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INTRODUCTION AND OUTLINE

The identification and categorization of acoustic cues is a complex cognitive ability
and an essential survival mechanism in several animal species (McComb, Shannon,
Sayialel & Moss, 2014; Podos, 2010). Specifically, in humans, it has been argued that
distinct complex processes in common cortical mechanisms may be involved in the
categorization of sounds in music and language (Patel, 2012). These mechanisms allow
for diverse tasks such as differentiating between performers when playing the same
music piece or distinguishing a particular performer when playing two different pieces
of music.

The study of expressiveness in music performance concerns diagnosing how per-
formers interpret and play music, as well as how listeners perceive their performances.
Ultimately, it aims to explain what aspects of the performance are communicated, what
are the physical and perceptual constraints that affect them, and how these may have
an impact on the overall development of music performance aesthetics. Assuming all
people, regardless of their musical training, share the grounds of musicality to be able
to perceive and appreciate music (Honing, 2018), we may wonder what aspects of mu-
sic expressiveness contribute to the recognition of performers as individuals. And in
this respect, what are the constraints that affect individuality in performers. With such
goal in mind, this thesis investigates the production and perception of idiosyncratic
expressiveness in music performance. In particular, it studies how performers express-
iveness is constrained by their own idiosyncratic style or by the score. Thus, having a
systematic musicological approach to the study of expressiveness, the dissertation uses
computational modeling to analyze performers individuality.

At least with regards to Western classical music, the search for systematic individual
and shared approaches across performances goes back to the beginning of the XIXth
century, when Mathis Lussy (1828 - 1910) manually annotated scores (based on his
perception) of how performers used timing, dynamics, and phrasing (Dogantan-Dack,
2014). Lussy’s work aimed to find systematic patterns of behavior underlying the
sound produced by performers in relation to the score with the goal of better un-
derstanding whether the score served as a constraint to expressiveness. This probably
represents the first systematic work in the history of expressive performance analysis,
and, moreover, a very relevant methodological step, since it constrains the express-
ive communication between performer and audience to an aural dimension. That is,
no other elements were considered in the expressiveness communication, probably in
order to ease the study and prevent complicated correlations between acoustic and
no-acoustic aspects of performance.

Seashore (1866 - 1949) and his team furthered this more objective approach by re-
gistering and applying statistical methods to analyze, for the first time, performers
expressiveness (Seashore & Metfessel, 1925). This enabled assessment of the relation
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between performers and audience entirely in terms of sound. According to Seashore,
"everything that the singer or player conveys to the listener is conveyed through sound waves
or in terms of these. This conception simplifies our approach immensely in that it frees us from
confusion with unnecessary accessories, furnishes us with a basis for classification and termin-
ology, and paves a way for preservation of findings, measurement, and scientific explanation.”
(Seashore & Metfessel, 1925).

While Seashore acknowledged that many other variables could play a role in mu-
sic performance and its perception (e.g., the effect of vision in expressive perform-
ance judgments (Tsay, 2013)), his work set the basis to investigate the role of sound
in relation to expressiveness between "performer, music and listener” in a systematic
way. This was done by registering the different expressive variables using currently
available technologies and statistics. Furthermore, they carried out various behavioral
experiments to better understand how listeners respond to musical expressiveness

Following on the reductionist approach initiated by Lussy and Seashore, in the work
presented in this dissertation, I will consider sound to be the main channel of commu-
nication and present some of the studies carried along my doctoral research. But first,
in the rest of this chapter, I will introduce several notions necessary to understanding
the rationale behind this dissertation as well as its outline.

1.1 DEFINITIONS OF EXPRESSIVENESS IN MUSIC PERFORMANCE

Over the last hundred years, several definitions of expressiveness to analyze music
performance have been proposed. As proposed by Dogantan-Dack (2014), our philo-
sophical standpoint on expressiveness may be reflected in the assumptions underlying
the research carried and consequently, how it contributes to our understanding regard-
ing how expressiveness is used by performers and perceived by listeners. Within the
literature on performance analysis modeling we can find several definitions of expres-
sion (Timmers & Honing, 2002):

e Expression as a deviation from a musical score,

The first definition of expressiveness in music performance is probably the one
by Seashore and Metfessel (1925). In their paper, "Deviation from the regular as
an art principle", expressiveness is defined as:

"The unlimited resources for vocal and instrumental art lie in artistic
deviation from the pure, the true, the exact, the perfect, the rigid, the
even and the precise. This deviation from the exact is, on the whole, the
medium for the creation of the beautiful for the conveying of emotion.
That is the secret of the plasticity of art." (Seashore & Metfessel, 1925)

This definition was further developed in Seashore (1938) and it is often linked to
expressiveness as the deviation performers exercise on the mechanic rendition of
the score (Timmers & Honing, 2002).
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In the case of timing, representing the deviations from what is notated in the
score implies "re-scaling” the score durations to the mean tempo of a performance
relative to a common duration unit (e.g., a quarter note). That is, calculating
the mean duration of the reference value (in this example, a quarter note) and
the relative durations of all other figures notated in the score. Once the score
durations are calculated, we can observe how much the performer deviates from
this mean.

Despite being a common approach found in literature, there are some constraints
from a cognitive perspective to be noticed. For example, proportionately equival-
ent deviations from different time units may be perceived differently: having a
deviation from a whole note is perceived differently than from a sixteenth note
even when they would deviate by the same ratio (e.g., half of the value of the
notated figure).

Elaborations on the definition of expression as a deviation from a musical score
can be found in the work by Gabrielsson (1974), in which performances of rhythm
patterns are analyzed based on how much they deviated from the norm as given
by the musical notation. Also, in the model proposed by Friberg, Bresin and
Sundberg (2009), in which the value of different expressive deviations is added to
the score notation value. A detailed discussion on the limitations of this definition
can be found in Timmers and Honing (2002).

As a consequence of the development of systematic musicology”, the research agenda
in music performance expressiveness has been increasingly interested in the perceived
and cognized representation of the music. In this regard, several alternative definitions
of expressiveness as a deviation relative to a notated musical score have been proposed.
The most common alternative definitions in the current literature are:

* Expression as microstructure,

Instead of defining expressiveness having the score as a reference, Repp (1992)
and Palmer (1996) define it as those variations in any of the acoustic musical fea-
tures which exist without the explicit necessity of the score (Timmers & Honing,
2002).

* Expression as a deviation from the norm defined within a performance,

Proposed by Desain and Honing (1992), this is an intrinsic definition of express-
iveness which does not refer to the written musical score, but to the cognized
structure by the listener. In this definition, the expressive deviations occur over
the norm defined within a performance. For example, a certain inégal articulation
pattern is suddenly changed through a performance. In this definition, a hierarch-
ical structural description of the music is needed (Timmers & Honing, 2002). For

1 In this dissertation, the term systematic musicology refers to the scientific musicological research which
is "primarily empirical and data-oriented and involves empirical psychology and sociology, acoustics, physiology,
neurosciences, cognitive sciences and computing and technology” (Parncutt, 2007)
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instance, the expressive beat durations are expressed as ratios of the bar duration
(Timmers & Honing, 2002). Thus, according to this definition, the norm is set by
a higher order unit and the expressive deviations relate to such unit and occur
within.

e Expression as a deviation from the norm defined within the performance practice,

Based on the definition by Desain and Honing (1992), Clarke (1995) suggested
that the norm is defined by common music practice and how the most frequently
heard renditions of performances set the basis over which a new performance
may deviate or not.

Each of these definitions, relates to different constraints and choices when building
or developing a performance model. For instance, while the definition of Gabrielsson
(1974) takes into account the score notation as a norm, the ones by Desain and Honing
(1992) or Clarke (1995) attend, respectively, to the cognized music representation of the
listener and performer as the norm. As such, each definition assumes a different pre-
disposition of the performer to expressiveness itself and, even more, from the listeners
to the recognition of those deviations.

Having the score notation as the norm implies that the deviations of the auditory
representation of the music are based on the score rather than on the cognized auditory
representation of the music. In this regard, the exposure that listeners and performers
have to previous renditions of a piece or music style is fundamental in order to conform
the expressiveness norm. On top of the exposure, musical expertise (which is based on
musical education and training) from both the listener as the performer has also been
shown relevant when perceiving expressiveness and music structure (Sloboda, 2000),
and when identifying performers (Koren & Gingras, 2014).

Having access to the different auditory features (loudness, timing, tempo, phrasing,
timbre, spectrum-based features, etc) that may conform our mental representation of
a performance, is a first approach to recognise patterns in and across performances.
This is because, in order to extract the norm as conformed by several performances or
performers, we need to extract patterns over such renditions. Having both a set repres-
enting performance-based features and another set representing score based features
may help to better define which patterns of performance norms may be captured by
the listener.

In this dissertation, I use computational modeling methods to investigate perform-
ance expressiveness as those deviations from the norm defined by performers. As such,
I depart from the definitions of expressiveness by Desain and Honing (1992) and Clarke
(1995) to investigate individual and shared constraints that may conform the expressive
norm. In particular, I study how individual expressiveness might be constrained by the
structural score based approaches shared by a group of performers or by their idiosyn-
cratic style (as individuals). For such purpose, I use several machine learning methods
which aim to capture the expressive norm represented as performance patterns. Thus,
aiming to explain how those norms are relevant to understanding how listeners may
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relate to the deviations of new performances of the same or different pieces or how
performers may be characterized by their idiosyncratic expressiveness.

1.2 EXPRESSION AND COMMUNICATION

While the idea of expressiveness as a communication process between composer, per-
former and listener can be linked to the use of rhetoric in earlier periods in history
(such as the baroque), the first complete model formalizing such a relation is, to the
best of my knowledge, found in the work by Kendall and Carterette (1990). In their
model, Kendall and Carterette (1990) formalize the chain of musical communication
as departing from the composer to the performer and, finally, to the listener. Via these
three agents, the musical message is subsequently encoded and decoded by each of
them according to their shared and unshared implicit and explicit knowledge of the
message as well as their contextual environment. This model, therefore, assumes some
sort of fixed representation or score notation of the musical material created by the
composer which is therefore interpreted by the performer. A relevant aspect of the
model by Kendall and Carterette (1990) treatment of implicit and explicit operations
as an information processing model allows for accounting for schemas in Long term
memory, Working memory and Conscious awareness. That is, their model presumes a
rather high level operationalization of the processes involved in the communication of
music.

In Kendall’s model, the encoding of expressiveness occurs in two steps. In a first step,
the encoding depends on the performers understanding of the music to be performed.
This understanding will be based on their exposure to other renditions of the same
music as on the structural constraints of the piece to be performed. In a second step,
the encoding depends on the listeners” expectations on the music and expressiveness.

How consistent a performer will be on their use of expressiveness (or in defining an
individual expressive norm or signature) will partly determine the listener’s ability to
recognize their individual performance style.

The description and differentiation between performances and performers is pos-
sible thanks to several representational and control processes. These processes have to
be shared between listeners and performers (Sloboda, 2000), in order for music to be
communicated between them. Elucidating which mechanisms are used by performers
to communicate expressiveness it is, therefore, a multi-dimensional challenge which
combines:

e the structural constraints and control processes defined by the piece
¢ the mental representation a performer has of the piece to be performed

e the shared expressive approaches derived from the cultural context a performer
belongs to
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All these factors may constrain the performers’ expressive style and individual "per-
formance" signature and therefore how the message will be communicated to the
listener.

1.3 EXPRESSION AND STRUCTURE

Within the organization of a given piece of music, the literature often distinguishes
between two main levels of structure which together constitute such piece (Jackendoff
& Lerdahl, 2006): micro-level structure and macro-level structure. In the context of
performance, the macro-level structure refers to the piece form and includes those
expressive deviations in tempo, rhythm, large scale dynamics, melodic contour, and
harmonic relationships. The other main level of structure is the micro-level structure,
which includes instead note level (or short groups of notes) deviations in timing, pitch,
loudness, timbre or articulation. According to Sloboda (2000), the micro-structure ex-
pressive deviations relate to the prosody and error on a note (or few notes grouped)
level, while the macro-structure refers to the use of phrasing.

A performer’s mental representation of the macro-structural level might be repres-
ented by their use of phrasing. Yet, the most characteristic idiosyncratic approaches
might be reflected on the expressive deviations exercised across (often) smaller units
of expression (e.g., in the "swing" of a jazz performer).

As discussed by Timmers and Honing (2002), the duration or amplitude of the ex-
pressive deviations might depend on the hierarchy set by a higher order unit. Therefore,
whether the expressive deviations are large or small is related to the different struc-
tural levels. For example, small variations in timing might respond to local shortening,
while note lengthening variations respond to larger scale trends. Thus, the expressive
features used by performers respond to both long and short time scales and structures
and ideally should be captured by a model. How a performers expertise might be con-
ditioned by the use of micro and macro-structure is addressed in Clarke (2002), which
suggests that the performance of piece structure is likely to be more controlled and
reproducible by expert performers.

1.4 THE ROLE OF SURPRISE IN PERFORMANCE EXPRESSIVENESS

Following Meyer’s work on information theory and communication (Meyer, 1957),
Huron (2006) compiled one of the most comprehensive resumes on the role of ex-
pectations in the musical phenomenon.

According to this theory, we may interpret that the communication between per-
formers and listeners depends on the expectations of the listener as well as on the pre-
suppositions the performer has on the listeners’” expectations. Thus, how performers
create tension and release it through their expressive choices may determine in which
manner listeners (conditioned by their previous exposure to similar music) will be
surprised to the performers” expressiveness.
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Huron (2006) differentiates between four types of surprise in music, which I will
explain in the context of expressive performances:

e Schematic surprise, which relates to the norm defined by the listener based on
their exposure to different expressive performances. e.g., exposure to a particular
school of performance in a determined style

* Dynamic surprise, which relates to the norm defined by the performer (and per-
ceived by the listener) during a particular performance. This kind of surprise is
very much linked to the definition of expressiveness as deviation from the norm
defined by the unit within a performance from Desain and Honing (1992)

e Veridical Surprise, which relates to the violation of the listener’s knowledge of
the musical work being listened to. This violation may occur for different reasons
such as , the performer effectively making a mistake and playing something for
instance fortissimo, when in the score is written piano, or, in a more perceptual
and complex scenario, when the expressive categories of the performer do not
correspond to those of the listener (as a consequence of their different previous
exposure) and they are violated.

¢ Conscious surprise, by which the listener that knows the style or piece being
played expects an event knowing that it is not going to happen

How listeners may be "surprised" during the music listening is, according to Huron
(2006), explained by two factors: predictability and contrastive valence. Predictability
relates to the fulfillment on the expectations of the listeners. Contrastive valence is
related to how the limbic system is able to turn negative responses into positive or
neutral reactions. Thus, contrastive valence can be defined as the emotional valence
between the different expectation responses (Huron, 2006). In the context of musical
phrasing, a common example encountered in this sense is when an expected ending
of a musical phrase is altered by delaying it with ritardando (increasingly lengthening
the duration of notes). This delay provokes a negatively valenced tension response
that enhances the positive effects of the limbic behavior in relation to the prediction
response, once the phrase performed finally closes.

1.5 MACHINE LEARNING AND PATTERN RECOGNITION OF PERFORMANCE EX-
PRESSIVENESS

As a consequence of the advances in the fields of computational modeling, machine
learning and signal processing, the field of music performance modeling essentially
developed over the last three decades. This development has been characterized by
applying the new computational methods to relate performance to music cognition.
These methods have allowed for new models of empirical evidence about the relation
between production and perception of expressiveness.

7
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In this dissertation, I use different machine learning methods to study and char-
acterize individual (performer based) constraints in the production of expressiveness.
Using these methods, I investigate the expressive norm as defined by an individual per-
formers style, by other performers style, or a combination of both. The patterns learned
can be associated to some of the characteristics that may be intentionally performed.

In the literature, we can find machine learning methods such as the one proposed
by Stamatatos and Widmer (2005), which outperform humans’ perception in the recog-
nition of performers. The methods and studies proposed in this dissertation, however,
do not aim to match or beat listeners recognition capabilities. Instead, the intention of
the work herewith presented is using these machine learning methods to characterize,
within the auditory (and musical) features studied, performers expressiveness. Aim-
ing, like this to define individual expressiveness profiles in the use of certain features
which may be perceived by listeners.

The research presented in this dissertation focuses on keyboard music and in partic-
ular, on the use of tempo, timing and loudness expressiveness. Both the music instru-
ment as the expressive features chosen have been extensively studied in the literature
ever since Seashore (Gingras, 2014). Yet, to my knowledge, some of the studies here-
with presented are the first ones entailing a balanced dataset of this size (26 pieces
played by 11 performers) and focusing on the possible individual patterns and inter-
actions in the use performers make of tempo (timing as well in Chapters 2 and 6)
and loudness. With the goal of finding how individual performers are constrained by
shared approaches or by their idiosyncratic style in the use of these features different
studies and machine learning models have been explored and presented in order to
study different hypothesis.

1.6 OUTLINE OF THE THESIS

The outline of this dissertation is as follows:

¢ Chapter 2 introduces methods to measure and visualize performances of the same
piece played by the same or a different performer. A small dataset consisting of
performances played by the same performers but recorded on different dates, is
collected and presented for illustrative purposes.

e Chapter 3 presents an introduction to machine learning with the aim of providing
a basic understanding of the methods used in Chapters 4 and 5.

e Chapter 4 presents a study on the possible interactions between tempo and loud-
ness in relation to performance constraints defined by score markings. A dataset
is presented including 11 performers and 26 piano pieces. Two main models are
defined based on individual stylistic approaches or on shared ones (when several
performers are playing the same piece).

e Chapter 5 discusses the relevance of using sequential models, in particular, Long
Short-Term Memory neural networks, when predicting micro and macro struc-



1.6 OUTLINE OF THE THESIS

tural expressiveness. It illustrates and discusses how the predictions and interac-
tions of tempo and loudness are affected differently when the models proposed
include information of rhythm as defined by the melody or metrical structure.
Moreover, it investigates how the individual predictions per performer differ
when the models are trained on shared score constraints among a group of per-
formers or on individual models.

e Chapter 6 presents a behavioral experiment of listeners discrimination between
performers based on their use of expressive tempo and loudness. Furthermore, it
discusses how the discrimination task might be influenced by musical expertise.

e Chapter 7 recapitulates the contributions and main findings of the dissertation.






CHALLENGES OF A COMPARATIVE ANALYSIS ON INDIVIDUAL
EXPRESSIVE PERFORMANCES

2.1 INTRODUCTION

Among all aspects of performance practice, that of interpretative choice regarding mu-
sical expressivity is arguably the most interesting. In the field of early music, the urge
to realize historically informed interpretations has led to new perspectives about our
musical legacy from scholars and performers alike (Butt, 2002). During the hundred
years since Arnold Dolmetsch published The interpretation of the music of the XVIIth
and XVIIIth centuries (Dolmetsch, 1915), different schools of early music performance
practice have developed.

These developments have been reflected not only in the form of publications (e.g.
Donington (1963) or Geoffroy-Dechaume (1964)) but mostly in the form of revised
performances of practitioners re-interpreting their aesthetic approaches on the basis
of surviving historical treatises such as those of Quantz (1752), Bach (1752) or Moz-
art (1756). Due to the popularization of recording techniques in the last century, the
volume of material available for a possible study of different approaches to perform-
ance has increased considerably. In The End of Early Music, Haynes (2010) uses record-
ings in order to compare and classify different performance aesthetics. In the same
publication, Haynes also quotes Anner Bylsma commenting on the "enormous" differ-
ent approaches to be heard when listening to different recordings of the same pieces
played by Frans Briiggen during different moments along his career.

Thanks to the on-going advancements in music technology and the popularization
of digital tools nowadays these differences can not only be "heard" but also objectively
quantified. The analysis of the development of performance practice and aesthetics
from the perspective of cognitive and computational musicology is relevant since it can
potentially provide insights into the interrelations between musicology, performance
practice and cognition.

In the field of performance analysis, we may therefore aim to find out which aspects
are involved in the categorization of performances in terms of their constituent express-
ive features or in the identification and understanding of possible performance trends
that might change over time. For instance, can a performer be easily characterized by
her or his typical use of expressive timing? Are the sudden changes in tempi within the
performance of a piece representative of a certain musicologically informed interpret-
ation? Is this approach communicated by the performance itself? Do perception and
cognition play a role in the aesthetic choices involved in performance? Much research
has been done in recent decades in order to resolve some of these questions (including
the work by Clarke (1999), Gabrielsson (1974), Repp (1997), and others).
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In the 1930’s, music psychologist Carl Seashore had already published results reveal-
ing systematic deviations in timing on a number of sequences of different performances
(Seashore, 1936). One of the most recent contributions to the field of performance ana-
lysis and modeling has been the Mazurka project. Starting in 2004 at the Centre for
the History and Analysis of Recorded Music (CHARM), it collected more than 2500 re-
corded piano performances of 49 Chopin mazurkas. The Mazurkas dataset continues
to grow and inspire new analyses, and has been used within many different domains
of computational musicology. Extensive overviews on the work done in performance
rendering and analysis have been completed by Gabrielsson (2003) and the recent com-
pilations published by Fabian, Timmers and Schubert (2014) and by Miranda, Kirke
and Zhang (2010). In addition to this rich literature in comparative performance, much
research has been carried out towards automatic classification of performances or per-
formers within the field of music information retrieval. A few illustrative examples in
which performers are automatically identified based on their use of timing are those by
Grachten and Widmer (2009), and Serra, Ozaslan and Arcos (2013). Other studies such
as the ones by Stamatatos and Widmer (2005), or Ramirez, Maestre and Serra (2012)
use a broader range of expressive features (such as loudness and timbre) in addition
to timing for the automatic identification of performers.

In this study, I present and apply three state-of-the-art quantitative methodologies
in expressive performance analysis to elucidate possible relations among musicological
and cognitive interpretations. Doing so will allow me to show how a particular meth-
odology may serve (or constrain) the ability to compare different interpretations and
define expressiveness. In particular, I will work with two of the definitions presented in
section 1.1. These are: "expression as a deviation from a musical score" and "expression
represented as a deviation from the norm defined within a performance". In addition, I
will show how these methods might be used for other purposes in performance science
as well as in pedagogy. For this, seven different performances of an excerpt played by
three performers of the Prelude from J. S. Bach’s first Suite for solo cello in G major,
bwviooy (Appendix a), are analysed and compared. Furthermore, I will present an
interpretation of the quantitative analysis of these performances.

2.2 MEASURING TOOLS FOR THE ANALYSIS OF EXPRESSIVITY IN MUSIC PER-
FORMANCE

Over the last 20 years, several quantitative methodologies to develop knowledge rep-
resentation tools have been proposed. To compare the cello performances I have chosen
three distinct methods proposed by Sapp (2007), Gingras, Lagrandeur-Ponce, Giordano
and McAdams (2011) and Cheng and Chew (2008b):

2.2.1  Timescapes

Within the Mazurka project, Craig Sapp did extensive work defining quantitative meth-
odologies and visualization tools. The scape-plot visualizations suggested by Sapp
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(2007) use normalized correlations (Pearson correlations) per cell (e.g. isolated notes),
or groups of sequential cells (groups of notes), between a reference performance and
another performance in order to visualize the correlations in multiple timescales. Each
cell in the scape plot represents the correlation between both performances. For ex-
ample, the bottom row of Figure 2.1 represents the correlations per pairs of elements
of each performance compared to the reference performance. Within the scape plot,
the window size for correlations among groups of notes increases the closer we get to
the upper vertex of the triangle, having at the top of the triangle the correlation of the
whole reference piece with the one (or ones) being compared to. When the visualization
is plotted in black and white, the correlation scale will represent black as the lowest
correlation and white as the highest. Among the plot shapes originally proposed by
Sapp, I chose a bell-shaped plot with a logarithmic scale in the vertical axis, to enhance
visualization in the lower part of the plot. This is especially relevant when differences
in timing occur within groups of only a few notes.

two beats ABCD

three notes | ABC I BCD |

beat (two notes) | AB | BC | CD |

note | A | B | @ | D |
time >

Figure (2.1) Scape plotting based on a hypothetical fragment of four notes (A,B,C,D) and
four window lengths. From bottom to top each cell captures the correlation on
different levels of the note sequence of the level below. Figure 2.2 shows a bell
shape visualization based on such a scheme.

The possible uses of timescapes are diverse. From a musicologist’s perspective, they
provide a fast overview of similarities among performances but they can also be used
for forensic applications. The most illustrative example is the fraud discovered when a
few visualizations of recordings credited originally to the pianist Joyce Hatto showed
to be identical to the visualizations of a number of recordings previously published
by other performers. The reason why this fraud was discovered through these visual-
izations is because they were not sensitive to the digital manipulations (time-stretches
and re-equalizations) that were applied to the original recordings and therefore the
similarity shown was immediately evident. The visualization proposed by Sapp (2007)
has been particularly useful for tracing similarities in the numerous recordings annot-
ated within the Mazurka dataset. From a cognitive perspective the timescapes may be
interpreted as a tool to illustrate the correlations between possible internalized repres-
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Figure (2.2) Timescape visualization of the correlation between two different performances.
The global average correlations in timing between both performances are indic-
ated at the top of the plot, the note level correlations are shown at the bottom of
the plot. The color scale from black to white represents the correlation with black
(maximal) and white (no correlation).

entations a listener may have against different versions of the same piece. Additionally,
timescapes facilitate the identification of consistent deviations at different structural
levels revealing aspects not only on the possible characterization of the performance
but also on the similarities of structural phrasing. In this chapter, timescapes will be
used to represent and compare correlations between different performers who recor-
ded the work more than once.

2.2.2  Kendall’s Tau rank correlation coefficients, means and standard deviations

A complementary correlation measure to the one used in the visualizations proposed
by Sapp is Kendall’s Tau. Kendall’s Tau correlation is a standard methodology used in
statistics for measuring the association between two observed quantities; in our case,
the loudness or timing of each note for a pair of performances) when they do not
follow a normal distribution. This statistic is used to quantify the degree of association
between pairs of expressive profiles. Unlike Pearson correlation coefficients, Kendall’s
tau rank correlation measures concordance on the direction of the change between
two points. This provides, using a single metric, a scale-independent quantification
of the relationship between rankings of a given variable, regardless of its absolute
value (Stamatatos & Widmer, 2005). Having a pair of observations (x;,x;) and (yj, yi)
belonging to two random variables X and Y, they will be concordant when the sort
order of both of them (direction in our case of study) agree. And they will be discordant
when one of them disagrees. By correlating pairs of performances we can verify how
a particular feature (such as loudness or timing) changes for both performances; for
instance, the degree of concordance in which two performances being compared make
an accelerando at the same points in the score. As such, Kendall’s tau rank correlations
together with the mean and standard deviations can be efficient measurements for
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analysis when expressiveness is defined as the deviation from the norm given by the
score.
The formal definition for the Kendall T coefficient is as follows:

(number of concordant pairs) — (number of discordant pairs)
T= (1)
nn-—1)/2

In the current study, Kendall Tau rank correlations are used to measure different ex-
pressive features in order to find out what the consistency between each of the record-
ings is and to analyze which features may be more representative of the differences
between performances. Consequently, Kendall’s correlations are calculated for each
pair of performances on a note level (event) and on each of the different expressive
features selected (timing and loudness).

The Tau coefficient is expressed within the interval [-1,1], with positive values rep-
resenting agreement between the two rankings measured (e.g. 1 with identical ex-
pressive timing between two different performances), and negative values represent-
ing disagreement between two rankings. A value of -1 represents perfect disagreement
between performances (e.g. a crescendo in one performance and decrescendo in an-
other). A value of o represents independence between performances regarding the use
of a variable (differences in use are equally balanced between two performances).

2.2.3 Local Maxima Phrase Detection (LMPD)

Cheng and Chew (2008b) proposed a methodology to analyze phrasing strategies in
expressive performances. They suggest relating local maxima in the loudness or tempo
curves with the occurrence of performance phrases (or sub-phrases). That is, the num-
ber of peaks (local maximum: M) and valleys (minimum: m) to be found on the tempo
and loudness curves of different sections of an analyzed performance. In addition
to counting the occurrence of possible local maxima to compare expressive phras-
ing strategies within the analyzed portion of the piece they suggest three expressive
descriptors:

¢ Phrase strength (S): a measure of the clarity of a given phrase, which estimates
the difference between a local maximum (M;) and the two adjoining local minima
(m; and mj ) for each note in the score (j).

S =1/2[(Mj — my) + (Mj — mj1)] (2)

e Phrase volatility: the standard deviation of all phrase strength values within a
given music fragment. This is done by measuring "the degree of quantity of vari-
ance from the average phrase strength” (Cheng & Chew, 2008a), i.e., the mag-
nitude of variability in phrase strength, from the average phrase strength.
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¢ Phrase typicality: which quantifies the ‘popularity’ of a phrase by quantifying
the proportion of performances that coincide on placing a local maximum at the
same point of the fragment analyzed. The more performers coinciding on the
placement of local maxima, the more common will be that specific “expressive
gesture’.

2.3 DATASET SELECTION

The music excerpt analyzed here consists of the first twenty-one bars plus the following
seven notes (343 notes in total) from the Prelude of Bach’s Suite in G Major (BWV1007),
that is from the first note to the fermata found towards the middle of the movement.
The reader can find a creative commons version of this movement in Appendix a.
There are two reasons for choosing this piece. The first reason is that, since Pablo
Casals recorded it for the first time in 1936, this Prelude has become one of the most
recorded pieces of the baroque solo repertoire and is, therefore, an ideal case study
to demonstrate the applicability of analytical methods in music performance. The fact
that so many recordings are available makes it possible to study how performers may
want to vary their interpretations across time. Within the field of Early Music many
studies can be based on analyzing recordings. For instance, we may be able to trace the
aesthetical developments and the effect that musicological findings might have had on
these performances. The second reason is that the score’s regular isochronous rhythmic
structure facilitates analysis of different approaches to phrasing without confounding
effects from heterogeneity in rhythmic structures annotated in the score. Furthermore,
neither the selected score excerpt nor the performances analysed are complicated by
any ornamentation.

For the purpose of this study, a dataset of recordings of BWV 1007 played on period
instruments was collected. The recordings analyzed were performed by Anner Bylsma,
Jaap ter Linden and Pieter Wispelwey, with at least two different recordings of each
performer (listed in Table 2.1). In the case of Wispelwey, who has published three re-
cordings of the Bach Cello suites, I chose the two showing a greater difference (his
first and third recording), as well as a broadcast (unpublished) live performance. Since
assessing the use of period instruments based on the information supplied with the
recordings might be misleading (Tidhar, Dixon, Benetos & Weyde, 2014), I estimated
the frequency of the first note by visually analyzing the spectrogram frequencies distri-
bution. Within this dataset, the expressive features analyzed are timing and loudness.
In the following lines, I will explain how these features were measured.

2.4 DETECTION AND ANNOTATION OF NOTE ONSETS AND LOUDNESS
2.4.1 Timing annotations

In order to differentiate (and isolate) notes from an audio source it is necessary to
identify the beginning (onset) of each recorded note. While many automatic and semi-
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automatic methods to do so have been proposed, detection of onsets of low frequency
string instruments remains an unsolved challenge, since the attack of each note is not
always clearly discernible (Collins, 2005). After trying several automatic approaches,
given the short length of the excerpt chosen, I decided to use a manual annotation ap-
proach in order to maximize reliable timing measurements. For the manual annotation
I used a procedure similar to the one presented by Robert Ashley, using the graph-
ical audio analyzer Sonic Visualiser to annotate aural and visual cues by hand (i.e.,
by looking at the beginning of peaks in the spectral representation). After verifying
that the number of onsets corresponded to the number of notes being analyzed, data
was exported as a time series of onsets for further computation and analysis. The beat-
per-minute representation used in the rest of this chapter is measured per note and
smoothed over the beat level, in this case a crotchet. The effects of smoothing and pos-
sible implications for the representation of timing have been previously addressed by
Chew (2012).

Performer Recording Label Catalogue Recording Duration = Abbreviation
Number date

A. Bylsma RCA RD 70950 1979 2'12” B1gy9

A. Bylsma Sony Vivarte S2K 48047 1992 2'49” B1gg2

J. ter Linden = Harmonia Mundi HMU 9o7216.17 1996 3'19” L1996

J. ter Linden  Brilliant Classics 93132 2006 3'14” L2006

P. Wispelwey Channel Classics 1090 1990 2'27” Wi1g90

P. Wispelwey unpublished, AVRO - 2001 2'30” W2001

P. Wispelwey Evil Penguin EPRC o012 2012 2'06” W2o012

Table (2.1) Dataset analysed on this chapter

2.4.2 Loudness extraction

To extract a loudness representation I used the Short Time-Varying Loudness model
proposed by Glasberg and Moore (1990), which quantifies loudness (in sones) for
each note played. The motivation behind choosing this model was that it accounts
for psychoacoustic phenomena such as frequency-dependent hearing thresholds, level-
dependent compression and masking, and, therefore, better reflects the perception of
the listener. This is obtained using the implementation included in the Genesis acous-
tics toolbox. *

1 http:/ /www.genesis-acoustics.com
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2.5 DATA ANALYSIS AND RESULTS

In addition to illustrating the impact of definitions on analysis of expressiveness, with
the current study I wanted to assess any consistent differences between the first and
second recording of each performer and find out whether this could be related to their
characterization or musical individuality. Note that with this set of recordings I do not
attempt to represent a holistic “idea” of each of the performer’s musical personality
(or individualism) but rather their curated ‘idea” about how the piece should be per-
formed at the time of recording. Given the well-established artistry of the performers,
the recordings are expected to be the result of a thoughtful compendium of choices
made a priori and afterwards curated (in most cases, the recordings have been edited
through a post-production process with the final approval of the performer). Therefore,
these recordings reflect, if not the individuality of a performer, the expressive choices
together with their up-to-recording-date technical ability to represent those choices.
These recordings can thus be interpreted to reflect the state of artistry of performers at
different moments of their careers.

2.5.1 Timescapes analysis

In order to compare pairs of performances, different bell shape correlation timescapes
were generated with the online tool available at the Mazurka website. Rather than
illustrating this approach with all possible combinations of timescapes (49 plots in this
case), Figure 2.3 shows the timing correlations per performer between two recordings.

The differences between the two recordings of Anner Bylsma seem to be more ho-
mogeneous (more uniformly darker), reflecting lower correlations and hence a clearly
different approach in general timing of the whole performance. On the timescape gen-
erated with the recordings of Jaap ter Linden we can observe a clear difference after the
middle section and greater differences in the first part (half of the plot) of the excerpt
being analysed. The timescape plot of Pieter Wispelwey’s recordings shows very pro-
nounced contrasts (black-white) showing clearly different approaches in the phrasing
of specific locations in the score.

2.5.2  Means and Standard Deviations analysis

Figures 2.4 and 2.5 and Table 2.2 depict means and standard deviations in tempo and
loudness for each performance. The differences in the use of tempo between both re-
cordings are more pronounced in the cases of Bylsma and Wispelwey, with Bylsma’s
recordings exhibiting the greatest mean difference between recordings. No large dif-
ferences in the use of dynamic means or standard deviations were observed with the
exception of the recording of Wispelwey from 2012, but any such differences can be
affected by the recording techniques and volume approaches specific to each record-
ing (e.g., microphone placement or signal compression may alter the loudness on the
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Figure (2.3) Timescapes visualizations between subsequent recordings pairs of (from left to

right) Anner Bylsma (1979 - 1992), Jaap Ter Linden (1997 - 2006) and Pieter Wis-
pelwey (1990 - 2012).
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Figure (2.4) Tempo means and standard deviation for each performance.

Despite the small number of performances analyzed we can see a certain trend in the
tempo mean through the last decades, interrupted by the recording of Pieter Wispelwey
in 2001, who opts for a similar tempo mean as that of Bylsma in 1979. But no intuitive
interpretation can be done on the use of loudness through the last decades.
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Figure (2.5) Loudness (extracted per note) means and standard deviations for each perform-
ance.

Timing (BPM) Loudness (sones)

Mean Standard Mean Standard

Deviation Deviation
B1g79 86 12.74 84 2.12
B1g9g2 59 11.82 84 3.26
L1996 56 10.45 81 2.96
L2006 65 10.40 82 2.23
W2001 74 19.99 84 2.59
W2o012 88 23.12 69 8.51

Table (2.2) Mean and standard deviations for the performances analysed

2.5.3 Rank Correlations

Kendall Tau correlation coefficients of timing and loudness were obtained for each
pair of performances, and are listed in Tables 2.3 and 2.4. As we can see in Table 2.3, all
the timing correlations are positive and significantly different from o. It is remarkable
to observe that, in most correlations, the coefficient is higher between recordings of
the same performer than between recordings of different performers. This might raise
questions as to whether the second recordings of the performers might be constrained
by different elements involved in the creation of their first recording (for instance, mo-
toric memory), cognitive approaches to their flexibility in the use of expressive features,



or other possible causes.
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Big79 Bigg2 Ligg6 L2006 Wiggo W201 W2012
Big79 1
B1gg2 0.43 1
Lig96 0.25 0.27 1
L2006 0.34 0.31 0.43 1
Wig90 0.39 0.43 0.39 0.40 1
W2o01 0.31 034 037 039 049 1
W2012 0.37 0.42 0.41 0.35 0.47 056 1
Table (2.3) Kendall Tau correlation matrix comparing the Tempo curves of all pairs of per-
formances

In the analysis of loudness, we must be aware that the loudness ranks could also be
affected by the use of compression during the post-processing of the recording. Yet we
can observe that the rank correlations coefficients are much lower in the loudness meas-
urements than those of timing, with 8 out of 14 pairs exhibiting a negative correlation
Tau coefficient. This could mean that the trajectories in loudness are quite different for
most of the recordings, probably because the performers are, in this particular piece,
not constrained by dynamics (unnotated on the score). Rather, they have diverse phras-
ing approaches based on their interpretation of the harmonic rhythm implicit in the
score, and they have very different approaches in their different performances.

Big79 Bigg2 Ligg6 L2006 Wiggo W201 W2012
Big79 1
Bigg2 -0.05 1
L1996 o.11 0.01 1
L2006 0.04 0.05 0.36 1
W1990 0.29 0.07 0.15 0.08 1
W2001 0.004 -0.10 0.12 0.07  -0.05 1
W2012 -0.06 0.20 -0.008 -0.04 -0.16 -0.03 1

Table (2.4) Kendall Tau correlation matrix comparing the Loudness curves of all pairs of per-
formances

The differences between the rank correlations in loudness and timing could also be
due to the fact that the rhythmic structure (isochronous notation through the whole
analyzed excerpt) together with the implicit melodic structure of this particular piece
allows less variability in the phrasing strategies expressed with timing than the ones
expressed with loudness. These data show that performers have a greater diversity in

21



22

CHALLENGES OF A COMPARATIVE ANALYSIS ON INDIVIDUAL EXPRESSIVE PERFORMANCES

the expressive directions of loudness than in timing. In fact, the correlations in loud-
ness between first and second recordings of both Wispelwey and Bylsma are negative,
indicating different approaches to the use of loudness in the phrasing trajectories for
each of the recordings.

2.5.4 Local Maxima Phrase Detection (LMPD)

The LMPD methodology presented above was applied. Figures 2.6 and 2.7 depict
phrase typicality in counts per bar for both timing and loudness. Figure 2.6 shows
much more coincidence in typicality than Figure 2.7, perhaps indicating that timing,
as opposed to loudness, is a more relevant feature to differentiate motifs and structure
within this particular piece.

The fact that timing is correlated at specific points of the score may be indicative
of the performers emphasizing timing in a similar way as they themselves experience
the aural transmission of the harmonic context as well as the underlying structure in
the piece. In contrast, Figure 2.7 shows very little typicality, consistent with the rank
correlation analysis that loudness is a more flexible (or less stable) expressive feature
than timing.
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Figure (2.6) Timing Phrase typicality (based on local maxima) within the corpus.

Table 2.5 shows the analysis of phrase strengths and phrase volatility for each of the
performances. The correlation between loudness and timing on the phrase volatility
measurements is -0.27 while the correlation on the phrase strengths is 0.45. However,
the canonical correlation between the Timing and Loudness columns is 0.57 and 0.36.
Also, the phrase strengths clearly differ more in the loudness analysis (with a standard
deviation of 6.55) than in timing (with a standard deviation of 3.56). Anner Bylsma’s
recordings show the greatest differences in the number of phrase strengths regard-
ing loudness between the two recordings. The phrase volatility (deviation from the
overall mean among all recordings) is much bigger in terms of timing than loudness.
This is probably due to the performers using different phrasing strategies, expressed
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Figure (2.7) Loudness Phrase typicality (based on local maxima) within the corpus.

as lengths in timing, combined with gradual accelerandi and decelerandi. That is, the
arcs length in expressive timing vary more in size than the ones of loudness, yet the
loudness is less correlated. This is probably closely related to the harmonic rhythm in-
fluencing the expressive features. Depending on the musical context, a performer may
choose to emphasize shorter or longer phrasing through timing. The low volatility in
loudness can also be explained from a harmonic rhythm perspective. For example, the
scalar motive of the pedal progression (the repeated low G during the first 11 bars, see
a), together with the metric structure, may be consistently emphasized with loudness,
in this way allowing for less volatility in loudness in comparison with timing. How-
ever, further experimentation and analysis would be necessary to verify whether the
loudness volatility in the dataset presented could have been affected by, other, eventual
manipulations of loudness (such as compression) during the recording process.

Timing (BPM) Loudness (sones)
Number Number
Phrase Phrase
. of phrase . of phrase
volatility volatility

strengths strengths
B1979 12.79 113 1.33 104
B19g2 11.17 109 2.32 91
L1996 10.91 102 1.45 97
L2006 10.39 106 1.49 101
W2001 14.88 108 1.73 95
Wi1g90 17.80 107 1.84 95
W2o12 10.45 104 4.10 84

Table (2.5) Phrase Volatility and Phrase Strengths for Timing and Loudness
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2.6 CONCLUSION AND DISCUSSION

Within the musicological literature, very few studies have dealt with the analysis and
comparison of performances of a music piece using more than one recording per per-
former. The advances in music information retrieval, performance science, and music
cognition are facilitating a yet growing development in the field of digital humanities.
These developments allow addressing new research questions as well as objectively
quantifying some of the expressive features that may play a role in the development of a
performance school. Methodologies such as the ones presented in this chapter broaden
research possibilities, while perhaps narrowing the possible semantic gap between the
subjective anecdotes collected in previous, interview-based performance research and
the acoustic facts demonstrated by quantitative analysis. In addition, many cognitive
modeling and educational tools can benefit from these approaches in order to improve
their development. While most of the differences in performance here discussed may
be heard and shared among individuals, having the right computational tools to ana-
lyze, quantify, and model different performances may ultimately aid in understanding
the cognitive processes involved in the act of listening and performing.

This study, by presenting and applying three alternative methodologies for the ana-
lysis of expressiveness of loudness and timing in several recordings of an excerpt of
an iconic Baroque composition, has shown that, by combining different methodologies,
we can begin to explain the interrelations between performers and their subsequent
recordings from a musical perspective, as well as to visualize and measure individual
approaches to the expressive strategies used in relation to the score structure. Within
this set of performances, it has also been observed that the timing correlation between
pairs of performances is, in fact, higher when comparing recordings of the same per-
former, even when there is more than a decade between the recordings (as in the cases
of both Bylsma and Wispelwey). Furthermore, greater differences were found in the
correlation per pair of performances for loudness than in the correlations for timing.
This implies that, at least for this particular excerpt, performers differ more in their
use of loudness as an expressive feature. This finding is in line with previous research
done in a similar musical context (Bach’s Violin Partita) carried out by Cheng and
Chew (2008b).

We must note that, in addition to loudness and timing, many other features (aural
and non-aural) play a role in the definition of expressiveness. While the two recordings
of Jaap ter Linden may seem to be more consistent than the ones of Pieter Wispelwey or
Anner Bylsma in the use of timing or loudness, they might differ much more in other
expressive features such as the development in time of articulation and its relation to
timbre, an aspect not measured here. Neither has this study reckoned the perceptual
validity of our analytical interpretation, except for, indirectly, the psychoacoustic model
of loudness used. Within the timing domain, it has been shown that timing is intrins-
ically linked to tempo, and that observed changes in timing may at least partly reflect
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differences in tempo. The representation of timing at a certain tempo may therefore
not be generalizable to performances across a broader range of tempi. This claim may
compromise the comparison of performances when aiming for an explanation of the
perceptual reality of it. This study has rather focused on analyzing the phrase volat-
ility and phrase strengths of the whole excerpt as a quantitative tool, not aiming to
explain yet what the perception of these differences is. It is expected however that the
‘characterization’ of a listener’s perception of expressiveness might be related to the per-
ception of features such as phrase strength and volatility of both timing and loudness.
Also, probably, these expressive choices are strongly linked to listener expectations
biased by the cultural context surrounding these performances, as the greater number
of performances coinciding in the same phrase strength and volatility events of a piece,
the stronger the expectations of the listeners will be towards these specific events of
the same piece. More empirical research is thus needed to perceptually validate the
relevance of the proposed measures of expressiveness and to better understand pos-
sible hierarchies in performers’ choices of expressive features, in the relation between
expressiveness and performance characterization, as well as in the possible communic-
ation process implied.

While methodologies and techniques are still being developed, there is as yet little
uniformity in methodological approach beyond the use of mean and standard devi-
ations. In future work, new methodologies could serve to validate the notion of ex-
pressiveness defined intrinsically. For example, deviations from a “norm” could be
defined in relation to a performance itself rather than in relation to the score which,
arguably, might not be readily accessible to the average listener while experiencing a
performance (Grachten & Widmer, 2009). While there are already statistical tools that
help to cluster expressive trends within a performance, the fields of computational and
cognitive musicology could contribute to obtain an intuitive perceptual and musical
explanation. Future work should be done to assess the extent to which performing
non-isochronous rhythmic structures may constrain the flexibility of performance with
regard to timing or loudness. In addition, more insight is needed regarding possible ef-
fects of aesthetics on instrumental practice. For instance, is there a greater variability in
timing in the performance of the cello suites played on modern cello than on baroque
cello? Is the use of phrasing generally different nowadays than 30 years ago? Could
musicians also benefit from these methodologies to develop novel expressive gestures
and approaches to their performances of this Prelude? While this is also feasible, a
more immediately relevant aim in assessing interrelations between performances is to
reveal and understand the fingerprints left by the legacy of music recordings.
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AN INTRODUCTION TO COMPUTATIONAL MODELING OF
PERFORMANCE EXPRESSIVENESS

3.1 INTRODUCTION

As it has been explained in Chapter 2, in order to extract the characteristic patterns of a
performance, we need an approach in which such patterns can be found across features
and datasets. However, one of the possible shortcomings of the methods presented in
the previous chapter is that many of them do not aim to model or reproduce such
regularities, but rather serve as tools for visual inspection or post-hoc analysis. When
dealing with large datasets and complex systems in which the behavior might only be
understood through the interaction of several possible variables, we may instead aim
to formulate such behavior by a computational model. A computational model is a
systematic description or theory by which some of the factors causing the behavior of
a system can be both simulated and computed in order to study this kind of behavior.

Goebl, Dixon and Poli (2005) differentiate between alternative computational mode-
ling strategies in expressive performance, assessing the most common ones as being
the analysis by measurement and analysis by synthesis. The analysis by measurement
strategy includes those models that focus on the analysis of regularities in the perform-
ances recorded by humans and converted into a model. Within the modeling approach,
the analysis by measurement approach requires a definition of the hypothesis on the
behavior of the chosen variables to be verified by any statistical method.

The Analysis by synthesis strategy is best represented by the KTH rule system from
Friberg et al. (2009), in which several intuitive score based rules are embedded in the
model. Among the rules established by this model are the deterministic interactions
between loudness and tempo, for which loudness increases or decreases in a linear
fashion to faster or slower tempo changes respectively.

In addition, Goebl et al. (2005) also categorizes as modeling strategies the machine
learning strategy, in which an algorithm aims to extract predefined rules included in
a performance, the case-based reasoning strategy, which aims to learn some perform-
ance based meta rules to be applied to other unknown pieces, and the mathematical
theory approach proposed by Mazzola and Zahorka (1991) in which the structure be-
longing to the score and performance features are isolated and decomposed within a
mathematical formalization.

The main difference between the machine learning and the analysis by measurement
approaches lies in that the machine learning approach has, in principle, no strong as-
sumptions on how the model should behave and, instead, leaves the learning function
up to the extraction of relevant patterns. Using analysis by measurement, however, the
questions are often very specific, and the behavior of the model is constrained to the
hypothesis and pre-selection of their representative examples. Therefore, while one mo-
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deling approach focuses on "automatic" discovery, the other has its base on hypothesis
testing.

The computational models used in this dissertation are based on a combination of the
analysis by measurement strategy and the machine learning (see 3.2) strategy, and they
are chosen to achieve an understanding of the relationships between expressiveness
and the idiosyncrasy of performers. The models are trained to learn the prevalent
‘norm’ defined by a performer or group of performers to afterwards study which from
the hypothesis drawn regarding the production or perception of expressiveness may
get validated by the computational models used.

Once the machine learning model extracts the pattern regularities within a number
of performances, we can test and analyse whether an alternative performance (and un-
known to the model) may deviate greatly from the predictions obtained through such
a predictive model, and how those deviations may relate to the expectations of a hy-
pothetical listener. Thus, the machine learning methods used in the following chapters
are chosen to model the idiosyncrasy of a performer but are also intended to be a
basis to elucidate how this idiosyncrasy relates to a listening process “in generating the
subjective experience from the perceptual input” (Pearce, 2011).

The aim of this chapter is to motivate the use of machine learning as well as provide
a basic understanding of the methods used in Chapters 4 and 5 of the thesis. For a
more detailed discussion on the machine learning methods, see Bishop (2013); Lipton,
Berkowitz and Elkan (2015); Mackay (2003); Mitchell (1997) and Goodfellow, Bengio
and Courville (2016). In section 3.2 I will introduce general notions of machine learning,
in section 3.3 I will explain the basics of neural networks, and in 3.4 I will elaborate
on the strategies using machine learning for the modeling of idiosyncratic patterns of
expressive performance.

3.2 MACHINE LEARNING BASICS

Machine learning is a field of Computer Science in which the goal is to learn patterns
or behaviors from data by using statistical techniques and algorithms. Given a per-
formance measure and a task, the performance of the algorithm in solving the task
will improve with experience (by learning) (Mitchell, 1997). The learning in such al-
gorithms thus results from the adjustment of their internal parameters to the data they
are trained with.

In this dissertation, the machine learning algorithms used will learn to predict loud-
ness or tempo after having been trained to recognize regularities in the way of, e.g. a
performer or a group of performers using them. Conceptually, based on the exposure
of the model to the recordings contained within the training dataset they will learn the
most common ("heard") version of expressive gestures within it.

Depending on the complexity of the model and how the parameters are tuned, the
model may be able to predict better or worse the characteristics and behavior of un-
seen data. This is what is commonly referred to as generalization. Having, accordingly,
a model in which the parameters are very well fit or too poorly fit may lead to overfit-
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ting or underfitting when being exposed to new data. Overfitting refers to the case in
which the model is very accurate in predicting the data with which it has been trained
but it might be very inaccurate when being exposed to unseen data. That might be
because the model is memorizing the data instead of recovering generalizable patterns.
In such cases, it may perform very badly when trying to predict sequences with slight
variations in the input.

Figure 3.2 shows an example of how the generalization power of a polynomial regres-
sion model may be affected by overfitting or underfitting the degrees of the polynomial
features (and, thus, its complexity as a model). On the leftmost plot from Figure 3.2 we
can see how the data is underfitted (and biased) as a consequence of using a polyno-
mial of degree 1. On the contrary, as we can see on the rightmost plot from Figure 3.2,
the higher the degree of the polynomial, the greater the variance of the model, which
translates in the model being very sensitive to the noise of the data rather than the
general properties of it; seen in the True function (orange line). The plot in the center
from the same figure, shows presumably the "best" fit possible as it coincides almost
exactly with the underlying True function (in this case, a cosine function) of the data.

Thus, having a model in which its parameters are too biased or have too much
variance tuned and fitting very well the data of the training set may lead to poor
generalization. Other reasons for having a poor predictive model may be related to
having too many (in the case of overfit) or too few (in the case of underfit) training
iterations given to the model to learn "good enough" parameters values, rather than
those that fit perfectly the training data but may deal very poorly with unseen data.

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.81e+08(+/- 5.42e+08)
—— Model —— Model —— Model
~——— True function ~——— True function ——— True function
e Samples e Samples e Samples

Figure (3.1) Plots in the left and right show, respectively, underfitting and overfitting in the

linear regression model due to an increase of the degree of polynomial features.
1

The machine learning algorithms used in this dissertation are chosen to learn which
underlying function (f) fits better the relation between the input features (X) and the
output (Y) being able to generalize to unseen data. These kinds of algorithms belong
to the category of supervised learning and they are called supervised as the target or
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label from which they have to learn is always predefined. This means that examples
(x,y) € X x Y are provided. The underlying function f : X — Y can be learned by a
deterministic or a probabilistic model.

An alternative approach to supervised methods in machine learning is that defined
by unsupervised algorithms. These algorithms capture the characteristics, features or
structure of a dataset by learning the probability distribution or associations that may
have generated the data itself and, as such, reveal patterns in the data. In unsuper-
vised learning, there is no corresponding Y from which to learn such a relationship.
In contrast, they must be able to "learn" what belongs to the structure of the data (X),
from what is unstructured noise contained within it. A common example of unsuper-
vised learning is that of clustering, by which the data given is grouped as similar or
dissimilar based on a proximity (distance) measure.

As an example of a supervised learning method and in order to introduce some of
the general concepts in machine learning, in the following section, I will explain linear
regression.

3.2.1 Linear regression

In linear regression, the goal is to learn the function between the input variables (Xn)
and the target variable (Y) by fitting a regression line that best approximates the input
data points. For doing so, Linear regression needs a parameter, (w1), that indicates the
slope of the line, and an intercept, wy, that indicates the point in which the regressor
line crosses the ordinate (Y axis) of the graph.

Simple linear regression is expressed as:

Y =wp +wq xxq (3)

In this case, the intercept term, xo = 1 (therefore omitted in the equation). The re-
gression line passes through the Y axis based on the value of the bias term wy, which
is often represented as well as b or 3. Not having an intercept (also called, bias term)
would imply that the regressor line would pass through the origin (0,0), which com-
promises the fit of the function and predictive power. Each of the w represents a weight,
or parameters, over which the linear relation is defined. wy represents the change in
Y divided by the change in X. In the case of linear regression, the parameter (or para-
meters in the case when there would be more than one feature) w is linked to an input
feature of the experiment, to analyzing its behavior in respect to the predicted variable

().
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When we want to include more input variables (features), this is expressed as:*

n
Y(X) =wp+wq xx1 +wWy %% :Zwixi (4)
i=0

In linear regression (and many other machine learning algorithms) when including
categorical features in the input (those that take a fixed number of values), a transform-
ation is necessary in order to map the categories to input vectors. This transformation
is often done by using one-hot encoding, in which each of the columns’ features will
be represented by a binary vector in which each of the combinations represents their
absence or presence. For example, if we only had two markings in the whole corpus: f
and p, we would have a vector for these features in which f would be represented as
[1, 0] and p as o, 1].

I exemplify this in table 3.1, with a hypothetical performed melody of four notes
for which we want to predict Tempo based on Loudness when played by two different
performers (A and B). In this toy-example, we model the relation between the use of
expressive loudness in a piano performance and the use of tempo. In particular, we
study the effect of expressive loudness on tempo when a piece is played by either Per-
former A or Performer B. Both belong to the categorical variable Performer. In this case,
the (dummy) variable Performer B indicates whether this performer is playing or not,
and Performer A (being the reference performer) is represented by o. The toy sequence
illustrated consists of 4 notes concatenated with values for Tempo and Loudness as
shown in the table.

Tempo Loudness Performer B

1.4 1.4 1
1.14 1

0.97 2.4 1
1.52 1.6 1
1.35 2.3 0
0.97 2.4 o
1.52 1.6 0
1.35 2.3 0

Table (3.1) Toy example of regression of Loudness on Tempo differentiating between two per-
formers (categories) playing the same musical excerpt (4 notes). The variable Per-
former is used to indicate to which of the two performers correspond the values of
Loudness or Tempo. When the values in the Performer columns are o, the weight
w3 is canceled.

T

2 The expression Y I*  wix; can also be often found as w'x, in which w' refers to transposition.
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Tempo = wy +wj *x Loudness + w; * Performer (5)

In regression tasks, the measure most commonly used to evaluate the predictions of
the algorithm, is the mean squared error (MSE) between the true values, Y, and the
values predicted, Y. In this study, Y is represented by those belonging to each of the
performances of the dataset and Y by those predicted (generated) by the model. Due
to the square, MSE emphasizes the extremes by making the large errors larger and the
small ones smaller.

The mean squared error is defined as:

1 .
MSEiest = o ;(ytest — Yest)? (6)

A complementary measure to MSE found at times in literature is Mean Absolute
Error:

1 N
MAEest = - ; [Utest — Ytest! 7)

3.2.2  Gradient descent

The ultimate goal of a linear regression algorithm is to find the appropriate values for
the parameter weights so that, in a hypothetical dataset containing only a dependent
(y) and an independent variable (x), the regression line may be as close as possible to
all the points plotted in the X —Y graph.

While a simple equation, such as the one presented in (3), can be solved by using the
"analytical" method, the amount of computational power will suffer from employing
such a method when increasing the number of features (in X). An alternative to the
analytical method is numerical optimization. Within the "numerical" methods, a com-
mon optimization technique used to minimise a differentiable Loss function (such as
MSE) by updating the model parameters, is gradient descent.

During the iterative optimization in gradient descent, the Loss function (J(w)) is used
within the training set of the data to minimise the error between the output values (V)
predicted by the model and the true values of the data (Y). As such, the parameters’
values will be updated to minimise the Loss (or Error) until a local minimum is found.

Generally, the gradient of a function indicates in which direction the function grows
more. Therefore, the iterative optimization of the gradient descent algorithm works by
updating the weights W in a direction opposite to the gradient (v,,J(w)) of the Loss
function with a step size (or learning rate) n. Conceptually, the algorithm descends (by
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loss

local minumum

global minumum

w

Figure (3.2) Local and global minimum for a Loss function

iterative steps) until it finds parameters that minimize the Loss function. This minimum
could, however, be local in the general case. In the example of linear regression, we
would start by randomly initializing parameters and perform iterations of the gradient
descent algorithm until convergence.

For the error measure in regression tasks, the mean squared error (MSE) is usually
preferred as a Loss function over the mean absolute error (MAE), since it can be more
easily differentiated.

The update performed during gradient descent is defined as:

W =w—nV,J (W) ®

Figure 3.3 shows the plots of the different weight values chosen for a Gradient Des-
cent. The equivalent values are shown in Table 3.2. As we can observe in this example,
the update of the weight values has a decreasing effect on the Loss function.

Under sufficiently general conditions, the gradient descent algorithm will converge
to a global minimum if the Loss function is convex, or to a local minimum if it is non-
convex. The convergence or divergence will also depend on the value of the learning
rate, since it will make the steps towards the minima bigger or smaller.

A commonly used alternative algorithm to the gradient descent (GD) is stochastic
gradient descent (SGD). SGD follows the same principle as GD, with the difference
that it samples data points one at a time. Thus, having (x;;yi), where ; indicates a
single sample, the weights w are updated after each training sample based on the
gradient of the error on that (single) training sample. One of the main reasons why
SGD is preferred to GD is that it converges much faster and it has often been found to
converge to better local minima (Ng, 2012).

The update performed during stochastic gradient descent is defined as:

W =w—nVy](W; x4, Yi) 9)
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loss

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

weight
Figure (3.3) Gradient descent updates on Loss function (]) plotted against one weight (w).

Learning rate of n = 0.5. The dashed line indicates the update of the weight per
iteration. Table 3.2 shows the correspondent weight updates values.

weight loss / error

w(0): 0.1000 13.6197
(1): 08139  5.3998
(2): 1.2515 2.3107

w(3): 1.5197  1.1499
(
(

s

w

w(4): 1.6842 0.7136
w(5): 1.7850  0.5497
wi(6): 1.8468 0.4880

Table (3.2) Weight updates per iteration (0-6) and resulting error values from Figure 3.3. As
we can see, the weight updates has a decreasing effect on the Loss function.

With the gradient descent algorithm, we can find local minima in the Loss function
curve. In the case of linear regression, this is not a problem, as having more obser-
vations than predictors will lead to a convex solution in which the global minimum
is guaranteed. In non-linear methods, such as multi-layer perceptrons, there is a risk
of having a gradient descent getting stuck in local minima, as the Loss function of
such methods is often neither convex nor concave. While an argument on the need to
find the global minima is to be able to find the true minima of the Loss function, a
counter-argument is that finding such global minima may lead to overfitting the learn-
ing function and, consequently, to poor generalization. The randomness introduced
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when using SGD aims to avoid getting stuck and reach convergence at ‘better” local
minima.

Several modifications to the Gradient Descent and Stochastic Gradient Descent al-
gorithm have been proposed with the goal of finding better local minima or speed-
ing up the optimization process (very relevant when training large sets of data). The
modification most commonly found in recent literature on neural networks is ADAM
(Kingma & Ba, 2015), which is used within the predictive models in Chapter 5.

3.2.3 Parameters and hyperparameters

When using machine learning algorithms, we must make a distinction between "para-
meters’ and "hyperparameters’.

The parameters of the models are those that need to be learned (optimized) from the
data by (re-)training the models to existing (or new) data. The behavior of the algorithm
in relation to the parameters often leads to categorizing them as either parametric or
non-parametric. In general, parametric algorithms have a fixed number of parameters
that determine the capabilities of the algorithm to learn an underlying function. Non-
parametric models assume that the data distribution cannot be defined in terms of
a finite set of parameters. Therefore, the number of parameters are potentially infinite
and will grow as the amount of data grows. Yet, the classification of algorithms as para-
metric or non-parametric responds to a historical terminological convention, nowadays
often blurred as the models get more complex and entangled and their categorization,
as such, less clearly demarcated.

The hyperparameters, instead, are those variables fixed and predefined before the
model training and parameters optimization. They are related to higher-level proper-
ties of the model (such as the value of the bias). Thus, the hyperparameters are not
determined by the learning algorithm itself, and are often chosen based on perform-
ance on a validation (e.g., using Grid Search Cross Validation; see Section 3.2.4).

3.2.4 Model selection

In order to prevent overfitting the models, and with the goal of making them general-
izable, it is customary to split the dataset into train, validation, and test sets. The train
and validation splits of the dataset can be used to tune and select the best possible
models (hypothesis functions). The test set is left for the very final stage of the exper-
iments and evaluation of the model, and it should never be used during the model
selection process.

Having a range of values available as hyperparameters, the goal of dividing the
train set into train and validation is to run the models through different combinations
of hyperparameters in order to choose those values that lead to the best performing
model on the validation set.

The size of the dataset splits may condition the model performance and results ob-
tained. The splits on the dataset are sensitive to the following trade-off: reducing the
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Iteration 1 - | | | | |

Iteration 2 | - | | | | - Test fold
Iteration 3 | | - | | | | | Validation Fold

A\ \

Iteration 6 | | | | | -

Figure (3.4) Cross Validation through 6 equally divided folds of a dataset

size of the train/validation set often leads to greater variance in the parameter estima-
tion, while reducing the size of the test set may lead to greater variance in the predictive
performance. Unfortunately, in many of the machine learning models available, there
is no perfect solution to deal with the splits of the dataset.

The adjustment of hyperparameters can be done by different methods. The most
common one is Grid Search, which works by doing an exhaustive search over specified
hyperparameter values for an estimator. Having a grid of values for the hyperparamet-
ers, by doing Grid Search we can evaluate the Loss function on the validation set after
trying each possible combination of hyperparameter values.

A common alternative method to Grid Search, is Random Search. In Random Search,
a fixed number of parameter settings is randomly sampled from a given distribution.
If the weight of the hyperparameters in the Loss function is known, a Grid Search will
be more accurate and effective than a Random Search. Yet, this is rarely the case, and
recent literature has shown that when the weights values are unknown, using random
search might lead to better fitting models (Bergstra & Bengio, 2012). Furthermore, ex-
ploring the sample space delimited by the Grid Search will exponentially increase with
the number of values specified within the Grid. Thus, using Grid Search might be only
convenient when the size of the Grid is rather limited and an intuition or experience
on the response of the model to the values given is available.

When having a small dataset, we can use Cross Validation in the train and validation
set to better exploit the data and aim for a more robust and generalizable model. The
Cross Validation technique consists in partitioning the train/validation dataset into k
splits; having a validation set corresponding to split Xy, and a train set of X, — kn.
The evaluation process is iteratively repeated by each of the K corresponding folds
having a record of what the performance of the model is in each of the iterations done.
The number of k-folds will be determined by the size of the dataset, being inversely
proportional to its size. That is, the smaller the data, the more folds should be present.
The number of k-folds, however, can also be determined by the computational power
demanded by the algorithm and time constraints of the tasks to be carried.



3.3 NEURAL NETWORKS

Cross Validation is often combined with Random or Grid Search to speed up the
process of model selection. If the data to be modeled is independent and identically
distributed (i.i.d.), the k-fold cross validation can be randomly combined and split. This
is not the case when modeling sequential data in which we must respect the order of
events in the dataset (in our case, for instance, the sequence of notes in the melody). In
such cases, the validation split must always follow the training split.

In our case of study, the mean squared error (MSE) is used as both a Loss function
(as part of the gradient descent) over which we can evaluate the performance of the
network with a set of hyperparameters values during the train/validation step, but
also a measure over the test set during the final evaluation of the model.

After Cross Validation, once the best fitting parameters are chosen, the models’ gen-
eralization must be evaluated in the held-out set (or test set). In order to be rigorous
with the evaluation of the final model, the test set should always be left out of the
model selection process. This is because the hyperparameters will be tuned according
to the train and validation sets. Therefore, the performance of the model would be
biased and give a less trustable scientific output.

To test the hypothesis based on the results of the models on the test’ set (for instance,
to evaluate whether a combination of features may lead to better predictions than
another combination of features), we can use, for instance, a t-test or Wilcoxon test
(Wilcoxon, 1946), which tests the null hypothesis that two paired samples come from
the same distribution. The samples to be compared are the MSE errors obtained for
each of the experiments predictions. Being non-parametric, the Wilcoxon test makes
little assumptions about the probability distributions and it does not assume normality
in the distribution of the population.

The resulting curve obtained from subtracting each of the data points in Y from Y
is known as the residual error. What is contained within the obtained residual (either
idiosyncratic properties of a signal or just random noise) will depend very much on the
choices of the model and, fundamentally, on the properties of the data being modeled.

3.3 NEURAL NETWORKS

Neural networks (also referred to as connectionist models) are a type of computational
models originally inspired by some of the biological principles of the neural behavior
in the brain. Conceptually, a neural network is represented by a set of artificial neurons
or nodes (or units) connected by a set of directed edges, which represent the biological
synapses between the neurons (see Figure 3.5).

One of the first approaches to model a Neural Network was proposed by McCulloch
and Pitts (1943). In their model, a neuron may receive several inputs from an external
source X, or from other neurons. Each input x; is multiplied by a given weight wy; on
the correspondent edge and connected to a sum junction which adds all the weighted
values. The sum junction may also receive an input of a bias component. Finally, the
resulting value from the summing junction is "filtered" by an activation function ¢
that serves the purpose of limiting the amplitude of the output of the neuron. In the
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original model from McCulloch and Pitts (1943), the activation function consisted of
a step function, but in later developments of Neural Networks architectures, other
activation functions are used. In fact, having a Neural Network with a single node and
a linear activation function is equivalent to the linear regression explained in Section
3.2.1.

The single layer perceptron neural network can be represented therefore as:

n
z= E WiXq
i=0

Y(x) = ¢(z)

(10)

The most common outer activation functions (applied in the output node(s)) are:

* Softmax exponential function, which is often used for multiclass classification
(with k nodes in the output layer)

. ek
_ 11
Yk Z E/:] e (1{( ( )
e Sigmoid function, which is used for multilabel classification
(], — # (12)
Lo e
e Identity (or linear) function, which is used for regression
=k (13)

In such a single layer perceptron model, depending on the task, there may be several
neurons at the input layer connected to one or more neurons in the output layer. The
way in which the perceptrons are connected together is commonly referred to as the
neural architecture. Choosing for the right architecture within the neural network will
be decisive in its behavior and, consequently, in the results obtained for the given task.

3.3.1 Feed-forward neural network

Feed-forward networks are a type of neural network architecture in which the per-
ceptrons are arranged in layers. A feed-forward network including one or more hidden
layers is known as a multi-layer perceptron (MLP). In an MLP architecture, all neurons
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Figure (3.5) Model of a neuron according to McCulloch and Pitts (1943)

on each layer are connected to all neurons of other layers, but not to any others of the
same layer. Therefore, the information from the incoming input is fed forward across
the defined layers towards the output layer.

In an MLP, each neuron in the hidden layer has as well an activation function. The
"inner" activation function is often different from the one in the output layer in both the
role within the topology and the behavior. The most common inner activation functions
found in the literature are the sigmoid function, the hyperbolic tangent (tanh) function
d(z) = 22172:2 and the rectified linear unit (Relu) function f(x) = max(0, x).

In feed-forward neural networks, the weights update is done with the backpropaga-
tion algorithm (Werbos, 1990). This algorithm, calculates the partial derivative of the
output error with respect to all weights in a backwards fashion. That is, starting from
the error obtained at the output, it updates (differentiates) iteratively the weights going
backwards through each of the layers towards the first layer or input.

In the backpropagation algorithm, the gradient descent calculation is done with the
chain rule, which allows for decomposing a derivative as a product of its individual
functional parts and, like that, calculate the derivative of the Loss function with respect
to each weight (parameter) within the network. Thus, keeping a record of the differ-
ences within every connection during the forward pass, the algorithm calculates the
gradient by means of the chain rule based on the error propagated backwards.

In order to infer the best weight values within the neural network, the process of
feed-forward computation and backward propagation has to be repeated several times.
Each cycle of completing both steps is referred to as an epoch. The number of epochs
needed to find convergence in the neural network depends on the data characteristics
and the neural networks architecture.

Some of the hyperparameters that are often tuned before or during the cross-validation
to avoid overfitting are:

e Number of hidden units

The number of units (or neurons) included in the hidden layer can also have an
impact on the generalization capabilities. Therefore, trying different sizes in the
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Figure (3.6) Multi-layer perceptron

hidden-layer during the hyperparameter tuning is a relevant step. Normally, the
number of hidden units should be in between the number of units at the input
and output layers, or the mean value between both.

® Regularization

By regularization, we aim to prevent overfitting by reducing the complexity of
the neural network. As shown in Figure 3.2, if the magnitude of the weights is
too large, it tends to cause overfitting. Common choices for regularization are L2
regularization and Dropout.

- L2

L2 penalizes large weight values by summing the square values of all weights
and multiplying them by a (hyperparameter) scaling factor, that controls for
their magnitude. This is effectively equivalent to parameters weight decay
during learning/optimization. It is defined as:

R(f) = %?\ Z w? (14)

L2 then it is simply added to the Loss function:

1
MSEiest = " Z(gtest - I;Jtest)2 + R(f) (15)

t
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— Dropout

Dropout consists on specifying a percentage of units per layer to be ran-
domly deactivated during training. These units and their connections are,
therefore, dropped out randomly on each of the epochs during training,
which prevents the network of depending too much on specific networks
and in order to have a more balanced representation within the layers. In
the neural networks herewith presented, all units are used at test time when
applying Dropout.

¢ Learning rate

The learning rate (n) hyperparameter, used in the gradient descent (equations 8
and 9) is used to define the amount of learning on each epoch during the training
phase. The value used for the learning rate usually is very small.

¢ Momentum

Momentum is a method used to accelerate SGD in the right direction. The mo-
mentum hyperparameter specifies how different the values of the weights should
be on each epoch in order to find convergence. The role of the momentum is to
damp the oscillations of the gradient descent progressing slowly to the minimum.

Vi = YVio1 V] (Wi, Yi)
W =W —Vt

(16)

The momentum term (y) (Qian, 1999) updates the vector v; in the gradient des-
cent by a fraction of the previous time step in the gradient descent (Ruder, 2016).

Momentum is applied with the aim of preventing the gradient descent of get-
ting stuck at local minima, and letting the gradient being more effectively ad-
apted through each of the epoch iterations. That is, with the momentum, the
gradient descent is extended to account for the time steps. It complements the
zig-zagging descend (towards the minima) approach of the SGD by affecting its
speed and consequently also the positioning of the descending particle during
the zig-zagging.

Other variants of the momentum are the Nesterov momentum, which pre-calculates
and evaluates the momentum by approximating the position of the next step in
the descent, and the first and second vector moments of the ADAM gradient
descent (Kingma & Ba, 2015).

3.4 MACHINE LEARNING AS A PERFORMANCE MODELING STRATEGY

The performance modeling strategies defined by Goebl et al. (2005) (see Section 3.1)
differentiate between the analysis by measurement strategy and the machine learning



42

AN INTRODUCTION TO COMPUTATIONAL MODELING OF PERFORMANCE EXPRESSIVENESS

strategy. That is, on whether the research approach departs from a hypothesis in the
performance rules, or whether the performance rules are discovered by the machine
learning algorithm. The methodology and machine learning algorithm used to discover
such rules may, however, challenge such demarcation.

Goebl (2001) cites the study of Widmer (2002) in order to illustrate the "machine
learning" approach. In his paper, Widmer (2002) proposes a supervised classification
algorithm to categorize a number of performance rules predefined by a combination
of both a music theory model of melody (Narmour, 1992) and some categorized ab-
stractions in the use of timing, dynamics and articulation. Such abstractions, however,
contain several arbitrary assumptions in the categorizations. For instance, according to
this categorization, articulation will be considered staccatto if the ratio between notated
duration and performed duration is smaller than 0.8 and portato if the same ratio is
longer than 1.0. This rule based discretization can also lead to the following assump-
tions: "When performers play with a ratio longer than 1.0 it is because they intend to
play portato, or,”"When performers play with a ratio longer than 1.0, listeners perceive
it as portato’.

We should be aware that, in this view, the rules discovered could also be an arti-
fact of their categorization rules, rather than of the performer’s playing, or how this
is perceived by the listener. If that would be the case, the rule based discretization
of such continuous variable may therefore not correspond with the reality (and inten-
tion) of the performance (or its appreciation), and rather be contextual. For example,
what is considered staccato in a performers style by such rule, could as well be a tech-
nical artifact resulting from the performers adapting their playing to aspects such as
the tessiture (in relation to loudness), the characteristics of the instrument used for
its performance or the acoustics of the room in which it is recorded (when related to
articulation). Hence, while Widmer’s study is a very relevant contribution in the field
of performance modeling, his rule based features approach is not completely agnostic,
and the interpretation might be limited (or even biased) by the categorizations bound-
aries. That is, the categorization process already includes several pre-defined assump-
tions on what can be "discovered" by the algorithm. On the other hand, this raises the
question of whether we may expect an algorithm to find interpretable "norms" when
the encoding input and output of the algorithm may not be predefined to us. In many
unsupervised algorithms, this is indeed one of the main challenges we often have to
deal with.

3.4.1 Previous uses of machine learning to model performers idiosyncrasy

A number of studies in the topic of expressive performance idiosyncrasy have used
a combination of the analysis by measurement strategy with machine learning meth-
ods. Repp (1992) used principal component analysis to differentiate common phrasing
structural dependencies from "eccentric" ones in a set of 28 performances played by 24
pianists of Schumann’s Tridumerei. Madsen and Widmer (2006) proposed using a self
organizing map, which is a type of unsupervised neural network algorithm with an
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alternative method to backpropagation (namely, competitive training of neighbors) to
calculate "performance archetypes" based on string matching. Stamatatos and Widmer
(2005) introduced an ensemble learning approach to automatically classify performers
based on their use of timing and loudness. Grindlay and Helmbold (2006) used a (se-
quential) Hierarchical Hidden Markov Model to predict performers individuality and
synthesize expressive performances after training on a professional pianist.

Within the automatic classification of performers, Ramirez and colleagues also ap-
plied different machine learning algorithms to classify saxophone performers playing
jazz standards (Ramirez, Maestre & Serra, 2010) and violin performers playing classical
music (Ramirez, Perez, Kersten & Rizo, 2010). Finally, Gingras, Asselin and McAdams
(2013) used Linear Mixed Models to disentangle piece and performer dependencies in
the use of timing by twelve performers playing three different harpsichord pieces.

3.4.2  Neural networks in expressive performance modeling

The use of neural networks for expressive performance modeling or analysis is not
abundant. Bresin (1998) trained a multi-layer perceptron on human performances of
Schumann’s Triumerei. In his study, it was shown how this model could generate ex-
pressive performances by learning some of the rules included within the KTH system
(Friberg et al., 2009). Jacobs and Bullock (1998), used a neural-network model to gen-
erate legato articulation when playing scales and arpeggios. Serra et al. (2013) used,
among several other methods, a neural network to test the hypothesis of onset timing
deviations as a feature to automatically classify music pieces.

Concerning rhythm categorization and timing discretization of expressive perform-
ances, other studies that used connectionist models include: Large (1996) and Eck and
Schmidhuber (2002), using neural oscillators to infer a metrical representation, and
Desain and Honing (1992), in which recurrent attractor networks are implemented
to quantize expressive timing to a score representation and as a perceptual model of
rhythm categorization.

With the advances of deep learning in the last decade, the use of neural networks has
been extended to performance modeling. In addition to the study included in Chapter
5 of this dissertation, other recent applications of deep learning to expressive perform-
ance modeling have been developed at the same time I carried this research. Malik
and Ek (2017) propose using Long Short Term Memory (LSTM) networks (introduced
in Chapter 5 of this dissertation) to generate performances focusing on the prediction
of dynamics and tempo on different music genres. Oore, Simon, Dieleman and Eck
(2017) use LSTMs to generate improvised (the score is also composed by the model)
expressive performances based on timing and dynamics. To the best of my knowledge,
no current research has been done including LSTMs and idiosyncratic expressive per-
formance modeling, which is the topic of research in this dissertation.

The research in performance modeling suggests that the use of machine learning
methods combined with analysis by measuring is a practical approach to study the
elements that define idiosyncrasy in a performers style. Using the right computational
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models to find the constraints and regularities in the production and perception of such
expressive characteristic gestures, might help to further understand expressiveness in
music as an essential element in the communication process. In the following chapters,
I will present research done using machine learning models to extract performance
patterns in the collective and individual use of tempo and loudness.



MODELING TEMPO AND LOUDNESS EXPRESSIVENESS AT
SCORE MARKINGS

4.1 INTRODUCTION

In common music notation, in addition to the score-notated pitches and rhythms, com-
posers may use score markings to emphasize expressive changes or to reinforce the
expression of a music passage or section (Grachten & Widmer, 2012). Thus, they are an
extra resource to indicate to performers a composers’ idea on how the score should be
performed and how such markings may relate to the piece structure.

Within the western music repertoire from the Baroque period until the first half of the
XXth century, composers have been progressively including more expressive markings
and instructions for performers. The development of expressive markings notation has
been parallel to that of the expressive possibilities of the music instruments as well as
to the popularization of the musical score as a written medium (Chanan, 1994). In this
regard, the inclusion of expressive markings in the score suggests an aim to narrow the
gap in the communication process between composer and performer as described by
Kendall and Carterette (1990). Elucidating how the expressive constraints defined by
a score may affect the performance of that particular piece is necessary to understand
both the idiosyncratic expressiveness of performers, as well as the collective stylistic
approaches to the interpretation of music.

Most expressive markings (in western music) are intended to guide the performer
during their practice and execution. These markings suggest how to make use of tempo,
timing, dynamics or, even pitch and timbre. In the performance of western music, it is
common to find styles in which characteristic expressive gestures result from the com-
bination of different expressive dimensions. An example of these expressive gestures
can be found in the use of ritardando on structural cadences, in which timing and loud-
ness gestures are often varied in a correlated fashion. For instance, the notes belonging
to the Vth and Ist chords are slightly slowed down while the notes belonging to the Vth
chord are stressed in loudness. This is often done in the performance of Classical and
Romantic western art music to resolve the tension between the dominant (Vth) and the
tonic (Ist). The romantic repertoire is commonly characterized by the performers’ use
of tempo rubato and large dynamic contrasts at structural points of the compositions
(Benetti Jr., 2013).

In anticipation of the dataset to be described in Section 4.2, in Figures 4.1 and 4.2
I illustrate the possible relation between score markings and expressive performances.
In particular, these figures ( 4.1 and 4.2) show the average obtained in tempo and loud-
ness between two different Chopin Mazurkas played by 11 pianists. In those Figures,
one can see that the relation between both expressive curves suggests being correlated
to the performance structure as defined by either tempo or dynamic markings. The
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figures also suggest that, in some pieces, tempo and dynamics interact at structural
points of the compositions. These observations suggest that modeling the combination
of high level expressive features (such as loudness and tempo at score markings) may
lead to more complete performance models, as well as bring insights into the idiosyn-
cratic approaches of performers. Furthermore, studying how the structure of a score is
related to the interaction (and possible dependencies) between expressive dimensions,
may add to explaining the mechanisms behind the interpretation, perception and cat-
egorization of music (Palmer, 1996).

In order to investigate the interactions between tempo and loudness, Pampalk, Goebl
and Widmer (2003) developed a visualization tool that allows combining loudness
and tempo performance trajectories into a two-dimensional representation. The same
visualization tool was later used aiming to identify individual performance signatures
(Widmer, 2003) by modeling performer-specific patterns (Madsen & Widmer, 2006) in
combination with string matching representations. Serving the same purpose, other
methods have been proposed with the aim of discovering idiosyncratic rules (Widmer,
2003). Yet, due to the complexity of the problem, the datasets available and the sensit-
ivity of the algorithms (Widmer & Tobudic, 2003), it remains a challenge to elucidate
what aspects may constrain the interaction between the different expressive features.

Few studies can be found concerning the possible dependencies between score mark-
ings and performance expressiveness. In an illustration of the difficulty of the task,
Todd argues that “often there is no direct relationship between dynamic markings in the score
and actual performance [...] the expression marks in a score are used only as a rough guide by
performers”(Todd, 1992). In line with these observations, the use performers make of
expressiveness at score markings has generally been considered as arbitrary or even
within an improvisatory context (Cobussen, Frisk & Weijland, 2010). However, follow-
ing the definition of expressiveness of Chapter 2, by which expression is understood
as the deviation from the norm defined by the performer and/or perceived by the
listener, we may expect that certain score annotations and markings may contribute
to establishing such norms. That is, by allowing performers to emphasize their inten-
tional expressive gestures at structural points (Palmer, 1989) in which the markings
are already notated, and communicate their idiosyncratic approach of those structural
points to listeners. Score markings, therefore, serve as a constraint over which the idio-
syncratic qualities of performers may manifest more clearly. Accordingly, it is expected
that score markings will have an effect on the performers’ choices along the interpreta-
tion, and therefore, patterns of expressive gestures are to be found within them.

The complexity of modeling these expressive gestures, together with a lack of pub-
licly available (and large enough) datasets, may explain the scarcity of research of per-
formance analysis and modeling towards score markings. Grachten and Widmer (2012)
have shown how the combination of dynamic markings with expressive features using
linear basis models (e.g., multiple linear regression) may improve the modeling of ex-
pressive loudness rendering on a note-to-note level. Kosta, Bandtlow and Chew (2014)
found that the use of expressive dynamics across a group of performers is not linear
or rule-based. As shown by Kosta et al. (2014), performers have different approaches
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to the represented dynamic markings and there is not an ordinal relation between the
representation of expressive dynamic markings and the use they make of loudness;
a piano might be louder than a mezzo-forte depending on the approach the performer
has to a particular piece. Thus, performers make use of the local and global context of
the marking, taking into account the structure of the piece and how it relates to the
thematic context. While these studies have focused on finding and learning relations
between loudness and dynamic markings they do not consider possible interactions
between loudness and tempo at either dynamic or tempo markings.

In the novel approach herewith presented, I study the interactions between perform-
ance variables and score-based features while distinguishing among those constraints
(possibly) derived from the score and shared among a group of performers, and those
constraints idiosyncratic to a performer. By using a machine learning approach I ana-
lyse whether there are interactions between timing and loudness at score markings and
whether these are better modeled by the idiosyncratic style of each performer playing
several pieces or by the shared stylistic (expressive) constraints embedded in a piece
when played by different performers.

4.1.1  Hypotheses and Experiments

Based on the arguments and observations presented, this study departs from two hy-
potheses:

e first, I hypothesize that the expressive choices of performers in loudness and
tempo may be constrained by the markings and their structural relation of these
to the score. It is expected that the performers’ expressiveness on loudness and
tempo will be constrained by the score. Therefore, the expressiveness of per-
formers in tempo and loudness could be better predicted by our models when
knowing which tempo or dynamic markings are written in a particular score.

¢ second, I hypothesize that the performers” use of expressive tempo and loudness
at both tempo and dynamic markings will be better predicted when combining
them (as complementary features) than when considering them as isolated fea-
tures. For instance, tempo is expected to be better predicted at tempo markings
when our models contain information about both tempo and loudness from the
two preceding bars to the one in which the marking is placed. I therefore exam-
ine how tempo may contribute to the prediction of loudness at specific dynamic
score markings (e.g. piano, forte, etc), and how loudness may contribute to the
prediction of tempo at specific tempo score markings, (e.g., lento, moderato, etc).

In the interest of investigating and testing such hypotheses by means of computa-
tional analysis, two sets of experiments are presented:

e In the first set of experiments, the goal is to model the prediction of tempo or
loudness per Mazurka for each pianist, based on how all other pianists (10) have
performed that particular Mazurka.
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¢ In the second set of experiments, the models focus on whether tempo or loudness
can be better predicted per Mazurka for each pianist, based on how the same
pianist played all other Mazurkas (25) of the dataset.

With these experiments, the aim is to elucidate whether the interactions between
score markings, tempo and loudness are better predicted by learning shared stylistic
approaches or by the performers’ idiosyncratic approaches to the pieces in this data-
set. In the next section, I will present the material and methods chosen to test the
hypotheses presented.

4.2 MATERIAL AND METHODS
4.2.1  Dataset

For the purpose of this study, I examined piano recordings annotations of twenty six
Mazurka pieces by Frédéric Chopin (1810-1849) played by eleven pianists. The Mazurka
is a general term used to refer to a series of Polish folk dances in triple meter. Maria
Szymanowska (1789-1831) was probably one of the first composers including Polish
popular dances into the art music tradition (Golos, 1960). Chopin, however, is probably
the best known western music composer of Mazurkas, due to his extensive repertoire.
In particular, Chopin adapted to the piano several of the popular Polish songs and
rhythms, composing at least, 59 Mazurkas between 1825 and 1849.

Originally, the rhythm in a Mazurka contains a very regular pattern such as the
one illustrated in Figure 4.3 over which different choreographies and melodies can
be semi-improvised and danced. Similarly to a waltz, a Mazurka (especially in the
accompaniment) is typically accentuated as a strong-weak-weak stress pattern.

> >
E *

Figure (4.3) Mazurka rhythm

The prototypical Chopin Mazurka is structured as follows: Introduction, three main
parts with corresponding subsidiary sections, and coda (Rink, Spiro & Gold, 2011). The
three main parts may be found in different ways depending on the Opus number. In a
structural analysis shown by Rink et al. (2011) from the Op. 24-2 we can find:

- intro

- first part, with sections: A - B - A’
- codetta

- second part, with sections: C - D
- third part, with section: A"

- coda
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Having a common structure, the Chopin Mazurkas repertoire is a convenient frame
to study whether the structure effectively constraints the performers’ idiosyncratic ex-
pressiveness.

The dataset used in this study is based on the one presented in Kosta, Bandtlow and
Chew (2018), which is an extension of the CHARM Project’s Mazurka database *. This
dataset is, to the best of my knowledge, the only one currently available containing
such a variety of performances played by so many performers. With the aim of max-
imizing the amount of performers playing the same pieces, 11 pianists playing (the
same) 26 Mazurkas were selected from this dataset. By having such a large dataset of
Mazurka recordings allows to investigate whether interactions between features may
exist in the score markings.

The Mazurka pieces included in the dataset are shown in table 4.1. The pianists and
date of the recordings are shown in table 4.2.

Mazurka Opus 06-1 06-3 07-1 07-2 17-2 17-3 24-1 24-2 24-4
Dynamic Markings 18 22 13 13 6 9 4 12 33
Tempo Markings 6 2 5 11 4 10 2 4 12
ID 1 2 3 4 5 6 7 8 9
Mazurka Opus 30-1 30-2 33-1 33-2 41-2 41-4 50-2 56-1 56-2

Dynamic Markings 8 14 5 16 5 7 14 14 7
Tempo Markings 3 2 3 2 2 3 3 4 3
ID 10 11 12 13 14 15 16 17 18

Mazurka Opus 56-3 59-2 59-3 63-3 67-1 674 682 68-3 Total
Dynamic Markings 16 8 11 4 18 11 21 8 317
Tempo Markings 3 2 4 2 2 10 5 2 109
ID 19 20 21 22 23 24 25 26

Table (4.1) Mazurka Opus used for this study and respective number of dynamic and tempo
markings collected from each piece.

1 www.Mazurka.org.uk
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Pianist Barbosa Czerny-Stefanska Chiu Smith Ashkenazy Rubinstein
Year 1983 1989 1999 1975 1981 1966

Pianist Fliere Cortot Shebanova Mohovich Kushner
Year 1977 1951 2002 1999 1989

Table (4.2) Pianist’'s name and year of the recording

A possible issue with the experiments presented is the impossibility to control whether
the performers of this dataset shared similar score editions of the pieces being recor-
ded. This indeed could have a great effect on the results obtained, as it is known that
in the different editions available of the Chopin Mazurkas, score publishers have often
deliberately included additional score markings (based on the editors musicological
knowledge and their interpretation of the pieces). Nonetheless, the research presented
in this chapter departs from the assumption that the score markings to be studied here
are linked to relevant structural points of the score intended by the composers, inter-
preted by performers and shared across editions. Therefore, despite some exceptions,
it is reasonable to assume that the majority of the score markings presented in the
urtext (original) edition were included in the different score editions used during the
recordings.

Having the pianists and pieces of the dataset defined, the following score-based and
performance-based features were collected:

4.2.2  Score-based features

The score markings were extracted from the Mazurkas and are based on the edition by
Paderewski, Bronarski and Turczynski (2011) as presented in Kosta et al. (2018). The
following features, based on those proposed in Kosta et al. (2014), were obtained from
the scores listed in Table 4.1 and used as features for the current study:

1. Marking position at which either loudness or tempo is predicted (e.g. f)

2. Previous tempo or loudness (depending on the study) marking position (e.g. mf)
3. Next tempo or loudness (depending on the study) marking position (e.g. pp)

4. Possible additional marking at which either loudness or tempo is predicted

5. Distance in beats to previous marking of the same expressive feature (either
tempo or loudness)

6. Distance in beats to next marking of the same expressive feature (either tempo or
loudness)
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The score-based features 1-4 are represented by markings and, therefore, categorical,
for which they are transformed into a binary representation by using one-hot encoding.

Table 4.1 includes a total of 317 dynamic markings and 109 tempo markings. These
are:

¢ dynamic markings:

pp which occurs 33 times, p 140, mf 18, f 97, and ff 29 times

e tempo markings

allegretto which occurs 11 times, moderato 16, lento 10, fermata 16, stretto
21, vivace 15, and allegro 20 times.

4.2.3 Performance-based features

Based on the hypothesis presented in 4.1.1, expressive tempo and loudness annotations
were collected for each performance and piece of the dataset. As illustrated in Figure
4.3, the triple meter characteristic for the Mazurka rhythm is often spread over two
score bars. In the scope of this study, I am interested in modeling how tempo and
loudness change at the bar in which the score marking is placed in the context of the
performance. The aim is to capture the context defined by the two previous bars to the
marking and the possible effect of the marking within the expressive discourse of the
performances. For instance, whether a certain gesture in the use of tempo and loud-
ness for a specific marking can be better predicted when including loudness or tempo
from the two previous bars. With such purpose, the corresponding values in tempo
and loudness from two bars before the score marking are included as features.
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Figure (4.4) Score fragment from the first three bars of Chopin’s Mazurka Op. 7 No. 1 in B
Major. The beat positions over which loudness or tempo values were extracted
are indicated with a vertical line. The orange lines indicate the values (durations
or sones) from the previous two bars to the marking. The blue line represents the
beat where the duration or sone at expressive marking (in this case ff) is found.

The following performance-related features were obtained from the recordings listed
in table 4.2:
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1. Inter-Beat Interval (IBI)

The annotations of the Inter-Beat Intervals from the audio recordings were ob-
tained from the dataset presented in Kosta et al. (2018), which describes the onset
annotation process by means of the following semi-automatic approach: For each
Mazurka piece, indexed by its Opus-Number, one recording is detected as the
"reference" recording (in which the onsets are manually inspected and corrected).
The beat positions in the rest of the recordings of the same piece were automatic-
ally annotated using a pairwise alignment technique in relation to such reference
(Kosta et al., 2018).

The onset detection algorithm is the one presented in Ewert, Miiller and Grosche
(2009), which uses Dynamic Time Warping (DTW) and incorporates chroma fea-
tures that facilitate positioning the onsets per chroma (Kosta et al., 2018). The
heuristic proposed by Kosta optimizes the choice of the recording used as refer-
ence by estimating the minimum match distance between the candidates, com-
puting their Euclidean distance in pairwise manner and, like this, reducing the
alignment error. The duration (measured in seconds) between each annotated
beat (IBI) is then calculated. The beats of each performance are normalized by
dividing by the largest loudness value of each performance sequence.

The IBI value to be predicted (corresponding to each bar in which markings are
placed) is the average of three consecutive beats at the bar in which the marking
is placed. The tempo values of the score-beat positions b constitute a sequence
Yn, € N, where n is the number of score beats in one piece. The tempo mean t
at bar y, is calculated then as:

1 i=b+2
tyn =3 Z di/ (17)

where d is the inter-beat interval in seconds.

Figures 4.5 and 4.6 show boxplots of the inter beat intervals to be predicted during
the experiments for all pieces and performers. Figure 4.5 shows the tempo value
ranges for each pianist playing all Mazurkas. As can be observed, Mazurkas 10
(Op. 30-1), 12 (Op. 33-1) and 15 (Op. 41-4) are the ones with largest variance of
IBIs, while Mazurkas no. 21 (op.59-3) and 26 (op.68-3) showing limited variance.
When inspecting the individual pianists, the variance in the IBls is slightly nar-
rower in the case of Fliere and Shebanova than in the case of the rest of pianists
in the dataset.

. Beat loudness

The raw loudness values per beat were also obtained from the dataset presented
in Kosta et al. (2018). The loudness corresponding to each beat was extracted
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using the MA Toolbox (Pampalk, 2004) and is represented in sones (Zwicker
& Fastl, 1999). A sone is a linear scale commonly used in psychoacoustics to
measure the perceived loudness. In these experiments, the loudness values of
each performance are normalized by dividing by the largest loudness value of
each sequence.

As with tempo, the loudness values to be predicted and corresponding to each
marking are the average of the values found at the beat of the marking and the
two consecutive beats. The values of loudness corresponding to the two previous
bars represent the loudness at each beat. Considering the dynamic values of the
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score-beat positions that constitute a sequence yn,n € IN (where n is the number
of score beats in one piece), the loudness mean 1 at bar y, is calculated as:

i=b+2

1
ly, = 3 g Si, (18)

where s is loudness expressed in sones.

The boxplots presented in Figures 4.7 and 4.8 show the ranges in loudness val-
ues to be predicted corresponding to the dynamic markings considered. Figure
4.7 shows the loudness ranges for each pianist playing all Mazurkas. Figure 4.8
shows the loudness ranges for all pieces played by all performers. As we can ob-
serve, the performances of Mazurkas 1 (Op. 06-1), 4 (Op. 07-2), 6 (Op. 17-3) and
16 (Op. 50-2) contain the largest range of values to be predicted. Instead Mazur-
kas 11 (Op. 30-2) and 14 (Op. 41-2) are performed with little variability among all

performers.
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Table 4.3 lists the different versions of the features set used in all the experiments.
Since the prediction task consists on predicting either tempo or loudness at the score
markings, the "baseline” set (B) contains only tempo or loudness (depending on the
experiment) at markings. The L set contains tempo or loudness values (depending on
the experiment) at the markings, as well as the beat loudness values from two bars
preceding the markings. The T set contains the tempo or loudness values (depending
on the experiment) at the markings, as well as the beat tempo (IBI) values from the two
bars preceding the markings.
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Abbrev. Features used

B Baseline (symbolic score-based features)

L Baseline + previous two bars Inter-Beat Loudness
T Baseline + previous two bars Inter-Beat Intervals
A B+ L+ T

Table (4.3) Different sets of features used for the experiments

4.2.4 Models

The hypothesis aforementioned has been tested by using three alternative machine
learning regression models to support and contrast the possible interpretations to be
made upon the results obtained. The algorithms chosen were multi-layer perceptron
(MLP), random forests (RF) and k-nearest neighbors (k-NN).

4.2.4.1  k-Nearest Neighbors

k-Nearest Neighbors is a non-parametric algorithm that can be used for classification
or regression. In this dissertation it will be used for regression. Having an input X
in the feature space, the label k assigned to a sample X,, is estimated based on the
mean of the labels assigned to the nearest neighbors samples. First, it calculates the
Euclidean distance between each of the samples labeled. Secondly, it orders the samples
in an increasing order. Thirdly, it uses a manually assigned integer number for the k-
nearest neighbors or a heuristic to find an optimal amount of k nearest neighbors via
cross validation. Finally, it calculates the average of the inverse distance weight among
the k nearest neighbors. Having a large number for k is often associated with better
capturing the possible outliers in the levels of values to regress over.



4.2 MATERIAL AND METHODS

4.2.4.2 Random Forests (RF)

Random forests are an ensemble learning method obtained from the resulting mean
of several individual decision trees used during the training phase. A decision tree is
built by selecting at each node the most relevant attribute. The selection of the most
relevant attribute is based on the information gain associated with each node of the
tree (and corresponding set of instances).

In a random forest, having a great number of different decision trees for the training
set, the ensemble learning consists on randomly subsetting at the node level the para-
meters of each of the decision trees and obtaining the ones that give a better split of
the data according to the objective function. This way, the random forest obtains the
best possible parameters among all decision trees to represent the best approximation
to the training/validation set.

4.2.4.3 Multi Layer Perceptron (MLP)

For a detailed description of the multi-layer perceptron the reader is referred to Sec-
tion 3.3.1 of this dissertation. In Chapter 4, the activation function chosen in the hidden
layer is a rectified linear unit (ReLu) function, f(x) = max(0,x). In recent years, ReLu
functions have become increasingly popular when working with deep learning archi-
tectures containing several stacked layers, as in these architectures, sigmoidal func-
tions have shown to make the training harder. Furthermore, ReLu functions have been
shown to speed up the convergence of the gradient descent when compared to sig-
moid or tanh functions (Krizhevsky, Sutskever & Hinton, 2012), as well as to improve
the results of some neural network acoustic models (Maas, Hannun & Ng, 2013).

4.2.5 Model selection and evaluation

To overcome the possible limitations of the dataset size and prevent compromising
the generalization power of the models obtained, I used jackknifing (Efron & Gong,
1983), which is applied by splitting each Mazurka in two equal sections. As such, each
Mazurka in the dataset is split between training set on one half of the Mazurka, and
test and validation sets on the other half. Thus, the test and validation each contain 1/4
of each Mazurka. The hyperparameters for the methods proposed are selected based
on the train and validation sets by using grid search with cross validation. Grid search
works by doing an exhaustive search over the specified hyperparameter values for an
estimator considering every possible combination of features. Finally, the test set (25 %
of the markings for each Mazurka) is reserved for the evaluation of the models. Results
are averaged over the two iterations per Mazurka.
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MLP RF
hidden layer sizes [50, 100, 200] n estimators [5,10,15]
max iterations [200, 400] max features [1,3,10,20]
beta_1 [0.5,0.9] min samples leaf [1,3,10]
min samples split [1,3,10]

Table (4.4) Hyperparameters grid used for Multi Layer Perceptron (MLP) and Random Forests
(RF)

The models’ predictions are evaluated by calculating the mean squared error (MSE)
between the true values (those actually played during the performances) and the val-
ues predicted by the models. MSE is often preferred in the machine learning literature
when evaluating regression, as the mathematical calculations of the gradient are sim-
pler than with, for instance, mean average error (MAE). As explained in Chapter 2,
using MSE, large errors have a greater influence in the results than smaller errors.

Finally, in this study, model comparison is done based on a Wilcoxon test (Wilcoxon,
1946), which tests the null hypothesis that two paired samples come from the same
distribution. Unlike other (parametric) tests, such as the t-test, the Wilcoxon test (being
non-parametric), does not assume normality in the distribution of the populations.

4.3 EXPERIMENTS AND RESULTS

In this Section, I describe the models obtained to study the effect of score markings
on tempo and loudness based on a group of performers playing the same piece (Sec-
tion 4.3.1) or a performer’s individual style (Section 4.3.2). It must be noted that the
error measure used to estimate the prediction power of each model is based on data
normalized between o and 1.

4.3.1  Experiment 1. Score-based models: Predictions of tempo and loudness at score markings

In this Experiment, I examine the possible interactions between tempo and loudness (at
tempo and dynamic markings) shared across performers playing the same piece. For
this purpose, the models predict tempo or loudness per pianist and Mazurka having
been trained on all other pianists (10) playing the same Mazurka. The aim of this
experiment is studying whether there are shared approaches across pianists as a result,
possibly, of score-based constraints. In this case the score constraints are defined by the
score markings.

4.3.1.1  Score-based models: tempo prediction at tempo markings

The results shown in Tables 4.5 and 4.6 indicate that the prediction of tempo at tempo
markings (B) are improved in all models when including tempo values from the two



4.3 EXPERIMENTS AND RESULTS

bars prior to the markings (T). In the best performing model (MLP), the Wilcoxon test
indicates that the difference between the (B) and (A) models is significant (p = 0.0153).

We can also observe that tempo is better predicted (but not significantly) when com-
bining loudness and tempo with baseline features (A) than in the (T) model, which
only includes tempo values from the two preceding bars. In both the RF and k-NN
models we observe that the predictions of tempo are worse when including loudness
features from the previous two bars to the marking.

Models MLP RF K-NN
B : Baseline (score only features) 0.0242 0.0196  0.0230

L : B + previous two bars Inter-Beat Loudness 0.0217 0.0235 0.0223
T : B + previous two bars Inter-Beat Intervals  0.0178 0.0188 0.0179
A:B+L+T 0.0175 0.0198 0.0191

Mean Models 0.0203 0.0204 0.0206

Table (4.5) Average MSE for the prediction of tempo per score-based model using different
sets of features

Bvs.L Bvs. T Bvs.A Lvs. T Lvs.A Tvs A

Wilcoxon 0.1513 0.0153 0.1068 0.0054 0.0063  0.7702

Table (4.6) Wilcoxon tests between models with different sets of features based on best per-
forming model avg predictions

4.3.1.2  Score-based models: loudness prediction at dynamic markings

The results shown in Table 4.7 indicate that loudness at dynamic markings is better
predicted in all models when including the loudness values corresponding to the two
previous bars to the marking (L), than when including only the baseline features (B).
The Wilcoxon test between (L) and (A) for the best performing model (MLP) indicates
that this improvement is significant (p=0.0176).

In the MLP model, the combination of tempo and loudness values (A) leads to mar-
ginally significant better predictions (p=0.049) than the model including only loudness
features (L). However, in the case of k-NN and RF there is no improvement when com-
bining both expressive features. A majority of the models show no improvements when
using all features (A) in contrast to either Loudness + baseline features (L). I therefore
conclude that, in these experiments, tempo is not contributing to the prediction of
loudness at dynamic markings.
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Models MLP RF K-NN

B : Baseline (score only features) 0.0179 0.0172 0.0194

L : B + previous two bars Inter-Beat Loudness 0.0126  0.0121  0.0127
T : B + previous two bars Inter-Beat Intervals 0.0179 0.0209 0.0174

A:B+L+T 0.0118 0.0135 0.0143

Mean models 0.0151 0.0159 0.0160

Table (4.7) Average MSE for the prediction of loudness per score-based model using different
sets of features

Bvs.L Bvs. T Bvs.A Lvs.T Lvs.A Tvs A

Wilcoxon 0.0176 0.0006 0.0619 0.0002 0.0490  0.0007

Table (4.8) Wilcoxon tests between models with different sets of features based on best per-
forming model average predictions

4.3.1.3 Experiment 1 results analysis

The results obtained in this experiment suggest that both tempo and loudness at score
markings are significantly better predicted when including contextual information
from the bars preceding the markings. However, I found no contribution of loudness
to the prediction of tempo at tempo markings, and no strong evidence of tempo con-
tributing to the prediction of loudness at dynamic markings.

The results shown in Tables 4.7 and 4.5 are averaged over all predictions per pi-
anist and Mazurka. When inspecting the predictions per piece, it was also observed
that some pieces show better interactions between tempo and loudness than others.
This suggests that the musical material contained within them constrains differently
the interactions between these two features. That is, the expressive phrasing across
performers (and their idiosyncrasy) when playing the same piece seems to be con-
strained differently depending on the pieces played due to the differences in the mu-
sical discourse. Furthermore, it is also likely that these constrains are due to aesthetic-
ally shared cultural approaches.

4.3.2  Experiment 2. Performer-based models: Predictions of tempo and loudness at score mark-
ings

In this experiment, we study the use of tempo and loudness at tempo and dynamic
markings per performer. The models obtained are trained to predict tempo or loudness
per piece and performer after having ‘learned” from the (same) performer’s individual
expressiveness when playing all other pieces of the dataset (25). In this way, the model
may capture idiosyncratic expressive gestures in the use of tempo and loudness per
performer. The aim of this experiment is not only to compare whether the predictions
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are better than in Experiment 1, but also to elucidate whether performers are consistent
and idiosyncratic in their expressive style across several pieces.

4.3.2.1 Performer-based models: Tempo prediction at tempo markings

From the results shown in Table 4.9, we can see that the predictions of tempo with the
baseline features (B) are better than when adding expressive tempo features from the
two bars preceding the marking (T). In the results of the Random Forests model, we can
observe that combining tempo, loudness and baseline features (A) contributes to im-
prove the prediction of tempo (slightly) and to improve the predictions of the baseline.
However, in Table 4.10 we can observe that this improvement is not significant.

Models MLP RF K-NN

B : Baseline (score only features) 0.0374 0.0242 0.0218

L : B + previous two bars Inter-Beat Loudness 0.0479 0.0228 0.0240
T : B + previous two bars Inter-Beat Intervals  0.0595 0.0266 0.0375
A:B+L+T 0.0719 0.0213 0.0282

Mean Models 0.0542 0.0238 0.0279

Table (4.9) Average MSE for the prediction of tempo per performer-based model using differ-
ent sets of features

Bvs.L Bvs. T Bvs.A Lvs. T Lvs.A Tvs. A
Wilcoxon 0.5937 0.3739 0.0076 0.1823 0.2132  0.1095

Table (4.10) Wilcoxon tests between models with different sets of features based on best per-
forming model average predictions

4.3.2.2  Performer-based models: loudness prediction at dynamic markings

Table 4.11 shows that loudness at dynamic markings is better predicted (in all mod-
els) when including the loudness values corresponding to the two previous bars to
the marking (L), than when including only the baseline features (B). The Wilcoxon test
between (L) and (A) for the best performing model (RF) indicates that this improve-
ment is significant (p=0.0044). The results also indicate that, in none of the models,
loudness is better predicted when combining tempo and loudness features (A) than
when using only loudness features (L).
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Models MLP RF K-NN
B : Baseline (score only features) 0.0448 0.0317 0.0530

L : B + previous two bars Inter-Beat Loudness 0.0417 0.0252 0.0362
T : B + previous two bars Inter-Beat Intervals  0.0616 0.0333 0.0495

A:B+L+T 0.0479 0.0270  0.0394

Mean Models 0.0490  0.0293  0.0445

Table (4.11) Average MSE for the prediction of loudness per performer-based model using
different sets of features

Bvs.L Bvs. T Bvs.A LvsT Lvs.A Tvs A

Wilcoxon 0.0044 0.2132 0.0076 0.0076 0.0329  0.0099

Table (4.12) Wilcoxon tests between models with different sets of features based on best per-
forming model average predictions

4.3.2.3 Experiment 2 results analysis

The results obtained in this experiment show that the predictions of loudness at dy-
namic markings are significantly better when adding loudness values from the two
preceding bars with respect to the baseline. In the case of tempo, the results show that
the predictions of tempo at tempo markings do not improve when including tempo
values from the two preceding bars in respect to the baseline features.

This might be due to how pianists adapt their use of expressiveness to the struc-
tural musical content of the piece being performed, which challenges the recognition
and learning of gestural idiosyncratic patterns in the use of loudness and tempo. Fur-
thermore, while tempo shows to interact with loudness in the predictions of tempo,
tempo does not show to interact with loudness when predicting loudness. This indic-
ates that pianists emphasize the structural changes indicated by tempo markings with
loudness. Yet, performers’ changes in loudness at dynamic markings do not seem to
be emphasized by changes in tempo.

These results illustrate the complexity of the task as the expressive strategies fol-
lowed by different performers might be different depending on the musical discourse.
This makes it challenging for the models to learn idiosyncratic patterns of expressive-
ness within the context defined.

4.4 DISCUSSION

In this chapter, I have presented an exploratory study on modeling possible interactions
between score markings, tempo and loudness at tempo and dynamic score markings.
For this purpose, I designed two experiments in which predictions of tempo and loud-
ness are analyzed based on the effect of combining different sets of features at specific
score markings. The first experiment focused on modeling shared uses of tempo and
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loudness by training our models on a group of performers playing the same piece of
music and predicting it on a performer unknown to the model. The second experi-
ment focused on modeling performer specific uses of the same features shared across
performances of different pieces played by the same performer.

In the score-based models (Experiment 1), tempo and loudness showed to be better
predicted at markings when including contextual information (expressive performance
values from the two bars preceding the marking) for all models. No improvements were
found on the prediction of tempo when combining tempo with loudness features pre-
ceding the tempo markings. When combining loudness and tempo features preceding
the loudness markings, loudness was only better predicted in the MLP model, but no
improvements were found in the rest of models (RF and k-NN).

In the performer-based models (Experiment 2), loudness was better predicted in all
models when using contextual information from the same feature than when using just
score-based features, but none of the models improved the prediction of loudness (L)
when combining loudness with tempo (A). In the best performing predictive model,
the prediction of tempo was significantly improved when including both loudness and
tempo from the two preceding bars (A) in respect to the baseline model (B), but in the
other models it was not.

An explanation of why the (T) models lead to better predictions than the (B) models
in Experiment 1 (E1), but not in Experiment 2 (E2), is that the tempo markings are
‘prepared’ differently per piece. That is, tempo markings (in relation to tempo changes)
are often expressed in a subito (sudden) manner, and thus, the tempo prediction at the
bar in which the marking is placed might not be "prepared’ during the performance
in the two previous bar to the marking. Since, in Experiment 1, the models are trained
on the same piece played by different performers, the models seem to be able to learn
the "preparation’ of those markings across performers better. However, in Experiment
2 models are trained across different pieces, and thus, the expressiveness strategies per
pianist in the use of tempo might be piece-specific and, probably because of this, they
are not well captured within this dataset and models. Furthermore, when inspecting
the predictions per performer, each pianist seems to have very different strategies that
could be influenced by the piece being performed. This outcome is coherent with the
boxplots shown in Section 4.2.3, in which the variance across pianists for tempo (see
Figure 4.6) is larger than the variance for loudness (see Figure 4.8). This could explain
why, with the dataset herewith analyzed, the models are challenged when learning a
gestural pattern on the interactions between expressive loudness and tempo.

The findings herewith presented, support the first hypothesis (see Section 4.1.1); hav-
ing contextual information preceding the marking improves the prediction of express-
ive loudness and tempo. In this study, however, no evidence was found supporting
the second hypothesis presented, since, in most models, the results showed no interac-
tion between loudness and tempo at tempo or dynamic markings. Accordingly, these
results suggest that the interactions between tempo and loudness at score markings
depend on the different approaches per performer and piece and, as such, they are not
reflected on the shared stylistic approaches across the Mazurkas herewith studied.
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The results obtained show as well that the prediction error is smaller on score-
based models (trained on the same piece played by different performers) than on
the performer-based models (trained on the same performer playing different pieces).
Therefore, the score constraints derived from harmony, melody or rhythm around
tempo and dynamic markings seem to have an effect on the expressive choices that
are shared across performers and, probably, on those made per piece. The results ob-
tained add to previous evidence on expressive constraints based on the score (Repp,
1990) and suggest that, for this dataset and models, modeling score-specific depend-
encies might be an easier task than modeling performer-specific dependencies. That
is, the predictions of the performer-based models are worse, probably because the di-
versity of the musical content being performed; the musical pieces included within
this corpus are quite different from each other besides all of them being Mazurkas.
This diversity has a greater influence on the use of dynamics and tempo in relation to
these expressive markings as the relation between the expressive variables and mark-
ings might vary across pieces more than across performers. Moreover, this suggests
that, if existent, the idiosyncratic signature per performer in these experiments is not
well captured across these models since they are making use of their artistic freedom,
using very different expressive gestures in tempo and loudness depending on the per-
formance context. This, rather than being a shortcoming of the predictive models used
and dataset used, exemplifies the complexity of the task and experiments carried out.

Among the limitations of this study, we should take into account both the size of the
dataset and the limited amount of markings available. The predictive error obtained
when the response variable was loudness is lower than when it was tempo. This sug-
gests that, within this dataset, tempo is a more complex variable to be modeled and
predicted. Yet, we must note that, in this dataset, the amount of dynamic markings
present in the scores is much larger than those of tempo markings (see Figures 4.1
and 4.2). This is intrinsic to the music material analyzed, as in most scores from the
Romantic period, dynamic markings are more abundant than tempo markings. Thus,
in this regard, claiming that loudness is easier predicted than tempo, might be a biased
interpretation. The results obtained could be confirmed by examining a larger dataset
of performances and considering other composers and periods of music.

Finally, we must as well reckon that the performance features proposed for the ma-
chine learning models, may not capture the whole temporal length and trajectory of
the expressive gestures. While I proposed modeling the relation between the six pre-
vious beats and the average of tempo or loudness at the bar in which the masking is
placed, it could be expected that the characteristic expressive gestures of certain pian-
ists on specific Mazurkas occurs slightly before or after the bar at which the markings
are placed. As explained in Section 4.2, the choice for these features is based on the
fact that the Mazurka rhythms in our dataset are best characterized over two measures
(see figure 4.3). That is, we may assume that this is an optimal contextual range in
relation to score markings. Even when the markings would be shared among differ-
ent score editions used during the recordings, the interactions may depend as well on
the individual artistic approach (and limitations) of the performer linked to the musical
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content. In fact, while the score markings are being used as a guideline, it is the duty of
performers to bring coherence to the musical discourse, establishing the "negotiable rela-
tion between the score and the performance event” (Gould & Keaton, 2000). This coherence,
however, might be influenced by other musical features than those herewith contem-
plated, such as, for instance, the shape and size of phrasing in the musical discourse in
relation to the rhythmic content or metrical structure.

In furtherance of better capturing the temporal relation between tempo and loud-
ness gestures, as well as the possible structural dependencies implicit in them, in the
following chapter, I will present a study on the idiosyncrasy and shared approaches to
the same dataset using sequential recurrent neural networks.
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THE ROLE OF RHYTHM AND METER AS EXPRESSIVE
CONSTRAINTS IN SHARED AND INDIVIDUAL USES OF TEMPO
AND LOUDNESS

5.1 INTRODUCTION

In many music cultures and styles, music professionals and aficionados are able to
differentiate between performers when these are interpreting the same piece or similar
styles. All along history, we can find diverse sources in varied contexts exalting the
dexterousness and sensitivity of a performer through their interpretations, often being
compared to others. The ability to describe and distinguish between performances
and performers is possible as a consequence of several representational and control
processes being shared between listeners and performers (Sloboda, 2000); so that music
can be communicated between both of them. Among the factors that contribute to
determine the performer’s individual expressiveness and how it may be perceived by
a listener we shall include: the performer’s mental representation of the piece to be
performed, their technical constraints (or control processes) defined by the piece, and
their approaches to the cultural context of the piece being played.

With the goal of understanding whether there is a link between the organizational
aspects of a piece of music and its mental representation, literature often distinguishes
between two main levels of structure (Jackendoff & Lerdahl, 2006). In the context of
performance, the macro-level structure refers to the piece form and includes express-
ive deviations in tempo, rhythm, large scale dynamics, melodic contour, and harmonic
relationships. The other main level of structure is the micro-level structure, which in-
cludes instead note-level (or short groups of notes) deviations in timing, pitch, loud-
ness, timbre, or articulation. The micro-structure expressive deviations relate to the
prosody and (note-level) errors, while the macro-structure refers to the use of phrasing
(Sloboda, 2000). The modulation on different expressive features often extends across
both macro- and micro-level structures (Clarke, 2002). This is why, both micro and
macro structural levels can be considered as entangled and hierarchically dependent.

A performer’s mental representation of the macro structural level on the music might
be reflected by their stability on the use of expressiveness above the micro-structure
beat and note-levels; while the most characteristic idiosyncratic approaches might be
reflected on the expressive deviations exercised across (often) smaller units of expres-
sion. According to Timmers and Honing (2002), whether the expressive deviations are
large or small is related to the different structural levels. Having, for instance, small
variations in timing responds to local timing gestures, while note lengthening vari-
ations often responds to larger scale trends and phrases. Thus, the expressive features
used by performers respond to both long and short time scales and structures, and this
should ideally be captured when modeling individual expressive performances.

67



68

SEQUENTIAL MODELING OF EXPRESSIVE PERFORMANCES

The study presented in Chapter 4 showed how tempo and loudness at score mark-
ings are better predicted when including as features the two preceding bars to the
markings. It also showed how, for the features and models presented, score mark-
ings had, in most predictive models, no effect on the possible interactions between
tempo and loudness expressive gestures. Nonetheless, these findings should not be
understood as the general (score) norm; rather, they should be understood as a spe-
cific example in which the music style constraints defined by the score markings are
not related to loudness and tempo interactions or not present within the scope of the
experiments described.

This chapter instead focuses on modeling performers’ expressiveness in tempo and
loudness using sequential models along the whole pieces as well as studying possible
macro and micro structural dependencies (in this case on the beat-level) derived from
the pieces performed. In particular, I study whether the interactions between loudness
and tempo are defined by the influence of metrical beat position or by the rhythm rep-
resentation included in each beat. Moreover, I inspect whether such constraints may be
performer-based or shared across performers.

The structural organization of a piece by a performer may depend on meter and
grouping as the primary syntactic elements in music (Lerdahl & Jackendoff, 1983).

Meter, constitutes the grid by which, in combination with our innate ability to per-
ceive beats (Honing, 2012), rhythms can be grouped and recognized as patterns. Meter
thus is defined on basis of the hierarchical distribution of its constituent beats based on
the periodic alternation between strong and weak accents (Palmer, 1997). As suggested
by Clarke (1985), expressive timing may be affected by the meter framework (Palmer,
1997). Furthermore, the differences of meter across music styles and cultures, suggest
that our perception of meter could be culturally biased (Cross, 2009). Recent imple-
mentations of probabilistic models based on symbolic (score based) representations of
music have been developed in order to model such enculturation processes of meter
perception (van der Weij, Pearce & Honing, 2017).

Meter and rhythmic grouping accents (in addition to melody and serial harmony),
influence the planning of performance expressiveness in relation to the short and long-
term structure of a piece (Drake & Palmer, 1993). Yet, the use of expressiveness by per-
formers can also affect how meter is perceived by the listener (Sloboda, 1985). As shown
by Gabrielsson (1973), listeners could effectively group timing patterns depending on
how performers use meter, accent patterns and ratio durations in relation to tempo or
forward movement. In the same study, Gabrielsson showed how the expertise of per-
formers influences the communication of meter; in this case, defining communication
as the listeners’ ability to recognize the performed meter effectively.

In another study, Gabrielsson (1974) showed interactions in the use of amplitude
and note durations by performers when these would repeat certain rhythmic patterns
having a metronomic tempo cue as a guideline. In particular, it was observed that the
first note of each bar would be louder and longer. Furthermore, in a similar line of
research, Sloboda (1983) showed how performers tend to accentuate meter by the use
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of duration, loudness, and legato when being presented with scores in which the same
music stimuli would be shifted one note and thus the metrical position would fall in
different places depending on the stimuli.

The categorization of rhythm has a relevant role in the expressiveness of timing, as
it can constrain the performers’ expressiveness to effectively communicate the rhythm
representation to the listeners (Desain & Honing, 2003). For instance, an isochronous
rhythm pattern will allow performers to be freer in their expressive choices than a
non-isochronous rhythm pattern (Honing, 2006a).

The literature presented suggests that meter is a relevant constraint in the idiosyn-
cratic expressiveness of performers and on how it is perceived by listeners. However,
to the best of my knowledge, no research has been done on how idiosyncrasy may
be constrained by interactions between tempo and loudness in relation to meter or
rhythm.

In this chapter, I study shared and individual expressive constraints of tempo and
loudness in performers based on different combinations of performance and score-
based features. Accounting for the temporal nature of music and the structural (and
hierarchical) dependencies between features, in this chapter I will propose using Long
Short-Term Memory networks as a specific sequential model.

The rest of this chapter is organized as follows: Section 5.2 exposes the motivation
to use sequential models instead of static ones. Sections 5.3 and 5.4 present recurrent
neural networks and Long Short-Term Memory networks as the chosen machine learn-
ing approach used in this study. Sections 5.5 till 5.6 describe the experiments to be
carried out, the dataset and features used, and the model architecture chosen. Sections
5.8 and 5.9 present the experiments’ results and their analysis. A discussion of the
results obtained and future work to be done is presented in Section 5.10.

5.2 USING SEQUENTIAL MODELS TO ACCOUNT FOR STRUCTURE IN EXPRESSIVE-
NESS

A key aspect when choosing or developing a computational model is reckoning whether
the implicit assumptions of such model correspond to the nature of the data and re-
search question addressed. In chapter 4, we analyzed and modeled performances us-
ing several machine learning algorithms in which the data points are assumed (by the
methods used) to be independent and identically distributed (i.i.d.). Such an assump-
tion implies that each of the data points and the random variables representing them
are independent of each other. That is, what happens at event t (in time) is independ-
ent of what happened at t — 1. These models are also commonly referred to as ’'static’
models.

Depending on the research questions, characteristics of the data modeled, and com-
putational resources, static models may be an appropriate choice. Additionally to the
experiments presented in Chapter 4, several other studies using i.i.d. methods can be
found in the modeling of performers characterization. For instance, Ramirez, Maestre
and Serra (2010) presented a signal processing workflow and a set of audio features to
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classify performers based on their expressiveness. In order to evaluate the features pro-
posed in the same study, they tested their hypothesis on 10 alternative static machine
learning methods. Molina-Solana, Lluis Arcos and Gomez (2010) followed a similar
methodology with the goal of tagging violin performers. Another successful approach
based on static methods is the PLCG algorithm developed by Widmer (2003), which is
used to discover performance rules. Devaney (2016) investigated the relation between
the classification of a few expressive features (such as those derived from timing, loud-
ness, timbre, and pitch) and the perception of inter-performer and intra-performer
features by using support vector machines. Moreover, based on a varied set of static
machine learning models, Serra et al. (2013) showed how several guitar pieces can be
automatically identified within a group of performers; even when providing very lim-
ited information per performance (up to one note deviations). Despite the advantages
of the methods mentioned, as a consequence of their static nature, these models are of-
ten too limited when aiming to uncover a parallelism between them and the production
or perception of music, which is in its intrinsic nature sequential.

As it has been argued in previous chapters, music performance expressiveness of-
ten responds to constraints from both the piece structure as well as the idiosyncratic
gestures of the performer (it is possibly also biased by a number of cultural stylistic
agreements and biological constraints). Performers convey their expression in a se-
quential and structured manner that possibly responds to hierarchical constructs as
well as to score constraints (when such score is available). For example, a performer
may have a characteristic expressive gesture in the use of loudness that correspond to
the structure defined by the score. For example, a crescendo extended over several notes
or bars. Furthermore, the expressiveness of performers can also be defined on multi-
level hierarchical expressive gestures (Desain & Honing, 1993). For instance, within the
crescendo, there could be a phrasing pattern that is extended over several bars. In such
example, performers may increase the loudness not only along that phrasing but also
by accentuating with dynamics the first beat of each bar or by having a particular devi-
ation to a specific motif of a few notes (repeated) along the piece being played. Taking
into account possible structural and sequential dependencies is essential to model mu-
sic performances. Such expressive patterns can indeed be established in both written
and orally transmitted music as well as in (structured) improvised music. This is be-
cause the expressive deviations norm can be defined, learned and recognized during
the performance itself. Yet, it is expected that such expressive deviations will be more
salient and clearly recognizable when the piece is known by both the performer and
the listener.

The capability of sequential models to learn and generate different levels of structure
in music is a valuable property in our case of study since the performance expressive
gestures are embedded in a temporal flux of events which can also affect our expect-
ations over the music listened to (Bailes, Dean & Pearce, 2013). Furthermore, this is a
challenging task for predictive models, as performance gestures are often shared over
multiple scales obeying to choices in the timing micro-structure and phrasing macro-
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structure, and they are often not only limited to a strict hierarchy (Desain & Honing,
1993).

Such structural hierarchies are also often influenced by a shared understanding of
the score structure (Rink et al., 2011). For instance, in a school of pianists or any music
group cultural setting, performers may play with a more similar approach to express-
iveness than those who are not familiar to such a cultural setting. For the same reason,
listeners who have been exposed to such cultural setting will have more biased expect-
ations to such expressive style than those who are not acquainted with that particular
expressive style.

In addition, it has been shown that listeners have the ability to perceive temporal
regularities in a categorical domain despite the deviations exercised in the expressive
performances (Desain & Honing, 2002; Large & Palmer, 2002). As such, the exposure
of a performer (being as well a listener) to previous renditions of the piece, the cultural
setting, and the music aesthetic trends, will influence and bias the listeners’ expecta-
tions on the different structural levels within a performance (Brattico & Pearce, 2013).
This is a key element in the encoding and decoding process of music communication
(Kendall & Carterette, 1990) as well as in the ability to recognize characteristic idiosyn-
cratic deviations and gestures in specific performers (Timmers & Honing, 2002).

While some i.i.d. models can learn a hierarchical representation of independent
events, these methods can not account for a sequential order of events. Such con-
straints challenge the modeling of expressive performances as, ideally, they should
be able to attend different macro and micro-structural expressiveness while respecting
the sequential nature of music.

Within the field of performance modeling, several studies have used different types
of sequential methods to model performers” expressive gestures. Widmer, Flossmann
and Grachten (2009) and Raphael (2010) propose using a bayesian network to model
timing. Vera and Chew (2014) use conditional Gaussians in combination with cluster-
ing to address expressive performance stylistic timing. Grindlay and Helmbold (2006)
propose a hierarchical hidden Markov model to predict timing and loudness in specific
pianists. Cemgil and Kappen (2003) use Kalman filters for tempo tracking and rhythm
quantization. Linking predictive modeling of expressive performances and cognition
by using sequential models, Desain and Honing (1992) propose recurrent attractor net-
works to model timing perception and quantize rhythm. In the same line of research,
but using instead neural oscillatory networks, Eck and Schmidhuber (2002) models
meter perception and Large and Palmer (2002) propose a perceptual model of rhythm
entrainment.

In the following sections, I will introduce the properties of recurrent neural net-
works (RNN), as the kind of sequential model used in this chapter. Focusing on a type
of RNN, namely Long Short-Term Memory (LSTM) networks, I will illustrate their ap-
plication to modeling and analyzing shared and individual constraints in performance.
In addition, I will study possible dependencies between different performance and
score rhythm related features. Finally, I will discuss the results and future directions of
research following on the approach herewith presented.
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5.3 RECURRENT NEURAL NETWORKS AND TEMPORAL PATTERNS

Recurrent Neural Networks (RNNs) are a type of connectionist model in which the
information is passed across sequence steps and processed at each of those steps.
This processing, in theory, allows for modeling possible multiple level dependencies
between events and constituents in the data sequence presented. Consequently, they
are suitable to model the inherent processing and generation of multi-level structures
in music. For example, we can model the expressive approaches by a certain performer
when playing a Mazurka and, for instance, learn how this performer consistently
lengthens the first beat of each bar within a particular section that is repeated through
the piece. That is, RNNs allow for attending different structural levels of expression
within the piece.

These types of neural networks are named "recurrent”" because the edges that con-
nect the artificial neurons (or units, or nodes) across adjacent time steps recur over
themselves through time. In a RNN, the output §j at time ¢ will be influenced both
by its inputs x(t) and the state of its hidden layer h_;) from the previous time step.
A RNN can be thought of as a layered net (or unfolded network) in which weights
are being reused across time steps. Both the input (X) and output (Y) is a sequence of
vectors containing real values having a length T. The dimensions at the input X will
vary depending on the features used (at the input). For instance, for one feature, it will
be Xy «1, in which n is the number of time steps in the sequence modeled. Y, in our
case of study, will always be Yy, 1.

Output layer

< > Hidden layer

Input layer

Figure (5.1) Folded RNN, adapted from Lipton et al. (2015). Note that in this folded RNN, the
hidden layer arrow does not represent bi-directional connections, but a unidirec-
tional (left to right) connection between the hidden layers. See Figure 5.2 for an
unfolded version of the same figure
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Formally, (the output of) a basic RNN can be expressed as:

hiy = d(Winx() + Whnh—1) + br) (19)

Where hy;) represents the hidden node values at time t, W,y represents the matrix of
weights connecting input and hidden nodes, Wy, represents the connections between
hidden nodes and b represents the bias parameters. ¢ represents the hidden layer (or
inner) activation function, which in the experiments to be presented will consist of a
hyperbolic tangent tanh function, being of the standard choice.

t1 t t+1

Figure (5.2) Unfolded Recurrent Neural Network across three consecutive time (t) events, ad-
apted from Lipton et al. (2015)

For regression tasks as the ones carried out along this chapter, the activation function
used in the output layer is linear, as we do not need any sort of mapping to a discrete
representation between the linear transformation given by the hidden nodes and the
actual representation of these. In a regression task, therefore, {j ;) is obtained from:

Y1y = Wynhp) + by (20)

As in feed-forward neural networks, in a RNN, the weights are updated by us-
ing Backpropagation (estimating the gradient from the loss function with respect to
the weights) but using an extended version of the algorithm called Backpropagation
Through Time (BPTT) (Werbos, 1990). In BPTT, the sum of the gradients for all layers
(having one layer per time step) is calculated with respect to the error relative to each
weight in time. Thus, weights are shared across time steps.

We must note that, in a RNN, each of the time steps represents a "deeper" layer, "since
their hidden state is a function of all previously hidden states" (Graves, Mohamed
& Hinton, 2013). Thus, a RNN can be considered inherently deep. In the machine
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forget gate
| self-recurrent

connection
memory cell >|—®_\ » memory cell
input I output
Input gate output gate

Figure (5.3) LSTM cell As illustrated on http://deeplearning.net/tutorial/lstm.html Ac-
cessed on 11-11-2017

learning jargon, when referring to deep recurrent neural networks, the depth referred
to is most often "in space”, rather than "in time". In RNNs, this kind of depth is built by
stacking several recurrent hidden layers (in the same manner than feed-forward layers
are stacked in MLPs) through which different "representations” of the data learned are
passed. Such deep stacks may allow for having different granularities in the time steps
being transferred as for capturing a (possible) hierarchical sequential abstraction of the
input data in relation to the target output. In the model architectures used within this
chapter, the Long Short-Term Memory networks (LSTMs) are not stacked.

Originally, BPTT presented several difficulties for training due to the vanishing
and exploding gradient problems (Bengio, Simard & Frasconi, 1994; Hochreiter &
Schmidhuber, 1997). This is a phenomenon by which the gradient (or derivative of the
error) to be passed across time-steps may decrease or increase exponentially as a func-
tion of the number of time-steps (Pascanu, Mikolov & Bengio, 2013). This was a limita-
tion when dealing with long-term dependencies and the representation of structure in
long sequences. As shown by Hochreiter and Schmidhuber (1997), given a sufficiently
long-range dependency, RNNs would perform as well as chance. In music modeling,
problems derived from the vanishing gradient were shown in the generative model for
music composition proposed by Mozer (2007). Thus, initially, the RNN combined with
BPTT had several limitations when applied to long term structure dependencies.

5.4 LONG SHORT-TERM MEMORY NETWORKS

In order to address the vanishing (or exploding) gradient problem, Hochreiter and
Schmidhuber (1997) proposed modifying the RNN architecture by replacing the hid-
den units with LSTM units. LSTM units consist of a memory cell which stores inform-
ation along arbitrary time intervals by means of an input gate, an output gate and
a forget gate. These gates compute the activation of a weighted sum and allow the
LSTM to preserve the error flow through time (Eck & Schmidhuber, 2002). As such,
the memory cell permits the possibility to model both short and longer-term depend-
encies than RNNs (Graves et al., 2013).



5.4 LONG SHORT-TERM MEMORY NETWORKS

In the following lines, I include the main components that a LSTM memory cell must
have, as explained by Lipton et al. (2015) and Hochreiter and Schmidhuber (1997). An
illustration of a LSTM cell is shown in Figure 5.3.

Input node (memory cell input), g, which collects the input from the network
at time step t as well as the output from the hidden layer from t — 1, both are
combined by a sum weighted function and passed through a tanh activation
function.

gy = tanh(Wyxx(y) + Wynh_1) +bg)

Input gate, i, as in the input node, it collects the input from the network at
time step t and from the output from the hidden layer from t — 1 but, in this
case, multiplies it by a sigmoid [0, 1], which allows to control for the amount of
information updated at each state.

i(y) = o(Wixx(y + Winh(;1) + bi)

Self recurrent connection, s, it is a self-connected recurrent edge with a fixed
unit weight given by a linear activation function that carries the internal state of
the cell. As it is connected recurrently through all time steps in the sequence it
serves as a sort of tunnel through which the error can flow across all time steps
(with constant weight) and prevent, like this, the vanishing gradient problem.

=9 Ol +8¢-1)

Forget gate, f, this function, added by Gers, Schmidhuber and Cummins (2000)
and not included in the original paper by Hochreiter and Schmidhuber (1997), is
often used when we want the network to forget the information contained in the
internal state with a certain decay.

fry) = o(Weex(p) + Wenh_1) + by)
The update step of the internal state is done by point-wise multiplication (©®)
between the previous internal state and the rest of the components shown.

() = 9 O i)+ Fy) © 8-y

Output gate, o, decides what is going to be in the output from the cell by running
it through a sigmoid layer, which decides what parts of the cell are going to the
output to afterwards pass it to a hyperbolic tangent activation function (tanh), to
scale the output between -1 and 1.

O = O-(WOXX( + Wonh (-1t bo)
h( = tanh( ) ©o

In a LSTM, the equivalence to a hidden unit input in a simple (vanilla) RNN will
be shared over the g(;), i(s), s+) and f(; inputs of the LSTM memory cell. Depending
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on the network architecture, the memory cell implemented may have slightly different
components or activation functions. The ones herewith presented are the most com-
monly found and included within the LSTM implementation used for the experiments
presented in this chapter.

Since their original development, different types of RNNs and LSTMs have been ap-
plied to several music research topics such as chord generation (Eck & Schmidhuber,
2002), expectations-based music analysis (Cox, 2010), meter classification (Lambert,
Weyde & Armstrong, 2014) or melody generation and prediction (Cherla, Tran, Garcez
& Weyde, 2015). LSTMs have been shown to be successful in several predictive tasks
in which the data (to be modeled) is sequential (Karpathy, Johnson & Fei-Fei, 2015).
In the case of performance idiosyncrasy, LSTM-based models can attend to different
structural and, if existing, hierarchical dependencies in the expressiveness exercised
along a performance. This is because the LSTM parameters (will) contain information
about short and long-range dependencies related to different expressive performance
patterns.

Another type of RNNs commonly found in the literature, are Bidirectional RNNs
(Schuster & Paliwal, 1997), which, in comparison to unidirectional RNNSs, are trained
in both positive (left to right) and negative (right to left) directions; having information
both from past as from future events.

An impediment for using Bidirectional RNNs in an on-line setup of undefined
length, is that they require a fixed endpoint in both the future and in the past (Lipton
et al., 2015). As such, they are not appropriate for the study here presented, since the
nature of music listening and music making occurs in a unidirectional stream manner.
We can’t process auditory incoming information from the future, but merely have an
estimation on future events based on our exposure and expectations of the auditory
stream being listened to. In an offline setup, however, several state-of-the-art models
in tempo estimation methods, rhythm (Bock, Krebs & Schedl, 2012) or timing related
tasks have made use of Bi-directional RNNs and are often shown to outperform Uni-
directional LSTMs. Since the ultimate motivation to carry this study is to better under-
stand the possible underlying mechanisms of expressive music performance or music
listening, adopting a bidirectional model was discarded for our experiment purpose. *

Finally, another sequential model that has been very much used in speech and music
modeling are Hidden Markov Models (HMM) (Rabiner & Juang, 1986). While explain-
ing how HMMs work is out of the scope of this work, the main difference between a
vanilla RNN and HMMs is that HMMs depend on discrete states, while vanilla RNNs
use real-valued vectors, which allows for a more flexible modeling of the structural
dependencies. In this regard, a common argument on behalf of using RNNs instead
of Markovian approaches it is that the characteristics of the latter make dealing with
long-term structure very impractical (Karpathy et al.,, 2015). This is because, for an

There are however arguments against the non-coherence of a parallelism in the way we process inform-
ation and how BPTT works even in unidirectional LSTMs (Marblestone, Wayne, Kording & Scholte,
2016).
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HMM, "the transition table capturing the probability of moving between any two time-
adjacent states is of size ISJ2" (Lipton et al., 2015). Furthermore, in order to increase
the context of the Markov model we need to create new states by calculating the cross
product of the possible states at each time in the context windowed (Graves, Wayne
& Danihelka, 2014). Other less compromised solutions than HMM such as Variable
Length Markov Models (VMM) or Markov Constraints (Pachet & Roy, 2011) have been
applied to music composition recently with convincing results as generation systems,
but, to the best of my knowledge, these have not been compared so far with the per-
formance of LSTMs. RNNs are a much more flexible and powerful approach to mo-
deling sequential dependencies than Markov Models since they can represent many
more states (become more expressive) without increasing their complexity as much as
HMMs.

In the rest of this chapter, we will see how LSTMs can be applied to study the relation
between expressive performance tempo and loudness, and meter and rhythm, in the
characterization of performers individuality.

5.5 EXPERIMENT DESCRIPTION AND HYPOTHESIS

In this section, I will present two experiments which have as a common basis the study
of performer idiosyncrasy, by predicting tempo or loudness per piece and performer:

5.5.1 Experiment description

e The first experiment considers the study of expressiveness consistency on indi-
vidual performers with models inferred per performer based on their use of ex-
pressiveness when playing other pieces.

® The second experiment focuses on predicting tempo or loudness per piece and
performer based on how all other performers (10) have played the same piece
being predicted. The models obtained in this experiment mainly reflect structural
constraints derived from the score.

In order to better understand whether there are interactions between tempo and
loudness in the use of expressiveness, and if these may be constrained by meter and
rhythm, several LSTM models predicting tempo or loudness were inferred based on
different combinations of features.

The following combinations of features are considered:

(a) Tempo predictions:

a) based on tempo (t_b_t)

b) based on tempo and loudness (t_b_t_I)

¢) based on tempo and rhythm (t_b_t_rh)

d) based on tempo, loudness, and rhythm (t_b_t_l_rh)
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e) based on tempo and meter (t_b_t_m)
f) based on tempo, loudness, and meter (t_b_t_1_m)

(b) Loudness predictions:

a) based on loudness (1_b_l)

b) based on loudness and tempo (I_b_I_t)

¢) based on loudness and rhythm (I_b_l_rh)

d) based on loudness, tempo, and rhythm (I_b_t_I_rh)
e) based on loudness and meter (I_b_l_m)

f) based on loudness, tempo, and meter (I_b_t_l_m)

5.5.2  Hypotheses

One of the main goals of the study presented herewith is to elucidate whether pos-
sible interactions in the use of tempo and loudness may be found as a consequence
of performer-based constraints or as a consequence of the constraints defined by the
score performed. In doing so, we present an approach to isolate, model and study idio-
syncratic expressiveness in the use of tempo and loudness. In order to account for long
and short structural dependencies as well as for the sequential character of express-
ive gestures (and possible hierarchical relations), we propose using Long Short-Term
Memory Networks to predicting tempo and loudness.

Another goal of the research presented in this chapter is studying the role of meter
and rhythm in the predictive models described. Based on the evidence found in Drake
and Palmer (1993), it is expected that performers use accent structures in a system-
atic way and this may depend on the constraints derived from the rhythm or meter
grouping present on the music (scores) performed.

We, therefore, hypothesize that the idiosyncrasy per performer in the use of tempo
and loudness may be conditioned by the influence of meter or rhythm on the score
structure. Consequently, constraints derived from the meter or melodic rhythm as rep-
resented on the score are expected to be reflected on the interactions between tempo
and loudness, as used by performers to emphasize structural boundaries.

Based on the findings from Chapter 4, we expect as well that the use performers
make of loudness and tempo will be more constrained by the score structure than by
their individual style. This would indicate that the expressive approaches of performers
may be piece-based. In the same line of argumentation, the possible idiosyncrasies
between tempo and loudness will be more evident in the score based models, as the
structural dependencies will be reduced to the piece being studied and the models will
contain less variance in the performers approaches to interactions at structural points.
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56 DATASET AND FEATURE PREPARATION

The dataset used for this study is the same one described in Chapter 4, which is ob-
tained from the dataset presented in Kosta et al. (2018). This is a collection of tempo and
loudness annotated on recordings of Chopin piano (polyphonic) mazurkas by several
professional pianists. To my knowledge, there is currently no other dataset available
with such an amount and variety of professional performances of the same pieces.
Moreover, the mazurkas dataset is suitable to study possible expressive phrasing de-
pendencies in the macro-structure, which in the mazurkas is often demarcated by the
piece form as described in Section 4.2.1, or subphrases extending over eight bars, but
also, to study in the micro-structure, within shorter expressive gestures such as the
characteristic mazurka rhythm pattern (see Figure 4.3).

In contrast to Chapter 4, in this study, I discarded the mazurka 17 opus 3, due to
inconsistencies and formatting issues in the Music-XML score available for the exper-
iment. Thus, the dataset contains 25 mazurkas (instead of 26) played by the same 11
performers as in Chapter 4.

In the following lines, I will describe the different types of features used in the
models obtained: audio-derived features and score-based features.

5.6.1 Performance features

The performance features extracted and annotated from the audio recordings are the
same as the ones used in Chapter 4. These features represent the auditory streaming
input of tempo (at the beat-level) and the corresponding loudness values from each
performance.

e Expressive tempo: for which we use the Inter-Beat Intervals measured in seconds.
The onsets for each beat have been previously annotated with a semi-automatic
approach with the algorithm proposed by Ewert et al. (2009). This alignment
algorithm annotates each onset based on a reference annotation from another
recording and using a heuristic to reduce the error on the possible mis-annotated
onsets when matching the alignment between the recording being annotated and
the reference one.

¢ Expressive loudness: for which the loudness measured in sones relative to the
first frames of each beat is annotated.

The performance features of each feature are normalized by dividing each value by
the maximum value of that feature in the sequence.

5.6.2  Score features

In order to study how the expressiveness of tempo and loudness is constrained by the
score as well as to find possible interactions between performance features and specific
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score features, beat meter position and beat rhythm features were extracted from each
mazurka.

e Score metrical structure

All the mazurkas from the dataset are in a triple 3/4 measure, thus the metrical
structure per measure (bar) from each mazurka is encoded as —1,0,1. In this
encoding, each value represents the first, second and third beat of the measure.
Using metrical structure as a feature may allow for capturing structural relations
within the bar, but also in relation to higher structural orders from the score. For
instance, every 1st beat of a bar, or every 1st beat of every four bars, etc...

¢ Rhythm

For the representation of rhythm in the LSTM input, I included the score repres-
entation of the melodic line from each mazurka. This choice is based on the fact
that all mazurkas from the (collected) dataset contain (most of the time) a clear
salient melodic predominance on the top voice (G-clef), while the "accompani-
ment" voice (or bass voice), is focused on the low voice (F-clef). Because of these
characteristics, most of the rhythm variability is contained within the top voice.

In order to obtain the top melodic voice of each score performed I implemented
an algorithm to extract out of the top voice the highest pitch as the melody line.
This algorithm was first introduced by Uitdenbogerd and Zobel (1998) and is
commonly referred to as skyline. As discussed by Isikhan and Ozcan (2008), the
skyline algorithm is one of the best performing methods for melody extraction
when the accompanying voice does not contain pitches higher than the top voice,
which is the case for all mazurkas used in this dataset.

I implemented the skyline algorithm in Python using Music21 (Cuthbert & Ariza,
2010) to remove ornaments like trills or appogiaturas. Once the melody is extracted,
the results were inspected manually and compared with the original score to dis-
card any artifacts added when converting from MusicXML format to a Music21
object.

To concatenate the input vectors from the beat-level representation in the per-
formance features (tempo and loudness), the rhythm is encoded per beat meas-
ure. The encoding chosen represents each beat measure with a resolution of 12
units. Then, on each of these units, the absence or presence of the "onset" of a
note (as indicated by the score) is represented by a 0 or a 1 respectively.

Figure 5.5 shows the encoding of a (hypothetical) skyline over one measure. Since
we are combining all features in one LSTM, we need to adjust the length of meter,
loudness, and tempo with that of the rhythm encoding vectors. To do so, each
value of meter, loudness, and tempo is repeated 12 times, thereby ensuring that
all features are of the same length.
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Figure (5.4) Example of how the rhythm represented in the melody line (in blue) is extracted
from the polyphonic score. Figure 5.5 shows this rhythm encoded to be used
within the LSTMs.
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Beat1: [1,0,0,0,0,0,0,0,0,0,0,0
Beat2: [1,0,0,0,1,0,0,0,1,0,0,0]
Beat3: [1,0,0,0,0,0,1,0,0,0,0,0]

Figure (5.5) Encoding representation of the rhythm from Figure 5.4 with a beat granularity of
12 units.

5.7 MODEL ARCHITECTURE

I implemented the LSTM architecture by using the Python library Keras (version 2.0.2)
(Chollet, 2015). The objective function aims to learn the parameters to effectively predict
loudness or tempo at event t, in time based on t,_7 and all previous events in the
performance.

In this architecture, the inner activation function chosen for the LSTMs is a hyper-
bolic tangent function (tanh). The outer activation function chosen is the linear function.
The loss function to estimate the error between the predicted (§j) and the true output
(y) during each epoch is the mean squared error. Each model is run on 1000 epochs.

The hyperparameters are chosen by doing grid search cross validation based on the
following values:

e Hidden units: 20 or 40
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® Regularization:

- Dropout on the visible layer (between the input and the hidden layer). Values
used are o (indicating no dropout) or 20%.

- L2 regularization with values o (indicating no L2 regularization) or 0.001.

e Optimizers:

- Stochastic Gradient Descent, with the following parameter values: learning
rate =0.01; parameter updates momentum=o0.8; learning rate decay on each up-
date = 0.0; no Nesterov momentum is applied.

- Adam first order gradient based optimizer, with the default parameters as
proposed on the original paper (Kingma & Ba, 2015).

For each of the models and features combinations, the mean squared error between
the true values and the predicted values on the validation set is calculated after each
permutation. Once the hyperparameters for each model are chosen upon the validation
set (those that predict with a smaller minimum squared error), we retrain each of the
models with those hyperparameters and test them on the ‘unseen” dataset (test set) and
calculate the MSE between the truth and the prediction again. Thus, we obtain the best
performing models given a combination of hyperparameters in each of the a-1, a-2, etc.

Once we obtain the results from the different experiments, we can compare the error
on the different models to estimate which models and combinations of features lead to
more accurate predictions; this, being an indicator of how these features constrain the
expressiveness of performers.

5.8 EXPERIMENTS

In order to study whether performers are more constrained by their idiosyncratic ap-
proaches to the music or by the score, two different types of experiments are carried:

e In the first experiment, predictions are done by mazurka and performer after
modeling the same performer’s style when playing all other 24 mazurkas. In this
experiment the models aim to learn the idiosyncratic stylistic characteristics per
performer.

¢ In the second experiment, predictions are done by mazurka and performer after
modeling (learning) how the other 10 performers in the corpus play (only) the
same mazurka. This experiment will elucidate on possible constraints based on
the score and shared across performers.

In both experiments, we inspect the possible interactions between loudness, tempo,
meter and rhythm (as notated on the score melody) and how these constrain the use of
tempo and loudness in performance. Therefore, we also analyze whether the prediction
error on each of the different models obtained is smaller as a consequence of the models
learning such patterns of interactions.
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5.8.1  Persistence algorithm baseline

The baseline proposed to evaluate the models on each of the experiments is a persist-
ence model (also called naive forecast), which is often used in time series forecasting
evaluating tasks. This is a one-shifted output algorithm that works by outputting at
each event t + 1 the values contained in t. The algorithms can be resumed as follows:
having an input vector with e.g. the true values of a feature xn = [ty, t1, t, t3], create a
vector () by shifting y,, by one position.

In order to have the same length than the original sequence, we remove the last
value of y, and include as the first value of {j the mean of all values contained within
sequence xn. For instance: § = [u(t), to, t1, t2]. Finally, the mean squared error (MSE)
between x,, and { is calculated as an indication of the error (smaller MSE is better)
estimated by the persistence model. In all of the experiments herewith presented our
baseline is defined by this calculation for each mazurka and per pianist.

5.8.2  Experiment 1. Performer-based models

In Experiment 1, we obtain models for the prediction of tempo or loudness per piece
and performer having trained each of the models on the same performer playing all
other pieces of our dataset. With this experiment, we aim to show and study the indi-
vidual differences in the possible interactions between performance and score features.
Having for each performer a dataset of 25 mazurkas, we partition the dataset in
6 blocks (rounded per iteration), leaving out one of the blocks for testing (test) and
using the rest for training (train) and validation (val). The training and validation set
are split again in 6, using 5 blocks for the training and 1 for the validation. Having a
corpus of 25 mazurkas, for each rounded iteration block (on each experiment and per
performer), we use 17 mazurkas for training, 4 for validating the models (finding the
best combination of hyperparameters) and 4 mazurkas for testing. During the training
and evaluation, we iterate over this process to cover the whole dataset and average
results on all mazurkas per performer. As it is customary, the test is left aside and only
used once the models from the validation set have been chosen upon their best fit.
Every sequence is padded (with a value not contained within our dataset) according
to the length of the longest sequence. We do so by using the Keras function Prepad. In
the dataset collected the longest mazurka (in score notation) contains 661 beat events.

5.8.2.1  Experiment 1 results

The average MSE over all predictions per pianist are shown for both tempo and loud-
ness on Figures 5.6 and 5.7 respectively. Tables 5.1 and 5.2 show the p-values obtained
after a one-way ANOVA as measured by Fisher’s ratio of all models obtained on the
predictions of tempo and loudness.
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- Tempo predictions

The

results obtained show that tempo is not better predicted when combined with

the rhythm representation from the melodic line or when the model combines beat-
level tempo, loudness, and melodic rhythm. The predictions of tempo either when
adding loudness (t_b_t_l) or when adding meter (t_b_t_m and t_b_t_l_m) are bet-
ter than in the models using only tempo in the input (t_b_t). Yet, according to the
ANOVA test (table 5.1) these improvements are not statistically significant. All com-
binations of features lead to significant better predictions than the baseline persistence
model (p < 0.001).
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(5.6) Experiment 1: Performer-based models tempo predictions. A smaller error indic-
ates a better prediction

tbt tbtl tbtrh tbtlrh tbtm tbtlm

t.b_t1 0.7279

tb_trh 01973 o0.1199

t b_tlrh 04606 03098 0.5755

t.b_t.m 0.2979 0.4878 0.0373 0.1106

tb_tlm 0.1861 0.3227 0.0228 0.0688 0.7463
baseline 0.0 0.0 0.0 0.0 0.0 0.0

Table (5.1) Experiment 1: One-way Anova Fisher’s F ratio p-values over tempo predictions

models in Figure 5.6
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- Loudness predictions

Figure 5.7 and Table 5.2 show that loudness is significantly worse predicted when
combined with (only) tempo (1_b_t_1) or with melodic rhythm features (I_b_l_rh,
1_b_t_L_rh). The results also show that meter without tempo (l1_b_l_m) leads to sig-
nificantly worse predictions. It is however remarkable that when including tempo in
addition to meter (1_b_t_l_m), the predictions are significantly better (p<o.001) than
the rest of the models. In respect to the baseline, both the 1_b_l and the 1_.b_t l_.m
show significant (p<o0.001) improvements.

The results obtained in Experiment 1 indicate that the idiosyncratic approaches to
expressive loudness within this dataset are significantly improved by modeling the
interactions with tempo and meter. This finding suggests that the expressive loudness
idiosyncrasy of all individual performers is constrained by the communication of meter,
for all the pieces within the corpus.
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Figure (5.7) Experiment 1: Performer-based models loudness predictions. Smaller error means
better prediction

5.8.3 Experiment 2. Score-based models

The goal of this experiment is studying how tempo and loudness are predicted per
performer when models are trained on other performers playing the same piece. By
doing so, the models inferred will learn the score structural expressive constraints
shared across performers based on the commonalities of their expressiveness.

In order to avoid (or minimize) overlapping piece information between performances
from the train / validation sets and the test dataset, each performance of the piece is
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Ibl 1btl 1blrh Ibtlrh I1blm lbtlm
1b tl 0.0
ILblrh o0 0.0042

Ib_tlrh oo 0.3948 0.0749

ILblm o0 0.0005 0.6455  0.0798

b tlm o.0001 0.0 0.0 0.0 0.0

baseline  0.0753 0.0 0.0 0.0 0.0 0.0

Table (5.2) Experiment 1: One way Anova Fisher’s F ratio p-values over loudness predictions
models in Figure 5.7

split by two. In this way, hyperparameters that are found in one half of the performance
and models, are re-trained with the best hyperparameters on the other half of the
performance. Unfortunately, this method cannot account for possible repeated motifs
written in both half’s of the score, but it is the best compromise possible to account
for sequentiality while having the longest possible segments on each piece. We should
note that the size of the dataset and length of sequences is conditioned by the fact that
only beat-level performance annotations (instead of note-level) are available.

In this experiment, the error obtained per piece for all performers is used as an
indication of how their expressiveness is constrained by the score and how do they
share such expressiveness. In addition to the hypotheses presented in 5.5, it is expected
that some pieces will constrain more the performers’ expressiveness than others. In
the same line of argumentation, the residual error obtained per piece and performer
predicted is expected to contain some of the idiosyncratic gestures of the performer
predicted. As such, it can be used as an indicator of how performers are constrained
by the score structure and differ from the expressiveness of all other performers in this
dataset. Yet, the residual error could also contain noise derived from other aspects not
related to idiosyncrasy, or be caused by limitations of the modeling.

5.8.3.1 Experiment 2 results

The average MSE over all predictions per pianist are shown for both tempo and loud-
ness on Figures 5.8 and 5.9 respectively. Tables 5.3 and 5.4 show the p-values obtained
after a one-way ANOVA of all models predictions of tempo and loudness shown in
Figures 5.8 and 5.9.

- Tempo predictions

Figure 5.9 shows that the predictions of tempo do not improve when combining
melodic rhythm with either tempo (t_b_t_rh) or loudness (t_b_t_l_rh) at the input.
For some performers, an improvement can be observed when tempo is combined with
loudness (t_b_t_l). As in Experiment 1, tempo is, on average, better predicted when

combined with meter (t_b_t_m) than when only using tempo as a predictor (t_b_t);
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having the best predictions with the model based on tempo, loudness, and meter as in-
put features (t_b_t_l_m). While these improvements are not significant in the ANOVA
test, the results suggest that the interactions between tempo and loudness are better
captured when including meter in the model.
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Figure (5.8) Experiment 2: Score-based models tempo predictions

tbt tbtl tbtrh tbtlrh tbtm tb tlm
t.b_t1 0.9672
t b trh 0.0 0.0

tb_tlrh oo 0.0 0.4474

t.b_t.m 0.2901 0.3145 0.0 0.0
tb_tlm 02816 03025 o0.0 0.0 0.8915
baseline 0.0 0.0 0.7565 0.6591 0.0 0.0

Table (5.3) Experiment 2: One-way ANOVA Fisher’s F ratio p-values over tempo predictions
models in Figure 5.8

- Loudness predictions

The results on the loudness predictions of this experiment show that loudness is bet-
ter predicted when combined with tempo (1_b_t_1) and best predicted when combined

with meter (I_b_t_l_m). Yet, when combining these features and comparing the predic-
tions to the simplest loudness model (1_b_l), these improvements are not significant.
As in the tempo predictions, while the models are not significantly different from the

predictions of loudness, the results suggest that the interactions between loudness and
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tempo are best captured by meter, indicating that it is a good predictor of score struc-
ture constraints in the expressiveness of performers.
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Figure (5.9) Experiment 2: Score-based models loudness predictions

ILb1l 1btl Iblrh 1btlrh ILblm 1btlm
1b tl 0.767
1 b lrh 0.0 0.0

I b tlrh o001 0.0 0.3132

1blm 0.0 0.0 0.0 0.0

b tlm o.1051 0.1641 0.0 0.0 0.0029
baseline 0.0 0.0 0.0 0.0 0.0 0.0

Table (5.4) Experiment 2: One-way ANOVA Fisher’s F ratio p-values over loudness predic-
tions models in Figure 5.9

5.8.4 Results analysis

When comparing the results from both experiments it is evident that the models ob-
tained in Experiment 2 (same piece played by several performers) lead to better results
than the ones in Experiment 1 (based on the performers individual expressive style
when playing other pieces). This finding suggests that the LSTM models are better in
learning the performers’ expressiveness when conforming to the structural constraints
of the piece (as played by other performers) than to their individual idiosyncratic ges-
tures. While for some performers their idiosyncratic expressive gestures might be well
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defined and consistent across their performances, the models” prediction error is, on
average, larger in Experiment 1 than in Experiment 2 and, thus, such gestures will be
adapting to the musical material of each piece. That is, the variance in the musical
material contained in Experiment 1, which is trained on 24 different mazurkas (per
performer), is much larger than that one in Experiment 2, which is trained on only
one piece (played by several other performers). Therefore, for the models obtained in
Experiment 2, the temporal structure is more defined and easier to learn (and predict)
by the models than in those of Experiment 1.

An unexpected outcome of these experiments is that using the melodic rhythm rep-
resentation as an input feature has a negative effect (significant (p<0.001) in most ex-
periments) in the predictions of either tempo or loudness. While the main goal of
including this rhythm representation was to verify possible constraints in the use of
tempo or loudness related to rhythm complexity, we shall not conclude that rhythm is
not constraining the use performers make of timing and, therefore, tempo. An explan-
ation for such behavior in the networks might be that the approaches each performer
takes to rhythm in relation to the beat-level representation are very diverse and as such
not captured by the models. This could probably explain why the error in Experiment
2 when adding melodic rhythm is much larger than in Experiment 1.

In all experiments, the best predictions of either tempo and loudness are obtained
when combining loudness, tempo and meter. These results suggest that meter may ef-
fectively constrain the idiosyncratic expressiveness in the use of loudness and tempo
as well as their possible codependency; not only in the short and long term structure
of the piece being performed by several performers, but also on the individual ap-
proaches of performers to structural phrasing across pieces. That is, the approaches by
individual performers to the use of phrasing in both tempo and loudness seems to be
constrained by meter structure.

In Experiment 2 (score-based models) we can observe that the predictions of tempo
(and somewhat, loudness) vary largely per pianist. This suggests that some pianists
may have a more varied approach to phrasing than the rest of pianists. For instance,
we can observe that Chiu’s tempo is not as well predicted as on other pianists. The
idiosyncrasy of Chiu in his use of tempo rubato in mazurkas is described by Cook
in Beyond the Score: Music as Performance: "Chiu uses rubato primarily for the shaping of
phrases and cadences, as well as for a variety of rhetorical effects, but he does not use it as a
basic means of accentuation [...]” (Cook, 2013).

The results of the models in which meter is included suggest that the hierarchy
between different phrasing approaches might be well represented in this structural
level. In Sloboda (1985) it was shown that pianists were able to communicate loud-
ness to listeners only with meter. While this finding might be true for a majority of
music styles, the way pianists make use of expressive loudness in respect to meter
might be much more flexible depending on the relevance given to the score structure
by their use of phrasing. As it can be observed through the results obtained, the com-
bination of meter and loudness as features (1_b_l_m) does not improve the predictions
of loudness in respect to using only loudness (1_b_l), which is not the case for neither
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of the Experiments presented. This indicates that the relation between meter, tempo
and loudness is, at least for the experiment herewith presented, established through
the interaction between these three features. Furthermore, these findings are coherent
with those presented in Sloboda (1983), in which performers were shown to emphasize
structure with changes in loudness and tempo.

5.9 VISUALIZATION OF PERFORMERS EXPRESSIVE IDIOSYNCRATIC DEVIATIONS

An important aspect of the models evaluation, is the visual interpretation of the results
obtained per model and performer. In our case of study, we may want to use a visual
representation which allows us to asses how accurate the models are in predicting a
performance for a particular performer. For example, Figures 5.10 and 5.11 show that
the models obtained in Experiment 2 are able to predict tempo and capture accurately
structural changes in boundaries of varying lengths; this being one of the main motiv-
ations to use LSTMs models in the experiments herewith presented.

Plotting the temporal series’ true and predicted values per feature is probably the
most direct way to inspect those points in the predictions in which the models have not
performed well, or rather, in which the idiosyncrasy of the performer is not well cap-
tured by the predictive model. Such an approach, withal, has the inconvenience that it
requires inspecting all the sequences predicted and thus, by doing this manual inspec-
tion piece by piece, having an overall view of a performers style or characterization
becomes a demanding task.

Interpreter : Rubinstein
MSE avg error: 0.0038

I -—— Prediction
p ~— Truth

Loudness

Tempo Beats

Figure (5.10) An accurate loudness prediction according to the 1_b_t_l_m model (Experiment
2)

Other kinds of visualizations and methods can be useful to extract information over
how the performers’ idiosyncrasy is captured by the models used. An example of
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Interpreter : Cortot
MSE avg error: 0.0103
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Figure (5.11) An accurate tempo prediction according to the t_b_t_1_m model (Experiment 2)

those is the Timescape and Loudness-scape plots introduced by Sapp (2007) described
in Chapter 2, which can be used to analyze different expressive phrasing approaches
to different performances of the same piece. With the aim of visualizing individual ex-
pressive patterns, Dixon, Goebl and Widmer (2002) presented a method to plot in a 2
dimensional space the tempo and loudness curves trajectory responding to the x and y
axis respectively. The goal of such implementation is allowing for visualizing express-
ive patterns in real-time. Madsen and Widmer (2006) introduced an application of this
visualization to explore individual styles. In their application, they used a pattern re-
cognition algorithm based on the worm trajectories mapped to string. Their algorithm
shows to be able to identify similar phrasing strategies and rank pianists according to
their consistency in the use of matched phrases.

In this section, I present a simple approach to visualize the expressive deviations
from each performer with respect to the "sequential” models obtained in the Experi-
ments presented in Section 5.8. The models shown on this visualization are therefore
the ones combining meter, tempo and loudness to predict either tempo and loudness
as these have shown to be the best predictors for the experiments presented.

The first step for the visualization is collecting per performer the predictions and
true values for all beat-level tempo or loudness across all pieces predicted. Having in
each figure the x-axis representing the "Normalized Predicted values" and the y-axis
representing the "Normalized True Values", if the model would predict perfectly the
expressiveness for a performer, it should show a thin diagonal line departing from
the (0,0) origin till the (1,1) coordinate, which we will refer to here as the hypothetical
diagonal. The color of the dots represents the density of coincident values having blue
as isolated dots and dark red as the maximum number of coincident dots for all pieces
values for each performer. The density is determined by a kernel-density estimate using
Gaussian kernels. Kernel density estimation is a non-parametric method to estimate the
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probability density function of a random variable. Thus, the color bar scale on the right
side of each figure represents the density of coincident dots.

In these visualizations, the further away each dot is from the hypothetical diagonal,
the less well predicted this dot is estimated. A performer having a large representation
of dots distant from the diagonal will, therefore, be less well predicted than another
one in which most dots predicted are around the diagonal. The orange till red areas in
the plots will represent the greatest density of performed true predictions. Thus, the
warmer colors (orange - red) area often shows where the performers are best predicted
according to the models. However, the density of the dots on each figure may also be
interpreted as a degree of consistency in a performers’ individual style, regardless of
how close these estimations are to the diagonal. As it can be observed, the area with a
greater density of dots is concentrated differently for each performer. Some performers
show a predominance of red dots closer to the ordinate than others. In Experiment 1,
this indicates how consistent performers are in their use of large or small deviation
in tempo across all pieces according to their own idiosyncratic style. In Experiment 2,
however, the area in which the density of scattered dots is larger, indicates in which
sort of tempo or loudness values the pianists conform more to the norm as learned by
the model (from the expressiveness of other performers). For instance, it suggests that
the predicted variable (tempo or loudness) is predominantly used by that performer
around the small values (e.g. Figure 5.12, Shebanova, MSE: 0.0114) while others use
larger values (e.g. Figure 5.12, Rubinstein MSE: 0.0118) despite having similar MSE.

These visualizations shall complement the MSE error measures obtained in the mod-
els by showing the sparsity and density of the predictions. The visualizations in Ex-
periment 1 show much more sparsity in the predictions than in Experiment 2, which
aligns with the results obtained in the MSEs averages from both Experiments, being
lower in Experiment 2 as a consequence of the less noisy characteristics of the data.

In Experiment 1 (Figure 5.1.2), for the tempo model, the best and worse predictions
are Czerny-Stefanska and Chiu respectively. We can as well observe that both Czerny-
Stefanska, Fliere and Rubinstein have a consistent use of tempo according to the model,
having a rather large density area (in the shape of a diagonal). In the case of loudness,
the plots show the differences in how sparse the data dots are for performers such as
Mohovich and Cortot, and how much denser (and better predicted) are for Ashkenazy
and Czerny-Stefanska.

In Experiment 2 (Figure 5.1.3), the visualizations per performer show how much each
performer deviates per piece as played by all other performers. In the predictions of
tempo, we can see that Smith, Fliere and Rubinstein are not only the best predicted but
contain a rather large area of dots density, which suggests uniformity in the structural
approaches to the pieces performed. In the loudness models, we can see however that
Chiu and Czerny-Stefanska are predicted quite differently (MSE of 0.0023 for Smith
and 0.0031 for Chiu) despite having a rather similar plot. In the case of Cortot, the pre-
dictions are the worse, probably suggesting more variety in the expressive approaches.
In the plot by Kushner there is however a rather sparse area of dots that is, probably,
counterbalanced by an extense thick red diagonal, which indicates that besides having
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some outlier dots, the overall style is well predicted by the model. Thus, Kushner uses
loudness according to the structure as predicted and learned by the model but often
deviates by the norm defined by such model.

The goal of these illustrations is to contrast the results obtained with the MSE of the
models. By means of these illustrations, we can point out certain patterns of perform-
ance that may not be well captured by the standard use of MSE or Pearson correlations.
The visualizations of Experiment 1 thus show which performers are more consistent
to their own performing style or which ones are less constrained by their idiosyncratic
approaches to tempo and loudness. Therefore, how consistent each performer is to
the norm defined by her/ his own playing on other pieces. The visualizations of Ex-
periment 2, instead, may help to understand better how the structure of the pieces
predicted as performed by all other performers, constrains each performer.

5.10 CONCLUSIONS AND DISCUSSION

In this chapter, I have used Long Short-Term Memory networks to model and ana-
lyze individual performers based on combinations of performance features and score
features. I have shown how such combinations of features affect the predictions of ex-
pressive loudness and tempo. For such, I have presented two different experiments in
which performers were predicted based on individual models or on models based on
structural and shared approaches to the same pieces.

The most relevant finding in this study is that the expressiveness of performers in
their use of tempo and loudness is constrained by the metrical structure. In particular,
in all experiments, the best predictive models are obtained when combining tempo,
loudness and meter in the predictions of either tempo or loudness. These results indic-
ate that meter position serves as a relevant cue in the expressive gestures across te