
Product Update and Looking Backward

Audrey Yap

May 21, 2006

Abstract

The motivation behind this paper is to look at temporal information in models of
BMS product update. That is, it may be useful to look at models produced through
taking products with action models, as being structurally similar to game trees. So a
state in a product can be seen as encoding a history of actions, along with an original
world. Given that, it seems useful to add the ability to express information about
past states. For this purpose, we can combine a temporal modality with product
update. This involves adding a new modality to the language allowing us to form
statements similar to, “Before you did c, I didn’t know whether φ was true, but now
I know that φ is false.”

1 Product Update

1.1 Language and Models

A belief epistemic model M is a tuple

M = (W, {∼j: j ∈ G}, V, w0).

1. W is a set of possible worlds, called the states of the model.

2. G is a set of agents.

3. ∼j is an equivalence relation defined on W for each agent j. The intended interpre-
tation is that s ∼j t whenever j cannot differentiate between worlds s and t.

4. V is a valuation.

5. w0 is the world corresponding to the actual world.

The language for these static models is simply the language of dynamic epistemic logic
for our static models, which will be extended with operators expressing what is true after
updates, and expressing what is true in the past.

1

LSt φ := p, q, ... | ¬φ | φ ∧ ψ | Kiφ

The semantics for the propositional part are standard. However, for a belief epistemic
model M and a world w, the semantics for Kjφ are as follows:

M,w |= Kjφ iff for all v s.t. w ∼j v, M, v |= φ.

Now, we can define our epistemic action model

A = (Σ, {∼j: j ∈ G}, {Preσ : σ ∈ Σ}, σ0).

1. Σ is the set of simple actions.

2. ∼j is an equivalence relation which is defined on Σ for each agent j. The intended
interpretation is that σ ∼j τ whenever j cannot differentiate between actions σ and
τ .

3. For each simple action σ, Preσ defines the preconditions which must be true at a
world in order for σ to be performed at that world.

4. σ0 is the actual action in our update.

We then define M × A as the epistemic action model

(W × Σ, {∼′
j: j ∈ G}, V ′, w′

0).

1. W × Σ = {(w, σ) : M,w |= Preσ}. So the update model is the product of the
two previous models, restricted only by the condition that a world must satisfy the
preconditions for an action for that action to be performed there.

2. We define ∼′
j such that (w1, σ) ∼′

j (w2, τ) iff w1 ∼j w2 and σ ∼j τ . So j is only
uncertain between two updated states if he could not previously tell the difference
between the worlds, and the actions performed are also indistinguishable.

3. V ′ is essentially the old valuation on worlds, such that (w1, σ) ∈ V ′(p) iff w1 ∈ V (p).

4. w′
0 = (w0, σ0). The new actual world is the product of the previous actual world with

the actual action performed.

So now M×A is a new state model, which can be used in further product updates with
any action model whose preconditions are in the same language. However, one thing which
we might notice is that with subsequent updates, we can see that the worlds in M × A
encode their history. That is, after we take the product by A n many times, the worlds
in the resulting model can be seen as n + 1-tuples, such that each world is of the form
(w, σ, τ, ..., σn), where w is a world in the original state model M , and each σi is an action
in Σ. So in that sense, we can see a world as encoding its history, where the history is the

2

set of actions which led us there. This might lead us to view product models as trees of a
sort, where each subsequent update adds a layer.

Furthermore, the logic of public announcement can be seen as a special case of product
update, where there is only one action. The action model corresponding to the announce-
ment of φ is as follows:

A = ({φ!}, {〈φ!, φ!〉j}j∈G,Preφ! ≡ φ, φ!).

In other words, there is only one action, the ∼j relation is just a reflexive loop for each
agent j ∈ G, and the only precondition for announcing φ at a world is that φ holds at that
world.

Now that we have dynamic BMS models, we can extend the language to reflect this.

LBMS φ := p, q, ... | ¬φ | φ ∧ ψ | Kjφ | [σ]φ

The semantics for [σ]φ are as follows:

M,w |= [σ]φ iff M,w |= Preσ implies M × A, (w, a) |= φ.

So it is then clear how the public announcement operator [φ!]ψ is is just a special case
of the [σ] operator in product update, where our action model A is just this one-action
model described above.

1.2 Examples and Problems

We can do some examples of this; for instance, the familiar Muddy Children example can
be modeled using this formalism.

In this example, we suppose that we have three children, who we will name A, B, and C.
The children have been playing outside, and some of them have dirty faces. For simplicity’s
sake, suppose that it is common knowledge that at least one child has a dirty face. This
gives us seven possible states of affairs. Suppose that A and B are dirty, and C is clean.
The parents then ask if the children know whether or not they are dirty. They answer
simultaneously, and must attempt to determine their own state based only on these facts.

We can model the information in a table:

World A B C ∼A ∼B ∼C

w1 clean clean dirty w1, w5 w1, w3 w1

w2 clean dirty clean w2, w6 w2 w2, w3

w3 clean dirty dirty w3, w7 w1, w3 w2, w3

w4 dirty clean clean w4 w4, w6 w4, w5

w5 dirty clean dirty w1, w5 w5, w7 w4, w5

w6X dirty dirty clean w2, w6 w4, w6 w6, w7

w7 dirty dirty dirty w3, w7 w5, w7 w6, w7

3

Then the first action is the simultaneous announcement by all of the children, that they
do not know if they are dirty. This action cannot be performed at worlds w1, w2, and w4,
since at each of these worlds at least one of the children knows the actual state of affairs.
In other words, this announcement can only be made truthfully if at least two children are
dirty.

World A B C ∼A ∼B ∼C

w′
3 clean dirty dirty w′

3, w
′
7 w′

3 w′
3

w′
5 dirty clean dirty w′

5 w′
5, w

′
7 w′

5

w′
6X dirty dirty clean w′

6 w′
6 w′

6, w
′
7

w′
7 dirty dirty dirty w′

3, w
′
7 w′

5, w
′
7 w′

6, w
′
7

However, in the actual world, it is now the case that two children know their state, so
the next announcement τ is that A and B know their state, but the only world at which
this holds is w6, the actual world. So this next action eliminates all the worlds except the
actual world, and we have only the following:

World A B C ∼A ∼B ∼C

w′′
6X dirty dirty clean w′′

6 w′′
6 w′′

6

So we can see that product update can model public announcements, and furthermore,
with each subsequent update, our worlds encode the actions which brought us to that
world. Now, it is not obvious that this history is important in our public announcement
logic, since each action model consists of only a single action. Yet the history might be
useful nonetheless, for it might be useful to be able to refer to past states.

Before we turn to an example of that, we can see a fairly simple example of product
update in which different actions are possible. Suppose we take an example of secret
communication, where there are three players in a card game. Let the situation be such
that Player 1 has either a red card or a blue card, but the other players don’t know which.
We’ll consider only the uncertainties of the third player, for the sake of simplicity. Now
consider three actions. First, Player 1 does nothing. Second, Player 1 secretly shows his
card to Player 2. For player 3, the first two actions are indistinguishable. And the third
possible action is the one where Player 1 openly shows his card to Player 2.

The update can be seen in the following two tables:

World Cards Player 3

w1X rbw w1, w2

w2 rwb w1, w2

4

World Cards, Action Player 3

v1X rbw, 1 shows (secret) v1, v2, v4, v5

v2 rbw, null v1, v2, v4, v5

v3 rbw, 1 shows (public) v3, v6

v4 rwb, 1 shows (secret) v1, v2, v4, v5

v5 rwb, null v1, v2, v4, v5

v6 rwb, 1 shows (public) v3, v6

So this is an example of the way in which product update works, when there are several
different possible actions, some of which are differentiable from others. The example we
will consider next will show how the history can become important.

Now consider a variation on the Muddy Children game, where instead of making si-
multaneous announcements, the children answer in turn whether or not they know their
state. A goes first and announces that he does not know whether or not he is dirty. This
eliminates w4, since that is the only world at which A knows his state.

World A B C ∼A ∼B ∼C

w1 clean clean dirty w1, w5 w1, w3 w1

w2 clean dirty clean w2, w6 w2 w2, w3

w3 clean dirty dirty w3, w7 w1, w3 w2, w3

w5 dirty clean dirty w1, w5 w5, w7 w5

w6X dirty dirty clean w2, w6 w6 w6, w7

w7 dirty dirty dirty w3, w7 w5, w7 w6, w7

But then notice that in the actual world, B now does know his state. So when B
answers the question, he says that he does know. And in fact, this eliminates every world
except w6, the actual world, and w2, and A never finds out whether or not he is dirty.
What the problem is here is that A does not know whether B discovered his state because
of A’s announcement (which is the case at w6, or whether B knew that all along (which is
the case at w2.

2 Product Update + History

2.1 Language and Models

We need to redefine M × A in such a way that our models encode previous states. First,
we redefine belief epistemic models such that a model M is now a tuple

M = (W, {∼j: j ∈ G}, R, V, w0).

5

We define M × A as the epistemic action model

(W ∪ (W × Σ), {∼′
j: j ∈ G}, R ∪ {Rσ : σ ∈ Σ}, V ′, w′

0).

1. W ∪ (W × Σ) = W ∪ {(w, σ) : M,w |= Preσ}. So the update model is the original
model, together with the product of the two previous models, restricted only by the
condition that a world must satisfy the preconditions for an action for that action to
be performed there. So in our new product update models, we keep the old worlds
around.

2. We define ∼′
j separately for W × Σ and for W . We will never have agents uncertain

between worlds in W and worlds in W × Σ. For w1, w2 ∈ W , w1 ∼′
j w2 iff w1 ∼j w2.

For W × Σ, ∼′
j is defined such that (w1, σ) ∼′

j (w2, τ) iff w1 ∼j w2 and σ ∼j τ . So
j is only uncertain between two updated states if he could not previously tell the
difference between the worlds, and the actions performed are also indistinguishable.

3. The Rσ relations are a new addition. For each action σ, and world of the form
(w, σ), let Rσ((w, σ), w). In other words, each world in a product model points to its
ancestor. So when we take a product, we keep all the old R-relations, and add a new
arrow for every world in W × Σ, pointing to its ancestor.

4. V ′ is essentially the old valuation on worlds, though to be more precise, we can define
it separately for W and W ×Σ. For w ∈ W , and p a proposition letter, w ∈ V ′(p) iff
w ∈ V ′(p). And for W × Σ, we say that (w1, σ) ∈ V ′(p) iff w1 ∈ V (p).

5. w′
0 = (w0, σ0). The new actual world is the product of the previous actual world with

the actual action performed.

Action models remain the same, in spite of the new update mechanism. One way to
picture our updates, though, is as adding subsequent layers to a tree. Considering only the
[σ] and Pσ modalities, we do in fact have a tree. And indeed, the way the uncertainties
are defined, agents are only uncertain between worlds at the same “level”. So the intuitive
picture looks something like this:

6

And we now can extend the language once more.

LBMS+H φ := p, q, ... | ¬φ | φ ∧ ψ | Kiφ | [σ]φ | Pσφ

The semantics for Pσ are as follows:

M,w |= Pσφ iff ∃v such that Rσ(w, v) and M, v |= φ.

Alternatively, we could drop the indexing condition and simply have Pφ, with the
following semantics:

M,w |= Pφ iff ∃v, σ such that Rσ(w, v) and M, v |= φ.

Furthermore, if we chose to drop the indexing condition, we could even include an
iterated past operator P ∗φ, such that

M,w |= P ∗φ iff ∃v1, ..., vn, σ1, ..., σn such that Rσ1(w, v1), ..., Rσn(vn−1, vn) and M, vn |= φ
(assuming only finitely many updates)

This simply states that P ∗φ is true if φ is true at some point in the transitive closure
of the backward-pointing arrows. Since our models index each arrow by an action, the
definition is more complicated, but the intention is to mirror the operation of the Kleene-∗
operator in PDL.

2.2 Expressive Power

2.2.1 Examples

We can now look at several instances of the increase in expressive power with this new
modality. For instance, we have the expressive power to model statements such as, “Even
before you did σ, I knew that φ was true.” This simply becomes PσKiφ. We can see by
the semantics that this formula is true at w exactly when we did obtain w from a world v
through a σ-action, so w = (v, σ), and φ is true at every world which i cannot distinguish
from v.

Example 1: References to the past give us a way of getting around the problem with con-
secutive announcements in Muddy Children. Recall that after A announces that he does
not know his state, this is the situation:

World A B C ∼A ∼B ∼C

w1 clean clean dirty w1, w5 w1, w3 w1

w2 clean dirty clean w2, w6 w2 w2, w3

w3 clean dirty dirty w3, w7 w1, w3 w2, w3

w5 dirty clean dirty w1, w5 w5, w7 w5

w6X dirty dirty clean w2, w6 w6 w6, w7

w7 dirty dirty dirty w3, w7 w5, w7 w6, w7

7

Previously, the problem was that there was no way for B to make an announcement of
the acceptable form which would allow A to guess his own state. But suppose that instead,
the following dialogue takes place:

A: “I do not know whether or not I am dirty.”
B: “I didn’t know that. But I do know whether nor not I am dirty.”

In this case, B’s announcement eliminates all worlds except for the actual world, so C
does not even have to make an announcement for all of the children to know their state.
However, B’s announcement refers back to a past state. So in order to allow for statements
of this kind, we need to extend the expressive power of the language in order to be able
to make statements about previous states of affairs. Furthermore, there is no statement of
the kind the children are allowed to make which can differentiate between the two worlds
once B’s announcement has been made.

For after B announces that he does know whether or not he is dirty, this eliminates
every world except w6, the actual world, and w2. A is uncertain between these two worlds,
and is clean in one and dirty in the other one. B and C however, know what the actual
state of affairs is. So in both w2 and w6, B and C know their state, but A does not. But
since the children were only allowed to make statements about whether or not they know
their own state, no further permissible announcements can differentiate between w2 and
w6. So the extension of the language to allow for a past modality is a way of looking at
what interesting new statements could be permitted which would allow A to learn his state.

Now, we model A’s statement, as in the original language, as

¬(KADA ∨KA¬DA).

A does not know that he is dirty, and he does not know that he is not dirty. And we now
have a way to model B’s statements. B’s second statement, that he does know whether or
not he is dirty, is what we would expect:

(KBDB ∨KB¬DB).

However, his first statement, that he did not know what A just said, is expressed by the
following formula:

P¬KB¬(KADA ∨KA¬DA).

What this formula expresses is that, at the state before the action took place, B did
not know the proposition

¬(KADA ∨KA¬DA),

which is exactly A’s statement. And combined with his statement that he also does not
know his own state, this has the same effect on A’s knowledge as a simultaneous announce-
ment by A and B that they do not know their respective states.

8

Example 2: A simpler example is that we could now introduce preconditions which refer
to the past. For instance, this would allow us to model the idea that some actions cannot
be performed twice in a row. We could have

Preσ = ¬Pσ>.

In other words, σ can only be performed at states which are not of the form (s, σ).
For instance, in the game Go, there are certain moves which do have such past precon-

ditions. There is a rule which states that a player cannot make a move if doing so would
result in the same board state as existed after his previous turn. In particular, note the
following sequence of turns:

If we want to model the fact that it is illegal for black to play his next stone in the
middle of whites stones, then we need to refer to the past. If we call that move σ, whites
subsequent move τ and let Φ stand for a conjunction of other rules of the game, then we
have

Preσ ≡ Φ ∧ ¬PτPσ>.
So black can only perform that move if it was not his last move.

2.2.2 Model-Theoretic Considerations

One thing we ought to remark upon is that we no longer have stabilization under bisimu-
lation. For in BMS product update, it is possible to arrive at a state in which subsequent
models produced by the update are bisimilar to previous ones. That is, we can have M×A
bisimilar to M , or even more complicated cases of “looping”, in which (M × A) × A is
bisimilar to M , but not to (M ×A). This is treated in detail in [3]. However, our temporal
modality is sufficiently expressive to distinguish between worlds and their ancestors, so
there will never be a case in which M ×A is bisimilar to M . In fact, if our models have a
tree structure with one world at the root, it is possible to define each world uniquely by a
temporal formula tracing the path.

However, we can still use the notion of bisimulation to apply to our new kinds of models,
since we could have bisimulation instead between entire trees. Viewed structurally, the Pσ

modality is simply a diamond modality, so a product model in our new sense can just be
seen as a multimodal frame, for which bisimulation is perfectly well defined.

However, one interesting addition in expressive power occurs if we allow for common
knowledge in our language. For a group of agents G, let R(G)∗ be the reflexive transitive
closure of all the ∼i relations for i ∈ G. Then the semantics for CGφ are as follows:

9

M,w |= CGφ iff for all v s.t. 〈w, v〉 ∈ R(G)∗, M, v |= φ.

However, the typical problem with common knowledge in dynamic epistemic logic, is
that there is no reduction axiom for formulas for the form [σ]CGφ. In order to provide a
reduction axiom, instead of using the ordinary common knowledge operator, we can instead
use a relativized common knowledge operator CG(φ, ψ), which expresses that every G-path
which consists exclusively of φ worlds ends in a ψ world. Then our ordinary common
knowledge operator CGφ is simply expressed as a special case of the relativized version, by
CG(>, φ). Let us define JφK as

JφK = {w ∈ W : M,w |= φ}

and then we have the semantics for CG(φ, ψ):

M,w |= CG(φ, ψ) iff for all v s.t. 〈w, v〉 ∈ (R(G) ∩ JφK)∗, M, v |= φ.

A natural language paraphrase of this operator is “If φ were announced, it would be
common knowledge among G that ψ was the case before the announcement.” And this
is in fact a statement about what agents knew in the past, so it seems quite natural to
model it using our past modality. Then it is perhaps not surprising that if you add P to
the language of public announcement with common knowledge, then in fact, relativized
common knowledge is definable, since we have the following equivalence:

CG(φ, ψ) ≡ [φ!]CGPψ.

So, in a sense, the past modality operator captures something quite natural about
relativized common knowledge. This operator is introduced and discussed in more detail
in [5]. However, as it turns out, adding CG and P to the language cannot replace CG(φ, ψ)
in many respects, because the past operator is simply too expressive. The main purpose
of the relativized common knowledge operator is to obtain reduction axioms for CG. But
we will later show that no reduction axioms for P are possible.

However, even though the past operator does not make relativized common knowledge
redundant, it does shed some insight on our intuitions about common knowledge and public
announcement. For instance, we might intuitively consider the formula

[φ!]CGφ

to be true. After all, it seems as though when φ is announced, it then becomes common
knowledge. However, there fairly simple counterexamples, such as φ ≡ p∧¬Kip, expressing
something like “p is true, and you don’t know it.” And clearly the following formula is false:

[(p ∧ ¬Kip)!]Ki(p ∧ ¬Kip)

So after the announcement, φ is not common knowledge, since φ’s being announced makes
it false. However, perhaps our intuition about common knowledge is better captured by
the following formula:

[φ!]CGPφ!φ

10

In other words, what actually becomes common knowledge is not φ, but that φ was true
just before the announcement. So the problem of expressing just what is learned through
a public announcement of φ can be dealt with by using the P modality.

2.3 About the Logic

2.3.1 Axiomatizing the Language

The BMS axiomatization of product update is complete, and gives a reduction to epistemic
logic. To some extent, we can follow this treatment for our past modality. Below are the
axioms for the forward-looking portion of our language.

Basic Axioms
All propositional tautologies
(K-normality) Ki(φ→ ψ) → (Kiφ→ Kiψ)
([σ]-normality) [σ](φ→ ψ) → ([σ]φ→ [σ]ψ)

Action Axioms
(Atomic Permanence) [σ]p↔ (Preσ → p)
(Partial Functionality) [σ]¬φ↔ (Preσ → ¬[σ]φ)
(Action-Knowledge) [σ]Kiφ↔ (Preσ →

∧
{Ki[τ]φ : σ ∼i τ})

(Interaction with Past) [σ]Pτφ↔ (Preσ → σ = τ ∧ φ)

Modal Rules
(Modus Ponens) From ` φ and ` φ→ ψ, infer ` ψ
(K-necessitation) From ` φ, infer ` Kiφ
([σ]-necessitation) From ` φ, infer ` [σ]φ

So we have four reduction axioms for [σ], and we might want to look for four corre-
sponding axioms for Pσ. We first note that we need something playing the same role as
Preσ, since these define when it is possible to perform an action at a world. This means
we want something like a Postσ, which defines when an world has been attained by the
performance of an action. For this, we can simply use Pσ>. Given this, the first few re-
duction axioms are straightforward:

Past Looking Axioms
(Atomic Permanence) Pσq ↔ Pσ> ∧ q
(¬-Reduction) Pσ¬φ↔ Pσ> ∧ ¬Pσφ
(∧-Reduction) Pσ(φ ∧ ψ) ↔ Pσφ ∧ Pσψ
(Interaction with [σ]) Pσ[σ]φ↔ Pσ> ∧ φ

Note, of course, that we do not need an axiom to deal with the formula Pτ [σ]φ in
general, since that involves taking a step back in the history, and then a step forward, but

11

when σ 6= τ , the two steps do not lead back to the same world.
We could also include some optional axioms, based on PDL-type considerations, since

we have already considered a Kleene-∗ version of the P operator. For instance, we could
also allow for composition ; of past steps, since the Kleene-∗ can be seen as a generalization
of that.

PDL Style Axioms
(Composition Axiom) Pσ;τφ↔ PσPτφ
(Kleene-∗ Axiom) P ∗φ↔ φ ∨ PP ∗φ

2.3.2 Past Reduction Axioms

Yet one reduction axiom is still conspicuously absent, and it is this one which poses the
most significant difficulty. What about PσKiφ? We at the very least have one direction of
a reduction axiom for this, which corresponds to a principle of perfect recall.

PσKiφ→ (Pσ> ∧Ki

∨
{Pτφ : σ ∼i τ}).

However, the other direction of this implication is not sound, and this implies the fol-
lowing claim.

Claim. No reduction axioms are possible for the P operator.

First, to show that the other direction of the implication is not sound, we can use a simple
counterexample in public announcement logic. Suppose we begin with two worlds, w a
φ-world (the actual world) and v a ¬φ-world, between which i cannot differentiate. Then,
consider our state after an announcement of φ. At (w, φ!), we have it true that Pφ!, and also
that KiPφ!φ. So the right hand side is satisfied. However, it is false that Pφ!Kiφ, since be-
fore the announcement, i could not distinguish w and v. We can illustrate this by a picture:

For insight into the more general reasons for why there are no reduction axioms, con-
sider the following two models:

12

M1 M2

After a public announcement of φ in the actual world, we obtain the following two
updated models:

M1 M2

Now, consider the formula
¬Pφ!Kiφ.

In other words, i didn’t know φ before it was announced. Clearly, we have M1, w |=
¬Pφ!Kiφ, but M2, w 6|= ¬Pφ!Kiφ. But there is no formula in LBMS allowing us to distin-
guish between the two worlds. Since ¬Pφ!Kiφ is not equivalent to any formula in LBMS,
there can be no reduction axioms for LBMS+H .

At best, we can give a partial reduction axiom, which does not entirely allow us to
eliminate the P modality, but isolates the cases in which it is not possible to eliminate it.

PσKiφ ↔ Pσ> ∧Ki

∨
{Pτφ : σ ∼i τ}∧

PσKi

∧
{¬Preτ → φ : σ ∼i τ}

What this axiom essentially does is split the past into two cases. The first conjunct deals
with knowledge about past worlds which the agent still holds possible. However, product
update allows agents to discover that certain worlds which were previously indistinguishable
from the actual world, are actually impossible past states of affairs. The means by which
this can happen is that, even though certain worlds are indistinguishable to an agent, they
satisfy different formulas. And furthermore, one world can satisfy the preconditions for
an action τ , which cannot be performed in the other world. Suppose then that no action
indistinguishable from τ can be performed at this other world. Then after the action, the
agent will know that τ , or an action which cannot be differentiated from τ , was performed.
And since this was not possible in one of the two worlds, the agent now knows that this
world was never the actual world. Product update allows agents to learn more about their
state. So the second conjunct deals with these worlds which the agent, after the action,

13

knows are impossible. It claims that, in these worlds, before any action took place, the
agent knew φ. And these two conjuncts together, imply PσKiφ.

Yet because of these considerations, perhaps a partial reduction axiom is all we really
want. For what it would mean to give a full reduction of the language including our past
modality to that of dynamic epistemic logic, would be that information about the past
is reducible to information about the present. But as these examples of learning have
illustrated, there is more to the past, and to what I actually knew in the past, than what
I know now about the past. This, in some sense, was the point of introducing the new
modal operator to the language, so the fact that no reduction to dynamic epistemic logic
can be performed should not be too unexpected. However, we do learn something from
our attempt to give reduction axioms, since we see just how far we can go. The particular
case for which it is not possible to give a reduction axiom shows us what the addition of a
past modality really does for our product update models. It allows us to express an agent’s
having learned something which he did not previously know.

However, the fact that no reduction to dynamic epistemic logic is possible means that we
do not have a completeness result for these kinds of models. It is clear that we do not want
a reduction to dynamic epistemic logic; but such reductions are one of the more common
ways in which its extensions are proved to be complete. The question of completeness for
these kinds of tree models, however, is still an open problem.

3 Applications and Problems

As for applications of this past modality, we can actually use this with a public announce-
ment logic to solve several problems involving statements about past knowledge. The classic
example of this kind is probably the Sum and Product problem [6], which runs like this:

There are two integers x, y chosen such that 1 < x < y < 100. Mr. S is told their
sum and Mr. P is told their product. Now we have a conversation:

P: I don’t know the numbers.
S: I knew that you didn’t know. I don’t know either.
P: Now I know the numbers.
S: Now I know them too.

We need a temporal modality to model the statement “I knew that you didn’t know.”
Now, the Sum and Product example is somewhat intractable in terms of presentability,
so to show how our past operator can deal with these kinds of problems, we will instead
consider a smaller version of this problem, which we can call the Sixteen Cards problem:

There are sixteen cards in a drawer.
Hearts: A, Q, 4
Spades: J, 8, 7, 4, 3, 2

14

Clubs: K, Q, 6, 5, 4
Diamonds: A, 5

One card is chosen. Mr. P is told the point value of the card, and Mr. Q is told the
colour. This fact is common knowledge. Now we have a conversation:

P: I don’t know what the card is.
Q: I knew that you didn’t know.
P: I know the card now.
Q: I know it too.

Most of the stages of this update can be carried out using the techniques of standard
product update (or its more specific version of public announcement update). However, as
we saw with the sequential Muddy Children problem, pronouncements such as Q’s “I knew
that you didn’t know” require our temporal modality.

So our initial state model M has sixteen states, one corresponding to each possible card
which could have been chosen. For the sake of readability, we will name each state by the
card to which it corresponds, and since there is only one possible action (since we have
public announcement) in each update, we will drop the reference to the action performed.

World Mr. P Mr. Q

HA HA, DA HA, HQ, H4
HQ HQ, CQ HA, HQ, H4
H4 H4, C4, S4 HA, HQ, H4
DA HA, DA DA, D5
D5 D5, C5 DA, D5
CK CK CK, CQ, C6, C5, C4
CQ HQ, CQ CK, CQ, C6, C5, C4
C6 C6, S6 CK, CQ, C6, C5, C4
C5 D5, C5 CK, CQ, C6, C5, C4
C4 H4, C4, S4 CK, CQ, C6, C5, C4
SJ SJ SJ, S8, S7, S6, S4, S3, S2
S8 S8 SJ, S8, S7, S6, S4, S3, S2
S7 S7 SJ, S8, S7, S6, S4, S3, S2
S6 C6, S6 SJ, S8, S7, S6, S4, S3, S2
S4 H4, C4, S4 SJ, S8, S7, S6, S4, S3, S2
S3 S3 SJ, S8, S7, S6, S4, S3, S2
S2 S2 SJ, S8, S7, S6, S4, S3, S2

P: I don’t know what the card is. (¬KPφ)

15

World Mr. P Mr. Q

HA HA, DA HA, HQ, H4
HQ HQ, CQ HA, HQ, H4
H4 H4, C4, S4 HA, HQ, H4
DA HA, DA DA, D5
D5 D5, C5 DA, D5
CQ HQ, CQ CQ, C6, C5, C4
C6 C6, S6 CQ, C6, C5, C4
C5 D5, C5 CQ, C6, C5, C4
C4 H4, C4, S4 CQ, C6, C5, C4
S6 C6, S6 S6, S4
S4 H4, C4, S4 S6, S4

Q: I knew that you didn’t know. (PKQ¬KPφ)

World Mr. P Mr. Q

HA HA, DA HA, HQ, H4
HQ HQ HA, HQ, H4
H4 H4 HA, HQ, H4
DA HA, DA DA, D5
D5 D5 DA, D5

P: I know the card now. KPφ

World Mr. P Mr. Q

HQ HQ HQ, H4
H4 H4 HQ, H4
D5 D5 D5

Q: I know it too. KQφ

World Mr. P Mr. Q

D5 D5 D5

So we are left with only the actual world, which we now know is D5.

16

4 Conclusion

In spite of the open issue of completeness for the system, it seems as though there are several
interesting applications for the P modality. By referring to the past, we can model several
situations which we could not before, in which information about agents’ past epistemic
states is relevant to their current states. In fact, what we can now model is agents’ learning
new information. The BMS framework can model changes in agents’ information states,
but the language is not expressive enough to talk about agents actually learning new
information. This is because what is key in expressing propositions about what agents
learn is that we have to be able to express that they now know things which they did not
know before. But the BMS language does not allow us to talk about what agents knew
before the updates happened, so it does not let us express when agents learned something,
since learning suggests knowing something in the present that you did not know in the
past. Of course, with the increase in expressive power comes the problem of whether or
not the new system is complete, and this is as yet an open problem to be considered in the
future.

17

References

[1] Guillaume Aucher. A combined system for update logic and belief revision. Master’s
thesis, ILLC Amsterdam, 2003.

[2] Alexandru Baltag, Lawrence Moss, and Slawomir Solecki. The logic of public announce-
ments, common knowledge and private suspicions. In Proceedings TARK 1998, 1998.

[3] Tomasz Sadzik. Exploring the iterated update universe. In Report PP-2006-26. Institute
for Logic, Language, and Compuation, University of Amsterdam, 2006.

[4] Johan van Benthem. One is a lonely number. In Report PP-2003-07. Institute for Logic,
Language, and Compuation, University of Amsterdam, 2003.

[5] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Common knowledge in update
logics. In Proceedings of the 10th Conference on Theoretical Aspects of Rationality and
Knowledge. 2005.

[6] Hans van Ditmarsch, J. Ruan, and L.C. Verbrugge. Model checking sum and product.
In Proceedings of the 18th Australian Joint Conference on Artificial Intelligence. 2005.

18

