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Abstract

Quantum protocols for few-qubit devices

With the advent of scalable quantum information technology, accurate control of quan-
tum systems is becoming increasingly important. We study theoretical control proto-
cols tailored for near-term experiments. The main results can be grouped in two cat-
egories. Part II deals with the construction of multiqubit logic gates through resonant
driving, whereas in Part III we focus on adiabatic transfer of quantum states. The pre-
ceding chapters in Part I contain preliminaries to these subjects.

In Part II, we consider multiqubit gates, such as the ToffoliN . These are essential
for most quantum algorithms, but turn out to be hard to perform on current quantum
computer experiments in practice. As opposed to the standard approach of compil-
ing larger unitaries into sequences of elementary gates that act on at most two qubits,
we propose a continuously evolving Hamiltonian which implements highly selective
multiqubit gates in a strongly-coupled many-body quantum system. We exploit the
selectiveness of resonant driving to exchange only 2 out of 2N eigenstates of some
background Hamiltonian, leading to a unitary time evolution we call iSWAPt1,t2 . The
basis in which these states are exchanged is the eigenbasis of the background Hamil-
tonian, and to make this operation relevant to the computational basis, we introduce
the concept of eigengates, operations that map between the two bases.

We analyze and simulate such gates in three concrete systems:

• the Krawtchouk chain, an example of an open XX chain that maps to free fermions,

• Polychronakos’ model, an example of an XXX or Heisenberg chain with long-
ranged interactions,

• and the Ising model, in which one special qubit must be coupled to all others.

In Part III, we consider adiabatic protocols that transfer a quantum state through
a spatially extended system. Such protocols find widespread application in current
physics and chemistry experiments, and may be necessary in future quantum infor-
mation technologies. Still, most adiabatic protocols are only defined on linear chains.
We extend two types of protocols to work on more general bipartite graphs, under cer-
tain restrictions.

The first type deals with a single quantum excitation hopping on a graph. The con-
ventional protocols called STImulated Raman Adiabatic Passage (STIRAP) and Coher-
ent Tunnelling by Adiabatic Passage (CTAP) allow the excitation to be transported be-
tween the ends of a linear chains, in a way that is highly resilient to decoherence. We
prove that similar protocols can be applied on any (semi-)bipartite graph which allows
a perfect matching both when the sender is removed and when the receiver is removed.

Secondly, we consider an anti-ferromagnetic XXX spin system laid out on a graph.
We find that spin states can be transferred and entanglement between distant sites can
be created, as long as the graph is bipartite and obeys a certain balance between the
maximum spin on both parts.
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Part I

Preliminaries





CHAPTER 1

A gentle introduction

“My metaphor for a quantum computer is that it’s
like a coastline. [...] I can manipulate how these
waves behave, [...] and the waves crashing on the
beach are like the output of the algorithm.”

Shelby Kimmel
The Schrödinger Sessions II, 7/29/2016

The front cover illustrates this metaphor.

This thesis is about quantum computers: devices just like our everyday PCs, except that
they exploit the theory of microscopic particles to perform tasks that current comput-
ers may be unable to do. The reason to study such machines probably deserves some
justification.

One way to look at quantum computers is from the perspective of Moore’s Law:
with transistors reaching atomic scales, we are clearly reaching a limit to shrinking
structures on computer chips, calling for other alternatives. However, this is not the
proper motivation for quantum computers. Contrary to what might be naively ex-
pected, quantum computers will probably not have a higher clock speed, nor allow
more bits to be stored. Their advantage stems from the ability to perform certain op-
erations that are classically impossible. Imagine traveling from Morocco to Spain. If
your technology limits you to travel by land, you would have to traverse North-Africa,
all the way past the Arabic peninsula, and through Europe, before you can reach your
destination. This represents the classical algorithm. In the same analogy, a quantum
computer endows you with the ability to traverse the water at the Strait of Gibraltar.
The new set of operations allows you to travel through previously inaccessible routes,
in a fundamentally different way.

Whether this extended set of operations is useful, depends on the precise problem
that the computer is supposed to solve. Some problems are already solved in a virtu-
ally optimal way (from an algorithmic viewpoint at least) by our current computers -
problems such as sorting a list, or running a simple text editor. Other problems can
greatly benefit from the additional possibilities that quantum offers. A couple of fa-
mous examples are the simulation of chemical processes [Llo96], searching an item in
an unstructured database [Gro96], and factoring large numbers (e.g. given the number
15, figure out 15 = 3×5) [Sho94], which turns out to break the encryption most com-
monly used on the internet. At the same time, a quantum internet would make some
of these cryptographic applications safe again [BB84]. The online Quantum Algorithm
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Zoo [Jor18] maintains a list of problems where quantum computers offer advantages.
The list is impressive, but makes up just a tiny fraction of algorithms used in practice.
It is expected that, within the foreseeable future, quantum computers will be special-
purpose devices, used only for very specific problems that would otherwise take ages
on a regular computer. An interesting twist might come from a large third class of
problems, for which it is unknown whether a quantum computer can exploit useful
shortcuts. Many promising examples in the fields of machine learning [BWP+17], lin-
ear algebra [Mon16], and finance [RL18; WE19] are in this category. Classifying these
problems is an active branch of research, but is not the focus of this thesis.

So what are these ‘extra operations’ that a quantum computer can perform? To gain a
glimpse of understanding, we introduce some basic concepts of quantum mechanics,
and how these compare to the classical world we’re used to. A regular computer uses
bits, systems that have a mere two states that we label by 0 and 1. As theorists, we
don’t care what these states actually are in the real world, but you may think of them
as coins lying on a table, either heads up or down. The state of a computer with n bits
can be completely described by a sequence of n bit values, such as 10011. Examples of
problems are ‘calculate the function f (x) = x +3 for a given x’ (where we interpret the
input x to be a number in binary encoding) or ‘find the shortest route from Amsterdam
to Groningen’ (where it is less clear how to encode this problem in just bits, but note
that classical computer science has already solved this problem for us!).

Enter quantum mechanics, where we will now be dealing with quantum mechan-
ical bits, often abbreviated to qubits. The laws of quantum mechanics dictate that a
quantum system with possible states 0 and 1 can also be in a superposition of the al-
lowed states, meaning that is in both states at the same time. How could this help? Well,
imagine we have 5 bits, each of which we bring into a superposition. The computer is
now in all of its possible states, ranging from 00000, 00001 all the way up to 11111, at
the very same time. We can now have it perform a classical calculation, such as f (x),
on its superposed bits. The outcome will then be a superposition of all the possible
outcomes f (x) for each of the inputs.

The good news here is that we used an immense amount of parallelism. We cal-
culated the result for 25 = 32 inputs with just a single execution of the function f (x) -
a classical machine would have to perform the same routine 32 times to achieve the
same result. The number of states, which is 2n for n qubits, is immense (more on this
later), and the prospects of using all of these for parallel calculations is a good reason
to be enthusiastic about quantum computing.

However, there is also bad news. We human beings are not quantum, and to read
information out of the quantum computer, we need to perform a quantum measure-
ment. Physics dictates that, when measuring a system in a superposition, the system
suddenly changes into just one of the many states it was in, at random. This voids
the whole advantage we had at calculating the function f (x) over all inputs: instead of
calculating it for 32 inputs at the same time, we just calculated it on a single, random
input (and sometimes we can’t even retrieve what that input was!).

The main message here is: quantum computers can employ a massive amount of
parallelism, but this can not readily be used for practical purposes. To actually gain
an advantage over a conventional computer, further quantum steps have to be taken:
the superposition could be processed further, in such a way that the computer’s state
is no longer a large superposition. Rather, the output should encode the answer to the
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problem of interest, with sufficiently large probability. The process where the various
constituents of a superposition clash such that certain outcomes are enhanced or sup-
pressed is called interference. This is very similar to the ocean swell depicted on the
front cover, which is comprised of various waves that interfere as they approach the
beach.

You may not be too overwhelmed by the factor 32 speedup I claimed earlier. The
importance here is not the number 32 itself, but rather the gain we get as the number
of qubits becomes very large. The number of unique states that a set of n qubits can be
in is 2n , which turns out to grow immensely quickly, even for a moderate number of
qubits. To indicate, we’ll compare the number of states to some other huge numbers:
a mere 32 qubits have more states than there are people on earth, 45 qubits have more
than the US national debt (in dollars), and with a mere 266 qubits, we can form more
unique states than there are atoms in the universe! Again, it is not immediately clear if
we can efficiently use all these states for practical purposes.

In fact, it seems downright impossible to create an accurate operation (or ‘gate’)
that works correctly on such an immense number of states. How can one possibly
check if a function acts correctly on each of the 2n possible inputs? Luckily, the fact
that we are using a large number of very simple qubits makes such problems tractable.
A single, isolated qubit, having just two states, is not hard to deal with, and current
technology allows near-perfect manipulation of small isolated systems. Even when we
bring just two qubits together, we are dealing with a mere four states. Still, the fact
that qubits interact with each other also means that interactions with other particles
around may occur, introducing potential errors. The current state-of-the-art allows
two-qubit gates whose errors are less than one or two per cent, often good enough for
hypothetical large-scale computers (assuming error correction, which we introduce
below) [BKR+08; BKM+14; HYC+19]. Surprisingly, using only operations that act on
one or two qubits at a time, it is possible to form any operation on the immense set of
2n states. This reduces the problem of building a quantum computer to optimizing a
small set of simple building blocks. A set of elementary gates that can approximate any
operation that is allowed by quantum mechanics is called universal, and it turns out
that it is not hard to find such sets [DBE95].

Over the years, various small-scale quantum computers were developed, based on
widely varying ideas. As an indication of the rapid progress, IBM and quantum startup
Rigetti already allow anyone to program up to 16 and 19 actual qubits over the cloud
[IBM; Woo18; DMH+18]. These machines are, in principle, universal computers.

Furthermore, statements about devices with as many as 49 [Int18], 51 [BSK+17], 53
[ZPH+17], and 72 [BL18] qubits have been reported, and devices with up to 128 and 160
qubits are planned [Rig18; Ion18]. These reports can be taken with a grain of salt: the
devices have either not yet been proven to actually work, or are used as simulators that
probe the internal physics of the computer. Neither of them have proved to be capable
of universal operations at this moment. Similarly, D-Wave reports the use of machines
with as many as 2000 qubits [DWa18] by various clients, although these machines are
not universal and will most probably not be able to run arbitrary quantum algorithms.

At the time of writing this, there are indications that Google and collaborators built
a device that outperforms the best classical computer on a certain calculation [Hac19].
This achievement has been popularly named ‘quantum supremacy’, although many
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scientists prefer the more appropriate term ‘quantum advantage’ [Wie17]. The calcu-
lation itself is probably not useful, but proving that quantum computers are not pre-
cluded by some unknown laws of physics is an important scientific breakthrough. Still,
note that the above is merely based on rumors, and we should wait for a peer-review
to confirm the validity.

The first evidence of quantum advantage opens the way to the so-called NISQ era,
where Noisy Intermediate Scale Quantum devices might be employed for calculations
that are useful [Pre18]. These devices are expected to have 50-100 qubits and will be
tailor-made for very specific jobs, such as simulation of chemical processes. A practi-
cal use case would most probably involve a classical computer that takes on the main
workload, with the NISQ computer executing very short subroutines on request.

When looking ahead towards the more interesting era where quantum comput-
ers can perform much longer calculations, one runs into the problem of errors. One
should know that, as opposed to classical bits, qubits cannot be copied and are ex-
tremely fragile. To avoid losing the information contained in a qubit, large scale quan-
tum computers are thought to require error correction, a technique where several tens
to thousands of physical qubits are combined to represent a single logical qubit. Until
we reach such stages, every single operation causes a minor distortion to the informa-
tion contained in the qubits, and after typically some 10−200 operations, the informa-
tion is effectively lost.

Other challenges that are faced by early quantum computers, are the connectivity
and control limitations. The connectivity deals with the physical location of the qubits.
Physics allows only qubits that are sufficiently ‘nearby’ to interact, and thus, most types
of qubits can only talk to a limited number of neighbors. Because a qubit cannot be
copied, the qubits have to be moved around frequently - either by physically displacing
the information carriers, or by ‘swapping’ the states of neighboring qubits. All of these
steps are again prone to errors, limiting the number of possible operations. Some types
of qubits, such as photons and trapped ionized atoms, do not face these connectivity
problems and have an edge here.

As for the controllability, it is important to know that many species of qubits operate
at extremely low temperatures. Any signal that is sent from a room temperature human
towards the qubit could heat up the qubits, hence disturbing their states. Most of these
qubits can change at millisecond or even nanosecond timescales, and thus require any
input signal to have pristine timing. Some platforms require the use of lasers, and to
get these to work at the required accuracy is extremely costly, both financially and in
terms of labor. Either way, no matter how one tries to build a qubit, even the best ones
are challenging to control at the aimed fidelities.

This is where the results of this thesis come in. In Part II, we aim to make useful gates
(operations) on a large number of qubits, but without requiring a long sequence of
smaller operations. Instead, we make optimal use of the native behavior of the qubits
when they sit close to each other, such that connectivity is no longer a problem, and
such that control requirements are as simple as possible.

In Part III, we consider a setting where qubits are pinned in place, unable to move.
The limitations in their connectivity give rise to some graph, a network that describes
how information can flow between qubits. Our goal is to start with a certain quantum
state at a certain location, and to transfer it to some other location. One may compare
this to flicking a network of ropes to transmit a signal: even though the individual parts
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of the rope barely move, a wave traveling over the ropes can travel a significant dis-
tance. The main difference with the rope analogy is that our protocols are adiabatic,
which means something like so slow that the system can relax to its most comfortable
state at all times. In particular, this avoids the hassle of accurate timing, and the re-
ceiver does not risk missing the wave that flies by over the rope.

Further reading For the rest of this thesis, I will assume strong familiarity with quan-
tum mechanics, and in particular, second quantization. For a good introduction of
these matters, I would recommend:

• David Griffith’s Introduction to Quantum Mechanics [Gri05], which covers all the
basics of quantum states, measurements, coherent time-evolution by Hamilto-
nians, quantum spin, the adiabatic theorem, among others.

• Alexander Altland’s and Ben Simon’s Condensed Matter Field Theory [AS10], which
covers basics of quantum field theory and second quantization, along with many
standard condensed-matter techniques such as basis transformations on field
operators.

Moreover, I assume the reader knows the basics of Quantum Computing. A good in-
troduction can be found in

• Michael Nielsen’s and Isaac Chuang’s Quantum Computation and Quantum In-
formation [NC10], which is the standard work of this field. It discusses quantum
information, circuits and gates, and the most important algorithms, and a lot
more.

• Aforementioned book can be rather extensive for a mere introduction. For a
much more compact account, I would recommend Ronald de Wolf’s Quantum
Computing: Lecture Notes [Wol19], whose first two chapters contain sufficient
preliminaries for this thesis.

The following two chapters aim to fix notation, remind the reader of various basics that
we built upon, and to introduce some of the more advanced techniques used through-
out this thesis.





CHAPTER 2

Condensed matter models

2.1 Qubits

We are used to expressing numbers in a positional numeral system, where a number
is represented by a string of digits. In our decimal system, with base b = 10, we use
the ten digits d ∈ {0,1, . . .9} as building blocks. The convention is that positive integers
are represented as little-endian strings ~d = {dN−1,dN−2, . . . ,d1,d0}, where the rightmost
(ending) symbol represents the digit with the smallest contribution:

dN−1dN−2 . . .d1d0︸ ︷︷ ︸
A string of digits

= d0b0 +d1b1 + . . .+dN−1bN−1︸ ︷︷ ︸
A weighted sum of the digits

.

This way, N digits of base b can represent bN different numbers. For historical and
engineering reasons [Gla81], we conventionally use ‘binary’ (b = 2) numbers in infor-
mation technology, such that digits are represented by bits.

In quantum computers, we would like to similarly represent numbers as quantum
states |d0,d1, . . . ,dN−1〉, using N quantum systems that can express two different states.
To this end, we introduce the quantum bit, or qubit,

|Ψ〉 =α|0〉+β|1〉, α,β ∈C, |α|2 +|β|2 = 1, (2.1)

which is a vector in the two-dimensional complex Hilbert space C2, spanned by unit
vectors |0〉 = (1,0)T and |1〉 = (0,1)T . We may sometimes use ‘spin up’ and ‘spin down’
to refer to these respective states. Throughout this thesis, we will use that a global
phase change of a qubit is not physically relevant.

We denote with~σ= {X ,Y , Z } the three Pauli matrices,

X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2.2)

which together with 12 form a basis for the 2×2 Hermitian matrices. The Paulis satisfy

[~σ j ,~σk ] =
3∑

l=1
2iε j kl~σl (2.3)

where ε is the fully anti-symmetric Levi-Civita tensor. As we typically do not care about
addition by identity, we may describe traceless Hermitian operators as Ô = ~n ·~σ, for
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Figure 2.1: The Bloch sphere. The axes correspond to the three Pauli matrices X , Y and Z , in
the sense that rotation around a vector ~n corresponds to the action U = exp(−i~n ·
~σ/2). Moreover, any point corresponding to a unit vector n̂ represents the unique
quantum state (up to a global phase) which is the +1 eigenstate of n̂ ·~σ.

some three-vector ~n. We sometimes use the spin operators ~S = {Ŝx , Ŝ y , Ŝz}, such that
for a spin- 1

2 particle, ~S = 1
2~σ. We also introduce the raising and lowering operators

σ+ = X + i Y

2
=

(
0 1
0 0

)
, σ− = X − i Y

2
=

(
0 0
1 0

)
. (2.4)

Note that we interchanged these compared to frequently used notation, such that in
our case, the raising operator σ+ increases the energy of the qubit with respect to the
Z -operator: σ+|1〉 = |0〉.

We often like to visualize the complex, two-dimensional qubit state on a real two-
dimensional sphere, called the Bloch Sphere, as depicted in figure Fig. 2.1. We repre-
sent our qubit states as

|Ψ〉 = cos(θ/2)|0〉+e iφ sin(θ/2)|1〉. (2.5)

We interpret (θ,φ) as coordinates on a sphere: φ ∈ (0,2π) is the longitude (the angle
along the equator of the sphere, with respect to some definition of φ= 0), and θ ∈ (0,π)
as the colatitude (the angle going downwards with respect to the upwards-pointing
Z -axis). The sphere allows us to graphically represent actions on quantum states: a
rotation of α radians around a three-dimensional unit vector n̂ over the Bloch sphere
is equivalent to acting on a qubit state |Ψ〉 with U = exp(−iα n̂·~σ

2 ). A quantum state
can also be uniquely defined as an eigenstate of these rotations: either as a normalized
vector n̂ (defining a position on the Bloch sphere), or as the eigenstate with eigenvalue
+1 of some Hermitian operator Ô = n̂ ·~σ.

2.2 Modeling interacting qubits

Condensed matter physics deals with the collective behavior of a very large (think 1020)
number of particles. In particular, we will consider spin models, which consist of N
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particles which are all unable to move, but have certain internal (spin) degrees of free-
dom. We describe such systems by a vector in the Hilbert space H = ⊗N

j=1 H j with

H j = Cd j , where d j is the internal dimension of particle j . We use subscripts to indi-
cate on which particle an operator acts.

In the following and in most of this thesis, we restrict to qubits, where d j = 2 for all
j . For example, the k’th Pauli matrix acting on the j ’th qubit is denoted as

~σk
j =12 ⊗ . . .⊗12 ⊗~σk ⊗12 ⊗ . . .⊗12. (2.6)

Exceptions are Section 2.5 and Chapter 9, where particles of arbitrary spin are allowed.

Whenever external forces act on our system’s qubits, we call these (local) fields. We
describe these by a Hamiltonian term of the form

H =
N∑

j=1

~B j ·~σ j , (2.7)

where ~B j ∈R3 for all j .
Moreover, the particles may interact, causing their internal states to change as a

function of the states of other particles. The set of possible interactions is huge, and
most of them may never occur in nature. To keep our focus on the most relevant types
of systems, we make two assumptions:

• The only allowed interactions between particles are 2-local. This means that the
Hamiltonian is a sum of terms, H =∑

j h j , where each term h j is Hermitian and
acts non-trivially on at most two particles.

• The interactions between the particles are symmetric, which means that the in-
teraction is similar even if the two particles acted on are exchanged.

The most general form of a 2-local Hermitian operators on qubits is

H = ∑
j<k

∑
p,q∈{1,2,3}

β
pq
j k ~σ

p
j ~σ

q
k + (local fields). (2.8)

The most frequently encountered two-body terms are of the form X j Xk , Y j Yk and
Z j Zk , and we will shortly discuss the properties of models in which these are the only
relevant terms. However, note that many more interactions satisfy the symmetry as-
sumptions, such as Z j Xk +X j Zk or X j Yk −Y j Xk . In fact, we will encounter the latter in
Chapter 6.

The naming conventions of models with a certain choice ofβpq appear to be some-
what confusing and sometimes contradicting. Therefore, we will always explicitly state
the Hamiltonian that we consider. Below, we tease the three models that are addressed
later in this chapter:

• The Ising-type interaction, of the form H =∑
j<k w j k Z j Zk (also sometimes called

ZZ interaction), is discussed in Section 2.3.

• The XY model, of the form H = ∑
j<k w j k

(
aX j Xk +bY j Yk

)
. We will focus on the

case a = b in Section 2.4, which is often referred to as the XX or spin hopping
model.
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• The Heisenberg or XYZ type interaction, which is of the form H =∑
j<k w j k

(
aX j Xk +bY j Yk + c Z j Zk

)
. If a,b,c are independent, the model is of-

ten referred to as XYZ model, but to indicate that some of the three parame-
ters are not independent, one may reflect this by making certain symbols in the
model name equal. For example, in Section 2.5, we consider the ‘isotropic’ case
a = b = c, which is often referred to as XXX model.

The goal: diagonalizing the Hamiltonian Important questions in theoretical physics
typically deal with the ground state (the vector corresponding to the lowest eigenvalue
of H), and thermodynamical properties of quantum systems, which can often be de-
rived if one knows the partition function Z = tr(e−βH ). On the other hand, for quantum
computers we typically assume coherent evolution of pure states, effectively requir-
ing zero temperature. We are then particularly interested in the dynamical properties
of the system, which follow from Schrödinger’s equation. Each of these questions is
closely related to finding the eigensystem of the model’s Hamiltonian. In this sense,
one might generally describe theoretical condensed matter physics, to zeroeth order,
as the science of diagonalizing k-local Hermitian matrices. This is, in general, a difficult
task, as the Hilbert space is of dimension

∏
j d j , which grows exponentially with the

number of particles1.

2.2.1 Spin models from graphs

Most well-known theoretical spin models have the same type of interactions through-
out the system, i.e. βpq

j k = w j kβ
pq , such that the system is completely described by the

set w j k , indicating the strength of the interaction between two particles, and a global
set of βpq that determine the interaction type. In such cases, it is intuitive to describe
the couplings in the language of graphs, intuitively a drawing of the various spin par-
ticles as structureless dots, two of which are connected by a line if and only if they
interact.

Mathematically, we describe a (simple) graph G = (V ,E) by its set of vertices V =
{ j }N

j=1, corresponding to the set of particles, and the set of edges E = {( j ,k)| j ,k ∈
V , w j k 6= 0} ⊆V ×V , denoting nonzero couplings between spins. More common in this
thesis are weighted graphs, G = (V ,E , w), which are described by the aforementioned
set of vertices V and edges E , complemented with a set of weights w : E →R. For either
type of graph, we may define the adjacency matrix AG : for unweighted graphs, it is a
0/1-matrix where the entry (AG ) j k is 1 if and only if ( j ,k) ∈ E , while for weighted graphs
it is the matrix formed by the set of weights (AG ) j k = w j k , with w j k := 0 if ( j ,k) 6∈ E . We
will sometimes abuse our conventions by assuming that an edge disappears whenever
a weight w j k is set to 0 on purpose, but this should be clear from the context. In gen-
eral, we allow self-loops, which are edges of the form ( j , j ).

Thanks to the mapping to graphs, we can use various notions from graph theory.
We denote with G − j the graph G in which the vertex j and all the edges incident to

1In physics, the jargon solving a model is often used, which vaguely means that the eigensystem of
a certain family of Hamiltonians is obtained analytically. Still, with the huge (or possibly infinite) di-
mensionality of space, an explicit description is often not realistic. Depending on the situation, ‘solving’
could mean as much as finding the ground state and its corresponding energy, finding the free energy,
finding the partition function, or expressing the eigenstates in the form of correlation functions or re-
cursive procedures.
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j are removed. The degree of a vertex is the number of edges incident to that vertex,
and likewise, the (maximum) degree of a graph is the largest degree found on any of
its vertices. A bipartite graph has a vertex set V which can be separated into two dis-
joint subsets V1,V2 such that each edge ( j ,k) ∈ E must run between V1 and V2 (that
is, j ∈ V1 and k ∈ V2 or vice-versa). Two sites j and k are connected if there exists a
path of edges between the two sites with nonzero weights, i.e. there exists a sequence
(w j ,a1 , wa1,a2 , . . . wan ,k ) of nonzero elements. A graph or subsystem is connected if all
pairs of vertices within that graph or subsystem are connected. If a system is not con-
nected, it may consist of non-connected islands. We then use connected components
to refer to these islands, i.e. the largest possible subsystems in which all vertices are
connected.

This way, we can define a spin Hamiltonian using a given graph G = (V ,E , w) and a
type of interaction {βpq }3

p,q=1:

H = ∑
( j ,k)∈E

w j k h j k , (2.9)

h j k = ∑
p,q∈{1,2,3}

βpq ~σ
p
j ~σ

q
k .

Likewise, given a model in which the type of interaction is constant, we can deduce
some interaction graph G . The weight values w j k arise under various different names
in literature, such as couplings or interaction strengths.

In order to represent a Hamiltonian, which has to be Hermitian, the graphs G are re-
quired to be undirected, meaning that edges always appear in both ‘directions’ (( j ,k) ∈
E ⇐⇒ (k, j ) ∈ E), with opposite weights respecting w j k = wk j

∗. The language of
graphs will turn out to be useful at various points throughout this thesis, especially
in Part III, where we extend the possible graphs on which certain protocols are known
to work.

2.2.2 Diagonalization using symmetries

Assume our Hamiltonian H admits some symmetry, in the sense that there is a unitary
operation A that does not cause the system’s energy to change:

AH A† = H ⇐⇒ [H , A] = 0. (2.10)

Then, knowing the eigensystem of A (which is often easier to obtain) could help us
diagonalize H . For each non-degenerate eigenvalue of A, the corresponding eigen-
vector must also be an eigenvector of H . Eigenvalues of A with higher multiplicities
are slightly more involved. Assume we know the eigenbasis of A, and we collect all
eigenspaces with the same eigenvalue. Then, A is of the form

A =µ11d1 ⊕µ21d2 ⊕ . . .⊕µJ1d J ,

where {µ j }J
j=1 are the distinct eigenvalues of A, each corresponding to an eigenspace

of dimension d j . Then H , in the same basis, must be of the form

H = H (d1×d1)
1 ⊕H (d2×d2)

2 ⊕ . . .⊕H
(d J×d J )
J , (2.11)

where we denote the shape of the matrices H j in superscripts. The proof, with a little
quantum sauce, is as follows. Let |φ〉 be an eigenvector of A such that A|φ〉 = µ j |φ〉.
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But |φ〉 needs not necessarily be an eigenvector of H , so perhaps H |φ〉 =∑
k αk |k〉 with

αk = 〈k|H |φ〉. What we do know is that AH |φ〉 = µ j H |φ〉, hence whatever states |k〉
appear in the superposition

∑
k αk |k〉, surely they cannot have an A-eigenvalue other

thanµ j . Thus 〈k|H |φ〉 = 0 whenever |k〉 and |φ〉 have a different A-eigenvalue, allowing
us to derive Eq. 2.11. We can summarize the whole argument as H preserves A, so it can
never map a quantum number µ j to some other quantum number.

When H is written in the form of Eq. 2.11, we say that H block-diagonalizes into J
blocks, with sizes d j , and the subspace corresponding to some eigenvalue µ j of A will
be called a sector or conserved subspace.

In fact, any symmetry operator A allows us to give some structure to the eigenstates
of H , by labeling them as |µ j , . . .〉, where we leave some space in the ket for other labels
that may be needed to uniquely identify a state. This is a well-known convention in the
theory of angular momentum, where |s,m〉 labels a state with Ŝ2

tot-eigenvalue s(s +1),
and simultaneously Ŝz

tot-eigenvalue m. Moreover, the computational basis states |0〉
and |1〉 can be interpreted as being the +1 and −1 eigenvectors of the operator Z . As
theorists, we do not necessarily have a clue what these states actually are, especially if
we do not care what Z actually ‘means’ in the real world. In a sense, all we care about
is that the states are well-defined with respect to some labeling operator, and that all
other operators involved satisfy the correct commutation relations with the labeling
operator and with each other. Of course, whenever the Hamiltonian does not have
enough symmetries to label all states uniquely, we may resort to the ‘ugly’ approach
where a state is defined as the k’th eigenvector of H within a conserved subspace.

2.3 The Ising model

Let us now turn to some frequently encountered models. The Ising model on a weighted
graph G = (V ,E , w) is described by

HIsing =
∑

( j ,k)∈E
w j k Z j Zk (2.12)

which equivalently describes models with interactions of the form X j Xk or Yk Yk , up to
a local basis transformation. We choose to analyze the model as given in Eq. 2.12 such
that the Hamiltonian is diagonal, and the computational basis states are eigenstates.
Note that H is invariant whenever all qubits are flipped, HIsing = X ⊗N HIsingX ⊗N , such
that each eigenspace is (at least) two-dimensional.

Whenever w j k ≤ 0, clearly the ground state is of the form α|0⊗n〉+β|1⊗n〉, because
whenever all qubits are in the same state, the energy of each individual term of H is
minimized. The choice of weights is often called ferromagnetic (FM), as the spins
tend to align, just as in the material iron.

Whenever w j k ≥ 0, the bits prefer to anti-align to minimize each term. This may not
always be possible: whenever G has a cycle of odd length, not all neighboring spins can
anti-align. In such cases, the system is called frustrated, and finding the ground state
of such systems is typically a lot harder. On the other hand, whenever the interactions
form a bipartite graph with parts V1 and V2, then there is a clear ground subspace,
spanned by the two Néel states

|Néel±〉 = |0⊗|V1|〉V1 |1⊗|V2|〉V2 ±|1⊗|V1|〉V1 |0⊗|V2|〉V2 .
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We call such systems anti-ferromagnetic (AFM) for the tendency of the spins to anti-
align.

Despite its simplicity, even this fairly classical model is notoriously hard to com-
pletely solve. The 1D chain is ‘easy’, in the sense that it is efficiently solvable by a
Jordan-Wigner mapping to free fermions (see below). On the other hand, finding the
ground state or partition function of the 3D grid with local fields is equivalent to solv-
ing NP-complete problems [Ist00], so it is unlikely that a closed-form solution exists.
Between these two extremes, there are many intermediate cases, many of which are
unsolved open problems [MM12].

2.4 The XX model and free fermions

The XX model, or spin hopping model, on a weighted graph G = (V ,E , w), is described
by

HXX = 1

2

∑
( j ,k)∈E

w j k
(
X j Xk +Y j Yk

)
(2.13)

= ∑
( j ,k)∈E

w j k

(
σ+

j σ
−
k +σ−

j σ
+
k

)
The model’s name XX refers to the two different interaction terms, X j Xk and Y j Yk hav-
ing equal amplitude - a model with different scalars in front of the X and Y parts would
be called XY model. For some extra confusion, some literature refers to Eq. 2.13 as XY
model [CDE+04; OEO+07].

First of all, notice that the total z-magnetization Ztot =∑
j Z j is conserved,

[HXX, Ztot] = 0

hence the Hamiltonian decomposes into blocks of constant number of ‘spin ups’. We
use the term Hamming weight to denote the number of qubits that are in the state
|1〉. All HXX really does is making spin up excitations ‘hop’ towards empty (spin down)
neighboring sites. The form of HXX is reminiscent of free fermion hopping, except that
the spin operators σ±

j at different sites commute rather than anti-commute.
As first described by Lieb, Schultz and Mattis [LSM61], if we restrict ourselves to

working on an open chain (G = PN ), the model can be solved analytically by using the
Jordan-Wigner transformation [JW28]. We define

f †
j = [

∏
k< j

Zk ]σ−
j , f j = [

∏
k< j

Zk ]σ+
j , (2.14)

where f j now obey precisely the canonical anti-commutation relations that are nor-
mally associated to fermionic particles:

{ f j , f †
k } = δ j k , { f j , fk } = 0, { f †

j , f †
k } = 0. (2.15)

The product
∏

k< j Zk makes the operators highly non-local, forming the so-called string
operator that trails the raising and lowering operators over the graph. Intuitively, the
string counts the number of fermions one has to ‘jump over’ in order to create or an-
nihilate a fermion at position j , which in turn leads to proper anti-commutative prop-
erties. On a general graph, this would lead to a rather involved Hamiltonian, but it
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happens that on the open chain, the string operators of σ+
j and σ−

j+1 precisely cancel.
Eq. 2.13 then becomes

Hff chain =
N∑

j=1
w j , j+1

(
f †

j f j+1 +h.c.
)

. (2.16)

The latter is an example of a free fermion model, in which individual particles jump
around over the lattice, without explicitly affecting one another. Clearly, the particles
are non-interacting, and we may just as well treat the system as if just a single particle
is present in it. This reduces the dimensionality of our problem from 2N down to just
N , making it efficient to solve. In fact, our treatment below works for general models
of free fermions hopping on any weighted graph G (with, of course, w j k = w∗

k j ):

Hff =
N∑

j ,k=1
w j k f †

j fk (2.17)

Mathematically, our goal is to massage Eq. 2.16 into the form

Hff diag =
N∑

k=1
λk c†

k ck (2.18)

through a canonical basis transformation

c†
k =

N∑
j=1

U j ,k f †
j , ck =

N∑
j=1

(U †)k, j f j , (2.19)

f †
j =

N∑
k=1

(U †)k, j c†
k , f j =

N∑
k=1

U j ,k ck . (2.20)

where U is a unitary matrix we get to pick ourselves, and the operators c† are often said
to create (fermionic) modes or quasi-particles. The effect of plugging this transforma-
tion into Eq. 2.17 is

Hff =
N∑

j ,k=1

N∑
k1,k2=1

w j kU †
k1, jUk,k2 c†

k1
ck2

=
N∑

k1,k2=1

(
U †wU

)
k1,k2

c†
k1

ck2 .

To retrieve the form of Eq. 2.18, we require (U †wU ) j k = δ j kλk . In other words, the basis
transformation amplitudes U j k are precisely the entries of the matrix U that diagonal-
izes w . In fact, we could have seen this in a more handwaving way too: the Hamilto-
nian Hff block-diagonalizes into sectors with fixed particle number. Restricting to just
a single fermion, the Hamiltonian is precisely the matrix w . Clearly, the single-particle
energies are the eigenvalues of w , and the eigenstates correspond to the eigenvectors
of w .

Having obtained Eq. 2.18, we may now read off the full eigensystem of HXX. The
eigenstates are of the form

|~s〉c = (c†
1)s1 (c†

2)s2 . . . (c†
N )sN |0〉 (2.21)
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where s ∈ {0,1}N is a binary string of length N that denotes which fermionic modes are
absent/present, and |0〉 is the fermionic vacuum. The subscript of a ket, such as the c in
|~s〉c , denotes the basis in which the state is given – we will use this convention through-
out this thesis. The energies of the eigenstates are sums of single-particle energies:

Hff|~s〉c =
(

N∑
k=1

skλk

)
|~s〉c . (2.22)

One might wonder what a state like |~s〉c looks like in our ‘natural’ basis, consisting of
local fermionic operators f or even going back to spinsσ±. The product of c† operators
in Eq. 2.21 leads to a huge number of terms, each with the same number of f operators
applied to |0〉. Many of these terms will drop out, because any two fermions at the
same location are not allowed ( f †

j f †
j = 0). In fact, the result is a weighted sum over all

combinations of unique f operators, weighted by some function F :

|~s〉c =
∑

z∈{0,1}N

F (~s,~z)|~z〉 f .

The function F (~s,~z) is a large sum, in which each term is a product of weights U j ,k .
These are precisely the matrix elements obtained when converting a certain ck oper-
ators (given by~s) into one of the possible f j operators (described by~z), except for the
minus signs that appear when re-ordering the f operators. This happens to correspond
precisely to taking the determinant! Hence, we claim that

F (~s,~z) = |U~s,~z |,

where | · | denotes the determinant of a matrix. With U~s,~z we denote the matrix U with
only the rows k kept corresponding to sk = 1, and likewise, where columns j are kept
only if z j = 1. We define the determinant of a non-square matrix to be zero, such that
any strings~z that do not have the same Hamming weight (i.e., number of particles) as
~s drop out. The function F is closely related to the Slater determinant, which is used
to represent that second quantized Fock states in first quantized notation [AS10].

In Chapter 5, we will put the techniques discussed here to creative use: we try
to make JW string operators that cover precisely half of the system, such that highly
non-local terms appear in the Hamiltonian. The time-evolution of such Hamiltonians
would allow one to make fast multiqubit logic gates that would otherwise take a large
circuit. To quantify precisely how long the gate takes, we need to calculate the matrix
element of the JW string sandwiched between different eigenstates. By representing
these eigenstates as Slater determinants, we obtain analytical expressions for the ma-
trix elements, again in the form of determinants of sub-matrices of U .

2.5 The XXX model, or Heisenberg model

For this model, we consider not only qubits (which are spin- 1
2 particles), but also more

general particles of arbitrary spin. Recall that for a single spin particle, the three spin
operators,~S = {Ŝx , Ŝ y , Ŝz}, are Hermitian operators acting on the spin vector space (s) =
Cd , of dimension d = 2s + 1. The spin operators have unique eigenvalues {−s,−s +
1, . . . s −1, s}, and as usual, we choose to work in the basis in which Ŝz is diagonal. The
basis vectors are thus uniquely identified by the eigenvalue m of Ŝz . Moreover, the
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operator Ŝ2 = (~S)2 = ~S ·~S commutes with each of the three spin operators and has a
single eigenvalue, s(s + 1). In fact, one may use this operator to define the value s of
a spin representation (s). Note the subtle difference between the many appearances
of the letter S. For clarity, we adhere to the convention that spin-related scalars (often
eigenvalues) get lowercase symbols. Spin operators are capitalized and wear a hat, and
spin vectors are overlined with an arrow.

The (isotropic) Heisenberg model, or XXX model, can be defined on a set of n spin
particles, each with a possibly different spin. The term isotropic refers to the weights
βpq being equal in each of the three spin directions x, y and z, which is not to be
confused with homogeneous, typically used to indicate that there is no spatial variation
in the couplings w j k . We let subscripts denote the particle (or set of particles) on which
an operator acts. For example, particle j has a total spin s j . Given a weighted graph
G = (V ,E , w), the Heisenberg model is described by

HH = ∑
( j ,k)∈E

w j k~S j ·~Sk

= ∑
( j ,k)∈E

w j k

(
Ŝx

j Ŝx
k + Ŝ y

j Ŝ y
k + Ŝz

j Ŝz
k

)
(2.23)

= ∑
( j ,k)∈E

w j k

(
1

2

[
Ŝ+

j Ŝ−
k + Ŝ−

j Ŝ+
k

]
+ Ŝz

j Ŝz
k

)
.

Here, the spin raising and lowering operators are defined as Ŝ± = Ŝx ∓ i Ŝ y . Also note
that, specifically for spin- 1

2 particles, the interaction can be written as a SWAP-operation,
up to addition by 1:

1

2

(
X j Xk +Y j Yk +Z j Zk +14

)=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.24)

Owing to the inner product between the vectors of spin operators~S in the top line of
Eq. 2.23, HH depends only on the relative orientation of the spin particles, but does not
reference any absolute direction. Hence, we expect the system to be invariant under
arbitrary global rotations around the x, y and z-axis, where all spin particles rotate in
the same way. We make this precise as follows. We define total spin operators

Ŝx
tot =

n∑
j=1

Ŝx
j , Ŝ y

tot =
n∑

j=1
Ŝ y

j , Ŝz
tot =

n∑
j=1

Ŝz
j , (2.25)

which we sometimes like to take together as ~Stot = (Ŝx
tot, Ŝ y

tot, Ŝz
tot) (note the difference

with ~S j of a single spin!). These are generators of global rotations of the form U (~θ)⊗n ,

with U (~θ) = exp(−i~S ·~θ). The Hamiltonian is actually invariant under these rotations,
because

[HH, Ŝαtot] = 0, α ∈ {x, y, z}. (2.26)

In proving the above, we save ourselves some work by noting that HH is symmetric
under any permutation of the labels x, y, z, hence we choose to only show commuta-
tivity for the z-component. This, in turn, can be seen from the bottom line of Eq. 2.23.



2.5. The XXX model, or Heisenberg model 19

The terms Ŝ+
j Ŝ−

k +h.c. are reminiscent of hopping in the XX model (Section 2.4) and

conserve the total z-magnetization. Also the terms Ŝz
j Ŝz

k clearly commute with Ŝz
tot.

Altogether, we find that indeed the number of spin excitations in any direction is con-
served, and equivalently, that the Hamiltonian is symmetric under rotations generated
by any Ŝαtot.

Using the previous result, we also find that

[HH, (Ŝtot)
2] = 0, (2.27)

where Ŝ2
tot =~Stot·~Stot. Having found two operators that commute with the Hamiltonian,

we know that we can label our eigenstates as |s,m〉, where s is some eigenvalue related
to Ŝ2

tot (which we will come back to in a bit), and m is the z-magnetization eigenvalue of
Ŝz

tot. Note that we can not do better at this point, because Ŝx
tot and Ŝ y

tot do not commute
with Ŝz

tot.

Now, what precisely are these subspaces, labeled by s and m, which are invariant
under the actions of Ŝz

tot and Ŝ2
tot? We saw that the rotations U (~θ) generated by ~Stot

commute with H . Intuitively, these operators rotate the system as a whole, leaving
relative angles unchanged, hence preserving the system’s energy. The system behaves
almost as if it collectively forms a single spin particle, with a potentially huge total spin.
This total spin is precisely the variable s of the collective system.

In the following, we resort to the representation theory of spin particles to make
this statement more precise. We will find that the total space spanned by n ‘real’ spin
particles decomposes into various ‘virtual’ spin particles. The decomposition is such
that the operators Ŝαtot rotate these virtual spins as if these are elementary spin particles,
and in particular, do not mix the states of different virtual particles. The particles each
have a well-defined spin s, which can be retrieved by acting on the spin states with the
operator Ŝ2

tot.
Exploiting that (s) is an irreducible representation of the algebra su(d), we can com-

bine multiple spin particles, taking the tensor products of spin spaces (s1), (s2) to form
the new space (s1)⊗ (s2). Within the new space, new irreducible representations of
su(d ′) can be found, which look precisely as the single-particle spaces (s) that we are
used to. The precise formulation is given by the Clebsch-Gordan rule:

(s1)⊗ (s2) =
s1+s2⊕

s=|s1−s2|
(s). (2.28)

This rule can be applied iteratively to obtain the decomposition of the space of n spin
particles, each having spin s1, s2, . . . , s j , . . . , sn :

n⊗
j=1

(s j ) =⊕
s

N s
s1,s2,...sn

(s). (2.29)

Here, N s
s1,s2,...sn

denotes the multiplicity with which the spin representation (s) appears.
In other words, upon combining real spin particles, we retrieve a huge number of vir-
tual spin particles. This structure of the total Hilbert space is depicted in Fig. 2.2. In
each of these spaces (s), the spin operators ~Stot act just like how ~S would act on a nor-
mal, isolated particle of total spin s. The operator Ŝ2

tot now plays a more interesting
role: it probes spin of the virtual particle, returning the eigenvalue s(s +1).
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Figure 2.2: The irreducible (spin) subspaces for a system of n spin- 1
2 particles. Left: The space

(s)⊗n (n labeled horizontally) decomposes into spaces of spin s′ (vertically) by iter-
ative application of Eq. 2.28. The multiplicities N s′

1
2 ,... 1

2

are given by the number of

paths leading to a point (n, s) starting at (0,0). Right: For n = 4, eigenstates of HH

have a fixed total spin s = 0,1 or 2 (vertical), whose 2s+1 basis states can be labeled
by their z-magnetization m (horizontal). In this case, the multiplicities of the spin
spaces are 2, 3 and 1, respectively, which we depict as copies closely behind one
another. This way, each square corresponds to a single state.

Let us now turn back to the Heisenberg Hamiltonian of Eq. 2.23, with the aim of
diagonalizing it. We know that it commutes with Ŝ2

tot, which takes the form

Ŝ2
tot =

⊕
s

s(s +1) 1(2s+1)×N s
s1,...,sn

.

Moreover, HH commutes with Ŝz
tot, which depends only on the Hamming weight of a

state. This way, we can see that HH decomposes into blocks, each acting on a subspace
of fixed eigenvalues s,m. Note that the energy of two states with the same values of
s,m can actually differ, because there may be multiple irreps with the same s. On the
other hand, within each irrep (s), due to rotational invariance, the energies are equal
for each m.

Ferromagnetic case Just as with the Ising model, we can easily guess some of the
ground states when couplings are ferromagnetic, w j k ≤ 0. We already noted that neigh-
boring states that have their spin aligned are energetically favorable. Indeed, we find
that each two-body interaction in Eq. 2.23 is minimized whenever all spins j have
either maximum z magnetization |m = s j 〉 or minimum z magnetization |m = −s j 〉.
These states have the minimum and maximum possible total z-magnetization, m =
±∑

j s j , and hence must correspond to the unique spin representation with the high-
est possible spin, (s = ∑

j s j ). By rotational symmetry, all other values of m share the
same energy under HH, hence the ground space is spanned by at least the states |s =∑

j s j ,m〉. We have not shown that these are the only ground states - there could in
principle be states with different s with the same ground energy.

Anti-ferromagnetic case Equivalently, we may consider the anti-ferromagnetic set-
ting of couplings, where w j k ≥ 0. On a frustration-free graph, one might naively think
that the Néel state is again a lowest energy state, but one can check that the bottom
line in Eq. 2.23 does not allow this state as an eigenstate (due to the hopping terms
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Figure 2.3: A plot of a mock function E(s) that would be in line with the Lieb-Mattis theorem.
As long as s > g , then the function is strictly increasing. If s < g , then we cannot say
anything about the ordering of energies, but at least we know all energies are higher
than the ground state occurring at s = g .

Ŝ+
j Ŝ−

k ). Lieb and Mattis [LM62] found a more concrete description of the ground state
as long as the system’s graph is a bipartite graph. On these graphs, we define the spin
imbalance g as the difference between the maximum allowed spin of each part:

g = ∑
j∈V1

s j −
∑

j∈V2

s j = max sV1 −max sV2 . (2.30)

Note that spin imbalances can be simply added when combining spin systems: if sub-
systems have spin imbalances g1, g2, . . ., then the combined system has a spin imbal-
ance g =∑

g j . The result by Lieb and Mattis can then be stated as follows:

Theorem (Lieb-Mattis). Let G be a weighted, connected, bipartite graph, whose weights
are anti-ferromagnetic (w j k ≥ 0). Then, the ground state of HH has total spin s = g .
Moreover, if E(s) denotes the lowest energy of the subspace with fixed total spin s, then

E(s +1) > E(s) for all s ≥ g ,

E(g ) < E(s) for all s < g .

A cartoon of this result is shown in Fig. 2.3. The result shows that, in particular, if
the maximum allowed spins on V1 and V2 are equal, then the ground state has s = 0,
i.e. it is a singlet and non-degenerate. If sV1 = sV2 + 1

2 , then the ground state has s = 1
2

and the ground state is 2-dimensional (allowing one to encode a qubit), and so forth.

Proof. The proof of the theorem uses the following argument. I recommend keeping
the RHS of Fig. 2.2 in mind for a better understanding.

1. Within the subspace of fixed (Ŝtot)z = m, there is a unique ground state |ψm
gs〉

with all-positive coefficients (in a specific basis).

Consider the rotation U = ∏
j∈V1 Ŝz

j . Then, U HHU † looks as follows in the com-

putational basis: all diagonal elements (from terms Ŝz
j Ŝz

k ) are positive and all off-

diagonal elements (from Ŝ−
j Ŝ+

k +h.c.) are negative. Hence, within each block of
fixed m, the unique lowest energy state is a superposition of basis states with only
positive coefficients (by the Perron–Frobenius theorem). We denote this state by
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|ψm
gs〉. The state has nonzero overlap with all computational basis states with

(Ŝtot)z = m, because the hopping terms map to all states with the same m, unless
some sites are disconnected. Because it is impossible to make two orthogonal
states with positive amplitude on every single basis element, this ground state
must be unique (per value of m).

2. If |ψm
gs〉 has s = m, then E(s +1) > E(s).

Note that the subspace with total spin s includes all m up to and including s.
This means that the lowest-energy state with fixed m, |ψm

gs〉, could possibly lie in
all subspaces with total spin s ≥ m. If |ψm

gs〉 lies in the space s = m, then s+1 must
contain only states with a strictly higher energy.

Graphically, on the LHS of Fig. 2.2, if |ψm
gs〉 has s = m, then the ground state of an

m-column occurs in the lowermost row. All higher rows also contain states with
the same m, but they happened to not hold the ground state, hence these rows
must have strictly higher energies. Thus, E(s +1) must be larger than E(s).

3. For a special Hamiltonian H̃ , for all s ≥ g , the state |ψm
gs〉 has s = m. Let H̃ be

the Hamiltonian of the isotropic Heisenberg where all allowed edges have weight
w j k = 1 (recall that the graph was assumed to be bipartite):

H̃ = ∑
j∈V1, k∈V2

~S j ·~Sk =~SV1 ·~SV2 .

Here, we defined ~SVx =
∑

j∈Vx
~S j . Note that ~Stot = ~SV1 +~SV2 and hence ~Stot ·~Stot =

(~SV1 )2 + (~SV2 )2 +2~SV1 ·~SV2 . Therefore, we can write H̃ in a form in which all oper-
ators mutually commute:

H̃ = 1

2

(
Ŝ2

tot − (~SV1 )2 − (~SV2 )2) (2.31)

Then, using sV1 and sV2 to denote the spin eigenvalues related to (~SV1 )2 and (~SV2 )2,
the energies ε̃ of H̃ depend only on the spin values as follows:

ε̃= 1

2

(
s(s +1)− sV1 (sV1 +1)− sV2 (sV2 +1)

)
.

To find the ground state, one has to compromise between minimizing s and max-
imizing sV1,2 . Due to the form of the Clebsch Gordan rule, Eq. 2.28, we can dis-
tinguish two cases. Firstly, if s ≥ g , then for any choice of sV1,2 , the minimum
possible total spin is s = |sV1 − sV2 |. We will now argue that the lowest energy al-
ways occurs when sV1,2 are maximal. Without loss of generality, assume sV1 > sV2 .
Then, the energy simplifies to ε̃ = −sV1 sV2 − sV2 . Clearly, the spins on each part
should be maximized, and s = g = |max sV1 −max sV2 |. The state |ψm

gs〉 lives in
the sector with the lowest possible energy for the given m, which is, in this case,
s = m.

A second case occurs when s < g . In this case, the rule s > |s1−s2| tells us that sV1,2

cannot be optimized, and it is unclear in what spin sector the state |ψm
gs〉 would

live. All we know is that surely s < g is suboptimal - the ground state will not be
in this sector.
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4. The state |ψm
gs〉 of a general HH has the same total spin s as |ψm

gs〉 of H̃ .

We found that for any choice of weights w that satisfy the assumptions, the state
|ψm

gs〉 has only positive entries (in some basis). This holds for |ψm
gs〉 of HH as well

as for H̃ , meaning that both states have nonzero overlap. Therefore, the value of
s of any |ψm

gs〉 must be the same as whichever holds for H̃ .

Putting it all together, we have to distinguish the two cases again. If we are interested
in the sector s ≥ g , then 3. and 4. state that |ψm

gs〉 has s = m, and by 2. the energy as a
function of total spin E(s) must be strictly increasing. On the other hand, when s < g ,
we are unable to say anything about E(s). All we know is that the global ground state is
not in these sectors.

In Chapter 9, we will elaborate on these (fairly old) results in the more modern con-
text of adiabatic state transfer, where the uniqueness of each |ψm

gs〉 guarantees an adia-
batic protocol to work without encountering degeneracies.





CHAPTER 3

Manipulating quantum states

3.1 How to form a quantum gate

We start by sketching the most elementary methods to change a quantum state. The
changes occurring to a quantum state |ψ〉 ∈ H in a closed system (i.e. there is no in-
teraction with the environment) are captured by the Hamiltonian H . This operator
plays a dual role in quantum mechanics. Firstly, H is the Hermitian observable whose
eigenvalues determine the energy λ j of an eigenstate |ψ j 〉,

H |ψ j 〉 =λ j |ψ j 〉.

Secondly, the Hamiltonian uniquely defines a trajectory of a state through the Hilbert
space as a function of time, through Schrödinger’s equation1 (SE)

∂t |Ψ(t )〉 =−i H(t )|Ψ(t )〉. (3.1)

Note the different notation between |ψ j 〉 for eigenstates and |Ψ(t )〉 for time-evolving
states, which are generally not eigenstates. SE guarantees that |Ψ(t )〉 evolves in a uni-
tary way, making sure that the state is normalized at all times, and that initially orthog-
onal states remain orthogonal at any time t . We can thus describe the time-evolution
of a state as

|ψ(t )〉 =Ut |ψ(0)〉

where Ut is called the (unitary) time evolution operator. Note that we always assume
a time evolution to start at t = 0. A major part of this thesis is devoted to solving the
time-evolution, i.e. finding Ut with H(t ) given, or the inverse control problem, where
we try to construct a Hamiltonian H(t ) which leads to a required time evolution Ut ,
within realistic constraints.

Solving time evolutions Sometimes the time-evolution of H is easy to find. For one,
if H is time-independent, then

Ut = exp(−i H t ) (H time-independent)

1We assume units such that ħ= 1.



26 Chapter 3. Manipulating quantum states

where the exponential of a matrix is defined through the Taylor series. This equation
is particularly interesting whenever we know the eigenbasis of H , such that eigenstates
merely pick up a dynamical phase

|ψ j (t )〉 = exp(−i H t )|ψ j (0)〉 = exp(−iλ j t )|ψ j (0)〉.

Of course, finding the eigenbasis itself may be a nontrivial problem. The time evolution
is more tricky to solve whenever H is time-dependent, but in Sections 3.1.2 and 3.1.3
we present two cases in which such time evolutions can be solved approximately.

Control problems Given a unitary Ut , one can always find a Hamiltonian H that
causes precisely such a unitary time evolution. The solution is H = 1

−i t log(U ), such
that exp(−i H t ) = U . With this in mind, one might wonder what is so hard about
control problems? The problem is that, in general, the solved Hamiltonian H will be
highly non-local, and it may be impossible to engineer such Hamiltonians in nature.
To enforce properties such as 2-locality (see Section 2.2), one has to resort to time-
dependent Hamiltonians, or sequences of unitary steps.

Practical control problems typically assume a restricted Hamiltonian of the form
[DP10]

H(t ) = Hbg +
∑

j
f j (t )H j , (3.2)

where Hbg consists of forces that are always on (and cannot be turned off), whereas
various terms H j can be modulated in amplitude through scalar controls f j (t ). The
controls themselves may also be subject to certain restrictions. It should be clear that,
with these assumptions, it is much more challenging to find a set of time-dependent
control functions { f j (t )} that precisely lead to the desired unitary evolution Ut .

Especially in the context of quantum information technology, these control prob-
lems have applications in the construction of tiny computational steps on qubits, which
are then called quantum gates. To develop some intuition for quantum control, let us
consider the toy problem constructing a very simple gate: flipping the state of a single
quantum bit, as described by the Pauli operator X . The problem is formalized as:

Find controls ~f (t ) = { fx(t ), fy (t ), fz(t )}

such that the system H(t ) = Hbg + fx(t )X + fy (t )Y + fz(t )Z (3.3)

causes the evolution Ut = X .

3.1.1 Quenches

A quench is a sudden (often instantaneous) change to a Hamiltonian. In particular,
a system that was initially in an eigenstate, may not be after the quench, leading to
a non-trivial time evolution. Quenches typically assume that the Hamiltonian, as a
function of time, is piecewise time-independent (i.e. constant), but this is no hard rule.
We will often use the word ‘quench’ to mean that a Hamiltonian is turned ‘on’ at t = 0,
and is then turned ‘off’ at some later time T , leading to a well-defined time evolution
UT = exp(−i HT ).
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Quench Resonant driving Adiabatic

Figure 3.1: The evolution of an initial state |0〉 by each of the three protocols we discuss, de-
picted on the Bloch sphere. From left to right: a quench by H = ΩX , a resonant
driving protocol (in the lab frame), and an adiabatic protocol executed sufficiently
fast, so that some diabatic error is visible (ΩT = 7π).

To form a bit-flip, we observe that the Hamiltonian H = ΩX is precisely the field
which generates the unitary U = X after a time t = π

2Ω ,

Ut = exp(−iΩX t ) = cos(Ωt )1+ sin(Ωt )X ,

where the factor of 2 comes from the eigenvalue gap of X . The evolution of an initial
state |Ψ(0)〉 = |0〉 is depicted on the Bloch sphere in Fig. 3.1.

In general, any time-independent quench on a two-level system can be described
as a rotation of the form

Un̂(t ) = e−i t~n·~σ = cos(nt )1− i sin(nt )

(
~n

n

)
·~σ (3.4)

with ~n =
nx

ny

nz

 , n = |~n| =
√

n2
x +n2

y +n2
z .

Such a rotation around the Bloch sphere by an angle θ = nt
2 is sometimes referred to as

a θ-pulse. For example, the X -gate we discussed before is a π-pulse around the vector
~n = (1,0,0)T .

We conclude that the problem in Eq. 3.3 with Hbg = 0 can be straightforwardly

solved by choosing ~f (t ) = {Ω,0,0}, with Ω= 1
2 . Even if Hbg 6= 0, we may use ~f to cancel

this field.

3.1.2 Resonant driving, and the rotating frame

Now, let us make the control problem slightly harder, by assuming that the qubit is
placed in a magnetic field in the z-direction, which we cannot get rid of. We thus sup-
plement the previous problem with the assumptions

Hbg =
∆

2
Z and fz(t ) = 0.

In this case, the previous strategy of turning on the field ΩX causes a rotation around
~n = (Ω,0, ∆2 )T , which is not what we want. Intuitively, the Z term causes a state to rotate
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around the equator of the Bloch sphere, whereas the X field pulls the state north at one
side of the sphere, and south on the other. If the Z -rotations are sufficiently fast, then
the movement to the north and south effectively cancel, such that the X -gate is never
achieved.

In general, to bridge an eigenvalue gap of size ∆ (note the factor 2 due to the eigen-
value gap of Z ), one needs to create a driving field with precisely this amount of energy.
We claim that the following Hamiltonian does a better job:

H(t ) = ∆
2

Z +Ω
[

cos(ωdrivet +φ)X + sin(ωdrivet +φ)Y
]

(3.5)

=
( ∆

2 Ωe−i (ωdrivet+φ)

Ωe+i (ωdrivet+φ) −∆
2

)
,

with ωdrive = ∆. Now, when the state oscillates around the equator, the rotation axis
cos(ωdrivet )X + sin(ωdrivet )Y rotates at the same angular velocity, causing it to stay or-
thogonal to it. This way, it pushes the state north (or south) at all times, without any
cancellation effects.

We make this precise using a smarter perspective, the rotating frame or interac-
tion picture. Effectively, we perceive the system through a camera that looks at the
Block sphere, facing downwards from the positive z-axis. By rotating the camera at
the same angular velocity ωdrive, it seems as if both the rotating state and the rotation
axis cos(ωdrivet )X + sin(ωdrivet )Y stand still, such that we retrieve the quench of Sec-
tion 3.1.1.

The rotating frame In general, for any Hamiltonian H , we can remove some part H0

from the Hamiltonian, at the cost of making the remaining parts more complicated.
We define the time-dependent basis transformation

Urf(t ) = exp(+i H0t ). (3.6)

We use dots over symbols to denote time derivatives, and let tildes denote quantities in
the rotating frame, such that ˜|k〉 =Urf|k〉. Importantly, the rotating frame evolves under
a different Hamiltonian H̃ , which is not quite simply UrfHU †

rf. We derive it by starting

from the state ˜|k〉 and rewriting it using all known rules from the normal frame:

i∂t
˜|k〉 = iU̇rf|k〉+ iUrf

˙|k〉 Chain rule

=−H0Urf(t )|k〉+Urf(t )H |k〉 Applied Schödinger in standard picture

=−H0
˜|k〉+UrfHU †

rf
˜|k〉 Convert | j 〉 back to rotating frame

We conclude that the Hamiltonian that governs the rotating frame is given by

H̃ =UrfHU †
rf −H0. (3.7)

The time-evolution in the rotating frame may be easier to solve. For example, one
might obtain the time evolution Ũt between times 0 and t . The corresponding unitary
in the lab frame is then given by

Ut =U †
rf(t )Ũt . (3.8)
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To gain some more intuition for the effect of the rotating frame: on a Hamiltonian H
with matrix elements H j k , the basis transformation U = e iδ|`〉〈`|t causes the `’th row
and column obtain a rotating phase:

H̃ =



H11 . . . H1`e−iδt . . . H1n
...

. . .
...

...
H∗

1`e iδt . . . H``−δ . . . H`ne iδt

...
...

. . .
...

H∗
1n . . . H∗

`ne−iδt . . . Hnn


Rabi cycles Turning back to our rotation on the Bloch sphere, we can remove the
compulsory magnetic field Hbg through the basis transformation Urf = exp(+i ωrf

2 Z ).
The rotating version of the Hamiltonian in Eq. 3.5 then becomes

H̃ =
(
∆−ωrf

2

)
Z +ΩUrf

[
e−i (ωdrivet+φ)σ++e+i (ωdrivet+φ)σ−

]
U †

rf (3.9)

=
(
∆−ωrf

2

)
Z +Ω

[
e−i (ωdrive−ωrf)t−iφσ++e+i (ωdrive−ωrf)t+iφσ−

]
.

In the first step, we used that σ± = X∓i Y
2 , and in the last step, we used Urfσ

±U †
rf =

e±iωrftσ±. Note the difference between the omega’s: ωdrive is a physical thing, describ-
ing the oscillation frequency of the X and Y fields in the lab frame, whereas ωrf is just
a parameter invented by us: it describes how fast our camera is rotating. In particu-
lar, we like to choose ωrf = ωdrive, so the camera follows the driving axis, making the
Hamiltonian time-independent:

H̃ =
(
∆−ωdrive

2

)
Z +Ω

[
e−iφσ++e+iφσ−

]
(3.10)

=
(
δ/2 Ωe−iφ

Ωe+iφ −δ/2

)
.

In the last step, we defined the detuning or off-resonance δ=∆−ωdrive. Evolution by
H̃ dictates Rabi flopping:

Ũt = e−i H̃ t = cos(nt )1− i sin(nt )

(
~n

n

)
·~σ (3.11)

with ~n =
cos(φ)Ω

sin(φ)Ω
δ/2

 , n =
√
Ω2 + δ2

4
.

From this, we conclude that a perfect rotation around the axis cos(φ)X+sin(φ)Y can be
performed if δ= 0 and t = π

2Ω , meaning that each computational basis state is inverted
into the other. Specifically, at φ= 0, we retrieve the X -gate, and at φ= π/2 the gate Y .
Remember that all of this is in the rotating frame - we should not forget to move back to
the lab frame using Eq. 3.8, which re-inserts the accumulated phase due to Hbg. We will
use the term resonant driving to indicate the choice δ= 0 with the aim to implement
such transitions between computational basis states.

We also consider what happens whenever the driving is off-resonant, in the limit
where |δ| À |Ω|. Here, ~n points mainly in the Z -direction, causing hardly any mixing
of the computational basis states, but rather giving the states a hard-to-predict relative
phase. This effect is otherwise known as the Autler-Townes or AC Stark effect.
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The rotating wave approximation Sometimes, it may be impossible to have both
the X and Y fields on at the same time in Eq. 3.5. In that case, we may still work with a
Hamiltonian of the form

H(t ) = ∆
2

Z +2Ωcos(ωdrivet +φ)X (3.12)

=
( ∆

2 Ω
(
e−i (ωdrivet+φ) +e+i (ωdrivet+φ)

)
Ω

(
e−i (ωdrivet+φ) +e+i (ωdrivet+φ)

) −∆
2

)
,

(note that we changed Ω→ 2Ω here), which looks slightly more daunting in the same
rotating frame we used before:

H̃ =
(
∆−ωrf

2

)
Z

+Ω
[
σ+

(
e−i (ωdrive−ωrf)t−iφ+e+i (ωdrive+ωrf)t+iφ

)
+σ−

(
e−i (ωdrive+ωrf)t−iφ+e+i (ωdrive−ωrf)t+iφ

)]

An important clean-up step that is canonically taken at this point is the rotating wave
approximation (RWA). It tells us thatωrf−ωdrive is a fairly small number, whereasωrf+
ωdrive is huge compared to typical time-scales in our problem. Therefore, the terms
e±i (ωrf+ωdrive) keep causing off-resonant rotations back and forth, so fast and so tiny that
they merely cause a state to wiggle in phase space, without changing the qualitative
behavior of the system. The RWA tells us that we can remove these terms from the
Hamiltonian. This approximation is only valid whenever [IGM+05]

|ωdrive −ωrf|¿ωrf,ωdrive such that the other exponentials do rotate slowly, and

Ω¿ωrf,ωdrive such that the wiggles are small.

One can check that discarding these quickly oscillating terms leaves us with the same
Hamiltonian we found in Eq. 3.9, and all the previous conclusions about (off-)resonance
apply again.

The resonant X -gate Turning back to our X -gate: the gate can be obtained using the
Hamiltonians in Eq. 3.5 or Eq. 3.12. In Fig. 3.1, we sketch the trajectory that an initial
state |0〉 follows on the Bloch sphere in the lab frame, in which it quickly oscillates while
descending down the sphere. For the case in which driving only occurs along the X -
axis (Eq. 3.12), we sketch the same time evolution in the rotating frame in Fig. 3.2, such
that the error due to the quickly rotating waves is visible.

In Section 4.3, we will come back to the toy model presented here, as it turns out to
also be relevant when constructing a quantum gate that acts on multiple qubits.

3.1.3 Adiabatic passage

Assume you are asked to transport a tray filled with fancy-looking yet somewhat wob-
bly cocktails. Clearly, you want the tray to arrive at its destination in the same state that
it is now. Your best approach is to accelerate the tray rather slowly, or else you may spill
the drinks!
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Figure 3.2: The evolution of the initial state |Ψ(0)〉 = |0〉 due to the Hamiltonian in Eq. 3.12, in
the rotating frame. We assume resonance (ωrf =ωdrive =∆). When Ω/∆ is small, as
on the right-hand side, then the RWA is justified, and the evolution is very similar
to the quench H =ΩX . When Ω/∆= 0.1, the approximation errors are much more
visible, and whenΩ/∆= 0.5, the evolution is far from the aimed trajectory.

The same line of thought turns out to hold in quantum mechanics. If at t = 0 a sys-
tem is in the j th eigenstate of H(t ), then it will still be approximately in the j th eigen-
state at later times, provided that j is non-degenerate and H(t ) changes sufficiently
slowly. Note that the eigenstates themselves have probably changed in time, providing
us with an intuitive method to change a quantum state to our liking. We will study the
precise mechanics behind the adiabatic theorem, following David Griffiths [Gri05].

As H(t ) is now time-dependent, we define that instantaneous eigensystem of H as
the eigenvalues λ j (t ) and eigenvectors |ψ j (t )〉 at time t :2

H(t )|ψ j (t )〉 =λ j (t )|ψ j (t )〉. (3.13)

We can express any solution to Schrödinger’s equation |Ψ(t )〉 in the basis of instanta-
neous eigenstates,

|Ψ(t )〉 =∑
j

c j (t )e−iθ j (t )|ψ j (t )〉, (3.14)

θ j (t ) =
∫ t

s=0
λ j (s)d s′,

where θ j (t ) is a dynamical phase that we take out of c j (t ) for later convenience. Plug-
ging this into SE, and omitting explicit time-dependence for readability, we obtain∑

j

(
ċ j |ψ j 〉+ c j∂t |ψ j 〉− i c j θ̇ j |ψ j 〉

)
e−iθ j =∑

j
c jλ j e−iθ j |ψ j 〉∑

j

(
ċ j e−iθ j |ψ j 〉+ c j e−iθ j ∂t |ψ j 〉

)
= 0

ċk e−iθk +∑
j

c j e−iθ j 〈ψk |∂t |ψ j 〉 = 0

ċk (t ) =−∑
j

c j 〈ψk |∂t |ψ j 〉e−i (θ j−θk ). (3.15)

2Note that there is an ambiguity in the phase of the eigenvectors, which can be adjusted at each time
t . We do not define these phases as these turn out to be unimportant for our purposes, but a rigorous
approach can be found in Ref. [BF28].
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In the first step, we canceled the last two terms, and in the second, we took the projec-
tion to the k’th eigenvector. The quantity 〈ψk |∂t |ψ j 〉 already gives some insight in what
we mean with the adiabatic theorem: if the instantaneous eigenvector |ψ j (t )〉 rotates
in the direction of other eigenvectors very slowly, then the amplitudes ck (t ) of other
eigenvectors do not change too much. To better quantify how much this ‘leakage’ to
other states actually is, we need to replace 〈ψk |∂t |ψ j 〉 by something that we obtain as
follows, by differentiating the eigenvalue equation, Eq. 3.13:

Ḣ |ψ j 〉+H∂t |ψ j 〉 = λ̇ j |ψ j 〉+λ j∂t |ψ j 〉
〈ψk |Ḣ |ψ j 〉+〈ψk |H∂t |ψ j 〉 = λ̇ j 〈ψk |ψ j 〉+λ j 〈ψk |∂t |ψ j 〉.

Hence for the ‘leaky’ states k 6= j ,

〈ψk |Ḣ |ψ j 〉+λk〈ψk |∂t |ψ j 〉 =λ j 〈ψk |∂t |ψ j 〉

〈ψk |∂t |ψ j 〉 =
〈ψk |Ḣ |ψ j 〉
λ j −λk

.

Note that in this step, we had to assume that λ j is non-degenerate. Plugging this back
in to Eq. 3.15,

ċk (t ) =−ck〈ψk |∂t |ψk〉−
∑
j 6=k

〈ψk |Ḣ |ψ j 〉
λ j −λk

e−i (θ j−θk ). (3.16)

Now, this expression is exact. The adiabatic approximation asserts that the oscillations
e−i (θ j−θk ) are so fast compared to other timescales in our system that on average the
second term does not influence ċk (t ). The rigorous proof was first given by Born and
Fock [BF28], but we follow the more accessible notation of Ref. [Kat11].

Firstly, we should define what we mean with ‘slow’. Let H̃(s) be a Hamiltonian on
the rescaled time interval s ∈ [0,1]. Then, we can compare the same quantum protocol
at different time scales: for each value of total time T , we define the time-dependent
Hamiltonian HT (t ) = H̃(t/T ).

Now, assume the system is, at t = 0, initialized in the `th eigenstate |Ψ(0)〉 = |ψ`(0)〉.
In other words, we start with state amplitudes ck (t = 0) = δk`. Moreover, we assume
that for all t and for all k 6= `, the energy gap |λ j (t )−λk (t )| is bounded from below by
∆. Then, under evolution by HT (t ) [Kat11],

1−|〈Ψ(T )|ψ`(T )〉|2 =O

(
1

∆2T 2

)
. (3.17)

In other words, the system’s state |Ψ(t )〉 remains close to the instantaneous eigenstate
|ψ`(t )〉, as long as the total time T of the evolution is sufficiently large, implying slow
changes to H(t ). Likewise, by conservation of probability, all other states must be min-

imally populated: ck =O
(

1
∆2T 2

)
for all k 6= `.

Ref. [Kat11] technically assumes a finite-dimensional system, and that the degen-
eracies of eigenvalues stay constant (i.e. no crossings of energy levels are allowed), even
for states other than our initial state |ψ`(0)〉. The scaling itself is tight, in the sense that
examples with the scaling stated in Eq. 3.17 exist, so the bound cannot be improved.
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Figure 3.3: The state amplitudes |ck (t )| during the adiabatic protocol in Eq. 3.18, for different
total times T . The initial state is always |Ψ(0)〉 = |0〉. When ΩT À 1, the system
closely follows the corresponding instantaneous eigenstate, up to tiny oscillations.
When ΩT = 10, the errors are much more visible, and at ΩT = 1, the system’s state
cannot keep up with the quickly changing Hamiltonian anymore. The evolution is
then very different from the aimed X -gate.

The adiabatic X -gate Let us turn back to the control task of performing the gate
Ut = X , as defined in Eq. 3.3. Remember the quench of H =ΩX in Section 3.1.1, which
rotates an initial state |0〉 first towards the negative Y -axis, and then further down to-
wards |1〉 at the negative Z -axis. Similarly, the state |1〉 is rotated towards +Y and then
towards +Z . We can simulate that evolution in the adiabatic limit, using

HT (t ) =Ω
[

cos

(
πt

2T

)
Z − sin

(
πt

2T

)
Y

]
. (3.18)

One can check that there are no eigenvalue crossings, and in fact, the energies remain
constant at ±Ω for each t . Thus, ∆ = 2Ω in this case. By choosing ΩT sufficiently
large, can make sure that an initial state |0〉 or |1〉 follows the trajectory defined by the
quench to arbitrary accuracy. To obtain a proper X -gate, one also has to care about the
accumulated dynamical phases, which equal e±iΩT in each case. These phases become
equal3 again wheneverΩT ∈Z. The evolution due to Eq. 3.18 is plotted on the right in
Fig. 3.1. We chose ΩT = 7π, which is sufficiently small that typical diabatic errors are
visible. The influence of errors at various time scales is compared in Fig. 3.3.

In Part III, we will consider precisely the waiter’s task to transport a tray of cocktails,
where now the cocktails happen to be quantum states that we aim to transport over
a graph. Again, we will find that, for sufficiently slow changes to H , the state can be
transported with arbitrary accuracy, provided that there is a gap ∆ at all times.

3.2 How to transport a quantum state

In the world of classical computers, we can hardly imagine living without extensive
communication between our devices - whether it is over the internet, a USB cable
or bluetooth. Similarly, a future quantum computer is expected to require commu-
nication with other quantum devices, as is also stated as one of DiVincenzo’s criteria
[DiV00]. Here, one should not only think of some quantum internet that connects in-
dividual users, but also of short-distance communication between nearby quantum

3Note that whenever ΩT is odd, a dynamical phase of −1 is given to each of the basis states. In
our setting, this is an irrelevant global phase, but note that there exist settings in which a more careful
treatment of phases is required.
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processors: these may be limited in physical size, but can be entangled to collectively
perform a larger calculations [VBC+17; BKM16]. This section reviews the most impor-
tant known results from the art of moving a quantum state from one place to another.

The no-cloning theorem complicates communication of quantum states: it is im-
possible to make several copies and perform various attempts of lossy communication.
Luckily, there are various tricks to boost fidelities, such as transferring error-correcting
codes, or using quantum repeaters. A network of repeaters could work as follows. The
noisy communication channel allows a set of parties to distribute entangled Bell pairs
among each other, which can be turned into high-fidelity Bell states using entangle-
ment distillation [BBP+96a; BBP+96b; KRH+17]. Next, using entanglement swapping
and teleportation, arbitrary qubits can be sent with high fidelity [WEH18]. Transport-
ing states and establishing entanglement appear to be closely related, and we will en-
counter many physical systems where both go hand in hand.

When it comes to communication over larger distances, photons are a clear winner.
They can encode quantum states in various ways (e.g. polarization, Fock number, spa-
tial modes, time-bins), and can travel at high speeds through vacuum or optical fibers.
Moreover, high-quality optical fiber networks are already widely implemented for clas-
sical communication applications. There is ongoing research on conversion between
photonic states and various other qubit platforms, such as trapped ions [MRR+14], su-
perconducting qubits [SZR+17], cold atoms [BBR+18; TSS+19], NV centers [DTM+18],
or general qubits locked in a cavity [VVN+17].

For shorter distances, the conversion to light may be omitted in favor of other tech-
niques, which is the focus of the remainder of this chapter and, in particular, of Part III
of this thesis. Some types of qubits are mobile by nature, and can be physically dis-
placed. Examples are electrons or atoms that are held in some artificial potential field,
such that they can tunnel between nearby minima of the potential. Other informa-
tion carriers are immobile, such as atoms in a crystal or in a molecule, and one can
picture information ‘flowing’ through the system while the qubits themselves sit still.
The latter form of communication can intuitively be compared to flicking a rope that
is spanned between two users: the resulting wave travels a long distance between the
ends of the rope, while the rope’s constituents merely move within their locally con-
fined space. In this sense, classical communication of electrical signals over a copper
wire is not that much different. In the following, we focus on both mobile and immo-
bile qubits, as long as the locations of the qubits can be modeled as a finite and discrete
graph-like structure.

Having set our domain of interest, we may now ask the question for which mod-
els can we transfer quantum information between Alice and Bob, using which controls?
This brings together the topics of condensed matter models and quantum control: we
assume a system defined by an interaction type and a graph, such as discussed in Sec-
tion 2.2, where two vertices of the graph are marked as Alice (a) and Bob (b). Then,
similar to Section 3.1, we tweak the system parameters in such a way that the unitary
time evolution UT after some time T is such that Bob can infer what the initial state at
Alice was.

As a warning to the reader, many transfer protocols will look very similar. To distin-
guish the subtle differences between various theoretical proposals of state transfer, it
is important to consider the precise model (including the type of particles and type of
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Single excitation

H =∑
W j k j k

|Ψ(0)〉 = |a〉
dim(H ) ∼ N

Half filling

H =∑
w j k h j k

|Ψ(0)〉 = |φ〉a ⊗|rest〉
dim(H ) ∼ exp(N )

Quench

• Fast

• Passive couplings

• Accurate controls
required

(near-)perfect
state transfer

XXX with straddling,
mirror inverting chains

Adiabatic

• Slow

• Time-dependent
couplings

• Resilient to
control errors

STIRAP, CTAP,
and dark passage

(Chapter 8)

XXX model
(Chapter 9)

Table 3.1: An overview the state transfer protocols we consider.

interaction), the graphs on which the transfer works, the controls (typically a quench
or adiabatic passage), and the assumed initial state of the system. Important figures of
merit used for comparison are mainly the (theoretical) transfer speed and fidelity, but
also include the feasibility of the control requirements, such as the number of control-
lable parameters in the Hamiltonian.

An overview of the protocols we discuss here is given in Table 3.1, and more elabo-
rate overviews can be found in Refs. [Bos07; NJ14; MBA+16]. We choose to categorize
the transfer protocols based on the initial state, namely whether they start with a single
(or a small number of) excitation, or with a number that is very large (i.e. growing with
the system size N ). Within these groups, we distinguish whether the protocol is based
on a quench or adiabatic evolution.

One important transfer approach that does not fit within our categorization is the
use of sequential SWAP-like gates, which are less interesting from a condensed mat-
ter viewpoint. Also not discussed are topological variants, such as Thouless pumps
[Tho83; VS19], which are typically concerned with effective charge transfer or displace-
ment of a particle’s center of mass, rather than communicating quantum information
[Cit16]. Note that the repeated nature of topological pumps, which displace a quantum
amplitude by a certain number of sites per iteration, is somewhat similar to sequence
of swaps from a quantum control perspective.
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3.2.1 Single excitation hopping

As far as the models are concerned, it turns out that some physical systems lead to
the same mathematics. The ferromagnetic XX and XXX models, with as local entities
qubits, are typically taken to be in a magnetic field of the form H =−B

∑
j Z j , such that

|0N 〉 is the ground state. From that state, Alice can locally initialize

|Ψ(0)〉 =α|0〉a ⊗|0N−1〉rest +β|1〉a ⊗|0N−1〉rest.

The initial term is an eigenstate that will not evolve, whereas the second term will fol-
low some evolution through the N -dimensional space of states with Hamming weight
1. We may use the notation |{ j }〉 = X j |0N 〉 to denote the state with all qubits in the state
0, except for qubit j which is in state 1. If there is no ambiguity, we sometimes omit the
curly brackets. The Hamiltonian in the sector of a single excitation then reads

H = ∑
j ,k∈V

W j k |{ j }〉〈{k}| (3.19)

This is also precisely the Hamiltonian that describes a single quantum particle (such
as a fermion or boson) that hops over a graph: these are described by the interaction∑

w j k f †
j fk (plus potential two-body terms that are now irrelevant), together with the

translation |{ j 〉} = f †
j |0〉. Hence, any protocol that assumes Eq. 3.19 may represent ei-

ther of the three models, and we collectively describe them as single excitation hop-
ping. The main differences between the models are:

• for both the free particle hopping and the XX model, with hopping amplitudes
or coupling strengths w j k , the matrix W is precisely the adjacency matrix of the
graph: W = w = AG

• for the XXX model, with couplings w j k , the matrix W is the Laplacian LG of the
graph: W = LG = DG − AG , where DG is the diagonal matrix with entries corre-
sponding to the degree of each vertex.

Quenches When considering quenches, one quickly arrives at the field of perfect
state transfer (PST) which attempts to find times t and weight matrices W precisely
such that

〈{b}|e−iW t |{a}〉 = 1,

where a and b denote the locations of Alice and Bob, respectively. This setting is equiv-
alent to setting of continuous time quantum walks [MB11] where W denotes the ad-
jacency matrix of a graph. In 2004, two independent works reported on perfect transfer
between the endpoints of an open chain, using the weights

W j , j+1 ∝
√

j (N − j ), W j j = 0.

The results were found for very different physical models, namely the XX model [CDE+04],
and an electron hopping between quantum dots [NPL04]. The configuration is now
often called the Krawtchouk chain, and we will encounter it again in Chapter 5. The
couplings W are precisely such that the dispersion (the energy, as a function of wave
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number) becomes linear. Here and in the following, we often consider the mirror sym-
metry of a chain, such that even eigenstates have an eigenvalue +1 under the relabel-
ing operation j → N − j +1, and odd eigenstates have an eigenvalue −1. In this case,
the energies of the odd eigenstates interlace the energies of the even states. Then, for
some energy scale of the coupling W , the even eigenstates all have even eigenvalues,
and the odd eigenstates have odd eigenvalues. Hence, there is some evolution time, for
which

|Ψeven〉→ e−i (2k)π|Ψeven〉,
|Ψodd〉→ e−i (2k+1)π|Ψodd〉.

By giving the odd components of any state a minus sign, one exactly performs a mirror
operation on the state: one does not only obtain PST, but a mirror operation on any
single-excitation state. For non-interacting theories, such as free fermions and the XX
model, this remains true for sectors with any number of excitations.

Ever since these early results, many more graphs and weight configurations were
found to perfectly transfer a state [Kay10; God12], sometimes even well after they were
originally introduced, such as the Polychronakos chain HP that we address in Chap-
ter 6.

The ferromagnetic XXX model, with a single excitation, is very similar to the case of
the XX model, except that the Hamiltonian now has diagonal entries. Bose kickstarted
the field of state transfer in 2003 [Bos03] by observing that, on a uniformly coupled
linear chain, an excitation initially at site 1 would appear at site N with high probabil-
ity after a sufficiently large time. Such cases are sometimes called near-perfect state
transfer, and various other examples exist [GKS+12; VZ12; BCG+17].

Adiabatic In adiabatic protocols, we typically assume time-dependent control over
the couplings W j k (t ) in Eq. 3.19. At t = 0 and t = T , the adiabatic eigenstate of the sys-
tem must be located on Alice’s or Bob’s subsystem, which generally means that these
subsystems are isolated: the couplings W j k connected to Alice or Bob are then 0. In be-
tween, the couplings W j k are engineered to connect aforementioned eigenstates, with-
out causing a degeneracy. A protocol that follows this framework necessarily requires
a counter-intuitive pulse sequence: the couplings to the receiver are initially strongest
and are lowered over time, whereas the couplings to the sender start at 0 and grow
stronger towards the end of the protocol. A sketch of such a protocol is given in Fig. 3.4.

Although these protocols are inherently slower than quenches, adiabatic protocols
are often easier to implement experimentally because no precise timings are required,
and because they are relatively resilient to decoherence and random or systematic er-
rors in the control fields [CFP01; FBM+15].

One of the most studied adiabatic transfer techniques is STImulated Raman Adi-
abatic Passage (STIRAP), which considers three internal states of an atom, of which
the only possible couplings are 1 ↔ 2 and 2 ↔ 3 [GRS+90]. For our purposes, this is
essentially a chain of length 3, and indeed, the protocol was later extended allow trans-
fer between the ends of a chain of any (odd) length N [MT97]. The protocol follows
precisely the counter-intuitive sequence described above, and we will study it in more
depth in Chapter 8. The atomic levels may not quite count towards spatial transfer,
but the model takes precisely the form of Eq. 3.19 where W is the adjacency matrix
of a chain, and the same mathematics have indeed been applied in spatially extended
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Figure 3.4: A sketch of a typical adiabatic transfer protocol, with the counter-intuitive pulse
sequence. The top row indicates the initial, midway and final step of the protocol
on a 5-site chain, with black lines representing the coupling strengths W j , j+1. The
blue contour indicates which sites are coupled. The bottom graph shows a possible
trajectory for Alice’s couplings Wa j and Bob’s couplings Wb j .

systems. These include an electron hopping over quantum dots [GCH+04] (where it is
called Coherent Tunneling by Adiabatic Passage (CTAP)), cold atoms hopping through
optical traps [ELC+04], or a single (higher) spin excitation in the XXX [BJG15] and XX
model [OEO+07; GK14] (where it is called Dark Passage).

Apart from STIRAP-based protocols, there are various variations of adiabatic trans-
fer, most notably transfer in slightly different particle hopping chains [CSF+12; GNL18].

3.2.2 Half filling

Having considered ferromagnetic spin models, we treat the anti-ferromagnetic vari-
ants in a similar fashion. In this case, Alice may initialize the system’s state as

|Ψ(0)〉 = (
α|0〉+β|1〉)a ⊗|rest〉, (3.20)

where |rest〉 is generally taken to be the ground state of the Hamiltonian restricted to
the graph G −a. We typically assume conservation of number of excitations, and that
the AFM ground state can be found in the sector with roughly N /2 excitations, hence
the name half filling. To be precise, if we assume N odd, then |rest〉 is a state on N −
1 qubits with N−1

2 spin excitations. Then, the evolution of |ψ(t )〉 takes place in two
excitation sectors, namely those with dN

2 e and bN
2 c excitations. In the case of particle-

hole symmetry, i.e. [H , X ⊗N ] = 0, these sectors will evolve similarly. At any stopping
time T , the mixed state ρB that Bob receives is found by tracing over all sites V except
for Bob’s:

ρB = trV −B
(|Ψ(T )〉〈Ψ(T )|)

Note that in this setting, compared to the single-excitation case, the dimensions of the
relevant subspaces increases from N to

( N
dN /2e

)
, which is a dramatic increase in size.
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This makes the task of state transfer more difficult in this setting, and various tech-
niques in many-body physics may be required.

Quench Quenches on half-filled systems are very common in condensed matter lit-
erature, but quenches in the context of state transfer less so. We already saw that cer-
tain open spin chains that allow PST or mirror inversion in the single-excitation sector,
also allow transfer in higher excitation sectors. In particular, for XX chains such as the
Krawtchouk chain, the mapping to non-interacting fermions makes it clear that results
about single particle transfer still hold in the case of half-filling, up to signs.

Campos Venuti et al. study quenched transfer in the XXX model with spin- 1
2 and

spin-1 particles [CDR07]. As they indicate, the dispersion of this AFM model is actually
linear at low energies, which is very distinct from the FM case, where the dispersion
is quadratic. The findings are that quenched transfer can take place in a chain, with
reasonable fidelities, as long as the outer qubits are much more weakly coupled than
the qubits in the bulk of the chain. We will refer to engineering such a relatively weak
coupling at certain sites as straddling.

Entanglement The case of half-filling is endowed with many results that are tech-
nically not about state transfer, but deal with emerging long-distance entanglement.
Many of these results will turn out to be useful later in this thesis.

The straddled XXX chain that allows quenched transfer happens to also feature
strong entanglement between the more weakly coupled sites, when cooled to its ground
state [CDR06; CDR07]. In the limit of asymptotically strong straddling, the ground state
takes the form of a maximally entangled state on the straddled sites, even if particles
have higher spin. In Chapter 9, we will see that this generalizes to certain other bipar-
tite graphs [Gro19].

Similar straddling effects are found in the AFM XX chains. In fact, one may per-
form a second iteration of attaching even more weakly coupled qubits to the ends of
the chain, which in turn form a strongly entangled pair. Performing multiple itera-
tions, one may obtain a chain where the couplings decay exponentially towards the
left and right, such as [VRL10; RRS18]

H =σ+
1
2
σ−
− 1

2
+

N−3
2∑

j= 1
2

e−h j
[
σ+

j σ
−
j+1 +σ+

− jσ
−
−( j+1)

]
+h.c.,

where the site indices run from −N−1
2 to N−1

2 . With increasing h, the ground state be-
comes asymptotically close to a so-called rainbow state, referring to the rainbow pat-
tern that one obtains when drawing an arc between each qubit and its entangled part-
ner. Finding a rainbow state as a ground state of a 1D chain is somewhat surprising:
it has asymptotically N /2-qubit entanglement between its left and right halve, even
though local 1D chains are expected to adhere to some area law [ECP10]. The catch
here is that the couplings are exponentially varying, which is an unrealistic assump-
tion in the thermodynamic limit.

The rainbow state has connections to other models in this thesis. In fact, a quench
by the aforementioned Krawtchouk chain does not only perform a perfect mirror in-
version after time T (even when the initial state is the AFM ground state), but it also
maps an initial Néel state |0101. . .〉 to a rainbow state after a quench time T /2 [ABB14].
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Another interesting fact, which, to my best knowledge, has never been published,
is that every mirror-symmetric XX spin chain without local fields has a rainbow state as
eigenstate in the middle of its spectrum. This can be proven by a symmetry argument,
and is best explained by first mapping to the equivalent fermionic hopping model4.
Assume that, within a certain symmetry sector F , all fermionic modes are filled, and
all other modes are empty. For this special state, it does not matter in which fermionic
basis (here c or d) the occupation numbers are written: either way, the state contains
all modes in F anyway,

|Ψ〉 = ∏
c†

j ∈F

c†
j |0〉∝

∏
d †

j ∈F

d †
j |0〉

In our case, we use the left-right mirror symmetry of the chain to guarantee that the
system block-diagonalizes into an even and an odd part. We can choose F to be the
odd block, such that { c†

j |0〉 | c†
j ∈ F } are odd single-particle eigenstates, which have an

eigenvalue −1 when acted on by the operator that sends j → N − j +15. Then, |Ψ〉 is
the unique eigenstate that contains all odd modes (and no even modes). Moreover, we

can choose d †
j = 1p

2

(
f †

j − f †
N− j+1

)
to be another basis of anti-symmetric states, where

f †
j are again the local operators, creating a fermion at site j . Adding each of these states

to the system gives rise to a state identical to |Ψ〉, up to a global phase. Now, mapping
back to a spin model through the JW transform, this state becomes

|Ψ′〉∝
N /2∏
j=1

(
σ+

j + (−1) jσ+
N− j+1

)
|0〉

This is precisely a rainbow state, and we showed that it is an eigenstate of the symmet-
ric XX chain. A similar result holds for the even sector. Lastly, we note that this state is
always in the middle of the spectrum of the system: in a symmetric chain without local
fields, the single-particle spectrum is symmetric around zero, and increasing energies
alternatingly correspond to even and odd states. Therefore, for odd N , the two Rain-
bow eigenstates both have precisely zero energy. For even N , energies of the ‘even’ and
the ‘odd’ rainbow states are nonzero, but relatively small, and differ from each other by
a sign.

Adiabatic Adiabatic transfer in anti-ferromagnetic models received quite some sci-
entific attention, partially because coupled quantum dots, with a single electron per
dot, approximately form an AFM XXX model. Various models have been studied, such
as the Heisenberg model [FBM+15; AHH+17; Gro19], the J1 − J2 model [CH12], spin-
1 particles with generalized bilinear–biquadratic Heisenberg interaction [ERS07], and
the XXZ model [OSF+13].

As in the ferromagnetic case, a typical adiabatic protocol is supposed to start and
end such that the sending/receiving site is an eigenstate of the Hamiltonian. Indeed,
each of the references in the previous paragraph uses the counter-intuitive pulse se-
quence, or a slight variations thereof.

4Many thanks to Freek Witteveen for pointing this out to me.
5Note the subtle difference between the symmetry operation of relabeling the sites ( j → N− j+1) that

is relevant to the left-right symmetric chain, as opposed to the sign related to the exchange of fermionic
particles, which holds for any fermionic system.
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As with quenches, the huge dimensionality of the half-filled case makes analysis of
the models rather hard. In Chapter 9, we will discuss transfer in the XXX model, relying
heavily on the theory presented in Section 2.5.

3.2.3 Transfer on graphs that are not chains

Most results quoted in this section deal with the transfer of states over linear chains.
From a practical point of view, this makes much sense: a chain is the graph with the
highest ratio between diameter and number of sites, connecting two endpoints with
as few sites as possible. Still, various applications may require state transfer over more
general graphs, such as networks where multiple parties are strongly coupled at all
times. As an example, Vandersypen et al. [VBC+17] consider future challenges in scal-
ing up quantum computers based on electron spin qubits in quantum dots. They find
that individual arrays of qubits need to be placed in vicinity of classical hardware that
is responsible for control tasks, such as gate pulses and measurements. They sketch a
computer chip design where a large number of ‘qubit islands’ are connected with long
range couplers, such that other electronics can be placed in between the islands. Such
designs could greatly benefit from more flexible coupling methods, where all islands
could be connected to the same network, rather than placing an individual coupler
between every nearby island. Similar reasoning may hold for other platforms as well.
Still, results on non-chain graphs seems surprisingly scarce, and we will discuss the
known results throughout this subsection.

By far the most results on non-chain graphs can be found in the context of per-
fect state transfer (using quenches on single-excitation systems). The field of algebraic
graph theory chases a main question of characterzing graphs that allow PST, leading
to a plethora of results [BFF+11]. Various classes of graphs are known to exhibit state
transfer [BGS08; BP09; CG11], and various graph properties can be linked to the ab-
sence or presence of state transfer [God12; BFF+11].

Some results are known in the adiabatic variant of the single-excitation transfer,
particularly in the context of CTAP. Longhi generalizes the chain-based transfer of quan-
tum particles to transfer between the opposite corners of a square grid in any dimen-
sion [Lon14]. The result uses a smart decomposition of the grid into individual 1D
chains, each of which requires a standard STIRAP/CTAP protocol for the transfer. In
the same work, Longhi presents a transfer scheme on a triangular lattice, cut in the
shape of a triangle, where CTAP is possible using specifically engineered couplings.
The scheme works thanks to an earlier results by Bradly et al. [BRG+12], who con-
sider the transfer of N bosonic particles hopping between three coupled sites. The
states of this space can be represented using two parameters n1,n2 as |n1,n2, N −n1 −
n2〉, and Bradly et al. present a scheme that adiabatically maps a state |N ,0,0〉 to
the state |0, N ,0〉. The same states, however, can be interpreted as sites on a two-
dimensional lattice |n1,n2〉, whose couplings are given by the bosonic hopping am-
plitudes. These couplings do not only give the triangular connectivity, but also form
Krawtchouk chains along the main directions of the grid, the very same that we dis-
cussed earlier in this section.

Another interesting CTAP result that involves more than just a linear chain is by
Greentree et al. [GDH06], who consider multiple receivers dangling along the odd sites
of a linear chain, along with a sender dangling along site 1. Within this configura-
tion, the amplitude of the sender can be transported to any one of the receivers. Other



works, such as Refs. [CFX+13; BJG15], describe a variation where the chain splits into
multiple paths or branched endpoints. The extension to these graphs is not surprising
because these systems can be mapped back to a linear chain by symmetries. However,
interesting physics can be observed when the transferred state is sent to multiple sym-
metric receivers, such that the final state forms a superposition between the various
endpoints.

Apart from these results, I am not aware of any documentation of state transfer
on general graphs, outside of the PST setting. Two of the main results of the thesis,
presented in Part III, deal with adiabatic transfer on more general graphs. One of our
results deals with CTAP and STIRAP, in which we consider a class of graphs much larger
than those presented in the previous paragraphs (Chapter 8). The other results deals
with the AFM XXX model, which is to my best knowledge the only result of state transfer
in truly non-chain graphs in the setting of half filling (Chapter 9).

Looking at Table 3.1, it seems that some models have not had a general graph
treatment yet, which may be interesting directions for future research. In particular,
this includes quenches on half-filled systems, but also adiabatic transfer in the single-
excitation Ising and XXX model. I don’t know how to tackle the first or second case, but
there is much to say about the third.

Musings on adiabatic transport in the FM XXX model The Hamiltonian of an XXX
model, restricted to a single spin up, takes the form of the Laplacian matrix of the
model’s graph, H = LG = DG − AG . It is not hard to check that all eigenvalues of LG

are either 0 or positive, and the multiplicity of the zero eigenvalue is equal to the num-
ber of connected components. The good news is that, in this settings, we always find
a unique ground state with energy precisely 0, regardless of the graph, as long as it
is connected. The bad news is that, once we disconnect Alice or Bob from the graph,
the ground state becomes degenerate, possibly jeopardizing the adiabatic process. If
only we had a way to overcome this degeneracy, we would find that adiabatic transfer
works in any graph of this model! One potential solution is the following: if we al-
low ourselves the use of inhomogeneous local fields, of the form H ′ =∑

j B j Z j , the we
can make sure that the disconnecting party always has a lower energy than the ground
state of the main connected component. Simply setting B j < 0 for the connecting party
j and Bk > 0 for all other parties j 6= k would be sufficient. Realizing such inhomoge-
neous magnetic fields at the scale of inter-spin distances is experimentally challenging,
and studying the viability of this protocol would be an interesting direction of future
research.
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Resonantly driven multiqubit gates





CHAPTER 4

Introduction to resonant multiqubit
gates

4.1 Introduction

What constitutes a true multiqubit gate? Surely a unitary operation like U = X ⊗ Z
should not be considered as such: even though it acts on two qubits, the operation
merely consists of two local single-qubit gates in parallel, and the qubits could even be
spacelike separated throughout the process. Although it is not quite well-defined what
we mean with a proper multiqubit gate, we can at least set two requirements:

1. The operation creates some form of N -partite entanglement, hence it can not be
written in a tensor product form.

2. The operation must be ‘understandable’, either for a computer-based compiler
(i.e. there must be an efficient description of what the gate does), or, even better,
easily understandable for humans.

The prototypical example is the ToffoliN or CN−1NOT gate on N qubits, which per-
forms a bitflip on the N th qubit if and only if the other N −1 qubits are in the state |1〉.
Spelled out as a matrix in the computational basis, it is written

Toffoli3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (4.1)

Note that other multiple-controlled single qubit gates, such as the (double-)controlled-
Z , can easily be obtained from the Toffoli gate through local basis transformations.
The form of Eq. 4.1 is particularly convenient: the gate acts trivially on most quantum
states, except for a single two-dimensional subspace in which a π-rotation takes place.
This property makes the gate both easily understandable for humans, but also highly
non-local. We will elaborate on this highly selective property throughout this chapter.
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When implemented on actual hardware, multiqubit gates are generally decomposed
into the set of available single- and two-qubit gates. As two-qubit gates are typically
more prone to errors, focus is on counting the number of two-qubit gates required for a
certain circuit. Moreover, the CNOT is canonically taken as the only available two-qubit
gate, calling for the CNOT-count as a figure of merit. Decomposing the ToffoliN into
the shortest possible circuit of operations taken from some set of 1- and 2-qubit gates
has become a formidable scientific challenge. The rules of this game can be interpreted
in various ways: Can one use any two-qubit gate, or does it have to be a CNOT? Can
ancillary qubits be used? Are we counting the depth of the circuit, or the number of
two-qubit gates, or the total number of all gates? For example, in their widely adopted
textbook, Nielsen and Chuang [NC10] ask1 how many gates from various gate sets are
needed to construct a ToffoliN . It is now known that the Toffoli3 requires as many
as 5 freely chosen two-qubit gates, or 6 CNOTs [YDY13].

For larger N , the required number of basic operations or ancilla qubits grows steeply.
The ToffoliN can be implemented with a circuit of depth O(log(N )), requiring O(N )
ancilla bits. If no ancillas may be used, the number of CNOTs is lower bounded at 2N ,
although the be best known implementations require a quadratic number of CNOTs
[SM09]. The size of these circuits has been prohibitive in scaling up quantum algo-
rithms on current quantum computer prototypes: even though various systems with
5-20 qubits are available [RNT+17; OMA+17; LFS+19; Aro19], the largest multiple con-
trol gate ever performed is, to our best knowledge, the Toffoli4 [FML+17].

Circumventing this decomposition has also attracted significant attention. Ref.
[RRG07] considers a shorter circuit for the Toffoli3 by requiring one qutrit, and Ref.
[FSB+12] implements a similar scheme on superconducting transmon qubits. Refs.
[ISM11; Shi18] propose a ToffoliN by exploiting the Rydberg blockade, and Ref. [GP19]
proposes a drivently driven Toffoli3 for spin qubits. In the following, we chase the
same goal, by using resonant driving in a strongly coupled quantum system to create a
gate similar to the ToffoliN .

4.1.1 Resonant driving as a control technique

Resonant driving techniques are well-known in atomic physics, where they are used
to populate specific orbitals [Gri05; WBB16], and in experimental quantum informa-
tion processing, where they are exploited to form quantum gates on one or two qubits
[CFH97; GZC03; GCS17; ZSR+18]. When a pair of eigenstates with a unique energy
gap is resonantly driven for an appropriate amount of time, the unitary time-evolution
operator, in the asymptotic limit of increasingly weak driving, approaches the form

iSWAPt1,t2 =


1

0 . . . −i e iφ

... 1
...

−i e−iφ . . . 0
1

 . (4.2)

Here, all diagonal entries are 1, except in the subspace spanned by the resonant states,
which we denote by t1 and t2. The phase φ corresponds to the phase of the driving
field. We observe that this operation is very similar to ToffoliN , and it features the

1See Research Problem 4.4.
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same favorable properties, namely that it is both easily understandable for humans
and highly non-local.

Note that it is generally highly nontrivial to form gates of the type iSWAPt1,t2 us-
ing a local Hamiltonian. They could in principle be generated by a time-independent
Hamiltonian of the form H = |t1〉〈t2| +h.c., but such interactions, which act only on
many-particle states t1 and t2 but not any others, are typically highly nonlocal, and
hence are never encountered in nature [Pre13]. When restricting to realistic 2-local
Hamiltonians, in which each term is allowed to act non-trivially on at most two qubits,
time-dependent control fields are required. Our goal is to cleverly engineer 2-local
Hamiltonians whose time evolution swaps just 2 out of 2N states and leaves all other
states put, without resorting to discrete gate decompositions. To do so, we employ sys-
tems of the form

H(t ) = Hbg +Ω′ cos(ωt +φ)Hdrive,

where Hbg is a background Hamiltonian whose eigenstates are known, and Hdrive is
some local driving field which incites a transition between two eigenstates of Hbg,
which we will call |t1〉Hbg and |t2〉Hbg

2. If these eigenstates have a unique energy gap,
the resulting time evolution Udrive can be made to look as in Eq. 4.2.

Note that the resulting Udrive has this special form in the eigenbasis of Hbg. For
further quantum information processing, we propose an operation which maps each
computational basis vector to a unique eigenstate, which we call the eigengate Ueg. The
complete protocol is then described by

iSWAPt1,t2 ≈U †
egUdriveUeg.

An implementation of this protocol would require the following ingredients:

• A constantly applied background Hamiltonian Hbg which has a unique energy
gap ω between two eigenstates |t1〉Hbg and |t2〉Hbg .

• A driving field Hdrive which couples the states |t1〉Hbg and |t2〉Hbg , whose ampli-
tude can be made oscillatory at the right frequency ω.

• An operation which maps (any) two computational basis states, call them |t1〉
and |t2〉, to energy eigenstates |t1〉Hbg and |t2〉Hbg respectively. We also need the
inverse of this operation.

• An efficient method to keep track of the dynamical phases due to Hbg.

Throughout this part, we will elaborate on these four requirements, and treat specific
examples in which the proposed protocol is shown to work.

The resulting operation could find applications in noisy intermediate-scale quan-
tum computers [Pre18], where decoherence prohibits long gate sequences, but evolu-
tion by engineered Hamiltonians might be natively available. We find that there is a
trade-off between gate time and fidelity, where the error E ∝ t−2

d scales as the inverse-
square of the driving duration td . Moreover, as the number of involved qubits in-
creases, the performance of our gate may decrease. Therefore, we will compare our
proposals to the scaling of conventional gate decompositions.

2Recall that we use subscripts below kets to indicate the basis we consider.
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4.1.2 Related work

In 2010, two independent groups [BMM+10; KP10] described a result that similarly
exploits resonant driving in a many-body system to construct quantum gates. They
considered an interacting spin chain of which only the first one or two sites can be
controlled, and prove that universal operations over all states are possible. The scope
of these papers, achieving single- and two-qubit gates with limited control, is very dif-
ferent from our goal, which is the creation of an unconventional multiqubit operation
on a system with much more generous controllability. Moreover, both earlier papers
focus mostly on proof of existence, and do not mention concrete examples of systems
which would allow their protocol. In this part, we present experimentally feasible ex-
amples which we simulate numerically.

An experiment by Senko et al. [SSR+14] applied resonant driving on a many-body
system, very similar to our proposal. The experiment involved trapped ions that col-
lectively simulate an Ising model (see Section 2.3), acted on by an oscillatory driving
field. By starting in an eigenstate and measuring the system after driving at various
oscillation frequencies, the energy gaps between certain states could be inferred. The
experiment was presented as a method to perform coherent spectroscopy, allowing the
accuracy of the Ising model to be tested, which sets it apart from our approach for
constructing quantum gates. Still, the techniques used are similar. The experiment
was mostly a proof-of-concept, but the results are a good indication that the resonant
transitions presented in this part are within the possibilities of near-term quantum
computers.

The most obvious competitor of our protocol is conventional compiling of any
quantum operation into a universal set of single- and two-qubit gates. Extensive re-
search efforts have greatly optimized compiling methods, and in the asymptotics of
many qubits, compiling approach becomes increasingly favorable compared to our
proposal. For a recent overview, see Ref. [CFM17]. We present our results not as an
alternative to compiling, but rather as a creative twist to the fields of condensed matter
and quantum control, which might find applications on specialized near-term devices.
We also present our methods, such as the eigengate presented in Section 4.2, as tools
that may find applications elsewhere.

4.2 Mapping the computational basis to the eigenbasis

4.2.1 Eigengates from quenches

Let A and B be Hermitean operators (or Hamiltonians). We call Ueg an eigengate be-
tween A and B if it maps every eigenstate of A to an eigenstate of B . Such eigengates
can be implemented by quenching (suddenly applying) a third Hamiltonian H which
satisfies

e−i H π
2 Ae i H π

2 = B. (4.3)

It is not clear which tuples (A,B , H) satisfy Eq. 4.3 in general, but we claim the following
sufficient condition:

[H , A] = i B and [H ,B ] =−i A. (4.4)
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A−A

B

−B

Figure 4.1: An eigengate generated by H rotates operator A between B , −A, −B and back into
A. Note that consecutive application of two eigengates inverts the spectrum of A or
B .

Note that one can freely rescale A, B and H (together with the rotation angle π/2), as
this does not change the eigenstates, hence pertaining the same eigengate. To prove
our claim, we first recall the Hadamard Lemma,

e−i H t Ae i H t =
∞∑

n=0

(−i t )n

n!
(adH )n A (4.5)

adH A := [H , A]

and plug Eq. 4.4 into Eq. 4.5:

e−i H t Ae i H t = A+ (−i t )(i B)+ (−i t )2

2!
A+ (−i t )3

3!
(i B)+ (−i t )4

4!
A+ ...

=
∞∑

k=0

(−i t )2k

2k !
A+

∞∑
k=0

(−i t )2k+1

(2k +1)!
i B

= cos(t )A+ sin(t )B.

Hence, the operator A evolves to B in the Heisenberg-picture if we apply H for a time
t = π

2 . We graphically depict such rotations in Fig. 4.1. Recall that subscripts of kets
denote the basis in which the vector is described. Then, for every eigenvector | j 〉A of
A, we may define

| j 〉B =Ueg| j 〉A

where Ueg = exp(−i H π
2 ) is an eigengate from A to B . Unitaries are isospectral map-

pings, preserving the spectrum of Hermitean operators, hence for all j , if A| j 〉A =
λ j | j 〉A, then B | j 〉B = λ j | j 〉B . Examples of valid (A,B , H) tuples include the Pauli ma-
trices (X ,Y , Z ), and (Lα0 ,Lα1 , HP) which we will discuss in Chapter 6 on Polychronakos’
model.

There is some leftover symmetry H → H +G for any G such that [G , A] = [G ,B ] =
0. In other words, within each subspace spanned by eigenvectors of A with the same
eigenvalue, the operator Ueg may cause an arbitrary unitary rotation which we cannot
track using the method presented here.

4.2.2 Eigengates from adiabatic evolution

Another method to turn eigenstates of A into eigenstates of B is by adiabatic evolution.
For t ∈ [0,π/2], we consider the adiabatic Hamiltonian

Hadiabatic = cos(t )A+ sin(t )B. (4.6)
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Because the LHS of Eq. 4.5 shows an isospectral transformation of A, the eigenvalues
of Eq. 4.6 remain the same at all times. Assuming the relevant units of energy are large
compared to the units of time, the total time-evolution converges to the form

Ueg,adiabatic =T exp

(
−i

∫ π
2

0
Hadiabatic(t )d t

)
= exp

(
−iG

π

2

)
︸ ︷︷ ︸

Acts only within degenerate subspaces

exp
(
−i H

π

2

)
︸ ︷︷ ︸

Eigengate

exp
(
−i A

π

2

)
︸ ︷︷ ︸

Dynamical phase

,

where the form of G in the last equation is unknown, but limited to act nontrivially only
within each subspace of fixed eigenvalue. On individual eigenstates of A, the adiabatic
evolution operator acts as

Ueg,adiabatic| j 〉A = exp
(
−iG

π

2

)
exp

(
−iλ j

π

2

)
| j 〉B .

4.2.3 Eigengates for resonantly driven transitions

Our goal is to arrive at a quantum gate that exchanges exactly two states in the compu-
tational basis by driving a unique transition in some background Hamiltonian’s eigen-
basis. This is where eigengates come in.

We require A to be any Hamiltonian which is diagonal in the computational basis,
while B is the background Hamiltonian in which the driving takes place. In that case,
the eigengate Ueg between A and B maps computational states to eigenstates. Using
states in the eigenbasis of B , we may selectively exchange eigenstates using resonant
driving. Finally, an inverse eigengate (or equivalently, a 3π

2 rotation by H) then maps
back to the computational basis, giving the desired result.

Although sufficient and highly convenient, the eigengate is not necessary for this
protocol: any unitary map that sends two computational basis states to the transition-
ing states would be sufficient.

As an interesting aside, the eigengate’s feature to invert the energy spectrum when
employed twice, has applications in perfect state transfer. In particular, whenever A is
a sum of single-qubit terms such that an excitation at qubit i has energy opposite to an
excitation at qubit j , then (Ueg)2 exchanges the state of qubits i and j . This assumes
conservation of the number of excitations, and the uniqueness of the relevant energies.
As an example, in Chapter 5 will later see that the mirror inversion dynamics of the
Krawtchouk chain correspond precisely to (Ueg)2 for that system [CDE+04; GS18].

4.3 Resonant driving

This section studies the effect of resonant driving on many-body systems. We now
consider a Hamiltonian of the form

H(t ) = Hbg +Ω′ cos(ωt +φ)Hdrive (4.7)

where Ω′ ¿ 1 and
∥∥Hbg

∥∥ ∼ ‖Hdrive‖, justifying a perturbative treatment of the second
term. To leading order inΩ′, we consider all pairs of eigenstates of Hbg, where each pair
approximately forms an independently interacting two-level system. In particular, we
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assume that we know a basis in which Hbg is diagonal, whereas Hdrive has only off-
diagonal terms which are all real numbers3. For a pair of these diagonal states |s1〉, |s2〉,
we model the approximate time evolution using

H =∆Z

2
+Ωcos(ωt +φ)X (4.8)

where Ω = Ω′〈s1|Hdrive|s2〉, and ∆ is the gap in the spectrum of Hbg between |s1〉 and
|s2〉. As we found in Section 3.1.2, for sufficiently smallΩ, no transitions between eigen-
states of Hbg occur unless ω is close to some energy gap ∆. With the goal of making an
operation of the form iSWAPt1,t2 , we make sure that a single pair of states is on reso-
nance. All off-resonant states will be named spectator states, which merely pick up a
dynamical phase.

Leaving all spectators unchanged is particularly challenging, in part because Hbg is
responsible for a continuously growing dynamical phase on each eigenstate. There are
various ways to regain control over these phases:

• One keeps track of all dynamical phases that occur throughout the whole pro-
tocol, and undoes these at the end of the resonant driving. With 2N eigenstates,
this is generically infeasible unless there is an exploitable symmetry between the
eigenstates. An example of such a symmetry occurs in free particle Hamiltoni-
ans, where many-particle states have energies which are sums of single-particle
energies. In such cases, an appropriate eigengate can map all accumulated phases
back onto a local qubit, such that phases can be undone with a local phase shift
on each of the qubits.

• One chooses the driving time td (and hence the corresponding amplitudeΩ) pre-
cisely such that all two-level systems make an integer number of rotations during
the protocol. This amounts to making sure that δtd = k2π (k ∈ Z) for each tran-
sition. The choice of td becomes increasingly constrained as the systems grows
and increasingly many values of δ have to be taken into account.

• One decomposes the driving procedure in two steps, which cancel each other’s
accumulated phase to leading order.

In the next subsection, we elaborate on the latter approach, which we dub the halfway
inversion.

As an aside, note that the form of Eq. 4.8 implies that we require the rotating wave
approximation (see Section 3.1.2) to ensure a clean transition between states. Through-
out this part of the thesis, we assume this approximation to be valid.

4.3.1 The halfway inversion

Let us first remind the reader of the Hahn (or spin) echo. We consider a set of two-
level systems which each evolve under a Hamiltonian of the form H = ε j Z , where the
energy ε j is unknown for each system j . For any time t , one can enforce each of these
system to return to their initial state by implementing a Hahn echo, where the system

3The derivation for complex-valued Hdrive is similar to our approach below, but would introduce
more notational clutter. A more clean way of dealing with complex driving terms is by simply re-defining
the relative phase between eigenstates of Hbg.
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is suddenly flipped by the X operation at times t/2 and t . This is easily seen to work
for any choice of ε j , by using X Z X =−Z :

Utot = (X e−iε j Z t
2 X )e−iε j Z t

2 = e+iε j Z t
2 e−iε j Z t

2 =1. (4.9)

Note that during the driving step of our protocol, the term Hbg of Eq. 4.7 causes its
eigenstates to rotate according to their energies λ j . If Hbg can be obtained from some
other Hermitean operator using an eigengate, then sequential application of two eigen-
gates U 2

eg precisely inverts the spectrum of Hbg, effectively applying X to each two-level
system formed by a pair of eigenstates. Importantly, note the difference between the
driving step performed by Eq. 4.8, which swaps only the pair of states that is on res-
onance but is error-prone and slow (|Ω| must be small), contrasted with U 2

eg which
inverts all states, and is exact and relatively fast.

Inspired by the Hahn echo, we propose to follow the same approach on a many-
body system:

Utot = X U drive
td /2 (φ2) X U drive

td /2 (φ1) (4.10)

Here, U drive
t (φ) is the time evolution due to Eq. 4.8, and td = π/Ω is the driving time

needed for a full inversion of the resonant pair. In Eq. 3.11, we obtained an expression
for Ũ drive

td
(φ), which is the same operation in the rotating frame. The same expression

in terms of the known rotating frame operators reads:

Utot = X exp

(
−iωZ

td

4

)
Ũ drive

td /2 (φ2) X exp

(
−iωZ

td

4

)
︸ ︷︷ ︸

I

Ũ drive
td /2 (φ1).

The first part can be rewritten as

I = X exp(−iωtd Z /4) exp

−i t ~σ ·
nx

ny

nz

 X exp(−iωtd Z /4)

= X exp(−iωtd Z /4) exp

−i t ~σ ·
nx

ny

nz

exp(+iωtd Z /4) X

= X exp

−i t ~σ ·
nx cos(ωtd /2)+ny sin(ωtd /2)

ny cos(ωtd /2)−nx sin(ωtd /2)
nz

 X

= exp

−i t ~σ ·
 Ωcos(φ2 +ωtd /2)
−Ωsin(φ2 +ωtd /2)

−δ/2

 .

In the last step, we used that~n = (Ωcos(φ2),Ωsin(φ2),δ/2)T and applied several trigono-
metric product-to-sum identities. Recall that δ=∆−ω. All in all, we find that

Utot = exp

−i
td

2
~σ ·

 Ωcos(φ2 +ωtd /2)
−Ωsin(φ2 +ωtd /2)

−δ/2

exp

−i
td

2
~σ ·

Ωcos(φ1)
Ωsin(φ1)
δ/2

 .

Let us first show that, despite the halfway inversion, it is still possible to perform a tran-
sition without any error if δ= 0. Note that, in this picture, we perform two consecutive
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π/2 pulses, which form an optimal π-pulse if and only if both rotation axes align. To
this end, we fix

φ2 =−φ1 −ωtd /2, (4.11)

such that the overall rotation becomes

Utot = exp

−i
td

2
~σ ·

Ωcos(φ1)
Ωsin(φ1)
−δ/2

exp

−i
td

2
~σ ·

Ωcos(φ1)
Ωsin(φ1)
δ/2

 . (4.12)

It is now clear that, for δ = 0, any rotation axis in the X −Y plane can be obtained by
an appropriate choice of φ1. We sketch a more intuitive picture of what happens to an
inverting state in this case in Fig. 4.2.

X

Y

ωt

ωt

φ

1

2

3

4

φ1

Figure 4.2: The relative phase φ between the two resonant states under our halfway inversion
protocol, depicted on the unit circle. One could interpret this as the projection of
Bloch sphere vector to the X −Y plane. At t = 0, an initial state on the +Z -axis is
first resonantly driven towards a point that is φ1 radians away from the +Y -axis (1),
whilst rotating around the Bloch sphere at frequency ω towards (2). The halfway
inversion mirrors the relative phase over the X -axis (3), after which the rotation at
frequency ω takes the state to (4). A second halfway inversion takes the state back
to (1), completely canceling the rotation ωt due to the background Hamiltonian.

Now, let us turn to the off-resonant case (δ 6= 0). Ideally, we would like the off-
resonant pairs of states to not change at all, leading to Utot = 1. However, we argue
that this is impossible. Note that we could have chosen a different flip X together with
rotation vector ~n precisely such that all rotations would cancel, as in Eq. 4.9. Because
this works for any δ, this prohibits us from performing the required inversion on the
resonant pair of states. Below, we will find that the Z -component of the rotation vector
was canceled by the halfway inversion, but the impossibility to cancel the X - and Y -
components leads to our main source of errors.

Let us now quantify the accuracy of Utot in the case of off-resonance,Ω¿ δ, where
we aim to not cause any transitions at all. We define the error E of a unitary U with
respect to a target unitary Ugoal as

E (U ,Ugoal) = 1− 1

dim(U )
|Tr(UU †

goal)|. (4.13)
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Comparing Utot to the identity operator for the case of Eq. 4.12, we find

E (Utot,1) = 1−|cos2(ntd /2)− (Ω2 − δ2

4 )

n2
sin2(ntd /2)|

= 1−|1− sin2(ntd /2)

(
Ω2

Ω2 + δ2

4

)
|

= sin(ntd /2)2
(

8Ω2

δ2
+O

(
Ω4

δ4

))
. (4.14)

This shows that the error can be made arbitrarily small, by choosing a smaller Ω/δ, or
equivalently, a longer gate time td while keeping Hbg constant.

The factor sin(ntd /2) could in principle cause the error to vanish if ntd = kπ (k ∈Z)
for every pair of states. Note that with many two-level systems, this is highly unlikely to
happen and hard to track. Interestingly, by just considering the energy gaps δ, one can
shave off another two orders of Ω

δ
from E in the specific case where δtd = k4π (k ∈Z):

ntd /2 =
√
Ω2 + δ2

4
td /2

=δtd

4

[
1+2 · 4A2

δ2
+O

(
A4

δ4

)]
=kπ+ 2πΩ

δ
+O

(
Ω2

δ2

)
sin(ntd /2)2 =4π2Ω2

δ2
+O

(
Ω4

δ4

)
if k ∈Z.

Hence, in the special case that all dynamic phases due to Hbg reset, E (Utot,1) =O
(
Ω4

δ4

)
.

Unfortunately, in most cases, we do not find the same O
(
Ω4

δ4

)
scaling when driv-

ing a many-body system, even when engineering the energy gaps δ. Numerically, we
find the culprit to be the two-level systems consisting of one spectator state and one
transitioning state: the off-resonant transition between these pairs is not accounted

for by the halfway inversion, and hence still contributes an error of the order O
(
Ω2

δ2

)
.

Nonetheless, the cases where δtd ≈ k4π lead to a significant improvement of our pro-
tocol’s fidelity, as we will see in the numerical results in Section 6.4.

4.3.2 Putting it all together: Resonantly driven multiqubit gates

We turn back to the many-body Hamiltonian proposed at the start of this chapter,

H = Hbg +Ω′ cos(ωt +φ)Hdrive

and its resulting unitary evolution U drive
t (φ). We found that for sufficiently smallΩ′ and

an appropriately chosen frequency ω and driving time td , we asymptotically approxi-
mate the operation iSWAP which selectively exchanges two basis states:

iSWAPt1,t2 :=− i e iφ|t1〉〈t2|− i e−iφ|t2〉〈t1|+
∑

j 6∈{t1,t2}
| j 〉〈 j |.
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Note the difference between the phases e±iφ: we used the convention that |t2〉 is the
state with the lower energy (e.g. Z |t2〉 = −|t2〉 in the two-level system formed by |t1〉,
|t2〉). This gate is implemented by the sequence

iSWAPt1,t2 ≈U †
eg U drive

td /2

(
−φ− ωtd

2

)
U 2

eg U drive
td /2 (φ) Ueg (with halfway inversion)

Alternatively, one can leave out the halfway inversion, and instead undo the dy-
namical phases by inverting the spectrum of Hbg, optionally even in the computational
basis after an eigengate is performed:

iSWAPt1,t2 ≈U †
eg e+i Hbgtd U drive

td
(φ) Ueg (without halfway inversion)

≈ e+i Hcbtd U †
eg U drive

td
(φ) Ueg.

Here Hcb =U †
egHbgUeg is the eigengate-partner of Hbg in the computational basis. The

phases of the iSWAP operation are again −i exp(±iφ), the same as with the halfway
inversion.

We are left with finding systems in which such resonantly driven gates can be real-
istically implemented. The following three chapters each discuss a potential system.
Firstly, in Chapter 5, we look at the Krawtchouk chain, an example of an XX chain
with precisely chosen weights w . This system features a perfect eigengate, and the
link to free fermions allows us to calculate explicit matrix elements 〈t1|Hdrive|t2〉. Un-
fortunately, these turn out to be exceedingly small for pairs of states with a sufficiently
unique energy gap ∆. In Chapter 6, we shy away from nearest neighbor couplings,
focussing on an XXX chain with long-ranged interactions that was first introduced by
Polychronakos. Again, we find a quench that implements a perfect eigengate, but the
matrix elements are again small. Lastly, in Chapter 7, we consider a star-shaped config-
uration of qubits with Ising interaction. As this model is diagonal in the computational
basis, no eigengates are needed. Moreover, we find that in this case the matrix elements
do not decay with the system size, potentially beating the conventional decomposition
into two-qubit gates.





CHAPTER 5

The Krawtchouk chain

In this chapter, we study a driven multiqubit gate on the Krawtchouk chain. This
system maps to free fermions, allowing us to obtain the complete energy spectrum,
and allowing us to efficiently calculate the effect of driving fields in the fermionic pic-
ture. This particular system turns out to have an elegant interpretation of the eigen-
gates in terms of the so(3) algebra, linking the eigengates to rotations on the sphere.
As a downside, the free-fermionic nature makes the actual resonantly driven gate scale
unfavorably with larger numbers of qubits.

5.1 Analysing the model

We assume a Hamiltonian, acting on N = n +1 qubits,

H =
n−1∑
x=0

Jx(t )

2

(
Xx Xx+1 +YxYx+1

)
+

n∑
x=0

(αx(t )Xx +βx(t )Yx +γx(t )Zx), (5.1)

where {Jx ,αx ,βx ,γx} are real, time-dependent functions over which we assume arbi-
trary and independent control. Note that in this specific case, we start counting the
qubits at x = 0. The specific choice of couplings

J K
x =− J

2

√
(x +1)(n −x) (5.2)

gives rise to the so-called Krawtchouk chain Hamiltonian

H K =
n−1∑
x=0

J K
x

2

(
Xx Xx+1 +YxYx+1

)
. (5.3)

We already noted some of the remarkable properties of this system in Section 3.2.1. The
authors of Refs. [CDE+04; NPL04] observed that applying H K for a time t =π/J exactly
mirrors the left- and the right sides of the chain, allowing perfect state transfer (PST)
between the ends of the chain. Another surprising application is that a t = π/J pulse,
acting on the product state |+〉⊗N , gives the so-called graph state on a complete graph,
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which can be turned into a N -body GHZ state by 1-qubit rotations (see for example
[CAJ05]). For N odd, N =±1 mod4,

|GHZ〉 =
( |0N 〉+ |1N 〉p

2

)
= e±i π4 exp[−i

π

4
X ]⊗N exp[−i

π

J
H K ]|+〉⊗N . (5.4)

The Krawtchouk eigengates UK we present below employ a ‘half-pulse’ of duration t =
π/(2J ), (Eq. 5.13), or rather a pulse combining the Hamiltonian H K with its dual H Z ,
(Eq. 5.14). The half-pulse was previously used in Ref. [ABB14] to generate the specific
state UK |1010. . .10〉, which turns out to be a rainbow state.

The Krawtchouk chain Eq. 5.1 is an example of an XX model spin chain, and we can
use the techniques discussed in Section 2.4. In particular, ifαx =βx = 0 for all x, then H
conserves the total spin in the Z -direction, hence the eigenstates have a well-defined
total spin. We may interpret the spin-up excitations as fermionic particles through a
Jordan-Wigner (JW) transform [JW28]:

f †
x = [

∏
j<x

Z j ]σ−
x , fx = [

∏
j<x

Z j ]σ+
x , (5.5)

with σ+
x = (Xx + i Yx)/2, σ−

x = (Xx − i Yx)/2. Indeed, the operators fx , f †
x ′ obey canonical

anti-commutation relations. The quadratic terms in Eq. 5.1 turn into

H =
n−1∑
x=0

Jx(t )
(

f †
x fx+1 +h.c.

)
(5.6)

and we conclude that the fermions are non-interacting.
Following Ref. [CDE+04], we observe that action of H K on the Fock space states

|0. . .010. . .0〉 with Hamming weight 1 is the same as the action of the angular momen-
tum operator LX acting on the spin states of a particle with spin s = n

2 . Denoting the
1-particle state with the ‘1’ at position x as |{x}〉, and the spin state with Lz = m as |m〉〉,
the identification is

|{x}〉↔ |m = x − n

2
〉〉. (5.7)

As a consequence, the eigenvalues λk of 1-particle eigenstates |{k}〉H K of H K make up
a linear spectrum

λk = J (k − n

2
), k ∈ {0, . . . ,n}. (5.8)

The eigenstates |{k}〉H K can be expressed as [ACD+04]

|{k}〉H K =
n∑

x=0
φ(n)

k,x |{x}〉, φ(n)
k,x =

√√√√ (n
x

)(n
k

)
2n

K (n)
k,x , (5.9)

where K (n)
k,x denote Krawtchouk polynomials,

K (n)
k,x =

k∑
j=0

(−1) j

(
x

j

)(
n −x

k − j

)
. (5.10)
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The many-body eigenstates with q particles are created by products of q fermionic
modes c†

k =∑n
x=0φ

(n)
k,x f †

x ,

|{k1k2 . . .kq }〉H K = c†
k1

c†
k2

. . .c†
kq
|0〉. (5.11)

They satisfy

H K |{k1 . . .kq }〉H K =
(

q∑
j=1

λk j

)
|{k1 . . .kq }〉H K . (5.12)

Recall that the subscripts of kets denote the eigenbasis in which they are stated, which
is well-defined thanks to the JW transformation. As all eigenvalues are (half-)integer
multiples of J , all dynamical phases reset after time t = 2πM/J for M (even) integer.

5.2 Mapping between eigenbases

We now turn to a construction of an eigengate: a quantum circuit that efficiently gen-
erates the many-body eigenstates from states in the computational basis. We find two
simple circuits that do the job,

UK = exp

(
−i

π

2J
H Z

)
exp

(
−i

π

2J
H K

)
exp

(
−i

π

2J
H Z

)
(5.13)

= exp

(
−i
π

J

(H K +H Z )p
2

)
. (5.14)

Here H Z is the operator [KE05]

H Z = J

2

n∑
x=0

(x − n

2
)(1−Z )x . (5.15)

Its 1-body spectrum is the same, Eq. 5.8, as that of H K , but the eigenvectors are very
different: while H Z is diagonal on states |{x1x2 . . . xq }〉 in the computational basis, H K

is diagonal on the Krawtchouk eigenstates |{k1k2 . . .kq }〉H K .
The key property is that the operator UK exchanges the eigenstates of H Z and H K

and thus performs the change of basis that we are after. Labeling both sets {x1x2 . . . xq }
and {k1k2 . . .kq } by a binary index s taking values in {0,1}n+1, we have

UK |s〉 = i qn |s〉H K ∀s ∈ {0,1}n+1, (5.16)

or, in a different notation,

H K UK =UK H Z . (5.17)

In fact, in this special case there is a third Hamiltonian,

H Y =
n−1∑
x=0

J K
x

2

(
Yx Xx+1 −XxYx+1

)
(5.18)

which satisfies the so(3) commutation relations with H K and H Z :

[H i , H j ] = iεi j k H k , i , j ,k ∈ {K ,Y , Z }, (5.19)

where εi j k is the totally antisymmetric tensor. The commutation relations allow us to
picture the unitary UK as a rotation on the Bloch sphere, which agrees perfectly with
the Hadamard transformation for n = 1, s = 10, 01, up to a factor i .
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Figure 5.1: Overview of the proposed protocol for iSWAPN gates. a) The N = 6 qubit chain
(spheres) evolving under the Krawtchouk Hamiltonian (solid lines). The driving
Hamiltonian H (1,−)

D is depicted as the corkscrew line. b) Field strengths as function
of time. c) The spectrum of H K for N = 4, with the resonant transition depicted as
the curvy line.

5.3 Resonant driving on Krawtchouk eigenstates

We first assume N odd and consider a driving term coupling |0 n
2 +11

n
2 〉H K and

|1 n
2 +10

n
2 〉H K . The Hamming distance between these two states is N . Nevertheless it

turns out that the two states can be coupled by a 1-qubit driving term. To see this, we
write the JW transform as

σ−
x = [

∏
j<x

(1−2n̂ j )] f †
x , σ+

x = [
∏
j<x

(1−2n̂ j )] fx (5.20)

with n̂ j = f †
j f j . Targeting the middle qubit, x = n

2 , we observe that the operator σ+
x

contains precisely the right number of annihilation and creation operators operators
to connect the two states. However, we find that amplitude of the matrix element is
exceedingly small,

H K 〈1 n
2 +10

n
2 |σ−

n
2
|0 n

2 +11
n
2 〉H K = (−2)−

n2

4 . (5.21)

Due to this, a resonant driving protocol based on this transition is problematic for N ≥
5.
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The numbers work out better for a 2-qubit term driving a transition from |0 N
2 1

N
2 〉H K

to |1 N
2 0

N
2 〉H K for N even. We propose the driving terms

H ( j ,+)
D = JD cos(ωt )[σ+

j σ
−
j+N

2
+σ−

j σ
+
j+N

2
],

H ( j ,−)
D = i JD cos(ωt )[σ+

j σ
−
j+N

2
−σ−

j σ
+
j+N

2
]. (5.22)

Note that the locations of the 1-qubit terms are precisely such that, together with
the JW string, the required N

2 fermion creation ánd annihilation operators are con-
tained in the driving fields. Making the string any longer would result in effectively
less fermionic operators due to symmetry with respect to a global

∏
x Zx reflection. For

N = 6, we use the ‘central’ 2-qubit driving operator that connects sites x = 1 and x = 4,
which gives a coupling

A = 1

2
|H K 〈1303|H (1,−)

D (t = 0)|0313〉H K | = 5

64
JD (5.23)

whereas the largest matrix element of this operator in the 3-particle sector is 9
32 JD .

Surprisingly, the matrix elements can be calculated explicitly even for larger N , as we
show in Section 5.6.

Fig. 5.1 depicts the protocol for the resonant driving. Having performed a first
Krawtchouk eigengate, taking time teg =π/J , we turn on the combination

H K +H (1,−)
D (t ), (5.24)

starting at t = 0, with the driving frequency ω = 9J adjusted to the energy difference
between |0313〉H K and |1303〉H K . Choosing a driving time td = 2πM/J with M integer
guarantees that all relative dynamical phases return to unity at time td . Choosing in
addition A = 5

64 JD = π
2td

= J
4M leads to a time-evolution that effectuates the transition

|0313〉H K → i |1303〉H K , |1303〉H K → i |0313〉H K . (5.25)

The protocol is completed by a second Krawtchouk eigengate of time teg = π/J . Sum-
marizing,

|0313〉 UK−→ |0313〉H K
UD−→ i |1303〉H K

U †
K−→ i |1303〉,

|1303〉 UK−→ |1303〉H K
UD−→ i |0313〉H K

U †
K−→ i |0313〉. (5.26)

A realistic implementation could apply an envelope over all control signals to guaran-
tee smooth evolution of the fields.

The same reasoning holds for systems of any (even) size N , leading to the operation
iSWAPt1,t2 that we presented earlier in Eq. 4.2, with φ= π. In this case, we always have

t1 = |0 N
2 1

N
2 〉 and t2 = |1 N

2 0
N
2 〉 (or vice versa). To avoid notational clutter, we refer to this

operation as iSWAPN in the remainder of this chapter.
The procedure can be extended with the halfway inversion discussed in Sec-

tion 4.3.1. After driving for time td /2, we turn off H K and turn on H Z for time π/J ,
which is equivalent to applying a gate of the form diag(1,±i ) on each qubit. This
effectively performs perfect state transfer on the energy spectrum, mapping indices
k → n −k, or equivalently, a π-rotation around the H Z -axis of the so(3) Bloch sphere.
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Figure 5.2: Fidelities of the resonant driving part of the iSWAP4 and iSWAP6 protocols, including
the halfway inversion. The thick lines indicate the errors in the ideal case, thin lines
under various values of noise ε. The errors fall off like t−2

d (dashed), until the noise
ε becomes the leading source of errors.

We complete the driving part of the protocol by driving once more for time td /2 fol-
lowed by another H Z -pulse of time π/J . This works without modification if J td is an
integer multiple of π, and for general td when the phase φ of the driving function is
adjusted in the second driving step. The halfway inversion is included in the numerics
belows.

5.4 Numerical results

Fig. 5.2 plots the gate error, defined as in Eq. 4.13, for runtimes up to M = 20. The N = 4
results have been obtained with driving operator

H (0,+)
D (t )+H (1,+)

D (t ) (5.27)

with resonant frequency ω = 4J . To probe the effect of non-ideal couplings J K
x , we

performed the same simulations under multiplicative noise, such that J K
x → (1+εx)J K

x
where εx is chosen uniformly from [−ε,ε]. The multiplicative noise is independent of
the actual field strengths J , making it largely independent of implementation details.
The results shown are the averages of at least 180 simulations.
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From Fig. 5.2, we can read off the time taken by iSWAPN gates and make a compar-
ison with the time taken by a fully entangling two-qubit gate. As comparison, we con-
sider the gate formed by applying the similar X X +Y Y -type Hamiltonian on 2 qubits,
leading to the operation iSWAP2 [SS03]. The spatially varying Krawtchouk couplings,
Eq. 5.2, grow up to strength maxx J K

x =− J
2

N
2 (for N even), and for a fair comparison we

assume the couplings J K
x may grow no larger than J max/2 for any N . Therefore, we pe-

nalize time as a function of N by multiplying by a factor N
2

J
J max . The 2-qubit iSWAP2 gate

with coupling maximized at J max/2 then takes time π
J max . Note that on top of the driving

time, the protocol requires 2 eigengates taking unpenalized time teg = π
J , as well as a

halfway inversion consisting of single-qubit gates of the form diag(1,±i ), whose dura-
tion we neglect here. We also neglect the error due to a noisy eigengate, which turn out
to be an order of magnitude lower than the driving errors encountered here [GS18].

For N = 6, at sufficiently low noise ε < 0.01, we see an error E in the order of 10−3

for M = 4 meaning it can be achieved in time t = 2teg + td = 10π/J . Penalizing for the
largest couplings being 3 times larger than in the N = 2 case, we conclude that our
iSWAP6 gate takes time equivalent to 30 2-qubit iSWAP2 gates. For N = 4 an error of
well below 10−3 is already achieved with M = 1 and we penalize with a factor 2, giving a
runtime equivalent of 8 iSWAP2 gates. Note that this is faster than the 10 gates required
for a 3-qubit Toffoli as proposed in [SS03].

5.5 Experimental implementations

To our best knowledge, the only reported experiment in which non-trivial Krawtchouk
couplings have been realized on spin-like qubits, is by Li et al. [LMH+18]. They use su-
perconducting qubits with tunable couplings to mimic H K on four qubits, showing a
transfer fidelity of 99.2% in the subspace of a single spin excitation. It may be expected
that simulating H K in sectors with more excitations will be less accurate, because the
transmon-type qubits used in the experiment are technically nonlinear oscillators with
bosonic excitations, which are prone to excitations outside of the computation sub-
space (going from state |0〉 or |1〉 into state |2〉).

Other experiments, such as Refs. [PKK+13; CSH+16], report to be the first to engi-
neer Krawtchouk couplings and test PST, but use photonic waveguides which behave
different when more than 1 particle is involved. Using NMR, experimental PST was
demonstrated on 3 qubits using constant couplings [ZLZ+05], and on up to 6 using
iterative procedures [ÁMD+10; NJ14].

For other platforms, various theoretical proposals for approximations of
Krawtchouk spin chains can be found in literature. The NMR platform could imple-
ment spatially varying couplings by using techniques presented in Ref. [AC13], and
numerical tests for this platform have been performed in, for example, Ref. [ABB14].
Alternatively, cold atoms in a 1D optical lattice could be tuned to a regime where a two
species Bose-Hubbard description reduces to an XX chain. The authors of Ref. [CAJ05]
present a numerical study exploring the viability of this scheme to realize graph state
generation using Krawtchouk couplings.
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5.6 Matrix elements of driving operators in free models

In general, for driven multiqubit gates, it is essential to know the coupling strength
between the two resonant states induced by the driving field. This calls for calculating
quantities such as

M = 〈t1|Hdrive|t2〉.
For many-body eigenstates t1, t2, this can be a highly nontrivial problem, and in some
cases one may have to resort to measurements on the hardware itself to find these
values.

However, for models that can be mapped to free fermions, we may sometimes ob-
tain exact expressions for the driving matrix elements. As in the case of the Krawtchouk
chain, we consider driving fields that are functions of raising and lowering operators
σ− or σ−σ+, acting between the states with the highest and lowest energy under some
Hamiltonian H :

M (1)
j =H 〈1 n

2 +1 0
n
2 |σ−

j | 0
n
2 +1 1

n
2 〉H (N odd), (5.28)

M (2)
j ,d =H 〈1 N

2 0
N
2 |σ−

j σ
+
j+d | 0

N
2 1

N
2 〉H (N even). (5.29)

Note that from these expressions, we can easily obtain the related values for the conju-
gate driving terms (see below).

Now, let us apply the Jordan-Wigner transform as defined in Eq. 5.5, and assume
that H is diagonalized by the fermionic transformation

c†
k =

n∑
x=0

φ(n)
k,x f †

x , (5.30)

where φ(n)
k,x is a unitary matrix over indices k, x. These allow us to express Eqs. 5.28

and 5.29 into the values of φ(n)
k,x .

Odd lengths For the case of N odd, we find that the only nonzero value of M (1)
j cor-

respond to cases where σ−
j can be written in the form of n

2 annihilation operators, and
n
2 +1 creation operators (note that in our definition of the JW transformation, σ− cor-
responds to a fermionic creation operator). The only site j on which the JW string is
sufficiently long to produce this number of fermionic operators, is right in the middle,
at site j = n

2 . One might naively think that choosing j larger than that would make the
string longer, but by left-right mirror symmetry of the problem, one may reason that
also for j > n

2 the value of M (1)
j is zero.

For j = n
2 , we may simplify the expression for M (1)

j , through some rather tedious
but otherwise straightforward algebra [GS18]. In the end, we obtain

M (1)
j= n

2
= 2

n
2

∣∣∣φ(n)
{0,..., n

2 },{0,..., n
2 }

∣∣∣ ∣∣∣φ(n)
{0,..., n

2 −1},{ n
2 +1,...,n}

∣∣∣ , (5.31)

where
∣∣φ~x,~y

∣∣ denotes the minor of matrix φ with only rows~x and columns~y kept.
Now, specializing to the case of the Krawtchouk chain, using∣∣∣K (n)

{0,..., n
2 },{0,..., n

2 }

∣∣∣= (−2)
n(n+2)

2∣∣∣K (n)
{0,..., n

2 −1},{ n
2 +1,...,n}

∣∣∣= (−2)
n(n−2)

2
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we find

M (1)
j= n

2
= (−2)−n2/4.

The exponential decay of the matrix elements means that the driving times td rise
quickly as the number of qubits n is increased, making the protocol unfeasible for large
system sizes.

Even lengths For the case of M (2)
j ,d , we similarly find that the JW string must fill pre-

cisely half of the chain, such that d = n+1
2 is the only non-zero case. We find

M (2)
j ,d= n+1

2

=2
n−1

2

∣∣∣φ(n)
{ j ,..., j+ n−1

2 },{0,..., n−1
2 }

∣∣∣ ∣∣∣φ(n)
{ j+1,..., j+ n+1

2 },{ n+1
2 ,...,n}

∣∣∣ ,

which, together with∣∣∣K (n)
{ j ,..., j+d−1},{0,..., n−1

2 }

∣∣∣= (−2)
(n−1)(n+1)

8 ,∣∣∣K (n)
{ j+1,..., j+d},{ n+1

2 ,...,n}

∣∣∣= (−1)
( j+1)(n+1)

2 (−2)
(n−1)(n+1)

8 ,

leads to closed-form expressions for the matrix elements M (2)
j ,d= n+1

2

. For n = 5 one finds

M (2)
j=1,d=3 = 5/64 while for n = 3 we have M (2)

0,2 = M (2)
1,2 =

p
3/8.

Similar to the odd case, the values of M (2) fall off rapidly with n. For example, for
N = 2,6, . . ., putting j = n−1

4 , we find asymptotic behavior

M (2)
j= n−1

2 ,d= n+1
2

∼ c0 cn
1 cn2

2 n−1/6

with c2 = 23/43−9/16 = 0.9065. . .. This implies that the run-time of the resonant driving
protocol (in its current form) increases rapidly with n.

Conjugate terms Lastly, we note that matrix elements of the conjugates of the dis-
cussed driving fields may have a different phase. In particular, for N even, we find

H K 〈1 N
2 0

N
2 |σ+

j σ
−
j+N

2
| 0

N
2 1

N
2 〉H K = (−1)

N
2 M (2)

j , N
2

.

Hence, to achieve constructive interference, the optimal driving terms are of the form

H ( j ,+)
D if N /2 is even, or H ( j ,−)

D if N /2 is odd.

5.6.1 Optimal scaling of matrix elements

One might wonder whether there exist systems for which the matrix elements in
Eqs. 5.28 and 5.29 do not decrease as rapidly. In fact, it turns out that there exist trans-
formationsφ(n)

k,x such that M (1)
j= n

2
is constant in n. We can derive this as follows, focusing

specifically on the case of N odd. Hadamard’s inequality states that the determinant of
a matrix φ is bounded by the product of the sizes of it’s rows:

|det(φ)| ≤
n∏

i=0
|φi |.
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Here, φi denotes the vector obtained by taking the i th row (or column) of φ, and |φi | is
the normal vector length (2-norm). For Eq. 5.31, we obtain

|M (1)
j= n

2
| ≤ 2

n
2

[ n
2 −1∏
x=0

|φx,{0,..., n
2 }||φx,{ n

2 +1,...,n}|
]
|φ n

2 ,{0,..., n
2 }|.

On the other hand, by unitarity, for each value of x we require that

|φx,{0,..., n
2 }|2 +|φx,{ n

2 +1,...,n}|2 = 1

The matrix element is optimized when |φx,{0,..., n
2 }| = |φx,{ n

2 +1,...,n}| = 1p
2

for all x, except

for the case x = n
2 where |φ n

2 ,{0,..., n
2 }| = 1. This intuitively means that the matrixφk,n has,

on it’s first n
2 columns, equal amplitude on the n

2 uppermost and n
2 lowermost rows.

This gives the bound

|M (1)
j= n

2
| ≤ 1. (5.32)

This bound is actually tight, because Hadamard’s inequality is satisfied whenever the
relevant blocks consist only of orthogonal sets of vectors. These blocks are, in our
conventions, precisely the upper-left and bottom-left quarters of the matrix φ(n)

k,x . In

such cases, the matrix element |M (1)
j= n

2
| = 1 indicates that the two states |1 n

2 +1 0
n
2 〉H and

| 0
n
2 +1 1

n
2 〉H are almost identical: they differ from each other only by a bitflip X on the

middle qubit (and possibly an irrelevant phase).
An explicit example of a unitary matrix that satisfies our bound, is

φ′ =


1/
p

2 0 0 0 −1/
p

2
0 1/

p
2 0 −1

p
2 0

0 0 1 0 0
0 1/

p
2 0 1

p
2 0

1/
p

2 0 0 0 1/
p

2

 .

This N = 5 case trivially generalizes to larger sizes. In the fermionic picture, the state
| 0

n
2 +1 1

n
2 〉H looks like n

2 particles, each of which is in a superposition between two

sites x and n − x. The other state, |1 n
2 +1 0

n
2 〉H , looks similar, but with an additional

particle localized at site x = n
2 . In the spin language, these correspond precisely to the

rainbow states we discussed before in Section 3.2.2. In fact, every left-right-symmetric
XX chain has these rainbow states as eigenstates, hence for each of these systems, the
corresponding fermionic diagonalization transformation φ(n)

k,x has a certain ordering

in which |M (1)
j | = 1. This ordering is precisely such that the states which are symmetric

under mirroring the chain left-to-right (i.e. x → n−x) occupy the bottom-most rows of
φ(n)

k,x , and the anti-symmetric states are in the top-most rows (or the other way around).
Given that our prefered driving operator has such a large matrix element between

these rainbow states, one might wonder if we can use these for a resonantly driven gate.
The good news is that an eigengate is readily available: because the rainbow states are
eigenstates of any left-right symmetric XX-chain, we may use the Krawtchouk eigen-
gates UK to create rainbow states from simple computational basis states. This specific
eigengate was already observed in Ref. [ABB14], in the context of a quench that creates
maximal entanglement between the left and right halves of the chain.
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The bad news is that it is hard to create a unique energy gap between the rainbow
states. On left-right symmetric chains, the states with even and odd parity are alter-
nating in the spectrum. Therefore, the rainbow states are of the form UK |0101. . .〉 and
UK |1010. . .〉, and their energies are close to 0. The sector with roughly half filling con-
tains an exponentially large number of states (in N ), and these are most dense around
the energy 0. Due to the spectral crowding, we find that near-resonant states become
increasingly problematic in driven protocols as N increases.

The rainbow states can be pushed towards the bottom or top of the spectrum by
using couplings that decay exponentially towards the ends to the chain, as is the case
for the rainbow Hamiltonian discussed in Ref. [RRS18]. In the limit of increasingly
strong decay of the couplings, a rainbow state becomes the ground state of the system,
but unfortunately we find that this ground state is strongly degenerate, prohibiting the
unique transition we hope to find.

5.7 Conclusion

In conclusion, for the XX spin model, it is possible to find reasonably realistic eigen-
gates and unique transitions. We study a specific example on the Krawtchouk chain.
Unfortunately, we find that the matrix elements decay rapidly with N , making large
multiqubit gates unfeasible. On the other hand, large matrix elements that are con-
stant in N can be found, but we argue that these correspond to frequency-crowded
parts of the spectrum.

An interesting direction of future research would be to find a best-of-both-worlds
combination, where perhaps the matrix elements decay slowly, but are such that a suf-
ficiently unique transition exists.





CHAPTER 6

Polychronakos’ model

In this section, we consider resonant multiqubit gates in a tuned XXX chain model
with long ranged interactions. The model was first described by Polychronakos [Pol93],
but we will follow the definitions of Frahm [Fra93], who found an associated alge-
braic structure which we employ in our protocol. This algebraic structure is similar
in spirit to the celebrated Yangian symmetry of the Haldane-Shastry model [Hal88;
Sha88; HHT+92], to which the Polychronakos chain is a close relative. Both models
are members of a wider class of integrable 1D systems with inverse-square two-body
interactions, going back to the Calogero-Moser-Sutherland model of interacting parti-
cles on a line [Cal69b; Cal69a; Cal71; Sut71; Sut72; Sut75; Mos75].

6.1 Analysing the model

We consider a one-dimensional chain of N spin- 1
2 particles, with particle j fixed at

position x j , evolving under the Hamiltonian

HP = ∑
j<k

h j k P j k , where h j k = 1

(x j −xk )2
,

P j k = 1

2

(
1 j1k +~σ j ·~σk

)=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The locations x j are given by the equilibrium positions of the classical Calogero system
with potential

V (x1, ..., xN ) = 1

2

∑
j

x2
j +

∑
j<k

1

(x j −xk )2

or, equivalently, by the roots of the Hermite polynomial HN (x). Frahm was able to
describe the eigenbasis by finding ladder operators, and in particular, defined the fol-
lowing operators:

Lα0 = 1

2

N∑
j=1

x j~σ
α
j α,β,γ ∈ {x, y, z}

Lα1 = 1

4

∑
j 6=k

w j kε
αβγ~σ

β

j~σ
γ

k w j k = 1

x j −xk



70 Chapter 6. Polychronakos’ model

Figure 6.1: A map of various eigengates between the operators {Lαr }r,α in Polychronakos’ model.
A quench by the operator next to an arrow implements the corresponding eigen-
gate.

where εαβγ is the Levi-Civita symbol or fully anti-symmetric tensor. These operators
were found to have the following relation with HP:

[HP,Lα0 ] = i Lα1
[HP,Lα1 ] =−i Lα0 .

6.2 Mapping between eigenbases

By noting that the eigenstates of Lz
0 are the computational basis states, and the com-

mutation relations between (Lα0 ,Lα1 , HP ) are of the form of Eq. 4.4, we readily obtain
two methods to obtain an eigengate for Lz

1: either by continuous evolution

U P
eg = exp(−i HPπ/2),

or by adiabatically evolving Hadiabatic = cos(t )Lz
0 +sin(t )Lz

1 for t ∈ [0,π/2]. Interestingly,
owing to the form of Lz

0, applying the operation U P
eg twice performs a spatial mirror

inversion and perfect state transfer on the spin chain (see Section 3.2).
Another eigengate which interchanges the operator superscripts x, y and z can be

formed by quenching with the total spin operator (see Section 2.5)

Qβ
0 = 1

2

∑
j
~σ
β

j β ∈ {x, y, z}

as it satisfies

[Qα
0 ,Lβr ] = iεαβγLγr . r ∈ {0,1}.

The different eigengates in this model are summarized in Fig. 6.1.
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Figure 6.2: The spectrum of each of the operators {Lαi }, depicted for N = 6. The horizontal

ordering denotes the number of α-excitations (or Hamming weight) N
2 − < Qα

0 >.
Subspaces with multiplicity larger than 1 have their multiplicity displayed to their
right.

6.3 Resonant driving on Polychronakos eigenstates

The energy spectra of all {Lαr } are identical to that of Lz
0 as these operators are linked by

an isospectral transformation. Since HP commutes with each total spin operator {Qα
0 },

we conclude that the eigensystem of each Lαi separates into non-interacting blocks of
constant Qα

0 (e.g. total spin projection in the α direction). From here onwards, we will
focus on α= z, but we stress that identical results hold for the x and y superscripts, up
to a local basis transformation.

The spectrum of Lz
0 for N = 6 is depicted in Fig. 6.2 with energies represented verti-

cally and the value of Qz
0 horizontally. Let |{k1,k2, . . . ,kp }〉 with k1 < k2 < . . . < kp repre-

sent the state with qubits k j in state |1〉 and all other qubits in the state |0〉. The energies
of states expressed in this notation are conveniently calculated as

Lz
0|{k1,k2, . . . ,kp }〉 =

p∑
j=1

xk j |{k1,k2, . . . ,kp }〉.

In words: for each qubit in state |1〉, add energy equal to the position x j of that qubit.
Because the positions x j are symmetric around 0, the highest- and lowest energy

states are nondegenerate for even N , and are given by:

|high〉 = |t1〉 = |0〉⊗N
2 |1〉⊗N

2 = |{ N

2
+1, . . . , N }〉 (N even)

|low〉 = |t2〉 = |1〉⊗N
2 |0〉⊗N

2 = |{1, . . . ,
N

2
}〉

As the energy gap between |t1〉 and |t2〉 is unique, we may select these two states for
a resonantly driven multiqubit gate. However, these states are of product form in the
eigenbasis, hence a local operator cannot have nonzero matrix element between |t1〉
and |t2〉. Therefore, we employ an eigengate U P

eg to turn |t1〉, |t2〉 into spatially extended
states |t1〉Lz

1
and |t2〉Lz

1
, while preserving the spectrum and in particular the unique en-

ergy gap. We can then resort to the driving protocol proposed in Section 4.3.2 to create
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an iSWAPt1,t2 gate by choosing Hbg = Lz
1 and choosing for Hdrive any operator that cou-

ples |t1〉Lz
1

and |t2〉Lz
1
.

It is not clear in general what choices of Hdrive lead to lower gate errors at simi-
lar driving times. One constraint is that the coupling must preserve the expectation
value of Qα

0 (i.e. the number of spins in state |1〉), indicating that couplings such as σx

or σz ⊗σy cannot drive the required transition. For some common nontrivial 1- and
2-local driving operators and small system sizes N , we tabulate the matrix elements

Lz
1
〈t1|Hdrive|t2〉Lz

1
below.

N = 4
Hdrive Lz

1
〈t1|Hdrive|t2〉Lz

1

σz
2 −0.413049i

σz
2σ

z
3 0.829345

σz
1σ

z
4 0.829345

σx
2σ

x
3 −0.552743

σ
y
2σ

y
3 −0.552743

σx
1σ

x
4 0.390066

σx
2σ

y
3 0

N = 6
Hdrive Lz

1
〈t1|Hdrive|t2〉Lz

1

σz
3 0.116012i

σz
3σ

z
4 −0.327919

σz
1σ

z
5 −0.353636

σz
1σ

z
5 0.265128

σx
3σ

x
4 0.200378

σx
2σ

x
3 −0.147838

σx
1σ

x
5 −0.14341

N = 8
Hdrive Lz

1
〈t1|Hdrive|t2〉Lz

1

σz
4 −0.027894i

σz
4σ

z
5 −0.0839009

σz
1σ

z
6 0.120287

σz
2σ

z
7 0.131574

σx
4σ

x
5 0.0471167

σx
1σ

x
6 0.0502561

σx
2σ

x
7 0.0452589

6.3.1 Tracking dynamical phases

As the energies of Lz
1 are sums of single-excitation energies, it is possible to keep track

of dynamical phases of individual states efficiently. One could in principle perform
an eigengate U P

eg , drive a transition in time td , and map back to the computational

basis using (U P
eg)†. The accumulated dynamical phases on qubit j is then equal to

x j td , which may be undone by a single-qubit phase gate, or by following the halfway
inversion protocol.

6.4 Numerical results

We test our claims by simulating the driving step of our protocol, through numerically
solving Schrödinger’s equation given by the Hamiltonian

HP (t ) = Lz
1 +ΩP cos(ωt )Hdrive.

We consider the cases N = 4 and N = 6, and two different driving operators Hdrive

which fit in the connectivity of the linear chain. The driving frequencyω is always cho-
sen to be exactly the energy gap between states |t1〉Lz

1
and |t2〉Lz

1
. Moreover, after fixing

the driving time td , we choose ΩP such that a π-rotation occurs between the transi-
tioning states, e.g. |Lz

1
〈t2|Hdrive|t1〉Lz

1
| ΩP td = π. Apart from the halfway inversion, we

apply no further optimizations to the protocol.
The results are presented in Fig. 6.3. For extremely short driving times, where td ≈ 1

such that ΩP is of the order of energy differences of the background Hamiltonian, the
gate is highly inaccurate. However, for longer driving times, td > 10, the gate becomes
increasingly accurate, with the error decaying roughly as t−2

d as expected. We also note
that the fidelity seems to not strongly depend on the choice of driving operator.

In Fig. 6.4, we depict the effect of the halfway inversion compared to leaving it
out. In the latter case, we undo the accumulated dynamical phases with the operation
exp(+i Lz

0td ) after the system is mapped back to the computational basis. The graph
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Figure 6.3: Gate error due to the resonant driving stage of our protocol, given various gate times
and two different choices of Hdrive, for a number of qubits equal to N = 4 (top) and
N = 6 (bottom). In these results, we applied the halfway inversion, but no further
optimizations. The dashed line follows E = t−2

d . Although the fidelity is strongly
oscillatory in td , a global tendency towards inverse quadratic decay is clearly visible.
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1 5 10 50 100

10
-4

0.001

0.010

0.100

Figure 6.4: A comparison of the gate error either with or without a halfway inversion ap-
plied, for the case N = 4 and Hdrive = σz

2σ
z
3. The halfway inversion shows stronger

oscillatory behavior, leading to minima that improve the total protocol fidelity
by more than an order of magnitude at equal driving times. The times td ∈
{11.55,14.05,16.55} are highlighted with a gray, dotted line.

shows that the halfway inversion does not necessarily reduce the error at all times, but
dramatically improves the error at very specific times.

We suspect that these specific times are precisely the times where, at the time of
the halfway inversion, the relative phases of each two-level system are roughly 0, caus-
ing the error’s leading order term 8sin(nt )(Ω2/δ2) (Eq. 4.14) to be minimized. We in-
formally check this statement in Fig. 6.5, where the phases corresponding to highly
optimal time td = 11.55 and local maximum td = 16.55, as well as the point precisely
in between, are compared. The circles show the accumulated phase due to Hbg for
the indicated two-level system, with the rightmost point of the circle corresponding to
zero phase. Clearly, the optimal timing is associated with near-optimal phase resets,
whereas the more erroneous timing shows phases that could contribute a significant
error of orderΩ2/δ2.

6.4.1 Comparison of gate times

So how do our driving times td compare to other quantum gate times in the same
system? A conventional two-qubit gate could be constructed if each of the individ-
ual Hamiltonian terms h j k P j k could be turned on independently. A π/4 pulse would
suffice to create maximal entanglement, so we require times t such that h j k t = π/4.
For N = 4, the corresponding times t lie between 0.86 and 1.0 for neighboring qubits,
and up to 8.56 for the most distant qubits. These should be compared to the 11.55 units
of time required to perform an iSWAP1100,0011 at low error E < 0.001. Hence, within the
time of our four-qubit iSWAP operation, up to 13 two-qubit gates could be done.

Similarly, for N = 6, neighboring qubits could be entangled in times between 0.60
and 0.81, or up to 17.36 to entangle the outermost qubits. This should be compared
to the driving time td = 13.75 to obtain a driven gate with error E < 0.003. Hence, our
six-qubit resonant gate takes time equivalent to up to 23 two-qubit gates.
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Figure 6.5: For near-resonant two-level systems, the accumulated phases at the time of the
halfway-pulse (td /2) affect the fidelity of protocol. In the spectrum of Lz

1 with N = 4
qubits, we select three different energy gaps (indicated by a pair of connected cir-
cles, squares or triangles), for which we depict the corresponding relative phases at
td as vectors on the unit sphere. A relative phase of 0 corresponds to a vector point-
ing to the right (dashed lines). At td = 11.55, corresponding to a local minimum of
our gate error E , all phases are close to zero. On the other hand, at local maximum
td = 16.55, the phases are all far from zero. The (non-)alignment of these phases
explains the oscillatory behavior of our protocol’s error as a function of time.

In general, it is unclear how to compare gate times between different gate sets, or
how to optimally decompose iSWAP operations into smaller constituents. Turning to
the well-studied Toffoli gate, the best bounds we could find are listed in Ref. [SM09],
stating that a Toffoli on four qubits requires between 8 and 14 CNOT operations. Note
that these results assume full connectivity between all qubits, and do not account for
the cost of single-qubit gates. For larger numbers of qubits, the CNOT cost is found to
scale linearly in N as long as auxiliary qubits may be used - without auxiliaries, it would
be quadratic. Different physical interactions may also lead to different gate counts. For
example, Ref. [SS03] finds that constructing a CNOT out of our interaction P j k requires
two π/4 pulses, and constructing a mere three-qubit Toffoli using the closely related
XX interaction requires as much as ten fundamental entangling operations. We con-
clude that it is not possible to make a rigorous comparison between different gate sets,
but that the duration of our resonantly driven gate is competitive with conventional
decompositions, with both approaches having unique advantages and disadvantages
depending on the specific implementation.

6.5 Conclusion

The operators Lα0 and Lα1 turn out to be related by fast quenches of Hamiltonians such
as HP and Qα

0 . This provides a large amount of utility when these interactions are avail-
able to a system, allowing straightforward basis transformations, such as the eigengate
for Lz

1 that we considered here. It would be interesting to look for further applications
of these quenches.

Just as with the Krawtchouk chain, the driven multiqubit gates are limited in use
due to the unfavorable scaling of the matrix elements for the driving operators that
we consider. In the next chapter, we discuss a system in which these numbers do not
decay with system size, but this requires a star-shaped graph where many qubits are
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strongly coupled to a single ancilla. Finding a well-understood linear chain that allows
driven multiqubit gates even in the large N limit remains an open problem.



CHAPTER 7

The Ising star model

In the previous chapters, we proposed and analyzed multiqubit gates based on res-
onant driving, and found that the gate times increased rapidly as the number of qubits
n grew. In this chapter, we take on the ambitious task to construct resonant gates that
are efficient for larger system sizes, even beating optimal circuit decompositions of
such gates.

In Section 4.1, we describe that the best known decomposition of the Toffolin

gate requires a circuit of depth O(log(n)), which involves O(n) ancillary qubits. Is there
any hope that a continuous evolution can implement the same gate, such that the gate
time T grows slower than logarithmically in n? We investigate this question by cou-
pling n qubits to a single ancilla. Straightforwardly simulating the resulting evolution
using the the Trotter-Suzuki formula [Llo96] would result in a circuit of depth O(n),
whereas the continuous evolution takes a constant amount of time. This makes our
configuration an interesting candidate for a resonant gate that outperforms the circuit
decomposition.

We impose that the interaction between the ancilla and the other qubits is of the
Ising type (see Section 2.3), and that the interaction strengths are equal. This allows
us to efficiently calculate the eigensystem of the Hamiltonian. We then find an ap-
propriate driving field on the ancilla, such that the system’s evolution approximates a
Toffolin gate after a time T , where T is constant in n. Moreover, the approximation
error does not increase with n, and can be made arbitrarily small by choosing a larger
gate time T .

The constant gate time clearly beats the log(n) depth required by the best known
quantum circuit. However, the assumption that a large number of qubits are coupled
with constant amplitude may be unrealistic for very large n. Moreover, the frequency
required to perform resonant driving does increase with n, which puts unrealistic con-
straints on control hardware. Still, our proposal could greatly enhance implementa-
tions of quantum algorithms on near-term quantum computers with a moderate (5-
100) number of qubits [Pre18].

Our contribution is closely related to earlier work on gates that exploit the Ryd-
berg blockade, a strong long-ranged interaction that is effectively of the Ising type.
The blockade interaction is available to certain types of atoms that are called Ryd-
berg atoms. As an example, Ref. [ISM11] proposes a five-step pulse sequence on ul-
tracold Rydberg atoms that leads to the Toffolin gate. Here, the number of control
qubits n − 1 is arbitrary, as long as the target qubit is sufficiently close to all control
qubits to notice their Rydberg blockade interaction. Similarly, a more recent proposal
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by [Shi18] involves a five-pulse sequence on three Rydberg atoms that forms the uni-
versal Deutsch(θ) gate, of which the Toffoli3 is a special case.

In the following, we do not simply assume a perfect Rydberg blockade, but rather
consider an all-to-all Ising model with limited interaction strengths. Due to the sym-
metry of our model, we are able to explicitly calculate the error introduced by resonant
driving fields.

7.1 Analysing the model

We consider a set of N = n +1 qubits, which we label by [n] := {0,1, . . . ,n}. We assume
that each pair { j ,k ∈ [n] : j 6= k} is coupled with Ising-type interaction, of stength w j k ,
as described by the Hamiltonian

HIsing = J

2

∑
j<k

w j k Z j Zk . (7.1)

Qubit 0 will be our special ancilla qubit, and the other qubits will be called work qubits.
We denote our quantum states in the computational basis as |x0,~x〉, where x0 ∈ {0,1}
represents the state of the ancilla, and~x ∈ {0,1}n denotes the states of the work qubits.
The states |x0,~x〉 are the eigenstates of HIsing, whose energies we denote by Ex0,~x .

Now, consider the effect of a driving field on the ancilla, of the form

Hdrive =α(t )X0 +β(t )Y0. (7.2)

This may cause the ancilla to flip, but does not directly affect the other qubits. Hence,
under the combined Hamiltonian HIsing + Hdrive, the Hilbert space decomposes into
conserved subspaces, each of which can be labeled by the state~x of the work qubits:

H~x = span(|0,~x〉, |1,~x〉). (7.3)

Within each of these subspaces, the combined Hamiltonian H = HIsing +Hdrive acts as

H~x =
(

E0,~x α(t )− iβ(t )
α(t )+ iβ(t ) E1,~x

)

=
(

∆~x/2 α(t )− iβ(t )
α(t )+ iβ(t ) −∆~x/2

)
+ Ē~x 1, (7.4)

where we defined the energy gap ∆~x = E0,~x −E1,~x and the mean energy Ē~x = E0,~x+E1,~x
2 .

Now, consider the special configuration of couplings

w0k = 1 ∀ k ∈ {1, . . . ,n} (Star couplings) (7.5)

w j k = 0 ∀ j ≥ 1.

This gives rise to a star-shaped connectivity, where all work qubits are coupled to the
ancilla, but not among each other. Now, HIsing has a spectrum as indicated in Fig. 7.1:
the ground energy is E =−Jn/2 when all work qubits are different from the ancilla, and
+J energy is added for each work qubit that is the same. The complete eigensystem is

{|0,~x〉 : |~x|H = q} E0,~x/J = n

2
−q (Star couplings)

{|1,~x〉 : |~x|H = q} E1,~x/J =−
(n

2
−q

)
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E/J

n/2

n/2−1

−n/2

−n/2+1

|1,111〉 |0,000〉

|0,111〉|1,000〉

|1,001〉 |0,011〉

1

0

23

|0,001〉|1,011〉

Figure 7.1: The left image sketches the connectivity of our model. The right-hand side displays
the energy spectrum in units of E/J for the Star couplings when n = 3.

where |~x|H = q ∈ {0, . . . ,n} denotes the Hamming weight (i.e. the number of ones) of
the bitstring~x ∈ {0,1}n . For this configuration, H~x takes a particularly simple form: the
gap∆~x = J (n−2q) is the same for all subspaces with the same Hamming weight q , and
the mean energy Ē~x = 0 vanishes for all subspaces.

Now, let us turn on the couplings w j k between the work qubits, leaving the cou-
plings connected to the ancilla fixed at w0k = 1. The resulting changes in energy due
to HIsing can now only depend on the state~x of the work qubits, not on the state of the
ancilla. Hence, the energy gap ∆~x = E0,~x −E1,~x will not change as a response to this.
In fact, the only parameter of H~x that changes is Ē~x , leading to a subspace-dependent
phase.

Even more generally, we may also allow varying couplings to the ancilla. In this
case, the energy gap varies per subspace,

∆~x = J
n∑

j=1
w0 j (−1)~x j , (7.6)

but does not change Ē~x . In general, this changes each of the 2n subspaces in a different
way, making the time evolution even harder to track.

In the following, we will first assume the most general case, allowing us to obtain
exact expressions for the time evolution of any individual subspace H~x . Next, we will
resort to certain assumptions that allow us to compute the time evolution of the full
2N -dimensional system in an efficient way, i.e. requiring a time that scales polynomi-
ally with the system size n.

7.2 Resonant driving on Ising eigenstates

We consider two possible driving fields for Eq. 7.2,

α(t ) = 2Ωcos(∆rest +φ), β(t ) = 0 single quadrature

α(t ) =Ωcos(∆rest +φ), β(t ) =Ωsin(∆rest +φ) two quadratures



80 Chapter 7. The Ising star model

where φ is the driving phase, andΩ is the Rabi frequency, which sets the energy scale.
Due to the decomposition in Eq. 7.3, the approximation that driving excitations oc-
cur in isolated two-level systems that we dicussed in Section 4.3 becomes exact. For
the case of two-quadrature driving, we can analytically solve the evolution of the two-
dimensional subsystems, by moving to the rotating frame for each space H~x . Using
the transformation

Uint(t ) = exp

(
+i t

(
∆resZ

2
+ Ē~x1

))
(7.7)

the Hamiltonian H~x becomes time-independent:

H̃~x =
(
∆~x−∆res

2 Ωe−iφ

Ωe iφ −(∆~x−∆res
2 )

)

= δZ +Ω(
cos(φ)X + sin(φ)Y

)
.

We use tildes to indicate that quantities are valid in the rotating frame, and use δ as
shorthand for the off-resonance, δ = ∆~x−∆res

2 . Having removed the time-dependence,
the unitary effect of H̃~x after time t can be calculated as

Ũ~x(t ) = exp(−i H̃~x t ) = cos(v t )1− i sin(v t )
~σ ·~v

v
(7.8)

~v =
Ωcos(φ)
Ωsin(φ)

δ

 , v =
√
Ω2 +δ2,

where~σ= {X ,Y , Z }. Note that δ is the only parameter that implicitly depends on~x.
As before, we find selective state inversion. When the subspace labeled ~x is on

resonance, i.e. when ∆res = ∆~x , then a rotation around a vector in the X − Y plane
occurs, leading to a perfect inversion at stopping time T = π

2Ω :

Ũ~x(T ) =−i (cos(φ)X + sin(φ)Y ) (on resonance, ∆res =∆~x).

For off-resonant subspaces, i.e. assuming |Ω|¿ |∆res −∆~x |, a rotation very close to the
non-driven case (Ω= 0) is obtained:

Ũ~x(t ) ≈ exp(−iδZ t ) (off resonance, ∆res 6=∆~x). (7.9)

We will assess the error introduced by the driving fields compared to the non-driven
case shortly.

7.3 Turning the driven evolution into a Toffoli

Let us now assess how the resonant transition is similar to a Toffoli gate. If all w0 j

are nonzero and have the same sign, then the subspace ~x = 11. . .1 has the largest or
smallest energy gap ∆~x , which is unique. Choosing ∆res =∆~x=1...1, the resulting evolu-
tion after time T is then very similar to a Toffoli gate, where the ancilla is flipped if
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and only if the work qubits are in a state |1〉. Moving back from the rotating frame to
the lab frame using U~x =U †

int(t )Ũ~x , we obtain the following operation Utot at time T :

Utot ≈

basis: 0~x 1~x 01. . .1 11. . .1



. . .
. . .

e−i E0,~x T 0
0 e−i E1,~x T

. . .
. . .

0 −i e−iφ−i E0,1...1T

−i e iφ−i E1,1...1T 0

Even if one accepts the approximation in Eq. 7.9, there are two important differences
from an actual ToffoliN gate:

1. The additional phase −i e±iφ in the resonant subspace~x = 1. . .1. Note that this is
not a global phase.

2. The additional phases Ex0,~xT due to HIsing.

The 2N different energies Ex0,~x can in general be hard to compute for a large system.
Undoing them may be even harder. However, one can conceive various specific con-
figurations where resetting the phases is possible.

In particular, whenever the system is symmetric under permutations on the work
qubits, then all subspaces with the same Hamming weight q behave the same, and only
n+1 different subsystems have to be considered. Various techniques can then be used
to undo the dynamical phases. One example is to choose a total gate time T such that
all phases are Ex0,~xT become a multiple of 2π. For example, in the star configuration,
the energy differences are all integer multiples of J , hence choosing a total driving time
T = 2kπ/J (k ∈N) gets rid of unwanted phases.

Assuming we have somehow removed the phases due to HIsing, we turn to removing
the phases −i e±iφ, for which we propose the circuit below:

•

=
Utot Utot

•
•
•

H H

|0〉 |0〉

(7.10)

Note that applying the resonant operation twice, leads to a phase −1 in the resonant
subspace. This is similar to a multiple-controlled Z gate except that the sign is applied
both when the ancilla is in state |0〉 and when it is in state |1〉. Hence, we obtain a
multiple-controlled Z -gate which applies a sign −1 to the work qubits if and only if all
these qubits are in the state |1〉. The state of the ancilla is unimportant, and we may
just as well initialize it to |0〉 before the protocol. Finally, the controlled-Z is mapped to
a controlled-X by using two Hadamard gates – these can be applied to any work qubit,
and that qubit then takes the role of target of the Toffolin .
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7.3.1 Expressing the gate error

We turn back to Eq. 7.9, which we claim is a good approximation to the off-resonant
evolution stated in Eq. 7.8. To assess the quality of this approximation, we consider
two different measures of gate error. Firstly, the trace error or matrix inner product is
defined as

Etr(U ,Ugoal) = 1− 1

dim(U )
tr(UU †

goal)

which gives an averaged error. Secondly, the operator norm of the difference is given
by

Enorm(U ,Ugoal) = ||U −Ugoal||
which returns the largest eigenvalue of U −Ugoal and hence captures the worst-case
error of our gate.

Let us now assume a permutation symmetry among the work qubits. Then the evo-
lution Ũ~x depends only on the Hamming weight q of the vector~x, and we will use Uq to
denote the evolution in subspaces with |~x|H = q . We can then simplify the expressions
for the gate error. For the matrix inner product,

Etr(U ,Ugoal) = 1− 1

dim(U )

n∑
q=0

tr(UqU †
goal,q )

(
n

q

)

where the binomial coefficient counts the number of subspaces with the correspond-
ing Hamming weight. Likewise,

Enorm(U ,Ugoal) = max
q

||Uq −Ugoal,q||.

In the following, we choose to work in the interaction picture, as defined by Eq. 7.7.
This way, the energies Ex0,~x due to HIsing drop out, allowing us to assess purely the driv-
ing error at any gate time T . Then, the work qubits need not even be completely per-
mutation symmetric: assuming identical couplings to the ancilla is sufficient to justify
a q-dependent treatment. Still, to obtain a proper quantum gate, the dynamical phases
need to be undone somehow.

To form a resonant gate, we choose the driving frequency ∆res to be resonant with
the subspace with weight q0 = 0, i.e. ∆res = ∆~x=0...0. Note that his is equivalent to the
case q0 = n of the Toffoli gate we considered before, but will lead to slightly cleaner
notation. We stress that other configurations and other resonant frequencies ∆res can
be addressed analogously.

We choose to keep T as a free parameter, such that the errors will become a func-
tion of the total gate time. SettingΩ= π

2T guarantees that for any T , a perfect inversion
occurs in the resonant subspace. The evolution in the resonant subspace q = 0 is al-
ways exact (no error), while the off-resonant evolutions Ũq for q 6= 0 are compared to
the goal Ũgoal,q = e−iδZ t , with δ=−J q for the star couplings.

For the trace inner product, we obtain fidelities for subspaces q as

Fq := tr
(
Ũq (T )Ũ †

goal,q(T )
)
= 2cos(JT q)cos(JTν)+ 2q

ν
sin(JT q)sin(JTν)

with ν=
√

π

4J 2T 2
+q2
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Figure 7.2: The inner product error as a function of gate time T , assuming the resonant sub-
space has weight q0 = 0. Note that the vertical axes follow a logarithmic scale. Top:
The error contribution for subspaces whose weights differ from q0 by 1 up to 4. Bot-
tom: The cumulative error Etr, for various system sizes n.

In Fig. 7.2, we plot the dependence of Fq as a function of gate ‘time’ JT , as well as the
average error Etr for varying n. We find that according to this metric, the gate fidelity
actually improves with larger system sizes, which is explained as follows. For any n,
there are n subspaces with weight q = 1 which are the least off-resonant, but an expo-
nentially large number of subspaces with much larger off-resonance are added. Hence,
the averaged error benefits more from the many off-resonant subsystems when n in-
creases.

For the operator norm, we obtain

Ũq (T )−Ũgoal,q (T ) = 1
(
cos(JTν)−cos(JT q)

)
+Z

(
i w

ν
sin(JTν)− i sin(JT q)

)
+ (cos(φ)X + sin(φ)Y )

( −iπ

2JTν
sin(JTν)

)
,

allowing us to efficiently calculate the exact operator norm error in each individual
weight-q subspace. The results are shown in Fig. 7.3. It is clear that the most resonant
subspace, q = 1, always contributes the largest error. Therefore, the max operation can
be dropped in Enorm, and we find that operator norm error is actually independent of
n.
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Figure 7.3: The operator norm error Enorm,q contributions due to subspaces with weights q =
1, . . .4, at various protocol times. The overall error Enorm for the whole gate is always
the maximum, hence is completely determined by q = 1.

The same derivation could be performed whenever a subspace different from q0 =
0 is to be flipped. By choosing the driving frequency ∆ = J (n −2q0), one will approxi-
mately find the operation where ancilla is inverted if and only if the work qubits have
weights |~x|H = q0. The values q in the above should then be replaced with q −q0.

Lastly, we consider the effect of using single-quadrature driving instead of the two-
quadrature driving fields we consider above. Hence, we assume that

α(t ) ∝ cos(∆rest ) ∝ exp(i∆rest )+exp(−i∆rest )

such that effectively two driving fields act on each two-dimensional subspace. The two
resonant resonant energies differ by a sign namely∆res and −∆res. Assuming that HIsing

is the only Hamiltonian that acts on the qubits, then ∆~x=1...1 = −∆~x=0...0. This voids
our argument that the subspace labeled ~x = 11. . .1 is the unique resonant subspace,
because~x = 00. . .0 is now also on resonance.

There are two straightforward solutions that prevent the transition |0,0. . .0〉 ↔
|1,0. . .0〉 from taking place. We can do so by turning one work qubit into an ancilla
that is initialized to the state |1〉, such that the ~x = 0. . .0 subspace is never populated.
The other solution is to consider a local field of the form H = B Z0/2 acting on the an-
cilla qubit, with some field strength B . The relevant energy gaps are then B +∆~x=1...1

and B−∆~x=1...1, which no longer differ by a sign. Most experimental quantum comput-
ers already feature some energy difference between the |0〉 and |1〉 state, making the
second solution a very natural choice.

Moreover, note that under single-quadrature driving, our results are no longer ex-
act. Still, the Rotating Wave Approximation (RWA) shows that our reasoning about res-
onant and off-resonant subspaces still holds as long as detunings are large compared
to other energy scales.

7.4 Discussion of asymptotic scaling

In the above, we assumed that n qubits were strongly coupled to our ancilla, and that
the driving frequency ∆res has no bounds. Then, the protocol time and the errors are
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roughly constant as a function of n. This is surprising, as this is a better asumptotic
scaling than the O(log(n)) time required by a gate-based quantum circuit. In particular,
in our proposals in Chapters 5 and 6, the gate time increased superpolynomially with
n.

Still, it is not immediately clear if our assumptions are realistic. Firstly, the oscil-
lation frequency ∆res for the resonant subspace q0 = n increases linearly with n in
our protocol. This may not be realistic, and if one requires the frequency ∆res to be
bounded, then the Hamiltonian’s energy scale needs to be scaled down with a factor
1/n. This effectively causes all time scales to increase by a factor n, retrieving an O(n)
time protocol.

Secondly, coupling n qubits to a single ancilla would be challenging to realize in
physical, 3-dimensional space, as each of these n qubits would need to be sufficiently
close to the ancilla. Any realistic method to implement this would probably set a max-
imum for n.

7.5 Experimental implementations

We consider two experimental platforms on which our proposal could be implemented
in near-term experiments. Firstly, ultracold atoms of the Rydberg type natively fea-
ture a strong Ising-type interaction [Saf16]. Various earlier proposals for multiqubit
operations based on the Rydberg blockade interaction exist, such as Refs. [LFC+01;
UF02; ISM11; Shi18], and some of these have been experimentally tested [EKW+15;
ZSH+15]. The specific Toffoli-type gates have, to our best knowledge, never been
implemented, but Ref. [GDM15] performs a detailed simulation of the Toffoli3 pro-
posed in Ref. [ISM11], finding that the multiqubit implementation may have advan-
tages over a sequence of one- and two-qubit gates.

Secondly, trapped ions are very well suited to simulate the Ising model with all-to-
all connectivity. These systems typically involve ionized atoms positioned on a line,
and for each ion, two electronic states are chosen to form the qubit degree of freedom.
By coupling the qubits to motional states of the ions using a two Raman lasers, an ef-
fective interaction between the qubits can be formed, which approximates the Ising
model. The couplings strengths are then of the form w j k ∝ 1/( j −k)α with α ∈ [0,3]
[KCI+09; BR12; BSK+12; ISC+13]. The choice α = 0 makes all interactions equal, lead-
ing to a highly symmetric system for which the energies Ē~x are efficiently calculated.

We identify various challenges for a real-world implementation of our gate using
trapped ions. Firstly, the amplitude of the Ising interaction J is determined by the off-
resonance between the Raman lasers and a certain transition in which a phonon is
created. Entanglement with phonons can be avoided by choosing a sufficiently large
detuning, which in turn leads to a small interaction strength J . Because our resonant
field on the ancilla must have an amplitudeΩ that is much smaller than J , there are two
mechanics at play that favor a very small value ofΩ, leading to very long gate times for
an accurate gate. Alternatively, choosing the Raman lasers closer to resonance with the
relevant transition increases J , but causes the phonon number to oscillate with larger
amplitude. Driving a transition between the states |1,~x〉 and |0,~x〉 when these are en-
tangled to a different phonon number introduces unwanted errors in the final gate.
Therefore, a competitive implementation of our proposal on trapped ions requires fur-
ther optimization.
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To illustrate, a closely related experiment was performed in Ref. [SSR+14]. Here,
up to 18 ions are made to approximate some Ising interaction, while at the same time,
a resonant driving field is applied to all ions simultaneously. The interaction strength
is of the order of a few kHz, which is sufficiently strong to identify certain transitions
for spectroscopic applications. However, we believe that the resulting evolution is too
inaccurate to form a high-fidelity multiqubit gate at this point.

7.6 Conclusion

In conclusion, we studied resonant driving on an ancilla qubit coupled to n other
qubits through Ising interactions, and find that a highly selective operation can be ob-
tained, namely a a bitlip if and only if the work qubits have a certain Hamming weight.
The Hamiltonian block-diagonalizes into invariant two-dimensional subspaces, and
if the energies of each subspaces are known, then we can efficiently track the state’s
evolution within that space. This allows us to calculate exact values of the error com-
pared to an ideal Toffolin gate. The gate time, at constant error, is found to be a non-
increasing function of the system size, under the assumption that interaction strengths
remain constant and that the driving field can oscillate at arbitrary frequencies. For
near-term quantum computers of moderate system size, this approach could lead to
fast and high-precision multiqubit gates.



Part III

Adiabatic transport of quantum states





CHAPTER 8

STIRAP and CTAP on semi-bipartite
graphs

8.1 Introduction

Recall from Section 3.2 that STImulated Raman Adiabatic Passage (STIRAP) is a state
transfer protocol that acts on a three-state system. Labeling the states as {| j 〉}3

j=1, the
protocol maps the state |1〉 to state |3〉 without requiring any direct interaction between
|1〉 and |3〉. Rather, it couples these states to some intermediate state |2〉 by two tuned
laser pulses [GRS+90]. A distinguishing feature is that state |2〉 is minimally populated,
making the evolution largely insensitive to decoherence due to the intermediate state
[VRS+17]. The protocol is now widely adopted in fields where accurate control of quan-
tum states is vital, such as high precision measurement [Kas02; KBK+15], studies of
atoms and molecules [KTS07; SPG+12; PRM15; MCM+17; CBC+17], and quantum in-
formation processing [PW02; THM03; PK04; TBJ+11; KCF13]. A recent review of results
and applications can be found in Ref. [VRS+17].

A mathematically equivalent protocol can be used to spatially displace quantum
amplitudes. In 2004, two independent works proposed state transfer of quantum par-
ticles over linear chains, by tuning the hopping strengths instead of laser fields: Ref.
[ELC+04] considered neutral atoms in optical lattices, whilst Ref. [GCH+04] addressed
electrons tunneling between quantum dots. The latter introduced the name Coherent
Tunneling by Adiabatic Passage (CTAP), which we will also use to denote spatial trans-
fer. Apart from particle tunneling, the same model applies to ferromagnetic spins un-
der XX interaction [OEO+07], where a single spin excitation can be adiabatically trans-
ferred.

With the advent of quantum information processing, accurate control and high-
fidelity qubit transport in increasingly large systems have become an important scien-
tific challenge [DiV00; Pre18]. As we argue in Section 3.2.3, the majority of scientific at-
tention focused on transfer over linear chains [VRS+17; MBA+16], whilst little is known
about adiabatic transfer in more general systems. Already in the 90s, STIRAP was gen-
eralized to linear chains of odd length N , allowing transfer between the endpoints of
the chain [MT97]. More recent work includes Refs. [BRG+12; Lon14], which consider
square and triangular grids, and Ref. [GDH06], which addresses multiple parties dan-
gling on a line, each of whom could send or receive the quantum state. Other works,
such as Refs. [CFX+13; BJG15] describe a variation where the chain splits into multiple
paths or branched endpoints. These protocols are shown to work by a clever mapping
back to the original protocol on the chain.
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We aim to find more general configurations that allow a similar transfer protocol, by
describing a system’s interactions in the language of graphs (Section 2.2.1): the vertices
represent basis states and edges represent interactions. We look at bipartite graphs,
where the basis states can be separated into two sets V1 and V2, such that each state
interacts only with states outside its own set. If the two sets differ in size by one, then
amplitude transfer between states in the bigger set may be possible. We can guaran-
tee successful transfer when certain graph properties are satisfied, as made precise in
Theorem 3.

Interestingly, our approach naturally provides a means to transfer amplitude to one
out of multiple potential receivers, generalizing Ref. [GDH06]. We find that the final re-
ceiver need not yet be known when starting the protocol, which could be an advantage
in quantum information processing.

These results advance the fields of STIRAP and spatial transfer in two ways. Firstly,
they open the way to practical adiabatic passage in more general systems. Secondly,
they shed light on possible perturbations in conventional STIRAP and their effect: we
find that many perturbations, as long as they satisfy our assumptions, do not cause a
qualitatively different effect on the state’s evolution during the protocol.

Our treatment of bipartite graphs is reminiscent of the celebrated Morris-Shore
(MS) transformation [MS83]. The transformation finds a unitary map A on the part
V1 and a unitary map B on part V2, such that the system decomposes into a set of de-
coupled two-level systems, and a set of uncoupled states. Similar to the setting of MS,
we focus on the uncoupled states, which are called dark states. Our contribution is
distinct from work related to MS transformations, due to the focus on adiabatic trans-
fer techniques, in which the MS transformation would continuously change in time.
Therefore, it is not immediately clear how MS could guarantee that our adiabatic state
remains nondegenerate, and we choose to resort to other techniques.

This chapter is organized as follows. In Section 8.2, we review the conventional
STIRAP and CTAP protocol, after which we present our main result on more general
graphs in Section 8.3. We then discuss the applicability in real-world systems in Sec-
tion 8.4, and methods to obtain graphs that satisfy our assumptions in Section 8.5. We
numerically test the scaling of the adiabatic gap in various graphs, and the fidelity of
our protocol, in Section 8.6, and finish with a conclusion in Section 8.7.

8.2 Conventional STIRAP

The conventional STIRAP protocol (Fig. 8.1) deals with a three-dimensional quantum
system, consisting of eigenstates {| j 〉}3

j=1 of some background Hamiltonian. To transfer
amplitude from |1〉 to |3〉, a sequence of two laser pulses is applied: the Stokes pulse
coupling |2〉↔ |3〉, and the Pump pulse coupling |1〉↔ |2〉. Throughout this section, we
consider only the interaction picture and assume the rotating wave approximation to
hold. The system’s Hamiltonian then becomes

H =
 0 ΩP (t ) 0
ΩP (t ) ε ΩS(t )

0 ΩS(t ) 0

 . (8.1)

Here, ΩS/P denotes the Rabi frequency (amplitude) of the Stokes and Pump lasers, re-
spectively, and ε absorbs the off-resonances, assuming both are equal in size. One can
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Figure 8.1: The conventional STIRAP/CTAP protocol on a three-site Λ system. (a) The energy
diagram of the three states, coupled by the Stokes (S) and Pump (P) lasers, also rep-
resented as a graph in (b). (c) Stacked plot showing the laser amplitudes, state
amplitudes, and energies (eigenvalues λ) as a function of time, in arbitrary units.
Stages I and III involve turning the couplings on/off, whereas stage II constitutes
the relevant adiabatic driving part which transfers amplitude from state |1〉 to |3〉 as
amplitudesΩS andΩP are slowly adjusted relative to each other.

check that one instantaneous eigenstate of H is the zero energy ‘dark state’ |z〉 given by

|z(t )〉 = 1

N

 Ω−1
P (t )
0

−Ω−1
S (t )

 ,

where N denotes the normalization. The dark state |z〉 has precisely the property that
it transitions from |1〉 to |3〉 as ΩS is gradually diminished while ΩP is increased. Note
the counter-intuitive order of the pulses, as indicated in Fig. 8.1. A key property of
STIRAP is that the excited state |2〉 is never populated during this process, hence the
protocol is independent of decoherence due to emission from this state. Thanks to
this, and the inherent stability of adiabatic methods [CFP01], the protocol is relatively
stable to experimental imperfections, and is broadly adopted in practice [VRS+17].

The setting where quantum particles can tunnel between three adjacent sites is
mathematically equivalent to Eq. 8.1, where the parameters Ω now take the role of
tunneling amplitudes. The same protocol can then be applied, leading to transfer of
the particle wavefunction, as is the case in CTAP.

8.3 Generalizing STIRAP

We observe that a key property of STIRAP and CTAP is the existence of a unique zero-
energy eigenstate at all times (guaranteeing adiabatic transfer), and that this state is
localizable by lowering couplings incident to a particular site. This leads us to our main
question: which other physical configurations pertain precisely one zero eigenvector,
even when uncoupling a certain site?
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We capture the more general configurations in the language of weighted graphs G =
(V ,E , w). Here, the collection of vertices V = {v j }dim(V )

j=1 corresponds to a set of basis

states {|v j 〉}dim(V )
j=1 of Hilbert space V . Two vertices v,u ∈ V are connected by an edge

(u, v) ∈ E if and only if an interaction that couples states |u〉 and |v〉 can be applied.
The weights w : E →C assign a complex amplitude to each of the interactions. Weights
evaluated on non-existent edges are zero: wuv = 0 for all (u, v) 6∈ E . In the context of
CTAP, the vertices should be interpreted as sites for the particle, and the edges indicate
possible tunneling of the particle. In the context of STIRAP, vertices are energy levels,
and edges are possible couplings by laser fields.

The adjacency matrix AG of a graph is then defined as the matrix of weights, with
matrix elements (AG )uv = wuv . We impose hermiticity through wuv = w∗

vu . For com-
putational simplicity, we take the adjacency matrix to be constant (we consider it as a
background), and define the control Hamiltonian HG for a given graph G by

HG (t ) = ∑
u,v∈V

fuv (t )wuv |u〉〈v | , fuv (t ) = f ∗
vu(t ) .

In this definition of the control Hamiltonian, we assume arbitrary time-dependent
control over each allowed interaction, by tuning the controls fuv (t ).

The graph G from which HG is derived will be called the interaction graph, which
restricts the allowed interactions in HG . In the context of quickly oscillating laser fields,
we obtain Hamiltonians H that are effectively time-independent except for the en-
velopes given by the functions fuv (t ). The Hamiltonians we consider thus correspond
to the interaction picture, in which quickly oscillating fields have either been absorbed
into the on-site energies in the rotating frame, or where off-resonant fields are ne-
glected by the rotating wave approximation.

Thanks to the mapping to graphs, we can use various notions from graph theory.
We denote with G − v the graph G in which the vertex v and all the edges incident to
v are removed. A bipartite graph has a vertex set V which can be separated into two
independent subsets V1,V2 such that each edge (u, v) ∈ E must run between V1 and V2

(that is, u ∈ V1 and v ∈ V2 or vice-versa). In the following, we will encounter a certain
variation on bipartite graphs:

Definition 1. A semi-bipartite graph with parts V1 and V2 [XWH+10; AK09] is a bipartite
graph in which edges within V2 are allowed (including self-loops), but edges within
V1 are still prohibited. For example, the graph in Fig. 8.1 is semi-bipartite with V1 =
{|1〉, |3〉}, but not bipartite unless the self-loop (the off-resonance of |2〉) is removed.

Note that for a connected bipartite graph, the decomposition V = V1 tV2 is deter-
mined uniquely (up to interchanging V1 and V2), while this is almost never the case for
semi-bipartite graphs: any vertex in V1 may be moved to V2. Hence, the decomposition
is an essential part of the data. However, for our results, we want to take |V1| = |V2|+1,
which means we cannot easily move points from V1 to V2.

We let V denote the vector space spanned by the states |v〉 corresponding to the
vertices v in V . Likewise, we use V1,V2 to denote the subspaces corresponding to sub-
sets V1, V2. We order the basis of V by first stating the elements of V1 and then the
elements of V2. In this basis, the interaction graph has the form

AG =
(

0 B
B T C

)
, (8.2)
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where B is a matrix of size |V1|× |V2| and C has size |V2|× |V2|. We will mostly use this
form of AG throughout this chapter.

Definition 2. We use commensurate couplings to denote the choice of couplings fuv (t )
such that

fvu(t ) = fv (t ) ∀u ∈V2, v ∈V1 ;

fvu(t ) = 1 ∀u, v ∈V2 .

In other words, for each vertex v ∈V1, the incident couplings are changed proportion-
ally, whereas all couplings within V2 to be equal to one.

Note that the statement about commensurate couplings covers all couplings in a
semi-bipartite graph. In such cases, with the interaction graph given in the form of
Eq. 8.2, we may write

HG (t ) = F (t )AG F∗(t ) , (8.3)

where F (t ) = diag( f1(t ), . . . , f|V1|(t ),1, . . .1).
We are now ready to state our main result. Consider a set of parties (vertices) P ⊆V1

located on a graph, who want to send a quantum state to each other. This turns out to
be possible with a control Hamiltonian HG , under certain graph restrictions, as made
precise below.

Theorem 3. Let G = (V ,E , w) be a connected, weighted, semi-bipartite graph with parts
V1 and V2. Let P = {p j }k

j=1 ⊆V1. We assume that

1. |V1| = |V2|+1;

2. Either of the following:

2a. For all p j , det(AG−p j ) 6= 0;

2b. AG has a unique zero eigenvector, which has nonzero amplitude on each p j .

Then, for any a,b ∈ P, the following choice of commensurate couplings are such that
HG (t ) adiabatically transfers amplitude from a to b in total time T :

fa(0) = 0;

fb(T ) = 0;

fv (t ) 6= 0 for all v 6∈ P;

No two fv (t ) may be zero simultaneously.

(8.4)

Before we prove this theorem, we would like to analyse the statement first. The
proof is given on Page 95, after Remark 5.

Firstly, note that det(A) 6= 0 implies that A does not have a zero eigenvalue.
Moreover, the only couplings fuv that actually require time-dependent control are

those directly connected to sender and receiver; controlling any of the other couplings
is optional. In fact, the control procedure can be performed locally and sequentially:
it is possible to first only change the controls near a and then only those near b. An
example is the choice

fv (t ) =


min{2t/T,1} v = a ;

min{1−2t/T,1} v = b ;

1 else.
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In particular, the receiver, b, can be chosen after the process has been initialized.
The assumptions 2a and 2b are equivalent under the assumption of 1. More pre-

cisely, the following proposition holds.

Proposition 4. Let G = (V ,E , w) be a weighted, semi-bipartite graph with parts V1 and
V2, such that |V1| = |V2|+1, and let p ∈V1. Then the following are equivalent:

a. det(AG−p ) 6= 0;

b. AG has a unique zero eigenvector, which has non-zero amplitude on p.

Proof. Let us first show that, thanks to |V1| = |V2| + 1, there must exist a zero-energy
eigenvector |z〉 = (z1,0) ∈ V1 whose nonzero amplitudes z1 are only located on sites in
V1. This holds because in the eigenvalue equation, using the form of Eq. 8.2,(

0 B
B T C

)(
z1

0

)
=

(
0

B T z1

)
= 0,

the system of equations B T z1 = 0 has |V1| variables and |V2| constraints, hence it must
always have at least one non-trivial solution.

We start with the implication from a to b. By the the previous argument, the rank of
AG can be at most |V |−1. However, as det(AG−p ) 6= 0, the submatrix AG−p must be of
maximal rank, which is also |V |−1. As the rank of a submatrix gives a lower bound on
the rank of a matrix, this shows that rk AG ≥ |V | −1. Therefore, there is a unique zero
eigenvector.

Let this eigenvector be v , let its component at p be vp , and its components away
from p be ṽ (so ṽ is a vector with |V | − 1 components). We can write AG as a block
matrix

AG =
(

0 bp

bT
p AG−p

)
,

where we wrote the component p as the first component for simplicity. As v is a zero
eigenvector, we get

0 = AG v =
(

0 bp

bT
p AG−p

)(
vp

ṽ

)
=

(
bp ṽ

bT
p vp + AG−p ṽ

)
.

If now vp = 0, then ṽ 6= 0, as an eigenvector cannot be zero, but then AG−p ṽ 6= 0, as
det(AG−p ) 6= 0. This is a contradiction, so we must have vp 6= 0.

Now we prove the implication from b to a by counterpositive. Hence we assume
det(AG−p ) = 0, and show that there exists a zero eigenvector of AG whose p-component
is zero. Again, for notational simplicity, we write the component p as the first compo-
nent, so we have

AG =
(

0 B
B T C

)
=

 0 0 bp

0 0 B̃
bT

p B̃ T C

 .

From this, we get

AG−p =
(

0 B̃
B̃ T C

)
,

where, crucially, the sizes of B̃ and C are equal by the assumption |V1| = |V2|+1. Hence,

det(AG−p ) =±det(B̃ B̃ T ) =±det(B̃)2 .
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Now, by assumption det(AG−p ) = 0, so det(B̃ T ) = 0. Therefore, there exists a zero eigen-
vector u of B̃ T . If we define v = (0,u,0), then

AG v =
 0 0 bp

0 0 B̃
bT

p B̃ T C

0
u
0

=
 0

0
B̃ T u

= 0,

so we have constructed a zero eigenvector of AG with zero amplitude on p, giving a
contradiction.

Remark 5. In fact, the implication from a to b goes through even in the case G is not
semi-bipartite; the proof does not use this assumption. However, for the other direc-
tion, it is essential.

Proof of Theorem 3. By the first part of the proof of Proposition 4, there exists a zero-
energy eigenvector |z〉 for any choice of controls.

Clearly, the couplings fuv (t ) in Eq. 8.4 are such that at times 0 and T , the respec-
tive states |a〉 and |b〉 are zero-energy eigenstates. We will argue that, using the given
control scheme, the zero-energy subspace is one-dimensional at all times.

When all controls fv are equal to one, then HG = AH and the zero-energy eigenstate
|z〉 is unique, by assumption 2. When the couplings change commensurately, as long
as they remain non-zero, the eigenstate |z〉 changes as

|z(t )〉∝ F (t )−1|z〉, (8.5)

as can be seen from Eq. 8.3. Because F is diagonal, |z(t )〉 is still located on V1. It is
unique, because given any zero eigenvector |w〉 of HG (t ), F (t )|w〉 is an eigenvector of
AG , hence must be equal, up to scaling, to |z〉.

Special care has to be taken when reducing weights to zero. When reducing fp (p ∈
P ) towards zero, assumption 2a guarantees that no zero eigenvectors occur on G −p,
hence |p〉 must then be the unique zero eigenstate.

This shows that any controls fv satisfying Eq. 8.4 indeed pertain a unique zero-
energy eigenstate, and provide the correct initial and final state at times t = 0 and t = T .
By the adiabatic theorem, a sufficiently high protocol time T allows state transfer at
arbitrary accuracy.

The unique zero-eigenstate |z(t )〉 has many favorable stability properties. Its eigen-
value is exactly 0 throughout the whole protocol, independent of changes to wuv , as
long as the graph remains semi-bipartite. The constant energy makes the state’s dy-
namical phase easy to track. Moreover, it has exactly 0 amplitude on V2, which makes
it insensitive to any decoherence on sites in V2. The state |z〉 generalizes the ‘dark state’
of conventional STIRAP and CTAP, inheriting important features that make these pro-
tocols attractive for practical purposes.

One might be concerned that, when reducing all controls fp j v incident to a certain
party p j to zero, it is hard to maintain the commensurate ratios between the couplings.
Luckily, it turns out that in such cases, commensurateness is not essential: the condi-
tion det(AG−p j ) 6= 0 guarantees that the zero eigenstate remains unique as long as all
other sites remain commensurately coupled. This holds because the rank of AG must
be at least that of AG−p j , which shows that for any couplings between p j and the rest of
the graph, there can be at most one zero-energy state. This freedom gives the protocol
a convenient stability to imperfect controls.
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The time scale T required by the protocol is determined by the gap in the spectrum
around the zero eigenvalue, as opposed to the well-studied gap between the lowest
and second lowest energy [BH12]. To our best knowledge, little is known about the
gap around zero, and characterizing its scaling is an interesting open problem. In Sec-
tion 8.6 we numerically study the scaling for certain example graphs.

8.4 Applications

Our main result requires a physical system to obey our conventions of control Hamil-
tonian HG for certain graphs G , with sufficiently flexible controls fuv . Recall from Sec-
tion 3.2.1 that this applies to the case of single excitation hopping, which describes the
following example systems:

• Discrete energy levels coupled by (near-)resonant laser fields, like electronic lev-
els in atoms or molecules, such as typically considered in STIRAP [VRS+17]. The
lasers can also be off-resonant, as long as each state in V2 has all of its incident
couplings at the same off-resonance. Either way, a transformation to the interac-
tion picture, and assumption of the Rotating Wave Approximation are required.

• Systems where a quantum particle ‘hops’ between coupled sites, such as elec-
trons caught in quantum dots [GCH+04; HFJ+17], or atoms or atomic conden-
sates trapped in optical potentials [ELC+04; GKW06; BDN12].

• An XX model of interacting spins, of the form

HXX = 1

2

∑
uv∈E

wuv (Xu Xv +YuYv )+h
∑

u∈V
Zu ,

where {Xu ,Yu , Zu} are the Pauli matrices acting on the site u, in the sector with a
single spin excitation [OEO+07].

The most interesting application might be in quantum information processing. As
discussed in Section 3.2.1, quantum information can be transmitted whenever the
states | j 〉 represent the position of a quantum particle with internal degrees of free-
dom, as is the case with CTAP, or when a superposition between a shared vacuum and
an excitation on a graph may be made. The latter applies to the XX model, where an
initial state of the form

|ψ(0)〉 =α|0〉a |0. . .0〉+β|1〉a |0. . .0〉
can be initialized locally at site a.

In the context of information transfer, care has to be taken with the additional
phase that is picked up throughout the protocol. As an example, in the XX model de-
scribed above, the single-excitation subspace amplitude β picks up a relative phase
β→ e−i hTβ relative to the vacuum amplitude α. Moreover, the transfer protocol itself
gives an additional phase to the transferred excitation, as previously observed by Ref.
[GDH06]. This becomes relevant when dealing with the XX model, or when transport-
ing entangled particles or states. Owing to Eq. 8.5, as long as the controls fuv (t ) remain
real-valued, the additional phase acquired by the state when transferring from site a
to b is equal to arg(za/zb), where za , zb are elements of the zero-eigenvector |z〉 of AG .
Hence, for some applications, this vector may need to be explicitly calculated once.
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As a potential realistic application, Ref. [VBC+17] observes that individual quantum
processors based on quantum dots are limited in size, raising the need for communi-
cation between nearby processors. Our results readily generalize the CTAP protocol
[GCH+04] to transfer electrons through a network of quantum dots, and the possibil-
ity to use more general graphs may be of great benefit for larger quantum computer
architectures.

Another new application is in a delayed transfer scheme, which will be addressed
in more detail in Chapter 9. In short, the sender a can initialize the system into the
dark state |z〉 and leave it at that, such that any party in P can retrieve the quantum
state, at any time they like. This opens the possibility to share unclonable quantum in-
formation among many parties without yet knowing which party is required to obtain
the information.

8.5 Examples of viable graphs

The main assumptions of Theorem 3, especially requirement 2, may not be very intu-
itive, but can be guaranteed in certain cases. In this section, we present two results in
this direction. First, we discuss a procedure to generate viable graphs, by iteratively
adding or removing dangling vertices. Next, we show that for any graph that allows, for
each p j , a perfect matching when a party p j is removed, our assumptions are satisfied
with probability 1 when the weights wuv are chosen at random.

8.5.1 Adding and removing vertex pairs where one is dangling preserves
the nullity

Consider a setting where one knows a graph G and a set of parties P that satisfy the
assumptions of Theorem 3. One may now extend the graph by connecting first a vertex
u in an arbitrary way, and then connecting a vertex v only to u. It turns out that, for
any choice of non-zero weights, the number of zero eigenvectors does not change in
this process.

We make this precise as follows. For an (n×n)-matrix A, let η(A) = n−rk(A) denote
the nullity of the matrix.

Lemma 6. Let G be a graph with a vertex v of degree 1, whose unique neighbor is u
(u 6= v). Then

η (AG ) = η(
AG−{v,u}

)
.

Proof. Let G̃ denote the graph G − {v,u}. Assuming for convenience that v and u are
the first and second column of the adjacency matrix AG respectively, we can write

AG =
 0 wuv 0

wvu wuu b
0 bT AG̃

 .

We can write any vector |z〉 as (zv , zu , z̃). Now wuv 6= 0 and

0 = AG |z〉 =
 0 wuv 0

wvu wuu b
0 bT AG̃

zv

zu

z̃

=
 wuv zu

wvu zv +wuu zu +b · z̃
bT zu + AG̃ z̃

 ,
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implying that zu = 0, and hence also zv =− 1
wvu

b · z̃, and AG̃ z̃ = 0. Hence, we get a linear

isomorphism ker AG → ker AG̃ : (zv , zu , z̃) 7→ z̃ with inverse z̃ 7→ (− 1
wvu

b · z̃,0, z̃). As the
nullity is the dimension of the kernel, this shows η(AG ) = η(AG̃ ).

Note that in Lemma 6, we did not require the assumption of semi-bipartiteness,
although the latter is still required for our adiabatic protocol. We obtain the following
corollary.

Corollary 7. Suppose G is a semi-bipartite graph with parts V1 and V2 such that |V1| =
|V2|+1. Fix a set of parties P ⊆ V1. Suppose v is a dangling vertex, v 6∈ P, whose unique
neighbor is u. Then condition 2 of Theorem 3 holds for G if and only if it holds for G −
{u, v}.

Proof. Recall that one of the two equivalent statements of condition 2 is that
det(AG−p j ) 6= 0, for all p j ∈ P . Let us first assume that G satisfies this condition. Because
det(AG−p j ) 6= 0, the nullity of AG−p j is non-zero. By Lemma 6, the nullity of AG−{u,v})−p j

is also non-zero, hence it has a non-zero determinant and thus satisfies condition 2a
as well. The same reasoning also proves the other direction.

Corollary 7 shows that new viable graphs can be generated by adding or removing
vertices from existing graphs that are already known satisfy the assumptions of The-
orem 3. When adding vertices, one may first connect a vertex u in any way, as long
as the semi-bipartiteness is not violated, and then attach a vertex v only to u. When
removing vertices, one must find a dangling vertex v and remove it together with its
neighbor u, as long as the connectedness is preserved. On graphs generated this way,
the requirements of Theorem 3 can be guaranteed.

When adding new vertices to a graph this way, it may also be possible to add the
new vertices to the set of parties P , under the following conditions. It is never possible
to add a vertex u ∈ V1 to the set P when u is adjacent to a dangling vertex. For a new
dangling vertex v ∈ V1 that is to be added to the set P , assumption 2b requires that
the zero eigenvector of the new adjacency matrix has nonzero amplitude on v . By the
relation zv =− 1

wvu
b · z̃ found in Lemma 6, we require b · z̃ to be non-zero.

Below, we give two example of new families of graphs that allow adiabatic transfer.
Various examples of viable graphs are also depicted in Fig. 8.2.

Example 8 (Subdivided trees). Let T = (VT ,ET ) be any tree. We define the subdivided
tree T̃ = (VT̃ ,ET̃ ) by adding a vertex right in the middle of every edge. To be precise, the
new vertex set VT̃ = VT tET is given by the vertices and edges of T , and the edge set
ET̃ = {{v,e} : v ∈VT ,e ∈ ET , v ∈ e} consists of edges that connect each vertex v ∈VT to its
incident edges e ∈ ET . An example of such a subdivided tree is shown in Fig. 8.3. The
decomposition VT̃ = VT tET guarantees that T̃ is a bipartite graph, and since T is a
tree, |VT | = |ET |+1, hence the relation between the sizes of both parts is automatically
satisfied. Moreover, we can iteratively remove leaves from the tree to reduce to a single
vertex or single edge, showing that any T̃ constructed this way satisfies the conditions
of Theorem 3.

Example 9 (Hexagonal grids). Hexagonal grids can be constructed from two-vertex
unit cells that are all oriented in the same direction. To be precise, if one considers the
hexagonal grid to be infinite, then our hexagonal grid graphs are finite subgraphs of the
hexagonal grid, which must be connected. These graphs are bipartite, with each unit
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cell containing one vertex from V1 and one from V2. If we start with a single vertex,
and keep attaching unit cells in a hexagonal grid pattern such that one of the newly
attached vertices is dangling, then each of the grids constructed this way satisfies the
conditions of Theorem 3. Note that this generates only a subset of all possible sub-
graphs of hexagonal grids.

8.5.2 Graphs with certain matchings make the protocol work almost surely

A perfect matching in a graph G is a set of disjoint edges that covers all the vertices.
In this section, we show that on semi-bipartite graphs G where G − {pi } has a perfect
matching for all i , taking arbitary weights from a continuous distribution results in an
interaction graph that satisfies the conditions of Theorem 3 with probability one. This
gives another way to generate a large class of graphs on which the adiabatic transfer
protocol works.

Theorem 10. Let G = (V ,E , w) be a weighted semi-bipartite graph with parts V1 and
V2 where |V1| = |V2| + 1. Let P = {p j }k

j=1 ⊆ V1. Suppose that for all i there exists a
perfect matching in G − pi . Then, if weights wuv are chosen randomly from a contiu-
ous distibution (meaning that no value has positive probability) for all uv ∈ E, we find
det(AG−p j ) 6= 0 for all p j with probability 1.

Note that the theorem exactly gives us condition 2a required by the protocol.

Proof. It suffices to prove that det(AG−pi ) 6= 0 with probability 1 for a fixed i ∈ {1, . . . ,k};
the claim of the theorem then follows since a countable intersection of events with
probability 1 still has probability 1.

Let p = pi be given. We will first permute the rows and columns of the matrix AG−p

to bring it in a convenient form; such a permutation only affects the determinant of
the matrix by a sign, which is irrelevant to us.

By assumption, there is a perfect matching on the graph G−p. Since |V1 \{p}| = |V2|
and there are no edges within V1, any perfect matching must use only edges between
V1 and V2. Let u1v1, . . . ,uk vk ∈ E ∩ (V1 ×V2) denote the edges given in a perfect match-
ing on G − p. Permute the rows and columns such that the rows are in the order
u1, v1,u2, v2, . . . and the columns are in the order v1,u1, v2,u2, . . . . We show with an
inductive argument that for all ` ∈ {1, . . . ,k}, the matrix A` on the first 2` rows and
columns has non-zero determinant with probability 1. This proves the claim.

For `= 1, we consider

det

(
wu1v1 0
wv1v1 wu1v1

)
= w 2

u1v1
,

since wu1u1 = 0 as u1 ∈ V1. As wv1v1 is sampled uniformly at random from [0,1], this is
non-zero with probability 1. Now suppose we have shown the statement up to some `.
We find

det

A` b1 b2

d1 wu`+1v`+1 0
d2 wv`+1v`+1 wu`+1v`+1

= det(A`)w 2
u`+1v`+1

+bwu`+1v`+1 + c

for some b and c which do not depend on wu`+1v`+1 , and where we may assume that
det(A`) 6= 0. Since the other entries do not depend on wu`+1v`+1 and this gets sam-
pled independently of the other entries, we may view det(A`),b and c as constants.
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Since there are at most two possible values in [0,1] which make a quadratic polynomial
ax2 +bx + c equal to zero (if a 6= 0), with probability 1 the expression will be non-zero.
Continuing until `+1 = k, we conclude det(AG−p ) 6= 0 with probability 1 as desired.

Remark 11. From the proof, it follows that the assumptions in Theorem 10 can be
relaxed: the requirement that the weights are chosen from a continuous distribution is
only necessary for the edges involved in the matching.

In fact, it is possible to show that the adjacency matrix of G is equivalent to a matrix
with non-zero entries on the diagonal if and only if there is a perfect matching. Limited
generalisation is also possible to non-bipartite graphs.

The proof of Theorem 10 also suggests a (weak) lower bound on the determinant
det(AG−pi ) with some probability, and hence on the eigenvalue gap of AG . For details,
we refer to Ref. [GGK19].

8.6 Numerics

Our results state merely that adiabatic transfer is possible at some timescale, to which
we remained agnostic. Especially the randomly-weighted graphs with perfect match-
ings in Section 8.5.2 potentially give rise to a configurations with a very small energy
gap, giving rise to long transfer times T . An in-depth study of the gap between the zero
eigenvalue and the next on semi-bipartite graphs is left as an open problem, but to
give some indication of the quantitative behavour of our protocol, we resort to numer-
ics. First, we calculate the scaling of the energy gap for various graphs. After that, we
consider fidelity of transfer in subdivided trees of various depths.

Gap scaling Fig. 8.2 depicts the scaling of the energy gap around the zero energy
state, as a function of the number of vertices |V |. We do this for various types of graphs,
which are generated as follows:

• Star graphs have k ‘arms’, linear chains of length m, connected to a single center
vertex. Interestingly, the eigenvalue gaps do not change as the number of arms
increases. We fix the number of arms to three and vary the chain lengths to make
larger graphs.

• Hexagonal grids consist of unit cells of size 2. We take k2 copies of these unit
cells and place them on a k ×k square grid, which is connected as indicated in
Fig. 8.2. To enforce an odd number of sites, we remove a single site in the top-
right corner, leading to 2k2 − 1 sites in total. Interestingly, the hexagonal grids
are the only graph configuration we considered whose gap decays superpolyno-
mially (yet slower than an exponential). Randomly perturbing weights does not
change this behavior.

• Square grids are chosen to have k by k vertices, where k is an odd number.

• Our bipartite graphs consist of two parts of size m +1 and m, respectively. Each
potential edge which can be laid to connect the two parts is added with prob-
ability p = 0.81. Because these graphs are also random, for each datapoint, we
also averaged the gap size over 50 random instantiations of the edge set. The
thickness of the line indicates the standard deviation.
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Figure 8.2: Scaling of the eigenvalue gap ∆E between the unique zero eigenvalue and the clos-
est other eigenvalue, on a log-log scale. These are calculated for various bipartite
graphs of various sizes |V |. The annotation (random) indicates that the weights
were randomly chosen in the interval [0,2] to guarantee a unique zero eigenvec-
tor. The lower dashed line indicates ∆E = 1/|V |, and the upper dashed line fol-
lows ∆E = 10/

p|V |. Interestingly, for most of the graphs we study, the gaps decay
scales proportional to 1/|V | or slower. Hexagonal grids are an exception, as these
are found to decay superpolynomially.

• Subdivided binary trees are generated as in Example 8: starting from a complete
binary tree of certain depth, we create an additional vertex on each edge, which
makes sure that |V1| = |V2|+1.

For most graphs, we consider the unweighted versions, setting wuv = 1 whenever the
corresponding edge is present. Some graphs have the annotation ‘random’, which
means that the graphs typically do not have a unique zero eigenvalue when all weights
equal one; we then ensure a unique zero eigenvector by multiplying each weight wuv

with a random number chosen independently and uniformly chosen between 0 and 2.
We took the average energy gap over 50 such perturbations.

These results show that the energy gap often decays roughly as ∆E ∝ |V |−1 or
slower, similarly to conventional STIRAP over a linear chain, with hexagonal grids be-
ing an exception.

Transfer fidelities To assess the actual accuracy of our protocol, we numerically sim-
ulate the time evolution of a transfered state. As graphs, we choose subdivided binary
trees of depth k, as these allow transfer between a large number of parties. For exam-
ple, each leave (endpoint) of the tree is a potential party, allowing |P | = 2k different
parties to participate. In our simulations, we choose to transfer a state between parties
a and b which are at maximum distance from each other. This setup is depicted in
Fig. 8.3.

We define the transfer error as E = 1− |〈b|UT |a〉|, where UT denotes the unitary
time-evolution operator as found by numerically solving Schrödinger’s Equation, and
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Figure 8.3: Simulation results on tree graphs are presented. A tree of depth k = 2 is shown on
the left, with receivers a and b maximally separated. The top charts show the ideal
state evolution over time, and the energy levels during the protocol. The bottom
chart shows how the times T ∗ required for constant fidelity increase steeply with k,
except when sufficiently strong straddling is applied, leading to T ∗ ∝ k0.5 (dashed
line). Note that the size of the graph is exponential in k.

T is the total protocol’s time. We choose simple time-dependent couplings fa = J t/T
and fb = J (1− t/T ), while all other controls remain fv = 1. Moreover, we define T ∗ as
the lowest time for which E < 0.05, setting a bar for transfer with 95% fidelity.

Owing to the exponentially large size |V | of the graphs, the time required rapidly in-
creases with k (Fig. 8.3). Interestingly, we find that the technique of straddling [MT97;
GCH+04], in which all controls fv except for fa and fb are multiplied by a factor s, flat-
tens the scaling down to roughly T ∗ ≈ 10

p
k, up to a certain k where the steep increase

is observed again. Ref. [GCH+05] already predicted a favorable scaling T ∗ ∝ p
n for

linear chains of length n in the strong straddling limit. It is surprising that here, we
find a similar scaling in k rather than n, even though the number of vertices increases
exponentially in k.

There are various reasons to believe that the strong straddling scaling cannot re-
main valid for increasingly large systems, for example due to Lieb-Robinson bounds
[LR72]. Still, with a modest straddling factor s = 10, transfer at favorable scaling
T ∗ ∝ √

log(|P |) is observed for graphs of up to 1000 sites, showing that near-term ex-
periments can benefit from this effect.

8.7 Conclusion

To summarize, we extend the set of graphs in which STIRAP-like protocols are known
to work. The sufficient requirements are made precise in assumptions 1 and 2 of The-
orem 3, which can be guaranteed using the techniques in Section 8.5. We inherit the
most important properties of the conventional protocols: the adiabatic controls do not
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require precise amplitudes or timings, the system’s energy is exactly zero at all times,
and the fidelity is largely insensitive to decay on sites in V2. Various extensions, such
as straddling and multi-party transfer, can be readily incorporated. In the studied ex-
ample of tree-shaped graphs, we find that with mild straddling the fidelities are much
better than naively expected.

As our requirements are sufficient but not necessary, we would be interested to see
further work explore other graphs with unique zero eigenstates, and give guarantees
on spectral gaps around the zero eigenvalue for specific graphs. Moreover, we look
forward to seeing state-of-the-art experiments test our results in practice.





CHAPTER 9

State transfer in bipartite
anti-ferromagnetic spin networks

9.1 Introduction

In Section 3.2, we argued that reliable transport of quantum states is essential for future
quantum information technologies [DiV00]. If the quantum information is carried by a
spin degree of freedom, then it is a natural choice to transport the states over a network
of spinful particles [Bos07; NJ14].

In this chapter, which is based on Ref. [Gro19], we consider such a system of spin-
ful particles, where the spins are coupled through anti-ferromagnetic (AFM) isotropic
Heisenberg interactions. We show that, if Alice and Bob can adiabatically change the
strengths of the couplings surrounding a small subsystem of a suitable network, then
they can send each other quantum information and establish entanglement.

The protocols, as illustrated in Fig. 9.1, are then straightforward: to transfer a spin
state, Alice starts uncoupled from the rest of the system and initializes her site in a
state ψ. The rest of the system must be in a ground state with total spin s = 0. She then
adiabatically ramps up some coupling to connect to the system, after which Bob ramps
down the couplings connecting his site, finding ψ at his now isolated site. Likewise,
Alice and Bob can establish maximally entangled states between their sites by starting
with the full network, including their sites, in a global s = 0 ground state. They then
adiabatically uncouple their sites from the system, ending up with the unique s = 0
state shared between their sites. Such protocols are abundant in existing literature (see
Section 3.2), but this literature focused mainly on linear chains.

This contribution strengthens previous results by proving that protocols on a chain
do indeed always work in the adiabatic limit, whilst extending the applicability to
much more general network graphs, under the assumptions given below. In partic-
ular, we allow different spins per site, we allow more general adiabatic paths, and
sender/receiver are not limited to sit at the ends of the system. Moreover, we extend
the state transfer protocol such that a state is not immediately transferred, but rather
encoded in the ground state of the whole system. After any amount of time, one out
of various parties can then decide to localize the state at their site, using only local
controls, without requiring any action from the other parties.

The intuition that inspired this work is that the Heisenberg coupling preserves the
total spin Ŝ2, and its z component Ŝz , of the whole system. If the final state has one part
which is in a total spin 0 ground state, then the rest of the system must have copied
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Figure 9.1: A sketch of the intuition behind our results. In the state transfer protocol, Alice ini-
tializes a spinful state while the rest of the system has zero total spin. The whole
system then exhibits the same spin properties as the initialized state. After an ap-
propriate adiabatic trajectory, Bob becomes disconnected. If the remainder of the
system has a spin-zero ground state, then Bob’s site must contain all spin informa-
tion. Similarly, in entanglement distribution, Alice and Bob start with a state with
zero total spin. After they disconnect, if the remainder of the system has total spin
zero, then they must also share a total spin zero state.

whatever the initial spin properties were. The adiabatic theorem guarantees that, as
long as couplings are changed sufficiently slowly with respect to a nonzero energy gap,
the precise details of the procedure are unimportant. This reasoning is depicted in
Fig. 9.1.

Our results require the following assumptions. Recall the definition of g in Eq. 2.30,
which is the difference between the maximum total spin of both parts. To transfer a
spin-s state, all parties must have g = s, and the system without either of the parties
must consist of connected components, each of which must have g = 0. For entangle-
ment distribution, both parties must hold a subsystem with a g of opposite sign, and
the global system must start connected and have g = 0. When the two parties are dis-
connected, the leftover system must again consist of components with g = 0 each. For
either protocol, the precise details of the adiabatic path are unimportant, as long as the
whole system satisfies a criterion we call spin-s compatible at all times, which guaran-
tees the uniqueness of the ground state. We do not prove that these requirements are
optimal, hence further generalizations may be possible.

9.1.1 Chapter structure

The remainder of this chapter is laid out as follows. Section 9.2 contains the main tech-
nical part of our work, as we make our intuition on the conservation of total spin more
concrete, and we prove that given our graph restrictions, there is a unique ground state.
Section 9.3 provides more details on our adiabatic protocols, Section 9.4 discusses er-
rors in real-world implementations, and Section 9.6 addresses possible near-term ex-
perimental implementations. We finish with a discussion and outlook in Section 9.7.



9.2. Ground states of symmetry-protected subspaces 107

9.2 Ground states of symmetry-protected subspaces

9.2.1 Preliminaries

We give a quick recap of our graph-theoretic conventions introduced in Section 2.2.1
and the theory of spin particles and the Heisenberg model in Section 2.5.

Consider a network of spins, described by a graph G = (V ,E , w), with on each vertex
(or site) j ∈ V a spin particle with total spin s j , described by the spin operator ~S j =
(Ŝx

j , Ŝ y
j , Ŝz

j )T . Note that we allow a different value of spin s j per site. Spins which share
an edge ( j ,k) ∈ E interact with isotropic, anti-ferromagnetic Heisenberg interaction of
strength w j k , and we assume full control over each of these interaction strengths. Such
a system is described by the Hamiltonian

H = ∑
( j ,k)∈E

w j k ~S j · ~Sk , (w j k > 0). (9.1)

As before, to avoid confusion between operators and their eigenvalues, we denote spin
operators in upper case with a hat, and scalars as lower-case symbols without hat. We
define the spin operators~Stot =∑

j∈V
~S j , such that Ŝ2

tot has eigenvalues s(s+1), and total
spin z-component Ŝz

tot =
∑

j∈V Ŝz
j which has eigenvalues m, taking on values ranging

from −s up to s in integer steps. Likewise, for a subsystem I ⊂ V we denote the total
spin operator on sites within that subsystem as ~S I = ∑

j∈I
~S j with corresponding spin

values sI and z-magnetization mI . We use the term singlet to denote a state with s = 0.
Because H , Ŝtot and Ŝz

tot mutually commute, s and m can be used to index eigen-
states of H . We let H s,m denote the subspace with fixed values s and m. For systems
with at least three sites, H s,m may consist of more than one state, hence we require a
third quantum number to establish a complete basis. We denote the eigenbasis of H
as |s,r,m〉, where the label r ∈ {0,1,2, . . .} orders the states within H s,m by increasing
energy1. Fig. 9.2 graphically depicts this decomposition of the total Hilbert space.

We denote the 2s +1-dimensional spin-s representation of SU(2) as (s). It is known
from representation theory that the space of n spin particles s1, s2, . . . , s j , . . . , sn decom-
poses as

n⊗
j=1

(s j ) =⊕
s

N s
s1,s2,...sn

(s) (9.2)

where the multiplicities N s
s1,s2,...sn

of spin representation (s) can be found by consecu-
tive application of Eq. 2.28.

We say that the network graph G is bipartite if for all edges ( j ,k) ∈ E , we have j ∈V1

and k ∈ V2 or vice versa. Two sites j and k are connected if there exists a sequence
(J j ,a1 , Ja1,a2 , . . . Jan ,k ) of nonzero elements. A graph or subsystem is connected if all pairs
of vertices within that graph or subsystem are connected. If a system is not connected,
then we use connected components to mean the largest possible subsystems in which
all vertices are connected. The spin imbalance g of a spin system on a bipartite graph
is defined as:

g = ∑
j∈V1

s j −
∑

j∈V2

s j = max sV1 −max sV2 . (9.3)

1The label r is ill-defined whenever states have degenerate energies. This should cause no ambigu-
ities in this work, as we consider only the ground state, which is assumed to be non-degenerate within
the appropriate subspace.
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Figure 9.2: The decomposition of our Hilbert space using quantum numbers s, m and r , here
depicted for the case of four spin- 1

2 particles. For each total spin s = 0,1 or 2 (verti-
cal), the 2s+1 possible z-magnetizations m are laid out horizontally. The multiplic-
ities of the spin spaces N {0,1,2}

1
2 , 1

2 , 1
2 , 1

2

are 2, 3 and 1, respectively, and states that differ by

multiplicity-label r are depicted in the depth-dimension. This way, each square cor-
responds to single state. The Hamiltonian H must preserve labels s and m, hence
perturbing w j k can only excite states that differ in label r .

Note that spin imbalances can be simply added when combining spin systems: if sub-
systems have spin imbalances g1, g2, . . ., then the combined system has a spin imbal-
ance g =∑

g j . The Lieb-Mattis theorem [LM62] (see Section 2.5) states that each con-
nected component with spin imbalance g j has a unique spin-s j subspace as ground
subspace, whose the total spin s j = |g j |.

Our protocols critically rely on the adiabatic theorem [BF28] (see Section 3.1.3),
and throughout this work, we will assume that the changes to the Hamiltonian are suf-
ficiently slow compared to the relevant energy gap. In our case, this gap typically refers
to the energy difference between the ground state and the first excited state, within a
symmetry-protected sector (typically H s,m). Often, the gap may vanish in the thermo-
dynamic limit, but we restrict ourselves to finite-sized systems. Still, for finite systems
it is possible that the ground state becomes degenerate, in which case the gap closes
and the adiabatic theorem can not be applied.

9.2.2 Preservation of the ground state of H s,m

For our adiabatic protocols, we aim to show that information can be encoded in a pro-
tected subspace, in such a way that amplitude can not leak out of the subspace, and
such that the subspace has a gap at all times. For the state transfer protocol, we aim
to encode a quantum state |ψ〉 ∈ C2s+1 as |ψ〉 = ∑+s

m=−sψm |s,0,m〉, hence out of all the
possible spin-s subspaces (s) we require that one is the unique lowest energy subspace.
Note that, for fixed s and r but varying m, all states have the exact same energy under
H , guaranteeing that no relative phases occur within this subspace. Likewise, for en-
tanglement distribution, we want to work within the unique global ground state which
must have total spin s = 0.

In this section, we show the following:

1. The subspace H s,m is conserved under H at all times.

2. On a connected and bipartite graph with |g | ≤ s, the subspace H s,m has a unique
ground state.
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3. If a bipartite system is not connected, but consists of connected components
with spin imbalances g1, g2, . . . gl , then the subspace H s,m has a unique ground
state if N s

|g1|,|g2|,...,|gl | = 1.

4. If one connected component has a spin imbalance g = g0 6= 0 while all other
components have g = 0, then the full information encoded in the lowest-energy
spin-g0 subspace is accessible at the component with spin imbalance g0.

We will argue why these observations hold in the remainder of this section, leaving in-
depth discussion of our protocols for the next section. We stress that the requirements
presented here are merely sufficient requirements and by no means the most general
necessary conditions possible. By separating these conditions from the protocols, fu-
ture generalizations can be straightforwardly applied to the protocols.

1. The subspace H s,m is conserved under H at all times. This property follows be-
cause each individual term (Ŝ j · Ŝk ) of H commutes with Ŝtot and Ŝz

tot, hence H can not
change the quantum numbers s and m, not even if the w j k are time-dependent.

2. For s ≥ |g |, H s,m has a unique ground state. The proof of this claim follows from
the results by Lieb and Mattis in Ref. [LM62], as restated in Section 2.5. We crucially
need two of their findings:

Assume the system is connected and bipartite, with spin imbalance g .
Then the following holds:

1. Within a subspace of fixed Ŝz
tot = m0, there is a unique ground state.

2. If m0 ≥ |g |, then this unique ground state has s = m0.

From these observations, it follows that if m0 ≥ |g |, the subspace H s=m0,m=m0 has a
unique ground state. What about the other spaces? Recall that for fixed s, all values of
m have the same energy. Hence if Hm0,m0 has a unique ground state, then all Hm0,m

have the same energies and in particular also a unique ground state. We conclude
that any H s,m with s ≥ |g | has a unique ground state, while we can not make general
statements about total spins smaller than |g |.

Let us take a step back here. With the previous two points, we have shown that in all
connected and bipartite systems with s ≥ |g |, one may adiabatically tune w j k without
exciting the ground state |s,0,m〉 of H s,m : The quantum numbers s and m can never be
changed by H , and the adiabatic theorem says that quantum number r = 0 is approxi-
mately conserved. However, when the system becomes disconnected, these results no
longer hold. We therefore carefully analyze what happens upon disconnecting parts of
the system, and we give sufficient conditions that guarantee a unique ground state.

3. On disconnected subsystems. First, let us define precisely what we mean with
connecting and disconnecting2. We consider a system consisting of two subsystems L

2Note the difference between ‘(dis)connecting’ (the procedure described here) and ‘(dis)connected’
(a property of a graph), although our definitions are such that no ambiguities should occur for any En-
glish conjugation of these words.
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and R. Let the Hamiltonian on the combined system be of the form

H ′ = HL +HR +∑
i
εi Ŝli · Ŝri , (9.4)

where HL and HR act only on subsystems L and R respectively, whilst li are sites in
L and ri are sites in R. With connecting, we mean that the all parameters εi initially
start at 0, and at least one of the εi is adiabatically increased to some positive nonzero
value, such that the combined system becomes connected. Likewise, if at least one εi

is nonzero, we may disconnect L from R by adiabatically lowering all εi down to zero.
For disconnected systems, the uniqueness of the ground state of H s,m does not

necessarily hold any more. One might naively think that upon sending all εi → 0, the
adiabatic process is saved because of two effects: If some εi 6= 0 then there must be a
unique ground state, and if all εi = 0 the two subsystems are completely disconnected,
hence we may as well look only at the ground states in each subsystem individually.
However, if the gap closes asymptotically as εi → 0, then our adiabatic trajectory poten-
tially traverses a region with infinitesimally small gap, hence the adiabatic time scale
blows up.

To avoid such divergences, we require that both the connected (some εi > 0) and
the disconnected (all εi = 0) configurations have a unique ground state. Then, because
the eigenvalues of H ′ are continuous functions of εi , asymptotic vanishing of the gap
is ruled out.

We propose the following sufficient requirement that guarantees a unique ground
state of H s,m : all connected components, labeled by 1,2, . . . l , must have spin imbal-
ances g1, g2, . . . , gl such that N s

|g1|,|g2|,...|gl | = 1. We will henceforth call this require-
ment spin-s compatible. We prove its validity as follows: each component j has a
unique spin-s j ground subspace with total spin s j = |g j |. The degeneracy of these sub-
spaces allows the combined system to configure itself in various possible total spin
configuration, according to Eq. 9.2. However, if N s

|g1|,|g2|,...|gl | = 1, then there is just a
single way in which the global ground subspace can configure itself that is compati-
ble with total spin s, hence the ground state of H s,m must be unique. In particular,
this means that we may adiabatically connect and disconnect without disturbing the
ground state of H s,m , as long as a system is spin-s compatible both before and after
the (dis)connection.

4. If only a single component has nonzero spin imbalance, then all ground subspace
information is accessible there. Let {g0,0,0, . . .} be the spin imbalances of the con-
nected components of some system, such that the spin imbalance of the combined

system is g0. In general, it holds that N |g0|
|g0|,0,0,... = 1, which means that H |g0|,m has a

unique ground state. We know precisely what this ground state looks like: all g = 0
components are in their unique singlet ground state, while the component with g = g0

is in the state ||g0|,0,m〉. These states, with m ranging from −|g0| ≤ m ≤ |g0|, span the
ground subspace of the global system, and are completely determined by the compo-
nent with nonzero spin imbalance. Any operations performed on the subsystem with
g = g0 are in one-to-one correspondence with changes in the global ground subspace,
and vice-versa.

In summary, throughout this section we showed that if the system remains spin-s
compatible, then the couplings w j k of H can be changed adiabatically without affect-
ing a quantum state’s amplitude on the ground state of H s,m . Moreover, by changing
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the couplings w j k of a system with total spin s in such a way that all components have
g = 0 except for a single component which has g = s, then the amplitudes of H s,m for
all m are locally available at the latter component.

9.3 Applications

We discuss two applications in the context of quantum information, which are based
on the results from the previous section: sharing a quantum state among multiple par-
ties, and establishing entanglement between two parties. Fig. 9.3 shows these proto-
cols on example graphs. The protocols assume a network graph that is bipartite and
connected, but couplings w j k could be brought down to zero to break the connect-
edness. In order to check the correctness of the protocols, one should check two as-
pects. Firstly, a system initialized with total spin s should always have a unique ground
state in H s,m , which we enforce by requiring that the system is spin-s compatible at all
times. Secondly, the initial and final states should be well understood such that they
provide the utility that we claim. We illustrate situations in which our requirements are
not fulfilled in Fig. 9.4.

9.3.1 Sharing a quantum state between multiple parties, such that any
party can access the state

Consider a setup where ` cooperating parties p1, p2, . . . , p` hold subsystems of a graph
G . In case one party pi experiences an emergency, it needs access to the state |ψ〉 =∑s

m=−sψm |m〉 ∈ C2s+1, preferably without requiring any activity of the other parties.
Because cloning |ψ〉 is generally impossible, the best option is to find a way to share
the state between the parties. A protocol that offers a solution is as follows:

• Initialization: Without loss of generality, assume initially p1 holds |ψ〉 locally. The
system must be configured such that p1 is disconnected from the rest of the sys-
tem, and p1 fully determines the ground state of the full system. p1 can now
initialize its subsystem in the state |ψ′〉 =∑s

m=−sψm |s,0,m〉.

• Forming a resource state: p1 connects to the system, and any other connections
must be made such that all parties are on the same connected component. The
state |ψ′〉 is now encoded in the spin-s ground subspace of this component.

• Finalization: To access the information, any party pi can adiabatically discon-
nect, in such a way that it localizes the ground subspace information at its sub-
system.

This protocol generalizes the transfer of a quantum state between two parties located
at the ends of a chain, such as considered in Refs. [OSF+13; AHH+17].

Let us discuss the requirements for graphs that allow such protocols. Firstly, to
localize the ground state information at a single subsystem, the most general require-
ment we found is that any disconnected party pi should have |gi | = s while all other
connected components have g = 0. Then from this, we derive that all parties pi must
have the same spin imbalance gi (with the same sign), which follows because G/{pi }
should have g = 0 for any party pi . The same holds for the resource state, where the
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Figure 9.3: Example of a state transfer and an entanglement distribution protocol, where we
assume each site holds a particle with the same spin s. For readability, we label par-
ties pi with capital letters. In the top panel, A initializes the system into a resource
state encoding its original spin state, which is later obtained at C. Note that all in-
dicated parties can be valid receivers. In the bottom panel, the system is initialized
in a global singlet, after which A and B disconnect to obtain singlet entanglement
between their sites. At various stages in these protocols, the network must obey re-
quirements such as (from top to bottom) all connected components except for the
disconnected parties have g = 0, all parties must be connected, and throughout the
whole protocol, the graph must remain spin-s compatible.
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component containing the parties must have spin imbalance equal to gi while the rest
of the components have g = 0.

In between the initialization, the resource state configuration, and the finalization,
the only constraint is that spin-s compatibility is preserved, which is a less stringent
requirement. For example, there could be more than a single connected component
with g 6= 0 as long as N s

|g1|,|g2|,... = 1.
An interesting situation occurs when one of the parties holds a subsystem which

is not connected. In that case, transfer is still possible as long as N s
|g1|,|g2|,... = 1 for a

party whose connected components have spin imbalances g1, g2, . . .. If there are two
connected components, this generally holds for any |g1 − g2| ≤ s ≤ g1 + g2. For three or
more connected components, this condition can only be met when

∑
i |gi | = s. More-

over, the combined spin imbalance must match the imbalance of the other parties,
hence |∑i gi | = s. We conclude that for more than two components, parties may have
disconnected subsystems as long as all connected components have spin imbalances
with the same sign (plus any number of g = 0 components), which properly add up to
s.

9.3.2 Distributing maximally entangled singlet states

In this protocol, two parties p1 and p2 both hold subsystems on a graph G . The ground
subspaces of both parties are brought into the maximally entangled singlet state.

1. Initialization: The system must be in the unique ground state which has s = 0.

2. Finalization: Both parties are disconnected from the system, in such a way that
the final state is a singlet on G/{p1, p2}, in tensor product with a singlet on
{p1, p2}.

Again, we turn to analyzing the requirements for allowed graphs. Firstly, to form
a singlet state together, the parties p1 and p2 must have |g1| = |g2|. Because also
G/{p1, p2} should have g = 0 and G must have g = 0, if follows that g1 =−g2.

In principle, the initial state allows any configuration with a unique spin-0 ground
state. However, if p1 and p2 are restricted to controlling only the couplings directly
surrounding their own subsystem, then the system must start such that the two parties
are connected. For the final state, in order to be sure that the parties are not entan-
gled with the rest of the system, the most general constraint we are aware of is that
G/{p1, p2} must consist only of components with g = 0.

The precise trajectory of the coupling w j k is irrelevant as long as the system re-
mains spin-0 compatible. Also, after the protocol is finished, individual connected
components that remain can again be used as a starting stage for the same protocol.
Notice that distributing entanglement between more than two parties in a single step
is generally more complicated, because for multiple parties the spin-0 compatibility is
easily broken.

A closely related idea for entanglement generation was presented earlier in
[CDR06], where spins p1 and p2 sit at ends of a linear spin- 1

2 chain, but p1, p2 are
coupled more weakly to their neighbors than the spins in the bulk of the chain. By
making this coupling ratio more extreme, the ground state was found to exhibit in-
creasingly strong long-distance entanglement between the outermost spins. A later
follow-up paper, Ref. [CDR07], investigated the usefulness of these outermost qubits
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Figure 9.4: Example issues that occur when graph requirements are not fulfilled. In the top
row, party A cannot be disconnected in such a way that all other components have
g = 0, eventually breaking spin-s compatibility when the dotted couplings are set
to 0. In the bottom row, the networks are such that A and B could in principle
complete both protocols successfully, but during each protocol, disconnections are
made such that spin-s compatibility is broken. In each of these cases, the ground
state of the relevant H s,m could become degenerate.

in low-temperature chains for the teleportation protocol. Our results extend these ear-
lier findings of long-distance entanglement to more general spin networks, and place
them in a quantum control perspective.

9.4 Errors and scaling

So far, we dealt with the uniqueness of the ground state to prove that an adiabatic pro-
tocol is viable at some time scale, to which we remained agnostic. Moreover, we as-
sumed perfectly sterile conditions: zero temperature and no interactions beyond those
of Eq. 9.1. For real-world implementations, the actual scaling of protocol time and er-
ror susceptibility as a function of the number of sites N would be of great importance,
yet unfortunately, we are unable to give an in-depth and fully general characterization.
Rather, this section collects known results related to this context, and numerically anal-
yses the timing and errors in small systems.

Adiabatic processes are typically analyzed from the perspective of the energy gap
∆, where the duration of the protocol T is taken to scale as T ∝∆−2 [CFP01]. The Hal-
dane conjecture states that linear Heisenberg chains consisting of particles with half-
integer spin exhibit a ∆∝ 1/N gap, whereas integer spin particles feature a unique
ground state with a constant gap [AL86]. However, care has to be taken that these re-
sults assume periodic boundary conditions which are not readily compatible with our
protocols. For spin-1 particles, open boundary conditions give rise to four low-lying
states separated from the rest of the spectrum by a constant gap. These lower states
live in different spaces H s,m , and their energies grow exponentially close in the ther-
modynamic limit [Ken90].

The nature of the errors that arise during the protocol then depend on whether the
system is truly SU (2)-symmetric: if it is, then only the gaps within the relevant H s,m

are of any importance, and a system will not leave this subspace. However, to our best
knowledge, all realistic systems described by Eq. 9.1 consist of spin particles whose
magnetic moment interacts with magnetic fields ~B , leading to interactions of the form
H = ∑

j
~B j · Ŝ j . Such fields break the SU (2) symmetry, such that H s,m may no longer

be conserved. However, if ~B j is a constant function of j , then the protocols could still
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work, as we discuss in section 9.6.
Nonetheless, many results indicate that just the gap by itself does not necessarily

reflect the viability of adiabatic protocols [PG08; LGC17]. Therefore, explicit numerical
simulations of the full protocol appear to be the most informative. Such simulations
have been performed for linear chains of spin-1/2 particles [OSF+13; AHH+17], and
for entanglement distribution on a spin-1/2 chain with the purpose of teleportation
[CDR07]. The latter work also calculates the gap in their system for lengths of up to
one hundred. In Refs. [ERS07; FBM+15], closely related protocols are simulated.

Another important issue arises due to the fragility of Lieb and Mattis’ statement
that the ground state has definite total spin s = |max sV1 −max sV2 |, which is a funda-
mental building block of our protocols. Inhomogeneous magnetic fields of the form
B(Ŝz

V1
− Ŝz

V2
) with amplitude B =O(1/N ) can cause the ground state to have significant

amplitude spread out over various spin sectors [KP89; Wez07]. Moreover, frustrated in-
teractions such as Ŝ · Ŝ coupling between next-nearest neighbors may break the result
of Lieb and Mattis.

We conclude that many threats can be identified, yet a general understanding of
how these affect an adiabatic protocol is lacking. To give at least some insight in the
practical performance of our protocols, we resort to numerical simulation. We select a
concrete system that showcases our main contributions by allowing multi-party trans-
fer and non-linear graph layout, namely qubits on a star-shaped graph.

9.5 Numerics on star graphs

We consider systems consisting of qubits (s j = 1
2 ) arranged in the shape of a star, where

a center qubit is connected to M arms each consisting of a linear chain of K qubits,
as depicted in Fig. 9.5. The total number of qubits is K M +1. Note that such graphs
reduce to a linear chain for M = 1,2.

In the case of state transfer, the arm length K must be even, allowing the center
qubit to qualify as sender or receiver, as well as all qubits that are an even number of
sites away from the center. We locate our sender p1 at the center, and place receiver p2

at the very end of the first arm. All couplings w j k are set to uniform strength J , except
for the couplings connected to p1 or p2, which we give time-dependent amplitudes
f (t ) and g (t ) respectively. We choose

f (t ) = J sin

(
πt

2T

)
, g (t ) = J cos

(
πt

2T

)
(9.5)

where T is the total duration of the protocol.
Having defined our time-dependent Hamiltonian, we numerically solve

Schrödinger’s equation to find the unitary time-propagation UT . As initial state
we choose |ψ(t = 0)〉 = |ψ0〉p1 ⊗ |0,0,0〉V /p1 , where |0,0,0〉 is the global ground state
with properties s = 0,m = 0. The state |ψ0〉p1 is the state initialized by sender p1, the
choice of which does not influence the protocol’s fidelity at this point, thanks to global
SU (2) symmetry. We then define the transfer error as

E = 1−〈ψ0| trV /p2

(
|ψ(T )〉〈ψ(T )|

)
|ψ0〉

where |ψ(T )〉 = UT |ψ(0)〉.
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Figure 9.5: For the adiabatic transfer protocol in a system of size M = 3 and K = 2, we display a
sketch of the star-shaped system, the driving functions f and g , and the size of the
energy gap ∆ as a function of time. On the right, all energy levels as a function of
time are displayed. All units are normalized with respect to the protocol time T and
the coupling strength J .

Figure 9.6: Transfer error E , for various choices of T and M , for systems with arm length K = 2.
For the small systems that we study, the fidelity seems to quickly converge to errors
of less than 1%, indicated by the black zig-zag line, for protocol times just slightly
larger than the intrinsic time scale 1/J of the system. On the right, cutouts of the
main plot are displayed for fixed times (top) and fixed number of arms (bottom) on
a log-log scale.
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Figure 9.7: An example of a transfer protocol in which our requirements are violated. The left
panel displays the graph layout and the time-dependence of the couplings con-
nected to p1 and p2. Because p2 is unable to disconnect while preserving spin-s
compatibility, there is a possibility that the relevant energy gap closes, which we in-
deed find here. As a result, the transfer error does not asymptotically decay to 0 as
a function of T .

Here, trV /p2 (·) denotes the partial trace of the whole system except for site p2. Fig. 9.5
depicts the driving functions f and g , and the movement of the energy levels and the
gap during the protocol.

Fig. 9.6 shows our results for the transfer fidelity for various protocol times T and
number of arms M , with arm length fixed to K = 2. For these small system sizes, very
low error rates of less than 1% are readily obtained without further optimization of the
protocol. Still, scaling up the system size by increasing M clearly requires longer proto-
col times to achieve the same low errors. We leave the precise scaling of transfer fidelity
for larger systems, possibly using optimizations beyond the adiabatic approximation,
as an open question.

9.5.1 A numerical example where assumptions are violated

A minimal example of a transfer protocol that does not match our requirements is dis-
played in Fig. 9.7. The bottom-left panel shows a graph in which p1 can disconnect
while leaving all other components in g = 0, but p2 cannot. Choosing spin-1/2 parti-
cles (s j = s = 1/2) and the same time-dependent functions f and g for the couplings
incident to p1 and p2 as before (Eq. 9.5), we calculate the energy levels over time, and
the protocol error as a function of total protocol time T . Because the spin-s compatibil-
ity is broken at the point t = T , there is no longer a guaranteed energy gap within H s,m ,
and we indeed find that relevant gap closes precisely at time T . This has a devastating
effect on the transfer error, which barely drops below 0.5, the latter corresponding to
uniformly random outcomes at p2. Importantly, the transfer error does not asymptot-
ically decay to 0 as a function of T , a generic indicator that adiabatic transport fails.
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9.6 Experimental implementations

The Heisenberg coupling of Eq. 9.1 can be approximated by systems forming a Fermi-
Hubbard model in a regime of half-filling and strong on-site repulsion. Experimen-
tal platforms which have been proposed for quantum information processing in such
regimes include ultracold atoms trapped in optical potentials [MDZ+15; MCJ+17] and
electrons trapped in quantum dots [LD98; HKP+07]. Selectively varying the coupling
between ultracold atoms requires delicate control over the trapping potential. In quan-
tum dots, individual coupling strengths w j k are directly controlled using electronic
gate voltages [HFJ+17], making them a promising candidate for experimental imple-
mentation of our protocols.

Typical experiments will deal with a global magnetic field, adding a term of the
form ~B ·∑ j∈V Ŝ j to the Hamiltonian. A field ~B oriented perfectly along the z-axis com-
mutes with total spin operators Ŝtot and Ŝz

tot, hence it does not change our conclusions
on conservation of H s,m and the uniqueness of the ground state within these spaces.
However, a relative dynamical phase between subspaces that differ in m has to be ac-
counted for. Moreover, it is no longer guaranteed that the global ground state is in spin
sector s = |g |. More problematic could be magnetic noise which breaks the SU(2) sym-
metry. Minimizing the influence of such fields would be a major experimental chal-
lenge, and would form an interesting topic of further theoretical research.

9.7 Discussion and outlook

Given a physical system described by Eq. 9.1, there would be multiple ways to transfer
quantum information, primarily through a quench [Bos07], by a sequence of swapping
operations, or by using the adiabatic steps that we propose. Our adiabatic approach
has the disadvantage of having stringent cooling requirements and inherently slow dy-
namics. Moreover, it is unclear how the protocol time and error scale for large sys-
tems. On the other hand, adiabatic protocols have an advantage when it comes to con-
trol requirements, being relatively robust to decoherence and control errors [FBM+15;
CFP01], and requiring only a small number of couplings w j k to be adjustable as a func-
tion of time. The lower complexity of control makes such protocols worthwhile candi-
dates for experiments on near-term quantum devices. We also note that our protocol
could form a building block for an atomic swap operation that is repeated many times,
allowing a trade-off between control complexity and time complexity, as the time of
swap operations scales linearly with transfer distance.

Throughout this work, we remained agnostic with regards to the initialization of
the ground state. Preparation can in principle be done by cooling, but having a system
capable of adiabatically changing its couplings, it could be preferable to start from a
simple initial state which has an adiabatic connection to the required ground state.
Such a protocol was addressed in Ref. [FBM+15] for a spin-1 chain: start with a chain
of sites with only the odd couplings active, such that the ground state is formed by
two-site singlets. One can then adiabatically ramp up the even couplings to obtain
the ground state of the fully coupled chain. Such initial states are either easier to cool,
because their gap does not scale with the system size, or they may be prepared from a
computational basis state using a quantum circuit of constant depth. Using our results,
this initialization protocol readily extends to more general spin networks and any total



spin s, with as only restriction that the system must remain spin-s compatible during
the process.

From a practical perspective, we note that many optimizations can be made to our
protocol, most notably by circumventing diabatic errors through so-called shortcuts
to adiabaticity [CK19]. For example, Ref. [AHH+17] studies such improvements for
precisely our protocol on a linear chain. We would be very interested to see future
work generalize similar results to different graph structures.

On the theoretical side, we note that we have by no means exploited all the symme-
tries of Heisenberg systems yet. For example, we showed that each H s,m has a unique
ground state, yet our protocols must stick to the global ground state due to our con-
nection/disconnection procedure. Moreover, we proved that our requirements for a
unique ground state are sufficient, but not that they are necessary; we expect that fur-
ther generalizations are possible here, extending the applicability of adiabatic proto-
cols. In a similar spirit, one might exploit ferromagnetic variations of the Lieb-Mattis
theorem [NS05] if one circumvents problems arising from addition of spin quantum
numbers. We believe that further examination of these open ends could lead to a bet-
ter theoretical understanding of spin chains, and novel applications.
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List of symbols and notation

General symbols

H Hilbert space (Section 2.2)

|s〉H quantum state ket, with label s, stated in the (eigen)basis labeled by H

1n identity matrix (of dimension n)

..∗ complex conjugate

..† Hermitian conjugate (i.e. conjugate and transpose) of an operator

+h.c. add the Hermitian conjugate of previous term

|..| absolute value, or (Euclidean) length of a vector, or determinant of a matrix

|..|H Hamming weight (number of ones) of a bit string

||..|| the operator norm of an operator or matrix

Roman

E edge set of a graph

f j , f †
j local fermionic annihilation and creation operators at site j (Section 2.4)

g( j ) spin imbalance (of the j th connected component) (Section 2.5)

G graph

h j , h j k specific Hamiltonian terms

H Hamiltonian (Section 2.2, Section 3.1)

i imaginary unit, i 2 =−1

m total z-magnetization, i.e. eigenvalue of Ŝz
tot (Section 2.5)

n, N system size, depending on context

N s
s1,...,sn

multiplicity of subspace with total spin s (Section 2.5)

O( f (x)) big O notation, indicating that scaling is similar to f (x) in some limit

t time

s total spin, as in the eigenvalue s(s +1) of ~S2
tot (Section 2.5)

Ŝ spin operators in various forms, see Section 2.5

T stopping time of a protocol

Ut unitary time evolution operator, after time t

V vertex set of a graph

w weights of a graph, or coupling strengths in a Hamiltonian (Eq. 2.9)

X ,Y , Z Pauli matrices (Eq. 2.2).

Greek

β
pq
j k parameter for 2-local Hamiltonians (Eq. 2.8)

δ off-resonance (Section 3.1.2)

δ j k Kronecker delta (0 if j 6= k, and 1 if j = k)

∆ energy gap, difference between two eigenvalues

~σ[α]
( j ) Pauli matrices {X ,Y , Z } [the αth element] (acting on qubit j ) (Eq. 2.2)

σ+, σ− raising and lowering operators (Eq. 2.4)

|Ψ〉 general quantum state

|ψ j 〉 eigenstate with label j

ωdrive driving frequency (parameter in a Hamiltonian)

ωrf angular velocity of rotating frame (Section 3.1.2)

Ω Rabi frequency (Sections 3.1.1 and 3.1.2)
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Nederlandse samenvatting

Protocollen voor kleine quantumcomputers

De belangrijkste resultaten van dit proefschrift verdelen we in twee categorieën. In
Deel II behandelen we protocollen die leiden tot logische poorten (gates) op meeredere
qubits door middel van resonante aansturing (driving), en in Deel III richten we ons op
het adiabatisch verplaatsen van quantumtoestanden. De voorgaande hoofdstukken in
Deel I bevatten een introductie tot deze onderwerpen.

In Deel II construeren we multiqubit gates, zoals de ToffoliN . Deze zijn essentieel
in veel quantumalgoritmes, maar blijken lastig uit te voeren op experimentele quan-
tumcomputers. In tegenstelling tot de gebruikelijke aanpak waarbij grote operaties
worden gecompileerd to een reeks schakelingen op weinig qubits, gebruiken wij een
Hamiltoniaan de leidt tot een continue evolutie in een sterk gekoppeld quantumsys-
teem. De selectiviteit van resonant driving maakt het mogelijk om slechts 2 van de 2N

eigentoestanden van een achtergrondveld te verwisselen, wat leidt tot een operatie die
we iSWAP noemen. Om deze operatie nuttig te maken voor quantumcomputers, intro-
duceren we eigengates die deze eigentoestanden terugzetten naar de computationele
basis.

We bouwen en simuleren dergelijke gates in drie verschillende systemen. De
eerste is de Krawtchoukketen, een voorbeeld van een XX keten met enkel koppelingen
tussen naastgelegen qubits (H = ∑

j J j
(
X j X j+1 +Y j Y j+1

)
). Het systeem heeft bijzon-

dere eigenschappen, zoals een lineaire dispersie, een tijdsevolutie die elke toestand
doet spiegelen, en bovendien een overzichtelijke eigengate. We vinden dat lokale driv-

ing kan leiden tot unieke overgangen tussen de toestanden |1 N
2 0

N
2 〉 en |0 N

2 1
N
2 〉, en we

analyseren numeriek de fouten die optreden bij ketens van lengte N = 4 en N = 6.
Ten tweede beschouwen we een voorbeeld van een XXX keten met koppelingen

over lange afstanden (H = ∑
j<k J j ,k

(
~σ j ·~σk

)
), welke door Polychronakos is geïntro-

duceerd als een variant op het Haldane-Shastry model. Een quench met deze Hamil-
toniaan blijkt zelf een eigengate te zijn, en wel voor een keten van de vorm H =∑

j<k J j k
(
X j Yk −Y j Xk

)
. Weer simuleren we de fouten die optreden bij resonant driving

voor lengtes N = 4 en N = 6.
De vorige twee systemen hebben helaas kleine matrixelementen tussen de eigen-

toestanden die we willen verwisselen, waardoor de gates lang duren. Daarom beki-
jken we een derde model die dit probleem niet heeft, namelijk een Ising model (H =∑

j k J j k Z j Zk ) waarbij een speciale qubit een positieve koppeling heeft met elk ander
qubit. De speciale qubit maakt onder resonant driving enkel een overgang wanneer de
andere qubits de toestand |1〉 aannemen, precies zoals bij de Toffoli-gate. We vin-
den dat de benodigde tijd voor onze gate dit keer constant blijft onder toenemende N ,
wat een verbetering is over gebruikelijke compileertechnieken. Echter, onze aannames
over het koppelen van het speciale qubit met N anderen, en de driving frequentie die
steeds groter wordt, zijn mogelijk niet realistisch voor grote N . Toch kan dit protocol
nuttig zijn voor middelgrote quantumcomputers.

In Deel III bestuderen we protocollen waarbij een quantumtoestand wordt ver-
plaatst door een natuurkundig model gedefinieerd op een graaf. Dergelijke protocollen
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worden veelvuldig toegepast bij huidige natuur- en scheikunde-experimenten, en wor-
den mogelijk belangrijk voor toekomstige quantumcomputers. We beschouwen twee
verschillende modellen.

In ons eerste model kan een enkel kwantumdeeltje tunnelen tussen de knopen
van een graaf. Twee bestaande protocollen, met de namen STImulated Raman Adi-
abatic Passage (STIRAP) and Coherent Tunnelling by Adiabatic Passage (CTAP), staan
toe zulke deeltjes te verplaatsen tussen de eindpunten van een keten, waarbij het sys-
teem telkens precies nul energie heeft. Ons resultaat is dat deze protocollen op veel
meer grafen werken, namelijk (semi-)bipartite grafen met een volmaakte knopenkop-
peling wanneer de zender wordt weggelaten, en wanneer de ontvanger wordt wegge-
laten. Veel van de belangrijke voordelen van STIRAP en CTAP, zoals bescherming tegen
bepaalde vormen van decoherentie, blijven gelden. We testen het protocol op een
boomstructuur, waarbij de zender en ontvanger zich op een blad bevinden. Het proto-
col blijkt verrassend accuraat, vooral wanneer de verzender en ontvanger een zwakkere
interactie hebben dan de overige knopen.

Het tweede model is een anti-ferromagnetisch XXX spinsysteem, waarbij de in-
teracties tussen spindeeltjes worden vastgelegd door een graaf. We vinden weer dat
eerdere protocollen op lineaire ketens ook toepasbaar zijn op algemenere grafen,
namelijk bipartite grafen met een bepaalde balans tussen de maximale spin op de
partities. Onder vergelijkbare voorwaarden kan verstrengeling tussen verweggelegen
knopen worden gevormd. We analyseren de nauwkeurigheid van de protocollen op
een kleine stervormige graaf, en bespreken een mogelijke experimentele test.
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