, the utterance that maximizes the score difference between the
referent and all the other objects in the environment). Pauw (2013b) explains the
prototype/degree-based approach in more detail and Spranger and Pauw (2012)
discusses how this can be implemented in IRL.

It should be mentioned that the model of quantification in the present model
is very different from most existing approaches. In most existing approaches
quantifiers have a different functional status than adjectives. For example, in
Generalized Quantifier Theory (Barwise and Cooper, 1981) adjectives are simple
predicates, but quantifiers are relations between predicates. Also earlier simi-
lar computational experiments assumed that quantifiers and adjectives are func-
tionally different (Pauw and Hilfery, 2012; Spranger and Pauw, 2012). For the
present experiment however, it is essential to let go of this functional difference
because this allows gradable quantifiers to emerge as adjectives (as shown in
Pauw (2013b)). To be able to model quantifiers in the same way as adjectives,
it is assumed that there is a fixed set of object groups in the world model of
the agent. The groups are computed directly from the visual data using a stan-
dard clustering algorithm called agglomerative clustering (Mitchell, 1997). The
algorithm creates a hierarchy of groups based on their spatial arrangement (see
Section 5.3 of this thesis). The resulting object groups are represented in the
same way as any other object in the environment: as a list of features. Most
of the features representing an object group are the same as those for single ob-
jects (e.g., location, dimensions, color, . . . ). This similar representation makes it
possible to reuse the concepts that are used to describe single objects (e.g., big,
far, etc.) for describing object groups. However, there are some features that are
only present in object groups (such as density and number of constituents). This
makes it possible to have concepts that can only modify object groups (e.g., two
or many).

In sum, the present model permits the agents to use NP’s and CN’s to de-
scribe object sets. The NP’s have a determiner position that is always filled by a
quantifier. The difference between quantifiers and adjectives has both a syntac-
tic and a semantic side. Semantically, quantifiers are limited to the application
to object groups, whereas adjectives can modify both groups and single objects.
Syntactically, quantifiers can only occur at the head of the utterance (due to the
NP-rule), whereas adjectives can be at any position before the noun (due to the
CN-rule).
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8.3 Baseline Experiment

As mentioned above, in previous experiments it was shown that agents are likely
to derive gradable quantifiers from adjectives (Pauw, 2013b). In these exper-
iments agents did indeed develop gradable quantifiers that are similar to the
English many and few. However they emerge as adjectives, not as quantifiers.
In this chapter we look at how they grammaticalize into quantifiers. To this end
it is no longer assumed that the grammatical categories are fixed, but that the
agents have some mechanism that reanalyzes the grammatical category of lexical
entities called a reanalysis operator.

Before describing the precise mechanics of this operator, I’ll take a small
detour and first speculate on its possible consequences. This section discusses a
baseline experiment in which I compare the performance of the initial language
(where many and few are adjectives) to the hypothetical target language (where
many and few are quantifiers).

The initial language is a copy of the language that came out of the experiment
described in Pauw (2013b). For this language, the lexicon consists of the adjec-
tives left, right, front, back, far, near, big, small, few, and many ; the nouns block,
box and robot ; and the numeral quantifiers one to twelve. Additionally, the lexi-
con contains the CN and NP rule as described in the previous section. The target
language is identical, but the gradable quantifiers few and many are defined as
quantifiers. As a consequence, in the target language the gradable quantifiers are
not parsed using the CN rule, but rather using the NP rule. Syntactically this
means that many and few can only occur at the head of the noun phrase, whereas
in the initial language they can occur on any adjective position. Semantically,
this means that the application of these gradable quantifiers is restricted to only
groups (sets) of objects.

8.3.1 Baseline Communicative Success

We can now compare the performance of these two languages in a language game
experiment. This experiment follows the script as described in Section 8.2, but
the agents do not do any reanalysis yet. I let the agents play 5000 interactions
and monitor the average communicative success. The experiment was repeated
for both languages (the initial language and the target language). The graph
in Figure 8.2 shows the results. The graph shows three different results: 1) the
average communicative success of all the language games where the speaker picked
a single object as referent, 2) the average communicative of the language games
where speaker picked a group of objects, and 3) the two combined (the average
communicative success of all the language games).

We can see that there is no difference in communicative success between the
two languages for any of those conditions. For condition 2 this result is hardly
surprising: The only semantic difference between the two languages is that in the
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Figure 8.2: Baseline communicative success for the initial language (many and
few as adjectives) and the target language (many and few as quantifiers). The
bars represent the average communicative success taken over 5000 interactions.
The results shows three different conditions for the referent type: 1) the success of
interactions where the referent that is described by the speaker is a single objects;
2) the success of interactions where the speaker describes only groups of objects;
and 3) both combined. There is no difference in communicative success for any
of the conditions between the initial and the target language.
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target language many and few are quantifies, which means that they can only
apply to groups of objects. For condition 2 the referent is always a group of
objects anyway, so for this condition there can not possibly be any difference.

But, it is perhaps less evident that there is no difference for single objects
either. This is due to the way these gradable quantifiers are used: Gradable
quantifiers can not make meaningful distinctions in single objects. It is, for ex-
ample, meaningless to say something like “a many block,” even if it would be
grammatically correct. In other words, pragmatically, the gradable quantifiers
can only be applied to groups of objects not to single objects, even if this is not
explicitly marked by the grammar. In the present model this intuition is cap-
tured by the fact that gradable quantifiers, when applied to a single object, will
always return a score of 0. This means that gradable quantifiers do not create any
contrast between single objects and are therefore not helpful in describing them.
So, for the communicative success it does not matter if the grammar considers
gradable quantifiers to be adjectives or quantifiers.

In other words, in terms of communicative success there is no difference in
performance between the two language. This means that communicative success
is not likely to be an incentive for the proposed category shift. So why would
agents reanalyze the grammatical category? If communicative success is not an
incentive, what is?

8.3.2 Baseline Cognitive Effort

The main difference between the grammatical category of quantifiers and ad-
jectives in the present grammar (syntactic patterns aside), is the fact that for
quantifiers the application is restricted to sets of objects. In the previous section
we saw that for the gradable quantifiers few and many this difference does not
affect the communicative success.

It does, however, affect the search space. Before starting interpretation, any
entity in the environment (single objects and groups of objects alike) is a candi-
date referent. The role of the defined language is not only to compute the referent,
but also to do so efficiently. As soon as a quantifier is encountered, the semantic
system knows it can ignore single objects and reduce the evaluation to groups of
objects. Which reduces the search space. The effect is especially strong for the
present language because quantifiers are the head of the noun phrase, making
it the first item that is evaluated. Thus reducing the search tree right from the
start.

So, in order to understand the effects of the quantifier category, we have to
consider this processing efficiency. To this end, I adopt a common approach in
AI to use the size of the search tree as a measure for cognitive effort (Steels and
Wellens, 2006) (also sometimes referred to as processing effort (van Trijp, 2012)).
The search tree size is linearly proportional to the amount of objects that have to
be considered for evaluation. The precise values are not relevant. In order to make
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Figure 8.3: Baseline cognitive effort for the initial language (many and few as
adjectives) and the target language (many and few as quantifiers). The bars
represent the average cognitive effort taken over 5000 interactions. The values
are normalized between 0 and 1. The results show that for single objects, there is
no difference in cognitive effort. However, when the speaker describes a group of
object, for the target language (which treats gradable quantifiers as quantifiers),
the cognitive effort is much lower.

the result comparable across language games, the cognitive effort is normalized
to yield a score between 1 and 0, where 1 is the maximum amount of objects
that the agent could consider in a specific scene and 0 the minimum. In order to
avoid any confusion that may arise, it should be emphasized that cognitive effort
in this context is defined as a function of the semantical search space. The search
that is required for parsing the sentence, is not taken into consideration.

Figure 8.3 shows the results of the same experiment as above, but showing the
cognitive effort instead of the communicative success. We can see a dramatic dif-
ference in cognitive effort for object groups (the second condition). The amount
of search that the agents have to do for describing object groups is much lower
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when gradable quantifiers are modeled as quantifiers. And, although there is no
difference in communicative success between the initial and target language, we
see that, overall, the cognitive effort is much lower for the target language (where
gradable quantifiers are quantifiers). So, unlike communicative success, reduc-
ing cognitive effort might be a good incentive for the agents to grammaticalize
gradable quantifiers into quantifiers.

8.3.3 Baseline Lateral Stability

The previous two sections established the particular communicative pressure that
might trigger the reanalysis operator to convert many and few into quantifiers.
Yet, before going into the details of a reanalysis operator, there is another ques-
tion we have to tackle: Why does a mechanism that changes the grammatical
categories of many and few leave all other lexical items alone? For example,
why aren’t the categories of big and small not altered in the same way as many
and few? Or why doesn’t the reanalysis mechanism change left into a noun, or
three into an adjective? If we want make any claims of generality at all we can
not simply assume that somehow the reanalysis operator is limited to affect only
gradable quantifiers.

Consider, for example, the adjectives big and small. What would happen if
they are defined as quantifiers? Remember that any concept that can be used
to describe single objects can also be used to describe object groups. So it is
perfectly consistent to define big and small as quantifiers, they are already used
by the agents to describe object groups. The difference resulting from defining
them as adjectives is that their application is restricted to only object groups.
To see the consequences, I have implemented a hypothetical (and, in this case,
undesirable) language in which big and small are defined as quantifiers, and
compared it to the initial language. Figure 8.4 shows the result for cognitive
effort, and Figure 8.5 shows the results for communicative success.

We can see just as for the gradable quantifiers, that the cognitive effort is
lower when big and small are defined as quantifiers. The effect is much smaller
than for the gradable quantifiers, but it’s there. However, if we now look at Figure
8.5, we see that this minor decrease in cognitive effort comes at a very high cost:
a very strong decrease in communicative success. The reason for this decrease is
that if big and small are defined as quantifiers, their application is restricted to
sets of objects. For gradable quantifiers this was not a problem, since they do not
make meaningful distinctions between single objects anyway. But, for big and
small this does not hold; they do make meaningful distinctions for single objects,
and therefore restricting them to sets seriously hampers the language. So, if the
reanalysis mechanism is to take both cognitive effort and communicative success
into account, it is not likely to affect big and small.
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Figure 8.4: Baseline cognitive effort for the undesirable language (where big and small are
treated as quantifiers), the initial language (many and few as adjectives) and the target language
(many and few as quantifiers). The bars represent the average cognitive effort taken over 5000
interactions. The results show that there is a slightly lower cognitive effort for the undesirable
language. Although the effect is not nearly as dramatic as with the target language.
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Figure 8.5: Baseline communicative success for the undesirable language (where big and small
are treated as quantifiers), the initial language (many and few as adjectives) and the target
language (many and few as quantifiers). The bars represent the average communicative success
taken over 5000 interactions. The results show a much lower communicative success for the
undesirable language than for the initial and target language.
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8.4 Selection Experiment

The previous section showed that a combination of communicative success and
cognitive effort might provide the right selective pressures for the agents to re-
analyze many and few as quantifiers, but leave big and small unbothered as
adjectives. To this end I manually created two languages to compare with the
initial language. There are, however, many more linguistic variations imaginable
that could be tested in the same way. In fact, there are way too many possible
languages to test all of them individually (with the 10 modifiers and 2 categories
of the example language we can already define 210 = 1024 different languages).
So instead, I let the agents select the optimal languages themselves in a selection
experiment. In the selection experiment the agents use a very general selectionist
mechanism to find the optimal language given a set of constraints. In this case,
linguistic variation is created by providing the agents with both an adjective and
a quantifier versions of every modifier (any lexical item that is not a noun). So,
every modifier has two competing versions. The task for the agents is for every
modifier to select the fitter version of the two.

This is done by assigning a confidence score (or construction score) (between
0 and 1) to every lexical item, that reflects its performance. After every successful
interaction the hearer will increase the confidence score of every lexical item that
was involved in that particular interaction. If the interaction was not successful
the confidence score of all the lexical items involved is decreased. The scores are
updated using the following update function:

Sn+1(l) = Sn(l) + λSn(l)(1− Sn(l))

Where Sn(l) is the original score, Sn+1(l) is the updated score of lexical item
l, and λ is a rate at which a single update influences the score. For successful
interactions λ = 0.1 for unsuccessful interactions λ = −0.1. The function is a
numerical approximation of an S-curve. This means that when the score gets
closer to its extreme values (0 or 1), the rate at which the score changes gets
lower. Update functions with this property have proven to be more stable than
linearly updating scores for similar experiments; i.e., a false positive or negative
has less influence on the confidence score.

Since there are multiple versions of every lexical item in the lexicon of the
agent, they need some way of deciding which one they use. This is done by
picking one randomly, using the scores of the lexical items as a distribution. So,
lexical items with a high score have a bigger chance of being used than the ones
with a low score.

Using the given initial variation and the update function, I let the agents play
a series of language games. Figure 8.6 shows the results. It shows the average
scores of different groups of lexical items. (Lexical items are grouped together
for the sake of readability.) The graph clearly shows that for the lexical items,
big, small, left and right, the agents converge on their adjectival variant. This
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is not surprising: The quantificational variants are much less successful. They
are limited to describe object groups whereas the adjectival variants can be used
both to describe single objects and groups of objects, so the adjectival variants
are being used successfully much more often.

For the words many and few, on the other hand, Figure 8.6 does not show
any convergence on either their adjectival or quantificational variant. This is
due to the problem discussed in the previous section: The gradable quantifiers
many and few do not make meaningful distinctions for single objects. Therefore,
the grammatical category they belong to does not influence the communicative
success. And, since the update function is only affected by communicative success,
neither variant will prevail over the other.

Figure 8.7 shows what happens if we also take cognitive effort into account.
The λ in the update function is not statically defined as above, but takes the
cognitive effort (C) into account by letting it influence the scoring rate (λ =
0.2 · (1 − C) for success and λ = −0.2 · C for failure1). Now we can see that for
the words many and few, the agents converge on their quantificational variant in
about 80% of the time.

In sum, the grammatical categories of the lexical items were not fixed in the
initial language, but the agents were provided with all options. Using a basic
selectionist mechanism, the community automatically converged on a fixed cat-
egorization of all the lexical items. The modifiers in the lexicon that predicate
both single objects and object groups (e.g., big, small, left and right) are cate-
gorized as adjectives, and the modifiers that only predicate object groups (e.g.,
many and few) are more likely to be categorized as quantifiers. Where the latter
only happens if the cognitive effort is taken into account.

8.5 Grammaticalization Experiment

The previous section illustrated the the working of the selectionist mechanism
that allows the agents to converge on an optimal categorization provided a given
variation. This section describes an experiment where agents have to create this
variation themselves.

The agents will start out with the same initial language as described in Section
8.3 (i.e., few, and many are defined as adjectives). But, now we provide the
agents with a reanalysis operator : a mechanism that allows them to reanalyze
the grammatical categories of the lexical items in their lexicon. The reanalysis
operator is used when an interaction is not successful or the cognitive effort is
too high. It introduces a copy of the item under analysis but with a different
grammatical category. So after applying the reanalysis operator, there are two
competing versions of the same lexical item.

1Note that the cognitive effort is normalized to average out on C = 0.5, so on average λ = 0.1
— the same as for the previous graph.
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Figure 8.6: The selection of lexical items. Thes graphs follow the scores of spe-
cific lexical items over 1000 interactions. Also, the communicative success and
the cognitive effort are shown. The experiment is repeated 20 times, the results
are averaged. Every modifier has two variants: one adjectival (ADJ), and one
quantificational (QN). They all start with a score of 0.5. The selection mecha-
nism only regards the communicative success. After few hundred interactions it
becomes clear that for the modifiers left, right, big, and small, the adjectival vari-
ants are selected. However, the community of agents does not converge on either
the QN or ADJ variant of many and few. The cognitive effort and communicative
success are stable over the course of the experiment.
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many/few QN

many/few ADJ
big/small QN

big/small ADJ

left/right QN
left/right ADJ

Figure 8.7: The selection of lexical items while minimizing cognitive effort. These
graphs follow the scores of specific lexical items over 1000 interactions. Also, the
communicative success and the cognitive effort are shown. The experiment is
repeated 20 times, the results are averaged. Every modifier has two variants,
one adjectival (ADJ), and one quantificational (QN). They all start with a score
of 0.5. The selection mechanism regards both the communicative success and
the cognitive effort. After a few hundred interactions it becomes clear that for
the modifiers left, right, big, and small, the ADJ variants are selected. For the
modifiers many and few the agents converge on the QN variant. As a result, the
cognitive effort decreases over the course of the experiment. The communicative
success remains the same.
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Reanalysis of many in:

“many blocks”

Memory

three blocks

big blocks three boxes

big boxes big block

big box

small block to the right

five blocks

Pattern
 _ blocks

big three five

QN QNADJ

three QNbig ADJ many ADJ etc...
Initial lexicon

1

0
QNADJ

Distribution

Updated lexicon
three QNbig ADJ many ADJ etc...many QN

Figure 8.8: The reanalysis of many in the utterance “many blocks”. In the
initial lexicon many is an adjective. The operator looks up what other lexical
items occurred at the same slot. In this case, those are big, three and five,
thus one adjective and two quantifiers. This gives a distribution of grammatical
categories. A new grammatical category is picked from that distribution (QN in
this example). Using this category, a new lexical item (many as quantifier) is
created and added to the lexicon.

8.5.1 Reanalysis Operator

The reanalysis operator is based on the notion of an attractor pole as presented
in Bisang (1998) and Sommerer (2012). The general idea is that if a slot in an
utterance correlates with a specific grammatical category, it encourages lexical
items that occur at that slot to grammaticalize into it. For example, in our
grammar, quantifiers occur at the head of an utterance. If an adjective like many
occurs in the same position, it might be invited to grammaticalize into a quantifier
as well.

A lexical item is reanalyzed with respect to a problematic utterance (i.e., an
utterance that was used in an unsuccessful interaction or that required a high
cognitive effort in parsing). Figure 8.8 provides an outline of the working of the
reanalysis operator for the lexical item many in the utterance “many blocks”.
The operator requires, first of all, a memory of earlier conversation. To keep
things simple, the agents keep track of every utterance they ever used. Now, to
reanalyze many in “many blocks”, first the pattern “X blocks” (where X can be
any single lexical item) is looked up in the memory of the agent. This way, the
agents establish a list of co-occurring lexical items. In the present example the
agents heard the utterances “big blocks”, “three blocks” and “five blocks” before.
So, the lexical items big, three, and five co-occur with many for the slot X in “X
blocks”.

Second, a distribution over grammatical categories for that slot is established:
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All these lexical items have a specific grammatical category. By simply counting
these grammatical categories the agent can establish a distribution over gram-
matical categories for the slot. In this case, slot X has a [1

3
, 2
3
]-distribution over

adjectives and quantifiers respectively (since big is an adjective, and three and
five are quantifiers).

Using this distribution the agents pick a new category for the lexical item. If
this is a new category for that lexical item, it is added to the lexicon of the agent.
For the present example, many has a two out of three chance of being reanalyzed
as a quantifier. If this happens, the agent adds the new version of the lexical item
to the lexicon with an initial confidence score of 0.5. So, after application of the
reanalysis operator, the lexicon contains two versions of the lexical item many,
one as an adjective, and one as a quantifier. At this stage, both versions of the
lexical item are available for parsing and production.

It should be noted about this mechanism that it is extremely general. Nothing
is put into it to make it focus specifically on turning adjectives into quantifiers.
It simply reanalyzes based on emerging surface patterns. It can assign any gram-
matical category to any lexical item if the produced utterances would give rise to
it. In fact, the reanalysis operator is so general that is completely agnostic to the
grammar that is being used. If we would define a different grammar, with, for ex-
ample, more grammatical categories (e.g., verbs or prepositions), these categories
would be automatically become available to the reanalysis operator. Deciding on
which reanalyses are useful and which are not is not up to the present operator,
but to the selectionist mechanism as described in the previous two sections.

8.5.2 Experiment

Now we can put everything together. In Section 8.4 it was shown how a com-
munity of agents can use a selectionist framework to find an optimal language
given a specific set of linguistic variations. This framework encourages variants of
lexical items that yield a high communicative success and require a low cognitive
effort. In the previous section I illustrated the workings of the reanalysis operator
that creates this variation. What happens when we put the selection mechanism
and the reanalysis operator together?

In this last experiment I provide a community of agents with the initial lan-
guage as described in Section 8.3 (i.e., many and few are defined as adjectives).
Using this language I let the agents play a series of language games. The language
games are the same as described in the previous sections, but now we provide the
agents with a reanalysis operator. Every time, a language game is not success-
ful or the parsing of the involved utterance requires a high cognitive effort, the
reanalysis operator is called.

The learning parameters are identical to the ones described in Section 8.4:
After every successful interaction, the hearer increases the scores of the involved
lexical items. If the interaction was not successful the scores are decreased. The
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rate at which the scores increase or decrease is determined by the cognitive effort.
This experiment is repeated 10 times for 4000 interactions.

Figure 8.9 and 8.10 show the results. They show the cognitive effort, the
communicative success, and the scores of the lexical items over time. The fig-
ures show the same results, but Figure 8.9 shows individual lexical items and
Figure 8.9 shows the lexical items grouped together in semantic groups (many
and few—gradable quantifiers; big and small—adjectives; front, back, left and
right—adjectives).

The scores of the lexical item at the first interaction correspond to the initial
language: many and few start out as adjectives. The first thing to note about
the graph in Figure 8.9 is that the scores of many and few for their adjectival
variants systematically decrease over time, while the scores of their newly created
quantificational counterparts increase at the same time. The figure shows that the
quantificational variant of few overtakes the adjectival one at around interaction
450, and for many the same happens between interaction 500 and 900. After
3000 interactions we see the scores stabilize. The lexical items many and few are
now quantifiers.

Furthermore, the graph shows a lot of variation being created. Not only
many and few are being reanalyzed, but all lexical items are at some point in the
experiment. These other variations, however, do not persist. The graph in Figure
8.10 shows this more clearly. The quantificational variants of other adjectives are
being tentatively created by the agents, but their scores stay low. Thus, adjectives
other than many and few stay adjectives.

The graphs further show, that the grammaticalization of the gradable quanti-
fiers into quantifiers has no effect on the communicative success. The communica-
tive success stays stable around 80% over the 4000 interactions. But, it does have
a very strong effect on the cognitive effort. Reanalyzing many and few reduces
the search space dramatically.

These results are not surprising; they essentially present a corollary of the
results presented in Section 8.3 and 8.4. Since gradable quantifiers do not make
meaningful distinctions for single objects, they can be grammatically confined to
sets of objects. Doing so reduces the cognitive effort. So the quantifier versions
of these gradable quantifiers are preferred over their adjectival ones. The lateral
stability (the fact that other adjectives do not grammaticalize into quantifiers)
is due to the fact that these other adjectives do make meaningful distinctions
for single objects, and therefore, confining them to sets by turning them into
quantifiers would make the language less successful.
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Category migration [4000x10], single objects and groups, consider cognitive effort

Success
Cognitive Effort

many QN
many ADJ

few QN
few ADJ

big QN
big ADJ

small QN
small ADJ

front QN
front ADJ

left QN
left ADJ
right QN

right ADJ

(2)

(1)

(S)
(C)
(1)
(2)

(S)

(C)

(3)
(4)

(3)

(4)

Figure 8.9: The grammaticalization of quantifiers. This graph shows the pro-
gression of scores of the lexical items in the lexicon of the one agent over 4000
interactions. The experiment is repeated 10 times. The results are averaged.
Figure 8.10 shows a more comprehensible versions of this graph. The agents
starts out with the initial language described in 8.3 (where the modifiers left,
right, big, small, many, and few are all adjectives). The graph shows that the
reanalysis mechanism introduces quantificational variants of all these modifiers at
some point. However, most of them are not successful. Only the quantificational
versions of many and few increase in score and overtake their quantificational
variants between interaction 400 and 1000. Their adjectival variants gradually
disappear from the lexicon of the agent. As a result, the cognitive effort shows a
steady decrease, while the communicative success stays the same.
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Figure 8.10: The grammaticalization of quantifiers. This graph shows the pro-
gression of the average score of the gradable quantifiers and the average score of
other modifiers over 4000 interactions. The experiment is repeated 10 times. The
results are averaged. This is graph is a more comprehensive version of the graph
in Figure 8.9. The reanalysis mechanism introduces quantificational variants of
all modifiers. But, only the quantificational variants of gradable quantifiers be-
come successful. As a result, the cognitive effort shows a steady decrease, while
the communicative success stays the same.
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8.6 Discussion

8.6.1 Conclusion

The experimental results show how the development of the gradable quantifiers
many and few in a community of robotic agents follow the speculated grammati-
calization path: the grammatical category of gradable quantifiers moves from ad-
jective to quantifier due to the cognitive overlap between quantifiers and gradable
quantifiers. The resulting language has shown to be more efficient in processing
than the initial language while preserving the communicative success. It is this
increased efficiency (or lower cognitive effort) that provides the incentive for the
gradable quantifiers to become quantifiers.

Other adjectives (such as big and small) on the other hand, do not grammati-
calize into quantifiers. In principle the reanalysis mechanism could also turn these
adjectives into quantifiers, and this would also reduce the cognitive effort. But,
this would be at the cost of a much lower communicative success, which remains
the most important selection criterion. For the same reason other category shifts
(e.g., common noun to adjective or quantifier to common noun) are not observed
in this experiment.

These results do not stand on their own. In the previous chapter it was shown
how gradable quantifiers are likely to emerge as adjectives in a community of
agents due to the cognitive relation between number and size. Overall, together
with the present chapter, these results show how gradable quantifiers can evolve in
a language. They also highlight how cognitive overlap between number motivates
their dual nature; i.e., the fact that many and few can act like both quantifiers
and adjectives.

On a more general note, this research is part of a recent effort that studies
known grammaticalization patterns, and uses situated interaction games to find a
cognitive motivation for those patterns (van Trijp, 2012; Beuls and Steels, 2013).
These studies, including the present experiment, suggest how the inclusion of
cognitive constraints may illuminate some of the grammaticalization patterns
found in human languages.

One can wonder how general these results are. Don’t they depend too much on
model-specific assumptions? Of course, there are a number implicit and explicit
assumptions in the model. For example, the use of a prototype theory to model
the semantics, the pre-established joint attention, the fact that the goal of the
game is shared knowledge, and the assumption that categories are not fixed but
that they can change based on the surface patterns they occur in. Some of these
assumptions play an important role in the outcome of this experiment (e.g, the
working of the reanalysis mechanism). And it is of course impossible to defend
that the model mimics human cognition perfectly.

However, the model is inspired by cognitive studies. The representation of
number approximation is at least reminiscent of the human representation in
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that it relies on features of density and size. Secondly, by keeping the model
as simple and transparent as possible and breaking down the experiment into
the steps that are described in this chapter, I have shown how the individual
assumptions influence the outcome of the experiments. Furthermore, it should
be emphasized that the crucial parts of the experiment are very general, non
domain-specific, mechanisms. For example, the selection mechanism is a general
mechanism that has been applied to many evolutionary experiments in differ-
ent linguistic domains. Also, the reanalysis mechanism was not biased to target
gradable quantifiers. It can change the grammatical category of any lexical item
into any other category. So, nothing in the reanalysis mechanism or the selec-
tionist model is tailored towards the specific question of gradable quantifiers. It
is important to realize that therefore, the fact that only gradable quantifiers are
affected and no other lexical items, is not a particularity of the present model.
It can only be attributed to the linguistic maxims; i.e., a priori any lexical item
could get any grammatical category, but only the grammaticalization of gradable
quantifiers provides a communicative advantage.

8.6.2 Future research

One essential assumption was not addressed in this article: the existence of a
quantifier category. The reanalysis mechanism relies on existing grammatical
categories. If the agents did not have any other quantifier in their lexicon, they
would never grammaticalize gradable quantifiers into it. To my opinion, the most
interesting topic for further research is the emergence of the grammatical category
of quantifiers itself. So, how does a language go from having no quantifiers at all,
to at least one quantifier? Which hopefully would shed some light on the more
general question: Where do grammatical categories come from?

The reanalysis mechanism relies on another assumption that is open to future
research. The reanalysis is, as mentioned before, agnostic to the particular gram-
mar used. But, for the present experiment it is assumed that looking at surface
patterns is enough. For the relatively simple grammar as presented in Section 8.2
this works fine. But, for more elaborate grammars, a deeper structural analysis
might be required. It would be interesting to see if existing formalisms (such
as DOP (Bod et al., 2003)) could be used to create a more general reanalysis
mechanism.

Studying more complex grammars would also open the door to other interest-
ing aspects of quantification. This research focuses on noun phrases that describe
either objects or sets of objects. But, in more complex sentences, the role of quan-
tifiers becomes more than just these descriptions. For example, quantifiers play
an important role in inference. These uses of quantifiers have been extensively
studied in the field of formal semantics. Another interesting topic of further in-
vestigation would be to see how this well documented inferential use of quantifiers
emerges in a language.
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Samenvatting

Woorden zoals het Engelse many [veel ] en few [weinig ] zijn dualistisch van aard:
hoewel traditionele analyses ze als kwantoor beschouwen (“many of the houses”
[“veel van de huizen”]), gedragen ze zich ook als bijvoeglijke naamwoorden (“few
/fewer houses” [“weinig/minder huizen”]). Feitelijk vallen dit soort termen syn-
tactisch en semantisch samen met zowel kwantoren als bijvoeglijke naamwoorden.
Waarom zijn ze niet ingeperkt tot één grammaticale klasse? Wat is de cognitieve
basis voor hun dualistisch gedrag. En, hoe zou dit conceptuele en taalkundige
dualisme hebben kunnen evolueren?

Historisch bewijs doet vermoeden dat de dualistische syntaxis van deze ter-
men (van nu af, gradable quantifiers [graduele kwantoren]) het gevolg zou kunnen
zijn van een grammaticalisatieproces, waarbij ze onstaan als bijvoeglijke naam-
woorden en later in kwantoren veranderen. Een bijvoorbeeld is de Engelse kwan-
toor few, dat afgeleid is van het Oudengelse bijvoeglijke naamwoord feawe. Dit
proefschrift onderzoekt de hypothese dat dit grammaticalisatiepad het gevolg zou
kunnen zijn van de cognitieve relatie tussen omvang en aantal. Het schatten van
het aantal objecten in een verzameling (een cognitief proces dat ten grondslag ligt
aan termen zoals few en many) hangt af van een combinatie van perceptuele ken-
merken zoals de omvang en de dichtheid van de verzameling. Sommige van deze
kenmerken (zoals omvang) liggen ook ten grondslag aan predicaten als big [groot ]
en small [klein] en sommige van deze kenmerken (zoals dichtheid), zijn exclusief
van toepassing op verzamelingen. Deze cognitieve overlap tussen de concepten
omvang en aantal zou de dualiteit van gradable quantifiers kunnen verklaren:
het verband met omvang motiveert het bijvoeglijk gebruik, terwijl de exclusieve
toepassing op verzamelingen het kwantificationele gebruik motiveert.

Dit proefschrift beschrijft een reeks experimenten die de bovengenoemde hy-
pothese onderzoekt in het kader van evolutionaire language games [taalspellen],
waarbij robots zelf beschrijvingen ontwikkelen voor objecten (of, in dit geval,
verzamelingen van objecten) in hun waargenomen omgeving. Dit model maakt
het mogelijk de specifieke voorwaardes te ontdekken waaronder de hypothese
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stand houdt. Door robots toe te rusten met een mechanisme dat hen in staat
stelt aantallen in te schatten aan de hand van de kenmerken omvang en aantal,
laat ik zien dat zij inderdaad termen ontwikkelen met de geobserveerde dualistis-
che eigenschappen.

Een eerste reeks experimenten laat zien dat gradable quantifiers inderdaad
ontstaan als bijvoeglijke naamwoorden door hun cognitieve overlap met omvang-
predicaten zoals big en small. Een tweede reeks experimenten beschouwt de
cognitieve overlap tussen gradable quantifiers en kwantoren. Deze experimenten
laten zien dat deze cognitieve overlap ervoor zorgt dat de gradable quantifiers
als kwantoren grammaticaliseren. Alles tezamen laat dit proefschrift zien dat de
syntactische dualiteit van gradable quantifiers een onderliggende cognitieve du-
aliteit weerspiegelt. In algemenere zin maakt dit proefschrift duidelijk hoe het
in acht nemen van cognitieve beperkingen inzicht kan geven in conceptuele en
taalkundige dualiteit.



Abstract

Words like many and few have a dual nature: though traditionally analyzed
as quantifiers (“many of the houses”), they also behave like gradable adjectives
(“few/fewer houses”). In fact, such terms pattern syntactically and semantically
with both quantifiers and adjectives. Why arent they confined to one grammatical
class? What is the cognitive basis for their dual behavior? And how might such
conceptual and linguistic duality have evolved?

Historical evidence suggests that the dual syntax of these terms (henceforth,
gradable quantifiers) might be the result of a grammaticalization process where
they originate as adjectives and later become quantifiers, as illustrated by the
quantifier few, based on the Old English adjective feawe. This dissertation ex-
plores the hypothesis that this grammaticalization path might be the result of the
cognitive relationship between size and number. Judgments of size (underlying
modifiers such as big and small) depend on perceptual features of objects (or sets
of objects) in the environment. Judgments of approximate number (underlying
terms like few and many) exploit a combination of spatial features that apply
exclusively to sets of objects, such as their size and density. This cognitive overlap
between the concepts of size and number may account for the duality observed
in gradable quantifiers: the dependence on size motivates their adjectival uses,
while their exclusive application to sets of objects motivates their quantificational
uses.

This dissertation describes a series of experiments that captures the insight
above within an evolutionary language games framework, in which robotic agents
self-organize the means for describing objects (or in this case, groups of objects)
in their perceived environment. The model allows the exploration of the specific
conditions under which the hypothesis might hold. In particular, agents equipped
with an approximate number sense that incorporates size can be shown to develop
linguistic terms with the dual functions observed in gradable quantifiers.

A first set of experiments show that gradable quantifiers are indeed likely to
emerge as adjectives due to their cognitive overlap with size predicates such as
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big and small. But, gradable quantifiers are not only cognitively related to size
predicates but also to quantifiers such as all or three (they eclusively apply to
sets). A second set of experiments show that this cognitive overlap will invite
the (initially adjectival) gradable quantifiers to grammaticalize into quantifiers.
Overall, this dissertation shows that the syntactic duality of gradable quantifiers
might be reflecting an underlying cognitive duality. More generally, it suggests
how the inclusion of cognitive constraints may illuminate the origins of both
conceptual and linguistic duality.
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