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1
Introduction

Thus, the central theme that runs through my remarks is that complexity
frequently takes the form of hierarchy, and that hierarchic systems have some
common properties that are independent of their specific content. Hierarchy,
I shall argue, is one of the central structural schemes that the architect of
complexity uses.

– Herbert A. Simon, The Architecture of Complexity

The automatic translation of sentences and texts relies heavily on the reuse and
composition of translations for shorter, previously observed patterns.1 Automatic
translation systems are typically trained on large collections of translated sentence
pairs, so-called parallel corpora. When such parallel corpora are used, two important
questions arise:

1. What atomic translation equivalence units (TEUs) follow from the translated
sentence pairs?

2. How are TEUs composed together to form longer TEUs up to the sentence level?

Inducing translation equivalence units The first task associated with the first
question consists in establishing translation equivalence at the word level given
translation equivalence at the sentence level. This task is known as word alignment and
its solutions form an important part of the foundations of modern statistical machine
translation (SMT) (Brown et al., 1988). But the first question goes further. Because
once translation equivalence at the word level is established, it is desirable to use it
to form larger translation fragments and use those larger fragments directly for the

1In fact such patterns play not only an important role in fully automated translation but also in
human translation in the form of translation memories. Such translation memories are databases that
store “segments” that have been previously translated, and can be re-used to bootstrap faster human
translation of new text.

1



2 1. Introduction

translation of new sentences. As it turns out, under the restriction of working with
contiguous TEUs, there is a finite and intuitive set of larger TEUs that can be composed
from the translation equivalence relations at the word level. These TEUs are known as
phrase pairs and form the core of modern phrase-based SMT (Koehn et al., 2003; Zens
et al., 2002). Going one step beyond contiguous TEUs, subsequences of phrase pairs
that are themselves phrase pairs may be replaced by variables, yielding hierarchical
phrase pairs. These hierarchical phrase pairs are the basis of hierarchical SMT, which
is the focus of this thesis.

Reusing and composing translation equivalence units The second question
mentioned above can be reformulated as “how to compose TEUs extracted from a
parallel corpus?” and forms a major challenge in building a machine translation
model. Composing TEUs into new TEUs is both a syntactic and a semantic challenge,
because the new TEUs are expected to be semantically coherent as well as syntactically
acceptable. Even so, the large majority of models, apart from a few recent deep neural
network models (Bengio et al., 2003; Schwenk et al., 2006; Mikolov et al., 2010; Auli
et al., 2013; Kalchbrenner and Blunsom, 2013)2 , focus on improving word order and
lexical choice without a view into semantics. The popular phrase-based models use
algebraic composition operations based on simple concatenation, possibly extended
by restricted local reordering of elements. Alternatively, hierarchical models base
reordering on grammar formalisms that use recursive decomposition to deal with long-
range order differences between languages. The work in this thesis is concerned with
the latter kind of composition as explained in more detail later in this chapter.

Concatenating two or more adjacent TEUs to form new TEUs has been used to
implement composition in both the original IBM models as well as more recent phrase-
based models. Often, the option to permute the positions of the involved target side
TEUs (within a limited distance from each other), is added to this basic strategy.
Even with this addition, the resulting algebraic operation of composition remains
impoverished. This is compensated for by using dedicated components that score the
possible compositions such as the ordering model, translation model and language
model, as shown by the following formula that is optimized during translation:

arg max
e

P(e|f) = arg max
e

P(f|e) · P(e)
P(f)

= arg max
e

PO(f|e) · PT M(f|e) · PLM(e) (1.1)

Where the target sentence e is translated from the source sentence f. This formula is
derived from the noisy channel model (Shannon, 1948), performing Bayesian inversion
of optimization for the most likely source sentence first, and then splitting into an
ordering model PO(f|e) (order of f given order of e), a lexical translation model

2This is only a small selection of relevant work. Furthermore it should be noted that Deep Neural
Network models deal with semantics only in an implicit way, by creating distributed representations of
input-output mappings. Whether these representations succeed in adequately dealing with composition,
as typically required by theories of semantics, is not clear.



1.1. Hiero grammars and syntactic composition 3

PT M(f|e) and a language model PLM(e). Unfortunately, the impoverished algebraic
operations have a high price, because the space of possible compositions is quite
large while it still misses long-range order differences since the operations are local.
The hierarchical models, inspired by syntactic grammars for parsing, aim to improve
the algebraic operations. They do so by embedding them within a formal device
(synchronous grammar) and defining scoring functions based on component models
similar to those used by phrase-based models.

One of the earliest attempts for grammar based SMT are possibly the use of
inversion transduction grammars (ITGs) (Wu, 1997) . ITG is a grammar formalism
where TEUs are lexicon entries (synchronous source-target lexical rules) that are
combined using binary grammar rules such as X → X1X2. These grammar rules can
implement either the straight order of composition (also known as monotone) or the
inverted order. In the straight order the nonterminals X1 and X2 are in the same order
on the source and target side, whereas in the inverted order the target side order X2X1

inverts the source order X1X2.
A major issue in the use of grammars is how to label the nonterminals of the

grammars. Since labels are usually seen as refinements of the composition operations
allowed by the grammar, this is an important issue. Thus, a grammar can be better
fitted to the data by using adequate labels. Labeling grammars, is at the core of the
problem addressed in this thesis.

The hierarchical phrase-based model (Hiero) (Chiang, 2005) is a successful variant
of ITG and is used as the base model in this thesis. Next, we will discuss Hiero
in detail. “How to label Hiero using syntactic or semantic labels given monolingual
parsing tools?”, is the challenge addressed in the existing literature. “How to label
Hiero without such monolingual resources and extract labels directly from the parallel
corpus?”, is the challenge addressed in this thesis. We will discuss our approach
directly after we introduce Hiero and the problem statement in more detail.

1.1 Hiero grammars and syntactic composition
Hiero grammars (Chiang, 2005) are a particular form of synchronous context-free
grammars (SCFGs), which were originally known as syntax directed transduction
grammars (Lewis and Stearns, 1968) or syntax-directed translation schemata (Aho
and Ullman, 1969). These grammars use only one type of non-terminal: X.3 Hiero
grammar rules are lexicalized synchronous grammar rules, with at least one word
on the source and target side of the rule and up to two nonterminals. Hiero rules,
also known as hierarchical phrase pairs, generalize normal phrase pairs by replacing
embedded, smaller phrase pairs with nonterminals. For example take the phrase pairs
“〈we love hats, nous aimons les chapeaux〉” and “〈except ugly hats, sauf les chapeaux

3More precisely, in addition to X and a START symbol, one more non-terminal S is used. But the
use of this second non-terminal is restricted to a small set of glue rules used to monotonically combine
incomplete derivations into complete derivations.
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X → 〈X1 love X2, X1 aimons X2 〉 (R101)

X → 〈how many X1 clients X2, combien X2 de clients X1 〉 (R102)

X → 〈we love X1, nous aimons X1 〉 (R103)

X → 〈X1 hats, les chapeaux X1 〉 (R104)

X → 〈X1 hats, X1 les chapeaux〉 (R105)

X → 〈except X1, sauf X1 〉 (R106)
X → 〈ugly, laids〉 (R107)

X → 〈particularly X1, en particulier X1 〉 (R108)
X → 〈scientific, scientifiques〉 (R109)

X → 〈X1 publications, les publications X1〉 (R110)

Figure 1.1: Example hierarchical phrase-based translation, as first proposed by
(Chiang, 2005) (Hiero) rules for English–French translation.

laids〉”. Some Hiero rules, partly based on generalizing these two example phrase
pairs, are shown in Figure 1.1. The nonterminals of rules with two gaps can be
in monotone (an example is rule R101) or inverted orientation (an example is rule
R102).4 This makes Hiero grammars effectively a special, lexicalized form of ITGs
(Wu, 1997). In figure 1.2 we show two Hiero derivations yielding translations for
the English sentence “particularly scientific hats”. Both these derivations can be
formed using the rules in Figure 1.1. The first derivation yields the translation “en
particulier les chapeaux scientifiques” while the second derivation yields the translation
“en particulier scientifiques les chapeaux”. Only the first translation is correct. This
illustrates how substitution under Hiero, which without labels lacks context, can yield
wrong word order and wrong translations. This motivates the syntactic enrichment of
grammars, discussed next.

1.1.1 Does syntactic composition improve over Hiero?

Plain phrase-based systems (Koehn et al., 2003; Zens et al., 2002) and hierarchical
phrase-based systems (Chiang, 2005) are unable to directly encourage global coher-
ence during the composition of rules. This has been known by the research community
for a long time. It has been one of the driving factors behind research on syntactic

4In fact English-French translation has mostly local reordering compared to other
language pairs. This makes it somewhat difficult to find good examples of sentences
containing non-contiguous inverted words, yielding inverted Hiero rules. One
example of a sentence pair from which this particular inverted rule can be derived is
“〈how many [young]1 clients [do they have]2?, combien [ont-ils]2 de clients [jeunes]1?〉”.
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X

X

Subst
R108

X

Xparticularly

X

Xparticuièrement
Subst
R105

X

X

hatsX

particularly

X

X

les chapeauxX

en particulier

Subst
R109

X

X

hatsX

scientific

particularly

X

X

les chapeauxX

scientifiques

en particulier

(b) Derivation yielding wrong translation.

Figure 1.2: Hiero example derivations yielding different French translations for the
English input sentence “particularly scientific hats”. At every derivation step, we
indicate the substituted (Subst) rule number, and mark the root node of the substituted
synchronous tree pair with bold.
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translation. Syntactic translation systems (Yamada and Knight, 2001; Hassan et al.,
2006; Zollmann and Venugopal, 2006; Galley et al., 2004; Liu et al., 2006; Almaghout
et al., 2010) use syntax on the source and/or target side, typically enforcing it as a
hard constraint, turning translation into a task that has much similarity with classical
monolingual parsing. In this view the source sentence is parsed, producing the
translation (target side) as a byproduct of this parsing task.5 Unfortunately syntactic
translation approaches that apply syntax as a hard constraint often suffer loss of
coverage, as valid translations may be blocked by syntactic constraints. Syntactic
translation approaches have historically had problems improving over phrase-based
and hierarchical phrase-based systems (Koehn et al., 2003; Almaghout et al., 2011).6

Translation coverage loss by syntactic systems can be considered one of the main
reasons for this. In contrast to syntactic systems, phrase-based and hierarchical phrase-
based systems do not enforce any formal syntactic constraints, and therefore do not
suffer the same problems related to coverage loss. These challenges have lead to
the development of methods to introduce syntax to translation systems in a softer,
less obstructive way such as (Marcu et al., 2006; Hassan et al., 2007). Here we
focus on approaches that extend Hiero with syntax. A well known example of this
is a relaxed, heuristic syntactic labeling approach called syntax-augmented machine
translation (SAMT) (Zollmann and Venugopal, 2006). This labeling approach assures
that all phrases can be labeled and therefore no TEUs need to be discarded because of
not matching proper syntactic categories. But in parallel these challenges also yielded
approaches that treat syntactic or other labels as soft constraints, whose satisfaction
is preferred but not required (Marton and Resnik, 2008; Chiang et al., 2008; Cherry,
2008; Venugopal et al., 2009; Chiang, 2010). These two approaches, in particular when
combined, yielded significant improvements over phrase-based models and unlabeled
hierarchical translation (Venugopal et al., 2009; Chiang, 2010) for certain language
pairs.

Syntax provides one viable way to improve composition of Hiero. But reliable
syntactic parsers may not be available, and syntax may be incompatible with the
alignment structure. We will now show another example of Hiero failing to perform
coherent composition, and explain how labels based on the alignment structure can
solve this.

5One important difference of (hierarchical) translation with monolingual parsing is the fact that the
presence of the language model which necessitates approximation in the form of beam search with cube
pruning.

6Many publications concerning syntactic systems, including recent ones, unfortunately fail to
report a direct comparison against Hiero. Hence, we think that the here reported cases where Hiero
outperforms syntactic systems or performs equally to them should be considered only a conservative
lower-bound on the actual number of cases where Hiero performs equal or better.
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(c) Monotone training example.

Figure 1.3: Training examples, the labeled and indexed nodes represent (some of the)
phrase pairs that can be extracted from the aligned sentence pairs.

1.2 Improving composition in Hiero with reordering
labels

Figure 1.3 shows a toy training parallel corpus of three word-aligned sentence pairs,
decomposed into Hiero rules (hierarchical phrase pairs); the boxed Ri indices at the
nodes stand for rule identities placed on the left-hand side of every rule. For example,
in Figure 1.3c we find rule R5

X → 〈eine rege und effective, a lively and effective〉

and in Figure 1.3a, rule R3

X → 〈zu erreichen, to achieve〉
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(b) Wrong alternative translation that can be produced by Hiero.

Figure 1.4: Translations of the new sentence “eine rege und effektive zusammenarbeit
europäischer forscher zu erreichen”.

By cutting out some of the embedded phrase pairs, we obtain Hiero rules with gaps.
As an example, from the phrase pair at the root of the aligned sentence pair in Figure
1.3c, the hierarchical rule R4

X → 〈X1 zusammenarbeit europäischer forscher X2 ,

X1 cooperation between european researchers X2〉

can be extracted by cutting out the two embedded phrase pairs R5 and R6 as gaps
labeled X. Similarly, we obtain rule R7

X → 〈X1 zusammenarbeit europäischer forscher X2 ,

X2 X1 cooperation between european researchers 〉

from the root phrase pair in Figure 1.3b. Note how the training examples for the
English verbs “to fight" in Figure 1.3b and “was achieved" in Figure 1.3c are embedded
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within, respectively, monotone and inverted reordering patterns when translated into
German.

We now exemplify how Hiero risks missing the correct word order and how labels
from the surrounding word alignment context may help. In Figure 1.4a, translation
rule R7 is combined with rule R5 and rule R3 to translate the new sentence “eine rege
und effektive zusammenarbeit europäischer forscher zu erreichen”. Here starting from
translation rule R7 and then substituting R5 and R3 on the two X nonterminals, the
correct word order can be obtained. However, the rules extracted during training also
permit a different translation of this sentence that produces the wrong word order,
shown in Figure 1.4b. This translation is formed by combining R4 with R5 and R3.
Both Hiero derivations are eligible, and the independence assumptions between rules
suggest that there is no reason why Hiero’s synchronous grammar should be able to
select the correct word order. The independence assumptions between the rules suggest
also that the burden of selecting the correct reordering is left over to the target language
model.

How could the use of word alignment context help produce preference for correct
reordering in Hiero? Contrast the reordering structures in Figure 1.3a and Figure 1.3b
to the structure in Figure 1.3c. In the first two the verb units, “to achieve" and “to fight"
(labeled with a bold X), are inverted with respect to the embedding context, whereas in
the latter example, the verb “was achieved" is monotone with respect to the embedding
context. In this simple example, two types of verbs can be discriminated using word
alignment types from the embedding rules, which can be used as Hiero labels. Such
labeling can be obtained during Hiero rule extraction from the word-aligned training
sentence pairs without need for other resources. By extracting such reordering labels,
the incorrect substitution in Figure 1.4b could be either prevented or made far less
likely than the correct alternative.7 Phrases induce a certain reordering pattern with
respect to their sub-phrases and with respect to the parent phrase that embeds them.
We note that in a sentence-aligned, word-aligned parallel corpus, it turns out, there are
many more reordering patterns than the binary choice of monotone/inverted.

1.3 What if syntactic composition is not available or
effective?

Unlabeled Hiero does not describe context for its rule composition. Syntactic SMT
has tried to overcome this problem by adding syntactic information to Hiero. While
strictly enforced syntactic labels often give problems, using syntax as a soft constraint
works quite well. However, in the early stages of this thesis research, we explored

7One might wonder about the frequency of verbs that show such preferences for reordering: in the
filtered test grammar (see experimental section) there are more than 27,000 phrase pairs, each with
2 words on both sides, that show such a preference for inversion relative to their embedding context. A
large fraction of these phrase pairs corresponds to such verbal constructs. This itself is just a part of one
of many types of reordering phenomena, selected for this example.
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the frequent incompatibility of syntax and alignment structure. We published a paper
about automatic ways to identify and visualize this incompatibility (Maillette de
Buy Wenniger and Sima’an, 2014b). Some existing work tried to adapt the syntax to
make it more compatible with the word alignment structure and vice versa (Gildea,
2003; Wang et al., 2010). Generally, the frequent incompatibility of syntax and
alignment structure is dealt with by adapting the syntax and word alignments, and
using the syntactic information only as soft constraints in translation.

We now summarize the situation sketched so far:

• The composition of rules in Hiero is weak, due to the lack of labels.

• Syntax is often used to enrich hierarchical translation grammars, promoting more
coherent composition of rules into translations.

But we observe that the application of syntax leads to two clear problems:

1. Monolingual syntax and bilingual translation equivalence are not naturally
compatible.

2. Reliable, high quality syntactic parsers are not available for all languages.

A third observation points us in the direction of a possible solution:

3. Hierarchical translation equivalence is induced by word alignments, and there-
fore by definition compatible with any extracted TEUs.

Noting these two problems, and the direction for a possible solution suggested
by the third observation, for this thesis we decided to adopt a different approach
by not forcing syntax to match with the alignment structure. Instead we take
the hierarchical alignment structure itself as the core structure of translation and
the basis for reordering. We would create a representation of the hierarchical
word alignment structure called hierarchical alignment trees (HATs) (Sima’an and
Maillette de Buy Wenniger, 2011a). This would provide a basis for a line of work
enabling hierarchical translation with context sensitive reordering, without requiring
syntax. We now take a closer look at these three observations.

The first observation is supported by much empirical evidence in the literature,
beyond our own observations. For example by the fact that allowing only phrases
compatible with syntax has been shown to lead to significant losses of coverage and
translation quality in phrase-based translation (Koehn et al., 2003). Furthermore,
the coverage problems are not restricted to just strict constituency parse syntax:
Almaghout et al. (2010) for example reports that with SAMT labels 50% of all rules
remain unlabeled i.e. are incompatible with syntax, and for combinatory categorial
grammar (CCG) labels this is 30%. Another source of evidence comes from (Wang
et al., 2010), an influential work on syntactic MT. This work shows that re-structuring
(binarization) and re-labeling of syntactic trees, increase performance for string-to-
tree translation. These operations are essentially concerned with adapting the syntactic
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structure and syntactic information respectively, so as to increase its compatibility with
the alignment structure. This therefore indirectly implies that syntax, at least in its raw
form, is often incompatible with the alignment structure.

The second observation is supported by the fact that most linguistic resources like
parsers and taggers have been developed for European languages as well as some
popular Asian languages such as Chinese and Japanese. For many other languages little
or no such resources exist or at least the training material on which the resources are
based is very limited; as illustrated by a sample of publications on this topic (Garrette
et al., 2013; Irvine and Callison-Burch, 2013; Scherrer and Sagot, 2013; Kim et al.,
2015; Duong et al., 2015).

The third observation will be developed in chapter 4, but here we briefly sketch
the argumentation: Hierarchical translation equivalence is defined in terms of the
TEUs induced by a word alignment and their (hierarchical) subsumption relations.8

When translation equivalence is established at the word level, and from there at
the phrase level, the generated (contiguous) TEUs must be nested in a certain way.
The specific, applicable nesting of these TEUs implies a specific set of subsumption
relations. These subsumption relations in turn determine a hierarchical embedding
structure with associated reordering relations. The embedding structure and reordering
relations together with the set of TEU constitute hierarchical translation equivalence.
And since hierarchical translation equivalence is derived from the extracted TEUs it is
by definition also compatible with them.

1.4 Problem statement and hypothesis

Summarizing our observations from the last section, we saw that syntax is not
necessarily compatible with word alignments and that high quality parsers are not
always available. Furthermore, our third observation suggested that word alignments
could be an important part of the solution. This leads to the following problem
statement:

Problem Statement. Is it possible to obtain sufficient information from word align-
ments only to facilitate coherent composition in hierarchical SMT, more specifically
in Hiero?

The third observation suggests that this may be possible, and leads to the following,
more specific hypothesis:

8The term subsumption as used in this thesis requires some explanation. Generally, the term
subsumption is defined as the act of considering or including something as part of a more general
category. In our particular case, subsumption is mainly used for TEUs, in particular phrase pairs.
Subsumption of a phrase Ps by a larger phrase Pb implies that Ps has source and target spans that are
a subspan of the corresponding spans of Pb. But stronger than this, it implies that Pb can be composed
from Ps and additional non-overlapping phrases and/or loose words on the source and target side.
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Hypothesis. Hierarchical translation equivalence relations induced from word align-
ments provide the means to facilitate more coherent composition in hierarchical
SMT. These relations directly and precisely inform about bilingual hierarchical
reordering structure, in contrast to monolingual syntax. Additionally, these relations
are inherently compatible with induced TEUs. This allows them to be used to form
effective (reordering) labels or other soft reordering constraints that are used to
promote coherent composition and better reordering, with possible advantages over
monolingual syntax.

1.5 Hierarchical Alignment Trees and their
applications

In this thesis we propose structures called hierarchical alignment trees (HATs)
which provide a compact, complete and unambiguous representation of hierarchical
translation equivalence. These structures are motivated by the desire to exactly model
the composition of small TEUs into bigger ones up to the sentence level, as induced
from the word alignment. In chapter 4 we discuss HATs, their relation to existing
representations of translation equivalence and word order as well as examples, formal
definitions and algorithms. One way to think about HATs is to follow analogy with
treebanks in parsing. Treebanks in parsing allow the straightforward extraction of
many types of grammars, including basic context-free grammars (CFGs) as well
as CFGs enriched with parent annotation or head-word annotation, and grammars
containing larger fragments (tree-substitution grammars). HATs are designed to fulfill
a similar role in facilitating the straightforward extraction of many different types of
reordering labeled grammars. HATs provide a compact representation of translation
equivalence in the form of sets of recursive bilingual trees that exactly represent the
set of contiguous TEUs induced by word alignments and their recursive reordering
relations.

1.5.1 Hierarchical Alignment Trees as a basis for rule extraction
and labeling

Extraction of Hiero rules is intuitively based on HATs, but does not require them.
However, HAT-based rule extraction is not restricted to Hiero rules. For example,
HATs also support the extraction of more complex non-binary reordering rules, such
as complex non-lexicalized permutation rules. Inducing such rules without HATs is
not straightforward. Such rules can have various successful applications, for example
for preordering, as shown by (Stanojević and Sima’an, 2015).9

9In that work a subset of HATs called permutation trees (PETs) (Gildea et al., 2006) is used, which
is restricted to alignments with bijective mappings.
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In the work for this thesis we have focused on the application of HATs for adding
reordering labels to Hiero rules. In the previous section we established the potential
merit of reordering labels, and now we come back to the question how such labels
need to be formed. HATs naturally allow extraction of hierarchical translation rules
enriched with many different types of reordering labels. In particular the presence
of explicit reordering labels on the nodes of HATs make this possible. Note that
one could also form reordering labels without first extracting HATs. But with HATs
all reordering relations are explicitly represented in one representation, making the
formation of reordering labels simpler and more intuitive.

1.5.2 Analyzing empirical translation equivalence with
hierarchical alignment trees

In chapter 6 we will see that HATs have another role in supporting empirical analysis
of word alignment. In particular we will see how word alignments have an identical
representation in the form of a mathematical framework called set-permutations, which
generalizes permutations to include many-to-many mappings between elements. HATs
allow to exactly determine what category of set-permutations is necessary to cover a
particular word alignment. In doing so they allow to precisely answer certain questions
regarding the complexity of empirical word alignments, for example what fraction of
the word alignments can be covered by binarizable permutations and consequently by
a popular type of grammars know as inversion transduction grammars (ITGs).

1.6 Thesis focus and contributions
We now return to the initial two questions of this chapter. Note how HATs bridge
the two questions regarding the inducible set of TEUs and how they are to be reused
and composed, by representing not only TEUs but also their hierarchical reordering
relations. These reordering relations, in the form of labels, readily provide a reordering
context to extracted rules that allows these rules to be re-composed in a way that
yields more coherent word order. As such the role of reordering labels is similar to
that of syntactic labels in treebanks. But the important difference between reordering
labels and syntactic labels that are adopted for translation, is that while the former
are by definition compatible with TEUs, the latter frequently are not since translation
equivalence and monolingual syntax are not necessarily compatible. In chapter 5 we
discuss the adoption of reordering labels in hierarchical translation. These labels target
global coherence with respect to word order, and seek to resolve problems arising from
a blind reliance on the language model far beyond its intended use or capability. We
will see how these labels in combination with soft constraints significantly improve the
quality of automatic translation of various language pairs.
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We end this section with an overview of contributions:

Contributions

• We propose hierarchical alignment trees (HATs), bilingual trees that fully
capture the hierarchical translation equivalence structure induced by word align-
ment, extending normalized decomposition trees (NDTs) and permutation trees
(PETs). HATs are designed to serve a function that is somewhat comparable
to that of treebanks in parsing. They facilitate many applications, including
rule extraction, rule labeling, hierarchical alignment structure visualization
and preordering. HATs were first proposed in (Sima’an and Maillette de
Buy Wenniger, 2011b) and are the foundation for the work on labeling Hiero
(Maillette de Buy Wenniger and Sima’an, 2013b, 2014a), measuring alignment
complexity (Maillette de Buy Wenniger and Sima’an, 2013a, 2014b) and
visualizing hierarchical alignment structure (Maillette de Buy Wenniger and
Sima’an, 2014b) done in the context of this thesis.

• Based on HATs we propose two types of reordering labels for Hiero:

– 0th-order labels, that describe the reordering at child phrases relative to the
current phrase.

– 1st-order labels, that describe the reordering of the current phrase relative
to an embedding parent.

We combine these new labels with decoding with relaxed label matching
constraints and special features marking types of label substitutions used in
derivations. This approach which we call elastic-substitution decoding is
empirically tested on Chinese–English, German–English and English–German
translation and gives significant improvement over Hiero for these language
pairs while also performing favorably against a well known syntactic baseline
(SAMT).

• We show that our proposed labeling schemes are superior to simplified re-
ordering labels restricted to the cases Monotone, Inverted and Discontinuous
from inversion transduction grammar (ITG), while even those simplified labels
already give an improvement over no reordering labels.

• We propose a theoretical framework to exactly answer the question if given an
SCFG and a word alignment the SCFG can be said to cover the word alignment.
This framework is based on the intersection of the sets of TEUs inducible from
the word alignment and producible by the grammar. Based on this framework
and HATs we report an exact empirical analysis of alignment complexity. As
part of this analysis we compute the proportion of word alignments that can be
covered by ITGs and PETs respectively, and the proportion of word alignments



1.7. Thesis Overview 15

that can only be represented by grammatical frameworks equivalent to the full
class of HATs. Experiments on both manually and automatically aligned parallel
corpora for three language pairs give new insights into the complexity and
structure of empirical word alignments.

1.7 Thesis Overview

1.7.1 Chapter 2: Preliminaries: SMT and Translation
Equivalence

In this chapter we cover the foundations of modern statistical machine translation
(SMT). We start by mentioning some of the historic roots in rule-based (Vauquois,
1975; Toma, 1977) machine translation (MT) and example-based MT (Nagao, 1984;
Sato and Nagao, 1990), followed by a more systematic discussion of how translation
models can be categorized. After this we give an overview of the core problems of
SMT: 1) Translation model definition, 2) training, 3) decoding. We discuss the relation
between these core problems and additional important subproblems, such as reordering
and feature weights learning.

Following this, methods to establish translation equivalence relations at the word
level (word alignments) are covered. Word alignments play a central role in this thesis.
As usual, they serve as the input for extracting phrase pairs and from those hierarchical
phrase pairs, used by hierarchical SMT. Additionally, they yield the concept of
hierarchical translation equivalence as made explicit by HATs, covered in chapter 4.
HATs in turn are used to extract reordering labels in chapter 5. Finally, through HATs,
word alignments provide the input for the empirical analysis of hierarchical translation
equivalence, covered in chapter 6.

Next, we discuss motivations for using composed TEUs and give some formal
definitions of translation equivalence in MT, with phrase pairs as one important
special case. We then discuss phrase-based SMT, starting with a brief overview of
the alignment template approach (Och and Ney, 2004) followed by a more complete
discussion of mainstream phrase-based translation (Koehn et al., 2003; Zens et al.,
2002). Phrase-based SMT is not itself used in our experiments, but is still important
for two reasons. First, hierarchical phrase-based SMT is the focus of this thesis. It
is based on phrase-based SMT and borrows many features and techniques from it.
Second, the limitations of phrase-based SMT with respect to long-distance reordering
are important motivations for hierarchical translation.

This chapter ends with a brief overview of feature weights training methods,
focusing on the minimum error rate training (MERT) (Och, 2003) and margin infused
relaxed algorithm (MIRA) (Crammer and Singer, 2003) methods.
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1.7.2 Chapter 3: Background Hierarchical SMT and
Synchronous Grammars

Continuing from the discussion of phrase-based SMT in chapter 2, this chapter
introduces SCFGs (Aho and Ullman, 1969). After first describing formal foundations,
the most important SCFG algorithms are introduced: 1) parsing, 2) decoding, 3)
expectation maximization. The discussion zooms in on binary SCFGs, particularly
on one popular variant of these known as inversion transduction grammars (ITGs).
This grammar formalism is of particular importance, since it is the foundation for
an influential lexicalized variant, known as Hiero (Chiang, 2005), which forms the
basis of modern hierarchical phrase-based SMT and its variants. After discussing
hierarchical phrase-based SMT (Hiero), we continue the chapter with an in-depth
discussion of a popular syntactically labeled variant known as syntax-augmented
machine translation (SAMT). SAMT is particularly relevant, as it was one of the first
approaches that succeeded in marrying phrase-based hierarchical SMT with syntax,
while improving translation performance. Two important factors in its success are: 1)
A heuristic labeling regime that avoids the rejection of Hiero rules when no syntactic
labels can be found, 2) smoothing of phrase weights, to avoid problems with sparsity
of labeled rule variants.

After introducing SAMT, we continue with the discussion of various other labeling
approaches for hierarchical SMT. Almaghout et al. (2010) use CCG (Steedman, 1987,
2000) to label Hiero grammars. Li et al. (2012b) use dependency parse information
to select part-of-speech (POS)-tags to form labels that encode a form of syntactic
head information. We also cover approaches to automatically coarsen SAMT label
(Hanneman and Lavie, 2013; Mino et al., 2014) and a method to automatically learn
labels using the Cross-Validated EM algorithm (Mylonakis and Sima’an, 2011). We
end the discussion of other labeling approaches with a review of latent-variable SCFGs
for hierarchical SMT (Saluja et al., 2014).

Before ending the chapter we briefly discuss approaches to soft constraints. These
approaches are crucial in overcoming problems with sparsity and loss of coverage
when adding syntax or other information to hierarchical SMT through labeling
approaches. We focus in the discussion on preference grammars (Venugopal et al.,
2009) and soft syntactic constraints as used by Chiang (2010).

At the end of the chapter we review the work concerning the adoption of
(hierarchical) lexicalized orientation models in hierarchical SMT (Huck et al., 2013;
Nguyen and Vogel, 2013a). These models condition the reordering of phrase pairs
relative to surrounding phrase pairs on lexical context. This work has particular
relevance in the context of this thesis, as it shares a partially common motivation and
somewhat similar mechanisms with the reordering labels that are proposed in chapter 5.
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1.7.3 Chapter 4: Representing Hierarchical Translation
Equivalence: Hierarchical Alignment Trees

How can hierarchical translation equivalence be induced from word alignments
and represented in a compact and unambiguous way? In this chapter we build
further upon existing representations of maximal decompositions of permutations
called permutation trees (PETs) (Gildea et al., 2006; Zhang and Gildea, 2007) and
representations of general word alignments called normalized decomposition trees
(NDTs) (Zhang et al., 2008a). We research how these representations can be extended
in such a way that:

• The recursive reordering structure at every node is explicitly represented.
• It explicitly represents all induced contiguous TEUs, instead of only a single

canonical maximal decomposition of the word alignment.

The result is a new representation called HATs that facilitates:

• The extraction of reordering labels, used to significantly improve the quality
of hierarchical translation, in particular with respect to word order (covered in
chapter 5).

• The intuitive visualization of the hierarchical translation equivalence structure of
aligned sentence pairs (discussed in (Maillette de Buy Wenniger and Sima’an,
2014b), not covered in this thesis).

• The systematic and exact quantitative analysis of empirical translation equiva-
lence (covered in chapter 6).

Chapter 4 motivates the need for HATs and explains intuitively what they are, based
on examples. We then explain the relation between HATs and the existing frameworks
of normalized decomposition trees (NDTs) and permutation trees (PETs); extensively
discussing the former work in these frameworks. Having established these foundations
of existing work, we discuss the concept of hierarchical translation equivalence.
This concept consists of a full representation of all contiguous TEUs as well as all
subsumption, mapping and reordering relations between them.

Set permutations are then introduced as a simple and conservative extension
to permutations, that enables the representation of arbitrary many-to-many word
alignments. These set permutations are used to form node operators that exactly
represent the mapping relations between the source and target-side children of HAT
nodes.

The last part of the chapter discusses algorithms to compute HATs based on a
variant of CYK-parsing. An important part of the algorithm is the discussion of set-
permutation labels. The chapter ends with a summary and outlook on the applications
discussed in later chapters.
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1.7.4 Chapter 5: Bilingual Reordering Labels
Chapter 5 shows how grammars for hierarchical SMT (Hiero) can be enriched with
labels that are not derived from syntax, in such a way that the word order of produced
translations is improved. While the lexicalized rules of Hiero grammars embed the
reordering decisions within rules in a lexical context, this lexicalization does not
improve the coherence of reordering decisions across rules. It also does nothing to
inform the reordering decisions made for plain, fully lexicalized rules (phrase pairs).

Syntactic labeling schemes such as SAMT (Zollmann and Venugopal, 2006) and
Hiero enriched with CCG labels (Almaghout et al., 2010, 2012) or syntactic head
information (Li et al., 2012b,a) have provided one successful approach to improve
word order and fluency in hierarchical SMT for some language pairs. But these
approaches have two disadvantages:

• They require good quality syntactic annotations (such as consistuency parses),
which are not available for all languages.

• The used syntactic annotations are not necessarily compatible with the structure
of hierarchical translation equivalence as induced by the word alignments.

While scarce syntactic annotations mostly restrict the applicability of these schemes,
the incompatibility of syntax with the structure of hierarchical translation equivalence
leads to more fundamental problems. One such problem is the lack of appropriate
labels for many phrase pairs. This problem can be reduced by relaxing the syntax
to have higher compatibility with the alignment structure, as is done for example in
(Zollmann and Venugopal, 2006; Hassan et al., 2006, 2007; Cherry, 2008). But the
price of this is often a high number of rare alternative labels, leading to data sparsity.

The approach proposed in this chapter is to rather use labels that are directly
induced from the hierarchical translation equivalence structure induced by word
alignments as represented by hierarchical alignment trees (HATs). This avoids the need
for syntax, and assures that all rules can be assigned non-trivial labels. Furthermore,
by applying a smart form of (heuristic) bucketing over the type of node labels (set
permutations) of HAT nodes (i.e. phrase pairs), it is possible to adequately limit the
total number of labels to a few meaningful categories. This benefits effective learning.

Following the introduction, the chapter shortly reviews closely related work on
lexicalized orientation models (Xiao et al., 2011; Nguyen and Vogel, 2013a; Huck
et al., 2013) and decoding with relaxed matching constraints (Chiang, 2010). After
this short overview, it discusses how two types of reordering labels can be formed
by bucketing node operators. The first label type (0th-order) characterizes the
decomposition of a phrase pair and reordering of its children. The second label type
(1st-order) characterizes the reordering of a phrase pair relative to an embedding parent
phrase pair.

While these labels can be used in a standard decoding setting, with strict matching
of labels, it turns out that working with relaxed label matching constraints during
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decoding (elastic-substitution decoding) is important for getting the best results. This
approach requires features that represent the substitution of the specific labels for the
left-hand side of rules to the specific labels of the right-hand-side nonterminals of the
rules these labels are extending. We accordingly present label-substitution features to
allow the system to learn preferences for label substitution.

The proposed labels are tested on German–English, English–German and Chinese–
English translation. They yield significant improvements over Hiero for all three
language pairs when working with elastic-substitution decoding and also outperform
SAMT. With extensive experimentation, we systematically investigate the influence
on the results of the labels and label granularity, the label-substitution features and
decoding type. The chapter ends with an overview of more distantly related work and
conclusions.

1.7.5 Chapter 6: Empirical Analysis Hierarchical Translation
Equivalence

Given an SCFG and a word alignment, does the SCFG cover the word alignment? In
the first part of this chapter we focus on the problem of answering this question in a
formally well defined way. As it turns out, the solution to this problem depends on
what it means for a SCFG to cover a word alignment. This problem turns out to be
non-trivial since:

• Arbitrary SCFGs do not generate word alignments as such.
• Terminals on the right-hand side of SCFG rules are not aligned together.

The question is then how to bind the terminals in order to check the coverage of word
alignments. One important criterion for a proper solution is that it must capture the
compositional translation equivalence structure. This implies that for general SCFGs,
lexicalization of a TEU to form a flat structure should only be allowed if no further
decomposition of that TEU is possible.

Existing work focuses on ITG and works mainly by counting TEUs induced by
word alignment that are not covered by ITG (Zens and Ney, 2003; Wellington et al.,
2006; Søgaard and Wu, 2009; Søgaard and Kuhn, 2009a; Søgaard, 2010). The existing
literature disagrees on how to measure ITG word alignment coverage, and so reported
results are diverging, see (Søgaard and Wu, 2009). Furthermore, ITG algorithms are
ITG specific and do not generalize well to other SCFGs.

In this chapter, we propose a different, and more general approach. To test if a
word alignment is covered by a SCFG, we take the set of TEUs extracted from the
word alignment and check that it is a subset of the TEUs generated by that SCFG.
We additionally require that the SCFG generates the TEUs of the word alignment with
identical subsumption relations as in the word alignment.

In experiments with different language pairs and different parallel corpora we
compute the fraction of TEUs covered by normal form inversion transduction grammar



20 1. Introduction

(NF-ITG) using the precise measure of intersection. We also study the influence of the
definition of TEUs (continuous/discontiguous) on alignment coverage; as well as the
differences in alignment coverage between hand-aligned and corpora and automatically
aligned corpora.

Working with discontiguous TEUs lowers ITG coverage because it causes dis-
contiguous TEUs that are embedded in atomic TEUs and ignored in the continuous
interpretation to obstruct ITG coverage. The effects of this are small in hand aligned
corpora and somewhat bigger in automatically aligned corpora. On a general level,
coverage of NF-ITG is considerably higher in manually aligned corpora than in
automatically aligned corpora. This can be attributed to the different criteria and
methods used to form manual versus automatic alignments.

In the second part of the chapter we explain how HATs are constructed in such a
way that a minimally complex structure is formed, necessary to capture the hierarchical
translation equivalence structure induced by the word alignment. This guarantees that:

• HATs maximally decompose the word alignment recursively into the set of
induced TEUs (TE(f, e, a)).10

• The structure of HATs ensures that all subsumption relations are represented.

Since the constructed HATs are the minimally complex structures required to capture
hierarchical translation equivalence, it follows that grammars need to be minimally
as complex as the HATs to be able to cover the word alignments. This allows
HATs to be used as a shortcut to directly determine the required complexity of the
grammars, without performing explicit set comparisons of TEUs for grammars and
word alignments.

Using HATs we then measure alignment coverage and other alignment complexity
metrics for three language pairs and both automatically and hand-aligned parallel
corpora. The results reveal that many word alignments are neither binarizable nor
bijective, and require the full set of arbitrary mappings (set permutations) to be
produced.

10Here f and e are a source and target sentence and a is their corresponding word alignment, as
described in chapter 2, subsection 2.2.1.



1.7. Thesis Overview 21

Sources of the Chapters
Some of the chapters in this thesis are partly based on earlier published work. Chapter
4 presents hierarchical alignment trees (HATs) and is partly based on material earlier
published in (Maillette de Buy Wenniger and Sima’an, 2014b) and (Sima’an and
Maillette de Buy Wenniger, 2013). Chapter 5 presents the work on bilingual Markov
reordering labels. It is based on the following publications:(Maillette de Buy Wenniger
and Sima’an, 2013b, 2014a, 2016). Finally, chapter 6 presents work on the empirical
analysis of hierarchical translation equivalence. The first part of this chapter is mostly
concerned with formal considerations of what it means to parse a word alignment
using a synchronous grammar, and is largely based on (Maillette de Buy Wenniger and
Sima’an, 2013a). The second part of this chapter is concerned with the actual empirical
analysis of word alignments and alignment coverage, using HATs as a tool in doing so.
This second part is partly based on (Maillette de Buy Wenniger and Sima’an, 2014b)
and to a small extend on (Sima’an and Maillette de Buy Wenniger, 2013). The work
described in (Maillette de Buy Wenniger et al., 2010) is not a direct source for any of
the chapters in this thesis, but has been relevant as an early inspiration and motivation
to pursue the performed research.

Maillette de Buy Wenniger, G., Khalilov, M., and Sima’an, K. (2010). A toolkit
for visualizing the coherence of tree-based reordering with word-alignments. The
Prague Bulletin of Mathematical Linguistics, pages 97–106.

Maillette de Buy Wenniger, G. and Sima’an, K. (2013a). A formal characterization
of parsing word alignments by synchronous grammars with empirical evidence to
the itg hypothesis. In Proceedings of the Seventh Workshop on Syntax, Semantics
and Structure in Statistical Translation, pages 58–67. Association for Computational
Linguistics.

Maillette de Buy Wenniger, G. and Sima’an, K. (2013b). Hierarchical alignment
decomposition labels for hiero grammar rules. In Proceedings of the Seventh
Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 19–
28.

Maillette de Buy Wenniger, G. and Sima’an, K. (2014a). Bilingual markov reordering
labels for hierarchical SMT. In Proceedings of the Eight Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages 11–21.

Maillette de Buy Wenniger, G. and Sima’an, K. (2014b). Visualization, search and
analysis of hierarchical translation equivalence in machine translation data. The
Prague Bulletin of Mathematical Linguistics, (101):43–54.

Maillette de Buy Wenniger, G. and Sima’an, K. (2016). Labeling hiero grammars
without linguistic resources. Machine Translation, pages 1–41.
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Sima’an, K. and Maillette de Buy Wenniger, G. (2013). Hierarchical alignment trees:
A recursive factorization of reordering in word alignments with empirical results.
Internal Report.



2
Preliminaries: SMT and Translation

Equivalence

One naturally wonders if the problem of translation could conceivably be
treated as a problem in cryptography. When I look at an article in Russian, I
say "This is really written in English, but it has been coded in some strange
symbols. I will now proceed to decode."

– Warren Weaver, In letter to Norbert Wiener, 4 march 1947

Machine translation (MT) aims to find the most plausible target sentence (transla-
tion) in some language, given a source sentence (input) in some other language. But
this seemingly simple problem turns out to be hard in practice. It triggers many very
complex subproblems, that are at the core of artificial intelligence (AI). To start, the
number of possible translations, essentially the number of possible sentences in natural
languages, is unbounded. This means that even if it were possible to perfectly assess
the quality of translations, choosing a translation within reasonable time would still
require being very selective about what translations to generate.

In the past a proven method to produce high quality translations was to build a
system using linguistic rules often extracted from dictionaries, grammars and other
monolingual and bilingual linguistic resources. This line of work, focusing mostly
on hand-crafted rules, is known as rule-based machine translation (Vauquois, 1975;
Toma, 1977; Vauquois and Boitet, 1985; Arnold and Tombe, 1987). An alternative
approach, called example-based machine translation (Nagao, 1984; Sato and Nagao,
1990; Sumita and Iida, 1991) forms translations by adapting stored examples of source
sentences with their translations to translate the new input. In contrast to the early rule-
based approaches, this framework explicitly tries to find the best matching translation
from data, by scoring multiple competing alternatives. Yet the methods of determining
the similarity of matching examples to the input remains largely heuristic. Both rule-
based and example-based machine translation lack a solid mathematical and statistical
foundation. This has made it very hard for these approaches to offer a general,
structured solution to the fundamental ambiguity of translation. The introduction

23
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Figure 2.1: The Machine Translation pyramid

of SMT (Brown et al., 1988), marked the beginning of a new era in MT research,
distinguished by a more structured and statistically grounded approach to MT. This
thesis broadly concerns SMT and specifically focuses on improvement of the word
order and coherence of translations for hierarchical SMT.

This chapter and the next one lay the foundation for the rest of the work in the
thesis by presenting the required basic concepts and essential frameworks. We start
by giving a categorization of translation models, after which we zoom in on Statistical
Machine Translation (SMT), and discuss some of its important high level elements.
We then continue in section 2.2 with a description of word alignment, the process by
which translation equivalence on the word level is learned. In this we focus on the
IBM models. In the second part we then give a description of translation equivalence
in MT. followed by a description of phrase-based translation. We end the chapter with
a brief discussion of feature weights training: methods to learn the weights of different
components used by a translation model.

Categorization of translation models Translation systems can be classified based
on how far they abstract from the lexical surface form of source and target words
(Vauquois, 1968). Words can be directly translated into words, which is known
as direct translation, and SMT has clearly exemplified the success of this approach
(Brown et al., 1988, 1993; Och and Weber, 1998; Koehn et al., 2003; Ittycheriah and
Roukos, 2007). Alternatively words can be analyzed as syntactic or even semantic
representations, which are then transferred to the target side, followed by a generation
step that produces the more concrete representations, ending with the target words
(Bennett and Slocum, 1985; Johnson et al., 1985; Kaplan et al., 1989; Dorr, 1994;
Dorna et al., 1998). Figure 2.1 shows these alternative paths in a historic scheme
known as the machine translation pyramid. Theoretically, source input can be
mapped to an extremely abstract meaning representation called interlingua, followed
by downwards generation of the target words from that representation. This approach
of extreme abstraction has been popular in the past before the advance of SMT. But
this approach has been elusive in practice, and it has not yielded working MT systems.
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Figure 2.2: The space of MT models (Wu, 2005)

The formulation of a formal language that can effectively capture all the possible
meanings of natural language effectively has proven to be problematic. Secondly,
approaches to describe natural language with formal languages often ignored or
marginalized the ambiguity of language in their representations. Since ambiguity is a
core component of natural language, these approaches thereby arguably compromised
their own chances of success right from the start. In response to these realizations
a more modest approach based on syntactic transfer was adopted in the rule-based
Eurotra project (Arnold and Tombe, 1987). More recently, the application of syntax
and more structurally rich translation rules has also proven its merit in hierarchical
SMT (Zollmann and Venugopal, 2006; Chiang, 2010; Almaghout et al., 2011).

An alternative classification of translation systems based on 3-dimensions is
proposed by (Wu, 2005), see Figure 2.2. The x-axis represents to what extent
translation is performed by generalization or adaptation of stored examples during
testing (example-based), as opposed to generalization during training (schema-based).
The y-axis indicates to what extent rules are compositional, making use of recursion.
The IBM models, which are fully lexical are found at the bottom of this axis.
Fully compositional models are found at the top of this axis. For SMT hierarchical
phrase-based models (Chiang, 2005), syntactic hierarchical SMT e.g. (Galley et al.,
2004) and stochastic inversion transduction grammars (ITGs) (Wu, 1997) are well
known examples of compositional models. Phrase-based (collocational) models are
somewhere in between, because they compose lexical items into larger chunks but do
not use categories or grammars to combine these chunks. The z-axis shows the last
dimension of classification: logical systems versus systems based on statistics. For
EBMT the early work (Nagao, 1984) was purely logical, while a much later approach
by (Quirk and Menezes, 2006) combines the strengths of phrase-based SMT with
dependency parsing and insights from EBMT. This produced a hybrid system that
is strongly statistical. In a similar way, rule-based MT started out with a focus on
compositional word-to-word translation without statistics (Locke, 1955). But while
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later working systems such as the early Systran system were initially still purely logical
(Toma, 1977), if continued they would eventually often be adapted to incorporate
statistics in more and more places (Senellart et al., 2003).

2.1 Statistical Machine Translation
Statistical Machine Translation (SMT) aims to find the statistically most plausible
translation e for an input source sentence f by means of a computer program. SMT
employs statistical modelling in combination with machine learning and optimization
methods to achieve this goal. SMT assigns to every target sentence e a probability
for being the translation of the input sentence f based on a probability distribution
p(e|f). Using this probability distribution, the translation with the highest conditional
probability can be determined:

ê = arg max
e

p(e|f) (2.1)

SMT divides the translation problem into a few important core subproblems:

• Translation model definition: Defining a model that composes full translations
from smaller atomic elements, and defines probabilities for full translations
through parameters of atomic elements.

• Training: estimating the model parameters with the help of statistical estimation
methods and machine learning techniques.

• Decoding: searching efficiently for the best translation within the space of
possible translations that is exponential in the input length.

A simple working SMT system can be built by solving these subproblems.
However, producing good translations requires additionally solving the following
difficult problems, amongst others:

• Reordering: modeling word order differences as part of the translation model,
and performing reordering as part of the decoding process.

• Feature weights training: automatically learning the relative importance of the
different components (features) used by the translation model. Feature weights
training is a part of training, but while essential for building strong systems, is
not a required part for a minimal SMT system.

• Language model learning and integration: language models are an essential
part of producing fluent translation output, and also play an important supporting
role in finding a plausible word order for the output.
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• Morphology: modeling the structure of language at a level below words i.e. at
morpheme level. This is of particular importance for languages like Arabic and
Hebrew, but also for example for most Slavic languages like Czech.

• Semantics: the study of meaning. Taking measures that encourage the
preservation of meaning during translation are of crucial importance to take
automatic translation to the next level.

We now give an overview of the core subproblems and their role in SMT, to provide
a basic understanding.

Core subproblems SMT The process that is used to form translations is determined
by the translation model. Complete translations may be formed by composing
the translations of single words. Word-based translation models and their training
are discussed in section 2.2. These models are also used to determine word-level
translation equivalence relations, called word alignments. Alternatively translation
may involve composition of bigger fragments called phrase pairs (Och and Weber,
1998; Wang and Waibel, 1998b; Zens et al., 2002; Koehn et al., 2003; Och and
Ney, 2004), or even fragments with variables called hierarchical phrase pairs (Chiang,
2005). Based on word alignments, these larger translation rules can be composed and
combined with features into translation models. This is discussed in section 2.3.

Apart from specifying the basic rules, a translation model must also specify how
rules may be combined to form complete translations. And the model must assign a
score or probability to translations, so that the best translation can be determined.

After a translation model has been formulated, and its parameters have been
estimated, it is possible to compose translations for an input and compute their
scores. But even with the restrictions of the model, there are still exponentially
many translations that can be generated for an input sentence. We therefore need to
search the space of possible translations efficiently, which is the problem of decoding
(Berger et al., 1994; Tillmann et al., 1997a; Wang and Waibel, 1997, 1998a; Tillmann
and Ney, 2000). Efficient solutions typically involve dynamic programming, the
decomposition of a problem into smaller problems that can be solved independently,
and then efficiently recombined into a solution to the original problem. But to
permit dynamic programming, certain independence assumptions must be made in the
translation model. This is where the decoding problem interacts with the modeling
problem: the complexity and expressiveness of the translation model must be limited
to guarantee a sufficiently efficient solution to the search problem.

Following this brief overview of the core subproblems of SMT, we will come
back to the secondary problem of reordering later in this chapter in the context of
phrase-based models. Improving reordering is the main topic of this thesis. Existing
work on this topic will get more attention in the context of the next chapter, which
discusses hierarchical SMT and synchronous grammars. Feature weights learning
has an instrumental but essential role in our approach to improving word order. For
the sake of conciseness, it will be briefly summarized at the end of this chapter in
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Figure 2.3: The noisy channel model for translation

subsection 2.3.4, while a more complete overview is given Appendix A.2. Language
modeling (Bahl et al., 1983; Brown et al., 1992; Charniak, 2001) and decoding will
not be covered in detail because they are not directly essential to our contributions in
this thesis, although they are essential for SMT. Similarly morphology and semantics,
while important for SMT, fall outside the scope of this thesis and are therefore not
discussed further.

2.1.1 The Noisy Channel Model
Shannon’s noisy channel model (Shannon, 1948) was adopted early by SMT (Brown
et al., 1988) and has been important ever since. In the noisy channel model, an input
is corrupted while passing through a communication channel, producing the output.
Applied to translation, instead of directly modeling the translation probability p(e|f),
the source sentence (f) is viewed as a corrupted version of the output translation
(e), produced by passing the translation through a noisy channel (see Figure 2.3).
Mathematically, the noisy channel model then rewrites the direct maximization of
the translation probability as the maximization of the product of a translation model
component and a language model component. This is done by applying the Bayes rule
and discarding the denominator, which has no influence on the maximization:

ê = arg max
e

p(e|f) = arg max
e

p(f|e)p(e)
p(f)

= arg max
e

translation model︷︸︸︷
p(f|e)

language model︷︸︸︷
p(e) (2.2)

Splitting the probability function that is optimized into a translation model component
and a language model component has important advantages. The language model is
concerned only with the fluency of the output, and requires only monolingual data
to be trained. This enables the use of huge amounts of training material, leading to
very strong models. The translation model is focused on translation correspondence,
also known as adequacy. Training the translation model requires bilingual data, which
is less abundant. But because the translation model does not have to worry about
producing fluent output, it can use the limited available data more effectively, focusing
on the adequacy of bilingual mappings. Finally a separate strong language model plays
an important role in selecting a proper word order.

In early SMT work, such as the IBM models, the noisy channel model was used in
a literal way. Later work deviated from this approach, using the translation model and
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language model as just two amongst a series of components used to asses the quality
of translations in a log-linear framework. In this later work, the use of translation
models in two directions p(f|e) and p(e|f) is also often practiced (Chiang, 2005). Both
directions are typically heuristically estimated and imperfect, but can complement each
other in providing partially non-overlapping information that helps to choose better
translations. It is also common to use multiple, interpolated language models (Och and
Ney, 2004; Chiang, 2010; Huck et al., 2013).

2.1.2 Generative and Discriminative Models
Generative translation models generate the source and target sentence synchronously
as a structured statistical process. This allows the generation or sampling of
synchronous productions, and furthermore allows the most likely translation for a
source sentence to be determined from the joint probability of entire sentence pairs
as given by the model:

ê = arg max
e

p(e|f) = arg max
e

p(f, e) (2.3)

Examples of generative models for translation are phrase-based models and the
synchronous grammars used by hierarchical phrase-based models.1 The original
conditional word-based translation models were also formulated as a generative
process, emitting f from e (Brown et al., 1993).

The formulation of successful generative models for translation is an engineering
process that requires much effort. All steps and transformation of the translation
process must be included. Furthermore, independence assumptions are essential to
keep the level of model parameters at a manageable level and avoid overfitting. But the
need for independence assumptions must be carefully balanced against loss in ability
to adequately model translation phenomena which violate them.

Discriminative models in contrast directly model the conditional distribution p(e|f).
This avoids the need to formulate a full generative model, mostly eliminating the
need for predetermined independence assumption except for reasons of computational
efficiency.2 For SMT, discriminative models for translation are typically implemented
by combining a set of feature functions φm(e, f ). Each feature function outputs
a non-negative value that encodes information that is supposed to be relevant for
the assessment of the quality of the translations. Without the need to formulate a
generative story, the modeler only has to think about selecting features that are useful

1Modern phrase-based and hierarchical phrase-based models use many features to choose the most
plausible translation. Many of these features are not part of the generative process and many also not
even have a probabilistic interpretation. This makes these models discriminative rather than generative.
However, the original core of these models is described as a generative process.

2Most features in (discriminative) phrase-based and hierarchical phrase-based translation are still
local to the rules, with the exception of the language model. There is a clear reason for this, features
that use information from the target side beyond rule boundaries increase dependencies, reducing the
efficiency of dynamic programming as applied by the decoder and increasing computational cost.
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to discriminate stronger from weaker translations. The log linear model combines
the features as a weighted sum, using for every feature φm(e, f ) a specific weight λm.
Dividing by the total weight obtained by summing over all possible translations turns
the total feature weight into a probability:3

p(e| f ) =
exp

(∑M
m=1 λmφm(e, f )

)
∑
e′

exp
(∑M

m=1 λmφm(e′, f )
) (2.4)

Learning adequate feature weights is essential for discriminative methods. Basic
approaches include maximum entropy (Berger et al., 1996b) and minimum error rate
training (MERT) (Och, 2003). In section 2.3.4 we provide a brief review of MERT, a
longer review of MERT and some of the more recent approaches for feature weights
training in SMT is given in Appendix A.2. Lastly there is a big difference in the
way that discriminative methods are applied in mainstream machine learning, such
as in simple classification task, and the application of these methods in SMT. In
basic classification tasks, the examples to be classified are given, and sometimes the
space of possible examples is also finite. In SMT in contrast, because the space of
possible translations is exponential in the input length, generating a set of plausible
translations is an essential part of the problem, and cannot be solved by discriminative
methods. Therefore phrase-based and hierarchical phrase-based systems essentially
use a hybrid approach that combines a generative and a discriminative component.
The generative component is the model that determines how translations are formed,
in combination with the core features such as phrase weights and language model
probabilities. Through the decoder, these components strongly steer the space of
translations to be considered in the first place, while also providing a strong basic vote
for the ranking of these considered candidates. The other features augment and refine
this ranking, but change nothing to the initial translation selection process determined
by the nature of the translation model in combination with the decoder. Even with the
recent popularity of neural networks in SMT, this basic approach of keeping a phrase-
based or hierarchical phrase-based translation model but extending it with additional
features based on neural networks remains popular (Cho et al., 2014; Tran et al., 2014).
The mostly generative translation selection process of the decoder can also be followed
by a purely discriminative reranking process, working on an N-best list of selected
translations provided by the decoder (Shen et al., 2004; Duh and Kirchhoff, 2008;
Sokolov et al., 2012). This illustrates the need for discriminative models to work with
a limited set of translations even more sharply. In parsing greedy approaches that
sacrifice the ability to compactly represent an entire chart of parses for the benefit of
using much more context have shown remarkable success (Zhang et al., 2014). But as
an alternative, (Huang, 2008) has shown that (approximate) reranking of entire forests
with non-local features is also possible. The dilemma between (nearly) optimal search

3In practice when applying the model this normalization step is often not even necessary, except in
some cases, when learning the weights.
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Figure 2.4: Example of many-to-one English–French word alignment taken from the
original IBM model paper (Brown et al., 1993), highlighting the type of alignments
IBM models permit (not general many-to-many word alignments).

in a simpler model or alternatively (strongly) greedy search in a much richer model
is expected to remain relevant for machine translation and parsing alike in the future.
But at the same time, improvements in search and optimization algorithms and finally
computing power promises to offer increasingly good combinations of and tradeoffs
between the two with ever greater success for increasingly more complex models.

2.2 Word Alignments
The best known theory for word alignment as used in statistical machine translation
is the theory behind the IBM models, described in (Brown et al., 1993). In this
theory the way the French string is produced from the English string by the generative
probability model is conceptualized as follows. The English string is considered to
be capturing a set of concepts which together produce the French sentence. However,
in word alignment only the English words are used and not the (hidden) concepts.
Therefore, the complete set of English words is divided into a collection of possibly
overlapping subsets that substitute for the (actual) concepts. These subsets are called
cepts. Word alignments then make explicit the connection between the English cepts
and the French words they generate. But the IBM models allow only many-to-one
alignments and not the more general case of many-to-many alignments. Therefore this
general story is further restricted, by considering only the individual English words
as cepts, and allowing multiple French words to be generated by each of these cepts.4

Figure 2.4 shows an example of a many-to-one English–French word alignment, with
independent English words generating a set of French words, which is the type of word
alignments IBM models support.

The original IBM Model narrative is helpful to the extent that it provides some
conceptual interpretation of what goes on in the models. It also gives a motivation for
the particular decompositions used by the models of a very general joint probability

4Besides the actual English word a special additional cept called the empty cept is used to allow
French words to be generated out of nothing, and not aligned to anything.
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distribution for source sentence, target sentence and alignment together. On the other
hand, from a mathematical point of view this story is not really necessary. Och and Ney
(2003) leave the discussion of cepts completely out in their newer presentation of the
IBM models, highlighting the point that from a mathematical point of view the different
models are just alternative decompositions of a general joint probability distribution.
We think this latter, more “modest” interpretation makes less assumptions, with the
advantage of leaving more room to fit alternative models of word alignment such as
discriminative methods and hierarchical alignment methods (Riesa and Marcu, 2010;
Burkett et al., 2010) within the same conceptual framework.

The central question for an alignment model is: how can sentence alignments be
expressed in terms of word alignments?And more specifically: how likely is each
of the permitted word alignments? The form of the assumed alignment model puts
restrictions on what type of word alignment (distributions) can be learned. These
restrictions are crucial for enabling learning, and are sometimes referred to as inductive
bias of the model (Mitchell, 1980). Through these restrictions put by the model on
the permissible word alignment distributions, the model determines how to generalize
from the unseen sentence alignments to predict the hidden word alignments.

2.2.1 The mathematical framework of statistical word alignment

In the following sections we will review the mathematical properties of statistical
translation models. In doing so we follow (Och and Ney, 2003), and in particular
their notation in describing the relevant formulas. The symbol Pr(·) is used to denote
general probability distributions. In contrast, the generic symbol p(·) is used to denote
model-based probability distributions.

Given a sentence pair {f, e} = {f J
1, e

I
1} with f J

1 = f1 . . . f J and eI
1 = e1 . . . eI . In

statistical alignment models the alignment aJ
1 = a1 . . . aJ is a hidden variable describing

the hidden mapping from source to target positions. The translation model is obtained
from the alignment model by marginalization over all alignments as expressed by the
following relation between the two models:

Pr(f J
1 |e

J
1) =

∑
aJ

1

Pr(f J
1, a

J
1 |e

I
1) (2.5)

This general formula represents the generation of the parallel sentence pair and
word alignment in its most general form without any extra assumptions. But typically
alignment models are parametric probability distributions that depend on a set of
unknown parameters θ that are learned from training data. We use the following
notation to express this:

Pr(f J
1, a

J
1 |e

J
1) = pθ(f J

1, a
J
1 |e

I
1) (2.6)
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Maximization of the likelihood of the parallel training corpus {f s, es}
S
s=1 is used to

determine the optimal values for the unknown parameters θ:

θ̂ = argmax
θ

S∏
s=1

∑
a

pθ(f s, a|es) (2.7)

Typically the expectation maximization (EM) algorithm (Dempster et al., 1977)
is used to perform the maximization, but other optimization algorithms are also
applicable.

It is important to be able to find the best alignment for a given sentence pair. In
principle although there can be a large number of alignments, this best alignment can
always be found:

âJ
1 = argmax

aJ
1

pθ̂(f J
1, a

J
1 |e

I
1) (2.8)

This alignment âJ
1 is known as the Viterbi alignment of the sentence pair (f J

1, e
I
1).

Based on this general probabilistic framework, concrete alignment models are
created by introduction of inductive bias, leading to specific parameterized probability
distributions. We will next look at various popular alignment models, how they are
derived from the original general formula, and how they relate to each other.

2.2.2 Statistical Alignment Models
Concrete alignment models are derived from the general formula by making additional
assumptions with respect to the form of the distribution, typically in the form of
independence assumptions, which allow to rewrite this formula as a certain product
of independent factors. In what follows we will cover:

• hidden Markov model (HMM) alignment model

• IBM models 1 and 2

• Fertility-based alignment models

Och and Ney (2003) note that the alignment model Pr(f J
1, a

J
1 |e

J
1) can be structured

without loss of generality as follows5:

Pr(f J
1, a

J
1 |e

J
1) = Pr(J|eI

1) ·
J∏

j=1

Pr(f j, a j|f j−1
1 , a j−1

1 , eI
1) (2.9)

= Pr(J|eI
1) ·

J∏
j=1

Pr(a j|f j−1
1 , a j−1

1 , eI
1) · Pr(f j|f j−1

1 , a j
1, e

I
1) (2.10)

5Using the chain rule of probability.
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This decomposition highlights three components of the composed probability
function: a length probability Pr(J|eI

1), an alignment probability Pr(a j|f j−1
1 , a j−1

1 , eI
1)

and a lexicon probability Pr(f j|f j−1
1 , a j

1, e
I
1).

The hidden Markov model (HMM) alignment model (Vogel et al., 1996) is derived
by assuming:

• A first-order dependence for the word alignments a j

• A lexicon probability that only depends on the word at position a j

which gives the following simplified model components:

Pr(a j|f j−1
1 , a j−1

1 , eI
1) = p(a j|a j−1, I) (2.11)

Pr(f j|f j−1
1 , a j

1, e
I
1) = p(f j|ea j) (2.12)

Finally a simple length model Pr(J|eI
1) = p(J|I) is assumed.6 Putting everything

together following basic HMM-based decomposition of p(f J
1 |e

I
1) is obtained:

p(f J
1 |e

I
1) = p(J|I) ·

∑
aJ

1

J∏
j=1

p(a j|a j−1, I) · p(f j|ea j) (2.13)

There are some more details in (Och and Ney, 2003) omitted here for brevity.
These concern how the alignment probabilities are made independent of absolute word
positions and how the network is extended with empty words to produce source words
without aligned target words.

2.2.3 IBM Models 1 and 2
The relation between the hidden Markov alignment model (HMM) and IBM model
1 and 2 is clearly explained by (Och and Ney, 2003). Where the HMM is based on
first-order dependencies p(i = a j|a j−1, I) for the alignment distribution, Models 1 and
2 in contrast use zero-order dependencies p(i = a j| j, I, J)

• For Model 1 a uniform distribution p(i| j, I, J) is used:

Pr(f J
1, a

J
1 |e

J
1) =

p(J|I)
(I + 1)J ·

J∏
j=1

p(f j|ea j) (2.14)

This means that the word order does not affect the alignment probability.

6In the original paper (Brown et al., 1993) describing the IBM models, an even stronger assumption
is made for the length model, namely that the length J is independent of the English sentence eI

1 which
leads to the usage of a simple uniform prior ε as the length model: Pr(J|eI

1) = ε.
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• For IBM Model 2

Pr(f J
1, a

J
1 |e

J
1) =

p(J|I)
I + 1

·

J∏
j=1

p(a j| j, I, J) · p(f j|ea j) (2.15)

is obtained. In order to reduce the number of parameters, this is further simplified
by ignoring the dependence J on the alignment model. Thus p(a j| j, I) is used instead
of p(a j| j, I, J).

2.2.4 Fertility-Based Alignment Models
In the fertility-based IBM Models 3, 4 and 5 the generative processes are considerably
changed by explicitly choosing the number of French words generated by each English
word as the first step of the generation process. This new parameter is called the
fertility. Thus, for a word ei in position i, the fertility φi is defined as the number of
aligned source words:

φi =
∑

j

δ(a j, i) (2.16)

In this, δ is the Kronecker delta function, which yields value 1 if its two arguments are
the same and 0 otherwise. The models then have a probability p(φ|e) that the target
word e produces φ source words, for different values of the fertility φ, including φ =

0. These fertility parameters are combined with the earlier translation probabilities,
and alignment probabilities now called distortion probabilities in these models. In the
fertility-based IBM Models, for each English word, the selection of the fertility, the
produced French words and their order (distortion) are separated as three consecutive
steps in the generative process. To facilitate a more compact discussion (Och and Ney,
2003) combine the selection of the f ertility and the word order in a new function B,
which gives for every target word the set of aligned source positions:

B : i→ Bi ⊂ {1, . . . , j, . . . , J} (2.17)

Here B0 contains the positions of all source words that are unaligned, i.e. aligned to the
empty word. Using this new function, the fertility-based alignment models can now be
formalized using the following decomposition and assumptions:

Pr(f j, a j|eI
1) = Pr(f J

1, B
I
0|e

J
1) (2.18)

= Pr(B0|BJ
1) ·

I∏
i=1

Pr(Bi|Bi−1
1 , eI

1) · Pr(f J
1 |B

I
0, e

J
1) (2.19)

= p(B0|BJ
1) ·

I∏
i=1

p(Bi|Bi−1, ei)
I∏

i=0

∏
j∈Bi

p(f j|ei) (2.20)
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This equation assumes that the set B0 of words aligned with the empty words is only
generated after covering the nonempty positions. Note how in the derivation, in the
first two steps we are merely rewriting the formula with no extra assumptions. Extra
independence assumptions are introduced only in the last step to arrive at the final
formula for this group of models (2.20). These independence assumptions are:
• The lexical selection is independent from all other steps
• The selection of the positions for the i-th English word depend only on that word,

and the positions for the previous word.
Model 3, 4 and 5 differ in the details of the distortion component of the model, with
very strong independence assumptions for model 3, that are weakened for model 4 and
5. We refer the interested reader to (Brown et al., 1993; Och and Ney, 2003) for more
details. Model 3 and 4 are deficient (Brown et al., 1993), which means that probability
mass is wasted on improper word alignments, so that the sum of probabilities for valid
alignments does not sum to one. This is fixed in Model 5, at the price of even more
parameters and a still considerably more complex model.

2.2.5 Parameter estimation
We will now very briefly touch upon the matter of parameter optimization of the IBM
alignment models and HMM alignment model. The IBM Models 1 and 2 and the
HMM alignment model are simple enough to have an EM algorithm derivation that
uses a sum over alignments which can be calculated in an efficient closed form. This
efficient closed form rearranges a sum over an exponential number of products as a
product of sums, which for every sentence in the training set can be computed in time
that is roughly quadratic in the sentence length. This allows efficient exact computation
of the EM algorithm for these models. In contrast, such an efficient computation is
not possible for IBM Model 3,4 and 5. Therefore in the expectation step of the EM
computation for these models, the used approximation is to sum over only a small
set of most likely word alignments and their close neighbors when computing the
(new) counts used in the next maximization step. This set is found by starting from
the best alignments for Model 2 (or the HMM alignment model), and using a greedy
search method to improve upon those further. Once again details can be found in
the original work (Brown et al., 1993). Another important aspect of the optimization
regime, is that every incrementally more complex model has its parameters initialized
by the previous simpler model, before the parameter optimization starts. This leads
to a cascade of model optimizations whereby the simpler models are used to produce
good starting parameters for the more complex ones, thereby increasing the change of
ending up in a good rather than bad local optimum of the likelihood function for these
more complex models. A detailed study of what cascade of what model optimizations
leads to the best word alignments is given in (Och and Ney, 2003). One important
outcome of their study is that both usage of the HMM alignment model, which is
more sophisticated than IBM Model 1 and 2 but still efficiently optimizable by the EM
algorithm, is important to achieve optimal result. This is determined by comparing
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the alignment error rate for various schemes through comparison of the model Viterbi
alignments against gold reference alignments. Finally a new model that combines the
HMM model and Model 4 in a log-linear way helps to bring the alignment error rate
even further down.

Symmetrization of Alignment Models

IBM models are asymmetric and model only one-to-many alignments, not general
many-to-many alignments. To overcome this problem and improve the alignment
quality, typically two alignment models are trained, one in source-to-target and one
in target-to-source direction, and these two models are then combined into one final
model. Intersection and union are the simplest schemes that can be used for the
combination. More complex heuristic schemes that give higher alignment accuracy
and yield better translation scores have been proposed (Och et al., 1999; Koehn et al.,
2003). These schemes start from the intersection and grow this initial set of alignment
links by adding more weakly supported links from the union provided they are in the
neighborhood of existing links, and optionally adding links for remaining unaligned
words as a final step.

Avoiding confusion about what symmetrization scheme is used and what it entails
is key to the comparability and reproducibility of experiments. In Appendix A.1 we
therefore describe the details of the different heuristic schemes and their naming in
more detail.

2.2.6 Overview alternative alignment models

Symmetrization of two asymmetric alignment models in both directions is a simple
and relatively effective way to get good quality many-to-many alignments. It is based
on a combination of solid learning methods for the initial alignment model estimation
and sensible heuristics for the symmetrization step. But Liang et al. (2006b) note that
the disadvantage of this method is that the training of the asymmetric fertility-based
models is highly complex, and computationally expensive. Also the complexity of
these models makes them hard to reimplement. Finally modifications of these existing
models, such as model 6 (Och and Ney, 2003) have yielded only modest improvements.
This motivates Liang et al. (2006b) to propose a new alignment model that encourages
agreement of two simple asymmetric alignment models already at training time. To
this end the authors jointly train two HMM alignment models, one in source-to-target
direction and the other in target-to-source direction. While training they maximize
a combination of data likelihood and agreement between the models. This model
cannot be efficiently optimized using the EM algorithm, so a heuristic approximation
is required to make computation efficient. Using this approximation as the new model
the authors achieve 32% reduction of alignment error rate (AER) in comparison to
symmetrization of two alignment models by intersection of their alignments.
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Word alignment models can also incorporate more (hierarchical) structure in the
alignment process. This structure may or may not be syntactic. The structure can
take a central place in the alignment model by requiring a particular hierarchical
(possibly syntactic) model structure. But it can also be introduced as a soft constraint
or supporting source of information for the alignment model. A popular way to strictly
require hierarchical structure in the formation of word alignments is to assume them to
be generated by a synchronous context free grammar or synchronous tree-substitution
grammar. These grammars need not be syntactic. For example, the popular grammar
formalism of inversion transduction grammars (ITGs) (Wu, 1997) require no syntactic
structure, just a particular type of synchronous context free grammars.

The work by Xiao and Zhu (2013) in contrast requires syntactic structure on
both sides, modeling word alignment as the task of finding a maximum likelihood
(syntactic) tree-substitution grammar that generates the parallel training corpus. The
grammar is estimated using the Expectation Maximization (EM) algorithm (Dempster
et al., 1977) or a Bayesian method. In both cases a bias towards simple tree pair
fragments is necessary to avoid extreme overfitting of the training data.7

This bias is introduced to the models in the form of hard constraints that limit
the tree-fragment size as well as Bayesian priors that favor smaller fragments. A
problem with such hard constraints on the tree-fragment size is that they have been
shown in earlier work to lead to suboptimal models (Bod, 2001). In order to
remain computationally feasible, very strong independence assumptions are made in
the parameterization of the generative tree-substitution grammar model. When the
proposed model is used to directly form rules, it loses over a baseline that uses heuristic
rule extraction (Galley et al., 2004) based on the (sub-tree) alignment matrix that is
estimated by their model. But performance is much improved when the model is
applied to estimate better features for the translation of subtrees while using these
features in combination with the baseline. Also in their experiments soft-constraint
decoding (matching labels in a soft as opposed to strict way) is required to get the
best results (Chiang, 2010).8 These observations seem to support the conclusion that
while syntax can be very helpful, enforcing it too strictly in translation is often a losing
strategy. In rule extraction, strict syntactic constraints risk that good rules cannot be
extracted. In decoding, such constraints risk that good translations are blocked. In
both cases, formation of certain correct translations may become impossible, hence

7The problem that without proper measures, estimating a (synchronous) tree-substitution grammar
with the EM algorithm leads to extreme overfitting is well known from both parsing and translation
research (Prescher et al., 2004; DeNero et al., 2006).Solutions to this problem that use the empirical
reusability of fragments as a criterion for acceptability of fragments have been proposed (Mylonakis
and Sima’an, 2010; Mylonakis, 2012; Sangati and Zuidema, 2011). These approaches avoid the need of
resorting to hard coded bias in the form of hard constraints on the fragment size (Bod, 1998) or priors
as part of a Bayesian framework (Post and Gildea, 2009; Cohn et al., 2010), instead using only the data
itself to arrive at strong models that generalize well and give good translation/parsing results.

8With this decoding method labels are interpreted as soft instead of hard constraints. This reduces
the chance that valid translations get blocked because they contain rule substitutions with mismatching
labels.
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coverage is lost and performance drops. This is also another reason to look beyond
syntax, at more language independent labels that can effectively model the mapping
and reordering structure in the translation between two languages. We will come back
to this point in chapter 4.

Syntax can be used to improve the alignment process without risking loss of
coverage, by applying it as a soft constraint. In the work by (Burkett et al., 2010), the
authors remark that recently there has been a lot of interest in improving alignments
using syntactic information and improving tree transformations based on alignments.
Yet these two things were not done simultaneously before in the literature. The authors
fill this gap, by introducing a joint parsing and alignment scheme that builds upon
monolingual parses for both language pairs, in combination with bilingual ITG tree
pairs and a set of soft constraints in the form of synchronization features. Learning
becomes intractable with exact methods, so the authors use Mean Field Inference to
create computable approximations of the idealized functions they want to compute.
The results show an increase in parsing and alignment performance separately, and a
joint improvement in terms of better translation results.

The work by Riesa and Marcu (2010) gives yet another way to deeply yet softly
involve syntax in the alignment model, without forcing the word alignments to satisfy
syntactic constraints. Their work uses the structure of the best syntactic parse tree
for the source sentence as the backbone for an efficient hierarchical search algorithm
for the best alignment. As the nodes of the parse tree are visited in bottom up order,
the algorithm builds up a hypergraph of alignments, storing alternatives at every node.
Importantly, while the source parse tree is used to guide the search for word alignments,
the explored word alignments are not required to satisfy syntactic constraints.

2.2.7 Word-based translation
Word alignment models model translation equivalence at the word level. As such they
can be used directly to form a translation model, and in combination with a proper
language model reasonable translation performance is achievable. This indeed was the
initial proposal that prompted the renewed interest in statistical machine translation
(Brown et al., 1988, 1993). Translation approaches that build translations directly
based on the word level translation equivalence relations as induced by the alignment
models are called word-based translation methods . Finding an effective search method
(decoding algorithm) to deal with the large search space introduced by the IBM models
can be challenging. Different decoding approaches to deal with this problem have been
reported, we give a very short overview of historical approaches:
• Stack-based approach using priority queues(Berger et al., 1994, 1996a) and the

original IBM models.
• Approach based on the A∗ concept of multiple stacks (Wang and Waibel, 1997,

1998a).
• Approach based on dynamic programming (García-Varea et al., 1998; Nießen

et al., 1998; Germann et al., 2001) with IBM Model 2 parameters.
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• Approach based on monotone translation using HMM model alignments with
dynamic programming based reordering as post-processing step (Tillmann et al.,
1997a,b).

Germann et al. (2001) compares three decoding approaches for IBM Model 4: 1)
Reimplementation of stack based decoder described in (Berger et al., 1996a), 2) greedy
approach that improves upon initial solution 3) conversion of decoding problem into
Integer Program (IP), solved by standard software. (Tillmann and Ney, 2000, 2003)
introduce a Dynamic Programming based beam search decoder that works with the
IBM Model 4 translation model.

2.3 Representing composed translation equivalence

While translation systems can in principle be built directly based on the alignment
models described in the last section, there are good reasons to go beyond them and
introduce composed TEUs as building blocks for translation. In the next subsection
we will first motivate why this step is desirable. We will thereafter also give a formal
description of translation equivalence in machine translation. This provides a formal
basis for the work in this thesis in chapter 4 and 6. As part of this description we will
give a definition of phrase pairs, which form the basis of phrase-based translation and
are the non-hierarchical foundation of hierarchical phrase-based translation (Hiero)
(Chiang, 2005). While phrase-based translation forms a rich and big subfield of
machine translation by itself, here we will not go into detail on all its variants and
improvements but will mainly describe it as a stepping stone to Hiero and its variants,
as discussed in chapter 3.

2.3.1 Motivations for using composed translation equivalence
units

In the last section we discussed alignment models, and we ended with a short
discussion of how these models can be used to directly build word-based translation
models that have already been applied in the past with reasonable amounts of success.
But reconstructing frequent translation patterns entirely from word level translation
equivalence relations is computationally expensive and error prone. When multi-word
constructions (fragments1), are frequent enough to reoccur in data outside the training
material, it is highly advantageous to extract and use these constructions directly
when building translations. This insight was already discovered and tested early in
the parsing community (Scha, 1990; Bod, 1992) but proved to be equally valuable
for statistical machine translation (Och and Ney, 2004). Basic contiguous fragments
known as phrase pairs or phrases are particularly effective for statistical translation,
and are the reason why this type of translation is called phrase-based translation. The
word alignment dictates which groups of words form atomic TEUs that may not be
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broken up. But composing these atomic TEUs into larger fragments (phrase pairs) is
allowed and has many advantages. Some of the main advantages are:

1. The translation of multiple words at once is much less ambiguous than the trans-
lation of the words individually. This is particularly clear for the translation of
idiomatic constructions such as “water bij de wijn doen | making a compromise”.
Such idiomatic constructions could be nearly impossible to translate correctly
without the use of larger fragments.

2. Phrase pairs can reduce translation (decoding) complexity, by reducing the
search space. A large part of the complexity is caused by the reordering
of fragments or words. When entire fragments are reordered as opposed to
individual words, a much larger reordering can be achieved for a relatively much
lower cost in terms of computational complexity.

3. The increased structure obtained from working with phrase pairs facilitates the
usage of reordering features that can be important to improve the higher level
reordering (Tillmann, 2004) and that would be hard to use when working at the
level of individual words .

2.3.2 Translation equivalence in MT
In (Koehn et al., 2003), a TEU is a phrase pair: a pair of contiguous substrings of the
source and target sentences such that the words on the one side align only with words
on the other side (formal definitions next). The hierarchical phrase pairs (Chiang,
2005, 2007) are extracted by replacing one or more sub-phrase pairs, that are contained
within a phrase pair, by pairs of linked variables. This defines a subsumption relation
between hierarchical phrase pairs (Zhang et al., 2008a). Actual systems, e.g., (Koehn
et al., 2003; Chiang, 2007) set an upper bound on length or the number of variables in
the synchronous productions. For the purposes of our theoretical study, these practical
limitations are irrelevant.

We give two definitions of translation equivalence for word alignments.9 The first
one makes no assumptions about the contiguity of TEUs, while the second does require
them to be contiguous substrings on both sides (i.e., phrase pairs).

As usual, f = f1...f J and e = eI ...eI are source and target sentences respectively.
Let f j be the source word at position j in f and ei be the target word at position i in
e. An alignment link a ∈ a in a word alignment a is a pair of positions 〈 j, i〉 such that
1 ≤ j ≤ J and 1 ≤ i ≤ I. For the sake of brevity, we will often talk about alignments
without explicitly mentioning the associated source and target words, knowing that
these can be readily obtained from the pair of positions and the sentence pair 〈f, e〉.

9Unaligned words tend to complicate the formalization unnecessarily. As usual we also require
that unaligned words must first be grouped with aligned words adjacent to them before translation
equivalence is defined for an alignment. This standard strategy allows us to informally discuss unaligned
words in the following without loss of generality.
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Given a subset a′ ⊆ a we define wordsf(a′) = {f j | ∃x : 〈 j, x〉 ∈ a′} and wordse(a′) =

{ei | ∃x : 〈x, i〉 ∈ a′}.
Now we consider triples (f′, e′, a′) such that a′ ⊆ a, f′ = wordsf(a′) and e′ =

wordse(a′). We define the translation equivalence units (TEUs) in the set TE(f, e, a)
as follows:

Definition 2.3.1. (f′, e′, a′) ∈ TE(f, e, a) iff for all 〈 j, i〉 ∈ a′ holds: 〈 j, i〉 ∈ a′ ⇒
(for all x, if 〈 j, x〉 ∈ a then 〈 j, x〉 ∈ a′) ∧ (for all x, if 〈x, i〉 ∈ a then 〈x, i〉 ∈ a′)

In other words, if some alignment link involving source position j or target position
i is included in a′, then all alignments in a containing that position are in a′ as well. This
definition allows a variety of complex word alignments such as the so-called Cross-
serial Discontiguous Translation Units and Bonbons (Søgaard and Wu, 2009).

We also define the subsumption relation (partial order) <a as follows:

Definition 2.3.2. A TEU u2 = (f2, e2, a2) subsumes (<a) a TEU u1 = (f1, e1, a1) iff
a1 ⊂ a2. The subsumption order will be represented by u1 <a u2.

Based on the subsumption relation we can partition TE(f, e, a) into two disjoint
sets: atomic TEAtom(f, e, a) and composed TEComp(f, e, a).

Definition 2.3.3. u1 ∈ TE(f, e, a) is atomic iff @ u2 ∈ TE(f, e, a) : (u2 <a u1).

Now the set TEAtom(f, e, a) is simply the set of all atomic TEUs, and the set of
composed TEUs TEComp(f, e, a) is the set of all TEUs minus the set of atomic TEUs:
TEComp(f, e, a) = (TE(f, e, a) \ TEAtom(f, e, a)).

Based on the general definition of translation equivalence, we can now give a more
restricted definition that allows only contiguous TEUs (phrase pairs):

Definition 2.3.4. (f′, e′, a′) constitutes a contiguous translation equivalence unit iff:

1. (f′, e′, a′) ∈ TE(f, e, a) and

2. Both f′ and e′ are contiguous substrings of f and e respectively.

This set of TEUs is the unrestricted set of phrase pairs known from phrase-based
machine translation (Koehn et al., 2003). The relation <a as well as the division into
atomic and composed TEUs can straightforwardly be adapted to contiguous translation
equivalents.

In Figure 2.5 we see an example of an alignment with only contiguous TEUs,
while in Figure 2.6 another alignment which yields both contiguous and discontiguous
TEUs is shown. For actual translation, we restrict ourselves to phrase pairs (contiguous
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Figure 2.5: Alignment with only contiguous TEUs (example from Hansards English–
French).

Figure 2.6: Alignment with both contiguous and discontiguous TEUs (example from
Europarl English–Dutch).

TEUs) and its generalization hierarchical phrase pairs. The latter category constitutes
phrase pairs with gaps, created by taking a composed phrase pair and replacing some
smaller subsumed phrase pairs in it with variable pairs. While such hierarchical
phrase pairs allow for hierarchical reordering, they are just contiguous TEUs with
variable pairs, and therefore much weaker than actual discontiguous TEUs which allow
for patterns with variables/gaps on the source/target side only without complement
on the other side. The work by (Kaeshammer, 2013) describes synchronous linear
context-free rewriting systems, as an extension of synchronous context free grammars
(basically an extension of linear context-free rewriting systems (Vijay-Shanker et al.,
1987) to the synchronous case), which can deal with discontiguous TEUs at the price
of much higher computational complexity.

2.3.3 Phrase-Based Translation
Alignment Templates

The main foundations for modern phrase-based translation come together in the
work on the alignment template approach to Statistical Machine Translation (Och
and Ney, 2004). Some of the important components used in this approach were
already published earlier (Wang and Waibel, 1998b; Och and Weber, 1998). But
this longer work extends these and presents all main components of current phrase-
based translation in a very structured, complete and clear way. The original alignment
template approach uses bilingual word classes (Och, 1999) inside its rules, substituting
those for the original words, to achieve better generalization and also to save memory
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Figure 2.7: Examples of alignment templates. Following (Och and Ney, 2004) we use
W̃ to indicate the word class assigned to word W.

by reducing the amount of rules. Another important property of this approach is to
represent the internal word alignments as part of the rules. Rules in the alignment
template model (alignment templates) are triples 〈f̃, ẽ, ã〉 consisting of a source class
sequence f̃, a target class sequence ẽ and the alignment between them ã. Figure 2.7
shows examples of alignment templates.

The alignment template model is of historical interest, and the choice to preserve
word alignments inside rules is relevant in the context of this thesis which advocates
applying word alignment information through bilingual reordering labels to improve
word order, as discussed in Chapter 5. Nevertheless, the alignment template model
soon after publication became dominated by the very similar phrase-based translation
model. For the sake of brevity here we omit further details concerning the alignment
template model, and instead next directly discuss the phrase-based model in some more
depth.

Phrase-based SMT

The alignment template model emphasizes the use of word alignments as a central
element of the alignment templates as well as the use of word classes instead of words
inside the templates. The phrase-based model as proposed by (Koehn et al., 2003)
and (Zens et al., 2002) simplifies the model by working with phrase pairs that use
actual words instead of word classes and that don’t keep internal word alignments
explicitly associated with them.10 This leads to a simplified generative process with
three steps, without the preprocessing step of mapping to word classes and without
the word selection step in the end, as shown in Figure 2.8. These three steps form
a generative model, where each step involves decisions that require latent variables
to be modeled probabilistically. In the first step the source sequence of bilingual
word classes is split into K contiguous phrases based on the value of the segmentation

10The internal alignments are used for word selection in the last step of the alignment template model,
but since the phrase based model works with actual words, this last step is not necessary. In the phrase-
based model, alignments are used for computing lexical weights which are similar to the word selection
probabilities in the alignment template model. However, lexical weights are computed already during
phrase extraction and then stored with the phrase pairs, so that the alignments are no longer needed
inside the extracted phrase pairs.
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weet u wanneer ze deze tekst heeft geschreven ?

segmentation ⇓ σ

weet u | wanneer ze | deze tekst | heeft geschreven | ?

phrase selection ⇓ z

weet u | wanneer ze | deze tekst | heeft geschreven | ?

do you know when she that text wrote ?

reordering ⇓ π

weet u | wanneer ze | deze tekst | heeft geschreven | ?

do you know when she wrote that text ?

Figure 2.8: The phrase-based model, generation steps: 1) segmentation 2) phrase
selection 3) reordering. Note that in contrast to the alignment template model, actual
words rather than word classes are used throughout the model, which makes a final
word selection step unnecessary. Also alignments (shown as dotted lines for clarity)
are not retained within phrases.

variable σ ∈ Σ( f ), with Σ( f ) being the set of all possible segmentations. In the second
step for each segment a phrase pair zk = 〈 fk, ek〉 is selected, according to the selection
variable z = zK

1 . Finally, in the last step the selected phrase pairs are reordered as
a permutation πK

1 of the phrase positions 1 . . .K, based on the reordering variable
π = piK

1 . We can then describe the conditional translation probability of an aligned
sentence pair with the following generative model:

p(e| f ) =
∑
σ∈Σ( f )

segmentation︷ ︸︸ ︷
p(σ| f )

phrase selection︷    ︸︸    ︷
p(z|σ, f )

reordering︷        ︸︸        ︷
p(π|z,σ, f ) (2.21)

Assuming all of the phrase pairs involved in the translation of f are independently
applied gives:

p(z = zK
1 |σ, f ) =

K∏
k=1

p(zk = 〈 fk, ek〉| fk) (2.22)
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Every combination of latent variables 〈σ,π, f 〉 yields a different derivation d,
whereby typically there are many different derivations yielding the same translation.
Standardly, for complexity reasons, most models used make the assumption that the
probability P(e| f ) can be optimized through as single best derivation as follows:

arg max
e

P(e| f ) = arg max
e

∑
d∈G

P(e,d | f ) (2.23)

≈ arg max
d∈G

P(e,d | f ) (2.24)

Given a derivation d, most existing phrase-based and hierarchical phrase-based
models approximate the derivation probability through a linear interpolation of a finite
set of feature functions (Φ(d)) of the derivation d. In this approximation, they mostly
work with local feature functions φi of individual productions, the target side yield
string t of d (target language model features) and other heuristic features:

arg max
d∈G

P(e,d | f) ≈ arg max
d∈G

|Φ(d)|∑
i=1

λi × φi (2.25)

Features Phrase-Based Model The phrase-based model uses a range of features,
of which many are highly similar or even identical to those used by the alignment
template model. These features are typically used in a log-linear (discriminative)
model as earlier discussed in this chapter, in subsection 2.1.2. We give an overview
of the most common used features:

• Phrase Translation probabilities: these are estimated by relative frequency
estimation. The probabilities are often computed in two directions: p(ē| f̄ ) and
p( f̄ |ē) 11 for source phrases f̄ and target phrases ē (2.26). The full scores are
computed by multiplying these scores over all selected phrase pairs. In the actual
implementation, this amounts to a summation of logs of probabilities, which
allows for efficient computation. Finally the log of this product is taken to get
the feature scores to be used in a log linear model (2.27):

p(ē| f̄ ) =
count(〈 f̄ , ē〉)∑̄

e′
count(〈 f̄ , ē′〉)

p( f̄ |ē) =
count(〈 f̄ , ē〉)∑̄

f ′
count(〈 f̄ ′, ē〉)

(2.26)

φf|e
PHR = log

K∏
k=1

p( f̄k|ēk) φe|f
PHR = log

K∏
k=1

p(ēk| f̄k) (2.27)

In the above formulas count is the count of the rules in the parallel (training)
corpus.

11In the original work by (Koehn et al., 2003), only the source given target probabilities p( f |e)
are used as, derived from the noisy channel model. But when working with a log-linear model both
directions can be used easily. And since the features are based on heuristic estimation rather than proper
statistical estimation as we discussed before, two imperfect features for both directions are often better
than just one of them for one direction.
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• Reordering model: the phrase-based model uses a phrase-alignment feature that
is known as a distance-based reordering model. For each pair of consecutive
(reordered) phrase pairs on the target side, the distance between the first source
word of the current phrase pair and the last source word of the previous phrase
pair is computed:

d(starti − endi−1 − 1) (2.28)

The phrase-based model then uses this distortion probability distribution d(·) to
assign a probability to each reordered phrase pair separately. These probabilities
are then either multiplied as factors of the total translation probability (Koehn
et al., 2003) or alternatively used as features in a log-linear model. The
distribution for d(·) can be computed as part of a phrase-based joint probability
model (Marcu and Wong, 2002) or alternatively it can be modeled as a simpler
parametric distribution d(x) = α|x| with an appropriate α ∈ [0.1].

A more context sensitive phrase reordering model is proposed in (Tillmann,
2004) and also used in (Koehn et al., 2005). This model assumes the target
sequence is generated from left to right, using blocks (phrase pairs) whose
sources need not be consecutive but can be reordered. This means the ith

block has an (i − 1)th predecessor block, with respect to which the orientation
of the current block can be determined. This orientation can be one of either
monotone, swap or discontinuous. This allows translation to be modeled as
generation of a sequence of blocks with orientations. For this, the model
uses phrase pair specific orientation probabilities for blocks with monotone or
swap orientation. These orientation probabilities are estimated with relative
frequency estimation from the aligned training corpus, and are used to extend
the basic product of individual phrase weights and target side language model
probabilities. Because the orientation probabilities are phrase pair specific and
therefore depend on the lexical context of phrase pairs, the proposed model is
also known as a lexicalized reordering model. For blocks with discontinuous
orientation, no special reordering scoring is applied. This method shows
significant improvement over 1) allowing no reordering or 2) using only the
language model to score reordering decisions.

A hierarchical phrase reordering model extending to the previous phrase
reordering model is proposed by Galley and Manning (2008). This model
determines the orientation for each translated block by seeing if an adjacent
hierarchical block can be found that precedes (monotone) or follows (swap) the
block on the source side. A hierarchical block is formed by merging phrase pairs
that translate a consecutive span of directly preceding target words into a bigger
phrase pair. The fall-back orientation discontinuous only needs to be used in
the rare case that no such block can be found. During decoding, an instance
of the shift-reduce algorithm is used to efficiently look for possible hierarchical
phrases that yield the reordering obtained by the translation, allowing quadratic
running time. Based on this algorithm, the new reordering method can be readily
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implemented in a left-to-right phrase-based translation system such as Moses. In
the authors experiments it gave significant improvements in translation accuracy
on the Chinese–English and Arabic–English translation tasks. The authors
compare their algorithm with (Tillmann, 2004) and also with the simpler word-
based orientation model, that is standard in Moses (Koehn et al., 2007), which
determines block orientations by looking at the word alignment positions of the
source word that directly precedes the block and the one that directly follows it.

• Lexical Weighting: for a phrase pair 〈 f , e〉, lexical probabilities are computed
to smooth the phrase probabilities. First lexical weights w( f |e) for word
translations are computed with simple relative frequency estimation based on
the aligned word pairs taken from the word-aligned sentence pairs (2.29). With
the help of the word alignments a for a phrase pair, these lexical weights are
used to compute for every target word the average lexical weight over its aligned
source words, and these averages are multiplied to get the total lexical weight
for the aligned phrase pair pw( f̄ |ē, a) (2.30). When there are multiple alternative
alignments for a phrase pair, the score for the alignment that gives the highest
total lexical weight p̂w( f̄ |ē) is taken for it (2.31). Finally, to get the total lexical
weight φf|e

LEX of a translation, all the lexical weights for the phrases used in the
translation are multiplied. When used as a feature inside a log-linear model
the log of this total weight is taken (2.32). As is the case for phrase weights,
lexical weights are often computed in two directions. This means an analogously
computed feature φe|f

LEX is typically also added.

w( f |e) =
count( f , e)∑

f ′
count( f ′, e)

(2.29)

pw( f̄ |ē, a) =

n∏
i=1

1
|{ j|(i, j) ∈ a}|

∑
〈i, j〉∈a

w( fi|e j) (2.30)

p̂w( f̄ |ē) =max
a

pw( f̄ |ē, a) (2.31)

φf|e
LEX =log

K∏
k=1

p̂w( f̄ |ē) (2.32)

• Language Model: strong language models play a major role in producing high
quality translation output. The Markovian n-gram language models score the
produced target output across phrase boundaries, which is crucial for producing
fluent output. Because of the conditioning on words across state boundaries,
the integration of the language model in the decoding process adds a lot of
complexity, because it necessitates the search hypotheses to keep the state of the
language model. While originally a trigram language model was used (Koehn
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et al., 2003), nowadays it is best practice to use at least a 4-gram if not 5-
gram language model and smooth with modified Knesser-Ney discounting. A
description of this common setup and an overview of language models frequently
used in MT is found in (Chen and Goodman, 1998).

• Word and phrase penalties: In addition to the word penalty that was introduced
already for the alignment template model, a phrase penalty can be used to count
the number of used phrases, and thereby allow the tuner to indirectly learn
a preference for the relative length (in source words) of phrase pairs used in
constructing translations.

Search Finding the best translation is implemented as beam search which
means breadth-first search with pruning. This search can be conceptualized as a
graph search in which three actions are possible : 0) creating an initial (empty)
hypothesis 1) extending a hypothesis, by applying a phrase pair to translate
some untranslated words, creating a new extended hypothesis 2) finishing the
translation of a sentence.

For each of these actions the relevant features are applied as far as possible.
Furthermore, a function that computes an admissible heuristic of the future cost
of finishing incomplete translations is used. This function is crucial in reducing
the amount of serious search errors due to discarding the wrong hypotheses
during pruning. The chance of search errors is decreased by keeping different
search stacks, one stack for every number of source words ns with ns = 1 . . . J
that has been translated. Efficient search is then furthermore facilitated by
different types of pruning:

1. Observation pruning: only the most likely words are selected for template
instantiation (Tillmann and Ney, 2000).

2. Histogram pruning: a maximum number of n hypotheses is kept on every
stack (Steinbiss et al., 1994).

3. Threshold pruning: a fixed threshold α is kept for every stack, and any
hypothesis which has a score that is α times worse than the best one in the
stack is pruned out.

A last key component of efficient search is hypothesis recombination. Multiple
hypotheses can be recombined, keeping only the best scoring one, when they
are identical or indistinguishable by the language and translation models.12 This
condition guarantees that no extension of one of the inferior hypotheses can ever
beat the same extension of the best hypothesis in the future, even though the
hypotheses might not have the exact same target output.

12Hypothesis recombination assumes a search for the single best derivation. In a Minimum Bayes-
Risk (MBR) decoding setting, where some form of summation over derivations that yield the same
output is done, these sufficient conditions for hypothesis recombination no longer hold.
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2.3.4 Feature Weights Training
Learning effective weights for the features used in Statistical Machine Translation is a
crucial component in the creation of effective translation systems. Early phrase-based
translation systems used pure probabilistic models with only a tiny amount of core
features. The move to more general log-linear models with more features, trained in
a discriminative way, was mainly the introduction of effective feature weights training
methods such as Minimum Error Rate Training (MERT) (Och, 2003) and maximum
entropy models (Berger et al., 1996b; Och and Ney, 2002) that enabled the effective
tuning of a more than tiny, but still very modest number of features. The ability to
effectively use more substantial numbers of features has only been obtained recently
with the adoption of large scale discriminative learning algorithms such as the margin
infused relaxed algorithm (MIRA) (Crammer and Singer, 2003) and in particular its
general availability for machine translation, implemented as a batch-tuning variant
(Cherry and Foster, 2012).

Although feature weights learning has a crucial supporting role for the experiments
in this thesis, these methods are used as a finished component and the thesis makes
no further contribution to their development.13 With these considerations in mind,
and only a limited amount of space available, we will next very briefly discuss only
the most popular tuning methods MERT and MIRA. The reader is then referred to
Appendix A.2 for a deeper and much more complete overview of these methods.

MERT MERT (Och, 2003) is a discriminative feature weights training method that
directly minimizes the translation error. This is done by repeatedly performing a
line search, along a line in the N-dimensional search space of feature weight values.
The weight optimization is done using N-best lists of best translations produced on a
development set, and the new N-best list is incrementally merged with older N-best
lists for earlier iterations during optimizations. This incremental merging is done to
guarantee stable conversion towards a local optimum over all translations that are seen
so far, and avoid optimization for only translations seen in the current iteration. MERT
is a greedy optimization algorithm, essentially a form of hill-climbing (Russell and
Norvig, 2003). The fact that MERT in its core only optimizes the weights along a line
(i.e. one dimension at a time) makes it inherently unable to scale up to a large number
of features (beyond 15 features problems start, and tuning more than 30 features is
practically impossible).

MIRA The Margin Infused Relaxed Algorithm (MIRA) was first used by (Watanabe
et al., 2007) and later refined by (Chiang et al., 2008, 2009; Chiang, 2012). MIRA
builds upon on the two fundamental concepts of cost (or loss) and margin. The cost

13The experiments in this thesis use an approach called soft constraints, which will be discussed in
the next chapter. The form of this approach adopted in the experiments is only feasible thanks to the
availability of reliable, scalable feature weights training methods. This dependence makes it relevant to
be familiar with the principles behind these methods, and have some understanding of their strengths
and limitations.
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of choosing a translation given some oracle translation and a reference is defined as
the difference between their scores on some evaluation metric, given the reference.
The margin, or distance in model scores, between a candidate translation and oracle
translation is defined as the summed differences of their feature values multiplied
by their feature weights. Conceptually, the aim of MIRA is to separate all pairs of
reachable hypotheses 〈h1, h2〉 in such a way that the margin between them is at least
as big as the cost of choosing h1 in place of h2. Such a separation guarantees that
not just one best hypothesis get the highest weight, as in MERT, but also globally
the hypothesis space is properly structured such that lower quality hypotheses will
have correspondingly lower model scores. This leads to a much higher stability of the
optimization, and allows this method to scale to millions of features.

Summary and outlook

In this chapter we covered the basics of statistical machine translation, concentrating on
word alignment, translation equivalence and phrase-based models. In the next chapter
we continue by looking at hierarchical SMT and synchronous grammars. We will first
discuss the basic methods and formalisms for hierarchical SMT. We will then zoom
in on work that attempts to improve composition and reordering in hierarchical SMT,
emphasizing on methods that use a form of rule labeling to do so.





3
Background Hierarchical SMT and

Synchronous Grammars

The human language interpretation process has a strong preference for
recognizing sentences, phrases and patterns that have occurred before.
Structures and interpretations which have occurred frequently are preferred
above alternatives which have not or rarely been experienced before.
All lexical elements, syntactic structures and "constructions" which the
language user has ever encountered, and their frequency of occurrence, can
have an influence on the processing of new input. The amount of information
that is necessary for a realistic performance-model is therefore much larger
than the grammars that we are used to. The language-experience of an adult
language user consists of a large number of utterances. And every utterance
contains a multitude of constructions: not only the whole sentence, and all
its constituents, but also all patterns that we can abstract from these by
substituting "free variables" for lexical elements or complex constituents.

– Remko Scha, Language theory and language technology;
competence and performance.

At the end of the previous chapter we discussed phrase-based translation, which
has yielded big improvements over word-based models by allowing the reuse of con-
secutive bilingual patterns longer than word pairs. While successful for many language
pairs, this model is still suboptimal when modeling the translation of language pairs
with big differences in word order. In this chapter we will look at hierarchical
translation methods that strive to overcome some of the major shortcomings of the
phrase-based method in this respect.

In the translation of new sentences from previously seen phrases, phrase-based
translation builds upon the general framework of machine learning. A crucial
assumption of this framework is that the training data must be representative for future
test data. Here, the bilingual training set must be representative for the bilingual
patterns that are observed in the future. In particular, new data should contain a

53
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sufficient amount of earlier observed phrase pairs bigger than word pairs. When both
languages of a language pair come from the same language family, such as for French-
English, this is a valid assumption. But for language pairs involving languages with a
lot of morphology, such as Arabic or Hebrew, this assumption becomes problematic.
Such language pairs may benefit from approaches that stay closer to the original
word-based translation formalism in combination with more flexible constraints, as
illustrated by (Ittycheriah and Roukos, 2007). But rich morphology is not the only
challenge for phrase-based translation. Language pairs that involve a substantial
amount of non-local reordering, such as Chinese–English and German–English1 can
also be hard to grasp with phrase-based translation. Language pairs involving a
language with a more free word order on the source side, such as German or Dutch
also reduce the success of phrase-based translation. The main reasons for these word
order and reordering related problems are:

1. Modeling long-distance reordering with phrase-based models has a high compu-
tational complexity.

2. Phrase-based models in their basic form fail to embed non-local reordering
decisions in a wider context. While some remedies to this problem are available
(Tillmann, 2004), in general phrase-based structure is not designed to model the
global, hierarchical reordering that certain language pairs require.

3. A more free word order of the language on the source side means that there is
more variation in translation input patterns, decreasing the chance that larger
phrase pairs are reusable. This means that the model has to rely more on smaller
phrase pairs, which compromises translation quality.

These problems, which highlight some of the main shortcomings of phrase-
based translation motivated hierarchical phrase-based translation (Chiang, 2005, 2007)
called Hiero as well as syntactic translation methods such as string-to-tree translation
(Galley et al., 2004), tree-to-string translation (Huang et al., 2006) and forest-to-string
translation (Mi et al., 2008a). In this chapter we discuss hierarchical translation
methods, focusing on Hiero and labeled variants of it. We start by discussing
synchronous context-free grammars (SCFGs) and then continue with hierarchical
SMT (Hiero) and syntax-augmented machine translation (SAMT) (Zollmann and
Venugopal, 2006). Following the discussion of SAMT, we review a range of other
labeling methods for Hiero. We end the chapter with some other important techniques
that have been used in combination with Hiero, obtaining large gains in the quality of
the word order of the produced translations.

1In fact, German–English and English–German have both a rich morphology, as well as non-local
reordering, and furthermore these two elements interact. This makes these language pairs particularly
hard to work with, as they essentially demand an approach that considers morphology and reordering
together. Our approach discussed in chapter 5, considers word order but ignores morphology, which
while better than the baseline, remains suboptimal for this language pair.
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3.1 Synchronous Context-free Grammars

Statistical parsing builds on (statistical) CFGs and stronger grammar formalisms
such as Tree-Substitution Grammars (Bod, 1992; Sima’an et al., 1994; Bod, 2003;
Bod et al., 2003) and Tree-Adjoining Grammars (Joshi et al., 1975; Joshi, 1985;
Joshi and Schabes, 1997). These monolingual syntactic approaches can be extended
to a bilingual setting. This allows bilingual strings to be generated or recognized
and enables translation and tree-transduction based on grammars. For context free
grammars, different proposals for extensions to the bilingual setting were made early
in the literature. These include syntax directed translation (Aho and Ullman, 1969)
and syntax directed transduction (Lewis and Stearns, 1968). Another influential
extension is inversion transduction grammars (ITGs) (Wu, 1997). Other more
recently proposed extensions are Multitext Grammars (Melamed, 2003) and the earlier
mentioned synchronous linear context-free rewriting systems (Kaeshammer, 2013).
But the stronger monolingual grammar formalisms can also be extended to the
bilingual setting. Synchronous Tree Adjoining Grammars (Shieber and Schabes, 1990)
extend Tree Adjoining Grammars to allow bilingual parsing and Synchronous Tree-
Substitution Grammars (Poutsma, 2000; Eisner, 2003) produce string pairs based on
syntactic subtrees which gives the complete source and target trees more freedom to
diverge in terms of structure.

SCFGs (Aho and Ullman, 1969) are an attractive formalism for the modeling of
translation. With their recursive translation rules and thanks to nonterminals, SCFGs
naturally capture compositional translation equivalence relations and long distance
reordering. Formally a SCFG G is defined as the tuple 〈N, E, F,R, S 〉, with:

• N: A finite set of non-terminals.
• S ∈ N: the start symbol.
• E/F: Finite sets of words for the source/target language.
• R: A finite set of rewrite rules.

The rules ri ∈ R are of the form:

ri : Ls||Lt →< γi, αi, θi >

Here Ls||Lt is a pair of linked source and target nonterminals (possibly the same) 2

forming the left-hand-side of the rule. Next γi and αi are sequences of both nonterminal

2The fact that general SCFGs allow different non-terminals on the source and target side is often
glossed over in formal descriptions in the SMT literature. While concatenation of the source and target
nonterminal into one unit (since the two are anyway linked) may be used during implementation, at
least from the point of view of probability estimation it is important to note that it may make a lot of
difference which labels are added on what side, and copying the same label to both sides may not always
be a good default. Another argument to keep the two apart is that this may help in making more effective
rule-bins when pruning partial derivations during decoding.
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S → das X1 || X1 there NP-NN→ nicht || nothing

X → VBZ1 NP-NN2 VBN 3 || NP-NN2 VBZ1 VBN 3 VBZ → wurde || has
VBN → verändert || changed

Figure 3.1: A SCFG rule set for the inversion of VBZ and NP-NN in German to English
translation of the sentence “das wurde nicht verändert || nothing has changed there”.

and terminal symbols, while θi is a bijective function3 from nonterminals in γi to
nonterminals in αi. The type of SCFGs that is used in translation contains nonterminal
tokens chosen from a finite set of nonterminal types, and word tokens taken from a
finite set of word types.

Weighted SCFGs Hierarchical Statistical Machine Translation works with weighted
SCFGs4. Weighted Synchronous Context-Free Grammars add for every rule ri a vector
of features ~φi, so that the ith rule of such a grammar is denoted:

ri : Ls||Lt →< γi, αi, θi, ~φi >

~φi quantifies in particular the phrase- and lexical-probabilities of translating
between γi and αi but also counts, binary features and any other informative features
that can somehow be expressed as a function of the rule or the translation context. The
feature vectors make the grammar into a log-linear model with weights that can be
discriminatively tuned. Unless otherwise stated, when we use the term SCFGs in this
thesis we will refer to the weighted version.

Binary SCFGs

The rank of a CFG/SCFG rule is defined as the number of nonterminals / nonterminal
pairs it contains on its right-hand side. The rank of a CFG/SCFG as a whole is defined
as the maximum rank amongst the rules it contains. For a CFG it is always possible
to convert it into a (weakly) equivalent CFG with rank two or less (Chomsky Normal
form). Also any SCFG of rank 3 can always be converted into a SCFG of rank 2 by
binarization. For example, in Figure 3.1 we show such a SCFG for German to English
translation. When we binarize this, we get the SCFG displayed in Figure 3.2.

3A bijective function is a function giving an exact pairing of the elements of two sets. Every element
of one set is paired with exactly one element of the other set, and every element of the other set is paired
with exactly one element of the first set. There are no unpaired elements. In formal mathematical terms,
a bijective function f : X → Y is a one to one and onto mapping of a set X to a set Y.

4The term weighted is used to emphasize the fact that these grammars work with rules with a set
of features with associated weights, corresponding to a log linear model. Using this more general form
allows these models to be trained and applied in a discriminative way, using a very heterogeneous set of
features, while automatically learning which features are useful for improving the translation quality.
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S → das X1 || X1 there NP-NN→ nicht || nothing

X → X’1 VBN 2 || X’1 VBN 2 VBZ → wurde || has

X′ → VBZ1 NP-NN2 || NP-NN2 VBZ1 VBN → verändert || changed

Figure 3.2: Binarized version of the rule set shown in Figure 3.1.

However, SCFG rules with rank ≥ 4 are not always binarizable. For example the
rule

A→ A1 B2 C3 D4 || C3 A1 D4 B2 (3.1)

cannot be binarized. And while this construction is just given as an example, in
fact real data contains many non-binarizable constructions as we will see in chapter
6 despite earlier suggestions that such patterns should be very rare and that most rules
should be binarizable (Wu, 1997; Huang et al., 2009). While not all valid SCFG rules
are binarizable, restriction to well chosen binary SCFGs offers an adequate balance
between flexibility and complexity constraints. A particularly successful grammar
formalism that has been applied in its original form and variations upon it for many
applications and language pairs is introduced next.

Inversion transduction grammars

The usability of stochastic binarizable synchronous grammars for many tasks including
segmentation, word alignment and bracket annotation was established by (Wu, 1995,
1997). This work introduced a particular type of binarizable synchronous grammars
called inversion transduction grammars (ITGs) . Later it was shown that ITG also
forms a strong basis for adequate and efficient translation of language pairs with
considerable word order differences, in particular when lexicalization of rules is
applied (Chiang, 2005). In their most general form ITGs can contain any rules of
the form

X → α1E1
1α2E2

2 . . . αnEn
nαn+1 || β1F 1

1 β2F 2
2 . . . βnF n

n βn+1

X → α1E1
1α2E2

2 . . . αnEn
nαn+1 || β1F n

1 β2F n-1
2 . . . βnF 1

n βn+1

that rewrite some linked pair of nonterminals X = EqFr as a list of source nonterminals
E1 . . . En that is linked pairwise with the list of target nonterminals F1 . . . Fn, such that
the order of the former is either completely monotone or completely inverted relative to
the latter. The symbols α1 . . . αn+1 and β1 . . . βn+1 indicate optional source/target strings
of words. These words provide optional lexicalization of the rules. Importantly, (Wu,
1997) also shows that any ITG can be transformed into an equivalent normalized ITG
that involves only binary rules and terminal rules producing pairs of (possibly empty)
linked strings. Using a simplified notation where [ ] indicates straight reordering rules
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and 〈 〉 indicates inverted rules, such normal form ITG (NF-ITG) grammars have the
form5:

A→ [BC] A→ 〈BC〉 A→ e / f

SCFG Algorithms

While SCFGs are closely related to CFGs, the complexity of SCFG algorithms in
general increases exponentially with the rank of the grammars. (Satta and Peserico,
2005) show that both parsing and decoding with arbitrary SCFGs is NP-hard. But in
the case of binary SCFGs both tasks can still be done in polynomial time, which make
this subset of general SCFGs particularly attractive for use in practical applications.

Parsing Parsing of SCFGs can be done based on an adapted version of the CYK-
algorithm (Cocke, 1969; Younger, 1967; Kasami, 1965) in O(n6) time for binary
SCFGs, with n the length of the source/target strings. The running time also
scales linearly with the number of grammar rules |G|.6 Dyer (2010) proposes an
alternative way to implement synchronous parsing, based on two consecutive rounds
of monolingual parsing. First the source side is parsed with the translation grammar,
producing an intermediate hypergraph of translations unconstrained by the target. Then
this hypergraph is converted into a (highly specific) SCFG, which is used next to
parse the target side, thereby creating a final hypergraph that is constrained by both
source and target. This approach, while not improving the theoretical complexity of the
algorithm, in practice substantially outperforms other synchronous parsing algorithms
including the synchronous CYK-algorithm (Wu, 1997) and a more recent approach by
Blunsom and Osborne (2008) derived from cube pruning (Huang and Chiang, 2007).

Decoding Decoding is the core task of Machine Translation, in which for a given
source input sentence the most likely7 target output is to be found. While bilingual
parsing is already complex, the interaction with the language model during decoding
makes the complexity of decoding even much higher.8

The basic complexity of general SCFG decoding with an integrated m-gram
language model is O(|w|3+2n(m−1)) (Huang et al., 2009). With |w| the number of source
words in the input, and n the rank of the SCFG. But Huang et al. (2005) show that using
an optimization called the “hook trick” the complexity of SCFG parsing for SCFGs can

5Skipping here productions involving the empty token in one of the two stings, for brevity.
6But since this is a constant it is normally not part of the complexity formulas.
7Or highest scoring derivation, in the typical log-linear framework setup.
8While most decoders integrate the language model re-scoring with decoding process, it is also

possible to first build an un-scored translation hypergraph and next intersect it with the language model,
which is the approach advocated by (Dyer et al., 2010). Nevertheless, this neither fundamentally changes
theoretical decoding complexity nor actually observed running time of this method as compared to other
decoders that use integrated language models (Heafield, 2013).
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be lowered to:
O(|w|3(m−1)+2(n+1)) (3.2)

Once again, in both cases the running time also scales linearly with the number of
grammar rules |G|.6. The hook trick re-factors the computation done during decoding,
reducing the maximum number of interacting variables in any computation step. The
authors remark however that there may be problems due to the interaction of the hook
technique with pruning methods: “Building the chart items with hooks may take more
time than it saves if many of the hooks are never combined with complete constituents
due to aggressive pruning.” This suggests that this theoretical complexity may be
somewhat optimistic in practice. As (Huang et al., 2009) mention, when binarization of
SCFG rules is possible, it is an important step to reduce the computational complexity
of translation. Yet as mentioned before, binarization is not always possible and an
complexity grows exponentially with the SCFG rank, even in the most optimistic
complexity formula given in equation 3.2. This means that it may be better to explicitly
restrict ourselves to only binary branching grammars beforehand, even if it may mean
losing the ability to correctly represent certain reordering phenomena. This approach
taken by the earlier discussed inversion transduction grammars (ITGs) is also followed
by the derived Hiero grammar, which we will discuss in the next subsection.

Expectation Maximization The parameters of a synchronous grammar can be
estimated given a corpus of sentence pairs using the EM algorithm. The expected
counts of all rules must be computed for all rules of the SCFG given the current
estimate. For this, a modified version of the Inside-Outside algorithm can be used
(Baker, 1979; Lari and Young, 1990), which has the same complexity as SCFG parsing
(O(n6) for binary SCFGs). Overfitting can be a problem for estimating SCFGs with the
EM algorithm, as it is for (synchronous) tree-substitution grammars, while for the latter
the problems are typically more severe. Using a variant of the EM algorithm called
Cross-Validated EM (Mylonakis, 2012) can be one way to overcome these problems.7

3.2 Hierarchical Statistical Machine Translation

Hiero SCFGs (Chiang, 2005, 2007) allow only up to two (pairs of) nonterminals on
the right-hand-side (RHS) of synchronous rules. The types of permissible Hiero rules
are:

X → 〈α, δ〉 (3.3)
X → 〈α X1 γ, δ X1 η〉 (3.4)
X → 〈α X1 β X2 γ , δ X1 ζ X2 η 〉 (3.5)
X → 〈α X1 β X2 γ , δ X2 ζ X1 η 〉 (3.6)



60 3. Background Hierarchical SMT and Synchronous Grammars

Here α, β, γ, δ, ζ, η are terminal sequences. These sequences can be empty, except for
β, since Hiero prohibits rules with nonterminals that are adjacent on the source side.
Hiero also requires all rules to have at least one pair of aligned words. These extra
constraints are intended to reduce the amount of spurious ambiguity. Equation 3.3
corresponds to a normal phrase pair, 3.4 to a rule with one gap and 3.5 and 3.6 to the
monotone and inverting rules respectively.

Given an Hiero SCFG G, a source sentence f is translated into a target sentence e
by one or more synchronous derivations d, each of which is a finite sequence of well-
formed substitutions of synchronous productions from G, see (Chiang, 2006, 2007).
The goal of finding the most likely translation is then replaced by the somewhat simpler
problem of finding the most likely derivation d:

arg max
d∈G

P(e,d | f) (3.7)

We parse f with G so we limit the space of derivations to those that are licensed by G for
f, and so we have P(e,d | f) = P(d) (e is the sequence of target terminals generated by
d). Following Och and Ney (2002), a log-linear model over derivation d computes the
probability of a derivation as a product of weighted features φi for that derivation. Apart
from the language model feature φLM, every other feature φi is defined as a product over
a function applied at the individual rule level. The total derivation probability is then
computed by multiplying the weighted language model probability PLM(e)λLM with the
product over the other features, weighted by their feature weight λi:

P(d) ∝ PLM(e)λLM ·
∏
i,LM

∏
(X→〈α,δ〉)∈d

φi(X → 〈α, δ〉)λi

= PLM(e)λLM ·
∏

(X→〈α,δ〉)∈d

∏
i,LM

φi(X → 〈α, δ〉)λi (3.8)

By rearranging the two products, we obtain a product ranging over individual rule
features. Apart from the language model feature, all other weighted features can be
multiplied together for every rule separately, giving individual rule weights which are
computed efficiently. Unfortunately, the computation of P(d) demands multiplication
with the language model probability PLM(e), which is not defined in terms of individual
rules. This adds considerable complexity to the decoding process, and for this reason
approximation is necessary in the form of beam-search with pruning, e.g., cube-
pruning (Huang and Chiang, 2007; Chiang, 2007).

3.3 Extensions to Hiero
In this section we will look at relevant work that improves the word order produced by
hierarchical statistical machine translation. We will focus on a selection of work that is
either in some way close in terms of techniques or ideas to the work in this thesis, such
as (Chiang, 2010) and (Huck et al., 2013) or has in one or more ways been influential
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to our work, such as (Zollmann and Venugopal, 2006) and (Mylonakis and Sima’an,
2011). As one guideline, we mainly focused on relevant extensions to Hiero, yet not
so much on strict syntactic models, but rather on approaches that label Hiero rules. We
will now describe our criterion to distinguish strict syntactic models from models that
refine Hiero rule labels with or without the use of syntax. A strict syntactic model is a
model that makes syntax so central to its approach as to reject rules from the grammar
that are accepted by Hiero, because of syntactic constraints. Some models such as
SAMT and Hiero extended with soft syntactic constraints (Chiang, 2010) have a clear
syntactic flavor. Yet they are still very close to Hiero because they use the same set
of translation rules. The only difference between these models and Hiero is that the
rules are enriched with syntactic labels that are used as hard or soft constraints during
decoding.

Because of constraints of space we are unable to do justice to all work that may be
relevant or related to our work in this thesis. In particular, we realize that there is a lot
of work on:

• Inversion transduction grammars.

• Tree-to-string models.

• String-to-tree models.

• Tree-to-tree models.

which we want to mention here, without having space to go into detail for separate
publications.

Inversion transduction grammars (ITGs) (Wu, 1997, 1995) were applied to trans-
lation in (Wu and Wong, 1998). Zhang and Gildea (2005) proposed a lexicalized
variant of ITGs, used for word alignment. Tree-to-string models (Huang et al., 2006;
Liu and Gildea, 2008; Langlais and Gotti, 2006; Nguyen et al., 2008; Zhang et al.,
2007a; Hopkins and Kuhn, 2007), use a rich representation of the source side to
produce unannotated target translations. String-to-tree models (Galley et al., 2004;
M.Galley et al., 2006; Marcu et al., 2006; Huang and Knight, 2006; DeNeefe et al.,
2007; Williams and Koehn, 2011), use syntactic trees on the target side to facilitate
grammatically coherent output and use syntactic properties to ground reordering. Tree-
to-tree models (Imamura et al., 2005; Nesson et al., 2006; Zhang et al., 2007b; Shieber,
2007; Mi et al., 2008b; Liu et al., 2009; Ambati et al., 2009), use syntax on both
sides, trying to make the most of available syntactic information. This is just a limited
selection of the work not further discussed in this thesis.

3.3.1 Syntax-augmented Machine Translation
Syntax-augmented machine translation (SAMT) (Zollmann and Venugopal, 2006) was
the first approach to syntactically enriched translation that managed to outperform the
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VP → NP1 zur kenntnis || taken note of NP1

NP → NP1 man VB2 kann || NP1 we can VB2

X → AUX1 nicht einzusehen , X2 || AUX1 hard to see X2

VP → zur erreichung NP1 || to work towards NP1

X → JJ1 feststellung MD2 wir || JJ1 thesis that we MD2

NP → NP1 einer frau VBG2 || a woman VBG2 NP1

X → in NP1 behandelt AUX2 || AUX2 given consideration in NP1

NP → ein mensch || a man

Figure 3.3: SAMT (SCFG) rules for German–English, with single constituent labels
and the default X label.

NP → NP/NN 1 geschichte || NP/NN 1 story

X → X1 einen JJ + NN 2 gemacht haben ||

have made a JJ + NN 2 X1

NN + PP → entwicklung JJ + NNS 1 der NNP2 union ||

evolution of NNP2 union JJ + NNS 1

X → DT + NNS 1 nicht NP/PP2 auf ||

not NP/PP2 about DT + NNS 1

NP + NN → haushalt der europäischen union || the european union budget

Figure 3.4: SAMT rules for German–English, with single constituent labels,
compound nonterminal labels and the default X label.
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strong Hiero pipeline. While initially the improvements were not large, the main point
is that there were improvements at all. This is in stark contrast with other syntactic
approaches that often do not even report comparisons against Hiero (Galley et al.,
2004; Wang et al., 2010; Williams et al., 2014) including recent work. One important
reason why syntax can harm performance is suggested by (Koehn et al., 2003). Their
work shows that enforcing syntax as a constraint when selecting phrases decreases
performance of phrase-based systems. Syntactic systems typically only allow rules
that are consistent with the syntax, which means many rules available in Hiero are
not allowed, and hence coverage is lost and with it also performance. The fact
that re-structuring, re-labeling and binarization increase performance (Wang et al.,
2010) seems to support the hypothesis that loss of coverage is the main reason that
syntactic SMT often does not manage to catch up with Hiero. SAMT diverges from
mainstream syntactic SMT by starting from Hiero as the basis, but replacing the Hiero
X labels with syntactic labels. SAMT uses a heuristic labeling scheme reminiscent
of Categorial Grammar (Hillel, 1953; Steedman, 1987, 2000). This scheme allows
it to assign a, possibly compound, syntactic label to most phrases. When even no
compound label can be formed using the heuristic scheme, the Hiero X default label
is simply used. This assures that all rules in a Hiero grammar are also present in the
corresponding SAMT grammar, only typically with different labels. Figure 3.3 shows
examples of SAMT rules with single constituents as labels. Examples of rules with
compound labels are shown in Figure 3.4.

SAMT Labeling Algorithm

We will now look at the algorithm that SAMT uses to form labels for target (or
source) spans given a target (or source) constituency parse. As an example, consider
the source-target sentence pair 〈 “die Rechtsprechung ist konsistent und klar.”,“the
jurisprudence is consistent and clear.”〉 which has a completely monotonic word
alignment. The parse for the target side is shown in Figure 3.5a, with Figure 3.5b
showing the SAMT labels produced for different spans using this parse. The algorithm
that finds a SAMT label given a parse tree and a span is a heuristic procedure. It
first extracts a table of constituents from the parse tree, and then uses this table to form
heuristic labels. To find a label, the algorithm uses the first applicable strategy amongst
a list of alternatives ordered by decreasing preference:

1. NT1: Get a proper constituent for the span.

2. NT1 + NT2: Find a partition into two subspans that both correspond to
constituents.

3. NT1/NT2 or NT2\NT1: Find the smallest extended span (to the left or right)
that allows a Categorial Grammar style label

• NT1/NT2: NT1 missing a NT2 on the right
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(a) Target parse.

Begin\End 0 1 2 3 4 5 6
0 DT NP NP+AUX NP+AUX+JJ FAIL NP+VP S
1 — NN NN+AUX NN+AUX+JJ FAIL NN+VP DT\S
2 — — AUX AUX+JJ VP/JJ VP VP+.
3 — — — JJ JJ+CC ADJP ADJP+.
4 — — — — CC CC+JJ CC+JJ+.
5 — — — — — JJ JJ+.
6 — — — — — — .

(b) SAMT labels.

Figure 3.5: Constituency parse for the target side “the jurisprudence is consistent and
clear .”, and SAMT label chart produced from this target parse for the different target
spans. The start of a span [begin,end] is indicated in the row headers, and the end in
the column headers. Spans are only valid if begin ≤ end.

• NT2\NT1: NT1 missing a NT2 on the left.9

4. NT1 + NT2 + NT3: find a partition into three subspans that all correspond to
constituents. (If “double-plus style” labels are allowed.)

5. X: No reasonably simple syntactic label could be found, return the default label.

The pseudocode for the SAMT labeling procedure is shown in Algorithm 11, in
Appendix A.3. As an example, consider the span [2, 5] which is a VP as can be
verified from the parse tree, and read from the table. Similarly for span [5, 5] there
is a JJ. As expected the table shows that we get a label VP/JJ for span [2, 4] formed
by subtracting the missing JJ on the right from VP. Analogously, the parse shows
that the span [1, 6] is an S missing a DT on the left, and indeed the table shows that
correspondingly the label DT \S is assigned to it.

9CCG (Steedman, 2000) uses NT1\NT2 in place of NT2\NT1, to indicate that NT1 misses NT2 on
the left. The different notation used by SAMT, which places the argument itself to the left in this case
can be confusing to people that are used to CCG notation.
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SAMT Features

In this section we describe the features we use in our experiments. To be unambiguous
we first need to introduce some terminology. Let r be a translation rule. We use p̂
to denote probabilities estimated using simple relative frequency estimation from the
word-aligned sentence pairs of the training corpus. The function un removes labels
from nonterminal symbols. Then srcexc(r) is the source side of the rule (excluding the
source side of the left-hand-side label). Similarly tgtexc(r)) is the target side of the rule
(excluding the target side of the left-hand-side label).10 SAMT uses the following basic
rule probability features:

• p̂(r|lhs(r)) : Probability entire rule given left-hand side label11

• p̂(r|srcexc(r)) Probability entire rule given only source side
• p̂(r|tgtexc(r)) Probability entire rule given only target side

As well as the following smoothing features:

• p̂(r|un(srcexc(r))), p̂(r|un(tgtexc(r))): Probability entire rule given unlabeled
source/target side

• p̂(un(tgtexc(r))|un(srcexc(r))), p̂(un(srcexc(r))|un(tgtexc(r))): Phrase probabilities
using unlabeled phrases, as used by Hiero

• p̂w(tgt(r)|src(r)), p̂w(src(r)|tgt(r)): Lexical weights based on terminal symbols
as for phrase-based and hierarchical phrase-based MT

In addition a set of standard features such as word-, rule- and rarity-penalties are added
as well as some additional binary features. These additional features are also used by
our own system and are described in more detail in section 5.4.1. The labeled rules used
by SAMT can become very sparse, especially for rarer rules, causing the unsmoothed
features to be unreliable. The smoothing probabilities play an important role in
compensating for this. The effective usage of these smoothing features, tuned with
MERT, is the second way in which SAMT succeeds to add syntax to Hiero without
risking to lose much performance because of sparsity. Chapter 4 of (Zollmann, 2011)
shows that these smoothing features result on average in 0.5 BLEU points improvement
on Chinese–English translation.

SAMT: Extensions and Limitations

SAMT works with strict matching of labels during decoding, so that in principle the
failure to match labels can still lead to a decrease of coverage. But by using many

10Later in chapter 5 we will use src(r) and tgt(r) similarly to denote the source and target side,
including the source/target side of the left-hand-side of the rule.

11This feature is particularly important since some labels are inherently much more rare then others,
so that rules with this label will on average also have more peaked conditional probabilities as a result
of sparsity. Without compensating for this by means of these generative probabilities, our already not
properly probabilistic model becomes even more skewed, as we are then effectively strongly rewarding
rare rules, without giving any appropriate penalty for the rareness their left hand side.
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alternatively labeled variants of rules in parallel, as observed during training, the risk
of coverage loss is significantly reduced. There is a price to pay for this however.
Using many different label variants for every Hiero rule type leads to huge grammars,
increases spurious ambiguity and slows down decoding. Grammars may also become
so big as to not even fit into memory. As a technical solution to this last problem
(Zollmann, 2011) propose a method in which they use Hadoop to efficiently extract a
separate grammar for each sentence that is translated.12 A more effective and definite
solution to the problems of lost coverage when adding syntax is to switch to using
the syntax in the form of soft-constraints (Venugopal et al., 2009; Chiang, 2010) as
discussed later in this chapter.

Various extensions to the original SAMT approach are proposed in Zollman’s PhD
thesis (Zollmann, 2011). One small extension, already mentioned before, is the usage
of labels that consist of three combined constituents (“double-plus” labels). This
extension may improve performance, but can also dramatically increase the number
of rules. A bigger extension is the usage of source syntax, instead of or in combination
with target syntax. Using only source syntax works, though not as good as only
target syntax. Combining both source and target syntax in labels is detrimental to
performance. Zollmann (2011) suggests that this is caused by a combination of badly
estimated rare rules in combination with an increase in the number of blocked syntactic
derivations due to mismatching labels. One other successful method to improve SAMT
(as well as Hiero) also proposed in the same work is the usage of N-best alignments,
instead of single alignments, when extracting grammars and computing rule counts. N
needs to be kept small in order not to obtain a too large increase in decoding times.
Usage of N-best parses during rule extraction was also attempted but did not help.

In the last chapter of his thesis, Zollmann (2011) furthermore explores alternative
labeling schemes. He labels the words inside phrases with various methods and
then combines the two labels of the phrase boundary words to form the final phrase
labels. He proposes various methods to label the words, including simple POS-tagging,
usage of bilingual word classes (Och, 1999) and K-means clustering. The former two
methods give comparable performance to original SAMT, the last method performs
worse. These approaches are interesting because they require less linguistic resources
(no parses, only POS-tags) or even no linguistic resources at all, in the case of bilingual
word classes. Still they are reported to retain the improvements of original SAMT.

3.3.2 Problems with (strict) syntactic models

Syntactic methods are elegant and attractive from a linguistic point of view. But in
practice they often suffer a loss of performance in comparison to hierarchical phrase-
based translation because of the strict syntactic constraints these models enforce.
Coverage of these models can be increased by different methods. Binarization of

12To make this approach work well in practice, the decoder needs to be able to load grammars (very)
fast. This is not possible with all open-source hierarchical SMT decoders.
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translation rules (Wang et al., 2007) can directly increase their coverage, while re-
labeling the trees can increase the chance that rules can be combined and re-aligning
trees to the source/target strings may reduce the conflicts between syntactic constraints
and alignment structure (Wang et al., 2010). Similarly in case of tree-to-string
translation, the generalization to forest-to-string translation increases coverage and
improves performance (Mi et al., 2008a).

All these methods have in common that they try to relax syntactic translation
models. And they all try to solve the same fundamental problem: monolingual
syntactic structure is not necessarily compatible with the hierarchical translation
equivalence structure induced from word alignments. In contrast to syntactic models,
Hiero is strictly an extension to phrase-based models. Because it uses all normal
phrases as well a hierarchical generalizations of these phrases formed by introducing
variables, it can only increase coverage over phrase-based methods, not reduce it. This
is in strong contrast with strict syntactic models that use the syntactic structure as a hard
constraint, which prohibits both many rules that are usable by Hiero and also limits
the permissible combination of rules. When insisting on the usage of syntax it may
therefore be wise to stretch syntax in a way to be more compatible with phrase pairs.
SAMT (Zollmann and Venugopal, 2006) was discussed in the previous subsection as
one successful approach to do this. Even better may be to use syntax as a soft rather
than hard constraint (Chiang, 2010). But syntax is not the only way to add structure to
the translation process, nor necessarily the best. In fact, word alignments themselves
induce a rich hierarchical translation equivalence structure. Chapter 4 explains how
this structure can be represented explicitly and chapter 5 shows how it can be used to
improve translation of language pairs with considerable word order differences.

3.3.3 Other Labeling Approaches
We will now review various other successful labeling schemes. Most of these
approaches primarily use syntactic information to form labels. Just as SAMT, they
take Hiero as a basis and then refine the X label in its rules. This contrasts with strict
syntactic models for hierarchical SMT, which eliminate many of the rules Hiero can
extract by enforcing syntax as a hard constraint, even in the rule extraction process.

Head-Driven Hierarchical Phrase-based Translation

Head-driven hierarchical phrase-based translation (HD-HPB) (Li et al., 2012a,b)
proposes an approach to label refinement that is similar to the boundary POS-tag
labeling approach introduced in chapter 6 of (Zollmann, 2011) and discussed in our
overview of SAMT extensions. But rather than taking the POS-tags of phrase boundary
words, the authors propose to use information from the source dependency parse to
select the POS-tags used to form labels. For a phrase f f

i spanning source words
i to j, any word fk(i ≤ k ≤ j) is regarded a head if a word outside the phrase
dominates it. There can be multiple heads per phrase, these are combined by left-to-
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right concatenation based on positions in the phrase to form the label. Rules containing
nonterminals with more than four heads are discarded to limit sparsity.

Apart from the POS-tag selection method, another important difference with the
POS-tag SAMT variant is the usage of source rather than target syntax.13 Furthermore
grammars are filtered at test time to comply with the source syntax of the test sentences.
Filtering is done by checking first that the left-hand-side (LHS) nonterminal matches to
the label of some span for some source sentence in the test set. If present, right-hand-
side nonterminals are required to match the labels for subspans of the LHS matching
span (in the right order). Filtering is only applied to fully lexicalized rules and Hiero
rules with gaps, abstract rules are all included without filtering.14 Furthermore, the
unfiltered abstract rules can be applied to produce nonterminals on the left-hand-side
that were initially not permitted based on the label information extracted from the
syntax of the test sentences. These dynamically added nonterminals next open the
possibility for both abstract rules and Hiero rules to substitute to them, adding possibly
even more nonterminals that were initially not allowed.15

The filtering based on the source syntax of the test sentences reduces the amount
of rules significantly, by a factor 30 approximately. And this leads to a considerable
speedup as well, where a variant of the system that does not use abstract rules runs
almost 2 times faster than Hiero. More importantly, with the help of the abstract rules
the HD-HPB approach achieves on average a significant improvement of 1.91 BLEU
over Hiero for a larger training set (1.5 M sentence pairs). For a smaller training set
(240 K sentence pairs), without the help of abstract rules, the performance of the HD-
HPB is below that of Hiero. Thanks to abstract rules, the system still beats Hiero with
on average 1.32 BLEU improvement. On the bigger dataset the relative contribution of
the abstract rules decreases, but still accounts for nearly half of the total improvement
on average. This suggests that for Chinese–English, long distance reordering may be an
important component of the total reordering problem. Completely removing Hiero’s
reordering limit for abstract rules is then apparently an efficient way to achieve big
improvements in translation quality. And computational cost can be kept low provided
that the used labels are derived from the source input. The latter assures that rules can

13Some SAMT variants also explore source syntax, but the most effective versions of SAMT use
target syntax.

14Filtering is done for the entire combined test set, which is less precise, but easier to implement
than filtering for every test sentence separate. The latter involves making private grammar for all test
sentences and loading them separately for every sentence that needs to be decoded. In fact, even filtering
per sentence is not exact since accepted rules can still be applied to places where they do not match, for
example when source phrases or words reoccur in the same sentence but with different labels. It is thus
nearly impossible to make source label matching by rule filtering exact, and even making it just nearly
exact with per-sentence filtering is quite costly. These are strong arguments to prefer an alternative,
exact solution. This solution is to adapt the decoder to match rules against a source label chart, it was
implemented for example by (Mylonakis and Sima’an, 2011).

15It would be interesting to test whether the matching relaxation added by this approach is desirable
or not. This might be done by comparing with a stricter matching policy, filtering also abstract rules
or implementing the same labeling method but with matching inside the decoder as in (Mylonakis and
Sima’an, 2011).
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be filtered out of the used grammar if they do not match the source labels that occur in
the test set.14

CCG Augmented Hierarchical Phase-Based Machine Translation

Yet another approach to label Hiero rules with much similarity to SAMT (Zollmann
and Venugopal, 2006) is proposed by Almaghout et al. (2010). In their work, instead
of using the SAMT labels, combinatory categorial grammar (CCG) (Steedman, 1987,
2000) labels are used to label the target side of nonterminals in Hiero rules. Their work
is also similar in spirit to (Hassan et al., 2007) which applied supertags (Bangalore and
Joshi, 1999; Clark and Curran, 2004) to phrase-based translations, using them in the
target side of the language model and the target side of the translation model.

CCG labels use a very restricted set of atomic categories in combination with the
two binary CCG operators to form complex categories. The atomic categories are
typically restricted to a very limited set. Typically: S (sentence), N (noun), NP (noun
phrase). In addition sometimes: PP (prepositional phrase) and VP (verb phrase).
These categories are then combined by the functors:

• X\Y: a functor which takes as argument the category Y to the left and produces
the category X. (Intuitively meaning “X missing Y on the left.)

• X/Y: a functor which takes as argument the category Y to the right and produces
the category X. (Intuitively meaning “X missing Y on the right.)

Both X and Y in these definitions can be complex or primitive categories. CCG
supertags can give a more precise description of constituents by forming more complex
labels. CCG labels also allow to label a larger fraction of the available phrases:
(Almaghout et al., 2010) report that with CCG labels only 30% of the phrases remain
unlabeled as opposed to 50% for SAMT. While this is clearly a large gain in coverage,
a large fraction of phrases still remains unlabeled.

In the experiments (Almaghout et al., 2010, 2011) work with strict matching of the
labels during decoding, and consequently like SAMT suffer from issues related to loss
of coverage by blocked substitutions.

Coarsening the labels The problems with sparsity of labels is a motivation to
coarsen the labels, which is done in (Almaghout et al., 2011). First, full CCG labels
are replaced by simpler labels that combine just the left and right contextual CCG
categories and leave out the resulting categories. Let C = (R\L1)/L2 be a CCG
category (label), with R being the resulting category, L1 the left argument category
and L2 the right argument category. The CCG contextual label becomes L1_ L2,
indicating L1 is required on the left and L2 on the right. Second, features carried
by some atomic labels such as declarative S [dcl] or wh-questions S [wq] are removed,
coarsening both refined S categories to the featureless S category. Removing such
features throughout in atomic and complex categories further simplifies the labels. This
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is tried out both for the CCG contextual labels and the original (full) CCG labels. The
result is four different variants of the labeling scheme, including the original CCG
labels of (Almaghout et al., 2010).

Results Some of the labeled systems show improvements over Hiero, but none of
these improvements are statistically significant. The proposed ways to coarsen the
labels help, but not in a stable way across language pairs and domains. The CCG
contextual labels perform the best in two out of four experiments. Yet whether or not
the second simplification of removing the CCG category features is beneficial differs
even over these two experiments. This shows once again how hard it can be to improve
over Hiero with a strict labeling approach.16

In a later work (Almaghout et al., 2012) apply soft constraints as proposed by
(Venugopal et al., 2009) instead of performing strict matching. This finally leads to
substantial and significant improvements over a Hiero baseline for Arabic–English
and Chinese–English translation tasks. This shows the importance of relaxing strict
matching and using instead a form of soft constraints, an approach that is discussed in
more detail later in this chapter.

SATM Label Coarsening

A method to coarsen the labels of SAMT, by performing clustering is proposed in
(Hanneman and Lavie, 2013). We will refer to this method as SAMT-coarsening.
Source and target side are parsed, and from these parses bilingual SAMT labels are
produced. The similarity between conditional distributions of label distributions in
two directions is used to merge labels. Labels are merged greedily and incrementally,
every time merging the two labels that have the most similar conditional distributions
over labels on the other side. This is essentially a form of hierarchical/agglomerative
clustering (Press et al., 2007) whereby instead of elements of incrementally merged
sets, the probability distributions of incrementally merged clusters are compared.
Given a source label s and a target label t, label distributions P(s|t) and P(t|s) are
simply computed by relative frequency estimation:

P(si|t j) =
Count(si :: t j)∑

s∈S
Count(s :: t j)

P(t j|si) =
Count(si :: t j)∑

t∈T
Count(si :: t)

(3.9)

And based on these distributions L1 distances are defined for all pairs of monolingual
labels:

d(s1, s2) =
∑
t∈T

|P(t|s1) − P(t|s2)| d(t1, t2) =
∑
s∈S

|P(s|t1) − P(s|t2)| (3.10)

16There is also some reason to believe that the relatively small sizes of the training corpora used (at
most 546K sentence pairs for Chinese English) in the experiments could also be a reason why the labeled
systems suffered in the experiments. It is shown in (Zollmann, 2011), chapter 3 and also again shown in
(Li et al., 2012b) that a large enough training set is important to reduce sparsity enough when working
with (finely) labeled hierarchical grammars.
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At each iteration of the clustering algorithms the two source or target labels with the
most similar distributions are merged, formally defined as:

arg min
〈si,s j〉∈S 2,〈tk ,tl〉∈T 2

{d(si, s j), d(tk, tl)} (3.11)

After clustering stops, the coarsened SAMT grammar is formed. For every SAMT
rule, each of its labels is mapped to its associated cluster, and replaced with the target
side of the label for that cluster. The resulting coarsened grammars have much less
rules than original SAMT, and give significant improvements over SAMT and also
over Hiero for Chinese–English translation on some test sets. A problem is how to
determine when to stop label collapsing. Hanneman and Lavie (2013) just explored
the results for several manually selected stopping points.

Interestingly the authors first applied the method for coarsening of bilingual labels,
in a bilingually labeled decoding setting (Hanneman and Lavie, 2011) (i.e. not
discarding the source side as with SAMT). While no direct comparisons were given
with Hiero, combining the two papers a comparison appears to be possible, assuming
the same test settings were used across experiments in both papers. Under these
assumption the comparison reveals a substantial loss of the bilingually labeled system
on BLEU in comparison to the Hiero baseline. This shows the difficulty of making
bilingual labels work well in a strict matching setting, even when label coarsening is
applied.

Improved, fast SAMT Label Clustering Mino et al. (2014) propose an approach to
SAMT label Coarsening/Clustering similar to (Hanneman and Lavie, 2013), that yields
comparable improvements over SAMT but uses a much faster clustering algorithm.
Their approach uses an exchange algorithm (Uszkoreit and Brants, 2008) that is an
order of magnitude faster than the agglomerative clustering used by (Hanneman and
Lavie, 2013).

Summary of strategies to reduce the negative effects of strict label matching

In this subsection we have looked at various other labeling approaches beyond SAMT.
Like SAMT and in contrast to strict syntactic methods, these approaches do not discard
phrases incompatible with syntax but rather keep them and leave them unlabeled.
Nevertheless, these methods still face problems due to the strict enforcement of
label matching during decoding. In particular, they suffer from problems that rise
from blocking valid translations because labels do not match. Partly to reduce these
problems, the discussed approaches use several strategies, which we summarize here:

• Heuristically coarsening labels so that more phrases can be labeled: (Almaghout
et al., 2011).

• Automatically coarsening labels using clustering methods: (Hanneman and
Lavie, 2013; Mino et al., 2014).
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• Using alternative information (e.g. POS-tags) in a way that assures all phrases
can be labeled: (Li et al., 2012a,b) and (Zollmann, 2011), chapter 6.

While these strategies all help to reduce the severity of the problems caused by
strict matching, essentially none of them succeeds in solving them completely. The
next section discusses approaches that attempt to solve the original problem at the
root, by using labels as soft constraints as opposed to strictly enforcing them to match.

3.3.4 Soft Constraints
Making contextual refinements to Hiero rules by labeling nonterminals is an important
technique for improving target word order, and generally producing better, more
coherent translations. But labeling also carries big risks, as it can easily lead to sparsity
an blockage of valid rules, which reduces coverage and decreases translation accuracy.
While these problems become critical when syntax is applied to both sides (Zollmann,
2011), they are also the main reason why strict labeling approaches frequently fail
to consistently improve over a Hiero baseline (Almaghout et al., 2011; Hanneman
and Lavie, 2011). Automatic coarsening of labels, using clustering can help a lot
(Hanneman and Lavie, 2011, 2013; Mino et al., 2014) while automated learning of
label distributions (Mylonakis and Sima’an, 2010, 2011) or latent variables that play
a role similar to labels (Saluja et al., 2014) may be even better. But these clustering
and learning methods are only half of the solution. Because even when labels are
learned, typically many derivations of the same translations compete with each other.
The exception to this are systems that allow only minimal rules such as (Saluja et al.,
2014; Vaswani et al., 2011), so that only one derivation per translation exists. But that
approach itself has the big disadvantage of eliminating many larger rules, which are
essential for the performance of Hiero as they introduce a much stronger context to
translation decisions. Whether or not labels are learned, it is much preferable to use
these labels as soft rather than hard constraints. Here we briefly summarize the main
properties of two of the most popular approaches towards soft constraints, referring the
interested reader to a longer and more detailed discussion in Appendix A.4.

Preference Grammars It was shown that when labels are used as latent distributions,
in a framework called preference grammars (Venugopal et al., 2009), they can yield
significant improvements over Hiero. The latter approach effectively approximates the
summation of probabilities over different labeled derivations for the same translation.
By performing approximate summation over derivations that only differ in their labels,
preference grammars find the derivation class with the highest probability.17

Soft Syntactic Constraints Chiang (2010) notes that the preference grammars
approach still only includes derivations that satisfy the matching constraint, and

17Just as in Hiero, the same translations can still be formed by alternative derivations that segment the
input in different ways. Therefore just as in Hiero the translation with highest probability is not found,
only the most likely derivation class.
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proposes instead to soften the matching constraint itself. This is called in the
literature decoding with soft matching constraints, or often just soft constraints or fuzzy
matching. It was shown by Chiang (2010) that when labels are used as soft constraints,
source and target labels can be effectively combined in a system that gives significant
improvements over a Hiero baseline.

Recently, the effectiveness of soft constraints was again established for English–
German Translation by (Huck et al., 2014) using GHKM-style (Galley et al., 2004)
string-to-tree translation, with soft syntactic constraints on the source side. In their
work rules are extracted under the constraint that they are compatible with the target
syntax, which means the total rule set is a small subset of what is available to Hiero.
In that setting it turned out to be better to use the target labels as hard constraints than
as preference grammars, at least on English–German translation. But this may well be
just a consequence of using syntax as a hard constraint even for rule extraction.18

Whether preference grammars or soft-constraints as introduced by Chiang (2010)
are preferable is mostly an empirical question. In a sense these methods are similar:
while preference grammars approximate summation over different labeled derivations,
learning soft constraints for the matching of labels achieves a similar goal by finding
to what degree certain labels are interchangeable. But this also reveals a strength of
the soft constraints approach of (Chiang, 2010) which is not shared by preference
grammars. This strength is that by using soft constraints, the method can learn to
give high importance to the correct matching of relevant labels, while simultaneously
learning to ignore labels that are uninformative. In the limit this approach can even
implicitly cluster interchangeable labels, by learning matching weights that achieve
such a clustering. Preference grammars in contrast, have no mechanism to achieve
such learning and therefore have no way to compensate for labels that are possibly not
learned and therefore suboptimal when applied in their raw form. The dependence on
scalable discriminative learning approaches of (Chiang, 2010) can also be a weakness,
but with the general availability of popular and successful methods such as batch-mira
(Cherry and Foster, 2012) this is no longer really a problem. What remains a challenge
with both methods is that they are difficult to implement in a way that scales well to
large label sets.

3.3.5 Learning labels

In the previous subsection we discussed soft constraints as a fundamental way to
overcome the problems with strict label matching during decoding. Here we look
at learning of labels as another way deal with these problems. While there is a
considerable amount of work in this area, here we restrict ourselves to the discussion
of two methods with the highest impact on the work in this thesis.

The first method uses a variant of the EM algorithm to learn the labels as well as

18As the latter implies a smaller choice of suitable lexically grounded translation rules, and hence a
somewhat artificially higher demand on syntax to guide word order amongst other things.
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A → [B C] A → 〈BL CR〉

AL → [B C] AL → 〈BL CR〉

AR → [B C] AR → 〈BL CR〉

(a) Reordering rules

A → AP

AL → AL
P

AR → AR
P

(b) Pre-terminal rules

AP → α / β

AL
P → α / β

AR
P → α / β

(c) Terminal rules

Figure 3.6: Rule types of a hierarchical reordering SCFG (HR-SCFG) (Mylonakis and
Sima’an, 2011).

the rule segmentations of the aligned sentence pairs (Mylonakis and Sima’an, 2011).
Although this work uses only phrase pairs and abstract binary rules, it is highly relevant
to our work. The reason is that it uses labels to keep track of the relative orientation
(straight, inverted) of abstract rules with respect to their parents.

The second method (Saluja et al., 2014) first simplifies things by working with
minimal rules so that there is just one segmentation. For this simplification it initially
pays a large price in terms of performance. It then however manages to combine
learning of the labels with using them as a form of soft constraints in a reranking
step, with much similarity to preference grammars (Venugopal et al., 2009). Despite
its modest improvement over Hiero, this approach is significant as a proof of concept
that soft constraints and learning can in principle be combined.

Hierarchical Reordering SCFG

Mylonakis and Sima’an (2011) present an approach to hierarchical translation that
focuses on learning a binary reordering SCFG (NF-ITG) with linguistically motivated
source labels. The approach uses the same labels as SAMT, but rather than selecting
for each span the simplest possible label, all applicable labels are kept and used to form
alternative rules. A variant of the EM algorithm (Dempster et al., 1977) called Cross-
Validated EM (CV-EM) (Mylonakis and Sima’an, 2008, 2010) is used to estimate
the parameters of this grammar. Another innovation of the approach is the usage of
labels that mark the reordering context of the ITG reordering rules. Left-swapping
(L) and right-swapping (R) labels (see figure 3.6a) indicate that the left-hand-side of
rules is embedded as the left or right part of an inverting rule. Such rules facilitate
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a form of Markovization that propagates the information of swapping by a rule to its
two reordered children. The used grammar formalism combines a labeled NF-ITG
reordering grammar with labeled phrase pairs. The phrase pairs (see Figure 3.6c) are
used as leaf nodes, while pre-terminal rules (see Figure 3.6b) substitute onto them and
facilitate the transition to the separated reordering grammar.

Consistency with labels for the source input is enforced by requiring a match
between rule labels and labels in a source label chart. This source label chart is
provided to the decoder together with the source sentence. As an example, if the rule
A→ [B C] is applied to derive label A for span [i, j] by combining label B for subspan
[i, k − 1] and label C for subspan [k, j], then label A must be present in the source
label chart for span [i, j]. Furthermore, at the moment of adding labels B and C earlier
during decoding, corresponding labels must have been present in the source label chart
for their spans [i, k − 1] and [k, j]. But because multiple alternative labels are present
for every source span, including the default label X, the grammar always has an ability
to back-off to rules with less specific labels. Thus a grammar can be learned which
gives preference to rules with more specific labels. Yet the risk of completely blocking
certain translations during decoding is avoided.

Experiments show significant improvements over a strong Hiero baseline on four
language pairs, with English as source. The highest improvement, +1.92 BLEU, is
achieved for English-Chinese translation.

Latent-Variable SCFGs for Hierarchical Machine Translation

Saluja et al. (2014) propose a method to learn latent variables for synchronous CFGs
(SCFGs). The latent variables are used to effectively reduce independence assumptions
and improve coherence in the composition of rules into full translations. In order to
avoid the complex problem of simultaneously learning the latent variables and the
segmentations of word alignments, the authors work with minimal rules (M.Galley
et al., 2006; Zhang et al., 2008a; Vaswani et al., 2011) instead of Hiero rules. This
guarantees the existence of just one derivation per translation, greatly simplifying the
learning problem. The latent states of rule nonterminals are represented as tensors.19

These tensors are multiplied in a hypergraph (tensor) inside-outside algorithm, that
re-estimates the marginal probabilities of translation rules, as well as the conditional
probabilities P̂(e| f ) and P̂( f |e) for these rules. In this computation, 3rd-order tensors
as opposed to matrices (2nd-order tensors) are required in the case of binary rules, to
capture the relation whereby the rule tensor takes the vectors of its two nonterminals
as inputs to produce an output vector for the left-hand-side of the rule.

19Tensors are multidimensional arrays that generalize scalars and vectors. A 3rd-order tensor T can
be imagined as a stack of matrices. When T is combined in a tensor-vector product with two input
vectors ~v1 and ~v2 to produce an output tensor, this corresponds to the following computation: First ~v1 is
multiplied (on the right) with each of the stacked matrices, producing a single intermediate result matrix
Mint: T · ~v1 = Mint. Second, ~v2 is multiplied (on the right) with Mint to produce the final result vector
~vresult: Mint · ~v2 = ~vresult.
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These features are then used as extra features on top of a standard MT pipeline.
Essentially a standard decoder with standard features first produces a hypergraph
of translations. As a second step, the latent-variable features are computed from
this hypergraph, by multiplying the contained rule tensors as part of the hypergraph
tensors inside-outside algorithm. The result is essentially a reranking of the original
translation scores, with similarity to other forest reranking methods (Huang, 2008)
as well as variational methods (Li et al., 2009) and Minimum Bayes Risk decoding
methods (Kumar and Byrne, 2004; Tromble et al., 2008). In contrast to the mentioned
related methods, this approach works with one derivation per translation and focuses on
forming better translations by loosening the independence assumptions in the selection
of rules.

For the sake of brevity, here we omit the discussion of learning of latent variable
tensors. The interested reader is referred to Appendix A.5 for a discussion of the
learning method and other details about the method.

3.3.6 Lexicalized Orientation Models for Hierarchical SMT
We end this chapter by discussing two approaches that adapt the lexicalized hierarchi-
cal phrase reordering model proposed by (Galley and Manning, 2008) for usage with
hierarchical phrase based translation (Hiero). This model has proven its effectiveness
for phrase-based translation but was not used before in hierarchical translation. These
approaches are of particular interest in the context of this thesis, as they partially share
motivations and mechanisms with the reordering labels that are proposed in chapter 5.

A Phrase Orientation Model for Hierarchical Machine Translation

The first instantiation of the idea of adopting a lexicalized orientation model in Hiero
was proposed by Huck et al. (2013). The approach has two main parts. The first
part entails the computation of lexicalized orientation probabilities for phrase pairs
and Hiero rules with nonterminals. The second part consists of the usage of these
probabilities to add reordering features to rule applications in Hiero derivations, based
on the dynamically determined hierarchical phrase orientation of the phrase that is
formed by applying a rule. The first part is computed statically before decoding. The
second part involves adapting the decoder, to dynamically add or update features once
the orientation of a phrase pair can be determined. The orientation can often but not
always be determined once another Hiero rule substitutes to the phrase pair on the
right-hand-side in bottom up CYK+ decoding. We will now discuss these two parts in
some more detail.

Computing Lexicalized Orientation Probabilities The computation of lexicalized
orientation probabilities is done based on the aligned parallel corpus used for training
Hiero. From this corpus phrases are extracted without length constraints, which are
then used to determine the (hierarchical) phrase orientation of phrase pairs as described
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in (Galley and Manning, 2008). Orientations can be combined in two directions: left-
to-right or right-to-left. Both directions may provide different information that could
be complementary for the determination of the best word order during translation.

The prior probability of orientations p(O) independent of phrase pairs, is computed
by relative frequency estimation using the training set:

p(O) =
N(O)∑

O′∈M,S ,D
N(O′)

(3.12)

Here N(O) is the total number of occurrences of orientation O over the entire training
set, summed over all different phrase pairs. M, S and D stand for monotone, swap and
discontinuous orientation respectively.

The lexicalized orientation probability given a phrase pair 〈 f̃ , ẽ〉 is then computed
as:

p(O|〈 f̃ , ẽ〉) =
σ · p(O) + N(O|〈 f̃ , ẽ〉)
σ +

∑
O∈M,S ,D

N(O′|〈 f̃ , ẽ〉)
(3.13)

Here N(O|〈 f̃ , ẽ〉) is the number of times the phrase pair 〈 f̃ , ẽ〉 occurs with orientation
O in the training set. Furthermore σ is a constant that determines how much weight
should be given to the prior orientation probability, which is used for smoothing. In the
case of a hierarchical rule rh with a nonterminal Nα, orientation counts are accumulated
over all phrases from which rh is formed by replacing a sub-phrase by Nα. These
accumulated counts are then used to estimate the lexicalized orientation probability.
The computation for Hiero rules with two nonterminals is done analogously.

Reordering feature computation
The computation of lexicalized reordering features during decoding requires

determining the left-to-right and right-to-left orientation of phrases. To be able to
do so, every Hiero rule is extended to keep the alignment matrix that has been most
frequently observed for it during training. The orientation of the nonterminals can
then be determined in most cases, by combining the word alignment information kept
in the rules with the information about the relative source and target spans of the
nonterminals. The exception to this is when a nonterminal is on a boundary position on
the target side. This happens iff there are no nonterminals or words aligned between
the phrase-internernal target index of the nonterminal and the (left or right) phrase
boundary. In this case the scoring needs to be delayed until the orientation can be
established in an upper hypernode later during decoding. When this delayed scoring
is necessary, a temporary orientation cost is used, computed from fractional costs for
the orientations that are still possible. This avoids giving unjustified advantage to other
derivations. We refer to Huck et al. (2013) for a full description of the procedure
for determining orientations, and computing and updating feature values, as well as
examples of cases in which the orientation is directly known or can only be established
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later.

Results
The lexicalized reordering features are tested for Chinese–English translation

where they give an improvement of 1.2 BLEU over the Hiero baseline. Most of this
improvement is achieved by left-to-right orientation features, the addition of right-
to-left orientation features only increase the score by 0.1 BLEU. For French-German
translation an improvement of 0.3 BLEU over Hiero is achieved. The authors also
compare against their own earlier work on discriminative reordering extensions to
Hiero (Huck et al., 2012), which we will abbreviate here as DRE. Furthermore they
build a very strong system by adding discriminative word lexicon (DWL) models
(Bangalore et al., 2007; Mauser et al., 2009) and triplet lexicon models (Hasan et al.,
2008) in source-to-target and target-to-source direction. In the setting where all these
additional components are used, which by itself gives a 2.5 BLEU improvement over
Hiero, the lexicalized reordering features still add an additional 0.7 BLEU additional
improvement. This in contrast to addition of DRE, which barely increases performance
further in the setting of this very strong initial system.

Integrating Phrase-based Reordering Features into a Chart-based Decoder for
Machine Translation

The work by Nguyen and Vogel (2013a) was published at the same time as (Huck
et al., 2013) and proposes a similar extension to Hiero. The main difference is that the
lexicalized reordering model used in this work is the phrase-based orientation model
taken from (Galley and Manning, 2008), as opposed to the hierarchical orientation
model adopted by (Huck et al., 2013), taken from the same paper. Another smaller
difference is that this work also adds a basic distance-based reordering model, as
commonly used in phrase-based SMT, in addition to the lexicalized reordering model.
One restriction of the work is that rules with non-aligned lexical items inside it
were not allowed. While mainly a technical issue that did not seem to compromise
performance much, although it did yield a significant decrease in the amount of
available rules, this restriction was not present in (Huck et al., 2013). Overall
(Huck et al., 2013) and (Nguyen and Vogel, 2013a) mainly reinforce each other
by presenting similar improvements for a similar approach. (Nguyen and Vogel,
2013a) presents experiments showing significant improvements for three language
pairs, including Arabic–English, which was not covered by (Huck et al., 2013). Since
the improvements are similar and the experimental setups not entirely comparable, it is
hard to conclude definitely which approach is more successful. Nevertheless, it seems
plausible to believe that the improvements made for Chinese–English by (Huck et al.,
2013) are stronger. The reason is that it uses a much larger training set (3.0M) as
compared to the relatively small (384 K sentences) training corpus used by (Nguyen
and Vogel, 2013a). Consequently the baseline for (Huck et al., 2013) has a score that is
2.6 BLEU higher, and it is plausible to believe that having more training material makes
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the basic Hiero reordering patterns more reliable and harder to improve upon, making
the either way slightly higher improvement by (Huck et al., 2013) just relatively more
significant. More importantly the original work by (Galley and Manning, 2008) shows
that the hierarchical orientation model is far superior for phrase-based translation,
suggesting that it should also be better for hierarchical translation.

Summary and outlook

In this chapter we have looked at hierarchical SMT, synchronous grammars and related
work. We have looked at inversion transduction grammars and Hiero, and in the
discussion of related work concentrated on labeling approaches that strive to improve
composition and reordering in Hiero using labels.

But while these labels are typically based on syntax, in the next chapter we
cover the representation of the hierarchical translation equivalence and reordering
structure inherent in word alignments themselves. This implicit information induced
by word alignments is then made explicit in structures called hierarchical alignment
trees (HATs). Based on these structures, Hiero grammars can be labeled with
specific reordering labels, thereby significantly improving the quality of translations
in hierarchical SMT, which is discussed in chapter 5. And also, with their help the
coverage of word alignments by grammars can be studied in a structured and exact
way, which is discussed in chapter 6.

Lastly, HATs have also been successfully applied for automatically learning and
performing adequate preordering of translation input before decoding, to improve
target word order (Stanojević and Sima’an, 2015). This application, and the application
of HATs for evaluation (Stanojević and Sima’an, 2014c,b) are discussed in some more
detail in the discussion of related work, in chapter 5, subsection 5.8.6.
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Representing Hierarchical Translation

Equivalence: Hierarchical Alignment Trees

“Take some more tea,” the March Hare said to Alice, very earnestly.
“I’ve had nothing yet,” Alice replied in an offended tone, “so I can’t take
more.”
“You mean, you can’t take less,” said the Hatter : “it’s very easy to take
more than no-thing.”
“Nobody asked your opinion,” said Alice.
“Who’s making personal remarks now ?” the Hatter asked triumphantly.

– Lewis Carroll, Alice in Wonderland

In this chapter we will introduce a framework for the compact and exact represen-
tation of hierarchical translation equivalence called HATs. This chapter builds upon
existing work on the decomposition (also called factorization) of translation equiva-
lence, algorithms and datastructures for the maximal decomposition of permutations
called permutation trees (PETs) (Gildea et al., 2006; Zhang and Gildea, 2007) and
the maximal decomposition of general word alignments normalized decomposition
trees (NDTs) (Zhang et al., 2008a) in particular. These works in turn build upon an
even earlier more theoretically, purely mathematically oriented work concerning the
decomposition (also called factorization) of permutations (Albert et al., 2005).

In the next two sections we will explain the motivation and novelty of our work,
and give an intuitive presentation of HATs. In section 4.3 we describe the existing
work on the decomposition of translation equivalence. After that, in section 4.4 we
describe hierarchical translation equivalence, which builds further on general notions
of translation equivalence described in section 2.3.2 of the background chapter. Section
4.5 then describes set permutations, which are two foundations for the formulation of
HATs. HATs are described in detail in section 4.6 and finally the efficient computation
of HATs is described in section 4.7.
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Translation Model Type
adequate local
disambiguation

adequate generalization
and handling
discontiguity

supporting global
compositional

coherence
word based 7 7 7

phase based 3 7 7

hierarchical phrase based 3 3 7

hierarchical phrase based
with adequate labels

3 3 3

Table 4.1: Schematic view of translation model capabilities. Note that these
capabilities are not meant as absolutes, but rather are intended to summarize the main
relative conceptual advantages gained by using these incrementally more complex
translation models.

4.1 The challenge of representing hierarchical
translation equivalence

Phrase pairs are the basic units of most contemporary statistical translation systems.
The simple intuition to use many non-minimal overlapping fragments goes back
to earlier work on data-oriented parsing (Scha, 1990; Bod, 1992; Sima’an et al.,
1994). The usefulness of composed fragments is not limited to parsing. Since those
fragments provide strong disambiguation power, they appear to be even more important
for translation, which is highly ambiguous at the word level. Such large, specific
fragments implement the strategy of building reliable translations by exploiting as
much as possible what has already been seen and not extrapolating unnecessarily. This
conservative strategy works well, but has the drawback of offering poor generalization
power.

The constraint that phrase pairs are by definition contiguous on both source and
target side further restricts their usability for the purpose of translating language
pairs with big word order differences, such as Chinese–English or German–English.
Hierarchical phrase pairs used by Hiero introduced in (Chiang, 2005) overcome this
limitation by introducing gaps to phrase pairs, lifting them to form (lexicalized)
synchronous context free grammar rules. This both increases the generalization
ability particularly for reordering phenomena and also the ability to effectively deal
with discontiguous translation phenomena. Still, just like their non-hierarchical
counterparts, hierarchical phrase pairs use no labels and thus have no context available
to encourage the formation of coherent translations. Lexicalization of the rules helps
somewhat to reduce ambiguity and provides some lexical evidence for the individual
rules, however it can do nothing to promote global coherence of the composed rule
applications.

Our starting point is thus hierarchical statistical machine translation, and our goal
is to make translations more coherent, particularly with respect to word order. In Table
4.1 we schematically summarize the situation. Phrase based models have managed
to achieve adequate local disambiguation and hierarchical phrase based models have
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brought in adequate generalization and handling of discontiguity. But in order to
also achieve global compositional coherence more information is needed to sensibly
combine rules in a compositionally informed way, and we hypothesize adequate labels
can achieve that. Syntactic information based labeling approaches are a way to
increase global coherence, and they have been applied with success, for example see
(Zollmann and Venugopal, 2006; Hassan et al., 2009; Mylonakis and Sima’an, 2011;
Chiang, 2010; Hanneman and Lavie, 2013; Li et al., 2012b). But we believe there
is an inherent mismatch between monolingual syntactic information and, bilingual
translation information, a problem which holds to a lesser extent also for dependency
information. Furthermore, we do not want to rely on these additional resources which
are not always available, but we rather want to use the rich compositional information
already implicitly given by just the alignment structure itself.

To get the required compositional information from the alignments demands a
clear and complete representation of hierarchical translation equivalence. For such
a representation it is not enough to compactly represent all phrase pairs. Rather
the representation must allow to reconstruct the original compositional translation
equivalence relations from its components, which requires equipping the components
with enough contextual information to remember how they were originally composed.
This leads to our main hypothesis of this chapter, which motivates the creation of our
Hierarchical Alignment Tree representation:

Hypothesis. A representation that adequately captures the hierarchical bilingual
structure of word-aligned bilingual training data provides the necessary and sufficient
means to create fragments that can reconstruct bilingual structure and word order
for seen data. Further, through generalization such a representation can predict
likely structure and word order for unseen data. In the form of translation rules,
fragments created from such a representation are capable of producing translations
that coherently reproduce the type of reordering observed in the training data.

Next we will specify exactly what we believe constitutes an adequate representa-
tion of hierarchical bilingual structure, as a set of criteria that such a representation
must meet. Naively we could equip every TEU with a unique label, and if we then use
these labels to label nonterminals when extracting synchronous rules, we are sure to
reconstruct exactly and only our original translation equivalence patterns. This is not
very useful however, as it offers no generalization at all. Another requirement is thus
that extractable labels can support different levels of generalization as required by the
specific application.

We therefore look for a representation that satisfies the following criteria for
adequate hierarchical bilingual structure representations of word alignments:

1. Represents not only the TEUs but also their bilingual mapping in a composi-
tional, hierarchical way.

2. Retains exactly all information present in word alignments.
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3. Enables the construction of labels that give an adequate description of the
context, by representing explicitly all required information for this.

This chapter first gives an intuitive, example based presentation of HATs. As
part of this presentation, it explains how HATs satisfy the above criteria and how
HATs relate to other decompositions of word alignments. It then reviews the existing
work on the decomposition of translation equivalence, giving a summary of the
existing work on permutation trees and normalized decomposition trees described
in (Gildea et al., 2006; Zhang and Gildea, 2007) and (Zhang et al., 2008a). After
these foundational works have been reviewed, we continue with our contribution of
hierarchical alignment trees (HATs) which is based on the work described in (Sima’an
and Maillette de Buy Wenniger, 2013; Maillette de Buy Wenniger and Sima’an,
2014b). This presentation of the existing work and our extension together in one
chapter was chosen because it facilitates a clearer and more natural exposition. We
will end the chapter with a short description of applications, in particular improving
reordering for hierarchical statistical machine translation and facilitating tools for
effective analysis and visualization of hierarchical translation equivalence as induced
by word alignments.
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(a) Example of a word alignment, with
discontiguous word mappings

(b) Hierarchical Alignment Tree for (a).

([1, 6], [1, 6])

([6, 6], [3, 3])([5, 5], [6, 6])([3, 3], [1, 1])([1, 1], [4, 4])

(c) Normalized decomposition tree (Zhang et al., 2008a) for (a).

Figure 4.1: A word alignment (a), with discontiguous word mappings, and its
corresponding Hierarchical Alignment Tree (b) and normalized decomposition tree
(c). In (b) set-permutation labels, such as [4,1,{2,5},6,3] denote the local relative
reordering mapping at every node. Circles with different fillings and shades are used
to indicate matching TEUs on the source and target side of the HAT. In (c) note that
the NDT representation does not explicitly represent the mapping relations, in contrast
to the HAT representation. Also information about the mapping of the discontiguously
aligned words, present in the HAT representation, is completely lost in the NDT.
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4.2 An intuitive, example-based presentation of HATs
In Figure 4.1a we show a word-aligned sentence pair taken from European Parliament
training data for English–Dutch, with in Figure 4.1b the corresponding hierarchical
alignment tree (HAT). As discussed in chapter 2, in subsection 2.3.2, word alignments
induce TEUs, in particular a set of contiguous TEUs known as phrase pairs. These
phrase pairs are structured by means of subsumption relations, whereby smaller phrase
pairs are composed into bigger ones. HATs structure the recursive composition
relations in such a way that maximal decompositions are obtained. The construction
of HATs can be thought of as a bottom-up process, whereby first non-decomposable
atomic phrase pairs are induced from the word alignment, and next these are
recursively composed into bigger phrase pairs up to the sentence level.

The process is illustrated for the HAT of Figure 4.1b. In Figure 4.2 this HAT
is composed from the phrase pairs induced by the word alignment in steps 1–5.
In step 1 the phrase pair 〈“simply that”, “gewoon”〉 is added.1 Next, in steps 2,
the phrase pair 〈“we”, “wij”〉 is added. Similarly, in step 3 and 4 the phrase pairs
〈“confirm”, bevestigen〉 and 〈“it”, “het”〉 are added. For brevity, steps 3 and 4 are
omitted in the Figure. Finally, in step 5 the HAT is completed by composing the
discontiguous TEU 〈“cannot”, “kunnen . . . niet”〉 with the phrase pairs added in steps
1–4 into a phrase pair spanning the entire sentence pair. During the process of
constructing a HAT, when a phrase pair is added, it is enriched with a set-permutation
label, which describes exactly its recursive decomposition into smaller phrases and
single words. Notice how the atomic phrase pairs (steps 1–4) in Figure 4.2 are
decorated with a label “[1]”, since they all map to one element on the target side.
In contrast, the phrase pair spanning the entire sentence pair added in step 5 has
a complex label [4, 1{2, 5}, 6, 3], indicating its composition from the four reordered
smaller phase pairs in relative target positions 4, 1, 6 and 3 as well as the discontiguous
TEU 〈“cannot”, “kunnen . . . niet”〉 that connects position 3 in the source to positions 2
and 5 in the target.2

4.2.1 How HATs satisfy the criteria for effective and complete
hierarchical alignment representations

HATs satisfy the first criterion of adequately representing the TEUs as well as their
compositional mapping relations, by means of the (hierarchical) structure of the HATs
in combination with the set-permutation labels. The labels give a precise description
of the reordering context of TEUs, and can therefore be used to provide adequate

1In this step, the unaligned word “that” is grouped with “simply”. But, in general, unaligned words
can be considered free to bind left or right adjacent atomic phrases. Provided these words and their
positions are remembered, it is therefore generally not necessary to explicitly represent their grouping
within HATs.

2Note that the unaligned source word “that” is considered to be grouped with an adjacent aligned
word, here “simply”, and therefore has no own position in the source.
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Step 1

Step 2

. . .

Step 5

Figure 4.2: The stepwise composition of a HAT. Steps 3 and 4 are ommitted, for
brevity.
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Alignment Coverage
Representational

Completeness

Tree type
covers binarizable

alignments
covers bijective

alignments
covers general

alignments
represents mapping

relations
Binary trees (NF-ITG based) 3 7 7 3

Permutation trees 3 3 7 3

Normalized decomposition
trees

3 3 3 7

Hierarchical alignment trees 3 3 3 3

Table 4.2: Schematic view of capabilities of alternative (hierarchical) tree models for
the representation of translation equivalence as indicated by (word) alignments .

context-describing labels for rules. In chapter 5 this is explored extensively. Thus
the second criterion is also met. The same chapter also shows how the third criterion
is fulfilled: set-permutation labels are bucketed into coarser categories denoting broad
reordering complexity classes. Different granularities are explored for the labels, albeit
following a heuristic rather than learning approach in the formation of the buckets.
Nevertheless the effectiveness of supporting labels at different granularities becomes
clear, and the heuristically defined labels already significantly improve hierarchical
machine translation, showing about 1 BLEU point improvement on a Chinese–
English translation task3. Lastly this chapter also shows how without any extra
information outside the word alignment the HATs provide labels that are outperforming
both unlabeled hierarchical translation (Chiang, 2005) but also syntax-based syntax-
augmented machine translation (Zollmann and Venugopal, 2006), hence demonstrating
how also the fourth and last criterion is met.

We now zoom out again to our main goal: making translation more coherent
particularly with respect to word order. In chapter 5 we will be offer empirical evidence
that this goal is achieved. Here we refer back to Hypothesis 4.1, our main hypothesis in
this chapter, introduced in the last section. HATs are exactly the type of representation
this thesis demands, and are shown to satisfy all the criteria a complete representation
of hierarchical translation equivalence must fulfill. Thus building on the foundation of
HATs as our representation of the hierarchical bilingual structure of word alignments
there is a high change to achieve main goal.

3This could be further improved upon by using a learning approach that starts from the set-
permutation labels, and learns labels of appropriate granularity by appropriate incremental split and
merge steps or by application of (cross-validating) Expectation Maximization (Dempster et al., 1977)
somewhat similar to the work by Petrov and Klein (2007) for parsing and Mylonakis and Sima’an (2011)
for translation. Current follow-up work in our group goes in this direction.
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(a) Non-binarizable bijective
word alignment

(b) Permutation tree (PET) for (a).

([1, 6], [1, 6])

([5, 6], [4, 5])

([6, 6], [5, 5])([5, 5], [4, 4])

([4, 4], [1, 1])([3, 3], [6, 6])([1, 2], [2, 3])

([2, 2], [2, 2])([1, 1], [3, 3])

(c) Normalized decomposition tree (NDT) Zhang et al. (2008a) for (a).

Figure 4.3: A word alignment (a), with non-binarizable bijective word mappings
(permutation) and its corresponding permutation tree (PET) (b) and normalized
decomposition tree (NDT) (c). In (b) permutation labels, such as [2,4,1,3] denote the
local relative reordering mapping at every node. Note that the NDT representation (c)
does not explicitly state the mapping relations, in contrast to the PET representation.
It instead specifies pairs of source/target span ranges, such as ([1,6] ,[1,6]), that are
translation equivalent. While for PETs the mapping relations are in principle still
retrievable from the NDT by reasoning, in the case of NDTs for general non-bijective
(discontiguous) word alignments, even this reconstruction is no longer possible and
information about the mapping is lost.
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4.2.2 How HATs relate to other decompositions of word
alignments

HATs can be seen as an extension of normalized decomposition trees (NDTs) (Zhang
et al., 2008a) and PETs (Gildea et al., 2006). NDTs are an effective formalism for
compactly representing the phrase pairs induced by a word alignment and enabling
their very efficient (linear time) extraction. PETs are an equally effective formalism
for representing hierarchical translation equivalence over permutations (a subclass of
alignments), but are limited to bijective mapping relations. Figure 4.3a shows an
example of a word alignment with a bijective non-binarizable mapping. This type of
alignment is thus representable by both NDTs and PETs, and the corresponding PET
is shown in Figure 4.3b and the corresponding NDT is shown in Figure 4.3c.

PETs have an important property not shared by NDTs : they completely retain
all information of the original permutation, so that by incremental evaluation of
the node operators that original permutation is easily reconstructed. We illustrate
this reconstruction using the example in Figure 4.3b. Starting from the permutation
label [2, 4, 1, 3] at the top, and expanding the first child 2 with the child permutation
[2, 1], shifting the numbers as necessary, we arrive at the (intermediate) permutation
[3, 2, 5, 1, 4]. Finally expanding the last child 4 in the intermediate permutation
(originally 3 before expansion) with the child permutation [1, 2] and shifting the
numbers again we get back the original permutation [3, 2, 6, 1, 4, 5]. In contrast, NDTs
represent only the set of phrase pairs and their subsumption relations, but not the
information about the reordering. Figure 4.3c illustrates this. Thus, NDTs do not
contain the reordering information and therefore are not equivalent to the original word
alignments. This shows that PETs as a representation are richer than NDTs in that they
keep (permutation) operators that describe the local mapping relations at the tree nodes,
which are absent in NDTs. Therefore NDTs are essentially not fully an extension of
PETs. Both PETs and NDTs focus on canonical maximal decompositions, as opposed
to explicitly representing all induced TEUs.

HATs, like PETs, differ from NDTs in an important way in that they preserve
all information of the original word alignments underlying them. In Figure 4.1a we
see a discontiguous word alignment, with in Figure 4.1b the corresponding HAT and
in Figure 4.1c the corresponding NDT. Note how unlike a PET the HAT is capable
of representing this word alignment, while unlike an NDT (and like a PET) it also
manages to completely represent all involved mapping relations. The set-permutation
labels, which generalize permutations to arbitrary m-n mappings, make this possible.
These labels keep information about the mapping relation that is not necessarily present
from only the synchronous tree pairs. HATs are also powerful because, equal to NDTs
they decompose phrase pairs in a maximal way, which is an essential but not sufficient
condition to capture all contiguous TEUs in a maximally compact, hierarchically
structured way. The situation is summarized in Table 4.1: HATs, unlike NDTs and
like PETs and binary trees are capable of completely representing mapping relations.
But HATs, unlike PETs and binary trees are also capable of covering general word
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(a) Monontone word
alignment

(b) HAT 1 (c) HAT 2

Figure 4.4: Example of a simple monotone word alignment from Europarl English–
Dutch, that induces two alternative HATs.

alignments. Thus HATs merge the strong properties of both PETs and NDTs into a
representation that unlike all other representations has both full alignment coverage as
well as representational completeness.

Different from NDTs, HATs explicitly capture all contiguous TEUs, rather than
restricting to one canonical form decomposition of the word alignment and leaving
the representation of alternative maximal decompositions implicit. For example, in
Figure 4.4 a simple monotone word alignment induces two alternative HATs, which
are compactly stored as a forest by the HAT parser. This small detail will turn out to
be important when HATs are used to extract reordering labeled translation rules, as
discussed in chapter 4. It is also of theoretical importance when HATs are used as
an equivalent representation of alignment induced contiguous translation equivalence.
This is necessary as part of a bigger effort to exactly measure alignment coverage by
the intersection of TEUs induced by the word alignments and those permitted by a
synchronous grammar given the (aligned) sentence pair.

But HATs can help to quantify meaningful metrics of reordering complexity that
go beyond any specific grammar formalism, as a result of focusing on the more general
properties of the hierarchical translation equivalence itself, rather than concentrating on
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any one particular grammar formalism. These applications of HATs are discussed in
chapter 5. Finally HATs can also help to give a much better qualitative understanding
of hierarchical translation equivalence and its empirical underlying structure. In
chapter 6 we discuss how the HATs representation forms the basis for a rich and
illuminating visualization of hierarchical translation equivalence, permitting much
deeper understanding of hierarchical translation equivalence than non-hierarchical
visualization tools have allowed so far.

4.3 Existing algorithms for decomposition of
translation equivalence

In what follows we describe two foundational existing approaches to the decom-
position and recursive representation of translation equivalence. We start with
permutations and permutation trees (PETs) (Gildea et al., 2006) , which offer
compact representations of bijective translation equivalence. These representations
are not strong enough to capture general translation equivalence. Yet the success
of phrase-based statistical machine translation for many language pairs proves that
just bijective reordering, with discontinuity limited to embedding within phrases, can
be still highly effective. This makes permutation trees a valid starting point for
studying representations of translation equivalence, which is further reinforced by
recent findings concerning their effectiveness for translation evaluation (Stanojević
and Sima’an, 2014b,c). After first introducing permutations and permutation trees, we
next introduce normalized decomposition trees (NDTs) (Zhang et al., 2008a) , which
are an extension of PETs for the more general case of phrase pairs (general continuous
TEUs). While very useful for efficient phrase extraction, these representations lose one
attractive feature of PETs, namely the operator labels. These labels are, as we will see
in the next chapter, crucial for effective learning of desirable and coherent reordering in
hierarchical statistical machine translation. This motivates our extension of PETs and
NDTs to Hierarchical Alignment Trees, basically NDTs enriched with set-permutation
labels, that precisely describe the hierarchical mapping operations defining the phrase
pairs. But before we make that last step, we now first introduce PETs and NDTs,
essential foundations for our work made by researchers before us.

4.3.1 Permutation Trees

Permutations

Permutations are mathematical constructs that describe how a sequence of elements
gets permuted into a new reordered sequence of the same elements in a different
order. The reordering is such that every element maps to exactly one new position
in the reordered sequence. This is mathematically known as a bijective mapping from
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a sequence X to the permuted sequence Y , a mapping that is one-to-one and onto.4

A permutation of length n denotes a reordering function for a domain of n elements
that can be described by a reordering of the integers [1, 2, ..., n]5. Every integer in
the original range occurs exactly once in the reordered range as well. Furthermore
every element (integer) y at position x in the reordered sequence Y is to be interpreted
as specifying the position y to which x maps in the reordered sequence Y . As a
simple example the permutation [3, 1, 4, 2] states that the first element maps to the
third position in the reordered sequence, the second element to the first position, the
third element to the fourth position and the fourth element to the second position.

Decomposing permutations

Some permutations can be decomposed (Albert et al., 2005). Testing whether some
decomposition is possible amounts to testing whether for a permutation with elements
at positions [1, ..., n] there exists any sub-range [k,m] such that the subsequence s
of elements at positions [i, i + 1, ..., j − 1, j] map to a proper range of consecutive
positions [l, ..., u]. As Albert et al. (2005) remark, this can be tested by taking
the minimum mπ(i, j) and maximum Mπ(i, j) position mapped to by s and checking
whether it holds that Mπ(i, j) − mπ(i, j) = j − i, which is equivalent to saying the
maximum minus the minimum is equal to the length of the subsequence minus one. In
their terminology a non-decomposable permutation is known as a simple permutation.
The work by (Gildea et al., 2006) builds on the work of Albert et al. (2005) and
introduces an efficient algorithm to find a maximal decomposition of a permutation in
O(n log n) time. A maximal decomposition, sometimes called maximal factorization,
is a decomposition that maximally decomposes the permutation, so that there is no sub-
permutation for which further decomposition is possible. A maximal decomposition
of a permutation can be represented as a tree, a so-called permutation tree (PET)
in which every node of the tree has an operator which describes how the (possibly
complex) children are to be reordered to get the order of the parent. Such a PET
encodes the reordering in a recursive manner, meaning that the original permutation
can be reconstructed by recursively applying the permutation at the parent node to the
partial sequence at the child nodes, starting from the leaf nodes and going bottom-up
to the top of the PET. Examples of PETs are shown in Figure 4.5.

4A one-to-one mapping from domain X to codomain Y is a mapping that never maps multiple
elements from X to Y. A onto mapping from domain X to codomain Y is a mapping such that every
element in Y has a corresponding element in X.

5It is a mathematical convention in formal descriptions of permutations to work with indices
[1, 2, ..., n], however in implementations it is more common to work with indices [0, 1, ..., n− 1], staying
closer to the way arrays are indexed. It is important to state that both notations are essentially equivalent,
in the same way indexing an array starting from 1 as in certain programming languages is equivalent to
the more common way of starting from 0.
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1, 2

1, 2

2, 1

78

1, 2

65

3, 1, 4, 2

2413

1, 2

1, 2

1, 2

2, 1

78

6

5

3, 1, 4, 2

2413

Figure 4.5: Two alternative permutation trees (PETs) corresponding to alternative
maximal decompositions of the permutation [3, 1, 4, 2, 5, 6, 8, 7]. In total there are five
alternative maximal decompositions for this permutation with corresponding PETs.

Two components characterizing permutation trees

Albert et al. (2005) explain how permutations are decomposed in what they call
blocks and what we refer to as sub-permutations. Permutations specify a bijective
mapping between the elements of a sequence and a reordered form of that same
sequence. PETs visualize a specific maximal decomposition of this bijective mapping
between sequences, by representing the permutation as a tree whose nodes correspond
to the sub-permutations of the decomposition and whose node labels specify the
correspondence (mapping) relations between the children of the nodes. A PET can be
understood as specifying a pair of linked trees, of which only the first tree that specifies
the mapping from the original to the reordered sequence is represented, and the second
tree representing the reordered sequence and its mapping back to the original is left
implicit. A PET dissects the original permutation into two components that make the
hidden structure of the permutation explicit, and which are only in their combination
sufficient to fully characterize the original permutation and allow its reconstruction.
These components are:

1. Subsumption relation: the (tree) structure of the permutation tree describes
exactly how the contained sub-permutations recursively decompose into parts.
Importantly, he structure by itself describes just the subsumption (parent-child)
relationships, it does not specify mapping relations between children.

2. Mappping relation: the mapping relation between nodes in the permutation
tree, and the thereby implied recursive reordering characterizing the permutation,
is described by the permutation labels on the nodes.

Multiple maximal decompositions per permutation

Figure 4.5 in fact shows two alternative PETs that correspond to different maximal
decompositions of the same permutation. In general there are typically many maximal
decompositions of any given permutation. These arise from different alternative
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maximal decompositions of monotone and inverted sequences. A fully monotone or
fully inverted sequence of length n can be split at any of n − 1 positions during the
first step of decomposition, starting from the root. Then each of the two resulting
subsequences of length m1 and m2 at the child nodes can again be recursively split
in m1 − 1 and m2 − 1 ways respectively each. This leads to an exponential number
of decompositions. Computing all maximal decompositions can still be effectively
done with a chart-parsing algorithm, but takes in the worst case O(n3) time. However,
for certain purposes, such as factoring grammars and extracting minimal grammars
(Gildea et al., 2006; Zhang and Gildea, 2007; Huang et al., 2009), a single canonical
decomposition is sufficient, and finding an optimal way to compute it is very useful.
The next section reviews existing efficient algorithms for decomposing permutations,
focusing on algorithms that find only a single maximal decomposition as opposed to
the entire forest of maximal decompositions.

4.3.2 Efficient algorithms for decomposing permutations

4.3.3 Sorting-based algorithm

Gildea et al. (2006) propose a first efficient algorithm to find a maximal decomposition
for any permutation. The algorithm has a computational complexity of O(n log n).
As the authors remark, their algorithm is reminiscent of Merge Sort (Cormen et al.,
2009). In the outer loop of the algorithm, spans of increasing size are visited. The
idea is to look for valid reductions within these spans of increasing size. This looking
for possibly multiple nested reductions within a certain span is called the “merge” step
of the algorithm. Each added reduction must be extending any properly contained
reductions made for smaller and contained spans visited at earlier iterations. At the
first iteration the span size is 1, and at every iteration the span size is doubled. The
visited spans are non-overlapping, which means that at every iteration the number of
spans is halved as their span size is doubled. This means that in the ideal case where
the permutation length is a power of 2, exactly 2 × n spans will be visited in the outer
loop, in general the number of spans may differ slightly but will always be O(n).

The algorithm works with two arrays during the merge steps. One array h maps
from vertical to horizontal positions within the current subsequence. A second array
v maps from horizontal to vertical positions within the subsequence. The arrays are
formed by sorting the indices in the original permutation for the processed span to
follow the order of the input permutation as much as possible, under the constraint that
only the indices within the considered span can be moved. The array v is essentially
the inverse of h, meaning that ∀i : v[h[i]] = i, which is exploited by only sorting h
and then setting the values for v using this relation. It is important to understand the
motivation of working with the indices within the processed subsequence stored in h
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and v, which need to be (re-) sorted when processed by merge.6

Apart from (re-)sorting, central to the working of the algorithm is that it keeps
track of two pairs of boundaries, one in the horizontal and one in the vertical
direction. The boundaries start at the middle of the subsequence being considered
for reduction and are iteratively moved towards the beginning and end of this
subsequence. When the positions read in the vertical array are outside the range of
the horizontal boundaries, these boundaries are extended to include them. Similarly,
when positions read in the horizontal array are outside the vertical boundaries, these
are extended. Alternating between vertical and horizontal scanning, the different
boundaries are extended until none of them changes. Meanwhile, during each iteration
of this scanning procedure it is checked that the distance between the current vertical
boundary values in the subsequence permutation is not smaller than the distance
between the input permutation values for those boundary values. If the distance is
smaller, the subsequence misses values and no (further) reduction can be possible for
the subsequence under consideration. If this reduction check does not yield a negative
result before the boundaries stop changing, this means a valid reduction has been found
by the algorithm. If a valid reduction is made for a subsequence, more reductions
are attempted for that subsequence, by further extending the boundaries starting from
the boundaries of the previous reduction. Globally the algorithm also keeps track of
minimum and maximum positions of reductions that have already been made. These
minimum positions of reductions at smaller spans are then used at containing larger
spans to assure that reductions being considered directly skip on to reductions that
extend smaller reductions that have already be formed before. As a result of these
smart tricks and extensive bookkeeping it can be proven that the algorithm runs in
O(n log n) time.

Looking once more globally at the working of the algorithm it is natural to wonder
why working with the within-subsequence sorted indices is necessary, and why it
could not be possible to work with the original permutation values directly. There
are two reasons for this. The main motivation to work with the within-subsequence
indices rather than with the original permutation values, is that this permits the direct
mapping from within-subsequence permutation values to increased boundaries that can
be mapped back and forth in horizontal and vertical direction, enabling the efficient
boundary extension within the scan algorithm which would not be possible otherwise.
To understand why sorting is also necessary note that the spans that are reduced do not
necessarily need to span the entire subsequence, and the fact that h and v are sorted
permits to gradually expand the boundaries from the center of the subsequence, while
guaranteeing that whenever a reduction is found, smaller valid reductions either do not
exist or else have already been added.

As we will see next though, this algorithm is not the best possible yet, besides

6Since sorting is redone at every iteration this also could influence computational complexity.
However, resorting h for a larger subsequence amounts to merging the partially sorted lists of the
subsumed subsequences, which can be done in linear time. Hence the sorting does not, increase the
total complexity of the algorithm beyond O(n log n).
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not being the most intuitive. In the next paragraph we will shortly review a linear
time algorithm which was developed in a follow up by two of the same authors. This
algorithm keeps track of the lowest and highest value occurring within every span,
functions which can be efficiently computed incrementally by a dynamic programming
algorithm. Using these functions in combination with a stack-based shift-reduce style
algorithm, subsequence-relative permutations and constant resorting are no longer
necessary, as the reduction test can be evaluated directly and efficiently for every
considered subsequence.

4.3.4 Stack based algorithms
Zhang and Gildea (2007) introduce a linear time algorithm for the decomposition
of permutations through modification of the algorithm of (Uno and Yagiura, 2000)
for the closely related problem of finding all common intervals of two permutations.
Their algorithm can be seen as a refinement of a simpler stack-based shift-reduce
algorithm. This simpler algorithm scans the input from left-to right, and after addition
of every input element scanned and added to the stack, tests subsequences that start
at the end of the stack and are incrementally extended to the beginning as long as
no reduction is found. Whenever a reduction is possible, which is the case when
the total sum of elements of all to be merged subsequences equals the maximum
minus the minimum element over all those subsequences (basically again the standard
reduction test introduced by (Albert et al., 2005)), this reduction is printed and the
subsequences involved in the reduction are taken from the stack, and replaced by one
new subsequence formed by gluing them together.7

The authors next introduce a function that describes the reducibility of a span [x, y]
with (1 ≤ x ≤ y ≤ n).

f (x, y) = u(x, y) − l(x, y) − (y − x) (4.1)

with

l(x, y) = miniε[x,y]π(i)

u(x, y) = maxiε[x,y]π(i)

l(x, y) gives the minimum amongst the permuted numbers in the range [x, y] and
u(x, y) gives the maximum within that range. Note that to give some more intuitive
meaning to u and l they may be thought of as abbreviations for low and up.

7Since reduced sequences are sorted, only the first and last element need to be consulted to get their
minimum and maximum. Hence when shifting down the stack, for both simple subsequences of one
element and for compound subsequences of multiple elements, the minimum and maximum position
and the total length for the currently shifted range, can be updated in constant time.
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This function f (x, y), encodes the reduction test, and is non-negative but not
monotonic in general. A reduction is possible only for spans where the function is
zero.

Armed with this function the authors remark that if tried out ranges could be
ordered in such a way that the function is monotonically decreasing, this would prevent
the need for (repeatedly) testing invalid reductions, as at every iteration all valid
reductions would be added first and only once a value of f (x, y) > 0 would need to
be seen to stop all reduction attempts for that iteration.

That this is possible is shown by (Uno and Yagiura, 2000). The authors implicitly
use three lemmas which are made explicit in the next follow-up paper, which
generalizes the linear-time algorithm for permutations to work with full-fledged word
alignments (set-permutations). These lemmas are as follows:

Lemma 4.1. If x1 < x2 < y and f (x1, y) < f (x2, y), then for all y′ ≥ y, f (x2, y) > 0 (i.e.
[x2, y] is not a permutation).

Lemma 4.2. If x1 < x2 < y and u(x1, y − 1) > u(x2, y − 1), but u(x1, y) = u(x2, y) then
for all y′ ≥ y, f (x2, y′) > 0 (i.e. [x2, y′] is not a permutation).

and very similar for l:

Lemma 4.3. If x1 < x2 < y and l(x1, y − 1) < l(x2, y − 1), but l(x1, y) = l(x2, y) then for
all y′ ≥ y, f (x2, y′) > 0 (i.e. [x2, y′] is not a permutation).8

Next we will give an intuitive understanding of these lemmas without proving their
correctness, see (Uno and Yagiura, 2000) for a more formal analysis. Lemma 4.1 states
that if there are two spans, both ending at the same upper boundary y, but one having a
smaller lower boundary x1 and a smaller f-value, then it follows that any span starting
from the bigger lower boundary x2 and extending to any upper boundary has an f-value
bigger than 0, i.e. non-reducible. Why is this the case? Informally, the fact that the
span extending to x1 has a lower f-value means that x1 contains an element that must be
included to form a permutation that can be reduced. Hence, any span that starts from
x2 and does not include the element from x1 will always be incomplete, no matter how
far y is stretched on the right side.

Lemma 4.2 can be understood as follows. We have span1 = [x1, y−1] and span2 =

[x2, y − 1], both spans sharing the same right boundary but span1 extending further to
the left than span2. Now it holds that span1 has a higher maximum (u(x1, y−1)) which
we will call max1 then span2 (u(x2, y− 1)) , which we will call max2. But if we extend
both spans one to the right, their maximum, which we will call maxshared, becomes
equal. Simple reasoning shows that this implies that span1 must contain an element
max1 which is also required but not contained in any span equal to span2 or extending
span2 further on the right. As Lemma 4.3 is completely analogous to Lemma 4.2, its
correctness also be understood analogously, and therefore is not further explained here.

8This second analogous lemma for l is in fact not spelled out completely in Zhang and Gildea (2007),
but we do state it here explicitly for reasons of clarity.
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These lemmas play a central role in the timely elimination of all spans that will
never yield valid reductions, preserving the invariant that the f-value of spans encoded
on the stack is monotonically decreasing, and hence enabling linear time performance
of the algorithm.

The lemmas are exploited in the algorithm by finding at every extension of the
stack by a new element y pivot values for x, which are the leftmost values for x in
which either u(x, y − 1) < u(x, y) or l(x, y − 1) > l(x, y) so that the value of l or u gets
updated for these spans by extending them to include y. These pivot values are then
used by applying the lemmas described above and efficiently eliminating all x values,
that will yield spans [x, y] that can never be reduced. The fact that such x values must
be at or right of the left-most pivot value, makes searching for them efficient. This
avoids the need to repeatedly test different right extensions of spans that are simply
missing something on the left and hence can never be completed. When taking care
of certain performance affecting details in the implementation this gives a correct O(n)
maximal decomposition algorithm. For a proof of the algorithm complexity as well as
more details see Zhang and Gildea (2007).

4.3.5 Normalized Decomposition Trees

Normalized decomposition trees (NDTs) (Zhang et al., 2008a) provide a compact
representation for maximal decompositions (maximal decompositions) of word align-
ments into a set of nested phrase pairs. Maximal decomposition means that the
decomposition is constructed such that it is maximally compositional, which implies
that the word alignment is recursively decomposed into a minimal number of parts
at every level, yielding a maximally binary decomposition tree. normalized implies
that NDTs work with a canonical-form, left-branching9 decomposition in order to deal
with the ambiguity caused by monotonic and inverted parts of the word alignment,
which can induce (exponentially many) alternative possible maximal decompositions.
One important observation is that non-canonical form maximal decompositions can
still be efficiently constructed from NDTs, but they are not explicitly captured by this
representation. Representing all induced phrase pairs explicitly requires a (packed)
forest rather than a tree representation, but since the original goal of NDTs was mainly
fast (linear time) extraction of synchronous rules, such an explicit representation was
unnecessary and even undesirable for efficiency reasons.

In Figure 4.6 we show an example of a word alignment, taken over from (Zhang
et al., 2008a). The position sets above the English words at the top of the figure
correspond to the positions of French words on the bottom to which the English words
are aligned. The example is interesting since the word alignment is rather complex,
and it yields two alternative maximal decompositions, shown in Figure 4.7 and Figure
4.8.

9NDTs give preference to left strong intervals, this corresponds to a preference to left-branching
trees.
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Figure 4.6: Example of word alignment taken from (Zhang et al., 2008a)

([1, 6], [1, 7])

([4, 6], [1, 3])

([5, 5], [2, 2])

([1, 3], [4, 7])

([3, 3], [4, 4])([1, 2], [5, 7])

([1, 1], [6, 6])

Figure 4.7: Normalized decomposition tree (Zhang et al., 2008a) for the example from
Figure 4.6.

Figure 4.7 shows the NDT for the alignment of Figure 4.6. The tree contains
nodes with labels showing pairs of ranges on the source and target side, corresponding
to phrase pairs. For example, the root node has label ([1,6],[1,7]) which means the
root node is the phrase that spans the source positions 1 to 6 and the target positions
1 to 7. The NDT tells how this can be decomposed minimally as two subsumed
phrases ([1,3],[4,7]) and ([4,6],[1,3]). NDTs are formed using a linear time algorithm
that processes the word-alignment from left to right. In case of alternative maximal
decompositions it chooses these decompositions that yield phrase pairs corresponding
to left strong intervals, those intervals that do not overlap with any others on the
left. Figure 4.8 shows the alternative maximal decomposition for the alignment of
Figure 4.6. In this maximal decomposition the phrase pair ([3,3],[4,4]) is composed

([1, 6], [1, 7])

([3, 6], [1, 4])

([4, 6], [1, 3])

([5, 5], [2, 2])

([3, 3], [4, 4])

([1, 2], [5, 7])

([1, 2], [5, 7])

([1, 1], [6, 6])

Figure 4.8: Alternative maximal decomposition for the example from Figure 4.6.
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with the phrase pair to the right instead of left as in the original NDT. While this
is also a valid maximal decomposition it is not an NDT, as it is an alternative, non-
canonical decomposition of the word alignment. Finally it is important to notice that
one limitation of NDTs is that they do not make explicit the mapping relations between
phrase pairs, only their relative embedding. For example in the NDT of Figure 4.6, the
top phrase pair is decomposed into two parts that are inverted, and so is its left child. In
the alternative maximal decomposition of Figure 4.8, the top phrase pair and its right
child are now the inverted nodes. This information is not present in the NDT, and in
this case looking back at the original word alignment plus reasoning is necessary to
derive it. But having this information explicit is important when we want to reason
about the reordering context of synchronous rules. This is our main reason to extend
NDTs and permutation trees (PETs), into a generalized formalism called hierarchical
alignment trees (HATs), which subsumes both and makes the (reordering) mapping
relation at the nodes for all phrase pairs induced by the word alignment explicit.

Efficient algorithms for computing Normalized Decomposition Trees

With some adaptations and generalizations the stack-based algorithms for decompos-
ing PETs are extended in (Zhang et al., 2008a) to work effectively for general word
alignments as well, giving algorithms that effectively find maximal decompositions
of word alignments as sets of minimal phrase pairs. In the case of permutations the
difference between the maximum and minimum element of a sequence in comparison
to the sequence lengths yields an adequate reduction test. But Zhang et al. (2008a)
note that for phrase pairs where there can be many to many alignments, assuring all
involved alignment links are also included becomes necessary. This suggests a new
reduction test that is based on the counting of links. By introducing a function that
counts the total number of links for a certain span starting from the beginning, and
noting that by subtraction of two counts the total link count for any arbitrary span can
be efficiently computed for source or target side, the authors lay the foundation for an
effective generalization of the earlier algorithms for decomposition of PETs to phrase
pairs.

The authors introduce two functions:

Fc( j) = |{(i′, j′)εA | j′ ≤ j}|

Ec(i) = |{(i′, j′)εA | i′ ≤ i}|

which count the number of links contained in the subsequences E and F starting
on the left and running up to the i-th or j-th word, for the source and target side
respectively. The difference Fc(u) − Fc(l − 1) counts the total number of links in the
source range [l, u] while Ec(y)− Ec(x− 1) counts the total number of links in the target
range [x, y].

Based on these new functions, the new reduction test function becomes:
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F(x, y) = Fc(u(x, y)) − Fc(l(x, y) − 1) − (Ec(y) − Ec(x − 1)) (4.2)

The first part of this formula. Fc(u(x, y)) − Fc(l(x, y) − 1) computes the number of
links on the target side between the minimum and maximum target position mapped to
in the source range [x, y]. The second part of the formula, (Ec(y) − Ec(x − 1)), counts
the number of links on the source side, in the source range [x, y]. Now the definition
of phrase pairs states that we have only a phrase pair exactly when all links started
from a source range, are exactly included by those links produced by the mapped-to
target range, and nothing more or less. This is the case if and only if the first part
of the formula is exactly equal to the second part, so that the value of F becomes
zero. This informally shows that the adapted formula, exactly tests for the existence of
phrase pairs, and thus succeeds to generalize the central formula from the permutation
decomposition algorithm to the decomposition of general word alignments.

There are still some minor differences between the original permutation decom-
position algorithms and their generalized forms for word alignments based on the
above generalized formula for F. One difference is that the generalized form algorithm
described in (Zhang et al., 2008a) explicitly described “steps” of l and u, which are sets
of ranges with consecutive starting points and same end points sharing the same l or u
value. These “steps” can in fact be explicitly represented, and in a way help to make
the implementation more structured in the representation of u and l and its efficient
updating. Another minor difference is that (Zhang et al., 2008a) explicitly works with
two separate pivot values which are also important for the proofs of correctness of the
algorithm, while in the original description for decomposition of permutations only the
left-most pivot value is explicitly used in the description of the algorithm. This is not
an essential difference in the working of the algorithm but rather a minor difference in
the description of the algorithms it seems though. Overall the two papers (Zhang et al.,
2008a) and Zhang and Gildea (2007) are complementary for a better understanding
of the overlapping ideas and methods presented in both papers, since both papers are
quite dense in their descriptions of the actual algorithms. Possibly the most effective
way to get a detailed understanding of the algorithms is to reimplement them.10 We
end our overview of existing work on permutation and alignment decompositions here,
and encourage interested readers to look at the original publications for more details
about applications, performance, correctness and implementation.

4.4 Hierarchical Translation Equivalence
An essential element of a complete notion of translation equivalence is the compo-
sitional structure of the TEUs. The important insight is that the contiguous TEUs

10Our reimplementation is available as part of the project at
https://bitbucket.org/teamwildtreechase/hatparsing
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(phrase pairs) induced by word alignments by definition take part in subsumption
relations, formally defined in section 2.3.2, definition 2.3.2, as soon as any phrase
pair smaller than the full sentence pair exists. This is almost always the case, and
typically there exist many induced smaller phrase pairs and these phrase pairs exhibit
a rich hierarchical subsumption structure.

When the complete set of TEUs and their subsumption relations is given, much
is known about the hierarchical alignment relation, but not necessarily enough to
completely retrieve the original word alignment. This is illustrated by the normalized
decomposition tree (NDT) in Figure 4.1c, which represents all contiguous TEUs
and their subsumption relations, but fails to represent the existence of the remaining
discontiguously linked words 〈“cannot”, “kunnen ... niet”〉 and their role in completing
the word alignment. NDTs also fail to represent the internal word alignments inside
phrase pairs, which is a second reason why they fail to preserve enough information to
allow reconstruction of the original word alignment.

In section 4.3.1 we saw that in the case of PETs besides the subsumption relation
a second component being the mapping relation is required to fully characterize the
original permutation and allow its reconstruction. While the node operators of PETs
capture the thus defined mapping relation adequately, PETs can only capture bijective
translation equivalence relations. When we generalize to general word alignments,
the requirement of having both these components present in order to get a complete
representation of the original word alignment and as such of hierarchical translation
equivalence, remains. NDTs (Zhang et al., 2008a) represent only the subsumption
relation, and not the mapping relation, and are therefore not adequate as complete
representations of hierarchical translation equivalence induced by word alignments.11

Using again the components subsumption relation and mapping relation that
characterize the ability of PETs to completely characterize hierarchical translation
equivalence for bijective word alignments, through generalization we can now define
hierarchical translation equivalence for general word alignments:

Definition 4.4.1. Hierarchical Translation Equivalence
Hierarchical Translation Equivalence for a word alignment is defined as the union
of the full sets of:

1. Translation equivalents under the notion of contiguous translation equiva-
lence.12

11Note that in normalized decomposition trees, as might be expected the subsumption or
decomposition relation is implicitly available, with the limitation that only the canonical form
decomposition is given. The mapping relation however, is not available, not even implicitly, and as
a consequence normalized decomposition trees cannot distinguish between equivalent sets of phrase
pairs that exhibit completely different internal word alignments.

12As discussed in section 2.3.2 there are two notions of translation equivalence: contiguous
translation equivalence (phrase pairs) and general translation equivalence (all induced TEUs including
discontiguous ones).
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2. Subsumption relations between pairs of parent phrase pairs and their sub-
sumed children.

3. Mapping relations and implied reordering relations, between the children of
parent nodes on the source and target side and their linked children on these
source and target sides.

over all possible maximal decompositions of that word alignment.

An important property of a representation that satisfies this notion of hierarchical
translation equivalence is that it always permits complete reconstruction of the original
word alignments for which the representation was induced.

Note that in practice we limit ourselves, as is common in the field, to contiguous
translation equivalence when inducing TEUs and their subsumption structure from
word-aligned sentence pairs. This means that discontiguous TEUs must always be
embedded into larger, contiguous TEUs. But, is it consistent to allow only contiguous
TEUs (phrase pairs) when performing the decomposition of word alignments, yet insist
on making the mapping relations explicit, which may involve discontiguous mappings
between parts of parts of (embedded) discontiguous TEUs? To answer this, we note
that these are two quite different matters. The first one concerns a choice, namely the
type of TEUs to allow in the decomposition of a word alignment while the second one
concerns the consequence of what type of mapping relations this implies in order to get
a complete description of Hierarchical Translation Equivalence. We chose to restrict
to contiguous TEUs and require maximal decompositions of those. This implies that
in decompositions contiguous TEUs are used whenever possible, but when contiguous
TEUs embed discontiguous constructions, the discontiguous parts must still be added
to complete them. And for such TEUs that embed discontiguous parts, discontiguous
mapping relations are required to express how those parts came into being.

One might also wonder why to limit ourselves to contiguous TEUs as selected
working units in the first place? Practical considerations play an important role in
this, since the number of arbitrary discontiguous TEUs is explosively exponential,13

and decoding with arbitrary discontiguous TEUs is equally intractable. But the choice
for contiguous TEUs is not only pragmatic. In most languages, words that are close
together form semantic units, which is one of the principles that explains that syntactic
theory can work and constituency parsing gives useful structures. This doesn’t means
that discontiguous units do not exist or have merit, even possibly for monolingual
parsing (van Cranenburgh and Bod, 2013). It just means that the heuristic bias of
using locality as a selection criteria for choosing initial TEUs amongst the otherwise
somewhat intractable exponential set is a sensible one. Finally we follow Chiang

13To see this consider a monotonic translation with n words on both sides. There are (n ∗ (n + 1))/2
phrase pairs, namely all spans (i, j) such that 1 ≥ i ≤ j ≤ n. On the other hand, there are 2n − 1
discontiguous TEUs, basically any pair of linked words can be included or not, the only constraint is
that at least one of them needs to be included.
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(2005) by starting from contiguous TEUs (phrase pairs) but then relaxing the limitation
of contiguity and generalizing those phrase pairs. The generalization is done by
replacing one or two subsumed phrase pairs inside the original (contiguous) phrases
by variables (so called “gaps”), thereby forming hierarchical rules. This is often
considered a fair tradeoff between expressive power and complexity. It allows to stay
within the framework of synchronous grammars, while still enabling most of the useful
discontiguous constructions and greatly increasing generalizing power over simple
phrase-based systems.

We have now given a description of hierarchical translation equivalence and
explained why a faithful representation of all mapping relations is an important part
of this concept. Earlier in section 4.3.1 we introduced the concept mapping relation
in the context of PETs, for which these relations are always bijective and therefore
simple to understand and represent. But we still need to explain how the synchronous
mapping between source and target components taking part in the mapping relation
is to be expressed formally for non-bijective translation equivalence relations. To this
end we next introduce set permutations, as a formalism extending permutations that
provides a compact and sufficient way to capture mapping relations for the full set of
contiguous TEUs induced by any word alignment.

4.5 Set Permutations
Set permutations (s-permutations) are a simple and conservative extension to per-
mutations, that allow to represent arbitrary many-to-many word alignments. Set
permutations a lists of sets of target positions, one such list for every source position.
For every source position i, the list element at position i gives the set of target positions
to which that position is linked. Figure 4.9 shows an example of a word alignment for
English–French with its associated set permutation.

Figure 4.9: Example of English–French word alignment and corresponding set-
permutation

It can be shown that set-permutations are equivalent to a canonical form rep-
resentation of word alignments.14 For a more detailed and formal description of

14It can be important to assure that a canonical form representation is used for word alignments,



106 4. Representing Hierarchical Translation Equivalence: HATs

set-permutations and their relation to HATs, we refer the reader to (Sima’an and
Maillette de Buy Wenniger, 2013)

4.6 Hierarchical Alignment Trees (HATs)
An efficient and compact representation of hierarchical phrase pair translation equiv-
alence is Hierarchical Alignment Trees (HATs). A HAT (Sima’an and Maillette de
Buy Wenniger, 2013) is a hierarchical representation/decomposition of the phrase pairs
in a word alignment; A HAT compactly represents a synchronous tree pair: a source
and target tree pair with a node alignment relation between them. The recursive
structure in a HAT shows the build up of phrase pairs from embedded phrase pairs.
Hence, every node in a HAT represents the phrase pair at the fringe of the subtree
under that node.

In Figure 4.12 we show what a visualization of a Hierarchical Alignment Tree for
the example of Figure 4.10 looks like. There are actually two HATs displayed here. The
upper tree shows the mapping from source to target while the bottom tree shows the
mapping from target to source. Between the two trees we display the word alignments,
making it directly clear how certain parts of the word alignment yield corresponding
parts in the HATs. The filling and color/shade of the nodes represents the translation
equivalence between the source and target side of phrases.

Like normalized decomposition trees (NDTs) (Zhang et al., 2008a), HATs are
minimally branching decomposition of word alignments into phrase pairs, i.e., every
HAT node covers a phrase pair and it dominates the smallest number of translation units
(the child nodes) that the phrase pair decomposes into. In Figure 4.12, the alignment
underlying the phrase pair our citizens unsern burgern decomposes down minimally
to two phrase pair nodes our unsern and citizens burgern. More intricate HATs may
arise due to complex word alignments that involve many-to-many and discontiguous
translation units.

Discontiguous translation units One important property of HATs is their explicit
representation of discontiguous translation units. In Figure 4.12 the root node on the
English/German side dominates, among others, two terminal nodes: this explicitly
represents the discontiguous unit given by the alignment between sind + schuldig
(positions 2 and 5) on the German side with a single English word owe (position
2). More generally, to differentiate between phrase pairs and separate parts of
discontiguous translation units in the HAT representation, the latter are depicted as
terminal nodes (nodes labeled with words without any children), whereas the former
(phrase pairs) are represented as non-terminal nodes (circles with filling dominating a
subtree).

which are essentially sets of link pairs. When represented as a list of link pairs, and not following a clear
ordering convention, multiple alternative representations might be used for the same word alignments,
which is undesirable.
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Figure 4.10: Example of alignment visualiza-
tion for an aligned sentence pair (Europarl)

Figure 4.11: Exam-
ple recursive com-
position of HATs

Figure 4.12: Visualization aspects: Filling (and shade) of the
circles indicates the equivalence between the top source-to-
target HAT and the mirrored target-to-source HAT displayed
below it. Labels, such as [3,{2,5},1,4] at the top node, denote
permutation-set reordering operations at nodes. The labels
ATOMIC, MONO and COMPLEX in the HAT visualization
indicate broad complexity categories for reordering.
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Reordering operators Crucially, HATs extend NDTs by providing explicit repre-
sentation of the reordering of the children under every node by a transduction operator,
called a set-permutation, as well as the internal word alignments for atomic (non-
decomposable) phrase pairs. Hence, a HAT is a decorated tree where the nodes are
decorated with set-permutations. A set-permutation decorating a node in source side
HAT is a list of integer sets denoting a transduction operation that applies to the
children of that node to obtain the target side phrase reordering. We will exemplify
HATs and set-permutations before we proceed further with discussing the properties
of HATs.

Set-permutations such as [3,{2,5},1,4] (see the root node in Figure 4.12) denote
reordering operations occurring under these nodes. In this example the source children
1, 2, 3, 4 map to target children (relative order) 3, {2,5}, 1, 4 respectively, where {2,
5} represents the fact that the second child is linked with two on the other side in
positions 2 and 5. In the simpler monotone mapping our citizens | unsern burgern the
set-permutation label is [1,2]. We also see the coarse reordering categories ATOMIC,
MONO and COMPLEX in this figure, which are discussed next.

Complexity categories As mentioned above, every node is decorated with a set-
permutation, specifying the relative mapping occurring directly below it. In the case
of bijective mappings this describes a permutation. In the general case of arbitrary m-
n mappings there are recurring target position in the mapping set of different source
positions and/or multiple target positions occurring in the mapping set(s) of some
source positions. Hence, the set-permutations can be grouped into coarser categories
of mapping complexity. We distinguish the following five cases, ordered by increasing
complexity:

1. Atomic: If the alignment does not allow the existence of smaller (child) phrase
pairs: a subset of alignment positions that is not connected to the other positions
while also forming a contiguous sequence on the source and target does not
exists.

2. Monotonic: If the alignment can be split into two monotonically ordered parts.

3. Inverted: If the alignment can be split into two inverted parts.

4. Permutation (Perm): If the alignment can be decomposed as a permutation of
more than 2 parts.

5. Complex (Comp): If the alignment cannot be decomposed as a permutation of
parts, but the phrase does contain at least one smaller phrase pair.

Typically there are multiple HATs for a word alignment, corresponding to different
possible minimally branching decompositions into phrase pairs. These alternative
HATs can be efficiently computed and stored as a chart using a CYK-parser like chart
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parsing algorithm that parses the alignment and builds a hypergraph of HATs in the
process.15

A categorization of the complexity of the HAT as a whole is determined based on
the complexity categories of the alignment mappings at its nodes. binary inversion-
transduction trees (BITTs) is the least complex class consisting of only binary HATs
that can be built for binarizable permutations (Huang et al., 2009), any HAT that
contains only monotonic and/or inverted nodes belongs to this class. If a HAT contains
at least one permutation node but no complex nodes it belongs to the category called
PETs corresponding to general permutations (Zhang et al., 2008a; Satta and Peserico,
2005). Finally the occurrence of at least one complex node implies a HAT belongs to
the set HATs which captures all possible many-to-many mappings.

4.6.1 The role of node operators

Node operators are crucial to the representative power of HATs and are essentially
what distinguishes HATs from normalized decomposition trees. For this reason the
semantics of node operators deserves some further explanation.

The semantics of a node operator that is a set-permutation (s-permutation) π
over the child sequence of a node in a HAT is a generalization of the semantics of
the operators in a permutation tree (PET), which are in turn a generalization of the
inversion transduction tree (ITG) operators [] and 〈〉. The semantics of these operators
is the same as the definition of s-permutations for standard word alignments, which are
essentially a canonical form representation of word alignments, as mentioned before
in section 4.5. The difference is that here the operators apply to the sequence of child
nodes of respective nodes in HATs. As such they give a representation of the local
reordering at those HAT nodes, which in the context of the entire HAT recursively
combines with the operators of the other nodes back to the s-permutation for the
original word alignment by which the HAT was induced. Thus the node operators
in combination with the information about their hierarchical structure as provided by
the HAT perfectly decompose the original word alignment, and are thus sufficient to
reconstruct it entirely.

Algorithmically speaking the semantics of the s-permutation π over the children of
the current node µ linked with a target side node µt is obtained as follows. Scanning
π left to right: for the set of integers X in the ith position in π generate child positions
under µt corresponding to the integers in X and link each of these target positions with

15This is exactly what is done by our program. Note that in certain cases the number of HATs
per alignment can become big, in particular for alignments that contain many monotone parts. One
optimization we use in our algorithm is reasoning about null-aligned words outside the main algorithm.
Computation is typically fast, provided enough memory is available. Rendering all HATs is done by
enumerating all of them from the Hypergraph and writing their tree structures to a text file, then reading
this unpacked forest from the text file by the tree visualization component. As this can become somewhat
slow in case of many HATs, rendering all HATs can be turned on in the GUI, but only showing the first
one is used as the default option.
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the ith child of µ.
Figure 4.13 exhibits three abstract word alignments that constitute minimal phrase

pairs. In the HAT representation each of the three will be represented as a single linked
node (pre-terminal level) dominating three terminal nodes. While the tree structure
itself is the same, the node operators (s-permutations) on each are different. The node
operators specify the internal alignment structure for, otherwise, hierarchically very
difficult to represent word alignments. This way, the internal alignments of phrase pair
units remain preserved.

<{2}, {1,3}, {2}>

<{2}, {1,3}, {2}>

<{1}, {1,2,3}, {3}>

<{1,2}, {2}, {2, 3}> <{1,2,3}, {1,2,3},{1,2,3}>

<{1,2,3}, {1,2,3},{1,2,3}>

Figure 4.13: Three word alignments that constitute minimal phrase pairs and their
HATs

Figure 4.12 exhibits an example word alignment (coming straight from our
automatically aligned data) and a HAT on one side and its dual HAT on the other
side, with links between the pairs of nodes (represented by a choice of circle filling).
Note the discontinuous alignment of owe with sind and schuldig together with
another crossing alignment. The HAT representation reveals a pair of linked nodes
dominating the synchronous pair 〈(X1 owe X2 X3), (X2 sind X1 X3 schuldig)〉, where
X1, X2 and X3 stands for three aligned pairs of nodes in the HAT. The latter bilingual
construction is a Chiang-style production. The pair of linked nodes is decorated with
a s-permutation 〈3, {2, 5}, 1, 4〉 on the English side and 〈3, 2, 1, 4, 2〉 on the German
side. Observe how these s-permutations actually link the second (zijn) and fifth
(schuldig) children of the German node with the second child (owe) of the English
linked node, thereby maintaining the lexical word alignment for such cases within the
HAT structure.

4.7 Efficient Computation of HATs
In this section we describe what is necessary to efficiently implement the computation
of HATs. This description will be based on our progressive insight and knowledge of
the implementation described in (Zhang et al., 2008a). Our goal of this exposition
is to explain concisely what is necessary for an efficient implementation, focusing
on the most important parts of the implementation and building further on top of
what is known from the implementation of the existing work of (Zhang et al., 2008a;
Gildea et al., 2006; Zhang and Gildea, 2007) that we described before this. Our own
implementation was initially developed independently, without knowledge of this line
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of existing work, and as a result missed out on some of the efficiency tricks introduced
by (Zhang et al., 2008a). Nevertheless, the central problem that we focus on, which
is computing a chart representation of all HATs as opposed to a single canonical HAT
requires a basic approach that does not change too much with or without knowledge
of this earlier work. Basically, computing all HATs demands a CYK-style architecture
that visits all source spans ordered from small to big, tests for each of these spans
whether it constitutes a factorizable (reducible) sub-alignment, and if so computes all
maximal decompositions with associated set-permutation labels and stores them in
the corresponding chart entry of that span. What changes mainly with knowledge of
(Zhang et al., 2008a) is that the efficiently computable reduction test function F can be
exploited to test if a reduction is possible, a test which is more expensive without
this smart trick yet not dominating the total algorithm complexity. The algorithm
complexity is a function of the source length n. The total algorithm complexity is
dominated by the need to visit all spans, of which there are O(n2) in combination
with the need to compute all minimal reductions for each span. The latter is done
most effectively by the well known Viterbi algorithm (Viterbi, 1969), also known as
Dijkstra’s Shortest Path algorithm (Dijkstra, 1959), which has O(m2) complexity,
where m here is the length of the spans. The complexity of the complete HAT parsing
algorithm is O(n4). The details of the reduction test implementation efficiency do not
change this complexity.

4.7.1 CYK-style alignment parse algorithm
The main algorithm for the parsing of alignments and computation of a packed chart of
HATs is called constructHATs (Algorithm 1). The algorithm creates the set of induced
Hierarchical Alignment Trees for a triple of source sentence, target sentence and
alignment, compactly represented as a packed forest. Our general approach exploits
the fact that for general alignments as much as for permutations, it suffices to represent
only one side (source or target) of the alignment directly, and build the packed forest
by processing spans of that side. The information about the mapped to positions on the
other side is represented where needed within the datastructures representing the spans
for the side of the alignment chosen to work from.

Datastructures
The algorithm starts by creating a chart, which is a 2-dimensional array of chart entry
(ChartEntry) instances. The chart entries corresponds to spans on the source side. In
each of the chart entries, so called inferences are to be stored in a list. These inferences
keep track of the alternative ways, to decompose/construct the reduction made at that
chart entry. In the case of a chart entry corresponding to monotonic or inverted sub-
alignments, the split point can be chosen at different positions, leading to different
alternatives which are thus stored as different inferences in the inference list for the
chart entry.

The chart used by the main algorithm is first initialized. Initialization consists of
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first adding Inferences for the chart entries with span one, which cover just one source
word. This is done by the method addSpanOneInferences. Finally in the main loop
general inferences for increasingly long span lengths are added, for each chart entry by
composition of partial HAT forests stored at smaller sub-entries for whom inferences
have been added in previous iterations.

constructHATs
Data: triple< s, f , a >
Result:
chart - A packed chart containing the HATs that are consistent with the sentence
pair and associated alignments

n← length(s) ;
chart← chartEntry[n][n] ;

/* Initialize the leaf chart entries that cover just the
source word and their associated target words */
for i← 0 to n − 1 do

addSpanOneInferences(< s, f , a >,i, chart) ;
end

/* Main loop. Find derivations for increasingly long span
lengths, until the entire chart is filled. */
for spanLength← 2 to n do

for beginIndex← 0 to n − spanlLength + 1 do
endIndex = beginIndex + spanLength − 1 ;

//Get the chart entry of length spanLength that starts
from beginIndex
chartEntry = chart[beginIndex][endIndex] ;

//Find derivations for the chart entry
addInferencesForchartEntry(< s, f , a >,chartEntry,chart);

end
end
return: chart;

Algorithm 1: An algorithm for constructing a packed chart containing all
implicated HATs for a given triple< s, f , a >

Adding inferences for a chart entry consists of three main steps, which are sum-
marized in the pseudocode of the function addInferencesForChartEntry (Algorithm
2):

1. Check that the source span corresponding to the chart entry can constitute valid
reductions. This is done by the F function, function 4.2 we described before in
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section 4.3.5. This corresponds to the line

if F(chartEntry.getX(), chartEntry.getY()) == 0 then

2. Find all minimal partitions of the source span, corresponding to the set of valid
reductions for the source span. This corresponds to the next line

minComponentPartitions← findMinimalPartitions(entry)

3. Compute the set of Inferences from the set of minimal partitions. This involves
computing a set-permutation label for each of the partitions and combining it
with the set of chart entries for the partition. These steps are done in the for
loop, that starts after the minimal partition set computation.

In the coming subsections, we will explain the second step finding all minimal
partitions and third step computing set-permutation labels in more detail. But first we
now illustrate the main algorithm using some examples.

4.7.2 Examples

Figures 4.14 and 4.15 illustrate how the HAT parsing algorithm (Algorithm 1) fills
the chart. In this example, HATs are computed for the English–French sentence pair
“〈dont want it, ne le veux pas〉” with discontiguous word alignment “0-0 0-3 1-2 2-
1” . The algorithm and the chart only represents source and target positions, not
actual words, but since words and positions map one to one we can think of them
as being interchangeable. In Figure 4.14a, we show the chart just after initialization, in
which inferences for source span 1, i.e. single source words, are added. Chart entries
display: 1) the shared set-permutation label, 2) whether or not the added inferences
are complete, 3) the set of target positions of the inferences in the chart entry, 4)
alternative partitions, corresponding to alternative inferences (dashed boxes). Note that
the inferences for the second and third source words are complete, but the inference
for the first source word is incomplete. The reason is that the first source word maps to
two discontiguous target positions: {0, 3}, and hence no complete contiguous TEU can
be formed at this point.

Continuing after initialization, in Figure 4.14b in the main loop of the algorithm
next inferences for source spans of length 2 are added. Notice that here an inference
is only added for the span [1, 2]. For the span [0, 1] no complete TEU can be formed,
and so no inferences are added for it. Finally in Figure 4.15c, inferences are added for
the source span [0, 2] with length 3. Here the incomplete inference for the first source
word is combined with the complete inference spanning the second and third source
word, yielding an inference spanning the entire aligned sentence pair.

As one more example, Figure 4.16 shows the final chart for the HAT parsing
algorithm for the sentence pair “〈s1 s2 s3, t1 t2 t3〉” with fully inverted word alignment
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(a) After initialization: added inferences for span=1

(b) End of outer loop iteration 1: added inferences for span=2

Figure 4.14: Example of chart for HAT parsing algorithm run for the English–French
sentence pair “〈dont want it, ne le veux pas〉” with discontiguous word alignment “0-0
0-3 1-2 2-1” . The vertical axis shows the length of the source spans, the horizontal
axis shows the start position of the spans on the source side. The algorithm first
adds inferences for span=1. Then the main loop of the algorithm incrementally adds
inferences for increasingly longer spans.
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(c) End of outer loop iteration 2: added inferences for span=3

Figure 4.15: Example of chart for HAT parsing algorithm run for the English–French
sentence pair, continued from Figure 4.14.

“0-2 1-1 2-0”. Here the important thing to notice is that there are two alternative
inferences for the chart entry with source span [0, 2] which covers the entire sentence
pair. These two inferences correspond to alternative bracketings of this completely
inverted word alignment.

4.7.3 An efficient Viterbi Algorithm to find the minimal Partitions

We now explain the algorithm to find the minimal partitions. This is a well
known dynamic programming algorithm called the Viterbi algorithm, also known as
Dijkstra’s Shortest Path algorithm. In our specific case, the algorithm incrementally
computes the set of shortest paths (partitions) starting from the left boundary of a span,
and incrementally increasing the right end until it reaches the right boundary of the
span. While the algorithm is relatively simple, it does require some bookkeeping
to enable the efficient (dynamic programing) computation it executes, and also to
later retrieve the resulting shortest partition(s). Specifically, we need a datastructure
PartitionLatticeEntry that keeps the minimal cost of a certain partition up to its first
position on the left, as well as a list with back pointers to the Viterbi PartitionEntries
that were used to arrive at this minimal cost. This is given below:

PartitionLatticeEntry - a datastructure containing :

• minimalCost : the cost of the best found partition of the left sub-range
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Figure 4.16: Example of chart for HAT parsing algorithm run for the sentence pair
“〈s1 s2 s3, t1 t2 t3〉” with fully inverted word alignment “0-2 1-1 2-0” . Here, for
brevity we show only the end result of the algorithm, after inferences have been added
for all spans. Notice, that for the chart entry with span 2 there are multiple inferences.
This reflects a well known phenomenon about building binary trees for fully monotone
and fully inverted permutations: there are many alternative bracketings, leading to a
number of derivations that is exponential in the length of such permutations.

• viterbi : a list of back pointers to previous partition entries that are in the partition
of the left part with lowest cost

• index : the (relative) source position where this partition entry starts

A second datastructure PartitionList is used to store each actual (shortest) partition
in its full unpacked form.16 These unpacked partitions can then be used in the next
steps to compute Inferences and their associated set-permutation labels.

PartitionList - a datastructure containing :

• headEntry : the partition entry that contains the head of the (possibly incomplete)
list specifying the partition.

16Alternatively we could do this unpacking implicit and on the fly and, which would perhaps give a
somewhat lower computational cost. We prefer explicit unpacking though since it gives the benefit of
separation of responsibilities and loose coupling.
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addInferencesForChartEntry
Data:
triple< s, f , a >
entry - the chart entry for which derivations are sought
chart - the chart

//If the chart entry has a F function value of 0, i.e. has
valid reductions
if F(chartEntry.getX(), chartEntry.getY()) == 0 then

minComponentPartitions← findMinimalPartitions (entry);
for minComponentPartition ∈ minComponentPartitions do

partitionChartEntries← {};
for Pair < i, j > ∈ minComponentPartition do

partitionChartEntries.add(chart[i][j]);
end
setPermutationLabel←
findSetPermutationLabelForPartition(minComponentPartition);
inference← createInference(partitionChartEntries,setPermutation);
entry.addInference(inference);

end
end

Algorithm 2: Algorithm that finds inferences for a specific entry in the chart. The
algorithm will find inferences that consist of the least possible parts, i.e. preferably
BITTs but otherwise PETs or HATs with the least number of parts possible. In some
cases the algorithm might not find any inference, which happens if the value of the
F function for the source span of the chart entry has a value that is not zero.

• partition : a list of pairs of points, specifying the first and last indices of the
subranges forming the partition.

Using this PartitionLatticeEntry datastructure and a n × n array of booleans Infer-
able that contains inferability information for the sub-entries of the entry for which
we search the minimal partitions17, we are now ready to specify the algorithm that
finds the minimal partition lattice. This is shown as generateMinimalPartitionLattice
(Algorithm 3).

The algorithm returns shortestPartitionLattice which contains both the cost of the
minimal partitions, and back-pointers to the previous PartitionLatticeEntry entries that
are part of these minimal partitions. The lattice shortestPartitionLattice stores shortest
partitions for ranges that start at the left-most chart entry boundary, and grow on the
left boundary, up to spanning the entire chat entry. It therefore has n + 1 elements, with

17Entries in Inferable are set to true, if they themselves correspond to phrase pairs, or if they
correspond to single words in the source which may or may not constitute independent phrases.
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generateMinimalPartitionLattice
Data: Inferable: a n × n array of booleans containing inferability information
Result: A Lattice containing the set of shortest partitions in compact form
shortestPartitionsLattice← new PartitionLatticeEntry[n+1];
for i← 0 to n do
//Initialize all costs to the maximal cost possible
shortestPartitionsLattice[i].minimalCost← n;
shortestPartitionsLattice[i].index← i;

end
shortestPartitionsLattice[0].minimalCost← 0
for i← 0 to n do
//Loop over Inferable entries starting from i
for j← i to n do

if (Inferable[i][j]) then
costNew← shortestPartitionsLattice[i].minimalCost + 1;
if (costNew < shortestPartitionsLattice[j+1].minimalCost) then
//A better alternative has been found: replace
//the viterbi list and minimal cost
shortestPartitionsLattice[j+1].minimalCost← costNew ;
shortestPartitionsLattice[j+1].viterbi← {};
shortestPartitionsLattice[j+1].viterbi.add(shortestPartitionsLattice[i]);

else if (costNew == shortestPartitionsLattice[j+1].cost) then
//An equally good alternative is found:
//keep it as well
shortestPartitionsLattice[j+1].viterbi.add(shortestPartitionsLattice[i]);

end
end

end
end
return: shortestPartitionsLattice;

Algorithm 3: An algorithm for finding a lattice containing in compact form all
partitions of an entry that contain the minimally possible number of sub-entries

its first element spanning nothing and having a cost of zero. Looking at Algorithm
3, we see how its main work is done within the innermost for loop, when the if
statement “if (In f errable[i][ j])” returns true. The latter implies that a phrase pair
exists for the span [i, j], and therefore a new partition can be made consisting of
shortestPartitionsLattice[i]].minimalCost elements for the range [0, i − 1] and of one
element for the span [i, j] hence the “+1”. This is compared with the current lowest
cost for the span [0, j], stored at shortestPartitionsLattice[ j + 1].minimalCost, were
the “+1” in the index is explained by shortestPartitionLattice having n + 1 elements, as
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mentioned earlier. If the new cost is lower than the cost of the current shortest partition
for the span [0, j], the current element is replaced, and if the cost is equal the new
partition is added as an alternative.

By traversing back using the back-pointers, a set of minimal partitions—defined by
lists of split points or alternatively sub-ranges—can be easily computed. This is done
by findMinimalEntryPartitions (Algorithm 4) which finds a list of partitions with a
minimal number of involved entries. Every shortest partition itself is a list of pairs of
integers, indicating the indices of the entries that make up the partition.

findMinimalEntryPartitions
Data: Inferable: a n × n array of booleans containing inferability information
Result: A set of shortest partitions

shortestPartitionsLattice← generateMinimalPartitionLattice(Inferable);
incompletePartitionLists← {};
shortestPartitions← {};
incompletePartitionLists.add(PartitionList(shortestPartitionsLattice [n],{})) ;

while imcompletePartitionLists , {} do
newIncompletePartitionLists← {};
for list ∈ imcompletePartitionLists do

if list.headEntry.index == 0 then
shortestPartitions.add(list);

else
for parent ∈ list.headEntry.viterbi do

newList← clone(list);
newPartition← Pair(parent.index, list.headEntry.index − 1);
newList.partitions.addFirst(newPartition);
newList.setHeadEntry(parent);
newIncompletePartitionLists.add(newList);

end
end

end
incompletePartitionLists = newIncompletePartitionLists;

end
return: shortestPartitions;

Algorithm 4: An algorithm for finding all partitions of an entry that contain
the minimally possible number of sub-entries. The “real work” is done by
generateMinimalPartitionLattice which generates a lattice of minimal partitions.
This algorithm next unpacks this lattice and generates a list of lists of minimal
partitions from it which is then finally returned.
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4.7.4 Computing set-permutation labels for minimal partitions

Next we will describe how the set-permutation label is computed given a minimal
partition, a chart entry and the chart itself as input. This computation is described below
in the function findSetPermutationLabelForPartition (Algorithm 5) and involves
two subroutines, namely findShiftedTargetPositionsForChartEntry (Algorithm 6)
and computeShiftedTargetPosTable (Algorithm 7). The subroutine computeShift-
edTargetPosTable computes a mapping table that maps from target positions to shifted
target positions. This is done by first collecting all the target positions mapped to
by components of the partition, in the case of components corresponding to proper
reductions taking just the lowest mapped to target position for that component as a
“representative”. Next the resulting list of target positions is sorted from low to high.
The resulting sorted list is finally used to produce a map, taking the sorted list elements
as the map inputs and their corresponding list indices as the mapped to shifted target
positions. This yields a map from target positions to shifted target positions. This map
is next used by the subroutine findShiftedTargetPositionsForChartEntry (Algorithm
6) to produce a set of shifted target positions for each of the chart entries associated
with the partition components. These lists of shifted target position are collected in
a list, which in the end contains for every component of the partition a list of shifted
target positions mapped to. Finally this list of sets of target positions now just needs to
be mapped to a string by a standard toString() method for lists and that completes the
set-permutation computation.

findSetPermutationLabelForPartition
Data:
minComponentPartition - the partition
entry - the chart entry for which derivations are sought
chart - the chart

listOfSets← {};
shiftedTargetPosTable← computeShiftedTargetPosTable(entry);
for Pair < i, j > ∈ minComponentPartition do

shiftedTargetPosSet←
findShiftedTargetPositionsForChartEntry(chart[i][j]);

listOfSets.add(shiftedtTargetPosSet);
end
// The list of sets of shifted target positions is mapped
// to a simple string representation to get the final result
return: listOfSets.toString();

Algorithm 5: Algorithm that computes the set-permutation label using the shifted
target position table
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findShiftedTargetPositionsForChartEntry
Data:
shiftedTargetPosTable - table for conversion to shifted target positions
entry - the chart entry for which the label is computed
chart - the chart

resultSet← {};
if F(entry.getX(),entry.getY()) == 0 then

lowTargetPos← ( l(entry.getX(),entry.getY()));
resultSet.add(shiftedTargetPosTable.map(lowTargetPos));

else
for targetPosition ∈ entry.getMappedTargetPositions() do

resultSet.add(shiftedTargetPosTable.map(targetPosition));
end

end
return: resultSet;

Algorithm 6: Algorithm that computes the set of shifted target positions

4.7.5 Important implementation details
In our description, for the purpose of brevity we have left out some details, we mention
here the most important ones. These are:

• HAT reconstruction: How to store the Inferences in a properly indexed way
within the chart entries, and also how the Inference information including the
list of chart entries is used to reproduce the full HATs from the chart, starting
from the top chart entry.

• Unaligned words: How unaligned words are dealt with.

HAT reconstruction is basically done by recursively looking up the inferences
for the chart entry being processed, and then for each of these inferences taking the
list of chart entries belonging to its associated partition and for each of those chart
entries again recursively finding the list of Inferences and so on; in doing so recursively
unpacking the forest of HATs compactly stored in the chart and using it to produce
explicit representation of the HATs.18

Unaligned words: our method of choice of dealing with those is to “pre-
normalize” the alignments before parsing them, taking out unaligned words, while
keeping track where these unaligned words have been removed. This allows the whole
HAT parsing to be done without the nuisance of the unaligned words, and the unaligned
words are then added back to the thus produced HATs as a post-processing step.19

18In practice we actually produce the HATs one by one, rather than producing the exponentially large
set top-down in one go. This requires a somewhat more complex enumeration algorithm that involving
more state and more bookkeeping. Nevertheless the principle of recursively producing the HATs from
the chart remains the same.

19Note that when adding unaligned words back, we still typically want to decide which words to
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computeShiftedTargetPosTable
Data:
minComponentPartition - the partition
entry - the chart entry for which derivations are sought
chart - the chart

representingTargetPos← {};
for Pair < i, j > ∈ minComponentPartition do

if F(i, j) == 0 then
representingTargetPos.add(l(i,j));

else
for targetPosition ∈ l(i,j) to u(i,j) do

representingTargetPos.add(targetPosition);
end

end
end
//Sort the representing target positions
//to form an ascending list
sortedRepTargetPos← representingTargetPos.sort();
shiftedTargetPositionLookupTable←Map〈integer,integer〉();
for entryIndex← 0 to sortedRepresentingTargetPositions − 1 do

shiftedTargetPositionLookupTable.put(
〈sortedRepTargetPos[entryIndex],entryIndex〉);

end
return: shiftedTargetPositionLookupTable;

Algorithm 7: Algorithm that computes a shifted target position lookup table, a table
telling for each of the relevant target positions what is its “shifted form” as required
for computation of the set-permutation labels. The shifted indices are computed by
first collecting all target positions, taking only the left-most position for chart entries
that are themselves reducible (i.e. F(i, j) == 0). Then this list of collected target
positions is sorted, and from the sorted list a map from target position to list index
(shifted target position) is computed.

4.7.6 Summary

In the last section we described our implementation of HAT parsing. We saw how the
requirements of computing and storing all HATs explicitly as a forest, and computing
a set-permutation label for each of the HATs required significant algorithmic changes
to the original existing algorithms for the computation of normalized Decomposition

group them with. As a simple heuristic, we allow only grouping with words on the left or right side of
unaligned words, which still leaves exponentially many possibilities nonetheless. But since we take out
the unknown words during parsing, and since hierarchical translation (typically) allows unaligned words
only embedded inside (hierarchical) phrases, this does not make a difference from a practical viewpoint
however.
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Trees. In particular, computing and storing all HATs requires a CYK-style algorithm
supported by the Viterbi algorithm to efficiently compute all maximal decompositions.
Computing set-permutation labels mainly requires smartly shifting the mapping
positions, by grouping together the position of contained reductions. The shifted
positions can then be effectively computed using sorting. Finally we discussed some
important implementation details with respect to HAT reconstruction and unaligned
words.

4.8 Chapter Summary and outlook
This chapter started out with explaining the motivation for HATs, which finds its roots
in the desire to coherently represent hierarchical translation equivalence. This can
then be used in a way that yields (more) coherent hierarchical translations with a
word order that better reflects reordering patterns in the training data and that better
preserves the meaning of the original input. Following the introduction, we first
gave an intuitive example-based description of HATs in section 4.2. Next in section
2.3.2 we described the notion of translation equivalence. We then gave a detailed
summary of existing work on permutation trees (PETs) and normalized decomposition
trees (NDTs) described in (Gildea et al., 2006; Zhang and Gildea, 2007) and (Zhang
et al., 2008a), in section 4.3. Next, in section 4.4 we described our theoretical
notion of hierarchical translation equivalence which besides enumeration of all TEUs,
warrants an explicit representation of their subsumption relations. This motivates set-
permutation labels, which compactly represent the local, recursive mapping relations
of the TEUs (nodes) of a HAT; described in section 4.5. The theory of hierarchical
translation equivalence is then combined with the notion of set-permutation labels to
define HATs, as a proper extension of both PETs and NDTs. This is described in
section 4.6. Finally, in section 4.7 we described our implementation of HAT parsing.

In the introduction we briefly discussed several applications of HATs. We now
recap those applications belonging to the research done in the context of this thesis:

• Providing effective reordering labels that serve as soft reordering constraints
which improve coherence of translations with respect to source-target word
reordering and significantly improve state of the art hierarchical statistical
machine translation.

• Exact measurement of alignment coverage and reordering complexity for dif-
ferent grammar formalisms, and also characterization of reordering complexity
beyond specific grammars.

• Effective visualization and thereby facilitation of detailed study of empirical hi-
erarchical translation equivalence. This application is described in (Maillette de
Buy Wenniger and Sima’an, 2014b), and not worked out further in the context
of this thesis.
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In the next chapters, the first two applications will be described in more detail.
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Bilingual Reordering Labels

To my surprise, I found my first laboratory experiments absorbing, quite
unlike the rather dry science I had been thought in college and medical
school classrooms. In the laboratory, science is a means of formulating
interesting questions about nature, discussing whether those questions are
important and well formulated, and then designing a series of experiments
to explore possible answers to a particular question.

– Eric R. Kandel, In search of memory

5.1 Introduction
Word order differences between languages constitute a major challenge in machine
translation (MT). As early as the IBM models (Brown et al., 1988), the statistical
MT (SMT) literature has produced a range of models aimed at predicting how the
word order of the source sentence is transformed into a plausible target word order.
Generally speaking, the existing reordering approaches that are integrated within
translation (i.e., during decoding) can be grouped into the sequential (Tillmann,
2004; Galley and Manning, 2008) and the hierarchical (Chiang, 2005; Zollmann and
Venugopal, 2006). While the sequential approach considers the reordering process as
a finite-state process over word or phrase positions, the hierarchical approach (Hiero)
works with a synchronous context-free grammar (SCFG). For a decade now, the
hierarchical approach (Chiang, 2005) shows improved performance for language pairs
with long-range reordering such as Chinese–English and Japanese-English (Chiang,
2005; Zollmann and Venugopal, 2006). The present work falls squarely within the
hierarchical approach to reordering.

Hiero SCFG rules are extracted from a word-aligned parallel corpus. Like other
phrase-based models (Och and Ney, 2004), the word alignment defines the set of
translation rules that can be extracted from the parallel corpus. Hiero’s rules are
labeled with a single nonterminal label X, beside the start symbol of the SCFG. Hiero’s
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XR1
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(a) (Left-binding) Inverted
training example 1.
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unwirksame

XR7
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XR9

fightto

(b) (Left-binding) Inverted training example 2.

XR4

XR6

erreichtwurde

forschereuropäischerzusammenarbeitXR5

effectiveundregeeine

XR4

XR6

achievedwas

researcherseuropeanbetweencooperationXR5

effectiveandlivelya

(c) Monotone training example.

Figure 5.1: Training examples, the labeled and indexed nodes represent (some of the)
phrase pairs that can be extracted from the aligned sentence pairs.

reordering patterns (straight/inverted) are embedded together with lexical context
within synchronous rules, which makes local reordering within a rule sensitive to direct
context. However, during decoding every rule may substitute on every nonterminal X,
and thus it is independent of any other rule given the source string. This may result
in suboptimal reordering as the following example shows.1 Figure 5.1 shows a
toy training parallel corpus of three word-aligned sentence pairs, decomposed into
Hiero rules (hierarchical phrase pairs); the boxed Ri indices at the nodes stand for rule
identities placed on the left-hand side of every rule. For example, in Figure 5.1c we
find rule R5

X → 〈eine rege und effective, a lively and effective〉

1This example is first introduced in chapter 1 in section 1.2, and is repeated here.



5.1. Introduction 127
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achieveto

(a) Correct translation for new sentence that produces the right word order.
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effectiveundregeeine

XR4

XR3

achieveto

researcherseuropeanbetweencooperationXR5

effectiveandlivelya

(b) Wrong alternative translation that can be produced by Hiero.

Figure 5.2: Translations of the new sentence “eine rege und effektive zusammenarbeit
europäischer forscher zu erreichen”.

and in Figure 5.1a, rule R3

X → 〈zu erreichen, to achieve〉

By cutting out some of the embedded phrase pairs, we obtain Hiero rules with gaps.
As an example, from the phrase pair at the root of the aligned sentence pair in Figure
5.1c, the hierarchical rule R4

X → 〈X1 zusammenarbeit europäischer forscher X2 ,

X1 cooperation between european researchers X2〉

can be extracted by cutting out the two embedded phrase pairs R5 and R6 as gaps
labeled X. Similarly, we obtain rule R7

X → 〈X1 zusammenarbeit europäischer forscher X2 ,

X2 X1 cooperation between european researchers 〉
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from the root phrase pair in Figure 5.1b. Note how the training examples for the
English verbs “to fight" in Figure 5.1b and “was achieved" in Figure 5.1c are embedded
within, respectively, monotone and inverted reordering patterns when translated into
German.

We now exemplify how Hiero risks missing the correct word order and how labels
from the surrounding word alignment context may help. In Figure 5.2a, translation
rule R7 is combined with rule R5 and rule R3 to translate the new sentence “eine rege
und effektive zusammenarbeit europäischer forscher zu erreichen”. Here starting from
translation rule R7 and then substituting R5 and R3 on the two X nonterminals, the
correct word order can be obtained. However, the rules extracted during training also
permit a different translation of this sentence that produces the wrong word order,
shown in Figure 5.2b. This translation is formed by combining R4 with R5 and R3.
Both Hiero derivations are eligible, and the independence assumptions between rules
suggest that there is no reason why Hiero’s synchronous grammar should be able to
select the correct word order. The independence assumptions between the rules suggest
also that the burden of selecting the correct reordering is left over to the target language
model.

How could the use of word alignment context help produce preference for correct
reordering in Hiero? Contrast the reordering structures in Figure 5.1a and Figure 5.1b
to the structure in Figure 5.1c. In the first two the verb units, “to achieve" and “to fight"
(labeled with a bold X), are inverted with respect to the embedding context, whereas in
the latter example, the verb “was achieved" is monotone with respect to the embedding
context. In this simple example, two types of verbs can be discriminated using word
alignment types from the embedding rules, which can be used as Hiero labels. Such
labeling can be obtained during Hiero rule extraction from the word-aligned training
sentence pairs without need for other resources. By extracting such reordering labels,
the incorrect substitution in Figure 5.2b could be either prevented or made far less
likely than the correct alternative.2 Phrases induce a certain reordering pattern with
respect to their sub-phrases and with respect to the parent phrase that embeds them.
We note that in a sentence-aligned, word-aligned parallel corpus, it turns out, there are
many more reordering patterns than the binary choice of monotone/inverted.

The core idea in this work is to extract phrase labels from word alignments
by first decomposing them recursively into their sub-component alignments. The
decomposition we are interested in proceeds in the same way word alignments
decompose recursively into phrase pairs (Zhang et al., 2008a). Such decomposition
results in trees in which the nodes dominate phrase pairs. But the decomposition in
this work maintains on every node also the alignment relation (called node operator
or simply operator) which expresses how the sibling phrase pairs under that node

2One might wonder about the frequency of verbs that show such preferences for reordering: in the
filtered test grammar (see experimental section) there are more than 27,000 phrase pairs, each with
2 words on both sides, that show such a preference for inversion relative to their embedding context. A
large fraction of these phrase pairs corresponds to such verbal constructs. This itself is just a part of one
of many types of reordering phenomena, selected for this example.
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Sentence type Sentence contents

Source Sentence
der handlungsspielraum der beiden betroffenen regierung
ist also durch das internationale recht begrenzt .

Reference
any action by the two governments concerned
is therefore limited by this international law .

Hiero
the margin for manoeuvre of two government
is concerned by the international community limited .

Hiero-PCAL-SCDB+S
the scope of the two governments
concerned is therefore limited by international law .

Table 5.1: Source sentence, reference, baseline and best system output for sentence
543 from the German–English test set.

compose together at the target side relative to the source side.
Subsequently we bucket the resulting node operators into classes and use these

classes as labels for Hiero rules. The ITG orientations (straight and inverted) turn out
to be special cases of this general scheme, and in our experiments we show that limiting
the choice to ITG, although beneficial, could be suboptimal sometimes.

Traditional grammar nonterminal labels signify hard categories, and substituting
a rule with a left-hand side label X may take place only on the same nonterminal
X. Like earlier labeling approaches, e.g., (Zhang et al., 2008a), we also find that
exact match substitution for nonterminals is suboptimal. Following Chiang (2010), we
devise a set of feature weights that allow any nonterminal label Y to substitute on any
other label X with some cost determined by tuning the feature weights associated with
the substitution. We call this approach elastic-substitution decoding, because during
decoding the label substitution of Y on X with some cost can be seen as if the labels
stretch during decoding to allow for as wide a set of translation hypotheses as needed.

We next show another example from real translation to further illustrate how
reordering labels can help to overcome the limitations of Hiero. We are translating
the German sentence “der handlungsspielraum der beiden betroffenen regierung ist
also durch das internationale recht begrenzt .” from Europarl. Table 5.1 shows
this source sentence and the correct reference. To translate the German sentence
correctly, the translation of the German verb “begrenzt” has to be moved in front
of the translation of the phrase “durch das internationale recht”. Realizing that this
word order is preferred requires looking beyond the language model’s limited window.
But without reordering labels, Hiero has no way to do so and relies only on it’s
language model. Consequently, it assigns higher weight to a different translation, in
this case the one found by in Table 5.1, 3th row, which makes less rigorous changes
to the word order. While piecewise locally such a translation might be reasonable, it
globally gets the word order wrong, thereby also compromising the meaning of the
sentence. In a sequence of suboptimal local choices, first the translation of “begrenzt”
is put in the wrong place, then building on this mistake the order of “concerned is” is
wrongly flipped to “is concerned” and finally the translation of “internationale recht”
is wrongly translated into “international community” instead of “international law”.
These faults all involve reordering errors explainable by choices that locally give better
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translation and language model scores, but globally lead to erroneous reordering and
suboptimal translations. This shows the danger of relying only on the language model
to get a good word order. In contrast, using reordering labels in this example helps
us to find the translation “the scope of the two governments concerned is therefore
limited by international law .” (Table 5.1, 4th row) which while still not perfect, is
clearly much better than the alternative proposed by Hiero.

After summarizing the Hiero model and discussing related work in some more
detail, we propose a simple extension of normalized decomposition trees (NDTs)
(Zhang et al., 2008a) with transduction operators that represent target-source phrase
many-to-many mappings, including non-contiguous TEUs. Based on this extension,
this chapter contributes:

• A novel labeling approach for Hiero, which exploits tree decompositions of
word alignments, together with an effective proposal for features for elastic-
substitution decoding,

• Extensive experiments on German–English and Chinese–English showing the
superiority of this proposed labeling relative to Hiero and SAMT.

• Analysis of the experimental results showing the kind and source of improved
performance.

5.2 Hierarchical models and closely related work
Hiero SCFGs (Chiang, 2005, 2007) are discussed in Chapter 3, in section 3.1. We do
not repeat this discussion here, but instead refer the reader to this section.

In the next two subsections we will discuss work that is closely related to our work,
followed by an overview of our contributions. Other, distantly related, work will be
discussed in Section 5.8.

5.2.1 Lexicalized orientation models
We first look at work that distills reordering information from word alignments, sharing
a general intuition with this work. Xiao et al. (2011) add a lexicalized orientation
model to Hiero, akin to (Tillmann, 2004) and achieves significant gains. Nguyen and
Vogel (2013a) extend upon this idea by integrating a phrase-based (non-hierarchical)
lexicalized orientation model as well as a distance-based reordering model into Hiero.
This involves adapting the decoder, so that rule chart items are extended to keep
the first and last phrase pair for their lexical spans. Huck et al. (2013) overcome
the technical limitations of both (Xiao et al., 2011) and (Nguyen and Vogel, 2013a)
including a hierarchical lexicalized orientation model into Hiero. This requires making
even more drastic changes to the decoder, such as delayed (re-)scoring at hypernodes
up in the derivation of nodes lower in the chart whose orientations are affected by
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them. Although sharing a similar intuition to our work, phrase-orientation models
are not equivalent to Hiero/SCFG labeling mechanisms because formally they require
extensions to SCFG. (which demand drastic changes in the decoder).

5.2.2 Soft constraints

Our approach towards soft constraints is based on (Chiang, 2010). Chiang’s work
uses labels similar to (Zollmann and Venugopal, 2006) with syntax on both sides. It
applies Boolean features for rule-label and substituted-label combinations and uses
discriminative training (MIRA) to learn which substitution combinations are associated
with better translations. Their work also explores the usage of further rule extraction
heuristics to extract a set of only non-crossing3 rules, selected in order of relative
linguistic robustness of the (partial) constituents for the left-hand-sides of the extracted
rules. This yields a grammar that is even smaller than Hiero itself, while still giving
similar results. In our case, without access to linguistic labels, this type of selection
is not directly applicable and is therefore not used. Other approaches towards soft
constraints will be discussed in the related work Section 5.8.

5.2.3 Innovations of the proposed method

This work is an extended version of an SSST 2014 workshop paper (Maillette de
Buy Wenniger and Sima’an, 2014a) and differs substantially as follows. We provide
a thorough motivation for our kind of labeling and explain Hierarchical Alignment
Trees (absent in the SSST paper). We provide full detail of the label extraction
approach (which was not discussed in detail in the short paper). Beside Hiero, we
also report experiments for a new baseline, the syntactically-labeled SAMT (shortly
discussed in subsection 5.6.1, page 144), both on German–English and Chinese–
English. Comparing to a syntactically-labeled baseline gives a better feel for the
performance differences to our approach. We discuss label-substitution features, our
implementation of soft (label) matching constraints, in section 5.5 on page 140. Beside
the basic label-substitution features found in SSST 2014, here we add a sparse label-
substitution feature set, plus extensive additional experiments using this expanded
feature set, which show how it further improves the results for German–English and
Chinese–English translation. Finally, we provide qualitative analysis of the behavior
of our model in terms of reordering and the role of the language model.

The labeling approach presented next differs from existing approaches. It is
inspired by work on elastic-substitution decoding (Chiang, 2010) that relaxes the label
matching constraints during decoding, but employs novel, non-linguistic bilingual
labels. And it shares the bilingual intuition with phrase orientation models but it is

3Two extracted rules r1 and r2 cross when their associated source (and target) spans in the training
data overlap, for example if r1 spans source and target words 0–3, and r2 spans words 3–4, these rules
are crossing.
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based on a new approach to SCFG labeling, thereby remaining within the confines of
Hiero SCFG, avoiding the need to make changes inside the decoder.4 Our approach is,
to the best of our knowledge, the first to exploit labels extracted from decompositions
of word alignments.

5.2.4 Some notes on terminology

A methodology of central importance in this paper is earlier the mentioned approach
proposed by Chiang (2010) whereby the matching constraint is softened so that nonter-
minals can be substituted to other nonterminals with possibly different, mismatching
labels. But besides softening the matching constraint, a second crucial component
of this approach is the use of dedicated features, so called label-substitution features,
that enable learning preferences over different types of label substitutions. Without
addition of such features, labels would in fact be meaningless in a setting where strict
matching of labels is not enforced. Unfortunately, no well established name exists in
the literature for Chiang (2010)’s approach. In this paper we have chosen to use the
term elastic-substitution decoding to refer to this approach. Some of the other names
sometimes used in the literature for this approach are: soft matching, fuzzy matching,
soft labeling, soft matching constraints. Finally, note that in earlier work (Maillette de
Buy Wenniger and Sima’an, 2014a), we have in fact used multiple different terms
for this concept. Here we have strived to improve this here, by using only a single
term: elastic-substitution decoding which implies both: 1) the softening of the (label)
matching constraint during decoding, 2) the usage of some set of label-substitution
features.

5.3 Bilingual reordering labels by alignment
decomposition

In the following we describe how reordering labels are formed. In particular, the rules
we extract are identical to Hiero rules (Chiang, 2007) (see section 5.2, page 130)
except for their labels. Following Zhang et al. (2008a), we view Hiero SCFG rule
extraction from the hierarchical perspective of word alignment decomposition as a two
step process. Initially, every word alignment in the training corpus is decomposed
recursively into a canonical normalized decomposition tree (NDT). This results in a
kind of training treebank of NDTs. Subsequently, the Hiero rules are extracted from
these NDTs as in (Zhang et al., 2008a).

4Soft-constraint decoding can easily be implemented without adapting the decoder, through a smart
application of “label bridging” unary rules. This is done by adding a set of unary rules, one rule for any
combination of nonterminals; in combination with adding a marker to left-hand-side and right-hand-side
nonterminals in order to avoid unary rule chains. In practice however, adapting the decoder turns out to
be computationally more efficient, therefore we used this solution in our experiments.
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Figure 5.3: Example alignment from Europarl

([1, 6], [1, 6], 11 )

([1, 2], [2, 3], 12 )

([1, 1], [3, 3], 14 ) ([2, 2], [2, 2], 15 )

([4, 5], [4, 5], 13 )

([4, 4], [4, 4], 16 ) ([5, 5], [5, 5], 17 )

Figure 5.4: Normalized decomposition tree (Zhang et al., 2008a) extended with
pointers to original alignment structure from Figure 5.3

It is useful here to exemplify the decomposition of word alignments into NDTs
because it helps understand how we extend NDTs and the extracted rules with the
bilingual reordering labels. Figure 5.3 shows an alignment from Europarl German–
English (Koehn, 2005) along with a maximally decomposed phrase pair tree structure.
Figure 5.4 shows the NDT for Figure 5.3, extended with pointers (boxed integers) to
the original phrase pair tree in Figure 5.3. The boxed integers indicate how the phrase
pairs in the two representations correspond. In an NDT, the fringe of every subtree
is a phrase pair with spans indicated by the ranges of the two pairs of integers that
decorate the root node of that subtree. Every composite phrase pair is recursively
split up into a minimum number (two or greater) of contiguous parts. In Figure 5.4
the root node covers the source and target span from words [1,6], and it embeds two
phrase pairs: the first covers the source-target spans ([1,2],[2,3]), and the second covers
source-target spans ([4,5],[4,5]). From the source-target ranges that decorate the NDT
nodes it is easy to compute bijective phrase permutation information: the two children
of the root node in Figure 5.4 have ranges ([1,2],[2,3]) and ([4,5],[4,5]) respectively
which shows that they are ordered in binary straight orientation. Note, however, that
together these two phrase pairs in the example NDT do not explicitly show the build-
up of their entire parent phrase pair ([1,6],[1,6]) because of a discontinuous translation
equivalence involving tailor ... accordingly/ darauf ... ausrichten.
The NDT does not explicitly show this discontinuity, nor does it show the internal word
alignment within. In short, the NDT shows how phrase pairs maximally decompose
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Figure 5.5: Hierarchical Alignment Tree corresponding to the example of Figure 5.3
and Figure 5.4. The trivial set-permutation label “[1]” of single-word pair phrase pairs
is left out for brevity. Note that while in this case there is only one HAT for the
alignment, in general a set of alternate HATs is induced; corresponding to alternate
maximal decompositions for an alignment and encoded as a chart (packed forest).

into other phrase pairs and how these permute at each tree level, but NDTs abstract
away from aspects of word alignments that are important for representing cases of
discontiguous TEUs and other non-bijective alignments (many-to-many or unaligned
words) internal to phrase pairs. This should not be an issue as long as phrase and
rule extraction is the sole goal. However, for extracting labels capturing the types of
reordering occurring inside or around phrase pairs, we propose that other alignment
information is also needed at the NDT nodes. For this purpose we need Hierarchical
Alignment Trees (HATs), which are decompositions of word alignments that retain all
alignment information at the tree nodes. These representations were discussed earlier
in this thesis, in chapter 4. We will next see how bucketing is used to define effective
reordering labels based on HAT node operators.
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5.3.1 Nonterminal labels by bucketing node operators
The node operators on HAT nodes encode decomposed word-alignment information.
The HAT representation exposes the shared operators between different word align-
ments across a large corpus. In this work we propose to bucket these operators and
employ the buckets as labels for the Hiero rules while extracting them. The bucketing
is technically needed for various reasons. Firstly, it results in a manageable number
of labels and avoids problems with sparsity. In a strict-matching version, for example,
having more labels leads to more spurious derivations and splitting of the probability
mass. Similarly, when working with elastic-substitution decoding, just one labeled
version per Hiero rule type is used (see canonical labeled rules, end of section 5.5). But
while necessary to keep the approach efficient and coherent, keeping just one labeled
version does introduce uncertainty. Therefore the number of labels should be restricted,
to avoid spreading out the probability mass over many different alternatives, making
the selected rule versions and thereby the labels in general ultimately less reliable.
Thirdly, the most common and well-known operators monotone ([0,1]) and inverted
([1,0]) have only one variant, while there are many variants of more complex operators
for permutation and discontinuous reorderings. To avoid having the simpler but more
frequent operators get obscured by a heap of complex but rare distinct operators, we
bucket them to keep the total number of operators limited. Finally, in a soft-matching
setting, reducing the number of labels helps to keep the number of features down (while
also reducing complexity and problems with search errors) and is altogether important
to keep the soft constraints learnable by the tuner.

In what follows we define two approaches for bucketing the HAT operators. The
first approach simply uses the identity of the bucket of the operator on the current
node itself (hence 0th order), whereas the second approach employs a bucketing of the
operator on the parent of the current node (1st order).5

Phrase-centric (0th-order) labels are based on the view of looking inside a phrase
pair to see how it decomposes into sub-phrase pairs. The operator signifying how the
sub-phrase pairs are reordered (target relative to source) is bucketed into a number
of “permutation complexity" categories. As baseline labeling approach, we can start
out by using the two well known cases of inversion transduction grammars (ITG)
{Monotone, Inverted} and label everything6 that falls outside these two categories with
a default label “X” (leaving some Hiero nodes unlabeled). This leads to the following

5We think of our labels as implementing a Markov approach to SCFG labeling. The first (0th order)
labeling approach just describes the reordering information at the phrase pairs itself, analogous to the
way syntactic labels describe the syntactic category for the source and/or target side of phrase pairs in
syntactic hierarchical SMT. The second (1st order) labeling approach describes the reordering relative
to an embedding parent phrase, thereby looking not at the local reordering but at the reordering context
of the parent.

6Non-decomposable phrase pairs (an example is the “Atomic” phrase pair in figure 5.7) will still be
grouped together with Monotone phrase pairs (an example is the “Monotone” phrase pair in figure 5.7),
since they are more similar to this category than to the catchall “X” category.
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Figure 5.6: Synchronous trees (implicit derivations) based on differently labeled Hiero
grammars. The figure shows alternative labeling for every node: Phrase-Centric (0th-
order) (gray) and Parent-Relative (1st-order) (very light gray). The abbreviations for
the Parent-Relative labels are: E.F.D.: embedded fully discontinuous; R.B.I.: right-
binding inverted; L.B.M.: left-binding monotone.
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Figure 5.7: Different types of Phrase-Centric Alignment Labels

coarse phrase-centric labeling scheme, which we name 0th
ITG+:

1. Monotonic (Mono): binarizable, fully monotone plus non-decomposable phrase
pairs.

2. Inverted (Inv): binarizable, fully inverted
3. X: decomposable phrase pairs that are not binarizable.

A clear limitation of the above ITG-like labeling approach is that all phrase pairs
that decompose into complex non-binarizable reordering patterns are not further
distinguished. Furthermore, non-decomposable phrase pairs are lumped together with
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decomposable monotone phrase pairs, although they are in fact quite different. To
overcome these problems we extend ITG in a way that further distinguishes the
non-binarizable phrase pairs and also distinguishes non-decomposable phrase pairs
from the rest. This gives a labeling scheme we will call simply 0th-order labeling,
abbreviated 0th, consisting of a more fine-grained set of five cases, ordered by
increasing complexity (see examples in Figure 5.7):

1. Atomic: non-decomposable phrases pairs.
2. Monotonic (Mono): binarizable, fully monotone.
3. Inverted (Inv): binarizable, fully inverted.
4. Permutation (Perm): decomposes into a permutation of four or more sub-

phrases.7

5. Complex (Comp): does not decompose into a permutation and contains at least
one embedded phrase pair.

In Figure 5.6, we show a phrase-complexity labeled derivation for the example of
Figure 5.3. Observe how the phrase-centric labels reflect the relative reordering at
the node. For example, the Inverted label of node-pair 2 corresponds to the inversion
in the alignment of 〈we should, müssen wir〉; in contrast, node-pair 1 is complex and
discontinuous and the label is Complex.

Parent-relative (1st-order) labels capture the reordering that a phrase undergoes
relative to an embedding parent phrase pair. This can be seen as a first-order view
on reordering (if the phrase-centric type is considered a zero-order).

1. For a binarizable parent phrase pair with orientation Xo ∈ {Mono, Inv}, the source
side of the phrase pair itself can either group to the left only Left-Binding-Xo,
right only Right-Binding-Xo, or with both sides ((Embedded) Fully-Xo) of the
source side of the embedding parent phrase pair.

2. (Embedded) Fully-Discontinuous: Any phrase pair within a non-binarizable
permutation or complex alignment containing discontinuity.

3. Top: phrase pairs that span the entire aligned sentence pair.

In cases where multiple labels are applicable, the simplest applicable label is chosen
according to the following preference order: {Fully-Monotone, Left/Right-Binding-
Monotone, Fully-Inverted, Left/Right-Binding-Inverted, Fully-Discontinuous, TOP}.

In Figure 5.6 the parent-relative labels in the derivation reflect the reordering
taking place at the phrase pairs with respect to their parent node. Node 4 has a
parent node that inverts the order and the sibling node it binds is on the right on
the source side, therefore it is labeled “right-binding inverted” (R.B.I.); E.F.D. and

7A permutation of length 3 can always be decomposed into a set if simpler nested permutations of
length 2. As an example, the permutation [3,1,2] can be decomposed as the simpler nested permutation
[2,[1,2]]. Equally, any SCFG of rank 3 can always be converted into a SCFG of rank 2, but not all
SCFGs with rank ≥ 3 are binarizable.
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L.B.M. are similar abbreviations for “(embedded) fully discontinuous” and “left-
binding monotone” respectively. As yet another example node 7 in Figure 5.6 is
labeled “left-binding monotone” (L.B.M.) since it is monotone, but the alignment
allows it only to bind to the left at the parent node, as opposed to only to the right or
to both sides which cases would have yielded “right-binding monotone” R.B.M. and
“(embedded) fully monotone” (E.F.M.) parent-relative reordering labels respectively.

There is some similarity between the information gained in parent-relative reorder-
ing labels (by distinguishing left and right side binding directions) with the information
gained in lexicalized orientation models that keep track of orientation in both left-to-
right and right-to-left direction, i.e., (Galley and Manning, 2008; Huck et al., 2013).
For the these models, determining the orientation in both directions slightly improves
performance. Because in lexicalized orientation models keeping orientation in two
directions helped, and since the binding direction for our monotone and inverted
labels has similarity with it, we expected this binding direction to be also helpful for
improving word order. Nevertheless, more fine-grained labels also increase sparsity
and consequently make the learning problem more difficult. For this reason, the net
effect of distinguishing binding direction remained hard to predict and could still have
been be negative. We therefore also formed a set of coarse parent-relative labels
(“1st

Coarse”) by collapsing the label pairs Left/Right-Binding-Mono and Left/Right-
Binding-Inverted into single labels One-Side-Binding-Mono and One-Side-Binding-
Inv8. This coarse variant was tested in all settings, but gave in general comparable
or lower results than the original, more fine-grained version, and is therefore left out to
increase readability of the reported result tables.9

5.4 Features : Relations over labels
In this section we describe the features we use in our experiments. These features
are quite similar to the ones used by SAMT as described in the chapter 2, in section
3.3.1. Most of the symbols we use here are defined in that section, and we refer the
reader to this section for basic terminology. But our features are not exactly the same
as those used by SAMT, due to a different interpretation of the source/target we use
which includes source/target side the left-hand-side. In what follows we use src(r) to
indicate the source side of the rule, including the source side of the left-hand-side label.
Similarly tgt(r) is the target side of the rule, including the target side of the left-hand-

8We could also further coarsen the 1stlabels by removing entirely all sub-distinctions of binding-type
for the binarizable cases, but that would make the labeling essentially equal to the earlier mentioned
0th

ITG+ except for looking at the reordering occurring at the parent rather than inside the phrase pair
itself. We did not explore this variant in this work, as the high similarity to the already explored 0th

ITG+

variant made it not seem to add much extra information.
9The coarse version does perform sometimes better in combination with sparse features. We attribute

this to the fact that sparse features can lead to overfitting, but only to a lesser degree with a coarser (and
therefore smaller) label set, since the number of sparse features is a polynomial function of the number
of labels.
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side label. Furthermore un(src(r)) is the source side without any nonterminal labels,
and analogous for un(tgt(r)).

5.4.1 Basic Features

We use the following phrase probability features:

• p̂(tgt(r)|src(r)): Phrase probability target side given source side
• p̂(src(r)|tgt(r)): Phrase probability source side given target side

When decoding with strict matching, we reinforce those by adding phrase proba-
bility smoothing features. Smoothing is done by removing the labels on source and/or
target side in all combinations. The additional phrase probability smoothing features
for the labeled systems are:

• p̂(tgt(r)|un(src(r)))
• p̂(un(src(r))|tgt(r))
• p̂(un(tgt(r))|src(r))
• p̂(src(r)|un(tgt(r)))
• p̂(un(tgt(r))|un(src(r)))
• p̂(un(src(r))|un(tgt(r)))

We also add the following features:

• p̂w(tgt(r)|src(r)), p̂w(src(r)|tgt(r)): Lexical weights based on terminal symbols
as for phrase-based and hierarchical phrase-based MT.

• p̂(r|lhs(r)) : Generative probability of a rule given its left-hand-side label

We use the following set of basic binary features, with 1 values by default, and a
value exp(1) if the corresponding condition holds:

• φglue(r): exp(1) if rule is a glue rule
• φlex(r): exp(1) if rule has only terminals on right-hand side
• φabs(r): exp(1) if rule has only nonterminals on right-hand side
• φst_without_tt(r): exp(1) if rule has terminals on the source side but not on the target

side
• φtt_without_st(r): exp(1) if rule has terminals on the target side but not on the source

side
• φmono(r): exp(1) if rule has no inverted pair of nonterminals

Furthermore we use the :

• φpp(r): Phrase penalty, exp(1) for all rules.
• exp(φwp(r)): Word penalty, exponent of the number of terminals on the target

side
• φrare(r): exp( 1

#(r) ) : Rarity penalty, with #(r) being the count of rule r in the
training corpus. This allows penalization of phrases using rarer rules.
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5.5 Features for elastic-substitution decoding
Labels used in hierarchical SMT are typically adapted from external resources such as
taggers and parsers. Like in our case, these labels are typically not fitted to the training
data – with very few exceptions e.g., (Mylonakis and Sima’an, 2011; Mylonakis, 2012;
Hanneman and Lavie, 2013). Unfortunately this means that the labels will either
overfit or underfit, and when they are used as strict constraints on SCFG derivations
they are likely to underperform. Experience with mismatch between syntactic labels
and the data is abundant and using elastic-substitution decoding with suitable label-
substitution features or a similar approach has been shown to be an effective solution
(Venugopal et al., 2009; Marton et al., 2012; Chiang, 2010). The intuition behind
elastic-substitution decoding is that even though heuristic labels are not perfectly
tailored to the data, they do provide useful information provided the model is “allowed
to learn" to use them only in as far as they can improve the final evaluation metric
(usually BLEU). Next we introduce the set of label-substitution features used in our
experiments.

Basic label-substitution features consist of a unique feature for every pair of labels
〈Lα, Lβ〉 in the grammar, signifying a rule with left-hand-side label Lβ substituting on a
gap labeled Lα. These features are combined with two more coarse features, “Match”
and “Nomatch”, indicating if the substitution involves labels that match or not.

Figure 5.8 illustrates the concept of label-substitution features schematically. In
this figure the substituting rule is substituted onto two gaps in the chart, which induces
two label-substitution features indicated by the two ellipses. The situation is analogous
for rules with just one gap. To make things concrete, let’s assume that both the first
nonterminal of the rule N1 as well as the first gap it is substituted onto GAP1 have label
MONO. Furthermore let’s assume the second nonterminal N2 has label COMPLEX
while the label of the gap GAP2 it substitutes onto is INV .

This situation results in the following two specific label-substitution features:
• subst(MONO,MONO)
• subst(INV ,COMPLEX)

Sparse label-substitution features. Every applied rule, abstracted by its orientation
plus reordering label signature, is enriched with information regarding the nature
of the labeled gaps it is substituting onto. This information is encoded as sparse
features defined as follows: For every non-empty ordered set of gaps denoted gaps
and rule substituting on it rule with left-hand-side LHS (rule) and nonterminals
N(rule), binary features are added for the specific combinations of four tuples:
〈LHS (rule),N(rule), L(gaps),O(rule)〉, where O(rule) is reordering orientation (in-
verted/monotone) internal to rule and L(gaps) the ordered set of labels belonging to
gaps in the derivation. This is illustrated in Figure 5.8b by the dashed curve, which
indicates these elements defining the sparse label-substitution feature for this rule
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(a) Basic label-substitution features
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Figure 5.8: Label substitution features, schematic view. Labels/Gaps with same filling
in the figures correspond to the situation of a nonterminal/gap whose labels correspond
(for N1/GAP1). Fillings of different shades (as for N2/GAP2 on the right in the
two figures) indicates the situation where the label of the nonterminal and the gap
is different.

substitution. Assuming again the label assignment mentioned before: N1 = MONO,
L(GAP1) = MONO, N2 = COMPLEX, L(GAP1) = INV and furthermore assuming
the

left-hand-side of the rule is MONO and the orientation of the rule is monotone, we
would get the following sparse label-substitution feature:

• 〈MONO, {MONO,COMPLEX}, {MONO, INV},monotone〉.

Canonical labeled rules. Typically when labeling Hiero rules there can be many
different labeled variants of every original Hiero rule. With elastic-substitution
decoding this leads to prohibitive computational cost. This also has the effect of
making tuning the features more difficult. In practice, elastic-substitution decoding
usually exploits a single labeled version per Hiero rule, which we call the “canonical
labeled rule”. Following Chiang (2010), this canonical form is the most frequent
labeled variant.
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System Name Label Order Label Granularity Matching Type Label Substitution Features Set
Hiero-0th

ITG+ 0th order Coarse Strict None
Hiero-0th 0th order Fine Strict None
Hiero-1st

Coarse 1th order Coarse Strict None
Hiero-1st 1th order Fine Strict None
Hiero-0th

ITG+-SftB 0th order Coarse Soft Basic
Hiero-0th-SftB 0th order Fine Soft Basic
Hiero-1st

Coarse-SftB 1th order Coarse Soft Basic
Hiero-1st-SftB 1th order Fine Soft Basic
Hiero-0th

ITG+-SftB+S 0th order Coarse Soft Basic + Sparse
Hiero-0th-SftB+S 0th order Fine Soft Basic + Sparse
Hiero-1st

Coarse-SftB+S 1th order Coarse Soft Basic + Sparse
Hiero-1st-SftB+S 1th order Fine Soft Basic + Sparse

Table 5.2: An overview of our labeling schemes, their system names and the
components they exploit. The suffixes in the system names in the first table column are
abbreviations, directly corresponding to the system dimensions in the other columns:
label order {0th, 1th}, label granularity (“ITG+/Coarse” indicating the coarse variant of
0th/1th order labels respectively), matching type (default is strict,“Sft” denotes elastic-
substitution decoding), label substitution type (“B” denoting basic and “B + S ” basic
+ sparse label substitution features).

5.6 Experiments

We evaluate our models on three language pairs: German–English in both directions
and Chinese as source with English as target. The choice for these two pairs
is driven by the knowledge that while in German word order is often tied with
morphological changes at the word level, this is not the case for Chinese. Hence, we
may expect different behavior on the two language pairs, which could provide insight
into the limitations of our approach (reordering approaches in general) for dealing
with languages where word order and morphology are tied together. Hence, we may
expect different behavior on Chinese–English and the two language pairs involving
German, which could provide insight into the limitations of our approach (reordering
approaches in general) for dealing with languages where word order and morphology
are tied together.

All data is lowercased as a last pre-processing step. In all experiments we use
our own grammar extractor for the generation of all grammars, including the baseline
Hiero grammars. This enables us to use the same features (as far as applicable given
the grammar formalism) and assures that the grammars under comparison are identical
in terms of using exactly the same set of extracted rules (differing only in labels and
associated label features).

German–English and English–German The training data for our German–English
and English–German experiments is extracted from parliament proceedings coming
from the Europarl corpus (Koehn, 2005). We used WMT-07 data for development and
testing. We used a maximum sentence length of 40 for filtering the training data. We
use 995,909 sentence pairs for training, 2,000 for development and 2,000 for testing
(single reference per source sentence). An overview of these and other statistics about
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Data Set #sentence pairs #source words Mean/Std
source sentence length

#target words Mean/Std
target sentence length

German–English
training 994,861 20,358,970 20.46 ± 8.88 21,449,488 21.56 ± 9.14
development 2,000 55,526 27.76 ± 15.93 59,425 29.71 ± 16.99
testing 2,000 55,580 27.79 ± 15.67 59,153 29.58 ± 16.85

English–German
training 994,861 21,449,488 21.56 ± 9.14 20,358,970 20.46 ± 8.88
development 2,000 59,425 29.71 ± 16.99 55,526 27.76 ± 15.93
testing 2,000 59,153 29.58 ± 16.85 55,580 27.79 ± 15.67

Chinese–English
training 7,340,000 147,609,854 20.11 ± 9.25 159,567,205 21.74 ± 9.91
development 1,812 46,864 25.86 ± 13.02 54,665.5 30.17 ± 15.89
testing 1,912 48,250 25.24 ± 12.8 58,844.0 30.78 ± 16.69

Table 5.3: Size statistics for the training, development and testing datasets used in
the experiments. Note that the German–English datasets are the same as the English–
German datasets, but used in opposite direction. This is reflected by the number of
sentences and other statistics for these corpora. For the Chinese–English dataset, there
are 4 references for the target side of the development set and testing set. Hence, for
these datasets the number of target words (#target words) is a mean taken over the
four references, and the mean/std target sentence length is computed from the four
references combined into one.

Language Pair #sentences #words Mean/Std sentence length
German–English 994,861 21,449,488 21.56 ± 9.14
English–German 994,861 20,358,970 20.46 ± 8.88
Chinese–English 5,427,696 135,635,561 24.99 ± 15.99

Table 5.4: Language model training corpora sizes.

the training, development and testing dataset is shown Table 5.3. Both source and
target of all datasets are tokenized using the Moses (Koehn et al., 2007) tokenization
script. We do not use compound splitting as part of the data preparation.10 We use
GIZA++ (Och and Ney, 2003) for word alignment11, with the grow-diag-final-and
scheme (see Appendix A.1) for symmetrization of alignments in two directions. For
these experiments both the baseline and our method use a 4-gram language model
with Kneser-Ney smoothing trained on the target side of the full original training set
(995,909 sentences). Statistics about the data used to train the language models is
shown in Table 5.4.

Chinese–English The training data for our Chinese–English experiments is formed
by combining the full sentence-aligned MultiUN (Eisele and Chen, 2010; Tiedemann,

10Although compound-splitting could be important for building the best possible system, this was not
the goal in our experiments. Our goal was to create an experimental setup that allows for a fair, replicable
comparison of our systems against Hiero and SAMT. As we believe that the potential disadvantage of
omitting compound-splitting should affect all compared systems equally, given our goal, we judged that
for the sake of simplicity it was reasonable to do so.

11For this language pair, we used the following model iterations for GIZA++ alignment: model 1: 4,
HMM model: 3, model 3: 3, model 4: 3.



144 5. Bilingual Reordering Labels

2012)12 parallel corpus with the full sentence-aligned Hong Kong Parallel Text13

parallel corpus from the Linguistic Data Consortium14. The Hong Kong Parallel
Text data is in traditional Chinese and is thus first converted to simplified Chinese
to be compatible with the rest of the data15. We used a maximum sentence length
of 40 for filtering the training data. The combined dataset has 7,340,000 sentence
pairs. The MulitUN dataset contains translated documents from the United Nations,
similar in genre to the parliament domain. The Hong Kong Parallel Text in contrast
contains a richer mix of domains, namely Hansards, Laws and News. For the
development and test sets we use the Multiple-Translation Chinese datasets from
LDC, parts 1–416, which contain sentences from the News domain. We combined
part 2 and 3 to form the development set (1813 sentence pairs) and part 1 and 4 to
form the test set (1912 sentence pairs). For both development and testing we use 4
references. The Chinese source side of all datasets is segmented using the Stanford
Segmenter(Chang et al., 2008)17. The English target side of all datasets is tokenized
using the Moses tokenization script. We again use GIZA++ (Och and Ney, 2003)
for word alignment18, with the grow-diag-final-and scheme for symmetrization of
alignments in two directions.

For these experiments both the baseline and our method use a 4-gram language
model with Kneser-Ney smoothing trained on 5,427,696 sentences of domain specific19

news data taken from the “Xinhua” sub-corpus of the English Gigaword corpus of
LDC.20

5.6.1 Experimental Structure
We compare our reordering-labeled systems against two baseline systems: the
(unlabeled) Hiero and the target-language syntax-labeled variant known as SAMT. In
our experiments we explore the influence of three dimensions of bilingual reordering
labels on translation accuracy. These dimensions are:

• label order : the type/order of the labeling {0th, 1st}

12Freely available and downloaded from http://opus.lingfil.uu.se/
13The Hong Kong Parallel Text corpus contains a significant amount of duplicate sentence pairs. We

removed these duplicates and kept only one copy per unique sentence pair.
14The LDC catalog number of this dataset is LDC2004T08
15Using a simple conversion script downloaded from http://www.mandarintools.com/zhcode.html
16LDC catalog numbers: LDC2002T01, DC2003T17, LDC2004T07 and LDC2004T07
17Downloaded from

http://nlp.stanford.edu/software/segmenter.shtml
18For this language pair, we used the following model iterations for GIZA++ alignment: model 1: 5,

HMM model: 5, model 3: 3, model 4: 3.
19For Chinese–English translation the different domain of the train data (mainly parliament) and

development/test data (news) requires usage of a domain specific language model to get optimal results.
For German–English, all data is from the parliament domain, so a language model trained on the
(translation model) training data is already domain-specific.

20The LDC catalog number of this dataset is LDC2003T05
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• label granularity : granularity of the labeling {Coarse,Fine}

• matching type : the type of label matching performed during decoding {Strict,Soft}

• label substitution feature set : the type of label substitution features that is used
during decoding, if any.

An overview of the naming of our reordering labeled systems is given in Table 5.2.

SAMT We use the original label extraction scheme, as described in (Zollmann and
Venugopal, 2006). In particular we allow the “\”, “/” and ”+” operators with two
arguments. To keep the grammar size manageable, we do not allow “double plus”
(A+B+C) type labels, and we do not allow non-lexicalized rules. The choice not to
allow non-lexicalized rules was made to keep SAMT (like our systems) comparable
to Hiero, apart from the labels. This avoids giving SAMT additional reordering
capacity (through abstract rules) which Hiero lacks, and thereby also keeps decoding
times more workable.21 Finally, we use SAMT, as in the original work, with strict
matching.22

Training and decoding details Our experiments use Joshua (Ganitkevitch et al.,
2012) with Viterbi best derivation. Baseline experiments use normal decoding,
whereas elastic-substitution decoding experiments relax the label matching constraints
while adding label-substitution features to facilitate learning of label substitution
preferences. For training we use standard Hiero grammar extraction constraints
(Chiang, 2007) (phrase pairs with source spans up to 10 words; abstract rules are
forbidden). During decoding a maximum span of 10 words on the source side is
maintained. With Hiero and the labeled systems in soft-matching setups we use
the Hiero phrase probabilities in both directions (Chiang, 2007), making the labeled
systems weakly equivalent to Hiero apart from their label-substitution features. For the
labeled systems in the strict matching systems, we follow (Zollmann and Venugopal,
2006) in using the phrase probabilities that use the labels as well as all smoothed
versions of these phrase probabilities, as discussed in section 5.4.23

21For example (Li et al., 2012b) shows that such abstract rules can by themselves provide performance
gains on top of improvements from the labels used on normal Hiero rules.

22We spent major effort at implementing elastic-substitution decoding for SAMT as in (Chiang,
2010) but faced huge scalability issues due to the number of labels which gives problems for the
implementation of dot items in Joshua.

23We use only the Hiero phrase probability features for the labeled systems in the soft-matching
setting, to keep them as close as possible to Hiero, so that the effect of the label-substitution features
can be measured purely. But for the systems in the strict matching setting we use the phrase probability
features and phrase probability smoothing features that involve the labels. In this setting we involve the
labels to allow them to influence the translation decisions through the phrase probabilities. But using
the labels in the phrase probabilities, the smoothed variants are necessary to avoid sparsity problems,
particularly with the sparse SAMT labels (Zollmann, 2011).
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We train our systems using (batch k-best) MIRA (Cherry and Foster, 2012) as
borrowed by Joshua from the Moses codebase, allowing up to 30 tuning iterations.
Following standard practice, we tune on BLEU, and after tuning we use the con-
figuration with the highest scores on the development set with actual (corpus level)
BLEU evaluation. We report lowercase BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2011), BEER (Stanojević and Sima’an, 2014a) and TER
(Snover et al., 2006) scores for the test set. We also report average translation length
as a percentage of the reference length for all systems. This is useful for analysis.
In our experiments we repeated each experiment three times to counter unreliable
conclusions due to optimizer variance. The scores are averages over three runs of
tuning plus testing. We use Multeval version 0.5.1.24 for computing these metrics.
We also use MultEval’s implementation of statistical significance testing between
systems, which is based on multiple optimizer runs and approximate randomization.
Differences that are statistically significant with respect to the Hiero baseline and
correspond to improvement/worsening are marked with 4H/OH at the p ≤ .05 level
and NH/HH at the p ≤ .01 level. For average translation length either higher or
lower may be better, depending on whether the baseline length was too low or too
high. We therefore use �H/�H in case of length to mark significant change with
respect to the baseline at the p ≤ .05 / p ≤ .01 level. Apart from computing
the statistical significance of differences with respect to the Hiero baseline, we also
computed statistical significance of differences with respect to the SAMT baseline.
The significance for these differences are analogously marked 4S /OS /�S at the p ≤ .05
level and NS /HS /�S at the p ≤ .01 level. We also report the Kendall Reordering Score
(KRS), which is the reordering-only variant of the LR-score (Birch et al., 2010; Birch
and Osborne, 2010) (without the optional interpolation with BLEU) and which is a
sentence-level score. For the computation of statistical significance of this metric
we use our own implementation of the sign test 25 (Dixon and Mood, 1946), as also
described in (Koehn, 2010). For every experiment we use boldface to accentuate the
highest score across systems for all metrics except TER and length. Since TER is an
error metric, lower values are better, and we therefore instead mark the lowest value
with boldface for it. For length, neither higher or lower is necessarily better. Arguably,
lengths closer to the reference length are better, but to keep things simple and not
obscure the meaning of boldface as indicating “best” for the performance metrics, in
case of length we don’t boldface a “best” value.

24https://github.com/jhclark/multeval
25To make optimal usage of the 3 runs we computed equally weighted improvement/worsening counts

for all possible 3×3 baseline output / system output pairs and use those weighted counts in the sign test.
While traditionally the procedure of dealing with ties in the sign test is discarding them, there is in fact
no real consensus with respect to their correct treatment. However, recent literature explains that it may
sometimes be better to equally divide the ties between two systems (Rayner and Best, 1999); intuitively
a more “conservative” approach which we adopted in our experiments.

26Statistical significance is dependent on the variance of resampled scores, and hence sometimes
different for same mean scores across different systems.
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System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length
German–English

Hiero 28.39 32.94 19.01 58.01 HS 67.44 100.60 �S
SAMT 28.32 32.88 18.81 57.70 NH 67.63 100.07 �H
Hiero-0th

ITG+-SftB+S 28.48 4H 4S 32.93 18.97 57.69 NH 67.37 100.08 �H
Hiero-0th-SftB+S 28.57 NH NS 32.92 18.99 57.65 NH 67.41 100.16 �H
Hiero-1st

Coarse-SftB+S 28.43 33.00 4H NS 19.06 57.77 NH 67.46 100.46 �H �S
Hiero-1st-SftB+S 28.47 33.03 NH NS 19.07 57.77 NH 67.45 100.59 �S

English–German
Hiero 20.89 40.62 18.79 64.85 65.65 HS 98.90 �S
SAMT 20.87 40.73 18.97 64.98 65.97 NH 99.64 �H
Hiero-0th

ITG+-SftB+S 20.95 40.79 NH NS 19.24 65.06 HH HS 65.91 99.73 �H �S
Hiero-0th-SftB+S 20.97 40.67 18.97 65.17 HH HS 65.86 4H 99.66 �H �S
Hiero-1st

Coarse-SftB+S 21.00 40.74 4H 4S 18.94 65.07 HH HS 65.89 99.71 �H �S
Hiero-1st-SftB+S 20.90 40.63 19.00 65.03 OH OS 65.76 OS 99.63 �H �S

Chinese–English
Hiero 31.63 OS 30.56 13.15 59.28 NS 58.03 HS 97.15 �S
SAMT 31.87 4H 30.61 13.38 59.97 HH 59.94 NH 98.46 �H
Hiero-0th

ITG+-SftB+S 32.02 NH 30.66 NH 13.20 59.12 4H NS 58.66 NHHS 97.41 �H �S
Hiero-0th-SftB+S 32.43 NH NS 30.96 NH NS 13.54 60.33 HH HS 60.17 NH4S 99.35 �H �S
Hiero-1st

Coarse-SftB+S 32.68 NH NS 31.03 NH NS 13.73 NH 59.92 HH 59.88 NH 99.05 �H
Hiero-1st-SftB+S 32.69 NH NS 31.01 NH NS 13.65 4H 60.02 HH 59.99 NH 99.10 �H �S

Table 5.5: Primary mean results bilingual labels with elastic-substitution decoding
and basic plus sparse label-substitution features.26 In this and the following result
tables, statistically significant improvement/worsening/change with respect to the
Hiero baseline is marked with 4H/OH/�H/ at the p ≤ .05 level and NH/HH/�H at the
p ≤ .01 level. Analogously, statistically significant improvement/worsening/change
with respect to the SAMT baseline is marked with 4S /OS /�S / and NS /HS /�S .

Label Type
German–English English–German Chinese–English

Absolute Size Relative Size Absolute Size Relative Size Absolute Size Relative Size
Hiero 17.2 1 25.9 1 33.4 1
SAMT 74.9 4.35 94.0 3.63 154.7 4.63
Hiero-0th

ITG+ 19.1 1.11 28.3 1.09 38.4 1.15
Hiero-0th 28.7 1.67 41.6 1.60 55.7 1.67
Hiero-1st 23.6 1.37 34.3 1.32 48.9 1.46

Table 5.6: Filtered test grammar sizes for different label types and different language
pairs. Absolute sizes are in millions of rules. Relative sizes are with respect to the
Hiero (baseline) grammar, or equivalently with respect to the grammars used in the
elastic-substitution decoding experiments, which are equal in size to Hiero. Grammars
are taken from the strict matching systems for the label types.27

5.6.2 Primary results: Soft bilingual constraints and basic+sparse
label-substitution features

Table 5.5 shows the primary results of our full labeling scheme which uses elastic-
substitution decoding both with basic and sparse label-substitution features. Hiero
is the Hiero baseline, beneath it are shown the systems that use elastic-substitution
decoding (Sft): Hiero-0th

ITG+-Sft and Hiero-0th-Sft using 0th-order labels. Hiero-1st-
Sft corresponds to the system with 1st-order, parent-relative labels.
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System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length
German–English

Hiero 28.39 32.94 19.01 58.01 HS 67.44 100.60 �S
SAMT 28.32 32.88 18.81 57.70 NH 67.63 100.07 �H
Hiero-0th

ITG+-SftB 28.45 4H 4S 32.94 18.96 57.75 NH 67.32 100.03 �H
Hiero-0th-SftB 28.45 32.98 NS 18.98 57.73 NH 67.51 100.21 �H
Hiero-1st

Coarse-SftB 28.48 4S 32.98 NS 18.99 57.79 NH 67.36 100.25 �H
Hiero-1st-SftB 28.45 33.00 4H NS 19.01 57.79 NH 67.45 100.52 �S

English–German
Hiero 20.89 40.62 18.79 64.85 65.65 HS 98.90 �S
SAMT 20.87 40.73 18.97 64.98 65.97 NH 99.64 �H
Hiero-0th

ITG+-SftB 21.00 40.79 NH NS 19.07 65.00 OH OS 65.93 4H 99.58 �H �S
Hiero-0th-SftB 21.01 40.73 4H 4S 18.84 65.04 HH HS 65.70 OS 99.34 �H �S
Hiero-1st

Coarse-SftB 20.99 40.76 4H 4S 19.07 65.03 OH OS 66.03 4H 99.67 �H �S
Hiero-1st-SftB 21.05 NH NS 40.79 NH NS 19.02 64.94 66.00 4H 99.61 �H �S

Chinese–English
Hiero 31.63 OS 30.56 13.15 59.28 NS 58.03 HS 97.15 �S
SAMT 31.87 4H 30.61 13.38 59.97 HH 59.94 NH 98.46 �H
Hiero-0th

ITG+-SftB 31.93 NH 30.37 HH HS 12.84 HS 58.86 NH NS 57.60 OHHS 96.48 �H �S
Hiero-0th-SftB 32.20 NH NS 30.74 NH NS 13.27 59.45 OH NS 58.92 NHHS 97.89 �H �S
Hiero-1st

Coarse-SftB 32.55 NH NS 30.86 NH NS 13.41 59.57 HH NS 59.03 NHHS 98.21 �H �S
Hiero-1st-SftB 32.61 NH NS 30.98 NH NS 13.58 4H 60.19 HH OS 59.84 NH 99.03 �H �S

Table 5.7: Mean results bilingual labels with elastic-substitution decoding only basic
label-substitution features.18

System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length
German–English

Hiero 28.39 32.94 19.01 58.01 HS 67.44 100.60 �S
SAMT 28.32 32.88 18.81 57.70 NH 67.63 100.07 �H
Hiero-0th

ITG+ 28.36 32.90 OH 18.86 57.83 NH 67.30 100.27 �H �S
Hiero-0th 28.39 33.03 NH NS 19.07 57.75 NH 67.55 100.28 �H �S
Hiero-1st

Coarse 28.22 OH 32.90 18.93 57.93 OS 67.47 100.37 �H �S
Hiero-1st 28.27 32.80 HH OS 18.78 57.95 HS 67.39 100.20 �H

English–German
Hiero 20.89 40.62 18.79 64.85 65.65 HS 98.90 �S
SAMT 20.87 40.73 18.97 64.98 65.97 NH 99.64 �H
Hiero-0th

ITG+ 20.90 40.79 NH NS 19.25 65.08 HH HS 65.95 4H 99.74 �H �S
Hiero-0th 20.87 40.70 19.14 65.04 OH OS 66.05 NH 99.67 �H �S
Hiero-0th

Coarse 20.82 40.62 18.80 65.08 HH HS 66.05 NH 99.45 �H �S
Hiero-1st 20.76 40.58 18.73 65.16 HH HS 66.06 NH 99.50 �H �S

Chinese–English
Hiero 31.63 OS 30.56 13.15 59.28 NS 58.03 HS 97.15 �S
SAMT 31.87 4H 30.61 13.38 59.97 HH 59.94 NH 98.46 �H
Hiero-0th

ITG+ 31.94 NH 30.84 NH NS 13.37 60.76 HH HS 59.45 NH 99.13 �H �S
Hiero-0th 31.90 NH 30.79 NH NS 13.45 60.11 HH 59.68 NH 98.65 �H
Hiero-1st

Coarse 31.57 OS 30.57 13.09 59.58 HH NS 59.13 NHHS 97.59 �H �S
Hiero-1st 31.77 30.62 13.20 60.13 HH 59.89 NH 98.47 �H

Table 5.8: Mean results bilingual labels with strict matching.18

German–English: Hiero-0th-SftB+S (with BLEU score of 28.57) slightly out-
performs both Hiero and SAMT baselines by almost 0.2 BLEU points, which is
statistically significant. We remind the reader that German–English is rather difficult
because word order in German is tied with morphological variations at the word level,
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for which our model, like other models of reordering, does not have a proper solution.
This goes to highlight the limitations of these kind of models in general.

English–German: We see a similar picture. As we shall see next in the next
ablation study, for English–German there is no clear gain from using the sparse
features.

Chinese–English: Hiero-1st-SftB+S has the highest score for BLEU for all tested
systems on Chinese–English translation, outperforming Hiero and SAMT by approx-
imately 0.8–1.1 BLEU points. The coarsely labeled variant of this system Hiero-
1st

Coarse-SftB+S yields similar improvements, with slightly better scores for METEOR,
BEER and TER and slightly worse scores for BLEU and KRS. For metric TER, all
labeled systems, including SAMT, suffer performance loss in comparison to Hiero.
We found out that the length ratio for the output of the Hiero-1st-SftB+S system to the
reference is 0.99 whereas the ratio for Hiero’s output is 0.97, i.e., it seems that TER
is penalizing more heavily longer output even if it is closer in length to the reference.
This turns out largely due to the fact that the 4-gram LM tuned weight for the labeled
systems is always far lower than for Hiero, suggesting that the 4-gram LM has a
smaller contribution during tuning for BLEU. Tuning for BLEU is not guaranteed to
give improved performance on all metrics, but we do see here improved performance
for three out of four metrics.

In Table 5.6 we show the absolute and relative sizes of the grammars for the
different label types. The reported sizes are for grammars that are filtered for the test set
and that are taken from the systems that use the labels in a strict matching setting. Note
that for the systems that use the bilingual reordering labels as soft bilingual constraints,
the grammar size is always equal to that of Hiero. The reason for this is that, as we
mentioned earlier, with elastic-substitution decoding we use only one canonical labeled
rule per Hiero rule. Looking now at the grammar sizes in the table, we see that the size
of the grammar for SAMT is on average more than a factor 4 bigger than the one used
by Hiero and the reordering labeled systems in the soft-matching setting. At the same
time, the improvement over both SAMT and Hiero by the reordering labeled systems
is considerable, especially for Chinese–English. Even in the strict matching setting, the
reordering labeled systems have still grammar sizes that are much smaller than SAMT,
at most 1.67 times the size of the baseline Hiero grammar. And in what follows we
will see that also for these systems the reordering labeled systems are performing as
good as SAMT and Hiero or better.

Next we will do ablation experiments where we isolate the effects of using sparse
features on top of the basic ones, and after that the using elastic-substitution decoding
vs. the traditional mere strict label matching./

27This means that, in contrast to the soft-matching system that allows only one canonically labeled
rule per Hiero (unlabeled) rule type, there can be multiple alternative labeled rule versions per Hiero
rule type.
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5.6.3 Experiments with elastic-substitution decoding with basic
label-substitution features only

Now we isolate out the sparse features and use only the basic label-substitution features
with elastic-substitution decoding. The results are shown in Table 5.7.

German–English: There are only minor improvements for BLEU and METEOR
over the Hiero and SAMT baselines, with somewhat bigger improvements for TER.
But SAMT has the highest improvements for TER and KRS over Hiero on this
language pair.

English–German: there are already bigger improvements with the Hiero-1st-SftB

system achieving the highest improvements for BLEU (+0.16) and METEOR (+0.17).
A considerable, though not the highest improvement of KRS scored is also achieved
by this system (+0.35). Importantly, this system also scores better than SAMT on
these three metrics, which only has superior performance for TER. Notice that this
system, not the system with basic+sparse label-substitution features performs best for
English–German.28

Chinese–English: the improvements are considerable, +0.98 BLEU improvement
over the Hiero baseline for Hiero-1st-Sft as well as +0.42 METEOR and +1.81 KRS.
TER is worsening with +0.85 for this system. For Chinese–English the Fine version
of the labels gives overall superior results for both 0th-order and 1st-order labels.

Compared with the primary system (basic+sparse label-substitution features)
results in Table 5.5 we see that the added nuances of sparse label-substitution features
can make a difference, strongly so for German–English and to a lesser degree also for
Chinese–English.

5.6.4 Experiments with strict label matching: No added softeners

Now we explore the added value of soft label matching features by excluding them
out and using the labels as traditional grammar labels (hard constraints). In contrast
to the elastic-substitution decoding experiments were only canonical labeled rules
are included in the grammar, in this setting all labeled rule variants are used. The
motivation for this difference is that in a strict label matching setting coverage loss
problems arise during translation. Using all labeled rule variants, as common in strict
labeling approaches (e.g. (Zollmann and Venugopal, 2006)), does not solve these
problems but at least reduces them as much as possible in this setting.

The results are shown in Table 5.8. For the computation of SAMT for Chinese–
English we initially had problems with grammar extraction due to the enormous size
of even the filtered grammar. We finally overcame this by extracting the grammar in
parts and merging them. To be exact, this does make some of the feature values which
involve normalization potentially slightly different from what they would have been

28Part of the reason why the latter performs worse may be overfitting, we get back to this point in the
analysis section.
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if they were directly computed for the full grammar in one go. However, due to the
inherently highly heuristic nature of these features, this is assumed to not have a real
effect on the actual results. All systems in the table use the default decoding with strict
label matching.

German–English: The effect of strict bilingual labels is mostly positive: although
we have no improvement for BLEU we do achieve significant improvements for
METEOR and TER on the test set. Also the syntax-labeled system SAMT does not
improve over Hiero in terms of BLEU while it does improve in terms of KRS and TER.

English–German: the syntax-labeled SAMT system is comparable to Hiero. We
also see insignificant improvement on the test set only for METEOR, but we see
a statistically significant worsening in TER. Interestingly, Kendall Reordering Score
(KRS) is an exception as it improves with 0.40 (significant at the p ≤ 0.01 level).

Chinese–English: overall Hiero-0th
ITG+ shows the biggest improvements, namely

significant improvements of +0.31 BLEU, +0.28 METEOR and +1.42 KRS. TER is
the only metric that worsens, and considerably so with +1.48 point. This system is
also superior to SAMT for BLEU and METEOR, but not for TER and KRS. SAMT
achieves the highest improvement of KRS, namely 1.91 point higher than the Hiero
baseline. Just like the reordering labeled systems, SAMT also loses performance on
TER over Hiero though.

5.6.5 Summary of findings from experiments
We may summarize the experiments with the following conclusions:

• Whereas for German–English and English–German the performance improve-
ment is rather modest, for Chinese–English we see considerable improvements
and overall the best results for the combination of elastic-substitution decoding,
with the Fine 1st-order variant of the labeled systems using basic plus sparse
label-substitution features (Hiero-1st-SftB+S ).

• Crucial for performance is the use of a soft-constraint approach to label
matching, as opposed to strict-matching.

• Particularly interesting is the comparison to the ITG+ labeled variant of our
scheme. While ITG+ labeling already obtains improved performance, we do see
that a more elaborate labeling scheme (as simple as our bucketing) may bring
about even further improvement.

• In the setting were the sparse label substitution feature set is used, the coarse
variant of the 1st-order labels works as good as (for Chinese–English) or better
than (for English–German) the fine variant. However, with only basic label
substitution features the fine variant Hiero-1st-SftB is superior to the coarse
variant Hiero-1st

Coarse-SftB. This may be explained by the fact that refining the



152 5. Bilingual Reordering Labels

System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length
German–English

Hiero 23.67 31.27 16.32 61.19 65.79 99.18
Hiero-0th-SftB 23.99 NH 31.36 NH 16.60 61.57 HH 66.30 NH 100.65 �H
Hiero-0th-SftB+S 24.16 NH 31.40 NH 16.68 61.07 66.03 4H 99.89 �H
Hiero-1st-SftB 24.15 NH 31.37 NH 16.67 61.09 66.01 99.87 �H
Hiero-1st-SftB+S 24.32 NH 31.39 NH 16.78 61.02 4H 66.00 99.94 �H

English–German
Hiero 15.71 37.29 15.87 68.58 64.06 97.57
Hiero-0th-SftB 16.10 NH 37.51 NH 16.08 68.74 64.63 NH 98.35 �H
Hiero-0th-SftB+S 16.19 NH 37.53 NH 16.05 68.68 64.64 NH 98.26 �H
Hiero-1st-SftB 16.07 NH 37.60 NH 16.11 68.33 NH 64.45 4H 97.74 �H
Hiero-1st-SftB+S 16.04 NH 37.59 NH 16.19 68.29 NH 64.65 NH 97.88 �H

Chinese–English
Hiero 20.23 27.88 9.50 66.57 58.56 98.60
Hiero-0th-SftB 20.26 27.98 NH 9.66 66.10 NH 59.00 NH 98.43 �H
Hiero-0th-SftB+S 20.31 27.94 NH 9.63 66.31 NH 59.04 NH 98.64
Hiero-1st-SftB 20.51 NH 27.91 9.51 66.36 NH 58.82 98.42 �H
Hiero-1st-SftB+S 20.49 NH 27.93 9.55 66.81 HH 58.78 98.78 �H

Table 5.9: Results for extra analysis translation experiments using only a Unigram
Language Model.18

reordering labels and using sparser label substitution features both have similar
effects in refining the conditioning context of rules. This suggest that in order
to get the best results, the combined effect on the conditioning context of both
reordering labels and label substitution features needs to be optimized for, rather
than considering these factors separately.

• Finally, the different reordering labeled systems outperform SAMT on BLEU
and METEOR and also for TER and/or KRS. Interestingly, the reordering-
labeled grammars are comparable in size to Hiero’s, i.e., less than one third
of SAMT grammar size.

In conclusion, we find it encouraging that our automatic labeling approach, which
does not demand additional (monolingual) resources beyond a parallel corpus29,
gives comparable or better performance improvement to syntax-labeling approaches.
We hypothesize that the two types of labeling capture complimentary reordering
information, particularly that target syntax in SAMT allows more fluent MT output,
strengthening the target language model.

29As usual in contemporary SMT, our approach also needs an adequate target language model in the
complete system in order to achieve state of the art performance. In particular, as is also the case for
syntactic labeling approaches, we do not aim to replace the language model with our labels. We rather
build upon the already reasonable translation afforded by a good language model, and strive to use this
as a basis to improve performance further.
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5.7 Analysis
In this section we will give a deeper analysis of the qualitative results obtained and
discussed so far. We have seen how soft reordering constraints can significantly
improve the results. These constraints are effectuated by using bilingual reordering la-
bels in combination with elastic-substitution decoding decoding and label-substitution
features. The question is how exactly these constraints contribute to the performance.
We will focus on four dimensions of analysis, each dimension chosen to shed light on
a different aspect of the effect of the reordering constraints. The dimensions we will
look at are:

1. Interaction between reordering constraints and language model: to what extent
does the function of soft reordering constraints overlap with the function of a
strong language model, and to what extent does it add information that even a
strong language model cannot capture?

2. Basic informativeness of the labels: are the used labels at all informative from
the point of view of conditional probability? That is, do we observe non-uniform
distributions for the conditional probabilities of gap labels given left-hand-side
parent labels?

3. Label usage and glue rule usage: do more successful systems tend to produce
relatively more matching substitutions? Is there a clear change in the relative
usage of glue rules across systems?

4. Can we get some qualitative understanding of where the quantitative improve-
ments come from, and whether these improvements are valid?

Each of these two dimensions of analysis will now be discussed in detail in the
following subsections.

5.7.1 An experiment with a unigram language model: How good
is the reordering model?

In this subsection we try to better understand the interaction between reordering model
and language model. Here we contrast the experiments from the preceding section with
new experiments with the same SCFG-based reordering models but integrated with a
unigram LM (instead of a 4-gram LM).30

A unigram language model informs about prior lexical preferences but leaves the
word order to the SCFG.based reordering model. This should provide some insight

30In all experiments with 4-gram language models we have used kenlm (Heafield, 2011).But for the
unigram language model experiments, we used berkeleylm instead (Pauls and Klein, 2011), since kenlm
did not support working with unigram language models.
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into two aspects: (1) the importance of the LM for final performance, and (2) the role
the bilingual labels in affecting final word order choices.

Table 5.9 shows the results for these experiments on German–English, English–
German and Chinese–English and clearly the results dropped substantially from the
experiments in the preceding section with a 4-gram LM. Some specific remarks per
language pair are due.

German–English and English–German: The relative improvement of the labeled
systems over the Hiero baseline has increased to +0.65 BLEU point for German–
English and +0.48 BLEU point for English–German respectively. Similar increase in
improvement can also been seen for METEOR, BEER and KRS. The labeling seems
to give a better reordering model, albeit the 4-gram LM seems to catch up with it and
reduce the margin of improvement.

Chinese–English: For Chinese–English the relative improvements over the baseline
are considerably smaller in the unigram LM experiments relative to the 4-gram LM.
Nevertheless, the best system still achieves approximately +0.3 BLEU improvement
while also improving TER with approximately -0.2. Apparently, the labeled reordering
model here is better than Hiero in reranking the hypothesis but there is a set of top-
ranking hypothesis that cannot be differentiated well without a strong LM.

The drop for Chinese–English (-12 BLEU) is markedly larger than the drop for
German–English and English–German (about -5 BLEU for both) suggesting that the
4-gram LM could be specifically important for discriminating between the top ranking
reorderings among the hypothesis translations for Chinese–English.

5.7.2 Label Conditional Probability Analysis
As a sanity check of the bilingual labels, we investigate the conditional probabilities of
gap labels given their left-hand-side parent labels. The motivation is that if the labels
add information, we expect conditional probabilities that clearly reveal preferences for
a certain gap label given a left-hand-side parent. If the labels are not informative,
almost uniform distributions are to be expected.

Figure 5.9 shows two bar charts of conditional probabilities (relative frequency
estimated) of gap labels given their left-hand-sides over grammar rules filtered on a
dev-set. Both the 0th-order (a) and the 1th-order Markov labels (b) show far sharper
distinctions than uniform which Hiero’s single label assumes; this is also shown in
the far lower entropy for parent-child relations in labeled Hiero rules as compared
to the maximum entropy base expectation for uninformative labels. Figure 5.9 (a)
shows that in the case of 0th-order labels, sequences of monotone embedded phrases
are very likely, whereas a permutation/complex labels is not likely to contain another
complex phrase. Figure 5.9 (b) shows some interesting patterns in the case of 1th-order
labels. First there is the pattern that any label, be it some form of monotone, inverted
or fully discontinuous gives high probability to produce gap labels of some monotone
type. This captures the general trend that monotone is more likely in general, also
seen for the 0th-order labels. Somewhat more remarkable is the trend for left/right-
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Figure 5.9: Conditional probabilities gap label given left-hand-side (LHS)
P(L(gap)|LHS ), entropy (H) and prior probabilities for the left-hand-sides (P).
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binding labels to produce again the same left/right-binding labels, and not labels of
the same type but with opposite binding direction. For example, left-binding-inverted
(L.B.I) has high chance to again produce left-binding-inverted, but not right-binding-
inverted (R.B.I). Analogous for the right-binding and monotone cases. In the case
of inverted labels we think this captures the fact that it is not likely that an inversion
operation is directly mostly undone by another consecutive inversion operator in real
data. In the case of monotone labels, producing two monotone labels with different
binding directions is unlikely since in most cases it would imply that the gap label
is in fact embedded by monotone parents on both sides, which would yield the label
E.F.M. instead. Another observation is that all labels involving inversion are most
likely to produce left-binding-monotone (L.B.M.) labels as gap labels. Some of these
observations are not too surprising as they can be—at least partially—explained from
the way the labels are chosen. Nevertheless, this actually only reinforces the intuition
that the design of the labels indeed allows them to enforce the word order contexts
of phrases to be coherent. Since encouraging coherence of reordering is exactly the
goal of the labels, we conclude that the picture that arises from this sanity check is
encouraging.

5.7.3 Label Usage Analysis
In this section we give additional support for the hypothesis that systems that benefit
from the use of reordering labels do so by learning a relative preference for matching
substitutions of these labels. This will be done by performing a direct analysis of label-
substitution behavior, as measured in the translations produced for the development and
test sets in our experiments.31

Historically, labels that have been used to improve translation were mainly
syntactic and used in a strict matching setting, e.g. (Zollmann and Venugopal, 2006).
Even in this strict matching setting such labels often gave significant improvements
over a Hiero baseline. In fact we saw that for certain language pairs and systems
reordering labels also give improvement when used in a strict matching setup. And for
Chinese–English for the phrase-centric reordering labeled systems this improvement,
while small, is already statistically significant. But we have seen in our results that
using reordering labels as soft constraints works much better, and this is in line with
observations by others, e.g. (Chiang, 2010; Xiao and Zhu, 2013; Almaghout et al.,
2012).

Labels used as soft constraints are in a way similar to labels used as strict
constraints, except that they can be ignored to a smaller or larger extend when the
tuner learns that this increases performance.32 Intuitively we expect labels yielding

31We would like to thank Wilker Aziz for the suggestion that measuring label-substitution behavior
directly in this way is more appropriate and reliable than inferring it indirectly based on the learned
weights of label-substitution features.

32In theory the tuner could even implicitly learn that certain labels can be associated to groups,
substituting relatively freely (without significant penalty) to labels within their group, but suffering a
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System Name Match NoMatch
Glue Rule

Subst
dev

BLEU
test

BLEU
Chinese–English

Hiero Baseline 0.76 —– 0.24 31.70 31.63
Hiero-0th-SftB 0.37 0.38 0.25 32.04 32.20
Hiero-0th-SftB+S 0.36 0.36 0.28 32.23 32.43
Hiero-1st-SftB 0.55 0.22 0.23 32.63 32.61
Hiero-1st-SftB+S 0.49 0.26 0.25 33.02 32.69

German–English
Hiero Baseline 0.62 —– 0.38 27.90 28.39
Hiero-0th-SftB 0.33 0.35 0.31 28.01 28.45
Hiero-0th-SftB+S 0.35 0.31 0.34 28.20 28.57
Hiero-1st-SftB 0.43 0.20 0.37 28.13 28.45
Hiero-1st-SftB+S 0.44 0.23 0.33 28.32 28.47

English–German
Hiero Baseline 0.71 —– 0.29 20.36 20.89
Hiero-0th-SftB 0.50 0.19 0.31 20.57 21.01
Hiero-0th-SftB+S 0.46 0.23 0.31 20.75 20.97
Hiero-1st-SftB 0.44 0.24 0.32 20.54 21.05
Hiero-1st-SftB+S 0.43 0.24 0.33 20.70 20.90

Table 5.10: Relative frequencies of rule substitutions and corresponding dev and test
BLEU scores for different systems and language pairs. The frequencies are computed
as means over the observed translations in N-Best lists (N=300) for three runs per
system. Match/NoMatch are the relative frequencies of matching/mismatching rule
substitutions, excluding substitutions to glue rules. Glue Rules Subst is the relative
frequency of rules that substitute to glue rules. For every language pair the highest
occurring relative frequency of matching substitutions, as well as the highest dev
BLEU and test BLEU scores are shown in bold.

relatively more helpful constraints on the way rules may be combined, to induce
relatively higher preference for matching label substitutions. Conversely we expect
improvements from systems that add (reordering) labels as soft constraints but are
otherwise the same as Hiero (our used setup) to come from a learned relative preference
for matching substitutions of these labels. What label set works best can vary across
languages, but we think that for every language pair and label set improvements must
come from preferring certain substitutions over others and in particular matching over
mismatching substitutions.

This gives the following more specific hypotheses:

• H1: The relative preference for matching substitutions (with the best performing
labels) must be higher for the language pair were the highest improvements are
achieved33, than the relative preference for matching substitutions (with the best
performing labels) for other language pairs.

• H2: The best performing label set for a language pair also yields the relatively

high penalty when substituting to labels outside it. Thus constitutes a kind of implicit clustering of
labels through the learning of substitution preferences.

33Chinese–English in our case.
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highest label matching preferences.34

Additionally we want to check if reordering features also lead to a relative decrease
in the amount of glue rules that is used in comparison to Hiero. Knowing this will help
to further clarify the possible causes for our improvements.

Label substitution statistics

We next introduce the statistics used to test our hypotheses and explain how it was
created. Table 5.10 shows statistics of label substitution and substitution to glue
rules in a selection of our experiments. The first three columns show the relative
frequencies (fractions) of matching rule substitutions, mismatching rule substitutions
and substitutions to glue rules. All three categories are mutually exclusive and their
relative frequencies add up to one. In case of the Hiero baseline, the distinction
between matching and mismatching rule substitutions is not applicable as rules are
trivially matching. This is because there is only one label “X” for Hiero rules and also
strict matching is enforced. In addition to the relative label-substitution frequencies, we
show the BLEU scores on the dev- and test-set for all systems in two parallel columns.
This information will further help in testing our hypotheses.

The relative substitution frequencies are computed by summing over substitution
counts in the N-best lists (N = 300) produced during translation, summing over
different translations and runs. Computation is done by marking and combining
information of the feature values of label-substitution feature count features and the
various rule count features from the derivations. Here we report the statistics for
the test-set, but the statistics for the dev-set are very similar, showing at most one
percentage point differences in some cases.35 Additionally we computed statistics
using only the 1-best instead of N-best translations, but again for brevity we omit this
table here since the difference with N-best was only marginal: at most 1 percentage
point in some cases.

Interpretation of the statistics

We notice from the statistics in table 5.10 that the relative frequency of glue rule
substitutions is mostly similar for the reordering labeled systems and the Hiero
baseline. This negates the hypothesis that a mere change in the relative frequency
of hierarchical rule substitutions over glue rule substitutions explains the differences in

34It is possible that during tuning labels work well on the dev set and consequently a high matching
preference is learned. But on the test-set this preference can sometimes turn out to be too strong:
overfitting. As we did not properly control for overfitting by using a held out set to choose the best
tuning settings for testing, we therefore believe that for this analysis it is more reasonable to look at dev
instead of test results, when assessing the validity of this hypothesis.

35Also, for brevity standard deviations are omitted because they do not add much extra information
for the purpose of our analysis plus they are all similar, somewhere in the range between 4.1E-2 and
1.1E-1.
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performance. We also notice that the relative frequency of matching labels (Match)
is in nearly all systems at least as high as the relative frequency of mismatching
(NoMatch), while it is nearly twice that of matching for Chinese–English and German–
English for the top performing systems on the test-set. When choosing instead the
best system based on scores on the dev-set, the latter holds for all three language
pairs. We conclude from this that the first intuition that improvements are mainly
achieved by learning preference for matching substitutions of effective labels appears
to be validated by the results.

Moving on to the more specific hypotheses, looking at the relative matching
preference for the best test/dev system for Chinese–English 0.49/0.49 versus the
preference for German–English 0.35/0.44 and English–German 0.44/0.46, we notice
that the results give no ground to give up H1. Looking next at the second hypothesis
H2, we see that for all three language pairs, the system with the highest relative
matching frequency also produces the highest dev score. Both in case of H1 and H2,
the hypotheses are supported by the data, while the data also remains insufficient to
draw statistical conclusions from it. If we consult the test instead of dev scores H2 will
not hold, since the best scores for German–English and English–German are obtained
by systems with labels that do not yield the highest relative matching scores. These
language pairs display an apparent overfitting during learning, whereby the systems
performing best on the dev-set fall below on the test-set. We think that a too strong or
too specific matching preference is learned for these systems, which is suboptimal on
the test-set. We believe this effect might disappear when instead of using the dev-set
scores, scores for held-out data is used to choose which iteration to take the weights
from during tuning, as proposed by (Chiang, 2010).

As a last observation, we note that for Chinese–English and German–English, the
best performance is obtained by using the basic and sparse features, which in both cases
slightly modifies the matching preferences by effectively allowing them to take more
context into account, which leads to an effective reduction in the amount of matches for
Chinese–English and a slight increase for German–English. Sparse label-substitution
features thus allow to fine-tune the label-substitution behavior, and they increase dev
scores compared to systems with the basic label-substitution features, for all three
language pairs and both label types. But these features yield only modest additional
gains on the test set for most systems, while even decreasing performance in case of
English–German. This suggests that these features, while helpful, also increase the risk
of overfitting, something that should ideally by protected against by using a held-out
data for final weight selection.

Discussion

In this analysis we have focused on the relative differences in the frequency of
matching label substitutions across systems and also the difference between relative
frequency of matching and mismatching substitutions. Yet the question remains, what
the baseline frequency for matching substitutions is, when implicit canonical form
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labels for Hiero rules are marked, but no explicit labels nor soft constraints are used.36

This is an open question. Using a simple distribution Pnaive that naively assumes
all labels are equally likely in all contexts the a-priori chance for matching labels
is just 1

N while the chance for mismatching is N−1
N . This would suggest that even

just having an equal relative frequency for matching and mismatching substitutions
indicates a much higher preference for matching than what could be expected by
mere chance. On the other hand, matching substitutions probably also correlate with
better outputs according to a strong language model. The unigram language model
experiments in the last section showed that the relative benefit of reordering labels
increases when the language model is weaker. This suggests that when using a strong
language model rules will to some extend automatically be combined in a way that
yields good translations, which most likely involves a higher amount of matching
than predicted by Pnaive. This makes it hard to predict the expected relative frequency
of matching substitutions, for a system that is (implicitly) labeled but that does not
use label-substitution features. For this reason we have focused here on the relative
matching frequencies of labeled systems. Our current analysis unfortunately does
not constitute a definite proof that relative matching is increased over the baseline
(the latter would require baseline relative frequencies for matching substitutions37).
But it shows that stronger matching preference coincides with better dev-scores and
language pairs for which larger relative improvement over the baseline is attained.
This seem to add evidence to the intuition that improvements are made by learning
a substitution preference that predominantly encourages matching substitutions, as
opposed to learning some arbitrary other preference pattern.

In this section we took yet another view on analyzing our results. Rather than
establishing that improvements are made or researching the interaction with the
language model as was done in the last subsection, here we assessed whether basic
beliefs about the origins of improvement are validated by observation. Despite its
shortcomings, we think this analysis adds insight by providing more evidence for the
intuition that improvements in our soft-matching labeled systems are broadly made
by learning a preference for matching substitutions. This coincides with giving more
preference to reordering patterns as they were seen in the training data. It therefore
yields additional evidence for our main hypothesis in this work, that reordering labels
can facilitate more coherent and more context sensitive reordering decisions, thereby
improving word order in hierarchical translation.

36An actual baseline for the frequency of matching labels could be estimated as the frequency of
matching substitutions produced by implicitly labeled Hiero rules, assuming every Hiero rule has an
associated single set of hidden (canonical form) reordering labels. One way to compute it is to adapt the
decoder to output derivations instead of translations and rerunning the experiments, and then matching
the unlabeled rules in the produced derivations back to labeled rules in (reordering) labeled grammars.
Alternatively one could translate with reordering labeled grammars and soft constraints, but set the
weight of all soft constraints to 0, and not allow the tuner to change it. Both approaches are conceptually
simple but technically hard as well as time intensive.

37As computing these frequencies is technically complicated, we leave it for future work.
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Sentence type Sentence contents
Source Sentence 泰还未摆脱危机
Reference1 france drawing up military withdrawal plan from bosnia-herzegovina
Reference2 france studying plan to withdraw its troops from bosnia-herzegovina
Reference3 france studies plan to withdraw troops from bosnia and herzegovina
Reference4 france considering troops withdrawal from bosnia and herzegovina
Hiero law research plan for withdrawal from bosnia
Hiero-1st-SftB+S law is studying plans to withdraw its troops from bosnia and herzegovina
Source Sentence 一位南韩政府官员说，昨天南韩已向北韩发出邀请，请他们派观察员来观摩这次军事演习。

Reference1
a south korean government official said that south korea issued an invitation to north korea yesterday ,
asking them to send observers to watch this military exercise .

Reference2
a south korea government official said south korea had already sent an invitation to north korea yesterday
asking them to send observers to view and learn from the military exercise .

Reference3
a south korean government official said that south korea offered an invitation to north korea yesterday
to send their observers to watch the military exercise

Reference4
a south korean official said that south korea sent invitation to north korea yesterday ,
asking it to send observers to the drills .

Hiero
a south korean government official said that south korea has issued invitations to north korea ,
yesterday invited them to attend the military exercises as observers .

Hiero-1st-SftB+S
a south korean government official said that south korea has issued invitations to north korea yesterday ,
asking them to send observers to attend the meeting of the military exercise

Source Sentence 外交人员将搭乘第五架飞机返国。
Reference1 diplomatic staff will take the fifth plane home .
Reference2 diplomatic staff would go home in a fifth plane .
Reference3 diplomats are to come back home aboard the fifth plane .
Reference4 diplomatic staff would be airlifted on a fifth plane .
Hiero diplomats fifth aircraft will fly for repatriation .
Hiero-1st-SftB+S diplomatic personnel will travel on to the fifth aircraft for repatriation .

Table 5.11: Source sentence, reference, baseline and best system output for sentences
959, 1442 and 1239 from the Chinese–English testset. These are amongst the test
sentences with the highest improvement on METEOR (leaving out some very short
sentences and sentences with unknown words).

5.7.4 Qualitative analysis

A qualitative analysis can give some additional insight about what is going in the actual
translations, which quantitative scores fail to provide. On the other hand qualitative
analysis has the disadvantage of being biased and relying on a very small sample.
While we cannot really alleviate the drawback of a small sample here, we do try to
alleviate the problem of selection bias by looking at some of the most improved test
sentences according to METEOR as well as some test sentences that gave the highest
drop in METEOR score. We used METEOR as opposed to BLEU for the selection,
because it is better as a sentence-level score (Macháček and Bojar, 2013), and has a
more explicit reordering component. By considering an equal number of improved
and worsened examples in this way, selected by a clear criterion (highest gain/drop in
METEOR score), we hope to be able to form a somewhat more objective opinion based
on the selected examples. Here we chose to look at Chinese–English examples, since
Chinese–English is the language pair where we observe the greatest benefits from our
method in terms of improving word order, as indicated by BLEU, METEOR and KRS
improvements.

Looking first at the three improved examples, we see that in all three cases there
is a clear improvement in word order (structure) as well as lexical selection. Looking
next at the examples where performance worsens, the errors seem to be mainly in
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Sentence type Sentence contents
Source Sentence 埃及航空于今年１月正式开通首条开罗至北京的直飞航线。
Reference1 egyptair officially opened the first direct flight route from cairo to beijing in january this year .
Reference2 egypt air set up the first direct flight between cairo and beijing in january this year .
Reference3 the egyptian airline officially opened its first direct flight from cairo to beijing this january .
Reference4 air egypt formally opened the first direct flight line from cairo to beijing in january .
Hiero egypt air in january this year was officially opened its first direct flight from cairo to beijing .
Hiero-1st-SftB+S egyptian aviation was officially opened in january this year . the first non-stop service from beijing to cairo .
Source Sentence 颁奖仪式在菲律宾文化中心隆重举行。
Reference1 the awarding ceremony was solemnly held at the philippines cultural center .
Reference2 the award ceremony was solemnly held in the philippine cultural center .
Reference3 the presentation ceremony was solemnly held at the philippine culture center .
Reference4 the awarding ceremony was performed solemnly in philippine cultural center .
Hiero the award ceremony held in the philippines cultural center grand .
Hiero-1st-SftB+S a ceremony held at the cultural center grand .
Source Sentence 这些国家已经停止进口巴拉圭牛肉。
Reference1 these countries have already stopped beef imports from paraguay .
Reference2 these countries have suspended the import of paraguayan beef .
Reference3 these countries have stopped importing beef from paraguay .
Reference4 these countries have stopped importing beef from paraguay .
Hiero these countries have to stop importing beef in paraguay .
Hiero-1st-SftB+S these countries have put an end to the paraguayan beef imports .

Table 5.12: Source sentence, reference, baseline and best system output for sentences
1870, 937 and 1833 from the Chinese–English testset. These are amongst the test
sentences with the highest performance loss on METEOR (leaving out some very short
sentences and sentences with unknown words).

lexical selection. A reason could be that the labeled system assigns a relatively lower
weight to the language model, which may make it more susceptible to make such
lexical selection mistakes. At the same time these examples do seem to support the
expected increased capability in getting right the global reordering structure of the
reordering labeled system.

While the drawbacks of qualitative analysis discourage us to draw strong conclu-
sions from this, the examples do seem to give some additional support for the thesis
that in Chinese–English translation reordering labels help to improve word order and
global sentence structure. This improvement seems to sometimes come at a price in the
quality of lexical selection, possibly due to the relatively lower weight of the language
model in comparison to the Hiero baseline.

5.7.5 Summary of findings from analysis

The conclusions from these different analyses can be summarized as follows:

• There is overlap between the work done by a strong language model and work
done by the labeled reordering models. However, Hiero’s performance depends
to a larger extent on the 4-gram language model than the labeled reordering
systems, suggesting that the latter systems give more adequate reordering.

• The label conditional probability analysis shows that for both label types, the
conditional probability of gap labels given their left-hand-side parent is far from
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uniform, and shows clear patterns. This is another modest source of evidence
that our reordering labels are sensible and informative.

• The label usage analysis seems to validate the hypothesis that larger improve-
ments over the baseline typically go together with relatively more matching
substitutions. While this analysis in the current form is insufficient to draw
statistical conclusions, it is good to know that basic intuitions about the source
of improvement of soft constraints for label matching are at least not violated by
the data.

• The qualitative analysis of a small number of examples shows that also on the
qualitative level there is evidence that the labels are effective in improving both
reordering and lexical selection.

5.8 Related Work

5.8.1 Syntax-based labels

A range of (distantly) related work exploits syntax for Hiero models, e.g. (Liu et al.,
2006; Huang et al., 2006; Mi et al., 2008a; Mi and Huang, 2008; Zollmann and
Venugopal, 2006; Almaghout et al., 2010, 2012; Li et al., 2012b). In terms of labeling
Hiero rules, SAMT (Zollmann and Venugopal, 2006; Mylonakis and Sima’an, 2011)
exploits a “softer notion" of syntax by fitting the CCG-like syntactic labels to non-
constituent phrases.

5.8.2 Label clustering methods

Approaches to automatically coarsen the label set used by SAMT are explored
by Hanneman and Lavie (2011, 2013). In this approach, the similarity between
conditional probability distributions of labels is used to merge labels. The conditional
probability of a source label si given a target label t j is computed with simple relative
frequency estimation, counting the frequency of si and t j together and dividing by the
total frequency of t j in combination with any source label si ∈ S . The computation of
conditional probabilities for target labels given source labels goes analogous. Based
on these distributions L1 distances are computed for all pairs of labels, in source-
to-target and target-to-source direction. Finally, the pair of labels with the smallest
L1 distance between corresponding label distributions in either direction, is merged.
This is further improved upon by Mino et al. (2014) who propose an alternative
clustering algorithm based on the exchange algorithm (Uszkoreit and Brants, 2008),
which obtains comparable results, but which runs an order of magnitude faster.
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5.8.3 Soft constraints
Soft syntactic constraints have been around for some time now (Zhou et al., 2008;
Venugopal et al., 2009; Chiang, 2010; Xiao and Zhu, 2013). Zhou et al. (2008)
reinforce Hiero with a linguistically motivated prior. This prior is based on the level
of syntactic homogeneity between pairs of non-terminals and the associated syntactic
forests rooted at these nonterminals, whereby tree kernels38 are applied to efficiently
measure the amount of overlap between all pairs of sub-trees induced by the pairs of
syntactic forests. Crucially, the syntactic prior encourages derivations that are more
syntactically coherent but does not block derivations when they are not. Venugopal
et al. (2009) associate distributions over compatible syntactic labelings with grammar
rules, and combine these preference distributions during decoding, thus achieving a
summation rather than competition between compatible label configurations. The
latter approach requires significant changes to the decoder and comes at a considerable
computational cost. Soft constraints as proposed by (Chiang, 2010) and adopted
in this paper were discussed in earlier in subsection 5.2.2 and will not be repeated
here. Xiao and Zhu (2013) focus on unsupervised learning of sub-tree alignment
based on synchronous tree-substitution grammars in combination with the expectation
maximization (EM) algorithm (Dempster et al., 1977) or a Bayesian learning approach.
The translation approach in their work in contrast to ours is based on tree-to-tree
translation. It uses syntax on both sides and works with rule sets that even with the
labels removed still differ significantly from Hiero. But in line with our work, this
work also requires elastic-substitution decoding (Chiang, 2010) to get the best results.

5.8.4 Learning labels
Improving the quality of the extracted syntactic rules and their labels for syntactic
translation with the help of the EM-algorithm is explored by Wang et al. (2010). This
work uses re-structuring: binarization of syntactic trees, to make more translation
patterns available. It also uses re-labeling to improve the adequacy of syntactic labels
and re-aligning to improve word alignments.

Learning labels in a robust way is also explored by Mylonakis and Sima’an (2011).
This work uses a special variant of the EM algorithm called Cross-Validated EM to
avoid the standard problems of EM with overfitting. The algorithm is then used to
learn a distribution of source-labeled hierarchical rules with labels of different levels
of specificity. The labels are based on the SAMT labeling approach and also include
some basic information about relative orientation with respect to parent rules.

Learning latent-variable SCFG. for hierarchical translation is explored by Saluja
et al. (2014). This work uses spectral learning or the EM algorithm to learn tensors that
capture the latent variable information of rules. These are used by means of tensor-

38Informally, tree kernels are operators that efficiently compute a function K(T,T ′) of two input tree
arguments T and T ′, for example the number of common subtrees. The efficient computation of the
function by tree kernels is often achieved by a form of dynamic programming.
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vector products, somewhat similar to the way label preferences are propagated in
(Venugopal et al., 2009). Learning of labels is done based on the covariances between
sparse feature vectors for inside and outside trees for rules in the training corpus.39 The
work uses minimal rules to avoid the complex problem of simultaneously learning the
latent variables and the segmentations of word alignments.

5.8.5 Bilingual Language Models
Niehues et al. (2011) propose bilingual language models as another way to add more
context to the translation process. The bilingual language models presented in this
work are based on tokens that combine target words with the words in the source
aligned to those target words. Applied to phrase-based translation, this model gives
improvements on various language pairs. In addition to this, a bilingual language
model that uses POS-tags of the source and target words instead of the words
themselves is used to further improve performance.

Garmash and Monz (2014) propose an extension to this approach, whereby
dependency parsing is applied to select a richer set of source context POS-tags for each
target word using the dependency information in addition to the alignment information.
Because this approach as well as the approach of Niehues et al. (2011) uses at any
time only source information and information of already translated target words, both
approaches can be directly integrated in the decoder without requiring additional
approximations. In a similar spirit, Garmash and Monz (2015) propose a new way to
adapt the structured language model proposed in (Chelba and Jelinek, 2000) to SMT,
and use the resulting bilingual language model to improve in particular the word order
of output translation.

A clear difference with our own approach, apart from focusing on phrase-based
instead of hierarchical phrase-based translation, is that these works focus on implicit
notions of word order as induced by the state sequences of the bilingual language
models in combination with syntactic information. Our model in contrasts puts the
hierarchical reordering structure central. It focuses on improving the coherence of
composition as hierarchical rules are combined, and requires no syntactic information.

5.8.6 Improvement and evaluation of reordering with
permutation trees

Stanojević and Sima’an (2015) propose a method for inducing reordering grammars
based on permutation trees (PETs) for preordering. Their work uses a modified form

39The concepts inside and outside tree are defined in terms of another concept called skeletal tree. The
skeletal tree for an aligned sentence pair is the synchronous tree composed of the set of synchronous
rules in the derivation of the aligned sentence pair. Since only minimal rules are used, there is always
only one unique derivation. The inside tree for a rule in the training contains the entire sub-tree at
and below the left-hand-side nonterminal, and the outside tree is everything else in the synchronous
skeletal-tree except the inside tree.
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of PETs (Gildea et al., 2006) in combination with variable splitting for the permutation
labels of PET nodes (Matsuzaki et al., 2005; Prescher, 2005; Petrov et al., 2006).
The reported results show significant improvements over no preordering, a rule-based
preordering baseline (Isozaki et al., 2010) and an ITG-based preordering baseline
(Neubig et al., 2012). Usage of all PETs yields better results than working with a single
PET in the reported experiments. This work is relevant in the context of ours because
it also shows that working with PETs gives significant improvement over using only
ITG reordering operators. There are large differences with our work. Our work uses all
HATs in combination with bucketing to form labels for elastic-substitution decoding,
improving hierarchical translation within the decoder. Stanojević and Sima’an (2015)
instead restrict the set of used HATs to only PETs (bijective mappings), and learn the
labels. Nevertheless, both contribute evidence to the thesis that word order can be
significantly improved without using syntax.

Stanojević and Sima’an (2014a) propose a new and highly successful machine
translation evaluation method called BEER. This metric uses a multitude of weighted
features, with weights that are directly trained to maximize correlation with human
ranking. As such, the metric shows very high correlation with human evaluation of
translation performance. Training is done for pairwise rankings using learning-to-rank
techniques in a way that is similar to PRO MT system tuning (Hopkins and May,
2011). Some of the successful new features that are proposed are character n-grams
and features based on PETs. The latter features are concerned with reordering and turn
out to be an important component in the success of the metric. In the context of this
work, the effectiveness of PETs in characterizing the correctness of translation word
order as part of the complete evaluation, gives yet another ground to believe that the
information present in PETs and more generally HATs may be particularly suitable for
improving word order in SMT.

5.9 Conclusion
We presented a novel method to enrich Hierarchical Statistical Machine Translation
with bilingual labels that help to improve the translation quality. Considerable and
significant improvements of the BLEU, METEOR and KRS are achieved simulta-
neously for Chinese–English translation while tuning on BLEU, where the Kendall
Reordering Score is specifically designed to measure improvement of reordering
in isolation. Significant improvements of the BLEU score are achieved for both
German–English and English–German translation, while the Kendall Reordering
Score shows significant improvement for English–German. Our work differs from
related approaches that use syntactic or part-of-speech information in the formation of
reordering constraints in that it needs no such additional information. It also differs
from related work on reordering constraints based on lexicalization in that it uses no
such lexicalization but instead strives to achieve more globally coherent translations,
afforded by global, holistic constraints that take the local reordering history of the
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derivation directly into account. Our experiments also once again reinforce the
established wisdom that soft, rather than strict constraints, are a necessity when aiming
to include new information to an already strong system without the risk of effectively
worsening performance through constraints that have not been directly tailored to the
data through a proper learning approach. While lexicalized constraints on reordering
have proven to have great potential, un-lexicalized soft bilingual constraints, which are
more general and transcend the rule level have their own place in providing another
agenda of improving translation which focuses more on the global coherence direction
by directly putting soft alignment-informed constraints on the combination of rules.
Finally, while more research is necessary in this direction, there are strong reasons
to believe that in the right setup these different approaches can be made to further
reinforce each other.





6
Empirical Analysis Hierarchical Translation

Equivalence

“Quite the contrary. It is cognition that is the fantasy,” the man cut in. “Granted,
everything I tell you now is mere words. Arrange them and rearrange them as I
might, I will never be able to explain to you the form of Will the Boss possesses. My
explanation would only show the correlation between myself and that Will by means
of a correlation on the verbal level. The negation of cognition thus correlates to the
negation of language. For when those two pillars of Western humanism, individual
cognition and evolutionary continuity, lose their meaning, language loses meaning.
Existence ceases for the individuum as we know it, and all becomes chaos. You cease
to be a unique entity unto yourself, but exist simply as chaos. And not just the chaos
that is you; your chaos is also my chaos. To wit, existence is communication, and
communication, existence.”

– Haruki Murakami, A Wild Sheep Chase

This chapter conceptually consist of two parts, corresponding to two major
foundations necessary to properly understand and analyze Hierarchical Translation
Equivalence in an exact and formally grounded way. The first part, based on the
work by Maillette de Buy Wenniger and Sima’an (2013a) focuses on the formal
foundations of what it means to parse a word alignment using a synchronous grammar.
The second part uses the foundational work of the first part to explain how based on
sets of synchronous trees called HATs, introduced in chapter 4, alignments requiring
grammar formalisms of arbitrary complexity can be analyzed and characterized in a
uniform way. This permits a very general and exact notion of grammatical coverage
for arbitrary grammar formalisms, and more importantly, offers a unified view on
decomposition and reordering complexity that goes beyond the details of any arbitrary
specific grammar formalism. We now give a short overview of both parts.

169
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Part 1

Part 1 explains how parsing a word alignment with a synchronous grammar requires
both word alignments and synchronous grammars to work with the same formalism
of translation equivalence. First, given an unaligned sentence pair, a synchronous
grammar is producing a set of derivations equivalent with a set of synchronous trees
such that these trees are consistent with the grammar applied to the sentence pair.
The nodes of the trees/derivations correspond to a set of translation equivalence units
(TEUs) permissible by the grammar given the sentence pair. Second an alignment
is interpreted as equivalent to a set of synchronous trees consistent with the word
alignment, such that these trees are minimally complex but maximally compact in
their encoding of the hierarchical translation equivalence induced by the alignment.
Again the nodes of the trees consistent with the alignment correspond to a set of TEUs
warranted by the word alignment. Finally, intersection of the set of TEUs consistent
with the grammar and induced by the word alignment reveals whether all the TEUs
induced by the word alignment are also producible by the grammar, in which case
we can speak of “coverage of the word alignment by the grammar“. This concept
is explained and studied in much detail for the well known case of Normal Form
inversion transduction grammar (NF-ITG). It is shown that the choice for what units
are considered to be valid atomic (minimal) TEUs can have considerable effect on what
kind of word alignments are considered “coverable by ITG”.

Part 2

In part 2, the HATs introduced in chapter 4 are combined with the foundational
work of the first part. It is shown that since HATs correspond to maximal decompo-
sitions of word alignments, using HATs the type of grammar formalism required to
produce a word alignment under a chosen semantics of translation equivalence can be
directly deduced. The HAT-based analysis allows reasoning over sets of synchronous
tree/grammar formalisms of increasing complexity, while allowing certain details of
the formalism within one set, such as the branching factor, to vary within certain limits.
Such a formalism-group based analysis is important because it gives insight into the
complexity of hierarchical translation equivalence in actual empirical data. Analysis
that focuses on a single specific grammar formalism such as normal form ITG fails to
deliver this.

Finally HATs allow analysis of the properties of the mapping relations in actual
hierarchical translation equivalence. This can give quantitative insights into the
complexity of reordering, in a way that explicit grammar-based analysis approaches
cannot. HATs give insight in the specifics of the mapping relations that goes beyond
the decomposition or the number of parts, which is important in this type of analysis.
These specifics are made explicit in HATs by the set-permutation labels, enabling
analysis at increasing levels of detail and specificity, which no other work up till now
has permitted.
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6.1 A formal characterization of word alignment
parsing

The training data used by current statistical machine translation (SMT) models
consists of source and target sentence pairs aligned together at the word level
(word alignments). For the hierarchical and syntactically-enriched SMT models,
e.g., (Chiang, 2007; Zollmann and Venugopal, 2006), this training data is used
for extracting statistically weighted Synchronous Context-Free Grammars (SCFGs).
Formally speaking, a synchronous grammar defines a set of (source-target) sentence
pairs derived synchronously by the grammar. Contrary to common belief, however,
a synchronous grammar (see e.g., (Chiang, 2005; Satta and Peserico, 2005)) does
not accept (or parse) word alignments. This is because a synchronous derivation
generates a tree pair with a bijective binary relation (links) between their non-terminal
nodes. For deciding whether a given word alignment is generated/accepted by a given
synchronous grammar, it is necessary to interpret the synchronous derivations down
to the lexical level. However, the question is how to unambiguously interpret the
synchronous derivations of a synchronous grammar as word alignments. One major
difficulty is that synchronous productions, in their most general form, may contain
unaligned terminal sequences. Consider, for instance, the relatively non-complex
synchronous production

〈X → α X(1) β X(2) γ X(3), X → σ X(2) τ X(1) µ X(3)〉

where superscript (i) stands for aligned instances of nonterminal X and all Greek
symbols stand for arbitrary non-empty terminals sequences. Given a word-aligned
sentence pair it is necessary to bind the terminal sequence by links consistent with
the given word alignment, and then parse the word alignment with the thus enriched
grammar rules. This is not complex if we assume that each of the source terminal
sequences is contiguously aligned with a target contiguous sequence, but difficult if
we assume arbitrary alignments, including many-to-one and non-contiguously aligned
chunks.

One important goal of this chapter is to propose a formal characterization of
what it means to synchronously parse a word alignment. Our formal characterization
is borrowed from the “parsing as intersection" paradigm, e.g., (Bar-Hillel et al.,
1961; Lang, 1988; van Noord, 1995; Nederhof and Satta, 2004). Conceptually, our
characterization makes use of three algorithms. Firstly, parse the unaligned sentence
pair with the synchronous grammar to obtain a set of synchronous derivations, i.e.,
trees. Secondly, interpret a word alignment as generating a set of synchronous trees
representing the recursive translation equivalence relations of interest1 perceived in the
word alignment. And finally, intersect the sets of nodes in the two sets of synchronous
trees to check whether the grammar can generate (parts of) the word alignment. The
formal detail of each of these three steps is provided in sections 2.3.2 to 6.4.

1The translation equivalence relations of interest may vary in kind as we will exemplify later. The
known phrase pairs are merely one possible kind.
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We think that alignment parsing is relevant for current research because it
highlights the difference between alignments in training data and alignments accepted
by a synchronous grammar (learned from data). This is useful for literature on learning
from word-aligned parallel corpora (e.g., (Zens and Ney, 2003; DeNero et al., 2006;
Blunsom et al., 2009; Cohn and Blunsom, 2009; Riesa and Marcu, 2010; Mylonakis
and Sima’an, 2011; Haghighi et al., 2009; McCarley et al., 2011)). A theoretical,
formalized characterization of the alignment parsing problem is likely to improve the
choices made in empirical work as well. We exemplify our claims by providing yet
another empirical study of the stability of the ITG hypothesis. Our study highlights
some of the technical choices left implicit in preceding work as explained in the next
section.

6.2 First application to the ITG hypothesis
A grammar formalism is a whole set/family of synchronous grammars. For example,
ITG (Wu, 1997) defines a family of inversion-transduction grammars differing among
them in the exact set of synchronous productions, terminals and non-terminals. Given
a synchronous grammar formalism and an input word alignment, a relevant theoretical
question is whether there exists an instance synchronous grammar that generates the
word alignment exactly. We will refer to this question as the alignment coverage
problem. In this chapter we propose an approach to the alignment coverage problem
using the three-step solution proposed above for parsing word alignments by arbitrary
synchronous grammars.

Most current use of synchronous grammars is limited to a subclass using a pair
of nonterminals, e.g., (Chiang, 2007; Zollmann and Venugopal, 2006; Mylonakis and
Sima’an, 2011), thereby remaining within the confines of the ITG formalism (Wu,
1997). On the one hand, this is because of computational complexity reasons. On
the other hand, this choice relies on existing empirical evidence of what we will call
the “ITG hypothesis", freely rephrased as follows: the ITG formalism is sufficient for
representing a major percentage of reorderings in translation data in general.

Checking whether a word alignment can be generated by ITG is far simpler than
checking the ability to generate the alignment for arbitrary synchronous grammars.
Nevertheless, there is a striking variation in the approaches taken in relation to
measuring the coverage of word alignments by a grammar in the existing literature,
e.g., (Zens and Ney, 2003; Wellington et al., 2006; Søgaard and Wu, 2009; Wu,
2007; Søgaard and Kuhn, 2009a; Søgaard, 2010). Søgaard and Wu (Søgaard and Wu,
2009) observe justifiably that the literature studying the ITG alignment coverage makes
conflicting choices in method and data, and reports significantly diverging alignment
coverage scores. We hypothesize here that the major conflicting choices in method
(what to count and how to parse) are likely due to the absence of a well-understood,
formalized method for parsing word alignments even under ITG. In this paper we apply
our formal approach to the ITG case, contributing new empirical evidence concerning



6.3. Grammatical translation equivalence 173

the ITG hypothesis.
For our empirical study we exemplify our approach by detailing an algorithm

dedicated to ITG in Normal-Form (NF-ITG). While our algorithm is in essence
equivalent to existing algorithms for checking binarizability of permutations, e.g.,(Wu,
1997; Huang et al., 2009), the formal foundations preceding it concern nailing down
the choices made in parsing arbitrary word alignments, as opposed to (bijective)
permutations. The formalization is our way to resolve some of the major points of
differences in existing literature.

We report new coverage results for ITG parsing of manual as well as automatic
alignments, showing the contrast between the two kinds. While the latter seems built
for phrase extraction, trading-off precision for recall, the former is heavily marked
with idiomatic expressions. Our coverage results make explicit a relevant dilemma.
To hierarchically parse the current automatic word alignments exactly, we will need
more general synchronous reordering mechanisms than ITG, with increased risk of
exponential parsing algorithms (Wu, 1997; Satta and Peserico, 2005). But if we
abandon these word alignments, we will face the exponential problem of learning
reordering arbitrary permutations, cf. (Tromble and Eisner, 2009). Our results also
exhibit the importance of explicitly defining the units of translation equivalence when
studying (ITG) coverage of word alignments. The more complex the choice of
translation equivalence relations, the more difficult it is to parse the word alignments.

6.3 Grammatical translation equivalence
The derivations of a synchronous grammar can be interpreted as deriving a partially
ordered set of TEUs as well. A finite derivation S →+ 〈f, e, aG〉 of an instance
grammar G is a finite sequence of term-rewritings, where at each step of the sequence
a single nonterminal is rewritten using a synchronous production of G. The set of
the finite derivations of G defines a language, a set of triples 〈f, e, aG〉 consisting
of a source string of terminals f, a target string of terminals e and an alignment
between their grammatical constituents. Crucially, the alignment aG is obtained by
recursively interpreting the alignment relations embedded in the synchronous grammar
productions in the derivation for all constituents and concerns constituent alignments
(as opposed to word alignments).

Grammatical translation equivalence units TEG(f, e) A synchronous derivation
S →+ 〈f, e, aG〉 can be viewed as a deductive proof that 〈f, e, aG〉 is a grammatical
translation equivalence unit (grammatical TEU). Along the way, a derivation also
proves other constituent-level (sub-sentential) units as TEUs.

We define a sub-sentential grammatical TEU of 〈f, e, aG〉 to consist of a triple
〈fx, ex, ax〉, where fx and ex are two subsequences2 (of f and e respectively), derived

2A subsequence of a string is a subset of the word-position pairs that preserves the order but do not
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synchronously from the same constituent X in some non-empty “tail" of a derivation
S →+ 〈f, e, aG〉; importantly, by the workings of G, the alignment ax ⊆ aG fulfills the
requirement that a word in fx or in ex is linked to another by aG iff it is also linked that
way by ax (i.e., no alignments start out from terminals in fx or ex and link to terminals
outside them). We will denote with TEG(f, e) the set of all grammatical TEUs for the
sentence pair 〈f, e〉 derived by G.

Subsumption relation <G(f,e) Besides deriving TEUs, a derivation also shows how
the different TEUs compose together into larger TEUs according to the grammar.
We are interested in the subsumption relation: one grammatical TEU/constituent (u1)
subsumes another (u2) (written u2 <G(f,e) u1) iff the latter (u2) is derived within a finite
derivation of the former (u1).3

The set of grammatical TEUs for a finite set of derivations for a given sentence pair
is the union of the sets defined for the individual derivations. Similarly, the relation
between TEUs for a set of derivations is defined as the union of the individual relations.

6.4 Alignment coverage by intersection
Let a word-aligned sentence pair 〈f, e, a〉 be given, and let us assume that we have
a definition of an ordered set TE(f, e, a) with partial order <a. Note that these two
concepts were introduced before in chapter 4, section 2.3.2, as the basis of the notion
of hierarchical translation equivalence which is fully and compactly represented by
HATs.

We will say that a grammar formalism covers a iff there exists an instance grammar
G that fulfills two intersection equations simultaneously:4

(1) TE(f, e, a) ∩ TEG(f, e) = TE(f, e, a)
(2) <a ∩ <G(f,e)=<a

In the second equation, the intersection of partial orders is based on the standard view
that these are in essence also sets of ordered pairs. In practice, it is sufficient to
implement an algorithm that shows that G derives every TEU in TE(f, e, a), and that the
subsumption relation <a between TEUs in a must be realized by the derivations of G
that derive TE(f, e, a). In effect, this way every TEU that subsumes other TEUs must be
derived recursively, while the minimal, atomic units (not subsuming any others) must

necessarily constitute contiguous substrings.
3Note that we define this relation exhaustively thereby defining the set of paths in synchronous trees

derived by the grammar for 〈f, e〉. Hence, the subsumption relation can be seen to define a forest of
synchronous trees.

4In the description of our formal framework we have restricted this definition to full coverage. But
other similar measures can be based on the cardinality (size) of the intersection in terms of covered
TEUs, in following of measures found in (Søgaard and Kuhn, 2009a; Søgaard and Wu, 2009). Some
variants of these types of measures are introduced and applied later in this chapter, in section 6.9.
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be derived using the lexical productions (endowed with internal word alignments) of
NF-ITG. Again, the rationale behind this choice is that the atomic units constitute fixed
translation expressions (idiomatic TEUs) which cannot be composed from other TEUs,
and hence belong in the lexicon. We will exhibit coverage algorithms for doing so for
NF-ITG for the two kinds of semantic interpretations of word alignments.

A note on dedicated instances of NF-ITG Given a translation equivalence defini-
tion over word alignments TE(f, e, a), the lexical productions for a dedicated instance
of NF-ITG are defined5 by the set {X → u | u ∈ TEAtom(f, e, a)}. This means that
the lexical productions have atomic TEUs at the righthand side including alignments
between the words of the source and target terminals. In the sequel, we will only talk
about dedicated instances of NF-ITG and hence we will not explicitly repeat this every
time.

Given two grammatical TEUs u1 and u2, an NF-ITG instance allows their
concatenation either in monotone [] or inverted <> order iff they are adjacent on
the source and target sides. This fact implies that for every composed translation
equivalence unit u ∈ TE(f, e, a) we can check whether it is derivable by a dedicated
NF-ITG instance by checking whether it recursively decomposes into adjacent pairs of
TEUs down to the atomic TEUs level. Note that by doing so, we are also implicitly
checking whether the subsumption order between the TEUs in TE(f, e, a) is realized by
the grammatical derivation (i.e, <G(f,e)⊆<a). Formally, an aligned sentence pair 〈f, e, a〉
is split into a pair of TEUs 〈f1, e1, a1〉 and 〈f2, e2, a2〉 that can be composed back using
the [] and <> productions. If such a split exists, the splitting is conducted recursively
for each of 〈f1, e1, a1〉 and 〈f2, e2, a2〉 until both are atomic TEUs in TE(f, e, a). This
recursive splitting is the check of binarizability and an algorithm is described in (Huang
et al., 2009).

6.5 A simple algorithm for ITG

We exemplify the grammatical coverage for (normal form) ITG by employing a
standard tabular algorithm based on CYK (Younger, 1967). The algorithm works
in two phases creating a chart containing TEUs with associated inferences. In the
initialization phase (Algorithm 8), for all source spans that correspond to TEUs and
which have no smaller TEUs they contain, atomic TEUs are added as atomic inferences
to the chart. In the second phase, based on the atomic inferences, the simple rules of
NF-ITG are applied to add inferences for increasingly larger chart entries. An inference
is added (Algorithms 9 and 10) iff a chart entry can be split into two sub-entries
for which inferences already exist, and furthermore the union of the sets of target

5Unaligned words add one wrinkle in this scheme: informally, we consider a TEU u formed by
attaching unaligned words to an atomic TEU also as atomic iff u is absolutely needed to cover the
aligned sentence pair.
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positions for those two entries form a consecutive range.6 The addMonotoneInference
and addInvertedInference in Algorithm 10 mark the composite inferences by monotone
and inverted productions respectively.

InitializeChart
Input : 〈f, e, a〉
Output: Initialized chart for atomic units

for spanLength← 2 to n do
for i← 0 to n − spanLength + 1 do

j← i + spanLength − 1
u← {〈X,Y〉 : X ∈ {i... j}}
if (u ∈ TEAtom(f, e, a)) then

addAtomicIn f erence(chart[i][ j],u)
end

end
end

Algorithm 8: Algorithm that initializes the Chart with atomic sub-sentential TEUs.
In order to be atomic, a TEU may not contain smaller TEUs that consist of a proper
subset of the alignments (and associated words) of the TEU.

6.6 Experiments

Data Sets We use manually and automatically aligned corpora. Manually aligned
corpora come from two datasets. The first (Graca et al., 2008) consists of six lan-
guage pairs: Portuguese–English, Portuguese–French, Portuguese–Spanish, English–
Spanish, English–French and French–Spanish. These datasets contain 100 sentence
pairs each and distinguish Sure and Possible alignments. Following (Søgaard and
Kuhn, 2009a), we treat these two equally. The second manually aligned dataset
(Padó and Lapata, 2006) contains 987 sentence pairs from the English–German part of
Europarl annotated using the Blinker guidelines (Melamed, 1998). The automatically
aligned data comes from Europarl (Koehn, 2005) in three language pairs (English–
Dutch, English–French and English–German). The corpora are automatically aligned
using GIZA++ (Och and Ney, 2003) in combination with the grow-diag-final-and
heuristic. With sentence length cutoff 40 on both sides these contain respectively 945k,
949k and 995k sentence pairs.

6We are not treating unaligned words formally here. For unaligned source and target words, we have
to generate the different inferences corresponding to different groupings with their neighboring aligned
words. Using pre-processing we set aside the unaligned words, then parse the remaining word alignment
fully. After parsing, by post-processing, we introduce in the parse table atomic TEUs that include the
unaligned words.
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ComputeTEUsNFITG
Input : 〈f, e, a〉
Output: TRUE/FALSE for coverage

InitializeChart(chart)
for spanLength← 2 to n do

for i← 0 to n − spanLength do
j← i + spanLength − 1
if chart[i][ j] ∈ TE(f, e, a) then

continue
end
for splitPoint ← i + 1 to j do

a′ ← (chart[i][k − 1] ∪ chart[k][ j]) if (chart[i][k − 1] ∈ TE(f, e, a))
∧ (chart[k][ j] ∈ TE(f, e, a)) ∧ (a′ ∈ TE(f, e, a)) then

addT EU(chart, i, j, k, a′)
end

end
end

end
if (chart[0][n − 1] , ∅) then

return TRUE
else

return FALSE
end

Algorithm 9: Algorithm that incrementally builds composite TEUs using only the
rules allowed by NF-ITG

addTEU
Input :
chart - the chart
i,j,k - the lower, upper and split point indices
a′ - the TEU to be added

Output: chart with TEU a′ added in the intended entry

if MaxYt({Yt : 〈Xs,Yt〉 ∈ chart[i][k − 1]}) < MaxYt({Yt : 〈Xs,Yt〉 ∈ chart[k][ j]})
then

addMonotoneIn f erence(chart[i][ j], a′)
else

addInvertedIn f erence(chart[i][ j], a′)
end

Algorithm 10: Algorithm that adds a TEU and associated Inference to the chart
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Grammatical Coverage (GC) is defined as the percentage word alignments (sen-
tence pairs) in a parallel corpus that can be covered by an instance of the grammar
(NF-ITG) (cf. Section 6.4). Clearly, GC depends on the chosen semantic interpretation
of word alignments: contiguous TEUs (phrase pairs) or discontiguous TEUs. Note that
a formal definition of contiguous TEUs, is given in chapter 4, definition 2.3.4. Also,
note that here “discontiguous TEUs” means the full set of TEUs with no restrictions
with respect to contiguity, as opposed to the other interpretation of requiring all TEUs
to be discontiguous, i.e. both contiguous and discontiguous TEUs are allowed.

Alignments Set GC contiguous TEUs GC discontiguous TEUs
Hand aligned corpora

English–French 76.0 75.0
English–Portuguese 78.0 78.0
English–Spanish 83.0 83.0
Portuguese–French 78.0 74.0
Portuguese–Spanish 91.0 91.0
Spanish–French 79.0 74.0
LREC Corpora Average 80.83±5.49 79.17±6.74
English–German 45.427 45.325

Automatically aligned Corpora
English–Dutch 45.533 43.57
English–French 52.84 49.95
English–German 45.59 43.72
Automatically aligned corpora average 47.99±4.20 45.75±3.64

Table 6.1: The grammatical coverage (GC) of NF-ITG for different corpora dependent
on the interpretation of word alignments: contiguous Translation Equivalence or
discontiguous Translation Equivalence

Results Table 6.1 shows the Grammatical Coverage (GC) of NF-ITG for the different
corpora dependent on the two alternative definitions of translation equivalence. The
first thing to notice is that there is just a small difference between the Grammatical
Coverage scores for these two definitions. The difference is in the order of a few
percentage points, the largest difference is seen for Portuguese–French (79% v.s 74%
Grammatical Coverage), for some language pairs there is no difference. For the
automatically aligned corpora the absolute difference is on average about 2%. We
attribute this to the fact that there are only very few discontiguous TEUs that can be
covered by NF-ITG in this data.

The second thing to notice is that the scores are much higher for the corpora from
the LREC dataset than they are for the manually aligned English–German corpus.
The approximately double source and target length of the manually aligned English–
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German corpus, in combination with somewhat less dense alignments makes this
corpus much harder than the LREC corpora. Intuitively, one would expect that more
alignment links make alignments more complicated. This turns out to not always be
the case. Further inspection of the LREC alignments also shows that these alignments
often consist of parts that are completely linked. Such completely linked parts are by
definition treated as atomic TEUs, which could make the alignments look simpler. This
contrasts with the situation in the manually aligned English–German corpus where on
average less alignment links exist per word. Examples 2.5 and 2.6 show that dense
alignments can be simpler than less dense ones. This is because sometimes the density
implies idiomatic TEUs which leads to rather flat lexical productions. We think that
idiomatic TEUs reasonably belong in the lexicon.

When we look at the results for the automatically aligned corpora at the lowest rows
in the table, we see that these are comparable to the results for the manually aligned
English–German corpus (and much lower than the results for the LREC corpora).
This could be explained by the fact that the manually aligned English–German is not
only Europarl data, but possibly also because the manual alignments themselves were
obtained by initialization with the GIZA++ alignments. In any case, the manually
and automatically acquired alignments for this data are not too different from the
perspective of NF-ITG. Further differences might exist if we would employ another
class of grammars, e.g., full SCFGs.

One the one hand, we find that manual alignments are well but not fully covered by
NF-ITG. On the other hand, the automatic alignments are not covered well by NF-ITG.
A reason why these automatic alignments are difficult to cover by NF-ITG could be that
these alignments are built heuristically by trading precision for recall cf. (Och and Ney,
2003). Sogaard (Søgaard, 2010) reports that full ITG provides a few percentage points
gains over NF-ITG.

Overall, we find that our results for the LREC data are far higher than Sogaard’s
(Søgaard, 2010) results but lower than the upper bounds of (Søgaard and Wu, 2009).
A similar observation holds for the English–German manually aligned Europarl data,
albeit the maximum length (15) used in (Søgaard and Wu, 2009; Søgaard, 2010) is
different from ours (40). We attribute the difference between our results and Sogaard’s
approach to our choice to adopt lexical productions of NF-ITG that contain own
internal alignments (the detailed version) and determined by the atomic TEUs of the
word alignment. Our results differ substantially from (Søgaard and Wu, 2009) who
report upper bounds (indeed our results still fall within these upper bounds for the
LREC data).

6.7 Related Work
The array of work described in (Zens and Ney, 2003; Wellington et al., 2006; Søgaard
and Wu, 2009; Søgaard and Kuhn, 2009a; Søgaard, 2010) concentrates on methods
for calculating upper bounds on the alignment coverage for all ITGs, including NF-
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ITG. Interestingly, these upper bounds are determined by filtering/excluding complex
alignment phenomena known formally to be beyond (NF-)ITG. None of these earlier
efforts discussed explicitly the dilemmas of instantiating a grammar formalism or how
to formally parse word alignments.

The work in (Zens and Ney, 2003; Søgaard and Wu, 2009), defining and counting
TEUs, provides a far tighter upper bound than (Wellington et al., 2006), who use the
disjunctive interpretation of word alignments, interpreting multiple alignment links
of the same word as alternatives. We adopt the conjunctive interpretation of word
alignments like a majority of work in MT, e.g., (Ayan and Dorr, 2006; Fox, 2002;
Søgaard and Wu, 2009; Søgaard, 2010).

In deviation from earlier work, the work in (Søgaard and Kuhn, 2009a; Søgaard and
Wu, 2009; Søgaard, 2010) discusses TEUs defined over word alignments explicitly,
and defines evaluation metrics based on TEUs. In particular, Sogaard (Søgaard, 2010)
writes that he employs "a more aggressive search" for TEUs than earlier work, thereby
leading to far tighter upper bounds on hand aligned data. Our results seem to back this
claim but, unfortunately, we could not pin down the formal details of his procedure.

More remotely related, the work described in (Huang et al., 2009) presents a
binarization algorithm for productions of an SCFG instance (as opposed to formalism).
Although somewhat related, this is different from checking whether there exists an NF-
ITG instance (which has to be determined) that covers a word alignment.

In contrast with earlier work, we present the alignment coverage problem as an
intersection of two partially ordered sets (graphs). The partial order over TEUs as
well as the formal definition of parsing as intersection in this work are novel elements,
making explicit the view of word alignments as automata generating partially order
sets.

6.8 HATs: Exact reasoning about alignment
complexity without explicit intersection

In this section we explain how Hierarchical Alignment Trees (HATs) provide an
efficient way to reason exactly about the complexity and other properties of grammar
formalisms that are required to cover word alignment. This is done without the need
to implement the costly explicit intersection based approach discussed before.

The theoretical framework of determining coverage of word alignments by in-
tersection with a specific grammar is theoretically appealing. Practically however it
causes problems when implemented naively. Certainly theoretically we could make
a program that has a main loop generating all possible grammars, and then for each
of this grammars parses the sentence pair and performs the intersection with the set
of TEUs. However, since the set of possible grammars is infinite, it follows that this
approach will not work in practice. Fortunately we will see that taking inspiration
from the analogous example of treebank grammars (Charniak and Charniak, 1996)
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for monolingual parsing, we do not need to separately create grammars and then test
their compatibility with the word alignments. Instead we can directly read out a set
of compatible and minimal required structures from the set of hierarchical TEUs as
compactly described by the HATs for word alignments. We will now clarify why this
is a valid approach.

As discussed in chapter 4, HATs are by definition built to exactly capture the full set
of contiguous TEUs induced by a an alignment triple (a triple of source, target and word
alignment), as well as their full set of subsumption relations.7 HATs are constructed
in such a way as to always provide maximal decompositions of word alignments,
which means for every n, an n-ary branching node will only be introduced in a HAT
when some part of the alignment strictly requires a node of that branching factor
to decompose it and (recursive) decomposition using nodes with smaller branching
factors is not possible. This implies that for any n if a HAT has an n-ary branching
node, it follows that in order to produce all the TEUs TE(f, e, a) and subsumption
relations <a induced by the alignment, and hence cover the alignment as defined in
section 6.4, at least an n-ary branching grammar is required. Thus the HATs of word
alignments allow us to directly predict the (minimal) branching factor that grammars
require to cover the alignment, and the explicit intersection of sets of TEUs and
subsumption relations induced by the alignment and producible by the grammar is
not necessary.

This simple insight, shows that by parsing alignments and producing their induced
HATs, using the algorithms described in chapter 4, section 4.7, it is possible to
efficiently produce alignment coverage statistics for various grammar formalisms
under the alignment coverage by intersection formalism of section 6.4. This is done
without requiring the explicit intersection to be computed, which would be highly
expensive if not intractable. In section 6.5, we essentially took the same approach,
but limited ourselves beforehand to the simpler case of normal form ITG (NF-ITG),
effectively parsing with a simplified HAT parsing algorithm that can produce only
binary-branching HATs (BITTs). Here, by using a general HAT parsing algorithm
in an analogous way, we generalize the approach of section 6.5, producing all TEUs
and subsumption relations induced by word alignments under maximal decompositions
and based on those determining the (minimal) branching factor and other properties
required of grammar formalisms in order to cover the alignments.

6.8.1 Restriction to contiguous translation equivalence units

An important remark, requiring some explanation here, is that HAT-based analysis is
based on the assumption of working with contiguous TEUs (phrase pairs). Previously,
in our experiments for NF-ITG we wanted to show the influence of the choice the

7In fact, HATs are constructed in such a way to even capture the full set of mapping relations,
a stronger concept than subsumption relations, but for this discussion set of subsumption relations,
captured by implication, suffices.
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type of TEUs used on the results. In what follows we will study the properties of the
grammar formalisms required to cover word alignments. In this, we restrict ourselves
to contiguous TEUs and do not allow discontiguous TEUs to exist independently, while
discontiguous constructions are still allowed embedded inside TEUs. The motivation
for this choice is that if we do not make this assumption, we end up with the much more
complex class of grammatical systems called synchronous linear context-free rewriting
systems (synchronous LCFRS), for which relevant analysis has been performed by
Kaeshammer (2013). Kaeshammer (2015) has recently applied synchronous LCFRS
to build an actual hierarchical SMT system, proving that using them for translation
is already feasible. But a disadvantage of working with LCFRS we think is that they
provide very little inductive bias when deducing TEUs from word alignments.8

Our main concern is to have a representation that allows learning a useful notion
of hierarchical translation equivalence, particularly in such a way that the TEUs are
properly compositional and the coherence of translations with respect to observed
composition in training data, and associated word order, can be reinforced. That this
is possible with HATs, making the assumption of restriction to contiguous TEUs9 is
shown in detail in chapter 5, where based on HATs soft bilingual reordering constraints
are formulated, that effectively encourage coherence of word order and significantly
improve the translations.

6.8.2 What are empirical word alignments?

Permutations Sets

Permutations

Binarizable Permutations

Empirical word alignments

A

C

B

Figure 6.1: A sketch of a possible characterization of empirical word alignments

In the next section we will employ the generalized approach based on HATs (and
restricted to contiguous TEUs), to efficiently produce an extensive range of exact

8The problem of finding the segmentation of a word alignment is a notoriously difficult problem, and
the reason why most existing approaches to both phrase-based and hierarchical phrase-based translation
resort to heuristic methods, with some exceptions (DeNero et al., 2006; Blunsom et al., 2009; Cohn and
Blunsom, 2009; Mylonakis and Sima’an, 2010, 2011). A stronger grammar formalism only worsens
this problem, by further reducing the amount of inductive bias provided by the grammar formalism.

9While we do allow hierarchical rules which have gaps/variables, these gaps need to be (recursively)
filled by contiguous TEUs. This is why these lexicalized SCFG rules are considered (abstractions
over) contiguous TEUs rather than discontiguous TEUs, the latter allowing discontiguity even at the
atomic (terminal rule) level, which makes them no longer expressible by SCFGs but only by stronger
formalisms such as Synchronous LCFRS.
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alignment coverage and related statistics for different language pairs . But before we do
this, we pause for a moment, and ask ourselves: what are empirical word alignments?
Figure 6.1 shows a sketch of a likely situation: empirical word alignments are not a
proper subset of binarizable permutations, nor are they a proper subset of permutations.
However, by definition, word alignments are a subset of s-permutations. The figure
shows that empirical word alignments overlap with binarizable permutations (area A),
with permutations (area A+B) and with s-permutations (area A+B+C). What are the
relative sizes of areas A, B and C? Clearly this is an empirical question that depends
on the nature of the parallel corpus (language pair and language use) and on the kind
of word alignments found in it. In the next section we aim to explore this question
empirically on some standard data sets, with either manual alignments or automatic
alignments with GIZA++ in combination with the grow-diag-final heuristic.

6.9 Empirical study of recursive reordering in word
alignments

The question we want to answer in this section can be formulated as:

What percentage of word alignments and TEUs is representable given
different sets of formal constraints on the allowed subset of HATs (e.g.,
upper bound on branching factor, limits on the permitted complexity
type of the reordering operator of the HAT nodes, bucketing of node
transduction operators as a “distance measure" from pure permuta-
tions)?

We study this question on manually produced word alignments as well as automat-
ically generated word alignments. Note that our empirical findings must be interpreted
in relation to the specific definition of sub-permutations, i.e., word-aligned phrase
pairs.

HATs are minimally branching STPs for the word alignments. Therefore a primary
differentiating parameter for the performance measures is the maximal branching
factor:

βmax the maximal branching factor of the linked nodes (above the pre-terminal level)
in the HATs. The branching factor is measured on both sides and satisfying
the branching factor constraint requires all linked nodes in the HATs for a word
alignment to fall within the range [1..βmax].10

For a given βmax value we report:
10Null aligned words are not counted in the branching factor, i.e, even unaligned words dominated

directly by a node don’t contribute to the branching factor of that node. The rationale behind this is that
we do not want to discriminate between s-permutations differing only by NULL aligned words. This
means that the reported results are rather conservative.
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Alignment coverage This is the percentage of word alignments for which every node
in any of the HATs induced by the word alignment has a branching factor of
at most βmax Alignment coverage is not necessarily equivalent to alignment
reachability (Søgaard and Wu, 2009; Søgaard, 2010) or the complementary
measure of parsing failure rate (PFR) (Zens and Ney, 2003; Søgaard and Wu,
2009), which are both reported under subsets of ITG.

Alignment coverage is equivalent to alignment reachability under a given
grammar formalism iff both are measured in under the same semantics with
respect to the notion of TEUs and also the setting of βmax corresponds exactly
to the formalism in question.11 In this sense, alignment coverage for βmax = 2 is
an exact measure (as opposed to upper/lower-bounds) of alignment reachability
for NF-ITG.12

Translation equivalents coverage (TEC) This is the percentage of (linked) phrase
pairs as represented by linked nodes in the HATs that have maximal branching
factor βmax. The TEC measure is strongly related to Translation Units Error
Rate (TUER) (Søgaard and Kuhn, 2009b; Søgaard and Wu, 2009). In fact, when
using the same definition of TEUs, the same counting algorithm and the same
representation for both (NF-ITG), we find that TUER = (1-TEC).

Binarizability score The ratio of the number of linked nodes in a HAT (subject to
βmax) constructed for a given word alignment relative to the number of such nodes
in a hypothetical, fully binary branching HAT (using the length of the shortest
among the source and target sentences minus one). In contrast to TEC, the
binarizability score provides a relatively objective measure of to what extent the
word alignments in the corpus can be represented by deeply nested HATs. The
lower the binarizability score, the less linked nodes exist in the HATs admitted
(given βmax), if any at all. HATs that contain flat structures indicate complex
word alignments involving unaligned words and many-to-many alignments that
cannot be decomposed into smaller TEUs. This can be seen to imply idiomatic
translation, as opposed to compositional translation (given the semantics defined
here).

Because for some alignments our implementation can consume large memory in
calculating the HAT forest we had to abort it in a small percentage of cases (≤ 10−5),
mostly very long alignments with many unaligned words. Later on we optimized the
algorithm, taking out unaligned words during parsing, and putting them back when
unpacking the generated compacted HAT forest. We limit the maximum number of
inferences per linked node in the CYK chart implementing the HAT algorithm in

11Unlike for ITGs, the case βmax = 3 is not necessarily equivalent to βmax = 2 because the
s-permutations (as opposed to permutations) over three positions can be non-binarizable, see e.g.,
Figure 4.13.

12Since our algorithm builds HATs over minimal phrase pairs, the case βmax = 2 is equivalent to the
NF-ITG over these minimal phrase pairs, i.e., given the defined semantics of word alignments.
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Algorithm 1 (chapter 4, section 4.7): once the algorithm generates more than 100k
inferences for any node we skip the alignment. The number of skipped sentence pairs
is reported for each experiment separately in what follows.

6.9.1 Manual word alignments

For our empirical study of recursive reordering in manual word alignments, we use the
manually aligned part of the Hansards corpus (English–French), which was created
and first used by Och and Ney (Och and Ney, 2000, 2003). This tiny corpus consists of
447 manually aligned sentence pairs, with alignment links labeled as Sure or Possible.
Some basic statistics of this corpus are shown in Table 6.2. We report the results for
the Sure+Possible links, i.e., all alignment links.13

Language Pair English–French
Total number of sentence pairs 447
#skipped sentence pairs 0
#sentence pairs containing nulls 231
Mean source length 15.705±6.994
Mean target length 17.362±7.554
Mean and STD of ratio source to target lengths 0.928±0.221
Mean #links per word 2.52 ± 1.73

Table 6.2: Statistics of Hansards manually aligned corpus. The “mean #links per word"
is calculated using the mean # alignment links

minx∈{f,e} length o f x over the corpus word alignments.

Tables 6.3a, 6.3b and 6.3c report respectively the break-down of coverage, TEC
and binarizability score to βmax. In the range βmax ∈ [2..10] all scores increase rapidly,
after βmax > 10 their increase is slower. The alignment coverage and the TEC results
start low in the seventies for βmax = 2 (NF-ITG), but quickly increase to the low
nineties by βmax = 6. The increase continues at a lowering pace for higher values
of βmax. The binarizability scores, Table 6.3c, show a different side of the story. It
is made clear by these results that the HATs built for the word alignments contain
only at most 62% of the number of linked nodes in a hypothetical fully binary HAT
(binarizable permutation). This suggests that these word alignments induce HATs that
are somewhat flat relative to the hypothetical fully binary HATs. This observation

13Slightly different results for these experiments were earlier reported in (Sima’an and Maillette de
Buy Wenniger, 2013), the reason for the differences is that in the earlier experiment some alignments
were skipped because otherwise the unaligned words lead to too many inferences, making the HAT
parser fail. A later improved version of the code used in these experiments takes the unaligned words
out before parsing, remembers their positions, and puts them back afterwards. This avoids unnecessary
complexity issues, assuring all alignments can be parsed, and explaining the slight differences between
the earlier results and the results reported here.
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βmax English–French
2 71.36%
3 76.96%
4 82.33%
5 87.03%
6 89.93%
7 92.62%
8 94.41%
9 96.42%
10 97.76%
15 99.33%
19 100.00%

(a) Alignment coverage.

βmax English–French
2 73.42%
3 80.53%
4 87.09%
5 91.58%
6 93.65%
7 95.13%
8 96.97%
9 98.31%
10 98.90%
15 99.81%
19 100.00%

(b) Translation Equivalents coverage.

βmax English–French
2 42.05%
3 46.65%
4 51.18%
5 54.62%
6 56.43%
7 57.95%
8 59.52%
9 60.75%
10 61.50%
15 62.39%
19 62.64%

(c) Binarizability scores.

Table 6.3: Scores for Sure+Possible manual alignments in the Hansards corpus as a
function of βmax.

completes the picture drawn by the coverage and TEC results for βmax > 2: the
word alignments are clearly far more complex than the basic cases of binarizable
permutations.

Taking a different but at least as interesting look on matter, Table 6.4 reports the
coverage of word alignments to the kind of s-permutation (HATs) involved: binarizable
permutations (BITTs), permutations (PETs) and s-permutations (HATs). Remarkably,
coverage is not much improved by merely moving away from binarizable to all
permutations, whereas the general case of s-permutations provides full coverage. This
result combined with the break-down of the statistics to βmax values in the other
tables suggests that the cases of non-binarizable permutations typically co-occur with
other complex forms of alignments, including discontinuous and many-to-many cases.
Rather than implying that the full descriptive power of permutations is unnecessary,
this means that on their own permutations are almost as insufficient as their binarizable
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Kind of HATs (S-permutations) English–French
BITTs (Binarizable permutations) 71.36%
PETs (All permutations) 72.04%
HATs (S-permutations) 100.00%

Table 6.4: The ratio of the different subsets of HATs in the manual Sure+Possible
alignments in the Hansards corpus: BITTs, PETs and HATs

subset for capturing word alignments found in actual translation data.

6.9.2 Automatic word alignments
We report empirical results on English–Dutch, English–French and English–German
corpora derived from Europarl (Koehn, 2005).13 We also report results for a Chinese–
English corpus based the combination of the Hong Kong Parallel Text parallel corpus
and the MultiUN (Eisele and Chen, 2010) corpus. The Chinese side of this parallel
corpus is segmented using the Stanford Segmenter (Chang et al., 2008), more details
about the segmentation are given in A.6. All four corpora are derived from their input
corpora by setting an upper bound of 40 words on the sentence length on the source and
target sides. The sizes of the corpora are listed in Table 6.5. The corpora derived from
Europarl are about half the size of the corresponding original corpora. Nonetheless
we think that they are large enough to contain word alignments representative of the
subsuming, full-size corpora. The English–German corpus is roughly equivalent to
the corpus used in chapter 5 in the translation experiments for English–German, and
in inverted direction for German–English.14 The Chinese–English corpus used in this
chapter is exactly equivalent to the one used for translation in chapter 5.

Following standard practice (e.g., (Koehn et al., 2007)), the sentences for the
English, French and German sides of the corpora were lower-cased and tokenized
using the relevant Moses scripts.15 As mentioned before, the Chinese side of the
Chinese–English corpus was segmented rather than tokenized. Arguably lowercasing
is not the optimal strategy for all language pairs. Particularly in German all nouns are
capitalized which means that some information will get certainly lost by lowercasing.
However, the information that is lost is not too important for the IBM models, and thus
is not expected to influence the word alignments much. The sentence pairs were word-
aligned using GIZA++16 with number of training iterations as follows: four for IBM
model 1, three for IBM model 3, four for IBM model 4 and three for the HMM model.

14In the translation experiments the cased version of the source and target side was required for
parsing by the SAMT (Zollmann and Venugopal, 2006) baseline, but this version had been lost in
our version of the corpus. We therefore retrieved the cased version of the sentences from the original
Europarl corpus, and removed these sentence pairs for which the cased version could not be retrieved,
giving a slightly smaller corpus used for translation than the one used in this chapter.

15http://www.statmt.org/moses/
16http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/GIZA++.

html.
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Language Pairs English–Dutch English–French English–German Chinese–English
Total number of
sentence pairs

945167 949408 995909 7340000

#skipped
sentence pairs

0 0 0 0

# sentence pairs
containing nulls

802693 783624 839788 6323218

Mean source
length

21.30±8.92 20.56±8.58 21.56±9.14 20.11±9.25

Mean target
length

21.22±9.02 22.56±9.38 20.46±8.88 21.74±9.91

Mean and STD of
ratio of source to
target lengths

1.03±0.22 0.93±0.20 1.08±0.24 0.98±0.39

Mean & STD
#links per word

1.12±0.14 1.15±0.15 1.14±0.16 1.22±0.35

Table 6.5: The corpora used in our analysis (sentence length ≤ 40 words). The “mean
#links per word" is calculated using as the mean over the corpus alignments for the
ratio # alignment links

minx∈{f,e} length o f x .

The symmetrization of the alignments in the two translation directions was done using
the grow-diag-final heuristic.

Tables 6.6 and 6.7 show the alignment coverage and TEUs coverage (TEC) results
respectively. Compared to the manual word alignments, for the automatic alignments
the alignment coverage and TEC results increase dramatically for βmax values in [2..6].
For βmax = 2 the results are in the mid forties for English–Dutch/German, low fifties
for English–French and up to forty for Chinese–English, but by βmax = 6 all results
are in the nineties or near. In fact the coverage score for the earlier mentioned manual
alignments as reported in Tables 6.3a, 6.3b also have risen to scores above ninety for
βmax = 6, but the difference is that they start already from much higher values even for
βmax = 2. We will now discuss some properties of the manual versus automatic word
alignments that can explain these differences.

Automatic alignments obtained by symmetrization heuristics (particularly grow-
diag-final) are constructed in a way that allows the extraction of a large number of
phrase pair equivalents. This could explain why binary branching HATs (BITTs) have
lower coverage of such word alignments, and why averaged over language pairs for
more than half the alignments a branching factor larger than two is needed. Table 6.8
supports this observation. On the one hand, for HATs that are at most binary branching
(βmax = 2), the binarizability score is very low in the thirties (Dutch/German) or forties
(French) suggesting that these word alignments are hard to capture with BITTs. On
the other hand, by βmax ≥ 10 the binarizability score is around the 83% for English–
French suggesting HATs with many linked nodes, particularly when we contrast this
with a score of approximately 62% for the Hansards manual alignment given the same
constraint on βmax.
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English-Dutch English-French English-German Chinese-English
βmax = 2 45.50% 52.82% 45.57% 40.00%
βmax = 3 55.75% 67.24% 56.76% 53.61%
βmax = 4 73.91% 82.57% 74.71% 72.27%
βmax = 5 83.47% 89.98% 84.59% 82.51%
βmax = 6 89.87% 94.37% 90.71% 89.19%
βmax = 7 93.52% 96.69% 94.31% 93.14%
βmax = 8 95.87% 98.03% 96.50% 95.60%
βmax = 9 97.33% 98.83% 97.84% 97.17%
βmax = 10 98.30% 99.29% 98.67% 98.18%
βmax = 15 99.85% 99.95% 99.89% 99.78%
βmax = 22 100.00% 100.00% 100.00% 100.00%

Table 6.6: Coverage of the corpus as a function of βmax for symmetrized (grow-diag-
final) word alignments in Europarl parallel corpora (sentence length ≤ 40) for three
language pairs

English-Dutch English-French English-German Chinese-English
βmax = 2 46.75% 53.57% 45.47% 37.21%
βmax = 3 58.61% 70.17% 58.30% 53.10%
βmax = 4 77.83% 85.84% 77.34% 74.00%
βmax = 5 87.15% 92.79% 87.29% 84.77%
βmax = 6 92.82% 96.39% 92.88% 91.25%
βmax = 7 95.72% 98.08% 95.93% 94.80%
βmax = 8 97.45% 98.95% 97.63% 96.87%
βmax = 9 98.45% 99.43% 98.61% 98.10%
βmax = 10 99.06% 99.68% 99.19% 98.84%
βmax = 11 99.43% 99.81% 99.52% 99.28%
βmax = 12 99.65% 99.89% 99.73% 99.54%
βmax = 13 99.80% 99.94% 99.84% 99.71%
βmax = 14 99.88% 99.96% 99.91% 99.82%
βmax = 15 99.93% 99.98% 99.94% 99.89%
βmax = 16 99.96% 99.99% 99.97% 99.93%
βmax = 17 99.98% 100.00% 99.98% 99.96%
βmax = 18 99.99% 100.00% 99.99% 99.97%
βmax = 19 99.99% 100.00% 100.00% 99.98%
βmax = 20 100.00% 100.00% 100.00% 99.99%
βmax = 21 100.00% 100.00% 100.00% 100.00%

Table 6.7: Translation Equivalents Coverage as a function of βmax
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English-Dutch English-French English-German Chinese-English
βmax = 2 33.42% 41.41% 32.72% 24.90%
βmax = 3 42.37% 54.72% 42.42% 36.72%
βmax = 4 58.34% 68.89% 58.14% 53.28%
βmax = 5 66.43% 75.44% 66.54% 61.94%
βmax = 6 71.71% 79.17% 71.57% 67.38%
βmax = 7 74.58% 81.06% 74.42% 70.44%
βmax = 8 76.38% 82.12% 76.08% 72.26%
βmax = 9 77.48% 82.72% 77.09% 73.38%
βmax = 10 78.18% 83.07% 77.69% 74.05%
βmax = 15 79.23% 83.52% 78.53% 75.03%
βmax = 21 79.32% 83.55% 78.59% 75.12%

Table 6.8: Binarizability scores as a function of βmax. For any βmax > 21 the scores do
not increase further.

English-Dutch English-French English-German Chinese-English
BITT s 45.50% 52.82% 45.57% 40.00%
BITT s ∪ PET s 52.62% 56.55% 52.55% 46.96%
BITT s ∪ PET s ∪
HAT s

100.00% 100.00% 100.00% 100.00%

Table 6.9: The ratio of the different subsets of HATs in the corpus: BITTs, PETs and
HATs

It is unlikely that the latter difference can fully be explained by the difference in
language use (Hansards vs Europarl), in fact he shorter average sentence length in the
Hansards manually aligned corpus suggests the reverse situation should be true.

This supports the following hypothesis:

Hypothesis. Symmetrized automatic alignments are built such a way that they can
facilitate extracting a larger number of phrase pair equivalents, leading to many more
nodes in the HATs than manual alignments.

Table 6.9 shows that the coverage of BITTs is around 52% for French and around
45% for Dutch and German.

The coverage of PETs (permutations) increases by 4-7% only, which again suggests
that neither BITTs nor PETs (as pure permutation-devices) can provide good coverage
of phenomena in word alignments. If only about 50% of all such word alignments can
be represented fully as a permutation, then the other 50% demands the notion of a s-
permutation which can capture discontinuous alignments and complex many-to-many
cases. Yet, s-permutations remain simple extensions of permutations and HATs can be
considered conservative extensions of PETs and BITTs.
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βmax = 2 βmax = 3 βmax = 6 βmax = 8 βmax = 18
αmax = 1 71.36% 76.96% 89.93% 94.41% 99.78%
αmax = 2 71.36% 76.96% 89.93% 94.41% 99.78%
αmax = 3 75.39% 76.96% 89.93% 94.41% 99.78%
αmax = 5 81.66% 81.88% 89.93% 94.41% 99.78%
αmax = 10 93.29% 93.51% 94.86% 95.97% 99.78%
αmax = 20 98.66% 98.66% 98.88% 99.33% 99.78%
αmax = 30 100.00% 100.00% 100.00% 100.00% 100.00%

Table 6.10: Manual word alignments (Hansards). Coverage of the corpus as a function
of αmax, the Maximum Source Length of Atomic Fragments and βmax, the Maximal
Branching Factor.

6.9.3 Is embedding into larger atomic units an effective solution
for complex alignment patterns?

One hypothesis that is frequently posed with respect to the complexity of non-
binarizable word alignments, is that the complexity of these word alignments would be
mainly local. This would mean that the complexity could be effectively dealt with by
embedding the complexity inside atomic phrase pairs. Here we test if this hypothesis is
true. In table 6.11 we show how much coverage we can get for different values of βmax

provided that we allow all phrase pairs with maximum source/target lengths up to a
certain value αmax to be treated as atomic units and hence ignored in the determination
of alignment coverage. Here we see, that while coverage initially quickly increases
by increasing the value of αmax, very high values of αmax and/or βmax are required to
get full or near full coverage of the word alignments. This means that just embedding
complexity into big atomic units helps a bit, but is clearly not the complete solution
for dealing with the complexity observed in empirical word alignments. This insight is
important because other related work deals with the complexity of non-binarizable
or non-bijective mappings by embedding the complexity inside large atomic units
(Mylonakis and Sima’an, 2011; Stanojević and Sima’an, 2015). The results in Table
6.11 do suggest that this approach can work at least to an extend, and as such are
consistent with the improvements in translation quality reported in work using this
approach. But the results also suggests that still much can be gained by using
formalisms that really support non-bijective mappings, instead of trying to avoid them
by incorporation into large, poorly generalizing, atomic units. For the English-French
manual word alignments of Hansards, see Table 6.10, embedding into larger atomic
fragments to increase coverage yields similar results as for the same language pair with
automatic word alignments. For Chinese–English, the percentage of word alignments
that can be covered by BITTs is the lowest across the four automatically aligned
language pairs, and this is also reflected in the lowest coverage results in Table 6.11
across all four language pairs.
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βmax = 2 βmax = 3 βmax = 6 βmax = 8 βmax = 22
English-Dutch

αmax = 1 45.50% 55.75% 89.87% 95.87% 100.00%
αmax = 2 45.50% 55.75% 89.87% 95.87% 100.00%
αmax = 3 52.41% 55.75% 89.87% 95.87% 100.00%
αmax = 5 65.97% 67.16% 89.87% 95.87% 100.00%
αmax = 10 84.02% 84.20% 92.74% 96.21% 100.00%
αmax = 20 96.48% 96.49% 97.82% 98.53% 100.00%
αmax = 40 100.00% 100.00% 100.00% 100.00% 100.00%

English-French
αmax = 1 52.82% 67.24% 94.37% 98.03% 100.00%
αmax = 2 52.82% 67.24% 94.37% 98.03% 100.00%
αmax = 3 64.00% 67.24% 94.37% 98.03% 100.00%
αmax = 5 79.06% 79.61% 94.37% 98.03% 100.00%
αmax = 10 91.21% 91.26% 96.48% 98.30% 100.00%
αmax = 20 98.01% 98.02% 98.96% 99.36% 100.00%
αmax = 40 100.00% 100.00% 100.00% 100.00% 100.00%

English-German
αmax = 1 45.57% 56.76% 90.71% 96.50% 100.00%
αmax = 2 45.57% 56.76% 90.71% 96.50% 100.00%
αmax = 3 52.57% 56.76% 90.71% 96.50% 100.00%
αmax = 5 65.94% 67.83% 90.71% 96.50% 100.00%
αmax = 10 84.04% 84.48% 93.61% 96.86% 100.00%
αmax = 20 96.73% 96.77% 98.16% 98.83% 100.00%
αmax = 40 100.00% 100.00% 100.00% 100.00% 100.00%

Chinese-English
αmax = 1 40.00% 53.61% 89.19% 95.60% 100.00%
αmax = 2 40.00% 53.61% 89.19% 95.60% 100.00%
αmax = 3 48.24% 53.61% 89.19% 95.60% 100.00%
αmax = 5 61.70% 63.61% 89.19% 95.60% 100.00%
αmax = 10 80.05% 80.42% 92.15% 96.05% 100.00%
αmax = 20 95.27% 95.30% 97.52% 98.46% 100.00%
αmax = 40 100.00% 100.00% 100.00% 100.00% 100.00%

Table 6.11: Automatic word alignments. Coverage of the corpus as a function of αmax,
the Maximum Source Length of Atomic Fragments and βmax, the Maximal Branching
Factor. Scores are given for four different language pairs.
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6.9.4 Discussion and related empirical work on the analysis of
alignments

There is a lot of debate concerning the representation power of (Normal-Form) ITG
for translation data in the translation community. The empirical results presented in
the preceding section relate to this debate. Existing reports have mostly concentrated
on upper bounds for the representation power of ITG in terms of its ability to capture
manual or automatic word alignments (Zens and Ney, 2003; Galley et al., 2004;
Wellington et al., 2006; Søgaard and Wu, 2009; Søgaard, 2010). A small part of our
empirical results can be seen to contribute to this debate, particularly those concerning
BITTs. Søgaard and Wu (Søgaard and Wu, 2009) observe that the reports in the
literature differ considerably along various dimensions which makes comparison of
compare coverage results difficult.

As they note, approaches differ in at least four dimensions (i) Data: what data
and which alignments are used, (ii) Metrics: the way the coverage is measured
(sentence vs. translation unit levels), (iii) Semantics: how to interpret word alignments
(disjunctively/conjunctively) and (iv) Algorithmics: the algorithm used for computing
the upper bounds. Indeed, in studying the existing literature we found it particularly
hard to pin down the exact choices made along these dimensions, which makes it
difficult to interpret the reported results. There is, however, a good reason for the
difficulty of exact description as we will explain next.

Conceptually, determining the ability of a grammar formalism to capture word
alignments entails an intersection of the spaces of concepts that is representable
by each of these formal systems. However, because these systems are of different
types there is no a priori, objective, formal grounds on which word alignments and
synchronous grammars can be formally intersected (or composed). Before intersecting
these two completely different representations, it is necessary to specify a shared
meaning/semantics. We think this is the main reason why measuring the exact coverage
of word alignments by a synchronous grammar is so complicated. The solution we use
in this work is to define for every word alignment a semantically equivalent set of
HATs, and then to check that these HATs can be built by an instance of the grammar
formalism, i.e., that there exists an instance at all that can generate these HATs.

The earlier defined sentence-level coverage is then measured by checking that there
exists an instance of the grammar formalism that can generate all these HATs exactly.
And similarly coverage/recall of TEUs/units (TEC) is computed by determining the
percentage of linked nodes that can be generated by an instance of the grammar
formalism. Our results with βmax = 2 are in fact coverage and TEC results for NF-ITG.
Some earlier work has concentrated on measuring upper bounds on the coverage/TEC
either by deducting the complex alignment cases that cannot be covered by NF-ITG,
e.g., (Søgaard and Kuhn, 2009b; Søgaard and Wu, 2009), or by defining a “lighter"
semantics of word alignments by using a disjunctive interpretation (as opposed to the
more accepted conjunctive interpretation) (Wellington et al., 2006).

As far as we can see, the results presented in (Zens and Ney, 2003; Wu et al., 2006;
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Søgaard, 2010), although based on a different approach and computed for different
data sets and word alignments, are measured in ways that are close to implementing
the intersection used here. Zens and Ney (Zens and Ney, 2003) use Viterbi alignments
on Hansards data (sentence length up to 30 words) and obtain much higher coverage
results for NF-ITG (≈ 81% and 73% depending on direction) than our results for
English–French Europarl data with symmetrized word alignments (≈ 53%). Besides
the differences in corpus data, symmetrized alignments, which are the basis for training
state-of-the-art systems, are known to be distinctively different from their Viterbi uni-
directional ancestors. The coverage result of (Søgaard, 2010) on the manual Hansards
data (77%) and our coverage result (72%) lie very close together. Søgaard (Søgaard,
2010) is presented densely and somewhat informally, so that we miss certain details.
We attribute the difference to various reasons, including sentence-length differences (in
(Søgaard, 2010) the cutoff is 15 words) and choices concerning how to define TEUs
with unaligned words on either side. We also mention the work of (Wu et al., 2006), but
do not cover it further, as it concerns Arabic–English data, which is not studied here.
Next, looking at a related yet quite distinct work, (Huang et al., 2009) reports measures
of word alignment coverage under ITG constraints in combination with syntactic
constraints. The work is based on the GHKM (Galley et al., 2004) method of extracting
synchronous rules, which involves target-language syntax. The authors report statistics
over what fraction of the extracted synchronous rules is binarizable. The results
reported are incomparable to our results for NF-ITG because they are subject to the
GHKM extraction method of synchronous rules. This means syntactic constraints are
used as an argument to encapsulate very difficult word alignments as internal, lexical
parts of a synchronous rule. By doing so, the coverage is measured with regards
to a different semantics (the GHKM extraction method) of word alignments, which
constitutes a very different (syntax constrained, not just alignment constrained) set of
permissible TEUs than our choice of semantics. Our word alignments semantics is
more exhaustive than the GHKM semantics in that we allow all phrase pairs to be
extracted without constraints from monolingual syntax or other performance-driven
limitations.

6.10 Stronger formalisms and other important trends
in SMT

In this chapter we have mainly restricted ourselves to working with contiguous TEUs
and explained why we believe this is appropriate. Before we end this chapter, in what
follows we want to give an outlook on what it might mean to go beyond this restriction,
and how this relates to other big trends in the field of machine translation and AI in
general.

We think going beyond SCFGs can be very interesting in itself, but to be successful
certain things have to be taken care of:
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• We have to make the stronger formalisms fast enough to support real translation.

• We must assure sufficient inductive bias remains to eventually learn a form of
compositional hierarchical translation equivalence.

• We must apply the power of the stronger formalism only where necessary, and
stay within the extended upon weaker formalisms whenever possible.

Note how the third principle basically concerns the importance of adequate
smoothing and backoff. This principle has shown its importance over and over in
the history of the field of Computational Linguistics, in translation as much as parsing,
language modelling and other applications.

It is likely that with increasing computation power, stronger formalisms such as
Synchronous LCFRS might in the future play a role in improving the state of the art
of statistical machine translation, similar to how approaches based on synchronous
context free grammars have slowly overtaken, at least for certain language pairs, the
simpler finite state machines that are sufficient for phrase-based translation.

But perhaps more important still than stronger formalisms, is the need to use
stronger machine learning techniques that make better use of the data, and better
model the compositional structure of translation as part of its parameters, instead of
relying heavily on redundancy and excessive memorization. The recent popularity
of neural networks and deep learning approaches highlights a renewed appreciation
of the importance of machine learning in the field of machine translation. But
note that neural networks or deep learning methods are not the only way to tackle
stronger machine learning. More in spirit with the original work on the IBM
models, that are foundational to contemporary machine translation, a publication
(Ittycheriah and Roukos, 2007) from the time before neural networks became so
popular in machine translation shows how based on discriminative learning with
Maximum Entropy Models machine translation can be improved. This paper proposes
a “minimalist” approach called “Direct Translation Model 2”, working with a non-
overlapping inventory of translation units and employing effective learning of many
parameters to enforce structure, and achieve improvements over the state-of-the-art for
Arabic–English (phrase-based) translation.

What many methods involving neural networks and stronger machine learning have
in common, is that in learning (soft) constraints that transcend the rule level, they
effectively decrease the power of the dependency assumptions and add more context.
Our own approach in this matter, explained in detail in chapter 4, follows largely
the same approach. But beyond coherent translation and sufficient context to make
adequate translation decisions lies a richer goal, further on the horizon. This goal is to
go beyond mere translation and learn the supposedly (largely) language independent
meaning equivalence underlying translation equivalence.
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6.10.1 On the value of learning interpretable meaning
representations

While neural network based and deep learning based methods promise to create a
hidden representation capturing a notion of this meaning automatically, their inherent
black-box optimization design makes it often hard to interpret or directly use what is
learned. In contrast, recent work by Titov and Klementiev (2012) proposes a new and
inspiring approach towards the automated induction of semantic role labels. While this
approach has some big restrictions, as it remains monolingual, and assumes successful
parsing as a preprocessing step, it highlights a direction for a new kind of research.
This direction is research that focuses on learning the meaning of sentences, which
while inherently very challenging, is expected to be of great importance in the years to
come, both in the field of machine translation and computational linguistics in general.
While strong machine learning techniques will be important in this, good models, and
effective forms of inductive bias may prove to be as important. It is possible that
eventually black-box optimization methods will prove sufficient for many tasks. But
ultimately, if we want humans to be able to give any interpretation and validation of
what is learned, symbolic models of some form will keep their merit.

6.11 Conclusions

In the first part of this chapter we provide a formal characterization for the problem of
determining the coverage of a word alignment by a given grammar formalism as the
intersection of two partially ordered sets. These partially ordered set of TEUs can be
formalized in terms of hypergraphs implementing forests (packed synchronous trees),
and the coverage as the intersection between sets of synchronous trees generalizing the
trees of Zhang et al. (2008a). This formal framework is then used to provide exact
alignment coverage statistics, for ITG.

In the second part, the formal characterization is applied to general word align-
ments with the help of HATs. Prior to the extensive empirical study of this second
part, it is shown that HATs can be used as a sufficient means to efficiently measure
alignment coverage and other related metrics directly based on the induced HATs
instead of explicitly performing actual intersection of TEUs. This is important, as the
latter approach would be computationally very expensive. The empirical investigation
gives some new insights, in particular the observation that at least for automatically
aligned data, NF-ITG can only cover about 53% of the aligned sentence pairs for
English–French and even less for the other language pairs. This goes against the
common belief that NF-ITG would be sufficient for nearly all constructions occurring
in actual, empirical, aligned translation data.

Another insight is that embedding complex alignment constructions up to some
maximum source and target length inside atomic units, so that their complexity can
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be ignored, provides no complete solution for the complexity observed in empirical
word alignments. Complexity does reduce by such embedding, but when for
example atomic fragments with a maximum length of 10 source/target words are
allowed, a considerable fraction of complex non-binarizable alignments remains. For
English–French this fraction is about 9%, while for English–German and English–
Dutch this is about 16% and for Chinese–English even about 20%. This insight,
combined with the fact embedding into long atomic units also leads to extreme
sparsity, suggests that avoiding discontiguity by embedding into large atomic units
may not be the best solution. This is an argument for preferring Hiero grammars or
even stronger formalisms such as synchronous linear context-free rewriting systems
(Kaeshammer, 2013) over formalisms that cannot model the inherent discontiguity of
word alignments, whether used for translation or for preordering.17

A final insight given by this chapter is that the choice for the type of TEUs
allowed, contiguous or discontiguous (general) TEUs, is theoretically important to
make measurement of alignment coverage and related metrics well defined. It is also
shown for ITG, that the type of TEUs used can make a real difference for alignment
coverage results.

This concludes our quantitative empirical analysis of hierarchical translation
equivalence. In work outside this thesis we have also looked at visualization of
hierarchical translation equivalence (Maillette de Buy Wenniger and Sima’an, 2014b),
which can play an important role in getting a better qualitative understanding of
empirical translation equivalence in big parallel corpora.

17Hiero can deal with discontiguity only through lexicalization which is also restricted, nevertheless
this is still much stronger than unlexicalized SCFGs or unlexicalized ITGs, which have no way at all to
generalize in case of discontiguous mappings in the word alignment.
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Conclusions

I get irritated, I get upset.
Especially when I’m in a hurry.
But I see it all as part of our training.
To get irritated is to lose our way in life.

– Haruki Murakami, A Wild Sheep Chase

In this thesis we introduced a new framework to represent hierarchical translation
equivalence, called hierarchical alignment trees (HATs) (Sima’an and Maillette de
Buy Wenniger, 2013). First, this framework is applied to produce bilingual reordering
labels that help to significantly improve hierarchical statistical machine translation
(SMT). Second, it is used to perform exact measurement of the coverage of word
alignments by certain grammar formalisms as well as measure the complexity of word
alignments.

HATs extend the existing frameworks of permutation trees (PETs) and normalized
decomposition trees (NDTs). The set-permutation labels decorating every node in a
HAT make the recursive reordering taking place at these HAT nodes explicit. This
difference with NDTs, while arguably small, turns out to be crucial in facilitating
straightforward extraction of reordering labels on the one hand and measurement of
alignment complexity on the other hand. From a more theoretical point of view,
this addition is also essential for producing a compact representation of hierarchical
translation equivalence that retains all information that is present in the original word
alignments.

The main contribution of this thesis is the application of HATs to improve
hierarchical SMT, in particular with respect to word order. The reordering information
present in the hierarchical translation structure induced by word alignments, is a
rich resource currently not exploited by hierarchical SMT (Hiero). Hiero uses rule
lexicalization to guarantee that the reordering decisions within its rules are based on at
least some lexical context. However, this information is only of limited use within the
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scope of rules with variables. It does not contribute sufficiently to the global coherence
of reordering across rules, nor does it help to inform reordering for fully lexicalized
rules (phrase pairs). In contrast, lexicalized orientation models have been successful
in improving word order in phrase-based SMT and hierarchical SMT. These models
show that adding reordering information to Hiero can be helpful.

In this thesis we enrich Hiero with reordering labels based on the hierarchical
translation equivalence structure represented by HATs, induced by the same word
alignments that are used to extract the rules. This means that the approach works
without any additional resources. In particular, it requires no syntactic parsers or
taggers, which are not available for all languages. HATs contain reordering labels (set
permutations) for every phrase pair, that denote the recursive reordering within that
phrase pair. Producing effective reordering labels based on the rich labels decorating
HAT nodes turns out to be a non-trivial engineering effort. One reason for this is that
there are many different complex labels in a HAT, so the number needs to be reduced
to avoid issues with sparsity. Second of all, the raw HAT labels denote reordering
of child phrases, from the perspective of the parent phrase. But another perspective,
where reordering of the current phrase with respect to its embedding parent could be
more effective. As it turns out, a sensible heuristic bucketing of HAT labels, yields a
successful approach to produce effective reordering labels. Using such an approach we
produce two types of labels:

• 0th-order labels represent the reordering of the child phrases with respect to the
current phrase.

• 1st-order labels represent the reordering of the current phrase with respect to its
embedding parent(s).

Since both types of labels yield information that could be useful, which type is
better is an empirical question. In our translation experiments we evaluated the
success of these labels for German–English, English–German and Chinese–English
translation. Reordering labeled systems were compared against a Hiero baseline
and a syntactically labeled SAMT baseline. The performance was evaluated using
five different metrics: BLEU, METEOR, BEER, TER, KRS. The evaluation showed
large, significant improvements for Chinese–English translation of about 1 BLEU
point, and proportional improvements for all other metrics except TER. For English–
German and German–English translation, smaller, but still significant improvements
of about 0.2 BLEU were made. The reordering labeled systems also systematically
outperformed SAMT. One factor that turned out to be crucial to the success of
reordering labels, was the usage of elastic-substitution decoding. In a strict matching
setting, reordering labels still yielded improvements for Chinese–English translation,
but these improvements were much smaller (only about 0.3 BLEU) than when using
elastic-substitution decoding. For English–German and German–English translation
no clear improvements were made in a strict matching setting. Apart from the effect
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of using elastic-substitution decoding versus strict matching, we also looked at the
influence of three other dimensions on the performance:

• Type of labels: comparing 0th-order with 1st-order labels.

• Granularity of the labels: comparing the original labels with a further coarsened
variant

• The set of features used to learn matching preferences (label substitution
features): basic feature set or sparse feature set.

From these experiments we can draw the following conclusions. In general, 1st-
order labels seem to perform slightly better than 0th-order labels, while there is some
variation across languages and evaluation metrics. Furthermore, the original versions
of the label sets perform better than their coarsened variants. The exception to this
is when strict matching is used: in this scenario the coarse (ITG) variant of the 0th-
order labels gives the best performance for English–German and Chinese–English
translation. This can probably be attributed to the fact that in a strict-matching setting,
labels can block valid translations, and the chance of this increases as labels become
more fine-grained. This means that it can be better to have coarser labels in this setting,
because the advantage of having more descriptive labels does not weigh up against
the loss caused by blocked translations. Lastly, with respect to the label substitution
features used, we observed that in general the sparse feature set works better. Again
there was an exception to this: English–German translation. We attribute the fact
that the sparse feature set does not always work best, to the fact that it also creates
a more difficult learning problem with a larger change of overfitting. Indeed, looking
at scores for the development rather than test set, we observed that with the normal
(uncoarsened) labels in the elastic-substitution decoding setting, the sparse feature set
gave better performance for all language pairs. But because of overfitting, this did not
carry over to performance on the test set in case of English–German.

Finally we did analysis experiments where we replaced the strong 4-gram language
model with a weak unigram language model, which gives no information about the
correct word order. In this setting all translation scores went down enormously,
although the reordering labels still yielded a relative improvement in all settings.
Interestingly, the relative improvement of using reordering labels went down for
Chinese–English in the unigram language model setting, while it went up for German–
English and English–German. But a clear difference between these language pairs
is that in case of Chinese–English overall performance was really decimated when
using the unigram language model, dropping by about 12 BLEU points. For German–
English and English–German translation the performance loss was smaller, only about
5 BLEU points. Clearly this means that for Chinese–English, the language model was
more crucial for moving towards an initial subset of reasonable translations, enabling
the reordering labels to make a better choice from this already reasonable set.

Summarizing from these observations we conclude that:
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• Reordering labels help improving performance in hierarchical SMT for the
settings explored in this thesis.

• Using elastic-substitution decoding is crucial for getting good results with
reordering labels.

• Reordering labels are complementary with the benefits for performance from
using a strong language model.

• Reordering labels are competitive with syntactic labeling schemes, outperform-
ing strict-matching SAMT in our experiments, while not requiring any additional
linguistic or syntactic resources.

In chapter 6 we looked at measuring the coverage of word alignments by
synchronous grammars. But what it means for a grammar to cover a word alignment is
not obvious. Results for existing work that measure alignment coverage for grammars
make different assumptions, and consequently results diverge. Furthermore most
work has focused on ITG using lower bounds rather than exact measurement. To
overcome these problems we proposed a well defined theoretical framework based
on the intersection of the sets of translation equivalence units (TEUs) induced by word
alignments and the grammar. To cover a word alignment, all TEUs induced by the
word alignment must be induced in the set of TEUs derivable from the grammar,
and furthermore these TEUs must have the same recursive subsumption structure in
the word alignment and the grammar. This yields a sufficient framework to facilitate
exact, well-defined measurement of word alignment coverage for different types of
synchronous context-free grammars. In the second part of this chapter we showed that
by using HATs, albeit not implementing an explicit intersection of sets of TEUs, exact
measurement of word alignment coverage by grammars can be efficiently computed.
This is possible, since HATs by construction are made to form the simplest possible
structure that captures the hierarchical translation equivalence structure induced by
word alignments. Hence, in order to be able to cover a word alignment, a grammar
formalism must allow synchronous productions at least as complex as the most
complex production observed in the set of HATs induced by a word alignment.
Therefore, from the complexity of induced HATs, the type of grammar formalism
sufficient to cover a word alignment can be induced. One remarkable finding from
the empirical analysis of hierarchical translation equivalence, is that a large fraction
of empirical word alignments constitutes non-binarizable permutations that cannot be
covered by ITG grammars. For manual word alignments, between about 71% and 91%
of the word alignments was coverable, depending on the language pair and data set. For
automatic word alignments this went down even further, and between only about 45%
and 52% of the alignments was coverable by binarizable permutations, depending on
the language pair. Also in all these cases, the coverage was only marginally increased
by moving from binarizable permutations to general permutations; and for the main
jump to full coverage an upgrade to general non-bijective mappings (general set-
permutations) is necessary. These findings are important because much current work
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on translation as well as pre-ordering before translation, relies on either a form of ITGs
or a form of PETs. But while computationally and conceptually hard, these finding
suggest that much can still be gained from considering the full set of set-permutations.
The success of reordering labels that go beyond the well known cases from ITG, are a
first proof that such efforts can be fruitful.

This thesis is titled “Aligning the Foundations of Hierarchical Statistical Machine
Translation”. In it, we saw that hierarchical translation equivalence, as induced by
word alignments and represented by HATs forms a foundation for a new direction
of research in SMT that makes the most of the full set of hierarchical translation
equivalence relations induced by word alignments. This is in contrast with standard
Hiero, which uses word alignments only to extract phrase pairs and hierarchical phrase
pairs, and then discard them, leaving most of their valuable information unused.
We note that phrase-based translation models typically do use orientation models
(Tillmann, 2004; Galley and Manning, 2008) which also exploit reordering information
obtained from the word alignments, and that these models can also be adapted for
Hiero (Nguyen and Vogel, 2013b; Huck et al., 2013). But in comparison to orientation
models adapted for use in Hiero, our approach with reordering labels has the advantage
of being more general1 and requiring less radical changes to the decoder.2 A last
conceptual advantage of reordering labels over orientation models, is that reordering
labels provide a form of Markovization, which orientation models do not provide.
Consequently, it provides a direct way of promoting the coherence of the produced
translations, which orientation models can only promote indirectly.

The creation of HATs constitutes an effort with similarity to the creation of
treebanks for parsing. Currently these HATs have been used to extract simple
but effective reordering labels, and perform exact measurement of word alignment
coverage, as well as visualize hierarchical translation equivalence. But the vision
behind HATs is not limited to only these applications. Forming richer labels, as well as
possibly learning of labels using HATs are possibilities opened up by this framework.
While existing work with PETs has shown that these structures are also effective for
pre-ordering and evaluation. This thesis has shown that word alignments are a main
foundation for hierarchical SMT and that using it only to extract rules means doing
little with an information source that is much richer. By improving word order and
global coherence through reordering labels we have given a first strong evidence for
the power of HATs and its applications. But we think this is only the beginning.

1More and less specific reordering labels have been explored, and reordering can be approached
with respect to the embedding parent or with respect to reordered children. Additionally, sparse
label substitution constraints can be used to further refine the reordering contexts. In contrast, phrase
orientations have not been tested for orientations other than the three cases based on ITG.

2In practice the changes made to the decoder to effectively implement soft matching of labels are also
considerable. Theoretically however, our approach can also be implemented by using specialized label
switch rules that implement soft matching and soft constraints without any changes to the decoder. This
is important, because it means that our approach remains within the standard SCFG formalism, while
the other approaches effectively changes the decoding formalism to something beyond this formalism.





Acronyms

AI artificial intelligence.

BEER better evaluation as ranking.

BITT binary inversion-transduction tree.

CCG combinatory categorial grammar.

CFG context-free grammar.

EM expectation maximization.

HAT hierarchical alignment tree.

Hiero hierarchical phrase-based translation, as first proposed by (Chiang, 2005).

HMM hidden Markov model.

ITG inversion transduction grammar.

MERT minimum error rate training.

MIRA margin infused relaxed algorithm.

MT machine translation.

NDT normalized decomposition tree.

NF-ITG normal form inversion transduction grammar.

PET permutation tree.
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POS part-of-speech.

SAMT syntax-augmented machine translation.

SCFG synchronous context-free grammar.

SMT statistical machine translation.

TEU translation equivalence unit.
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A.1 Word Alignment Symmetrization
Symmetrization of word alignments is an important step to get good many-to-many
word alignments based on one-to-many alignments in two directions. If this step is
not done well, the translation system may suffer unnecessarily from low accuracy or
low coverage. Going beyond the very basic symmetrization methods of intersection
and union, Koehn et al. (2003) introduces a series of alternative heuristic schemes for
merging source-to-target and target-to-source word alignments into better many-to-
many word alignments. These schemes build further on the intersection-based refined
method first introduced by (Och et al., 1999).

Let A1 be the set of source-to-target alignments and A2 be the set of target-to-source
alignments. Furthermore let Aunion = A1 ∪ A1 and Aintersect = A1 ∩ A1. Following the
community conventions, an alignment link from source word i to target word j will
be called an alignment point in our discussion and denoted as (i, j). The heuristic
methods start from an initial alignment set A which is initialized as the intersection
A ← Aintersect. It then extends A by iteratively adding more alignment points from the
union in two stages. In the required first stage the initial alignment is extended by extra
alignment points within the neighborhood of the current points. In the optional second
stage additional alignment points are added that are not in the neighborhood.

Differences in the details of how the extra alignments are included in the two stages
yield alternative schemes known as1:

• grow
• grow-final

1There actually seems to be a lot of confusion in the naming of these different schemes. What in
(Koehn et al., 2003) is referred to as “diag-and” is more commonly referred to as “grow-diag-final-and”
while what it refers to as “diag” is more commonly referred to as “grow-diag-final”. In combination
with the fact that the description of these methods in the literature is quite dense and scattered, it can
be hard to understand really what is going on, without diving into the source code of the Moses scripts.
This was one of the motivations to add this appendix.
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• grow-final-and
• grow-diag
• grow-diag-final
• grow-diag-final-and

In the required first stage, all methods iteratively add additional alignment points
(i, j) from Aunion to A under the condition that

• Neighborhood condition: These are neighbors of existing alignment points
already in A.

• Partially excluded condition: Either i or j is not part of any other existing
alignment point (X, i) or ( j,Y) in A for all X and Y .

The methods differ in how they define what neighbors are, i.e. their neighborhood
function, and there are two alternatives. First the grow schemes use only block-
neighboring points, second the grow-diag schemes include diagonal neighbors as well
(Koehn et al., 2003). In the optional second stage more alignment points are added
by the schemes with the -final and -final-and in their suffixes. These schemes differ in
the condition they use to include the additional alignment points, which is one of the
following:

• Partially excluded condition (as before)
• Fully excluded condition: Both i and j are not part of any other existing

alignment point (X, i) or ( j,Y) in A for all X and Y .

The schemes with the -final suffix use the partial excluded condition, while those with
the final-and suffix use the stricter fully excluded condition.

We note that the original method discussed by (Och et al., 1999; Och and Ney,
2003) is equal to grow-final. We also note that grow-diag-final and grow-diag-final-and
seem to be the most popular for phrase based and hierarchical phrase-based translation.
The reason is that adding the diagonal neighbors further increases coverage (recall)
at the cost of precision, which generally turns out to be a good tradeoff in phrase
based and hierarchical phrase based translation. Which alignment scheme is best for
translation turns out to depend both on the language pair as well as whether in-domain
or out-domain data needs to be translated by the system. Initial comparisons were
given by (Och and Ney, 2003) and a more detailed study is provided by (Wu and Wang,
2007). As a final remark, the grow-final-and scheme, while being a valid option, seems
to be rarely used in practice. The reason might be that it lowers coverage even below
that of the original grow-final scheme, which probably in most cases means a loss in the
quality of the tradeoff between recall and precision, meaning worse translation results.
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A.2 Feature Weights Training

So far we discussed how in the original source-channel approach the language model
and the translation model are combined to produce the probability of translations. As
we saw, the translation model is typically subdivided into various subcomponents,
including phrase weights, lexical weights, reordering (distortion) scores, word and
phrase penalties. Each of these components has a weight that needs to be trained. In
the log-linear model setup many more features can be combined. These features need
not be probabilities but can be numeric or binary as well. Finding good feature weights
is essential in order to build a system that produces high quality translations. We will
now review various discriminative training methods for learning feature weights. We
start the discussion with the well known Minimum Error Rate Training (MERT) (Och,
2003). MERT cannot scale to many different features, and our description will help
to understand why this is the case. But in the context of this thesis, a feature weights
training method that does scale to many features is essential. We need such a method
to enable the learning of soft reordering constraints, as discussed in chapter 5, which
forms the core of the experimental work in this thesis. After discussing MERT, we
therefore give a detailed description of some recent feature weight training methods
that scale to thousands or even millions of features. We focus on the Margin Infused
Relaxed Algorithm (MIRA) (Crammer and Singer, 2003), and a particular efficient and
easy to adopt version of it called Batch MIRA (Cherry and Foster, 2012).

MERT MERT was proposed as a method to directly optimize the score on the final the
evaluation metric, such as BLEU (Papineni et al., 2002) or TER (Snover et al., 2006). It
does so by repeatedly finding the optimal parameters along a line in the N-dimensional
search space of feature weight values. MERT performs its weight optimization using
N-best lists of best translations produced by the decoder on a development (dev) set.
This causes a risk that the changes to the weights improve the choice of translations
within these lists but yield different and possibly worse translations when the updated
parameters are used to again decode the dev set. MERT accounts for this problem by
decoding the dev set repeatedly and keeping all the translations that are produced over
previous rounds of decoding. Before every iteration of parameter optimization, for
every sentence the newly produced N-best list is merged with the collected previous
translations for that sentence. Parameter optimization is then done on the merged
sets of translations. This “outer loop” of decoding, N-best list merging, parameter
optimization, (re-)decoding was introduced for MERT but has been followed also by
more advanced tuning methods that we will discuss after MERT. But first we will
discuss MERT’s line search optimization, the core of MERT, in more detail.

Line Search Optimization for MERT Let fS
1 be a set of dev source sentences with

associated reference translations rS
1 . Furthermore assume a set of K different candidate

translations Cs = {es,1, . . . , es,K} for every sentence f s in f S
1 . Then the best translation
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for a sentence f s in the dev set given the weight vector λM
1 is defined as:

f̂ ( f s, λ
M
1 ) = arg max

e∈Cs

 M∑
m=1

λmφm(e| f s)

 (A.1)

Let E(r, e) be an evaluation function that gives the sentence error count resulting from
selection of e when r is the reference. The goal of MERT is then to minimize the total
error count on the dev set:2

λ̂M
1 = arg min

λM
1

 S∑
s=1

E(rs, f̂ ( f s, λ
M
1 ))

 (A.2)

Because of the argmax operator in A.1 it is not possible to solve A.2 analytically,
nor can a gradient be computed to permit gradient descent methods. Therefore an
approximate solution is proposed which optimizes the weights by keeping most of
them constant, and then finding the best new parameters along a line in the search
space. Searching along a line is done by keeping the weights λM

1 constant except for
adding a constant weight vector dm

1 scaled by a parameter γ which determines the
movement along the line. This yields an optimization problem of the following form:

ê( f̂ ; γ) = arg min
e∈C

{t(e, f ) + γ · m(e, f )} (A.3)

where t(·) and m(·) are constants with respect to λM
1 . Thus every candidate solution in

the optimization has a score that is a linear function of γ (a line). Since the function

f (γ; f ) = min
e∈C
{t(e, f ) + γ · m(e, f )} (A.4)

is piecewise-linear, the output of A.3 as γ changes consists of a finite sequence of
intervals for which the best translation is stable. These intervals with a constant best
translation plus the error score for those translations can be efficiently computed for
every sentence. Combining the intervals with values over all sentences, an aggregated
total error score function is computed, that consists again of a finite amount of intervals
with a constant value. The optimal value for γ that maximizes the total error over all
sentences along the line is then easily read out from this aggregated total score function.

Within one iteration, MERT executes line-search based parameter optimization
for multiple lines. In the simplest setup where the direction of lines correspond to
changing single parameters, every parameter is normally changed once. The order of
the parameters can be chosen greedily based on trial changes whereby the parameter
changes that give the most improvements are executed first.3 One important detail
in the implementation of MERT is how the direction for the search lines is to be

2Assuming the dev set is chosen to be a representative corpus for the sentences that need to be
translated after tuning i.e. the test set.

3This is the default strategy used in Moses’s MERT implementation according to (Cer et al., 2008).
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chosen. In the simplest case (Och, 2003), search is done along the directions of single
parameters by just changing one of these and keeping the rest constant. But searching
along different lines, in particular using random directions, gives better results (Cer
et al., 2008). Interestingly the random directions work even better than Powell’s search
method (Powell, 1964; Press et al., 2007), which aims to find a set of mutually non-
interfering search directions.

But even with such improvements, MERT does not scale to many features. As
the number of dimensions of the search space increases with more features, the line
search slows, and suffers increasingly from local optima, failing to find a globally good
solution. Furthermore, BLEU does not consider model scores but is only determined
by the ranking of translations. This means that λM

1 can be arbitrarily scaled, without
changing the BLEU scores. Since MERT’s direct optimization considers only the
BLEU4 score, it suffers from the extra instability of this scale invariance, which
increases with more features. In such a complex search space, MERT’s simple greedy
and direct optimization strategy simply gets lost. So we need a feature weight training
method that applies a more holistic optimization object, leading to more stability and
better scaling to many features. We will discuss such a method next.

MIRA The Margin Infused Relaxed Algorithm (MIRA) was first used by (Watanabe
et al., 2007) and later refined by (Chiang et al., 2008, 2009; Chiang, 2012). MIRA
builds upon on the two fundamental concepts of cost (or loss) and margin. The cost of
choosing a translation e j given some oracle translation5 e∗i and a reference is defined as
the difference between their scores on some evaluation metric, given the reference. In
the typical case that BLEU is used as the evaluation metric of choice we have:

costi(e j, e∗i ) = BLEUi(e∗i ) − BLEUi(e j) (A.5)

Let ~λ = λM
1 be the feature weight vector. We will use ~λt = λM

1 (t) to indicate the feature
weight vector at a specific iteration t, when necessary. The margin, or distance in
model scores, between e j and e∗i is defined as:

margin(e j, e∗i ) = ~λ · (~φi(e∗i ) − ~φi(e j)) (A.6)

In words, the summed differences of feature values multiplied by feature weights. Let
ε be the set of all reachable hypotheses. Conceptually, the aim of MIRA is to separate
all pairs of reachable hypotheses (candidate translations6 ) 〈eα, eβ〉 with eα, eβ ∈ E

4Or some other evaluation metric that is independent of hypothesis model score.
5In principle we want to compute the cost with respect to some correct translation. But the reference

translation might not have a derivation in the model, therefore a set of surrogate references called oracles
that can be produced by the decoder is used instead. When using BLEU as evaluation metric, these
oracles are typically also be used to augment the actual references, to provide desirable smoothing when
computing BLEU at the sentence level.

6To be more precise, the aim of MIRA is to separate all pairs of reachable derivations, whereby the
same translation can have possibly many derivations, see (Chiang, 2012). Here to simplify the notation,
we gloss over this detail, and following (Cherry and Foster, 2012) use translations in the rest of the
discussion, while actually referring to derivations and translations yielded by these derivations.
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in such a way that the margin margin(e j, e∗i ) between them is at least as big as the
cost costi(eα, eβ) of choosing eα instead of eβ. Such a separation guarantees that not
just one best hypothesis get the highest weight, as in MERT, but also globally the
hypothesis space is properly structured such that lower quality hypotheses will have
correspondingly lower model scores. This leads to a much higher stability of the
optimization, and allows this method to scale to millions of features. This is in strong
contrast with MERT, which does not scale well beyond 15 features, while failing badly
beyond 30 features.

Formally the weight update rule of MIRA for an example i is usually given as:

~λt+1 = arg min
~λ′

1
2η
||~λ′ − ~λt||i2 + ξi

subject to ~λ′ · (~φi(e∗i ) − ~φi(e j)) ≥ costi(e j, e∗i ) − ξi ∀e j ∈ E (A.7)

In this ξi is a slack variable, introduced to account for inseparable instances caused by
noise in the data; and η is a step size.

The structured hinge loss employed by MIRA is:

Li(~λ) = max
e∈Ei

[
costi(e j, e∗i ) −margin(e j, e∗i )

]
= max

e∈Ei

[
costi(e j, e∗i ) − ~λ · (~φi(e∗i ) − ~φi(e j))

]
= −~λ · ~φi(e∗i ) + max

e∈Ei

[
costi(e j, e∗i ) + ~λ · ~φi(e j)

]
(A.8)

When optimizing (A.8), in theory we have to maximize over exponentially many
translations, or derivations to be more exact6. What is more, we want in fact to
optimize the average loss over all translations in the training set, not just the loss for
one translation as in (A.8). But this is computationally infeasible, and in practice not
necessary either. Instead it suffices to perform incremental optimization on the training
set sentences separately, using a restricted set of pairs of undesired translations e−

and oracle translations e∗ for each sentence. There are many alternatives for choosing
these undesired and oracle translations. As part of this selection, the weights of the
model score and cost component for these translations in the loss function can also be
changed. Varying these properties and the details of the optimization method, many
different discriminative training algorithms similar to MIRA (Tillmann and Zhang,
2006; Liang et al., 2006a) and variants of MIRA (Crammer et al., 2006; Chiang et al.,
2008; Chiang, 2012; Cherry and Foster, 2012) have been proposed. Choosing for e∗

translations that maximize a combination of high model score and a low cost (“hope”
hypotheses) and for e− translations with a high model score and a high cost (“fear
translations”) is particularly successful (Chiang et al., 2008).

Working with multiple pairs 〈e∗, e−〉 complicates the optimization problem, yield-
ing a quadratic program (QP) with a set of linear constraints that cannot be solved
analytically, but require Hildreth’s algorithm (Hildreth, 1957) or optimization in
the style of Sequential Minimal Programming (Platt, 1998). Chiang (2012) work
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with multiple pairs of hope and fear hypotheses, focusing on the worst constraint
violating translations, and but introduce an efficient cutting-plane algorithm based on
(Tsochantaridis et al., 2004) to optimize this restricted set of active constraints.

But when working with only a single pair 〈e∗, e−〉, an analytical solution is possible,
yielding a simple closed-form update that performs well7 (Crammer et al., 2006;
Eidelman, 2012). Let C be a regularization parameter determining the maximum
allowed size of a weight change. The update can be performed in two steps:

ηt = min

C, costi(e j, e∗i ) + margin(e j, e∗i )

||(~φi(e∗i ) − ~φi(e j))||2

 (A.9)

~λt+1 = ~λt + ηt(~φi(e∗i ) − ~φi(e j)) (A.10)

At the end of some maximum number of epochs J or when the weights no longer
change, MIRA terminates. At this point the weight vectors over all iterations are
averaged to get the final weight vector used for decoding the test set.

This standard online8 version of MIRA is relatively slow, but parallelization can
make it faster, and (Chiang, 2012) describes and compares various ways to implement
this.

Batch MIRA The online version of MIRA as presented by (Chiang et al., 2008;
Chiang, 2012) has several disadvantages, which are : 1) Being hard to parallelize, 2)
being complex and still relatively slow 3) requiring a tight coupling between decoding
and tuning, which severely hampers modularity and prohibits reuse with different
decoders. To deal with these limitations (Cherry and Foster, 2012) proposes new batch-
versions of MIRA using either K-best lists or lattices. These algorithms first decode
the sentences in the dev set to produce sets of translations for each of them [Ẽ′]n

1. This
collection is then combined with the previous translations produced by the decoder
[Ẽ]n

1] = [Ẽ]n
1 ∪ [Ẽ′]n

1. The combined collection of translations [Ẽ]n
1] is then used to run

MIRA, pseudo-decoding (effectively reranking) the sentences in the dev set in random
order, restricting the options to the set of translations present in [Ẽ]n

1] and performing
the MIRA weight update based on that set. These three steps are repeated, in total
for J epochs. At the end of each epoch j, the aggregate epoch weight vector ~λavg

j
is computed by averaging the weight vectors obtained after decoding each of the n
sentences for that epoch. The aggregate epoch weight vector amongst the J epochs
that yields the maximum evaluation score on the dev set is used as the final weight
vector.

The K-best version of Batch MIRA is particularly easy to use out of the box,
requiring only K-best lists that can be produced by any phrase-based or hierarchical
phrase-based decoder. At the same time (Cherry and Foster, 2012) shows that this

7A particularly clear and easy to understand description of how to implement this simplified version
of MIRA is given in (Eidelman, 2012).

8Online means that the algorithm interleaves decoding and weight updating, decoding one sentence,
then updating the weights and then decoding again with the updated weights.
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version performs consistently at the top of state-of-the-art discriminative feature weight
training algorithms. It loses only a bit of performance in comparison to the lattice
version of Batch MIRA. Later in this thesis in chapter 5, we will use this algorithm in
all of our experiments for feature weights training.

Other Large-Scale Discriminative Training Methods We will now very shortly
mention some other popular and recent discriminative feature weights learning meth-
ods that scale to large feature sets.

Minimum Bayes Risk (MBR) is a framework that can be used both to improve
decoding (Kumar and Byrne, 2004; Tromble et al., 2008) as well as to perform
discriminative feature weight training (Zens et al., 2007; Li and Eisner, 2009). MBR
builds on the idea that rather looking for the maximum a posteriori (MAP) translation,
we want a translation that minimizes the expected loss. Conceptually, this is achieved
by choosing a translation that it is highly similar to most other very likely translations,
so that choosing it causes minimal expected loss, even though it may itself not be
exactly the most likely (MAP) translation. Let e, e′ be translations and a, a′ be word
alignments. The MBR objective can then be formally described by the following
decision rule:

eMBR
best = arg max

e

∑
e′,a′

L(〈e, a〉, 〈e′, a′〉)p(e′, a′| f ) (A.11)

in this L(〈e, a〉, 〈e′, a′〉) is a loss function that expresses the loss achieved when 〈e, a〉
is chosen but 〈e′, a′〉 is the actual translation-alignment pair. Summing over all
combinations of e′ and a′, and multiplying the loss obtained when each of these
combinations is correct with the probability of that being the case, the expected loss for
a certain choice of e is obtained. Minimizing this expected loss is the MBR objective.

When using the MBR framework for learning, a loss function expressing the
MBR objective needs to be defined and then minimized. Here we summarize the
approach taken by (Cherry and Foster, 2012). Define the cost function for the choice of
translation e as its negative BLEU score: costi(e) = −BLEUi(e). As in Batch MIRA,
let Ẽ be the set of translations (for a particular sentence) collected in batch decoding of
the dev set in the current and all previous iterations. The loss function is then defined
as the expected cost over translations in Ẽ,in this case the expected BLEU score:

Li(~λ) = E[costi(e)](~λ) =

∑
e∈Ẽ

[
exp(~λ · ~φi(e))costi(e)

]
∑

e′∈Ẽ
exp(~λ · ~φi(e′))

(A.12)

This expected cost function is decreased by assigning more probability mass to
derivations with high BLEU score. The objective is smooth and non-convex, and with
gradient-based optimizers a local minimum can be found. Cherry and Foster (2012)
use stochastic gradient descent (Bottou, 2010) to optimize it.

The work by (Zens et al., 2007) suggests that using the MBR framework for training
and decoding are complementary: using expected BLEU as the training criterion and
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MBR as the decision rule during decoding gave the best results in their experiments.
Related to MBR is the work by (Li et al., 2009) on variational decoding. This work
introduces a variational method to approximate actual summation of the probabilities
for alternative derivations of the same translation when searching the MAP translation
during decoding, which is normally just ignored and replaced by the simpler goal of
finding the Viterbi derivation.

Pairwise Ranking Optimization (PRO) (Hopkins and May, 2011) like MERT
and Batch MIRA is another algorithm that fits in the MERT structure of decoding
followed by a separate feature weight optimization phase. As in MERT and Batch
MIRA optimization is done on the incrementally grown set of translations collected
by combining the K-best lists (or lattices) produced by the decoder over all finished
(decoding) iterations. Let S i be a sample of translation pairs 〈eg, eb〉 such that
BLEUi(eg) > BLEUi(eb). PRO optimizes a loss function that is determined by the
sum of wrong rankings within the translation pairs of S i:

Li(~λ) =
∑

〈eg,eb〉∈S i

2 ·max
(
(1 + λM

1 · (~φi(eb) − ~φi(eg))) , 0
)

(A.13)

This loss is zero only if for every 〈eg, eb〉 ∈ S i the models core of the higher evaluation
score example eg is at least 1 higher than that of the example with the lower evaluation
score eb. This particular form of the loss function, that ignores the actual BLEU scores,
and effectively only cares about getting the ranking correct for the sampled pairs of
translations, facilitates very simple and flexible optimization. The loss function used
by PRO can be optimized by using any of-the-shelf binary classifier, such as Support
Vector Machines (Cortes and Vapnik, 1995; Platt, 1998) or Perceptron learning (Freund
and Schapire, 1999). The classifier learns to predict if the ranking of pairs is correct
or not, by training it with one positive and one negative example for each sampled
pair. As a result of this training, the classifier learns the weights ~λ necessary to obtain
correct classifications.

Like MIRA, PRO learns to separate better from worse translations by a margin.
But unlike MIRA, PRO uses a fixed margin of 1 for all its separations, thereby com-
pletely ignoring the magnitude of the quality- and model-score differences between
translations. Furthermore PRO uses a sum in place of MIRA’s max, with the result
of assigning equal credit for every correctly ordered pair of translations in the sample.
But this can be misleading, since not all correctly ordered pairs are equally difficult
to separate nor equally important for the final BLEU score. This may be one reason
why MIRA, which focuses directly on resolving the worst constraint violations, is still
more successful than PRO to find good feature weights, especially for medium and big
feature sets (Cherry and Foster, 2012).

Other Feature Weight Training Algorithms We gave an overview of some of
the most popular classic and more recent feature weight training algorithms. Without
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aiming for completeness, we mention here three more related approaches, while not
going into depth.

AROW (Crammer et al., 2009) might be seen as a second generation version of
MIRA. It introduces an adaptive regularization of weights. It replaces the weight vector
~λ of MIRA with a Gaussian distribution over weight vectors. This allows AROW to
model the fact that changes to ~λ can pose different levels of risk for different directions.
More details and a thorough comparison between ARROW and MIRA for usage in
Machine Translation is given in (Chiang, 2012).

Cherry and Foster (2012) apply yet another method to the feature weights learning
task called Structured SVM (Tsochantaridis et al., 2004) which is also highly similar
to MIRA. In contrast to MIRA this method directly minimizes the sum of hinge-losses
over all sentences, using a batch algorithm. Another difference with MIRA is that this
method uses an explicit regularization term.

Finally we mention RAMPION (Gimpel and Smith, 2012) as another algorithm
that is highly similar to MIRA, if not another form of MIRA. This work was published
around the same time as (Cherry and Foster, 2012) and simplifies the version of MIRA
(Chiang et al., 2008) in a very similar way, by proposing an algorithm that optimizes
the loss function using just one pair of oracle (hope) and undesirable (fear) translations
at a time. A contribution of this paper is that it shows that most versions of MIRA,
optimize loss functions that are actually variants of structured ramp loss rather than
structured hinge loss. The reason for this is that these algorithms are working with
surrogate references (oracles) instead of real references, in the optimization.
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findSAMTLabelForSpan
Input :

parse : the parse used for labeling.
{i, j} : the first and last positions of the span to be labeled.

Output: The SAMT label for the span [i, j].

// Extract an n × n table containing the constituents
// found in the parse used for labeling.
constituentTable← findConstituentTable(parse);
if constituentTable[i][ j] , NULL then // Find proper constituent

return constituentTable[i][ j];
end
for splitPoint ← (i + 1) to ( j) do // Find single plus label

leftLabel← constituentTable[i][splitPoint − 1];
rightLabel← constituentTable[splitPoint][ j];
if (le f tLabel , NULL) ∧ (rightLabel , NULL) then

return leftLabel + “+” + rightLabel;
end

end
spanLength← ( j − i) + 1;
for extraSpanLenght← 0 to (n − spanLength) do // NT1/NT2 or NT2\NT1
label

if (j + extraSpanLength) ≤ (n - 1) then // Find NT1/NT2 label
rightGrownLabel← constituentTable[i][j + extraSpanLength];
substractedLabel← constituentTable[j+1][j + extraSpanLength]; if
(rightGrownLabel , NULL) ∧ (substractedLabel , NULL then

return rightGrownLabel + “/” + substractedLabel;
end

end
if (i - extraSpanLength) ≥ 0 then // Find NT2\NT1 label

leftGrownLabel← constituentTable[i - extraSpanLength][j];
substractedLabel← constituentTable[i - extraSpanLength][i - 1]; if
(leftGrownLabel , NULL) ∧ (substractedLabel , NULL then

return substractedLabel + “\” + leftGrownLabel;
end

end
end
if allowlowDoublePlus then // Double-plus label allowed?

label← findDoublePlusLabel(i,j); // Find double-plus label
if Label , NULL then

return label;
end

end
return “X”; // Return default label

Algorithm 11: Algorithm that finds the SAMT label for a span given a table with
parse constituents.
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X → koks kunnen X1 || cooks can X1
p(H0 = S ,H1 = VB | r) = 0.5
p(H0 = S ,H1 = VP | r) = 0.3
p(H0 = S/PP,H1 = VB | r) = 0.2

 (A.14)

X → bakken || bake{
p(H0 = VP | r) = 0.8
p(H0 = VB | r) = 0.2

}
(A.15)

X → bakken || bins{
p(H0 = NNS | r) = 1.0

}
(A.16)

Figure A.1: Preference Grammar Rules for Dutch-English. This minimal working
example contains three Hiero rules with associated distributions over implicit SAMT
labels.

A.3 SAMT Labeling Algorithm
The pseudocode for the SAMT labeling procedure is shown in algorithm 11. The
pseudocode describes the procedure for producing the label for a single span, starting
with the generation of a table of constituents. In practice, this algorithm would be
wrapped by a double loop to produce a label chart with labels for all spans. The table
of constituents only needs to be produced once.

A.4 Soft Constraints
Preference Grammars

Preference grammars (Venugopal et al., 2009) were proposed as a method to implement
labels as soft constraints, overcoming both the weaknesses of unlabeled Hiero and
methods that strictly enforce labels such as SAMT. Hiero rules use only the label
X (plus the start symbol S ) and consequently ignore the context in the substitution
of rules. SAMT uses syntactic target side labels which strictly enforces a form
of syntactic well formedness on the target side. SAMT prohibits certain invalid
substitutions but at the price of also blocking valid substitutions. It also further worsens
the problem of spurious ambiguity by creating many competing different labeled
variants of unlabeled Hiero derivations. Preference grammars add joint probabilities
over implicit label assignments to unlabeled Hiero rules. These distributions capture
the empirical joint distributions of rule labels, as estimated by heuristic estimation
(Chiang, 2005; Zollmann and Venugopal, 2006) in a packed way. Figure A.1 shows
a minimal working example of a preference grammar for Dutch-English translation,
with SAMT labels, which we will use in the discussion. This grammar supports
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the combination of the two rules to correctly translate the Dutch sentence “koks
kunnen bakken” as “cooks can bake”. This translation can be formed with different
consistent assignments of labels for the right-hand-side nonterminal in the Hiero rule
“X → koks kunnen X1 || cooks can X1 ” and the left-hand-side nonterminal in
the lexical rule “X → bakken || bake”. The probabilities for the consistent label
assignments for pairs of rules can be multiplied and summed over all consistent pairs
to yield a total probability for consistent label assignments. In contrast, there exists
no label assignment that is consistent with the Hiero rule for the second lexical rule
“X → bakken || bins”. This means that the invalid translation “cooks can bins” has
no latent labeled derivations supporting it. We will next give a more formal description
of preference grammars, using our working example to illustrate its application.

The computation of feature Psyn(d) Preference grammars build derivations like
standard (unlabeled) Hiero grammars, but they add a feature psyn(d) that determines
the chance that these are build up from rules with consistent latent labels. This
feature approximates the marginalization of probabilities over all valid, hidden labeled
variations for the unlabeled derivations. The feature is computed as a product of
factors9, one factor per nonterminal n j in a derivation:

psyn(d) =

|d|∏
j=1

φ j (A.17)

Conceptually these factors measure the level of consistency between the preference
distributions of substituting and substituted rules. Naively, every factor φ j could be
determined by the label distributions for two rules that participate in n j: the rule
r j substituting to n j, in which it is a right-hand-side nonterminal and the rule r j in
which n j is on the left-hand-side. The authors then remark that the consistency can
be measured roughly as the inner product of preference distributions for r j and r j.
But they immediately add that this actually inaccurate since rules can have multiple
children, and the implicit labels for the left-hand-side and all child nonterminals
are all dependent so that the computation cannot simply be factored like that over
the child nonterminals. We want to formally capture the dependence between the
label preferences of a rule and the preferences for all its child nonterminals. The
computation of consistency and propagation of preferences might be better described
by considering a substituting rule as an operator and the nonterminal children to which
it substitutes as arguments of that operator. The mathematical operations that take
place in the propagation of preferences are linear, yet generally more complex than
simple vector or matrix products since multiple children can be involved. But it

9Note that this description and the descriptions that follow in this subsection work in probability
space as opposed to log-probability space, as used for features in most other parts of the thesis. This
is done to stay close to the original description of (Venugopal et al., 2009) and avoid unnecessary
complication. In actual implementation conversion to log-probability space is necessary, but it is
straightforward.
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turns out that the more general framework of tensor products is adequate. Using
this framework, every rule in a derivation has an associated tensor that models its
preferences in a tensor-vector product interaction with the preference vectors of its
nonterminal children. Binary rules have associated 3rd-order tensors, unary rules
associated matrices, and lexical rules associated vectors. This formal framework was
introduced for translation by the work on Latent-Variable SCFGs (Saluja et al., 2014)
and is discussed in our overview of related work on labeling methods.10 While this
framework was not yet known to be useful for translation at the time of publication of
(Venugopal et al., 2009), we believe it might in retrospect facilitate a more formal and
high level description of what cannot be grasped at a high level as an inner products
between vectors. While we try to make this connection where applicable, for simplicity
we mostly stay close to the original description of (Venugopal et al., 2009) in our
description.

Let H be the set of all hidden labels that can be assigned to nonterminals in
unlabeled Hiero rules. Let h ∈ H be one specific hidden label. Furthermore let
hargs(r) be the set of valid label assignments11 of rules with nonzero preference
probability. Every chart item that contains an explicit nonterminal symbol X (not S ))
has a preference distribution over hidden labels:

u : {h ∈ H} → [0, 1] (with
∑

h

u(h) = 1)

For chart items that have no nonterminal children the preference distribution is
simply defined as the left-hand-side label preference distribution of its associated
lexical rule:

u(h) = ppre f (h | r j) (A.18)

In other cases the preference distribution is recursively defined based on the preference
distribution of the added unary or binary rule and the preference distributions for the
nonterminal children to which it substitutes. The rule’s probabilities for the joint
assignment of right-hand-side nonterminals are multiplied with the earlier computed

10Because in preference grammars, for every rule probabilities over different label assignments must
sum to one, this puts restrictions on what tensors are permissible. Saluja et al. (2014) in contrast learn
the tensors, and need not express probability distributions over label assignments for rules. This makes
them more flexible to express for example that certain labels can be interchanged without penalty.

11A label assignment jointly assigns the labels for the left-hand-side nonterminal and all right-hand-
side nonterminals.
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ũL(S ) = ppre f (〈h = S , h′ = VB〉 | r) u(VB) + ppre f (〈h = S , h′ = VP〉 | r) u(VP)
= (0.5 × 0.8) + (0.3 × 0.2) = 0.46

ũL(S/PP) = ppre f (〈h = S/PP, h′ = VB〉 | r) u(VB)
= (0.2 × 0.2) = 0.04

uL = 〈uL(S ) = 0.46/ũL(S ) + ũL(S/PP), uL(S/PP) = 0.04/ũL(S ) + ũL(S/PP)〉
= 〈uL(S ) = 0.46/50, uL(S/PP) = 0.04/0.50〉

φ2 = u(VB) + u(VP) = 0.8 + 0.2 = 1

Figure A.2: The calculation of uL and φ2 for the Dutch-English working example.

preferences for these nonterminals:

uL(h) =
ũ(h)∑
h′ ũ(h′)

where

ũL(h) =
∑

h′∈H :〈h,h′〉∈hargs(r)

ppre f (〈h, h′〉|r) × u(h′) for unary rules

ũL(h) =
∑

〈h′,h′′〉∈H :〈h,h′,h′′〉∈hargs(r)

ppre f (〈h, h′, h′′〉|r) × u(h′) × u(h′′) for binary rules

(A.19)

Here we write the normalized/un-normalized left-hand-side preference values for new
items as uL/ũL, to avoid confusion with the preference distributions of the right-hand-
side nonterminal children. These computations could be described using the more
general framework of tensor products mentioned earlier.

Ultimately we need to compute the factors φ measuring the overlap in label
preference between substituting rules and substituted for child nonterminals. This is
done using the recursively defined chart item preferences v(h). In case of lexical rules
the consistency factor is simply defined to be 1. For unary rules the value is computed
by determining the (hidden) child nonterminal labels with nonzero rule preference and
summing the nonterminal preferences for these labels. In case of binary rules the
computation is analogous, only now the nonterminal preferences for each pair of child
nonterminal labels with nonzero rule preference is multiplied.

φ =
∑

h′∈H :〈h,h′〉∈hargs(r)

u(h′) for unary rules

φ =
∑

〈h′,h′′〉∈H :〈h,h′,h′′〉∈hargs(r)

u(h′) × u(h′′) for binary rules (A.20)

Applying this to the translation of “koks kunnen bakken” for our working example
in Figure A.1, first and item is generated using the lexical rule producing bake. This
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item gets a label preference distribution as given by the lexical rules preference for the
LHS label, and a consistency factor of 1:

u = 〈u(VB) = 0.8, u(VP) = 0.1〉 , φ1 = 1

Next this lexical item is combined with the rule X → koks kunnen X1 || cooks can X1.
This generates a new item with uL and φ2 whose values are computed with the recursive
preference computation equations (A.19) and the consistency factor computation
equations (A.20). These computations are shown in Figure A.2. We see that for this
derivation producing the correct translation we get φ2 = 1. For the wrong derivation
that produces “cooks can bins” in contrast φ2 = 0.

Implementation of preference grammars in the decoder
There are some important details concerning the actual implementation of pref-

erence grammars as discussed by (Venugopal et al., 2009). The first detail concerns
the implementation in the decoder. A decoder with simple Hiero grammars has
items/states in the chart of the form [N, i, j, ẽ] with N ∈ {X, S } a nonterminal, [i, j]
the source span of the item and ẽ the language model state. But implementing pref-
erence grammars exactly as discussed in the previous subsection, adding preference
distributions to chart items, effectively splits these states. This happens because
left-hand-side preference distributions depend on the rule that was used to form an
item. Such a state splitting is undesirable, as it increases the search space further,
compromising the feasibility of efficient decoding. Therefore, rather splitting items by
adding different label preferences v′ for different derivations, all different derivations
of a chart item [N, i, j, ẽ] share the value v for the highest scoring derivation of that
chart item, and items need not be split further. The second important detail is that
decoding is implemented in (Venugopal et al., 2009) as a two step process. In the
first pass a hypergraph is computed without the preference-grammar feature Psyn(d).
In the second pass this hypergraph is refined by computing this feature and effectively
rescoring the hypergraph. This is very similar to multi-pass parsing (Goodman, 1997)
also known as coarse-to-fine parsing (Charniak, 2000; Charniak and Johnson, 2005)
applied to translation. The last detail with regards to implementation is the preference
distributions of both rules and items are pruned. The threshold βR restricts the number
of label assignments of rules to a limited number with the highest preference values.
The threshold βL is similar but applies only to lexical rules, and is typically stricter.
Finally the threshold βP limits the number of alternative label assignments per item.
(Venugopal et al., 2009) experiments with various different values for these threshold:
βL = 5, βR ∈ {10, 100}, βP ∈ {1, 2, 5}.

Soft Matching Constraints

The work on preference grammars (Venugopal et al., 2009) softens the strict matching
constraint of labeled hierarchical translation systems by performing a form of ap-
proximate summation over derivations that only differ in their labels. This leads to
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finding the derivation class with the highest probability.12 But Chiang (2010) notes
that this approach still only includes derivations that satisfy the matching constraint,
and proposes instead to soften the matching constraint itself. This is called in the
literature decoding with soft matching constraints, or often just soft constraints or fuzzy
matching.

Historical overview of soft constraint explorations The idea to use a form of soft
constraints goes back at least to (Chiang, 2005). There a binary feature was added
which fired if the source span of a rule matched a constituent in source parse of the
input, allowing the decoder to learn to prefer translations that better match the source
syntax. While the single feature used by Chiang (2005) yielded no improvements on
the test set, the idea to use features marking rule application compatibility with source
syntax was picked up by Marton and Resnik (2008) who refined it. They created more
specific features for different types of source constituents. They used both features that
marked the matching of specific constituent types by rule spans and also other features
that marked their crossing by rule spans. We will refer to such features as source syntax
compatibility features. The authors used minimum error rate training as tuning method,
which restricted them in how much features they could successfully add at a time. They
solved this problem by first testing many features separately and then combining only
the most successful ones. Using this approach they obtained significant improvements
over Hiero for Chinese–English and Arabic–English translation.

The work on source syntax compatibility features was further extended upon by
(Chiang et al., 2008). The latter upgraded the tuning method to MIRA (Crammer
and Singer, 2003), which allowed the successful training of the weights of much
more features. It also added structural distortion features which mark reordering or
no reordering by rules within the context of specific source span lengths for rule
applications. Continuing in this line (Chiang et al., 2009), further extended the feature
set. It kept internal word alignments associated with rules and used these to add sparse
features marking translations of frequent words within the context of other frequent
words on the left or right side. Additionally, it used soft constraints on the target side in
string-to-tree translation. In this setting features were added to mark specific left-hand-
side labels on the target side, and the occurrence of a combination of nonterminals in
a rule. Other features counted the frequency of nonterminals of different types or
marked the usage of rules that insert words on the target side without having words in
the source. Both the source syntax compatibility features and target side features have
similar roles in learning and encouraging the type of syntactic structure that improves
translation quality.

Inter-rule soft matching constraints A crucial limitation of the soft constraints as
mentioned in the previous discussion is that they are confined to single rules and their

12Just as in Hiero, the same translations can still be formed by alternative derivations that segment the
input in different ways. Therefore just as in Hiero the translation with highest probability is not found,
only the most likely derivation class.
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context. They do not mark (inter-rule) substitutions of nonterminal X for nonterminal
Y . Features marking specific substitutions were only first explored in Chiang (2010),
and amongst the soft constraints we mentioned only this type has much similarity with
preference grammars. This approach is also most similar to the approach we use in
chapter 5.

The soft constraints translation approach proposed by (Chiang, 2010) which we
will refer to as soft source and target syntactic constraints (SSTSC) uses a grammar
with rules that are labeled on source and target side. Let X = 〈X f , Xe〉 be a linked label
pair (nonterminal pair) with source side label X f and target side label Xe. Similarly let
Y = 〈Y f ,Ye〉 be another linked nonterminal pair with source side label Y f and target side
label Ye. SSTSC allows any label pair13 X to substitute for any other nonterminal pair
Y . But rather than enforcing strict matching of substituting to substituted for source
and target sides of these nonterminal pairs, features are added that mark matching
and mismatching substitutions of for the source and target side of these label pairs.
Additionally features are added that mark specific substitutions X f to Y f on the source
side and Xe to Ye on the target side. The complete set of soft syntactic constraint
features that is used is as follows:

• match f : counts the rule applications where substituting labels and substituted for
labels match on the source side.

• ¬match f : similarly counts the number of mismatching source side substitutions.
• subst f

X→Y counts the number of specific substitutions of label X to label Y on the
source side.

• matche,¬matche, subste
X→Y : these are the analogous features for the target side.

• rootX,X′: counts the number of rules with root label X on the source side and root
label X′ on the target side.

Bilingual syntactic labels The labels used in (Chiang, 2010) deserve some attention.
These labels are a generalization of both SAMT labels (Zollmann and Venugopal,
2006) and synchronous tree-sequence-substitution grammar (STSSG) (Zhang et al.,
2008b), the latter combining an (arbitrary) sequence of trees. The resulting labeling
method allows sequences X1 + · · · + Xn of any length, and allows the slash operator to
take any number of arguments on either side.14 The gain of this approach is that any

13With the exception of the start symbol 〈S , S 〉.
14This description as given in (Chiang, 2010) still leaves ambiguity with respect to the exact

implementation, as especially allowing both combination of labels with the + operator and “subtraction”
of labels with the CCG “/” and ”\” operator can yield different alternative labels for the same span. What
is missing in the description is how the final label is chosen in case of multiple possible alternatives. We
might assume that a strategy like the one in SAMT is used, preferring the “simplest” possible label
under some definition of simplicity. One sensible criterion for simplicity could be the amount of sub-
labels/parts are involved in the label. In the same way SAMT prefers the label A/B over A+ B+C, since
the latter has more parts and is therefore more complex and also likely more sparse.
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span on the source or target side can be assigned a label. The price is that some of
these labels will be very complex and rare.

Canonical labeled rules Decoding with soft constraints is conceptually simple and
with the help of MIRA (Crammer and Singer, 2003) training label substitutions for
even big label sets is feasible. One concern is that if there are many different labeled
copies of the same Hiero rule, this will lead to additional complexity problems and
more spurious ambiguity in combination with soft constraints decoding. The reason
is that all these copies of the same rule with different labels can substitute anywhere,
independent of the labels, which is not true of course in a normal strict matching setup.
For this reason (Chiang, 2010) proposes the measure of using just one labeled version
per Hiero rule type. This “canonically labeled” rule is chosen as the labeled version
that occurs most frequent in the training data. Using this measure assures that the
number of rules remains equal the number in original Hiero.

Relative decoding complexity Chiang (2010) points out that if canonical labeled
rules are used this, assures that using soft matching will not substantially increase
decoding times in comparison to Hiero, provided the cube pruning pop-limit is kept
the same in both settings. This might not seem intuitive at first. While clearly the
number of rules does not change, in a setting with fuzzy matching every rule can match
to about ever other label.15 And since these matchings for different labels are different
they need to be distinguished. It would seem then that considerably more different
distinguishable rule matchings take place than in standard Hiero. But looking deeper
into the matter it becomes clear that rules in fact combine with items, which include
language model state in addition to labels. This number of items, not the number of
different labels, determines the complexity.16

And keeping the cube pruning pop-limit the same, assures this number will not
change, at least not in cases where the number of items per chart entry reaches the pop
limit for both systems (which is relatively common). Of course having more labels,
does increase the search space, so with the same pop-limit the relative chance for search

15Except for the start/goal symbol and the glue rule label (X).
16This is the case at least in an optimal implementation of fuzzy matching in the decoder. One

tricky part is that many decoders, including Joshua (Ganitkevitch et al., 2012) were not build with fuzzy
matching in mind. They must be adapted in a way that guarantees that soft matching does not slow
down performance unnecessarily. Most decoders (including Joshua) use CYK+ parsing (Chappelier
and Rajman, 1998), which uses a so called DotChart to keep track of matching, partially completed
rules. With strict matching, for a certain span, there is only one possible matching of a rule containing
nonterminals to already proven labels. But with soft constraints there are many alternative labels that
can be matched to a single rule. When using a DotChart, to avoid an explosion in memory usage, and to
a lesser extend computation, it is crucial to match just one of the alternative labels rather than matching
all of them separately, and representing their matchings separately. Instead a compact representation of
a matchable rule and its alternatives for substituted-for nonterminal labels should be created, the latter
which can be trivially created from the available labels. As a last remark on this issue, we note that
it may be best to avoid using a DotChart altogether, which is possible with the proposal of (Sennrich,
2014).
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errors increases in comparison to Hiero for the soft matching system. Nevertheless,
even taking into account this increased risk of search errors, as Chiang (2010) remarks,
the net advantage of the soft constraints—even with the same pop-limit—is substantial.

Further complexity reduction by restriction to nesting phrases
In order to further reduce computational complexity, (Chiang, 2010) proposes a

method to select a limited collection of nesting phrases per sentence pair, giving
preference to those phrases which are most in agreement with source and target
syntax. Two phrases, with source words wi · · ·w j and wi′ · · ·w j′ are defined to be
nesting, as opposed to crossing, if one is properly contained inside the other. Formally
i ≤ i′ < j′ ≤ j or i′ ≤ i < j ≤ j′. For every sentence pair, different sets of
nesting phrases are possible. To determine which set to use, (Chiang, 2010) proposes a
heuristic, greedy method that at each iteration adds the most syntax-consistent phrase
that is nesting with the phrases that were already added before.

The level of “agreement with syntax” is itself implemented as a heuristic (full)
ordering over phrases. This order first sorts on how many of the two labels, one for
the source and one for the target side, correspond to syntactic constituents (both, then
one, then zero). Ties are further sorted by how many syntactic constituents f and e
cross. There are two more such criteria to further distinguish in case of ties, we refer
to (Chiang, 2010) for the complete scheme.

Here we notice that although on a sentence level nesting phrases are selected, this
does not imply that the rules extracted over the entire training set will nest when
recombined for the translation of new sentences. In fact it is likely that the derivations
produced by the decoder using these rules still include many alternative segmentations
of the input. Nevertheless a substantial reduction of the amount of rules is achieved
by this technique, e.g. going doing from 440M rules without nesting to 180M rules
with matching on Chinese–English translation. This reduces memory requirements
and speeds up decoding, while interestingly not leading to a loss in performance.17

A.5 Latent Variable Synchronous CCFGs for
Hierarchical SMT

Learning latent variable tensors The dense latent variable tensors are learned from
sparse features that mark the context of rules in the training set. The features that are

17One might believe that the reduced search-space as a result of using nesting gives an advantage
that weights off against the other advantage of using more different phrases. The former advantage is
only valid if approximate search using pruning is done. It is therefore plausible that a system allowing
all phrases would still be superior if exhaustive search were done. But that is practically infeasible
as it would take forever to translate even a single sentence. And essentially automated translation
nearly always involves a tradeoff between affordable time (and memory) costs and quality. Hence if we
accept the implicit assumption of (Chiang, 2010) that a pop-limit assuring reasonable decoding times is
required, the argument that no performance is lost is valid.
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used mark the inside context of rules as the identity of their right-hand-side children.
The outside context is also marked as the identity of the parent rule and sibling rule, if it
exists. Using these rule indicator features as well as more features encoding context by
means of lexical and length descriptions, a rich description of rule contexts is formed
represented as high dimensional and sparse feature vectors.

Learning of the latent variable tensors is based on the covariances between the
sparse feature vectors for the inside and outside trees of rules in the training corpus,
encoded as an empirical covariance matrix Ω̂. This matrix encodes how the features of
inside trees predict the features of outside trees and vice versa. Next, Ω̂ is mapped to
a lower dimensional space that is chosen so as to retain maximum ability to accurately
predict inside trees from outside trees, as these were represented by the original sparse
feature representation. Let O be the set of pairs of all inside-outside trees 〈o, t〉 is
collected from the corpus. Let φ(t) ∈ IRd×1, ψ(o) ∈ IRd′×1 be the inside and outside
features for these pairs. Then for each vector pair the outer product is computed, and
aggregated to obtain an inside-outside covariance matrix:

Ω̂ =
1
|O|

∑
〈o,t〉∈O

φ(t)(ψ(o))> (A.21)

This empirical covariance matrix can be factored by means of a singular value
decomposition (SVD), and then compressed by keeping only the m largest singular
values, projecting all feature vectors to a much smaller m-dimensional space. This can
be formally expressed as Ω̂ = UΣV> ≈ U′Σ′V ′>, with U′ ∈ IRd×m and V ′ ∈ IRd′×m being
trunctuated matrices containing the most significant left and right singular vectors,
and Σ ∈ IRm×m being a diagonal matrix with the m largest singular values on the
diagonal. This compression by projection to an m-dimensional space with much lower
dimensionality is the basis of the computation of latent variables by means of the
spectral method, as presented in (Cohen et al., 2013) for PCFGs and generalized in
this work to SCFGs. The remaining steps proceed as follows:

1. The base vectors computed by the covariance matrix compression are used to
project the high dimensional vector representations of inside and outside trees to
m-dimensional (dense) vector representations.

2. Rule-specific covariances are computed between the compressed vector repre-
sentations of outside trees and inside trees, for rules and their gaps. These
covariances are computed using the tensor product, which generalizes the outer
product to allow computation of covariances between more than two random
vectors. For each rule, the covariance tensor is computed by averaging over all
covariance tensors for different occurrences of the rule.

3. For the start rule the final tensor is computed as the average dense inside tree
representation over all root rules in the training set. For every other rule, its final
tensor is computed by scaling its average tensor from step 2 with the relative
frequency of the rule over the entire training corpus.
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Instead of using the spectral method for learning, Expectation Maximization (EM)
(Dempster et al., 1977) can be applied as well. But in combination with the tensor
representation of latent variables, EM yields a more complicated and slower learning
procedure and also produces worse end results than the spectral method. We refer the
interested reader to the original paper (Saluja et al., 2014) for more details about the
learning with the spectral method and the EM algorithm.

Results The work is evaluated on Chinese–English translation and achieves big and
significant improvements over baselines with minimal rules but without the latent-
variable based feature re-scoring. A much smaller, yet still significant improvement
of +0.5 BLEU over the Hiero baseline is also made. This is explained by the initial
relative loss of 2.5 BLEU points performance by working with minimal rules, in line
with what was reported earlier by (M.Galley et al., 2006) on this matter.

A.6 Chinese Data Preparation

One complication of the HongKong Parallel Text data is that the Chinese side is
written in the traditional Chinese script which is used in Hong Kong in contrast to
the simplified Chinese script which is the default in mainland China and which is used
for all other datasets.18

The simplified Chinese script, which has about 8K characters is as the name
suggests a simplification of the traditional Chinese script, which has more than 80K
characters19. In principal, a one-to-one mapping from traditional to simplified Chinese
is possible, and we perform this mapping using a simple conversion program based on
a character lookup table20.

The Chinese data needs to be segmented, and the quality of the segmentation
can have a considerable effect on the translation quality. We use the Sanford
Segmenter(Chang et al., 2008) which is a common choice in the field. The segmenter
has in fact two models available; one trained using data and conventions from
the Chinese Penn Treebank, the other using data and conventions of the Peking
University Standard (Beijing University). We use the Chinese Treebank (ctb) model,
the difference between the two segmentation models for the purpose of translation
seems small both according to their resulting vocabulary sizes and also based on large
scale empirical studies where for some data sets the first model (ctb) performs better
and for others the latter (pku), see (Wang et al., 2014).

Finally empirical analysis revealed that both the MultiUn(Eisele and Chen, 2010;
Tiedemann, 2012) data and the HongKong Parallel Text data from the Linguistic Data

18Another practical complication is that HongKong Parallel Text uses all kinds of different encodings,
Big5 for most of the Chinese text being one of them, so everything must first be converted to UTF8 to
work with it.

19It is hard to give exact numbers, as these are subject to change.
20Downloaded from http://www.mandarintools.com/zhcode.html
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Consortium contained significant amounts of duplication, in which identical triples of
source, sentence and alignment appeared multiple times. Removing these duplicates
gave a considerable speed-up to grammar extraction while having no negative effects
on performance.

A.7 Grammar Merging

For certain language pairs and training sets, labeled grammars with a big label set—in
particular SAMT— can become too big to fit in memory during grammar extraction,
even while filtering rules based on the sentences in the test set. In the case of Chinese–
English translation, with a multiple million sentence pair training set, and a test set
of approximately 2K sentences, extracting the SAMT grammar as a whole gives
problems. This is a difficult technical problem, that can only be solved completely
by implementing a new grammar extractor that uses disk space instead of memory to
store the grammar rules. But this solution is not so desirable as it would require a
lot of extra re-implementation work, just to solve a purely technical issue that only
affects grammar extraction in rare scenarios. This motivated us to use a much simpler
solution, which is to split the test set into parts, extract a partial filtered grammar for
each of these parts, and then merge these partial grammars to get the end results. In
the case of Chinese–English translation with SAMT, splitting the test set into 4 parts
is enough to solve the memory problems.

Merging the filtered grammars When merging the grammars from the different
parts, it must be noted that many rules will occur in the filtered grammars for multiple
parts. To deal with this situation, we concatenate all the filtered grammars and then sort
the resulting file which now contains many duplicates. Finally, going over the sorted
merged file, we simply take the first occurrence of every grammar rule type with its
feature values and use that occurrence in the final merged grammar. A consequence of
this approach is that the feature values of the merged grammar are not exactly the same
as would be the feature values for the filtered grammar when it would be extracted as
a whole.

The question is if the changes in feature values as a result of the merging scheme are
big and likely to have an impact on translation performance. To answer this question,
remark that arguably the most important features, the phrase translation probabilities
also known as phrase weights, are not affected at all. These features are p(s|t) and
p(t|s), plus optionally all their smoothed variants in the case of labeled grammars. They
are computed using relative frequency estimation based on counts that are “local” to
the rule type. This means that for every rule type these counts are the same in every
filtered grammar where it occurs. Therefore it makes no difference for these features
whether they are taken from the grammar as computed as a whole or from one of the
partial filtered grammars in our merging scheme.
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This situation is different for the generative probability of a rule r:

p(r|LHS (r)) =
count(r)∑

r‘∈Rules∧(LHS (r′)=LHS (r)
count(rule))

(A.22)

The reason is that in this feature the normalization factor, which is the sum of
counts of all rules with the same left-hand-side, will be different in partial grammars
and in grammars that are computed in one go. The same argument also holds for the
rarity penalty feature, which also depends on the total rule count, see section 5.4.1.

There are at least three reasons to believe that the differences will be neither very
big nor have a real influence on translation performance.

The first reason is the form of he distribution over rule counts. This is a Zipfian
distribution, similar to the type of Zipfian distributions over tree fragments used in
parsing with tree-substitution grammars. This means that as the size of the set of
sentences used to filter the grammar grows, the amount of new rule types grows steadily
(at most linearly) with it, but the rate of increase of rule tokens quickly drops of. The
reason for this is that the most common rules make up most of the total rule count, so
that once all common rules have been included the total rule count will only increase
slowly.

The second reason is that any differences in absolute feature values can be
compensated for by the tuner, given that the relative values are mostly stable. The
absolute magnitude of the generative probabilities and rarity penalty features may
vary depending on the size of the set of sentences used for filtering during grammar
extraction (filter set). But the relative magnitude or ranking of these feature values
will remain mostly stable.21 This means that adapting the weights of these features
during tuning should give sufficient compensation of any scaling effects as a result of
differently sized filter sets. Therefore the tuner can compensate sufficiently to cancel
out any relative differences in absolute feature values that result from varying total
feature counts. The only requirement is that the same grammar extraction method is
used for both development and test grammar creation, and that the filter sets in both
cases are of similar size.22

A final reason to think that the absolute values of certain features should not have
a big effect on final translation performance we mention the work by Lopez (2008).

21Between different partial grammars there will be marginally different total rule counts for different
left-hand-sides. These total rule counts will also typically differ from the total rule count when extracting
the filtered grammar as a whole. But the total rule counts are mostly determined by the most common
rule types, which are shared across the different partial grammars. Therefore there should be only very
small differences in the values of total rule counts between the partial grammars. This means that the
feature values are more or less scaled uniformly across the partial grammars, and relative feature values
will not change much in comparison to extraction of the entire filtered grammar as a whole.

22Remark that using a very differently sized filter set for development and testing is generally a bad
idea, since this will lead to a suboptimal weighting for those features whose absolute values depend on
total rule counts, which vary with the size of the filter sets.
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His work shows that even when grammar features are computed by sampling, when
producing input-filtered grammars on the fly for fast online hierarchical statistical
machine translation, the translation results do not seam to suffer much. In personal
correspondence with Adam Lopez, discussing the difference between his grammar
extraction and feature estimation method by (Chiang, 2005) he remarked that:

“

1. Which estimate is most effective is an empirical question.
2. Most of the estimates used in the literature, heuristic or otherwise, yield very

similar performance because of (3)
3. The estimators (even the sound ones) are used with models that make a lot of

assumptions that simply aren’t true in the data, which are in any case very noisy.”

A similar way to look at this is that almost all the features that are used in
hierarchical SMT are heuristic and somewhat ad-hoc to begin with. Therefore, adding
one more level of approximation or variation to the computation of these features will
not change the result a lot, provided that it leaves the general characteristics of the
features intact, so that tuning can effectively compensate for the absolute differences
in feature values.

To summarize we noted that:

1. Only the generative rule probability and rarity penalty change as a result of
varying the filter set, and for these only the absolute and not the relative values
are changed.

2. Tuning can compensate for any differences in the absolute values of the affected
features by adapting the feature weights.

3. Earlier work by Lopez (2008) showed that the influence on the details of the
exact computation of the feature estimates is small to begin with.

For these reasons we conclude that although for certain features our grammar
merging scheme leads to differences in the absolute feature values, on the final
translation task it can be expected to give very similar performance to grammar
extraction as a whole in one step.
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Samenvatting

Globalisering is een van de kenmerken van onze tijd. Documenten en geschreven
teksten zijn wereldwijd beschikbaar maar ze zijn niet altijd toegankelijk vanwege
taalbarrières. Het werk van menselijke vertalers is tijdrovend en kostbaar. De
introductie van machinevertaling heeft nieuwe mogelijkheden gegeven, maar de
resultaten van machinevertaling schieten vaak nog tekort op verscheidene vlakken met
inbegrip van de woordvolgorde.

Deze dissertatie stelt manieren voor om hiërarchische vertaal equivalentie relaties
afgeleid van woord alignments te gebruiken om hiërarchische statistische machinev-
ertaling te verbeteren. Deze verbetering betreft in het bijzonder de woordvolgorde en
coherentie van de geproduceerde vertalingen, maar tevens de keuze van woorden.

Het belangrijkste probleem dat in deze dissertatie wordt behandeld is dat hiërar-
chische statistische machinevertaling weinig context gebruikt in het combineren van
regels tot vertalingen. Dit leidt tot separaat gemaakte en daarmee slecht gecoördineerde
herordenings beslissingen. Met name Hiero (Chiang, 2005) grammatica’s zijn niet van
voorzien van nonterminal labels, wat er toe leidt dat de decoder de context van andere
regels negeert wanneer regels worden toegepast.

Het fundament van deze dissertatie is een expliciete representatie van de hiërar-
chische vertaal equivalentie structuur afgeleid uit woord alignments, gebruikmakend
van het nieuw voorgestelde kader hierarchical alignment trees (HATs) (Sima’an and
Maillette de Buy Wenniger, 2013). Dit maakt het mogelijk om te modelleren hoe
vertaal equivalentie is opgebouwd in geobserveerde data, en hieruit te generaliseren
om contextgevoelige regels te leren die kunnen worden gecombineerd voor de vertaling
van ongeziene data. Het belangrijkste specifieke geval van dit algemene schema dat
wordt behandeld in deze dissertatie, is het gebruik van HATs voor het leveren van een
om een herordenings context aan regels in de vorm van labels.

Het tekortschietende gebruik van context door Hiero is eerder aangepakt in ander
werk door het toevoegen van syntactische labels aan Hiero. Het populaire systeem
syntax-augmented machine translation (SAMT) (Zollmann and Venugopal, 2006) is
het standaard voorbeeld van deze aanpak. Maar er zijn twee problemen met het
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gebruik van syntax. Het eerste probleem is dat syntax en alignment structuur vaak
niet verenigbaar zijn. Het tweede probleem is dat betrouwbare parsers vaak niet
beschikbaar zijn voor alle talen. Deze problemen motiveren onze nieuwe aanpak,
die niet afhankelijk is van syntax, maar alleen van de rijke informatie die in word
alignments aanwezig is. Op basis van deze word alignments worden bilinguale
herordenings labels gevormd die het mogelijk maken om in de combinatie van regels
betere, contextgevoelige herordenings beslissingen te nemen. Herordenings labels
worden toegepast in combinatie met een flexibele vorm van label matching, die het
mogelijk maakt om zachte preferenties voor specifieke label substituties te leren tijdens
de tuning. Deze labels leveren significante verbetering op ten opzichte van zowel Hiero
en SAMT voor drie verschillende talen paren, met de sterkste verbetering voor de
vertaling van Chinees naar Engels.

Waar komen herordenings labels vandaan? Herordenings labels komen van HATs.
HATs zijn bilinguale bomen die de hiërarchische vertaal equivalentie structuur afgeleid
uit woord alignments representeren. HATs representeren alle doorlopende translation
equivalence units (TEUs) die kunnen worden afgeleid uit woord alignments.

Hoe verschillen HATs van bestaande representaties voor TEUs en hiërarchische
herordenings structuur? HATs bouwen verder op permutation trees (PETs) (Gildea
et al., 2006) en normalized decomposition trees (NDTs) (Zhang et al., 2008a).
Belangrijk is dat HATs alle informatie representeren die aanwezig is in originele woord
alignments, wat ze onderscheidt van NDTs die alleen de decompositie structuur van de
TEUs representeren. Cruciaal is dat HATs zowel PETs en NDTs generaliseren door
willekeurige woord alignments te representeren en tegelijkertijd een representatie te
geven van de recursieve bilinguale overeenkomstigheidsrelaties voor alle op uit woord
alignments afgeleide TEUs.

Welke nieuwe bijdragen worden geleverd in deze dissertatie op basis van HATs?
HATs leveren net als NDTs een basis voor het extraheren van bilinguale regels, maar
anders dan NDTs leveren zij ook de informatie die nodig is om herordenings labels
te vormen voor deze regels. Verder zijn HATs toegepast om hiërarchische vertaal
equivalentie te visualiseren en daarmee een beter kwalitatief begrip van empirische
hiërarchische vertaal equivalentie te faciliteren (Maillette de Buy Wenniger and
Sima’an, 2014b). Daarnaast worden HATs gebruikt om de complexiteit van empirische
vertaal equivalentie te bepalen, zoals we hierna in meer detail zullen bespreken.

Het laatste deel van deze dissertatie onderzoekt hoe de complexiteit van empirische
vertaal equivalentie afgeleid uit woord alignments kan worden gekarakteriseerd.
Specifiek, gegeven een woord alignment en een grammatica, probeert de dissertatie
de formele vraag te beantwoorden wat het betekent voor de grammatica om het woord
alignment te ondersteunen. Een exacte manier om deze vraag te beantwoorden wordt
voorgesteld, gebaseerd op de intersectie van 1) de set van vertaalequivalenten afgeleid
uit het woord alignment en 2) de set vertaalequivalenten afleidbaar uit de grammatica.
Vervolgens wordt aangetoond dat HATs kunnen worden toegepast om deze procedure
efficiënt te implementeren en te gebruiken om de dekking van woord alignments door
een grammatica exact te kunnen meten, zonder een expliciete intersectie van sets van
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vertaalequivalenten te hoeven uitvoeren. Dit maakt het mogelijk om de meting niet
alleen exact te doen maar ook efficient te maken.

Een grote empirische studie van zowel handmatig- als automatisch gegenereerde
word alignments laat zien dat: 1) Empirische hiërarchische vertaal equivalentie veel
complexer is dan doorgaans wordt aangenomen, 2) voor alle talenparen een grote
fractie van de woord alignments niet is te binariseren noch is te beschrijven door
uitsluitend permutaties (bijectieve projecties), 3) complexe alignment configuraties tot
een bepaalde lengte inbedden in atomaire units en deze negeren bij de bepaling van
complexiteit, lost slechts een deel van de complexe alignment configuraties op en is op
zichzelf niet voldoende om volledige dekking van woord alignments te bereiken.

Deze dissertatie laat zien dat het mogelijk is om significante verbeteringen van
woordvolgorde en coherentie in statistische machinevertaling te bewerkstelligen alleen
op basis van de informatie in woord alignments en zonder gebruik van syntax. De
dissertatie levert het nieuwe kader van HATs als bijdrage aan machinevertaling. Daar-
naast wordt het nut daarvan beschreven bij verscheidene toepassingen inclusief regel
extractie, labeling alsook de empirische studie van hiërarchische vertaal equivalentie.





Abstract

Globalization is one of the characteristics of our time. Documents and written texts
are available from all over the world but they are not always accessible because of
language barriers. The work of human translators is time consuming and costly. The
introduction of machine translation has given new opportunities, but the results of
machine translation are often still lacking in various aspects including word order.

This dissertation contributes methods to improve hierarchical statistical machine
translation (SMT) using the hierarchical translation equivalence relations induced from
word alignments. The information obtained from these relations improves word order
and coherence of the produced translations in particular, but lexical choice is affected
as well.

The core problem addressed in this dissertation is that hierarchical SMT uses little
context when composing rules into translations, leading to independently made and
poorly coordinated reordering decisions. In particular, Hiero (Chiang, 2005) grammars
lack labels for nonterminals, causing the decoder to ignore the context of other rules
when rules are applied.

The foundational idea in this thesis is to explicitly represent the hierarchical
translation equivalence structure induced by word alignments, using a newly proposed
framework called hierarchical alignment trees (HATs) (Sima’an and Maillette de
Buy Wenniger, 2013). This allows us to model how translation equivalence is
composed in observed data, and generalize from this to learn context-aware rules that
can be composed for the translation of unseen data. The main specific case of this
general scheme addressed in this thesis, is the use of this representation to provide
reordering context to hierarchical rules in the form of labels.

The poor use of context by Hiero has been addressed before in the literature by
adding syntactic labels to Hiero. The popular system syntax-augmented machine
translation (SAMT) (Zollmann and Venugopal, 2006) is the standard example of this
approach. But there are two main problems with using syntax. The first problem is that
syntax and alignment structure are not necessarily compatible. The second problem
is that reliable parsers are not available for all languages. These problems motivate
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our new approach, which does not rely on syntax, but instead on the rich information
from the word alignments. These word alignments serve to construct bilingual
reordering labels that allow rules to support better, context-aware reordering decisions.
Reordering labels are applied in combination with a loosely constrained approach to
label matching, which allow the grammar to learn soft preferences for particular label
substitutions during tuning. These labels yield significant improvements over both
Hiero and SAMT for three different language pairs, with the strongest improvements
obtained for Chinese–English translation.

Where do reordering labels come from? Reordering labels come from HATs. HATs
are bilingual trees that represent the hierarchical translation equivalence structure
induced from word alignments. HATs compactly represent all contiguous translation
equivalence units (TEUs) that can be induced from word alignments.

How do HATs differ from existing representations for TEUs and hierarchical
reordering structure? HATs build further upon permutation trees (PETs) (Gildea
et al., 2006) and normalized decomposition trees (NDTs) (Zhang et al., 2008a).
Importantly, HATs preserve all information present in the original word alignments,
distinguishing them from NDTs which present only the decomposition structure of
the TEUs. Crucially HATs generalize both PETs and NDTs by representing arbitrary
discontiguous word alignments while at the same time representing the recursive
bilingual correspondence relations for all TEUs induced from word alignments.

What new contributions are made based on HATs in this thesis? HATs like NDTs
provide a basis for the extraction of bilingual rules, but unlike NDTs they also provide
the information required to form reordering labels for those rules. Furthermore HATs
have been applied to visualize hierarchical translation equivalence, accommodating
a better qualitative understanding of empirical hierarchical translation equivalence
(Maillette de Buy Wenniger and Sima’an, 2014b). Additionally, HATs have been
used to study the complexity of empirical translation equivalence quantitatively, as
discussed in more detail next.

The last part of this thesis examines how to characterize the complexity of empirical
translation equivalence as induced from word alignments. In particular, given a word
alignment and a grammar, we try to give a formal answer to the question what it
means for the grammar to cover the word alignment. Based on the intersection of
the sets of TEUs induced from the word alignment and inferable from the grammar,
we contribute a method to answer this question exactly. This contrasts with other work
providing only upper bounds on alignment coverage. It is then shown how HATs can
be applied to implement our method, while avoiding explicit intersection of sets of
translation equivalents. This enables exact measurement of alignment coverage that is
also efficient.

A large empirical study of both manually and automatically produced word
alignments shows that: 1) Empirical hierarchical translation equivalence is much
more complex than commonly believed, 2) for all language pairs, a large fraction
of the word alignments is neither binarizable, nor coverable by only permutations
(bijective mappings), 3) embedding complex alignment configurations up to a limited
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maximum length in atomic units that are ignored for complexity only eliminates part
of the complex alignment configurations and is by itself not sufficient to achieve full
alignment coverage.

This thesis shows that word order and coherence of hierarchical statistical machine
translation can be significantly improved without syntax, by using just the information
present in word alignments. The thesis contributes the framework of HATs and
demonstrates its usefulness for a variety of applications including rule extraction,
labeling as well as analysis of empirical hierarchical translation equivalence.
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