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Abstract.

We define preference in terms of a constraint sequence, a concept from optimality theory. In case agents
only have incomplete information, beliefs are introduced. We propose three definitions to describe different
procedures agents may follow to get a preference relation using the incomplete information. Changes of
preference are explored w.r.t their sources: changes of the constraint sequence, and changes in beliefs.

1 Motivation

Optimality theory ((PS93)) has been a highly successful approach in linguistics during
the last decade. In optimality theory the grammatical or phonological theory does not
directly deliver a unique product. First a set of alternative solutions is generated. After
that a set of conditions is applied to these alternatives to produce an optimal solution. It
is by no means sure that the optimal solution satisfies all the conditions. There may be
no such alternative. The conditions, called constraints, are strictly ordered according to
their importance, and the alternative that satisfies the earlier conditions best (in a way
described more precisely below) is considered to be the optimal one. This way of choosing
the optimal alternative naturally induces a preference ordering among all the alternatives.

We are interested in formally studying the way the constraints induce the preference
ordering among the alternatives. This is for us more important than the choice of the
optimal alternative. We want to execute our investigations in a wider and maybe some-
what differently directed context. In optimality theory the optimal alternative, like for
example the correct grammatical utterance, is chosen unconsciously of course (if that way
of speaking is proper at all); we are thinking mostly of applications where conscious choices
are made. So it is desirable to present the preference ordering in combination with the
reasons underlying it. Also, in optimality theory the application of the constraints to the
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alternatives lead to a clear and unambiguous result: either the constraint clearly is true of
the alternative or it is not, and that is something that is not sensitive to change. We will
loosen this condition and consider issues that arise when changes are allowed. It turns out
to be very illuminating to introduce the explicit belief operator of doxastic logic into this
context.

We think that this point of view gives us a fresh perspective on the issues discussed in
previous papers on preference logic and preference change ((Wri63), (Han01) and (BL06)).
Of course, there are more ways to obtain a preference order of alternatives from a set of con-
straints than only the way of optimality theory. A good overview is found in (CMLPM04).
We are convinced that our methods can fruitfully be applied in other approaches as well.

We are naturally lead to first consider preference between objects rather than between
propositions (compare (DW94)). Consider the following common situation:

Example 1.1 Buying a house is probably the biggest financial decision one will ever make, it is worth
taking time to find the right choice. Alice is now in such a situation, for her there are several things to
consider: the cost, the quality and the neighborhood, strictly in that order. All these are clear-cut for her,
e.g. the cost is good if it is inside her budget, otherwise it is bad. Her decision is then determined by the
information whether the alternatives have the desirable properties, and by the given order of importance
of the properties.

The following sections are aimed to make this precise. In section 2, we start with
a simple language to study the rigid case in which the constraints lead to a clear and
unambiguous preference ordering. Section 3 follows with a mathematical exploration on
orders and a completeness proof for the simple language. In section 4 we will consider what
happens when the (conscious!) agent has incomplete information about the constraints
with regard to the alternatives. In section 5 we will look at changes in preference caused
by two different sources: changes in beliefs, and changes of the sequence of constraints.
Finally, we end up with further discussions about preference in terms of just partially
ordered constraint sequences, and our conclusions.

2 From constraints to preference

To discuss preference over objects, we use a first order logic with constants d0 , d1 . . . ;
variables x0 , x1 , . . . ; and predicates P, Q, P 0 , P 1 , . . . . In practice, we are thinking of finite
domains, monadic predicates, simple formulas usually quantifier free or even variable free.
The following definition is directly inspired by optimality theory.

Definition 2.1 A constraint sequence is a finite ordered sequence of formulas (constraints)
written as follows:

C1 ≫ C2 · · · ≫ Cn (n ∈ N),

where each of Cm is a formula from the language, and there is exactly one free variable x,
which is a common one to each Cm .
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The constraint order is read in such a way that the earlier constraints count strictly
heavier than the later ones, e.g. C1 ∧¬C2 · · · ∧ ¬Cm is preferable over ¬C1 ∧C2 · · · ∧Cm

and C1 ∧C2 ∧C3 ∧¬C4 ∧¬C5 is preferable over C1 ∧C2 ∧¬C3 ∧C4 ∧C5 . A difference with
optimality theory is that we look at satisfaction of the constraints whereas in optimality
theory infractions of the constraints are stressed. This is more a psychological than a formal
difference. However, optimality theory knows multiple infractions of the constraints and
then counts the number of these infractions. We do not obtain this with our simple objects,
but we think that option can be achieved by considering composite objects, like strings.
We do not pursue this in the present paper.

Definition 2.2 Given a constraint sequence of length n, Pref(x,y) is defined as follows:

Pref1 (x, y) ::= C1 (x) ∧ ¬C1 (y),
Prefk+1 (x, y) ::= Prefk (x, y) ∨ (Eqk (x, y) ∧ Ck+1 (x) ∧ ¬Ck+1 (y)), k < n,

Pref(x, y) ::= Prefn(x, y),

where the auxiliary binary predicate Eqk(x, y) stands for (C1 (x) ↔ C1 (y))∧· · ·∧(Ck(x) ↔
Ck(y)).

In Example 1.1, Alice has the following constraint sequence:

C(x) ≫ Q(x) ≫ N(x),

where C(x), Q(x) and N(x) are intended to mean ‘x has a low cost’, ‘x is of good quality’
and ‘x is in a nice neighborhood’, respectively. Consider two houses d1 and d2 with the
following properties: P (d1 ), P (d2 ),¬Q(d1 ),¬Q(d2 ), N(d1 ) and ¬N(d2 ). According to the
above definition, Alice prefers d1 over d2 , i.e. Pref(d1 , d2 ).

We have chosen a syntactic approach expressing constraints by formulas. Semantically,
this comes down to pointing out n sets of worlds in the model. Then Lewis’ sphere semantics
((Lew73) p.98-99) comes to mind immediately. Syntactically, a sequence G1 , . . . , Gm of
formulas can be used to express the preferability, i.e. G1 (x) is the most preferable, Gm(x)
the least (Gi(x) implies Gj (x) if i ≤ j). The two approaches are equivalent in the sense
that they can be translated into each other.

Theorem 2.3 A constraint sequence C1 ≫ C2 · · · ≫ Cm gives rise to a G-sequence of
length 2m . In the other direction the constraint sequence is logarithmic in the length of the
G-sequence.

Proof. Let us just look at the case that m=3. Assuming that we have the constraint
sequence C1 ≫ C2 ≫ C3 , we write out the G-sequence in terms of the C i :

G1: C1∧C2 ∧ C3 ; G2: C1 ∧ C2 ∧ ¬C3 ;
G3: C1∧¬C2 ∧ C3 ; G4: C1 ∧ ¬C2 ∧ ¬C3 ;
G5: ¬C1 ∧ C2 ∧ C3 ; G6: ¬C1 ∧ C2 ∧ ¬C3 ;
G7: ¬C1 ∧ ¬C2 ∧ C3 ; G8: ¬C1 ∧ ¬C2 ∧ ¬C3 .

and then we get G1 ≻ G2 ≻ G3 ≻ G4 ≻ G5 ≻ G6 ≻ G7 ≻ G8 . On can simply read the
relation from the following picture:
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G1

G2

G3

G4

G5

G6

G7
G8

C1 C2

C3

From constraint sequence to G-sequence in case m = 3.

On the other hand, given a Gi -sequence, we can define C i as follows,

C1= G4 ; C2= G2 ∨ (G6 ∧ ¬G4 );
C3= G1 ∨ (G3 ∧ ¬G2 ) ∨ (G5 ∧ ¬G4 ) ∨ (G7 ∧ ¬G6 ).

And again one can simply read it from a picture of the G-spheres. �

3 Order and completeness

In this section we will just run through the types of order that we will use. A relation <

is a linear order if < is irreflexive, transitive and asymmetric, and satisfies totality:

x < y ∨ x = y ∨ y < x

More precisely, < is called a strict linear order. A non-strict linear order ≤ is a reflexive,
transitive, antisymmetric and total relation. It is for various reasons useful to introduce
non-strict variants of orderings as well.

Mathematically, strict and non-strict linear orders can easily be translated into each
other:

(1) x < y ↔ x ≤ y ∧ x 6= y, or
(2) x < y ↔ x ≤ y ∧ ¬(y ≤ x),
(3) x ≤ y ↔ x < y ∨ x= y, or
(4) x ≤ y ↔ x < y ∨ (¬(x < y) ∧ ¬(y < x)).

Optimality theory only considers linearly ordered constraints. These will be seen to lead
to a quasi-linear order of preferences, i.e. a relation 4 that satisfies all the requirements
of a non-strict linear order but antisymmetry. A quasi-linear ordering contains clusters
of elements that are ‘equally large’. Such elements are ≤ each other. Most naturally one
would take for the strict variant ≺ an irreflexive, transitive, total relation. If one does
that, strict and non-strict orderings can still be translated into each other (only by using
alternatives (2) and (4) above though, not (1) and (3)). However, Pref is normally taken
to be an asymmetric relation, and we agree with that, so we take the option of ≺ as an
irreflexive, transitive, asymmetric relation. Then ≺ is definable in terms of 4 by use
of (2), but not 4 in terms of ≺ . That is clear from the picture below, an irreflexive,
transitive, asymmetric relation cannot distinguish between the two given orderings.
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Incomparability and indifference.

One needs an additional equivalence relation x ∼ y to express that x and y are elements
in the same cluster; x ∼ y can be defined by

(5) x ∼ y ↔ x ≤ y ∧ y ≤ x.

Then, in the other direction, x ≤ y can be defined in terms of < and ∼:

(6) x ≤ y ↔ x < y ∨ x ∼ y.

It is certainly possible to extend our discussion to partially ordered sets of constraints,
and we will make this excursion in section 6. The preference relation will no longer be
a quasi-linear order, but a so-called quasi-order : in the non-strict case a reflexive and
transitive relation, in the strict case an asymmetric, transitive relation. One can still use
(2) to obtain a strict quasi-order from a non-strict one and (6) to obtain a non-strict quasi-
order from a strict one and ∼. However, we will see in section 4 that in some contexts
involving beliefs these translations no longer give the intended result. In such a case one
has to be satisfied with the fact that (5) still holds and that ≺ as well as ∼ imply 4 .

Let us return to the basic case that the constraint sequence is linearly ordered and the
preference relation is obtained from the constraint sequence in the manner described in the
previous section. We will write Pref for the strict version of preference, Pref for the non-
strict version, and let Eq correspond to ∼. Interestingly, no matter what the constraints
are, the non-strict preference relation has the following general properties:

(a) Pref(x, x),
(b) Pref(x, y) ∨ Pref(y, x),
(c) Pref(x, y) ∧ Pref(y, z) → Pref(x, z).

(a), (b) and (c) express reflexivity, totality and transitivity, respectively. Thus, as
explained above, Pref is a quasi-linear relation; we lack antisymmetry. It turns out that
(a), (b) and (c) are a complete set of principles for preference. We can show that these
are the only stable properties that preference has in this context. Let us consider the
universal theory P obtained from the above three axioms (with the variables interpreted
as universally quantified) with modus ponens as the only rule.

Theorem 3.1 Completeness ⊢ P ϕ iff ϕ is valid in all models obtained from constraint
sequences.
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Proof. Assume formula ϕ(x1 , . . . , xn) is not derivable in P. Then a non-strict quasi-linear
ordering exists of some d1 , . . . , dn which falsifies ϕ(d1 , . . . , dn). Let us just assume that we
have a linear order (adaptation to the more general case is simple), and also, w.l.o.g. that
the ordering is d1 > d2 > · · · > dn . Then we introduce unary predicates P 1 , . . . , P n with
a constraint sequence P 1 ≫ P 2 · · · ≫ P n and let P i apply only to di . Clearly then the
preference order of d1 , . . . , dn with respect to the given constraint sequence is from left to
right. We have transformed the model into one in which the defined preference has the
required properties. 1 �

It is good to point out here that if one considers the objects as worlds and replaces the
monadic predicates by propositional variables, the results so far can be restated in hybrid
logic(see e.g. (Bla00)), provided formulas are restricted to be quantifier free. This has
advantages and disadvantages. Stating the results in hybrid logic has the advantage that it
makes the results more directly comparable to those of other papers that consider preference
between worlds or propositions rather than objects. Our approach allows more complex
predicate-logical formulas to be used as constraints. Also, it allows the generalizations to
the belief contexts of the following sections. At this time we do not see how to obtain these
generalizations in hybrid logic.

4 Preference and belief

In the above, we have assumed that objective information about the objects is always
available (complete). In this section, we discuss the situation that arises when an agent
has only incomplete information, but she needs to decide on her preference. The language
will be extended with belief operators Bϕ2 to deal with such uncertainty. Interestingly,
the definitions of preference we propose in the following spell out different “procedures” an
agent might follow to obtain her preference when processing the incomplete information
under uncertainty. Which procedure is taken strongly depends on the domain or the type
of agent. In the new language, the definition of constraint remains, i.e. a constraint C i is
a formula from the language without belief operators.

Definition 4.1 Given a constraint sequence of length n, Pref(x,y) is defined as follows3:

Pref1 (x, y) ::= BC1 (x) ∧ ¬BC1 (y),
P refk+1 (x, y) ::= Prefk (x, y) ∨ (Eqk (x, y) ∧ BCk+1 (x) ∧ ¬BCk+1 (y)), k < n,

Pref(x, y) ::= Prefn(x, y), (1)

where Eqk(x, y) stands for (BC1 (x) ↔ BC1 (y)) ∧ · · · ∧ (BCk(x) ↔ BCk(y)).

1Note that, although we used n constraints in the above proof to make the procedure easy to describe,
in general 2 log(n) + 1 constraints are sufficient for the purpose.

2When we discuss issues in a multi-agent context, we write Ba , a ∈ G, a group of agents.
3Preference here is a doxastic notion, as it depends on beliefs, which is different from the notion of

preference in (BL06)
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To determine the preference relation, one just checks whether one believes the relevant
properties of the objects. But at least two other options of defining preference seem
reasonable as well.

Definition 4.2 Given a constraint sequence of length n, Pref(x,y) is defined below:

Pref1 (x, y) ::= BC1 (x) ∧ B¬C1 (y),
P refk+1 (x, y) ::= Prefk (x, y) ∨ (Eqk (x, y) ∧ BCk+1 (x) ∧ B¬Ck+1 (y)), k < n,

Pref(x, y) ::= Prefn(x, y) (2)

where Eqk(x, y) stands for (BC1 (x) ↔ BC1 (y))∧(B¬C1 (x) ↔ B¬C1 (y))∧· · ·∧(BCk(x) ↔
BCk(y)) ∧ (B¬Ck(x) ↔ B¬Ck(y)).

Definition 4.3 Given a constraint sequence of length n, Pref(x,y) is defined below:

Supe1 (x, y)4 ::= C1 (x) ∧ ¬C1 (y),
Supek+1 (x, y) ::= Supek(x, y) ∨ (Eqk (x, y) ∧ Ck+1 (x) ∧ ¬Ck+1 (y)), k < n,

Supe(x, y) ::= Supen(x, y),
P ref(x, y) ::= B(Supe(x, y)), (3)

where Eqk(x, y) stands for (C1 (x) ↔ C1 (y)) ∧ · · · ∧ (Ck(x) ↔ Ck(y)).

To better understand the difference between the above three definitions, we look at the
Example 1.1 again, but in three different variations:

A. Alice favors (1): She looks at what information she can get, she reads that d1 has a low cost, about
d2 there is no information. This immediately makes her decide for d1 . She will stick with this
decision no matter what she may hear about quality or neighborhood.

B. Bob favors (2): He gets the same information. But he has no preference, and that will remain
so as long as he hears nothing about the cost of d2 , no matter what he hears about quality or
neighborhood.

C. Carol favors (3): She also has the same information. On that basis Carol cannot decide. But some
additional information about quality and neighborhood helps her. For instance, when she hears that
d1 is of good quality or is in a good neighborhood, and d2 is not of good quality and not in a good
neighborhood. Then Carol believes that, no matter what, d1 is superior, so d1 is her preference.

Speaking more generally in terms of the behaviors of the above agents, it seems that
Alice always decides what she prefers on the basis of limited information. In contrast, Bob
may choose to wait and request more information. Carol behaves somewhat differently, she
first tries to do some reasoning with the available information before making her decision.
This suggests a good perspective to think of diversity of agents in general. Apparently, we
have the following fact.

Fact 4.4 - Totality holds for (1), but not for (2) or (3);

4Superiority is just defined as preference is in the previous section.
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- Among the above three definitions, we have (2)→ (1) and (2)→ (3), but (1) and (3)
are incomparable.

It is striking that, if in definition (3), one plausibly also defines Pref(x, y) as B(Supe(x, y)),
then the normal relation between Pref and Pref no longer holds: Pref is not definable in
terms of Pref , or even Pref in terms of Pref and Eq. This is the possibility we alluded
to in section 3 just below (6).

Let us assume the normal principles of KD45 for B. For all three definitions, we have
the following theorem.

Theorem 4.5 Pref(x, y) ↔ BPref(x, y).

Proof. In fact we prove something more general in KD45. Namely, if α is a propositional
combination of B-statements, then ⊢ KD45 α ↔ Bα.

¿From left to right, since α is a propositional combination of B-statements, it can be
transformed into disjunctive normal form: β1 ∨ ... ∨ βk . It is clear that ⊢ KD45 βi → Bβi

for each i, because each member γ of the conjunction βi implies Bγ. If α = β1 ∨ ... ∨ βk

holds then some βi holds, so Bβi , so Bα. Then we immediately have: ⊢ KD45 ¬α → B¬α

(*) as well, since ¬α is also such a statement if α is.
¿From right to left: Suppose Bα and ¬α. Then B¬α by(*), so B⊥, but this is impos-

sible in KD45, therefore α holds.
The theorem follows, as Pref(x, y) consists of B-statements. �

Corollary 4.6 ¬Pref(x, y) ↔ B¬Pref(x, y).

Actually, we think Theorem 4.5 should be the case because we believe that preference
describes a state of mind in the same way that belief does. Just as one knows what one
believes, one knows what one prefers. So, in fact we think that in a setting where knowledge
would be discussed, Pref(x, y) ↔ KPref(x, y) holds just as well.

If we stick to Definition (1), we can generalize the completeness result (Theorem 3.1).
Let us consider the language built up from standard propositional letters, plus Pref(x, y)
(with x, y variables) by the connectives, and belief operators B. Again we have the normal
principles of KD45 for B.

Definition 4.7 Consider the B-Pref system including the following valid principles, Modus
ponens(MP ), as well as Generalization for the operator B.

(a) Pref(x, x),
(b) Pref(x, y) ∨ Pref(y, x),
(c) Pref(x, y) ∧ Pref(y, z) → Pref(x, z),
(1.) ¬B⊥,

(2.) Bϕ → BBϕ,

(3.) ¬Bϕ → B¬Bϕ,

(4.) Pref(x, y) ↔ BPref(x, y).

We will write BP for the whole system, and B for KD45.
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Theorem 4.8 Completeness ⊢ BP ϕ iff ϕ is valid in all models obtained from constraint
sequences.

Proof. Suppose that 0 BP ϕ(x1 , ..., xn , P 1 , ..., Pm). Also for some sequence of constants
d1 , ..., dn we have 0 BP ϕ(d1 , ..., dn , P 1 , ..., Pm). Consider the set Π consisting of the fol-
lowing formulas:

(1) Pref(di , di),
(2) Pref(di , dj ) ∨ Pref(dj , di),
(3) Pref(di , dj ) ∧ Pref(dj , dk ) → Pref(di , dk ),
(4) BPref(di , dj ) ↔ Pref(di , dj ),
(5) BPref(di , di),
(6) B(Pref(di , dj ) ∨ Pref(dj , di)),
(7) B(Pref(di , dj ) ∧ Pref(dj , dk ) → Pref(di , dk )),
(8) B(BPref(di , dj ) ↔ Pref(di , dj )).

where i, j, k ∈ {1, ..., n}. So Π is finite, and 0 B Π → ϕ(d1 , ..., dn , P 1 , ..., Pm). So, there is
a world w in a B-model such that w � Π and w 2 ϕ(d1 , ..., dn , P 1 , ..., Pm). From w � Π
by (4) and (8) it follows that the preference relations are the same quasi-linear ordering
everywhere in the model5. Then w 2 ϕ(d1 , ..., dn , P 1 , ..., Pm) boils down to the situation
we had in Theorem 3.1. Just as there, we can transform the model into one with the
required properties of the constraint sequence. �

To prove a similar theorem for more agents seems to be more difficult. Ordinary
completeness can be obtained, but the problem is to find fitting constraints.

5 Preference Changes

Let us first look at a variation of Example 1.1:

Example 5.1 Alice won a lottery prize of one million dollars. Her situation has changed dramatically.
She considers the quality most important.

In other words, the ordering of the constraints has changed. Of course, one can continue
to design more variations of that kind. We will focus on the constraint changes, and how
they bring about preference change. To discuss such issues, we first make the constraint
sequence explicit in the preference. We do this for the simple language. For the language
with belief, corresponding changes should be made. Let C be a constraint sequence with
fixed length n as in Definition 2.3. Then we write PrefC(x, y) for the preference defined
from that constraint sequence. Let us write C⌢C for adding C to the right of C, C⌢C for
adding C to the left of C, C− for the sequence C with its final element deleted, and finally,
Ci⇆i+1 for the sequence C with its i-th and i+1-th switched. It is clear that we have the
following relationships:

5Note that at this point an ordinary completeness result without constraints has been established.
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PrefC⌢C (x, y) ↔ PrefC(x, y) ∨ (EqC(x, y) ∧ C(x) ∧ ¬C(y)),
PrefC⌢C(x, y) ↔ (C(x) ∧ ¬C(y)) ∨ ((C(x) ↔ C(y)) ∧ PrefC(x, y)),
P refC−(x, y) ↔ PrefC,n−1 (x, y),
PrefCi⇆i+1 (x, y) ↔ PrefC,i−1 (x, y)∨(EqC,i−1 (x, y)∧Ci+1 (x)∧¬Ci+1 (y))∨(EqC,i−1 (x, y)∧
(Ci+1 (x) ↔ Ci+1 (y)) ∧ Ci(x) ∧ ¬Ci(y)) ∨ (EqC,i+1 (x, y) ∧ PrefC(x, y)).

Now we can describe preference change due to changes of the constraint sequence. We
consider the operations [+C] of adding C to the right, [C+] of adding C to the left, [−] of
dropping the last element of a constraint sequence of length n, [i↔ i+1] of interchanging
the i-th and i+1-th elements. Then we have the following reduction axioms:

[+C]Pref(x, y) ↔ Pref(x, y) ∨ (Eq(x, y) ∧ C(x) ∧ ¬C(y)),
[C+]Pref(x, y) ↔ ((C(x) ∧ ¬C(y)) ∨ ((C(x) ↔ C(y)) ∧ Pref(x, y))),
[−]Pref(x, y) ↔ Prefn−1 (x, y),
[i ↔ i+1]Pref(x, y) ↔ Pref i−1 (x, y)∨(Eqi−1 (x, y)∧Ci+1 (x)∧¬Ci+1 (y))∨(Pref i (x, y)∧
(Ci+1 (x) ↔ Ci+1 (y))) ∨ (Eqi+1 (x, y) ∧ Pref(x, y)).

Of course, the first two are the more satisfactory ones. Now we move to changes in
belief, which may cause preference change as well. This occurs often in a multi-agent
situation, as say, two agents cooperate to make a better choice. Technically, the update
mechanisms of (BMS98) can be immediately applied to our system with belief to calculate
preference changes. Consider Example 1.1, but with two agents Alice and Bob:

Example 5.2 This time Alice and Bob only consider the houses’ cost (C) and their neighborhood
(N), both with C(x) ≫ N(x). There are two houses d1 and d2 available. The real situation is that
C(d1 ), N(d1 ), C(d2 ) and ¬N(d2 ). First Alice prefers d2 over d1 because she believes C(d2 ) and N(d1 ).
However, Bob’s preference is the opposite one because he believes C(d1 ). Now Bob tells Alice his belief
C(d1 ) and Alice accepting this also believes C(d1 ), and accordingly changes her preference.

Here we assume that the beliefs of Alice and Bob about these simple statements are very
solid (like knowledge) and that is so understood by both. The following diagram shows
the situation before Bob’s statement,

C ∧ N C ∧ ¬N ¬C ∧ N ¬C ∧ ¬N

a d1 , d2 d2 d1 �

b d1 , d2 d1 , d2 d2 d2

The constraint sequence reads from left to right, and objects are put in the places where
they possibly have the properties. After Bob tells Alice that C(d1 ), the situation becomes

C ∧ N C ∧ ¬N ¬C ∧ N ¬C ∧ ¬N

a∗ d1 , d2 d2 � �

b d1 , d2 d1 , d2 d2 d2

The possibility of ¬C ∧N of d1 has been eliminated from the first table: Alice updated
her beliefs. Now she prefers d1 over d2 .

We have assumed that we are using the elimination semantics (e.g. (FHMV03), (Ben06))
in which public announcement of the sentence A leads to the elimination of the ¬A worlds
from the model. We have the reduction theorem

[!A]PrefC(x, y) ↔ A → PrefA→C(x, y),

where A → C is the constraint sequence obtained by replacing each C i(x) by A → C i(x).
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6 Further Discussions and Conclusions

A new situation occurs when there are several constraints of incomparable strength. In
Example 1.1 now, Alice also takes the ‘transportation convenience’ into account. But
for her neighborhood and transportation convenience are really incomparable. Abstractly
speaking, it means that the constraint sequence is now partially ordered. We show in the
following how to define preference based on a partially ordered constraint sequence. We
consider a set of constraints C1 ..., Cn with the relation ≫ between them a partial order.

Definition 6.1 We define Prefm(x, y), Eqm(x, y), Pref {n1 ,...,nk}(x, y) and Eq{n1 ,...,nk}(x, y)
in a simultaneous induction, where {n1 , ..., nk} is a set of incomparable nodes:

Pref{n1 ,...,nk}(x, y) ::= (Prefn1
(x, y)∧...∧Prefnk

(x, y))∧(Prefn1
(x, y)∨...∨Prefnk

(x, y))

(⊤ if the set is empty.)
Eq{n1 ,...,nk}(x, y) ::= Eqn1

∧ ... ∧ Eqnk
. (⊤ if the set is empty.)

Let S be the set of immediate predecessors of m, we define

Prefm(x, y) ::= PrefS (x, y) ∨ (EqS (x, y) ∧ Cm(x) ∧ ¬Cm (y)).
Eqm(x, y) ::= EqS (x, y) ∧ (Cm(x) ↔ Cm(y)).

For more discussion on the relation between partially ordered constraints and G-spheres,
see (Lew81). The situation that the set of constraints is unordered leads to the position
advocated by (Kra81).

Conclusions Inspired by optimality theory, the notion of constraint was introduced. We
defined preference in terms of a constraint sequence and properties of objects in a simpler
language. We then added beliefs explicitly into the language, and proposed three possible
ways to define preference. We have proved completeness for both the simple language
and the language with beliefs. Preference change was investigated in two possible ways as
well: changes in the constraint sequence, and change of beliefs. Reduction axioms were
presented. Finally, we discussed how to get preference from a partially ordered constraint
sequence. For further study, we would like to extend our framework immediately to a
multi-agent context and explore more how the interaction between agents can change their
preference. Also, we are aware that a large amount of research on preference has been done
in social choice theory and computer science. We would like to compare our approach with
such work. As mentioned earlier other types of constraints are used in such research, often
with weights. We do think our methods are applicable quite generally. Also, if only for
comparison’s sake, we will study preference between states (or propositions).

Acknowledgement We would like to thank J. van Benthem, R. Blutner, U. Endriss,
T. Mijangos Mart́ınez, F. Roelofsen, T. Yamada, H. Zeevat, and two anonymous reviewers
for comments and helpful suggestions.

11



Bibliography

J. van Benthem. ‘one is a lonely number’: On the logic of communication. to
appear in Z. Chatzidakis, P. Koepke, W.Pohlers, eds., ‘Logic Collquium
’02’, ASL Lecture Notes in Logic 27, AMS Publications, Providence (R.I.),
2006.

J. van Benthem and F. Liu. Dynamic logic of preference upgrade. Journal of
Applied Non-Classical Logic, 2006. To appear.

P. Blackburn. Representation, reasoning, and relational structures: a hybrid
logic manifesto. Logic Journal of the IGPL, 8:339–365, 2000.

A. Baltag, L.S. Moss, and S. Solecki. The logic of common knowledge, public
announcements, and private suspicions. In I. Gilboa, editor, Proceedings
of the 7th conference on theoretical aspects of rationality and knowledge
(TARK 98), pages 43–56, 1998.

S. Coste-Marquis, J. Lang, Liberatore P., and P. Marquis. Expressive power
and succinctness of propositional languages for preference representation.
In Proc. 9th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-2004). AAAI Press., 2004.

J. Doyle and M.P. Wellman. Representing preferences as ceteris paribus com-
paratives. Working Notes of the AAAL Symposium on Decision-Theoretic
Planning, 1994.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowl-
edge. The MIT Press, 2003.

S. Hansson. Preference logic, volume 4 of Handbook of philosophical logic,
chapter 4, pages 319–393. Kluwer, 2001.

A. Kratzer. Partition and revision: the semantics of counterfactuals. Journal
of Philosophical Logic, 10:201–216, 1981.

D. Lewis. Counterfactuals. Harvard University Press, 1973.

D. Lewis. Ordering semantics and premise semantics for counterfactuals.
Journal of Philosophical Logic, 10:217–234, 1981.

A. Prince and P. Smolensky. Optimality Theory: Constraint Interaction in
Generative Grammar. Malden, Ma: Blackwell, 1993.

G. H. von Wright. The Logic of Preference. Edinburgh, 1963.

12


