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Chapter 1
Stratification of the Doxastic Earth

1.1 Introduction
This dissertation studies belief and its relations to evidence and reasoning from a
logician’s perspective. We deal with not only the notion of a single agent’s belief
but also the notion of a group’s collective belief.

1.1.1 Belief: a journey from chaos to order
Belief plays a central role in our daily life: what we believe can influence our
decisions and behaviours to a great extent. For example, if people are confident
about the development of the economy and thus the increase of their future
income, they tend to spend more money now. The concept of belief, therefore,
receives much attention in a number of scientific investigations. Decision theory
(Savage, 1954; Jeffrey, 1965), by and large, studies how belief, together with
other various attitudes, coherently contributes to an agent’s choices. Moreover,
in epistemology (Gettier, 1963; Goldman, 1967; Lehrer and Paxson, 1969; Dretske,
1971; Nozick, 1981), which mainly studies the notion of knowledge, most theories
rely on the notion of belief.

In this dissertation, we zoom in on the notion of belief itself rather than its
role in different theories. While borrowing insights and techniques from different
fields, we study various aspects of belief mainly from a logician’s perspective.

For logicians who follow the approach developed by Hintikka (1962) to the
study of belief, consistency seems to be the most undoubted property of an agent’s
beliefs and thus should be encoded into its semantical definition. The following
example illustrates the intuition behind the requirement of consistency.

A rabbi is holding court in his village. Schmuel stands up and pleads
his case, saying, “Rabbi, Itzak runs his sheep across my land every
day and it is ruining my crops. It’s my land. It’s not fair.”

1



2 Chapter 1. Stratification of the Doxastic Earth

The rabbi says, “You’re right!”
But then Itzak stands up and says, “But Rabbi, going across his land
is the only way my sheep can drink water from the pond. Without
it, they’ll die. For centuries, every shepherd has had the right of way
on the land surrounding the pond, so I should too.”
And the rabbi says, “You’re right!”
The cleaning lady, who has overheard all this, says to the rabbi, “But,
Rabbi, they can’t both be right!”
And the rabbi replies, “You’re right!” 1

Lack of consistency in one’s belief can lead to absurdity and sometimes even
catastrophic consequences. So it seems natural to request consistency of beliefs,
not only for logicians.2 3 However, consistency is not a goal that is within easy
reach for human beings, and it requires effort to maintain consistency of one’s
beliefs. Consistent beliefs do not come out of blue. Furthermore, consistent
beliefs do not come out of nothing. What an agent believes depend on what
(s)he encounters, perceives and receives. Information floods towards everyone in
this world, it is raw and chaotic. As in the previous story, different pieces of
information coming from the two sources (Schemuel and Itzak) contradicts each
other. Moreover, sometimes, information coming from one source can contradict
itself.

In the state of Chu lived a man who sold shields and spears. “My
shields are strong,” he boasted, “that nothing can pierce them. My
spears are so sharp that there is nothing they cannot pierce.”
“What if one of your spears strikes one of your shields?” someone
asked him.
The man had no answer to that.

(Han Fei Zi)4

The merchant’s words are just unacceptable because of its self-contradiction.
Without any processing, consistency is hard to find in information received by
the agent. The agent needs to process received information to achieve consistency
in her beliefs. Among those pieces of information which are disqualified as belief

1 Cathcart and Klein (2007, p.28)
2 A celebrated argument for consistency of belief is the Dutch Book Argument which traces

to Ramsey (1926), although it is mainly about degrees of belief and probabilistic consistency.
3 Concerning the concept “consistency” itself, although the Law of Non-Contradiction in-

troduced by Aristotle is conceived as an orthodox principle, there is still room of contending
for its opposite. For such an admiring endeavour, see Berto (2007).

4 Xianyi and Naidie (2016)
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must be the self-contradictory ones. We will call a body of propositions which
does not include any self-contradictory proposition 1-consistent.

Similarly, two contradictory propositions should not coexist as an agent’s
beliefs, since the contradiction may come from their intersection. When the
rabbi says “You’re right” to both Schmel and Itzak, there is nothing wrong for
the rabbi to accept their words as evidence at the same time so that he takes
both of them into account; the absurdity comes from accepting both of them as
his beliefs. We will call a body of propositions which does not include any pair
of contradictory propositions 2-consistent or mutually consistent.

In doxastic logic, 2-consistency is still not consistent enough. In fact, doxastic
logic requires that the agent’s belief should be ∞-consistent or fully consistent,
that is, any finite subset of what the agent believes should not lead to contradic-
tion.5

From 1-consistency to ∞-consistency, it is reasonable to think of different
propositional attitudes besides belief with different levels of consistency. For ex-
ample, one can think of other kinds of attitudes such as “taking or considering
something as evidence”. Towards different propositions, the agent may adopt dif-
ferent attitudes with different levels of consistency, depending on how committed
she is. After all, there is no need to take every proposition equally serious. We
call all these propositional attitudes “doxastic attitudes”.

The agent’s doxastic attitudes, like the earth, can be stratified into different
layers according to different levels of consistency (Figure 1.1). The core of the
earth thus contains those attitudes which require ∞-consistency; and the attitudes
in the surface layer require 1-consistency. Information, like rain, falls to the
earth. Once touching the ground, it permeates through the earth. The deeper it
penetrates, the less of it remains.

In this dissertation, we will dig into the doxastic earth. We start from the
surface layer, where the agent’s evidence lives. An agent can accept two mutu-
ally contradictory pieces of information as evidence but would not accept any
self-contradictory information as evidence. So an agent’s evidence should be 1-
consistent. Since the agent’s beliefs should be more consistent than 1-consistency,
we have to dig deeper. How should the agent’s beliefs be based on her evidence so
that her beliefs are consistent enough? The first half of this dissertation is devoted
to exploring how a single agent achieves this by different forms of reasoning.

1.1.2 Reasoning: bottom up
In doxastic logic (Hintikka, 1962), full consistency is the starting point of the
whole enterprise of a logical study of belief. In such a context, reasoning is usually
taken as a way of deriving new information from what an agent consistently
believes, which is embodied in the logical properties of belief. For example, if the

5 A more formal definition of these notions of consistency can be found in Section 1.2.
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∞-consistency⋯⋯210-consistency

Figure 1.1: Doxastic earth with layers of consistency
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agent believes that A and believes that A implies C, then she would believe that
C. So reasoning brings out what is implicit in the agent’s beliefs.

When belief is assumed to be at the core of the doxastic earth, the function
of reasoning is also restricted within the core. However, in this dissertation, our
journey does not start from the core, but rather from the surface layer of the
doxastic earth. We do not take a fully consistent notion of belief as given but
as a goal to be reached. So it does not suffice anymore only to maintain the
consistency within the top level of the hierarchy of consistency. It is equally
important to resolve the inconsistency in the agent’s evidence.

The question of how the agent reasons to resolve inconsistency is closely
related to the question of how consistent the agent’s belief should be. Is 2-
consistency consistent enough for belief? If not, does it have to be ∞-consistent?
Although full consistency seems to be the most undoubted requirement in the
modal semantics of belief in doxastic logic, it is the deepest core in the doxastic
earth and therefore the hardest level to reach in the hierarchy of consistency.

Concerning the role of belief in decision making in practice, there are reasons
to compromise some consistency. For example, the complexity of achieving and
maintaining consistency on a full scale might be overly high; the inconsistency is
sometimes not that relevant to the task at hand and so on. As these practical
factors vary, different levels of consistency may be required.

From a purely logical perspective, full-consistency of belief is not an unques-
tionable property either. Since the process of achieving consistency is a process
of sifting out more and more information which causes inconsistency, the higher
the consistency-level is required, the more information should be thrown away.
In the doxastic earth, the deeper the rain permeates underground, the less of it
remains. Hence it is possible that too few propositions can be believed if the
agent’s beliefs have to be fully consistent. There is a tension between believing
more and believing more consistently. It is crucial that the agent can strike a
balance between these two points. The question is whether we have to sacrifice
some consistency to avoid leaving too few propositions to be believed. The first
half of this dissertation attempts to answer this question in a formal framework.

1.1.3 Group belief: towards compromise or consensus via
social interaction

In the case of a single agent, the agent’s belief directs her actions. What then
directs the actions of a group, for example, the investment choices of an invest-
ment bank? Group belief? But what is group belief? What does it mean to say
“the board of the bank believes...”, “the government believes...” and so on?

Instead of pursuing these questions purely philosophically (Gilbert, 1987; List
and Pettit, 2011; Bratman, 2014), we approach the problem from a more prac-
tical perspective. In this dissertation, we adopt the working hypothesis that no
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matter what group belief can be, it should be based on a consensus or at least
a compromise between the group members. So the central question we try to
tackle in the second part of this dissertation is how the members of a group with
different and even incompatible beliefs can reach a consensus or compromise.

The question bears an apparent similarity to the question of how a single
agent resolves contradictions between different pieces of evidence to achieve more
consistent beliefs. However, the differences between the single and multi-agent
setting are also evident. Firstly, a group cannot reason in the same way as
a single agent. It cannot be expected that a group can settle incompatibility
between different agents’ beliefs as spontaneously as a single agent resolves the
contradiction between different pieces of evidence. More effort is needed for a
group to coordinate its members than for a single agent to play around with her
evidence. So some external method should be used to achieve the same effect for
a group of agents as reasoning for a single agent, for example, voting. Secondly,
as a result of the first difference, those methods should be carried out issue by
issue, rather than holistically.

In this dissertation, rather than focusing on methods such as voting, we study
two other ways of reaching consensus or compromise within a group of agents,
based on which our notions of group belief will be defined. Both of these two ways
emphasise the role of social interactions between group members in the formation
of the group’s beliefs.

The first way to define group belief is through argumentation, by which we
mean not only the dynamic process of a debate among group members but also
the static structure of attack relation between arguments abstracted from the de-
bate. Compared with voting, argumentation is a more discursive method, which
can be taken as a form of deliberation, as advocated in the literature on delibera-
tive democracy (Habermas, 1996; Dryzek, 2000; Gutmann and Thompson, 2004).
Distinctively, we do not pursue how group members influence each other in ar-
gumentation and whether argumentation as a deliberative process would help to
produce unanimity among group members. What we will study about argumenta-
tion is merely a way of deciding the winning side, given structural information on
the attack relation between group members. As for the mutual influence through
social interaction between group members and its role in group belief, the issue
will be addressed in the second way of defining group belief.

Instead of working with the attack relation in a debate, the second way of
defining group belief considers how much one group member trusts the other
members and how this relationship between group members would influence their
beliefs in the long run. To be more specific, the second way of reaching consensus
is through a process of opinion diffusion which is triggered by the mutual influence
between group members. However, as Keynes famously put it, “in the long run
we are all dead” (Keynes, 1923, Chapter 3, p.80). It is not at all practical to
make a group’s current belief dependent on its far-future consensus. So instead
of the realisation of the far-future consensus, we base group belief on the tendency
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of a far-future consensus. To know this tendency, there is no need to “wait and
see”. Tendency depends purely on the structure of the current trust network of
the group. Although knowing how the group members’ belief would change may
not suffice for deciding the current action of the group, there is no doubt that it
is helpful as a guide. In this sense, the tendency is suitable to be taken as the
basis of group belief.

For group belief, how consistent it needs to be is also an important ques-
tion. We will see that the tension between believing more and believing more
consistently recurs for group belief.

I conclude this introduction with an overview of each chapter.
Chapter two starts with a review of the notion of evidence-based belief de-

fined in the evidence model (van Benthem and Pacuit, 2011) and the notion of
justified belief defined in the topological semantics for evidence (Baltag, Bezhan-
ishvili, Özgün and Smets, 2016a). By combining the topological semantics for
evidence and formal argumentation theory (Dung, 1995), we propose a new set-
ting to model a notion of argument-based belief called “grounded belief ”. The
comparison between justified belief and grounded belief then reveals the tension
we have just introduced. Grounded belief sacrifices consistency for more content,
while justified belief sacrifices content for more consistency.

In Chapter three, we try to relieve the tension between believing more and
believing more consistently by looking for a notion of belief which would not
sacrifice consistency for more content and would not be as stringent as justified
belief. This goal is accomplished by coordinating argumentational reasoning with
default reasoning, which is represented by the specification order generated from
a topological space. The resulting notion of belief is called “full-support belief”.
We do not claim that this is the best notion of belief, but rather demonstrate
that there is a possibility of striking a balance and that the apparent tension is
not a real dilemma.

Chapter four turns to group belief based on argumentation among the group
members. Formal argumentation theory is integrated into multi-agent doxastic
logic to model the argumentation and the notion of group belief based on it. The
way of applying formal argumentation theory to a notion of group belief called
“argumentation-based group belief” is quite different from what is discussed in
chapter two for grounded belief. But the tension that exists for grounded belief
also exists for argumentation-based group belief.

Chapter five approaches group belief from a different angle. Markov chain
theory serves as the technical basis for the work in this chapter, which is used to
model the tendency of the change of the group members’ beliefs. A notion called
“potential group belief” is thus defined based on the tendency and we study the
logic of this notion of group belief. At the end of this chapter, we elaborate on
the connection between group belief and judgement aggregation.

At last, we conclude the whole dissertation and offer some open questions for
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future work in Chapter six.

1.1.4 Sources of each chapter
Chapter two is based on:

Chenwei Shi, Sonja Smets and Fernando R. Velàzquez-Quesada. 2017a.
“Argument-based belief in topological structures.” Electronic Pro-
ceedings in Theoretical Computer Science 251: pp. 489–503. In
Proceedings TARK 2017, arXiv: 1707.08762.
Chenwei Shi, Sonja Smets and Fernando R. Velàzquez-Quesada. 2017d.
Logic of argument and belief. Institute for Logic, Language and Com-
putation, University of Amsterdam.

Chapter three is based on the following manuscript in preparation:

Chenwei Shi, Sonja Smets and Fernando R. Velàzquez-Quesada. 2017c.
Default reasoning in topological semantics. Institute for Logic, Lan-
guage and Computation, University of Amsterdam.

Chapter four is based on:

Chenwei Shi, Sonja Smets and Fernando R. Velàzquez-Quesada. 2017b.
“Beliefs supported by binary arguments.” To appear in Journal of Ap-
plied Non-classical Logics.

For the above four papers, Chenwei Shi initiated the project, the results in the
papers were discussed together with Sonja Smets and Fernando R. Velàzquez-
Quesada, and all three authors contributed to writing, revising, and finalizing
the papers. Chapter five is based on the following manuscript in preparation:

Alexandru Baltag, Fenrong Liu, Chenwei Shi and Sonja Smets. 2017.
Indeterministic DeGroot model and potential group belief. Institute
for Logic, Language and Computation, University of Amsterdam.

For the above paper, Alexandru Baltag, Fenrong Liu, and Sonja Smets initiated
the project, Chenwei Shi contributed to the writing of the paper and the results in
the paper were discussed with Alexandru Baltag, Fenrong Liu, and Sonja Smets.

In addition, discussions in the following papers contribute to the development
of the ideas in this dissertation to a great extent:

Chenwei Shi and Olivier Roy. 2017. Reason to believe. In Proceedings
of Logic, Rationality, and Interaction: 6th International Workshop,
LORI 2017, ed. Alexandru Baltag, Jeremy Seligman and Tomoyuki
Yamada. Berlin, Heidelberg: Springer pp. 676-680.
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Chenwei Shi. 2016. Multi-agent epistemic argumentation logic. In
Proceedings of the ESSLLI 2016 Student Session, pp. 111-122.
URL: http://esslli2016.unibz.it/wp-content/uploads/2016/09/esslli-
stus-2016-proceedings.pdf
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1.2 Preliminaries on Doxastic Logic
In this section, we introduce (multi-agent) doxastic logic and some notation that
we will use in the chapters to follow.

We start with the relational semantics or the Kripke semantics for belief.

1.2.1. Definition (Kripke frame). A Kripke frame F is a structure (W,R) where

• W is a non-empty set of possible worlds;

• R ⊆W ×W is a binary relation on W ;

In this dissertation, whenever given a set of possible worlds, we may take each
of its subsets as the semantical meaning of a proposition, called “S-proposition”.
For example, in a Kripke frame, we can take P ⊆W as an S-proposition. So we
can also define the propositional connectives upon S-propositions as follows:

¬P ∶=W ∖ P P ∧Q ∶= P ∩Q
P ∨Q ∶= P ∪Q P → Q ∶= ¬P ∨Q

Sometimes we will use notation P for ¬P .
The binary relation R is usually called an “accessibility relation”. In the

case where R represents “doxastic accessibility”, Rwv is interpreted as world v is
considered doxastically possible for the agent in world w. The agent’s belief of a
proposition, say P ⊆W , is then defined as

BP = {w ∈W ∣ for all v ∈W such that Rwv, v ∈ P} .

Thus, an agent believes proposition P ⊆ W if and only if all the worlds she
considers doxastically possible belong to P .

Without any conditions on the doxastic accessibility relation, the logical be-
haviour of the belief operator B can be unbridled. For example, believing a
contradiction is allowed if R is not restricted by any conditions, which may not
be very desirable. So usually the accessibility relation R is required to be serial
(for all w ∈W there is v ∈W such that Rwv) so that B∅ = ∅ always holds. Also,
transitivity (for all w, v, u ∈W , if Rwv and Rvu then Rwu) and Euclideanity (for
all w, v, u ∈W , if Rwv and Rwu then Rvu) are also deemed reasonable properties
of the doxastic accessible relation, because they ensure that the agent is fully
introspective about her belief: for every P ⊆W

BP → BBP ¬BP → B¬BP

The basic modal language is defined as:

φ ∶∶= p ∣ ¬φ ∣ φ ∧ φ ∣ Bφ
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where p belongs to a given set of atomic propositions At. Formulas in the language
can be evaluated in a Kripke model M = (F , V ), which is formed by adding a
valuation function V ∶ At → 2W to a Kripke frame F (2W denotes the power set
of W ).

M,w ⊧ p iff w ∈ V (p);
M,w ⊧ ¬φ iff M,w /⊧ φ;
M,w ⊧ φ ∧ ψ iff M,w ⊧ φ and M,w ⊧ ψ;
M,w ⊧ Bφ iff for all v ∈W such that Rwv, M,w ⊧ φ.

In this dissertation, we will write JφKLM to denote the possible worlds in a
modelM which satisfy the truth condition of φ ∈ L. In general we will useM as
the notation for a model in which we evaluate the sentences of a specific language.
In the chapters to follow, we will work with different types of models and different
types of languages. Since which type of model or language we consider should be
clear in each chapter, we will usually leave out the indexes in JφKLM.

Satisfaction of a formula φ in a modelM means that there is a world w in the
model M such that M,w ⊧ φ; and validity of a formula φ in a class of models,
denoted by ⊧ φ, means that for every modelM in the given class and every world
w in the model, M,w ⊧ φ. More generally, Σ ⊧S φ where Σ is a set of formulas
and S is a class of models denotes that for all modelsM from S and all worlds in
M, if all formulas in Σ are satisfied on w (written as M,w ⊧ Σ) then M,w ⊧ φ.

In the case of doxastic logic, Bφ → ¬B¬φ, Bφ → BBφ and ¬Bφ → B¬Bφ,
these three formulas about belief, together with axiom system K, form axiom
system KD45 (Table 1.1).

Table 1.1: Axiom system KD45
Propositional Tautologies and Modus Ponens
RE: from ⊢KD45 φ infer ⊢KD45 Bφ

K: ⊢KD45 B(φ→ ψ)→ (Bφ→ Bψ) D: ⊢KD45 Bφ→ ¬B¬φ
4: ⊢KD45 Bφ→ BBφ 5: ⊢KD45 ¬Bφ→ B¬Bφ

The symbol ⊢KD45 in the table denotes deducibility in the axiom system KD45.
With different axiom systems, the subscript varies. We use Σ ⊢Λ φ to denote the
deducibility of φ from Σ in the axiom system Λ, which in this dissertation means
that ⊢Λ φ or that there are ψ1, . . . , ψn ∈ Σ such that ⊢Λ (ψ1 ∧ . . . ∧ ψn)→ φ.

The axiom system KD45 is strongly complete with respect to the class of
Kripke models whose R is serial, transitive and Euclidean, denoted by STE, which
means that

Σ ⊧STE φ iff Σ ⊢KD45 φ .

A weaker form of completeness, called “weak completeness”, refers to a special
case of strong completeness in which Σ = ∅.

The concept of consistency is always associated with an axiom system. A
set of formulas Σ is consistent with respect to an axiom system Λ if and only if
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Σ ⊬Λ �, where � ∶= p ∧ ¬p. So the hierarchy of consistency that we introduced
in Section 1.1 can only be rigorously defined with respect to a specific axiom
system. Take the axiom system KD45 as an example. We say an agent’s belief
which consists of a set of propositions Π is n-consistent with respect to KD45
if and only if for all subsets Σ ⊆ Π with cardinality l ≤ n, Σ ⊬KD45 �; and Π is
∞-consistent if and only if for all finite subsets Σ ⊆ Π, Σ ⊬KD45 �.

What we have just introduced is doxastic logic for a single agent. This logic
can be easily extended to the multi-agent setting so that some notions of group
belief can be defined, for example, distributed belief, everyone’s belief and com-
mon belief. To proceed we only need to index the accessibility relation with
symbols representing agents. Given a set of agents Ag, the multi-agent model is a
structure (W,Ra, V ) where a ∈ Ag. Correspondingly, we need to index the belief
operator with symbols, for example, Baφ.

For simplicity, let’s assume Ag is finite. In this setting, “everybody believes
φ” can be simply defined as

Eφ ∶= ⋀
a∈Ag

Bφ .

Common belief can be understood to be infinitely iterating the operator for ev-
eryone’s belief, which is, nevertheless, inexpressible directly in doxastic logic.
However, there is an elegant way of defining common belief in doxastic logic
which is equivalent to infinitely iterating the operator E. For more details, we
refer readers to (Fagin et al., 1995, Section 2.2).6 The only point we want to
bring up here is that common belief is a very strong notion in the sense that it
is very hard to meet its requirement, since everyone’s belief, implying a form of
consensus, is already a very strong notion.

Besides everyone’s belief and common belief, distributed belief is another no-
tion of group belief studied in doxastic logic. Let RD be a binary relation on W
defined as

RD = ⋂
a∈Ag

Ra .

Distributed belief D is then define as

M,w ⊧Dφ iff for all v ∈W such that RDwv, v ∈ JφK
Distributed belief as defined in this way can be debated as it presumes that the
group can function as a single agent, collecting everyone’s beliefs and closing it
under logical consequences so that one can extract as much information as possi-
ble. At the same time, the here defined concept of distributed belief cannot deal
with any inconsistency between different agents’ beliefs. If any conflict embedded
in the group members’ beliefs appears, distributed belief becomes inconsistent.

6 Although Fagin et al. (1995) is mainly about knowledge, technically, what is discussed
about common knowledge in its Section 2.2 also applies to the concept of common belief in
doxastic logic.
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The relation between distributed belief, everyone’s belief and common belief
reflects the tension mentioned in the introduction. Common belief implies ev-
eryone’s belief, and everyone’s belief implies distributed belief. Although what
constitutes everyone’s belief are fully consistent, a group can rarely reach con-
sensus. Although a group’s distributed belief includes more than every group
member’s beliefs, it may sometimes explode because of its inconsistency.





Chapter 2
Argumentation and Belief

Once when Confucius was walking through a marketplace, he saw
two children who looked like they were arguing heatedly over some-
thing. Confucius got curious and went over to ask them what their
contention was.

One child said, “I say the sun is nearer us when it is rising and
gets farther away at midday.”

The other child immediately said, “I say the sun is farther away
when it is rising and nearer us at midday.”

The one who spoke first then said, “The sun looks bigger when it
is at the horizon and gets smaller as it reaches noon. Don’t things
look smaller when they are far away and bigger when they are near?”

The second child was not daunted. He said, “The sun is hotter at
noon than when it rises in the morning. Isn’t something hotter when
it is near and cooler when it is farther away?”

Both children then pestered Confucius to answer their questions.
Confucius was stumped. He told them he couldn’t tell which of them
was correct.

The children laughed and said, “Hey, you’re supposed to be a
learned man, and you can’t even answer our questions!”

(Lieh-Tzu)1

1The translation is from Wong (2001, Part five, Section 52)

15
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2.1 Introduction
In the first Chapter, we mentioned that the agent’s doxastic attitudes could be
divided into multiple layers according to its level of consistency. Information we
are receiving every day is not guaranteed to be consistent at all. The man selling
shields and spears (in the story mentioned in Section 1.1.1) lived not only in an-
cient China but also lives in every corner of our modern world. There is no doubt
that the agent’s doxastic attitudes should not allow any inconsistent information
of this type. However, there is no reason to stop any self-consistent information
from entering the first stratum of the agent’s doxastic attitudes. The agent ac-
cepts every piece of self-consistent information as evidence. Different pieces of
evidence may contradict each other, but none of them should be contradictory
itself.

In the quotation at the beginning of this Chapter, Confucius, one of the great-
est ancient Chinese philosophers, could not decide which child is right, because he
did not have any other further information which can help determine the answer.
Evidence from neither child breaks through the first layer and transforms into
Confucius’s belief. 2

The agent’s evidence is the basis for her belief. But not every piece of the
agent’s evidence is eligible to be the agent’s belief. Otherwise, Confucius would
have believed both that “the sun is farther away when it is rising and nearer us
at midday” and that “the sun is nearer us when it is rising and gets farther away
at midday” simultaneously. Then under what conditions is the agent’s evidence
eligible to be belief? van Benthem and Pacuit (2011) initiated the research on
this question from a logicians’ perspective, bringing the hidden concept – evidence
into the spotlight. A series of works follow this line of thought (van Benthem,
Fernández-Duque and Pacuit, 2012; van Benthem, Fernández-Duque and Pacuit,
2014; Baltag, Fiutek and Smets, 2016; Baltag, Bezhanishvili, Özgün and Smets,
2016a; Liu and Lorini, 2016; Baltag and Occhipinti, 2017), extending and im-
proving on the idea and the formal setting in van Benthem and Pacuit (2011).
Besides these works, some other papers (Égré, Marty and Renne, 2014; Grossi
and van der Hoek, 2014) also shed light on the question, although they focus
more on how belief is justified by evidence or arguments rather than how belief
is built upon evidence.

Given the varieties of the answers to the question proposed in the literature,
our work continues and builds further on this line of research. We feature the
agent’s reasoning as the driving force behind the formation of belief based on
evidence, which has been indicated in van Benthem and Pacuit (2011) through
the study of an evidence-based notion of belief and the agent’s reasoning about
evidence (dynamics of evidence). The novelty of our proposal in this chapter will

2 The story itself does not necessarily have any implication about Confucius’s internal doxas-
tic state. From the perspective of behaviourism and for our purpose of illustration, nevertheless,
it should cause no confusion when we make a conjecture about Confucius’s belief.



2.1. Introduction 17

lie in the focus on a specific type of reasoning – argumentational reasoning, as it
is called in Dung (1995, p.323).

Roughly, the idea of argumentational reasoning is that a statement is
believable if it can be argued successfully against attacking arguments.
In other words, whether or not a rational agent believes in a statement
depends on whether or not the argument supporting this statement
can be successfully defended against the counterarguments.

Why did we suddenly start talking about arguments rather than evidence?
Despite its multiple meanings, in this thesis, “argument” only refers to “a set of
reasons that show that something is true or false, right or wrong”. In the sense
of conferring justification, it is quite similar to what evidence means (Conee and
Feldman, 2004). They both refer to information accepted by the agent as her
reasons for supporting something. However, “argument” emphasises more the
structural property of information. 3 When we refer to one piece of evidence as
an “argument”, we stress that it is achieved by combining and organising different
pieces of evidence in a logical way. For example, the three pieces of information
given by the first child, “the sun is nearer us when it is rising and gets farther
away at midday”, “the sun looks bigger when it is at the horizon and gets smaller
as it reaches noon”, and “things look smaller when they are far away and bigger
when they are near” are accepted by Confucius as evidence. By combining them,
Confucius gets a new piece of evidence which is taken as an argument, supporting
“the sun is nearer us when it is rising and gets farther away at midday”.

Another reason to use the term “argument” is that we assume that the agent’s
collection of evidence can be organised as an argumentation. By “argumentation”,
we mean a set of arguments with attack relations between them. In an argumen-
tation, an argument attacks or is attacked by other arguments which contradict
it. For example, the arguments of the two children in the story attack each other.
When Confucius heard the two arguments, he internalised them. The two ar-
guments became a part of the argumentation happening in Confucius’s mind.
Although information is not always presented to the agent in the form of argu-
mentation, nothing stops the agent from structuring her collection of evidence
into an argumentation. The argumentational reasoning described in the quote
from Dung (1995) can thus be employed by the agents to form her belief based
on the argumentation in her mind.

After reviewing the work in van Benthem and Pacuit (2011) and Baltag,
Bezhanishvili, Özgün and Smets (2016a) in Section 2.2, we will present the
framework called “topological argumentation model” in Section 2.3, where the
new notion of belief is defined based on the agent’s argumentational reasoning.
As the name of the framework indicates, we bring together two seemingly un-
related areas – topological semantics for evidence (Baltag, Bezhanishvili, Özgün

3 Such an emphasis can also be found in Toulmin (1958).
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and Smets, 2016a) and formal argumentation theory (Dung, 1995; Caminada and
Gabbay, 2009; Gabbay et al., 2016). This fusion results in a new notion of belief
called “grounded belief” which is a natural weakening of the topological notion
of belief – justified belief – proposed in Baltag, Bezhanishvili, Özgün and Smets
(2016a). Moreover, it differs from the latter concerning the principle of closure
under conjunction, which fails for grounded belief. In the same section, we show
what conditions of the attack relation can save this failure. More philosophi-
cal analysis of the failure of closure under conjunction will follow in Section 2.6,
which reveals a tension between grounded belief and justified belief. Before that,
Section 2.4 and Section 2.5 study respectively the logic of grounded belief and
the logic where both grounded belief and the notion of “having an argument for
... ” can be expressed. The logic in Section 2.5 will also play an essential role
in Chapter 3, where we try to relieve the tension between grounded belief and
justified belief.

2.2 Evidence Model and Topology of Evidence
In this section, we introduce the work about how the agent’s belief is based on
evidence in van Benthem and Pacuit (2011) and Baltag, Bezhanishvili, Özgün
and Smets (2016a), which lay the groundwork for what we are going to develop.

In Section 2.1, we have introduced roughly the notions of evidence and argu-
ment. In this section, we will make them precise.

Logicians tend to view information as a set of possible states of affairs or
possible worlds. In the sense of being informational, each piece of evidence can
also be treated as a set of possible states of affairs. This is exactly what van
Benthem and Pacuit (2011) do: given a non-empty set of possible worlds W ,
each piece of evidence accepted by the agent is modeled as a subset of W .

2.2.1. Definition ((Uniform) evidence model (van Benthem and Pacuit, 2011)).
A (uniform) evidence model is a tuple M = (W,E0, V ) where

• W ≠ ∅ is a set of possible worlds;

• E0 ⊆ 2W − {∅} is a family of non-empty subsets of W , called basic evidence
collection;

• V ∶ At→ 2W is a valuation function for a given set At of atomic propositions.

The family E0 is required to include the whole set of possible worlds W (i.e.
W ∈ E0).

Note that the evidence model we present here is actually the uniform evidence
model in van Benthem and Pacuit (2011). E0 is world-dependent in an evidence
model while world-invariant in a uniform evidence model. To illustrate the idea
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of evidence-based belief, a uniform evidence model is sufficient. So for simplicity,
we will always assume that E0 is world-invariant.

E0 includes all the pieces of evidence the agent acquires and accepts. We
call E0 the agent’s basic evidence collection. Since the agent would not accept a
contradiction as evidence, the empty set is not allowed in E0. On the other hand,
due to the optimism of the logicians, the agent is always armed with tautologies as
her evidence, i.e., W ∈ E0. Despite the agent’s capability of doing logic, she may
not be able to resolve the conflict between different pieces of evidence immediately.
So there can be pieces of evidence in E0 which contradict each other. That is, it
is allowed in the evidence model that there exist Q,Q′ ∈ E0 such that Q∩Q′ = ∅.

The existence of the conflict between different pieces of evidence in the agent’s
basic evidence collection does not mean that the agent accepts the conflict. In-
stead, it provides the impetus for the agent’s action of resolving the conflict. The
agent has achieved some order by rejecting contradiction in the chaos of incom-
ing information. Now the task becomes harder: she needs to resolve the conflict
among pieces of evidence to achieve more harmony.

What van Benthem and Pacuit (2011) suggests is that the agent should assem-
ble from her basic evidence collection those pieces of evidence which “fit together
well”, and then combine them. To be more precise, “fit together well” means it
satisfies the finite intersection property.

2.2.2. Definition. Given a set of possible worlds W , a family F ⊆ 2W has the
finite intersection property when the intersection of every finite subset of F is
non-empty.

By collecting those pieces of evidence which fit together well, the agent obtains
maximal bodies of evidence.

2.2.3. Definition ((Maximal) body of evidence). Let M = (W,E0, V ) be an
evidence model. A body of evidence F ⊆ E0 is a subfamily of E0 which has
the finite intersection property. A body of evidence is maximal if it cannot be
properly extended to any other body of evidence.

By “combining” a maximal body of evidence F , we refer to the idea of taking
the intersection ⋂F . Hence through a series of collections and combinations, the
agent ends up with a set

{⋂F ⊆W ∣ F a maximal body of evidence } .

Note how all members in this set are in conflict with each other: given any two
different maximal bodies of evidence F1 and F2, ⋂F1 ∩ ⋂F2 = ∅. The agent
manipulates her basic evidence collection logically and puts it in a logical shape.
It is now clear where all the hidden conflicts among her pieces of evidence lie. The
remaining task is a matter of choice – which maximal bodies of evidence should
be picked.
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The agent modeled by van Benthem and Pacuit (2011) is very conservative, so
she decides to take all the maximal bodies of evidence into account before having
any reason to reject any one of them.

2.2.4. Definition (Belief à la van Benthem and Pacuit – evidence-based belief).
The agent has evidence-based belief of a proposition P ⊆ W if and only if every
maximal body of evidence F ⊆ E0 supports P , i.e., ⋂F ⊆ P .

What is a little surprising is that according to Definition 2.2.4 the agent may
believe a contradiction, as illustrated in Example 2.2.5.

2.2.5. Example. Consider the evidence model (N,E0 = {[n,+∞) ∣ n ∈ N},∅).
Note how E0 itself is a body of evidence and, moreover, is the unique maximal
one. But ⋂E0 = ∅, and thus the agent believes ∅.

The contradiction rejected at the gate of the agent’s basic evidence collection
sneaks into the agent’s realm of beliefs. The reason for this phenomenon lies in
the tension between the agent’s limited ability to combine finite pieces of evidence
when collecting maximal bodies of evidence and what is required by the notion
of belief in Definition 2.2.4 – the ability to combine infinite pieces of evidence.

In van Benthem and Pacuit (2011), the authors also focus on logics of dynam-
ics of evidence change, including evidence addition, evidence removal, evidence
upgrade and evidence combination. Among these types of evidence dynamics,
evidence combination (#) is of particular importance for understanding the later
development of an evidence-based notion of belief in Baltag, Bezhanishvili, Özgün
and Smets (2016a) and this chapter. According to its definition (van Benthem
and Pacuit, 2011, Definition 4.19), by applying the operation of evidence com-
bination, the basic evidence collection E0 becomes E# which is the smallest set
closed under intersection and containing E0. Note that E# is closed under non-
empty intersection rather than finite non-empty intersection. It reflects what
is endorsed by the definition of evidence-based belief (Definition 2.2.4) about
the agent’s ability to combine infinite pieces of evidence. However, what is not
shared by the definition of evidence-based belief is the requirement of the non-
emptiness of the infinite intersection, which then reflects the discrepancy between
the mechanism of ensuring consistency (maximal body of evidence) in evidence-
based belief and the agent’s infinite ability to combine evidence. There is no way
of ensuring the consistency of combining infinite pieces of evidence, although the
agent is endowed with the ability of infinite combination.

It is an involved issue whether the discrepancy is inherent to the internal
state of any human being or not. Without touching on this knotty problem,
however, just out of the temptation of logicians, consistency is taken as a desirable
property. So an attempt is made to adapt the notion of evidence-based belief
in van Benthem and Pacuit (2011) by Baltag, Bezhanishvili, Özgün and Smets
(2016a) using a topological evidence model. Its strategy is to limit the agent’s
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ability to combine evidence, which is embodied in the requirement of a topology
that it is closed under finite intersection and a definition of belief based on the
topology.

2.2.6. Definition (Baltag, Bezhanishvili, Özgün and Smets (2016a)).
A topological evidence model M = (W,E0, τE0 , V ) extends an evidence model
(W,E0, V ) (Definition 2.2.1) with τE0 , the topology over W generated by E0. 4

For simplicity, and when no confusion arises, τE0 will be denoted simply by τ .

The elements of a topology are called open sets. The open sets in τE0 are all unions
of finite intersections of elements of E0. These unions and finite intersections can
be seen as the agent’s logical manipulation of her basic evidence. Hence each
open set in τE0 is implicitly accompanied by its logical structure concerning how
they are generated. Following Baltag, Bezhanishvili, Özgün and Smets (2016a),
we call the non-empty open sets in τE0 “arguments”. More justification for using
this term can also be found in Özgün (2017, Section 5.2.2).

Take a body of evidence (Definition 2.2.3) F ⊆ E0. If F is infinite, ⋂F is not
necessarily an argument. If F is finite, ⋂F must be an argument. Now take a
maximal body of evidence Fmax ⊆ E0. Even if ⋂Fmax is not an argument, for
every finite subset Ffin ⊆ Fmax , ⋂Ffin is an argument. The notion of belief in
Definition 2.2.4 leaves a fissure in the stratum of argument from which it enters
into an area where the agent has no control. Therefore, to keep the notion of
belief based on a solid stratum of arguments, instead of asking whether every
maximal body of evidence Fmax supports P ⊆ W , Baltag, Bezhanishvili, Özgün
and Smets (2016a) asks whether each finite body of evidence can be strengthened
to a certain finite body of evidence which supports P . Recall that “a body of
evidence F supports P” means ⋂F ⊆ P . And “strengthened to a certain finite
body of evidence” means extending the body of evidence by adding more pieces
of evidence while keeping it consistent.

2.2.7. Definition (Baltag, Bezhanishvili, Özgün and Smets (2016a)). LetM be
a topological evidence model (W,E0, τ, V ). The agent has justified belief of a
proposition P ⊆W , denoted by BelP if and only if every finite body of evidence
can be strengthened to a certain finite body of evidence which supports P (i.e.,
for every finite body of evidence F ⊆ E0 there is a finite body of evidence F ′ ⊆ E0

such that F ⊆ F ′ and ⋂F ′ ⊆ P ).

It turns out that this topological notion of belief satisfies the axioms of the stan-
dard doxastic logic KD45. The agent’s beliefs thus achieve full consistency, which
may comfort logicians a lot. Besides logicians, the topological notion of belief may
also intrigue a topologist, because the topological notion of belief is, in fact, a

4 A topology over a set X ≠ ∅ is a family τ ⊆ 2X containing both X and ∅, and closed under
finite intersections and arbitrary unions. The topology generated by a given set E ⊆ X is the
smallest topology τE over X such that E ⊆ τE .
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purely topological notion. As Proposition 2 in Baltag, Bezhanishvili, Özgün and
Smets (2016a) shows, BelP holds in a topological evidence model if and only if
there is a dense open t in the topology of the model such that t ⊆ P .

Not everyone is happy, however, with the topological notion of belief. Recall
the definition of dense opens in a topology.

2.2.8. Definition. Given a topological space (X,τ) where τ is a topology over
the set X, t ∈ τ is a dense open if and only if it intersects with all the other
nonempty opens in τ .

Thus the equivalence shown in Proposition 2 of Baltag, Bezhanishvili, Özgün
and Smets (2016a) implies that the topological notion of belief requires what
the agent believes should be supported by an argument which is consistent with
any other arguments. 5 Such a requirement indicates that every argument is
equally important and no argument should be ignored when deciding what to
believe. The possible consequence is that the agent is too conservative to believe
anything. Our work in the next section tries to make the agent bolder.

2.3 Belief Grounded on Arguments

2.3.1 Topological argumentation model
Let us get back to the example of Confucius (on page 15). Confucius got two
arguments which attack each other. Now consider a modern astronomer who is
reading this story about the debate between the two children. Of course, she
knows the right answer to the question. Moreover, she has a scientific argument
which supports her answer. Denote the argument for the right answer in the
astronomer’s mind by A, the first child’s argument by B; and the second child’s
argument by C. In the mind of the astronomer, B and C attack each other and
A attacks both B and C, but neither B nor C attacks A.

For an agent, it is possible that some arguments in her mind defeat some
others, just as in the case of the astronomer. There is no reason for always
treating all the arguments on a par. The topological notion of belief, however,
never discriminates in favour of any side when two arguments conflict with each
other,6 in part because the topological evidence model does not provide further
information about how the agent evaluates her arguments.

To equip the model with the ability of specifying the attack relation between
different arguments as in the mind of the astronomer, we add an “attack” relation
↢ to the topological evidence model:

5 We will also use “an argument t ∈ τ supports P” to express t ⊆ P .
6 In a topological evidence model, two arguments t, t′ ∈ τ conflict with each other if and only

if t ∩ t′ = ∅.
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2.3.1. Definition (Topological argumentation model). A topological argumen-
tation model is a tuple M = (W,E0, τE0 , ↢, V ) which extends a topological ev-
idence model (Definition 2.2.6) with a relation ↢ ⊆ (τ × τ), called the attack
relation (with t1 ↢ t2 read as “t2 attacks t1”), which is required to satisfy the
following three conditions:

1. for all t1, t2 ∈ τ : t1 ∩ t2 = ∅ if and only if t1 ↢ t2 or t2 ↢ t1;

2. for all t, t1, t′1, ∈ τ : if t1 ↢ t and t′1 ⊆ t1, then t′1 ↢ t;

3. for all t ∈ τ ∖ {∅}: ∅↢ t and t /↢ ∅.

The three conditions imposed on the attack relation ↢ are self-explanatory. Due
to the first condition, the model can deal with the case of the astronomer, for
whom the attack relation is not symmetric. The second condition says that if t
attacks t1, then it should also attack any stronger arguments. The last condition
confirms the priority of all arguments over a contradiction.

In a topological argumentation model, the topology τ , together with the attack
relation ↢, represents the argumentation happening in the agent’s mind. We
denote it by Aτ = (τ,↢) and call it “the agent’s argumentation framework”. Next
we address the question: how the agent reasons in her argumentation framework
to form her belief.

2.3.2 Grounded belief
To answer the above question, recall the quote on page 17 and pay attention
to a keyword in it – successfully defended. According to Dung, a statement is
believable if and only if there is an argument supporting the statement which can
be successfully defended against any other counterarguments. In Dung (1995), he
proposes several different ways of formalising the idea of “successfully defended”,
as grounded semantics, preferred semantics and stable semantics. Here, we adopt
grounded semantics.

Let us first illustrate the intuitive idea behind the formal definition of the
defending relation in an agent’s argumentation framework before we present it
formally.

2.3.2. Example. Consider the topological argumentation model

M123 = ({1,2,3},E0 = {{1},{2},{3}}, τ = 2{1,2,3},↢, V ) (2.1)

where {1} ↢ {2},{1} ↢ {3},{1} ↢ {2,3},{2} ↢ {1,3},{3} ↢ {2},{3} ↢ {1},
{3} ↢ {1,2} and {1,3} ↢ {2}, and the empty open is attacked by all opens in
τ , as shown in Figure 2.1 where ↢ is draw as a plain arrow without the tail.
Alternatively, we can draw the agent’s argumentation framework for M123 as a
graph (Figure 2.2). Note that the attack relations involving the empty open are
not drawn.
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{1,3}

{1,2}

{2,3}

Figure 2.1: The topological argumentation model M123

1 3

2

2,3 1,2

1,3 1,2,3

Figure 2.2: The agent’s argumentation framework for M123

From the graph in Figure 2.2, we can see that argument {1} is attacked
by argument {3}. Meanwhile, {3} is attacked by {1,2}. In this case, we say
that argument {1,2} defends argument {1} from its counterargument {3}. For
the same reason, {1,3} defends {1} from its another counterargument {2}. Do
arguments {1,2} and {1,3} together defend {1}? No, because they do not defend
{1} from the attack of {2,3}. The intuition is that for an argument to be defended
by a set of arguments, the set of arguments has to defend the argument from all
of its counterarguments. This intuition leads us to the following formal definition
of defending in a topological argumentation model.

2.3.3. Definition (Defending). Given a topological argumentation model M,
an argument t ∈ τ is defended by a set of arguments X ⊆ τ if and only if for all
arguments y ∈ τ such that t↢ y, there is an argument x ∈X such that y ↢ x.

According to this definition, {1} in Figure 2.2 is not defended by any set of
arguments , and {2} is defended by itself. Then can {2} be defended successfully
according to grounded semantics?

The following function is key to the introduction of grounded semantics.

2.3.4. Definition (Characteristic function). Given a topological argumentation
model M, the characteristic function dM ∶ 2τ ↦ 2τ is defined as follows:

dM(X) = {t ∈ τ ∣ t is defended by X}

where X ⊆ τ .
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Note that the characteristic function d is monotonic. Thus, since the power
set of τ is a complete lattice, the least fixed point of d can be built up from the
empty set, according to the classical results about the fixed points of a mono-
tonic function on a complete lattice (Arnold and Niwiński, 2001, Theorem 1.2.8
(Knaster–Tarski theorem) and Theorem 1.2.11).

The building procedure can be described as follows. The first step is X1 =
d(∅), including those arguments which can be defended by an empty set. In
other words, these arguments are not attacked at all. Note that dense opens are
all in X1. In the second step, the collected arguments are X2 = d(X1). In the
(α+1)th step, the collected arguments are Xα+1 = d(Xα). For every limit ordinal
β, Xβ = ⋃α≤βXα. Note that for all ordinals α and α′ such that α ≤ α′, Xα ⊆Xα′ ,
because d is a monotonic function. Thus there is an ordinal α in the procedure
such that Xα is the least fixed point of the function d. 7 This implies that for
all β such that β ≥ α, Xβ =Xα, which means that the procedure of accumulation
stops increasing at some point, say Xα, and this is the least fixed point of the
function d.

The existence of such a stopping point of the procedure, which turns out to
be the least fixed point of the characteristic function d, ensures a well-defined
notion of belief as follows:

2.3.5. Definition (Grounded belief). LetM be the topological argumentation
model (W,E0, τE0 ,↢, V ). The agent has grounded belief of a proposition P ⊆W
(notation: BP ) if and only if there is an open set in LFPτ supporting P , that is

BP if and only if ∃ f ∈ LFPτ ∶ f ⊆ P

where LFPτ denotes the least fixed point of the characteristic function dM.

2.3.3 Logical properties of grounded belief and its relation
to justified belief

The readers who are familiar with formal argumentation theory (Dung, 1995) may
realise that the above way in which we have defined grounded belief is nothing
but an application of the grounded semantics in Dung (1995) to the topological
space. Hence it inherits all the nice properties of the grounded semantics. For
example,

2.3.6. Proposition (Conflict-free of LFPτ ). Given a topological argumentation
model M, for all f, f ′ ∈ LFPτ ,

f ∩ f ′ ≠ ∅ .

7 The least fixed point of d is a set of arguments X such that X = d(X) and X = ⋂Y =d(Y ) Y ,
i.e., the least set satisfying Y = d(Y )



26 Chapter 2. Argumentation and Belief

Proof:
Let X0 = ∅, Xα+1 = d(Xα) and when β is a limit ordinal Xβ = ⋃α<βXα. The proof
proceeds by a complete induction on the ordinal β, since ∅ is conflict-free and if
Xβ is conflict-free then Xβ+1 is conflict-free ◻

The conflict-free property of LFPτ ensures the property of mutual consistency
for the agent’s grounded beliefs.

2.3.7. Corollary. Given a topological argumentation model M, if BP holds,
then for all Q ⊆W such that Q ∩ P = ∅, BQ does not hold.

Besides the mutual consistency, the agent’s grounded beliefs are upward-closed
(BP and P ⊆ Q imply BQ), which is implied directly by the definition of grounded
belief. In fact, a stronger claim also holds: LFPτ itself is closed upwards.

2.3.8. Proposition. Given a topological argumentation model, if f ∈ LFPτ and
f ′ ∈ τ satisfies that f ⊆ f ′, then f ′ ∈ LFPτ .

Proof:
Take any f ∈ LFPτ and any f ′ ∈ τ such that f ⊆ f ′. Suppose no one attacks f ′; then
we are done as, by LFPτ ’s definition, every non-attacked element of τ should be
in LFPτ . Suppose otherwise, and let t be one of such opens attacking f ′; it is
enough to find an f ′′ ∈ LFPτ attacking t, as then f ′ would be defended by f ′′ and
thus, by definition, f ′ would be in LFPτ . Now, since t attacks f ′, it should also
attack the stronger f (as required by ↢’s definition); but then, since f is in LFPτ ,
it should be defended by someone in LFPτ , that is, there is a f ′′ in LFPτ attacking
t. This completes the proof. ◻

Are the agent’s grounded beliefs closed under conjunction? No. Example
2.3.2 is a counterexample. LFPτ = {{1,2},{2,3},{1,2,3}} for the topological
argumentation model in 2.1, but {2} ∉ LFPτ .

We will discuss the failure of closure under conjunction in Section 2.6 in more
detail. For now, let us focus on the possible reasons behind the failure of this
closure property, by identifying additional conditions under which the property
holds.

2.3.9. Proposition. LetM be a topological argumentation model and LFPτ the
least fixed point for the characteristic function dM.

• If ↢ is unambiguous (i.e. for all t1, t2, t3 ∈ τ , if t1 ↢ t2 and t2 ↢ t3, then
t1 /↢ t3 and t3 /↢ t1), then LFPτ is closed under intersections;

• If ↢ is symmetric on the set of arguments(i.e. for all t1, t2 ∈ τ ∖ {∅}, if
t1 ↢ t2 then t2 ↢ t1), then LFPτ is closed under intersections.
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Proof:
The following lemma will be useful in this proof.

2.3.10. Lemma. LetM = (W,E0, τE0 ,↢, V ) be a topological argumentation model.
Then, for all f1, f2 ∈ LFPτ , f1, f2 ∈ LFPτ implies f1 ∩ f2 ∈ LFPτ if and only if for
all t ∈ τ , if f1 ∩ f2 ↢ t, then t ∩ f = ∅ for some f ∈ LFPτ .

Proof:
From left to right, take arbitrary f1, f2 ∈ LFPτ . Suppose there is an open t ∈ τ
such that t attacks f1 ∩ f2 but is not in conflict with anybody in LFPτ . From the
latter it follows that nobody in LFPτ attacks t, and thus the attacked f1 ∩ f2 is
not defended by LFPτ ; therefore, f1 ∩ f2 is not in LFPτ .

From right to left, take arbitrary f1, f2 ∈ LFPτ and take an argument t ∈ τ such
that f1 ∩ f2 ↢ t. It implies that there is f ′ ∈ LFPτ such that t ∩ f ′ = ∅. Thus either
f ′ attacks t or else t attacks f ′. The former case implies that there is f ′′ ∈ LFPτ

such that t ↢ f ′′ by virtue of f ′’s membership in LFPτ ; together with the latter
case, i.e. t↢ f ′, we can conclude that there is f ∈ LFPτ such that t↢ f. Hence for
all t ∈ τ such that f1 ∩ f2 ↢ t, there is f ∈ LFPτ such that t↢ f, which implies that
f1 ∩ f2 ∈ LFPτ . ◻

Now, for Proposition 2.3.9. The proof for transitivity proceeds by contrapo-
sition. So take any f1, f2 ∈ LFPτ such that f1 ∩ f2 is not in LFPτ . Then, by Lemma
2.3.10, there is an open t ∈ τ who attacks f1 ∩ f2 (i.e., f1 ∩ f2 ↢ t) and who is not
in conflict with elements of LFPτ (i.e., f ∈ LFPτ implies t ∩ f ≠ ∅). The goal is to
show that ↢ is not unambiguous.

Define t1, t2 and t3 as

t1 ∶= f1 ∩ t, t2 ∶= f2 ∩ t, t3 ∶= f1 ∩ f2,

and note that none of them are empty. Note also that due to the fact that t
attacks f1 ∩ f2 (f1 ∩ f2 ↢ t), t must be in conflict with f1 ∩ f2 ((f1 ∩ f2) ∩ t = ∅);
hence, t1 ∩ t2 = t2 ∩ t3 = t3 ∩ t1 = ∅.

For unambiguity, consider two cases, t1 ↢ t2 or t2 ↢ t1. In the case of
t1 ↢ t2, if t2 ↢ t3, then no matter t1 ↢ t3 or t3 ↢ t1, it is not unambiguous. If
t3 ↢ t2, similarly no matter if t1 ↢ t3 or t3 ↢ t1, ↢ is not unambiguous. The proof
for the case of t2 ↢ t1 follows a similar argument. Therefore, we conclude that ↢
cannot be unambiguous.

For symmetry, assume that↢ is symmetric on the set of arguments. Observe
that LFPτ = {t ∈ τ ∣ ∀x ∈ τ ∖ {∅} ∶ x ∩ t ≠ ∅} which is closed under conjunction. ◻

The condition “unambiguity” tells us that the failure of closure under con-
junction may be caused by the existence of some argument being both a defender
and an attacker of another argument. The condition “symmetry on the set of all
arguments” is interesting not only because of saving the failure of closure but also
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in the sense of building up the connection between grounded belief (Definition
2.3.5) and justified belief (Definition 2.2.7).

In the proof of Proposition 2.3.9 for the case of symmetry, we show that when
↢ is symmetric on τ ∖ {∅}, LFPτ = {t ∈ τ ∣ ∀x ∈ τ ∶ x ∩ t ≠ ∅}. Recall that the
justified beliefs can be equivalently defined as those propositions supported by
some dense open in τ . Observe that

{t ∈ τ ∣ ∀x ∈ τ ∖ {∅} ∶ x ∩ t ≠ ∅} = {t ∈ τ ∣ t is a dense open} .

So when ↢ is symmetric on the set of all arguments, grounded belief and justified
belief are equivalent.

2.3.11. Proposition. Given a topological argumentation modelM, if the attack
relation ↢ is symmetric on the set of arguments τ ∖ {∅}, then Bel P = BP .

Moreover, the following proposition and corollary reveal the general relation
between grounded belief and justified belief.

2.3.12. Proposition. Given any topological argumentation model M,

{t ∈ τ ∣ t is a dense open} ⊆ dτ(∅) .

2.3.13. Corollary. Given any topological argumentation model M, if Bel P
holds, then BP holds.

Therefore, grounded belief allows more propositions to be believed by the agent
than justified belief. The agent becomes less conservative concerning what she
would believe.

Does grounded belief make the agent too bold? After all, it tolerates incon-
sistency, although it forbids mutual inconsistency.

2.3.14. Example. Take Example 2.3.2 and modify the attack relation a little
by removing attack relation from {2} to {1,3}. We get a new topological argu-
mentation model whose LFPτ becomes

{{1,2},{2,3},{3,1},{1,2,3}} .

Obviously, this set is not consistent in the sense of resulting in an empty set by
taking the intersection of all its members.

We will discuss this point in Section 2.6. Before that, we need a further study of
the logic of grounded belief.
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2.4 The Logic of Grounded Belief
In this section, we study the logic of the agent’s grounded belief (GBL). As we
will show, several simple axioms soundly and completely characterise the logic of
grounded belief.

The standard language of doxastic logic serves as the syntax. To emphasise
that the belief operator now denotes the agent’s grounded belief, we use the
typeface B as in the previous section.

2.4.1. Definition (Language of GBL L). Let At be the set of atomic proposi-
tions. The language of GBL L is generated by the following grammar.

φ ∶∶= p ∣ ¬φ ∣ φ ∧ φ ∣ Bφ

where p ∈ At.

Bφ reads as “the agent has a grounded belief of φ”. All the discussions of the
semantic definition of the notion of grounded belief in the topological argumen-
tation model are crystallised in Definition 2.3.5, which leads us to the following
semantics of its logic.

2.4.2. Definition (Semantics of GBL). Given a topological argumentation model
M = (W,E0, τE0 ,↢, V ) and a possible world w ∈ W , the truth conditions of for-
mulas in L are defined as follows,

M,w ⊧ p iff w ∈ V (p)
M,w ⊧ ¬φ iff M,w /⊧ φ
M,w ⊧ φ ∧ ψ iff M,w ⊧ φ and M,w ⊧ ψ
M,w ⊧ Bφ iff there exists f ∈ LFPτ such that f ⊆ JφKM

where JφKM ∶= {x ∈W ∣M, x ⊧ φ} is the set of possible worlds satisfying φ in M
and LFPτ is the least fixed point of the characteristic function dM.

The validity of a formulas in L with respect to a class of topological argumentation
models is defined in a standard way as introduced in Section 1.2.

We have seen two valid formulas in GBL when discussing the logical properties
of grounded belief in Section 2.3.3.

2.4.3. Fact.

⊧ Bφ→ ¬B ¬φ ⊧ B(φ ∧ ψ)→ Bφ ∧ Bψ

In addition, by noticing that the truth condition of Bφ is not world-dependent,
we can easily get the following two valid formulas about grounded belief.

2.4.4. Fact.
⊧ Bφ→ BBφ ⊧ ¬Bφ→ B ¬Bφ
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They indicate that the agent is fully introspective with respect to her grounded
beliefs. Furthermore, it is worth bringing up an implicit assumption about the
agent – logical omniscience. It is embodied in the following two valid statements.

2.4.5. Fact.
⊧ B ⊺ if ⊧ φ↔ ψ then ⊧ Bφ↔ Bψ

The fist validity is due to the fact that W ∈ LFPτ . And the second validity is due
to the way in which Bφ is defined.

Are these valid statement complete for axiomatising the logic? Yes. They
constitute the complete axiom system for the logic of grounded belief. The answer
may seem surprising because the axiom system is relatively simple compared to
how grounded belief is defined semantically. It may be a consequence of the
oversimplification of the language, which is not expressive enough to convey all
the delicacies in the interaction between belief and arguments. Furthermore,
considering that the justified belief in Baltag, Bezhanishvili, Özgün and Smets
(2016a), as a special case of the grounded belief (Proposition 2.3.11 and Corollary
2.3.13), is completely axiomatized by the system KD45, it is not so surprising
that the grounded belief is completely axiomatized by the system EMND45 (see
Table 2.1). According to Chellas (1980, Figure 8.1 on p.237), axiom system EMN
is obtained by taking away the axiom schema C from system EMCN, which
is equivalent to system K. So EMND45 can be understood as the system KD45
without the axiom schema C: (Bφ∧Bψ)→ B(φ∧ψ). Note that the monotonicity
rule denoted by “RM” in Chellas (1980)

from φ→ ψ iner Bφ→ Bψ

is derivable from axiom M and vice versa, when RE is in the axiom system.

Table 2.1: Axiom system EMND45 for GBL
Propositional Tautologies and Modus Ponens

4: Bφ→ BBφ 5: ¬Bφ→ B ¬Bφ
RE: from φ↔ ψ infer Bφ↔ Bψ D: Bφ→ ¬B ¬φ
M: B(φ ∧ ψ)→ (Bφ ∧ Bψ) N: B ⊺

It is well-known that the axiom system EMN is sound and complete with
respect to the class of neighbourhood models that are supplemented (i.e., closed
under supersets) and contain the unit (i.e., the domain is in the neighbourhood)
(Chellas, 1980). Since the axiom system EMND45 extends the axiom system
EMN with axioms 4, 5 and D, it suggests a detour for proving the completeness
result for the logic with respect to topological argumentation models.

2.4.6. Theorem. For all φ ∈ L and all Φ ⊆ L,

Φ ⊢EMND45 φ if and only if Φ ⊧ φ .
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Proof:
See Section A.1. ◻

Although we can see clearly how the agent’s grounded beliefs behave logically,
the syntax of the GBL does not exhaust the richness of the topological argumen-
tation model. In the next section, we turn to a more expressive language in which
we can also talk about the agent’s arguments.

2.5 The Logic of Argument and Belief
This section presents the logic of argument and belief (abbreviated as ABL) where
we can express “the agent has an argument for ...” and “the agent has grounded
belief of ...”. It provides us with the capability of reasoning about the relationship
between these two notions in this logic. The challenge of axiomatization also
comes with the more expressive syntax. They are the two sides of the same coin.

2.5.1. Definition. Let At = {p, q, r, . . .} be a set of atomic propositions. The
language L∀T ◻ of ABL is generated by the following grammar:

φ ∶∶= p ∣ ¬φ ∣ φ ∧ φ ∣ ◻φ ∣ ∀φ ∣ T φ

where p ∈ At.

◻ is the operator for factive combined evidence in Baltag, Bezhanishvili,
Özgün and Smets (2016a), where

E = {⋂F ⊆W ∣ F is a finite body of evidence }

is called the set of combined evidence (see Definition 2.2.3 for the definition
of the body of evidence) and the pieces of factive combined evidence are those
belonging to E and including the actual world. ◻φ is read as “the agent has
factive combined evidence for φ”. ∀ is the universal modality. Rather than
an operator for grounded belief, the last operator T is the operator for “belief
grounded on factive combined evidence”. Compared to the language L◻∀ studied
in Baltag, Bezhanishvili, Özgün and Smets (2016a), we just add the operator
T . We will show later (Proposition 2.5.3) that it is equivalent to start with a
language L∀B◻ including the operator B directly for “the agent has grounded
belief of ...” rather than T . The reason for choosing T rather than B is that it
facilitates the axiomatization and the completeness proof.

As shown in Baltag, Bezhanishvili, Özgün and Smets (2016a), the topological
notion of belief – justified belief Bel – can be expressed in L◻∀:

Bel φ ∶= ∀◇◻φ
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where ◇ ∶= ¬ ◻ ¬ is the dual of ◻.

Similarly, “the agent has an argument for ...” and “the agent has grounded
belief of ...” can be defined syntactically in L∀T ◻:

�φ ∶= ∃ ◻ φ Bφ ∶= ∃T φ

where �φ is the operator for “the agent has an argument for ...” and ∃ ∶= ¬∀¬
is the dual of ∀. To get a more intuitive understanding of these two syntactical
definitions of the operator � and B, let us turn to the semantics of the logic.

2.5.2. Definition. Given a topological argumentation modelM and a possible
world w in it, the truth conditions of formulas in L∀T ◻ is defined as follows:

M,w ⊧ p iff w ∈ V (p)
M,w ⊧ ¬φ iff M,w /⊧ φ
M,w ⊧ φ ∧ ψ iff M,w ⊧ φ and M,w ⊧ ψ
M,w ⊧ ◻φ iff there exists e ∈ E such that w ∈ e and e ⊆ JφK
M,w ⊧ T φ iff there exists f ∈ LFP such that w ∈ f and f ⊆ JφK
M,w ⊧ ∀φ iff W ⊆ JφK

In the truth conditions of ◻ and T , the term “factive” is reflected by the
membership of the actual world w.

Recall that the truth condition of B is “there exists f ∈ LFPτ such that
f ⊆ JφKM” (Definition 2.4.2). Compare it with the truth condition of T . It is
straightforward to see that ∃T φ has precisely the same semantic meaning as B.

The same observation applies to �. The only thing we need to note is the
relationship between “having combined evidence for .. ” and “having an argument
for ...”. The operator � semantically means that there is a piece of combined
evidence e ∈ E such that e ⊆ JφK. This is semantically equivalent to the condition
that there is an argument t ∈ τ ∖ {∅} such that t ⊆ JφK. Hence we interpret �φ
as “the agent has an argument for φ”.

The next valid formula shows that T is also definable by B and ◻:

2.5.3. Proposition.
⊧ T φ↔ (Bφ ∧ ◻φ) (2.2)

Proof:
From left to right, the proof is trivial. The critical fact for proving the direction
from right to left is the closure under superset of the least fixed point LFPτ . ◻

According to Baltag, Bezhanishvili, Özgün and Smets (2016a, Theorem 4),
the following axiom system is sound and complete for the language L◻∀ with
respect to the class of topological evidence models (Definition 2.2.1):

1. propositional tautologies and Modus Ponens;
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2. the S5 axioms and rules for ∀;

3. The S4 axioms and rules for ◻;

4. ∀φ→ ◻φ.

Now, ABL extends the language L◻∀ with the operator T , and extends the topo-
logical evidence model to the topological argumentation by adding the attack
relation ↢. Then what is the sound and complete axiom system for ABL?

Next, we present some formulas whose validity will make them the building
blocks of the axiom system. They embody crucial connections between ◻, T , �
and B. The whole axiom system denoted by “ABS” can be found in Table 2.2

Table 2.2: Axiom system ABS for ABL
Propositional tautologies and Modus Ponens
The S5 axioms and rules for ∀
The S4 axioms and rules for ◻
T φ→ T T φ T φ→ φ
From φ→ ψ infer T φ→ T ψ T ⊺
(T φ ∧ ∀ψ)→ T (φ ∧ ∀ψ) Bφ→ ¬B ¬φ
Bφ ∧ ¬Bψ ∧ ∀((φ ∧ ψ)→ ◻(φ ∧ ψ))→ �(φ ∧ ¬ψ) T φ→ ◻φ
T φ→ ∀(◻φ→ T φ) ∀◇◻φ→ Bφ

2.5.4. Proposition.

⊧ Bφ ∧ ¬Bψ ∧ ∀((φ ∧ ψ)→ ◻(φ ∧ ψ))→ �(φ ∧ ¬ψ) .
Proof:
Given a topological argumentation model M, assume that, in a possible world
w, the agent has grounded belief of φ but does not have grounded belief of ψ
(M,w ⊧ Bφ∧¬Bψ). Moreover, assume that the agent has argument Jφ∧ψKM ∈
τ 8, namely

M,w ⊧ ∀((φ ∧ ψ)→ ◻(φ ∧ ψ)) .

Putting these clues together, we have

M,w ⊧ Bφ ∧ ¬Bψ ∧ ∀((φ ∧ ψ)→ ◻(φ ∧ ψ)) .

The agent has grounded belief of φ in w. It implies that the agent has an
argument f ∈ LFPτ such that f ⊆ JφK. The agent has an argument Jφ ∧ ψKM ∈ τ
and does not has grounded belief of ψ. They together imply that the argumentJφ ∧ ψK cannot be in LFPτ .

8 Note the difference between “the agent has argument for Jφ ∧ ψKM” and “the agent has
argument Jφ ∧ ψKM ∈ τ . The former is expressed by �(φ ∧ ψ).
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Jφ ∧ ψK ∉ LFPτ implies that there must be another argument, denoted by t,
attacking Jφ ∧ ψK but not attacked by any argument in LFPτ . Because t is not
attacked by any argument in LFPτ , t ∩ f is nonempty and hence an argument.Jφ ∧ ψK ↢ t tells us that Jφ ∧ ψK ∩ t = ∅. Therefore f ∩ t ⊆ JφK ∩ (W ∖ Jφ ∧ ψK) =Jφ∧¬ψK. Since t∩ f is an argument we know that the agent has an argument for
φ ∧ ¬ψ,

M,w ⊧ �(φ ∧ ¬ψ) .
◻

2.5.5. Proposition.
⊧ T φ→ ∀(◻φ→ T φ) . (2.3)

Proof:
The proof of the validity of formula 2.3 follows once the following two facts are
observed:

• the satisfaction of T φ in some possible world implies that there is an argu-
ment f ∈ LFPτ such that f ⊆ JφK;

• given any possible world w, if t is a factive argument with respect to w
(which is implied by the satisfaction of ◻φ in w), then t∪ f is also a factive
argument with respect to w belonging to LFPτ .

The membership of t ∪ f in LFPτ relies on the fact that f ∈ LFPτ and Proposition
2.3.8 in Section 2.3.3. ◻

In Section 2.3, we studied the relationship between the justified belief Bel
in Baltag, Bezhanishvili, Özgün and Smets (2016a) and the grounded belief B
(Proposition 2.3.11 and Corollary 2.3.13). We have mentioned that justified belief
Bel is definable in language L◻∀ (Bel φ ∶= ∀ ◇ ◻φ). So Corollary 2.3.13 can be
expressed in ABL by the following valid formula:

⊧ ∀◇◻φ→ ∃T φ . (2.4)

Except for the axioms we have discussed, the other axioms and rules in ABS
are self-explanatory. More interesting theorems and rules can be derived from
the axiom system ABS, as the formula in Proposition 2.5.3 and the formula
∀(φ → ψ) → (Tφ → Tψ). We prove the last one to illustrate how the system
works. More complicated theorems and their derivations in the ABS can be
found in Section 3.5.

2.5.6. Fact.
⊢ABS ∀(φ→ ψ)→ (T φ→ T ψ)
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Proof:
(1) ⊢ (T φ ∧ ∀(φ→ ψ))→ T (φ ∧ ∀(φ→ ψ)) axiom (T φ ∧ ∀ψ)→ T (φ ∧ ∀ψ)
(2) ⊢ (φ ∧ ∀(φ→ ψ))→ ψ axiom T for ∀ and

Modus Ponens
(3) ⊢ T (φ ∧ ∀(φ→ ψ))→ T ψ (2) and

from φ→ ψ infer T φ→ T ψ
(4) ⊢ ∀(φ→ ψ)→ (Tφ→ Tψ) (1),(3) and Modus Ponens

◻

The axiom system ABS is strongly complete and sound with respect to the
class of topological argumentation models.

2.5.7. Theorem. For all φ ∈ L∀T ◻ and all Φ ⊆ L∀T ◻,

Φ ⊢ABS φ if and only if Φ ⊧ φ

Due to the similarity between ABL and the logics with respect to the topolog-
ical semantics studied in (Baltag, Bezhanishvili, Özgün and Smets, 2016a), we
will prove the completeness result with respect to the class of quasi-a-models,
analogous to the quasi-model of Özgün (2017, Section 5.6.5). The differences,
nevertheless, are also noticeable. For example, the attack relation in the quasi-
a-model is nowhere to be found in the quasi-model. And the quasi-a-model we
construct in the proof is Alexandroff (we will define it below), while the quasi-
model is not. So we do not need to adjust the quasi-a-model constructed in the
proof to make it Alexandroff, which will give us the modal equivalence between
the quasi-a-model and the topological argumentation model with respect to the
language L∀T ◻.

2.5.8. Definition (Alexandroff space). A topological space (X,τ) is an Alexan-
droff space if τ is closed under arbitrary intersections, i.e., ⋂A ∈ τ for all A ⊆ τ .

2.5.9. Definition (Quasi-a-model). A quasi-a-model is a tuple

M = (W,E0,⩽,↢, V )

where (W,E0, τE0 ,↢, V ) is a topological argumentation model and ⩽ is a preorder
such that for every e ∈ E0, if u ∈ e, then v ∈ e for all v ∈W satisfying u ⩽ v.

The semantics of language L∀T ◻ in the quasi-a-model stays the same except for
◻:

M,w ⊧ ◻φ iff for all v ∈W such that w ⩽ v,M, v ⊧ φ .

The detailed completeness proof can be found in Section A.2. Here we intro-
duce some definitions and results which will play a key role not only in the proof
of the completeness result but also in Chapter 3.
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2.5.10. Definition (Specification preorder). Given a topological space (X,τ),
its specification preorder is defined by

x ⊑τ y iff for all t ∈ τ, x ∈ t implies y ∈ t

where x, y ∈X.

2.5.11. Definition (Alexandroff quasi-a-model). A quasi-a-model M = (W,E0,⩽
,↢, V ) is called Alexandroff if the topological space in it (W,τE0) is Alexandroff
space and ⩽=⊑τ .

2.5.12. Proposition. Given an Alexandroff quasi-a-model M = (W,E0,⩽,↢
, V ), let M = (W,E0, τE0 ,↢, V ) be its corresponding topological argumentation
model, then for all φ ∈ L∀T ◻,

JφKM = JφKM .

Proof:
The proof for this proposition is the same to the proof of Proposition 5.6.14 in
Özgün (2017), because the only new operator T has the same truth condition in
both M and M. ◻

2.6 Failure of Closure and Rational Belief
It has been shown in Section 2.3.3 that grounded belief fails to satisfy the principle
of closure under conjunction (also called the conjunction rule), which is counted
by many (Hintikka, 1962; Levi, 1973) as a fundamental rationality postulate. In
this section, we examine the principle and its failure for grounded belief in more
detail.

Usually, the debate about the conjunction rule for categorical/binary/all-or-
nothing belief is raised when people try to bridge all-or-nothing belief with the
agent’s numerical belief/degree of belief.9 The lottery paradox (Kyburg, 1961)
reveals the tension between categorical belief and numerical belief, which forces us
to choose either giving up the conjunction rule or allowing belief of contradiction.

Grounded belief, nevertheless, is defined in a purely qualitative way, which
has no explicit dependence on any numerical measurement. What are the causes
and consequences of the failure of conjunction rule for grounded belief?

It is clear that the failure of conjunction rule for grounded belief is not caused
by the agent’s lack of logical reasoning ability, because we assume that the agent

9 An example is the Lockean thesis (cf. Foley (2009); also, see Shi, Smets and Velázquez-
Quesada (2017a, Section 5) for a brief comparison between grounded belief and belief based on
the Lockean thesis).
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is logically omniscient and the topology in the topological argumentation model
represents clearly how the agent can perfectly combine her evidence logically.
Moreover, the topological argumentation model explicitly represents the distinc-
tion and connection between the agent’s logical reasoning, argumentational rea-
soning and grounded belief, which unloads the burden of deductive reasoning
from the agent’s belief. Although the agent’s belief relies and thus reflects the
agent’s reasoning ability, it does not determine it. So the failure of conjunction
rule for grounded belief should not imply the agent’s failure of doing deductive
reasoning.

What is then the real severe consequence of failing to be closed under con-
junction? As we have indicated at the end of Section 2.3, it is the inconsistency.
Grounded belief follows the mutual consistency principle:

If S is a body of reasonably accepted statements, then there is no pair
of members of S, s1 and s2, such that every statement of the language
follows from s1, s2 as premises.

but not the strong principle of consistency:

If S is a body of reasonably accepted statements, then there is no
finite subset of S, s1, . . . , sn, such that every statement of the language
follows from s1, . . . , sn as premises. (Kyburg, 1970, p.59)

There seems to be a dilemma embedded in the agent’s choices of her belief
– either keep following the strong principle of consistency but stay conservative
about what to believe (for example, justified belief) or accept more statements
as beliefs but embrace some inconsistency in the body of beliefs (for example,
grounded belief).

Should we rest easy and be satisfied with a notion of belief with mutual
consistency and failure of conjunction rule? A lot of discussions has been made
on this question (Kyburg, 1970; Leitgeb, 2017). While staying neutral to the
above question, we can ask alternatively: could there be some other notions of
belief striking a better balance between the agent’s boldness and the consistency
of her beliefs than grounded belief? We pursue such a notion in the next Chapter.

2.7 Conclusion
In this section, we proposed a notion of belief – grounded belief, which shows
how the agent starts with her 1-consistent basic evidence collection and reaches
the 2-consistent/mutually consistent collection of successfully defended pieces of
evidence by argumentational reasoning.

We have given a complete axiomatic characterisation of grounded belief. More-
over, we axiomatized the logic in which both grounded belief and arguments can
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be expressed. The interrelationship between grounded belief and argument is
reflected in the axiom system.

One of the reasons for introducing the attack relation is to weigh mutually
contradictory pieces of evidence differently. The same thing can also be done by
introducing a preference relation between pieces of evidence, as suggested by van
Benthem and Pacuit (2011). The difference is that a preference relation can exist
between two pieces of evidence even if they do not contradict each other, while
the attack relation in this chapter is required by us to exist only between mutually
contradictory pieces of evidence. The way we define grounded belief based on the
attack relation may provide new insights on how the work in van Benthem and
Pacuit (2011) can be further developed by adding a preference relation.

Another direction for a further study is the dynamics of argumentation, which
includes not only the dynamics of arguments but also the dynamics of attack re-
lation between arguments. About the dynamics of arguments, van Benthem and
Pacuit (2011) has already investigated several different possible operators through
the approach of dynamic epistemic logic as we briefly mentioned in Section 2.2.
The addition of attack relation certainly brings more interplay between different
arguments and thus a more complex relationship between arguments and belief.
Some papers in formal argumentation theory (Liao, Jin and Koons, 2011; Liao,
2013; Baroni, Giacomin and Liao, 2014) have studied the dynamics of argumenta-
tion from a computational perspective. Together with the works on the dynamics
of belief and evidence (Van Ditmarsch, van Der Hoek and Kooi, 2008; van Ben-
them, 2011; van Benthem and Pacuit, 2011; Baltag, Bezhanishvili, Özgün and
Smets, 2016b), they lay the ground for further exploration of the dynamics of
argumentation and belief in the topological setting.



Chapter 3
Belief by Default and Evidence

A group of blind men heard that a strange animal, called an ele-
phant, had been brought to the town, but none of them were aware
of its shape and form. Out of curiosity, they said:“We must inspect
and know it by touch, of which we are capable”. So, they sought it
out, and when they found it they groped about it.

In the case of the first person, whose hand landed on the trunk,
said “This being is like a thick snake”.

For another one whose hand reached its ear, it seemed like a kind
of fan.

Another person, whose hand was upon its leg, said, the elephant
is a pillar like a tree-trunk.

The blind man who placed his hand upon its side said, ”elephant
is a wall”. Another who felt its tail described it as a rope.

The last felt its tusk, stating the elephant is that which is hard,
smooth and like a spear.

(Parable:Blind men and an elephant)1

1 Wikipedia (2017)

39
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3.1 Introduction
In the previous chapter, we take argumentational reasoning as a way of resolving
the conflicts between different pieces of evidence. By putting priority on one of
the two arguments which attack each other, rather than weighing them equally,
argumentational reasoning prevents the agent from being too unopinionated and
too cautious about what to believe. In comparison with the notion of justified
belief as proposed in Baltag, Bezhanishvili, Özgün and Smets (2016a), agents will
have more grounded beliefs, but on the side of consistency, they have to sacrifice
a bit. Recall that grounded belief is only 2-consistent, but fails to be 3-consistent,
as illustrated in Example 2.3.2,

In this chapter, we try to resolve the tension by taking into consideration a
significant piece in the puzzle of human reasoning – default reasoning.

As human beings, we reason by following some inference rules. For example,
from A and B infer A. But mostly the inference rules we follow are not universally
valid. Consider for example the two statements, birds can fly and mammals do
not lay eggs. We know that not all birds can fly, and some mammals do lay eggs.
However, we still accept these inference rules in the sense of applying them to our
evidence and getting to the conclusions when there is no available information in
conflict with the conclusions. These rules are called default rules and their use for
getting further information and making judgements is called default reasoning.

The blind men in the parable “blind men and an elephant” are doing default
reasoning in the sense of reaching their conclusions based on limited evidence.
The reason for them to be the objects of ridicule is not the fact that they jump to
the conclusion, but rather the fact that they jump to the conclusion from a wrong
premise – what they touched is the whole elephant. So the critical question when
it comes to default reasoning is not whether it should be used but rather how it
should be used.

To be more specific, we ask in this chapter, how default reasoning should be
coordinated with the agent’s argumentational reasoning so that the agent’s belief
based on them is not as stringent as justified belief while maintaining its full
consistency.

The lesson we can learn from the blind men in the parable is that premises
should play as important a role as default rules in default reasoning. Proper
default reasoning depends on the reliability of its premises. Which part of the
agent’s evidence can serve as premises? Recall the function of the agent’s ar-
gumentational reasoning. It fits very well the task of picking pieces of evidence
eligible as premises of default reasoning. Then, should we take what follows by
default reasoning from those premises whose quality is controlled by argumen-
tational reasoning as the agent’s belief? What is the relationship between the
agent’s default reasoning and her belief, given that argumentational reasoning
filters out those pieces of evidence unqualified for premises?

The proposal in this chapter suggests that the agent’s beliefs should be sup-
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ported by all qualified pieces of evidence in the sense of following from them
by default reasoning. For example, if the blind men in the parable were asked
to touch all other parts of the elephant, I guess none of them would stick to
their original answers because their original answers cannot be supported by all
qualified pieces of evidence which were available to them.

Outline of Chapter 3 There are different ways of representing default rules and
formalizing default reasoning in the literature (Geffner, 1992; Boutilier, 1994a;
Veltman, 1996). We will follow the “conditional approach to default reasoning”
proposed in Boutilier (1994a), which can be traced back to Stalnaker (1968);
Lewis (1973); Burgess (1981); Veltman (1985).

Section 3.2 briefly introduces the formalism in Boutilier (1994a), where de-
fault rules are represented as conditionals (if Tweety is a bird, then normally
Tweety can fly) and semantically interpreted through a normality order on possi-
ble worlds. Section 3.3 and Section 3.4 then address the following two questions
respectively:

• how does the formalism of default reasoning fit into the topological setting?

• how does default reasoning apply to the agent’s evidence and, together with
logical reasoning and argumentational reasoning, contribute to the agent’s
beliefs?

It will be shown in Section 3.5 that the new notion of belief – full-support
belief – resulted from taking default reasoning into account in the topological
setting satisfies the conjunction rule and thus the strong principle of consistency
(page 37). Moreover, agents can have more full-support beliefs than justified
beliefs, while having more grounded beliefs than full-support beliefs. All the
results about the logical properties of full-support belief and its relationship with
justified belief and grounded belief can be achieved by an application of the logic
of argument and belief (ABL) developed in Section 2.5.

3.2 Conditional Approach to Default Reasoning
Following Boutilier (1994a), we represent default rules by conditionals using a
connective ↝ in the objective language, in contrast with its representation as a
consequence relation in Kraus, Lehmann and Magidor (1990). For example, “if
Tweety is a bird, then normally Tweety can fly” can be represented as b↝ f . To
express this form of default rules, we first focus on the following formal language.
3.2.1. Definition. Given a set of atomic propositions At, the language of de-
fault rules L↝ is given by the following grammar:

φ ∶∶= p ∣ ¬φ ∣ φ ∧ φ ∣ φ↝ φ

where p ∈ At.
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The semantic model is given by imposing a reflexive and transitive order ⩽
on a set of possible worlds W . v ⩽ u means that possible world u is at least as
normal as possible world v.2 v ⩽ u and u ≰ v will be abbreviated to v < u (u is
more normal than v), and v = u (v and u are equally normal) is the abbreviation
for v ⩽ u and u ⩽ v.

3.2.2. Definition (Normality Model (Boutilier, 1994a)). A normality modelM
is a triple (W,⩽, V ) where W is a non-empty set of possible worlds. The normal-
ity order ⩽⊆W ×W is a reflexive and transitive order on W , and V ∶ At → 2W is
a valuation function assigning to each atomic proposition a subset of W .

The truth conditions for the propositional fragment of L↝ are defined in a stan-
dard way. For φ ↝ ψ, roughly speaking, given a normality model, it can be
semantically evaluated in the model by checking whether those most normal JφK-
worlds are also JψK-worlds.3 To make it more precise, we define the set of most
normal P -worlds in a normality model M as follows 4

max ⩽(P ) = {v ∈ P ⊆W ∣ there is no u ∈ P such that v < u} .

One problem of the definition given above for φ ↝ ψ is that max⩽(P ) can
be empty even if P is not empty, which will make φ ↝ � true where JφK = P .
There are two ways of avoiding this problem. The first one is straightforward –
requiring that for all nonempty subsets P of W max⩽(P ) ≠ ∅. This assumption
is called “limit assumption” in the literature. The second way is generalising the
truth condition of φ↝ ψ so that it functions well even when max⩽JφK is empty.

3.2.3. Definition (Truth condition of ↝ (Boutilier, 1994a)). Given a normality
model, P ↝ Q holds if and only if for all P -worlds v in the model there is a P -
world u such that v ⩽ u and for all P -worlds x satisfying u ⩽ x, x ∈ Q.

If the normality model satisfies the limit assumption then Definition 3.2.3 is
equivalent to the truth condition of ↝ using max⩽. The difference occurs when
max⩽(P ) is empty for some P ⊆ W . The emptiness of the set max⩽(P ) implies
that for all v ∈ P , there is an infinite ascending chain v ⩽ v1 ⩽ v2 ⩽ . . .. Definition
3.2.3 only checks whether in the model for every ascending chain of this kind
there is a world in it, from which on all the worlds are Q-worlds.

2 Note that we do not follow the convention in the literature of conditional logic where v is
taken to be at least as normal as u if v ⩽ u.

3 We will write P -worlds to denote those worlds belonging to P ⊆W .
4 This way of defining a conditional connective in an order structure can be found in the

literature on conditionals, for example, Stalnaker (1968); Lewis (1973). In these works on
conditionals, conditionals are usually defined by a selection function, which is a more general
way. Similar semantics can also be found in several works on nonmonotonic reasoning, for
example, Shoham (1987); Kraus, Lehmann and Magidor (1990). For a more complete review
of the relevant literature, we refer readers to Boutilier (1994b, Section 1.1).
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A further observation, which has appeared in Boutilier (1994a); Baltag and
Smets (2008) and so on, is that Definition 3.2.3 can be expressed in the following
language.

3.2.4. Definition. Given a set of atomic propositions At, the language L[⩽]∀ is
generated from the following grammar:

φ ∶∶= p ∣ ¬φ ∣ φ ∧ φ ∣ [⩽]φ ∣ ∀φ

where p ∈ At.

In this language [⩽] is the standard normal modality defined by the binary relation
⩽ and ∀ is a universal modality which in this single-agent case can be taken as
the S5 knowledge operator.

3.2.5. Definition. Given a normality model M, and a possible world w in it,

M,w ⊧ [⩽]φ iff for all v ∈W such that w ⩽ v, v ∈ JφK;
M,w ⊧ ∀φ iff W ⊆ JφK.

Then ↝ can be syntactically defined in L◻∀ as follows:

φ↝ ψ ∶= ∀(φ→ ⟨⩽⟩(φ ∧ [⩽](φ→ ψ)) (3.1)

where ⟨⩽⟩ ∶= ¬[⩽]¬. Formula 3.1 expresses the same meaning as Definition 3.2.3.
Given a normality model M and a formula φ ∈ L[⩽]∀ as a description of the

agent’s evidence, it can be decided what follows from the agent’s default reasoning
and her evidence, that is, the set {ψ ∈ L[⩽]∀ ∣M ⊧[⩽]∀ φ ↝ ψ}. Therefore, the
agent’s default reasoning can be formalised very elegantly in this framework. The
problem now is to fit this framework into the topological setting where the fuel of
the agent’s reasoning – evidence – is explicitly modelled. After all, without any
evidence, there is nowhere to apply default reasoning, and more seriously, there
may be nowhere to learn any default rules.

3.3 Default Rules, Evidence and Knowledge
Section 3.2 tells us that the default rules accepted by the agent are encoded in a
normality order on a set of possible worlds. How should we consider the agent’s
normality order in a topological argumentation model (Definition 2.3.1)?

The topological argumentation model characterises the agent’s evidence more
explicitly than the normality model. So when considering how the agent ranks
her epistemically possible worlds according to their normality in a topological
argumentation model, we have to take into account the relationship between the
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agent’s evidence and her normality ranking. At least, the normality order should
respect the agent’s evidence.

Given a topological argumentation model M = (W,E0, τE0 ,↢, V ), take ar-
bitrary two possible worlds u and v, if all arguments in τ against u 5 are also
against v, then u should be at least as plausible as v to the agent (van Ben-
them and Pacuit, 2011).6 This way of ranking possible worlds is exactly how the
specification preorder (Definition 2.5.10) for a topological space is defined:

v ⊑τ u iff for all t ∈ τ, u ∉ t implies v ∉ t .

Note that this order is reflexive and transitive but not necessarily connected (for
all v, u ∈W , either v ⊑τ u or u ⊑τ v).

Let v ⊑τ u denote that u is at least as plausible as v. We will abbreviate v ⊑τ u
and u /⊑τ v to v ⊏τ u and abbreviate v ⊑τ u and u ⊑τ v to v◻ τu. Then what is the
relationship between normality and plausibility?

One possible answer is that the normality order should not go against the
plausibility order. To elaborate, if u is at least as normal as v then u is not less
plausible than v, and if u is incomparable with v with respect to normality then
u is incomparable with v with respect to plausibility:

v ⩽ u implies u /⊏τ v and
v ≰ u and u ≰ v imply v /⊑τ u and u /⊑τ v

(3.2)

Or we can require further that the normality order does not go beyond the
plausibility, that is, the other way around of (3.2):

v ⊑τ u implies u ≮ v and
v /⊑τ u and u /⊑τ v imply v ≰ u and u ≰ v

(3.3)

(3.2) and (3.3) together imply that

v ⩽ u if and only if v ⊑τ u . (3.4)

Since the agent’s normality order should respect her evidence, we take (3.2)
to be a reasonable condition on the relationship between the agent’s normality
order and her plausibility order. How about (3.3)? It is fully reasonable to
think that the normality order is finer than the plausibility order because of
some information which cannot be conveyed in the topological representation of
evidence. However, to illustrate how default reasoning can be applied to the
agent’s evidence, it may be wise to take both condition 3.2 and condition 3.3

5 For all t ∈ τ , t is against u if and only if u ∉ t.
6 The plausibility order is widely used in modal logic as a way of modeling conditional belief

(van Benthem, 2007; Baltag and Smets, 2008). The idea of inducing a plausibility order from
a familiy of evidence sets is originally proposed in van Benthem and Pacuit (2011).
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(hence condition 3.4) which will make the formalization simpler rather than to
pursue a more general representation of normality orders. However, we note
that taking ⩽=⊑τ does not implicate that plausibility and normality should be
conceptually identical.

Recall that in Section 2.5, we introduce the logic of argument and belief
and prove it is sound and strongly complete not only with respect to the class of
topological argumentation models but also with respect to the class of Alexandroff
quasi-a-models (Definition 2.5.11). In an Alexandroff quasi-a-model, we have an
order ⩽, which is required to be equal to ⊑τ , and the topological space in the
model is required to be an Alexandroff space (Definition 2.5.8).

3.3.1. Fact. Given an Alexandroff quasi-a-model and any world w in it, since
the topological space in it is an Alexandroff space, it follows by Özgün (2017,
Proposition 3.1.4.2) that

for all v ∈W such that w ⊑τ v, v ∈ P iff there is t ∈ τE0 such that w ∈ t ⊆ P .

This means that we can express default rules in the logic of argument and
belief with respect to Alexandroff quasi-a-models.
3.3.2. Fact. Given an Alexandroff quasi-a-model, if we take ⩽ in it as the agent’s
normality order,

φ↝ ψ ∶= ∀(φ→◇(φ ∧ ◻(φ→ ψ))
where ◻ is an operator for factive evidence and ∀ is an operator for the agent’s
knowledge in the logic of argument and belief.

Therefore, in the case where the agent’s normality order coincides with her
plausibility order extracted from her topology of evidence and the topological
space representing her evidence is an Alexandroff space, the relationship between
the agent’s default rules, knowledge and evidence is crystallised in the above
formula.

By integrating a normality order into the topological argumentation model,
according to the way in which default reasoning is modelled, what the agent
can conclude stay fully consistent when applying her default rules to each piece
of evidence separately. The problem appears when we put the agent’s different
pieces of evidence together. Some of these pieces conflict with each other, which
imply that the conclusions follow from them by default reasoning would mostly
also conflict.

We manage to resolve the inconsistency in the agent’s evidence partly by pick-
ing out those pieces of evidence which can be defended successfully; i.e. those in
the least fixed point of a characteristic function d (Definition 2.3.4). This set
of pieces of evidence are at least pairwise consistent. However, a direct applica-
tion of default rules on successfully defended evidence does not help resolve the
inconsistency fully. Example 2.3.14 illustrates such a situation.
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3.3.3. Example (Example 2.3.14 continued). In the example, all possible worlds
are incomparable with each other with respect to ⊑τ . And the least fixed point
is {{1,2},{2,3},{3,1},{1,2,3}}. So according to the definition of ↝ (Definition
3.2.3),

{1,2}↝ {1,2} {2,3}↝ {2,3} {3,1}↝ {3,1} .

But {1,2} ∩ {2,3} ∩ {3,1} = ∅.

In the next section, we will propose a way in which the application of the agent’s
default rules resolves the inconsistency among the agent’s evidence and thus
achieves a fully consistent set of conclusions. We take this set of conclusions
as the agent’s beliefs and show that the new notion of belief is not as conservative
as justified belief.

3.4 Reason to Believe
To better illustrate the idea behind the new notion of belief featured in this
section, we start with simple cases.

3.4.1 When the strongest argument in LFPτ exists
Consider a topological argumentation modelM whose LFPτ includes an argument
f such that for all f ′ ∈ LFPτ , f ⊆ f ′. In this case, how should the agent’s default
reasoning work (taking ⊑τ as the normality order)? It seems reasonable to collect
all the conclusions following from f by applying her default rules:

{P ⊆W ∣ f ↝ P holds in M}

and take them as beliefs. After all, there is no argument in LFPτ inconsistent
with these conclusions. However, for some f ′ ∈ LFPτ with f ⊂ f ′ there could be
some Q ∈ {P ⊆W ∣ f ↝ P holds in M} such that f ′ ↝ Q does not hold in M.

3.4.1. Example. For example, by deleting the attack relation from {1,3} to {2}
in the topological argumentation model M123 of Example 2.3.2, we can get the
argumentation framework illustrated in Figure 3.1.

1 3

2

2,3 1,2

1,3 1,2,3

Figure 3.1: The agent’s argumentation framework forM123 without {2}↢ {1,3}
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The new least fixed point

LFPτ = {{2},{1,2},{2,3},{1,2,3}}

has {2} as its strongest argument. Note that {1,2}↝ {2} does not hold, because
1 and 2 are incomparable with respect to ⊑τ .

Should this affect the agents’ acceptance of Q (in the example Q = {2}) as her be-
lief? No, because the stronger premise f should have priority over f ′ when f and
f ′ are both defended successfully. The priority of f as the premise in the agent’s
default reasoning over weaker argument f ′ is conditional on the membership of f
in LFPτ . The agent should exploit her successfully defended arguments as much
as possible by default reasoning to extract more information. The agent’s belief
is thus extended by her default reasoning whose quality is controlled by the mem-
bership of the premises in LFPτ . Thus we can summarise the agent’s strategy of
getting beliefs from arguments by default reasoning as follows.

Principle: Strengthen the premise (coming from the agent’s argu-
ments) for default reasoning as much as possible while keeping it
under successful defence.

The problem is that the structure of LFPτ for topological argumentation mod-
els can be much more complicated than the case we have just considered where
we can find the strongest argument in LFPτ . What if there is no open f ∈ LFPτ

such that f ⊆ f ′ for all f ′ ∈ LFPτ?

3.4.2 When there exists a set Mini ⊆ LFPτ
Consider a topological argumentation model M whose LFPτ includes a set of
arguments Mini ⊆ LFPτ such that for all f ∈ LFPτ there is m ∈ Mini satisfying
m ⊆ f and for all m ∈ Mini there is no f ′ ∈ LFPτ satisfying f ′ ⊂ m. Note that in
this subsection we assume that Mini exists.

Assume that Mini is not a singleton. For a more concrete example, we refer
to Example 2.3.2 where Mini = {{1,2},{2,3}}. To which argument in Mini should
the agent apply her default rules? Observe that for all m,m′ ∈ Mini, if m ↝ Q
and m′ ↝ Q′ both hold, then Q ∩Q′ ≠ ∅. So we may expect to define the agent’s
beliefs as those propositions which follow from one of the arguments in Mini:

(a) the agent believes Q in the topological argument modelM if and
only if there is m ∈Mini such that m↝ Q holds in M.

This way of defining the agent’s belief, however, does not avoid the failure of
the conjunction rule. To save the failure, we can strengthen the condition by
requiring that Q follows from all arguments in Mini rather than only one of them:
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(b) the agent believes Q in the topological argument modelM if and
only if for all m ∈Mini, m↝ Q holds in M.

The agent’s belief in this definition is more robust in the sense of enduring all the
tests – supported by all members in Mini through default reasoning. Moreover,
it ensures that the agent’s beliefs are closed under conjunction.

An interesting but a little shocking fact about the two ways of defining belief
is stated in the following proposition.

3.4.2. Proposition. Given a topological argumentation modelM, take its spec-
ification order ⊑τ as the normality order. If Mini ⊆ LFPτ exists, then for all
m ∈Mini and P ⊆W , m ⊆ P if and only if m↝ P holds in M.

This proposition says that the application of default rules to arguments in Mini
does not extend what are supported by the arguments in Mini. It thus implies
that the first way of defining belief in (a) is exactly the way we define grounded
belief given the assumption that Mini exists. And the second way of defining
belief in (b) amounts to taking the set {P ⊆ W ∣ ⋃m∈Minim ⊆ P} as the agent’s
beliefs.

The remaining task of this section is to remove the assumption of the existence
of Mini. As we will see, a similar result (Theorem 3.4.6) to Proposition 3.4.2 also
holds when Mini does not exist.

3.4.3 General case
3.4.3. Example. For a concrete example where Mini does not exist, take W =
N∪{ω} and let E0 = {∅}∪{[n,ω] ∣ n ∈ N}∪{{1}}. The attack relation is specified
as follows: {1} ↢ [n,ω] and [n,ω] ↢ {1} for all n > 1. The whole model 7 is
illustrated in Figure 3.2, where most of the attack relations are left out for the
simplicity of the graph. LFPτ = {[n,ω] ∪ {1} ∣ n ∈ N}. For this model, Mini does
not exist.

1 2 3 ...... ω

Figure 3.2: The model in Example 3.4.3

To deal with more general cases, we generalise the previous way of defining
belief and propose the following formal definition.

7 The attack relation is symmetric, so it can also be seen as a topological evidence model
(Definition 2.2.6).
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3.4.4. Definition (Full-support belief). Given a topological argumentation model
M, take ⊑τ as the agent’s normality order. The agent has full-support belief of
P ⊆ W if and only if for all arguments f ∈ LFPτ , f can be strengthened to an
argument f ′ belonging to LFPτ such that f ′ ↝ P holds in M.
Note that when Mini exists for the topological argumentation model, Definition
3.4.4 is equivalent to the condition that for all m ∈ Mini, f ↝ P holds in the
model. The equivalence hinges on the following fact.
3.4.5. Fact. Given a topological argumentation modelM, take ⊑τ as the agent’s
normality order. For all t, t′ ∈ τ , if t ⊆ t′ and t′ ↝ P holds in M, then t ↝ P also
holds in M.

The following theorem is a generalization of Proposition 3.4.2.
3.4.6. Theorem. Given a topological argumentation model M, take ⊑τ as the
agent’s normality order. If the topological space in M is an Alexandroff space,
then for all arguments f ∈ LFPτ , f can be strengthened to an argument f ′ belonging
to LFPτ such that

f ′ ↝ P holds in M
if and only if for all arguments f ∈ LFPτ , f can be strengthened to an argument
f ′′ belonging to LFPτ such that

f ′′ ⊆ P .

We will provide two ways of proving this theorem. One is a semantic proof which
is given in Appendix B, and the other is a syntactic proof which makes use of
axiom system ABS for the logic of argument and belief (see Section 2.5). The use
of syntactic proof relies on expressing conditions in the theorem in the language
L∀T ◻. So in the next section, we show how this theorem can be expressed and
proved in the logic of argument and belief (ABL). Moreover, we prove the logical
relation between justified belief, grounded belief and full-support belief.

3.5 Full-support Belief in ABL
In this section, we show that full-support belief can be formulated in the logic
of argument and belief with respect to the class of Alexandroff quasi-a-models.
Moreover, since axiom system ABS is sound and complete with respect to the class
of Alexandroff quasi-a-models, we are allowed to make use of ABS to prove The-
orem 3.4.6. The syntactic analysis fully elucidates how justified belief, grounded
belief and full-support belief relate to each other logically.

In this section, we will always work with the class of Alexandroff quasi-a-
models (abbreviated to AQA models), which takes ⊑τ as the agent’s normality
order and requires that the topological space in the model is an Alexandroff space.

In the class of AQA models “the agent has full-support belief of φ” can be
expressed in L∀T ◻ by ∀T̂ T ◇◻ φ.
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3.5.1. Proposition. Let Bf be an operator for full-support belief.

⊧AQA Bf φ↔ ∀T̂ T ◇◻ φ

where T̂ ∶= ¬T ¬.

Proof:
We only outline the main intuition behind the proof. The details can be easily
filled out.

Recall the definition of full-support belief:

• for all f ∈ LFPτ , f can be strengthened to an argument f ′ belonging to
LFPτ such that

• f ′ ↝ JφK.
First notice that “for all f ∈ LFPτ , f can be strengthened to an argument f ′

belonging to LFPτ such that f ′ ⊆ JφK” can be expressed by ∀T̂ T φ� To see why this
is the case, recall the reason why justified belief in Baltag, Bezhanishvili, Özgün
and Smets (2016a), defined as “for every argument t ∈ τ , t can be strengthened
to an argument t′ ∈ τ such that t ⊆ JφK, can be expressed by ∀◇◻φ.

Second, notice that “for all t ∈ LFPτ , t↝ JφK holds in M” is equivalent to

M ⊧AQA ∀T ◇◻ φ .

Statement “for all arguments t ∈ LFPτ , t ↝ JψK holds in M” semantically means
that inM for all arguments t ∈ LFPτ , for all v ∈ t, there is u ∈ t such that v ⊑τ u and
for all w ∈ t satisfying u ⊑τ w, w ∈ JψK. So it is equivalent to M ⊧AQA ∀T ◇◻ ψ.

Combining these two observations, it follows that ⊧AQA Bf φ↔ ∀T̂ T ◇◻φ. ◻

We then reformulate Theorem 3.4.6 as follows:

⊧AQA ∀T̂ T ◇◻ φ↔ ∀T̂ T φ . (3.5)

Next we derive ∀T̂ T ◇◻ φ↔ ∀T̂ T φ from axiom system ABS.
First we prove

3.5.2. Theorem.
⊢ABS ∃T ◇◻ φ→ ∃T φ

Proof:
The key is the axiom (we have unfolded B to ∃T and � to ∃◻)

∃T φ ∧ ¬∃T ψ ∧ ∀((φ ∧ ψ)→ ◻(φ ∧ ψ))→ ∃ ◻ (φ ∧ ¬ψ) .

The first step is to prove that

⊢ ∀((◻◇◻φ ∧ ◻φ)→ ◻(◻◇◻φ ∧ ◻φ)) .
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We will use CPL to indicate the use of tautologies in classical propositional logic.
(1) ◻◇◻φ→ ◻ ◻◇◻ φ Axiom 4 for ◻
(2) ◻φ→ ◻ ◻ φ Axiom 4 for ◻
(3) (◻◇◻φ ∧ ◻φ)→ ◻(◻◇◻φ ∧ ◻φ) (1),(2), axiom K for ◻ and CPL
(4) ∀((◻◇◻φ ∧ ◻φ)→ ◻(◻◇◻φ ∧ ◻φ)) Necessitation rule for ∀

The second step is to prove that

⊢ ¬∃ ◻ (◻◇◻φ ∧ ¬ ◻ φ)

(1) ◻ ◻◇◻ φ→ ¬ ◻ ¬ ◻ φ Axiom T for ◻ and ◇ ∶= ¬ ◻ ¬
(2) ¬(◻ ◻◇◻ φ ∧ ◻¬ ◻ φ) (1) and CPL
(3) (◻ ◻◇◻ φ ∧ ◻¬ ◻ φ)↔ ◻(◻◇◻φ ∧ ¬ ◻ φ) Axiom K for ◻
(4) ¬ ◻ (◻◇◻φ ∧ ¬ ◻ φ) (2),(3) and CPL
(5) ∀¬ ◻ (◻◇◻φ ∧ ¬ ◻ φ) (4) and Necessitation rule for ∀
(6) ¬∃ ◻ (◻◇◻φ ∧ ¬ ◻ φ) (5), ∃ ∶= ¬∀¬ and CPL

The third step is to apply the key axiom we mentioned to the theorems
achieved in the previous steps to get

⊢ ∃T ◻◇◻φ→ ∃T ◻φ

by CPL
The fourth step is to prove that

⊢ ∃T ◇◻ φ→ ∃T ◻◇◻φ .

(1) T ◇◻ φ→ T T ◇◻ φ Axiom 4 for T
(2) T T ◇◻ φ→ T ◻◇◻φ Axiom ⊢ T φ→ ◻φ and Monotonicity for T
(3) T ◇◻ φ→ T ◻◇◻φ (1),(2) and CPL
(4) ∃T ◇◻ φ→ ∃T ◻◇◻φ Axioms and rules for ∀

The last step is to conclude by what achieved in third and fourth step that

⊢ ∃T ◇◻ φ→ ∃T φ .

◻

Second, we prove the direction from left to right of 3.5 (the other direction is
relatively easy whose proof is thus omitted here).

3.5.3. Theorem.
⊢ABS ∀T̂ T ◇◻ φ→ ∀T̂ T φ
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Proof:
The key is what we have just proved:

⊢ABS ∃T ◇◻ φ→ ∃T φ (3.6)

The first step is to prove that

⊢ ∃T T̂ T φ→ ∃T T φ

which is equivalent to proving

⊢ ∀T̂ T̂ ¬φ→ ∀T̂ T T̂ ¬φ

(1) ∀T̂ T̂ ¬φ→ ∀T̂ ¬φ Axiom 4 for T and axioms for ∀
(2) ∀T̂ ¬φ→ ∀∀T̂ ¬φ Axiom 4 for ∀
(3) ∀∀T̂ ¬φ→ ∀T T̂ ¬φ ⊢ ∀φ→ T φ
(4) ∀T T̂ ¬φ→ ∀T T T̂ ¬φ Axiom 4 for T and axioms for ∀
(5) ∀T T T̂ ¬φ→ ∀T̂ T T̂ ¬φ ⊢ T φ→ T̂ φ
(6) ∀T̂ T̂ ¬φ→ ∀T̂ T T̂ ¬φ (1)(2)(3)(4)(5)

The second step is to prove that

⊢ ∀T̂ T ◇◻ φ→ ∃T ◇◻ φ .

(1) ∀T̂ T ◇◻ φ→ ∀T T̂ T ◇◻ φ Axiom 4 for ∀ and ⊢ ∀φ→ T φ
(2) ∀T T̂ T ◇◻ φ→ ∃T T̂ T ◇◻ φ ⊢ ∀φ→ ∃φ
(3) ∃T T̂ T ◇◻ φ→ ∃T T ◇◻ φ The first step of the whole proof
(4) ∃T T ◇◻ φ→ ∃T ◇◻ φ Axiom T for T
(5) ∀T̂ T ◇◻ φ→ ∃T ◇◻ φ (1)(2)(3)(4)

The third step is to prove that

⊢ ∃T ◇◻ φ→ ∀T̂ T φ .

(1) ∃T ◇◻ φ→ ∃T φ Theorem 3.5.2
(2) ∃T φ→ ∃T T φ Axiom 4 for T
(3) ∃T T φ→ ¬∃T ¬T φ Axiom in ABS: ⊢ Bφ→ ¬B ¬φ
(4) ¬∃T ¬T φ→ ∀T̂ T φ ∃ ∶= ¬∀¬, T̂ ∶= ¬T ¬
(5) ∃T ◇◻ φ→ ∀T̂ T φ (1)(2)(3)(4)

At last we can conclude by applying what were achieved in the second and
third step that

⊢ ∀T̂ T ◇◻ φ→ ∀T̂ T φ .

◻
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Therefore, together with the other direction, it follows that

⊢ABS ∀T̂ T ◇◻ φ↔ ∀T̂ T φ .

By the soundness of ABS with respect to the class of AQA models (Theorem
2.5.7), we can conclude that

⊧AQA ∀T̂ T ◇◻ φ↔ ∀T̂ T φ

which is equivalent to Theorem 3.4.6. In Appendix B, a model theoretical proof
of Theorem 3.4.6 can be found. It is interesting to compare these two ways of
proving the same theorem, which represent two different ways of understanding
the same fact.

In the proof of ⊢ABS ∀T̂ T ◇◻φ↔ ∀T̂ T φ, we have proved (the second step)
that

⊢ABS ∀T̂ T ◇◻ φ→ ∃T ◇◻ φ .

Since ∀T̂ T ◇ ◻ φ expresses the definition of full-support belief in the class of
AQA models according to Proposition 3.5.1 and ∃T φ expresses grounded belief,
together with theorem 3.5.2, the formula tells us that full-support belief implies
grounded belief. By noticing that

⊢ABS ∀◇◻φ→ ∀T̂ T ◇◻ φ ,

we know that justified belief implies full-support belief.
So what full-support belief allows the agent to believe is more than justified

belief but less than grounded belief (justified belief implies full-support belief and
full-support belief implies grounded belief). The converse does not hold, as shown
in the following example.

3.5.4. Example. Take the model in Example 2.3.14 and add a world 4 to the
set of possible worlds. So W = {1,2,3,4}. Keep all the attack relations in the
original model the same and add the following new attack relations:

• P ↢ Q for all P,Q ⊆W such that 4 ∈ P and P includes less than 3 worlds
and P ∩Q = ∅;

• P ↢ Q for all P,Q ⊆ W such that P is a singleton and Q includes exactly
three worlds and P ∩Q = ∅

• ∅ is attacked by any other sets.

In this new model, the least fixed point is {P ⊆ W ∣ {1,2} ⊆ P or {2,3} ⊆
P or {1,3} ⊆ P}. Reader can check that in this model the agent has grounded
belief of {1,2} but does not have full-support belief of {1,2}; the agent has full-
support belief of {1,2,3} but does not have justified belief of {1,2,3}.
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Full-support belief satisfies all axioms and rules in the axiom system KD45.
To be more precise, take a language Lf which includes only one modal operator
Bf for full-support belief in the AQA models:

φ ∶= p ∣ ¬φ ∣ φ ∧ φ ∣ Bf φ .

Lf is a fragment of L∀T ◻. For all formulas φ ∈ Lf ,

⊧AQA φ if and only if ⊢KD45 φ .

The proof for the soundness and completeness is not hard, so we will not
include all its details here. We only prove here the validity of conjunction closure
for full-support belief in the class of AQA models.

3.5.5. Proposition.

⊧AQA Bf φ ∧ Bf ψ → Bf(φ ∧ ψ)

Proof:
The proof makes use of Proposition 3.5.1, which builds up the modal equivalence
between Bf φ and ∀T̂ T ◇◻φ in the class of AQA models. Then by ⊧ ∀T̂ T ◇◻
φ↔ ∀T̂ T φ, we only need to prove that

⊧ ∀T̂ T φ ∧ ∀T̂ T ψ → ∀T̂ T (φ ∧ ψ) .

Given an AQA model, assume that for all f ∈ LFPτ there is f ′ ⊆ f such that
f ′ ∈ LFPτ and f ′ ⊆ JφK, and there is f ′′ ⊆ f such that f ′′ ∈ LFPτ and f ′′ ⊆ JψK.

Take an arbitrary t ∈ LFPτ . According to the assumption, there are t′ ⊆ t such
that t′ ∈ LFPτ and t′ ⊆ JφK. By the assumption again, since t′ ∈ LFPτ , there is
t′′ ⊆ t′ such that t′′ ∈ LFPτ and t′′ ⊆ JψK. Because t′′ ⊆ t′ ⊆ JφK and t′′ ⊆ JψK,
t′′ ⊆ Jφ ∧ ψK.

Therefore, for all f ∈ LFPτ , we can find an argument f ′ ⊆ f such that f ′ ∈ LFPτ

and f ′ ⊆ Jφ ∧ ψK. ◻

Therefore, full-support belief strikes a balance between justified belief and
grounded belief, keeping the agent’s beliefs fully consistent while allowing more
to be believed.

3.5.6. Remark. Although in this section, we restrict our attention to the class
of AQA models,

⊧ ∀T̂ T ◇◻ φ↔ ∀T̂ T φ (3.7)

actually also holds with respect to the whole class of topological argumentation
models. But in the class of topological argumentation models, Theorem 3.4.6
cannot be expressed through 3.7. The difference is caused by a change concerning
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the semantic interpretation of ◻. In the class of AQA models, ◻ is not only
an operator for factive evidence support but also a modal operator defined on
the binary relation ⊑τ . They coincide in the class of AQA models. However,
in the whole class of topological argumentation models, they do not coincide;
◻ does not function as the modal operator defined on the binary relation ⊑τ ;
and thus Proposition 3.5.1 does not hold with respect to the class of topological
argumentation models.

3.6 Conclusion
In this Chapter, we take into consideration the role of default reasoning in shaping
the agent’s belief. Hence full-support belief strikes a balance between justified
belief and grounded belief and relieves the tension between believing more and
believing more consistently.

Although the family of notions of belief grows, the logical relations between
them stays relatively simple. Moreover, they fit nicely into the strata of the
agent’s doxastic attitudes divided according to the level of consistency. We draw
a map (Figure 3.3) to guide the tour among these notions of belief and the strata of
the agent’s doxastic attitudes. In the map, we use ∈ to denote that a certain notion
of belief belongs to a certain stratum and thus satisfies that level of consistency.
And we use ⊆ to denote the logical relation between different notions of belief.
The arrows together with different types of reasoning indicate how the agent
travels from one notion of belief to another one. Most importantly, the map is
only valid with respect to the class of AQA models.

In the map, grounded belief and full-support belief are located between jus-
tified belief and evidence/arguments with respect to ⊆. Especially, full-support
belief is between justified belief and grounded belief with respect to ⊆. While
full-support belief keeps fully consistent as justified belief, it is proved to be a
less stringent notion than justified belief. Although grounded belief is even less
stringent than full-support belief, it fails to stay in the core of the doxastic earth.

The comparison of these different notions of belief is made possible by a
unified framework – the logic of argument and belief. Note how justified belief,
evidence/arguments, full-support belief and grounded belief can be expressed and
reasoned about in the logic of argument and belief. Their logical relations are all
encoded in the axiom system of ABL as demonstrated by the syntactic proofs in
Section 3.5.

Semantically, in the logic of argument and belief, it is shown how these notions
are connected with each other through different types of reasoning and different
ways of applying these types of reasoning. It is reasoning that decides what the
agent believes and how she believes it.
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Evidence/Argument: τ 1-consistnecy∈

0-consistnecy

Grounded belief: B 2-consistnecy∈

⋮

Full-support Belief: Bf ∞-consistnecy∈⊆Justified belief

Argumentative reasoning ⊆

Default reasoning ⊆

Figure 3.3: Map of different notions of belief with respect to the class of AQA
models



Chapter 4
Group Belief through Argumentation

4.1 Introduction
In this chapter and the next chapter, we zoom out and study group belief. Dis-
tributed belief and everyone’s belief are two notions of group belief in doxastic
logic. The way distributed belief is defined implicitly assumes that the group
can function as an astute logician by combining different group members’ be-
liefs. However, different group members’ beliefs can be incompatible with each
other. Even though group members are willing to cooperate and learn from each
other by incorporating others’ beliefs, they still need to settle down the issue of
incompatibility between their beliefs. The notion of distributed belief says noth-
ing about how to deal with the incompatibility. Everyone’s belief, on the other
hand, avoids any inconsistency by requiring a consensus among group members
– everyone agrees on the same opinion. However, the consensus is a very strong
requirement, and the notion of everyone’s belief says nothing about how such a
consensus can be achieved.

Therefore, what we aim for in the following two chapters are notions of group
belief satisfying the following two desiderata:

1. they should embody how conflicts between different group members’ beliefs
are resolved;

2. these notions of group belief should strike a balance between distributed
belief and everyone’s belief in the sense of being more consistent than dis-
tributed belief and allowing more to be believed than everyone’s belief.

Debate or argumentation is one of the most natural ways of resolving con-
flicts between different group members’ beliefs. The term “argumentation” in
the previous two chapters refers to a way deliberation happens within someone’s
mind. The more literal meaning of “argumentation”, nevertheless, refers to the
activity of settling issues among a group of agents. In this chapter, we pursue

57
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a notion of group belief by analysing the structure of argumentation among the
group members.

If we assume that a group can combine its group members’ beliefs as effi-
ciently and completely as a logically omniscient single agent combines her pieces
of evidence, then the topological setting in the previous two chapters can be di-
rectly applied. The only thing we need to do is reinterpreting each evidence set
in the basic evidence collection E0 as a group member’s set of doxastically acces-
sible possible worlds. In this chapter, nevertheless, we do not follow the above
assumption. We try to take into account the practical difficulties of coordinat-
ing different group members when logically combining group members’ beliefs.
Concerning the practical difficulties, the closure properties of the topology of ar-
guments in the topological argumentation model are too idealistic to apply to a
group’s argumentation.1

The difficulties of coordination make the holistic view of reasoning and belief
more problematic. Although for a single agent, by assuming that she is logically
omniscient, it is acceptable to formalise her reasoning and belief globally rather
than issue by issue2, in the case of a group, such an idealisation seems unrea-
sonable. If the group members have no idea what to argue for or against, it
is impossible to have argumentation, not to mention the group belief based on
argumentation.

The new setting in Section 4.2 – the multi-agent argumentation model – thus
takes the differences between a group and a logically omniscient agent into ac-
count. One consequence of the differences is the inadequacy of a direct application
of the semantics of grounded belief to group belief in the multi-agent argumenta-
tion model. We will explain the reason for the inadequacy and then propose a no-
tion of group belief based on the greatest fixed point of the characteristic function
in the multi-agent argumentation model, so-called “argumentation-based group
belief”. We will also show that the notion of argumentation-based group belief
indeed satisfies the two desiderata.

A logic (the logic of group belief and argumentation, abbreviated to LGBA) is
thus designed to express and reason about argumentation-based group belief and
its relationship with each group member’s belief in Section 4.3. We axiomatise
LGBA and prove the soundness and completeness of the axiom system. At last, in
Section Section 4.4 we discuss some further issues by comparing different notions
of belief and conclude this chapter.

1 This claim partially depends on how we merge models for separate agents into a multi-
agent model. If we take product (Kurucz, 2007, Section 3) rather than fusion (Kurucz, 2007,
Section 2), there might be a topological approach to the study of a group’s argumentation,
as indicated in the topological approach to the study of distributed knowledge and common
knowledge in van Benthem and Sarenac (2004).

2 For a single agent, her reasoning and belief are also issue-driven in practice. Some works
take this factor into account, for example, van Benthem and Minică (2012).
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Related works In the sense of following the approach of modal logic to the
study of Dung’s formal argumentation theory, the logic of group belief and ar-
gumentation is in a similar vein to a series of works by Davide Grossi (Grossi,
2010b,a, 2012, 2013; Grossi and van der Hoek, 2014). Technically speaking, LGBA
has a flavour of a two-dimensional logic, which bears some similarity to the Face-
book and epistemic logic developed in Seligman, Liu and Girard (2013). However,
the differences are also significant:

1. LGBA is blended with ingredients from modal µ-calculus (Venema, 2008)
– an operator for the greatest fixed point of the characteristic function;

2. the interaction between two dimensions is restricted in the syntax of LGBA,
and we do not name each agent in the language.

Section 4.2 and 4.3 are based on Shi, Smets and Velázquez-Quesada (2017b,
Section 4). In the same paper, readers can find more discussion about re-
lated works on belief and argumentation, although in Shi, Smets and Velázquez-
Quesada (2017b) we focus on the individual agent’s belief rather than group belief.

4.2 Multi-Agent Argumentation Frame
In this section, we will introduce the multi-agent argumentation model and pro-
pose a notion of group belief called “argumentation-based group belief”.

4.2.1 Multi-agent argumentation frame (MAF)
Let us start with Dung’s argumentation framework in Dung (1995, Definition 2).

4.2.1. Definition (Argumentation Framework). An argumentation framework
is a pair

AF = (Ag,↢)

where Ag is a set of nodes, and ↢⊆ Ag×Ag is a binary relation on Ag.

Dung interprets Ag in the argumentation framework as arguments and ↢ the
attack relation between arguments. In this section, instead of arguments, we take
Ag in the argumentation framework as agents in a group.

To model each agent’s belief on which group belief should hinge, we extend
Dung’s argumentation framework to multi-agent argumentation frame.

4.2.2. Definition (Multi-agent Argumentation Frame – Part One).
A multi-agent argumentation frame is a structure F = (W,Ag,{↢P}P⊆W , f) where

• W is a non-empty set of possible worlds and Ag a non-empty set of agents;

• ↢P ⊆ Ag×Ag is an attack relation labeled by subsets of W P ⊆W ;
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• f ∶ Ag → 2W is a function assigning to each agent s ∈ Ag a subset of W such
that f(s) ≠ ∅ for all s ∈ Ag.

The addition of a nonempty set of possible worldsW makes it possible to represent
each agent’s belief by assigning each agent a nonempty subset of W using function
f . Moreover, the attack relation is indexed with a subset P of W , which is taken
as an issue on whether P is the case. For different subset P of W , the attack
relation ↢P can be different. s ↢P s′ for s, s′ ∈ Ag means agent s′ attacks agent
s on whether P is the case.

Compared to the topological argumentation model, each agent’s belief in the
multi-agent argumentation frame can be taken as a piece of evidence in the basic
evidence collection E0. There are two differences, reflecting the remarks we made
in Section 4.1: in the multi-agent argumentation model

• there is no topology generated from the collection of each agent’s belief;
and

• the attack relation is issue-variant.

To make sense of the issue-variant attack relation among a group of agents,
we need to impose the following three conditions on it:

4.2.3. Definition (Multi-agent Argumentation Frame – Part Two). The attack
relation ↢P in the multi-agent argumentation frame should satisfy the following
three conditions:

1. s↢P s′ if and only if s↢P s′;

2. if s↢P s′, then

(a) either f(s) ⊆ P or f(s) ⊆ P ; and
(b) f(s) ⊆ P implies that f(s′) ⊆ P ;

3. if s↢P s′ and f(s) ⊆ Q ⊆ P , then s↢Q s′.

The first condition captures the intuition that a debate on whether P is the
case is also a debate on whether P is the case. Condition 2(a) requires that
if an agent has no stance on whether P is the case, then the agent would not
be attacked; Condition 2(b) says (together with 1 and 2(a)) that, when an agent
attacks another agent, they should hold the opposite stances on the issue at hand.
Note that it does not hold in reverse, given these conditions, which means that
there can be two agents who hold the opposite stances but they do not attack
each other. So it is quite different from the requirements on the attack relation in
the topological argumentation model. The last condition states that if s′ attacks
s on her belief of P , then s′ should also attack s on her belief of Q which is
logically stronger than P .
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Given a multi-agent argumentation frame , let

DefP (s) = {s′ ∈ Ag ∣ there is a path s↢P s1 ↢P . . .↢P sn ↢P s′ with even steps}

and

AttP (s) = {s′ ∈ Ag ∣ there is a path s↢P s1 ↢P . . .↢P sn ↢P s′ with odd steps}

for each s ∈ Ag.

4.2.4. Definition (Uncontroversial Attack Relation). ↢P in a multi-agent ar-
gumentation frame is uncontroversial if and only if

DefP (s) ∩AttP (s) = ∅

for all s ∈ Ag.

An important implication of Condition 1 and 2 is that

4.2.5. Proposition. For all P ⊆W , ↢P in the multi-agent argumentation frame
is uncontroversial.

The following example illustrates how the multi-agent argumentation frame
can be used to model some scenarios.

4.2.6. Example. A group of three students cooperates on a home assignment
from a zoology course, which asks them to classify an animal in a picture. Each
student in the group comes up with his answer.

• s1: The animal is a bird.

• s2: The animal is a mammal.

• s3: The animal is a reptile.

After a round of argumentation, given that s1 is attacked by both s2 and s3,
while s2 and s3 attack each other, we can represent the scenario by the following
multi-agent argumentation frame

({b,m, r},{s1, s2, s3},{↢P}P⊆W , f)

with the attack relation given by

↢{b} =↢{m,r} := {(s1, s2), (s1, s3)}, ↢{m} =↢{b,r} := {(s1, s2), (s3, s2), (s2, s3)}
↢∅ =↢{b,m,r} := ∅ ↢{r} =↢{b,m} := {(s1, s3), (s3, s2), (s2, s3)}

and
f(s1) = {b}, f(s2) = {m}, f(s3) = {r}.
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s1 f(s1) = {b}

s2

f(s2) = {m}

b

m

s3

f(s3) = {r}

m r mr

b

r

Figure 4.1: The multi-agent argumentation frame for Example 4.2.6.

Figure 4.1 illustrates the multi-agent argumentation model (for simplicity, not
all attack relations are drawn).

Note that we intentionally leave out the details of how the attack relations
between agents are pinned down in the example. The question is out of our
concern in this thesis and thus is not something can be modelled by the multi-
agent argumentation frame. We just assume that the attack relations are given
and satisfy the three conditions.

4.2.2 Argumentation-based group belief
Given an issue of whether P is the case and the attack relation with respect
to this issue among a group of agents, which stance, P or P , should the group
follow?

In Chapter 2, we define a single agent’s grounded belief based on the least
fixed point semantics. Does the grounded semantics also work for argumentation
of a group of agents?

4.2.7. Definition (Characteristic function and least/greatest fixed point).
Given a multi-agent argumentation frame, let dP ∶ 2Ag → 2Ag denote the charac-
teristic function with respect to ↢P :

dP (A) = {s ∈ Ag ∣ s is defended by A ⊆ Ag with respect to ↢P} ;

and let LFPP/GFPP denote the least/greatest fixed point of function dP .

A direct application of the semantics of grounded belief leads us to the following
definition of group belief: the group believes P in F if and only if there is an
agent s ∈ LFPP such that f(s) ⊆ P . Under this definition of group belief, however,
it is possible for the group to believe both P and P which is undesirable in the
sense of being against the 2-consistency. The reason is the possibility of a lack



4.2. Multi-Agent Argumentation Frame 63

s1 f(s1) = {p}

s2

f(s2) = {p}

p

p

s3

f(s3) = {p}

Figure 4.2: The multi-agent argumentation frame for Example 4.2.8.

of attack relation between two agents who have the opposite stances, which thus
allows two agents with the opposite beliefs to belong to LFPP at the same time.
To avoid the problem, how about modifying the definition as follows: the group
believes P if and only if there is an agent s belonging to LFPP such that f(s) ⊆ P
and there is no agent s′ belonging LFPP such that f(s′) ⊆ P?

The following example shows that the modified definition is still unsatisfactory
in the sense of underestimating agents outside the least fixed point.
4.2.8. Example. Consider the multi-agent argumentation frame

(W = {p, p},Ag = {s1, s2, s3},{↢P}P⊆W , f)

where
↢{p} =↢{p} = {(s1, s2), (s2, s1)}

and f(s1) = f(s3) = {p} and f(s2) = {p}. The frame is illustrated in Figure 4.2.
Indeed, there is an agent s3 in LFP{p} who believes {p} and there is no agent

in LFP{p} who believes {p}. However, agent s2, who is not in the least fixed point,
believes {p} and she can defend herself from any other attacker. The membership
of s3 in the least fixed point is partly resulted from the absence of attack relation
between s3 and s2.3

Example 4.2.8 shows that the membership of the least fixed point in the multi-
agent argumentation frame is not decisive for group belief. What matter are the
following concepts.
4.2.9. Definition. Given a multi-agent argumentation frame,

• a subgroup of agents A ⊆ Ag is P -admissible if and only if A is conflict-free
(there is no s, s′ ∈ A such that s ↢P s′) and can defend itself (A ⊆ dP (A))
with respect to ↢P ;

3 Note that this is impossible in the topological argumentation model because when the
intersection of two pieces of evidence is empty, there must be an attack relation between them.
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• an agent s ∈ Ag is acceptable if and only if s belongs to a P -admissible
subgroup of agents for some P ⊆W .

Our definition of group belief in this Chapter is thus based on these two concepts.

4.2.10. Definition (Argumentation-based group belief). Given a multi-agent
argumentation frame F , the group has argumentation-based belief of P in F if
and only if there is an acceptable agent believing P and there is no acceptable
agent believing P .

The definition has nothing to do with the least fixed point directly but rather
focuses on the existence of acceptable agents believing a certain proposition and
the non-existence of acceptable agents believing the negation of the proposition.
It thus weighs two sides of a binary issue equally.

However, argumentation-based group belief is closely related to the greatest
fixed point.

4.2.11. Proposition. Given a multi-agent argumentation frame F , the group
has argumentation-based belief of P in F if and only if there is an agent s ∈ GFPP

such that f(s) ⊆ P and there in no agent s′ ∈ GFPP such that f(s′) ⊆ P .

The proof of this proposition follows immediately from the next lemma.

4.2.12. Lemma. Given a multi-agent argumentation frame F , there is an P -
admissible subgroup of agents A ⊆ Ag such that s ∈ A if and only if s ∈ GFPP , for
all agent s ∈ Ag and all P ⊆W .

Proof:
See Appendix C.1. ◻

Proposition 4.2.11 facilitates a way of characterising argumentation-based
group belief in the logic of group belief and argumentation studied in the next
section. Before introducing the logic, we bring up the following two facts about
the closure properties of argumentation-based group belief.

4.2.13. Proposition. Given a MAF F and any P,Q ⊆W ,

1. if group has argumentation-based belief of P and P ⊆ Q, then the group also
has argumentation-based belief of Q;

2. even if the group has argumentation-based belief of P and has argumentation-
based belief of Q, it may not have argumentation-based belief of P ∩Q.

Proof:
The proof is essentially the same as the proof of Shi, Smets and Velázquez-
Quesada (2017b, Corollary 3.1) which follows from Shi, Smets and Velázquez-
Quesada (2017b, Proposition 3.2). So we do not repeat it here. Intuitively, the
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failure of closure under intersection for argumentation-based group belief is not
so surprising, considering that for some MAFs, {f(i) ∣ i ∈ Ag} is not closed under
conjunction. ◻

4.3 Logic of Group Belief and Argumentation
In this section, we present a sound and complete logic for characterising a group
member’s belief, attack relations between different agents and argumentation-
based group belief in the multi-agent argumentation model.

4.3.1 Syntax
4.3.1. Definition. Let At be a non-empty set of atomic propositions. Lαβ is
the language generated by the following grammar:

α ∶∶=⊺ ∣ p ∣ ¬α ∣ α ∧ α ∣ ⊟α ∣ qβ
β ∶∶=⊺ ∣ ◻α ∣ ¬β ∣ β ∧ β ∣ [α]β ∣ Gfpα

where p ∈ At. Symbols y,◇, ⟨α⟩ and � are the abbreviations of ¬q¬,¬◻¬,¬[α]¬
and ¬⊺, respectively.

The language comprises two parts which are partially intertwined with each
other.

The α part of the language, which we will call “α-formulas”, is mainly defined
on the dimension of possible worlds, in order to describe facts about possible
worlds. For example, ⊟ is a universal operator quantifying over possible worlds;
analogously, q is used to talk about the whole group of agents. Note that qβ
is an α-formula. For example, the sentence “all the group members believe that
they are logicians” is a fact holding in a certain possible world.

The β part, which we will call “β-formulas”, is mainly defined on the dimension
of agents to express facts about a referred agent in argumentation. For example,
formulas of the form ◻α state that the referred agent believes α. Formulas of the
form [α]β state that all agents who directly attack the referred agent on the issue
of whether α is the case satisfy β. Notice the positions of α and β in formulas
of the form [α]β. Gfpα expresses that the referred agent is acceptable in the
argumentation about α.

There are several reasons for the restriction on the interactions between α-
formulas and β-formulas.

1. Some of the interactions between the two dimensions do not make much
sense. For example, in q q β, qβ expresses a fact about possible worlds (it
is an α-formula), so we cannot use it to describe agents.
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2. We do not take everything to be an issue of argumentation. For example,
facts about argumentation itself which are described by β-formulas.

3. Technically such a restriction makes a complete axiomatization feasible.

4.3.2 Semantics
By adding a valuation function V ∶ At → 2W to the multi-agent argumentation
frame F , we get the multi-agent argumentation model M = (F , V ), where for-
mulas in Lαβ can be evaluated.

Let JαKM ∶= {w ∈W ∣M, (w, s) ⊧ α for all arguments s ∈ Ag}
(the subscript M will be omitted whenever possible). The truth of φ ∈ Lαβ is
defined as follows:

4.3.2. Definition. Given a multi-agent argumentation model
M = (W,Ag,{↢P}P⊆W , f, V ),

• M, (w, s) ⊧ ⊺

• M, (w, s) ⊧ p iff w ∈ V (p)

• M, (w, s) ⊧ ¬φ iff M, (w, s) /⊧ φ

• M, (w, s) ⊧ φ ∧ φ′ iff M, (w, s) ⊧ φ and M, (w, s) ⊧ φ′

• M, (w, s) ⊧ ⊟α iff for all w′ ∈W , M, (w′, s) ⊧ α

• M, (w, s) ⊧ qβ iff for all s′ ∈ Ag,M, (w, s′) ⊧ β

• M, (w, s) ⊧ ◻α iff f(s) ⊆ JαK
• M, (w, s) ⊧ [α]β iff for all s′ ∈ Ag such that s↢JαK s′, M, (w, s′) ⊧ β.

• M, (w, s) ⊧ Gfpα iff s ∈ GFPJαK.
We say a formula φ is satisfied in a multi-agent argumentation modelM if there
is a pair (w, s) inM such thatM, (w, s) ⊧ φ. A formula φ is valid inM (M ⊧ φ)
if for all pairs (w, s) in M we have M, (w, s) ⊧ φ. And φ is valid in the whole
class of multi-agent argumentation models (⊧ φ) if it is valid in every multi-agent
argumentation model.

Proposition 4.2.11 facilitates the following way of expressing argumentation-
based group belief in the logic of group belief and argumentation:

Bcα ∶=y(◻α ∧Gfpα) ∧ ¬y (◻¬α ∧Gfp¬α)

Except for the logical properties mentioned at the end of Section 4.2, Bc also
satisfies the following properties.
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4.3.3. Fact.

⊧ Bcα → ¬Bc ¬α, ⊧ α implies ⊧ Bcα
⊧ Bcα → BcBcα, ⊧ ¬Bcα → Bc ¬Bcα.

4.3.3 Axiom system
The following list of formulas of rules constitutes the axiom system (called GBAS)
for the logic of group belief and argumentation. Axioms for Gfpα indicate that
this operator amounts to the greatest fixed point of dJαK.

○ All the propositional tautologies.

○ Modus ponens

○ S5 and Necessitation rule for ⊟

○ For q:

K ⊢ q(β → β′)→ (qβ → qβ′)
D ⊢ ¬ q �
N If ⊢ β, then ⊢ qβ

○ For ◻:

K ⊢ ◻(α → α′)→ (◻α → ◻α′)
D ⊢ ¬ ◻ �
N If ⊢ α, then ⊢ ◻α

○ For [α]:

K ⊢ [α](β → β′)→ ([α]β → [α]β′)
N ⊢ β implies ⊢ [α]β

○ For Gfpα:

Unfold ⊢ Gfpα → [α]⟨α⟩Gfpα

R ⊢ β → [α]⟨α⟩β, then ⊢ β → Gfpα

○ Interaction between q and ⊟

⊞1 ⊢ qβ → ⊟ q β
⊞2 ⊢ ¬ q β → ⊟¬ q β

○ Interaction between ⊟, q, ◻ and [α]
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I1 ⊢ ⊟α↔ q ◻ ⊟α
I2 ⊢ qβ → q[α]β

○ Interaction between ◻ and [α]

1 ⊢ [α]β ↔ [¬α]β
2a ⊢ ⟨α⟩⊺→ ◻α ∨ ◻¬α
2b ⊢ ◻α → [α] ◻ ¬α
3 ⊢ ◻ ⊟ (α → α′) ∧ ◻α ∧ ⟨α′⟩β → ⟨α⟩β

Since qβ → β and q q β are not expressible in our language, axioms T, 4
and 5 do not hold for q, which explains why we need axioms ⊞1, ⊞2, I1 and
I2 to characterize the relationship between q as a universal operator and other
operators.

Axioms 1, 2a, 2b and 3 correspond to frame conditions 1, 2(a), 2(b) and 3
in Definition 4.2.3, respectively.

The axioms for Gfpα are special cases of the general greatest fixed point oper-
ator (Kozen, 1983; Venema, 2008): the unfold axiom says that Gfpα is a postfix
point of [α]⟨α⟩, and rule R says that Gfpα is the greatest postfix point

4.3.4. Theorem. The system GBAS is sound and weakly complete with respect
to the class of multi-agent argumentation models

The details of the completeness proof can be found in Appendix C.2. Here
we only outline the proof and highlight some points.

The completeness proof follows the standard procedure of constructing a
model by making use of maximally consistent sets of formulas and proving the
truth lemma which builds the equivalence between the satisfiability of some given
formulas in the model on a maximally consistent set and their membership in the
set.

During the proof, the first twist we meet is about constructing the pairs of pos-
sible worlds and agents in the desired model. Notice that although the multi-agent
argumentation model is two-dimensional, the syntax restricts the interaction be-
tween these two dimensions. For example, strings as qβ → β are not formulas in
our language: qβ is an α-formula, but β is not. So {qβ,¬β} is a consistent set in
our logic, even though no pair (w, s) in a multi-agent argumentation model satis-
fies both qβ and ¬β. This is a double-edged sword. On the one hand, it gives us
the flexibility to construct maximal consistent sets for α-formulas and β-formulas
separately and put them together in the model. On the other hand, we have to
use some devious ways to ensure the satisfiability of the maximal consistent sets.

The second twist is about constructing the attack relations labelled by all
subsets of possible worlds in the model. We may get no information about the
attack relation with a certain label directly from the formulas which are generated
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from the subformulas of a given formula ϕ. This means we can only construct the
model partially based on the given syntactical information. Therefore, we have
to prove that this kind of partial model in the proof can be extended to a full and
real multi-agent argumentation model. Moreover, the extended model should be
modally equivalent to the original model with respect to all the given formulas.

At last, the proof for the case of Gfpα in the truth lemma is worth some
attention. It is not as straightforward as other cases. The readers can find the
details of how axiom Unfold, and the inference rule R are applied in the proof.

4.4 Discussion and Conclusion
Argumentation-based group belief meets both requirements specified at the be-
ginning of this chapter. It explicitly prescribes a way of treating the inconsistency
between different group members’ beliefs. Compared with distributed belief, it is
2-consistent and thus more consistent. Compared with everyone’s belief, it allows
more to be believed in the sense of being strictly weaker than everyone’s belief in
LGBA (the latter implies the former).

Despite these positive sides compared with distributed belief and everyone’s
belief, argumentation-based group belief is still not completely satisfactory con-
cerning its level of consistency. Is there any fix for this problem for argumentation-
based group belief as full-support belief for grounded belief?

We do not have a concrete proposal in reply to the above question. Nonethe-
less, a brief comparative analysis of argumentation-based belief and grounded
belief may help point to a direction worth further exploration. First, as we stated
at the beginning of Section 4.1, argumentation-based group belief does not as-
sume that the group would first pool each member’s belief together and extract as
much consistent information as possible. Neither does it require the group to do
this after the conflict is resolved for each proposition. On the contrary, grounded
belief, as a notion of belief for the single agent, combines logical reasoning and
argumentational reasoning rather than separating them. The argumentational
reasoning is done on the basis of the topology of evidence/arguments, which is
achieved by the agent’s logical reasoning. Second, by labeling the attack relation
with different binary issues, argumentation-based group belief is defined issue by
issue rather than holistically as grounded belief is based on argumentational rea-
soning. These two points – lack of a proper way of combining logical reasoning
and argumenational reasoning and being issue-driven – seem to cause more dif-
ficulties for achieving full consistency. A better understanding of the two points
might be helpful for finding a solution to the problem of lacking full consistency.
Moreover, a further study of this problem may lead us to a richer taxonomy of
notions of group belief as what we achieved in Chapter 3 for single-agent belief
based on different types of reasoning and their combination.

Besides the logical study of argumentation-based group belief, the logic of
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group belief and argumentation is another contribution of this chapter. Different
from the logic of argument and belief in Section 2.5, LGBA makes the dimension
of argumentation explicit rather than hide it from an operator for belief. Adding
an operator for the greatest fixed point in the language of the logic and labeling
the attack relation with different issues add up to the complication of the logic. By
restricting the interactions between the two dimensions of the logic, we manage
to achieve a sound and complete axiom system. For our purpose in this chapter,
the restriction is reasonable. However, from a technical point of view, a real two-
dimensional logic based on our setting without imposing any restriction is worth
a further study.



Chapter 5
Potential Group Belief

P’ang Ts’ung was being sent with the heir-apparent as a hostage
to Han-tan.

He spoke to the King of Wei and said:‘If now one man said that
there was a tiger in the market-place, would Your Majesty believe it?’

The King said ‘No.’
‘If two men said that there was a tiger in the market-place, would

Your Majesty believe it?’
The King said:‘I should be suspicious.’
‘If three men said that there was a tiger in the market-place, would

Your Majesty believe it?’
The King said:‘I should believe it.’
P’ang Ts’ung said:‘It is clear that there is no tiger in the market-

place, and yet three men’s words would make a tiger...’
(Records of Warring States)1

5.1 Introduction
In the previous Chapter, we force the group members into an arena and initiate
the gladiator combat. It is a tough, hard and immediate way of resolving the
conflicts between group members and deciding the group’s doxastic attitude to-
ward some issues. However, this notion of group belief seems a little ad hoc in
the sense of relying on the explicit specification of the attack relation between
agents, which is not inherent to the group and its members. The group would
not have any beliefs unless a debate is organized. Hence the resulting notion of
group belief would not be able to trace and reflect the change of the individual
group members’ beliefs very well. In a nutshell, the argument-based group belief
is not as intrinsic to the group as the single-agent belief to the single agent.

1The translation is excerpted from https://lib.hku.hk/bonsall/zhanguoce/index1.html
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In this Chapter, we set the gladiators free so that they interact with each other
in a gentle, soft and evolving way. They are allowed to make friends and choose
whom to trust and to follow. Mostly they have different opinions. Meanwhile,
they are exposed to each other’s influence through their interaction. The more
people surrounding you have the same opinion, the higher is the chance that you
would follow them, just as the King in the story from the ancient Chinese text
Records of Warring States.

So instead of picking out some winners’ belief as the group’s belief by an
external mechanism (argumentation, voting and so on), we observe and explore
the way in which the group members influence each other and how the group
members’ beliefs would evolve according to the influence flow in their current
spontaneous interaction. The trend of the evolution hints at the group’s potential
doxastic state.

Rather than ambitiously taking all the components involved in the social
interaction into account, we start with a simplified characterisation, abstracting
away some details (communication, persuasion and so on). The only thing about
the interaction we keep and specify in the model is how much one member trusts
another. According to the current beliefs of the ones she trusts, the agent decides
how to change her belief. So the whole group is undergoing a process of belief
change. We will introduce in Section 5.2 two existing models in the literature
which characterise the process. In both models, this process is treated as a
deterministic process. Our work differs from these two models by taking the
process as an indeterministic process, which is a Markov process in essence, as
we will show in Section 5.3.

In Section 5.5, we will introduce the notion of potential group belief based
on the trend of the process, which is explored in detail in Section 5.4. Our
analysis will make use of results from Markov chain theory. Furthermore, we study
the logic of potential group belief in Section 5.6 and Section 5.7. Technically,
the logic is closely related to those logics of qualitative probability studied in
Segerberg (1971), Gärdenfors (1975), Holliday and Icard III (2013) and van Eijck
and Li (2017). For potential group belief, the conjunction rule fails again. We
propose a way of saving the failure in which a new notion of group belief emerges
in Section 5.8. In the same section, we also discuss its connection with the
theory of judgement aggregation. In Section 5.9, we conclude the whole chapter,
emphasising some important features of potential group belief.

This Chapter is multi-flavoured, as the overview of its structure indicates. The
notion of potential group belief is likely to the taste of some epistemologists and
epistemic logicians, who are interested in group notions of belief and knowledge,
for example, common belief/knowledge and distributed belief/knowledge. The
key idea behind this new notion of belief – group belief as group tendency to a
certain stable state – seems quite relevant to the discussion about group agency
(List and Pettit, 2011; Bratman, 2014). For some mathematicians, the alternative
proof of the convergence result for the regular Markov chain in Appendix D.2 and
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the relation between the convergence results about the absorbing Markov chain
and the regular Markov chain revealed in our analysis about potential group
belief and crystallised in Theorem 5.5.9 may be worth some attention. Others, for
example, social choice theorists, are also expected to taste some familiar flavours.
All the results presented as propositions, lemmas, theorems and corollaries, unless
their sources are explicitly stated, are newly proved.

5.2 DeGroot Model and Threshold Model
In this section, we introduce the DeGroot model (DeGroot, 1974) and the thresh-
old model 2 which are used to model the group members’ belief change under social
influence.

Both of these models include a trust matrix specifying how much one agent
trusts another. Let G be a finite group of agents. Each agent distributes her
trust among the agents in the group, including herself. The more agent i trusts
agent j about a certain issue, the more influence agent j has on agent i about the
issue. How much trust agent i puts on agent j is represented by a real number
Tij. In both models, it is required3 that for all i, j ∈ G,

Tij ∈ [0,1]

and
∑
j

Tij = 1 .

We can organize these real numbers into the form of a matrix, called a “trust
matrix” and denoted by T.

5.2.1. Example. Given a group of agents {1,2,3}, it can have the following
trust matrix

T =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0.4 0 0.6
1 0 0

⎤⎥⎥⎥⎥⎥⎦
where T12 = 1 and T23 = 0.6, indicating that agent 1 only trusts agent 2 and agent
2 puts weight 0.6 on agent 3.

The essential difference between the DeGroot model and the threshold model
lies in their representations of each agent’s belief and how each agent updates her
belief according to the group members’ beliefs.

2 The threshold model is studied in a wide range of areas, for example, social networks (Poljak
and Sůra, 1983), computer science (Goles Ch, 1985), logic (Liu, Seligman and Girard, 2014;
Baltag, Christoff, Rendsvig and Smets, 2016) and social choice (Grandi, Lorini and Perrussel,
2015).

3 This requirement is not necessary for the threshold model, we state it here for both models
just for a unifying treatment.
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In the DeGroot model, each agent’s belief is represented by her subjective
probability of a given proposition being true. If there are n agents in the group
G, then the agents’ subjective probabilities in this group can be represented by
an n-dimensional vector with its ith entry representing the ith agent’s subjective
probability.

5.2.2. Example. Given a group of three agents, if the first agent assigns prob-
ability 0.2 to a given proposition, the second agent assigns 0.3 and the third one
assigns 0.9, then their beliefs can be represented by the following vector.

c =
⎡⎢⎢⎢⎢⎢⎣

0.2
0.3
0.9

⎤⎥⎥⎥⎥⎥⎦
In the threshold model, only the binary qualitative belief is dealt with, that

is, the agent either believes or does not believe the given proposition, there is
no in-between state. For a group of n members, its members’ beliefs can also be
written as an n-dimensional vector.

5.2.3. Example. Given a group of three agents, if the first agent believes the
given proposition, the second one does not, and the third one believes it, then it
can be represented by the following vector.

b =
⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
where 1 means the agent believes the proposition while 0 means the agent does
not believe the proposition (but not necessarily believes its negation).

For clarity, we will distinguish between two terms “credence vector” and “bi-
nary belief vector”. The former is a vector with real numbers between 0 and 1 as
items; the latter is a vector with 0 or 1 as items. The DeGroot model deals with
the credence vector, and the threshold model only deals with the binary belief
vector.

The difference in their representations of each agent’s belief results in different
updating methods adopted by the two models. In the DeGroot model, given the
group members’ credence vector c(0) and the trust matrix T, the group members’
credence vector after one round of updating can be computed by

c(1) = Tc(0) .

Note that we use the superscript c(n) to indicate that it is the credence vector for
the group after n rounds of updating.

Given an agent i in the group G, her credence to the given proposition after
one round of update c

(1)
i (the ith entry of the credence vector) is the weighted
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sum of all group members’ initial credence ∑j Tijc
(0)
j . To be more general, for all

integers n > 0,
c(n) = Tc(n−1) .

Or equivalently,
c(n) = Tnc(0)

where Tn is the nth power of the trust matrix T.
The same updating method cannot be used in the threshold model since Tb

is not necessarily a binary belief vector when b is. So in the threshold model, the
update rule is the threshold rule as defined subsequently. Let r be a vector each
of whose items is a real number, denoting the threshold for the corresponding
group member. Let F ∶ Rm ↦ {0,1}m be a function mapping strictly positive
items of vectors in Rm to 1 in a binary vector and mapping the other items to 0
in a binary vector. Then

b(n+1) = F (Tb(n) − r)

This rule says that if the weighted sum ∑j∈GTijb
(n)
j is larger than agent i’s

threshold ri, then agent i would turn to believe the given propositions in the next
step; otherwise, the agent i would not believe it in the next step. In this way, the
agents in the group keep their beliefs qualitative.

Compared to the update rule in the DeGroot model, the threshold rule takes
one more step; it compares the weighted sum with the threshold and decides
whether the agent should change her belief or not. Note that the threshold ri can
be different with respect to different agents.

Given these different update rules, some interesting questions about the dy-
namics of the two models are studied in the literature (DeGroot, 1974; Poljak
and Sůra, 1983; Goles Ch, 1985; Golub and Jackson, 2010). For example, the
following theorem can be derived by applying Theorem 3.2 in Goles Ch (1985) to
a given threshold model:

5.2.4. Theorem. Given a threshold model, if the trust matrix T is symmetric,
then every sequence b(0),b(1), . . . generated by the iteration of applying the thresh-
old rule to T would either converge to a fixed point or oscillate between two states
after a certain number of steps in the sequence.

We will see more theorems of a similar kind about the dynamics of the DeG-
root model when we discuss the dynamics of an indeterministic binary DeGroot
model in the next section. We will also show that there is a close connection
between the new indeterministic model and the DeGroot model.

5.3 Indeterministic Binary DeGroot Model
In Section 5.2, it is shown that the opinion pool, namely the linear combination of
the form Tc or Tb, is the common step taken in the updating mechanisms of the
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DeGroot model and the threshold model. Despite some restrictions, it imposes on
the agent’s rationality, for example, “failing to adjust correctly for repetitions and
dependencies in information that they hear multiple times” (Golub and Jackson,
2010, p.113), due to its intuitive appeal and simplicity, the linear combination or
the weighted average still serves as “a useful and tractable first approximation”
(Golub and Jackson, 2010, p.113) of how a group member pools others’ opinions
and thereafter forms her own opinion.

The difference between the DeGroot model and the threshold model lies in
their representations of the agent’s belief. The credence vector is used in the
DeGroot model. It is not impractical to assume that each agent assigns her
subjective probability distribution to a given proposition. Considering the process
of opinion pooling, however, it seems too impractical to require that each agent is
explicitly aware of her subjective probability and meanwhile has access to others’
subjective probability even if we assume that all the agents fully communicate
with each other and have the capability of computing the weighted average. The
belief vector used in the threshold model is thus more practical. After all, it is
not that hard to answer a yes-or-no question, especially about one’s own belief.
And it is not that hard either to convey one’s own yes-or-no belief to others.

Despite the difference, the views of both models on the updating process
are the same. The opinion pooling is executed by each agent consciously or
unconsciously round by round. And each execution determines the agents’ beliefs
in the next round. Thus the process is deterministic.

What if we view the linear combination a little differently? In the model
proposed in this section, the linear combination does not determine each agent’s
belief in the next round but only indicates what each agent would tend to believe
in the next round. The updating process determined by the linear combination
is thus not deterministic but indeterministic.

In contrast with the DeGroot model, our model deals only with the agent’s
binary qualitative belief as the threshold model does. In contrast with both the
DeGroot model and the threshold model, in our model, the linear combination
only determines the probability of the agent’s belief change rather than how the
agent’s belief changes. The linear combination tells us the probability of one belief
vector b updating to another belief vector b′, or equivalently, the probability of
the group members being in the doxastic state b′ in the next step, given that the
group members are currently in the doxastic state b.

To make the shift of perspective clear, we define the new model formally.

5.3.1. Definition (Indeterministic Binary DeGroot Model). An indeterministic
binary DeGroot Model (IBDM) is a structure ID = (G,T,b) where G is a group
of m agents and T is an m-by-m trust matrix. b is the set of belief vectors
{b ∣ bi ∈ {0,1}} where 1 ≤ i ≤m.

Note that each belief vector in b represents a possible state of the group members’
beliefs about an implicitly given proposition.
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5.3.2. Example. Given the T in Example 5.2.1 and b in Example 5.2.3, the
DeGroot model predicts that the next state is

c =
⎡⎢⎢⎢⎢⎢⎣

1
0.4
1

⎤⎥⎥⎥⎥⎥⎦
.

Instead, what the IBDM does is giving each component in c a new interpreta-
tion4 – the probability of the corresponding agent believing the given proposition
in the next step. For example, agent 2 would believe the given proposition in the
next step with probability 0.4, according to c. This implies that agent 2 would
not believe the given proposition in the next step with probability 0.6. Hence,
for each agent, we can compute the probability of believing the given proposition
and the probability of not believing the given proposition in this way.

Since each agent updates her belief according to the group members’ current
beliefs and the updating is independent of other members’ updated beliefs, we can
compute the probability of the group members’ beliefs being in certain state in
the next step by multiplying the agents’ corresponding probabilities of believing
or not believing the given proposition.

For example, the probability of b′ = [1,0,1]⊺ in the next step is 1×0.6×1 = 0.6.
The first number 1 represents the probability of the first agent believing the
given proposition in the next step. The second number 0.6 is the probability
of the second agent not believing the given proposition in the next step. The
third number 1 represents the probability of the third agent believing the given
proposition in the next step. All these three numbers are given by the credence
vector c. Similarly, the probability of b′′ = [0,1,1]⊺ in the next step is 0×0.4×1 = 0.

The above example shows that for each IBDM, we can compute its corre-
sponding transition matrix, as precisely defined below.

Notation. Given a matrix M, we will use Mi∗ to denote the ith row vector in
M and M∗i to denote the ith column vector in M.

Notation. Let Bv be a random variable for the group’s current belief state and
Bv′ be the random variable for the group’s belief state in the next step. Bvi and
Bv′i denote the random variables for the ith agent’s current belief state and her
belief state in the next step respectively. P (Bv′i = 1∣Bv = b) is the probability
that agent i would believe the given proposition conditional on the current belief
vector b. It can be computed as follows:

P (Bv′i∣Bv = b) =
⎧⎪⎪⎨⎪⎪⎩

Ti∗b Bv′i = 1
1 −Ti∗b Bv′i = 0

(5.1)

4 The change of interpretation brings some substantial effects, as we will see in the sections
to follow and explicitly discuss at the end of Section 5.5
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Note that the probability P (Bv′i∣Bv = b) is determined by the linear combina-
tion Ti∗b for each agent i in the group. This makes our new perspective precise.
In IBDM, we only talk about the probability of transition from one belief state
to another belief state rather than the realised and thus deterministic transition
from one belief state to another belief state as in the DeGroot model.

5.3.3. Definition. Given an indeterministic binary DeGroot model ID, we de-
fine the transition matrix of ID as a 2m-by-2m matrix TID with entries

Tbd = P (Bv′ = d∣Bv = b) =∏
i∈G
P (Bv′i = di∣Bv = b)

where m = ∣G∣ and b,d ∈ b.

To compute the transition matrix, we only need the trust matrix. Once the
number of agents in the group G is given, all the possible belief vectors of the
group are fixed. The number of the rows/columns of the trust matrix tells us
how many members the given group G has. So the trust matrix encodes all the
information we need to compute its corresponding transition matrix, as illustrated
by the following example.

5.3.4. Example. Given a trust matrix

T =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0.4 0 0.6
1 0 0

⎤⎥⎥⎥⎥⎥⎦
by Definition 5.3.3, the transition matrix is

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

111 110 101 100 011 010 001 000

111 1 0 0 0 0 0 0 0
110 0.4 0 0.6 0 0 0 0 0
101 0 0 0 0 1 0 0 0
100 0 0 0 0 0.4 0 0.6 0
011 0 0.6 0 0.4 0 0 0 0
010 0 0 0 1 0 0 0 0
001 0 0 0 0 0 0.6 0 0.4
000 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The entries in the second row of the transition matrix, i.e. row 110, represent
the probabilities for all possible states after one step of transition, given that the
initial state is 110 (for brevity, we write the belief vector in the form of a string).
Observe that each row of the transition matrix sums up to one.

If we take the square of T, we get a new matrix T2. The entries in the second
row of this new matrix represent the probabilities of all possible states two steps
after the initial state 110 respectively.
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More generally, for each m-by-m trust matrix, its corresponding transition
matrix is a probability matrix, that is, Tij ∈ [0,1] and ∑2m

j=1Tij = 1 for all i, j ∈ N
such that 0 < i, j ≤ 2m. The ijth entry in the matrix Tn represents the probability
of the group members’ beliefs being in the jth state after n steps, given the initial
state is the ith state. Given a process running from the initial state to the latest
state, according to the way we compute the transition matrix from the trust
matrix, the process is a Markov chain, because the probability of the process
moving from state i to state j with one step does not depend on any other states
before state i in the process.

Therefore, any questions about the transition matrix for a discrete Markov
chain can also be asked about the transition matrix in the IBDM. Of them, the
first question we ask is whether the powers of the transition matrix in the IBDM
converge, or under what conditions it converges. The convergence means that
the transition probability tends to get stable after large enough steps and it thus
conceptually implies that there is a tendency for the group to have a certain belief
state.

5.4 The Convergence of the Transition Matrix
In this section, we prove a sufficient condition for the powers of the transition
matrix in the IBDM to be convergent by revealing a connection between the trust
matrix and its corresponding transition matrix in the IBDM.

We start with an observation about the transition matrix in the IBDM.

Notation. We write 1 (resp. 0) for the constant vector with all entries equal to
1 (resp. 0).

It is not hard to realise that no matter what the trust matrix is, T11 and T00

are always 1. It means that if the group has reached a consensus, then it will keep
the same consensus and not change anymore. The states of this kind are called
“absorbing states” in a Markov chain. So the two consensus states T11 and T00

are both absorbing states.

5.4.1. Definition. A state si of a Markov chain is called absorbing if it is im-
possible to leave it (Tii = 1).

It does not mean much that there are absorbing states in a Markov chain.
However, if we can ensure that it is possible to go to at least one absorbing state
(not necessarily in one step) from every state in the Markov chain, then it makes
a lot of difference.

5.4.2. Definition. A Markov chain is absorbing if there exists in it at least one
absorbing state, and if for every state the probability of reaching an absorbing
state (not necessarily in one step) is strictly positive.



80 Chapter 5. Potential Group Belief

5.4.3. Theorem (Theorem 11.3 in Grinstead and Snell (1997)). In an absorbing
Markov chain, the probability that the process will be absorbed is 1. That is, for
every state i in the absorbing Markov chain,

∑
s is absorbing

P∞
is = 1

where P is the transition matrix for the Markov chain and P∞ = limn→∞Pn.

So if the transition matrix in the IBDM is a transition matrix for an absorbing
Markov chain, then no matter what the initial state of the group members’ beliefs
is, it will finally reach an absorbing state with some probability and stay there
afterwards. We know from before that 1 and 0 are two absorbing states. It means
that it is possible for the group to finally reach a consensus and never disagree
again if the Markov process is absorbing. Next, we will show that some properties
of the trust matrix can ensure the transition matrix to be absorbing. Moreover,
these properties also ensure that the group would finally reach a consensus.

First, notice the fact that for every trust matrix T, we can define its associated
graph.

5.4.4. Definition. Given an IBDM where the group of agent is G and the trust
matrix is T, its associated graph is SNT = (G,E) whose nodes are given by the
group G and whose edges in E are given by the following condition: (i, j) ∈ E if
and only if Tij > 0 where i, j ∈ G.

Note that given the trust matrix’s associated graph SNT, Tn
ij > 0 if and only if

there is an n-step walk from i to j. An n-step walk in SNT from i to j is a sequence
of links (i0, i1), . . . , (in−1, in) such that (ik, ik+1) ∈ E for each k ∈ {0, . . . , n − 1},
with i0 = i and in = j. When all nodes in {i0, . . . , in} are distinct from each other
with the possible exception of i0 = in, the n-step walk from i to j is an n-step path
from i to j.

Given all these preliminaries, we are ready to define the properties of the trust
matrix, or equivalently, the properties of the trust matrix’s associated graph –
strong connectedness and aperiodicity.

5.4.5. Definition (Strongly connected probability matrix). A graph is strongly
connected if all nodes can reach each other via a path. Given a probability matrix
T, we say that T is strongly connected if and only if its associated graph SNT is
strongly connected.

If we take the graph as the group’s social network, the strong connectedness is
not a very implausible property to impose on the social network, especially when
considering the small world phenomenon (Watts and Strogatz, 1998; Travers and
Milgram, 1969). We will call the group in the IBDM whose trust matrix is strongly
connected a “community”.



5.4. The Convergence of the Transition Matrix 81

The following theorem tells us that for a community G in an IBDM, in every
Markov chain which consists of states from b of the IBDM, 1 and 0 are the only
two absorbing states.

5.4.6. Theorem (Theorem 11.10 in Grinstead and Snell (1997)). For a strongly
connected trust matrix T, every column vector x such that Tx = x is a constant
vector.

By noticing that for every IBDM a state b ∈ b is absorbing according to the
transition matrix if and only if Tb = b, the result follows:

5.4.7. Corollary. For every IBDM whose trust matrix is strongly connected,
there exist two and only two absorbing states in the transition matrix of the IBDM.
That is, 1 and 0.

Although the strongly connected trust matrix in the IBDM ensures the ex-
istence of two and only two absorbing states according to its transition matrix,
it cannot ensure that the Markov chain according to the transition matrix is ab-
sorbing. It is possible that some states cannot go to one of the two absorbing
states. The following strongly connected trust matrix exemplifies this possibility.

5.4.8. Example. Given a trust matrix

T = [0 1
1 0
] (5.2)

its corresponding transition matrix is

T =
⎛
⎜⎜⎜
⎝

11 10 01 00

11 1 0 0 0
10 0 0 1 0
01 0 1 0 0
00 0 0 0 1

⎞
⎟⎟⎟
⎠

(5.3)

By computing Tn for several values of n, we find the following pattern. Tn = T
when n is odd; When n is even, Tn is

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

The Markov chain according to the transition matrix 5.3 in the above example
is not absorbing, because 10 only goes to 01 and 01 only goes to 10, neither of
which is an absorbing state. It also causes the oscillation of Tn between two
different matrices as n tends to infinity. Although the phenomenon of oscillation
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is interesting in itself and worth an extensive study, we will not touch on this topic
here and refer the readers to van Benthem (2015b), which studies the oscillation
from the perspective of logic. Instead, we try to find out how we can avoid the
oscillation.

The reason for the powers of transition matrix to oscillate in Example 5.4.8 is
that no agent in the group trusts himself. It indicates that such oscillation may
be avoided by requiring that at least one group member trusts herself to at least
some (positive) degree. This sounds a very weak condition and not impractical.
After all, it is hard to imagine all people in the society are just following others.

The condition that at least one group member trusts herself, i.e. Tii > 0 for
some i ∈ G, indeed works. Even a weaker condition – aperiodicity – on the trust
matrix5, together with the condition of strong connectedness, can ensure that its
corresponding transition matrix gives rise to an absorbing Markov chain.

5.4.9. Definition. 6 Given a trust matrix T, the period of an agent i in the
model is the greatest common divisor of the members in the set {n ∈ N ∣ Tn

ii > 0}:

g(i) = gcd{n ∈ N ∣ Tn
ii > 0} .

i is aperiodic if g(i) = 1 and periodic if g(i) > 1. T is aperiodic if and only if all
the agents in it are aperiodic.

5.4.10. Lemma. Given an indeterministic binary DeGroot model ID, if the trust
matrix in the IBDM is strongly connected and aperiodic, then given any vector
b ∈ b with some i ∈ G such that bi = 1, there exists a path from b to 1. I.e. there
exists a sequence p0, p1, . . . , pn of vectors in b such that p0 = b, pn = 1 and for all
natural numbers k ∈ [0, n − 1], Tpk,pk+1 > 0.

Proof:
The proof can be found in Appendix D.3. ◻

5.4.11. Theorem. Given an indeterministic binary DeGroot model ID, if the
trust matrix in the IBDM is strongly connected and aperiodic, then the transi-
tion matrix for the IBDM is a transition matrix for an absorbing Markov chain
including only two absorbing states.

5 Take the trust matrix in Example 5.2.1. It is aperiodic but there is no i ∈ G such that
Tii > 0

6 The definition of aperiodicity we present here is different from another definition of aperi-
odicity appearing in the literature, for example, Jackson (2010, Chapter 8). We prove a result
in Appendix D.1 stating that these two definitions are equivalent given that the trust matrix
is strongly connected.



5.5. Group’s Potential Belief 83

Proof:
The proof follows from the last lemma and the definition of the absorbing Markov
chain and Corollary 5.4.7. ◻

Together with Theorem 5.4.3, the following result follows immediately.

5.4.12. Corollary. Given an indeterministic binary DeGroot model ID, if the
trust matrix in the IBDM is strongly connected and aperiodic, then the powers of
the transition matrix for the IBDM converge to a limiting matrix.

In Appendix D.4, we briefly sketch how Theorem 5.4.3 is proved (which will
help understand Corollary 5.4.12 better) and show the benefits brought by shifting
the perspective on the DeGroot model.

Next, we introduce the notion of potential group belief, to which the conver-
gence result we have just established will be key once we restrict our attention to
the group with a strongly connected and aperiodic trust matrix.

5.5 Group’s Potential Belief
As we indicated at the very beginning of this Chapter, instead of a fierce way of
resolving the conflict between beliefs of different group members, a softer way is
pursued. It puts more focus on the tendency of how the group members’ beliefs
evolve, which is driven by the group members’ mutual influence through its social
network. The group’s belief is then decided by the tendency of the evolving of
the group members’ beliefs.

5.5.1. Definition (Group’s potential belief). Given an IBDM ID and the group
G’s initial belief state b, the group G in ID tends to believe the given proposition
if and only if there exists a natural number N such that for all n ≥ N ,

Tn
b1 > 0.5 .

The definition says that the group has potential belief of a given proposition
if and only if after several steps, say N steps, it is always very probable (in the
sense of being larger than 0.5) that the group would reach the positive consensus
on the given proposition. This definition thus features three points: social inter-
action, high probability of the tendency to the consensus (1) and stability. The
social interaction is simplified in the IBDM as a trust matrix and an iteration of
updating by weighted average. The probability given by the IBDM is the prob-
ability of transition from one belief state to another belief state. The definition
thus bases the notion of group’s potential belief on the objective transition prob-
ability. It makes use of the 0.5-threshold rule, just like the Lockean thesis for the
single agent’s belief (Foley, 1992). The difference is that for the single agent the
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Lockean thesis relies on the agent’s subjective probability and for the group the
potential belief relies on the objective transition probability. The last feature of
the definition is that it requires the persistence of high transition probability to
the positive consensus after N steps in the updating process. This persistence
or the stability makes sure that the notion of potential belief is not a contingent
artefact.

The three nice features of the definition come with a difficult decision problem
– how to efficiently decide whether the group has the potential belief given an
IBDM. We have no general solution which can be applied to all types of groups.
Nevertheless, to the group whose trust matrix is strongly connected and aperiodic,
we know how to decide whether the group can finally reach the potential belief.
It is not hard to understand why this is the case by recalling our result in the
previous section. That is, the powers of the transition matrix for the group with
a strongly connected and aperiodic trust matrix always converges to a matrix.
With the convergence result, the definition of potential belief for a group whose
trust matrix is strongly connected and aperiodic can be simplified.

5.5.2. Proposition. Given an IBDM ID , if the trust matrix is strongly con-
nected and aperiodic, and the group G’s initial belief state is b, then the group G
tends to believe the given proposition if and only if

T∞
b1 > T∞

b0

where T is the transition matrix for the IBDM.

Proof:
Let T be the transition matrix for the IBDM. By Theorem 5.4.11 and Theorem
5.4.3 and the assumption that the trust matrix is strongly connected and aperi-
odic, Tn converges as n tends to ∞, so T∞ exists. Moreover, by the same theorem,
we know that T is a transition matrix for an absorbing Markov chain with only
two absorbing states. So given any initial belief vector, the probability is only
distributed between 1 and 0 in T∞. This implies that T∞

b1 > T∞
b0 if and only if

T∞
b1 > 0.5. ◻

Next, we show how to compute the entries in the limiting matrix of the powers
of the transition matrix (T∞) generated by a strongly connected and aperiodic
trust matrix. To this end, a more precise characterisation of the relationship
between the trust matrix and its generated transition matrix is needed. The
following theorem fulfils this task. It says that given the group’s current belief
state b, the probability of agent i changing her belief state to 1 after n steps is
distributed among those group belief states where agent i’s belief state is 1 after
n steps.
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5.5.3. Theorem. Given an indeterministic binary DeGroot model ID, for all
b, s ∈ b, i ∈ G and n ∈ N,

Tn
i∗ ⋅ b = ∑

si=1
Tn

bs

where Ti∗ is the ith row of the trust matrix T and b is the group’s current belief
state.

Proof:
The proof can be found in Section D.2.2. ◻

5.5.4. Example. To illustrate this theorem, take the trust matrix in Example
5.3.4, let b = 110, then T2∗b = 0.4. And ∑s2=1Tbs = 0.4, as expected. We leave
it to the readers to check those cases where n > 1 for the same example.

Note that the above theorem holds for all trust matrices and its generated tran-
sition matrices. An immediate corollary of the above theorem is the following
one.

5.5.5. Corollary. Given an IBDM ID, as n tends to ∞, if the powers of its
transition matrix Tn converge, then the powers of the trust matrix Tn converge
too.

Proof:
Assume that as n tends to ∞ the IBDM’s transition matrix Tn converges. By
theorem 5.5.3,

Tn
ij = Tn

i∗ej = ∑
si=1

Tn
ejs

for all n ∈ N, where ej is the vector where the ith entry is 1 and the other entries
are all 0s. Because Tn converges to T∞, Tn

ij converges to

∑
si=1

T∞
ejs

.

Each entry of T thus converges to a number. Therefore, the trust matrix T con-
verges. ◻

Together with Theorem 5.4.3, the corollary tells us that if the trust matrix is
strongly connected and aperiodic, then T∞ exists. Moreover, together with some
other observations, it tells us how T∞ looks like.

5.5.6. Theorem. Given an indeterministic binary DeGroot model ID, if the
trust matrix T is strongly connected and aperiodic, then as n → ∞, the powers
Tn approach a limiting matrix W with all rows the same vector w. The vector
w is a strictly positive probability vector (i.e. the components are all positive and
sum to one).
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Proof:
The proof of this theorem is essentially the same as what we spell out in Appendix
D.2.3.

What is worth noticing is that this theorem is one step away from the following
classical convergence result for Markov chain.

5.5.7. Theorem (Theorem 11.7 in Grinstead and Snell (1997)). Let P be the
transition matrix for a regular Markov chain. Then as n → ∞, the powers Pn

approach a limiting matrix W with all rows the same vector w. The vector w is
a strictly positive probability vector (i.e. the components are all positive and sum
to one).

The missing step is the proof of the following two statements:

○ the transition matrix for a regular Markov chain must be strongly connected
and aperiodic; and

○ the strongly connected and aperiodic trust matrix must be a transition
matrix for a regular Markov chain.

We fill the gap in Appendix D.3 by proving Theorem D.3.1.
Note that the way we prove Theorem 5.5.7 (the whole proof can be found in

Appendix D.2) is different from the standard proof and Doeblin’s proof, both of
which can be found in Grinstead and Snell (1997, Section 11.4). ◻

Given the above theorem, we can have the following corollary, which opens
the door towards the computation of T∞.

5.5.8. Corollary. Given an indeterministic binary DeGroot model ID, if the
trust matrix is strongly connected and aperiodic, then for all b, s ∈ b and i ∈ G,

T∞
i∗ ⋅ b = ∑

si=1
T∞

bs = T∞
b1

where T∞ is a matrix with all rows the same vector w. The vector w is a strictly
positive probability vector (i.e., the components are all positive and they sum to
one).

This corollary provides a way of computing T∞
b1. We only need to know the

row vector w in T∞, which turns out to be in the left nullspace of the matrix
T − I because wT = wI. We can thus first compute the left nullspace of T − I,
and then normalising a vector in the nullspace to get the probability vector w.
Therefore, we have achieved an algorithm for computing all the entries in the
limiting matrix T∞. And we can decide whether the group tends to believe the
given proposition by comparing T∞

b1 and T∞
b0 given that the initial state is b.

At last, we round up our analysis of the relationship between the trust matrix
and its generated transition matrix by presenting the following theorem:
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5.5.9. Theorem. Given an IBDM ID, if the trust matrix T is strongly con-
nected, then the following four statements are equivalent:

1. the trust matrix T is aperiodic;

2. the transition matrix generated from T is a transition matrix for an ab-
sorbing Markov chain;

3. the powers of the transition matrix generated from T converge;

4. the powers of the trust matrix T converge.

Proof:
We have proved the direction from 1 to 2 (Theorem 5.4.11) and from 3 to 4
(Corollary 5.5.5). The direction from 2 to 3 is by Theorem 5.4.3. The direction
from 4 to 1 is by LEMMA 4 in Appendix A of Golub and Jackson (2010). ◻

The above theorem may give readers with the impression that there is no need
of shifting the perspective and taking the indeterministic interpretation. After all,
when considering the strongly connected and aperiodic trust matrix, Corollary
5.5.8 and Proposition 5.5.2 tell us that we can have a mathematically equivalent
definition of the group’s potential belief even if we stick to the DeGroot model
and its deterministic perspective.

5.5.10. Proposition. Given an IBDM ID, if the trust matrix is strongly con-
nected and aperiodic and the group G’s initial belief state b, then the group G
tends to believe the given proposition if and only if

T∞
i∗b > 0.5

where T is the trust matrix for the IBDM.

Then what is the added value of shifting the perspective and taking the inde-
terministic interpretation?

Notice that the observation given by the above proposition about the equiv-
alent definition of potential group belief does not apply to the general case. For
Definition 5.5.1, there is no way of even having a mathematically equivalent def-
inition in the DeGroot model, because there is no way of extracting the number
Tn

b1 from the DeGroot model. As Theorem 5.5.3 shows, what the DeGroot model
tells us about the transition matrix is just ∑si=1Tn

bs, but not how this number is
distributed among all those belief vectors in the set {s ∈ b ∣ si = 1}.

Even if we consider only the strongly connected and aperiodic trust matrix,
the shifting of perspective makes substantial difference. Firstly, in the IBDM,
when the transition matrix is for an absorbing Markov chain, by computing its
fundamental matrix (c.f. Appendix D.4), we can know a lot of information about
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the absorbing Markov chain. For example, given an initial belief state b of the
group, the expected number of times the chain is in belief state d; and given that
the chain starts in the group’s belief state b, the expected number of steps before
the chain is absorbed. However, in a DeGroot model, there is nowhere to find a
Markov chain. Secondly, the IBDM restricts the group’s belief states to a space
where only binary vectors are allowed. This does not only justify the necessity
of extracting a qualitative notion of group belief from the probability, but also
paves the way for studying the logic of the notion of the group’s potential belief.

5.6 Kripke-DeGroot Frame
From this section on, we pursue the question concerning the logic of potential
group belief: whether the group’s potential belief is consistent, whether it is
closed under conjunction and how we can systematically decide the validity of a
statement about potential belief. To understand these questions, the IBDM is not
rich enough, because the IBDM only deals with a single proposition (implicitly
given), while logic is about the relationship between multiple propositions. This
is why we introduce Kripke to DeGroot.

5.6.1. Definition. A Kripke-DeGroot frame (KDF) is a structure

KD = (W,Ri,T)

where

○ (W,Ri) is a Kripke frame in Definition 1.2.1 with its accessibility relation
indexed with the label for each group member in an implicitly given group
G;

○ T is a trust matrix for the given group of agents G;

The set of possible worlds is introduced to equip the model with the ability to
express propositions explicitly. Each subset of W is taken as a proposition, and
the set of all subsets of W constitutes a Boolean algebra. The Kripke-DeGroot
frame can thus specify each agent’s current belief state for each proposition.
Ri(w) ⊆ Q means that agent i believes Q in the world w.

In this section, we assume that Ri is serial for all i ∈ G (for all w ∈W , there
is v ∈W such that Riwv), which assures that each group member’s belief is fully
consistent. Moreover, for the purpose of illustration, we simplify the setting by
requiring that given a Krikpke-DeGroot frame, for all w, v ∈W and for all i ∈ G,
Ri(w) = Ri(v). Whenever this uniformity of Ri is assumed, we will use f(i) to
denote Ri(w) since w as a parameter does not play a role any more. This will
save us from an overdose of indexes attached to the notations in the following
analysis.
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For different propositions are explicitly modeled in the Kripke-DeGroot frame,
we can represent the group’s belief state for each proposition by a binary vector
decided by each agent’s belief state for that proposition.

5.6.2. Definition (Group’s belief state for Q). Given a KDF and any Q ⊆ W ,
the group’s current belief state is specified by bQ, a binary vector satisfying

bQ
i =
⎧⎪⎪⎨⎪⎪⎩

1 f(i) ⊆ Q
0 otherwise

(5.4)

Notation. Let Q =W −Q be the negation of proposition Q and b = 1 − b.

The relation between different propositions decides the relation between the
group’s belief states with respect to the different propositions.

5.6.3. Proposition. Given a KDF,

a For all S,Q ⊆W , if S ⊆ Q, then bS ≤ bQ, i.e. for all i ∈ G, bS
i ≤ b

Q
i

b If Ri is serial for all i ∈ G, then for all Q ⊆W , bQ ≤ bQ

Note that Proposition 5.6.3.b relies on the assumption that Ri is serial for all
i ∈ G.

Since a KDF specifies the group’s current belief state for all Q ⊆W we have
the definition of the group’s potential belief as follows.

5.6.4. Definition (Group’s potential belief of Q). Given an KDFKD, the group
G in KD tends to believe Q if and only if there exists a natural number N such
that for all n ≥ N ,

Tn
bQ1 > 0.5

where T is the transition matrix generated from the trust matrix in KD, bQ is
the vector representing each agent’s belief about Q and 1 is the constant vector
with each entry equal to 1.

Within the Kripke-DeGroot frame, we can address the questions concerning
the logic of the group’s potential belief. Note that our discussion will be restricted
to the class of frames whose trust matrix is strongly connected and aperiodic. The
results we achieve about the logic rely on the convergence of the transition matrix
generated from the strongly connected and aperiodic trust matrix. Although the
results are restricted, they are not of limited value, considering that strongly con-
nectedness and aperiodicity are both very common properties of social networks.
We have mentioned that strongly connectedness is confirmed to be a pervasive
property in many networks by a considerable amount of studies (Travers and Mil-
gram, 1969; Kautz, Selman and Shah, 1997; Watts and Strogatz, 1998; Milgram,
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1967). As for aperiodicity, it is not a rare property either although its definition
appears to be complicated. Notice that reflexivity (for all i ∈ G, Tii > 0) is a
special case of aperiodic. Moreover, when the trust matrix is strongly connected,
even a single reflexive agent (there exists i ∈ G such that Tii > 0) can imply the
aperiodicity of the trust matrix. It is not impractical to expect that there is at
least one person in the group having at least a little trust in herself.

Recall that we call a group with a strongly connected trust matrix a “com-
munity”. Subsequently, we will call the group with a strongly connected and
aperiodic trust matrix a “regular community” and the KDF with a strongly con-
nected and aperiodic trust matrix a “regular KDF”.

In the remaining part of this section, we approach two specific questions on the
logical properties of the regular community’s potential belief to nurture readers’
understanding. In the next section, we construct a logic which subsumes the logic
of the regular community’s potential belief.

Closure upwards

The first question is whether the regular community tends to believe Q if it
tends to believe a stronger proposition S ⊆ Q.

To answer the first question, recall Proposition 5.5.2 and Theorem 5.5.3.

5.6.5. Proposition. Given a regular KDF KD, for all S,Q ⊆ W such that
S ⊆ Q, if the regular community tends to believe S, then it tends to believe Q.

Proof:
Assume that S ⊆ Q and that the given KDF is regular. By Proposition 5.6.3.a,
bS ≤ bQ. Hence for all i ∈ G and n ∈ N, Tn

i∗b
S ≤ Tn

i∗b
Q. By Theorem 5.5.3 and

Corollary 5.5.8, T∞
bS1
≤ T∞

bQ1
. By Proposition 5.5.2 and the assumption that the

regular community tends to believes S,

0.5 < T∞
bS1 ≤ T

∞
bQ1 ,

which in turn implies that the regular community tends to believe Q. ◻

Mutual consistency

The second question is whether it is possible for the regular community to
have potential belief of both Q and Q.

5.6.6. Lemma. Given a KDF KD, for all b, s ∈ b and n ∈ N,

Tn
bs = Tn

bs
.

Proof:
We prove Tn

bs = Tn
bs

by induction.
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First, we show that for all x ∈ G, P (Bv′x = 1∣Bv = b) = P (Bv′x = 0∣Bv = b),
which will implies that Tbs = Tbs.

P (Bv′x = 1∣Bv = b) =∑
i∈G

Txibi (5.5)

=∑
i∈G

Txi(1 − bi) (5.6)

=∑
i∈G

Txi −∑
i∈G

Txibi (5.7)

= 1 − P (Bv′x = 1∣Bv = b) (5.8)
= P (Bv′x = 0∣Bv = b) (5.9)

Hence it follows that for all x ∈ G, P (Bv′x = sx∣Bv = b) = P (Bv′x = sx∣Bv = b),
which in turn implies that Tbs = ∏x∈GP (Bv′x = sx∣Bv = b) = ∏x∈GP (Bv′x =
sx∣Bv = b) = Tbs.

Second, given Tn
bs = Tn

bs
, we show that Tn+1

bs = Tn+1
bs

Tn+1
bs =∑

k∈b
Tn

bkTks (5.10)

=∑
k∈b

Tn
bk

Tks (5.11)

= Tn+1
bs

(5.12)

◻

With the lemma, we can answer the second question.

5.6.7. Proposition. Given a regular KDF KD in which Ri is serial for all i ∈ G,
if the regular community tends to believe Q, then it does not tend to believe Q.

Proof:
Assume that the regular community in KD tends to believe Q, which by Proposi-
tion 5.5.2 implies that T∞

bQ1
> T∞

bQ0
. Because T∞

bQ1
+T∞

bQ0
= 1 by Theorem 5.4.11

and Corollary 5.4.12, T∞
bQ0
< 0.5. By Lemma 5.6.6,

T∞
bQ1
= Tn

bQ0 < 0.5 (5.13)

By Proposition 5.6.3.b, bQ ≥ bQ. Together with Theorem 5.5.3, it implies that

T∞
bQ1
≤ T∞

bQ1
.

Because of equation 5.13,
T∞

bQ1
< 0.5



92 Chapter 5. Potential Group Belief

which implies that the regular community does not tend to believe Q. This com-
pletes the proof. ◻

The answers to the two questions together give us the following result about
the consistency of the regular community’s potential belief.

5.6.8. Corollary. Given a regular KDF KD in which for all i ∈ G Ri is serial,
for all S,T ⊆W such that S ∩T = ∅, if the regular community tends to believe S,
then it does not tend to believe T , .

Note that this corollary only says that the notion of the regular community’s
potential belief does not allow mutual inconsistency. But the regular community
may tend to believe Q1, believe Q2, believe Q3, . . . and believe Qn with n ≥ 3
while ⋂iQi = ∅.

What else logical rules should the regular community’s potential belief obey?
To systematically solve this problem, we study the logic of the regular commu-
nity’s potential belief in the next section.

5.7 Logic of the Regular Community’s Potential
Belief

In this section, we propose a logic where potential group belief can be expressed.
It helps understand potential group belief better conceptually and logically.

Before going into the details of the logic, we recall an observation we made at
the end of Section 5.5 about the definition of the regular community’s potential
belief. This observation has been implicitly used in our two answers (Proposition
5.6.5 and 5.6.7) in the last section.

5.7.1. Proposition. Given a regular KDF, the regular community tends to be-
lieve Q if and only if

T∞
i∗b

Q > 0.5

As we have remarked at the end of Section 5.5, this way of seeing the regular
community’s potential belief is conceptually different. However, with respect to
the regular community, it is mathematically equivalent and simplifies the com-
putation as we have shown in Section 5.5. Hence we approach the logic of the
regular community’s potential belief via this conceptually different way.

Then what is the conceptual interpretation of the limiting matrix T∞ of the
regular community’s trust matrix? Each entry of the trust matrix Tij tells us
how much influence agent j can have on agent i directly. More generally, Tn

ij tells
us how much influence agent j can have on agent i through those paths from j
to i with n steps. So T∞

ij means the influence agent j can have on agent i by
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running the influence flow infinitely. According to Theorem 5.5.7, for the regular
community, all row vectors of the limiting matrix T∞ are the same. This means
that on every agent in the regular community, an agent has the same influence in
the limit. Given an agent j in the regular community G, for all i, k ∈ G, T∞

ij = T∞
kj.

Therefore, the number in the constant column vector T∞
∗j can be taken as the

agent j’s influence on the whole regular community. It represents how influential
the agent j is in the regular community. Moreover, notice that the row vector in
T∞ is a strictly positive probability vector. Hence what Proposition 5.7.1 conveys
is that the regular community tends to believe Q if and only if the members in
the regular community who believe Q are more influential than those who do not.
For convenience, we will call the limiting matrix of the regular community’s trust
matrix “influence matrix” and its row vector “influence vector”. The influence
vector will be denoted by u.

Keeping the new way of understanding the regular community’s potential
belief in mind, we introduce the language for the logic.

5.7.2. Definition. Let G be a finite set of agents, At be a set of atomic propo-
sitions. The language LB≽ is given by the following grammar:

φ ∶∶= p ∣ C ≽D ∣ ¬φ ∣ φ ∧ φ ∣ Biφ

where p ∈ At and C,D ⊆ G.

Bi is the belief operator for each single agent. ≽ is a comparison operator,
expressing that group C has more impact on the whole regular community than
group D.

We do not explicitly include the regular community’s potential belief as an
operator in the language. But the language is expressive enough to define the
potential belief operator as we will prove later in this section. Before that, we
first give the truth conditions for the language in a Kripke-DeGroot model.

5.7.3. Definition. Given a Kripke-DeGroot model M = (KD, V ) where KD is
a Kripke-DeGroot frame and V ∶ At→ 2W is a valuation function, and a possible
world w in W ,
M,w ⊧ p iff w ∈ V (p)
M,w ⊧ C ≽D iff ∑i∈C ui ≥ ∑i∈D ui

M,w ⊧ ¬φ iff M,w /⊧ φ
M,w ⊧ φ ∧ ψ iff M,w ⊧ φ and M,w ⊧ ψ
M,w ⊧ Biφ iff Ri(w) ⊆ JφK

The semantic truth of the formula C ≽ D relies on the influence vector u
rather than directly on the trust matrix. As we have analysed, ≽ compares which
group of agents is more influential. Then how can we make use of the operators
≽ and Bi to define the operator for the regular community’s potential belief?
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Recall the definition of the vector bQ in Definition 5.6.2 where Q is a subset
of the set of possible worlds. A more general form of this kind of characteristic
vector is as follows:

5.7.4. Definition. Given any group of agent G, any i ∈ G and any subset C of
G,

bC
i =
⎧⎪⎪⎨⎪⎪⎩

1 i ∈ C
0 otherwise

(5.14)

If we take {i ∈ G ∣ f(i) ⊆ Q} as the set C in the definition, we get Definition
5.6.2.

To define the regular community’s potential belief in language LB≽, we should
express the sufficient and necessary condition for it in Proposition 5.7.1. Although
the condition in Proposition 5.7.1 is not expressible directly in language LB≽, a
second thought indicates that we can reach the goal by taking the following
detour.

5.7.5. Corollary. Given a regular KDF KD, the regular community G tends to
believe Q if and only if there exists a subset C ⊆ G such that C ⊆ {i ∈ G ∣ f(i) ⊆ Q}
and

T∞
i∗b

C > 0.5

We express the condition in the above corollary in LB≽ by

BGφ ∶= ⋁
C⊆G
((C ≻ C) ∧⋀

i∈C
Biφ)

where C = G ∖C and C ≻ C ∶= (C ≽ C) ∧ ¬(C ≽ C).

5.7.6. Proposition. Given any regular Kripke-DeGroot model M and any w ∈
W , M,w ⊧ BGφ if and only if there exists a subset C ⊆ G such that C ⊆ {i ∈ G ∣
f(i) ⊆ JφK} and

T∞
i∗b

C > 0.5

Note that the regular community G is finite. So we can express the existence
of a subset of G by taking the disjunction. The expression of potential group
belief in the language LB≽ indicates that the logical properties of potential group
belief hinge on the logical properties of the influence comparison operator ≽ and
the single agent’s belief operator Bi. So the axiomatization of the logic with
language LB≽ can help us understand potential group belief better.

For the axiomatization, notice that ≽ can never operate on any propositions.
In fact, the formulas of the form C ≽ D can be seen as atomic propositions with
their inner structures specified in the language. Since it is clear that the axiom
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system for the operator Bi is the K system, the only task is to figure out what
axioms are enough for characterising ≽.

For ≽, the task becomes easy once it is realized that the operator ≽ is essentially
the qualitative probability operator studied in Segerberg (1971) and Gärdenfors
(1975). The only difference is that the probability in the Kripke-DeGroot model is
distributed among the group of agents and is strictly positive, while in Segerberg
(1971) and Gärdenfors (1975), it is distributed among possible worlds and is not
necessarily strictly positive.

Therefore, we propose the axiom system KS in Table 5.1 for the logic of regular
community’s potential belief.

The axiom schema Scott in the axiom system KS says that given two sequence
of subgroups of G: C0, . . . ,Cn and D0, . . . ,Dn, if for all i ∈ G, the number of
subgroups i belongs to in the C sequence is the same as that in the D sequence7,
then the formula ⋀n−1

i=0 (Ci ≽ Di) → (Dn ≽ Cn) is derivable. It is shown to be
necessary and together with the other two axioms SP and CO sufficient for
constructing a probability measure on a finite sample space (Kraft, Pratt and
Seidenberg, 1959; Scott, 1964) satisfying certain constraints imposed by the order
≽.

Propositional tautologies and Modus Ponens
K: Biφ→ (Bi(φ→ ψ)→ Biψ)

Necessitation rule: if φ is derivable, then Biφ is derivable
≽4: C ≽D → Bi(C ≽D) ≽5: ¬(C ≽D)→ Bi¬(C ≽D)

SP: C ≻ ∅ for C ≠ ∅
CO: (C ≽D) ∨ (D ≽ C)

Scott: if ∣{k ∣ i ∈ Ck and 0 ≤ k ≤ n}∣ = ∣{l ∣ i ∈Dl and 0 ≤ l ≤ n}∣ for all i ∈ G,
then ⋀n−1

i=0 (Ci ≽Di)→ (Dn ≽ Cn) is derivable

Table 5.1: Axiom system KS for the logic of the regular community’s potential
belief

5.7.7. Theorem. The axiom system KS is strongly complete and sound with
respect to the class of the regular Kripke-DeGroot models.

Proof:
The proof can be found in Appendix D.5. ◻

5.7.8. Remark. The logic for the single agent’s belief in KS is K rather than
KD45 as we advocated in the previous chapters. This is not an essential change.

7 Note that this is a meta-level fact about the language which is not dependent on the
semantics. So whether it holds can be checked by counting the times of appearance of i in each
of the two sequences of subgroups and then comparing the two numbers
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The only reason for doing so is to stay as general and basic as possible. We can
make Bi a KD45 operator by imposing corresponding conditions on the accessi-
bility relation Ri, which will not pose any difficulties of retaining and proving the
completeness and soundness of the logic.

The main confusion may come from the axioms ≽4 and ≽5. They seem to be
too strong and are not necessary for keeping the update iterating. In contrast,
what seems to be necessary for the update is not required by our setting, that is,
each group member’s correct belief of her/his neighbours’ beliefs.

We agree that these epistemic aspects can be pivotal to the diffusion process
and thus affect the notion of potential group belief. We do not try to argue
philosophically for our modelling choices when it concerns these epistemic aspects.
The only reason for making these choices is to simplify the setting and thus
explicate the idea of introducing the Kripke semantics.

In the next section, we will pick up the threads of the discussion about the
conjunction rule. The failure of the conjunction rule has been a recurrent theme
in this thesis. Once again, it happens to potential group belief. How should we
save it this time? We will see that the cure we propose reveals a connection with
the theory of judgement aggregation.

5.8 Discussion
5.8.1 Saving the failure of the conjunction rule
Let us first present a counterexample to illustrate why the closure under conjunc-
tion fails for potential group belief.

5.8.1. Example. Given a Kripke-DeGroot model ({pq, pq, pq, pq},T, f, V ), where

○ T =
⎡⎢⎢⎢⎢⎢⎣

0.3 0.3 0.4
0.3 0.3 0.4
0.3 0.3 0.4

⎤⎥⎥⎥⎥⎥⎦
○ f(1) = {pq}, f(2) = {pq, pq}, f(3) = {pq, pq}

○ V (p) = {pq, pq}, V (q) = {pq, pq}

Because

T∞ = T =
⎡⎢⎢⎢⎢⎢⎣

0.3 0.3 0.4
0.3 0.3 0.4
0.3 0.3 0.4

⎤⎥⎥⎥⎥⎥⎦
and

bJpK =
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
, bJqK =

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
, bJp∧qK =

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
.
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According to the definition of the regular community’s potential belief, BGp and
BGq hold in the model while BG(p ∧ q) does not.

The reason behind the failure is clear. Taking the conjunction of two propositions
means that fewer agents would believe it than those who believe either of the
conjuncts. And fewer agents means a less influential group, which is not enough
for the conjunction to be the group’s potential belief.

Since Section 5.6, we have restricted our attention to the regular community.
This enables us to take the group’s potential beliefs as the propositions which are
believed by everyone in an influential enough group. Recall that it is decided by
the influence vector (the row vector in T∞) how influential a subgroup of agents
is. The threshold for being influential enough is 0.5 . Under this interpretation of
“influential enough”, potential group belief fails to satisfy the conjunction rule. Is
there any other interpretation under which the new notion of group belief follows
the conjunction rule? The following definition fulfills the requirement.

5.8.2. Definition. Given a regular Kripke-DeGroot frame, the regular commu-
nity has stable belief of Q ⊆ W if and only if there is a non-empty subgroup of
agents Gsub such that for all i ∈ Gsub,

ui > ∑
j∉Gsub

uj and f(i) ⊆ Q

where u is the influence vector.

The definition of the stable group belief redefines the term “influential enough”.
For potential group belief, “influential enough” simply means the whole sub-
group’s influence is larger than 0.5, while for stable group belief, “influential
enough” means each member in the subgroup is more influential than the out-
siders altogether. The requirement for “influential enough” becomes much stronger.
Thus the group’s stable belief implies the group’s potential belief. Moreover, the
set of group’s stable beliefs is closed under under conjunction and is strongly
consistent, because there must be a smallest “influential enough” set of agents in
the regular community according to Definition 5.8.2, which completely decides
the group’s stable belief.

5.8.3. Proposition. Given a regular Kripke-DeGroot frame KD = (W,T, f),

1. for all Q ⊆ W , if the given group G has stable belief of Q, then it has
potential belief of Q.

2. for all Q,S ⊆W , if the given group G has stable belief of Q and has stable
belief of S, then it has stable belief of Q ∧ S.

Depending on the influence vector of the regular community which decides
how large is the “influential enough” set of agents, the group’s stable beliefs can
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be dictatorial or extremely democratic. If there is a super influential member
in the regular community such that (s)he is more influential than the others
altogether, then the group’s stable beliefs result from the dictatorship. If all
members are equally influential, then the group’s stable beliefs have to be achieved
by a consensus of all the members. The most critical point here is that the
influence vector is decided by the current structure of the social network. This
structure of social network, nevertheless, is decided by each member in the group,
that is, how each member in the group distributes her trust among the group
members. No matter whether the final “influential enough” set of agents includes
only one agent or every agent, the way of picking out this set of agents respects
each group member’s choices equally.

At last, we note that the regular community’s stable belief is expressible in
the language LB≽ with respect to the class of regular Kripke-DeGroot models.

5.8.4. Proposition. Given a regular Kripke-DeGroot modelM, for all φ ∈ LB≽,
the group has stable belief of φ in a possible world w if and only if

M,w ⊧ ⋁
C⊆G,C≠∅

⋀
i∈C
(({i} ≻ C) ∧Biφ)

5.8.2 Connection with judgement aggregation
The terms “democratic” and “dictatorial” used in the discussion of stable group
belief have indicated a possible connection with the theory of judgement aggrega-
tion (List and Pettit, 2002; Dietrich and List, 2007; Dokow and Holzman, 2010;
List, 2012). Indeed, the connection can already be spotted when we start viewing
the notion of potential group belief through the influence matrix. The group’s
potential belief of Q depends on whether the group members who believe Q are
influential enough. It can be seen as a generalisation of the majority rule used
in voting. The connection becomes even more obvious when the failure of the
conjunction rule for potential group belief was brought up.

The closure failure for the regular community’s potential belief is quite similar
to the discursive dilemma (Pettit, 2001) or the majority inconsistent (Dietrich
and List, 2014) in judgment aggregation. The same observation is also made in
Dietrich and List (2014) where they do a “comprehensive study of the lessons that
we can learn for belief binarisation from the large terrain of aggregation-theoretic
impossibility and possibility results” (p.3).

In the context of a single agent, there are several proposals as to how the task
of belief binarisation from the agent’s subjective probability can be done. For
example, Leitgeb’s stability theory of belief (Leitgeb, 2014) and Lin and Kelly’s
camera shutter rule (Lin and Kelly, 2012a,b). It has been suggested in Dietrich
and List (2014) that these proposals about connecting single agent’s probabilistic
information and qualitative belief can carry over to judgment aggregation theory.
And some papers explore further in this direction and flesh out details about how
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the carry-over can work. For example, in Cariani (2016), the author builds up the
structural analogy between Leitgeb’s P-stability-based rule in his stability theory
and a judgment aggregation rule, the closed local supermajorities rule (LS+).

The notion of stable group belief proposed in Definition 5.8.2 is closely related
to Leitgeb’s stability theory. If we see each agent in the regular community as a
possible world and take the influence vector u as the probability distribution, then
those subsets of G which satisfy the condition ui > ∑j∉Gsub

uj are the so-called
P-stable propositions (Leitgeb, 2014, Definition 1).

We have shown that stable group belief can be dictatorial or democratic,
depending on how the influence is distributed among group members. A new
message conveyed in stable group belief (also in potential group belief) which
social choice theorist may find interesting is that the influence vector can be
seen as the result of aggregating each group member’s trust assignment. This
aggregation is inherent in the social network of the group. So even if the final
step of deciding the group’s belief can be dictatorial, it is the choice of the group,
inherent in its network structure.

5.9 Conclusion
In this Chapter, we propose to take the group’s tendency towards consensus as its
belief, where the tendency is decided by the interaction of group members through
their social network. As the DeGroot model, we represent the social network by
a trust matrix and use weighted average to capture the effect of the interaction
through the social network on each agent’s belief. Different from the DeGroot
model, we restrict our attention to each agent’s binary belief rather than degrees
of belief. Moreover, in the IBDM, the effect of the interaction does not decide how
the agent changes her degree of belief but only indicates the probability of the
agent changing her binary belief. This new perspective leads to the qualitative
notion of group belief based on the probabilistic measure of the group members’
belief update under social influence.

The Markov chain theory helps characterise the process running behind the
notion of potential group belief. In turn, the shift of perspective and the analysis
of potential group belief also shed light on our understanding of the Markov chain
theory.

We discussed the failure of the conjunction rule again and proposed a new
notion of group belief,in order to avoid this failure. The tension between believing
more and believing more consistently reappears. Recall that in Chapter 2, the
notion of justified belief ensures that the agent believes more consistently while
the notion of grounded belief allows the agent to have more beliefs. For group
belief, the notion of stable group belief ensures more consistency while the notion
of potential belief allows for more beliefs. Should the group choose to ensure
more consistency or accept more information? We tend to think that the answer
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depends on practical considerations, which go beyond the scope of this thesis.
After illustrating the different sides of the notion of potential group belief, at

the end of this Chapter, it may be helpful to see the opposite side of the notion.
First, the notion of potential group belief is not based on a probability measure

on the space of possible worlds. For a single agent, it is usually stipulated that
her subjective probability is distributed among a set of possible worlds. It implies
that if the proposition Q has probability x then its negation has probability 1−x.
There is no such probability measure for the group distributed among the possible
worlds. T∞

bQ1
= x does not imply that T∞

bQ1
= 1 − x. The probability, which is the

probability in a Markov process, is distributed among b (the set of all possible
group belief states). For each proposition, the probability distribution is different.

Second, the group’s potential belief is not the group’s destiny; it is just a
tendency, and the tendency changes whenever the current situation changes.



Chapter 6
Conclusion

As a logical study of belief, this dissertation echoes the recent trend of look-
ing deep into the base of belief (van Benthem and Pacuit, 2011; van Benthem,
Fernández-Duque and Pacuit, 2012; van Benthem, Fernández-Duque and Pacuit,
2014; Baltag, Renne and Smets, 2014; Baltag, Fiutek and Smets, 2016; Baltag,
Bezhanishvili, Özgün and Smets, 2016a; Baltag and Occhipinti, 2017) and the
trend of putting more emphasis on its social aspects (Seligman, Liu and Girard,
2013; Liu, Seligman and Girard, 2014; Liu and Lorini, 2016; Baltag, Christoff,
Rendsvig and Smets, 2016; Christoff, 2016). The focus of this dissertation, never-
theless, is more directed towards filling the gap between evidence and belief, the
gap between single-agent belief and group belief and on what bridges these gaps
– reasoning, no matter whether it is a single agent’s reasoning or a social design
which reflects the group’s network structure.

The whole dissertation characterises several notions of belief and their rela-
tions to their bases – evidence/arguments or group members’ beliefs – in different
sound and complete logical systems. These logics bring together several different
fields, for example, the topological semantics for evidence and formal argumen-
tation theory in the logic of argument and belief; Markov chain theory and the
Kripke semantics in the logic of the regular community’s potential belief. The
integration of these techniques enables us to penetrate into the doxastic earth and
reveal not only different doxastic attitudes but also different types of reasoning
running between and behind them.

In Chapter 2, we started with a review of the notion “justified belief” in Bal-
tag, Bezhanishvili, Özgün and Smets (2016a), which is a topological version of
“evidence-based belief” in van Benthem and Pacuit (2011). Then we proposed the
notion “grounded belief”, which aims to lower the high standard of justified belief.
Argumentational reasoning conceptually fulfils this task. Technically, the repre-
sentation of argumentational reasoning is made possible by integrating formal
argumentation theory (Dung, 1995) into the topological semantics for evidence.
The sound and complete logic of argument and belief developed in Section 2.5
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characterises grounded belief and its relations with justified belief and arguments.
The application of the logic of argument and belief can also be found in

Chapter 3, which is used to reason about the relations between three notions
of belief – justified belief, grounded belief and full-support belief. Full-support
belief brings back full consistency which grounded belief lacks while keeping the
standard of belief not as high as justified belief by appealing to default reasoning.
Full-support belief, therefore, serves as an answer to the question raised at the
beginning of this dissertation – whether a balance can be struck between believing
more and believing more consistently. Such a possibility of a balance also justifies
the full consistency of a group member’s belief in Chapter 4 and 5.

In Chapter 4, we turned to study group belief. Argumentation becomes a
way of resolving conflicts between group members rather than between different
arguments within a single agent’s mind. The logic of group belief and argumen-
tation explicitly expresses attack relations with respect to different issues, which
add the second dimension to the logic. This second dimension plays a vital role
in shaping a group’s belief, as embodied in the notion of argumentation-based
group belief.

In Chapter 5, instead of an adversarial relationship between group members,
a more friendly relation is on focus – trust. The indeterministic binary DeGroot
model bridges the gap between group members’ qualitative beliefs and a stochas-
tic process depending on the group’s trust matrix. The Kripke-DeGroot model
witnesses the meeting of the Kripke semantics and the DeGroot model and makes
a logical study of potential group belief possible.

Compared to the concept of everyone’s belief and distributed belief which we
introduced in Section 1.2, both argumentation-based group belief and potential
group belief are less extreme. They are both easier to achieve than everyone’s
belief and not as inconsistent as distributed belief. However, for group belief,
the problem is not only about consistency but also about the morality of the
mechanism of achieving it. If we take it for granted that under certain condi-
tions, democracy is always more desirable than dictatorship, then it seems that
“majority inconsistency” (Dietrich and List, 2014), which drives an impossibility
theorem for judgement aggregation, is unavoidable. Although we see that stable
group belief in Chapter 5 is fully consistent while not as stringent as everyone’s
belief, it allows dictatorship. There is no way of dealing with group belief purely
from a logician’s perspective. That is why we tend to leave the issue open and
let practical need decide the right notion of group belief.

Despite the similarity of their logical properties, there is an apparent dis-
crepancy between the two ways of defining group belief. Argumentation-based
group belief relies on an explicit deliberative process, while potential group belief
depends on implicit and potential opinion diffusion. The relationship between
group members in argumentation-based group belief is more adversarial. The
relationship between group members in potential group belief is less discursive
or deliberative. Is there any possibility of reconciling these two ways of defining
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group belief?
Besides the discrepancy between the two notions of group belief, there is a

divergence between the views on how the single agent forms and changes her
belief, which are embodied in the notions of single-agent belief (grounded belief
and full-support belief) and potential group belief respectively. While grounded
belief and full-support belief emphasise the role of the agent’s reasoning and
evidence, potential group belief seems to underline the role of social impact. In
Johan van Benthem’s term (van Benthem, 2015a), this is a divergence between
“high rationality” and “low rationality”. The divergence between these two views
does not mean that they are irreconcilable. The problem is how they can be
integrated into one framework and coherently interact with each other.

The work in this dissertation pays more attention to how belief is formed based
on available information, no matter whether it is in a highly rational way or not.
In this way it complements dynamic epistemic logic which mainly studies how
belief and knowledge change when new information is received (van Benthem,
2007). It is worthwhile to pursue further how these two different perspectives
can complement each other and thus bring each other new insights. After all,
reasoning to believe is not a static scene but a dynamic process in essence.

At last but not least, after getting a closer look at the different notions of
belief, it may be helpful to reflect on the relationship between belief and other
propositional attitudes such as preference (van Benthem and Liu, 2007; Liu, 2008)
and knowledge (Holliday, 2012; Egré, 2017). It will be beneficial to understand
further how our perspective and results on belief in this dissertation can be applied
to related problems in decision theory and (social) epistemology.
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Appendix of Chapter Two

A.1 Proof of Theorem 2.4.6
Soundness is straightforward based on what we have proved in Section 2.5; for
completeness, the proof uses a modal equivalence result.

First, define a belief neighborhood model M as a uniform neighborhood model
(W,NB, V ) where the neighborhood function NB ⊆ 2W satisfies the following con-
ditions:

○ W ∈ NB (NB contains the unit);

○ if b ∈ NB, then b′ ∈ NB for all b′ such that b ⊆ b′ (NB is closed under
supersets);

○ if b ∈ NB, then W ∖ b ∉ NB (NB does not contain the complement of any of
its elements).

In such structures, the semantic interpretation of a modality for this neighborhood-
based belief is given by

M,w ⊧ Bφ iff JφKM ∈ NB

Given a topological argumentation model, it is easy to build a point-wise
modally equivalent belief neighborhood model: it is enough to define the neigh-
borhood function NB as LFPτ plus all its elements’ supersets (NB ∶= {b ∈ 2W ∣ f ⊆
b for some f ∈ LFPτ}). The readers can check that the model as constructed above
is indeed a belief neighborhood model and it is point-wise modally equivalent to
the given topological argumentation model.

We still need to prove the other direction of modal equivalence, so that we can
make use of the completeness result of the axiom system EMND45 with respect
to belief neighbourhood models (Chellas, 1980, Chapter 8 and 9).

105



106 Appendix A. Appendix of Chapter Two

A.1.1. Lemma. For every belief neighborhood model M = (W,NB, V ) there is
a topological argumentation model M = (W,E0, τ,↢, V ) with the same domain
and atomic valuation such that M and M are point-wise modally equivalent with
respect to the language L, that is, for all φ ∈ L and all w ∈W ,

M,w ⊧ φ if and only if M,w ⊧ φ .

Proof:
Given an arbitrary belief neighbourhood model M = (W,NB, V ), let

MM = (W,E0, τ,↢NB
, V )

be the topological argumentation model that shares domain and atomic valuation
with M, and in which the family of pieces of evidence is given by the singletons
in W (E0 ∶= {{w} ∈ 2W ∣ w ∈ W}) and thus the generated topology is the power
set of the domain (τ = 2W ). Moreover, define the attack relation ↢NB

as

t↢NB
t′ iff { t ∩ t

′ = ∅ and t ∉ NB when t′ ≠ ∅
t = ∅ when t′ = ∅

for every t, t′ ∈ τ , so a non-empty t′ attacks a non-empty t if and only if they are
in conflict and t is not in NB, and while the empty set does not attack non-empty
sets, it is attacked by everybody (including itself). We first verify that this model
is a topological argumentation model.

We only need to show that ↢NB
satisfies the three requirements in Definition

2.3.1.

○ Take any t1, t2 ∈ τ .
(⇒) Suppose t1 ↢NB

t2, by ↢NB
’s definition, t1 ∩ t2 = ∅.

(⇐) Suppose t1 ∩ t2 = ∅. If t2 = ∅, t2 ↢NB
t1

If t1 ∈ NB; now, from t1∩ t2 = ∅ it follows that t1 ⊆W ∖ t2. By closure under
superset and consistency of NB, t2 ∉ NB. So by definition, t2 ↢NB

t1.
If t1 /∈ NB, by ↢NB

’s definition, it follows that t1 ↢NB
t2 when t2 ≠ ∅ or

t2 ↢NB
t1 when t2 = ∅.

○ Take t, t1, t′1 ∈ τ such that t1 ↢NB
t and t′1 ⊆ t1. t1 ↢NB

t implies t1 /∈ NB.
So t′1 /∈ NB should be the case, otherwise by t′1 ⊆ t1 and NB’s closure under
supersets we would get the contradictory t1 ∈ NB. But t1 ↢NB

t implies
t ∩ t1 = ∅, which together with t′1 ⊆ t1 yields t ∩ t′1 = ∅. Hence, from ↢NB

’s
definition, t′1 ↢NB

t.

○ The attack conditions on ∅ are ‘embedded’ in ↢NB
’s definition.
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Second, we show that this topological argumentation model is point-wise
modally equivalent to the given belief neighbourhood model. For this purpose,
we only need prove the following fact.

A.1.2. Lemma.
LFPτ = NB .

Proof:
Since for all t ∈ NB, t is not attacked by any other arguments, it follows that
NB ⊆ d(NB) and NB is a subset of LFPτ . So, to prove that NB is the least fixed
point, we only need to prove that NB is a fixed point, which is equivalent in this
case to d(NB) ⊆ NB.

Assume that t ∉ NB. Then it follows that t ↢NB
W ∖ t by definition of ↢NB

and there is no t′ ⊆ t such that t′ ∈ NB by the closure under superset of NB.
So for all t′′ ∈ NB, t′′ ∩W ∖ t ≠ ∅ and thus t′′ does not attack W ∖ t. Hence

t ∉ d(NB). ◻

◻

We have built up the pointwise modal equivalence between the topological
argumentation model and the belief neighbourhood model. The remaining work
is to prove the completeness of the system EMND45 with respect to the belief
neighbourhood model. The details can be found in (Chellas, 1980, Chapter 8 and
9).

A.2 Proof of Theorem 2.5.7
The proof for the soundness is straightforward, and the nontrivial part of the
work has been done. So we focus on the proof of the strong completeness, which
is equivalent to the satisfiability of an arbitrary consistent set of formulas in L∀T ◻
in a topological argumentation model.

All twists of the proof are caused by the operator T in the language and
the attack relation in the constructed model, which are mainly dealt with in the
second stage of this proof.

A.2.1 First stage
Given a set of formulas in L∀T ◻, denoted by Φ0, we first construct a quasi-a-model
where Φ0 is satisfiable.

Let MCS be the family of all maximally ABS-consistent sets. By a slightly
modified version of the Lindenbaum Lemma (whose proof is standard), which
says that every ABS-consistent set of formulas in L∀T ◻ can be extended to a
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maximally consistent one, it can be shown that Φ0 can be extended to a maximally
ABS-consistent set, denoted by Φ.

For each set of formulas Γ ⊆ L∀T ◻, let Γ◯ = {ϕ ∈ L∀T ◻ ∣ ◯ϕ ∈ Γ} where ◯
can be either ∀ or else ◻ or else T .

A.2.1. Definition (Canonical quasi-a-model). The canonical quasi-a-model is
MΦ = (WΦ,⩽Φ,EΦ

0 ,↢Φ, V Φ) where

○ WΦ = {Γ ∈MCS ∣ Γ∀ = Φ∀};1

○ for all Γ,∆ ∈ WΦ, ∆ ⩽Φ Γ if and only if for all ϕ ∈ L∀T ◻, ◻ϕ ∈ ∆ implies
ϕ ∈ Γ;

○ EΦ
0 = {⋃Γ∈S ⩾ΦΓ ∣ S ⊆WΦ} ∖ {∅}, where ⩾ΦΓ= {Ω ∈WΦ ∣ Γ ⩽Φ Ω};

○ V Φ(p) = {Γ ∈WΦ ∣ p ∈ Γ}

The attack relation ↢Φ deserves special attention:
Let τΦ be the topology generated by EΦ

0 , for all t, t′ ∈ τΦ, t↢Φ t′ if and only if

when t′ = ∅: t = ∅;

when t′ ≠ ∅: t ∩ t′ = ∅ and there is no ϕ ∈ L∀T ◻ such that both ∥T ϕ∥ ⊆ t and
∃T ϕ ∈ Φ,

where ∥φ∥Φ = {Γ ∈WΦ ∣ φ ∈ Γ}

We are going to omit the superscript Φ for the notation introduced in the above
definition in the subsequent proof when no confusion arises.

The next proposition includes the existence lemmas for ◻ and ∀, whose proof
is standard and can be found in Özgün (2017, Proposition 5.6.19 and 5.6.20).

A.2.2. Proposition. For all φ ∈ L,

1. ∃φ ∈ Φ if and only if there exists ∆ ∈WΦ such that φ ∈∆

2. for all ∆ ∈WΦ, ◇φ ∈∆ if and only if there exists Γ ∈WΦ such that ∆ ⩽Φ Γ
and φ ∈ Γ.

1 This way of defining W is equivalent to the way adopted in Özgün (2017, Definition 5.6.17):

WΦ = {Γ ∈MCS ∣ for all ϕ ∈ L∀T ◻, ∀ϕ ∈ Φ implies ϕ ∈ Γ} .
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A.2.2 Second stage
The remaining part of the proof is directly related to the attack relation and the
operator T , which is the key part of this proof.

Before delving into the details, we review the definition of the attack relation
↢Φ and explain the idea behind the definition.

The idea behind the definition of ↢Φ is to make sure that

1. if B ϕ ∈ Φ and ∥ϕ∥ ⊆ t ∈ τΦ for some ϕ ∈ L∀T ◻, then the argument t is not
attacked; and

2. if an argument t in τΦ does not support any ϕ ∈ L∀T ◻ such that B ϕ ∈ Φ,
then t is attacked by some other arguments.

1 and 2 are critical for us to pinpoint the least fixed point LFP in MΦ through
the syntactical information given by Φ. While it is straightforward to see that
1 follows from the definition, it is unclear whether 2 also follows. This causes
all the twists in Definition A.2.8 and Lemma A.2.11. Another uncertainty before
we prove it is whether ↢Φ satisfies all three conditions we require for the attack
relation.

Hence we first check that the constructed model in Definition A.2.1 is indeed
a quasi-a-model. It is obvious that ∅ ∉ E0 and W ∈ E0. So we check that ↢Φ in
the model satisfies the required conditions (Definition 2.3.5).

A.2.3. Lemma. For the model in Definition A.2.1,

○ for all t, t′ ∈ τ , t ∩ t′ = ∅ if and only if t↢ t′ or t′ ↢ t;

○ for all t1, t2, t3 ∈ τ , if t1 ↢ t3 and t2 ⊆ t1, then t2 ↢ t3

○ for all t ∈ τ ∖ {∅}, ∅↢ t and t /↢ ∅.

Proof:
The first condition: We prove the direction from left to right. The proof of
the other direction is trivial.

Assume that t ∩ t′ = ∅. Moreover, suppose that t /↢ t′ and t′ /↢ t, then there
is φ ∈ L∀T ◻ such that ∥T φ∥ ⊆ t and ∃T φ ∈ Φ, and there is ψ ∈ L∀T ◻ such that
∥T ψ∥ ⊆ t′ and ∃T φ ∈ Φ. It follows that ∥T φ∥ ∩ ∥T ψ∥ = ∅.

To reach the conclusion, it is enough to prove the following lemma.

A.2.4. Lemma. For all φ,ψ ∈ L∀T ◻, ∥T φ∥ ∩ ∥T ψ∥ = ∅ and ∃T φ ∈ Φ and
∃T ψ ∈ Φ lead to contradiction.

Proof:
By axiom T T φ → T φ and ∥T φ∥ ∩ ∥T ψ∥ = ∅, we have ∥T T φ∥ ∩ ∥T T ψ∥ = ∅.
Notice that ∥T φ∥ ≠ ∅ and ∥T ψ∥ ≠ ∅ follow from ∃T φ ∈ Φ and ∃T φ ∈ Φ



110 Appendix A. Appendix of Chapter Two

by Proposition A.2.2, which, together with axiom T φ → T T φ, implies that
∥T T φ∥ ≠ ∅ and ∥T T ψ∥ ≠ ∅. Using Lemma A.2.2 again, we can get ∃T T φ ∈ Φ
and ∃T T ψ ∈ Φ.
∥T φ∥ ⊆ ∥¬T ψ∥ follows from ∥T φ∥ ∩ ∥T ψ∥ = ∅, so ∀(T φ → ¬T ψ) ∈ Φ.

Together with Fact 2.5.6 and S5 axioms and rules for ∀, it implies that ∀(T T φ→
T ¬T ψ) ∈ Φ.

By using ∀(T T φ→ T ¬T ψ) ∈ Φ and ∃T T φ ∈ Φ, we can derive ∃T ¬T ψ ∈ Φ.
By using axiom ∃T φ → ¬∃T ¬φ and ∃T T ψ ∈ Φ, we can derive ¬∃T ¬T ψ ∈ Φ.
Contradiction. ◻

The second condition: Take any t1, t2, t3 ∈ τ such that t1 ↢ t3 and t2 ⊆ t1.
The case of t3 = ∅ is trivial. Now consider t3 ≠ ∅. Then there is no φ ∈ L∀T ◻ such
that ∥T φ∥ ⊆ t1 and ∃T φ ∈ Φ. Since t2 ⊆ t1, it follows that there is no φ ∈ L∀T ◻
such that ∥T φ∥ ⊆ t2 and ∃T φ ∈ Φ, i.e. t2 ↢ t3.

The proof of the third condition is trivial. ◻

Next, we collect a series of facts about the constructed quasi-a-model, which
will be useful in our later proof.

A.2.5. Fact.
τ = E0 ∪ {∅}

A.2.6. Fact.

○ If ∃ ◻ ϕ ∈ Φ, then ∥ ◻ ϕ∥ ∈ τ .

○ If ∃T ϕ ∈ Φ, then ∥T ϕ∥ ∈ τ .

Proof:
The argument we use for proving two claims are similar. So we only provide the
proof of the second claim.

Assume ∃T ϕ ∈ Φ. Then by A.2.2, there is Γ ∈ W such that T ϕ ∈ Γ. Take
any Γ ∈ W such that T ϕ ∈ Γ: by axiom T ϕ → T T ϕ and T ϕ → ◻ϕ, then
◻T ϕ ∈ Γ. According to the definition of ⩽, for all ∆ ∈ W such that Γ ⩽ ∆,
T ϕ ∈ ∆. So we have proved that for all Γ ∈ W such that T ϕ ∈ Γ, ⩾Γ⊆ ∥T ϕ∥.
Since ∥T ϕ∥ ⊆ ⋃Γ∈∥T ϕ∥ ⩾Γ, it follows that ∥T ϕ∥ = ⋃Γ∈∥T ϕ∥ ⩾Γ. So ∥T ϕ∥ belongs
to E0 and thus τ by Fact A.2.5. ◻

A.2.7. Fact. For all t ∈ τ and all φ ∈ L∀T ◻, if t ⊆ ∥φ∥, then t ⊆ ∥ ◻ φ∥.

Proof:
The following fact is key to this proof: t = ⋃Γ∈t ⩾Γ. t ⊆ ⋃Γ∈t ⩾Γ is easy to see.
t ⊇ ⋃Γ∈t ⩾Γ follows from the fact that if Γ ∈ t then ⩾Γ⊆ t.
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Given the key fact that t = ⋃Γ∈t ⩾Γ and the assumption that t ⊆ ∥φ∥, it fol-
lows that for all Γ ∈ t, ⩾Γ⊆ ∥φ∥, which implies that ◻φ ∈ Γ by Proposition A.2.2.
Therefore, t ⊆ ∥ ◻ φ∥. ◻

Starting from now, we try to locate the least fixed point LFP of the character-
istic function d for the quasi-a-model by using the syntactic information, which
will be helpful for the proof of the truth lemma.

A.2.8. Definition (Semi-acceptable and Acceptable). Let

C1 = {t ∈ τ ∣ there exists φ ∈ L∀T ◻ such that ∥T φ∥ ⊆ t and ∃T φ ∈ Φ} .

○ An open t ∈ τ is semi-acceptable if and only if for all φ ∈ L∀T ◻ s.t. t ⊆ ∥◻φ∥,
there exists ψ ∈ L∀T ◻ such that ∥T ψ∥ ⊆ ∥ ◻ φ∥ and ∃T ψ ∈ Φ.

○ An open t ∈ τ is acceptable if and only if t is semi-acceptable and there is
no t′ ∈ τ s.t. for all t′′ ∈ C1, t′ ∩ t′′ ≠ ∅ and t ∩ t′ = ∅.

Denote the set of all acceptable opens in τ ∖C1 by C2:

C2 = {t ∈ τ ∖C1 ∣ t is acceptable} .

A quick observation is that all opens in C1 are semi-acceptable. So they are
also acceptable.

A.2.9. Fact. For all t ∈ τ , if t ∈ C1, then t is acceptable.

Moreover,

A.2.10. Lemma. if t ∈ τ is semi-acceptable, then for all t′ ∈ C1, t ∩ t′ ≠ ∅.

Proof:
We prove that for all φ ∈ L∀T ◻ such that ∃T φ ∈ Φ, t ∩ ∥T φ∥ ≠ ∅ given that t is
a semi-acceptable open in τ . The lemma follows from this result.

Suppose that there exists φ ∈ L∀T ◻ such that ∃T φ ∈ Φ and t ∩ ∥T φ∥ = ∅.
Take any ψ ∈ L∀T ◻ such that t ⊆ ∥◻ψ∥. Then it follows that t ⊆ ∥◻ψ ∧¬T φ∥ by
t ⊆ ∥ ◻ ψ∥ and t ∩ ∥T φ∥ = ∅. By Lemma A.2.7, t ⊆ ∥ ◻ (◻ψ ∧ ¬T φ)∥. Together
with the assumption that t is semi-acceptable, it implies that there is χ ∈ L∀T ◻
such that ∥T χ∥ ⊆ ∥◻(◻ψ∧¬T φ)∥ and ∃T χ ∈ Φ. Since ⊢ ◻(◻ψ∧¬T φ)→ ¬T φ,
it follows that ∥T χ∥ ⊆ ∥¬T φ∥ and thus ∥T χ∥∩ ∥T φ∥ = ∅. The rest of the proof
can be done by using Claim A.2.4. ◻

We now prove the pivotal lemma in our proof.

A.2.11. Lemma. Let C = C1 ∪C2,

LFP = C .
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Proof:
We first prove the direction of ⊇. Take any t ∈ C,

If t ∈ C1, then there is φ ∈ L∀T ◻ such that ∥T φ∥ ⊆ t and ∃T φ ∈ Φ. By the
definition of ↢, there is no t′ ∈ τ with t∩ t′ = ∅ such that t↢ t′. (Note that t ∈ C1

implies that t ≠ ∅, so t /↢ ∅.) Thus C1 ⊆ LFP.
If t ∈ C2, take any t′ ∈ τ such that t ↢ t′. According to the definition of ↢Φ,

t′ ∩ t = ∅. According to the definition of C2 and t ∩ t′ = ∅, there is t′′ ∈ C1 such
that t′ ∩ t′′ = ∅. (Otherwise, t is not acceptable, because it violates the second
condition of the definition of acceptability.) According to the definition of C1,
it follows that t′′ /↢ t′. By condition 1 of ↢ which is proved in Lemma A.2.3, it
follows that t′ ↢ t′′. So for all t ∈ C2, if t ↢ t′ then there is t′′ ∈ C1 such that
t′ ↢ t′′. So t ∈ d(C1) ⊆ d(LFP) = LFP.

Therefore, we have proved that C ⊆ LFP

Next, we prove that LFPΦ ⊆ C. Take an arbitrary t ∈ τ such that t ∉ C, we
try to prove that t ∉ LFP. If t = ∅, then t ∉ LFP, which is obvious, since ∅ ↢ ∅.
So we focus on the case where t ≠ ∅.

t ∉ C implies that t ∉ C1, which in turn implies that there is no ϕ ∈ L∀T ◻ such
that ∥T ϕ∥ ⊆ t and ∃T ϕ ∈ Φ. It follows that for all t′ ∈ τ such that t ∩ t′ = ∅, we
have t↢ t′ according to the definition of ↢ and C1.

We first prove that such a t′ ∈ τ which satisfies t ∩ t′ = ∅ exists given t ∉ C.
Suppose not. Then for all t′ ∈ τ , t ∩ t′ ≠ ∅.

Take an arbitrary φ ∈ L∀T ◻ such that t ⊆ ∥φ∥. By Fact A.2.7, t ⊆ ∥◻φ∥. Take
any Γ ∈W . Since ⩾Γ∈ τ , it follows that ⩾Γ ∩ t ≠ ∅. By Proposition A.2.2 and the
fact that there is ∆ ⩾ Γ such that ∆ ∈ t ⊆ ∥ ◻ φ∥, we have ◇◻ φ ∈ Γ.

Hence we have proved that for all Γ ∈ W and all φ ∈ L∀T ◻ which satisfy
t ⊆ ∥φ∥, ◇◻φ ∈ Γ. It follows that ∀◇◻φ ∈ Φ for all φ ∈ L∀T ◻ satisfying t ⊆ ∥φ∥ by
Proposition A.2.2. By axiom ∀◇◻φ→ ∃T φ ∈ Φ, ∃T φ ∈ Φ. By axiom T φ→ ◻φ,
∥T φ∥ ⊆ ∥ ◻ φ∥.

Thus for all φ ∈ L∀T ◻ such that t ⊆ ∥◻φ∥, we have found a ψ ∈ L∀T ◻ (namely
φ itself) such that ∥T ψ∥ ⊆ ∥ ◻ φ∥ and ∃T ψ ∈ Φ. So t is semi-acceptable. More-
over, since t ∩ t′ ≠ ∅ for all t′ ∈ τ , there is no t′ ∈ τ such that for all t′′ ∈ C1,
t ∩ t′′ ≠ ∅ and t ∩ t′ = ∅. We can now conclude that t ∈ C2 ⊆ C. Contradiction.

Hence there must be t′ ∈ τ such that t ∩ t′ = ∅. The rest of the proof is
structured into two cases

○ there is t′ ∈ τ such that t ∩ t′ = ∅ and t′ ∈ C;

○ for all t′ ∈ τ such that t ∩ t′ = ∅, t′ ∉ C

In the first case, take an arbitrary t′ ∈ τ such that t∩t′ = ∅ and t′ ∈ C. Then
by the following three facts: (a) t′ ∈ C, (b) t↢ t′ as we have proved using the fact
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that t ∉ C, and (c) C ⊆ LFP as we also have proved, it follows that t ∉ LFP, since
LFP has to be conflict-free.

In the second case, it follows that for all c ∈ C, t∩ c ≠ ∅. We need consider
two sub-cases.

○ t is semi-acceptable;

○ t is not semi-acceptable.

If t is semi-acceptable, then there must be t′ ∈ τ such that for all c1 ∈ C1,
t′ ∩ c1 ≠ ∅ and t ∩ t′ = ∅. Otherwise, t ∈ C2, which contradicts the assumption
that t ∉ C. Take any such t′. By t ∉ C and t ∩ t′ = ∅ and t′ ≠ ∅, it follows that
t ↢ t′. Moreover, there is no c1 ∈ C1 such that t′ ↢ c1, because t′ ∩ c1 ≠ ∅; there
is no c2 ∈ C2 such that t′ ↢ c2, because t′ ∩ c2 = ∅, together with the fact that
t′ ∩ c1 ≠ ∅ for all c1 ∈ C1, would imply that c2 ∉ C2. Hence we have proved that
if t is semi-acceptable, then there is t′ ∈ τ such that t ↢ t′ and there is no c ∈ C
such that t′ ↢ c, which means that t ∉ d(C).

Next we try to prove that t ∉ d(C) even if t is not semi-acceptable.
If t is not semi-acceptable, then there is φ ∈ L∀T ◻ such that t ⊆ ∥ ◻ φ∥ and

there is no ψ ∈ L∀T ◻ such that ∥T ψ∥ ⊆ ∥ ◻ φ∥ and ∃T ψ ∈ Φ. Take such a φ,
denoted by φt. Then it follows that ∃T φt ∉ Φ, because ∥T φt∥ ⊆ ∥ ◻ φt∥.

Now for each c ∈ C1, take arbitrary φ ∈ L∀T ◻ such that ∥T φ∥ ⊆ c and ∃T φ ∈
Φ, denoted by φc. Next, we prove that ∥ ◻ φt∥ ∩ ∥T φc∥ ≠ ∅ for every c ∈ C1.

By axiom ◻φ→ ◻◻φ and theorem T φ→ ◻T φ and K axiom for ◻, it follows
that ∥ ◻ φt ∧ T φc∥ ⊆ ∥ ◻ (◻φt ∧ T φc)∥ for all c ∈ C1, which by Proposition A.2.2
implies that ∀((◻φt ∧ T φc)→ ◻(◻φt ∧ T φc)) ∈ Φ.

Up to now, we have proved that ∃T φt ∉ Φ, and ∀((◻φt ∧ T φc) → ◻(◻φt ∧
T φc)) ∈ Φ.

By theorem T φ↔ T ◻φ, ∃T φt ∉ Φ implies ∃T ◻φt ∉ Φ. By applying axiom
T φ → T T φ to ∃T φc ∈ Φ, we have ∃T T φc ∈ Φ. Together with ∀((◻φt ∧
T φc) → ◻(◻φt ∧ T φc)) ∈ Φ, they imply that ∃ ◻ (T φc ∧ ¬ ◻ φt) ∈ Φ by axiom
∃T φ ∧ ¬∃T ψ ∧ ∀((φ ∧ ψ) → ◻(φ ∧ ψ)) → ∃ ◻ (φ ∧ ¬ψ). Note that for all c ∈ C1,
this result holds.

We take the union of ∥ ◻ (T φc ∧ ¬ ◻ φt)∥ for each c ∈ C1, i.e.

s = ⋃
c∈C1

∥ ◻ (T φc ∧ ¬ ◻ φt)∥

and prove two facts about s: s ∩ t = ∅ and for all c ∈ C, c ∩ s ≠ ∅. Note that it is
“for all c ∈ C” rather than for all c ∈ C1.

First, s∩ t = ∅. By t ⊆ ∥◻φt∥ and ∥◻ (T φc ∧¬◻φt)∥ ⊆ ∥¬◻φt∥ for all c ∈ C1,
it follows that t ∩ ∥ ◻ (T φc ∧ ¬ ◻ φt)∥ = ∅ for all c ∈ C1. Therefore, s ∩ t = ∅.

Second, s ∩ c ≠ ∅ for all c ∈ C.
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For each c1 ∈ C1, by theorem ◻(T φc1 ∧ ¬ ◻ φt)→ T φc1 , it follows that
∥◻ (T φc1 ∧¬◻φt)∥∩ ∥T φc1∥ ≠ ∅. Since ∥T φc1∥ ⊆ c1 for all c1 ∈ C1, s∩ c1 ≠ ∅ for
all c1 ∈ C1.

Suppose that s ∩ c2 = ∅ for some c2 ∈ C2. Then due to the fact that for all
c1 ∈ C1, s∩ c1 ≠ ∅, the supposition makes c2 ∉ C2. Contradiction. Hence s∩ c2 ≠ ∅
for all c2 ∈ C2.

The fact that s∩ t = ∅ and t is not semi-acceptable tell us that we have found
an open s in τ such that t ↢ s. s ∩ c ≠ ∅ for all c ∈ C tells us that s /↢ c for all
c ∈ C. Hence t ∉ d(C).

Therefore, we have shown that no matter whether t is semi-acceptable or not,
if t ∉ C, then t ∉ d(C) in the second case. Since d is monotonic and C ⊆ LFP as
we have proved, it follows that d(C) ⊆ d(LFP) = LFP, which implies that t ∉ LFP.

Finally, we can conclude that, in both cases, t ∉ C implies that t ∉ LFP. This
completes the proof.

◻

Now we can prove the truth lemma.
Let JϕKΦ = {Γ ∈WΦ ∣MΦ,Γ ⊧ ϕ}.

A.2.12. Lemma. In the quasi-a-model MΦ, for all ϕ ∈ L∀T ◻ and all Γ ∈WΦ,

Γ ∈ ∥ϕ∥Φ if and only if Γ ∈ JϕKΦ
Proof:
The proofs for the cases of atomic propositions, boolean connectives and ◻ and
∀ are routine. So we skip them and focus on the case of T ϕ.

Assume Γ ∈ ∥T φ∥Φ, which implies that ∃T φ ∈ Φ by Proposition A.2.2. By
Fact A.2.6, ∃T φ ∈ Φ implies that ∥T φ∥ ∈ τ . Let t = ∥T φ∥. Then ∥T φ∥ ⊆ t
and ∃T φ ∈ Φ together imply that t ∈ C1. By Lemma A.2.11, it implies t ∈ LFP.
By axiom T φ → φ, t ⊆ ∥φ∥. By inductive hypothesis, ∥φ∥ = JφK. By the truth
condition of T , Γ ∈ JT φK.

Assume Γ ∈ JT φK. Then by the truth condition of T φ, there is t ∈ LFPΦ such
that Γ ∈ t ⊆ JφK. According to the truth condition of ◻φ and the fact that if ∆ ∈ t
then ⩾∆⊆ t, we have t ⊆ J◻φK.

By inductive hypothesis, it can be proved that J◻φK = ∥◻φ∥. So Γ ∈ t ⊆ ∥◻φ∥.
If t ∈ C1, then there exists ∥T ψ∥ ⊆ t such that ∃T ψ ∈ Φ. Since ∥T ψ∥ ⊆ t ⊆

∥◻φ∥, then ∀(T ψ → ◻φ) ∈ Φ. Take an arbitrary ∆ ∈ ∥T ψ∥. By ∀(T ψ → ◻φ) ∈ Φ,
we have ∀(T ψ → ◻φ) ∈ ∆. Together with theorem ∀(φ → ψ) → (T φ → T ψ)
proved in Fact 2.5.6, it implies T T ψ → T ◻φ ∈ ∆. Since ∆ ∈ ∥T ψ∥, we have
∆ ∈ ∥T T ψ∥, which implies that ∆ ∈ ∥T ◻φ∥ , i.e., T ◻φ ∈ ∆. By axiom T φ →
∀(◻φ→ T φ), theorem T φ↔ T ◻φ and T ◻φ ∈∆, it follows that ∀(◻φ→ T φ) ∈
∆. So ∀(◻φ → T φ) ∈ Φ, which implies that ∥ ◻ φ∥ ⊆ ∥T φ∥. Since Γ ∈ t ⊆ ∥ ◻ φ∥,
we have Γ ∈ ∥T φ∥.
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If t ∈ C2, then for all ψ ∈ L∀T ◻ such that t ⊆ ∥ ◻ ψ∥, there is χ ∈ L∀T ◻ such
that ∥T χ∥ ⊆ ∥ ◻ ψ∥ and ∃T χ ∈ Φ. Now since we have t ⊆ ∥ ◻ φ∥, there exists
η ∈ L∀T ◻ such that ∥T η∥ ⊆ ∥ ◻ φ∥ and ∃T η ∈ Φ. By copying the argument we
use in the case of t ∈ C1, we can also achieve the result that Γ ∈ ∥T φ∥.

Therefore, we have proved that Γ ∈ ∥T φ∥ given that Γ ∈ JT φK. So together
with ∥T φ∥ ⊆ JT φK, we have proved that ∥T φ∥ = JT φK. This completes the
proof.

◻

Finally, by Proposition 2.5.12, we only need to prove that MΦ in Definition
A.2.1 is Alexandroff, which will give us a topological argumentation model where
Φ0 is satisfiable by Lemma A.2.12.

A.2.13. Lemma. MΦ is Alexandroff.

Proof:
First observe that whether MΦ is Alexandroff has nothing to do with ↢. So
we can just apply Proposition 5.6.15 in Özgün (2017), which tells us that if
τΦ = {⋃Γ∈S ⩾Γ∣ S ⊆ WΦ} then MΦ is Alexandroff. By Fact A.2.5 and E0 =
{⋃Γ∈S ⩾Γ∣ S ⊆ WΦ} ∖ {∅}, we get τΦ = {⋃Γ∈S ⩾Γ∣ S ⊆ WΦ}. Thus it follows that
MΦ is Alexandroff. ◻
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Appendix of Chapter Three

B.1 Semantic Proof of Proposition 3.4.2 and The-
orem 3.4.6

B.1.1. Lemma. Given a topological argumentation model M for all f ∈ LFPτ , if
there are u, v ∈ f such that v ⊏τ u, then there is f ′ ∈ LFPτ such that f ′ ⊂ f and
v ∉ f ′ and u ∈ f ′.

Proof:

Take an arbitrary argument f ∈ LFPτ . Assume there are u, v ∈ f such that
v ⊏τ u. We first prove that for all x ∈ τ such that

a. x ⊂ f and

b. u ∈ x and v ∉ x

c. x ∉ LFPτ

there is y ∈ τ such that

A. x ∩ y = ∅

B. y ∩ f ≠ ∅

C. v ∉ y ∩ f

Take an arbitrary x ∈ τ which satisfies conditions a, b and c. By c, there is
y ∈ τ such that x ↢ y and there is no f ∈ LFPτ such that y ↢ f . x ↢ y implies
that x∩ y ≠ ∅(A) ; y ∩f ≠ ∅ for all f ∈ LFPτ follows from the fact that there is no
f ∈ LFPτ such that y ↢ f . So y ∩ f ≠ ∅ (B). x ∩ y = ∅ implies that x ∩ (y ∩ f) = ∅,
which together with u ∈ x implies that u ∉ y ∩ f. u ∉ y ∩ f, together with v ⊏τ u,
implies that v ∉ y ∩ f (C).

117
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Next, we prove that there must be an argument satisfying all the requirements
in the Lemma.

For each x ∈ τ which satisfy conditions a, b and c, let

Cx = {y ∩ f ∣ y ∈ τ and it satisfies conditions A, B and C} .

Note that ⋃Cx ∈ τ and x ∩⋃Cx = ∅ and ⋃Cx ⊂ f and v ∉ ⋃Cx.
We then define a partial function H ∶ τ ↦ τ such that given any x ∈ τ , if it

satisfies conditions a, b and c, then

H(x) = x ∪⋃Cx

else if it only satisfies conditions a and b but not c, then

H(x) = x

else H(x) is undefined.
Observe that if x ∈ τ satisfies conditions a and b, then H(x) ∈ τ and satisfies

conditions a and b. More generally speaking, for all sets X ⊆ τ , if every x ∈ X
satisfies conditions a and b, then ⋃X ∈ τ and satisfies condition a and b.

By the assumption that there are u, v ∈ f ∈ LFPτ such that v ⊏τ u, it follows
that there is t ∈ τ such that u ∈ t but v ∉ t.

Thus we can define inductively the following non-decreasing sequence by tak-
ing an arbitrary t ∈ τ such that u ∈ t but v ∉ t.

t0 = t ∩ f

tα+1 =H(tα)
tβ = ⋃

α<β
tα whenever β is a limit ordinal

Take the set U = {tα ∣ α is an ordinal}. Because it is a well-founded ordered
subset of 2W , there is an ordinal β and a monotonic bijection r from U onto the set
{α ∣ α < β}. Let r′ ∶ {α ≤ β}↦ U be the monotonic mapping defined by r′(α) = tα.
If it were injective, then the monotonic mapping r ○ r′ ∶ {α < β} ↦ {α ≤ β}
would be injective too, which is impossible. Thus there exists γ and γ′ such that
γ < γ + 1 ≤ γ′ ≤ β and r′(γ) = r′(γ′). This implies that tγ+1 =H(tγ) = tγ.

Since H(tγ) = tγ and ⋃Cx ⊈ x for all x ∈ τ , tγ satisfies conditions a and b but
not c by the definition of the function H. That is, (a) tγ ⊂ f, (b) u ∈ tγ and v ∉ tγ
and not (c) tγ ∈ LFPτ . ◻

Proof of Proposition 3.4.2
Proof:
Take any m ∈ Mini. By Lemma B.1.1, there cannot be v, u ∈ m such that v ⊏τ u.
So m ⊆ P if and only if m↝ P holds in M. ◻

Proof of Theorem 3.4.6
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B.1.2. Lemma. Given a topological argumentation model M whose topological
space is an Alexandroff space, take ⊑τ as the agent’s normality order. Then, for
all f ∈ LFPτ , if f ↝ P holds in M, then there is f ′ ⊆ f such that f ′ ∈ LFPτ and
f ′ ⊆ P .

Proof:
Take an arbitrary f ∈ LFPτ and assume that f ⊈ P .

We first prove that there is t ∈ τ such that t ≠ ∅ and t ⊆ f ∩ P . Since f ⊈ P ,
f ∩ P ≠ ∅. f ∩ P ≠ ∅ follows from the fact that f ↝ P holds.

Let u ↑= {w ∈W ∣ u ⊑τ w}. For all v ∈ f ∩P , there is u ∈ f ∩P such that v ⊑τ u
and u ↑⊆ P by the fact that f ↝ P holds in M. By v ⊑τ u and u ↑⊆ P , it follows
that v ⊏τ u. We take such an argument u for each v ∈ f ∩ P and denote it by uv.

Since v ⊏τ uv and v, uv ∈ f, by Lemma B.1.1, there is f ∈ LFPτ for v ∈ f ∩ P
such that f ⊂ f and v ∉ f and u ∈ f . We take such an argument f for each v ∈ f∩P
and denote it by fv.

Since uv ∈ fv, it follows that uv ↑⊆ fv. Because uv ↑⊆ P , for all v′ ∈ f ∩ P such
that v′ ∈ fv, we have uv /⊑τ v′. Hence for all v′ ∈ f ∩ P such that v′ ∈ fv, there is
a tv′ ∈ τ such that uv ∈ tv′ and v′ ∉ tv′ . We take such an open for each v′ ∈ f ∩ P
such that v′ ∈ fv and denote it by tv′ . Note that uv ↑⊆ tv′ .

To sum up, we have for each v ∈ f∩P two types of opens uv and fv. uv satisfies
uv ∈ f ∩P and uv ↑⊆ P and v ⊏τ uv; fv satisfies fv ⊆ f and uv ↑⊆ fv and v ∉ fv. For
each v′ ∈ f ∩P ∩ fv we have one type of opens tv′ . tv′ satisfies uv ↑⊆ tv′ and v′ ∉ tv′ .

Take tuv = fv ∩⋂v′∈f∩P∩fv tv′ . By uv ↑⊆ tv′ for all v′ ∈ f ∩ P ∩ fv and uv ↑⊆ fv,
it follows that tuv ≠ ∅. By v′ ∉ tv′ for all v′ ∈ f ∩ P ∩ fv, it follows that v′ ∉ tuv .
By fv ⊆ f for all v ∈ f ∩ P , it follows that f ∩ P ∩ fv = P ∩ fv. So v′ ∉ tuv for all
v′ ∈ P ∩ fv, which, together with the fact that tuv ⊆ fv, implies that tuv ⊆ P for all
v ∈ f ∩ P .

Hence for each v ∈ f ∩ P , we can find an open tuv (the topological space is an
Alexandroff space) such that tuv ≠ ∅ and tuv ⊆ P ∩ f.

Hence we have proved that there is t ∈ τ such that t ≠ ∅ and t ⊆ f ∩ P .

Next take tp = ⋃{t ∈ τ ∣ t ⊆ f ∩ P}. Note that tp ≠ ∅ and tp ⊆ f ∩ P ⊂ f (by
f ⊈ P ). We prove that tp ∈ LFPτ . Suppose not. Then there is t′ ∈ τ such that
tp ↢ t′ and for all f ∈ LFPτ , f ∩ t′ ≠ ∅. So f ∩ t′ ≠ ∅. By tp ∩ t′ = ∅, which follows
from tp ↢ t′, it follows that t′ ⊈ f ∩ P . By f ∩ t′ ≠ ∅ and t′ ⊈ f ∩ P , it follows that
t′ ∩ f ∩ P ≠ ∅.

Since t′ ∩ tp = ∅, there is no t ∈ τ such that t ⊆ t′ ∩ f ∩ P . So for all t ⊆ t′ ∩ f
which is non-empty, there is x ∈ t such that x ∈ t′ ∩ f ∩ P .

For each w ∈ t′ ∩ f, take tw = ⋂w∈t∈τ t. Since the topological space is an
Alexandroff space, tw is an open. Since w ∈ tw, tw is non-empty. Moreover,
w ∈ t′ ∩ f ∈ τ implies that tw ⊆ t′ ∩ f. By the conclusion in the previous paragraph,
there is x ∈ tw such that x ∈ t′ ∩ f ∩ P . x ∈ tw implies that w ⊑τ x. So for each
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w ∈ t′ ∩ f, we find a x ∈ P such that w ⊑τ x. This contradicts the assumption that
f ↝ P holds in M, because w ↑∈ t′ ∩ f.

◻
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Appendix of Chapter Four

C.1 Proof of Lemma 4.2.12
Proof:
(⇒) The Knaster-Tarski fixpoint theorem (Knaster, 1928; Tarski, 1955) states
that GFPP is the union of all dP ’s postfix points, GFPP = ⋃{X ⊆ Ag ∣X ⊆ dP (X)}.
Hence, as any P -admissible set A is, by definition, a postfix point of dP , we have
A ⊆ GFPP and thus s ∈ A implies s ∈ GFPP .

(⇐) Take any s ∈ GFPP and define A ∶= Gfp .d ∩Def(s); it is enough to show
that A is a P -admissible set containing s, i.e., 1) A is conflict free with respect
to ↢P and 2) A ⊆ dP (A) and 3) s ∈ A.

For the first, observe that any two arguments x, y ∈ A are, by definition, also
in DefP (s). Thus, each one of them is at a distance of even steps from s and
hence cannot attack each other (as otherwise, the attacker would be at a distance
odd steps from s, which is impossible as ↢P is uncontroversial). Therefore, A is
conflict-free.

For the second, take any argument x attacking some s′ ∈ A. Since s′ ∈ GFPP ,
there must be s′′ ∈ GFPP such that x ↢P s′′ (recall, GFPP is a fixed point of dP ,
so GFPP = dP (GFPP )); hence, s′′ ∈ DefP (s′). But then, as s′ ∈ DefP (s) (by A’s
definition) and s′′ ∈ DefP (s′), it follows that s′′ ∈ DefP (s), that is, s′′ ∈ A (by
A’s definition). Hence, every argument x attacking some argument (s′) in A is in
turn attacked by an argument (s′′) that belongs to A; thus, A ⊆ dP (A).

For the third, since clearly s ∈ DefP (s), s ∈ GFPP implies s ∈ A. ◻

C.2 Proof of Theorem 4.3.4
In this section we show that for all φ ∈ Lαβ, ⊧ φ implies ⊢ φ. We first define
the partial multi-agent argumentation model and then extend it to a multi-agent
argumentation model.

121
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C.2.1. Definition (Partial MAM). A partial multi-agent argumentation model
MX is a structure (W,Ag,{↢P}P ∈X⊆2W , f, V ) where W,Ag,↢P , f and V are de-
fined as in the multi-agent argumentation model, and X is closed under comple-
ment, i.e. if P ∈ X, then P ∈ X. Moreover, it satisfies a restricted version of the
conditions we impose on the multi-agent argumentation model:

1. For all P ∈X, s1 ↢P s2 if and only if s1 ↢P s2.

2. For all P ∈X, if s1 ↢P s2,

(a) either f(s1) ⊆ P or f(s1) ⊆ P ; and
(b) f(s1) ⊆ P implies f(s2) ⊆ P .

3. For all P,Q ∈X, if s1 ↢P s2 and f(s1) ⊆ Q ⊆ P , then s1 ↢Q s2.

In words, a partial MAM MX is simply a MAM that only ‘discusses’ propo-
sitions in X, and therefore only needs to satisfy the frame conditions relative to
the elements in X. All MAM are partial MAMs; for the other direction, we have
the following lemma.

C.2.2. Lemma. Any partial MAM MX can be extended to a MAM.

Proof:
We define the relation ↢P for each P ∉X as follows:

s↢P s′ if and only if there is a set Q ∈X such that s↢Q s′ and
f(s) ⊆ P ⊆ Q or f(s) ⊆ P ⊆ Q

We claim that the model generated by adding these attacking relations intoMX

is a MAM. To prove this claim, we only need to check that it satisfies the four
frame conditions.

1: s1 ↢P s2 if and only if s1 ↢P s2. We only need to prove that if s1 ↢P s2,
then s1 ↢P s2.

– If P ∈X, it follows immediately from the restricted version of condition
1 and the fact that X is closed under complement.

– If P ∉ X, the definition of s1 ↢P s2 also implies that s1 ↢P s2, since
the definition is symmetric.

2(a): if s1 ↢P s2, either f(s1) ⊆ P or f(s1) ⊆ P . For P ∈ X, by the restricted
version of condition 2(a), ↢P satisfies condition 2(a). For P ∉ X, the
definition of ↢P implies f(s1) ⊆ P or f(s1) ⊆ P
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2(b): if s1 ↢P s2 and f(s1) ⊆ P , then f(s2) ⊆ P . For P ∈ X, by the restricted
version of condition 2(b), ↢P satisfies condition 2(b). For P ∉ X, the
definition of ↢P implies that there is Q ∈ X such that f(s1) ⊆ P ⊆ Q. By
2(b) for Q ∈X, f(s2) ⊆ Q ⊆ P .

3: if s1 ↢P s2 and f(s1) ⊆ Q ⊆ P , then s1 ↢Q s2.

– If P,Q ∈X, this condition follows from its restricted version of condi-
tion 3.

– If P ∈ X and Q ∉ X, take P as the set required by the definition of
↢Q, it follows immediately that s1 ↢Q s2

– If P ∉ X and Q ∈ X, by definition of ↢P , there is a set R ∈ X such
that s1 ↢R s2 and f(s1) ⊆ P ⊆ R or f(s1) ⊆ P ⊆ R. (Note that the
second case is not possible since f(s1) ⊆ P by assumption.) By the
restricted version of condition 3, since Q ∈ X and f(s1) ⊆ Q ⊆ P ⊆ R,
we have s1 ↢Q s2.

– If P,Q ∉ X, by the definition of ↢P , there is a set R ∈ X such that
s1 ↢R s2 and f(s1) ⊆ P ⊆ R or f(s) ⊆ P ⊆ R. Take the set R,
since f(s1) ⊆ Q ⊆ P ⊆ R, it follows that s1 ↢Q s2 by the definition of
s1 ↢Q s2.

◻

Hence, for an arbitrary GBAS-consistent formula φ ∈ Lαβ, we first build a
partial MAM in which it is satisfied by using maximal consistent sets. When
doing so, we take care of the fact that there are two dimensions in a MAM. Cor-
responding to these two dimensions, the language Lαβ is divided into two parts –
α-formulas and β-formulas. Note that given an GBAS-consistent set of α-formulas
A and an GBAS-consistent set of β-formulas B, their union A ∪ B is GBAS-
consistent; (suppose otherwise, then there must be α1, . . . , αn and β1, . . . , βm such
that ⊢ ⋀n

i=1αi → ¬⋀m
i=1 βi. However, this is impossible since ⋀n

i=1αi → ¬⋀m
i=1 βi is

not a formula in Lαβ. ) This fact gives us the flexibility to construct the pairs of
possible worlds and arguments on which we evaluate formulas.

Given a formula φ, we define ∼ in the following formula:

∼ φ ∶=
⎧⎪⎪⎨⎪⎪⎩

ψ if φ is of the form ¬ψ,
¬φ otherwise

A set of formulas X ⊆ Lαβ is closed under single negation if and only if ∼ φ
belongs to X whenever φ ∈X.

C.2.3. Definition. Let X be a set of formulas. The set X is FL-closed if and
only if it is closed under subformulas (e.g., if [α]β ∈ X, then α,β ∈ X) and it
satisfies the following additional constraints:
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○ ⊺,⊟�,q�,◻� ∈X

○ if [α]β ∈X, then [∼ α]β,◻α, ⟨α⟩⊺ ∈X;

○ if Gfpα ∈X, then [α]⟨α⟩Gfpα ∈X.

Next, we build the canonical model starting by constructing maximal consis-
tent sets. Given the two kinds of formulas, α-formulas and β-formulas, intricate
coordination between them is required during the construction.

C.2.4. Definition. Let Σ be a set of formulas. We define Sub(Σ) as the smallest
set containing Σ which is FL-closed and closed under single negations. And
Sub+(Σ) is the smallest set containing Sub(Σ) which satisfies the following two
conditions:

○ if ⊟α ∈ Sub(Σ), then q ◻ ⊟α ∈ Sub+(Σ) and q ◻ ¬ ⊟ α ∈ Sub+(Σ);

○ if qβ ∈ Sub(Σ), then q ◻ qβ ∈ Sub+(Σ) and q ◻ ¬ q β ∈ Sub+(Σ);

The set Cls(Σ), the closure of Σ, is the the smallest set containing Sub+(Σ) which
is FL-closed and closed under single negations.

C.2.5. Definition. (Atoms) Let Σ be a set of formulas. And let Lα ⊆ Lαβ be
the set of all α-formulas and Lβ ⊆ Lαβ be the set of all β-formulas

○ A set of formulas Γ is an atom over Σ if it is a maximal consistent subsets
of Cls(Σ). The set At(Σ) contains all the atoms over Σ.

○ A set of formulas A is an α-atom over Σ if it is a maximal consistent subsets
of Cls(Σ) ∩Lα. The set Atα(Σ) contains all α-atoms over Σ.

○ A set of formulas B is an β-atom over Σ if it is a maximal consistent subsets
of Cls(Σ) ∩Lβ. The set Atβ(Σ) contains all β-atoms over Σ.

C.2.6. Fact.

○ If A is an α-atom over Σ and B is a β-atom over Σ, then A∪B is an atom
over Σ;

○ If Γ is an atom over Σ, then Γ ∩Lα is an α-atom and Γ ∩Lβ is a β-atom.

Proof:
For the first, we know that A ∪ B ⊆ Cls(Σ) is GBAS-consistent; thus, we only
need to prove that any X satisfying A ∪ B ⊂ X ⊆ Cls(Σ) is inconsistent. This
is obvious, since any ψ ∈ Cls(Σ) with ψ ∉ A ∪ B is either an α-formula or β-
formula. Without loss of generality we can assume it is an α-formula; since A is
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an α-atom over Σ, the set A ∪ {ψ} must be GBAS-inconsistent. Thus, X is also
GBAS-inconsistent.

For the second, suppose Γ ∩ Lα = A is not an α-atom. Since A is consistent,
there is an α-formula α′ not in A such that A ∪ {α′} is still consistent, and thus
Γ ∪ {α′} is also consistent. But α′ ∉ A implies α′ ∉ Γ, and thus this contradicts
the maximality of Γ. Therefore, Γ ∩ Lα must be an α-atom. The argument for
Γ ∩Lβ is similar. ◻

C.2.7. Lemma. If Φ ⊆ Cls(Σ) and Φ is consistent, then there is a Γ ∈ At(Σ)
such that Φ ⊆ Γ.

The proof of Lemma C.2.7, analogous to the Lindenbaum’s Lemma, follows
the same argument as the proof of Lemma 4.83 in Blackburn, Rijke and Venema
(2002). Together with the second fact of Fact C.2.6, it implies the following
lemmas:

C.2.8. Lemma.

1. If X ⊆ Cls(Σ) ∩ Lα is consistent, then there is a A ∈ Atα(Σ) such that
X ⊆ A.

2. If Y ⊆ Cls(Σ) ∩ Lβ is consistent, then there is a B ∈ Atβ(Σ) such that
Y ⊆ B.

We can now fix a formula ϕ ∈ L and construct the canonical model for it,
which will be proved to be a partial MAM. Before doing so here is first some
useful notations.

Let X and Σ be sets of formulas.

○ If X is finite, define X̂ ∶= ⋀φ∈X φ.

○ For ○ ∈ {⊟,q,◻, [α]}, define the sets

X○ ∶= {φ ∈ L ∣ ○φ ∈X}, ○X○ ∶= {○φ ∈ L ∣ ○φ ∈X},

If X is finite, define

XΣ
○ ∶= {φ ∈ Cls(Σ) ∣ ⊢ X̂○ → φ} .

When Σ is a singleton {σ}, the set X{σ}○ will be abbreviated as Xσ
○ .

Second, the following proof shows a property required by the definition of our
canonical model.

C.2.9. Lemma. Given a consistent ϕ, there is ∆ ∈ At(ϕ) such that ϕ ∈ ∆ and
∆ϕ
q ⊆∆.
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Proof:

The proof is divided into two cases.
First, if ϕ is an α-formula then, by Lemma C.2.8 (a), there is an α-atom A

such that ϕ ∈ A, due to its consistency. Note that Aq is consistent (otherwise,
q� ∈ A, contradicting axiom D). Thus, by this and the fact that Aq ⊆ Cls(ϕ)
(Lemma C.2.8 (b)), there is a β-atom B such that Aq ⊆ B, which implies that
Aϕ
q ⊆ B. By Fact C.2.6, A ∪B ∈ At(ϕ).

Second, if ϕ is a β-formula, suppose that there is no ∆ ∈ At(ϕ) such that
ϕ ∈ ∆ and ∆ϕ

q ⊆ ∆. Then there is no α-atom A such that Aϕ
q ∪ {ϕ} is consistent.

(Otherwise, Aϕ
q ∪ {ϕ} can be extended to a β-atom by Lemma C.2.8 (b), and by

Fact C.2.6 A ∪B is an atom over ϕ: a contradiction.)
Now take the α-formula qϕ. It can be proved that qϕ is consistent. (Oth-

erwise, ⊢ ¬ q ϕ, which implies that ⊢ qϕ ↔ q�. Since ⊢ q(� → ¬ϕ) and
⊢ q(� → ¬ϕ) ∧ q� → q¬ϕ, it follows that ⊢ qϕ → q¬ϕ, which implies that ϕ
is inconsistent; a contradiction.) Since qϕ is an α-formula, from the first auxil-
iary result it follows that there is an atom over qϕ, say Γ, such that Γqϕq ⊆ Γ and
qϕ ∈ Γ.

Next, take ∆ ∶= Γ ∩ Cls(ϕ). It can be shown that ∆ is an atom over ϕ (i.e.,
∆ ∈ At(ϕ)). So take the α-atom Θ ∶=∆ ∩Lα. Our supposition implies the incon-
sistency of Θϕ

q ∪ {ϕ}, as we have shown at the beginning. However, this implies
that q(Θϕ

q ∪ {ϕ})
⋀

is inconsistent. qΘq∪{qϕ} ⊆ Γ implies that ⊢ Γ̂→ q(Θq ∪ {ϕ})
⋀

.
By the definition of Θϕ

q, ⊢ Θ̂q → Θ̂ϕ
q. Thus, we have ⊢ Γ̂ → q(Θϕ

q ∪ {ϕ})
⋀

. Since
q(Θϕ

q ∪ {ϕ})
⋀

is inconsistent, it follows that Γ is inconsistent, contradicting the Γ’s
consistency. ◻

Here is, then, the definition of the partial MAM for ϕ.

C.2.10. Definition (Partial MAM over ϕ). Take any ∆ ∈ At(ϕ) satisfying both
ϕ ∈∆ and ∆ϕ

q ⊆∆ (by Lemma C.2.9, such a ∆ exists). The partial MAM over ϕ
is the structure

M
{∥α∥∣[α]⊺∈Cls(ϕ)}
∆ = (W,Ag, f,{↢∥α∥∣ [α]⊺ ∈ Cls(ϕ)}, V )1

given by

○ W ∶= {A ∈ Atα(ϕ) ∣ ⊟A⊟ ∩ Sub(Σ) = ⊟∆⊟ ∩ Sub(Σ) and q Aq ∩ Sub(Σ) =
q∆q ∩ Sub(Σ)};

○ ∥α∥ ∶= {A ∈W ∣ α ∈ A};
1Note that {∥α∥ ∣ [α]⊺ ∈ Cls(ϕ)} will play the role of the labels of attack relations in the

partial MAM.
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○ Ag ∶= {B ∈ Atβ(ϕ) ∣∆ϕ
q ⊆ B};

○ A ∈ f(B) if and only if B̂ ∧ ◊Â is consistent;

○ for all ∥α∥ ∈ {∥α∥ ∣ [α]⊺ ∈ Cls(ϕ)}, B ↢∥α∥ B′ if and only if B ∧ ⟨α⟩B′ is
consistent;

○ V (p) ∶= {A ∈ Atα(ϕ) ∣ p ∈ A}

We first prove four existence lemmas for ⊟, q, ◻ and [α]. During the proof,
we will use the following abbreviations:

DY := {⊟α ∈ Sub(ϕ) ∣ ⊟α ∈∆}, DN := {¬ ⊟ α ∈ Sub(ϕ) ∣ ¬ ⊟ α ∈∆},
EY := {qβ ∈ Sub(ϕ) ∣ qβ ∈∆}, EN := {¬ q β ∈ Sub(ϕ) ∣ ¬ q β ∈∆},.

Y N ∶=DY ∪DN ∪EY ∪EN .

C.2.11. Lemma. In the partial MAM over ϕ, for all ⊟α ∈ Cls(ϕ), ⊟α ∉ A ∈ W
if and only if there is an α-atom A′ ∈W such that ¬α ∈ A′.

Proof:
Assume that ⊟α ∉ A where ⊟α ∈ Cls(ϕ). We show that {¬α}∪ Y N is consistent.
Suppose not; then ⊢ Ŷ N → α. By applying the necessitation rule, we have
⊢ ⊟Ŷ N → ⊟α. By axiom 4 and 5 for ⊟ and A⊟ =∆⊟, we have ⊢ Â→ ⊟(D̂Y ∧D̂N).
By Axioms ⊞1, ⊞2 and Aq = ∆q, we have ⊢ Â → ⊟(ÊY ∧ ÊN). Together with
⊢ ⊟Ŷ N → ⊟α, it implies ⊟α ∈ A, a contradiction. Therefore, we can extend
{¬α} ∪ Y N to an α-atom over ϕ, A′, such that ¬α ∈ A′. Moreover, A′⊟ =∆⊟ and
A′q =∆q, so A′ ∈W .

For the other direction, assume there is a α-atom A′ ∈W such that ¬α ∈ A′.
It follows immediately that ⊟α ∉ A. (Otherwise, by A⊟ = ∆⊟ = A′⊟ and axiom T
for ⊟, we have α ∈ A′, which contradicts the assumption ¬α ∈ A′.) ◻

C.2.12. Lemma. In the partial MAM over ϕ, ∆ϕ
q = ⋂Ag

Proof:
As the ⊆ direction is obvious, we focus on the ⊇ direction. Assume β ∈ Cls(ϕ)
but β ∉ ∆ϕ

q; we will show that there is a B ∈ Ag such that β ∉ B. This amounts
to show that {¬β} ∪∆ϕ

q is consistent. Suppose not; then ⊢ ∆̂ϕ
q → β. Since for

each β ∈ ∆ϕ
q, we have ⊢ ∆̂q → β. So ⊢ ∆̂q → ∆̂ϕ

q. By ⊢ ∆̂ϕ
q → β, it follows that

⊢ ∆̂q → β, which implies that β ∈ ∆ϕ
q by the definition of ∆ϕ

q. However, this is
contradictory to the assumption that β ∉ ∆ϕ

q. So there must be a B ∈ Ag such
that β ∉ B. Therefore, β ∉ ⋂Ag. ◻
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C.2.13. Lemma (Existence Lemma for α-formulas). In the partial MAM over ϕ,
for all ◻α ∈ Cls(ϕ), ◻α ∉ B if and only if there is an α-atom A ∈ W such that
there is A ∈ f(B) such that ¬α ∈ A.

Proof:
Assume ◻α ∉ B; we will show that {¬α} can be extended to an α-atom A ∈ W
such that B̂ ∧ ◊Â is consistent. For this we follow the argument of Blackburn,
Rijke and Venema (2002, Lemma 4.86) and construct an appropriate α-atom A
by forcing choices. So, enumerate the α-formulas in Cls(ϕ) as α1, . . . , αm, and
define A0 as {¬α} ∪ Y N , with Y N as above.

We first prove that B̂ ∧ ◊Â0 is consistent. Suppose otherwise; then ⊢ B̂ →
◻¬Â0 and ¬Â0 = α ∨ ¬Ŷ N . Thus, ⊢ B̂ → ◻(α ∨ ¬Ŷ N), which implies that
⊢ B̂ → ◻(Ŷ N → α). It follows that ⊢ B̂ → (¬◻α → ¬◻ Ŷ N) and, since ¬◻α ∈ B,
we have ⊢ B̂ → ¬ ◻ Ŷ N .

To get a contradiction, we now proceed to prove that we also have ⊢ B̂ →
◻Ŷ N . The proof can be divided into four parts specified as follows.

1. By Axiom I1, ⊢ D̂Y → q◻ D̂Y . Together with the construction of DY and
∆ϕ
q, this implies that

{◻ ⊟ α ∈ Cls(Σ) ∣ ⊟α ∈∆ ∩ Sub(Σ)} ⊆∆ϕ
q ⊆ B .

Thus, ⊢ B̂ → ◻D̂Y .

2. By Axiom I1 and axiom 5 for ⊟, ⊢ D̂N → q ◻ D̂N . Together with the
construction of DN and ∆ϕ

q, this implies that

{◻¬ ⊟ α ∈ Cls(Σ) ∣ ¬ ⊟ α ∈∆ ∩ Sub(Σ)} ⊆∆ϕ
q ⊆ B .

Thus, ⊢ B̂ → ◻D̂N .

3. By Axiom I1 and Axiom ⊞1, ⊢ ÊY → q◻ ÊY . Together with the construc-
tion of EY and ∆ϕ

q, this implies that

{◻ q β ∈ Cls(Σ) ∣ qβ ∈∆ ∩ Sub(Σ)} ⊆∆ϕ
q ⊆ B .

Hence, ⊢ B̂ → ◻ÊY .

4. By Axiom I1 and Axiom ⊞2, ⊢ ÊN → q ◻ ÊN . Together with the con-
struction of EN and ∆ϕ

q, this implies that

{◻¬ q β ∈ Cls(Σ) ∣ ¬ q β ∈∆ ∩ Sub(Σ)} ⊆∆ϕ
q ⊆ B .

Hence, ⊢ B̂ → ◻ÊN .
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Therefore, ⊢ B̂ → ◻Ŷ N . This is a contradiction, so B̂∧◊Â0 must be consistent.
Now, in order to extend the consistent B̂ ∧ ◊Â0, suppose as an inductive

hypothesis that An is defined such that B ∧ ◊An is consistent (1 ≤ n ≤m). Then

⊢ ◊Ân↔ ◊((Ân ∧ αn+1) ∨ (Ân∧ ∼ αn+1))

and thus ⊢ ◊Ân ↔ (◊(Ân ∧ αn+1) ∨ ◊(Ân∧ ∼ αn+1)). Therefore, either for A′ =
An ∪{αn+1} or for A′ = An ∪{∼ αn+1}, we have B ∧◊A′ is consistent. By choosing
An+1 to be the consistent expansion, and by letting A be Am, we have that B̂∧◊Â
is consistent.

For the other direction, suppose there is an α-atom A ∈W such that ¬α ∈ A ∈
f(B); then B̂ ∧◊Â is consistent, which implies that B̂ ∧◊¬α is consistent. Since
◻α ∈ Cls(ϕ) and B is β-atom over ϕ (and hence maximal consistent in Cls(ϕ)),
we must have ¬ ◻ α ∈ B. ◻

C.2.14. Lemma (Existence Lemma for β-formulas). In the partial MAM over ϕ,
for all [α]β ∈ Cls(ϕ), [α]β ∉ B if and only if there is a β-atom B′ ∈ Ag such that
¬β ∈ B′ and B ↢∥α∥ B′.

Proof:
Assume [α]β ∉ B; we will show that {¬β} can be extended to an β-atom B′ ∈W
such that B̂ ∧ ⟨α⟩B̂′ is consistent. We construct an appropriate β-atom B′ by
forcing choices. Enumerate the β-formulas in Cls(ϕ) as β1, . . . , βm; define B0 as
{¬β} ∪∆ϕ

q.
Let λ = ∆̂ϕ

q. We first prove that B̂ ∧ ⟨α⟩B̂0 is consistent. Suppose not. By
an argument similar to that in Lemma C.2.13, we can get ⊢ B̂ → ¬[α]λ. By rule
N for q, we have (1) ⊢ qB̂ → q¬[α]λ. However, ⊢ qB̂ → qλ, since ∆ϕ

q ⊆ B. By
Axiom I2, ⊢ qλ→ q[α]λ, which implies that (2) ⊢ qB̂ → q[α]λ. But (1) and (2)
lead to a contradiction, since ¬ q � ∈ B. Therefore, B̂ ∧ ⟨α⟩B̂0 is consistent.

The induction part to extend B̂ ∧ ⟨α⟩B̂0 is similar to that in the proof of the
previous lemma, and so is this lemma’s other direction. ◻

Now we are ready to prove the truth lemma.

C.2.15. Lemma (Truth Lemma). Let M{∥α∥∣[α]⊺∈Cls(ϕ)}
∆ be the partial MAM over

ϕ. For all φ ∈ Cls(ϕ),

M{∥α∥∣[α]⊺∈Cls(ϕ)}
∆ , (A,B) ⊧ φ if and only if φ ∈ A ∪B

Proof:
We proceed by induction on the degree of φ.
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○ For ⊺, (A,B) ⊧ ⊺ and ⊺ ∈ A and ⊺ ∈ B, so it is trivially satisfied. For atomic
propositions p, we have (A,B) ⊧ p if and only if A ∈ V (p) if and only if
p ∈ A if and only if p ∈ A ∪B.

○ For the Boolean cases, there are two cases: one for α-formula and one for
β-formula. In both, the proof is routine.

○ For the four modal operators, the proof uses their existence lemmas. Here,
as an example, we only deal with the universal modality on the set of
arguments. Assume that (A,B) ⊧ qβ; by its truth definition, for all B′ ∈ Ag,
(A,B′) ⊧ β. By induction hypothesis, β ∈ B′ for all B′ ∈ Ag, which implies
that β ∈ ⋂Ag ⊆ ∆ϕ

q = Aϕ
q. (Note that ⊟A⊟ ∩ Sub(Σ) = ⊟∆⊟ ∩ Sub(Σ) and

qAq∩Sub(Σ) = q∆q∩Sub(Σ) imply Aϕ
q =∆ϕ

q by Axiom I1, Axiom ⊞1 and
the constructions of both Cls(Σ) and ∆ϕ

q, using similar arguments specified
in (1)-(4) in Lemma C.2.13). Since qβ ∈ Cls(ϕ), we have qβ ∈ A. For the
other direction, use ⋂Ag ⊇∆ϕ

q.

○ For the case of Gfpα, the proof goes as follows. For the first direction,
assume that (A,B) ⊧ Gfpα. Note that GFPJαK = {X ∈ Ag ∣ (A,X) ⊧ Gfpα}.
Define D ∶= GFPJαK ∩DefJαK(B). And let δ denote ⋁X∈D X̂. Define E ∶=
{X ∈ Ag ∣ δ ∧ ⟨α⟩X̂ is consistent }. And let ε denote ⋁X∈E X̂.

Claim one: X ∈ E if and only if there is a Y ∈D such that Y ↢JαK X.

X ∈ E ⇔ δ ∧ ⟨α⟩X̂ is consistent
⇔ there is a Y ∈D such that Ŷ ∧ ⟨α⟩X̂ is consistent
⇔ there is a Y ∈D such that Y ↢∥α∥ X
⇔ there is a Y ∈D such that Y ↢JαK X

(by the induction hypothesis JαK = ∥α∥)
Claim two: for all ar ⊆ Ag we have ⊢ ⋁X∈ar X̂ → [α]∆̂ϕ

q. Suppose not.
Then ⋁X∈ar X̂ ∧¬[α]∆̂ϕ

q is consistent, which implies that ⋁X∈ar X̂ ∧ ⟨α⟩¬∆̂ϕ
q

is consistent. So there must be one β ∈ ∆ϕ
q such that ⋁X∈ar X̂ ∧ ⟨α⟩¬β is

consistent. Furthermore, there must be one X ∈ ar such that X̂ ∧ ⟨α⟩¬β is
consistent. By the existence lemma for [α], there must be one Y ∈ Ag such
that X ↢∥α∥ Y and ¬β ∈ Y . However, this is impossible, since β ∈ ∆ϕ

q ⊆ Y
by the definition of Ag. Therefore, ⊢ ⋁X∈ar X̂ → [α]∆̂ϕ

q.

Claim three: ⊢ ε→ ⟨α⟩δ. Suppose not. Then ε∧¬⟨α⟩δ is consistent. Thus
there must be an X ∈ E such that X̂ ∧ ¬⟨α⟩δ is consistent, which implies
that there is no Y ∈D such that X̂ ∧ ⟨α⟩Ŷ is consistent. Hence, there is no
Y ∈D such that X ↢∥α∥ Y .
However, by Claim one and X ∈ E, there is a Z ∈ D such that Z ↢JαK X.
Since Z ∈D ⊆ GFPJαK, for all X ∈ Ag such that Z ↢JαK X, there is Y ∈ GFPJαK
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such that X ↢JαK Y . Because X ∈ AttJαK(B), Y ∈ DefJαK(B). Hence Y ∈ D
and X ↢∥α∥ Y . Contradiction!

Claim four: ⊢ δ → [α]ε. Suppose not. Then δ ∧ ⟨α⟩¬ε is consistent, which
implies that there is X ∈ D such that X̂ ∧ ⟨α⟩¬ε is consistent. By Claim
two, ⊢ X̂ → [α]∆̂ϕ

q. By ⊢ [α]β ∧ ⟨α⟩β′ → ⟨α⟩(β ∧ β′), the consistency of
X̂ ∧ ⟨α⟩¬ε implies that X̂ ∧ ⟨α⟩(∆̂ϕ

q ∧¬ε) is consistent. Thus there must be
a Y ∈ Ag∖E such that X̂ ∧ ⟨α⟩Ŷ is consistent. However, this means that
X ↢∥α∥ Y . Since X ∈D, by Claim one, it follows that Y ∈ E, contradictory
to the fact that Y ∈ Ag∖E. Therefore, ⊢ δ → [α]ε.

Claim five: ⊢ δ → [α]⟨α⟩δ. By rule N for [α] on Claim three, we have
⊢ [α]ε→ [α]⟨α⟩δ. Together with Claim four, it implies that ⊢ δ → [α]⟨α⟩δ.

By rule R on Gfpα we have ⊢ δ → Gfpα. Since B ∈ DefJαK(B) by the defini-
tion of Def and B ∈ GFPJαK by the definition of GFPJαK and the assumption
that (A,B) ⊧ Gfpα, we have B ∈ D = DefJαK(B) ∩ GFPJαK. Recall that
δ ∶= ⋁X∈D X̂. By B ∈ D, we have ⊢ B̂ → δ. Together with ⊢ δ → Gfpα, it
follows that ⊢ B̂ → Gfpα, which gives us that Gfpα ∈ B.

For the other direction, assume Gfpα ∈ A∪B and take G ∶= {X ∈ Ag ∣ Gfpα ∈
X}. We first show that G is a postfix point for d∥α∥, with d∥α∥(G) = {X ∈
Ag ∣ for all Y such that X ↢∥α∥ Y, there is Z ∈ G such that Y ↢∥α∥ Z}.
Take any X ∈ G. Since Gfpα ∈ X, by Unfold we get [α]⟨α⟩Gfpα ∈ X.
If there is no Y such that X ↢∥α∥ Y , then X ∈ d∥α∥(G). If there is Y
such that X ↢∥α∥ Y , then take an arbitrary one. Since [α]⟨α⟩Gfpα ∈ X,
¬⟨α⟩Gfpα ∉ Y . By maximality and ⟨α⟩Gfpα ∈ Cls(ϕ) we have ⟨α⟩Gfpα ∈ Y .
So, by the existence lemma for [α], there must be a set Z such that Y ↢∥α∥ Z
and Gfpα ∈ Z. Thus, X ∈ d∥α∥(G), and therefore G ⊆ d∥α∥(G).
By the definition of GFP∥α∥, G ⊆ GFP∥α∥. By the inductive hypothesis,
GFP .d∥α∥ = GFPJαK. Thus, G ⊆ GFPJαK, which means that B ∈ GFPJαK.
Therefore, by the truth condition of Gfpα, (A,B) ⊧ Gfpα.

◻

The next step is to prove that the partial MAM over ϕ is indeed a partial
MAM.

C.2.16. Lemma. For all B ∈ Ag in M
{∥α∥∣[α]⊺∈Cls(ϕ)}
∆ , we have f(B) ≠ ∅.

Proof:
For all B ∈ Ag we have ◻� ∉ B. By the existence lemma for ◻, there is a α-atom
A ∈W such that ⊺ ∈ A ∈ f(B). Therefore, for all B ∈ Ag, f(B) ≠ ∅. ◻
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C.2.17. Lemma. For all ∥α∥ ∈ {∥α∥ ∣ [α]⊺ ∈ Cls(ϕ)} and all B1,B2 ∈ Ag, we have
B1 ↢∥α∥ B2 if and only if B1 ↢∥α∥ B2.

Proof:
This follows directly from axiom 1 and the fact that {∥α∥ ∣ [α]⊺ ∈ Cls(ϕ)} is
closed under complement. ◻

C.2.18. Lemma. For all ∥α∥ ∈ {∥α∥ ∣ [α]⊺ ∈ Cls(ϕ)} and all B1,B2 ∈ Ag, if
B1 ↢∥α∥ B2 then either f(B1) ⊆ ∥α∥ or else f(B1) ⊆ ∥α∥

Proof:
From B1 ↢∥α∥ B2 it follows that B̂1 ∧ ⟨α⟩B̂2 is consistent. Thus, B̂1 ∧ ⟨α⟩⊺ is
consistent, which implies that ⟨α⟩⊺ ∈ B1 and hence ⊢ B̂1 → ⟨α⟩⊺. Together with
axiom 2a, ⊢ ⟨α⟩⊺→ ◻α ∨ ◻¬α, it implies that ⊢ B̂1 → (◻α ∨ ◻¬α).

Now take any A ∈ f(B1), we will show that A ∈ ∥α∥ implies f(B1) ⊆ ∥α∥.
Assume both A ∈ f(B1) and A ∈ ∥α∥; from A ∈ f(B1) it follows that B̂1 ∧ ◊Â is
consistent, so B̂1 ∧ ◊α is consistent by ⊢ Â → α. By ◻α ∈ Cls(ϕ) and ⊢ B̂1 →
(◻α ∨ ◻¬α), we have ◻α ∈ B1, and therefore, f(B1) ⊆ ∥α∥.

It can be shown by similar argument that if A ∉ ∥α∥ then f(B1) ⊆ ∥¬α∥. ◻

C.2.19. Lemma. For all ∥α∥ ∈ {∥α∥ ∣ [α]⊺ ∈ Cls(ϕ)} and all B1,B2 ∈ Ag, if
B1 ↢P B2 and f(B1) ⊆ ∥α∥, then f(B2) ⊆ ∥α∥.

Proof:
Assume both B1 ↢∥α∥ B2 and f(B1) ⊆ ∥α∥. It follows that ◻α ∈ B1. Thus, by
axiom 2b we have ⊢ B̂1 → [α] ◻ ¬α and hence, for all B′ such that B1 ↢∥α∥ B′,
we have ⊬ B̂′ → ¬◻¬α. Since ◻¬α ∈ Cls(ϕ), we also have ◻¬α ∈ B2. This implies
that, for all A ∈ f(B2), ⊬ Â → α. Thus, for all A ∈ f(B2), ¬α ∈ A and therefore
f(B2) ⊆ ∥¬α∥. ◻

C.2.20. Lemma. For all P,Q ∈ {∥α∥ ∣ [α]⊺ ∈ Cls(ϕ)} and B1,B2 ∈ Ag, if B1 ↢∥α∥
B2 and f(B1) ⊆ Q ⊆ P , then B1 ↢Q B2.

Proof:
Take P = ∥α′∥ and Q = ∥α∥. We claim that for all A ∈ W , ⊢ Â → ⊟(α → α′).
Suppose not. Then Â∧x(α∧¬α′) is consistent, and thus {α,¬α′} can be extended
to an α-atom Y over ϕ belonging to W . However. this contradicts Q ⊆ P . Hence
for all A ∈W , ⊢ Â→ ⊟(α → α′). This implies that ⊢ B̂1 → ◻ ⊟ (α → α′).

Now, B1 ↢P B2 implies that B̂1 ∧ ⟨α′⟩B̂2 is consistent, and f(B1) ⊆ Q implies
that ⊢ B̂1 → ◻α. Together with ⊢ B̂1 → ◻ ⊟ (α → α′) and Axiom 3, they imply
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that B̂1 ∧ ⟨α⟩B̂2 is consistent. Therefore, B1 ↢Q B2. ◻

We have proved that the canonical model over ϕ,M{∥α∥∣[α]⊺∈Cls(ϕ)}
∆ , is indeed a

partial MAM. By Lemma C.2.2, this structure can be extended to a multi-agent
argumentation model. It is only left to prove that this extension, denoted by
MF

∆, indeed preserves the behaviour of the relevant formulas.

C.2.21. Lemma. For all φ ∈ Cls(ϕ),

MF
∆, (A,B) ⊧ φ if and only if M{∥α∥∣[α]⊺∈Cls(ϕ)}

∆ , (A,B) ⊧ φ

Proof:
The proof proceeds by induction on the degree of φ. The basic case is trivial
since the extension does not change V . The proof for other cases is also routine,
as neither the support functions f nor the attack relations ↢JαK for [α]⊺ ∈ Cls(ϕ)
are changed when building the extension. ◻

Thus,

C.2.22. Theorem. For all φ ∈ L, ⊧ φ implies ⊢ φ.





Appendix D
Appendix of Chapter Five

D.1 Two Equivalent Ways of Defining Apeeri-
odicity

We first present a result about the equivalence of our definition of aperiodicity in
Definition 5.4.9 to another definition of aperiodicity (see the third statement in
Corollary D.1.2 ) in the literature given that the probability matrix is strongly
connected.

D.1.1. Lemma. For each m-by-m probability matrix T, if it is strongly connected,
then for all i, j ∈ N such that 1 ≤ i, j ≤m,

g(i) = g(j)

where g(i) is the greatest common divisor of the members in the set {n ∈ N ∣ Tn
ii >

0}.

Proof:
Assume that the given probability matrix is strongly connected. If i = j, it is
trivial. So we take i ≠ j.

The strong connectedness implies that there exists natural numbers l, k such
that Tl

ij > 0 and Tk
ji > 0. This implies that Tl+k

ii ≥ Tl
ijT

k
ji > 0. Hence g(i) divides

l + k.
Now take any natural number n such that Tn

jj > 0. Then Tl+n+k
ii > Tl

ijT
n
jjT

k
ji >

0. Hence g(i) divides l+n+k. Together with g(i) dividing l+k, it implies that g(i)
divides n. So g(i) is a common divisor of the members in the set {n ∈ N ∣ Tn

jj > 0}.
Since g(j) is the greatest common divisor of the members in the set {n ∈ N ∣

Tn
jj > 0},

g(i) ≤ g(j) .

135
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Switching the order of i and j in the above argument, we get

g(j) ≤ g(i) .

Therefore g(i) = g(j). ◻

The following Corollary follows from the above lemma.

D.1.2. Corollary. Assume that the m-by-m probability matrix is strongly con-
nected, then the following three statements are equivalent:

1. for all natural number i ≤m, g(i) = 1;

2. there is a natural number i ≤m such that g(i) = 1;

3. the greatest common divisor of the members of the set

⋃
0≤i≤m
{n ∈ N ∣ Tn

ii > 0}

is 1.

Proof:
From 1 to 2, it is trivial. From 2 to 3, it is also obvious. From 3 to 1, suppose
1 does not hold. Take the number i such that g(i) = x > 1. Given Lemma D.1.1,
for all j ≤ m, g(j) = x. So obviously, gcd ⋃0≤i≤m{n ∈ N ∣ Tn

ii > 0} = x > 1. This
completes the proof. ◻

D.2 An Alternative Proof of the Convergence
Result for Regular Markov Chain

In this Appendix, we give an alternative proof of the classical convergence result
for the regular Markov chain

We first define regular Markov chain and restate the theorem we are going to
prove in this section.
D.2.1. Definition. A Markov chain is called a regular chain if some power of
its transition matrix has only positive elements.

D.2.2. Theorem (Theorem 11.7 in Grinstead and Snell (1997)). Let P be the
transition matrix for a regular chain. Then as n → ∞, the powers Pn approach
a limiting matrix W with all rows the same vector w. The vector w is a strictly
positive probability vector (i.e. the components are all positive and sum to one).

Since a trust matrix is a probability matrix, it can also serve as a transition
matrix for a Markov chain. We will say a trust matrix a “regular” if it is a
transition matrix for a regular Markov chain.
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D.2.1 First step of the proof
The first step of the proof is to show that if the trust matrix T is regular then
its generated transition matrix T is a transition matrix for an absorbing Markov
chain,

D.2.3. Lemma. Given an indeterministic binary DeGroot model ID, if the trust
matrix in the IBDM is regular, then given any vector b ∈ b with some i ∈ G
such that bi = 1, there exists a path from b to 1. I.e. there exists a sequence
p0, p1, . . . , pn of vectors in b such that p0 = b, pn = 1 and for all natural numbers
k ∈ [0, n − 1], Tpk,pk+1 > 0.

Proof:
Given an indeterministic binary DeGroot model ID = (G,T,b), assume that the
trust matrix is regular. Take any binary vector b ∈ b such that bi = 1 for some
i ∈ G. We fix such an agent, ι, satisfying bι = 1. We try to find a natural number
n and n+1 binary vectors p0, . . . ,pn such that Tpk,pk+1 > 0 for all natural numbers
k ∈ [0, n − 1] and p0 = b and pn = 1.

We first show how to find the sequence of binary vectors. Let p0 = b. Suppose
pk has been defined,

pk+1i =
⎧⎪⎪⎨⎪⎪⎩

1 there is y ∈ G such that Tiy > 0 and pky = 1
0 otherwise

(D.1)

Claim: This definition implies that for all positive integers k, Tpk,pk+1 > 0.
Proof: Take any i ∈ G.
If there is y ∈ G such that Tiy > 0 and pky = 1, according to the definition

of P (Bv′i = 1∣Bv = pk) given by equation 5.1, Tiy > 0 and pky = 1 imply that
P (Bv′i = 1∣Bv = pk) > 0. Since in this case pk+1i = 1 by equation D.1, it follows
that P (Bv′i = pk+1i ∣Bv = pk) > 0.

If there is no y ∈ G such that Tiy > 0 and pky = 1, then P (Bv′i = 1∣Bv = pk) = 0,
which implies that P (Bv′i = 0∣Bv = pk) = 1 > 0. By equation D.1, in this case
pk+1i = 0. Hence P (Bv′i = pk+1i ∣Bv = pk) > 0.

Therefore, for all i ∈ G, P (Bv′i = pk+1i ∣Bv = pk) > 0, which implies that

Tpk,pk+1 =∏
i∈G
P (Bv′i = pk+1i ∣Bv = pk) > 0

.
Next, we show that by taking any number n satisfying Tn

ij > 0 for all i, j ∈ G
(the existence of such n’s are ensured by Definition D.2.1), pn = 1.

Assume that n is the number satisfying Tn
ij > 0 for all i, j ∈ G. Then for all

x ∈ G, there must be a walk from x to ι in the associated graph SNT whose
length is n. For each x ∈ G, fix such a walk wx from x to ι. Let Sn = {wx ∣ x ∈ G}.
Keep in mind that for all walks in the associated graph, their length is n and
they start from x and end at ι.
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Claim: pn = 1. Proof: For all x ∈ G, let wm
x be the agent m steps away from

ι along the path wx ∈ Sn. For example, w0
x = ι.

We first show that for all x ∈ G and all m > 0, pmwm
x
= 1 by induction.

Obviously, p1
w1

x
= 1. Because there is y ∈ G, which is w0

x (i.e., ι), satisfying
Tw1

xy
> 0 and p0y = 1, by the definition in equation D.1.

Now suppose that pmwm
x
= 1. By noticing that wm

x satisfies Twm+1
x wm

x
> 0, we

know that pm+1
wm+1

x
= 1 by equation D.1.

Next, we show that for the number n, G = {wn
x ∣ x ∈ G}. Recall the definition

of wx. For all x ∈ G, it follows by the definition of wx that wn
x = x.

Therefore, for all x ∈ G, pnx = pnwn
x
= 1. That is pn = 1. This completes the

proof. ◻

The above lemma, together with Definition 5.4.2, Theorem 5.4.3 and Corollary
5.4.7, leads to the the following theorem, which accomplishes the first step of the
proof.

D.2.4. Theorem. Given an indeterministic binary DeGroot model ID, if the
trust matrix in the IBDM is regular, then the transition matrix for the IBDM is
a transition matrix for an absorbing Markov chain including only two absorbing
states. Hence the powers of the transition matrix converge.

D.2.2 Second step of the proof
The second step is to prove that the convergence of the powers of the generated
transition matrix can ensure the convergence of powers of the trust matrix. This is
accomplished in the proof of Corollary 5.5.5, which relies on the proof of Theorem
5.5.3.

Proof of Theorem 5.5.3 Proof:
The proof is by induction. We first prove the base case for all b, s ∈ b and all
i ∈ G,

Ti∗ ⋅ b = ∑
si=1

Tbs .

Claim:
∑

{s∈b∣si=1}
∏

{x∈G∣x≠i}
P (Bv′x = sx∣Bv = b) = 1

Proof:
Recall that Bv is the random variable for the groups’ current belief state and

Bv′ is the random variable for the group’s belief state in the next step. Bvi and
Bv′i are the random variables for the ith agent’s current belief state and the belief
state in the next step respectively.
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Notice that P (Bv′ = s∣Bv = b) = Tbs. Since Tbs = ∏x∈GP (Bv′x = sx∣Bv = b),
for all s ∈ b such that si = 1:

P (Bv′ = s∣Bv = b,Bv′i = 1) =
P (Bv′ = s∣Bv = b)
P (Bv′i = 1∣Bv = b)
= ∏
{x∈G∣x≠i}

P (Bv′x = sx∣Bv = b) .

Obviously, ∑{s∈b∣si=1}P (Bv′ = s ∣ Bv = b,Bv′i = 1) = 1. This completes the
proof of the claim.

Making use of the claim, we can prove the base case:

Ti∗b = P (Bv′i = 1∣Bv = b) (D.2)
= P (Bv′i = 1∣Bv = b) ⋅ ( ∑

{s∈b∣si=1}
∏

{x∈G∣x≠i}
P (Bv′x = sx∣Bv = b)) (D.3)

= ∑
{s∈b∣si=1}

∏
x∈G

P (Bv′i = sx∣Bv = b) (D.4)

= ∑
{s∈b∣si=1}

Tbs (D.5)

Next we prove the case

Tn+1
i∗ ⋅ b = ∑

si=1
Tn+1

bs

by assuming that

Tn
i∗ ⋅ b = ∑

si=1
Tn

bs .
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∑
si=1

Tn+1
bs = ∑

si=1
Tn

b∗T∗s (D.6)

= Tn
b∗ ⋅ ∑

si=1
T∗s (D.7)

= Tn
b∗ ⋅
⎡⎢⎢⎢⎢⎢⎣

∑si=1T1s

⋮
∑si=1T0s

⎤⎥⎥⎥⎥⎥⎦
(D.8)

= Tn
b∗ ⋅
⎡⎢⎢⎢⎢⎢⎣

Ti∗1
⋮

Ti∗0

⎤⎥⎥⎥⎥⎥⎦
(D.9)

=∑
k∈b
(Tn

bk ⋅Ti∗ ⋅ k) (D.10)

= Tn
i∗ ⋅∑

k∈b
(Tn

bk ⋅ k) (D.11)

= Ti∗ ⋅
⎡⎢⎢⎢⎢⎢⎣

∑k1=1Tn
bk

⋮
∑k∣G∣=1T

n
bk

⎤⎥⎥⎥⎥⎥⎦
(D.12)

= Ti∗ ⋅
⎡⎢⎢⎢⎢⎢⎣

Tn
1∗b
⋮

Tn
∣G∣∗b

⎤⎥⎥⎥⎥⎥⎦
(D.13)

= Ti∗ ⋅ (Tnb) (D.14)
= (Ti∗T

n) ⋅ b (D.15)
= Tn+1

i∗ b (D.16)

This completes the proof. ◻

D.2.3 Third step of the proof
Given a transition matrix for a regular chain P, take P as the trust matrix in an
IBDM.

Generate a transition matrix P from the transition matrix according to Defi-
nition 5.3.3. By Theorem 5.4.3 and Theorem proved in the first step, Pn approach
to a limiting matrix. By Corollary 5.5.5, it implies that Pn approach a limiting
matrix.

The remaining task is to prove that the limiting matrix of Pn is a matrix whose
rows are all the same vector w and the vector w is strictly positive probability
vector (i.e. the components are all positive and sum to one).

Notice that no matter which i is taken, by Corollary 5.5.8,

P∞
ij = P∞

i∗ej = ∑
si=1

P∞ejs = P
∞
ej1
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where ej is the vector where the ith entry is 1 and the other entries are all 0s. This
is because 1 is the only belief vector where si = 1 such that P∞ejs > 0. (Suppose
not. Then there will be other absorbing state other than 1 and 0. Denote this
belief state by t. Then Ptt = 1. This implies that if ti = 0 then the column vector
P∗i is the zero vector. This contradicts the fact that P is regular.) Hence it
follows that the column vector of P∞ is a constant vector.

P is a probability matrix, P∞ must also be a probability matrix. We still
need to prove that P∞ is strictly positive. It follows from the fact that P∞ej1 > 0
for all ej.

This completes the proof.

D.3 Proof of Lemma 5.4.10
The proof of Lemma 5.4.10 can be achieved by Lemma D.2.3 and the following
theorem. Although the following theorem is a known result (Golub and Jackson,
2010, Lemma 2 in Appendix A), which follows from Theorem 1 and Theorem 2
in Perkins (1961), we provide a direct proof in this section.

D.3.1. Theorem. For all probability matrices T, T is a transition matrix for a
regular Markov chain if and only if it is strongly connected and aperiodic.

Proof for Theorem D.3.1

D.3.2. Lemma. Assume that the m-by-m probability matrix T is aperiodic, then
there exists N <∞ such that

Tn
ii > 0

for all natural numbers i ≤m and all natural numbers n ≥ N .

Proof:
The proof of this lemma itself relies on the following result in the number theory:

Let l1, l2, . . . be positive integers with their greatest common divi-
sor equals 1. Then there is an integer L such that for all l ≥ L there
are non-negative integers α1, α2, . . . such that

l = α1l1 + α2l2 + . . .

Take any i ≤m and let cyci = {n ∈ N ∣ Tn
ii > 0}.

Notice numbers in cyci has greatest common divisor 1. Moreover, for all
n1, n2, . . . ∈ cyci, given any non-negative integers α1, α2, . . .,

α1n1 + α2n2 + . . . ∈ cyci .
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Apply the result from the number theory quoted above to numbers in cyci.
Then there is N such that for all n ≥ N there are non-negative integers α1, α2, . . .
such that

n = α1n1 + α2n2 + . . .

where n1, n2, . . . ∈ cyci. Together with our above observation, it follows immedi-
ately that n ∈ cyci. This completes the proof.

◻

With this lemma, we can prove Theorem D.3.1.
Proof:
We first prove that if the m-by-m probability matrix T is a transition matrix for
a regular Markov chain, then it is strongly connected and aperiodic.

Assume that T is a transition matrix for a regular Markov chain. It is easy to
see why the strong connectedness follows. So we focus on the aperiodicity. Take
an arbitrary i satisfying 0 ≤ i ≤ m. There is a natural number N such that for
all n ≥ N , Tn

ii > 0. The greatest common divisor of any two numbers n and n + 1
is 1. So it follows immediately that for all i such that 0 ≤ i ≤ m, g(i) = 1. This
completes the proof for one direction.

For the other direction, assume that the m-by-m probability matrix T is
strongly connected and aperiodic.

Take any i, j, denote the shortest path from i to j by sij. The existence of
the path is ensured by the strong connectedness. Let ls = max{sij ∣ 0 ≤ i, j ≤
m and j ≠ i} be the largest length of all the shortest paths between two different
nodes in the associated graph of T.

By Lemma D.3.2, there is a natural number N such that for all n ≥ N and all
0 ≤ i ≤m

Tn
ii > 0 .

Because T is assumed to be aperiodic.
We claim that for all natural numbers n ≥ ls +N and any 0 ≤ i, j ≤m

Tn
ij > 0 .

The proof for this claim is not difficult once the following fact is realized: given
any i, in order to reach j by n steps where n ≥ ls+N , we can first take the shortest
path from i to j, and then take the cycle with N + (ls− sij) or more steps to end
at node j.

This completes the proof of the other direction and thus the whole proof.
◻
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D.4 Background on Absorbing Markov Chain
We first sketch the idea of how to prove Theorem 5.4.3, which helps us get a better
understanding of the transition matrix for an absorbing Markov chain. Then we
introduce the fundamental matrix for the absorbing Markov chain, which encodes
a lot of key information about the absorbing Markov chain. All the material
presented in this part can be found in most of the textbooks on Markov chain
theory. Our presentation is based on Grinstead and Snell (1997).

Take the transition matrix P for an arbitrary absorbing Markov chain. Assume
that there are r absorbing states. The other states are called transient states and
let t be the number of transient states. The transition matrix P can always be
written in the following form by permuting the rows and columns.

P = ( Q R
Z I

) (D.17)

where Q is a t-by-t matrix, R is a non-zero t-by-r matrix, Z is a r-by-t zero matrix
and I is a r-by-r identity matrix. It is called the canonical form of the transition
matrix for an absorbing Markov chain. For example, the following matrix is in
the canonical form:

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1/2 0 1/2 0
1/2 0 1/2 0 0
0 1/2 0 0 1/2
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(D.18)

A standard matrix algebra argument shows that

Pn = ( Qn ∗
Z In

) (D.19)

where ∗ stands for the t-by-r matrix in the upper right-hand corner of Pn.
Proving Theorem 5.4.3 is thus equivalent to proving the following theorem.

D.4.1. Theorem. Assume that P is the transition matrix for an absorbing Markov
chain and Q is the upper left matrix in the canonical form of P. Then limn→∞Qn =
Z, where Z is a t-by-t zero matrix.

We do not prove this theorem here. The point of introducing the canonical
form and Theorem D.4.1 is to illustrate how P∞ looks. It is quite clear that in P∞
the probability is distributed only among the absorbing states given any initial
states.

Moreover, by taking N = I + Q + Q2 + . . ., we get the fundamental matrix
of the absorbing matrix, whose existence can be proved. Then what does this
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fundamental matrix tell us? The entry Nij tells us the expected numbers of times
the absorbing Markov process would pass through the transient states j given that
the initial state is the transient state i. And if we take the sum ∑t

j=1Nij, it tells us
the expected number of steps the process would take before finally being absorbed
given that the initial state is the transient state i.

In Section 5.5, we show how we can compute the probability T∞
b1 via the

trust matrix T. There is another way of computing the absorption probability.
Just multiply the fundamental matrix N with the upper right matrix R in the
canonical form of the transition matrix. (NR)ij will give us the probability of
the process being absorbed by the absorbing state j given that it starts with the
transient state i.

At last, it is worth mentioning that it is not difficult to compute the funda-
mental matrix N. Because it can be proved that

N = (I −Q)−1 .

D.5 Proof of Theorem 5.7.7
What we need to prove in Theorem 5.7.7 is that given a set of formulas Φ ⊆ LB≽
and a formula ϕ ∈ LB≽, ϕ can be derived from Φ in the axiom system KS if and
only if for all regular KDMsM and all possible worlds w inM, if all the formulas
in Φ are satisfied on w then ϕ is also satisfied on w.

The proof for the direction from left to right (i.e., the soundness) is routine.
We only need to prove that all the axioms in KS are valid and the rules in KS
preserves validity. The details are left out here.

We mainly sketch the proof for the direction from right to left (i.e., the strong
completeness) in this appendix. We follow the standard strategy of proving strong
completeness (see Blackburn, Rijke and Venema (2002, Chapter 4)). That is,
proving that given any consistent set of formulas Σ ⊆ LB≽, there is a regular
KDM such that Σ can be satisfied on a certain possible world in it. So the core
of the proof is to construct a model meeting all the requirements.

To construct such a model, we need the possible worlds. Following the stan-
dard strategy, we first collect all the maximal consistent set (MCS) and prove
the Lindenbaum’s Lemma. That is, if Σ is consistent then there is a MCS Σ+

such that Σ ⊆ Σ+. We leave the proof for this lemma out here and refer readers
to Blackburn, Rijke and Venema (2002, Lemma 4.17).

With the collection of all the MCSs (denoted by MCS) and the existence of
Σ+, we define the model, denoted by MΣ. Let Γ≽ be the set {C ≽D ∣ C ≽D ∈ Γ}
for Γ ∈MCS. The definition for WΣ and the definition for RΣ

i are as follows:

○ WΣ = {Γ ∈MCS ∣ Σ+
≽ = Γ≽};

○ RΣ
i ∆Γ if and only if for all formulas φ ∈ LB≽, Biφ ∈∆ implies φ ∈ Γ.
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Next, we construct the trust matrix. This is the part not included in the
standard proof, so it needs extra labour. First, we apply the following theorem
from Scott (1964) to prove the existence of a strictly positive probability measure
on the power set of G satisfying all the formulas of the form C ≽ D in Σ where
C,D ⊆ G.

D.5.1. Theorem (Theorem 4.1 in Scott (1964)). Let Bl be a finite Boolean al-
gebra and let ≽ be a binary relation on Bl. For ≽ to be realizable by a probability
measure on Bl it is necessary and sufficient that the conditions

1. ⊺ ≻ �,

2. x ≽ �,

3. x ≽ y or y ≽ x,

4. x0 + x1 +⋯ + xn−1 = y0 + y1 +⋯ + yn−1 implies y0 ≽ x0
hold for all x, y ∈ Bl and all sequences x0, . . . , xn−1, y0, . . . , yn−1 ∈ Bl where xi ≽ yi
for i < n, i > 0, and n > 0.

The equation x0 + x1 +⋯+ xn−1 = y0 + y1 +⋯+ yn−1 in the fourth condition means
exactly what is described in the antecedent of the axiom Scott. Review axioms
SP, CO and Scott in Table 5.1. By Theorem D.5.1, it is easy to see that they
are sufficient to ensure the existence of a strictly positive probability measure on
the power set of G which realizes ≽.

Take a strictly positive probability measure on the power set of G which
realises ≽. Let it be the row vector for each row of the trust matrix. Hence we
get a trust matrix for a regular community. The trust matrix TΣ we construct is
very special in the sense of satisfying

(TΣ)∞ = TΣ .

Since TΣ is the trust matrix for a regular community, we can conclude that the
model MΣ in the following definition is indeed a regular Kripke-DeGroot model.

D.5.2. Definition. The model MΣ for a set of consistent formulas σ is the
structure (WΣ,RΣ

i ,T
Σ, V Σ) where WΣ, RΣ

i and TΣ are defined as we described
above and

V Σ(p) = {Γ ∈WΣ ∣ p ∈ Γ} .

We have constructed the regular Kripke-DeGroot model, the remaining work
is to prove the truth lemma: for all φ ∈ LB≽ and all Γ ∈WΣ, φ ∈ Γ if and only if
MΣ,Γ ⊧ φ.

D.5.3. Lemma (Truth Lemma). For all formula φ ∈ LB≽ and all Γ ∈WΣ,

MΣ,Γ ⊧ φ iff φ ∈ Γ .
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Proof:
The proof goes by induction on the formula φ.

The case where φ is an atomic proposition is trivial by the definition of V .
The case where φ is of the form ¬ψ or ψ ∧ χ is also straightforward. The proof
for the case where φ is of the form Biψ is standard as in Blackburn, Rijke and
Venema (2002, Lemma 4.21), with a little modification to take care of the fact
that in our model WΣ is not the whole set MCS but rather {Γ ∈MCS ∣ Σ+

≽ = Γ≽};
The only thing needs extra attention for this case here is that the set of

possible worlds WΣ is not the set of all the MCSs.
The case where φ is of the form C ≽D is proved by invoking the fact that TΣ

realises all the formulas of the form C ≽D.
◻

Because there is a possible world Σ+ in WΣ such that Σ is a subset, we thus
have the desired result: for all φ ∈ Σ, MΣ,Σ+ ⊧ φ.

D.5.4. Theorem. Given any consistent set of formulas Σ in LB≽, there is a
regular Kripke-DeGroot model such that Σ is satisfiable in it.

This completes the proof for the strong completeness.
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Samenvatting

De Grondslag van Opinievorming
We worden constant geconfronteerd met nieuwe informatie. De informatie waarmee
we in aanraking komen en waar onze overtuigingen op gebaseerd zijn is vaak chao-
tisch en soms zelfs tegenstrijdig. Echter worden onze overtuigingen wel geacht
consistent te zijn, daar streven we ten minste naar. Is het mogelijk om consistentie
te bereiken en te behouden in onze overtuigingen? Zo ja, hoe extraheren we dan
consistente overtuigingen uit inconsistente informatie? Deze vragen proberen we
te beantwoorden vanuit het perspectief van een logicus, terwijl we gebruik maken
van ideeën en methodes uit andere vakgebieden zoals, bijvoorbeeld, topologie,
formele argumentatie theorie, niet-monotone redeneringen en Markov-keten the-
orie.

Deze dissertatie is gestructureerd rondom twee thema’s – de overtuigingen
van een enkele handelende persoon en die van een groep. Voor zowel de enkele
handelende persoon als de groep nemen we aan dat de vorming van overtuigingen
een proces is met het oplossen van inconsistentie als basis. Het verschil tussen de
beide situaties is dat in het geval van de enkele handelende persoon bewijsma-
teriaal als basis wordt genomen voor haar overtuigingen en in het geval van de
groep worden de overtuigingen van ieder individueel lid als basis genomen voor
de groepsovertuigingen.

In het geval van een enkele handelende persoon analyseren we het oplossen
van tegenstrijdig bewijsmateriaal aan de hand van het redeneren van de per-
soon. Twee vormen van redeneren worden onderzocht – argumentatief en de-
fault redeneren. De vraag is dus hoe de handelende persoon haar argumen-
tatief en default redeneren coördineert om volledige consistentie te bereiken in
haar overtuigingen. We gebruiken topologische semantiek om bewijsmateriaal
te modelleren, formele argumentatie theorie en niet-monotone redeneringen om
het probleem aan te pakken en bestuderen de logica van de verkregen noties van
‘overtuiging’ and hun relatie met betrekking tot bewijsmateriaal.
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In het geval van groepsovertuigingen bestuderen we twee manieren om de
tegenstrijdige overtuigingen van groepsleden op te lossen. Één is gebaseerd op
argumentatie en de ander op opinieverspreiding door sociale invloed. We mod-
elleren deze twee vormen van ‘groepsredeneren’ door Kripke-semantiek te com-
bineren met, respectievelijk, formele argumentatie theorie en Markov-keten the-
orie. Dit maakt de weg vrij voor onze logische analyse van de resulterende noties
van ‘groepsovertuiging’.

Het terugkerende thema van de gehele dissertatie is een spanning tussen het
vergaren van meer overtuigingen en overtuiging consistenter laten zijn. We tonen
aan dat in het geval van de enkele handelende persoon het mogelijk is om op een
zinvolle manier een balans te vinden tussen deze twee. Voor groepsovertuigingen
moeten we, naast de hoeveelheid en consistentie, ook beschouwen of de samen-
voeging van de overtuigingen van de groepsleden democratisch genoeg verloopt.
Dus, de spanning is tussen het vergaren van meer overtuigingen, overtuigingen
consistenter laten zijn en de samenvoeging democratischer laten verlopen. Onze
modellen laten mogelijke manieren zien om deze spanning te verlichten.



Abstract

Reason to Believe
We are confronted with new information all the time. The information we face and
on which our beliefs are based, is often chaotic, disordered, and even contradictory.
Yet at the same time, our belief is expected to be consistent. At least, we strive for
consistent beliefs. Is it possible for us to achieve and maintain consistency in our
beliefs? If yes, how do we manage to extract consistent belief from inconsistent
information? We attempt to answer these questions from a logician’s perspective,
borrowing ideas and techniques from other fields, for example, topology, formal
argumentation theory, non-monotonic reasoning and Markov chain theory.

The dissertation is structured around two topics – single-agent belief and
group belief. For both a single agent and a group of agents, we take belief
formation as a process of resolving the inconsistency in its basis. The difference
is that in the case of a single agent, evidence is taken as the basis of her belief
and in the case of a group of agents, each group member’s belief is taken as the
basis of the group’s belief.

For a single agent, we understand the process of resolving conflicts between
different pieces of evidence to be the agent’s reasoning. Two forms of reason-
ing are investigated – argumentational reasoning and default reasoning. The
problem thus becomes how the agent coordinates her default reasoning and ar-
gumentational reasoning to achieve full consistency in her beliefs. We employ
the topological semantics for evidence, formal argumentation theory and non-
monotonic reasoning to tackle the problem and study the logic of the resulting
notions of belief and their relationship with evidence.

For group belief, we investigate two ways of resolving conflicts between the
different group members’ beliefs. One is based on argumentation, and the other
is opinion diffusion by social influence. We model these two forms of “group
reasoning” by combining the Kripke semantics with formal argumentation theory
and Markov chain theory respectively, which paves the way for our logical analysis
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of the notions of group belief based on them.
Throughout the whole dissertation, the recurrent theme is a tension between

believing more and believing more consistently. We demonstrate that in the case
of a single agent, it is possible to strike a balance in a meaningful way. For group
belief, nonetheless, besides its amount of content and consistency, we also need
to consider whether the aggregation of the group members’ beliefs is democratic
enough. So, the tension is between believing more, believing more consistently,
and believing more democratically. Our proposals exemplify possible ways of
relieving this tension.
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