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Chapter 1
Introduction

No matter how powerful a machine, it may not be powerful enough. This is
true of machines that do physical work, but also of machines that compute, as
every computer will struggle on some workloads. When a computational task gets
challenging, it is said to be complex. This is not very precise and indeed, the word
complexity is used to indicate a wide variety of phenomena.

This thesis introduces a unified framework for the analysis of a multitude of
forms of complexity. A unifying theory need not be better than any of the specific
theories it tries to include. However, it may open the door to new ways of thinking
about old concepts and thus enable future developments.

We begin this introductory chapter with an informal section, arguing that
there is really no single form of complexity. This section, Section 1.1, is intended
to be readable by a broad audience and is centered around intuition more than
around mathematics. In Section 1.2, we take a more in-depth look at some of the
ways complexity pops up in mathematics and computer science. The notions of
complexity that emerge shall each be subject to an analysis in our unified framework
in Chapter 3. Our unified framework offers a mathematical model of complexity
rooted in a branch of computer science called parameterized complexity theory.
We shall review the existing formalisms in parameterized complexity theory in
Section 1.3. A short overview of the contributions presented in this thesis is given
in Section 1.4.

Following this introductory chapter is a chapter that contains the background
theory required for our analysis of multiple forms of complexity. This background
chapter contains two parts. The first part, Section 2.1, deals with established
theory and serves to make this thesis self-contained. In the second part, Section 2.2,
our new framework for the analysis of complexity is laid out.

The body of this thesis is formed by Chapter 3, which contains all of our
results. It is split into five parts, each dealing with a different form of complexity.
A high-level overview of our results in a shared context is given in Chapter 4.

1
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1.1 The Size of a Cube
Shown in Figure 1.1 are three different shapes. When we ask which of these three
shapes is the largest, we start a journey down a deep rabbit hole. In this thesis,
that rabbit hole is explored. As an indication of what is to come, we briefly
consider a comparable question: What is the largest species of snakes? The
heaviest snakes are anacondas, but the longest snakes are pythons. Thus, the
answer to this question depends on what is meant by “the largest”.

For our shapes, the situation is no better. Especially since the figure only
shows the abstract essence of a tetrahedron, a cube, and a dodecahedron. Were
the figure to show any particular physical instances of these shapes, then at least
we could have compared masses and lengths. Luckily, abstract shapes can be
measured too. The number of corners, the number of edges, and the number
of faces are a few of the metrics we can look at. In all of these measures, a
cube, Figure 1.1b, is larger than a tetrahedron, Figure 1.1a, and smaller than a
dodecahedron, Figure 1.1c.

tetrahedron cube dodecahedron
corners 4 8 20

edges 6 12 30
faces 4 6 12

None of these ways of measuring a shape, by the number of corners, edges,
or faces, is clearly more fundamental than the others. Besides, these ways of
measuring are by no means all ways there are of measuring a shape. Another
metric looks at the number of edges that need to be traversed in order to get from
one corner to another. Let us consider this metric for the cube. From each corner
of the cube, only 3 others are directly reachable. Sometimes, traversing 2 or even
3 edges may be necessary. Since we never need to go over more than 3 edges, we
say that the diameter of a cube, in an abstract sense, is 3 edges. The diameter of
a shape is another metric that may be used to measure a shape.

Yet another metric is defined by the minimum number of corners we need to
mark so that every edge connects to a marked corner at one or both of its ends.

(a) A tetrahedron (b) A cube (c) A dodecahedron

Figure 1.1: Three shapes
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(a) The abstract cube visualized as
a graph. Corners of the cube are
shown as dots and dots are con-
nected by a line whenever the cor-
ners they represent are connected
by an edge of the cube.

(b) The Wagner graph. Note that
this graph can be obtained from
the cube graph, Figure 1.2a, by
exchanging two endpoints of two
edges.

Figure 1.2: Structures of possibly connected objects can be represented as graphs.
The dots in the above graphs represent the objects and are called vertices. The
lines connecting vertices are called edges.

Such a collection of marked vertices is said to cover the edges. For a cube, it is
possible to cover the edges using 4 corners. It is not possible to cover all the edges
with fewer corners, thus 4 is the minimum number of corners that is required to
cover the edges. Like our previous metrics, this minimum number of corners that
is required to cover the edges of a shape may be used to measure a shape.

Which metric is the most relevant depends on what uses of our shape we are
most interested in. Our previous two metrics looked specifically at corners and
edges. In such cases, we are really only interested in the connection structure of a
shape. Its three-dimensional nature is of lesser interest and the cube may as well
be represented as in Figure 1.2a.

Note that for all simple graphs, there is a maximum to the number of edges as
a function of the number of vertices. Once all vertices in a graph are connected to
each other, we cannot add any new edges to the graph. On the other hand, if we
allow for vertices that are not connected to any other vertex, then the number
of vertices can be far greater than the number of edges. In particular, there is
then no maximum to the number of vertices as a function of the number of edges.
Moreover, there are only finitely many graphs with any given number of vertices,
whereas there are infinitely many for any given number of edges. For this reason,
we may consider the number of vertices to be a more fundamental metric than the
number of edges. However, calling a graph with very many vertices but hardly
any edges “large” may conflict with our intuitive notion of size.

Again, what graphs are large depends on what is meant by “large”. In each
context the appropriate notion of size may be different. Roughly speaking, the
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size of an object relates to how difficult it is to work with. The more extreme the
dimensions or masses of objects are, the more inconvenient processing them will
likely be. This is true for the physical processing of physical objects, but also for
processing abstract objects computationally. It is the latter kind of processing
that this thesis is concerned with.

Returning to graphs, some actions on graphs may conceivably be easier on
graphs with a smaller diameter. In the context of such actions, the diameter of a
graph may be a good measure of the size of a graph. Other contexts may favor
graphs in which the edges can be covered by a smaller number of vertices. A set
of vertices that cover the edges of a graph is called a vertex cover. In contexts
that favor small vertex covers, the minimum size of a vertex cover may be a good
measure of the size of a graph.

As a demonstration of the possible disagreement between all these measures
of the size of a graph, consider the graph in Figure 1.2b. This graph is known as
the Wagner graph. Because it cannot be drawn without some edges crossing each
other, there is no meaningful way we can assign a value to the number of faces of
this graph. Of course, there are also no corners in the way that our shapes had
them, but the Wagner graph does have vertices, which can be counted just as well.
As far as the number of vertices or the number of edges are concerned, the Wagner
graph, Figure 1.2b, has the same size as the graph of the cube, Figure 1.2a.

cube graph Wagner graph
vertices 8 8

edges 12 12
diameter 3 2

vertex cover 4 5

On our other two metrics, the graphs differ. The Wagner graph has a smaller
diameter than the cube graph. By contrast, the minimum size of a vertex cover,
listed simply as “vertex cover” in the table above, is smaller for the cube graph.
Thus, we see that which of the two graphs is larger depends on the metric that is
used and hence on the context in which we compare the two graphs.

In the next section of this chapter, Section 1.2, several more examples of the
multifaceted nature of complexity are discussed more formally. The remainder
of this thesis then works towards a unified analysis of complexity that works for
each of the forms of complexity we identify in Section 1.2. Finally, in Section 4.1,
we shall return briefly to measuring a cube, and summarize our findings.
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1.2 Historical Encounters
The word complexity is used in various contexts and its meaning is not always
made precise. Still, it has often been observed that structural properties of data
may influence the notion of complexity at hand. In this thesis, we put forward a
mathematical formalization of the notion of complexity, covering as many use cases
as possible. First, let us review some of the ways we may encounter complexity and
what structural properties these many forms of complexity are involved with.
In relation to their notions of complexity, each of these structural properties
points at a line of thinking that is essentially parameterized. In Chapter 3, this
parameterized nature is made explicit by rephrasing the corresponding results in
a unified parameterized framework. A historical overview of the theoretical side
of parameterized reasoning can be found in Section 4.2.

1.2.1 Computability
Some sets are intrinsically undecidable. For such sets, there is no effective
procedure that is able to distinguish the members of the set from the nonmembers
of the set. This is a very extreme form of complexity: We are unable to determine
membership in undecidable sets uniformly not because we are perhaps not clever
enough, but because it is fundamentally impossible. Undecidable sets, however,
are not all equally undecidable. It is possible to organize many sets in a hierarchy
of (un)decidability. In fact, there are many ways to do so.

One hierarchy in which sets can be placed based on their decidability is the
arithmetical hierarchy, due to Kleene [91]. This hierarchy consists of classes of sets
that are defined inductively. The classifications are denoted Σ0

𝑛 and Π0
𝑛, where 𝑛

is a natural number. A set 𝑆 is in Σ0
𝑛+1 if there is a set 𝑃 in Π0

𝑛 such that we have

𝑆 = {𝑥 | ∃𝑦∶ (𝑥, 𝑦) ∈ 𝑃}.

Observe that the set 𝑃 is a set of pairs. Conversely, a set 𝑃 is in Π0
𝑛+1 if there is

a set of pairs 𝑆 in Σ0
𝑛 such that we have

𝑃 = {𝑥 | ∀𝑦∶ (𝑥, 𝑦) ∈ 𝑆}.

All that remains to define the arithmetical hierarchy is a definition of the base case,
the classes Σ0

0 and Π0
0. We follow Rogers [131] and Downey and Hirschfeldt [46]

and set both classes equal to the class of decidable sets. Originally, Kleene chose a
smaller class, namely that of sets definable through “primitive recursive” predicates.
Yet another option is to take for Σ0

0 and Π0
0 the class of sets definable in first-

order logic with only bounded quantifiers [115]. We shall not go into details about
these alternatives. Whichever definition we adhere to, we end up with the same
classes Σ0

𝑛 and Π0
𝑛, whenever 𝑛 is at least 1. To wit, regardless of our choice for Σ0

0
and Π0

0, a set is in Σ0
1 precisely when it is semidecidable (also known as recursively
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= =

= =

⊂ ⊂

⊂ ⊂

⊂ ⊂

⊂ ⊂

Δ0
0

Σ0
0 Π0

0

Δ0
1

Σ0
1 Π0

1

Δ0
2

Σ0
2 Π0

2

�

(a) The arithmetical hierarchy
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(b) The difference hierarchy lies be-
low the Δ0

2 level of the arithmetical
hierarchy.

Figure 1.3: The arithmetical hierarchy and the difference hierarchy are both
infinite hierarchies of classes of sets.

enumerable) [91, 115, 131]. Likewise, the complement of a semidecidable set is in
Π0

1, as ∃ and ∀ are dual to each other in the sense that, for every predicate 𝑄 we
have

¬∃𝑥∶ 𝑄(𝑥) ⟺ ∀𝑥∶ ¬𝑄(𝑥).

Indeed, a set 𝑆 is in Σ0
𝑛 precisely when there is a decidable set 𝐴 such that we

have

𝑆 = {𝑥 | ∃𝑦1 ∶ ∀𝑦2 ∶ ∃𝑦3 ∶ … ∶ ((⋯ ((𝑥, 𝑦1), 𝑦2) ⋯ , 𝑦𝑛−1), 𝑦𝑛) ∈ 𝐴}, (1.1)

and similarly for Π0
𝑛 when we exchange ∃ and ∀. It follows that, in general, a

set is in Σ0
𝑛 if its complement is in Π0

𝑛. As, whenever 𝑛 is at least 1, the classes
Σ0

𝑛 and Π0
𝑛 are unequal, neither is closed with respect to taking complements.

For convenience, we therefore define classes Δ0
𝑛 as the intersection of Σ0

𝑛 and
Π0

𝑛. These classes are closed with respect to taking complements. Remark that
sets in Δ0

1 are both semidecidable and have a semidecidable complement, and are
therefore decidable. Visually, the arithmetical hierarchy thus looks like depicted
in Figure 1.3a.

Returning to undecidability as a form of complexity, the arithmetical hierarchy
provides a means of analyzing complexity. For sets that appear in one of the
classes of the arithmetical hierarchy, say Δ0

𝑛, we may call the level at which it
occurs, 𝑛, “the complexity” of the set. Thus, we can compare how undecidable
certain sets are. As demonstrated by (1.1), this notion of complexity ties in with a
more or less structural property of the set it applies to. The number of quantifier
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alternations required for defining a set starting from a decidable set expresses its
complexity.

At a conceptual level, one of the focal points of computability theory is the
behavior of computations in the limit. Computations that terminate eventually
are said to converge, and computations that never terminate are said to diverge.
From this perspective, it is clear how the sets in Σ0

1, the semidecidable sets,
are slightly more complex than the decidable sets. Decidable sets have decision
procedures and those procedures converge on all inputs. For semidecidable sets on
the other hand, convergence of a procedure that tries to determine membership
can only be guaranteed on the members of the set. Ascending further in the
arithmetical hierarchy, it becomes near-impossible to give characterizations of
the sets in terms of convergence. This is one reason to look for measures of
complexity-beyond-decidability that increase complexity more gradually. One
such measure was introduced by Ershov [52] some 25 years after the introduction
of the arithmetical hierarchy. This measure also revolves around a hierarchy of
classes of sets and is in that regard similar in spirit to the arithmetical hierarchy.
We have seen that the Σ and Π classes of the arithmetical hierarchy are not closed
with respect to taking complements. The starting point of Ershov’s hierarchy
was the observation that these classes are also not closed with respect to taking
relative complements. Given two sets 𝐴 and 𝐵 in some class Σ0

𝑛, with 𝑛 at least 1,
the set 𝐴 ∖ 𝐵 need not be in Σ0

𝑛, and similarly for the classes Π0
𝑛. However, when

𝐴 and 𝐵 are taken from Σ0
𝑛, we may go about deciding whether a given 𝑥 is

in 𝐴 ∖ 𝐵 as follows.

1: We assume 𝑥 is neither in 𝐴 nor in 𝐵 and if our computations are interrupted
and we are asked our best guess about 𝑥, we answer that it is not in 𝐴 ∖ 𝐵.

2: We try to find out whether 𝑥 is in 𝐴 by running a procedure that halts
precisely on the members of 𝐴. If this procedure halts, we have learned
that 𝑥 is in 𝐴. In case we are then asked our best guess about 𝑥, we answer
that it is in 𝐴 ∖ 𝐵.

3: Having found that 𝑥 is in 𝐴, we try to find out whether 𝑥 is in 𝐵 by running
a procedure that halts precisely on the members of 𝐵. If this procedure
halts, we have learned that 𝑥 is also in 𝐵. In case we are later asked our
best guess about 𝑥, we know the correct response and answer that it is not
in 𝐴 ∖ 𝐵.

Only in the final situation, we can answer a membership query with certainty.
Therefore, our procedure should be considered a kind of approximation of a
decision procedure. Observe that the procedure adjusts its knowledge about
membership of 𝑥 in 𝐴 ∖ 𝐵 at most twice. Procedures that are not convergent
in the classical sense, but are allowed to “change their mind” a finite number of
times were first put forward by Putnam [124] and Gold [66].
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The idea of Ershov was to base a hierarchy on the number of times a decision
procedure in the sense of Putnam and Gold is allowed to change its mind. The
resulting hierarchy is known today as the difference hierarchy [46, 140]. The
classes of the difference hierarchy are denoted Σ−1

𝑛 and Π−1
𝑛 . For sets 𝐴 and 𝐵,

let 𝐴 △ 𝐵 denote the symmetric difference (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴). A set 𝑆 is in Σ−1
𝑛

if there are sets 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 in Σ0
1 such that we have

𝑆 = 𝐴1 △ 𝐴2 △ 𝐴3 △ ⋯ △ 𝐴𝑛. (1.2)

Like in the arithmetical hierarchy, a set 𝑃 is in Π−1
𝑛 if its complement, 𝑃 ∁, is

in Σ−1
𝑛 . Note that when 𝑛 is odd, we have

(𝐴1 △ 𝐴2 △ 𝐴3 △ ⋯ △ 𝐴𝑛)∁ = 𝐴∁
1 △ 𝐴∁

2 △ 𝐴∁
3 △ ⋯ △ 𝐴∁

𝑛.

Therefore, for odd 𝑛, a set 𝑃 is in Π−1
𝑛 if there are sets 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 in Π0

1
such that we have

𝑃 = 𝐴1 △ 𝐴2 △ 𝐴3 △ ⋯ △ 𝐴𝑛.

These definitions are equivalent to the original characterization by Ershov [52] that
was stated in terms of unions of disjoint relative complements. The equivalence
follows from elementary identities. The resulting hierarchy, including the levels Δ−1

𝑛
that are the intersection of Σ−1

𝑛 and Π−1
𝑛 , is depicted in Figure 1.3b.

Because the Δ0
2 class is closed under taking unions, intersections, and comple-

ments, it is also closed under taking symmetric differences. Moreover, it includes
both Σ0

1 and Π0
1, thus for all natural numbers 𝑛, the classes Σ−1

𝑛 , Π−1
𝑛 , and Δ−1

𝑛 of
the difference hierarchy are included in Δ0

2. Consequently, the difference hierarchy
is only relevant for sets that are not too complicated according to the arithmetical
hierarchy. Still, its core ideas make the ensuing notion of complexity an interesting
measure of undecidability. As we have seen, the number of semidecidable sets
needed to write a set like in (1.2) relates to a generalized form of convergence of
computation.

1.2.2 Computational Tractability
In computational complexity theory, a set is deemed complex if it is intractable.
Here, tractability is customarily taken with respect to the running-time behavior
of decision procedures. While we can measure the time a decision procedure takes
on a specific input, we are primarily interested in how this time compares to
other, unknown, inputs. The running time of a decision procedure is therefore
traditionally expressed as a function of the size of its input. As we saw in
Section 1.1, the notion of input size is heavily reliant on the choice of an encoding
scheme for inputs. No computable encoding scheme reflects all possible structural
aspects an input may have. This is especially visible in contexts that offer some
“standard” encoding. For instance, in graph theory [40], graphs are often thought
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of as encoded by an adjacency matrix. In that case, the size of a graph is
determined by the number of its vertices. However, certain structural properties
other than the number of vertices may be exploitable by a decision procedure for
a set of graphs. Regarding sets that are intractable because the running time of a
decision procedure is at least exponential as a function of the input size, Garey
and Johnson remark the following.

[…] there are a variety of ways in which the time complexity of an
algorithm can be “exponential,” some of which might be preferable to
others. This is especially evident when, as is customary in practice,
we consider time complexity expressed in terms of natural problem
parameters instead of the artificially constructed “input length.” [63,
Section 4.3]

When restricting to inputs on which such natural parameters assume small values,
a set that is initially intractable may indeed become tractable. As inputs with low
parameter values may be abundant, it may be that large subsets of the input space
are easy to digest for some decision procedure. In addition, Garey and Johnson
note that inputs encountered in practice may tend to have low parameter values:
“[…] in practice it is often the subproblem, rather than the general problem, that
we are called upon to solve.”

1.2.1. Example. The standard compilers for the Rust programming language
and the Haskell programming language are able to infer data types of variables
and functions. The algorithm they use for this has a worst-case running-time
that scales exponential as a function of the length of its input. However, such
exponential running times are experienced very rarely in practice [89]. Thus,
some property of the expressions that this algorithm operates on behaves in a
special way for inputs that are encountered in practice. Indeed, the origin of the
exponential running time of the algorithm can be traced back to the nesting depth
of a certain pattern in the expressions. In practice, this nesting depth is almost
always low.

1.2.2. Example. We can model a social network by a graph, representing persons
by vertices and connecting two vertices when the persons they represent know
each other. Given a graph that models mutual acquaintance, we may ask how
large a subset of people there exists that all know each other [a clique, see 40].
This is formalized by the set

Clique = {(𝐺, 𝑙) | there is a set of at least 𝑙 vertices of the graph 𝐺 in which
each pair of vertices is connected by an edge},

Let 𝐺 be a graph with 𝑛 vertices and let 𝑙 be at most 𝑛. The number of
possible subsets of the vertices of 𝐺 that are of size 𝑙 cannot be bounded by
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a polynomial of 𝑛 alone. In fact, when 𝑙 is, say, 𝑛
2 , the number of subsets is

exponential as a function of 𝑛. It is widely believed that there are no decision
procedures for Clique that have a subexponential running time. Nonetheless,
given a subset of vertices of 𝐺, we can check whether its members are pairwise
connected within a polynomial running time.

However, this analysis disregards some practicalities that result from the
situation we are modeling. It is rare to come across a person with very many
mutual acquaintances. Therefore, it is safe to assume that in any graph we that
models a social network, almost no vertex is connected to more than, say, 20
others. As a consequence, we find that in any graph encountered in practice, a set
of pairwise connected vertices, a clique, can contain at most 21 elements. This
means that the number of subsets of vertices that needs to be checked is less than
𝑛21, which, as Garey and Johnson observe [63, Section 4.1], is polynomial in 𝑛.
While this already brings the running time down to polynomial, we shall see in
Section 1.3 that a far more efficient decision procedure is not hard to come by.

The takeaway is that computational complexity is preferably measured by
parameters of the input instead of by the input length alone. Somehow, we need
to decide which parameters to take into account. Different decision procedures
may favor different parameters. Note, though, that it is possible to combine
the benefits that different parameters may provide through aggregating multiple
decision procedures.

1.2.3. Example. One way to decide membership in Clique is by generating an
exhaustive list of candidate sets of vertices and checking whether any is a clique
of the desired size. Suppose we want to decide whether a given graph 𝐺 has a
clique of 𝑙 elements. The simplest implementation of the aforementioned design
pattern starts out by generating all possible sets of 𝑙 vertices of 𝐺. However, other
approaches are possible too.

Suppose 𝑙 is even and we have a clique (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑙). Because these vertices
form a clique there is, for 𝑖 ≤ 𝑙

2 , an edge connecting 𝑣𝑖 to 𝑣𝑖+ 𝑙
2

in 𝐺. Thus an
alternative way to generate candidate sets of vertices is via all possible sets of
𝑙
2 edges, by taking the endpoints of the selected edges. Any clique of size 𝑙 is
guaranteed to be generated this way.

We can compare these two approaches by counting the number of candidate
sets they consider. Let 𝑛 be the number of vertices in 𝐺 and 𝑚 the number of
edges in 𝐺. There are (𝑛

𝑙 ) sets of 𝑙 vertices and ( 𝑚
𝑙/2) sets of 𝑙

2 edges. When either
of these numbers is much smaller than the other, we expect the corresponding
decision procedure to run much faster than the other. Thus, it pays to construct
an aggregate decision procedure. This decision procedure would first compute
both numbers and then run the decision procedure that is expected to be the
fastest.

The computational complexity of the vertex-centric decision procedure is best
expressed as a function of the parameters 𝑛 and 𝑙. On the other hand, the



1.2. Historical Encounters 11

complexity of the edge-centric decision procedure is best expressed as a function
of the parameters 𝑚 and 𝑙. Our aggregate decision procedure demonstrates that
it pays off to take into account multiple parameters. By taking into account more
parameters, we get a more detailed insight into the computational complexity of
a set such as Clique. For some instances of Clique, the running-time bound
available in terms of 𝑛 and 𝑙 is better than that in terms of 𝑚 and 𝑙 and vice
versa.

The algorithm we presented for our aggregate decision procedure for Clique in
the example above combines two other algorithms. Such algorithms are known as
hybrid algorithms [103]. They offer a best-of-both-worlds alternative in situations
where we have two algorithms without one being better than the other. From a
parameterized point of view, hybrid algorithms combine the information of multiple
input parameters and as such show how these parameters can interact. This is
relevant not only when we use parameters to measure computational complexity,
but also in the design of ever-faster polynomial-time algorithms.

1.2.4. Example. As a showcase of hybrid algorithms that do not face computa-
tional intractability, we shall take a look at sorting algorithms. Even naive sorting
algorithms, such as repeatedly finding the least value, manage to have a running
time bounded by a polynomial of the length of the input list. Because sorting is
such a common operation in algorithmics, extensive research has been put into
the development of fast sorting algorithms.

The quicksort algorithm [35] makes a number of comparisons that is at most
quadratic as a function of the length, 𝑛, of the input list. However, worst-
case inputs are very rare and on average the algorithm needs roughly 𝑛 log 𝑛
comparisons. With a number of comparisons in the order of 𝑛 log 𝑛 in the
worst case, the heapsort algorithm [35] appears at least as good as quicksort.
Nevertheless, it has a higher overhead and in practice it is often outperformed by
quicksort. By combining both algorithms, we can construct a sorting algorithm
that is about as fast as quicksort, yet has a worst-case running time in the order
of 𝑛 log 𝑛. This hybrid algorithm is known as introsort [111] and is used by some
prominent implementations of the C++ standard library.

The way introsort chooses between its constituent algorithms, quicksort and
heapsort, is not as up-front as it was in our hybrid decision procedure for Clique.
This matters when we want to identify parameters that express structure favored
by either of the constituent algorithms. Instead of handing over the input to either
quicksort or heapsort, the hybrid introsort hooks into the divide-and-conquer
nature of quicksort. The core of the quicksort algorithm is that it splits its
input list into a list of low values and a list of high values. These sublists can be
sorted independently and for that, quicksort recursively invokes itself. Because
the splitting stage requires some 𝑛 comparisons for a list of 𝑛 elements, we do not
want the recursion depth to exceed a constant multiple of log 𝑛. In the worst case,
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however, quicksort reaches a recursion depth of 𝑛. To mitigate this worst case
behavior, introsort uses heapsort to sort the sublists when the recursion depth gets
too high, say higher than 2 log 𝑛. Thus, we have found that the recursion depth
reached by quicksort functions as a parameter of the input list. This parameter
may appear somewhat unnatural and its specific value for a given list depends on
the implementation of quicksort. For all implementations, however, input lists
that get high parameter values can be constructed [105].

For short lists, insertion sort [35] is faster still than quicksort and heapsort.
However, it makes a quadratic number of comparisons in the average case. There-
fore it is suboptimal for all inputs of a length exceeding some platform-dependent
constant. Many implementations of introsort use insertion sort when the input list
is short. Here, the parameter at play is evident. It is the length of the input list.

The architecture of introsort follows quicksort and only for the base case of
the recursion it deviates from that. In this way, introsort is based on an algorithm
that has a bad worst-case running time, but is fast in practice. Another hybrid
sorting algorithm, timsort [121], takes the opposite approach. This algorithm was
developed for the Python programming language and is also used in the Java
virtual machine and in the standard library of the Rust programming language.
It is adapted from mergesort [35], which has a good worst-case running time,
but fails to exploit patterns encountered in practice. Like quicksort, mergesort
is a divide-and-conquer algorithm. Where introsort followed quicksort top-down
and resorted to heapsort at high recursion depths, timsort follows a bottom-up
implementation of mergesort. It uses insertion sort on small chunks of the input
to quickly prepare a base case that is as accommodating to mergesort as possible.
Using insertion sort for the base case is efficient, because insertion sort is fast
on short lists. The base case is prepared in such a way that the use of locally
sorted parts of the input list is maximized. This makes timsort an adaptive sorting
algorithm. A proper analysis of timsort is therefore not possible on the basis
of only the length of the input list as a parameter. In addition, it requires a
parameter related to the locality of the disorder in the input list.

Note that a detailed analysis of the computational complexity of an algorithm
may expose many parameters that influence the running time of the algorithm.
These parameters need not be independent of one another, and their interactions
need not be straightforward. Parameterized computational complexity theorists
are tasked with gaining insight in these interactions.

1.2.3 Algorithmic Complexity
Complexity, in whatever incarnation, can often be traced back to a lack of structure.
Objects that are evidently highly structured are easy to analyze and an unlikely
cause of complexity. But what makes an object structured? One answer could be
“if it has many properties”, but this simply makes us wonder what counts as a
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property of an object. Certainly, we want the properties of an object to tell us
something about the object. In other words, it must be special for an object to
have a given property. We mean this in a technical sense and assert that structural
properties help in giving short descriptions of objects.

1.2.5. Example. Consider graphs on 8 vertices. There are

2(8
2) = 268 435 456

such graphs. However, if we know that a particular graph has 9 edges, we are left
with only

((8
2)
9

) = 6 906 900

options. Because this is a substantial reduction, we can give a succinct description
of a graph with 8 vertices and 9 edges by first giving its number of edges.

The critical observer will have noticed that we have assumed a number of
vertices that was fixed and known. Indeed, having 8 vertices is in itself already
a structural property of a graph. Without knowing the number of vertices in a
graph that is being described to us, we have an infinite number of candidates to
choose from.

Often, we can identify a value inside a structural property that can be gener-
alized over. The property can then be seen as an instantiation of an underlying
property schema. This is most apparent when the structural property has an
element of counting in it, such as is the case with our “has 9 edges” property in
the example above.

1.2.6. Example (continued). Replacing the value 9 in the property “has 9 edges”
by the variable 𝑒, we obtain the property schema “has 𝑒 edges”.

Seldomly is it necessary to make a distinction between properties and property
schemata. However, it is useful here because it clarifies the relation between
parameters, as encountered earlier, and properties. Technically, parameters
correspond to property schemata.

When describing objects, it is necessary to settle, beforehand, what counts as a
reasonable description method. Were we to allow all possible mappings of objects
to strings, we run into paradoxes like the Berry paradox [see 100]. This paradox
shows that if any mapping goes, any object could be described in arbitrarily
few bits. The argument is simple: if it would not be so, then we could take
the first among the counterexamples and map an arbitrarily short description
to it, violating it being a counterexample. Therefore, we prefer to work with
computable total functions as description methods. Each description method is
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thus assigned a length according to a specification of the performed computation.
Doing so, we get, for each object, a lower bound on the sum of the length of the
description method used and the length of a description of the object. This bound
is the Kolmogorov complexity of the object. Indeed, any structure in an object
is picked up by its Kolmogorov complexity. This urges an investigation of the
use of the Kolmogorov complexity as a parameter, as the property schema “has a
Kolmogorov complexity of at most 𝑐”. However, the Kolmogorov complexity is
not itself a computable function, so such an investigation would take us outside
the realm of reasonable description methods.

Next to thinking of Kolmogorov complexity as a parameter itself, we may
think of Kolmogorov complexity as emerging from an assembly of all parameters.
A property can be thought of as a set of objects, namely the objects that have that
property. Any object that has a property can then be specified by its index in this
set. This interpretation of properties was already present in our example with the
“has 9 edges” property. From this interpretation, it is a small step up to a kind
of meta-property, the property schema “has property 𝑞”. As before, we want our
description method to adhere to a form of computability. We therefore assume that
a property 𝑞 is specified in the form of a decision procedure for the set of objects
that have property 𝑞. These decision procedures are computable total functions.
However, there is no decision procedure that recognizes precisely the computable
total functions. Therefore, whether any given 𝑞 represents a reasonable property
in the sense that it corresponds to a computable total function cannot be decided
uniformly.

Alternatively, the undecidability of our meta-property can be deduced from the
observation that this property schema too relates to Kolmogorov complexity. An
object represented by some 𝑥 is the only object that has the property “equals 𝑥”.
It should be clear that the shortest specification of this property has a length
equal to the Kolmogorov complexity of 𝑥. Moreover, the index of 𝑥 in the set
of objects that adhere to this property is 1. Hence, the length of a description
according to this property added to the length of this property is about equal to
the Kolmogorov complexity of 𝑥. At the same time, no two-part code can give
description of 𝑥 of a length shorter than the Kolmogorov complexity of 𝑥. Hence
our parameter, the property schema “has property 𝑞”, is also closely related to
Kolmogorov complexity.

The analysis of Kolmogorov complexity as emerging from an assembly of all
parameters has brought us one abstraction level up in the analysis of parameters.
Instead of working with individual parameters, we now work with sets of, not
necessarily related, parameters. When a certain set of parameters has our interest,
we may ask how good of an approximation to the Kolmogorov complexity the
ensuing two-part code is. Of course, we should also ask whether or not the set of
parameters is in any way decidable. Taking the abstraction even further, we may
look at ways to define sets of parameters. For instance, given a computationally
hard decision problem, we may consider those parameters that are responsible for
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the computational hardness. This then leads to a notion of complexity in its own
right. If two decision problems lead to the same set of parameters, we could say
that the computational complexity of the two problems has the same origins. While
exciting, this notion of equivalent computational complexity through identical
sets of parameters has not seen much attention yet.

1.2.4 Algorithmic Statistics
A picture is worth a thousand words, or, in more convoluted terms, not all media
are equal when it comes to the presentation of information. This sets information
apart from computability, which remains unchanged on a large class of machine
models. In the landmark paper in which he introduced his machine model,
Turing wrote the following about the use of one dimension or two dimensions in
computation.

In elementary arithmetic the two-dimensional character of the paper
is sometimes used. But such a use is always avoidable, and I think
that it will be agreed that the two-dimensional character of paper
is no essential of computation. I assume then that the computation
is carried out on one-dimensional paper, i.e. on a tape divided into
squares. [144]

A similar statement is arguably not true of information. In the presentation of
information, using one dimension or two dimensions makes a difference.

1.2.7. Example. Consider the following one-dimensional sequence of squares,
some of which are filled.

We can spot pretty quickly that this sequence is a palindrome. However, a far
stronger geometrical relationship between the filled squares becomes evident when
we present the same sequence as a two-dimensional grid.

This goes to show that certain modes of presentation are preferred for certain
patterns. Not all information is equally accessible in all modes of presentation.

For a more thorough treatment of informativeness, we need a formal description
of what we mean by information. Typically, we link information to entropy [36],
thus bringing statistics on board the study of informativeness. Information, then,



16 Chapter 1. Introduction

relates to a property of a data source that expresses how unpredictable the data
source is. In other words, information is what breaks the mold, as it defies our
expectation. We remark that there is more to information than entropy alone,
but refer the interested reader to the philosophical overview by Adriaans and
Van Benthem [3].

Different kinds of data come with different expectations. Some patters are more
clearly presented in certain modes of presentation, and conversely some modes
of presentation make us expect certain patterns. A musical idea, for example, is
hard to convey in a painting, yet may be precisely what an audience member in a
concert is listening for. The medium is thus part of the message and information
is context-dependent.

1.2.8. Example. Let us take a look at the distribution of passwords that are
made up of four digits. Four-digit passwords are the de facto norm for a personal
identification number, a PIN. A naive analysis would be that when we have no
information about someone’s PIN and we have to guess it, we stand a one in
ten thousand chance of being correct. As we shall see, this is far from the truth
when the PIN was chosen freely by its owner.

To estimate the distribution of PINs in use, we filter a collection of over half a
billion passwords for four-digit passwords. The collection is made up of passwords
obtained in data breaches and was put together by Hunt [85]. This tactic was first
employed by Berry [20] and our approach here is much the same as his. In the
database we use, 14 830 591 uses of a four-digit password are recorded. Based on
the relative frequency of each PIN, we quickly find that they are not distributed
uniformly. As can be seen in Figure 1.4, the bulk of the distribution of PINs can
be approximated by a straight line in a log–log plot. Therefore, our PINs are an
example of a dataset that adheres to Zipf’s law. This empirical law states that the
frequency of a word in a corpus of natural language is inversely proportional to
its rank. Outside natural language, distributions of this kind have been observed
in many real-world data encountered in the physical and social sciences [112].

Having found that PINs are not distributed uniformly, we wonder what can be
said about the specifics of their distribution. In Figure 1.4, we cannot see which
PINs correspond to which data points. Therefore, we turn to a different plot,
depicting the rank of all PINs as estimated by our approximation of the empirical
probability distribution, Figure 1.5.

In Figure 1.5, we can recognize many categories of PINs that occur frequently.
Some of these categories are purely syntactical. The prominent diagonal line,
for instance, represents PINs of the form xyxy. Algorithmic complexity theory is
well-suited to deal with such patterns. We may therefore expect the universal
distribution [100], though uncomputable, to be a good model for the distribution of
PINs. For this to be true, all structure in Figure 1.5 must be essentially syntactical.
However, there is also a strong vertical line of PINs of the form 19xy, continuing
shortly into the 20xy pattern. The prevalence of such PINs can easily be explained
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Figure 1.4: A log–log plot of the empirical probability of PINs by rank, in
decreasing order of likelihood. Except for one outlier on the top-end, the PIN 1234,
and a thin tail of less than 5% of the PINs, the distribution can be approximated
by a power law. Points are colored in accordance with their rank as approximated
by the fitted power law. Because the horizontal axis is logarithmic, the colormap
appears distorted.
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Figure 1.5: A heatmap of PINs, inspired by a similar heatmap created by Berry [20].
The first two digits of the PIN determine its horizontal position, while the last
two digits determine the vertical position. This way, the PIN 0099 ends up at the
top-left corner and the PIN 9900 ends up at the bottom-right corner. The colors
are based on the clamped power law fitted on the bulk of the PINs in Figure 1.4.
Darker colors represent more frequent occurrence of a PIN in the database. As
witnessed by the area of light-colored PINs on the left side of the plot, many PINs
in the tail of the distribution start with a 0.
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as people choosing a year as they PIN and most emotionally meaningful years
being in the recent past. This explanation is not a syntactical one. Of course,
a model for algorithmic complexity can include this contextual information at
the cost of only an additive constant. With little more modeling of context, also
the frequent occurrence of PINs formatted as dates, MMDD or DDMM, can be
covered. The lengths of the months generate a distinct and recognizable pattern
in our heatmap. Yet, we claim that the additive constant relative to a standard
abstract definition of Turing machines will quickly become significant. Relative to
the limited complexity of four-digit PINs, the cost of modeling all contexts that
influence the choice of a PIN is huge. Some properties of the plot in Figure 1.5
can easily be explained culturally, but lack any numerical meaning. For instance,
the PIN 5683 occurs particularly often, which can be explained by its meaning
as a phoneword. A phoneword is a word spelled on a traditional phone keypad
using ITU E.161 assigned letters. The letters of the word “Love” are assigned
the digits 5683, respectively. It is thus not reasonable to expect the distribution
of PINs to approximate the universal distribution in any way. We are better off
identifying as many meaningful categories of PINs and build our model of PINs
from there.

We can try to model a multitude of contexts so that we can deal with the
information in each of them. In doing so, however, we should control the amount
of detail with which we describe our models. Surely, we do not want a tailor-made
model for every conceivable arrangement of data. In such a setting, every data
sample would have a context in which the sample contains no information. This
is known as overfitting [72]. Algorithmic statistics addresses overfitting by taking
into account the complexity of a description of a model. Interestingly, there are
data sets for which no simple model is a decent fit. There are complex models in
relation to which these data sets contain disproportionately little information. In
relation to any simple model, the information in these data sets is considerably
higher. From this observation, it follows that the minimum model complexity
required to achieve a decent fit is a nontrivial property of a data set. Thus, a
parameterized analysis of data sets, where the parameter is this minimum model
complexity, emerges.

In traditional algorithmic statistics, Kolmogorov complexity is used in the
assignment of complexity to models. By doing so, it is possible to include
practically all effective models in the analysis of informativeness. As a result,
the central probability distribution of interest in traditional algorithmic statistics
is the universal distribution. We have seen in Example 1.2.8 that the universal
distribution is not always the best for a particular domain. Fortunately, it is
possible to employ the methods of algorithmic statistics in a setting where we
restrict our attention to a specific collection of models.
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1.2.5 Computational Redundancy
At the end of Moore’s law, advances in computer engineering are no longer visible
as more powerful computation, but instead as more ubiquitous computation. With
this shift, the choice of where to perform computation, along with when to perform
how much of it, becomes increasingly influential.

1.2.9. Example. There are many ways to store digital information, ranging from
dynamic random access memory to magnetic tape and optical discs. Each storage
medium has its own strengths and weaknesses. Storage can be classified according
to different metrics, such as cost per bit, availability, or access speed. Typically,
embedded volatile memory is fast, but expensive, whereas archived non-volatile
memory is cheap, but slow. It is commonplace for applications to make use of
different types of memory for different types of data, depending on the anticipated
use. For a large database, cost is a primary concern, while the cache of a dynamic
algorithm is best served by memory that is as fast as possible. In practice, this
means the database may be stored on an off-site storage server, while the dynamic
algorithm makes use of the CPU cache.

For computation, similar considerations can be made. Computing on a mobile
device may provide very low latency, yet faces bottlenecks in terms of speed
and energy consumption. The alternative would be to move computation to
an external computer. This architecture, treating computation as a service, is
nowadays known as cloud computing. Offloading computation becomes interesting
when a computational workload is more demanding than the locally available
computational power. One possibility is that the workload is inherently heavy, as
is the case for rendering computer-generated imagery. Another possibility is that
the local computational power is limited, as is the case when cross-compilation
for embedded devices is used.

There is an interplay between the location where data is stored and the location
where computation is performed. The two are best kept close together, and
modern databases implement increasingly rich query languages [see also 4]. An
extreme example is provided by the Apache Hadoop Distributed File System. Its
manual phrases it as follows.

A computation requested by an application is much more efficient if it
is executed near the data it operates on. This is especially true when
the size of the data set is huge. This minimizes network congestion
and increases the overall throughput of the system. The assumption is
that it is often better to migrate the computation closer to where the
data is located rather than moving the data to where the application
is running. [28]

Note that a server may be highly capable as a data storage facility, yet be
unimpressive in its computational abilities. The converse is possible as well. In
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both cases, we may still want to minimize the cost of communication with the server.
For this, it becomes necessary to recognize redundancy in our computational task
and leave it out of transmission.

1.2.10. Example. Suppose we want to render many frames of an animation
on a so-called “render farm”. This requires the transmission of a description of
the computational task for each frame. The animation may, however, contain
duplicate frames. It is worthwhile to preprocess our data and remove all duplicate
frames before invoking the render farm. This preprocessing operation does not
require much computational effort from our side, yet it might reduce the amount
of data transmitted substantially.

Conversely, if we want to perform a computation on data stored in an external
database, it may be beneficial for the database to preprocess the data. To
accomplish this, we not only send the database a request for certain data, but
also a description of the operation we want to perform on it. The database may
then spend a limited amount of time analyzing the data in terms of computational
redundancy, and omit any identified redundancy from its reply. Again, with the
proper time limit, this requires minimal computational effort from the database,
yet may reduce the total amount of communication taking place.

When the computational context of data is known already when the data is
recorded, it may be beneficial to perform the preprocessing step early on. Doing
so may save the database some storage capacity, or at least bring the storage
requirement more in line with the computational complexity of the data. As our
database may not have great computational power, it is important that we limit
preprocessing to computation that can be performed quickly.

With our examples so far, we have thought of machines connected via a network
as atomic units of computation. However, also within a computer, there are many
independent units capable of computing. These are the device controllers and other
management systems that all run their own firmware. Traditionally, such systems
are extremely limited in their computational power. This power has, however,
been increasing steadily, and the potential of these devices to run application-level
code has long been recognized [for example 126]. We have seen that preprocessing
can reduce traffic on the network connecting computers. Similarly, preprocessing
can reduce traffic on the system bus connecting components inside a computer.

For certain computational tasks, a useful separation into a computationally
redundant and a computationally hard part may be possible. For others, it may
be impossible to find such a clear-cut separation that is of any practical value.
This does not mean that we cannot benefit from remote computational powers.
Sometimes, a computational task is really a serialization of multiple subtasks, the
specifics of each subtask depending on the outcome of the previous one. With
such a compound task, we may be able to identify computational redundancy in
each subtask as we get to it. In that case, making use of preprocessing for each of
the subtasks requires a form of communication between the computational parties.
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The party holding the data performs the preprocessing and communicates to the
computationally powerful party the data relevant to the current subtask. The
computationally powerful party in turn executes the subtask in order to find out
the specifics of the next subtask. It then sends back these specifics, and the cycle
repeats.

This protocol should be compared to the naive protocol, where all data is
transmitted to the computationally powerful party. Thus, the worst-case is that we
have to transmit all data, and any way to save on the amount of data transmitted
should be considered an improvement. When each subtask requires only a small
part of the data, the computational cost of preprocessing at the site of the data
can really pay off.

With multi-stage preprocessing, computational redundancy has become a
composite notion. It is no longer possible to trace a computation and pinpoint
where preprocessing ends and the hard part of the computation begins. Instead,
the two types of computation are interwoven, and computation switches back and
forth between harvesting redundancy and essential computing. Computational
redundancy is thus a multifaceted notion, and an investigation of computational
redundancy must be multifaceted too. In particular, an analysis of computational
redundancy should consider how the amount of data that is transmitted can be
related to properties of the input. As we have seen multiple times now, properties
can be expressed by parameters. Thus the analysis of computational redundancy
becomes a parameterized analysis.
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1.3 Parameterized Complexity Theory
Of the many contexts in which complexity may be encountered, one context has
featured parameters most prominently. This is the context of computational com-
plexity. In the formal development of a parameterized computational complexity
theory, two dominant schools emerged around the turn of the century [44, 57].
However, the essential ingredients were already visible before that. We caught a
glimpse of this in Section 1.2.2. Before we outline the two schools, their differences,
and their similarities, we shall recapitulate some of the observations of Garey and
Johnson [63].

Garey and Johnson

One of the classic NP-complete problems is the Partition problem. Here, we
are given a finite sequence of numbers 𝑥1, 𝑥2, … , 𝑥𝑚, and are asked whether there
exists a set 𝐼 ⊆ {1, 2, … , 𝑚} such that we have

∑
𝑖∈𝐼

𝑥𝑖 = ∑
𝑖∉𝐼

𝑥𝑖.

Equivalently, this set 𝐼 is such that we have ∑𝑖∈𝐼 𝑥𝑖 = 1
2 ∑𝑖≤𝑚 𝑥𝑖. Using dynamic

programming, Garey and Johnson [63, Section 4.2] show that, for any constant 𝑐,
the existence of a set 𝐼 ⊆ {1, 2, … , 𝑚} such that we have

∑
𝑖∈𝐼

𝑥𝑖 = 𝑐

can be determined within a time bound that is polynomial in 𝑚 and 𝑐. Noting
that we have

1
2

∑
𝑖≤𝑚

𝑥𝑖 ≤ 𝑚 ⋅ max{𝑥1, 𝑥2, … , 𝑥𝑚},

they conclude that membership in Partition can be decided in a time polynomial
in 𝑚 and max{𝑥1, 𝑥2, … , 𝑥𝑚}. Algorithms with running times behaving this
way are called pseudo-polynomial time algorithms by Garey and Johnson. It
is also possible to express running times of pseudo-polynomial time algorithms
in terms of input lengths. For this, we set 𝑛 to the combined input length
|𝑥1| + |𝑥2| + ⋯ + |𝑥𝑚|, and 𝑘 to the maximum, max{|𝑥1|, |𝑥2|, … , |𝑥𝑚|}. From
the previous observations it now follows that membership in Partition can be
decided in a time that is polynomial in 𝑛 and exponential in 𝑘. As the specific
polynomial in 𝑛 is independent of 𝑘, this is precisely the type of time bound that
would later become known as fixed-parameter tractable.

Another problem Garey and Johnson look at is the NP-complete Clique
problem, which we have seen before in Example 1.2.2. Suppose we have a graph 𝐺
that has 𝑛 vertices, none of which is connected to more than 𝑘 others. As alluded
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to in Example 1.2.2, it is possible to determine the size of the largest clique in 𝐺
in a time bound in the order of 𝑛𝑘+1. For a fixed value of 𝑛, this time bound is
exponential in 𝑘. Likewise, for a fixed value of 𝑘, the time bound is polynomial
in 𝑛. However, contrary to what we saw with Partition, the polynomial involved
is not independent of 𝑘. Indeed, from these observations we cannot conclude that
Clique is fixed-parameter tractable with respect to the maximum vertex degree
parameter. Nevertheless, running times of the form 𝑛𝑘 are an object of study in
modern parameterized computational complexity theory. We remark that Clique
is in fact fixed-parameter tractable with respect to the maximum vertex degree
parameter [37, p. 10]: We can go through all vertices and, for each vertex, consider
all possible subsets of neighbors. There are at most 2𝑘 such subsets to consider
per vertex.

Observations such as those about Partition and Clique show that not all is
lost when there is no polynomial-time algorithm for a problem of interest. Hard
instances for the problem may be rare or, at least, there may be special cases
of the problem that can be solved in polynomial time. Therefore, we want to
include parameters in our analysis of computational complexity. The parameters
we saw earlier, “maximum component length” and “maximum vertex degree”,
were, however, selected in a rather ad hoc fashion. While finding the right
parameters may be an art [37, p. 12], a proper parameterized computational
complexity theory needs to formalize the place and role of parameters.

Downey and Fellows

The first framework for parameterized computational complexity was given by
Downey and Fellows [41, 44]. In their framework, a parameter is an explicit
component of a problem instance and the problems considered are inherently
parameterized. More specifically, a parameterized decision problem is a set of
pairs ⟨𝑥, 𝑘⟩, where 𝑘 is a number called the parameter. A parameterized decision
problem 𝐴 is said to be fixed-parameter tractable if the time required to decide
membership in 𝐴 can be bounded like before. Specifically, for some function 𝑓
and constant 𝑐, membership in 𝐴 of a pair ⟨𝑥, 𝑘⟩, where 𝑥 is of length 𝑛, must be
decidable in time 𝑓(𝑘) ⋅ 𝑛𝑐.

A renowned example of a parameterized decision problem is VertexCover.
A vertex cover of an 𝑛-vertex graph 𝐺 is a collection, 𝐶, of vertices from 𝐺 such
that every edge in 𝐺 is incident to a vertex in 𝐶 [40]. In the VertexCover
problem, we are given a graph 𝐺 and a number 𝑘, and are asked whether 𝐺 has a
vertex cover of at most 𝑘 vertices. Like membership in Partition, membership in
VertexCover can be decided in a time that is polynomial in 𝑛 and exponential
in 𝑘. Thus, deciding membership in VertexCover is fixed-parameter tractable.
An easy way to see that this is the case is by considering the following recursive
algorithm for deciding whether 𝐺 has a vertex cover of at most 𝑘 vertices.
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1: We assert that 𝑘 is nonnegative, for otherwise 𝐺 cannot possibly have a
vertex cover of at most 𝑘 vertices.

2: If there are no edges in 𝐺, then the empty set is a vertex cover of 𝐺 and it
is guaranteed to contain at most 𝑘 vertices.

3: Else, let 𝑣1 and 𝑣2 be the endpoints of an edge in 𝐺. Any vertex cover of 𝐺
must contain at least one of these vertices:

3.1: If the graph obtained by removing 𝑣1 from 𝐺 contains a vertex cover
of at most 𝑘 − 1 vertices, then 𝐺 contains a vertex cover of at most 𝑘
vertices. This vertex cover of 𝐺 is obtained by adding 𝑣1 to the vertex
cover of the induced subgraph.

3.2: Else, if the graph obtained by removing 𝑣2 from 𝐺 contains a vertex
cover of at most 𝑘 − 1 vertices, then 𝐺 contains a vertex cover of at
most 𝑘 vertices.

3.3: Else, 𝐺 contains no vertex cover of at most 𝑘 vertices.

This algorithm makes at most two recursive calls to itself, each time reducing
the value of 𝑘. Thus, no more than 2𝑘 calls to this algorithm are made. As each
individual call can be executed in a time polynomial in 𝑛, we find that deciding
membership in VertexCover is fixed-parameter tractable.

The parameter in the parameterized decision problem VertexCover emerges
naturally. We could say that we have parameterized the vertex cover problem
by the solution size. Similarly, we could consider a parameterized version of the
Clique problem, where we parameterize by the solution size. That is, we are
given a graph 𝐺 and a number 𝑘, and are asked whether the graph 𝐺 contains
a clique of at least 𝑘 vertices. If we let 𝑛 denote the number of vertices in 𝐺,
we find that there are no more than 𝑛𝑘 subsets of 𝑘 vertices of 𝐺. From this,
we immediately find that deciding membership in the parameterized version of
Clique is possible within a time bound of the form 𝑛𝑘. At the same time, it
is widely believed that deciding membership in Clique, parameterized by the
solution size, is not fixed-parameter tractable [44, 37]. This is where things get
interesting, because when parameterized differently, Clique may well be fixed-
parameter tractable. Recall the definition of Clique from Example 1.2.2,

Clique = {(𝐺, 𝑙) | there is a set of at least 𝑙 vertices of the graph 𝐺 in which
each pair of vertices is connected by an edge},

and consider Clique parameterized by the minimum vertex cover size,

CliqueVC = {⟨(𝐺, 𝑙), 𝑘⟩ | (𝐺, 𝑙) ∈ Clique and
𝐺 has a vertex cover of at most 𝑘 vertices}.
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An algorithm witnessing that CliqueVC is fixed-parameter tractable may pro-
ceed as follows when given 𝐺, 𝑙, and 𝑘 as input, where 𝐺 has 𝑛 vertices [37,
Section 15.2.4].

1: Use our earlier algorithm for VertexCover to find a vertex cover, 𝐶,
of 𝐺 that contains at most 𝑘 vertices. Note that the running time of this
algorithm is as required for showing that VertexCover is fixed-parameter
tractable.

2: If no such vertex cover exists, our input instance is not a member of
CliqueVC.

3: A clique in 𝐺 contains at most one vertex outside 𝐶, so there are no more
than 2𝑘(𝑛 − 𝑘) sets of vertices to consider as potential cliques in 𝐺. If any
of these sets is a clique of at least 𝑙 vertices, then our input instance is a
member of CliqueVC.

The parameterized decision problem CliqueVC showcases some of the down-
sides of the framework of Downey and Fellows. Because the framework deals only
with parameterized decision problems, it cannot be applied to a classical problem
such as Clique. Instead, the framework requires us to resort to derived param-
eterized problems such as CliqueVC. In doing so, the framework obstructs an
analysis of the parameterized computational complexity of nonmembers. For ex-
ample, there can be two reasons why some instance ⟨(𝐺, 𝑙), 𝑘⟩ is not a member of
CliqueVC. It may be because (𝐺, 𝑙) is not a member of Clique, but it may also
be that the parameter value 𝑘 is too small. The latter possibility is particularly
troublesome, as for some parameterized problems the least sufficient parameter
value is the key point of interest. When we parameterize Clique by the solution
size, every graph 𝐺 has a parameter value 𝑘 such that 𝐺 contains a clique of at
most 𝑘 vertices. On the other hand, there are tuples (𝐺, 𝑙) for which there is
no parameter value 𝑘 such that ⟨(𝐺, 𝑙), 𝑘⟩ is a member of CliqueVC. Thus, the
Downey and Fellows framework cannot be used to inquire about the parameter-
ized computational complexity of nonmembers of classical problems.

Flum and Grohe

An alternative framework for parameterized computational complexity was given
by Flum and Grohe [57]. In their framework, problems are analyzed in light of
parameterization functions. This way, there is no need to confine the analysis
to a special type of parameterized decision problems. With Flum and Grohe, a
parameterization is a function 𝜅 that maps an instance 𝑥 of a problem 𝐴 to a
numeric parameter value 𝜅(𝑥). The function 𝜅 is required to be computable in
polynomial time. With this, we mean that if 𝑥 has length 𝑛, the time required for
computing 𝜅(𝑥) can be bounded by a polynomial in 𝑛. Of course, the polynomial
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must be independent of 𝑥. The definition of fixed-parameter tractability of 𝐴
with respect to 𝜅 is similar to the definition in the framework of Downey and
Fellows. This time, however, the parameter value is not part of the input of a
decision procedure for 𝐴, but obtained using 𝜅. Specifically, for some function 𝑓
and constant 𝑐, membership in 𝐴 of an instance 𝑥 of length 𝑛 must be decidable
in time 𝑓(𝜅(𝑥)) ⋅ 𝑛𝑐. As this approach separates parameters from instances, the
framework allows for a study of the parameterized computational complexity of
nonmembers. In this regard, it is an improvement over the framework of Downey
and Fellows.

The parameters considered by Garey and Johnson are examples of parameters
that can be modeled nicely in the Flum and Grohe framework. Thus, for these
parameters, the framework of Flum and Grohe provides a way to analyze the
complexity of nonmembers that was absent in the Downey and Fellows framework.
Recall that for the Partition problem, an input instance 𝑥 is a sequence of
numbers 𝑥1, 𝑥2, … , 𝑥𝑚. The “maximum component length” parameter for such
inputs can be expressed as a function

𝜅(𝑥) = max{|𝑥1|, |𝑥2|, … , |𝑥𝑚|}.

Note that this function is computable in a time bounded polynomially in the
length of the input, |𝑥1|+|𝑥2|+⋯+|𝑥𝑚|. Therefore, the above function 𝜅 qualifies
as a parameterization in the framework of Flum and Grohe. With Garey and
Johnson, we saw that Partition has a pseudo-polynomial time algorithm. In the
parlance of Flum and Grohe, we would say that Partition is fixed-parameter
tractable with respect to the parameterization 𝜅. A similar observation can be
made about the parameter with respect to which Garey and Johnson consider
Clique. This parameter is represented by a function that takes as input a graph 𝑥,
and computes the highest degree of any of the vertices of 𝑥. The time required
for this computation can be bounded polynomially in the number of vertices in
the instance 𝑥. Thus, this parameter too can be modeled in the Flum and Grohe
framework.

The minimum vertex cover size, as used with CliqueVC, is a more problematic
parameter. Unless NP equals P, the minimum vertex cover size cannot be
computed in polynomial time. Hence, it would not qualify as a parameterization
in the sense of Flum and Grohe. A typical solution to this is to make the desired
parameter value a part of the instance [for instance 37, Section 15.2.4]. Instead of
looking at Clique with respect to a function that computes the minimum vertex
cover size, we turn to CliqueVC. In general, we can define a parameterization in
the style of Flum and Grohe for parameterized decision problems in the style of
Downey and Fellows. For a set of pairs ⟨𝑥, 𝑘⟩, where 𝑘 is the parameter value, the
appropriate parameterization is defined as

𝜅(⟨𝑥, 𝑘⟩) = 𝑘. (1.3)
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We have already seen that CliqueVC is fixed-parameter tractable in the
framework of Downey and Fellows. From that, we can conclude that CliqueVC
is also fixed-parameter tractable with respect to (1.3) in the Flum and Grohe
framework. However, we are still unable to analyze the computational complexity
of the unmodified classical Clique problem with respect to the minimum vertex
cover size. This objection can be responded to in two ways. We may hold the
position that the minimum vertex cover size is not a proper parameter, as it
cannot be computed in polynomial time, assuming NP differs from P. On the
other hand, we should take into account that VertexCover is fixed-parameter
tractable with respect to the size of its solution. That is, it is fixed-parameter
tractable with respect to the parameterization that maps an instance (𝐺, 𝑘) to 𝑘.
For this reason, an algorithm for CliqueVC with a running time as required by
fixed-parameter tractability has sufficient time to compute the minimum vertex
cover size.

An important parameter of graphs that has a similar issue as the minimum
vertex cover size is treewidth [129, 23, 40]. For many decision problems on graphs,
it has been observed that the more an instance resembles a tree, the easier it is
to decide membership. This is because information regarding the decision can
be propagated along the branches of the tree. The resemblance to a tree can be
formalized by considering ways in which a graph 𝐺 can be decomposed into a tree
that represents 𝐺.

1.3.1. Definition. A tree decomposition of a graph 𝐺 is a tree 𝑇 of which the
vertices are subsets of vertices of 𝐺, and that satisfies

• each vertex of 𝐺 occurs in at least one of the vertices of 𝑇,

• of each edge of 𝐺, the endpoints occur together in at least one of the vertices
of 𝑇, and

• if a vertex of 𝐺 occurs in two vertices of 𝑇, then it occurs in all vertices of 𝑇
on the unique path between the two.

Each graph 𝐺 has a trivial tree decomposition consisting of a single vertex
that contains all vertices of 𝐺. However, as can be seen in Figure 1.6, more
sophisticated decompositions may be possible.

As suggested by the name “tree decomposition”, trees have an especially
interesting decomposition. In Figure 1.7, it is shown that a tree can be decomposed
in such a way that the decomposition mimics the original tree. In the tree
decomposition in Figure 1.7b no sets occur with more than two elements. By
the definition of a tree decomposition, any tree decomposition of a graph with
at least one edge has a set with at least two elements. In that sense, the tree
decomposition in Figure 1.7b is optimal. This leads to the following measure of
how much a graph is like a tree.
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(a) The vertices of the cube graph can be
put in two overlapping sets, indicated by the
interrupted lines. These sets define a tree
decomposition of the graph.

{a, b, c, d, e, g}

{b, d, e, f, g, h}

(b) The tree correspond-
ing to the decomposition
in Figure 1.6a consists of
two vertices.

Figure 1.6: A tree decomposition of the cube graph of Figure 1.2a
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(a) A tree

{a}

{a, b}

{b}

{b, e}

{e}

{b, f}

{f}

{a, c}

{c}

{a, d}

{d}

(b) A tree decomposition of the tree
in Figure 1.7a. Observe that the
decomposition retains the essence
of the structure of the original tree.

Figure 1.7: A tree decomposition of a tree
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1.3.2. Definition. The width of a tree decomposition is the number of elements
in the largest set among the vertices of the decomposition, minus one. The
treewidth of a graph is the least width among the widths of its tree decompositions.

Indeed, the idea behind the tree decomposition shown in Figure 1.7 can be
used to prove that the treewidth of any tree with at least one edge is one. Making
sure that trees have a treewidth of one is in fact the reason for the otherwise
somewhat peculiar “minus one” in the definition of the width of a tree. It follows
from Figure 1.6 that the treewidth of the cube graph is at most five. Yet, a
tree decomposition of smaller width is possible, as shown in Figure 1.8. This
decomposition happens to be optimal and the treewidth of the cube graph is three.

{b, c, f, g}

{a, b, c, g} {d, b, c, f} {e, c, f, g} {h, b, f, g}

Figure 1.8: An alternative tree decomposition of the cube graph as shown in
Figure 1.6a

By a fundamental result known as Courcelle’s theorem, many graph problems
become fixed-parameter tractable once parameterized by treewidth in the Downey
and Fellows framework [44]. This includes, for example, Clique and Vertex-
Cover [25]. However, the problem of deciding whether the treewidth of an
arbitrary graph is less than or equal to a given number is itself NP-complete [12].
Therefore, unless NP equals P, treewidth does not qualify as a parameterization
in the framework of Flum and Grohe. At the same time, like with the minimum
vertex cover size, computing treewidth is fixed-parameter tractable with respect
to itself [130, stated in terms of “branch-width”]. It is noted by Flum and Grohe
that large parts of the theory of parameterized complexity go through if we allow
for such parameterizations [57, p. 279].

It has also been recognized that there is little reason why a parameterization
should be restricted to only map to a single number [54, 114]. A parameterization
with a multidimensional image would represent multiple parameters at once. The
interplay between parameters can, however, not be expressed in the Flum and
Grohe framework. For example, the minimum vertex cover size of a given graph 𝐺
may go down when we remove some of the edges in 𝐺. If we consider the number
of edges we remove from a graph and the minimum possible vertex cover size of
the resulting graph, we have two interacting parameters. To bring the minimum
vertex cover size down, we need to increase the number of edges we remove. Note,
though, that being allowed to remove an edge need not make it possible to lower
the minimum vertex cover size. We need to remove at least three edges from the
cube graph of Figure 1.2a before the minimum vertex cover size of the graph is no
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longer four. It is unclear what a parameterization in the framework of Flum and
Grohe should map a graph to. Conceivably, it could map a graph to the function
that maps the number of modifications performed to the minimum vertex cover
size of the resulting graph. However, this goes against the spirit of fixed-parameter
tractability analysis, where we would like to look at specific values for both of our
parameters. On the one hand, the Flum and Grohe framework improves on the
Downey and Fellows framework by separating parameterizations from problems.
It isolates parameterizations as independent objects of study. On the other, it
requires parameter values to be unique for a given instance, which limits its use
in analyzing the interplay between different parameters.
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1.4 Contributions
This thesis, in Section 2.2, Section 3.2.1, and Section 3.2.2, introduces a novel
take on parameterized complexity theory, rooted firmly in mathematics. In this
new framework, the shortcomings of the two existing frameworks are addressed.
Our contributions are obtained in the five sections of Chapter 3.

We begin an investigation into the extent to which parameterizations can be
used as a measure of complexity of individual instances. A comparison with
an older notion of instance complexity from algorithmic complexity theory is
made in Section 3.3.1. In Section 3.3.3, a further comparison between instance-
based measures of algorithmic and computational complexity is carried out. A
comparison with the notion of sophistication from algorithmic statistics is made
in Section 3.4.

There may be many parameterizations that are of interest for a given problem,
so we might hope for the existence of a parameterization that is somehow optimal.
In Section 3.2.4 and Section 3.2.3, we provide a near-complete characterization of
the problems for which there is an optimal parameterization with respect to fixed-
parameter tractability. We find that there is often no optimal parameterization
among those with which a problem is fixed-parameter tractable.

More generally, this thesis furthers our understanding of the class of fixed-
parameter tractable problems. We explore what it means for a problem to be
fixed-parameter tractable. Results of this kind are obtained as a by-product of a
more general study of parameterized computability in Section 3.1.

An alternative characterization of the class of fixed-parameter tractable prob-
lems that does not mention parameterizations is suggested in Section 3.3.2. In
that section, we find out what the parameterizations with respect to which a prob-
lem is fixed-parameter tractable tell us about the problem. We conjecture that
the notion of complexity put forth by fixed-parameter tractability is characterized
by the quotient group Δ0

1/P with respect to symmetric difference. Here, Δ0
1 is

the class of decidable sets, the first intersection level of the arithmetical hierarchy.
Lastly, in Section 3.5, we uncover a hierarchy inside the class of fixed-parameter

tractable problems. This hierarchy is based on polynomial kernelization, which is
a form of reducibility.



Chapter 2
Preliminaries

This chapter makes precise what most of the jargon that appears in our parameter-
ized analysis of complexity means. The chapter is split into two parts, the second
of which, Section 2.2, should not be skipped in a first reading. In that section,
we introduce a novel framework for parameterized complexity theory, building
on the frameworks discussed in Section 1.3. All of the theory in Chapter 3 will
be developed in this new framework. We remark that many of our results are
independent of the framework they are expressed in. However, using one of the
traditional frameworks of Section 1.3 may make the theorems less general, or at
the least less elegant. A brief summary of the notation that is specific to our
framework can be found in the back of this thesis.

The first part of the current chapter, Section 2.1, does not contain anything
not available in textbooks. We have divided it into subsections corresponding to
particular research areas. While the section does include some background on our
usage of certain terms, it, or segments of it, may be skipped at will or used only
as a reference. The numbers of the pages on which definitions are listed can be
found in the index at the back of this thesis.
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2.1 Established Theory
We aim to bring together multiple notions of complexity. It is unavoidable that,
in doing so, we use terminology from multiple areas of research. Broadly, each
section of Chapter 3 deals with a form of complexity as it is encountered in a
specific area of research. Definitions that are specific to a certain area of research
are stated in the appropriate sections. More basic definitions that span multiple
areas of research are included here. While we accompany all definitions with some
context, we cannot give a complete introduction to each of the research areas that
we draw definitions from.

2.1.1 Binary Representations
In this thesis, as in much of the computer science literature, all sets are countable.
That means that for every set 𝐴, there exists a surjective function mapping the
natural numbers, N = {1, 2, 3, …} onto 𝐴. The elements of a countable set can be
represented by finite strings of characters from a finite alphabet. We shall work
solely with the binary alphabet 𝟚 = {0, 1}, but all results can be generalized
to more elaborate alphabets. The finite, nonempty binary strings, 𝟚+, can be
enumerated in order of increasing length as 0, 1, 00, 01, 10, …. Thus, there is a
bijective correspondence between N and 𝟚+. Taking a cue from common practice in
programming languages, we treat the two directions of this bijective correspondence
as data type conversions. A string can serve “as an integer”, that is “as a
natural number”, and a natural number can serve “as a string”. These data type
conversions are depicted in Table 2.1. In this thesis, we have tried to make all
conversions explicit.

We have chosen to forego any consideration of the empty string and, in this
thesis, we do not consider 0 to be a natural number. Of course, these choices
are related to each other and make that the set of possible lengths of our strings
equal the set of natural numbers. Our choices ensure that any statement about
a natural number that is true “up to an additive constant” is also true “up to a
multiplicative constant”. Let us give an example. If, given two natural numbers
𝑥 and 𝑦, there is a constant 𝑐 such that we have 𝑥 ≤ 𝑦 + 𝑐, then there is also a
constant 𝑐′ such that we have 𝑥 ≤ 𝑐 ⋅ 𝑦. The fact that this need not be the case if
𝑥 was equal to 0 makes that 0 is often a special case that needs special treatment.
By leaving out 0 from the start, we are not bothered by these pathological cases.

The elements of 𝟚 are known as bits. The number of bits in a binary string 𝑥 is
called the length of 𝑥 and denoted by |𝑥|. We denote the set of all strings of some
length 𝑛 by 𝟚𝑛. Observe that for any two natural numbers 𝑚 and 𝑛, we have

𝑚 ≤ 𝑛 ⟹ |asStr(𝑚)| ≤ |asStr(𝑛)|.

Furthermore, we implicitly take all our logarithms to base 2. This ensures that
log 𝑛 is within one bit of |asStr(𝑛)|. By not being pedantic about this difference
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N 𝟚+

1 0
2 1
3 00
4 01
5 10
6 11
7 000
8 001
⋮ ⋮

asStr

asInt

Table 2.1: A bijective correspondence between the natural numbers and the finite,
nonempty binary strings. The two directions of this correspondence are denoted
by asStr and asInt. Note that the number 0 and the empty string are never used
in this thesis.

of at most one bit, we can say that 𝑛 elements can be distinguished from one
another using log 𝑛 bits.

Two strings 𝑥 and 𝑦 can be concatenated to form a new string. This concate-
nation of 𝑥 and 𝑦 is written simply as 𝑥𝑦. Note that we have |𝑥𝑦| = |𝑥| + |𝑦|. The
𝑛-fold concatenation of 𝑥 with itself is written as 𝑥𝑛. In particular, we have

0𝑛 = 000 ⋯ 0⏟
𝑛 copies of 0

.

Given the concatenation of two strings, we cannot recover the two original
strings. Indeed, an equation like 010111001 = 𝑥𝑦 has no unique solution. We
do not know what initial segment, or prefix, of 010111001 corresponds to 𝑥. If
we want to be able to recover the components in a composite string, we cannot
simply concatenate them.

2.1.1. Definition. Let Ω be any set. An injective function 𝑓∶ Ω → 𝟚+ is a
prefix-free encoding of Ω if there are no two distinct elements 𝜔1 and 𝜔2 of Ω such
that 𝑓(𝜔1) is a prefix of 𝑓(𝜔2).

With a suitable application of a prefix-free encoding of binary strings, it is
possible to uniquely decompose a composite string [36]. Perhaps the simplest
prefix-free encoding of binary strings is the unary encoding, where the position of
the first 1 determines the encoded string. The unary encoding of a binary string 𝑥
is

unary(𝑥) = 0asInt(𝑥)−11.
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Note that the unary encodings of any two distinct strings are different and that
the unary encoding of a string always ends at the first occurrence of ‘1’. Therefore,
unary encoding is indeed a prefix-free encoding of 𝟚+. Contrary to the situation we
were in with direct concatenation, the equation 010111001 = unary(𝑥)𝑦 does have
a unique solution. Namely, it has the solution 𝑥 = asStr(2) = 1 and 𝑦 = 0111001.

Unary encoding comes with a substantial blow-up in the length of a string.
For any string 𝑥, we have |unary(𝑥)| = asInt(𝑥), which is exponential in |𝑥|. More
frugal prefix-free encodings were developed by Elias [48]. The two most famous of
these are known as Elias gamma coding and Elias delta coding [see also 133]. In
Elias gamma coding, a string is prefixed by a unary encoding of its length,

Elias𝛾(𝑥) = unary(asStr(|𝑥|))𝑥 = 0|𝑥|−11𝑥.

Thus, the position of the first occurrence of ‘1’ tells us how many of the following
bits make up the encoded string 𝑥. So, the equation 010111001 = Elias𝛾(𝑥)𝑦 has
the unique solution 𝑥 = 01 and 𝑦 = 11001.

With Elias gamma coding, we have |Elias𝛾(𝑥)| = 2 ⋅ |𝑥|. The same trick
underlying Elias gamma coding can be used to bring the length of the encoding
of 𝑥 even closer to |𝑥|. In Elias delta coding, we replace the unary encoding of
the length of 𝑥 by an Elias gamma encoding of that length,

Elias𝛿(𝑥) = Elias𝛾(asStr(|𝑥|))𝑥 = 0|asStr(|𝑥|)|−11 asStr(|𝑥|)𝑥.

For a string 𝑥 of length 𝑛, this gives us |Elias𝛿(𝑥)| = 2 ⋅ |asStr(𝑛)| + 𝑛, which is
approximately 𝑛 + 2 ⋅ log 𝑛.

For our purposes, Elias delta coding is sufficiently economical. We shall use it
whenever we need to pair strings.

2.1.2. Definition. A pairing function that combines two finite, nonempty binary
strings 𝑥 and 𝑦 into a single string is given by

⟨𝑥, 𝑦⟩ = Elias𝛿(𝑦)𝑥.

Note that this pairing function reverses the order in which the components are
presented. There is no fundamental reason for this technical detail other than that
it will be convenient in Example 3.4.9 and in Section 3.4 in general. Returning
to our example string one final time, we observe 010111001 = Elias𝛿(1100)1 and
hence 010111001 = ⟨1, 1100⟩.

Our pairing function does not use any prefix-free encoding for its first compo-
nent. This has the effect that our pairing function is not a prefix-free encoding
of 𝟚+× 𝟚+. At the same time, it results in |⟨𝑥, 𝑦⟩| being approximately equal to
|𝑥| + |𝑦| + 2 ⋅ log |𝑦|.

Prefix-free encodings have an interesting relation to probability theory. The
length of the prefix-free encoding of a string can be linked to the probability of
that string in some probability mass function [36, 100].
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2.1.3. Theorem (Kraft inequality). If 𝑓 is a prefix-free encoding of a set Ω, then
we have

∑
𝜔∈Ω

2−|𝑓(𝜔)| ≤ 1.

Conversely, if there is a function ℓ ∶ Ω → N that satisfies ∑𝜔∈Ω 2−ℓ(𝜔) ≤ 1, then
there is a prefix-free encoding 𝑓 of Ω such that, for all 𝜔, we have |𝑓(𝜔)| = ℓ(𝜔).

Thus, the quantity 2−|𝑓(𝜔)| acts like a probability of 𝜔. For technical reasons, the
probability mass function is allowed to sum to less than 1 in the Kraft inequality.
This can be fixed by either normalization, or by introducing a “slack object” that
takes the remaining probability.

2.1.2 Algorithmic Complexity and Computability Theory
We take a pragmatic approach to computability theory and do not consider
physical computers to be approximations of Turing machines. Instead, we consider
Turing machines to be asymptotically correct mathematical models of physical
computers. Our model of effective computation hence takes the form of “reasonable”
pseudocode. That is, a programming language that is more or less obviously Turing
complete, yet not stronger than that. A more traditional, but up-to-date textbook
on Turing computability is the textbook by Soare [140].

With pseudocode, we can specify an algorithm, which represent the workings
of a particular Turing machine [see also 131]. We shall not concern ourselves with
the details of our pseudocode-language. Instead, we accept that it is possible to
specify such a language in sufficient detail, and assume that we have an effective
prefix-free encoding of algorithms. We shall refer to an encoded algorithm as a
procedure. Note that a procedure 𝜙 has a length |𝜙|, which is measured in bits.

As algorithms may take input and produce output, they implement partial
functions. The functions they implement may be partial functions, because, for
a given input, an algorithm may keep running forever and never settle on any
output. When an algorithm terminates on all possible inputs and the associated
function 𝑓 is hence a total function, we say that 𝑓 is computable.

Algorithmic complexity theory looks at procedures that generate a given
string. The most widely used measure of algorithmic complexity is Kolmogorov
complexity [36, 100, 46].

2.1.4. Definition. The Kolmogorov complexity of a string 𝑥 is

K(𝑥) = min{|𝜙| | procedure 𝜙 produces 𝑥 when not provided with any input}.

The precise value of the Kolmogorov complexity of a string depends on the
prefix-free encoding of algorithms that is used. However, Kolmogorov complexity
enjoys an invariance theorem, stating that this dependency is limited to an additive
constant [see, for instance 100]. In order not to blur the main ideas in this thesis,
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we shall not write “up to an additive constant” after every (in)equality involving
Kolmogorov complexity. This is left implicit.

Complexity theory, on the other hand, looks at procedures that output a single
bit, either 1 or 0. If a procedure outputs a single bit and does so on all possible
input strings, it is said to be a decision procedure. A decision procedure 𝜙 decides
on membership in the set

𝐴 = {𝑥 | 𝜙(𝑥) = 1}.

In turn, the set 𝐴 is said to be decidable. If the procedure 𝜙 fails to halt on some
inputs, the set 𝐴 = {𝑥 | 𝜙(𝑥) = 1} is said to be semidecidable. The semidecidable
sets are more commonly known as the “recursively enumerable” sets. However,
we prefer to use the word “recursive” only for the algorithmic design pattern by
that name. We do note that the semidecidable sets can equivalently be defined as
those sets of which the members can be enumerated effectively.

The class of semidecidable sets contains sets that are not in the class of
decidable sets. Moreover, not all sets are semidecidable. In fact, a set can be
highly dissimilar to all semidecidable sets at once.

2.1.5. Definition. A set 𝐴 is immune for a class of sets C if no infinitely large
member of C is a subset of 𝐴.

A set 𝐴 is bi-immune for a class of sets C if both 𝐴 and its complement are
immune for C .

If no specific mention of a class of sets C is made, the class implicated is that
of the semidecidable sets [131, 115].

Immune sets where introduced to computability theory by Post [123]. The
application to arbitrary classes of sets goes back to Flajolet and Steyaert [55].

If the class C in Definition 2.1.5 has infinitely many infinitely large members,
an immune set 𝐴 satisfies infinitely many requirements. Namely, for every infinitely
large set 𝐶 in C , the set 𝐴 is so that 𝐶∖𝐴 is nonempty. In many cases, constructing
a set that meets infinitely many of such requirements is not straightforward. It may
be complicated by the fact that satisfying one requirement may violate satisfying
a requirement that was taken care of earlier. By imposing a priority ordering on
the requirements and always choosing to satisfy the requirement with the highest
priority, immune sets can be constructed. This construction method is known as
the finite injury priority method [for details, see 46, Section 2.11].

By a slight stretch of notation, we may use a set as a function. The function
associated with a set 𝐴 is defined as

𝐴(𝑥) = {
1 if 𝑥 ∈ 𝐴,
0 otherwise.

Thus, a set is decidable when the function associated to it is computable. Moreover,
a procedure that implements the function associated with a set 𝐴 is a decision
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procedure for 𝐴. In case a set 𝐴 is not decidable, we can investigate what would
happen if it were decidable, by supposing the function associated with 𝐴 is
computable. In particular, we consider the sets that “become decidable” when
this function is computable [131, 115, 140].

2.1.6. Definition. A set 𝐵 is Turing reducible to a set 𝐴 if there is an algorithm
that

• is allowed to evaluate the function associated with 𝐴, and

• decides on membership in 𝐵.

Such an algorithm is known as a Turing reduction. The set 𝐴 is known as an
oracle and the evaluations of the function associated with 𝐴 are known as queries.

The behavior of a Turing reduction may be heavily reliant on the oracle.
Specifically, at any point in its execution, the outcomes of the queries it has
made so far may influence the query it makes next. If a Turing reduction is
allowed to have such a dependence on the outcomes of queries, it is said to be
adaptive. Sometimes, it is desirable to consider reducibility where the queries are
independent of the oracle.

2.1.7. Definition. A set 𝐵 is truth-table reducible to a set 𝐴 if there is a Turing
reduction 𝜙 from 𝐵 to 𝐴 such that

• the queries made by 𝜙 depend only on its input and not on the oracle, and

• 𝜙 terminates on all inputs, regardless of the oracle.

Such a Turing reduction is known as a truth-table reduction.

For a given input to a truth-table reduction, we can gather the queries that
would be made. The possible outcomes of these queries can be assembled as rows
in a table. For each row in this table, we can compute the decision on membership
that the truth-table reduction would make. For this reason, reductions of this
kind are called truth-table reductions.

The power of a reduction can be restricted further. A truth-table reduction
that always makes precisely one query and outputs the unmodified result of that
query is known as a many–one reduction. If there is a many–one reduction from a
set 𝐵 to a set 𝐴, then 𝐵 is said to be many–one reducible to 𝐴.

2.1.3 Proof Theory
The Turing machine was developed as a model for computation as it can conceivably
be performed by humans [144, Section 9]. In that respect, it is not surprising that
computability theory has close ties to proof theory. After all, proof theory should



40 Chapter 2. Preliminaries

seek to model what humans could ultimately achieve in terms of reasoning [90,
Section 37]. Accomplishments in human computation and human reasoning are
intuitively subject to the same intellectual limitations.

The link between computability theory and proof theory has been formalized
into what is known as the Curry–Howard correspondence, or the formulas-as-types
isomorphism [143, Section 2.5]. This isomorphism draws a parallel between proofs
and algorithms. Just like we have freedom in the choice of a pseudocode-language,
there is freedom in the choice of a “proof language”, or proof calculus [90, 143].
We did not concern ourselves with the details of our pseudocode-language and
neither shall we concern ourselves with the details of proof calculi. However, at
the heart of every proof calculus lies a formal (deductive) system [90], and we
shall briefly go over what is involved with such a system.

Typically, expositions of formal systems start with the definition of a formal
language. A formal language is a set of finite strings of symbols from some finite
alphabet. The strings in a formal language are called the well-formed words, or
well-formed formulas. In this thesis, we are only concerned with formal systems
of which the formal language is decidable.

2.1.8. Example. Suppose we want our formal system to deal with tree structures.
We then need a way to represent such structures. One way to do so is by using
the symbols ‘(’ and ‘)’ and ‘,’ and ‘∗’. Using these symbols, we can serialize a
nested tree structure, with ‘∗’ representing a leaf in the tree. The structure of the
tree in Figure 1.7a would thus be represented by the string “((∗, ∗), ∗, ∗)”.

Not all strings consisting of our symbols represent a tree structure. For instance,
the string “()∗” has no meaningful interpretation and is therefore not well-formed.
The set of strings that do represent tree structures is a decidable subset of the set
of all strings of our symbols.

The goal of a formal system is to single out a subset of the well-formed
formulas that is of some special interest. For instance, if the formal language is
that of propositional logic, we may want to characterize the tautologies. To this
end, a formal system contains a way of deriving well-formed formulas from other
well-formed formulas by means of rules of inference. The idea here, is that the
subset of interest is closed under these rules of inference. The rules of inference
can be thought of as a set of procedures, where each procedure takes a number
of well-formed formulas and produces a new one. The number of inputs is fixed
for each procedure and if the procedure takes no inputs, then it is said to be an
axiom. Thus, an axiom is a procedure that produces a well-formed formula. For
the purposes of this thesis, we restrict our attention to formal systems where the
rules of inference are represented by a decidable set of procedures.

2.1.9. Example (continued). Suppose that, in our system of tree structures, we
want to derive the nonempty binary trees. This can be done with one axiom and
one other rule of inference. The axiom is a procedure that takes no inputs and
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outputs the minimal binary tree, the tree with a root node and no branches: “∗”.
The other rule of inference is a procedure that transforms two tree structures,
𝑥 and 𝑦, into the tree structure “(𝑥, 𝑦)”. Using these two rules of inference, all
binary trees can be derived, and nothing else. For example, it is impossible to
generate our earlier example, “((∗, ∗), ∗, ∗)” using only these two rules, because it
does not represent a binary tree.

A proof, or deduction, in a formal system establishes that some given well-
formed formula 𝑥 is part of the subset of special interest. It does so by specifying a
sequence of rules of inference that, together, output 𝑥. Thus, the proof constructs 𝑥
from the axioms of the formal system.

In this thesis, we are only ever interested in the well-formed formulas of a
formal language. This is most notable in how we approach decision problems. For
example, when we model a graph-theoretic decision problem as a set of graphs,
we expect the input to a decision procedure for the set to be a graph. We pay no
attention to what would happen if the input does not represent a graph. In fact,
we shall routinely assume that there is some computable bijection between the
well-formed formulas and the binary strings, 𝟚+. A decision procedure for a graph
problem can then be provided with a binary string as input, and we can act as
if it was given a graph. To hide this conceptual difference between well-formed
formulas and binary strings, we shall refer to the input of a decision procedure as
a problem instance. Put differently, in the context of a decision problem modeled
as a set, an instance is a syntactically correct specification of a potential member
of the set. Where the details of the encoding of well-formed formulas as binary
strings matter, we shall be explicit about the encoding we use.

2.1.4 Computational Complexity Theory
Our choice of using pseudocode-algorithms as a model of computation does not
mean that our results are limited to that particular model of computation. Many
other models of computation identify the exact same class of partial functions as
computable. The Church–Turing thesis asserts that this class includes effective
computation by an idealized human, in some intuitive, informal, sense [49, 68].
However, the Church–Turing thesis does not imply that all our results extend to
all models of computation that are equivalent to the Turing machine.

We have mentioned that the precise value of the Kolmogorov complexity of
a string depends on the prefix-free encoding of algorithms that is used. This
dependence is limited to an additive constant by the existence of a universal pro-
cedure that takes a procedure 𝜙 and string 𝑥 as inputs, and outputs 𝜙(𝑥) [100, 68].
Likewise, the dependence of Kolmogorov complexity on the model of computation
is limited to an additive constant, as long as the models can simulate each other.
This idea is made precise by Rogers [131] in the form of acceptable numberings of
partial computable functions [see also 140]: When a model of computation corre-
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sponds to an acceptable numbering of functions in our reference model, its notion
of Kolmogorov complexity equals ours. Equivalently, all models of computation
that are equivalent to the Turing machine and have a universal procedure share a
notion of Kolmogorov complexity.

There is no canonical representation, or, for that matter, formal definition, of
a computational procedure by an idealized human. Therefore, the Church–Turing
thesis does not entail that Kolmogorov complexity coincides with some intuitive
human understanding of algorithmic complexity. Additionally, it does not entail
that in different models, the same functions can be computed in the presence of a
given bound on some computational resource. Indeed, an analysis of the resource
requirements for computing a given function need not transcend the model of
computation that is used.

The main computational resource we look at in this thesis is the number of
steps taken by an algorithm, referred to as computation time. To more cleanly
express the asymptotic behavior of computation-time usage, computation time
is commonly measured as a function of the length of input instances. That is,
the computation time of a procedure 𝜙 is a function 𝑡 such that, for all 𝑛, the
maximum number of steps taken by 𝜙 on any input of length 𝑛 is 𝑡(𝑛). Typically,
it is not so much the exact computation time of a procedure we are interested
in, but rather an upper bound on the computation time. When we say that a
procedure 𝜙 runs in time 𝑡, we mean that, for all 𝑛, the number of steps taken
by 𝜙 on any input of length 𝑛 is at most 𝑡(𝑛). A noteworthy class of functions
in this regard are the time-constructible functions. These are the functions 𝑡 for
which there is a procedure 𝜙 and a constant 𝑐 such that, for all strings 𝑥,

• 𝜙 outputs the string representation of 𝑡(asInt(𝑥)) on input 𝑥, and

• 𝜙 takes at most 𝑐 ⋅ 𝑡(|𝑥|) steps on input 𝑥.

Most commonly used functions, among which all polynomials of degree at least 1,
are time-constructible [13].

Many models of computation that have been studied can simulate each other
with only polynomially-bounded overhead in computation time [49]. In fact, it has
been conjectured that, for some definition of “reasonable”, all reasonable machines
can simulate each other with polynomially-bounded overhead. This extension
to the Church–Turing thesis is, among other names, known as the sequential
computation thesis. The name reflects the fact that the thesis is found to exclude
some parallel models of computation [120, 49]. We shall not be concerned with
whether or not the sequential computation thesis is true in general, but we shall
assume a special case. As argued by Turing [144], the idealized human computer
may be thought of as a sequential model of computation. We accept these
arguments to the extent that the sequential computation thesis can be applied to
the idealized human computer. In particular, we assume that the idealized human
computer and our model of computation can indeed simulate each other with
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polynomially-bounded overhead. Like the Church–Turing thesis, this statement is
necessarily informal. Specifically, there is no formal definition of what a single
computational step of a human computer would be.

The sequential computation thesis is especially relevant in light of yet another
thesis on the computational abilities of the idealized human computer. Around
1965, Cobham and Edmonds argued that the functions that should be called
efficiently computable are those that can be computed in polynomial time [see
also 68]. Thanks to the sequential computation thesis, efficient computability is a
somewhat robust notion. We may assume that what is efficiently computable in
our model of computation is also efficiently computable for the idealized human
computer and vice versa.

The class of sets that have efficiently computable decision procedures in our
model of computation is denoted by P. For other models of computation, the class
of sets that have efficiently computable decision procedures may be different from P.
We shall mention two alternative models of computation and their associated
classes of efficiently decidable sets. These classes shall also be characterized in
our model of computation. For more precise definitions than those provided here,
we refer to the textbooks by Arora and Barak [13] and Goldreich [68].

Our model of computation is deterministic, since at any point in the execution
of an algorithm, it is known what the next operation will be. We can relax this
property and allow an algorithm to proceed in a nondeterministic fashion. For
such a model of computation it is not immediately clear what would constitute a
decision procedure. Suppose 𝜙 is a nondeterministic algorithm that terminates on
all inputs, regardless of the nondeterministic choices in its execution. We say that
𝜙 decides on membership in a set 𝐴 if an instance 𝑥 is in 𝐴 precisely when there
is a possible execution of 𝜙 on input 𝑥 that outputs 1. If such a nondeterministic
decision procedure runs in polynomial time, it is efficiently computable in the
nondeterministic model of computation. The class of sets that have efficiently
computable nondeterministic decision procedures is denoted by NP.

Our model of computation is uniform, meaning that for any procedure the
same algorithm is used for all inputs. A model that relaxes this property is that
where computation is represented by Boolean circuits, with a different circuit for
each input length [see 13, 68]. An efficient decision procedure in this model is
one where the size of the circuits can be bounded polynomially as a function of
the input length. The corresponding class of sets that have efficient nonuniform
decision procedures is denoted by P/poly.

The class P/poly is not countable and consequently it is different from P. We
remark that, more generally, there cannot be a prefix-free encoding of nonuniform
circuits because there are uncountably many of them. Whether or not NP is
different from P is a major unsolved problem in computer science.

Perhaps surprisingly, the two classes, NP and P/poly, can be characterized in
our model of computation in similar ways. We shall state these as lemmas, but
refer to the textbooks for proofs [for NP: 13, Section 2.1, and 68, Section 2.1.5]
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[for P/poly: 13, Section 6.3, and 68, Section 3.1].

2.1.10. Lemma. A set 𝐴 is in NP if there is a polynomial 𝑝 and a two-argument
procedure 𝜙 that runs in polynomial time such that, for all 𝑛, we have

∀𝑥 ∈ 𝟚𝑛 ∶ (𝑥 ∈ 𝐴 ⟺ ∃𝑦 ∈ 𝟚𝑝(𝑛) ∶ 𝜙(𝑥, 𝑦) = 1).

The variable 𝑦 in this characterization is known as a certificate for membership
of 𝑥 in 𝐴.

2.1.11. Lemma. A set 𝐴 is in P/poly if there is a polynomial 𝑝 and a two-argument
procedure 𝜙 that runs in polynomial time such that, for all 𝑛, we have

∃𝑦 ∈ 𝟚𝑝(𝑛) ∶ ∀𝑥 ∈ 𝟚𝑛 ∶ (𝑥 ∈ 𝐴 ⟺ 𝜙(𝑥, 𝑦) = 1).

In this case, the variable 𝑦 is known as advice for instances of length 𝑛. Observe
that the only difference between the characterization of NP and that of P/poly is
the position of the existential quantification over 𝑦.

From the previous two lemmas, it follows that the classes NP and P/poly are
closed under many–one reductions that are computable in polynomial time: If
there is a polynomial-time computable many–one reduction from a set 𝐵 to a
set 𝐴 and 𝐴 is in either of these classes, then 𝐵 is as well. Interestingly, there are
sets in NP to which any other set in NP is polynomial-time many–one reducible.
Such sets are said to be complete for NP. Recall that there are uncountably many
sets in P/poly. As there are only countably many reductions, this implies that
there are no complete sets for P/poly with respect to polynomial-time many–one
reducibility.

Efficient computation is not just about deciding membership in sets. Keeping
with decision problems for a moment, we could consider a function that outputs
the index of an instance in a listing of members of a set.

2.1.12. Definition. The rank of a string 𝑥 relative to a set 𝐴, denoted by
rank(𝑥 ∶ 𝐴), is the number of elements in the set

{𝑦 ∈ 𝐴 | asInt(𝑦) ≤ asInt(𝑥)}.

When there is a polynomial 𝑝 such that, for all 𝑥, we have rank(𝑥 ∶ 𝐴) ≤ 𝑝(|𝑥|),
then 𝐴 is said to be sparse. A set in relation to which the rank-function is
computable in polynomial time is called p-rankable.

Thus, the rank counts the number of members of 𝐴 that are less than or equal
to a given element when converted to natural numbers. If the given element is
not a member of 𝐴, the rank tells us how many members of 𝐴 are less than the
given element when converted to natural numbers.
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Suppose a set 𝐴 is p-rankable and let 𝑥1, 𝑥2, 𝑥3, … be a listing of the members
of 𝐴 such that, for all 𝑖, the rank of 𝑥𝑖 relative to 𝐴 is 𝑖. We note that the
inverse of the ranking function relative to 𝐴 is computable in a time bounded by
a polynomial of the length of the resulting instance. More precisely, there is a
procedure 𝜙 and a polynomial 𝑝 such that, for all 𝑖, we have

• 𝜙(asStr(𝑖)) = 𝑥𝑖, and

• the computation of 𝜙(asStr(𝑖)) terminates within 𝑝(|𝑥𝑖|) steps.

One way of constructing such a procedure 𝜙 is by using the rank-function in a
binary search [79, Theorem 6.1].

The p-rankable sets were originally known as strongly P-rankable [79, 67].
Here, the qualifier “strongly” is used to stress that the rank relative to a set 𝐴 is
defined not only for members of 𝐴, but also for nonmembers of 𝐴. The power of a
procedure that computes the rank of an instance relative to a set 𝐴 goes beyond
that of a decision procedure for 𝐴. Indeed, the p-rankable sets form a subset of P,
because an instance 𝑥 is a member of 𝐴 precisely when we have

rank(𝑥 ∶ 𝐴) ≠ rank(asStr(asInt(𝑥) − 1) ∶ 𝐴).

Beyond efficient computability of variations of decision procedures, efficiently
computable bijections are of interest too. Suppose that 𝑓 is a bijection from 𝟚+

to itself that can be computed in polynomial time. Then, for every set 𝐴 ∈ P,
the set 𝑓(𝐴) = {𝑓(𝑥) | 𝑥 ∈ 𝐴} is also in P. Observe that 𝑓 maps members
of 𝐴 to members of 𝑓(𝐴), and likewise for nonmembers. In general, when a
bijection keeps some kind of structure intact, the bijection is also referred to as an
isomorphism. Furthermore, we say that sets that are related by an isomorphism,
such as 𝐴 and 𝑓(𝐴) in our example, are isomorphic. The Berman–Hartmanis
conjecture [19] posits that all sets that are complete for NP are isomorphic to each
other. This conjecture is believed to be untrue. It is at odds with the assumed
existence of certain polynomial-time computable functions without a polynomial-
time computable inverse [156, 99]. However, the two are not mutually exclusive
and some functions that are not invertible may exist even if the conjecture is
true [76, 5].

A class of sets that will appear in examples throughout this thesis is the class
of sets 𝐴 that are isomorphic to 𝐴 × 𝟚+.

2.1.13. Definition. A set 𝐴 is a p-cylinder if there exists an isomorphism
𝑔∶ 𝟚+ → 𝟚+× 𝟚+ such that

• 𝑔 and its inverse 𝑔−1 are computable in polynomial time, and

• for all 𝑥 we have 𝑥 ∈ 𝐴 ⟺ 𝑔(𝑥) ∈ 𝐴 × 𝟚+.
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2.1.14. Example. The entire set 𝟚+ and the empty set are trivial examples of
p-cylinders. For a somewhat less trivial example, consider the function 𝑓 on
natural numbers defined as

𝑓(𝑛) = max{𝑚 | 𝑛 is divisible by 2𝑚−1}.

Observe that, for all 𝑛, we have 𝑓(𝑛) ≤ 𝑛, with equality only for 𝑛 = 1 and 𝑛 = 2.
Thus, repeated application of 𝑓 leads to either 1 or 2. Denote the value that we
end up with when starting from a number 𝑛 by 𝑓∗(𝑛) and consider the set

𝐴 = {asStr(𝑛) | 𝑓∗(𝑛) = 1}.

We claim that this set is a p-cylinder. To see why, first observe that, for all 𝑛,

𝑛
2𝑓(𝑛)−1

is odd. This inspires an isomorphism 𝑔∶ 𝟚+ → 𝟚+ × 𝟚+ for which the inverse is
given by

𝑔−1(asStr(𝑚), asStr(𝑛)) = asStr (2𝑚−1 ⋅ (2𝑛 − 1)) .

For completeness, we note that 𝑔 is thus defined as

𝑔(asStr(𝑛)) = (asStr (𝑓(𝑛)) , asStr (𝑛/2𝑓(𝑛)−1 + 1
2

)) .

All these expressions can be evaluated in polynomial time. Furthermore, 𝑓 and 𝑔
were constructed so that the second criterion in Definition 2.1.13 is met. Hence,
𝐴 is a p-cylinder.

The set 𝐴 in the above example is a member of P, but there are also p-cylinders
outside of P [6]. Regardless of whether or not P equals NP, many NP-complete
sets are known to be p-cylinders. As a consequence of the Berman–Hartmanis
conjecture, it is thus conjectured that all NP-complete sets are p-cylinders [see
also 80].

The sequential computation thesis gives certain classes of decision problems
some independence of the chosen model of computation. Sometimes, we do not care
for this independence and choose to work directly with properties of procedures
that are specific to our model of computation. One such property we may look
at is the precise computation time used by an algorithm. As mentioned before,
this computation time, or running time, is commonly measured as a function of
the length of input instances. For a given function 𝑓, we can consider the sets
that have a decision procedure of which the running time is bounded from above
by 𝑓. We say that 𝑓 is an upper bound on the running time of a procedure 𝜙 if,
for all 𝑛, the running time of 𝜙 on any input of length 𝑛 is at most 𝑓(𝑛).
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We shall be interested primarily in the behavior of running time bounds
up to a multiplicative constant. Thus, for a function 𝑓, we look at sets that
have a decision procedure with a running time that is upper bounded by 𝑓
up to a multiplicative constant. The class of such sets we shall denote by 𝑓
by TIME(𝑓(𝑛)). This means the following for a set 𝐴 that is in TIME(𝑓(𝑛)):
There is a decision procedure 𝜙 for 𝐴 and a constant 𝑐 such that, for all 𝑛, the
running time of 𝜙 on any input of length 𝑛 is at most 𝑐 ⋅ 𝑓(𝑛).

In terms of these classes of sets, we have

P = ⋃
𝑐∈N

TIME(𝑛𝑐).

Note that in the expression inside the parentheses, we always use 𝑛 as a variable
representing the length of instances. For convenience, we shall often assume that
all coefficients and exponents in polynomials are natural numbers. The advantage
of this assumption is that it makes the set of polynomials countable and thus easy
to work with.

2.1.5 Order Theory
Comparing objects is an essential part of most qualitative analyses. We would like
to know whether one thing is perhaps bigger, faster, or better than another. When
our objects are natural numbers and the order of interest is the usual less-than-or-
equal-to relation, ≤, comparing objects is straightforward. In this order, any two
objects can be compared. Moreover, the order is a linear order [38], because it
also is

antisymmetric meaning that if objects 𝑎 and 𝑏 satisfy both 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎,
then they are equal, and

transitive meaning that if objects 𝑎, 𝑏 and 𝑐 satisfy both 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then
they also satisfy 𝑎 ≤ 𝑐.

Not all classes of objects have a meaningful linear order. This is the case,
for instance, with classes of functions. We could try to compare two functions
based on whether one is eventually less than or equal to another. To keep things
simple, we assume our functions map natural numbers to natural numbers. Two
properties of the natural numbers in particular shall come in handy. They are all
positive, and every set of natural numbers contains an element that is less than
or equal to all others in the set, a so-called least element. We could say that a
function 𝑓 is eventually less than or equal to a function 𝑔 if we have

lim
𝑛→∞

𝑓(𝑛) ≤ lim
𝑛→∞

𝑔(𝑛).

An order defined this way will not be antisymmetric, but, for now, that is not
a problem. What is a problem, however, is that not all functions have a limit
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at infinity. For instance, the limit of a function that oscillates is not defined. In
response to this, we could turn to the limit inferior, which, for a function 𝑓∶ N → N,
can be defined as

lim
𝑛→∞

min{𝑓(𝑚) | 𝑚 ≥ 𝑛}.

Regardless of the specifics of 𝑓, the minimum, min{𝑓(𝑚) | 𝑚 ≥ 𝑛}, is non-
decreasing as a function of 𝑛. Thus, the limit inferior is defined for oscillating
functions too. Still, comparing functions based on their limit inferior may not be
satisfactory.

A function like the identity function, that maps every number to itself, does
not have a finite limit or limit inferior. We could choose to simply assign infinity
to the limit of such functions, but we would then lose all information about the
asymptotic behavior of functions. A function that shoots to infinity quickly and
one that does so very slowly would have the same limit and limit inferior.

If we want to take into account the asymptotic behavior of functions, one way
to compare two functions is by looking at their ratio. We say that a function 𝑓
grows much slower than a function 𝑔 when we have

lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 0.

When 𝑓 grows much slower than 𝑔, we write 𝑓 ∈ o(𝑔). In line with this notation,
o(𝑔) is the class of all functions that grow much slower than 𝑔.

Note that we do not have 𝑓 ∈ o(𝑓) for any function 𝑓. Indeed, no function
grows much slower than itself. A weaker notion is sometimes required, where we
only want to express that one function does not grow faster than another. For
this, we make use of a dual to the limit inferior, the limit superior and say that a
function 𝑓 does not grow faster than a function 𝑔 when we have

lim
𝑛→∞

max {𝑓(𝑚)
𝑔(𝑚)

∣ 𝑚 ≥ 𝑛} < ∞.

When 𝑓 does not grow faster than 𝑔, we write 𝑓 ∈ 𝒪(𝑔), where 𝒪(𝑔) is thus the
class of all functions that do not grow faster than 𝑔. As no function 𝑓 grows faster
than itself, we have 𝑓 ∈ 𝒪(𝑓).

For a function 𝑓 and a constant 𝑐, we denote the function that maps a number 𝑛
to 𝑐 + 𝑓(𝑛) by 𝑐 + 𝑓, and the function that maps 𝑛 to 𝑐 ⋅ 𝑓(𝑛) by 𝑐 ⋅ 𝑓. Let 𝑓 and 𝑔
be two functions and 𝑐 a constant. Observe that if we have 𝑓 ∈ 𝒪(𝑔), then we also
have 𝑐 + 𝑓 ∈ 𝒪(𝑔) and 𝑐 ⋅ 𝑓 ∈ 𝒪(𝑔). Likewise, if we have 𝑓 ∈ o(𝑔), then we also
have 𝑐 ⋅ 𝑓 ∈ o(𝑔). The additive case, 𝑐 +𝑓 ∈ o(𝑔), is also true, but only because we
have excluded 0 from N, which makes it impossible for 𝑔 to converge to 0. Note
that the argument to 𝒪 and o is a function and not an expression containing a free
variable. However, sometimes we feel it is clearer to write an expression instead.
Whenever we do so, we shall use 𝑛 as a free variable. Thus, 𝒪(𝑓) is the same as
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𝒪(𝑓(𝑛)). The latter notation is somewhat unfortunate, as 𝑓(𝑛) is suggestive of a
particular function value, in which case the latter class would equal 𝒪(1). Yet,
the notation 𝒪(𝑓(𝑛)) is more in line with the notation used for the class of sets
with a running time bounded by a function in 𝒪(𝑓), namely TIME(𝑓(𝑛)).

The does-not-grow-faster-than relation is not antisymmetric. For instance,
the functions given by 𝑓(𝑛) = 𝑛 and 𝑔(𝑛) = 2 ⋅ 𝑛 are unequal, yet we have both
𝑓 ∈ 𝒪(𝑔) and 𝑔 ∈ 𝒪(𝑓). At the same time, the order is transitive. In such
cases, it can be beneficial to look at equivalence classes instead. For the does-
not-grow-faster-than relation, two functions 𝑓 and 𝑔 are in the same equivalence
class whenever we have both 𝑓 ∈ 𝒪(𝑔) and 𝑔 ∈ 𝒪(𝑓). The order extends to the
level of such equivalence classes, and on these equivalence classes the order is
antisymmetric, transitive, and also

reflexive meaning that every object 𝑎 satisfies 𝑎 ≤ 𝑎.

An order that is reflexive, antisymmetric and transitive is called a partial order.
Another example of a partial order, besides the equivalence classes of functions

ordered by growth rate we have seen above, is provided by families of sets. The
set inclusion order, ⊆, is a partial order on any family of sets. Consider the family
of sets

{1}, {3}, {1, 2}, {1, 2, 3}, {1, 3, 4}, (2.1)

for which the inclusion order is depicted in Figure 2.1. This family consists of
subsets of {1, 2, 3, 4}. While it does not include all subsets of {1, 2, 3, 4}, any
subset can be covered by sets from this family.

2.1.15. Definition. A family of sets 𝜂 is a cover of a set 𝐴 if it satisfies

𝐴 ⊆ ⋃
𝑆∈𝜂

𝑆.

The family of sets (2.1) has no least element, nor does it have a greatest
element, which would in this case be a set that contains all others of the family.
It does, however, contain two maximal elements, sets that are not contained in
any set of the family except themselves. Families of sets where every two sets are
contained in another are of particular interest to us [see also 1, 38].

{1}

{1, 2}

{1, 2, 3}

{3}

{1, 3, 4}

Figure 2.1: Set inclusion as a partial order on a family of sets. Arrows connecting
each set to itself have been omitted.
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2.1.16. Definition. A family of sets 𝜂 is directed if for every two sets 𝑆1 and 𝑆2
in 𝜂 there is a set 𝑆1,2 in 𝜂 that satisfies

𝑆1 ⊆ 𝑆1,2 and 𝑆2 ⊆ 𝑆1,2.

For sets 𝑆1 and 𝑆2 in a family of sets, a set that contains both 𝑆1 and 𝑆2 is
known as an upper bound of the two sets. Dually, a lower bound of the two sets is
a set that is contained in both of them. An upper bound of two sets 𝑆1 and 𝑆2
that is included in all other upper bounds of 𝑆1 and 𝑆2 is a least upper bound.
Likewise, a lower bound that includes all other lower bounds is a greatest lower
bound. A family of sets does not necessarily contain all least upper bounds and
greatest lower bounds. For example, the family of sets (2.1), does not contain a
least upper bound of the sets {1} and {3}, or of the sets {1, 2, 3} and {1, 3, 4}. By
contrast, the family of sets that consists of all subsets of {1, 2, 3, 4} does contain
all least upper bounds and greatest lower bounds.

2.1.17. Definition. A collection of objects ℒ with a partial order is a lattice if
every two objects of ℒ have a greatest lower bound and a least upper bound.

For any two objects 𝑎 and 𝑏 of a lattice, we denote the least upper bound of 𝑎
and 𝑏 by 𝑎 ∨ 𝑏. The greatest lower bound of 𝑎 and 𝑏 is denoted by 𝑎 ∧ 𝑏. Most
pleasant to work with are lattices where these two operations interact nicely [38].

2.1.18. Definition. A lattice ℒ is distributive if every three objects 𝑎, 𝑏, 𝑐 of ℒ
satisfy

𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐).

Observe that any finite lattice, such as the family of subsets of {1, 2, 3, 4},
contains a least element and a greatest element. An infinite lattice does not need
to contain these elements. The family of all finite subsets of the natural numbers
ordered by set inclusion is an example of an infinite lattice that does not contain
a greatest element. On the other hand, the family of all subsets of the natural
numbers is an infinite lattice that contains both a least element and a greatest
element.

2.1.19. Definition. A lattice is bounded if it has a least element and a greatest
element.

If the order on a lattice codifies a relation like “bigger”, “faster”, or “better”,
then certainly the greatest element of a bounded lattice is “big”, “fast”, or “good”.
More generally, if any object of a lattice is “big”, “fast”, or “good”, then all
“bigger”, “faster”, or “better” objects are too. This intuition guides us to a
formalization of what it means to be “big”, “fast”, or “good”.

2.1.20. Definition. Let ℒ be a lattice with an order indicated by ≼. A subset ℱ
of objects of ℒ is upward closed if, for all 𝑎 ∈ ℱand 𝑏 ∈ ℒ satisfying 𝑎 ≼ 𝑏, we
have 𝑏 ∈ ℱ.
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Suppose that two objects, 𝑎 and 𝑏, of a lattice are in some sense “good”.
Furthermore, suppose that whatever it is that makes these objects “good” is
unique in the sense that this same property is present in both 𝑎 and 𝑏. Intuitively,
this “goodness” property must then be present in the greatest lower bound, 𝑎 ∧ 𝑏,
as well. This leads to the following definition of subsets of a lattice that may
represent a notion of being “big”, “fast”, or “good”.

2.1.21. Definition. A nonempty subset of objects of a lattice is a filter if it is
upward closed and closed under taking greatest lower bounds.

It is possible that the essence of what makes an object of a lattice “good” can
be found in a single object, 𝑎, of the lattice. In that case, 𝑎 is a least element in
the filter of “good” objects. This filter is then the set of all objects in the lattice
that are better than, or equally good as 𝑎.

2.1.22. Definition. Let ℒ be a lattice with an order indicated by ≼. A filter ℱ
in ℒ is principal if there is an object 𝑎 ∈ ℒ such that we have

ℱ= {𝑏 | 𝑏 ∈ ℒ and 𝑎 ≼ 𝑏}.

If a lattice contains a greatest element, then it has a trivial principal filter
consisting of just this greatest element. Let ℒ be the family of subsets of natural
numbers, ordered by set inclusion. A filter in ℒ can be thought of as a collection of
sets that are somehow “big enough”. In this lattice, the trivial principal filter, {N},
conveys the idea that only the biggest set is big enough. Another filter, that is not
principal, is the filter of subsets of N with a finite complement. This is the cofinite
filter, or Fréchet filter, on N. Its interpretation is most clearly demonstrated via
quantifiers [110]. For a predicate on natural numbers, 𝑃, the statement

∀𝑛∶ 𝑃(𝑛) (2.2)

means that the set {𝑛 | 𝑃 (𝑛)} contains all natural numbers. Equivalently, (2.2)
states that the set {𝑛 | 𝑃 (𝑛)} is one of the “big” sets in the trivial filter in ℒ,

{𝑛 | 𝑃 (𝑛)} ∈ {N}.

If our notion of a “big” set is that represented by the cofinite filter, we use the
∀∞-quantifier. Thus,

∀∞𝑛∶ 𝑃 (𝑛) (2.3)

means that {𝑛 | 𝑃 (𝑛)} is in the cofinite filter. In other words, (2.3) states that 𝑃
is true of all but finitely many natural numbers 𝑛.

The dual of this quantifier, ∃∞, is defined by

∃∞𝑛∶ 𝑃 (𝑛) ⟺ ¬∀∞𝑛∶ ¬𝑃(𝑛).
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In other words, ∃∞𝑛∶ 𝑃 (𝑛) states that there exist infinitely many numbers 𝑛 of
which 𝑃 is true. For this quantifier, the relation between its notation and its
meaning is somewhat more intuitive than for ∀∞.

We remark that we can use the ∀∞-quantifier in an alternative definition of our
grows-much-slower-than and does-not-grow-faster-than relations. For functions 𝑓
and 𝑔, we have 𝑓 ∈ o(𝑔) precisely when we have

∀𝑐∶ ∀∞𝑛∶ 𝑓(𝑛) < 1
𝑐

⋅ 𝑔(𝑛).

Likewise, 𝑓 ∈ 𝒪(𝑔) means the same as

∃𝑐∶ ∀∞𝑛∶ 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛).
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2.2 A New Framework
The two prominent frameworks for a parameterized analysis of complexity are
those of Downey and Fellows and of Flum and Grohe, introduced in Section 1.3.
Both are rooted in computational complexity theory and they each have their
own theoretical shortcomings. We shall build a more universal framework and
resolve the shortcomings of these earlier frameworks that we have identified in
Section 1.3.

Several forms of complexity that could be related to parameters of instances
were listed in Section 1.2. In the next chapter, we shall use our new framework
in a more concise analysis of these forms of complexity. This shows that our
framework can be applied outside the theory of computational complexity. Indeed,
our framework serves as a mathematical model of complexity that is applicable to
a broad range of complexities. Still, all of our notions of complexity are involved
with computation in one way or another. Our framework is therefore not limited
to a notion of a parameterization. It also includes a notion of a parameterized
procedure, which is a computation that takes as input not just an instance, but
also a parameter value.

Desiderata

The picture that emerges from Section 1.2 is that a parameter of a problem
instance is any of a collection of related properties the object may have. For
instance, a graph may have any number of vertices, hence the number of vertices
in a graph is a parameter of the graph. Another parameter of a graph would be
its number of edges. This corresponds to the property schema that we have seen
in Example 1.2.6. Each specific property we shall refer to as a parameter value.
Hence, if the number of edges is the parameter at hand, then ‘9’ is a possible
parameter value, expressing that a graph has 9 edges. A parameterization, then,
should link an instance 𝑥 to the parameter values that apply to 𝑥. Note that we
shall use the term parameter loosely so that it encompasses the various meanings
it has in the literature. The terms parameter value and parameterization will
be made precise shortly and we shall never use them informally. By making
parameterizations independent of decision problems, we resolve one of the two
shortcomings we identified in the framework of Downey and Fellows. Namely, a
parameterized analysis of the complexity of classical decision problems will be
possible.

In our framework, we want to relate notions of complexity to parameter
values. In order for every instance to have a complexity assigned to it, we
want parameterizations to link each instance to at least one parameter value.
We summarize this desire by saying that we want parameterizations to be, in
some sense, total. Wanting to have a complexity assigned to all instances can
be motivated by an engineering view on taking measurements. We feel that if
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instances are bigger than your measuring device, you need a bigger measuring
device. In our case, we want to use parameterizations as a measuring device for
measuring complexity. Requiring parameterizations to be total makes sure that
we shall be able to deal with nonmembers of decision problems. This resolves the
other shortcoming we identified in the framework of Downey and Fellows.

Additionally, we desire parameterizations, and in particular parameter values,
to be general. We have seen that if we restrict each parameter value to be a
natural number, as with Flum and Grohe, the interplay between parameter values
cannot be expressed. In our framework, we want to support even parameters
where the parameter values are not ordered linearly. However, as we shall see, we
do well to put in place at least some requirements regarding an order on parameter
values.

Parameter values naturally have a stronger-than order given by set inclusion:
If the set of instances that have a property 𝑃 is included in the set of instances
that have property 𝑄, then property 𝑃 is stronger than property 𝑄. In our graph
example, we need to generalize the properties we look at somewhat to make
this order visible. The set of graphs that have 4 vertices is disjoint from the set
of graphs that have 5 vertices. However, the set of graphs that have at most
4 vertices is a subset of the set of graphs that have at most 5 vertices. In that
sense, the former property is stronger than the latter. This order works for more
diverse collections of parameter values as well. For example, every graph that
has at most 4 vertices has at most 9 edges. Thus, again, the former is a stronger
property than the latter. Conversely, the property of having at most 9 edges is
weaker than the property of having at most 4 vertices. At the same time, the
property of having at most 9 edges is incomparable to the property of having at
most 5 vertices. The full graph with 5 vertices has 10 edges, and an empty graph
with 6 vertices has no edges.

Let us take a look at what this order can mean for computations that involve
parameters. Suppose we have some function that we can compute on graphs with
a given property, say graphs that have at most 4 vertices. Often, this function
can be extended to cover graphs with a weaker property, say graphs that have at
most 5 vertices. If we keep on extending our function to be applicable to graphs
with more and more vertices, we approach a function that works on all graphs.
We desire our parameterizations to be consistent in that the function we end up
with does not depend on the way we go from property to property.

2.2.1. Example. Consider the following two parameters concerning a graph 𝐺,
where 𝑒 and 𝑤 represent parameter values corresponding to each of the parameters.

1. The number of edges in 𝐺 is at most 𝑒.

2. The number of 1s in the representation of the number of vertices in 𝐺 as a
binary string is at most 𝑤.
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Admittedly, the second parameter is rather contrived, but its behavior with respect
to the first parameter is of interest. For no values of 𝑒 and 𝑤 is either parameter
weaker than the other. However, for both parameters we find that if we keep
increasing the parameter value, we will eventually include any graph.

Now, suppose we want to build a function by defining it on graphs with a
certain property and then iteratively extending it to weaker properties. Once we
have chosen one of our two parameters, we must stick to that choice. This is so
because, as we saw, for no values of 𝑒 and 𝑤 is either parameter weaker than the
other. As a result, nothing stops us from building completely different functions
depending on what parameter we choose to start with.

We want to prevent situations such as in the example above. Concretely,
we want to disallow parameterizations that incorporate just the two parameters
mentioned in the example, and nothing else. One way to achieve consistency, is
by requiring that for every two parameter values, there is another that is weaker
than both.

Definitions

In our framework, we want to allow parameter values to have all sorts of structure.
To make this possible, we choose to make as few assumptions about parameter
values as necessary. One thing we shall assume is that in any parameterized
context, the set of possible parameter values is countable. This assumption has
the effect that parameter values can be encoded as binary strings and can be
processed algorithmically. In fact, we shall leave any interpretation of parameter
values to the user of a parameterization and proceed as if parameter values are
binary strings. Thus, we take care of the desire to make parameterizations, and
parameter values in particular, as general as possible.

This leaves us with three desiderata to consider when defining parameteriza-
tions. Namely, a parameterization should be independent, total and consistent.
The first of these can be met simply by avoiding any dependence on a decision
problem in the definition of a parameterization. For the other two, we look at
the sets of instances that each parameter value identifies. If a parameter value, a
string 𝑘, represents the property of having at most 4 vertices, then 𝑘 identifies the
set of graphs with at most 4 vertices. This suggests defining a parameterization
as a family of sets indexed by parameter values.

2.2.2. Definition. A parameterization is a directed cover of 𝟚+, indexed by 𝟚+.
The elements of a parameterization are called its slices.

By requiring a parameterization to be a cover of 𝟚+, any instance is present in
at least one slice of a parameterization. Thus, this definition of parameterizations
satisfies our desire of parameterizations being total, The requirement that a
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Figure 2.2: An initial segment of the length parameterization. Filled marks
indicate members of the slices of the parameterization, whereas open marks
indicate nonmembers. Note that the elements of the parameterization, depicted
as rows in the figure, are finite sets. Furthermore, the inclusion order on the
elements of the parameterization matches the natural enumeration order on the
set 𝟚+ of parameter values. Neither of these two properties is required to hold for
parameterizations in general.

parameterization is directed makes sure that situations as in Example 2.2.1 cannot
occur and we have a form of consistency.

For strings, the most-used parameter in computer science must be the length.
This parameter can be represented by a parameterization.

2.2.3. Example. The length parameterization [see also 57, Example 1.6] is defined
as

({𝑥 | |𝑥| ≤ asInt(𝑘)})𝑘∈𝟚+ .

In this parameterization, depicted in Figure 2.2, the parameter value 𝑘 acts as
an upper bound on the lengths of instances. We remark that when instances are
not just strings, but more structured objects such as graphs, a “length” is only
defined in light of an encoding.

Parameterizations are intended to also measure structures of instances other
than their lengths. Note that the length of a string is commonly associated with the
symbol 𝑛. To highlight the role of parameterizations as more general measures of
structure, we use a similar-looking symbol for parameterizations: 𝜂. By convention
from parameterized complexity theory, we shall mostly use 𝑥 for instances and 𝑘
for parameter values. The slice of a parameterization 𝜂 that corresponds to a
parameter value 𝑘 is denoted by 𝜂𝑘.

In our framework, parameter values are mapped to sets of instances. In this
regard, our framework differs from that of Flum and Grohe [57], where instances
are mapped to parameter values. Of course, given a parameterization 𝜂 and
an instance 𝑥, we can consider the set {𝑘 | 𝑥 ∈ 𝜂𝑘}. These are the parameter
values that the parameterization 𝜂 links to the instance 𝑥. Contrary to Flum and
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Grohe, we make no demands regarding the computability of such a mapping from
instances to parameter values.

Recall that parameter values in the frameworks of Downey and Fellows [44] and
of Flum and Grohe [57] are typically natural numbers. This allows us to compare
parameter values assigned to an instance by different parameterizations using
the usual less-than-or-equal-to order [95]. In our more general framework, where
instances are associated with sets of binary strings, comparing parameterizations
is less straightforward. To facilitate a comparison between parameterizations, we
shall look at the length, in bits, of the shortest parameter value for some given
instance.

2.2.4. Definition. Given a parameterization 𝜂, the minimization function of 𝜂
is defined as

μ𝜂(𝑥) = min{|𝑘| | 𝑥 ∈ 𝜂𝑘}.

Note that μ𝜂 minimizes with respect to the length of parameter values and not
with respect to the inclusion order on the slices of the parameterization.

Like in the framework of Downey and Fellows [44], in our framework an instance
can be associated with multiple parameter values. Therefore, a parameterized
analysis of decision problems requires a generalization of decision procedures.
A parameterized decision procedure, or parameterized procedure for short, is
a special kind of procedure that takes two arguments. In line with ordinary
decision procedures, we require parameterized procedures to be total, meaning
that their computation terminates on all possible inputs. However, we do not
require the output of a parameterized procedure to be either 1 or 0, representing the
judgments ‘yes’ and ‘no’. Any other output a parameterized procedure produces we
interpret as ?, representing the judgment ‘unknown’. In summary, a parameterized
procedure is a procedure that takes two strings as input and produces an output
in the set {1, 0, ?}.

We would like to associate parameterized procedures to sets in a way similar to
how decision procedures are associated to sets. In the presence of parameterizations,
this is possible for some parameterized procedures.

2.2.5. Definition. A parameterized procedure 𝜙 converges to a set 𝐴 on a
parameterization 𝜂 if, for all strings 𝑥 and 𝑘, we have

𝑥 ∈ 𝜂𝑘 ⟹ 𝜙(𝑥, 𝑘) = 𝐴(𝑥).

A parameterization 𝜂 is consistent in the sense that it is directed. Therefore,
when a parameterized procedure 𝜙 converges to a set 𝐴 on 𝜂, we can think of 𝐴
as a limit of 𝜙. However, the set to which a parameterized procedure converges
may depend on the parameterization.
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2.2.6. Example. Consider the parameterizations 𝜂 and 𝜁 given by

𝜂𝑘 = {
𝟚+ if 𝑘 = 0,
∅ otherwise,

and 𝜁𝑘 = {
∅ if 𝑘 = 0,
𝟚+ otherwise,

and the parameterized procedure 𝜙 given by

𝜙(𝑥, 𝑘) = {
1 if 𝑘 = 0,
0 otherwise.

These definitions are so that 𝜙 converges to 𝟚+ on 𝜂, but to ∅ on 𝜁.

The above example shows that a parameterized procedure can have multiple
limits. One way to enforce the limit of a parameterized procedure to be unique
is by strengthening our notion of convergence. We do so by turning to a special
kind of parameterizations.

2.2.7. Definition. A parameterization 𝜂 is point-cofinite if each instance 𝑥 ∈ 𝟚+

is excluded from only finitely many slices of 𝜂.

The length parameterization of Example 2.2.3 is an example of a point-
cofinite parameterization. With point-cofinite parameterizations, a situation as in
Example 2.2.6 cannot occur. A parameterized procedure 𝜙 may converge on two
different point-cofinite parameterizations, but the set to which 𝜙 converges will
be the same either way. In other words, as far as convergence on point-cofinite
parameterizations is concerned, the limit of a parameterized procedure, if it exists,
is unique. Therefore, when dealing with convergence in the context of point-
cofinite parameterizations, we need not mention a point-cofinite parameterization
explicitly. We may simply say that a parameterized procedure 𝜙 converges to a
set 𝐴. This then means that there exists a point-cofinite parameterization 𝜂 such
that 𝜙 converges to 𝐴 on 𝜂. The existence of a set 𝐴 to which a parameterized
procedure converges is is hence a property of the parameterized procedure alone.

2.2.8. Definition. A parameterized procedure 𝜙 is convergent if there is a set
to which it converges. In more detail, this means 𝜙 is convergent if there is a
set 𝐴 and a point-cofinite parameterization 𝜂 such that 𝜙 converges to 𝐴 on 𝜂.

Suppose a parameterized procedure 𝜙 converges to a set 𝐴 on a point-cofinite
parameterization 𝜂. Because 𝜂 is point-cofinite, the set 𝐴 does not depend on the
specifics of 𝜂, but only on the fact that it is point-cofinite. This does not mean
that whenever for some instance 𝑥 and parameter value 𝑘 we have 𝜙(𝑥, 𝑘) = 1, we
can conclude that 𝑥 is a member of 𝐴. Likewise, whenever we have 𝜙(𝑥, 𝑘) = 0,
we cannot conclude that 𝑥 is not a member of 𝐴. All we know is that for each
instance 𝑥 there are only finitely many parameter values 𝑘 such that 𝜙(𝑥, 𝑘) is
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not in agreement with membership of 𝑥 in 𝐴. In other words, we do not know
when the output of 𝜙 is correct, only that it will eventually be correct.

An alternative way to enforce that a parameterized procedure has only one
limit set, is by requiring the procedure to know when it is correct. A parameterized
procedure 𝜙 knows when it is correct if there is a set 𝐴 such that, for all 𝑥 and 𝑘,
the output of 𝜙(𝑥, 𝑘) is either ? or 𝐴(𝑥). In order for this set 𝐴 to be unique,
we require that the procedure 𝜙 must converge to 𝐴 on some parameterization 𝜂.
Because the output of 𝜙 is never wrong, we can derive a family of sets from it
that could potentially serve as such a parameterization 𝜂.

2.2.9. Definition. A parameterized procedure 𝜙 is direct if

({𝑥 | 𝜙(𝑥, 𝑘) ≠ ?})𝑘∈𝟚+

is a parameterization on which 𝜙 converges to some set 𝐴.

A parameterized procedure can be convergent, direct, neither, or both. In
the parameterized version of computational complexity theory, parameterized
procedures that are both convergent and direct often emerge quite naturally.

2.2.10. Example. In Section 1.3, we have looked at a parameterized analysis of
the Clique problem,

Clique = {(𝐺, 𝑙) | there is a set of at least 𝑙 vertices of the graph 𝐺 in which
each pair of vertices is connected by an edge},

with respect to the minimum vertex cover size. We found that in the framework
of Downey and Fellows, such an analysis was not very natural: It required the
construction of an intricate parameterized decision problem where the instances
of the form (𝐺, 𝑙) were replaced by structures of the form ⟨(𝐺, 𝑙), 𝑘⟩.

In our framework, we can consider the unmodified Clique problem with
respect to the point-cofinite vertex cover parameterization

𝜂 = ({(𝐺, 𝑙) | 𝐺 has a vertex cover of at most asInt(𝑘) vertices})𝑘∈𝟚+ .

In the framework of Downey and Fellows, the Clique problem parameterized by
the minimum vertex cover size was found to be fixed-parameter tractable. For our
framework, this means that there is a direct parameterized procedure 𝜙 such that

• 𝜙 converges to Clique on 𝜂, and

• for some function 𝑓 and constant 𝑐, the running time of 𝜙 on any instance
of length 𝑛 and parameter value 𝑘 is at most 𝑓(𝑘) ⋅ 𝑛𝑐.
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Note that because 𝜂 is point-cofinite, this procedure 𝜙 is not only direct, but also
convergent.

Thus, an analysis of fixed-parameter tractability can be performed in our
framework. Moreover, this is possible without resorting to intricate parameterized
decision problems and the parameterization can be reused for other problems. We
remark that a more fundamental definition of fixed-parameter tractability will be
given in Section 3.2.1.

When the parameter value is held fixed, the behavior of a direct parameterized
procedure can be thought of as an approximation of a decision procedure. Indeed,
such procedures are of interest also without any parameter values playing a part.

2.2.11. Definition. Given a function 𝑡, a procedure 𝜙 is a 𝑡-approximation for
a set 𝐴 if it satisfies, for every string 𝑥,

• 𝜙(𝑥) outputs either ? or 𝐴(𝑥), and

• 𝜙 terminates on input 𝑥 within 𝑡(|𝑥|) steps.

A 𝑡-approximation 𝜙 is said to decide the elements of its domain

dom(𝜙) = {𝑥 | 𝜙(𝑥) ≠ ?}.

The polytime-approximations [93, 18] are 𝑡-approximations where 𝑡 is a poly-
nomial. Likewise, a procedure is an 𝒪(𝑓)-approximation if it is a 𝑡-approximation
for some 𝑡 ∈ 𝒪(𝑓). The fact that the bound is a bound on the running time is left
implicit. For time-constructible functions 𝑡, the domain of a 𝑡-approximation is
decidable in time 𝑡. In particular, the domain of a polytime-approximation is in P,
without an increase in the degree of the polynomial. The domain of a polytime-
approximation is also known as the definite part of the approximation [93].



Chapter 3
Parameterizations

The main results of this thesis are obtained in the current chapter. In the following
sections, we seek to analyze a selection of notions of complexity in a unified,
parameterized, way. This analysis is carried out using the framework developed
in Section 2.2. We look at complexity as it is used in computability theory, in
computational complexity theory, in algorithmic complexity theory, in algorithmic
statistics, and in the study of computational redundancy. In the first four of these
fields, complexity expresses a distance from some reference notion of “simplicity”.
With the last of these fields, computational redundancy, it is the other way around
and complexity is the reference with respect to which simplicity is measured.

In computability theory, the objects of study are decision problems, modeled
as sets. A set has “negligible complexity”, if it is decidable. We avoid the word
simplicity here, because in the context of computability theory, the term simple
set means something entirely different. The focus, then, is on how undecidable a
given set with non-negligible complexity is. Section 3.1 rephrases one possible way
to answer this question in terms of parameterizations. Our parameterized analysis
of computability provides a new insight concerning parameterized computational
complexity. We find an answer to the question: what sets are fixed-parameter
tractable? More precisely, we characterize the sets for which a parameterization
exists with respect to which they are fixed-parameter tractable.

Like computability theory, computational complexity theory deals with deci-
sion problems modeled as sets. Simplicity in computational complexity theory is
routinely identified with decidability in polynomial time. Parameterized computa-
tional complexity theory is thus a way to assess how far a set is removed from being
decidable in polynomial time. In effect, parameterized computational complexity
theory offers a way to assess the computational complexity of individual prob-
lem instances. However, the current literature on parameterized computational
complexity offers little in the way of a comparison of parameterizations. Given
two parameterizations with respect to which some specific set is fixed-parameter
tractable, we may want to know which of the two is “better”. An order on param-
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eterizations is developed in Section 3.2. This order is rich in structure. Moreover,
we are able to show that for most sets, there is no “best” parameterization with
respect to which they are fixed-parameter tractable.

Besides looking at how much computation time is needed for deciding on
membership in a set, we can look at the required length of a decision procedure.
Some decision procedures can be expressed as an algorithm of only a few lines,
while others necessarily use very many lines. This take on complexity, where a
set is simple if it has a short decision procedure, is at the heart of algorithmic
complexity theory. A parameterized treatment of this form of complexity is the
topic of Section 3.3. This parameterized treatment is shown to be more nuanced
than the traditional treatment, as it can take considerations regarding uniformity
into account. Because we use a unifying framework for the analysis of both
computational and algorithmic complexity, the interplay between the two notions
can be studied. This allows us to show that, at the level of individual instances,
high algorithmic complexity implies high computational complexity.

An application of reasoning along the lines of algorithmic complexity can be
found in statistics. One of the central themes in statistics is model selection. In
model selection, inferences about the nature of a statistical process are made on
the basis of a data sample taken from that process. When judging the likelihood of
a statistical model in a set of candidate models, the number of variables included
in the model should be taken into account. A model with very many variables can
potentially be tuned to match almost any data sample. In that regard, a model
should not be too complex. Correspondingly, a model is simple if it offers few
possibilities for tweaking, or, in terms of algorithmic complexity, if it has a short
description. This algorithmic approach to statistics is faced with the challenge
of deciding what part of the information in a data sample is relevant for model
selection. In our parameterized algorithmic statistics of Section 3.4, we conclude
that this “useful information” is context dependent.

The study of computational redundancy brings us back to decision problems.
Previously, we asked what part of the information in an object is relevant for
model selection. Now, we ask what part of the information in an object is, in some
sense, irrelevant for deciding on membership of an instance in a given set. Observe
that the complexity of an object increases as the size of this irrelevant part decreases.
Thus, computational redundancy expresses a kind of “anti-complexity”. The
reference against which we measure computational redundancy is the information
in an object. An object is simple when much of its information is computationally
redundant. For a simple object, the length of a description of the object is not a
good measure of its computational complexity. As it turns out, there are many
ways in which an object with a long description could be reduced to objects with
shorter descriptions. Multiple possible ways are explored in Section 3.5. How
much computational redundancy can be extracted from the description of an
object depends on the specifics of the reduction under consideration.

Apart from the analysis of several notions of complexity, as summarized in
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Field, § Reference Question

Computability Theory,
3.1

Decidability What sets are fixed-parameter
tractable?

Computational Com-
plexity Theory, 3.2

Decidability in
Polynomial Time

Is there a best parameterization?

Algorithmic Complex-
ity Theory, 3.3

Short Decision
Procedures

How does algorithmic complexity re-
late to computational complexity?

Algorithmic Statistics,
3.4

Simple Models What part of the information in an
object is useful information?

Computational Redun-
dancy, 3.5

Object Descrip-
tion Length

How much computational redun-
dancy can be extracted from the
description of an object?

Table 3.1: Notions of complexity in different fields of research. Each notion
expresses a distance from some reference measure of simplicity. For computational
redundancy, the role of the reference measure is inverted, and it is simplicity that
is expressed as a distance from the reference measure. Our parameterized analysis
of complexity addresses questions related to these different notions of complexity.

Table 3.1, we study parameterizations themselves. The first three sections of
the current chapter climb a ladder of abstractions away from the complexity of
individual instances. In Section 3.1, we go from grouping instances of comparable
complexity to considering collections of such groupings. More specifically, we
move from a slicewise look at complexity to the analysis of parameterizations as
collections of slices. The subsequent section, Section 3.2, takes this one step further,
into the analysis of algebraic structures, filters, comprised of parameterizations.
Finally, Section 3.3 is effectively concerned with the lattice of such filters. It relates
operations on sets to changes in the corresponding filter of parameterizations.

The results of the study of parameterizations in these three sections can be
summarized as a nice structural progression. In Section 3.1, we fix a parameterized
complexity class C , and look at those sets 𝐴 for which there is a parameterization 𝜂
such that 𝐴 is in C with 𝜂. We conclude that doing so is not very fruitful and
we need to keep track of parameterizations explicitly. In Section 3.2, we fix a
parameterized complexity class C and a set 𝐴, and look at those parameterizations
with which 𝐴 is in C . Doing so, we obtain collections of parameterizations that
exhibit an algebraic structure. In Section 3.3, we fix a parameterized complexity
class C and a collection of parameterizations ℱ, and look at those sets 𝐴 for which
ℱ is the collection of parameterizations with which 𝐴 is in C . We conjecture that
the sets thus obtained are precisely the sets that have, in some specific way, the
same distribution of computational complexity.
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3.1 as Limit Computability
Computability theory [131] is one of the pillars of mathematical logic. In formal
systems, and in particular in proof calculi, questions regarding the decidability
of the set of theorems are of central importance [90, 143]. At the same time,
computability theory can be seen as a theory of computational complexity with
complete disregard for resource usage.

A parameterized study of decidability was started already in 1965 [124, 66],
some thirty years before a parameterized investigation of computational complexity
took off. In this section, we shall recast some of the classical results in an explicitly
parameterized framework, noting the new insights thus obtained. The central
idea is that a hierarchy of undecidability, the difference hierarchy, can be used to
characterize the structure of undecidability inside sets. Not all instances of an
undecidable set are equally responsible for the severity of the set’s undecidability.
Unsurprisingly, the use of parameters for the analysis of undecidability leads to
questions surrounding the computability of the parameters themselves. Some
of our insights on this front will be relevant to forms of complexity other than
decidability.

Synopsis

A set is of negligible complexity in computability theory if it is decidable. In
Section 3.1.1, we look at the use of parameterizations for expressing undecidability
as a form of complexity. Ideally, a parameterized analysis of computability would
allow us to distinguish between different degrees of undecidability. We find that
unless some undecidability is permitted in the parameterizations that we take
into account, our framework can only deal with decidable sets. In fact, even when
we allow for semidecidability in our parameterizations, our framework still only
handles decidable sets.

In Section 3.1.2, we shift our focus to the behavior of convergent parameterized
procedures that do not converge on any decidable point-cofinite parameterization.
The type of behavior we look at generalizes semidecidability and makes a parame-
terized study of computability possible also for sets that are not decidable. The
measure of complexity that arises is shown to be closely related to the difference
hierarchy and, more generally, to computability in the limit.

For our parameterized analysis of undecidable sets, we were forced to take
into account undecidable parameterizations. However, some control of the un-
decidability of parameterizations is possible. In Section 3.1.3, we show that the
reach of parameterized computability analysis can be tied in with types of re-
ducibility to the halting set. The types of reducibility we discuss are truth-table
reducibility and Turing reducibility. Together with the possibility of restricting
to decidable parameterizations, this gives us three possible scopes for parameter-
ized computability analysis. The two extremes, decidable sets and sets Turing
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reducible to the halting set, are connected to the existing frameworks for parame-
terized complexity theory. This provides a new perspective on these frameworks,
and shows precisely how that of Flum and Grohe is more restrictive than that of
Downey and Fellows.

The different degrees of undecidability of parameterizations is exploited in
Section 3.1.4. They are used to show the existence of a set that is far from
semidecidable, yet at the same time exhibits some structure. Given two instances,
it is easy to decide which of the two is more likely to be a member of the set. This
result is not new, but our parameterized framework enables a proof that is much
more transparent than the known proof.

Most of the results in this entire section are refinements of the work by Wit-
teveen and Torenvliet [154]. Their early versions of the ideas on a parameterized
exploration of computability were not yet part of an overarching theory, as is the
case in this thesis. Broadly, we can conclude from our parameterized exploration
of computability that parameterized complexity needs to explicitly keep track of
parameterizations. We must not try to classify sets based on whether or not a
parameterization exists with respect to which the set has certain properties. Oth-
erwise, we would find that the properties are irrelevant: The entire classification
would depend solely on the undecidability allowed of parameterizations and the
degree of undecidability of the set at hand.

3.1.1 Decidable and Semidecidable Parameterizations
Arguably the most elementary parameterizations are decidable parameterizations.
With decidable, we mean that there is a procedure that, when given some input
(𝑥, 𝑘) ∈ 𝟚+× 𝟚+, decides whether slice 𝑘 of the parameterization includes 𝑥. From
a computability perspective, such parameterizations are fairly uninteresting.

3.1.1. Theorem. The following statements about a set 𝐴 are equivalent.

1. 𝐴 is decidable.

2. There is a direct parameterized procedure converging to 𝐴.

3. There is a parameterized procedure converging to 𝐴 on a decidable parame-
terization.

Proof:
1 ⟹ 2. We can adapt a decision procedure for 𝐴 so that it is a direct parame-
terized procedure converging to 𝐴. This is done by simply ignoring the second
input, the parameter value. The resulting parameterized procedure correctly de-
cides membership in 𝐴 regardless of the parameter value. Corresponding to this
parameterized procedure is the parameterization that consists only of copies of
the full set 𝟚+.
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2 ⟹ 3. More generally, the parameterization corresponding to any direct
parameterized procedure that converges to 𝐴 is decidable. To decide whether some
given 𝑥 is in some slice 𝑘 of a parameterization, we may use the parameterized
procedure. If the procedure outputs ?, then slice 𝑘 of the parameterization does
not include 𝑥, otherwise it does.

3 ⟹ 1. Because a parameterization is a cover, for every instance 𝑥, there is
a parameter value 𝑘 such that slice 𝑘 of the parameterization includes 𝑥. Given
an instance 𝑥, such a 𝑘 can be found by running the decision procedure for the
parameterization on (𝑥, asStr(1)), (𝑥, asStr(2)), (𝑥, asStr(3)), and so on, until we
find an accepted pair. Membership of 𝑥 in 𝐴 can then be decided by running the
parameterized procedure on the pair thus found. 2

In other words, with respect to parameterized procedures, the decidable
parameterizations characterize the decidable sets. Note that the decidability
requirement for decidable parameterizations is uniform in the parameter 𝑘: A single
decision procedure has to be available that works for all values of 𝑘. Therefore,
the only class we could reasonably call uniformly fixed-parameter decidable is the
class of decidable sets. As far as our parameterized analysis of decidability is
concerned, this is not very interesting yet.

A naive broadening of our scope does not get us anywhere new. Calling a
parameterization semidecidable when its slices are semidecidable uniformly in
the parameter value only leads to an extension of Theorem 3.1.1. Recall that
“uniformly in the parameter value” means that the semidecidability of the slices is
witnessed by a single procedure that takes two arguments. The partial application
of this procedure to a given parameter value yields a witness of the semidecidability
of the corresponding slice.

3.1.2. Theorem. The statements about a set 𝐴 of Theorem 3.1.1 are equivalent
to

4. There is a parameterized procedure converging to 𝐴 on a semidecidable
parameterization.

Proof:
3 ⟹ 4. Since a decidable parameterization is also a semidecidable parameteri-
zation, this is immediate.

4 ⟹ 1. As in the proof of (3 ⟹ 1), it suffices to show that a parameter
value 𝑘 can be found such that slice 𝑘 of the parameterization includes 𝑥. To
see that this is indeed the case, let 𝜂 be a semidecidable parameterization and
consider the set

{(𝑥, 𝑘) | 𝑥 ∈ 𝜂𝑘}.

Because 𝜂 is semidecidable uniformly in the parameter value, this set is semide-
cidable. Equivalently, there is a procedure that enumerates this set. As in the
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proof of (3 ⟹ 1), the key insight is now that 𝜂 is a cover. This means that we
can run the enumeration and simply wait until a pair (𝑥𝑖, 𝑘𝑖), 𝑖 ∈ N comes along
for which we have 𝑥𝑖 = 𝑥. The corresponding parameter value 𝑘𝑖 is such that the
slice of 𝜂 that is associated with 𝑘𝑖 includes 𝑥. 2

The parameterization corresponding to a direct parameterized procedure is
necessarily decidable and cannot be merely semidecidable. This is a consequence
of the fact that parameterized procedures are total. While they may output ?
instead of either 1 or 0, they are not permitted to run forever on any input. It
follows that classes of sets in parameterized complexity theory must be closed
under taking complements. For every parameterized procedure that converges to a
set on some parameterization, there is a parameterized procedure that converges to
the complement of that set on the same parameterization. The derived procedure
simply retains the output if it is ? and flips it if it is either 1 or 0.

Furthermore, it is possible to bound the number of steps taken by a parame-
terized procedure by a function of the parameter value alone. That is, restricting
to resource-bounded parameterized procedures does not affect the class of sets
that occur as limits with respect to decidable parameterizations. The following
theorem is stated in terms of a specific running time bound, but can be modified
for other types of resources and for slower-growing bounds.

3.1.3. Theorem. For every decidable set there is a direct parameterized procedure
that converges to it and takes a number of steps that only depends on the parameter
value. On an input (𝑥, 𝑘), the procedure terminates within 𝒪(|𝑘|) steps, with the
hidden constant not depending on the set at hand.

Proof:
Let 𝐴 be a decidable set and 𝜙 a decision procedure for 𝐴. We define a direct
parameterized procedure that converges to 𝐴 and meets the running-time require-
ment of the theorem. On input (𝑥, 𝑘), the procedure simulates 𝜙 for up to |𝑘|
steps. If the simulation terminates, the procedure outputs the result of the simu-
lation. Otherwise, it outputs ?.

Let 𝜂 be the parameterization associated with the direct parameterized pro-
cedure defined above. For every two parameter values 𝑘, 𝑘′ such that |𝑘| ≤ |𝑘′|
holds, we have 𝜂𝑘 ⊆ 𝜂𝑘′ . Also, for every instance 𝑥, the number of steps needed
by the decision procedure is finite. Therefore, for every instance 𝑥 there will be
a parameter value 𝑘 such that 𝑥 is included in slice 𝜂𝑘. Hence, our procedure
meets the requirements of the theorem. We remark that 𝜂 is point-cofinite. Our
parameterized procedure is therefore not only direct, but also convergent. 2

When resource bounds are of interest, it may be natural to restrict attention
to decidable parameterizations. Indeed, parameterized complexity theory as
developed by Flum and Grohe [57] demands decidability of parameterizations.
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More specifically, in their framework, parameter values must be computable. By
Theorem 3.1.3, the existence of a decidable parameterization with which a set 𝐴
is in a given parameterized complexity class tells us very little about 𝐴.
3.1.4. Corollary. Suppose we are working in a parameterized framework where
parameter values must be computable. Let C be a class of sets that are decidable
in some given parameterized time bound. A set 𝐴 is in C with respect to some
parameterization if and only if 𝐴 is decidable.

This rather informal corollary follows from Theorem 3.1.3 because of the way
complexity classes in parameterized complexity theory are constructed. Typically,
resource bounds in parameterized complexity theory allow for arbitrary resource
usage as a function of the parameter value.

3.1.5. Example. Let 𝐴 be a decidable set and 𝜙 a decision procedure for 𝐴. In
line with the proof of Theorem 3.1.3, we define, for an instance 𝑥, a parameteriza-
tion in the style of Flum and Grohe as

𝜅(𝑥) = 111 ⋯ 1⏟
𝑡 times

,

where 𝑡 is the number of steps 𝜙 uses in deciding membership of 𝑥 in 𝐴. By
construction, 𝐴 is fixed-parameter tractable with respect to this parameterization
in the framework of Flum and Grohe. Note that a computing 𝜅(𝑥) is possible in
roughly 𝜅(𝑥) steps. Since 𝐴 was an arbitrary decidable set, it follows that every
decidable set is fixed-parameter tractable with respect to some parameterization.

This example reflects the idea behind Corollary 3.1.4, and can be summarized
as follows.
3.1.6. Slogan. When parameter values must be computable, a set can be fixed-
parameter tractable precisely if it is decidable.

More broadly, Corollary 3.1.4 tells us that parameterized analysis of compu-
tational complexity is at least as much about parameterizations as it is about
sets.

3.1.2 Bounded Undecidability
With Corollary 3.1.4, we have identified the sets that can be analyzed in a param-
eterized framework where parameterizations are decidable or semidecidable. We
seek to extend this result and classify the sets that can be analyzed in a param-
eterized framework with parameterizations of varying degrees of undecidability.
Before an extended classification can be obtained in Section 3.1.3, we must gain
control over the undecidability of parameterizations. Therefore, we take a closer
look at the nature of convergence in convergent parameterized procedures. Recall
from Definition 2.2.8 that a parameterized procedure is convergent if it converges
to some set on some point-cofinite parameterization.
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3.1.7. Lemma. A parameterized procedure 𝜙 is convergent if and only if, for all
𝑥, the sets

{𝑖 | 𝜙(𝑥, asStr(𝑖)) ≠ 𝜙(𝑥, asStr(𝑖 + 1))} and
{𝑘 | 𝜙(𝑥, 𝑘) = ?}

are finite.

Proof:
⟹. Suppose 𝜙 converges to a set 𝐴 on a point-cofinite parameterization 𝜂. For
every (𝑥, 𝑘), the output of 𝜙(𝑥, 𝑘) can only differ from 𝐴(𝑥) when 𝑥 is not included
in 𝜂𝑘. Because 𝑥 is included in all but finitely many slices of 𝜂, the set of parameter
values where 𝜙 changes its decision must hence be finite. In particular, 𝜙 cannot
output ? infinitely often for any fixed 𝑥 and varying 𝑘.

⟸. Let 𝐴 consist of the instances 𝑥 for which there are infinitely many values
of 𝑘 such that 𝜙(𝑥, 𝑘) outputs 1. Consider the family of sets

({𝑥 | 𝜙(𝑥, 𝑘) = 𝐴(𝑥) and |𝑥| ≤ asInt(𝑘)})𝑘∈𝟚+ .

Each element of this family is a finite set. Because 𝜙 cannot output ? infinitely
often, every instance 𝑥 is included in all but finitely many elements of this family.
Hence, this family is a point-cofinite parameterization and 𝜙 converges to 𝐴 on it. 2

Observe that in the right-to-left direction of the above proof, the finiteness of
the elements of the family of sets matters. While a family like

({𝑥 | 𝑥 ≠ 𝑘})𝑘∈𝟚+

is a point-cofinite cover of 𝟚+, it is not directed and therefore not a point-cofinite
parameterization. Making the sets in the family finite the way we did, is a fittingly
technical solution to this troublesome technicality.

A direct parameterized procedure is one where the only changes on some
instance 𝑥 are from ? to a ‘correct’ decision or vice versa. As we have seen, the
limit sets of direct parameterized procedures were decidable. A parameterized
investigation of sets that are not necessarily decidable starts with parameterized
procedures that are convergent, but not necessarily direct. We shall look at
parameterized procedures that are allowed to “change their mind” multiple times,
but not indefinitely.

3.1.8. Definition. Let 𝑓 be a function from 𝟚+ to N. A parameterized procedure
𝜙 is 𝑓-alternating if for every instance 𝑥 there are at most 𝑓(𝑥) values of 𝑖 satisfying

𝜙(𝑥, asStr(𝑖)) ≠ 𝜙(𝑥, asStr(𝑖 + 1)).
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Note that in this definition, we have imposed a linear order on the parameter
values. In the presence of a parameterization, this imposed order need not be
related to the inclusion order on the slices of the parameterization.

Extending Lemma 3.1.7, the convergent parameterized procedures, as described
on page 58, can be characterized in yet another way. A parameterized procedure is
convergent if, for some 𝑓, it is 𝑓-alternating and for every instance 𝑥 it outputs ? for
only finitely many parameter values. The limit set of a convergent parameterized
procedure is said to be limit computable. When the function 𝑓 maps its inputs to a
constant 𝑛, the limit set of an 𝑓-alternating parameterized procedure is said to be
weakly 𝑛-computably enumerable [115, 50]. Such sets are encountered in the study
of the difference hierarchy [46], which we discussed briefly in the introductory
Section 1.2.1. In fact, the weakly 𝑛-computably enumerable sets constitute
the Δ−1

𝑛 level of that hierarchy. Recall that the class Δ−1
𝑛 is defined as the

intersection of Σ−1
𝑛 and Π−1

𝑛 . As observed before, classes of limits of parameterized
procedures are closed under taking complements. Therefore, it is no surprise that
our parameterized approach favors the Δ levels of the difference hierarchy. A
complement of a set in a Σ level is in the corresponding Π level, and likewise the
other way around.

Indeed, the difference hierarchy is strict. Already in the standard proofs
thereof [14, 52, 124], we can see a parameterized line of reasoning at work. We
shall give a different and more general proof, exposing a fine-grained structure
among the limits of 𝑓-alternating sets. Central to this proof is the ability to bound
the running time of an 𝑓-alternating parameterized procedure as a function of the
parameter value exclusively. This bounding of the number of steps taken comes
at the cost of an increase in the number of alternations of at most one.

3.1.9. Theorem. Let 𝜙 be an 𝑓-alternating parameterized procedure that con-
verges to a set 𝐴. There exists an (1 + 𝑓)-alternating parameterized procedure that
converges to 𝐴 and, on every input (𝑥, 𝑘), terminates within 𝒪(|𝑘|) steps. Here,
the hidden constant does not depend on 𝜙.

Proof:
We define a parameterized procedure 𝜙′ with the desired properties as follows.
On input (𝑥, 𝑘), spend |𝑘| steps in total on simulating 𝜙 with varying parameter
values: More specifically, 𝜙′ computes an initial segment of the sequence

(𝜙(𝑥, asStr(1)), 𝜙(𝑥, asStr(2)), 𝜙(𝑥, asStr(3)), … ). (3.1)

After spending |𝑘| steps doing so, 𝜙′ yields the output of the last completed
simulation, or ? if no simulation finished.

Observe that arbitrarily long initial segments of the sequence (3.1) are com-
puted by 𝜙′. The length of the initial segment that can be computed in |𝑘| steps
is unbounded as a function of the length of 𝑘. By Lemma 3.1.7, this means that
𝜙′ converges to the same set as 𝜙.
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The number of changes that occur for a given 𝑥 in the sequence (3.1) is related
to 𝑓. After 𝜙(𝑥, asStr(1)) is included in the sequence, the output of 𝜙′ can change
at most 𝑓(𝑥) times. The first output reproduced from a completed simulation
of 𝜙 need not be ?. Therefore, it is possible that the number of changes in the
output of 𝜙′ is one higher than 𝑓(𝑥). 2

Naturally, Theorem 3.1.9 can be adapted for resources other than time. Most
importantly, the theorem implies that, when 𝑓 is computable, it is possible to
diagonalize against the 𝑓-alternating parameterized procedures.

3.1.10. Lemma. Let 𝑓 and 𝑔 be computable functions such that for all 𝑥 we have
𝑓(𝑥) < 𝑔(𝑥). There exists a set that is the limit of a 𝑔-alternating parameterized
procedure, but not of any 𝑓-alternating parameterized procedure.

Proof:
We shall diagonalize against the 𝑓-alternating parameterized procedures. In
simulating a parameterized procedure, we can keep track of the number of steps
taken. Therefore, we can enumerate the parameterized procedures with a running
time bounded by the square of the length of the parameter value. Moreover,
the number of alternations can be counted. Thus, we can enumerate the (1 +
𝑓)-alternating parameterized procedures with a running time that is at most
the square of the length of the parameter value. Let 𝜓1, 𝜓2, 𝜓3, … be such an
enumeration and consider the parameterized procedure

𝜓(𝑥, 𝑘) = {
1 if 𝜓asInt(𝑥)(𝑥, 𝑘) = 0,
0 otherwise.

This procedure never produces ? and is indifferent to whether 𝜓asInt(𝑥)(𝑥, 𝑘) out-
puts 1 or ?. Not keeping track of ? is permitted in this setting since there is no
need to code for unknown values. The procedure 𝜓 thus defined is (1+𝑓)-alternat-
ing and hence it is 𝑔-alternating. By Theorem 3.1.9, this construction diagonalizes
against all 𝑓-alternating parameterized procedures. Accordingly, there is no 𝑓-al-
ternating parameterized procedure that converges to the same set as 𝜓. 2

The requirement on the relationship between the functions 𝑓 and 𝑔 can be
weakened.

3.1.11. Theorem. Let 𝑓 and 𝑔 be computable functions such that for infinitely
many 𝑥 we have 𝑓(𝑥) < 𝑔(𝑥). There exists a set that is the limit of a 𝑔-alternating
parameterized procedure, but not of any 𝑓-alternating parameterized procedure.

Proof:
Because 𝑓 and 𝑔 were both assumed to be computable, so is the infinite set
𝑆 = {𝑥 | 𝑓(𝑥) < 𝑔(𝑥)}. Let 𝑥1, 𝑥2, 𝑥3, … be an effective enumeration of the
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members of 𝑆. We can prove the theorem by applying the previous lemma to
these elements.

Consider the functions 𝑓 ′ and 𝑔′ obtained by restricting 𝑓 and 𝑔 to 𝑆 as

𝑓 ′(asStr(𝑖)) = 𝑓(𝑥𝑖) and 𝑔′(asStr(𝑖)) = 𝑔(𝑥𝑖).

These functions are so that for all 𝑥 we have 𝑓 ′(𝑥) < 𝑔′(𝑥). By Lemma 3.1.10,
there is hence a set 𝐴 that is the limit of a 𝑔′-alternating parameterized procedure,
but not of any 𝑓 ′-alternating parameterized procedure. Using such a set 𝐴, a
set that is the limit of a 𝑔-alternating parameterized procedure, but not of any
𝑓-alternating procedure is defined by

{𝑥 | ∃𝑖 ∶ 𝑥 = 𝑥𝑖 and asStr(𝑖) ∈ 𝐴}.

In effect, this set is the result of using only the members of 𝑆 for the diagonaliza-
tion in the proof of Lemma 3.1.10. 2

Similar theorems have been published [50, 14], but our parameterized frame-
work inspired a more elegant proof.

3.1.3 Reducibility to the Halting Set
A classification of which sets are open to a parameterized analysis with parameter-
izations of varying undecidability is now within reach. To begin with, we observe
that the undecidable halting set,

Halt = {𝑥 ∈ 𝟚+ | 𝑥 encodes a procedure that takes no input and terminates},

appears as early as is possible in the hierarchy of limits of 𝑓-alternating parame-
terized procedures.

3.1.12. Lemma. There is a 1-alternating parameterized procedure that converges
to Halt.

Proof:
Let us define such a parameterized procedure 𝜙. On input (𝑥, 𝑘) it simulates the
procedure encoded by 𝑥 for up to asInt(𝑘) steps. If the simulation terminates,
then 𝜙 outputs 1, else it outputs 0. Given any instance 𝑥, for large enough values
of asInt(𝑘) the output of 𝜙 will correspond to membership of 𝑥 in Halt. For
members of Halt, 𝜙 may change its decision once, as asInt(𝑘) becomes large
enough. Otherwise, 𝜙 outputs 0. From this, it follows that 𝜙 is 1-alternating. 2

As it turns out, the class of limits of 𝑓-alternating parameterized procedures
where 𝑓 is computable is closed under truth-table reducibility as defined in
Definition 2.1.7. The halting set is complete for this class [50, 14, 46].
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3.1.13. Theorem. There is a computable function 𝑓 and an 𝑓-alternating pa-
rameterized procedure converging to a set 𝐴 if and only if 𝐴 is truth-table reducible
to Halt.

Proof:
⟹. Let 𝑓 be a computable function and 𝜙 an 𝑓-alternating parameterized
procedure converging to a set 𝐴. The idea is to locate, given an instance 𝑥, the
last change in the output of 𝜙 for varying parameter values, using the halting set.
To this end, let 𝜓𝑥 be a procedure that takes a number 𝑚 as input and searches for
the parameter value at which the output of 𝜙 on input 𝑥 changes for the 𝑚th time.
If 𝜙 changes fewer than 𝑚 times, then 𝜓𝑥 does not halt on input 𝑚. Otherwise,
the output of 𝜓𝑥 is the 𝑚th value of 𝑖 satisfying 𝜙(𝑥, asStr(𝑖)) ≠ 𝜙(𝑥, asStr(𝑖+1)).

Using at most 𝑓(𝑥) queries to Halt, we can find the greatest value of 𝑚 such
that 𝜓𝑥(𝑚) terminates. A truth-table reduction from 𝐴 to Halt may compute
this 𝑚 and output 𝜙(𝑥, asStr(𝜓𝑥(𝑚) + 1)). Thus, the reduction finds the final
decision of 𝜙 regarding membership of 𝑥 in 𝐴.

⟸. Let 𝜓 be the 1-alternating parameterized procedure converging to Halt
that we constructed in the proof of Lemma 3.1.12. We shall use 𝜓 to define a
computable function 𝑓 and an 𝑓-alternating parameterized procedure 𝜙 converging
to 𝐴. On input (𝑥, 𝑘), our 𝜙 simulates the reduction from 𝐴 to Halt to obtain a
truth-table for 𝑥. Let 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑚 be the queries prescribed by this truth-table.
Next, 𝜙 evaluates the truth-table using 𝜓(𝑞1, 𝑘), 𝜓(𝑞2, 𝑘), 𝜓(𝑞3, 𝑘), … , 𝜓(𝑞𝑚, 𝑘) as
decisions for the queries. For sufficiently large values of asInt(𝑘), the queries will
all be answered correctly. Before that, the decisions for the queries as provided
by 𝜓 can each only change from 0 to 1, but never back. Therefore, 𝜙 gets to
evaluate the truth-table with at most 𝑚+1 different sets of answers to the queries.
As a result, 𝜙 changes its decision for a given 𝑥 at most 𝑚 times. Because 𝑚 can
be computed from 𝑥, the function 𝑓(𝑥) = 𝑚 is computable. 2

With regard to the halting set, truth-table reducibility coincides with a weaker
variant, aptly named weak truth-table reducibility [115, 46]. However, it is not as
general as Turing reducibility, which, as seen in Definition 2.1.6, may be adaptive.
The reason for this is that the proof of Theorem 3.1.11 can be changed so that it also
diagonalizes against all computable functions. As we shall soon see, the resulting
set is Turing reducible to the halting set. By Theorem 3.1.11 and Theorem 3.1.13,
it cannot also be truth-table reducible to the halting set. This tells us something
about the sets that can be analyzed in a parameterized framework with undecidable
parameterizations. Looking at 𝑓-alternating parameterized procedures, fewer sets
can be obtained as limits if we require the function 𝑓 to be computable.

We want to adapt the proof of Theorem 3.1.11 so that we also diagonalize
against all computable functions bounding the number of alternations. Therefore,
we interpret the instance part, 𝑥, of the input (𝑥, 𝑘) of our parameterized procedure
as a pair 𝑥 = ⟨𝑥1, 𝑥2⟩. We then use asInt(𝑥1) as the index of a parameterized
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procedure to diagonalize against, and asInt(𝑥2) as the index of a computable
bounding function. Crucially, we do not need to know the time required for
computing the bounding function, or even whether the computation will terminate
at all. We shall increasing the time spent computing the bounding function with
the length of the parameter value, |𝑘|. By doing so, we eventually compute each
terminating function to completion. To be precise, the second procedure, indexed
by asInt(𝑥2), is simulated on 𝑥 for |𝑘| steps. In case the simulation does not finish,
we proceed as if it had produced 0 as output. Otherwise, we use the output of the
simulation as the maximum number of alternations allowed to be made by the
parameterized procedure indexed by asInt(𝑥1). After thus computing the bound,
we turn to simulating the parameterized procedure indexed by asInt(𝑥1). This is
done like in the proof of Theorem 3.1.11, this time using the computed bound
on the number of alternations, instead of a fixed one. Thus, we can diagonalize
against all parameterized procedures that, for some computable function 𝑓, are
𝑓-alternating.

This observation shows that there are sets that are Turing reducible to the
halting set, yet not truth-table reducible to the halting set [50, 14, 46]. Recall
that truth-table reducibility was a more demanding form of Turing reducibility.
Therefore, all sets that are truth-table reducible to the halting set are also Turing
reducible to the halting set. The difference hierarchy was extended by Ershov [53]
to include the class of sets that are Turing reducible to the halting set. In order
to do so, levels of the hierarchy were introduced beyond those with finite indices,
starting at 𝜔, the first infinite ordinal. The sets that are truth-table reducible
to the halting set form the Δ−1

𝜔 level of the transfinite difference hierarchy. For
larger, yet constructible [131], ordinals 𝛼, the Δ−1

𝛼 level matches the class of sets
that are Turing reducible to the halting set [53, 50]. By Post’s theorem [122, 131],
we can fit this class of sets in the arithmetical hierarchy. A set is Turing reducible
to the halting set precisely when it sits at the Δ0

2 level of the arithmetical hierarchy.
In essence, it was recognized by Shoenfield [138] that a set is Turing reducible to

Halt precisely when a convergent parameterized procedure converges to it. This
characterization is known as the limit lemma [115, 46]. The original framing of the
lemma was around approximations that could change only finitely often for any
instance. In terms of 𝑓-alternating parameterized procedures, the characterization
forgoes any computability requirements on 𝑓 and augments Theorem 3.1.13.

3.1.14. Theorem. There is a parameterized procedure converging to a set 𝐴 if
and only if 𝐴 is Turing reducible to Halt.

Proof:
⟹. The same approach as in the proof of Theorem 3.1.13 is applicable. However,
while the required number of queries to Halt is still finite, we no longer have
a computable upper bound for it. Thus, the reduction we obtain need not be a
truth-table reduction. Instead, we obtain a Turing reduction.
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Note that we may use the adaptive nature of Turing reductions and employ a
binary search strategy to locate the final change of the parameterized procedure.
When doing so, the number of queries to Halt scales only as the logarithm of the
number of alternations. In the end, this does not help us, since there need not be
a computable upper bound on this number of alternations.

⟸. The proof of Theorem 3.1.13 does not carry over to the current theorem
immediately. The reduction from 𝐴 to Halt may be adaptive, so we cannot gather
all queries at once. In particular, for certain incorrect answers to the queries, the
reduction may never stop making new queries. Even when the reduction only
makes a finite number of queries, its computation after it has gotten the answers
to the queries need not terminate. While we have no way of answering all queries
correctly, a solution to this is available along the lines of Theorem 3.1.9.

Let 𝜓 be the parameterized procedure that converges to Halt as constructed
in the proof of Lemma 3.1.12. We shall use 𝜓 to define a parameterized procedure
𝜙 converging to 𝐴. On input (𝑥, 𝑘), our 𝜙 simulates the reduction from 𝐴 to Halt
for up to |𝑘| steps. When the reduction queries membership of some 𝑞 in Halt,
the query is answered according to 𝜓(𝑞, 𝑘). The steps needed to compute 𝜓(𝑞, 𝑘)
are not counted toward the number of steps used in simulating the reduction. If
the reduction arrives at a decision within the allotted number of steps, the decision
is propagated by 𝜙. Otherwise, 𝜙 yields ?. For sufficiently long parameter values,
this procedure can simulate the reduction to completion and answers all queries
in agreement with Halt. 2

Earlier, we recovered the class of decidable sets in the parameterized context
via decidable parameterizations. Theorem 3.1.13 and Theorem 3.1.14 can be used
in a similar fashion. By the first, we could call a set a bounded parameterized
limit precisely when it sits at the Δ−1

𝜔 level of the difference hierarchy. The
second suggests to call the sets at the Δ0

2 level of the arithmetical hierarchy the
parameterized limits. Moreover, by Theorem 3.1.9, these two classes are insensitive
to resource bounds that are independent of the parameter value. For example,
suppose the running time of some parameterized procedure 𝜙 is, say, exponential
in the length of the instance part of its input. Note that this resource bound does
not specify its dependency on the parameter value and we assume this dependence
can be anything. Furthermore, assume that 𝜙 is convergent and it converges
to a set 𝐴. From Theorem 3.1.9, we know that there is another parameterized
procedure converging to 𝐴 of which the running time does not depend on the
instance at all. Hence, the fact that 𝜙 has a running time that is exponential in
the length of the instance is irrelevant to the classification of 𝐴. That is, this
running time says nothing about the membership of 𝐴 in either Δ−1

𝜔 or Δ0
2. By

contrast, the specifics of a convergent or direct parameterized procedure do tell us
something about its limit set. Our results regarding the classification of sets on
the basis of the specifics of parameterized procedures is summarized in Table 3.2.

Like what we found in Corollary 3.1.4, our results connect to a school of pa-
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parameterized procedures sets
direct Δ0

1, decidable
𝑓-alternating Δ−1

𝜔 , truth-table reducible to Halt
convergent Δ0

2, Turing reducible to Halt

Table 3.2: The choice of which parameterized procedures to work with determines
which sets occur as limits of our parameterized procedures. We have identified
three classes of sets corresponding to three classes of parameterized procedures.
Note that, in this table, the function 𝑓 is assumed to be computable.

rameterized complexity theory. In the style pioneered by Downey and Fellows [44],
parameterized complexity theory is more permissive than it is with Flum and
Grohe [57]. With Downey and Fellows, a parameter value is no longer required to
be computable as a function of an instance. Owing to this lack of a computability
requirement, we could say that in their framework, a parameter value may be
promised. By Theorem 3.1.14, the existence of a parameterization with which a
set 𝐴 is in a given parameterized complexity class tells us very little about 𝐴.

3.1.15. Corollary. Suppose we are working in a parameterized framework where
parameter values may be promised. Let C be a class of sets that are decidable
in some given parameterized time bound. A set 𝐴 is in C with respect to some
parameterization if and only if 𝐴 is in the Δ0

2 level of the arithmetical hierarchy.

To illustrate this corollary, we turn to fixed-parameter tractability in the
Downey and Fellows framework.

3.1.16. Example. The Downey and Fellows framework deals with parameter-
ized sets, so we first need to settle on a way to deal with classical sets in this
framework. First, observe that a decision procedure for a parameterized set in the
sense of Downey and Fellows can be thought of as a parameterized procedure. We
shall only consider parameterized sets that can be decided by convergent parame-
terized procedures, as defined in Definition 2.2.8. The motivation for this is that,
conceptually, we model resource bounds as a function of the parameter value. For
sufficiently large parameter values, we ought to have enough of a computational
resource at our disposal to be able to decide membership. Increasing the resource
bound beyond that point should not change our decision about membership. Let
us say that a parameterized version of a set 𝐴 is any parameterized set 𝐵 that
satisfies

𝐴 = {𝑥 | ∃𝑘∶ ⟨𝑥, 𝑘⟩ ∈ 𝐵}.
It follows from Theorem 3.1.14 that the sets in Δ0

2 are precisely those to which
a parameterized procedure converges. In other words, there is a parameterized
version of a set 𝐴 if and only if 𝐴 is in Δ0

2. From Theorem 3.1.9 it follows that
this remains true if we confine our attention to parameterized procedures with a
running time as required by fixed-parameter tractability.
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Comparing Corollary 3.1.15 to Corollary 3.1.4, we see that we have gone one
step up in the Δ levels of the arithmetical hierarchy. Because Δ0

1 is the class
of decidable sets, computable parameter values are related to Δ0

1 in the same
way that promised parameter values are related to Δ0

2. These classifications
correspond to the first and last row in Table 3.2. Completing our treatment of
these two extremes, we can contrast Slogan 3.1.6 with the following summary of
Corollary 3.1.15.

3.1.17. Slogan. When parameter values may be promised, a set can be fixed-
parameter tractable precisely if it is in Δ0

2.

3.1.4 Subparameterizations
So far, we have focused mainly on sets that appear as limits of parameterized
procedures. In particular, our focus has been on convergent parameterized proce-
dures. There are parameterized procedures that converge on some point-cofinite
parameterization. We shall now examine in a little more detail the structure of
point-cofinite parameterizations. Recall that in a point-cofinite parameterization,
each instance occurs in all but finitely many slices. More formally, a parameteri-
zation 𝜂 is point-cofinite if it satisfies

∀𝑥∶ ∀∞𝑘∶ 𝑥 ∈ 𝜂𝑘.

We could say that this property is a local property, as it describes the behavior of
the parameterization at individual instances. Parameterizations most commonly
encountered in practice [113] often enjoy a global variant, namely they satisfy

∀𝑘∶ ∀∞𝑘′ ∶ 𝜂𝑘 ⊆ 𝜂𝑘′ . (3.2)

Indeed, this property is sufficient for a parameterization to be a point-cofinite
parameterization, yet it is not necessary. A point-cofinite parameterization 𝜂
may contain a slice that is incomparable to infinitely many others, which would
prevent 𝜂 from adhering to (3.2).

3.1.18. Example. An example of a point-cofinite parameterization that does
not adhere to (3.2) is the parameterization given by

𝜂 = ({𝑥 | 𝑘 is not a substring of 𝑥})𝑘∈𝟚+ .

Since no string 𝑥 has a substring that is longer than |𝑥|, every string 𝑥 is in every
slice 𝜂𝑘 for which we have |𝑥| < |𝑘|. Therefore, 𝜂 is point-cofinite.

Observe that for any two numbers 𝑖 and 𝑗, if we have 𝑖 ≠ 𝑗, then the slice with
parameter value 10𝑖1 is incomparable to that with parameter value 10𝑗1. From
this, it follows that 𝜂 does not satisfy (3.2).
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To ascertain that 𝜂 is indeed a parameterization, we also need to verify that it is
directed. For this, it suffices to note than two slices 𝜂𝑘1

and 𝜂𝑘2
are both included

in the slice 𝜂𝑘1𝑘2
. Indeed, if a string 𝑥 would contain the concatenation 𝑘1𝑘2 as a

substring, then it would also contain both 𝑘1 and 𝑘2 as substrings.

At the same time, a selection of slices from a parameterization such that
the selection does obey (3.2) can always be made. In fact, this subset of the
parameterization, a subparameterization, may be chosen so that it is ordered
linearly by inclusion.

3.1.19. Lemma. Every parameterization has a subset of its slices that forms a
linearly ordered point-cofinite parameterization. Specifically, for every parameteri-
zation 𝜂, there is a set 𝐼 ⊆ 𝟚+ that satisfies

• (𝜂𝑘)𝑘∈𝐼 is a point-cofinite parameterization, and

• for all 𝑘 ∈ 𝐼 and 𝑘′ ∈ 𝐼, we have 𝜂𝑘 ⊆ 𝜂𝑘′ or 𝜂𝑘′ ⊆ 𝜂𝑘.

If, for all 𝑘 and 𝑘′ in 𝟚+, we can effectively decide whether 𝜂𝑘 ⊆ 𝜂𝑘′ holds, then a
set 𝐼 as described above exists that is decidable.

Proof:
Associated with a parameterization 𝜂 is a reflexive and transitive order on the set
of all parameter values, 𝟚+. This order stems from the inclusion order on the slices
of 𝜂. A parameter value 𝑘 is ordered before or at a parameter value 𝑘′ if we have
𝜂𝑘 ⊆ 𝜂𝑘′ . In the presence of such orders, the linearly ordered subsets are called
chains. Accordingly, a chain 𝐶 of parameter values is a subset of 𝟚+ such that for
all 𝑘 ∈ 𝐶 and 𝑘′ ∈ 𝐶 we have 𝜂𝑘 ⊆ 𝜂𝑘′ or 𝜂𝑘′ ⊆ 𝜂𝑘. Certain chains of parameter
values are of particular interest in the context of the current lemma. These are
the chains that dominate all parameter values. A chain 𝐶 is a cofinal chain [1] if
for every parameter value 𝑘 ∈ 𝟚+ there is a parameter value 𝑘′ ∈ 𝐶 such that we
have 𝜂𝑘 ⊆ 𝜂𝑘′ . Setting aside the decidability constraint for a moment, we find that
any cofinal chain of parameter values can serve as a witness set 𝐼 in the current
lemma. Because a parameterization is directed, we can be sure that it contains
cofinal chains.

When the order on parameter values is decidable, a decidable cofinal chain can
be constructed. We do so by going through all parameter values and selectively
including some of them. Whenever a parameter value is included, we implicitly add
the corresponding slice of the parameterization to our subparameterization. Our
criterion for including a parameter value in our aspiring cofinal chain is a greedy
one. Let 𝑘1, 𝑘2, 𝑘3, … be an enumeration of all parameter values. We start our
subparameterization by including 𝑘1. After that, we build our subparameterization
by repeating the following steps.

1: Let 𝑖 be the last number such that 𝑘𝑖 was included in our subparameteriza-
tion.
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2: Find the first number 𝑗 such that each of the slices 𝜂𝑘1
, 𝜂𝑘2

, 𝜂𝑘3
, … , 𝜂𝑘𝑖

is
included in 𝜂𝑘𝑗

. Such a number 𝑗 exists because 𝜂 is directed.

3: Include 𝑘𝑗 in our subparameterization.

This procedure is effective and by construction the resulting subset is ordered lin-
early and cofinal. In each round through these steps, we may resume the search for
the desired number 𝑗 where we finished the previous round. Thus, we may assume
that 𝑗 only increases, which ensures that the subparameterization is decidable. To
check whether a parameter value 𝑘 is included in the subparameterization, we run
the construction until we have 𝑘 = 𝑘𝑗. If 𝑘 is not included at the corresponding
round of our construction, it will never be. 2

If the parameterization we start with includes 𝟚+ as a slice, it has a subparam-
eterization consisting only of that slice. This is a rather uninteresting scenario, so
we shall focus on parameterizations that do not include 𝟚+. Of such parameteriza-
tions, all cofinal subsets contain infinitely many different slices. Any cofinal subset
of a such a parameterization is itself a parameterization after suitably indexing
its elements by binary strings. However, the corresponding subset of the original
index set need not be decidable. If it were, then each convergent parameterized
procedure would converge on some decidable point-cofinite parameterization. This
would mean that we might as well assume that our convergent parameterized
procedures are direct parameterized procedures. In turn, this would violate the
results summarized in Table 3.2.

We can even force the subset of the index set corresponding to a subparam-
eterization to be particularly undecidable: The subset can be made so that it
nor its complement contains an infinite semidecidable set. In other words, there
is a parameterization such that the set of parameter values corresponding to a
particular subparameterization is bi-immune in accordance with Definition 2.1.5.
This claim will be proven as Lemma 3.1.21 shortly.

In preparation for this, it is helpful to have a linear order on the subsets of 𝟚+.
The set inclusion order, ⊆, is not a linear order. A convenient linear order on the
subsets of 𝟚+ comes about when we map a set 𝐴 ⊆ 𝟚+ to the real number

asReal(𝐴) = ∑
𝑥∈𝐴

2− asInt(𝑥).

We order one subset of 𝟚+ before another if its corresponding real number is
smaller than that of the other. That the mapping to real numbers is not injective
is a technical detail that is of no consequence to our analysis. To turn our order
into a true linear order, we need to decide what to do in case the subsets are
different but the corresponding real numbers are the same. In that case, one of
the subsets is infinite and the other is not, and we may simply order the infinite
subset before the finite one.
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When a set 𝐴 is the limit of a parameterized procedure, the real number
asReal(𝐴) is said to be computably approximable [9]. Historically, computably
approximable real numbers have also been called limit computable real numbers
[66]. Justifying this terminology, a parameterized procedure 𝜙 that converges
to a set 𝐴 can be thought of as approximating asReal(𝐴). Considering, for a
parameter value 𝑘, the set

𝐴𝜙,𝑘 = {𝑥 | 𝜙(𝑥, 𝑘) = 1},

we find that the set of real numbers {asReal(𝐴𝜙,𝑘) | 𝑘 ∈ 𝟚+} has a single limit
point, namely asReal(𝐴). Moreover, if the parameterized procedure is 𝑓-alternating
for some computable function 𝑓, the real number is said to be 𝜔-computably
enumerable [9]. Thus, the class of computably approximable real numbers is Δ0

2,
while Δ−1

𝜔 is the class of 𝜔-computably enumerable real numbers.
A parameterized procedure 𝜙 is called normed [9] if it satisfies, for all 𝑥 and 𝑘,

𝜙(𝑥, 𝑘) = 1 ⟹ asInt(𝑥) ≤ |𝑘|.

This definition is motivated purely by practical considerations and it holds no
information about the limit of the parameterized procedure. Nevertheless, normed
procedures will be of use to us in the next two lemmas.

3.1.20. Lemma. Let 𝜙 be an 𝑓-alternating parameterized procedure that converges
to a set 𝐴. There exists a normed (1 + 𝑓)-alternating parameterized procedure that
converges to 𝐴 and, on every input (𝑥, 𝑘), terminates within 𝒪(|𝑘|) steps. Here,
the hidden constant does not depend on 𝜙.

Proof:
This lemma is a minor modification of Theorem 3.1.9. The parameterized proce-
dure constructed in the proof of that theorem can be made into a normed parame-
terized procedure. To that end, on input (𝑥, 𝑘), the procedure first checks whether
asInt(𝑥) is at most |𝑘|. If not, it outputs ? and does not proceed any further. The
extra computation can be performed in a number of steps bounded linearly in |𝑘|. 2

Given a normed parameterized procedure 𝜙 and two parameter values 𝑘, 𝑘′, it
is decidable whether asReal(𝐴𝜙,𝑘) ≤ asReal(𝐴𝜙,𝑘′) holds. For this, we run 𝜙 on
the first max{asInt(𝑘), asInt(𝑘′)} instances 𝑥, once with the parameter value 𝑘
and once with 𝑘′. The first instance on which 𝜙 outputs 1 with only one of the two
parameter values determines which of asReal(𝐴𝜙,𝑘) and asReal(𝐴𝜙,𝑘′) is bigger.
If no such instance is found, then the two real numbers are equal. In the case
where the running time of 𝜙 is bounded linearly in the length of the parameter
value, such a decision can be made within a stringent time bound. Specifically, a
decision can be made in a number of steps that is quadratic in |𝑘| + |𝑘′|.

We can now show that there are parameterizations with subparameterizations
of which the corresponding set of parameter values is highly undecidable.
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3.1.21. Lemma. There is a parameterization with a subparameterization of which
the corresponding subset of parameter values is bi-immune.

Proof:
Let 𝐴 be a set such that asReal(𝐴) is computably approximable, but not 𝜔-com-
putably enumerable. Because the inclusion of Δ−1

𝜔 in Δ0
2 is strict, such a set 𝐴

exists. Furthermore, let 𝜙 be a normed parameterized procedure converging to 𝐴
with a running time bounded linearly in the length of the parameter value. Such
a procedure exists by Lemma 3.1.20. Lastly, define a set of parameter values

𝐶 = {𝑘 | asReal(𝐴𝜙,𝑘) < asReal(𝐴)},

reminiscent of a Dedekind cut. Note that the set of real numbers

{asReal(𝐴𝜙,𝑘) | 𝑘 ∈ 𝟚+}

has a single limit point, asReal(𝐴). Therefore, the set 𝐶 defines a subparameteri-
zation of the point-cofinite parameterization

({𝑥 | 𝜙(𝑥, 𝑘) = 𝐴(𝑥) and asInt(𝑥) ≤ |𝑘|})𝑘∈𝟚+

on which 𝜙 converges to 𝐴. We claim that both 𝐶 and its complement do not
contain any infinite semidecidable subset, and thus that 𝐶 is bi-immune.

Because 𝜙 is normed, the order on the real numbers associated with the
parameter values is decidable. Moreover, the set of real numbers associated with 𝐶
contains no greatest element. This allows an argument similar to the one used for
Lemma 3.1.19. If 𝐶 contains an infinite semidecidable subset, there is an infinite
decidable set {𝑘1, 𝑘2, 𝑘3, …} ⊆ 𝐶 satisfying

∀𝑖 < 𝑗∶ asReal(𝐴𝜙,𝑘𝑖
) < asReal(𝐴𝜙,𝑘𝑗

).

Now, consider a parameterized procedure that maps (𝑥, asStr(𝑖)) to 𝜙(𝑥, 𝑘𝑖). The
approximation of asReal(𝐴) corresponding to this parameterized procedure is a
monotonically increasing one. Accordingly, for the computable function 𝑓 that
maps 𝑥 to 2asInt(𝑥), this parameterized procedure is 𝑓-alternating. However, 𝐴 was
defined so that it was not the limit of an 𝑓-alternating parameterized procedure
for any computable function 𝑓. Hence 𝐶 does not contain an infinite semidecidable
subset. A similar argument, inverting the order, holds for the complement of 𝐶,
completing the proof that 𝐶 is bi-immune. 2

The details of the above proof are akin to those used by Jockusch [88] in his
study of sets with “selector” functions. Such functions show that a set has some
structure, especially if we impose a polynomial bound on the running time of the
functions [136].
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3.1.22. Definition. A set 𝐴 is p-selective if there is a function 𝑓∶ 𝟚+× 𝟚+ → 𝟚+

that is computable in polynomial time and satisfies, for all strings 𝑥, 𝑦,

• 𝑓(𝑥, 𝑦) ∈ {𝑥, 𝑦}, and

• 𝑥 ∈ 𝐴 ∨ 𝑦 ∈ 𝐴 ⟹ 𝑓(𝑥, 𝑦) ∈ 𝐴.

Exploiting the decidability of the order on the real numbers associated with
parameter values further, we find a strengthening of Lemma 3.1.21. This shows
that there are sets that are at the same time both highly undecidable and rich in
structure.

3.1.23. Theorem. There is a parameterization with a subparameterization of
which the corresponding subset of parameter values is bi-immune, yet p-selective.

Proof:
The bi-immune set 𝐶 constructed in the proof of Lemma 3.1.21 is also p-selective.
Given parameter values 𝑘1, 𝑘2, we can find which is associated with the smallest
real number in a number of steps that is bounded polynomially in |𝑘1| + |𝑘2|. If
any of the parameter values is in 𝐶, the one associated with the smallest real
number is. 2

The existence of a p-selective bi-immune set was claimed before by Goldsmith,
Joseph, and Young [70]. However, the proof that was provided was a convoluted
finite injury priority argument [see also 46, Section 2.11]. In our parameterized
framework, such arguments can be made more transparent, as demonstrated by
the proofs of Lemma 3.1.21 and Theorem 3.1.23. The number of alternations of
a parameterized procedure is related to the number of injuries in a finite injury
construction. In that sense, our proof does not differ from the original proof.
However, we feel that by their framing, our proofs contribute more to an intuitive
understanding of why the statements are true.
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3.2 as Computational Tractability
The computational complexity of a set is focused predominantly on the worst-
case or average-case complexity of its instances. This has been so since the
identification of efficient computability by Cobham and Edmonds around 1965 [for
some background, see 68]. Intractability results [34, 63] generally consider the
hardest instances, while average-case complexity looks at complexity of the bulk.
Yet, even very hard sets can have simple instances and often lots of them.

The indiscriminate judgment of the computational complexity of sets was
addressed by Lynch [102] in 1975. She dealt with the distribution of complexity
inside sets by examining intrinsically hard subsets. Although fixed-parameter
tractability would only be established some two decades later [41], a parameterized
computational complexity theory was thus started. In this section, we shall build
a parameterized theory of computational complexity on these early foundations.
While the traditional parameterized classes are easily recovered, our analysis will be
concerned with parameterizations as independent measures of complexity. Much
of our theory revolves around collections of parameterizations that put a given set
in a parameterized complexity class. Such collections function as an interface to
the complexity of the sets that gave rise to them. Moreover, they reveal that no
practically fixed-parameter tractable sets have optimal parameterizations.

Synopsis

Our investigation of parameterized computational complexity theory starts off in
Section 3.2.1 with rediscovering standard parameterized complexity classes. We
shall arrive at these classes in a way that showcases their relation to classical
computational complexity theory. The guiding insight, here, is that intractable
decision problems may still have sets of instances on which membership can be
decided easily. We have seen examples of this in Section 1.2.2. Compared to the
more empirical approach to parameterized complexity classes that is commonplace,
our approach is theoretical and more systematic.

In Section 3.1, we found that parameterizations deserve to be studied inde-
pendently of decision problems. Our framework for parameterized complexity
theory readily isolates parameterizations as distinct entities and makes such a
study possible. This is helped greatly by the theoretical quality of our approach
to parameterized complexity classes. A structural analysis of parameterizations
is carried out in Section 3.2.2. The way parameterizations relate to each other
makes that parameterizations form a rich algebraic structure. We show that this
structure doubles as a ranking of parameterizations.

Having established a way to rank parameterizations, we ask under what
circumstances optimal parameterizations exist. This question is addressed for
a nonuniform parameterized complexity theory in Section 3.2.3. The uniform
version is the subject of Section 3.2.4. As it turns out, for most problems that
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arise naturally, there are no optimal parameterizations among those that make
the problem fixed-parameter tractable.

Previously, for a given problem we looked at whether parameterizations exist
that make the problem fixed-parameter tractable. We found that this was not
sensitive to variations in parameterized computational tractability. Instead, we
should look at the collective of parameterizations that make the problem fixed-
parameter tractable. The observation that most natural problems do not have
optimal parameterizations is a result of this new perspective.

3.2.1 Stratified Computational Complexity
The intrinsically hard parts of a set examined by Lynch are those on which no
decision procedure is efficient infinitely often. This idea can be made precise using
polytime-approximations. A hard part of a set 𝐴, then, is a selection of instances
of which no polytime-approximation for 𝐴 is able to decide infinitely many. Recall
from Definition 2.2.11 that the elements of which an approximation is able to
decide membership make up the domain of the approximation.
3.2.1. Definition. A set 𝐶 is a polytime-core of a set 𝐴 if for every polytime-
approximation 𝜙 for 𝐴 the intersection 𝐶 ∩ dom(𝜙) is finite.

A set that is decidable in polynomial time does not have an infinite polytime-
core. Lynch [102] observed that the converse is true as well: Every set outside P
has an infinite polytime-core. Note that a polytime-core of a set need not be a
subset of that set. If it is, it is known as a proper core. We shall give a name to a
kind of dual to a core as well.
3.2.2. Definition. A set 𝑆 is a polytime-segment of a set 𝐴 if there is a polytime-
approximation 𝜙 for 𝐴 such that we have 𝑆 = dom(𝜙).

Replacing the polytime designator by a function 𝑡 we obtain the definition
of a 𝑡-segment. When we do not care about constant multiplicative factors, we
resort to the class of functions 𝒪(𝑓) and obtain the definition of an 𝒪(𝑓)-segment.
For these last two cases, the fact that the resource being bounded is time is left
implicit.
Thus, a set is a polytime-core if it has a finite intersection with every polytime-
segment. Note that these definitions are free from any considerations regarding
density. The only distinction made is between finite and infinite subsets in the
definition of a polytime-core.

3.2.3. Example. We can illustrate the concept underlying polytime-cores and
polytime-segments in order to get a more intuitive understanding. The region
highlighted in Figure 3.1a represents a polytime-segment and the region highlighted
in Figure 3.1b represents a polytime-core. Note that membership in a polytime-
core itself need not be hard to decide, as witnessed by the simple boundary of the
polytime-core in Figure 3.1b.
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𝐴

(a) A polytime-segment. Within
the polytime-segment, there is a
simple boundary between the mem-
bers of 𝐴 and the nonmembers of 𝐴.

𝐴

(b) A polytime-core. Within the
polytime-core, the members of 𝐴
and the nonmembers of 𝐴 cannot
be separated easily.

Figure 3.1: We visualize the set of all strings as a bounded surface and depict a
set 𝐴 as a shaded region. Where the line between the inside of 𝐴 and the outside
of 𝐴 is jagged, 𝐴 is hard to distinguish from its complement.

Subsets of polytime-cores are polytime-cores for the same set. Perhaps sur-
prisingly, this means that, for any set, the empty set is a polytime-core. While
this may be counterintuitive, it is of no concern technically. Likewise, if we add a
finite number of elements to a core or remove a finite number of elements from
a core, we still have a core. This complicates thinking of the members of a core
as inherently hard instances of a set. Any specific instance can arbitrarily be
made part of, or excluded from a polytime-core. However, adding or removing
an infinite number of elements to a core is not always possible. We can order a
collection of cores by inclusion up to finite variations, meaning that a core 𝐷 is
greater than a core 𝐶 if

• 𝐷 ∖ 𝐶 has infinitely many elements, and

• 𝐶 ∖ 𝐷 has finitely many elements.

This order is a partial order on any collection of sets. For some sets the collection
of polytime-cores contains a maximal element, as discussed on page 49, with
respect to inclusion up to finite variations. If this is the case, the set is split into
an easy part and a hard part.

3.2.4. Theorem. A set has a maximal (up to finite variations) polytime-core if
and only if it has a maximal polytime-segment.

Proof:
⟸. The complement of a maximal polytime-segment of a set is a polytime-core
of that set: Otherwise, some polytime-approximation of the set would decide



86 Chapter 3. Parameterizations

infinitely many instances outside the polytime-segment. By combining polytime-
approximations, these infinitely many instances could be added to our polytime-
segment, in violation of its maximality.

Any polytime-core that is the complement of a polytime-segment cannot be
extended by infinitely many instances, hence such a core is a maximal polytime-
core.

⟹. We claim that the complement of every maximal polytime-core of a set 𝐴
is a polytime-segment of 𝐴. Suppose, toward a contradiction, that 𝐶 is a maximal
polytime-core of 𝐴 and that the complement of 𝐴 is not a polytime-segment of 𝐴.
Let 𝑆1, 𝑆2, 𝑆3, … be an enumeration of the polytime-segments of 𝐴. Note that
since each segment corresponds to an approximation for 𝐴, of which there are at
most countably many, there are at most countably many segments. Furthermore,
although it is not relevant for this proof, we note that this enumeration will be
nonuniform. Now, for all 𝑗, there are infinitely many elements in the comple-
ment of 𝐶 outside the polytime-segment ⋃𝑖≤𝑗 𝑆𝑖. Consequently, we would be
able to extend 𝐶 with infinitely many elements, one for each 𝑗, contradicting
the maximality of 𝐶. Hence, the complement of a maximal polytime-core of 𝐴
must be a polytime-segment of 𝐴. Being the complement of a polytime-core, this
polytime-segment is maximal. 2

It follows that the complement of a maximal polytime-segment is a maximal
polytime-core. Because polytime-segments are necessarily in P, we get the follow-
ing.

3.2.5. Corollary. For any given set, a maximal polytime-core, if it exists, is
in P.

Of course, within a maximal polytime-core 𝐶 of a set 𝐴, membership of an
instance in 𝐴 is hard to decide. Even though 𝐶 is in P, no polytime-approximation
for 𝐴 decides membership in 𝐴 for infinitely many elements of 𝐶.

Recall that a set is outside P precisely when it has an infinite polytime-
core [102]. Some sets are so far removed from P that they have no infinite polytime-
segments. This is a form of immunity against P. In line with Theorem 3.2.4, we
have an elegant characterization of the sets that are bi-immune for P in terms of
polytime-cores. This alternative characterization was already observed by Balcázar
and Schöning [18] [see also 27].

3.2.6. Theorem. A set 𝐴 is P-bi-immune if and only if 𝟚+ is a polytime-core
of 𝐴.

Proof:
⟸. We shall prove the contrapositive formulation of the claim, namely that if
𝐴 is not P-bi-immune, then 𝟚+ is not a polytime-core of 𝐴. In case 𝐴 is not
P-bi-immune, there is an infinite set 𝑆 ∈ P that is either entirely inside of 𝐴, or
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entirely outside of 𝐴. Either way, we can define a polytime-approximation for 𝐴
of which 𝑆 is the domain. As 𝑆 is an infinite subset of 𝟚+, it cannot be the case
that 𝟚+ is a polytime-core of 𝐴.

⟹. In a similar vein, if 𝟚+ is not a polytime-core of 𝐴, then there is a
polytime-approximation for 𝐴 with an infinite domain 𝑆. Because 𝑆 is the domain
of a polytime-approximation for 𝐴, both 𝑆 ∩ 𝐴 and 𝑆 ∩ 𝐴∁ are in P. Since 𝑆 is
infinite, at least one of these sets is infinite, from which it follows that 𝐴 cannot
be P-bi-immune. 2

Thus a set is P-bi-immune if it has the largest polytime-core possible. In
general, we do not care for any easily recognizable redundancy in a set. Therefore,
it is useful to give a name to sets that fall apart into an easy and a hard part. In
other words, we are interested in sets with a maximal polytime-core.

3.2.7. Definition. A set is almost P-bi-immune if it has a maximal polytime-
core.

This definition builds on the notion of “almost P-immune” sets, which are defined
as the disjoint union of a P-immune set and a set in P. The equivalence of this
last definition to one involving maximal proper polytime-cores was observed by
Orponen [116].

Note that sets in P, and finite sets in particular, have maximal polytime-cores
and are therefore almost P-bi-immune. This may seem somewhat peculiar, but is
in agreement with the definitions used by Orponen [116] and of no objection in
our theory.

With polytime-segments and polytime-cores we make no distinction between
the members and the nonmembers of a set. Segments as well as cores of a set are
maximal if they cannot be extended by infinitely many members or nonmembers
of the set. For segments, this extension must be made in uniform fashion, while
for cores it need not. In [118, 117], sets of which every polytime-segment can be
extended by infinitely many members into a larger polytime-segment are called
P-levelable. Thus, conceptually, a P-levelable set can be approximated from
within by a sequence of polytime-segments, each segment infinitely larger than the
one before. For our analysis, we need a more general definition that covers sets
of which every polytime-segment can be extended by infinitely many arbitrary
instances. That is, we do not want to confine our attention to just the members of
a set. While tempting, such sets should not be called P-bi-levelable: That name,
which does not occur in the literature, would more naturally describe sets that are
P-levelable and have a P-levelable complement. For us, either being P-levelable
or having a P-levelable complement suffices.

3.2.8. Definition. A set is P-semi-levelable if it has no maximal polytime-
segment.
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By Theorem 3.2.4 and in line with the work of Orponen, Russo, and Schöning [118],
a set is P-semi-levelable precisely when it is not almost P-bi-immune. Furthermore,
every P-levelable set is P-semi-levelable. It was observed by Orponen, Russo, and
Schöning [117] that very many (natural) intractable sets are P-levelable. As a
consequence, we find that there are many P-semi-levelable sets.

Having two complementary definitions, almost P-bi-immune and P-semi-
levelable, may seem superfluous. On page 107, however, we shall take these
notions into a parameterized setting, where they will no longer be complementary.

The structure of the collection of polytime-segments of a set tells us something
about how computational complexity is distributed over its instances. This is
especially true when the set at hand is P-semi-levelable. At a conceptual level, the
collection of polytime-segments of a set holds information about how the set relates
to P. Every polytime-segment of a set represents a part of the set that is decidable
in polynomial time and that is in that sense “in P”. The collection of polytime-
segment thus pulls the computational complexity of a set apart into layers: It
provides a stratified view of computational complexity. This insight inspires the
definition of a complexity class that lifts P into a setting of parameterized analysis.
One way to formalize this lifting is by means of the nonuniform operator Xnu.

3.2.9. Definition. A set 𝐴 is in XPnu with parameterization 𝜂 if for every
parameter value 𝑘, the set 𝜂𝑘 is a polytime-segment of 𝐴.

Lifting P to different fields of analysis is not new and several ways of doing
so have been studied previously. Using ∃ as an operator, the nondeterministic
counterpart, NP, of P has been obtained as ∃P. In probabilistic complexity theory,
the BP operator was derived from the complexity class BPP by Schöning [134].
This operator was then used to define various probabilistic complexity classes
based on their deterministic counterparts.

The class XPnu is nonuniform in two ways. Firstly, a set may be in XPnu
without there being a procedure to instantiate polytime-approximations from
their corresponding parameter values. Secondly, even if there was, the parameter
dependence of the polynomial time bounds of the approximations may not be of a
computational nature. These considerations spur a fully uniform alternative to
the nonuniform Xnu operator. Corresponding parameterized complexity classes
are called strongly uniform by Downey and Fellows [44].

3.2.10. Definition. A set 𝐴 is in XP with parameterization 𝜂 if there is a
direct parameterized procedure 𝜙 and a computable function 𝑓 satisfying

• 𝜂 is the parameterization corresponding to 𝜙 in accordance with Defini-
tion 2.2.9, and

• for every parameter value 𝑘, with 𝑡𝑘 mapping 𝑛 to 𝑓(𝑘) ⋅ 𝑛𝑓(𝑘), the partial
application of 𝜙 to 𝑘 yields a 𝑡𝑘-approximation for 𝐴.
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Here, the partial application of 𝜙 to 𝑘 is the function that maps an instance 𝑥
to 𝜙(𝑥, 𝑘).

Note that we indicate nonuniformity with the nu-subscript, but use no mod-
ifier for the fully uniform case. In other places, e.g. https://complexityzoo.
uwaterloo.ca/Complexity_Zoo:X, special notation is used instead to denote uni-
form classes.

In the current century, the class XP has been called slicewise P, giving a name
to the X operator [56]. However, in earlier work, Downey and Fellows [44] used
“slicewise P” to denote a different complexity class, namely FPT. The definition
of XP is very permissive in that the exponent in the running time of the polytime-
approximations may be unbounded. In FPT, the class of fixed-parameter tractable
sets, this freedom is restricted.

3.2.11. Definition. A set 𝐴 is in FPTnu with parameterization 𝜂 if there is a
polynomial 𝑝 such that for every parameter value 𝑘 the set 𝜂𝑘 is an 𝒪(𝑝)-segment
of 𝐴. Here, the hidden constant may depend on 𝑘.

The slices of a parameterization with which a set is in FPTnu are polytime-
segments where the degree of the polynomials is bounded by a constant. Observe
that this amounts to a reversal of quantifiers when compared to XPnu. With
FPTnu there is a single polynomial that is used for all parameter values. On the
other hand, with XPnu every parameter value may have a different polynomial
associated to it. Since we have P = ⋃𝑐 TIME(𝑛𝑐), we can express this reversal
of quantifiers symbolically as

XPnu = X( ⋃
𝑐

TIME(𝑛𝑐))nu

and
FPTnu = ⋃

𝑐
(XTIME(𝑛𝑐)nu).

The fully uniform version of these equalities directs us to the definition of
fixed-parameter tractability.

3.2.12. Definition. A set 𝐴 is in FPT with parameterization 𝜂 if there is a
direct parameterized procedure 𝜙, a computable function 𝑓, and a polynomial 𝑝
satisfying

• 𝜂 is the parameterization corresponding to 𝜙, and

• for every parameter value 𝑘, the partial application of 𝜙 to 𝑘 yields an
(𝑓(𝑘) ⋅ 𝑝)-approximation for 𝐴.

This definition is not too different from either of the traditional definitions
that we have seen in Section 1.3. We observed in Example 3.1.16 that decision

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:X
https://complexityzoo.uwaterloo.ca/Complexity_Zoo:X
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procedures in the framework of Downey and Fellows roughly correspond to param-
eterized procedures in our framework. Accordingly, their notion of fixed-parameter
tractability matches Definition 3.2.12 rather nicely. A comparison with fixed-
parameter tractability in the framework of Flum and Grohe can also be made.
Suppose we have a set 𝐴 that is fixed-parameter tractable in that framework.
This means that to each string 𝑥 a parameter value 𝜅(𝑥) is associated with which
we can bound the running time of a decision procedure for 𝐴 appropriately. The
mapping of strings to parameter values can be turned into a point-cofinite param-
eterization in our framework as

𝜂 = ({𝑥 | asInt(𝜅(𝑥)) ≤ asInt(𝑘)})𝑘∈𝟚+ .

From the fact that 𝐴 is fixed-parameter tractable in the Flum and Grohe framework,
it follows that it is in FPT with parameterization 𝜂. In Section 3.4.4, the
function 𝜅 will reappear as a polytime-computable parameter estimator for the
parameterization 𝜂 defined above.

In our definitions of XP and FPT, Definition 3.2.10 and Definition 3.2.12,
we have required the parameterized procedures to be direct. As a consequence of
this, a parameterization 𝜂 with which a set is in XP or FPT must be decidable.
Moreover, the computation time required for deciding whether an instance 𝑥
is in slice 𝑘 of 𝜂 is in line with the time bound for the respective class. For
example, for FPT, there is a computable function 𝑓 and polynomial 𝑝 such that
deciding whether 𝑥 is in 𝜂𝑘 is possible in a time bounded by 𝑓(𝑘) ⋅ 𝑝(|𝑥|). On
page 28 in Section 1.3, we argued that it is reasonable to require decidability of
parameterizations within such time bounds.

As alluded to in Section 1.3, many sets have been found to be fixed-parameter
tractable with more or less natural parameterizations [42, 113, 37]. Moreover,
parameter values associated with typical instances are small in practice [45,
44]. In that way, fixed-parameter tractability is a successful notion of efficient
computability.

3.2.13. Example. A less practically motivated way to obtain sets and parameter-
izations that are in FPT is available for p-cylinders as defined in Definition 2.1.13.
Given a decidable p-cylinder 𝐴 and a corresponding isomorphism 𝑔∶ 𝟚+ → 𝟚+×𝟚+,
denote by 𝑔1 the first component of the image of 𝑔. Thus, if 𝑔 maps 𝑥 to (𝑦, 𝑧),
then 𝑔1 maps 𝑥 to 𝑦. Now, consider the point-cofinite parameterization based
on 𝑔1 that is given by

𝜂 = ({𝑥 | asInt(𝑔1(𝑥)) ≤ asInt(𝑘)})𝑘∈𝟚+ .

To see that 𝐴 is in FPT with 𝜂, fix a decision procedure 𝜙 for 𝐴 and consider
the direct parameterized procedure that, on input (𝑥, 𝑘), proceeds as follows.

1: If asInt(𝑔1(𝑥)) is greater than asInt(𝑘), return ?.
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2: Else, since we have 𝑥 ∈ 𝜂𝑘 and must decide on membership of 𝑥 in 𝐴,
return the output of 𝜙 on input 𝑔1(𝑥).

The running time of the first step of this procedure can be bounded polynomially
in |𝑥|, while that of the second step can be bounded purely as a function of 𝑘.
Thus, this parameterized procedure witnesses that 𝐴 is in FPT with 𝜂.

When a set 𝐴 is in a parameterized complexity class, for example FPT, with
a parameterization 𝜂, we write (𝐴, 𝜂) ∈ FPT. We remark that members of
(nonuniform) XP need not be in (nonuniform) FPT [44, 57]. Likewise, the classes
XP and FPT are strictly smaller than their nonuniform counterparts, XPnu and
FPTnu [43]. These relations are visualized in Figure 3.2.

⊂ ⊂

⊂ ⊂

FPT

XP FPTnu

XPnu

Figure 3.2: The relations between several uniform and nonuniform parameterized
complexity classes.

3.2.2 Order Theory for Parameterizations
We are now in a position to study the distribution of complexity inside a set in
terms of the parameterizations that put the set in one of our classes. To this end,
two collections of parameterizations that put a given set in some parameterized
complexity class are of central importance.

3.2.14. Definition. Given a parameterized complexity class C and a set 𝐴, we
denote the collection of parameterizations with which 𝐴 is in C by

ℱC (𝐴) = {𝜂 | (𝐴, 𝜂) ∈ C}.

More generally, we consider the parameterizations in light of a parameterized
complexity class irrespective of a particular set,

ℒC = {𝜂 | ∃𝐴∶ (𝐴, 𝜂) ∈ C}.

As with polytime-cores, we are not so much interested in finite variations on
the slices of a parameterization. On the basis of Theorem 3.2.4, we do not expect
any meaningful theory to be possible that is sensitive to finite variations. Instead,
we are mostly interested in parameterizations of which the slices grow in infinitely
large steps.
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3.2.15. Definition. A parameterization 𝜂 has imix (infinitely many infinite
extensions) if for every parameter value 𝑘 there is a parameter value 𝑘′ such that
the set 𝜂𝑘′ ∖ 𝜂𝑘 is infinite.

Conceptually, a parameterization that has imix embodies a form of levelability.
Instead of referring to polytime-segments, this form of levelability pertains to the
slices of the parameterization. Of course, for some set of interest, these slices may
be polytime-segments.

Recall that a parameterization is a directed cover. Because of that, if 𝜂𝑘′ ∖ 𝜂𝑘
is infinite, there exists a slice that is an infinite superset of 𝜂𝑘.

3.2.16. Example. All slices of the length parameterization of Example 2.2.3 are
finite. Therefore, the length parameterization does not have imix. Conversely, each
slice of the p-cylinder parameterizations of Example 3.2.13 introduces infinitely
many elements over the preceding slices. Hence, these parameterizations do have
imix.

The length parameterization is not very interesting because any decidable
set 𝐴 is fixed-parameter tractable with it. Indeed, the running time of a decision
procedure for 𝐴 on any finite set of instances can be bounded by a constant. More
broadly, there is no real benefit in using a direct parameterized procedure of which
the associated parameterization does not have imix. Such a parameterization 𝜂
contains a slice, 𝑆, that has no infinite extensions and if 𝐴 is in FPT with 𝜂,
then 𝑆 is a polytime-segment of 𝐴. Deciding membership in 𝐴 for elements of 𝑆
requires no parameterizations. Additionally, outside 𝑆, the parameterization 𝜂 is
no more useful than the length parameterization.

There may be more than one direct parameterized procedure converging to
the same set. As the corresponding parameterizations, say 𝜂 and 𝜁, could be
different, we would like to be able to compare parameterizations. In order to do
so, we need an order on the parameterizations. This order should be meaningful
to our parameterized theory of computational complexity. In particular, we desire
membership in a given set 𝐴 in one of our parameterized complexity classes,
say FPT, to be somehow preserved by this order. If 𝐴 is in FPT with 𝜂 and the
order tells us to prefer 𝜂 over 𝜁, than 𝐴 should also be in FPT with 𝜁.

Intuitively, comparing our parameterizations 𝜂 and 𝜁 is most relevant when
the parameterized procedures have similar parameterized running times. In
that case, it may be possible to argue in favor of one procedure over the other
based on the parameterizations alone. If the parameterized running times are
similar, the preferred procedure, for an instance 𝑥, is the one corresponding to the
lowest value of μ𝜂(𝑥) and μ𝜁(𝑥). We can take this idea further and compare the
parameterizations on all instances at once. Given two parameterizations, we look
at bounds on the minimization function of the one in terms of the minimization
function of the other. Thus, consider the required minimum length of a parameter
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value in one parameterization for instances of a bounded parameter length in
another parameterization.

3.2.17. Definition. Given a parameterization 𝜂 and a parameterization 𝜁, the
gap function, gap𝜂,𝜁 ∶ N → N ∪ {∞}, is defined as

gap𝜂,𝜁(𝑚) = max{μ𝜂(𝑥) | 𝑥 ∈ 𝟚+ and μ𝜁(𝑥) ≤ 𝑚},

where we take the maximum of the empty set to be 0.

The name ‘gap’ suggests that we should take the maximum not of μ𝜂(𝑥), but
of μ𝜂(𝑥) − 𝑚. This more semantically correct version can be obtained from the
version as defined above and vice versa. As a result, the choice of a definition is
theoretically inconsequential. Our stripped-down definition is, however, slightly
more convenient to work with.

Comparing parameterizations using the gap function enables us to define a
nonuniform and a uniform order on parameterizations. We would like to formalize
when a parameterization 𝜂 is to be preferred over, or below, another. This is
the case, when a bound on minimum length of a parameter value for the other
parameterization can be turned into such a bound for 𝜂. Similar orders have
been considered by Komusiewicz and Niedermeier [95] and Fellows, Jansen, and
Rosamond [54].

3.2.18. Definition. A parameterization 𝜂 is below a parameterization 𝜁 in the
nonuniform order ≼nu if we have, for all 𝑚,

gap𝜂,𝜁(𝑚) < ∞.

Alternatively, this nonuniform order can be related to the inclusion of the
slices of one parameterization in the slices of another. If a parameterization 𝜂 is
below a parameterization 𝜁, then all slices of 𝜁 are included in slices of 𝜂, but not
the other way around. Informally, 𝜂 takes bigger steps in covering 𝟚+ than 𝜁.

3.2.19. Lemma. The following statements about parameterizations 𝜂 and 𝜁 are
equivalent.

1. 𝜂 ≼nu 𝜁.

2. ∀𝑘∶ ∃𝑘′ ∶ 𝜁𝑘 ⊆ 𝜂𝑘′ .

Proof:
1 ⟹ 2. Let 𝜁𝑘 be any slice of 𝜁 and observe that for all 𝑥 ∈ 𝜁𝑘, we have
μ𝜁(𝑥) ≤ |𝑘|. Hence, by definition of the gap function, for all 𝑥 ∈ 𝜁𝑘, we also have
μ𝜂(𝑥) ≤ gap𝜂,𝜁(|𝑘|). Assuming we have 𝜂 ≼nu 𝜁, this latter bound is finite and the
elements of 𝜁𝑘 can thus be found spread over finitely many slices of 𝜂. Specifically,
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the elements of 𝜁𝑘 are spread over the slices of 𝜂 corresponding to parameter
values with a length of at most gap𝜂,𝜁(|𝑘|). Moreover, because parameterizations
are directed, there is a parameter value 𝑘′ such that we have

⋃
𝑗 with

|𝑗|≤gap𝜂,𝜁(|𝑘|)

𝜂𝑗 ⊆ 𝜂𝑘′ .

With this 𝑘′, we also have 𝜁𝑘 ⊆ 𝜂𝑘′ .
2 ⟹ 1. Let 𝑚 be any constant and consider the set of strings

𝑆𝑚 = {𝑥 | μ𝜁(𝑥) ≤ 𝑚} = ⋃
𝑗 with
|𝑗|≤𝑚

𝜁𝑗.

We need to show that max{μ𝜂(𝑥) | 𝑥 ∈ 𝑆𝑚} is finite. Observe that 𝑆𝑚 is built
from finitely many slices of 𝜁. Because parameterizations are directed, there is
therefore a parameter value 𝑘 such that we have 𝑆𝑚 ⊆ 𝜁𝑘. Hence, by assumption,
there is a parameter value 𝑘′ such that we also have 𝑆𝑚 ⊆ 𝜂𝑘′ . From this, it
follows that the value of μ𝜂 cannot be greater than |𝑘′| for elements of 𝑆𝑚. As 𝑚
was arbitrary, this proves that we have 𝜂 ≼nu 𝜁. 2

We note that two parameterizations 𝜂 and 𝜁 may be equivalent according
to ≼nu, while the growth rate of μ𝜂 is wildly different from that of μ𝜁. For
instance, for all 𝑥 we may have μ𝜂(𝑥) = 22μ𝜁(𝑥)

. However, such a relation between
parameterizations is in itself no reason to prefer one over the other. To see why,
consider the running time of a direct parameterized procedure 𝜙 that witnesses
that some set is in FPT. This running time can be bounded from above by the
product of a function of the parameter value and a polynomial of the length of the
instance. That is, there is a computable function 𝑓 and a polynomial 𝑝 such that
the running time of 𝜙 on any two input strings 𝑥 and 𝑘 is at most 𝑓(𝑘) ⋅ 𝑝(|𝑥|).
The function of the parameter value, 𝑓, provides a specific relationship between
parameter values and running times. Even if we have μ𝜂(𝑥) = 22μ𝜁(𝑥)

, we can
only compare running times if we take into account the different functions of the
parameter value. The parameterized procedure corresponding to 𝜁 may in the
end have a milder dependence on the parameter values than that corresponding
to 𝜂. Thus, the growth rate of the minimization function is not a useful indicator
of computational complexity. At best, the minimization function can be used to
compare the computational complexity of individual instances qualitatively. If
the minimization function assigns a higher value to some 𝑥 than to some 𝑦, then
the computational complexity of 𝑥 can be said to be higher than that of 𝑦. Still,
we cannot use the growth rate for a comparison of parameterizations. We shall
see in Example 3.2.28 that our order based on the gap function nevertheless gives
some information on the comparison of running times. Before that, however, we
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shall show how it is that our order provides a compromise between mathematical
elegance and practical relevance. The elegance lies in the fact that we obtain a
rich mathematical structure, the relevance lies in the fact that the order preserves
fixed-parameter tractability.

From a computational standpoint, a bound on the gap between two parameter-
izations is only useful if it is computable. By Theorem 3.1.1, the uniform variant
of the order on parameterizations is of interest for parameterizations arising from
direct parameterized procedures.

3.2.20. Definition. A parameterization 𝜂 is below a parameterization 𝜁 in the
uniform order ≼ if there is a computable function 𝑓 such that we have, for all 𝑚,

gap𝜂,𝜁(𝑚) ≤ 𝑓(𝑚).

3.2.21. Example. We shall compare two parameters of graphs, the number of
vertices and the number of edges. Consider the parameterizations corresponding
to the number of vertices and the number of edges in a graph given by

𝜂 = ({𝐺 | 𝐺 has at most asInt(𝑘) vertices})𝑘∈𝟚+ ,
𝜁 = ({𝐺 | 𝐺 has at most asInt(𝑘) edges})𝑘∈𝟚+ .

Because any graph that has 𝑣 vertices has at most (𝑣
2) edges, we have 𝜁 ≼ 𝜂. The

two parameterizations are, however, not equivalent, because a graph with 𝑒 edges
can have an arbitrarily large number of vertices. Hence, we also have 𝜂 ⋠ 𝜁.

We observe the relationship ≼⊂≼nu between our uniform order and our nonuni-
form order. The orders provide structure to the class of parameterizations.

3.2.22. Lemma. Both ≼nu and ≼ are reflexive and transitive orders on the class
of parameterizations.

Proof:
Reflexivity follows from the observation that for every parameterization 𝜂 the
gap function gap𝜂,𝜂 is bounded by the identity function. For transitivity, two
remarks suffice. Firstly, the composition of finite bounding functions is again a
finite bounding function. Secondly, the composition of computable functions is
computable. 2

Neither order is antisymmetric. Therefore, it is convenient to work with the
associated partially ordered set of equivalence classes instead of with parameteri-
zations directly. If we use minimization functions to compare the computational
complexity of individual instances, then equivalent parameterizations provide
similar results. Suppose we have equivalent parameterizations 𝜂 and 𝜁, and two
instances, 𝑥 and 𝑦 that are assigned the same value by μ𝜂. In this case, the dif-
ference between μ𝜁(𝑥) and μ𝜁(𝑦) can be bounded by a constant that depends on
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μ𝜂(𝑥) = μ𝜂(𝑦), but not on 𝑥 or 𝑦. Likewise, if we have μ𝜁(𝑥) = μ𝜁(𝑦), then the
difference between μ𝜂(𝑥) and μ𝜂(𝑦) can be bounded.

Note that every parameterization with imix is unequal to any parameterization
without imix, both using the nonuniform as well as using the uniform order.

3.2.23. Lemma. Let 𝜂 and 𝜁 be parameterizations, where 𝜂 has imix but 𝜁 does
not. One of 𝜂 ≼nu 𝜁 and 𝜁 ≼nu 𝜂 fails to hold (and similarly for ≼).

Proof:
The statement for the uniform order follows from that for the nonuniform order
by the inclusion ≼⊂≼nu.

Let 𝑚 be so that no parameter value of length at least 𝑚 is associated with a
slice of 𝜁 that has an infinite extension. Such an 𝑚 exists for every parameterization
that does not have imix, because parameterizations are directed.

Suppose we have 𝜂 ≼nu 𝜁. There is then a parameter value 𝑘 such that 𝜂𝑘
is a superset of all slices 𝜁𝑗 for which we have |𝑗| ≤ 𝑚. Since 𝜂 has imix, there
exists a parameter value 𝑘′ such that 𝜂𝑘′ ∖ 𝜂𝑘 is infinite. We find that 𝜁 ≼nu 𝜂
fails because gap𝜁,𝜂(|𝑘′|) must be infinite.

Suppose we have 𝜁 ≼nu 𝜂. If 𝜂 ≼nu 𝜁 were to hold as well, then gap𝜂,𝜁(𝑚)
would be finite. However, this would mean that there is a parameter value 𝑘′ such
that 𝜂𝑘′ is infinitely larger than any 𝜁𝑗, whenever we have |𝑗| ≤ 𝑚. As 𝜁 does not
have imix, this would violate the assumed relationship 𝜁 ≼nu 𝜂. 2

In the context of orders on parameterizations, we refer to the equivalence
classes of parameterizations when speaking simply of parameterizations. As we
have seen in Lemma 3.2.23, parameterizations with imix will remain distinct from
those without when employing this convention.

We claim that in relation to XPnu and FPTnu, the nonuniform order ≼nu
is a natural order on parameterizations to look at. Likewise, in relation to XP
and FPT, the uniform order ≼ is a natural order to consider. As we shall soon
see, there are two main reasons for this. On the one hand, these orders open
up parameterized analysis of complexity to algebraic methods. On the other,
these orders represent a way to compare the speed of convergence represented by
different parameterizations. This, in turn, provides an abstract way to compare the
computational power required by parameterized decision procedures for different
sets.

Nonuniform Complexity Classes

When we look at ℒXPnu
or ℒFPTnu

in terms of equivalence classes ordered by ≼nu,
we recognize a familiar [38] structure.

3.2.24. Theorem. Ordered by ≼nu, the equivalence classes in ℒXPnu
and ℒFPTnu

form bounded distributive lattices.
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Proof:
Observe that the slices of any parameterization in ℒXPnu

are all in P. Likewise,
for each parameterization 𝜂 in ℒFPTnu

there is a constant 𝑐 such that all slices
of 𝜂 are in TIME(𝑛𝑐). The converses of both statements are witnessed by the
empty set: The empty set is put in XPnu or FPTnu by parameterizations of
which all slices are in P or, for some 𝑐, in TIME(𝑛𝑐), respectively.

For the current proof we shall focus on ℒFPTnu
. The proof for ℒXPnu

is slightly
less involved.

ℒFPTnu
is bounded. A least element of ℒFPTnu

is present in the form of the
parameterization consisting of ‘full’ slices only, (𝟚+)𝑘∈𝟚+ . Indeed, any constant
bounds the gap from this parameterization to another and thus this parameteriza-
tion is below any other with respect to ≼nu.

A greatest element can be found in any parameterization of which the slices
are all finite. Take, for instance, the length parameterization,

({𝑥 | |𝑥| ≤ asInt(𝑘)})𝑘∈𝟚+ .

Regardless of the bound on the length of parameter values, the gap from any
parameterization to this parameterization is the maximum of a finite set. The gap
is therefore always finite. Hence, this parameterization is above any other with
respect to ≼nu.

ℒFPTnu
contains greatest lower bounds. Given two parameterizations, 𝜂 ∈

ℒFPTnu
and 𝜂′ ∈ ℒFPTnu

, we can construct a new parameterization that acts as
a greatest lower bound for the two. Define this new parameterization as

𝜁 = (𝜂𝑘 ∪ 𝜂′
𝑘′)⟨𝑘,𝑘′⟩∈𝟚+ = ({𝑥 | 𝑥 ∈ 𝜂𝑘 ∨ 𝑥 ∈ 𝜂′

𝑘′})⟨𝑘,𝑘′⟩∈𝟚+ .

Because both 𝜂 and 𝜂′ are directed covers, 𝜁 is as well. Hence 𝜁 is indeed a
parameterization. Moreover, if, for some 𝑐, all slices of 𝜂 and all slices of 𝜂′ are in
TIME(𝑛𝑐), then all slices of 𝜁 are in TIME(𝑛𝑐). As 𝜂 and 𝜂′ were picked from
ℒFPTnu

, we find that 𝜁 must also be a member of ℒFPTnu
.

By construction, every slice of either 𝜂 or 𝜂′ is included in a slice of 𝜁. It
follows that the gap from 𝜁 to both 𝜂 and 𝜂′ is finite and thus that 𝜁 is below
each of them. It remains to show that 𝜁 is the greatest among such lower bounds.
For this, suppose that some 𝜁′ too is below both 𝜂 and 𝜂′ and consider gap𝜁′,𝜁.
Because our pairing function is length-increasing in both arguments, we have, for
every 𝑚,

gap𝜁′,𝜁(𝑚) ≤ max{gap𝜁′,𝜂(𝑚), gap𝜁′,𝜂′(𝑚)}.

As both elements of the set on the right-hand side are finite by assumption, we
find that the gap from 𝜁′ to 𝜁 is finite for all values of 𝑚. Thus, 𝜁′ is below 𝜁, and
𝜁 is a greatest lower bound for 𝜂 and 𝜂′ with respect to ≼nu, as desired.
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ℒFPTnu
contains least upper bounds. In a similar vein, the existence of

least upper bounds can be shown. Taking the slicewise intersection of two given
parameterizations, 𝜂 and 𝜂′, we obtain

𝜁 = (𝜂𝑘 ∩ 𝜂′
𝑘′)⟨𝑘,𝑘′⟩∈𝟚+ = ({𝑥 | 𝑥 ∈ 𝜂𝑘 ∧ 𝑥 ∈ 𝜂′

𝑘′})⟨𝑘,𝑘′⟩∈𝟚+ .

Like the parameterization constructed previously, this defines a directed cover,
thus, indeed, a parameterization. When 𝜂 and 𝜂′ are members of ℒFPTnu

, this
parameterization is a member of ℒFPTnu

too.
Using that our pairing function is length-increasing, we find, for all 𝑚, that

gap𝜂,𝜁(𝑚) and gap𝜂′,𝜁(𝑚) are both at most 𝑚. Thus, 𝜁 is an upper bound on 𝜂
and 𝜂′. To see that it is a least upper bound, suppose that 𝜁′ is another upper
bound on 𝜂 and 𝜂′. Our pairing function is so that, for all 𝑘 and 𝑘′, we have
|⟨𝑘, 𝑘′⟩| ≤ |𝑘| + 2 ⋅ |𝑘′|. Because of this, we also have, for all 𝑚,

gap𝜁,𝜁′(𝑚) ≤ gap𝜂,𝜁′(𝑚) + 2 ⋅ gap𝜂′,𝜁′(𝑚).

Since the right-hand side of this equation is finite, we can conclude that we have
𝜁 ≼nu 𝜁′. Accordingly, 𝜁 is a least upper bound for 𝜂 and 𝜂′ with respect to ≼nu.

ℒFPTnu
is distributive. Let 𝜂 and 𝜂′ be two parameterizations in ℒFPTnu

. As
is customary, we denote their greatest lower bound by 𝜂 ∧ 𝜂′ and their least upper
bound by 𝜂 ∨ 𝜂′. Beware that in the above construction, 𝜂 ∧ 𝜂′ was based on a
disjunction 𝑥 ∈ 𝜂𝑘 ∨ 𝑥 ∈ 𝜂′

𝑘′ and vice versa for 𝜂 ∨ 𝜂′. Also, recall that in this
context, we use parameterizations in place of their equivalence classes according
to ≼nu. We shall show that, for any three parameterizations 𝜂, 𝜂′, and 𝜂″

in ℒFPTnu
, the equivalence class of

𝜁 = 𝜂 ∨ (𝜂′ ∧ 𝜂″)
equals that of

𝜁′ = (𝜂 ∨ 𝜂′) ∧ (𝜂 ∨ 𝜂″).

The dual, where ∧ and ∨ are interchanged, is implied [38].
By our constructions of greatest lower bounds and of least upper bounds, we

may interpret a parameter value for 𝜁 as a triplet ⟨𝑖, ⟨𝑗, 𝑘⟩⟩. If an instance 𝑥 is
in a slice ⟨𝑖, ⟨𝑗, 𝑘⟩⟩ of 𝜁, it is also in slice ⟨⟨𝑖, 𝑗⟩, ⟨𝑖, 𝑘⟩⟩ of 𝜁′. Made explicit, this
comes down to the logical implication

𝑥 ∈ 𝜂𝑖 ∧ (𝑥 ∈ 𝜂′
𝑗 ∨ 𝑥 ∈ 𝜂″

𝑘) ⟹ (𝑥 ∈ 𝜂𝑖 ∧ 𝑥 ∈ 𝜂′
𝑗) ∨ (𝑥 ∈ 𝜂𝑖 ∧ 𝑥 ∈ 𝜂″

𝑘).

Our pairing function is so that |⟨𝑖, ⟨𝑗, 𝑘⟩⟩| is at least |𝑖|+|𝑗|+|𝑘| and |⟨⟨𝑖, 𝑗⟩, ⟨𝑖, 𝑘⟩⟩|
is at most |𝑖| + 2 ⋅ |𝑗| + 2(|𝑖| + 2 ⋅ |𝑘|) ≤ 4(|𝑖| + |𝑗| + |𝑘|). It follows that, for all 𝑚,
we have gap𝜁′,𝜁(𝑚) ≤ 4𝑚. Hence, it follows that we have 𝜁′ ≼nu 𝜁.
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For the converse, observe that if an instance 𝑥 is in a slice ⟨⟨𝑖1, 𝑗⟩, ⟨𝑖2, 𝑘⟩⟩ of 𝜁′,
it must also be in slice ⟨𝑖1, ⟨𝑗, 𝑘⟩⟩ or in slice ⟨𝑖2, ⟨𝑗, 𝑘⟩⟩ of 𝜁. This follows from the
logical implication

(𝑥 ∈ 𝜂𝑖1
∧ 𝑥 ∈ 𝜂′

𝑗) ∨ (𝑥 ∈ 𝜂𝑖2
∧ 𝑥 ∈ 𝜂″

𝑘) ⟹ {
𝑥 ∈ 𝜂𝑖1

∧ (𝑥 ∈ 𝜂′
𝑗 ∨ 𝑥 ∈ 𝜂″

𝑘) or
𝑥 ∈ 𝜂𝑖2

∧ (𝑥 ∈ 𝜂′
𝑗 ∨ 𝑥 ∈ 𝜂″

𝑘).

An argument concerning length bounds of our pairing function similar to the one
used before now gets us a bound on the gap from 𝜁 to 𝜁′. For all 𝑚, we have
gap𝜁,𝜁′(𝑚) ≤ 4𝑚. Thus we also have 𝜁 ≼nu 𝜁′ and both parameterizations are in
the same equivalence class. 2

For this proof, it is important that the definition of a parameterization makes no
strong demands on the inclusion order of slices. Most expositions of parameterized
computational complexity theory appear to tacitly assume that the inclusion order
is a linear order. In the most prevalent parameterizations, parameter values are
interpreted as numbers. The inclusion order on the slices of these parameterizations
follows the standard numerical order on the corresponding parameter values.
However, in the previous proof, a linear inclusion order on slices is not preserved
by the constructions of greatest lower bounds and of least upper bounds.

The previous theorem shows that ≼nu is a mathematically sensible order, as
it provides structure to ℒXPnu

and ℒFPTnu
. The following companion theorem

goes one step further and shows that, moreover, ≼nu is a meaningful order. It
is meaningful to the extent that, for every set 𝐴, it also provides structure to
ℱXPnu

(𝐴) and ℱFPTnu
(𝐴). The structure it provides these collections with relates

nicely to the overarching structure of ℒXPnu
and ℒFPTnu

, respectively [see also
38, 1]. If we accept FPTnu as a meaningful complexity class, then we are forced
to accept ≼nu as a meaningful order on parameterizations. We have seen that the
minimization functions of equivalent parameterizations may have wildly different
growth rates. While this may be deemed undesirable, it corresponds to a feature
of FPTnu. In the definition of FPTnu there are no restrictions on the parameter-
dependence of the running time of the polytime-approximations considered.

3.2.25. Theorem. Let 𝐴 be a set. Ordered by ≼nu, the collections ℱXPnu
(𝐴)

and ℱFPTnu
(𝐴) are filters in ℒXPnu

and ℒFPTnu
, respectively.

Proof:
Like with Theorem 3.2.24, we present a proof for the FPTnu case only. All
ingredients of a proof for the XPnu case are included in this proof.

ℱFPTnu
(𝐴) is nonempty. For every polynomial 𝑝, every finite set is an 𝒪(𝑝)-seg-

ment of 𝐴. Therefore, every parameterization of which all slices are finite is
in ℱFPTnu

(𝐴). An example of such a parameterization is the length parameteriza-
tion.
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ℱFPTnu
(𝐴) is upward closed. Let 𝜂 be a member of ℱFPTnu

(𝐴) and 𝜁 be any
parameterization in ℒFPTnu

for which we have 𝜂 ≼nu 𝜁. Furthermore, let 𝑐 be so
that the slices of 𝜁 are all in TIME(𝑛𝑐). It suffices to prove the existence of a
polynomial 𝑝 such that the slices of 𝜁 are 𝒪(𝑝)-segments of 𝐴.

By Lemma 3.2.19, since we have 𝜂 ≼nu 𝜁, given a parameter value 𝑘, there is a
parameter value 𝑘′ such that we have 𝜁𝑘 ⊆ 𝜂𝑘′ . Also, as 𝜂 is in ℱFPTnu

(𝐴), there
is a polynomial 𝑞 such that any slice of 𝜂 is the domain of an 𝒪(𝑞)-approximation
for 𝐴. We can construct an approximation for 𝐴 that runs the approximation
with domain 𝜂𝑘′ , but only for members of 𝜁𝑘. With 𝑝 mapping 𝑛 to 𝑛𝑐 + 𝑞(𝑛), the
running time of such an approximation can be kept in 𝒪(𝑝). This 𝑝 is a polynomial
that is independent of the parameter value 𝑘, so it meets our requirements.

ℱFPTnu
(𝐴) contains greatest lower bounds. Given parameterizations 𝜂

and 𝜂′ taken from ℱFPTnu
(𝐴), consider the greatest lower bound 𝜁 as constructed

in the proof of Theorem 3.2.24. There are polynomials 𝑞 and 𝑞′ such that every
slice of 𝜂 is an 𝒪(𝑞)-approximation for 𝐴 and every slice of 𝜂′ is an 𝒪(𝑞′)-approx-
imation for 𝐴. By definition, each slice of 𝜁 is the union of a slice of 𝜂 and a
slice of 𝜂′. The corresponding approximations on the constituent slices can be
combined into an approximation of which the slice of 𝜁 at hand is the domain.
Now, let 𝑝 be the polynomial that maps 𝑛 to 𝑞(𝑛) + 𝑞′(𝑛). Regarding the running
time of the composite approximation, we find that it can be kept in 𝒪(𝑝). Because
𝑝 is independent of the specific slice of 𝜁, this puts 𝜁 in ℱFPTnu

(𝐴). 2

The above theorem allows us to think of ≼nu as a nonuniform ranking of how
powerful parameterizations are. Two parameterizations that are related by ≼nu
can be compared with regard to the way in which their slices cover the set of all
strings. Informally, as seen in Lemma 3.2.19, a parameterization that is below
another according to ≼nu takes bigger steps in covering 𝟚+. In that sense, a
parameterization that is below another according to ≼nu is representative of
a faster convergence. Note that, here, “faster” is not measured in terms of
time. Instead, it relates to how big the steps are with which the slices of a
parameterization grow.

With this in mind, the properties outlined in the previous theorem have an
interpretation in terms of how powerful parameterizations are. Suppose that a
set is in XPnu or FPTnu with parameterizations 𝜂 and 𝜁. The upward closed
property entails that the set is also in the parameterized complexity class with
all parameterizations less powerful than 𝜂 or 𝜁. The inclusion of greatest lower
bounds means that 𝜂 and 𝜁 can be combined into a parameterization that is at
least as powerful as either one of them.
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Uniform Complexity Classes

While the absence of uniformity constraints may be accommodating to certain
proof methods, uniform parameterized complexity is more practically relevant.
Luckily, we can also characterize the structure of parameterizations in relation to
uniform parameterized complexity.

3.2.26. Theorem. Ordered by ≼, the equivalence classes in ℒXP and ℒFPT
form bounded distributive lattices.

Proof:
Proving the current theorem requires attention to two aspects that did not
play a role in proving Theorem 3.2.24. First, the criterion for membership
in ℒXP or ℒFPT is more elaborate than that for membership in their nonuniform
counterparts. Second, whenever a bound on the values of a gap function between
two parameterizations is employed, that bound must now be computable. Despite
these extra elements to consider, a proof of the current theorem may proceed
largely along the same lines as the proof of Theorem 3.2.24. For starters, a proof
concerning ℒXP is again subsumed in one concerning ℒFPT and we shall therefore
present only the latter.

ℒFPT is bounded. The parameterization (𝟚+)𝑘∈𝟚+ consisting of full slices is
also a least element of ℒFPT with respect to ≼. Any constant function acts as a
computable upper bound on the gap from this parameterization to any other. As,
for instance, the empty set is put in FPT by this parameterization, it is indeed a
member of ℒFPT.

In order for a parameterization to be a greatest element of ℒFPT, it is no longer
sufficient for its slices to be finite. Specifically, the construction of a computable
upper bound on the gap function requires knowing the number of instances in
each slice. With the length parameterization, ({𝑥 | |𝑥| ≤ asInt(𝑘)})𝑘∈𝟚+ , this
extra requirement is satisfied. That it is a member of ℒFPT is, again, witnessed
by the empty set, which is put in FPT by it. We claim that the gap from
any parameterization to the length parameterization is computable. Observe
that, for every parameterization 𝜂 that corresponds to a direct parameterized
procedure, the minimization function μ𝜂 is computable. This is useful, because all
parameterizations in ℒFPT correspond to direct parameterized procedures. As a
result, the gap from a parameterization 𝜂 ∈ ℒFPT to the length parameterization
is also computable. For every argument, the gap is simply the maximum of a
known finite set of computable values.

ℒFPT contains greatest lower bounds. A parameterization is in ℒFPT when
it corresponds to a direct parameterized procedure that meets the requirements
of Definition 3.2.12. A greatest lower bound for two parameterizations 𝜂 and 𝜂′

in ℒFPT can be constructed uniformly via such parameterized procedures. Let
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𝜙 and 𝜙′ be procedures associated with 𝜂 and 𝜂′. Although 𝜙 and 𝜙′ need not
converge to the same set, we can combine them in a parameterized procedure 𝜓
defined by

𝜓(𝑥, 𝑘) = {
? if 𝜙(𝑥, 𝑘) = ? and 𝜙′(𝑥, 𝑘) = ?,
0 otherwise.

This parameterized procedure converges to the empty set and witnesses that the
empty set is in FPT. The parameterization corresponding to 𝜓 is the greatest
lower bound 𝜁 as constructed in the proof of Theorem 3.2.24.

What remains is to show that the gap from 𝜁 to 𝜂 and 𝜂′ can be bounded by
a computable function. To this end, observe that, for any 𝑘, an instance is in 𝜂𝑘
or 𝜂′

𝑘 only if it is in 𝜁⟨𝑘,𝑘⟩. Combined with the bound |⟨𝑘, 𝑘⟩| ≤ 3 ⋅ |𝑘|, it follows
that, for every 𝑚, both gap𝜁,𝜂(𝑚) and gap𝜁,𝜂′(𝑚) are bounded by 3𝑚.

ℒFPT contains least upper bounds. For the presence of least upper bounds,
the bounds on the gap in the proof of Theorem 3.2.24 are already computable.
The only thing required for the proof to carry over to the uniform case is to show
that the parameterization 𝜁 as constructed is a member of ℒFPT. Therefore,
we turn, like before, to the parameterized procedures 𝜙 and 𝜙′ associated with
parameterizations 𝜂 and 𝜂′ in ℒFPT. The difference with the case for greatest
lower bounds is that our derived procedure now returns ? if 𝜙 or 𝜙′ produces ?.
Corresponding to this parameterized procedure, we find the parameterization 𝜁,
which is hence a member of ℒFPT.

ℒFPT is distributive. The proof of distributivity of the nonuniform lattice is
concerned only with obtaining bounds on the gap function. As all these bounds
in the proof of Theorem 3.2.24 are computable, the proof works equally well for
distributivity of the uniform lattice. 2

Also within the uniform lattices, filters are defined by sets. Contrary to the
nonuniform case, the sets need to be decidable, for otherwise the induced collection
of parameterizations is empty. This is implied by Theorem 3.1.1, which says that
direct parameterized procedures can only converge to decidable sets.

3.2.27. Theorem. Let 𝐴 be a decidable set. Ordered by ≼, the collections
ℱXP(𝐴) and ℱFPT(𝐴) are filters in ℒXP and ℒFPT, respectively.

Proof:
This proof too is presented for FPT, but works just as well for XP.

ℱFPT(𝐴) is nonempty. The direct parameterized procedure of which the exis-
tence is asserted by Theorem 3.1.3 witnesses that ℱFPT(𝐴) is nonempty.
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ℱFPT(𝐴) is upward closed. Let 𝜂 be a parameterization corresponding to a
parameterized procedure 𝜙 that converges to 𝐴 and meets the requirements of
Definition 3.2.12. We shall show that all parameterizations in ℒFPT that are
above 𝜂 according to ≼ are also in ℱFPT(𝐴). Suppose a parameterization 𝜂′

in ℒFPT and a computable function 𝑔 are given such that, for all 𝑚, we have
gap𝜂,𝜂′(𝑚) ≤ 𝑔(𝑚). By definition of membership of 𝜂′ in ℒFPT, there exists a
set 𝐵 that is in FPT with 𝜂′. In turn, this means that there is some parameterized
procedure 𝜙′ that meets the requirements of Definition 3.2.12 with respect to
𝐵 and 𝜂′. We need to show that there is also a parameterized procedure that
witnesses that 𝐴 is in FPT with 𝜂′. Consider a parameterized procedure 𝜓 that
does the following on input (𝑥, 𝑘′).

1: If 𝜙′(𝑥, 𝑘′) yields ?, we conclude that 𝑥 is not in 𝜂′
𝑘′ and return ?.

2: Otherwise, we conclude that 𝑥 is in 𝜂′
𝑘′ and we need to decide on membership

of 𝑥 in 𝐴. There must be a parameter value 𝑘 of length at most 𝑔(|𝑘′|)
such that 𝑥 is in 𝜂𝑘. Therefore, we are sure to return 𝐴(𝑥) by proceeding
as follows for all 𝑘 of length at most 𝑔(|𝑘′|).

2.1: If 𝜙(𝑥, 𝑘) does not yield ?, return its output.

To prove that 𝜓 meets the requirements of Definition 3.2.12, it suffices to show
that step 2 does. Crucially, the parameter dependence of the running time of this
loop should be bounded by a computable function. If 𝑓 is a computable function
bounding the parameter dependence of the running time of 𝜙, the parameter
dependence of the loop can be bounded by

∑
𝑘 with |𝑘|≤𝑔(|𝑘′|)

𝑓(𝑘).

This bound is computable, and since 𝜓 converges to 𝐴 by construction, we find
that 𝜂′ puts 𝐴 in FPT. As 𝜂′ was an arbitrary parameterization above 𝜂 in the
uniform order on parameterizations, we conclude that ℱFPT(𝐴) is upward closed.

ℱFPT(𝐴) contains greatest lower bounds. Parameterizations in ℱFPT(𝐴)
correspond to direct parameterized procedures that converge to 𝐴 and meet the
requirements of Definition 3.2.12. Thus, parameterizations 𝜂 and 𝜂′ taken from
ℱFPT(𝐴) are associated to parameterized procedures 𝜙 and 𝜙′, both converging
to 𝐴. These procedures can be combined like in the construction of a greatest
lower bound in the proof of Theorem 3.2.26. However, instead of returning 0, we
let the constructed procedure return the output of 𝜙 or 𝜙′ that is not ?. If both
do not output ?, their outputs are the same, since both parameterized procedures
converge to 𝐴. Thus we obtain a direct parameterized procedure that converges
to 𝐴 on a greatest lower bound of 𝜂 and 𝜂′, and meets the requirements of Defini-
tion 3.2.12. Because of this, we may conclude that ℱFPT(𝐴) contains all greatest
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lower bounds. 2

By the above theorem, the uniform order ≼ counts as a ranking of how powerful
parameterizations are. Like with the nonuniform order, a parameterization 𝜂
is more powerful than a parameterization 𝜁 if we have 𝜂 ≼ 𝜁. Recall from our
discussion of the nonuniform case on page 100 that a parameterization is more
powerful than another when its slices grow in bigger steps. Also in the uniform case,
if we have 𝜂 ≼ 𝜁, we may say that the convergence behavior of 𝜂 is an improvement
over that of 𝜁. This improvement is of a different kind than the improvements
made in typical algorithms races. These races seek improvements within a single
parameterization [95, 54], striving for a reduced dependence of the running time
on the parameter value. Instead, we suggest a search for improvements in the
parameterization itself.

3.2.28. Example. We shall take a closer look at how it is that the order ≼
relates to the speed of convergence of parameterized decision procedures. To
do so, we consider convergence to a single set on different parameterizations. If
one parameterization is not below the other, this has implications regarding the
shortest parameter value of some instances. Note that if the parameterizations
are incomparable, then such instances with a difference in parameter values occur
both ways. They then show that either parameterization converges faster than the
other on some instances. Of course, when the parameterizations are comparable,
yet in different equivalence classes, the improvement holds only in one direction.

Let 𝐴 be a set, 𝜂 a parameterization in ℱFPT(𝐴), and 𝜙 a direct parameterized
procedure witnessing that 𝐴 is in FPT with 𝜂. For some computable function 𝑓
and polynomial 𝑝, the running time of 𝜙 on input (𝑥, 𝑘) is at most 𝑓(𝑘) ⋅ 𝑝(|𝑥|).
Suppose we are given a parameterization 𝜁 that is not below 𝜂 in the uniform order
on parameterizations. We claim that, on infinitely many instances, the parameter
dependence of 𝜙 is less than that of any parameterized procedure converging
to 𝐴 on 𝜁. If 𝜂 and 𝜁 are incomparable, there need not exist any parameterized
procedure converging to 𝐴 on 𝜁. We are only interested in the case where one
does exist.

For a fixed parameterization, parameter values are a relative measure of com-
plexity: If an instance 𝑥 occurs in the parameterization only with a subset of the
parameter values with which an instance 𝑦 occurs in it, then 𝑥 is harder than 𝑦.
However, parameter values should not be compared between parameterizations.
Indeed, they can differ wildly within an equivalence class of parameterizations.
Therefore, we turn to the parameter dependence in the running times of param-
eterized procedures. With these, we have a more robust way to compare the
complexity of instances between different parameterizations.

Suppose the running time of a parameterized procedure that converges to 𝐴
on 𝜁 is 𝑓 ′(𝑘) ⋅ 𝑝′(|𝑥|). Here, we may assume that 𝑓 ′ is a computable function of
which the value increases as the length of the parameter value, |𝑘|, increases. Our
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claim comes down to the observation that there are infinitely many instances 𝑥
with parameter values 𝑘 that satisfy

• 𝑥 ∈ 𝜂𝑘, and

• for all 𝑘′ such that we have 𝑥 ∈ 𝜁𝑘′ , we have 𝑓(𝑘) < 𝑓 ′(𝑘′).

If this were not the case, then for all but finitely many 𝑥 and 𝑘 with 𝑥 ∈ 𝜂𝑘, there
would be a 𝑘′ such that we have 𝑥 ∈ 𝜁𝑘′ and 𝑓 ′(𝑘′) ≤ 𝑓(𝑘). This would mean
that 𝑓 and 𝑓 ′ could be used to construct a computable function bounding the
function gap𝜁,𝜂 from above. Such an upper bound cannot exist, because it would
imply that we had 𝜁 ≼ 𝜂.

Note that while there are infinitely many instances that behave as in the
above two items, these instances may be far apart. It is quite possible that
for the vast majority of instances, the value of 𝑓(𝑘) as in the second item is far
greater than that of 𝑓 ′(𝑘′). Also, there may be a substantial difference in the
polynomial factors, 𝑝(|𝑥|) and 𝑝′(|𝑥|). More typical algorithms races in the study
of parameterized complexity may offer some relief here. These races mainly target
the parameter dependence in the running time of direct parameterized procedures
associated with a given parameterization.

In this light, the best parameterizations are those that are below all others. A
set 𝐴 admits an optimal parameterization with respect to, say, FPT if the filter
ℱFPT(𝐴) is principal. Indeed, by Definition 2.1.22, a filter is principal precisely
when it contains an element that is below all others.

3.2.3 Optimal Nonuniform Parameterizations
We would like to identify the sets that admit optimal parameterizations with
respect to any of our parameterized complexity classes. With respect to XPnu,
all sets admit optimal parameterizations.

3.2.29. Theorem. For any set 𝐴, the filter ℱXPnu
(𝐴) is principal.

Proof:
Let 𝑆1, 𝑆2, 𝑆3, … be an enumeration of the polytime-segments of 𝐴. Recall from the
proof of Theorem 3.2.4 that this enumeration is nonuniform. For the current theo-
rem, that is acceptable. Consider the parameterization 𝜂 given by 𝜂𝑘 = 𝑆asInt(𝑘).
By definition, 𝐴 is in XPnu with 𝜂. As a consequence of Lemma 3.2.19, it is
also below any other parameterization in ℱXPnu

(𝐴): Every slice of every other
parameterization in ℱXPnu

(𝐴) is a polytime-segment of 𝐴 and therefore included
as a slice in 𝜂. Thus, 𝜂 is a least element in ℱXPnu

(𝐴). 2

We shall call a least element in the filter corresponding to some set a princi-
pal parameterization for that set. Strictly speaking, a principal parameterization
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refers to an equivalence class of parameterizations. Yet, a principal parameter-
ization is unique up to ≼-equivalence. Theorem 3.2.29 shows that all sets have
principal parameterizations with respect to XPnu. However, this is not a given
for arbitrary parameterized complexity classes. When they exist, principal pa-
rameterizations provide insight into some of the computational complexity of a
set. For instance, there is a one-to-one correspondence between the imix property
of a principal parameterization with respect to XPnu and the levelability of a
set. This correspondence arises as a consequence of the proof of Theorem 3.2.29.
Specifically, precisely when a set 𝐴 is P-semi-levelable do each of the sets 𝑆𝑖 in
the proof of Theorem 3.2.29 have infinite extensions.

3.2.30. Corollary. A set 𝐴 is P-semi-levelable (respectively, almost P-bi-
immune) if and only if a principal parameterization in ℱXPnu

(𝐴) has (respectively,
does not have) imix.

Note that the filter induced by a P-bi-immune set consists of a single equiva-
lence class of parameterizations. Namely it consists only of the class of param-
eterizations 𝜂 where for every parameter value 𝑘 the set 𝜂𝑘 is finite. For filters
with respect to FPTnu, this is no different and the filters induced by almost
P-bi-immune sets are again principal.

3.2.31. Theorem. For any set 𝐴 that is almost P-bi-immune, ℱFPTnu
(𝐴) is

principal.

Proof:
By definition of being almost P-bi-immune, 𝐴 has a maximal polytime-segment 𝑆.
For some polynomial 𝑝, this polytime-segment 𝑆 is also an 𝒪(𝑝)-segment. Thus
there exists a parameterization that has 𝑆 as one of its slices and with which
𝐴 is in FPTnu. Indeed, such a parameterization can be constructed along the
same lines as in the proof of Theorem 3.2.29. To wit, let 𝑆1, 𝑆2, 𝑆3, … be an
enumeration of the 𝒪(𝑝)-segments of 𝐴 and consider the parameterization given
by 𝜂𝑘 = 𝑆asInt(𝑘). That 𝜂 is indeed a parameterization follows from the fact that
it not only contains 𝑆 as one of its slices, but also all finite variations of 𝑆.

Suppose that there is a parameterization 𝜁 in ℱFPTnu
(𝐴) such that we do not

have 𝜂 ≼ 𝜁. There would then be a slice of 𝜁 that is an infinite extension of 𝑆. As
this slice would be the domain of some polytime-approximation for 𝐴, we would
find that 𝑆 is not a maximal polytime-segment of 𝐴. This would contradict our
choice of 𝑆, therefore 𝜂 must be below 𝜁. Hence 𝜂 is a principal parameterization
for 𝐴. 2

The key ingredient of the above proof is that, by definition, a polytime-segment
of a set is maximal if no infinite extension of it is also a polytime-core. By
the same token, a principal parameterization with respect to FPTnu for any
almost P-bi-immune set does not have imix. On the other hand, if the filter with
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respect to FPTnu were to be principal for any P-semi-levelable set, a principal
parameterization has to have imix. The P-semi-levelable property is, however,
indifferent to the degree of the polynomials involved in the polytime-segments of
a set. This makes an investigation of filters with respect to FPTnu induced by
P-semi-levelable sets difficult. We need a variant that is sensitive to the degree
of the polynomials related to polytime-segments of a set. Conceptually, we want
polytime-segments that can be extended with infinitely many elements without
increasing the degree of the associated polynomial. Whether or not a set can be
approximated by such a sequence of segments that grows in infinitely large steps
may depend on the degree of the polynomial. We should not confine ourselves to
sets for which an approximation of this sort is available for all degrees. Otherwise,
taken to its extreme, we consider only sets of which all 𝒪(1)-segments can be
extended with infinitely many elements into other 𝒪(1)-segments. Therefore, we
shall allow finitely many exceptions in our notion of levelability applied to fixed-
parameter tractability. The following definition helps us, in Theorem 3.2.33, in
pinpointing which sets have optimal parameterizations.

3.2.32. Definition. A set is FPT-semi-levelable if there is a constant 𝑐 such
that for all polynomials 𝑝 of degree at least 𝑐, the set has no maximal 𝒪(𝑝)-segment.

Likewise, we could call a set almost FPT-bi-immune if it has a maximal
𝒪(𝑝)-segment for all polynomials 𝑝 of sufficiently high degree. In contrast to
the general, degree-independent definitions, these two classifications do not ex-
haust all sets. Sets may exist that are neither FPT-semi-levelable, nor almost
FPT-bi-immune. Such sets would, however, be P-semi-levelable. Optimal param-
eterizations with respect to FPTnu do not exist for sets that are P-semi-levelable,
yet not FPT-semi-levelable.

3.2.33. Theorem. For any set 𝐴 that is P-semi-levelable and not FPT-semi-
levelable, ℱFPTnu

(𝐴) is nonprincipal.

Proof:
In case 𝐴 is P-semi-levelable and not FPT-semi-levelable, there is an infinite set
of polynomials {𝑝1, 𝑝2, 𝑝3, …} such that, for all 𝑖,

• 𝐴 has a maximal 𝒪(𝑝𝑖)-segment, and

• if 𝑆𝑖 is a maximal 𝒪(𝑝𝑖)-segment of 𝐴 and 𝑆𝑖+1 is a maximal 𝒪(𝑝𝑖+1)-segment
of 𝐴, then 𝑆𝑖+1 ∖ 𝑆𝑖 is infinite.

The first of these items follows from the fact that 𝐴 is not FPT-semi-levelable.
The second item is a consequence of 𝐴 being P-semi-levelable.

Let 𝜂 be any parameterization with which 𝐴 is in FPTnu. Because the degrees
of the polynomials 𝑝1, 𝑝2, 𝑝3, … must be strictly increasing, there is some 𝑖 such
that the slices of 𝜂 are all 𝒪(𝑝𝑖)-segments of 𝐴. As we have seen in the proof
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of Theorem 3.2.31, there is also a parameterization 𝜁 in ℱFPTnu
(𝐴) that has a

maximal 𝒪(𝑝𝑖+1)-segment of 𝐴 as one of its slices. By the its maximality, this
𝒪(𝑝𝑖+1)-segment contains all but at most finitely many elements of any 𝒪(𝑝𝑖)-seg-
ment of 𝐴. Therefore, we have 𝜁 ≼nu 𝜂. Moreover, by the second item of the
list above, we do not have 𝜂 ≼nu 𝜁. This means that 𝜂 cannot be a principal
parameterization for 𝐴. As 𝜂 was chosen arbitrarily, ℱFPTnu

(𝐴) thus cannot be
principal. 2

Together, Theorem 3.2.31 and Theorem 3.2.33 provide insight in what sets
have optimal parameterizations with respect to FPTnu. The resulting, incomplete,
classification is depicted in Figure 3.3.

almost P-bi-immune P-semi-levelable
FPT-semi-levelable

principal nonprincipal open

Figure 3.3: The universe of sets, represented by the horizontal line, can be divided
according to levelability with respect to P. Additionally, a subclass of the P-semi-
levelable sets is FPT-semi-levelable. Below the horizontal line, principality of the
filter with respect to FPTnu is indicated. For FPT-semi-levelable sets, no results
are available.

Of course, Theorem 3.2.33 is only meaningful if there are P-semi-levelable sets
that are not FPT-semi-levelable. This is the case.

3.2.34. Theorem. There are P-semi-levelable sets that are not FPT-semi-
levelable.

Proof:
We shall prove the theorem by presenting a P-semi-levelable set, 𝐴, that has a
maximal 𝒪(𝑝)-segment for infinitely many polynomials 𝑝 of distinct degrees. This
set 𝐴 is defined by a recursive procedure that decides on membership in 𝐴 of an
instance based on the membership in 𝐴 of other instances. As the membership
of no instance is, directly or indirectly, dependent on membership of itself, the
procedure will terminate on all inputs. It is therefore a decision procedure for 𝐴.
Alternatively, we could also say that the procedure defines the set 𝐴 inductively.

Let 𝜙1, 𝜙2, 𝜙3, … be an effective enumeration of all partial procedures and
consider the procedure that, on input ⟨𝑢, 𝑥⟩, procedes as follows.

1: We determine a set 𝐼 of indices of procedures that are consistent with an
initial segment of 𝐴:

1.1: Initialize 𝐼 to {1, 2, 3, … , |⟨𝑢, 𝑥⟩|}.
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1.2: For each pair ⟨𝑣, 𝑦⟩ that satisfies

asInt(𝑣) ≤ asInt(𝑢) and |⟨𝑣, 𝑦⟩| ≤ log |⟨𝑢, 𝑥⟩|

we remove those indices from 𝐼 that are not consistent with 𝐴(⟨𝑣, 𝑦⟩):
1.2.1: Recursively compute 𝐴(⟨𝑣, 𝑦⟩).
1.2.2: For each index 𝑖 in 𝐼:

1.2.2.1: Simulate up to |⟨𝑣, 𝑦⟩|3⋅asInt(𝑢) steps of 𝜙𝑖 on input ⟨𝑣, 𝑦⟩.
1.2.2.2: If 𝜙𝑖 was simulated to completion and was inconsistent with

𝐴(⟨𝑣, 𝑦⟩) in the sense that we have 𝜙𝑖(⟨𝑣, 𝑦⟩) = 1 − 𝐴(⟨𝑣, 𝑦⟩),
remove 𝑖 from 𝐼.

2: We try to make an index in 𝐼 inconsistent with 𝐴:

2.1: For each index 𝑖 in 𝐼:
2.1.1: Simulate up to |⟨𝑢, 𝑥⟩|3⋅asInt(𝑢) steps of 𝜙𝑖 on input ⟨𝑢, 𝑥⟩.
2.1.2: If 𝜙𝑖 was simulated to completion and we have 𝜙𝑖(⟨𝑢, 𝑥⟩) ∈ {1, 0},

return 1 − 𝜙𝑖(⟨𝑢, 𝑥⟩).
2.2: Else, as no procedure could be made inconsistent, return 0.

The first stage of this procedure performs at most |⟨𝑢, 𝑥⟩|2 simulations of
computations, each of at most log(|⟨𝑢, 𝑥⟩|)3⋅asInt(𝑢) steps. Besides these simulations,
this stage computes an initial segment of 𝐴 to test against. This segment is
computed recursively and the recursion depth is bounded by the iterated logarithm
of |⟨𝑢, 𝑥⟩|. By using dynamic programming, the time required to compute the
segment becomes insignificant with respect to the total running time of the entire
procedure.

The second stage of the procedure requires the simulation of at most |⟨𝑢, 𝑥⟩|
computations, each of at most |⟨𝑢, 𝑥⟩|3⋅asInt(𝑢) steps. Efficient simulation [13]
limits the overhead of simulation to a logarithmic factor. As a function of the
input ⟨𝑢, 𝑥⟩, the number of steps spent in the second stage is thus in

𝒪(|⟨𝑢, 𝑥⟩| ⋅ |⟨𝑢, 𝑥⟩|3⋅asInt(𝑢) ⋅ log(|⟨𝑢, 𝑥⟩|3⋅asInt(𝑢))).

This puts the number of steps taken by the entire procedure in 𝒪(|⟨𝑢, 𝑥⟩|3⋅asInt(𝑢)+2).
Note that the running time of the procedure is not polynomial in the length of
the input, |⟨𝑢, 𝑥⟩|, as 𝑢 appears in the exponent.

Given a constant 𝑐, let 𝑝𝑐 be the polynomial defined by 𝑝(𝑛) = 𝑛3𝑐+2. For
any fixed 𝑐, the set {⟨𝑢, 𝑥⟩ | asInt(𝑢) ≤ 𝑐 and 𝑥 ∈ 𝟚+} is an 𝒪(𝑝𝑐)-segment
of 𝐴. It is not a maximal polytime-segment, as for larger values of 𝑐 infinitely
many elements are introduced in the corresponding sets. However, we claim that
it is a maximal 𝒪(𝑝𝑐)-segment of 𝐴 and thus that 𝐴 is P-semi-levelable, yet not
FPT-semi-levelable. Suppose toward a contradiction that there is an infinite



110 Chapter 3. Parameterizations

𝒪(𝑝𝑐)-segment 𝑆 ⊆ {⟨𝑤, 𝑥⟩ | asInt(𝑤) > 𝑐 and 𝑥 ∈ 𝟚+} for 𝐴. Let 𝑖 be an
index of an 𝒪(𝑝𝑐)-approximation for 𝐴 with domain 𝑆. Almost all ⟨𝑤, 𝑥⟩ ∈ 𝑆 will
be so that |⟨𝑤, 𝑥⟩| ≥ 𝑖. Therefore, for almost all inputs to our procedure, 𝑖 will
be included in 𝐼 when the procedure enters its second stage. Because we have
asInt(𝑤) > 𝑐, we have 3 ⋅ asInt(𝑤) > 3 ⋅ 𝑐 + 2. This means that any function
in 𝒪(𝑝𝑐) will eventually be dominated by the polynomial mapping 𝑛 to 𝑛3⋅asInt(𝑤),
for any value of 𝑤 that occurs in 𝑆. Indeed, this is the reason for the constant 3
in the exponent of the time bounds in our decision procedure for 𝐴. Now, for
almost all elements of 𝑆, the second stage of our procedure does one of two
things. Either it invalidates 𝑖 as the index of an 𝒪(𝑝𝑐)-approximation for 𝐴, or it
invalidates an index smaller than 𝑖. The latter of these possibilities can happen
at most 𝑖 − 1 times, so, since 𝑆 was assumed to be infinite, eventually 𝑖 must be
invalidated. This contradicts our choice of 𝑖 as the index of an 𝒪(𝑝𝑐)-approximation
for 𝐴 with domain 𝑆. We conclude that there is no infinite 𝒪(𝑝𝑐)-segment
𝑆 ⊆ {⟨𝑤, 𝑥⟩ | asInt(𝑤) > 𝑐 and 𝑥 ∈ 𝟚+} for 𝐴. 2

For completeness, we shall also show the existence of FPT-semi-levelable sets.
Our proof revolves around length-increasing reductions. Our notion of a reduction
is that of a membership-preserving polytime-computable function, in other words,
that of a Karp reduction.

3.2.35. Theorem. Every set outside P from which there is a linearly-length-
increasing reduction to itself is FPT-semi-levelable.

Proof:
Let 𝐴 be a set outside P and 𝑓 a linearly-length-increasing reduction from 𝐴 to
itself. Suppose that 𝐴 is not FPT-semi-levelable and, for some polynomial 𝑝
of degree 𝑐, has a maximal 𝒪(𝑝)-segment 𝑆. We may assume that, for some
polynomial 𝑞 of degree 𝑐 − 1, it is possible to compute 𝑓 in time 𝒪(𝑞). The sets

𝑆′ = {𝑥 | 𝑥 ∉ 𝑆 and 𝑓(𝑥) ∈ 𝑆},
𝑆𝑥 = {𝑥, 𝑓(𝑥), 𝑓(𝑓(𝑥)), …}

are, by nature of 𝑓, also 𝒪(𝑝)-segments of 𝐴. Furthermore, 𝑆′ satisfies 𝑆 ∩ 𝑆′ = ∅.
That 𝑆′ is a 𝒪(𝑝)-segment of 𝐴 requires the linear bound on the length of

the output of 𝑓. A given string 𝑥 ∈ 𝑆′ is a member of 𝐴 precisely when 𝑓(𝑥) is.
Because 𝑓(𝑥) is a member of 𝑆 and 𝑆 is a 𝒪(𝑝)-segment of 𝐴, membership of 𝑓(𝑥)
in 𝐴 can be decided by some 𝒪(𝑝)-approximation for 𝐴. Correspondingly, there
is an 𝒪(𝑝)-approximation for 𝐴 of which 𝑆′ is the domain.

That 𝑆𝑥 is a 𝒪(𝑝)-segment of 𝐴 requires that 𝑓 is length-increasing. For a
fixed 𝑥, we can decide whether a given string 𝑦 is a member of 𝑆𝑥 by repeated
application of 𝑓 to 𝑥. If 𝑦 is a member of 𝑆𝑥, then it is a member of 𝐴 precisely
when 𝑥 is. Indeed, 𝑆𝑥 is either a subset of 𝐴, or a subset of the complement of 𝐴.
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By the assumed maximality of 𝑆, for every 𝑥 there are only finitely many
elements in the set 𝑆 ∖ 𝑆𝑥. However, since 𝐴 is not in P, there are infinitely
many 𝑥 outside 𝑆 and for each of these the set 𝑆𝑥 intersects 𝑆′. Since 𝑓 is length-
increasing, there is no uniform upper bound on the length of the strings in these
intersections for the infinitely many values of 𝑥. Hence 𝑆′ is infinite, contradicting
the maximality of 𝑆. 2

The existence of FPT-semi-levelable sets now follows from the existence of
sets outside P that have a linearly-length-increasing reduction to themselves.

3.2.36. Lemma. There is a set outside P that has a linearly-length-increasing
reduction to itself.

Proof:
Let 𝑋 be a set outside P and consider its cylindrification [see 17, Section 5.3]

𝐴 = {⟨𝑥, 𝑦⟩ | 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝟚+}.

Note that 𝐴 too is not in P. Our pairing function is such that the function 𝑓
defined by

𝑓(⟨𝑥, 𝑦⟩) = ⟨𝑥, 0𝑦⟩
is a linearly-length-increasing reduction from 𝐴 to itself. 2

We remark that the cylindrification of a set is always a p-cylinder, because
there exists a polytime-computable bijection between 𝟚+ and 𝟚+× 𝟚+.

3.2.4 Optimal Uniform Parameterizations
The proof of Theorem 3.2.29 fails for filters with respect to the uniform XP. First
and foremost, by Rice’s theorem [125], the enumeration of polytime-segments is not
effective. Therefore, the proof cannot guarantee the existence of a procedure that
meets the requirements of the definition of XP, Definition 3.2.10. Additionally,
being a principal parameterization with respect to a uniform complexity class
requires a bound on the gap to any other parameterization to be computable.

We regain something akin to Theorem 3.2.29 by also taking into account
provability of membership of a set in XP. Employing provability when comparing
computational complexities is a tactic that has also been used by Hartmanis [75].
To make our use of provability precise, let 𝔉 be a formal system capable of
expressing statements about computation. A proof in 𝔉 is thus a syntactic
derivation of a theorem on computation. For convenience, we stretch the notion
of what can be proven in 𝔉 slightly.

3.2.37. Definition. Let ̂𝐴 be a decision procedure for a set 𝐴. We say that
a parameterization 𝜂 provably puts ̂𝐴 in XP if there is a direct parameterized
procedure 𝜙 and a computable function 𝑓 satisfying
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• 𝜂 is the parameterization corresponding to 𝜙, and

• for every parameter value 𝑘, with 𝑡𝑘 mapping 𝑛 to 𝑓(𝑘) ⋅ 𝑛𝑓(𝑘), there is a
proof in 𝔉 of the following statement, expressed in the language of 𝔉.

The partial application of 𝜙 to 𝑘 yields a 𝑡𝑘-approximation for
the set decided by ̂𝐴.

Remark that there are many decision procedures for the set 𝐴 and that ̂𝐴 is
just one of them. It is necessary to fix a decision procedure in the above definition
in order to talk about 𝐴 in the language of 𝔉. If we did not fix a decision procedure,
it would not be possible to formulate the second of the required statements in the
language of 𝔉. This would make it impossible for it to have a proof in 𝔉.

The proofs that are at play in the previous definition are not required to
be computable from the parameter value 𝑘. Even without such a uniformity
constraint, the following theorem, similar in spirit to Theorem 3.2.29, holds.
In the following theorem, we assume that 𝔉 is sound and strong enough to
express certain arguments. In particular, we assume that some of the reasoning
performed in the proof of the theorem can be formalized in 𝔉. Precisely where
these assumptions are made will be mentioned in the proof. Note that in this
theorem, the underlying order on parameterizations is the uniform order, ≼.

3.2.38. Theorem. For any decision procedure ̂𝐴 for a set 𝐴, there is a least
parameterization among those provably putting ̂𝐴 in XP.

Proof:
A form of universal search, along the lines of Hutter [86] and Hartmanis [75],
through polytime-approximations is possible in the parameterized setting. In
order to perform such a search, let 𝜙1, 𝜙2, 𝜙3, … be an effective enumeration of all
procedures, where the procedures need not be total. Additionally, let 𝑝1, 𝑝2, 𝑝3, …
be an effective enumeration of all polynomials. Consider the parameterized
procedure converging to 𝐴 that, on input (𝑥, 𝑘), does the following.

1: We construct a finite set 𝑀 of polytime-approximations for 𝐴:

1.1: Initialize 𝑀 to the empty set.
1.2: For each combination of a proof 𝔭 in 𝔉, an index 𝑖 of a parameterized

procedure, and an index 𝑗 of a polynomial, all of length at most asInt(𝑘):
1.2.1: If 𝔭 proves that 𝜙𝑖 is a 𝑝𝑗-approximation for 𝐴,

Add 𝑖 to 𝑀.

2: If any of the polytime-approximations in 𝑀 decides on membership of 𝑥,
then so do we:

2.1: For each index 𝑖 in 𝑀:
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2.1.1: Compute 𝜙𝑖(𝑥).
2.1.2: If 𝜙𝑖(𝑥) ∈ {1, 0}, return 𝜙𝑖(𝑥).

2.2: Else, as none of the polytime-approximation decides on membership
of 𝑥, return ?.

We shall first show that the parameterization corresponding to this procedure
provably puts ̂𝐴 in XP. After that, we shall show that the gap from that pa-
rameterization to any other that provably puts ̂𝐴 in XP can be bounded by a
computable function.

For all parameter values 𝑘, the set 𝑀 is finite throughout the execution of
this parameterized procedure. As a result, the first stage of this procedure takes
a finite number of steps and the second stage can be executed in polynomial
time, for every fixed 𝑘. Moreover, we claim that the parameter dependence is
computable. For the first stage, the parameter dependence can be computed by
simply performing the prescribed computation and clocking the number of steps
taken. This works as expected by our assumption that 𝔉 is sound. Observe that
we can also keep track of all the polynomials 𝑝𝑗 associated with indices 𝑖 added
to 𝑀 in step 1.2.1. Doing so, we can upper bound the running time of the second
stage by the sum of all these polynomials. Because this bound depends solely
on the parameter value, we find that we can construct a computable function 𝑓
as required by the definition of XP, Definition 3.2.10. Thus, 𝐴 is in XP with
the parameterization corresponding to the parameterized procedure above. We
assume that this argument can be expressed in 𝔉. More accurately, we assume
that there is a proof in 𝔉 of the fact that for any fixed 𝑘, the above procedure is
an (𝑓(𝑘) ⋅ 𝑛𝑓(𝑘))-approximation for the set decided by ̂𝐴. It then follows that the
parameterization corresponding to the parameterized procedure above provably
puts ̂𝐴 in XP.

Let 𝜁 be a parameterization that provably puts ̂𝐴 in XP. Additionally, let 𝜓
be a direct parameterized procedure and 𝑓 a computable function witnessing that
𝜁 provably puts ̂𝐴 in XP, as in Definition 3.2.37. Denote the parameterization
corresponding to the parameterized procedure we constructed by 𝜂. We claim
that there is a computable function 𝑔 such that, for all 𝑘′, slice 𝜁𝑘′ is included
in slice 𝜂𝑔(𝑘′). This entails the desired relationship 𝜂 ≼ 𝜁. Given 𝜓 and 𝑘′ we
can effectively come up with an index 𝑖 such that 𝜙𝑖 corresponds to the partial
application of 𝜓 to 𝑘′. Correspondingly, using 𝑓 we can come up with an index 𝑗
such that 𝜙𝑖 is a 𝑝𝑗-approximation for 𝐴. By construction, there is a proof in 𝔉 of
the fact that 𝜙𝑖 is a 𝑝𝑗-approximation for the set decided by ̂𝐴. Such a proof, 𝔭,
can be found effectively by enumerating all proofs. Now, consider the function
defined by

𝑔(𝑘′) = asStr(max{|𝑖|, |𝑗|, |𝔭|}).

As 𝑖, 𝑗, and 𝔭 were derived effectively from 𝜓, 𝑓, and 𝑘′, this is a computable
function of 𝑘′ when 𝜓 and 𝑓 are fixed. For any 𝑘′, the first stage of the above
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parameterized procedure includes the corresponding 𝑖 in the set 𝑀 when we have
𝑘 = 𝑔(𝑘′). The second stage of the procedure then ensures that slice 𝜁𝑘′ is in-
cluded in slice 𝜂𝑘 = 𝜂𝑔(𝑘′), as we set out to prove. 2

Thus, adding a provability requirement offsets the limitations we incurred
by moving to a uniform setting. The provability requirement in Theorem 3.2.38
enforces the effectiveness that was not present in the proof of Theorem 3.2.29.
With respect to FPT, the proof of Theorem 3.2.31 cannot be reused to show
that almost P-bi-immune sets induce principal filters. Specifically, it is no longer
sufficient for the gap from one parameterization to another to take on only finite
values. Instead, there must be a uniformly computable bound on the value of
the gap function. Of course, we can show that filters with respect to FPT are
principal for sets in P.

3.2.39. Theorem. For any set 𝐴 that is in P, the filter ℱFPT(𝐴) is principal.

Proof:
The parameterization consisting of full slices, (𝟚+)𝑘∈𝟚+ , is one with which 𝐴 is in
FPT. Since the equivalence class of this parameterization is the least element of
the encompassing lattice of parameterizations, the filter must be principal. 2

Principal parameterizations with respect to FPT for sets in P do not have
imix. More broadly, if an almost P-bi-immune set has a principal parameterization
with respect to FPT, this parameterization does not have imix. This is the extent
to which the proof of Theorem 3.2.31 can be applied to the uniform setting. More
precisely, a principal parameterization must contain a maximal polytime-segment
as one of its slices and can therefore not have imix. Conversely, if a set has a
principal parameterization with respect to FPT that does have imix, the set must
be P-semi-levelable.

3.2.40. Lemma. A set that, with respect to FPT, has a principal parameterization
without imix is almost P-bi-immune.

Proof:
A parameterization 𝜂 without imix has a slice 𝜂𝑘 such that for all other slices 𝜂𝑘′

the difference 𝜂𝑘 ∖ 𝜂𝑘′ is finite. Of any set 𝐴 that is in FPT with 𝜂, this
slice is a polytime-segment. If 𝜂 is a principal parameterization for 𝐴, then
𝜂𝑘 is even maximal up to finite variations for all slices of all parameterizations
in ℱFPT(𝐴). Because every polytime-segment of 𝐴 can be turned into a slice of
a parameterization with which 𝐴 is in FPT, this means that 𝐴 must be almost
P-bi-immune. 2

This observation is of use as we turn to principality of filters with respect to
FPT for P-semi-levelable sets. From the point of view of applications, the P-semi-
levelable sets are more interesting than the almost P-bi-immune sets. With almost
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P-bi-immune sets, there is a clear limit to what can be achieved in polynomial
time by any decision procedure. No such limit exists for P-semi-levelable sets.
This is where parameterized decision procedures come into play, as they have
the potential to combine better and better approximations. Interestingly, it
turns out that there is no optimal parameterization with respect to FPT for a
P-semi-levelable set. In that sense, each direct parameterized procedure that
shows that a P-semi-levelable set is fixed-parameter tractable is restricted in its
own way. For some P-semi-levelable sets, this follows already from the proof
of Theorem 3.2.33, which works for the uniform setting as well. In the uniform
setting, however, the reach of the result can be extended. We shall do so in a
way that has a clear kinship to the diagonal argument used in the proof of the
time hierarchy theorem of Hartmanis and Stearns [77]. However, where the time
hierarchy theorem constitutes a hierarchy of sets, our theorem is about a hierarchy
of parameterized procedures.

3.2.41. Theorem. For any set 𝐴 that is P-semi-levelable, the filter ℱFPT(𝐴) is
nonprincipal.

Proof:
We present a proof by contradiction, assuming 𝜂 is a principal parameterization
with respect to FPT for a given P-semi-levelable set 𝐴. A contradiction is arrived
at by the construction of a parameterization 𝜁 with which 𝐴 is in FPT and for
which we have 𝜂 ⋠ 𝜁. Let 𝜙 be a direct parameterized procedure and 𝑝 a polynomial
witnessing that 𝐴 is in FPT with 𝜂 in accordance with Definition 3.2.12. Consider
a direct parameterized procedure that converges to 𝐴 and proceeds as follows on
input (𝑥, 𝑘).

1: Set a timeout so that at most asInt(𝑘) ⋅ |𝑥|2 ⋅ 𝑝(|𝑥|) steps are spent in total
doing the following, for each 𝑗 ∈ N in sequence:

1.1: Compute 𝜙(𝑥, asStr(𝑗)).
1.2: If 𝜙(𝑥, asStr(𝑗)) ∈ {1, 0}, return 𝜙(𝑥, asStr(𝑗)).

2: Else, as no decision about 𝑥 could be reached in time, return ?.

Let 𝜁 be the parameterization corresponding to this direct parameterized
procedure. The dependence on the parameter value in the self-imposed running-
time bound ensures that 𝜁 is in fact a parameterization. Because the dependence
on the length of the instance is a polynomial of which the degree does not depend
on the parameter value, 𝐴 is in FPT with 𝜁.

It remains to show that we have 𝜂 ⋠ 𝜁. Observe that our procedure computes
values of 𝒪(𝑝)-approximations for 𝐴 until it encounters an approximation of which
𝑥 is in the domain. By merit of the |𝑥|2 factor in the running-time bound, the
number of approximations that our procedure can compute increases as a function
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of |𝑥|. In fact, this number increases without a bound for any constant value
of 𝑘. Since 𝐴 is P-semi-levelable and therefore not almost P-bi-immune, it follows
from Lemma 3.2.40 that 𝜂 must have imix. Therefore, even for a fixed value
of 𝑘, our procedure is able to decide membership of instances 𝑥 for which μ𝜂(𝑥)
is arbitrarily high. Hence, the gap from 𝜂 to 𝜁 is the function that is infinite
everywhere, proving 𝜂 ⋠ 𝜁. 2

As mentioned after Definition 3.2.8, the class of P-semi-levelable sets includes
many natural sets [117]. The theorem tells us that these sets have no optimal
parameterizations with respect to FPT. For sets that do have optimal parame-
terizations, the parameterizations are not very promising from an applications
point of view. In light of Lemma 3.2.40, we get from the above theorem that no
principal parameterization in a filter of the form ℱFPT(𝐴) has imix. However,
only parameterizations with imix are indicative of a successful parameterized at-
tack on the complexity of a set. This was noted already on page 92, following
Example 3.2.16. Therefore, only parameterized algorithms that converge on pa-
rameterizations with imix could be called attractive. Thus, we get the following.

3.2.42. Slogan. No set for which a parameterized algorithm is attractive admits
an optimal parameterization.

We note that when, for a set 𝐴, the filter ℱFPT(𝐴) is nonprincipal, there
are truly infinitely many distinct parameterizations with which 𝐴 is in FPT.
Recall from Definition 2.1.21 that filters are closed under taking greatest lower
bounds. Because of this, any finite number of parameterizations in ℱFPT(𝐴)
can be combined into one that is below all of them and still in ℱFPT(𝐴). If
ℱFPT(𝐴) is principal, there is also a parameterization that is below any finite
number of parameterizations, namely any principal parameterization. However,
this is not the case if ℱFPT(𝐴) is nonprincipal. Then, there is an infinite number
of parameterizations that cannot be combined into one that is still in ℱFPT(𝐴).

Often, parameterizations have a clear interpretation as a structural property
of instances. This is for instance the case with graph-based parameterizations
such as “maximum vertex degree”, “minimum vertex cover size”, or “treewidth”.
From this interpretation, we get an alternative take on the above slogan. Suppose
that a parameterized algorithm is attractive for a set 𝐴, and thus that ℱFPT(𝐴)
is nonprincipal. In that case, there are infinitely many structural properties
that may make membership of an instance in 𝐴 easy to decide. Consequently,
certain structural properties, such as those corresponding to the graph-based
parameterizations just mentioned, are always only part of the story. An analysis
of the computational complexity of a set cannot be limited to any of these
parameterizations.
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3.2.43. Example. A consequence of Lemma 3.2.40 and Theorem 3.2.41 is that
many popular parameterization such as “treewidth” cannot be optimal. If deciding
membership in a set 𝐴 is fixed-parameter tractable with respect to treewidth,
there are a few possibilities.

One possibility is that the set 𝐴 is in P. In this case an analysis of 𝐴 in
terms of fixed-parameter tractability is not necessary. Certainly, the treewidth
parameterization is not optimal in this case. More broadly, 𝐴 may be almost
P-bi-immune. As we observed in the lead-up to Lemma 3.2.40, a principal
parameterization for a almost P-bi-immune set does not have imix. There are,
however, infinitely many graphs with any given treewidth, so the treewidth
parameterization has imix. Thus, treewidth cannot be an optimal parameterization
for the set 𝐴 if 𝐴 is almost P-bi-immune.

Another possibility is that 𝐴 is P-semi-levelable. Then, the optimality of the
treewidth parameterization for 𝐴 is ruled out by Theorem 3.2.41. Any set is either
almost P-bi-immune or P-semi-levelable, so we may conclude that the treewidth
parameterization is never an optimal parameterization.

We now have a characterization of which filters with respect to FPT are
principal and which are not. In Figure 3.4, this characterization, a combination of
Theorem 3.2.39 and Theorem 3.2.41 is summarized visually.

almost P-bi-immune P-semi-levelable
P

principal open nonprincipal

Figure 3.4: The uniform counterpart to Figure 3.3. For almost P-bi-immune sets
outside P, no results regarding the principality of filters with respect to FPT are
available.
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3.3 as Algorithmic Complexity
In the search for sources of computational complexity, the complexity cores of
Lynch get no further than the identification of hard subsets. Because finite
variations of a complexity core are complexity cores too, the notion does not
lead to any useful formulation of single-instance complexity. With algorithmic
complexity [100], it is possible to define a measure of computational complexity of
individual instances. To overcome the difficulty of finite variations, this definition
takes into account the sizes of decision procedures for a set [94, 119].

3.3.1. Definition. Given a function 𝑡, the 𝑡-bounded instance complexity of a
string 𝑥 relative to a set 𝐴 is

ic𝑡(𝑥 ∶ 𝐴) = min{|𝜙| | 𝜙 is a 𝑡-approximation for 𝐴 and 𝑥 ∈ dom(𝜙)}.

If there is no 𝑡-approximation for 𝐴 that includes 𝑥 in its domain, then ic𝑡(𝑥 ∶ 𝐴)
is undefined. As we shall soon see, this can only happen when 𝑡 grows rather
slowly.

Recall that the length of an approximation is only defined relative to a chosen
encoding of procedures. However, as long as the encodings we choose from are
all effective, each encoding can be converted to another. Therefore, the effect of
the choice of an encoding on the instance complexity is limited to an additive
constant [119, 100].

3.3.2. Example. So far, we have used the word “tractable” to indicate compu-
tation that does not take too long. However, the word “tractable” can also be
applied to the implementation of algorithms, in which case it means something
else. Informally speaking, an algorithm has a tractable implementation if it has an
implementation that is not too unwieldy. The implementation should not use too
many variables, has no excessive nesting of conditionals and loops, and performs
relatively few operations in each loop. In other words, a tractable implementation
of an algorithm is a short implementation of that algorithm.

Instance complexity alludes to this notion of complexity. It is concerned with
algorithms that are approximations of a decision procedure for a set 𝐴. That is,
algorithms that decide on membership of an instance either correctly or not at
all. With the time bound, we restrict our attention to approximation algorithms
that showcase limited computational complexity. Among such algorithms, the
instance complexity selects the length of the shortest algorithm that is able to
decide on membership of a given instance 𝑥. Note that instance complexity
is uncomputable. This fact is closely related to the fact that the collection of
approximation algorithms for a given set is undecidable.

We observe that there is are constants 𝑐1 and 𝑐2 such that we have, for all 𝑡
and 𝑥, irrespective of 𝐴,

𝑡(|𝑥|) ≥ 𝑐1 ⋅ |𝑥| ⟹ ic𝑡(𝑥 ∶ 𝐴) ≤ |𝑥| + 𝑐2. (3.3)
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In other words, if 𝑡 is sufficiently large, the instance complexity is defined and can
be bounded by the length of the instance plus an additive constant. This is true
because for each instance 𝑥, an approximation tailored specifically for that 𝑥 is
available that meets the upper bound. This approximation contains a hardcoded
copy of 𝑥 and a record of whether or not 𝑥 is a member of 𝐴. On an input 𝑦,
it compares 𝑦 to 𝑥 and if they are equal, it outputs the hardcoded membership
decision. If 𝑦 and 𝑥 differ, the approximation outputs ?. The time needed by this
approximation is linear in |𝑥|, and it can be represented in a number of bits equal
to |𝑥| plus an additive constant.

A modification of the above argument allows us to show an upper bound tighter
than (3.3). When 𝑡 is sufficiently large, the instance complexity can be upper
bounded by the Kolmogorov complexity. Instead of storing a hardcoded copy of
the instance 𝑥 in our approximation, we now store a procedure that reconstructs 𝑥.
This may lower the length of the approximation, but increases its computation
time, as it now also needs to reconstruct 𝑥. Indeed, what counts as “sufficiently
large” for 𝑡 depends on 𝑥.

We remind ourselves of the fact that approximations are total functions.
Broadening the definition of instance complexity by allowing procedures that
do not halt, we would obtain a weaker notion of instance complexity [98]. We
shall not make use of this weaker notion and stick with the definition based on
approximations. Even with this stronger notion, it is in general impossible to know
whether a given procedure is an approximation for some specific set. It was for
this reason that a provability requirement was necessary in Theorem 3.2.38. The
other way around, we can start out with a known collection of approximations for
a set. Our parameterized framework provides a way to analyze the computational
hardness of instances in relation to such a collection of approximations. Of course,
in our analysis these collections will be parameterizations.

Synopsis

In some ways, the study of parameterized computational complexity is a continua-
tion of the study of instance complexity. Precisely how the two fields are related is
examined in Section 3.3.1. We find that in the context of uniform fixed-parameter
tractability, instance complexity can be used to lower-bound parameter values.
Conversely, the minimization function of a parameterization can be used as an
upper bound on instance complexity. The quality of this upper bound follows
our order on parameterizations: A parameterization that is below another is asso-
ciated with a tighter bound on instance complexity. Additionally, we find that
there are infinitely many instances without parameter values smaller than the Kol-
mogorov complexity of the instance. Thus, the bound provided by a minimization
function is not perfect.

We delve deeper into the interplay between algorithmic and computational
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complexity in Section 3.3.3. Before that, however, we look at how the parameter-
izations with which a set is fixed-parameter tractable typify the computational
complexity of the set. Each parameterization represents a distribution of com-
plexity. The collection of parameterizations with which a set is fixed-parameter
tractable is thus a profile of the computational complexity of the set. In Sec-
tion 3.3.2, we explore what notion of computational complexity these complexity
profiles capture. Given the connections between minimization functions for param-
eterizations and instance complexity, our notion of complexity lives at the level of
instances. We observe that the collection of parameterizations with which a set is
fixed-parameter tractable is insensitive to polynomial-time postprocessing: Adding
a polynomial-time postprocessing step to a decision procedure for a set 𝐴 yields a
decision procedure for a set with the same complexity profile as 𝐴. This inspires a
comparison with the Berman–Hartmanis conjecture. That conjecture asserts that
the class of NP-complete sets is closed under polytime-computable isomorphisms.
We assert something similar, but using polynomial-time postprocessing instead of
polytime-computable isomorphisms. We find that the anticipated closure property
does not hold for the case of nonuniform fixed-parameter tractability. We leave it
as a conjecture that it does hold for the case of uniform fixed-parameter tractabil-
ity. In particular, we conjecture that the collection of parameterizations that make
a given set fixed-parameter tractable determines the set up to polynomial-time
postprocessing.

We point out that the last statement contains a perspective orthogonal to that
of the previous section, Section 3.2. In that section, we looked at collections of
parameterizations that make a set fixed-parameter tractable. In the current, we fix
a collection of parameterizations and look at which sets are made fixed-parameter
tractable by precisely those parameterizations.

Having established a measure of the distribution of computational complexity
based on parameterizations, we can compare to other distributions of complexity.
Especially, in Section 3.3.3, we compare computational complexity to algorithmic
complexity. At the level of instances, a link between the running time of decision
procedures and the length of their specification emerges. In one direction, this
link is particularly strong, and we manage to show that algorithmically random
instances are computationally hard.

3.3.1 Instance Complexity
The guiding principles behind instance complexity are similar to those behind
parameterized computational complexity. Both are attempts to quantify the
computational complexity of deciding on membership of specific instances in a set.
This similarity can be made precise by linking instance complexity to nonuniform
fixed-parameter tractability. Nonuniformity is appropriate here, because in the
definition of instance complexity, Definition 3.3.1, a different approximation may
be used for every instance. At the same time, our parameterized framework also
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has a uniform side and thus offers a uniform alternative for instance complexity.
The interface between instance complexity and parameterized complexity is

provided by a parameterization that is defined in terms of instance complexity.
Recall from Example 3.3.2 that there are polynomials 𝑝 such that the 𝑝-bounded
instance complexity relative to a set 𝐴 is defined on all instances. In fact, very
many polynomials satisfy the antecedent in (3.3), as it is a mild requirement.

3.3.3. Theorem. Let 𝑝 be a polynomial such that the 𝑝-bounded instance com-
plexity is defined on all instances. Any set 𝐴 is in FPTnu with the parameterization

𝜂 = ({𝑥 | ic𝑝(𝑥 ∶ 𝐴) ≤ asInt(𝑘)})𝑘∈𝟚+ .

Proof:
To begin with, we shall verify that 𝜂 as defined in the theorem is indeed a
parameterization. By construction, the slices of 𝜂 satisfy

∀𝑘, 𝑘′ ∶ asInt(𝑘) ≤ asInt(𝑘′) ⟹ 𝜂𝑘 ⊆ 𝜂𝑘′ .

Combined with the fact that, by assumption, each instance has a finite 𝑝-bounded
instance complexity, it follows that 𝜂 is a parameterization. In fact, it is even a
point-cofinite parameterization.

For any value of 𝑘, there are only finitely many 𝑝-approximations for 𝐴 of
length at most asInt(𝑘). These can be combined into a single 𝒪(𝑝)-approximation
for 𝐴 of which the domain is exactly 𝜂𝑘. While this is true for any value of 𝑘,
the uncomputability of instance complexity prevents this combining process to be
effective uniformly in 𝑘. However, it does show that 𝐴 is in FPTnu with parame-
terization 𝜂. 2

The above theorem shows a relation between polynomially-bounded instance
complexity and nonuniform fixed-parameter tractability. It tells us that each
polynomially-bounded instance complexity relative to a set 𝐴 is the minimization
function of some parameterization in ℱFPTnu

(𝐴). More generally, we may think
of any minimization function of a parameterization, and, by extension, of any
parameterization, as a measure of complexity.

For polynomials of different degrees, the resulting notion of polynomially-
bounded instance complexity may differ. Indeed, each notion of polynomially-
bounded instance complexity may correspond to a different parameterizations
in the filter ℱFPTnu

(𝐴). Consequently, there is no single parameterization
in ℱFPTnu

(𝐴) that represents ‘the’ polynomially-bounded instance complexity.
The relation between polynomially-bounded instance complexity and nonuniform
slicewise P is stronger. For XPnu, we can link polynomially-bounded instance
complexity to a principal parameterization. The following theorem is essentially
an adaptation of Theorem 3.2.29.
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3.3.4. Theorem. For any set 𝐴, the parameterization

𝜂 = ({𝑥 | ∃𝑝, a polynomial ∶ ic𝑝(𝑥 ∶ 𝐴) ≤ asInt(𝑘)})𝑘∈𝟚+

is a principal parameterization for 𝐴 with respect to XPnu.

Proof:
It may seem to make little sense to allow the polynomial 𝑝 to depend on the
instance 𝑥 in the definition of 𝜂. However, this is perfectly fine for our purposes.
Like in the proof of the previous theorem, for any value of 𝑘, there are only finitely
many polytime-approximations for 𝐴 of length at most asInt(𝑘). Again, these
can be combined into one polytime-approximation for 𝐴 of which the domain is
exactly 𝜂𝑘.

Observe that each polytime-approximation for 𝐴 is taken into account in the
combined approximation corresponding to some parameter value 𝑘. As a result of
this, 𝜂 is a least element in ℱXPnu

(𝐴). 2

The previous two theorems show that nonuniform parameterized complexity
is closely related to instance complexity. Indeed, both notions are attempts at
quantifying computational complexity at the level of individual instances. We
cannot compare the two directly, since instance complexity is a function, whereas
a parameterization is a family of sets. Recall that instance complexity is defined
as the minimum of a set of lengths. This suggests that, given a polynomial 𝑝,
there may be a parameterization 𝜂 such that, for all instances 𝑥 of a set 𝐴, we
have, ic𝑝(𝑥 ∶ 𝐴) = μ𝜂(𝑥). This would show that our parameterized framework
incorporates instance complexity as a notion of complexity. The parameterization 𝜂
of Theorem 3.3.3 comes close to achieving this, but does not correctly link
parameter values to 𝑝-approximations for 𝐴. Instead, parameter values are
linked to the length of 𝑝-approximations. Specifically, the parameterization 𝜂
of Theorem 3.3.3 is so that we have μ𝜂(𝑥) = |asStr(ic𝑝(𝑥 ∶ 𝐴))|. In other words,
μ𝜂(𝑥) is within one bit of log ic𝑝(𝑥 ∶ 𝐴). It would be nicer if we could choose 𝜂
so that μ𝜂(𝑥) is equal to ic𝑝(𝑥 ∶ 𝐴). This can be achieved by switching to the
parameterization

𝜁 = ({𝑥 | ic𝑝(𝑥 ∶ 𝐴) ≤ |𝑘|})𝑘∈𝟚+ .

In this parameterization, it is the length of parameter values that is linked to
the length of 𝑝-approximations. The parameterization 𝜁 could be used in place
of 𝜂 in Theorem 3.3.3 since the two are equivalent in the uniform order on pa-
rameterizations. Notice that in our parameterized analysis of complexity, we are
mostly interested in equivalence classes of parameterizations. The equivalence
of 𝜂 and 𝜁 above therefore highlights a difference in focus between parameterized
computational complexity and instance complexity. With parameterized complex-
ity, the focus is more on the inclusion relation between slices than on the specific
parameter values associated with slices. At its core, a parameterization is a way
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to group instances of comparable complexity. These groups of instances are the
slices of the parameterization.

Nevertheless, we can use the above insights to define a notion of polytime-
bounded instance complexity based on Theorem 3.3.4. Similarly to how we altered
the parameterization central to Theorem 3.3.3, we can switch to the parameteri-
zation

𝜁 = ({𝑥 | ∃𝑝, a polynomial ∶ ic𝑝(𝑥 ∶ 𝐴) ≤ |𝑘|})𝑘∈𝟚+

in Theorem 3.3.4. The theorem then allows us to define the polytime-bounded
instance complexity of a string 𝑥 relative to 𝐴 as μ𝜁(𝑥). Note that if we expand
the definition of 𝜁, we find

𝜁 = ({𝑥 | ∃𝜙∶ |𝜙| ≤ |𝑘| and
𝜙 is a polytime-approximation for 𝐴 and
𝑥 ∈ dom(𝜙)})𝑘∈𝟚+ .

Thus, the polytime-bounded instance complexity of 𝑥 is the length of the shortest
polytime-approximation for 𝐴 that decides on membership of 𝑥. Similarly, for a
polynomial 𝑝, it is possible to define the 𝒪(𝑝)-bounded instance complexity of 𝑥.
This would be the length of the shortest 𝒪(𝑝)-approximation for 𝐴 that includes
𝑥 in its domain.

Except relative to some rather trivial sets, the 𝒪(𝑝)-bounded instance com-
plexity is not computable. Its practical usefulness is therefore limited. In our
parameterized framework, we can look at the possibilities for a computable alter-
native. We do so by turning to the class of uniformly fixed-parameter tractable
sets, FPT, and the corresponding class of parameterizations, ℒFPT. Relative to
a set 𝐴, the 𝒪(𝑝)-bounded instance complexity is the minimization function of

𝜁 = ({𝑥 | ∃𝑞 ∈ 𝒪(𝑝) ∶ ic𝑞(𝑥 ∶ 𝐴) ≤ |𝑘|})𝑘∈𝟚+ . (3.4)

If the 𝒪(𝑝)-bounded instance complexity is not computable, then this parameter-
ization 𝜁 is not a member of ℱFPT(𝐴), or even of ℒFPT. Note, though, that a
parameterization in ℒFPT may share any finite number of slices with 𝜁. This is
so because while there may be no effective way to enumerate all 𝒪(𝑝)-approxi-
mations for 𝐴, any finite set of such approximations is decidable. In that sense,
the behavior of μ𝜁, and thus of ic𝒪(𝑝) relative to 𝐴, can be approximated by the
minimization functions of parameterizations in ℒFPT. As the following theorem
shows, this approximation is in essence an approximation from above.

3.3.5. Theorem. For any set 𝐴 that is in FPT with a parameterization 𝜂 there
is a polynomial 𝑝 such that, as a function of 𝑥, we have

ic𝒪(𝑝)(𝑥 ∶ 𝐴) ∈ 𝒪(μ𝜂(𝑥)).
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Proof:
It suffices to show that for some polynomial 𝑝 and every parameter value 𝑘 there
is an 𝒪(𝑝)-approximation 𝜙 for 𝐴 that satisfies

• dom(𝜙) = 𝜂𝑘, and

• |𝜙| ∈ 𝒪(|𝑘|), with the hidden constant depending only on 𝐴 and 𝜂.

Let 𝜓 be a direct parameterized procedure and 𝑝 a polynomial witnessing that
𝐴 is in FPT with 𝜂. By definition, for every 𝑘, the partial application of 𝜓 to 𝑘
yields an 𝒪(𝑝)-approximation for 𝐴 with domain 𝜂𝑘. We claim that this 𝒪(𝑝)-ap-
proximation satisfies the requirements on 𝜙 listed above. The partial application
can be computed from 𝑘 and 𝜓. Thus, the length of the approximation can be
kept in 𝒪(|⟨𝑘, 𝜓⟩|). Because 𝜓 is fixed for all instances and is determined only
by 𝐴 and 𝜂, the theorem follows. 2

This theorem has an interpretation in terms of optimal parameterizations. For
a polynomial 𝑝 and any set 𝐴, the parameterization 𝜁 defined by (3.4) behaves
like a principal parameterization with respect to XTIME(𝑝). However, as we
observed already, this 𝜁 need not be a member of ℒFPT, let alone ℒXTIME(𝑝). In
this interpretation, any parameterization 𝜂 with which 𝐴 is in FPT represents a
measure of complexity. In particular, the function μ𝜂 approximates from above the
behavior of the 𝒪(𝑝)-bounded instance complexity relative to 𝐴. However, because
𝜂 is necessarily decidable, μ𝜂 is computable. In that sense, the minimization
function serves as a form of uniform instance complexity.

Central to the study of instance complexity is the instance complexity con-
jecture [119]. This conjecture posits that infinitely many instances of a decision
problem have no redundancy in their description that could aid in deciding on
membership. The conjecture formalizes the idea that for infinitely many instances,
a lookup in the style of Example 3.3.2 is essentially the best that can be done. In
the example, we constructed a procedure that compares its input to a hardcoded
string 𝑥. The bound on the instance complexity that this construction resulted
in can be improved slightly. This is done by not hardcoding 𝑥, but instead in-
cluding the specification of a procedure for reproducing 𝑥. The procedure should
of course be able to produce 𝑥 within the time bound we place on the instance
complexity. In this way, it can be shown that the bounded instance complexity is
bounded from above by the similarly bounded Kolmogorov complexity [119, 100].
For technical reasons, there is some slack required in the time bound. Let us make
this known bound precise, denoting the 𝑡-bounded Kolmogorov complexity of a
string 𝑥 by K𝑡(𝑥): There is a constant 𝑐 such that, with 𝑡′(𝑛) = 𝑐⋅𝑡(𝑛)⋅ log 𝑡(𝑛)+𝑐,
for every set 𝐴 and string 𝑥, we have ic𝑡′(𝑥 ∶ 𝐴) ≤ K𝑡(𝑥) + 𝑐. The instance
complexity conjecture states that this bound is tight infinitely often if there is no
decision procedure for 𝐴 with a running time bounded by 𝑡. Specifically, it states
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that for such a set 𝐴 there is a constant 𝑐 and infinitely many strings 𝑥 such that
we have ic𝑡(𝑥 ∶ 𝐴) ≥ K𝑡′

(𝑥) − 𝑐.
The instance complexity conjecture has been resolved for a variety of time

bounds [59, 29]. For the unbounded version, which targets the semidecidable
sets, the conjecture was proven wrong by Kummer [98]. We shall show that a
time-unbounded but uniform statement similar in spirit to the instance complexity
conjecture is true. For this uniform statement, we return to our earlier interpreta-
tion of minimization functions. We think of the minimization function with respect
to a decidable parameterization as a form of uniform instance complexity. Note
that even parameterizations that are equivalent according to the uniform order
on parameterizations may give rise to different minimization functions. Therefore,
it makes little sense to directly compare the minimization function to Kolmogorov
complexity. Instead, we look at the behavior of the minimization function “in the
limit”. For this, we use an auxiliary function with an unbounded limit inferior, as
defined on page 48.

3.3.6. Theorem. Let 𝜂 be a decidable parameterization that does not include 𝟚+,
and let 𝑓 be any computable function with an unbounded limit inferior. There are
infinitely many instances 𝑥 for which we have

K(𝑥) ≤ 𝑓(μ𝜂(𝑥)).

Proof:
The following pseudocode defines, uniformly in 𝑚, a procedure 𝜙𝑚.

1: For each instance 𝑥 in {0, 1, 00, 01, …}:

1.1: If 𝑓(μ𝜂(𝑥)) ≥ 𝑚, return 𝑥.

Because 𝜂 does not include 𝟚+, the minimization function μ𝜂 takes on arbitrarily
large values. Additionally, as 𝑓 has an unbounded limit inferior, so does the
composite function of 𝑓 after μ𝜂. This means that our procedure 𝜙𝑚 terminates,
regardless of the value of 𝑚. Moreover, since 𝜂 is decidable, μ𝜂 is computable, so
𝜙𝑚 as a whole is, indeed, computable.

Observe that the set 𝑆 = {𝑥 | ∃𝑚 ∈ N ∶ 𝜙𝑚 returns 𝑥} is infinite. We claim
that all but finitely many elements 𝑥 of this set satisfy K(𝑥) ≤ 𝑓(μ𝜂(𝑥)), thus
proving the theorem. Our pseudocode was brief, and surely for some constant 𝑐
we find that, for all 𝑚, we can realize |𝜙𝑚| ≤ 𝑐 ⋅ |asStr(𝑚)|. Therefore, if some 𝜙𝑚
returns 𝑥, we have

K(𝑥) ≤ |𝜙𝑚| ≤ 𝑐 ⋅ |asStr(𝑚)|.

On the other hand, by construction we have 𝑚 ≤ 𝑓(μ𝜂(𝑥)). As |asStr(𝑚)| is
within one bit of log 𝑚, we thus find that we have, for all 𝑥 in 𝑆,

K(𝑥) ≤ 𝑐 ⋅ log 𝑓(μ𝜂(𝑥)).
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Consequently, for all but finitely many 𝑥 in 𝑆, we have K(𝑥) ≤ 𝑓(μ𝜂(𝑥)). 2

Note that given some threshold, there are only finitely many objects with a
Kolmogorov complexity below that threshold. For this reason, the Kolmogorov
complexity is unbounded on every infinite slice of a parameterization. Yet,
we obtain from Theorem 3.3.6 that no nontrivial parameterization contains all
instances of a bounded Kolmogorov complexity in its slices.

3.3.7. Corollary. For any parameterization 𝜂 ∈ ℒFPT that does not include 𝟚+

there are infinitely many strings 𝑥 and 𝑘 such that we have

• K(𝑥) ≤ |𝑘|, yet also

• 𝑥 ∉ 𝜂𝑘.

In particular, the parameterization given by

({𝑥 | K(𝑥) ≤ |𝑘|})𝑘∈𝟚+ (3.5)

is not a member of ℒFPT. This illustrates the remark in the proof of Theo-
rem 3.2.26 that not every parameterization of which all slices are finite is a great-
est element of ℒFPT. More generally it shows that the Kolmogorov complexity
cannot be obtained as the minimization function applied to some decidable param-
eterization. Of course, this is already immediate from the fact that Kolmogorov
complexity is not computable. Nevertheless, the fact that the parameterization
given by (3.5) is not a member of ℒFPT has a specific interpretation in our pa-
rameterized complexity theory. It conveys the same sentiment as the instance
complexity conjecture, but in a more uniform setting. Conceptually, we find that,
given a parameterization 𝜂 in ℒFPT, there is always a structural property of data
that is not taken into account by 𝜂.

3.3.2 Equivalent Filters
Given a set 𝐴, every parameterization 𝜂 in ℱFPT(𝐴) gives a gradation of the
computational complexity of the instances of 𝐴. The behavior of the complexity
measure embodied by 𝜂 and its minimization function, μ𝜂, can be somewhat
intangible. When 𝜂 is not a principal parameterization for 𝐴, there are, in a
sense, better parameterizations for 𝐴. Correspondingly, the complexity measure
associated with a parameterization that is not principal can be improved upon.
As seen in Section 3.2.3 and Section 3.2.4, however, many sets do not allow for
principal parameterizations at all. Furthermore, principal parameterizations are
not unique as it is actually the equivalence class to which a parameterization
belongs that is principal. Nevertheless, a sense of optimality is still reserved for
the complexity behavior conveyed by principal parameterizations.
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In the absence of principal parameterizations, we can instead look at the
collection of all parameterizations that put a set 𝐴 in a class like FPT or XP.
This collection, the filter with respect to the class of interest, embodies all possible
gradations of computational complexity of the instances of 𝐴. Thus, it can function
as a proxy for the distribution of complexity inside 𝐴. Anything that is true of all
parameterizations in the filter is true of any individual parameterization in the
filter. In other words, the filter is a profile of the computational complexity at the
level of instances of 𝐴.

Looking at the entire filter makes a study of the distribution of complexity inside
a set possible also when the filter is not principal. The approach is a continuation
of an idea by Orponen [116], who represented the complexity characteristics of a
set by the filter of its complexity cores. Orponen showed that this idea is fruitless
when applied to proper polytime-cores, the complexity cores consisting only of
members of the set under investigation. In comparison, our parameterized setting
is promising. As profiles of the computational complexity of a set, filters convey
information about a set. We shall try to characterize what aspects of a set are
determined by the filter of parameterizations that make the set fixed-parameter
tractable.

Nonuniform Filters and the Berman–Hartmanis Conjecture

With fixed-parameter tractability, we look at the parameter dependence of the
running time of decision procedures. As every instance is associated with its own
set of parameter values, our parameterized notion of complexity is thus one at
the level of individual instances. Note that we do not look at the output of a
decision procedure. In fact, we may allow for a second procedure that runs in
polynomial time and decides whether or not the output of the decision procedure
should be inverted. Our notion of complexity is insensitive to such polynomial-
time postprocessing. This behavior is to be expected of a notion of computational
complexity at the level of instances. More precisely, we perceive the distribution
of complexity in a set 𝐴 to be the same as that of the symmetric difference of 𝐴
with any set in P. Recall that the symmetric difference of a set 𝐴 and a set 𝑋 is
defined as 𝐴△𝑋 = (𝐴∖𝑋)∪(𝑋 ∖𝐴). If, for a set 𝐴, we use the filter ℱFPTnu

(𝐴)
as a complexity profile, the insensitivity to polynomial-time postprocessing is
formalized as follows.

3.3.8. Theorem. For any set 𝑋 in P and any set 𝐴 we have

ℱFPTnu
(𝐴) = ℱFPTnu

(𝐴 △ 𝑋).

Proof:
Given 𝑋, any polytime-segment of 𝐴 can be turned into a polytime-segment of
𝐴 △ 𝑋 and vice versa. Let 𝜂 be a parameterization with which 𝐴 is in FPTnu
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and let 𝑐 be the degree in the running time of a polynomial-time decision proce-
dure for 𝑋. The polytime-segments of 𝐴 that are present in 𝜂 have associated
to them polynomials of a bounded degree. Let 𝑑 be this degree. The degree of
the constructed polytime-segments of 𝐴 △ 𝑋 can be kept below max(𝑐, 𝑑), hence
𝐴 △ 𝑋 is also in FPTnu with 𝜂. 2

Intuitively, the above theorem states that taking the symmetric difference with
a simple set does not alter the distribution of complexity in a set. If we want to
be more precise, we should say that it is the complexity profile that stays the
same. However, this means that no parameterization, representing a distribution
of complexity, has been gained or lost by taking the symmetric difference. In this
sense, the more intuitive interpretation of the theorem is correct.

Similarly, we find that the symmetric difference of two sets with the same
complexity profile is no more complex than either of the initial sets: The filter
corresponding to the symmetric difference includes that of the original sets. This
signifies that instances only get easier, if their complexity changes at all.

3.3.9. Theorem. For any two sets 𝐴, 𝐵 satisfying ℱFPTnu
(𝐴) = ℱFPTnu

(𝐵) we
have

ℱFPTnu
(𝐴) ⊆ ℱFPTnu

(𝐴 △ 𝐵).

Proof:
Like in the proof of the previous theorem, we shall prove this theorem by combin-
ing polytime-approximations. For the current theorem, let 𝜙 and 𝜓 be polytime-
approximations for 𝐴 and 𝐵 respectively. It suffices to show that if their domains
match, 𝜙 and 𝜓 can be combined into a polytime-approximation for 𝐴 △ 𝐵 with
the same domain. The degree of the running time of this combined approxima-
tion should not be larger than the maximum of the degrees of the running times
of 𝜙 and 𝜓. A procedure that, on input 𝑥, computes 𝜙(𝑥) and 𝜓(𝑥), and subse-
quently returns the exclusive disjunction of their outputs meets these requirements.
From this, it follows that every parameterization that is in ℱFPTnu

(𝐴) is also in
ℱFPTnu

(𝐴 △ 𝐵). 2

The above theorem does not guarantee that the symmetric difference of two
sets that share all their parameterizations is in P. If this would be the case, a
filter with respect to FPTnu would uniquely define a set up to variations in P.
This would lead to a nice alternative characterization of the notion of complexity
embodied by filters with respect to FPTnu. Namely, we would have that all sets
that share a complexity profile are related by a symmetric difference in P. Of
comparable flavor is the Berman–Hartmanis conjecture [19]. This conjecture states
that all NP-complete sets are related by polytime-computable isomorphisms.
In other words, it states that completeness for NP uniquely defines a set up to
isomorphisms computable in polynomial time.
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Let us digress from our study of what characterizes sets that share a filter
with respect to FPTnu, and look at the effect of isomorphisms on such filters.
The existence of a polytime-computable isomorphism between two sets does not
indicate that the sets have the same distribution of complexity. Instead, it indicates
that distributions of complexity in the two sets are comparable. The observation
that many of the known NP-complete sets are related by polytime-computable
isomorphisms makes this viewpoint valuable [19, 69]. However appealing, the
conjecture is generally believed to be untrue. This is because it is widely believed
that one-way functions, polytime-computable functions with an inverse that is not
computable in polynomial time, exist. Using particularly strong functions of this
kind, it is possible to construct NP-complete sets between which no polytime-
computable isomorphism exists [156, 99, 76, 5].

Nonetheless, we note that isomorphic sets have isomorphic filters with respect
to FPTnu. To see why, first note that a permutation 𝑓 of 𝟚+, a bijection from 𝟚+

to itself, can be lifted to a function on parameterizations via

𝑓(𝜂) = ({𝑓(𝑥) | 𝑥 ∈ 𝜂𝑘})𝑘∈𝟚+ .

Defined this way, the function preserves minimization in the sense that, for all
permutations 𝑓, parameterizations 𝜂, and instances 𝑥, we have

μ𝜂(𝑥) = μ𝑓(𝜂)(𝑓(𝑥)).

As a consequence, the nonuniform order on parameterizations is preserved as well.
If the permutation is polytime-computable in both directions, it can be lifted even
further, into an isomorphism of filters with respect to FPTnu. Given a set 𝐴, a
permutation 𝑓 that is polytime-computable in both directions is also a reduction
from 𝐴 to the set 𝐵 = {𝑓(𝑥) | 𝑥 ∈ 𝐴}. In fact, this 𝑓 is a polytime-computable
isomorphism between 𝐴 and 𝐵. The filter that is isomorphic to ℱFPTnu

(𝐴) via 𝑓
is ℱFPTnu

(𝐵).
Something interesting happens when, given a parameterization 𝜂 and a per-

mutation 𝑓 of 𝟚+, the parameterization 𝑓(𝜂) is in the same equivalence class as 𝜂.
When this is the case, 𝑓 is an automorphism of the equivalence class of parame-
terizations to which 𝜂 belongs. We could say that this equivalence class is closed
under applications of 𝑓. Lifting 𝑓 to the level of an isomorphism of filters, the
equivalence class to which 𝜂 belongs is a fixed point of 𝑓. Examples of such fixed
points are the least and greatest element of ℒFPTnu

. Any permutation of 𝟚+ is
an automorphism on both these equivalence classes of parameterizations. Pa-
rameterizations in the least element include 𝟚+ as one of their slices. Since the
minimization with respect to such a parameterization is bounded, these parame-
terizations are equivalent to those they are mapped to. Parameterizations in the
greatest element of ℒFPTnu

have only finite slices. This property too is preserved
by the mappings of parameterizations that stem from permutations of 𝟚+.
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3.3.10. Example. A different example of an automorphism of an equivalence
class of parameterizations is available with respect to the uniform order on parame-
terizations. Let 𝜂 be the parameterization defined by (3.5). This parameterization
is not decidable because Kolmogorov complexity is uncomputable. This makes
that the equivalence class of the parameterization is not a greatest element in,
say, ℒXP or ℒFPT. Yet, we can show that, for any computable permutation 𝑓
of 𝟚+, the parameterization 𝑓(𝜂) is in the same equivalence class as 𝜂. To wit,
for every such 𝑓 and all 𝑥, we have that K(𝑓(𝑥)) is within an additive constant
of K(𝑥). This additive constant depends only on 𝑓. Therefore, μ𝑓(𝜂)(𝑥) and μ𝜂(𝑥)
are within an additive constant of each other and both gap𝑓(𝜂),𝜂 and gap𝜂,𝑓(𝜂) are
bounded.

Suppose the equivalence class of a parameterization 𝜂 is closed under all
permutations that are polytime-computable in both directions. The Berman–
Hartmanis conjecture implies that if 𝜂 puts any set that is complete for NP in
FPTnu, then it puts all such sets in FPTnu. This parameterization 𝜂 would be
in the filter of parameterizations that put all NP-complete sets in FPTnu,

⋂
𝑆, NP-complete

ℱFPTnu
(𝑆).

Note that a parameterization that puts all NP-complete sets in FPTnu also puts
all co-NP-complete sets in FPTnu. This is because FPTnu treats members and
nonmembers of sets the same. Further, note that for any class of sets, finite or
infinite, a similar intersection of filters yields the filter of parameterizations that
put all sets in FPTnu. That the intersections are indeed filters and cannot be
empty is a consequence of the fact that ℒFPTnu

is bounded. Every intersection of
filters contains at least the greatest element of the lattice, so it is nonempty. The
resulting filter may or may not be of the form ℱFPTnu

(𝐴) for some set 𝐴.
We shall now return our attention to the characterization of sets that share a

filter with respect to FPTnu. Specifically, we shall look at the connections between
filters that, for some set 𝐴, arise as filters of the form ℱFPTnu

(𝐴). In doing so,
we have abstracted from the complexity of instances fourfold. Our first level of
abstraction is that of polytime-segments. Combined as slices, they constitute
our second level, that of parameterizations. The structure of parameterizations
with respect to parameterized complexity classes is that of a filter, which is our
third level of abstraction. Theorem 3.3.8 and Theorem 3.3.9 are suggestive of an
algebraic structure of filters.

Suppose the symmetric difference of any two sets of which the filters are the
same would end up in P. In that case, the symmetric difference would induce a
commutative group structure on the filters of the form ℱFPTnu

(𝐴), where 𝐴 is a
set. The elements of this group, the filters, are related by the group operation
that maps filters ℱFPTnu

(𝐴) and ℱFPTnu
(𝐵) to the filter ℱFPTnu

(𝐴 △ 𝐵). In this
group, the filter of any set in P, which we could represent by ℱFPTnu

(∅), serves as
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an identity element. Note that the sets 𝐴 for which ℱFPTnu
(𝐴) equals ℱFPTnu

(∅)
are precisely the sets in P. More specifically, a set is in P precisely when its filter
with regard to FPTnu equals ℒFPTnu

. Choosing ∅ as a representative set in P
fits well with the fact that every element of the group is its own inverse. Indeed,
we have ℱFPTnu

(𝐴 △ 𝐴) = ℱFPTnu
(∅).

We have seen in Theorem 3.3.8 that taking the symmetric difference with
a set in P does not alter the distribution of complexity in a set. Ideally, the
converse would be true as well and all sets that share a filter would be related
by a symmetric difference in P. Theorem 3.3.9 is not strong enough to conclude
this alternative characterization of the notion of complexity embodied by filters
with respect to FPTnu. In the nonuniform case, the algebraic structure of filters
just described is not present, as sets with distinct computational complexity may
share a filter.

3.3.11. Theorem. There exist sets 𝐴 and 𝐵 satisfying

• 𝐴 △ 𝐵 ∉ P, and

• ℱFPTnu
(𝐴) = ℱFPTnu

(𝐵).

Proof:
Recall that the filter with respect to FPTnu induced by a P-bi-immune set consists
only of the class of parameterizations of which all slices are finite. Conversely,
if this is the filter induced by some set, then that set is P-bi-immune. To prove
the theorem it thus suffices to construct two P-bi-immune sets with a symmetric
difference outside P.

A decidable P-bi-immune set can be constructed using the finite extension
method [46]. In this method, a set is constructed in such a way that it satisfies
infinitely many requirements. Specifically, of every polytime-approximation it is
required that either it is not an approximation for the set being built, or that
its domain is finite [17]. By augmenting these requirements, we can ensure that
the symmetric difference with some known decidable set is not in P. We need to
ensure that there is no set in P that equals the symmetric difference of the set we
are constructing and the known decidable set.

Instead of spelling out all technicalities, we refer to a stronger result by Geske,
Huynh, and Seiferas [64]. Using a similar approach, they derive that for every
constant 𝑐 > 0 there is a TIME(2𝑐𝑛)-bi-immune set that is decidable in linear
exponential time [see also 104]. Let 𝐴 be such a set for 𝑐 = 1 and let 𝑐𝐴 be so that
𝐴 is in TIME(2𝑐𝐴𝑛). Likewise, let 𝐵 be such a set for 𝑐 = 𝑐𝐴 +1. If 𝐴△𝐵 would
be in P, then 𝐴 △ (𝐴 △ 𝐵) = 𝐵 would be in TIME(2(𝑐𝐴+1)𝑛). This contradicts
the fact that 𝐵 was constructed to be TIME(2(𝑐𝐴+1)𝑛)-bi-immune, hence 𝐴 △ 𝐵
cannot be in P. 2

While filters with respect to FPTnu are, by Theorem 3.3.8, indeed insensitive
to polynomial-time postprocessing, they are insensitive to more than just that. The
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previous theorem showed that there are sets with intuitively different distributions
of computational complexity that these filters cannot tell apart. This can be taken
as an argument against the nonuniform notion of fixed-parameter tractability. By
extension, it would then also be an argument against instance complexity, because
of Theorem 3.3.3 and Theorem 3.3.4.

Uniform Filters and a Separation Conjecture

From a topology perspective, Theorem 3.3.11 represents the failure, in the setting
of nonuniform fixed-parameter tractability, of a tantalizing separation axiom. We
could say that a set in P separates two sets if it contains a polytime-core for
precisely one of the two. Unfortunately, Theorem 3.3.11 holds that not every two
sets of which the symmetric difference is outside P have such a separating set in P.
A more intricate separation axiom may be available when uniformity constraints
are added. We conjecture that, in the uniform case, the filter of the symmetric
difference of two sets that share a filter collapses to that of a set in P.

3.3.12. Conjecture. For any two sets 𝐴, 𝐵 we have

ℱFPT(𝐴) = ℱFPT(𝐵) ⟺ ℱFPT(𝐴 △ 𝐵) = ℱFPT(∅).

In other words, we conjecture that when the filters of two sets 𝐴 and 𝐵 are
equal, we have 𝐴 △ 𝐵 ∈ P. Equivalently, we conjecture that, if both filters are
the same, there is a set 𝑋 in P such that we have 𝐵 = 𝐴 △ 𝑋. At the very least,
we find that the converse is true since Theorem 3.3.8 has a uniform counterpart.

3.3.13. Theorem. For any set 𝑋 in P and any set 𝐴 we have

ℱFPT(𝐴) = ℱFPT(𝐴 △ 𝑋).

Proof:
We claim that any parameterization 𝜂 with which some set 𝐴 is in FPT also puts
𝐴 △ 𝑋 in FPT. Because we have (𝐴 △ 𝑋) △ 𝑋 = 𝐴, the theorem follows from
this claim.

Let 𝜙 be a parameterized procedure witnessing that 𝐴 is in FPT with 𝜂, and
let 𝜓 be a polynomial-time decision procedure for 𝑋. These procedures can be
combined into a parameterized procedure that witnesses that 𝐴 △ 𝑋 is in FPT
with 𝜂 as follows. First, given an instance 𝑥 and parameter value 𝑘, the parame-
terized procedure simulates 𝜙 to completion on input (𝑥, 𝑘). If 𝜙(𝑥, 𝑘) yielded ?,
our procedure does so as well. Otherwise, it also computes 𝜓(𝑥) and outputs the
exclusive disjunction of 𝜙(𝑥, 𝑘) and 𝜓(𝑥). The parameterized procedure thus de-
fined meets the running-time requirements of the definition of FPT and converges
to 𝐴 △ 𝑋. Finally, the corresponding parameterization is 𝜂, as desired. 2
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Put yet another way, Conjecture 3.3.12 asserts that ℱFPT is a group homomor-
phism that maps P to the identity element. That is, P is the kernel of the group
homomorphism ℱFPT. Intuitively, the conjecture suggests that sets that map
to the same filter with regard to FPT have the same distribution of complexity.
More precisely, such sets are fixed-parameter tractable with exactly the same
parameterizations, which represent distributions of complexity. If true, a filter in
the range of ℱFPT would determine the input set up to a symmetric difference
in P. Thus, our conjecture is similar to the Berman–Hartmanis conjecture, but it
targets postprocessing instead of isomorphism [see also 5]. More informally, our
conjecture therefore reads as follows.

3.3.14. Slogan. A set is determined up to polynomial-time postprocessing by the
parameterizations that make it fixed-parameter tractable.

Note that, unlike the other slogans in this thesis, this slogan does not correspond
to a theorem but to a conjecture.

In support of our conjecture, we have a uniform counterpart to Theorem 3.3.9
too. While it does not show that the symmetric difference of two sets with the
same filter is in P, it does show that it is no more complex than either of the sets.

3.3.15. Theorem. For any two sets 𝐴, 𝐵 satisfying ℱFPT(𝐴) = ℱFPT(𝐵) we
have

ℱFPT(𝐴) ⊆ ℱFPT(𝐴 △ 𝐵).

Proof:
The proof of Theorem 3.3.9 can easily be adapted for the uniform setting. The
polytime-approximations at play in that proof can be obtained uniformly in the
parameter. Rather than combining these approximations, we combine the param-
eterized procedures that produce them at once. Let 𝜙 and 𝜓 be parameterized
procedures putting 𝐴 and 𝐵, respectively, in FPT with some shared parameteri-
zation. These procedures can be combined into a parameterized procedure that
puts 𝐴△𝐵 in FPT with the same parameterization. In essence, the combined pa-
rameterized procedure returns, on input (𝑥, 𝑘), the exclusive disjunction of 𝜙(𝑥, 𝑘)
and 𝜓(𝑥, 𝑘). 2

It is worth noting that uniformity constraints preclude a proof such as that of
Theorem 3.3.11 for filters with respect to FPT. We are confronted with the fact
that not every two parameterizations of which all slices are finite reside in the
same uniform equivalence class. This aspect of filters with respect to FPT was
encountered before in the proof of Theorem 3.2.26. On top of that, as observed
below Corollary 3.3.7, a parameterization with finite slices need not even be a
member of ℒFPT. Equivalence of uniform filters can thus be seen as a refinement of
equivalence of nonuniform filters. Interestingly, the usefulness of such a refinement
was already hinted at by Orponen [116] in 1986.
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3.3.3 Randomness and Hardness
The instance complexity conjecture brings together algorithmic complexity and
computational complexity. This connection is interesting, because the two notions
of complexity appear to be based on unrelated quantities. Algorithmic complexity
is concerned with the lengths of specifications of procedures, whereas computational
complexity is concerned with their running times. Instance complexity considers
all decision procedures with some restricted running time for a given set at once.
If the set adheres to the instance complexity conjecture, there are infinitely many
instances on which no decision procedure can do better than a table lookup. To
be fair, for each of these instances the lookup table we are comparing to would
consist of a single, maximally compressed entry. The message of the conjecture
is therefore a highly nonuniform one. In addition to that, the conjecture tells us
very little about the nature of these infinitely many special instances.

The special instances on which a given decision problem is hard may be highly
structured. For instance, VertexCover remains NP-complete when restricted
to graphs where every vertex is connected to precisely three others [63]. At the
same time, it is not unreasonable to expect that easy instances of an intractable
decision problem necessarily have some structure. Some properties of an instance
must be responsible for the fact that a reduced computation time suffices to arrive
at a decision about membership. These properties correspond to recognizable
redundancy in the encoding of instances. By means of lookup tables, however, a
decision procedure can be made to run fast on any finite selection of instances.
This hinders the application of our intuition to the instance complexity conjecture,
as it looks at the collective of decision procedures for some set. Instead, we are
interested in properties shared by each of the decision procedures individually.

High Complexity

Using parameterizations, we can analyze to what extent high algorithmic com-
plexity implies high computational complexity. For algorithmic complexity, char-
acterizing high complexity is routine [100, Theorem 3.3.1].

3.3.16. Definition. A set of strings 𝑋 is random if there is a constant 𝑟 such
that, for all 𝑛 and all 𝑥 ∈ 𝑋 of length 𝑛, we have

K(𝑥) ≥ 𝑛 + K(𝑛) − 𝑟.

Note that the K(𝑛) term is required because we are working with the prefix-
free variant of Kolmogorov complexity. Other choices, ranging from a constant to
log 𝑛, are available, but for our purposes this definition, using K(𝑛), works best.
Furthermore, although Kolmogorov complexity is only defined up to an additive
constant, our definition of a random set of strings is unambiguous. What sets
count as random sets remains the same, even if we switch to a different encoding of
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procedures. Of course, the constant 𝑟 that witnesses the randomness of a random
set does depend on the encoding of procedures that is used.

Perhaps surprisingly, according to the above definition any finite set is random.
Fortunately, there exist infinite random sets as well as infinite nonrandom sets.
As a result, the interesting random sets are the infinite ones.

For computational complexity, a characterization of sets of instances that
are of high complexity may not be immediately obvious. Identifying minimal
computational complexity with polynomial-time decidability, complexity can be
measured from parameterizations that put a set in XP or FPT. To do so, suppose
we have a direct parameterized procedure 𝜙 that witnesses that some given set 𝐴
is in one of these classes. Let 𝜂 be the parameterization corresponding to 𝜙 and let
𝑓 be the computable function upper bounding the parameter dependence of the
running time of 𝜙. We assume that whenever two parameter values 𝑘 and 𝑘′ are
so that we have 𝜂𝑘 ⊆ 𝜂𝑘′ , we also have 𝑓(𝑘) ≤ 𝑓(𝑘′). Intuitively, this expresses
that deciding membership of fewer instances cannot be harder. Thus, instances of
high computational complexity are those that only occur in slices that are high
up in the inclusion order of a parameterization. For most natural encodings of
parameters, this turns the minimization function of a parameterization into a
measure of computational complexity of instances. We say that the encoding of
a parameter is compatible with the inclusion order of a parameterization 𝜂 if 𝜂
satisfies

∀𝑘, 𝑘′ ∶ 𝜂𝑘 ⊆ 𝜂𝑘′ ⟹ |𝑘| ≤ |𝑘′|. (3.6)

Note that any parameterization has a subparameterization on which the encoding of
the parameter is compatible with the inclusion order. This observation is similar to
Lemma 3.1.19. Most parameterizations in the literature [e.g. 44, 57, 113, 37] meet
the compatibility criterion in (3.6). Hence, for most common parameterization 𝜂
that put some given set in FPT, a measure of the computational complexity of
instances is provided by μ𝜂.

We have identified sets of high algorithmic complexity as those where the
Kolmogorov complexity of members is within a constant of the highest value
possible. Likewise, we wish to identify sets of high computational complexity
as those where the members have a near-maximal computational complexity.
Intractable instances attain high values under the minimization function with
respect to a parameterization, thus the following notation is of use.

3.3.17. Definition. Given a parameterization 𝜂, we use N𝜂(𝑛, 𝑘) for the number
of elements in the set 𝟚𝑛 ∩ 𝜂𝑘 and further define

M𝜂(𝑛) = max{μ𝜂(𝑥) | 𝑥 ∈ 𝟚𝑛}.

Observe that when a parameterization 𝜂 is decidable, the functions N𝜂 and M𝜂
are computable. By our findings in Section 3.2.4, we should not expect optimal
parameterizations with respect to FPT to exist for a given set. Therefore, a
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parameterized notion of hardness must be dependent on the choice of a parameter-
ization. Hard instances are those where the running time of a direct parameterized
procedure must contain a large parameter dependent factor. By our previous dis-
cussion, we expect that in this case the minimization function attains a high value.
Note that the computable function upper bounding the parameter dependence of
the running time is only an upper bound. Thus, strictly speaking, a high value of
the minimization function does not express that an instance is computationally
complex. It only expresses that we are unable to rule out that it is not. Never-
theless, we accept the minimization function as a measure of the computational
complexity of instances.

3.3.18. Definition. With respect to a parameterization 𝜂, a set of strings 𝑋 is
𝜂-hard if there is a constant ℎ such that, for all 𝑛 and all 𝑥 ∈ 𝑋 of length 𝑛, we
have

μ𝜂(𝑥) ≥ M𝜂(𝑛) − ℎ.

As with random sets, only infinite 𝜂-hard sets are of interest.
The connection between high algorithmic complexity, randomness, and high

computational complexity, hardness, goes beyond the similarity of their definitions.
Using an incompressibility argument, we can prove that randomness implies
hardness with respect to certain parameterizations. The parameterizations for
which we can do so are those that hold information about almost all strings. This
requirement translates into an informativeness criterion which expresses that the
slices of a parameterization can be used for compression. Compressing instances
will be done in the proof of Theorem 3.3.20 by means of a specific encoding scheme
that makes use of parameterizations. We have chosen the following definition
in line with this encoding scheme. As a result, the following definition is visibly
influenced by the details of the encoding scheme.

3.3.19. Definition. A decidable parameterization 𝜂 is informative if there is a
constant 𝑐 such that for every 𝑛 and 𝑘 that satisfy M𝜂(𝑛) − |𝑘| ≥ 𝑐 we have

N𝜂(𝑛, 𝑘) ≤ 2𝑛+|𝑘|+𝑐−2⋅M𝜂(𝑛).

Informally, this rather ad hoc informativeness criterion holds that the density
of any fixed slice of an informative parameterization gets lower as 𝑛 increases. To
see why, observe that in the exponent on the right side of the above inequality
the term |𝑘| + 𝑐 must be less than or equal to M𝜂(𝑛). Therefore, N𝜂(𝑛, 𝑘)
must also be bounded from above by 2𝑛−M𝜂(𝑛). If we assume that as 𝑛 goes to
infinity, so does M𝜂(𝑛), then we thus have N𝜂(𝑛, 𝑘) ∈ o(2𝑛). In the words of
Li and Vitányi [100, Example 2.2.6, attributed to Michael Sipser], this means
that the slices of an informative parameterization are meager. Additionally, in an
informative parameterization, the speed with which the density of a slice must
decrease depends on the corresponding parameter value. For shorter parameter
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values, the density must decrease faster. Indeed, the difference between |𝑘| + 𝑐
and M𝜂(𝑛) gets bigger as |𝑘| gets smaller.

Shortly, we shall see that informativeness of a parameterization is implied by a
more practically useful property. For now, we are set to connect high algorithmic
complexity to high computational complexity.

3.3.20. Theorem. For any informative parameterization 𝜂, every random set is
𝜂-hard.

In less technical terms, this amounts to the following slogan. This slogan
assumes that we have agreed on a constant 𝑟 such that an instance 𝑥 of length 𝑛 is
random if it satisfies K(𝑥) ≥ 𝑛+K(𝑛)−𝑟. Only after agreeing on such a constant 𝑟
is it meaningful to talk about random instances instead of about random sets.
The above theorem tells us that the set of all random instances is a hard set in
accordance with Definition 3.3.18.

3.3.21. Slogan. Random instances are hard.

Proof:
Let 𝜂 be a decidable parameterization, 𝑥 an arbitrary string of length 𝑛, and 𝑘
a parameter value of length μ𝜂(𝑥) such that we have 𝑥 ∈ 𝜂𝑘. Denote by K(𝜂)
the minimum length of a decision procedure for 𝜂. We shall consider a four-part
encoding of 𝑥 based on 𝜂. The first two parts of this encoding specify 𝜂 and 𝑛, the
last two specify 𝑘 and the rank of 𝑥 in 𝟚𝑛 ∩𝜂𝑘, respectively. Because 𝜂 is decidable,
the last two parts can be specified in M𝜂(𝑛) + 1 and log N𝜂(𝑛, 𝑘) bits respectively.
By always using this many bits, we can concatenate the two specifications without
the need for a separation marker to distinguish the two parts.

A few things are worth noting about this encoding scheme. The number of
parameter values to distinguish is 2M𝜂(𝑛)+1 − 1, which is why our fixed-length
encoding of parameter values uses M𝜂(𝑛) + 1 bits. Additionally, we make use of
the fact that, given 𝜂 and 𝑛, we can compute M𝜂(𝑛). In turn, we can compute
N𝜂(𝑛, 𝑘) once 𝑘 is known too. Thus, we find

K(𝑥) ≤ K(𝜂) + K(𝑛) + M𝜂(𝑛) + 1 + log N𝜂(𝑛, 𝑘).

Now, let 𝑋 be a random set, the randomness of which is witnessed by a
constant 𝑟, and let 𝑥 be a string in 𝑋 of length 𝑛. We can combine the defining
equation for random sets, 𝑛 + K(𝑛) − 𝑟 ≤ K(𝑥), with the upper bound on K(𝑥)
obtained above to get

𝑛 + K(𝑛) − 𝑟 ≤ K(𝜂) + K(𝑛) + M𝜂(𝑛) + 1 + log N𝜂(𝑛, 𝑘).

After some rearranging and flipping the inequality, we obtain

log N𝜂(𝑛, 𝑘) ≥ 𝑛 − M𝜂(𝑛) − (K(𝜂) + 𝑟 + 1).
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Lastly, suppose 𝜂 is an informative parameterization and a constant 𝑐 witnesses
its informativeness. We may assume that we have M𝜂(𝑛) − μ𝜂(𝑥) ≥ 𝑐, for if not,
𝜂-hardness of 𝑋 is immediate. Thus, we may use the upper bound on N𝜂(𝑛, 𝑘)
provided by the informativeness criterion and get

𝑛 + |𝑘| + 𝑐 − 2 ⋅ M𝜂(𝑛) ≥ 𝑛 − M𝜂(𝑛) − (K(𝜂) + 𝑟 + 1),

which simplifies to
|𝑘| ≥ M𝜂(𝑛) − (K(𝜂) + 𝑟 + 𝑐 + 1).

In this last inequality, K(𝜂), 𝑟, and 𝑐 are independent of 𝑥. Because we have
chosen 𝑘 to be so that we have |𝑘| = μ𝜂(𝑥), this proves 𝜂-hardness of 𝑋. 2

Of course, Theorem 3.3.20 was made possible by the way we defined being
informative in Definition 3.3.19. The informativeness criterion may be somewhat
elusive and it may not be straightforward to test whether a given parameterization
is informative or not. In fact, at this point we have little reason to believe
informative parameterizations exist at all. It is therefore useful to identify a class
of parameterizations of which informativeness can be established easily. Central
to this class will be a density requirement on the slices of parameterizations.

3.3.22. Definition. A parameterization 𝜂 has uniform exponential density if
there is a non-decreasing function 𝑓, and there are two constants 𝜀 and 𝛾, both
strictly between 0 and 1, such that, for all 𝑛 and all 𝑘 with |𝑘| ≤ M𝜂(𝑛), we have

2𝜀𝑓(|𝑘|)𝑛𝛾 ≤ N𝜂(𝑛, 𝑘) ≤ 2𝑓(|𝑘|)𝑛𝛾 .

Parameterizations of which the slices have exponential density have, from a
parameterized tractability point of view, a nice robustness property. The slices of a
parameterization are polytime-segments of every set that the parameterization puts
in XP or FPT. With polytime-segments, we have looked at the approximations
with a running time that was bounded by a polynomial as a function of the
length of the input. It may make sense to also consider the running time of
an approximation as a function of the rank of an element in the domain of the
approximation. If the domain of a polytime-approximation is of subexponential
density, the running time may become superpolynomial as a function of the rank
of inputs in the domain. This could be indicative of the existence of a more
frugal encoding of objects with respect to the approximated set. In particular, an
encoding similar to the multi-part encoding used in the proof of Theorem 3.3.20
may be viable and even invertible in polynomial time. This will be discussed in
more detail in Section 3.4.5. Having exponentially dense slices is a guarantee
that no recoding based on the parameterization is going to influence the fixed-
parameter tractability of a set.

For parameterizations that have uniform exponential density, informativeness
follows from a simple property.
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3.3.23. Lemma. Let 𝜂 be a decidable parameterization having uniform exponential
density. If we have M𝜂(𝑛) ∈ 𝒪(log 𝑛), then 𝜂 is informative.

Proof:
Let 𝑓, 𝜀, and 𝛾 witness the uniform exponential density of 𝜂. As, for all 𝑘, the
value of N𝜂(𝑛, 𝑘) cannot exceed 2𝑛, and the left-hand side of the density criterion
is at most 2𝜀𝑓(M𝜂(𝑛))𝑛𝛾 , we find 2𝜀𝑓(M𝜂(𝑛))𝑛𝛾 ≤ 2𝑛. Equivalently, this means that
we have

𝑓(M𝜂(𝑛)) ≤ 𝑛
𝜀𝑛𝛾 = 𝑛1−𝛾

𝜀
.

Because of the bound on M𝜂, there is a constant 𝛿 such that, for every 𝑛, we
have M𝜂(2𝑛) ≤ M𝜂(𝑛) + 𝛿. Since 𝑓 is non-decreasing, we can combine this with
the previous inequality to obtain

𝑓(M𝜂(𝑛) − 𝛿) ≤ 𝑓(M𝜂(𝑛/2))

≤ (𝑛/2)1−𝛾

𝜀

= 𝑛1−𝛾

𝜀21−𝛾 .

We can plug this bound on 𝑓 into the right-hand side of the density criterion
to find, for all 𝑘 of length at most M𝜂(𝑛) − 𝛿,

N𝜂(𝑛, 𝑘) ≤ 2𝑓(M𝜂(𝑛)−𝛿)𝑛𝛾

≤ 2
𝑛1−𝛾
𝜀21−𝛾 𝑛𝛾

= 2
𝑛

𝜀21−𝛾 .

More generally, for any constant 𝑐 we find that, for all 𝑘 of length at most
M𝜂(𝑛) − 𝑐 ⋅ 𝛿, we have

N𝜂(𝑛, 𝑘) ≤ 2
𝑛

𝜀2𝑐(1−𝛾) .

If we choose 𝑐 large enough, then the denominator in the exponent, 𝜀2𝑐(1−𝛾), will
become larger than 1. Because we have M𝜂(𝑛) ∈ 𝒪(log 𝑛), choosing 𝑐 larger still
we can make sure that we have 𝑛

𝜀2𝑐(1−𝛾) ≤ 𝑛 + 𝑐 ⋅ 𝛿 − 2 ⋅ M𝜂(𝑛). From this, because
we have

N𝜂(𝑛, 𝑘) ≤ 2𝑛+𝑐⋅𝛿−2⋅M𝜂(𝑛) ≤ 2𝑛+|𝑘|+𝑐⋅𝛿−2⋅M𝜂(𝑛),

it follows that 𝜂 is informative. 2

A parameterization of which informativeness can be shown using this lemma
is the vertex cover parameterization.
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3.3.24. Example. To be technically correct, we should distinguish between the
NP-complete [63] set

VertexCover = {(𝐺, 𝑙) | graph 𝐺 has a vertex cover of size at most 𝑙},

and the parameterization

𝜂 = ({𝐺 | the graph encoded by 𝐺
has a vertex cover of size at most asInt(𝑘)})𝑘∈𝟚+ .

It is well known that VertexCover is in FPT when parameterized by the
parameterization that bounds the size of the solution, ({(𝐺, 𝑙) | 𝑙 ≤ asInt(𝑘)})𝑘∈𝟚+ .
Whether this last parameterization is informative depends on the pairing function
that is used to combine 𝐺 and 𝑙 into a single string. Note that the parameterization
that bounds the size of the solution also counts as a parameterization in the
framework of Flum and Grohe. This is not the case for 𝜂, unless P equals NP
and the minimum vertex cover size can be computed in polynomial time.

The parameterization 𝜂 is emblematic of having uniform exponential density.
Consider the adjacency matrix encoding of graphs and let 𝑛 represent the number
of cells in an adjacency matrix. Remark that the number of vertices in a graph of
which the adjacency matrix has 𝑛 cells is roughly

√
𝑛. For any parameter value 𝑘,

there are roughly 2asInt(𝑘)
√

𝑛 graphs of size 𝑛 that have a fixed vertex cover of size
at most asInt(𝑘). This is so because any of the

√
𝑛 vertices of the graph can only

be connected to any of the asInt(𝑘) elements of the vertex cover.
From Lemma 3.3.23, it now follows that the vertex cover parameterization is

informative, because besides that it has uniform exponential density, we also have

M𝜂(𝑛) = |asStr(
√

𝑛)| ∈ 𝒪(log 𝑛).

That is, the largest minimum vertex cover has about as many vertices as there are
available in the graph. The size of a minimum vertex cover can thus be specified
in a number of bits that is logarithmic in the number of vertices in the graph.

Low Complexity

Turning to the other end of the complexity spectrum, we may ask whether
low algorithmic complexity in turn implies low computational complexity. A
formalization of the notion of low computational complexity is readily available in
our parameterized framework. With respect to a parameterization 𝜂, a set is 𝜂-easy
if on that set the minimization with respect to 𝜂 is bounded by a constant. Using
that a parameterization is directed, this leads to a pleasantly succinct definition.

3.3.25. Definition. With respect to a parameterization 𝜂, a set of strings 𝑋 is
𝜂-easy if there is a parameter value 𝑘 such that we have 𝑋 ⊆ 𝜂𝑘.
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As with our definition of hard sets, this definition is most meaningful in the context
of a set that is in XP or FPT with the particular parameterization. Then, a
set is easy when it is a subset of a polytime-segment. This leads to a connection
to algorithmic complexity related to Theorem 3.3.3. The key observation in the
proof of that theorem is that sets of which the instance complexity with respect
to a polynomial is bounded are polytime-segments. Since our notion of easiness is
concerned with one slice only, we can remain in the realm of uniform parameterized
complexity theory. We remark that any set that is covered by finitely many slices
of a parameterization 𝜂 is included in a slice of 𝜂, because parameterizations are
directed.

3.3.26. Theorem. The following statements about a decidable set 𝐴 and an
arbitrary set 𝑋 are equivalent.

1. There is a parameterization 𝜂 with which 𝐴 is in FPT such that 𝑋 is 𝜂-easy.

2. There is a polynomial 𝑝 and a constant 𝑐 such that for all 𝑥 ∈ 𝑋 we have
ic𝑝(𝑥 ∶ 𝐴) ≤ 𝑐.

Proof:
1 ⟹ 2. This statement is similar to Theorem 3.3.5. Any slice of a param-
eterization with which 𝐴 is in FPT is a polytime-segment of 𝐴. Thus, there
is a polynomial 𝑝 such that 𝑋 is included in a 𝑝-segment of 𝐴. Consequently,
there is a 𝑝-approximation for 𝐴 that includes all members of 𝑋 in its domain.
By Definition 3.3.1, this means that the 𝑝-bounded instance complexity of the
members of 𝑋 can be bounded from above by a constant.

2 ⟹ 1. All 𝑝-approximations for 𝐴 with a length of at most 𝑐 can be
combined into a single 𝒪(𝑝)-approximation for 𝐴. As a consequence, we get that
𝑋 is the subset of some 𝒪(𝑝)-segment, say 𝑆, of 𝐴. Consider the parameterization
of finite extensions of 𝑆 given by

𝜂 = (𝑆 ∪ {𝑥 | |𝑥| ≤ asInt(𝑘)})𝑘∈𝟚+ .

Essentially, this parameterization adds the set 𝑆 to each slice of the length param-
eterization. By our observations on page 92, immediately below Example 3.2.16,
we know that 𝐴 is in FPT with 𝜂. Moreover, by construction, 𝑋 is 𝜂-easy. 2

This theorem lines up a notion of low computational complexity with a notion
of low algorithmic complexity. As such it complements Theorem 3.3.20. However,
we feel that bounded instance complexity with respect to a polynomial is not an
adequate formalization of the opposite of randomness. Polynomially-bounded
instance complexity depends on both a time bound and a reference set, whereas
our definition of random sets depends on neither. In that regard, polynomially-
bounded instance complexity is already very much a notion of computational
complexity.
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Looking at Definition 3.3.16, an obvious formalization of the opposite of
randomness would be to require the Kolmogorov complexity to be bounded.
A definition along these lines, though, would face two problems. Firstly, a set
on which the Kolmogorov complexity is bounded from above by a constant is
necessarily finite. Since the range of any function on a finite set is bounded, the
proposed definition would be too demanding to be of use. Secondly, Kolmogorov
complexity disregards the computational cost of producing a particular string.
With random sets, the time required for decoding a compressed representation
was of no concern. The Kolmogorov complexity of a member of a random set can
be realized by a bit-for-bit specification, and such a specification can be decoded
in linear time. The same is not true of strings with substantial redundancy in
their descriptions. This is a drawback of the proposed definition as compressibility
can only be taken advantage of if the redundant part of a string can be generated
quickly.

A measure of algorithmic complexity that is not relative to a reference set
and takes into account how fast a string can be produced was proposed by
Hartmanis [74]. According to this measure, the opposite of a random set is a set
of small generalized Kolmogorov complexity [15, 8].

3.3.27. Definition. A set of strings 𝑋 has small generalized Kolmogorov com-
plexity if there is a constant 𝑐 such that, for all 𝑛 and all 𝑥 ∈ 𝑋 of length 𝑛, there
is a procedure 𝜙 that satisfies

• |𝜙| ≤ 𝑐 log 𝑛, and

• 𝜙 outputs 𝑥 within 𝑛𝑐 steps.

Note that for any 𝑛 and any fixed 𝑐 the number of procedures of length at most
𝑐 log 𝑛 is polynomial in 𝑛. Deciding whether a given 𝑥 of length 𝑛 is produced by
any of these procedures within 𝑛𝑐 steps is therefore possible in a time bounded
polynomially in 𝑛. Yet, this does not mean that every set with small generalized
Kolmogorov complexity is in P. Every subset of a set with small generalized
Kolmogorov complexity, no matter how difficult to decide, has small generalized
Kolmogorov complexity. To add a sense of uniformity, we may want to think only
of the sets in P with small generalized Kolmogorov complexity as nonrandom sets.
As it turns out, this gets us another class of sets of highly structured strings. The
class we get was first identified by Hartmanis and Yesha [78].

3.3.28. Definition. A set of strings 𝑋 is p-printable if there is a polynomial 𝑝
and a procedure 𝜙 that, on any input asStr(𝑛), lists all members of 𝑋 with a
length of at most 𝑛 within 𝑝(𝑛) steps.

The equivalence of the class of p-printable sets and the class of sets in P with
small generalized Kolmogorov complexity was shown independently by Balcázar
and Book [15], and Rubinstein [132]. Shortly after, Allender and Rubinstein [8]
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identified two more ways of characterizing the p-printable sets. They observed
that a set is p-printable precisely when it is polynomial-time isomorphic to some
tally set, any subset of {0}+, in P. Consequently, they showed that a set is
polynomial-time isomorphic to a tally set in P precisely when it is sparse and
p-rankable [see also 69]. Whether or not all sparse sets in P are p-rankable and
thus p-printable is an open problem. Yet, oracles are known relative to which not
all sparse sets in P are p-printable [74].

With Theorem 3.3.20, we have found that random sets are hard in relation
to any informative parameterization. For the converse, we may expect every set
with small generalized Kolmogorov complexity to be easy in relation to some
parameterization. While we shall leave this as an open problem, it has been shown
that such a theorem would be at odds with the Berman–Hartmanis conjecture.

3.3.29. Theorem (Hartmanis [74, Theorem 14]). Let 𝑓 be a function that grows
faster than any polynomial, and 𝑋 the set of strings such that for all 𝑛 and all
𝑥 ∈ 𝑋 of length 𝑛, there is a procedure 𝜙 that satisfies

• |𝜙| ≤ log 𝑛, and

• 𝜙 outputs 𝑥 within 𝑓(𝑛) steps.

If 𝑋 is easy for some parameterization with which an NP-complete set is in FPT,
then there are nonisomorphic NP-complete sets.

Notice that the set 𝑋 in the theorem above is not actually a set with small
generalized Kolmogorov complexity, as the time bound 𝑓 is not polynomial. Still,
the theorem puts a point on the map for the study of the parameterized tractability
of NP-complete sets in relation to the Berman–Hartmanis conjecture.
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3.4 as Model Classes
To a deity that has an unbounded amount of computation time at its disposal, all
that can be known about an object 𝑥 can be conveyed in K(𝑥) bits. In that sense,
Kolmogorov complexity is a measure of the information in an object. In practice,
however, part of the information thus measured may be out of reach. Next to
computational reasons, this may be because of the expectations an observer has
about an object. As an observer may not be receptive to all information, it may
be possible to convey a sufficient part of the information in an object 𝑥 in under
K(𝑥) bits. This is what lossy compression aims for.

3.4.1. Example. To get a feel for the amount of information in an object that is
relevant, we take a brief look at image compression. The Kolmogorov complexity
of an image can be approximated from above using a lossless graphics file format
such as Portable Network Graphics, PNG [133]. In turn, the information that
is actually relevant to a human observer can be approximated using a lossy file
format such as JPEG [133]. Looking at the Kodak True Color Image Suite [61], a
standard test set, we find the following mean file sizes [139].

PNG JPEG (Q=90)
641 kilobyte 136 kilobyte

Thus, the approximate mean Kolmogorov complexity of the images in the test
suite is 641 kilobyte, and their approximate mean useful information is 136 kilobyte.
This puts the fraction of the information in an image that is essential to its
qualities as an image at around 21%.

In the presentation of an object, a certain amount of redundancy is desirable.
Hardly ever do we want an object to be displayed as a string witnessing just its
useful information, or even its Kolmogorov complexity. When we derive a length
notion from a more natural presentation, this length can be divided into three
parts. These parts are: the useful information, the noise, and the redundancy,
as shown in Figure 3.5. Here, noise is the difference between the Kolmogorov
complexity and the useful information.

3.4.2. Example (continued). The most natural presentation of an image is as
its intended graphical display. Via the bitmap image file format, BMP, we get a
length measure that is, at least in spirit, derived from this means of presentation.
The images in the Kodak image suite all contain 768 ⋅ 512 = 393216 pixels, each
recorded with 3 bytes of color depth. Thus, the BMP size of each image is
1180 kilobyte. In relation to this, the images contain, on average, at most 11%
useful information, around 43% noise, and at least 46% redundant information.

That not all of some object’s natural length is allotted to useful information can
also be seen from information-hiding techniques. Homoglyphs are text characters
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𝑥

K(𝑥) redundancy

noiseuseful
information

Figure 3.5: The length of a string 𝑥, decomposed into the Kolmogorov complexity
of 𝑥 and the redundancy in 𝑥. The Kolmogorov complexity is further decomposed
into useful information and useless noise. Relative sizes are depicted in accordance
with Example 3.4.2.

that are not perceived to be different, yet have different encodings. By selectively
replacing characters in a text message by their homoglyphs, information can be
injected into a message without ostensibly altering it. Arguably, the information
in a text message is not even altered when words or phrases in it are replaced by
synonyms. This, too, can be used for information hiding, or, more technically, for
steganography [84].

While the useful information is left unaltered by steganography, this does not
mean that the presence of hidden information cannot be detected. Such detection
is the goal of steganalysis. For instance, it is not unreasonable to expect that the
use of homoglyphs reduces the redundancy in a message. Thus, a carrier message
without hidden information may be more compressible than a message with hidden
information. Applied to images, techniques are developed to restrict the action
of steganographic information hiding to the noise in an image. These techniques
evade detection by simple compression tests. An overview of steganography
methods for images is given by Cheddad et al. [32].

Synopsis

Quantifying the useful information in an object is the domain of algorithmic
statistics. This is a formulation of statistics centered on model selection for
individual data samples. Algorithmic statistics will be introduced in more detail
in Section 3.4.1. The associated formalization of useful information, sophistication,
is the topic of Section 3.4.2. Algorithmic statistics includes a notion of goodness-
of-fit grounded in Kolmogorov complexity, where computational resource usage
is not considered. Consequently, sophistication targets a universal observer with
unbounded computational powers. This approach is complicated by the fact
that, unlike Kolmogorov complexity, sophistication differs in an unbounded way
among universal observers. That is, sophistication is sensitive to the encoding
used for specifying procedures. Additionally, if we consider reasoning to be a form
of computation, then it makes sense to include computational complexity in a
measure of useful information. This should make it possible to target a human
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observer instead of a universal observer. With parameterizations, we can formalize
useful information in a context-sensitive way. Moreover, since parameter values
can provide a measure of computational complexity, a parameterized sophistication
can include computational considerations. Doing so tightens the relationship
between algorithmic complexity and computational complexity.

Previously, we looked at the relationship between parameter values and the
algorithmic complexity of individual strings. Here, we shall continue that investi-
gation. We shall see that parameterizations provide an alternative to the use of
Kolmogorov complexity in algorithmic statistics. The parameterized take on algo-
rithmic statistics includes the traditional version as a special case. This enables
us to use traditional algorithmic statistics as a running example in the section on
sophistication, Section 3.4.2.

Many theorems and questions that are central to algorithmic statistics are
about the existence and prevalence of objects that lack simple statistical models.
In Section 3.4.3, we continue our generalization of algorithmic statistics so that
parameterized counterparts to such theorems and questions can be stated. We
observe that the idea of simplicity of a model for an object requires a notion of
length to be available for the object. Throughout our treatment of parameterized
algorithmic statistics, we make a distinction between an object and a string
representation of that object. Therefore, a notion of length is only available for
objects after we have decided on a way to encode objects. This lets us conclude
that an object can only be incompressible if it has a truly canonical encoding,
which is only the case if the object is already a string.

In Section 3.4.4, we get to see how the inclusion of parameterizations makes the
theory of algorithmic statistics more fine-grained. The section places sophistication
in the context of three well-known strategies for model selection in statistics:
Occam’s razor, the maximum likelihood principle, and the minimum description
length principle. Additionally, in this section we find that most strings have simple
models, also in parameterized algorithmic statistics. These simple models would
even pass as good simple models in traditional algorithmic statistics for infinitely
many objects. Thus, for infinitely many objects, the useful information reflected
by a parameterization is really all the useful information there is.

Questions surrounding the prevalence of objects with simple models can also be
turned around in parameterized algorithmic statistics. We do so in Section 3.4.5,
where we focus on parameterizations corresponding to parameterized algorithms
that are successfully applied in practice. From the success of these algorithms,
we can infer what parameter values we are most likely to encounter. To wit, we
know that the expected parameter value is small, like we have seen all the way
back in Example 1.2.1. For a fixed parameterization, this gives us information
about what a good statistical model of the real world should look like. In turn,
this knowledge can be used as a guiding principle in the design of suitable data
structures for dealing with real-world data. Section 3.4.6 explores the properties
and possibilities of data structures rooted in parameterizations.
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3.4.1 An Overview of Algorithmic Statistics

The crucial insight that makes algorithmic statistics possible is that the Kolmogorov
complexity of an object can always be realized by a two-part code. Every object
can be described by two strings of which the combined length equals, up to an
independent additive constant, the Kolmogorov complexity of the object. The
two parts are commonly called model and data-to-model code. The second part is
so named because it describes the object relative to the model. In the pairing of
the two parts it must be clear where one part ends and the other begins.

In traditional applications of the minimum description length principle [128,
127, 150, 72] the word ‘model’ is used to indicate a functional form. The second
part of the two-part code is then used to both instantiate a single function and
specify the data with respect to it. In algorithmic statistics, however, the two-part
code should separate the meaningful information in an object from the random
noise in that object. Algorithmic statistics is not concerned with any structure
inside the second part of the two-part code. Thus, the word ‘model’ is used for
what is known as a point hypothesis or exact hypothesis in inferential statistics.
More concretely, in algorithmic statistics, we interpret models as probability
distributions. In turn, data-to-model codes are interpreted as entropy encodings
in accordance with those probability distributions [148, 36].

A measure of the informativeness, the sophistication, of an object is available in
the form of the minimum complexity of a model for the object. This minimization
is restricted to those probability distributions with which the two-part code for
the object realizes the Kolmogorov complexity of the object. Unfortunately, there
is no clear-cut way to define the complexity of a probability distribution. If we
would allow the universal distribution [100] to have a finite complexity, then it
would realize the Kolmogorov complexity of every object. The finite complexity
of the universal distribution would present a constant additive overhead to the
Kolmogorov complexity. However, Kolmogorov complexity is only defined up to
an additive constant. Likewise, the universal distribution is only defined up to
a multiplicative constant. Hence, this additive overhead is unavoidable to begin
with. In that sense, the universal distribution would act as a universal model [149,
21]. Disregarding additive constants for a moment, we see that such a universal
model would place a universal bound on the informativeness of any object. This
renders our measure of informativeness useless. To which probability distributions
we assign finite complexity is hence a central question in the development of
algorithmic statistics [147]. The class of probability distributions considered is
called the model class. While the choice of a model class is usually an ad hoc choice
in applications of the minimum description length principle [150, 72], algorithmic
statistics calls for a single generic model class. The lack of a universally best
model class, according to some motivation from outside the theory, is a major
obstacle for algorithmic statistics.

Many model classes have been considered in the existing literature. When
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interpreted as classes of probability distributions, there is significant variation in
the requirements that have been put on the computability of the probabilities.
Regardless of this variation, the studied model classes can be characterized by a
classification of the support of the probability distributions they contain. Least
restrictive are the model classes where the support of a probability distribution
can be any semidecidable set. Such model classes are present in the works of
Rissanen [127], Koppel [96], Gács, Tromp, and Vitányi [62] (as implicit probabilistic
models), Vitányi [149], and Antunes and Fortnow [10]. A model class where exactly
the decidable sets occur as the support of the probability distributions is hinted
at by Gács, Tromp, and Vitányi [62] (as explicit probabilistic models). However,
their definitions are not strong enough to enforce decidability. The most fruitful
model class has been that of uniform probability distributions with arbitrary,
yet necessarily finite, support. This is the model class originally proposed by
Kolmogorov and most prominent in the works of Gács, Tromp, and Vitányi [62]
and Vereshchagin and Vitányi [148]. A slightly more general model class where the
probability distributions have finite support, yet are allowed to take on different
rational-valued probabilities on their support, was considered by Vereshchagin
and Shen [147].

All of the model classes studied by the aforementioned authors exclude universal
models. Yet, none are presented with a guarantee against putting meaningful
information in the data-to-model code, thus underfitting the data. As argued
by Bloem, De Rooij, and Adriaans [21], it is likely that these model classes
do in fact contain models that are “too universal”. That is, some models are
universal enough to bound the informativeness of some objects by a value less
than the informativeness we ascribe to them intuitively. Such model classes
misrepresent the informativeness of certain objects that we think of as containing
meaningful information. At the same time, Vereshchagin [146], Bloem, De Rooij,
and Adriaans [21], and Antunes et al. [11] show that the choice of the complexity
measure used to measure the complexity of models matters. Sophistication, which
is described in more detail in the next section, in particular is sensitive to this
choice. While Kolmogorov complexity is invariant under the choice of a universal
machine, sophistication, despite being based on Kolmogorov complexity, is not.
This is true regardless of how we adapt Kolmogorov complexity for measuring
the complexity of probability distributions, which can be done in many ways [62].
Slight variations in the model complexity can change a model from realizing the
Kolmogorov complexity of an object to not realizing it and vice versa. Hence
the minimum complexity of a probability distribution with which the two-part
description of an object realizes the Kolmogorov complexity of that object can
change significantly with a change of the reference universal machine. As a
result, some choices of a reference machine may lead to widespread overfitting [21].
When performing maximum likelihood estimation, this form of overfitting can
be mitigated by working with complexity-constrained subclasses of the model
class [148]. However, that brings us no closer to a definitive measure of the useful
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information in an object. Alternatively, one can adjust the complexity measure
for models so that the selection of overfitting models is penalized. This is done by
Rissanen [127] and Antunes and Fortnow [10], but it is not proven to be adequate
and may lead to underfitting instead [21].

We propose to include the model class and its associated complexity measure
as a degree of freedom in the framework of algorithmic statistics. Indeed, we
shall use parameterizations as model classes with an inherent complexity measure.
Besides addressing underfitting and overfitting, doing so also makes it possible
to examine complexity measures other than the Kolmogorov complexity. The
uncomputability of Kolmogorov complexity has been identified as an impediment to
applications of algorithmic statistics [127, 147]. Remarkably, the existing literature
on algorithmic statistics has so far only explored in detail variations of Kolmogorov
complexity as complexity measures. At the same time, the potential for restricted
model classes has been identified [22, 147]. By introducing an explicit dependence
on a model class, we accept that a notion of useful information may be subject
to one’s expectations. There appears to be no universally best model class, or,
in other words, no universal prior for algorithmic statistics. Because of that, the
dependence of a notion of useful information on a model class is likely unavoidable.

3.4.3. Slogan. Useful information is context-dependent.

Accepting that a notion of useful information is dependent on a model class
justifies the addition of a model class variable to the framework.

3.4.2 Sophistication
Traditionally, algorithmic statistics looks at describing a string 𝑥 with the help of
a probability distribution 𝑃 that assigns nonzero probability to 𝑥. The probability
mass function 𝑃 is required, at the least, to be rational-valued and computable [147].
Knowing 𝑃, a code that is optimal with respect to 𝑃 uses − log 𝑃(𝑥) bits for
describing 𝑥 in prefix-free fashion [36]. Now, let us use |𝑃 | for the length of a
description of 𝑃 in some fixed prefix-free encoding of rational-valued computable
probability mass functions. We find an upper bound on the Kolmogorov complexity
of 𝑥 in the form of a two-part description of 𝑥,

K(𝑥) ≤ |𝑃 | − log 𝑃(𝑥).

How tight this bound can get depends on the chosen method of encoding probability
mass functions. It is customary to focus on methods that are as efficient as
possible. An extreme case is provided by the probability distributions 𝑃 of which
the support is a singleton, {𝑥}, and we have 𝑃(𝑥) = 1. For such a probability
distribution 𝑃, the length |𝑃 | can be made to match, up to an additive constant,
the Kolmogorov complexity of 𝑥. With encodings that accomplish this, the above
equation can become an equality.



150 Chapter 3. Parameterizations

Since we are describing the string 𝑥 using two-part codes, we may investigate
the many ways in which a description of 𝑥 can be composed of two parts. In
particular, we are interested in the ways the Kolmogorov complexity of 𝑥 can be
split in two by probability mass functions. Naturally, when we restrict our model
class, we limit the number of ways to describe 𝑥. However, some model classes
nearly cover all possible ways to balance the lengths of the two parts. One such
model class is that of uniform distributions. The support of a uniform probability
mass function is a finite set. For a finite set 𝐴, let ⟨𝐴⟩ denote a listing of all
elements of 𝐴 and notice that the number of elements of 𝐴 can be recovered
from ⟨𝐴⟩.

3.4.4. Theorem (Vereshchagin and Shen [147, Remark 1 & Proposition 6]).
Let 𝑃 be a rational-valued computable probability mass function and 𝑥 a string to
which 𝑃 assigns nonzero probability. There exists a finite set 𝐴 of 𝑚 elements
including 𝑥 such that we have

K(⟨𝐴⟩) ≤ |𝑃 | + 𝒪(log |𝑥|) and − log 1
𝑚

≤ − log 𝑃(𝑥) + 𝒪(1).

In other words, up to terms logarithmic in the length of a string 𝑥, we may restrict
our attention to uniform distributions. Uniform distributions effectively maximize
the minimum probability in a distribution with a given finite support. For
distributions with a given infinite support, there is no clear-cut way of maximizing
the minimum probability. Therefore, it is interesting to note that there is a variant
of Theorem 3.4.4 for a model class where distributions have potentially infinite
support. Note that the − log 1

𝑚 term in Theorem 3.4.4 represents the fact that
log 𝑚 bits suffice to tell the elements of the finite set 𝐴 apart. With Elias delta
coding as defined in Section 2.1.1, we can single out the 𝑟th element of any decidable
set using log 𝑟 +2 log log 𝑟 bits. Prefix-free codes such as the Elias delta coding are
related to probability distributions by the Kraft inequality [36, 100]. An element
that is encoded using ℓ bits is accordingly assigned a probability of 2−ℓ. The
probability distributions stemming from Elias delta coding via the Kraft inequality
can have infinite support. It is the model class of such distributions that has a
property similar to that codified in Theorem 3.4.4 for the model class of uniform
distributions. For a decidable set 𝐴, let K(𝐴) denote the least length among the
lengths of decision procedures for 𝐴.

3.4.5. Theorem. Let 𝑃 be a rational-valued computable probability mass function
and 𝑥 a string to which 𝑃 assigns nonzero probability. There exists a decidable
set 𝐴 including 𝑥 such that, with 𝑟 = rank(𝑥 ∶ 𝐴), we have

K(𝐴) ≤ |𝑃 | + 𝒪(log |𝑥|)
and

log 𝑟 + 2 log log 𝑟 ≤ − log 𝑃(𝑥) + 𝒪(1).
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Proof:
Let 𝑆 be the support of 𝑃 and let 𝑟𝑆 be the rank of 𝑥 in this set. In other words,
we define 𝑆 as {𝑦 | 𝑃 (𝑦) > 0} and we define 𝑟𝑆 as rank(𝑥 ∶ 𝑆). Furthermore, set 𝑖
to the unique value for which we have

𝑖2 2𝑖

(log 𝑟𝑆)2 𝑟𝑆
< 𝑃(𝑥) ≤ (𝑖 + 1)2 2𝑖+1

(log 𝑟𝑆)2 𝑟𝑆
.

Observe that 𝑖 must be less than log 𝑟𝑆, because 𝑃(𝑥) is at most 1. Therefore, we
have 𝑖 ∈ 𝒪(|𝑥|) and the number of bits needed to specify 𝑖 is in 𝒪(log |𝑥|).

Now, consider the set

𝐻 = {𝑦 ∣ 𝑃(𝑦) > 𝑖2 2𝑖

(log rank(𝑦 ∶ 𝑆))2 rank(𝑦 ∶ 𝑆)
} .

We find that 𝑥 is included in 𝐻. Observe that all members of 𝐻 preceding 𝑥 must
have a probability of at least

𝑖2 2𝑖

(log 𝑟𝑆)2 𝑟𝑆
.

Therefore the rank of 𝑥 in 𝐻 is at most
(log 𝑟𝑆)2 𝑟𝑆

𝑖2 2𝑖 , (3.7)

as otherwise the sum of the probabilities would exceed 1. The rank of 𝑥 in 𝐻 can
thus be upper bounded by 1

𝑃(𝑥) , which means 𝐻 almost satisfies the requirements
on the set 𝐴 of the theorem. To complete the proof, all that remains is to move
some complexity from the data-to-model code into the model. The set 𝐻 can be
partitioned into |𝑥|2 subsets 𝐻1, 𝐻2, 𝐻3, … , 𝐻|𝑥|2 via

𝐻𝑗 = {𝑦 ∈ 𝐻 | rank(𝑦 ∶ 𝐻) ≡ 𝑗 (mod |𝑥|2)}.

For exactly one 𝑗, the set 𝐻𝑗 contains 𝑥. Let 𝐴 be this set 𝐻𝑗. That is, 𝐴 is a
thinned-out version of 𝐻 that includes 𝑥. By construction, 𝐴 contains at most one
out of every |𝑥|2 elements of 𝐻. Following (3.7), the rank of 𝑥 in 𝐴 is therefore at
most

(log 𝑟𝑆)2 𝑟𝑆
𝑖2 2𝑖 /|𝑥|2,

rounded upward if needed. Hence, the rank of 𝑥 in 𝐴 is at most 𝑟𝑆
𝑖2 2𝑖 + 1 and if

we let 𝑟 denote this rank, we find

log 𝑟 + 2 log log 𝑟 ≤ log 𝑟𝑆
𝑖2 2𝑖 + 2 log log 𝑟𝑆

𝑖2 2𝑖 + 𝒪(1)

≤ log 𝑟𝑆 − 2 log 𝑖 − 𝑖 + 2 log log 𝑟𝑆 + 𝒪(1)

≤ − log (𝑖 + 1)2 2𝑖+1

(log 𝑟𝑆)2 𝑟𝑆
+ 𝒪(1)

≤ − log 𝑃(𝑥) + 𝒪(1),
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as desired. Additionally, 𝐴 was constructed from 𝑃, 𝑖, and 𝑗, so we also have
K(𝐴) ≤ |𝑃 | + 𝒪(log |𝑥|). 2

The message of Theorem 3.4.5 is that, up to terms logarithmic in the length
of a string 𝑥, we may restrict our attention to distributions in accordance with
Elias delta coding. This allows us to focus on decidable sets as models, and on
parameterizations with decidable slices as model classes.

3.4.6. Definition. A parameterized model is a slice of a parameterization, rep-
resented by its corresponding parameter value.

We call a parameterization 𝜂 a parameterized model class, and a parameter
value 𝑘 an 𝜂-model for a string 𝑥 if we have 𝑥 ∈ 𝜂𝑘. By using the same coding
method across all slices, across all parameterizations even, we are able to isolate
the useful information about an object. We are unable to express any properties
other than the rank of a string 𝑥 in a slice 𝜂𝑘 if our data-to-model code is confined
to Elias delta coding. Therefore, useful information can only accumulate in a
specification of the model, thus in the parameter value 𝑘.

One way to think of a parameterization in this context is as a sort of alter-
native computability universe. In such an alternative universe, the slices of the
parameterization take the role of “decidable” sets. Parameter values then encode
the equivalent of the corresponding decision procedures. Of course, when not all
slices of the parameterization are decidable, this alternative universe is different
from the universe we inhabit. However, even when all slices are decidable, the
parameterization may still challenge our notion of how computability behaves.
The parameter value associated with a slice may not be related to anything we
would reasonably want to call a decision procedure for the slice. On the other
hand, when we can effectively map the parameter values to decision procedures
for the respective slices, we are in a fairly restricted setting.

3.4.7. Example. When we think of ways to encode procedures, we normally
only think of so-called acceptable encodings [131]. Loosely speaking, there must be
an effective way to interpret an encoded procedure and perform the computations
it represents. All acceptable encodings lead to the same notion of Kolmogorov
complexity. Our choice of an encoding has been somewhat implicit, but it plays a
role in the parameterization given by

({𝑥 | 𝑘 encodes a decision procedure that accepts 𝑥})𝑘∈𝟚+ . (3.8)

In this parameterization, there are two kinds of slices. For a parameter value 𝑘
that encodes a decision procedure, the corresponding slice is the set decided
by that decision procedure. In other words, the decision procedure encoded
by 𝑘 outputs 1 on the members of slice 𝑘 and it outputs 0 on the nonmembers.
However, if 𝑘 does not encode a decision procedure, for instance because 𝑘 does
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not encode a total function, then the corresponding slice is empty. Unfortunately,
by Rice’s theorem [125], this means we cannot effectively map a parameter value
to a decision procedure for the corresponding slice.

Suppose it is possible to map parameter values to decision procedures for
the corresponding slices of a parameterization effectively. Then, the minimum
length of a decision procedure for a slice is, up to an additive constant, bounded
from above by the length of the corresponding parameter value. The additive
constant only depends on the algorithmic complexity of the function mapping
parameter values to decision procedures. Because this constant is fixed for the
parameterization, we may ignore it and use the length of a parameter value as
the length of a decision procedure. For more unusual parameterizations such a
constant may not exist. Yet, we may still use the length of a parameter value as a
measure of the complexity of a slice. In general, a nice starting point for measuring
the algorithmic complexity of a string with respect to a parameterization is the
following.

3.4.8. Definition. The parameterized complexity of a string 𝑥 with respect to a
parameterization 𝜂 is

pc𝜂(𝑥) = min{|⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| | 𝑘 ∈ 𝟚+ such that we have 𝑥 ∈ 𝜂𝑘}.

Note that, strictly speaking, the above definition should look at pairs of a
parameter value and a string representation of the rank. To improve readability,
we shall not explicitly state the conversion of the rank, which is a number, to a
string when dealing with such pairs.

As parameterizations are covers of 𝟚+, the parameterized complexity with
respect to a parameterization is defined for every string. The choice of a pairing
function may have an effect on the parameterized complexity. It may affect not
only its value, but also the parameter value with which this value, as a minimum
of multiple candidates, is realized.

3.4.9. Example (continued from Example 3.4.7). Our pairing function, Defini-
tion 2.1.2, uses a prefix-free code, the Elias delta code, for its second component.
As a result, the number of bits used to encode the rank in the definition of param-
eterized complexity aligns nicely with Theorem 3.4.5. The pairing function does
not use a prefix-free code for its first component. However, when encoding proce-
dures, it is natural to use a prefix-free code to begin with [100]. Suppose we use a
prefix-free encoding of decision procedures in the parameterization given by (3.8).
In that case, parameterized complexity with respect to the parameterization given
by (3.8) is essentially Kolmogorov complexity.

To see that it is at most the Kolmogorov complexity, observe that for every
string 𝑥, there is a set {𝑥} with a decision procedure of length K(𝑥) + 𝒪(1).
In the set {𝑥}, the rank of 𝑥 is 1, hence the parameterized complexity of 𝑥
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is at most K(𝑥) + 𝒪(1). At the same time, the Kolmogorov complexity of 𝑥
cannot be substantially higher than its parameterized complexity. Consider a
procedure that, given a string 𝑘 and a number 𝑟, simulates the decision procedure
encoded by 𝑘 and finds the 𝑟th string accepted by it. This procedure recovers 𝑥
from any ⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩, whenever 𝑥 is a member of 𝜂𝑘. When we hardcode
the pair ⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩, we obtain a new procedure of which the length is
|⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| + 𝒪(1). Hence the parameterized complexity of 𝑥 is not only at
most K(𝑥) + 𝒪(1), but also at least K(𝑥) − 𝒪(1).

The example above demonstrates how parameterized complexity generalizes
Kolmogorov complexity. It showed that for some parameterization, the two
notions of complexity coincide on all strings, up to an independent additive
constant. Other parameterizations may show the same behavior, or show it only
for some strings. We say that a parameterization 𝜂 captures the (Kolmogorov)
complexity of a string 𝑥 if, up to a fixed additive constant independent of 𝑥, we
have pc𝜂(𝑥) = K(𝑥). Note that in this definition, several hidden constants are
at work. To be precise, we should first choose a constant 𝑐 and fix a reference
encoding of procedures that we use to define Kolmogorov complexity. Having
done so, a parameterization 𝜂 captures the complexity of those strings 𝑥 for which
we have

K(𝑥) − 𝑐 ≤ pc𝜂(𝑥) ≤ K(𝑥) + 𝑐.

One benefit of parameterized complexity over Kolmogorov complexity is that
it can be computable, even if it captures the complexity of some strings.

3.4.10. Lemma. If 𝜂 is a decidable parameterization, then pc𝜂 is a computable
function.

Proof:
A procedure computing the parameterized complexity of a string 𝑥 could proceed
as follows.

1: For each parameter value 𝑘, in order of increasing length:

1.1: If 𝜂𝑘 includes 𝑥,
break out of the current loop and continue at step 2.

2: For each parameter value 𝑘′ of length at most |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩|:

2.1: If 𝜂𝑘′ includes 𝑥 and |⟨𝑘′, rank(𝑥 ∶ 𝜂𝑘′)⟩| is less than |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩|,
set 𝑘 to 𝑘′.

3: Return |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩|.
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The unbounded loop at the first step of this algorithm is guaranteed to be exited
from, because 𝜂 is a cover of 𝟚+. The bounded loop at the second step makes sure
that the returned value is indeed the minimum length of all candidate lengths.
Thus, the returned length is the parameterized complexity of 𝑥 with respect to 𝜂.
Note that the algorithm is allowed to test whether a slice of 𝜂 includes 𝑥 because
𝜂 is assumed to be decidable. 2

For a given string 𝑥, there may be more than one parameterized model that
witnesses the minimum in the definition of parameterized complexity. Those that
do are particularly interesting parameterized models of 𝑥. Because they realize
the parameterized complexity of 𝑥, these models contain all information about 𝑥
that is available in the parameterization. This is a form of sufficiency, as used in
parametric probabilistic statistics [see also 36, Section 2.9].

3.4.11. Definition. A parameter value 𝑘, with respect to a parameterization 𝜂,
constitutes a sufficient parameterized statistic for a string 𝑥 ∈ 𝜂𝑘 if we have

|⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| = pc𝜂(𝑥).

In other words, an 𝜂-model 𝑘 for 𝑥 is a sufficient parameterized statistic if
|⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| is minimal.

3.4.12. Example. In parametric probabilistic statistics, we are dealing with
model classes indexed by a parameter, say, 𝜃. A statistic is a function of a data
sample into some arbitrary set and it is sufficient if it preserves the information
in the sample about the parameter. The identity function is always a sufficient
statistic, but more interesting sufficient statistics may be available. The textbook
example is a binomial distribution with a fixed number of trials, 𝑛, and an unknown
success probability for each trial, 𝑝. The model class is then the class of binomial
distributions with parameters 𝑛 and 𝑝. As 𝑛 is fixed, this class is indexed by 𝑝.

Given a data sample of the outcomes of 𝑛 trials, we can make a prediction
about the value of 𝑝 that was used in generating the sample. The only property
of the sample that is relevant for our judgment turns out to be the number of
successes. If there are 𝑖 successes in our sample, our best guess for the parameter 𝑝
is 𝑖

𝑛 . Indeed, the mapping from the sample to the number of successes is a sufficient
statistic.

The relation to our parameterized sufficiency criterion is most visible with
respect to the parameterization given by (3.8). With that parameterization, a
parameter value 𝑘 that encodes a decision procedure for a set 𝑆 is a sufficient
statistic for a string 𝑥 if we have

|⟨𝑘, rank(𝑥 ∶ 𝑆)⟩| = K(𝑥).

The right side of this equation can be interpreted as “all the information in 𝑥”.
The equation thus states that when we replace 𝑥 by its rank in 𝑆, we have not lost
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any of the information in 𝑥. In other words, 𝑘 preserves the information in 𝑥 about
decidable sets that contain 𝑥. It is in this sense that a sufficient parameterized
statistic is related to a sufficient probabilistic statistic.

Looking at the sufficient parameterized statistics for a string 𝑥, we can see
what complexity we should expect, at least, of a parameterized model for 𝑥. To
use this minimum model complexity as a measure of the informativeness of 𝑥
was suggested by Koppel [96]. Conceptually, however, it is a notion of simplicity
needed for a formalization of Occam’s razor. While the razor has received lots of
criticism, it has proven its worth many times, in both theory and applications [72].

3.4.13. Definition. The parameterized sophistication of a string 𝑥 with respect
to a parameterization 𝜂 is

soph𝜂(𝑥) = min{|𝑘| | 𝑘 is a sufficient parameterized statistic for 𝑥}.

Notice that, for every parameterization 𝜂 and string 𝑥, the sophistication
soph𝜂(𝑥) is lower bounded by μ𝜂(𝑥),

μ𝜂(𝑥) ≤ soph𝜂(𝑥).

Indeed, the parameterized sophistication soph𝜂 need not equal the minimization
function μ𝜂. For example, the minimization with respect to the parameterization
given by (3.8) is bounded from above by the length of a decision procedure
for 𝟚+. However, the sophistication with respect to that parameterization can get
arbitrarily large. Still, when 𝜂 satisfies

∀𝑘, 𝑘′ ∶ |𝑘| ≤ |𝑘′| ⟹ 𝜂𝑘 ⊆ 𝜂𝑘′ , (3.9)

the rank of a string in a slice only increases with the length of its 𝜂-models. In
other words, when the inclusion order of 𝜂 is compatible with the encoding of the
parameter, a stronger version of (3.6), the functions soph𝜂 and μ𝜂 do coincide. Note
that when 𝜂 is decidable, soph𝜂 is a computable function. This result is similar to
the computability of pc𝜂 and can also be seen in the proof of Lemma 3.4.10.

3.4.14. Example (continued from Example 3.4.9). The traditional notion of so-
phistication by Koppel [96] is essentially sophistication with respect to the pa-
rameterization given by (3.8). Conceptually, sophistication is an algorithmic
minimal sufficient statistic [62, 148]. The most common model class with respect
to which sophistication is computed is the model class of finite sets [21]. Using
Theorem 3.4.4, it is then argued that, in effect, the entire class of rational-valued
computable probability mass functions is taken into account. Similarly, our defini-
tion with respect to the parameterization given by (3.8) pertains to this broad
class by Theorem 3.4.5.
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One thing to note is that traditional sophistication is defined with reference to
a traditional notion of an algorithmic sufficient statistic. The benchmark for this
traditional notion is Kolmogorov complexity, whereas the notion of a sufficient
parameterized statistic hinges on parameterized complexity. The Kolmogorov
complexity of a string depends on a chosen encoding of procedures, and is therefore
only defined up to an additive constant. As a result, traditional sophistication
is dependent on the choice of a constant. For parameterized sophistication, the
choice of a constant is replaced by the choice of a parameterization.

Whatever parameterization 𝜂 we are working with, each string 𝑥 is assigned
a finite sophistication soph𝜂(𝑥). This is a consequence of the fact that parame-
terizations are covers of 𝟚+. In particular, for every parameterized model class 𝜂
and every string 𝑥, there is an 𝜂-model for 𝑥 that is a sufficient parameterized
statistic for 𝑥. Thus, in a probability theory derived from 𝜂, we are able to carry
out statistical inference on samples of only a single object, the string 𝑥. In this
probability theory, we can assign a prior probability to each slice of 𝜂 as a function
of the length of the corresponding parameter value. For instance, we may do so
by fixing a prefix-free encoding of parameter values and using the Kraft inequal-
ity. This highlights a similarity between two-part codes and Bayesian statistical
inference [72]. The probability of the event is then similarly assigned using the
Kraft inequality and the length of the rank in the slice, encoded in a prefix-free
way. Using our pairing function, Definition 2.1.2, the parameterized complexity,
Definition 3.4.8 depends on an Elias delta encoding of the rank. We may use
the same encoding for parameter values. If we use ℓ(𝑧) to denote the length of
the Elias delta encoding of the string 𝑧, we can be a bit more precise about our
probability distributions. The prior probability of a slice corresponding to a pa-
rameter value 𝑘 becomes 2−ℓ(𝑘). Likewise, given an 𝜂-model 𝑘 for a string 𝑥, the
probability of 𝑥 in this model becomes 2−ℓ(asStr(rank(𝑥∶𝜂𝑘))). These two probability
distributions enable statistical inference.

Apart from being a cover of 𝟚+, parameterizations, as families of sets, are
also directed. Consequently, not only singleton samples are events, but all finite
samples are events. For every parameterized model class 𝜂 and every finite set of
strings 𝑋, there is an 𝜂-model 𝑘 such that 𝑋 is included in 𝜂𝑘. An investigation of
algorithmic statistics in light of finite events of more than one string was carried
out by Milovanov [107]. The model class used by Milovanov is that of finite sets.
To enable similar investigations in more general model classes, a few conditions
to model classes are outlined by Vereshchagin and Shen [147, Section 6.1]. By
being directed, parameterizations meet their second condition, which requires
that for every 𝑛, some model must contain all strings of length 𝑛. This positions
parameterizations as an alternative to the model classes of restricted type of
Vereshchagin and Shen [147]. However, their model classes are also required
to be decidable. They place this requirement so that the emanating notions of
complexity are bounded in one way or another by those derived from their most
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general model class.
Let us denote the traditional sophistication, that with respect to the param-

eterization given by (3.8), of a string 𝑥 by soph(𝑥). Suppose 𝜂 is a decidable
parameterization and denote by K(𝜂) the minimum length of a procedure that,
given some 𝑥 and 𝑘, decides whether 𝑥 is in 𝜂𝑘. Then, we find, up to an additive
constant,

soph(𝑥) ≤ soph𝜂(𝑥) + K(𝜂). (3.10)

This holds because every 𝜂-model 𝑘 for 𝑥 has a Kolmogorov complexity bounded,
up to an additive constant, by |𝑘| + K(𝜂). Even when 𝜂 captures the complexity
of 𝑥, the above comparison of sophistications may be a strict inequality. For
example, the traditional sophistication of a string 𝑥 of which the Kolmogorov
complexity is roughly |𝑥| + 2 ⋅ log |𝑥| is bounded from above by a constant. This is
because the set of all strings, 𝟚+, is a sufficient model for such a string. However,
𝟚+ need not occur as a slice of 𝜂, even when 𝜂 captures the complexity of 𝑥.
Therefore, the parameterized sophistication of such strings need not be bounded
by a constant and the two notions of sophistication can differ.

Outside of decidability requirements, similar parameterizations may lead to
different measures of sophistication too. As different ways of encoding decision
procedures lead to different length measures, the length of a decision procedure
is only defined up to an additive constant. This additive constant is the bane
of algorithmic statistics. Surely, the various parameterizations defined by (3.8)
for different encodings of decision procedures are all equivalent in the sense of
Definition 3.2.20. However, as observed by Vereshchagin [146] and Bloem, De
Rooij, and Adriaans [21], the universality of Kolmogorov complexity does not
guarantee the invariance of sophistication up to an additive constant. Which
parameterized models count as sufficient parameterized statistics is sensitive to
the chosen encoding of decision procedures. Specifically, for technical reasons, the
sufficiency criterion in traditional algorithmic statistics involves an additive slack-
constant. A change in the encoding of decision procedures can make some models
sufficient statistics that were not sufficient statistics before, and vice versa. Thus,
the encoding of decision procedures affects the ensuing measure of sophistication.

3.4.3 Stochasticity
If a string 𝑥 is random, then all bits of 𝑥 contribute to the information in 𝑥. By a
straightforward counting argument, we know that random strings exist [100]. A
related question that is not as easily answered, is whether or not strings exist of
which all bits contribute to useful information. It was shown by Shen [137] that
for each 𝑛, there is a string of length 𝑛 of which the traditional sophistication is
at least 𝑛

2 − 𝒪(log 𝑛). Later, Gács, Tromp, and Vitányi [62] improved this bound
to 𝑛 − 𝒪(log 𝑛). Thus, in traditional algorithmic statistics it is indeed possible for
most of the 𝑛 bits to count toward useful information. This is fairly surprising,



3.4. as Model Classes 159

because the traditional sophistication of a random string can be bounded from
above by a constant. For every random string, the set 𝟚+ is a sufficient statistic
with respect to the parameterization defined by (3.8).

A difference between parameterized algorithmic statistics and the traditional
form can be seen in the treatment of random strings. While the traditional
sophistication of a random string is very low, the parameterized sophistication
with respect to an informative parameterization 𝜂 is not. This is a consequence of
Theorem 3.3.20 and the fact that the minimization function μ𝜂 lower bounds the
sophistication soph𝜂. In other words, what is traditionally considered noise, may
become information in the context of a parameterization. We take this as further
evidence supporting Slogan 3.4.3: useful information is context-dependent.

That random strings may contain a substantial amount of useful information
violates one of the original intuitions about what useful information is. A com-
mon perception is that neither strings of minimum Kolmogorov complexity, nor
strings of maximum Kolmogorov complexity can be rich in useful information [2].
Useful information, it is often thought, should strike a balance between these two
extremes [149, 2]. Challenging this intuition is the goal of lossy data compression,
which is to extract from a string its useful information. When the length of a
string is divided into useful information, noise, and redundancy, as in Figure 3.5
on page 145, we observe that useful information is necessarily incompressible. In
that sense, useful information is random. Therefore, the output of a lossy com-
pression routine is ideally both high in useful information and high in Kolmogorov
complexity. Of course, lossy compression is specific to a certain domain, such
as images. Without knowing this domain, a compressed string may not appear
particularly informative. More generally, contrary to Kolmogorov complexity, a
notion of length is wholly determined by the chosen method of encoding. Since
randomness revolves around a comparison between Kolmogorov complexity and
length, randomness too is dependent on the chosen method of encoding. This
matters, because if there is any structure to the objects in a given domain, there
is no longer a unique way of encoding those objects.

3.4.15. Slogan. There is no such thing as a random object unless the object is
a string and nothing but a string.

Sophistication focuses on sufficient statistics. Sufficiency of a parameterized
model is a robust concept and no hidden additive constants are involved. Still, we
may want to take parameterized models that are nearly sufficient into account in
our analysis of the information in a string. For this, we measure how far away a
parameterized model is from being a sufficient parameterized statistic [147].

3.4.16. Definition. The parameterized optimality deficiency of a string 𝑥 in a
parameterized model 𝑘 with respect to a parameterization 𝜂 is

δ𝜂(𝑥, 𝑘) = |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| − pc𝜂(𝑥).
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When 𝑘 is not a parameterized model for 𝑥, we set δ𝜂(𝑥, 𝑘) = ∞.

Note that, for every parameterized model 𝑘, most strings in 𝜂𝑘 have a param-
eterized optimality deficiency not much greater than |𝑘|. More precisely, for all
constants 𝑛 and 𝑐, there are roughly 2𝑛 strings 𝑥 with |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| = |𝑘| + 𝑛,
while there are at most 2𝑛−𝑐+1 that satisfy pc𝜂(𝑥) ≤ 𝑛 − 𝑐. In other words, at
most a 2−𝑐+1-fraction of strings satisfy δ𝜂(𝑥, 𝑘) ≤ |𝑘| + 𝑐.

Additionally, observe that the parameterized optimality deficiency of 𝑥 is 0
precisely when 𝑘 is a sufficient parameterized statistic for 𝑥. On the basis of
optimality deficiency, we can express whether a string has parameterized models
of a given length that meet a required level of sufficiency.

3.4.17. Definition. Let 𝛼 and 𝛽 be natural numbers and 𝜂 a parameterization.
A string 𝑥 is (𝛼, 𝛽)-𝜂-stochastic if there is an 𝜂-model 𝑘 for 𝑥 satisfying

|𝑘| ≤ 𝛼 and δ𝜂(𝑥, 𝑘) ≤ 𝛽.

The purpose of the numbers 𝛼 and 𝛽 is perhaps best explained through an
example.

3.4.18. Example. The number 1729 enjoys some fame for being very much not
a dull number. It is known as the Hardy–Ramanujan number, after a visit from
Godfrey H. Hardy to Srinivasa Ramanujan in which the number was discussed.
At first, it may seem that the number does not have any striking features. It
did so to Hardy, anyway. To make precise what this means, we need something
like a parameterized model class 𝜂 of number theoretic properties. We may
expect that, when 𝑘odd is the 𝜂-model of odd numbers, the number 1729 is
(|𝑘odd|, 𝛽)-𝜂-stochastic for some small value of 𝛽. That is, we may expect that
there is not much more to 1729 than it being odd. However, 1729 is the 261st
product of three distinct primes. While we have not pinned down 𝜂 exactly, we
may expect that being the product of three distinct primes is a fairly simple
property. As 1729 is only the 865th odd number, the parameterized optimality
deficiency of 1729 in 𝑘odd may not be so small after all. Instead, we are better
off modeling 1729 with the 𝜂-model of products of three distinct primes, 𝑘3-primes.
Still, we may not have that 1729 is (|𝑘3-primes|, 𝛽)-𝜂-stochastic for any too small
value of 𝛽. This is because 1729 is also the first number that is the sum of two
cubes of positive numbers in two different ways. Thus 1729 is the first member
of the model of numbers that are the sum of two cubes of positive numbers in
multiple ways, 𝑘2-cubes. While this last model is the most complex, it is quite
likely that it determines the sophistication of 1729. In summary, we have three
𝜂-models for 1729, satisfying

|𝑘odd| ≤ |𝑘3-primes| ≤ |𝑘2-cubes|,
and

δ𝜂(1729, 𝑘2-cubes) ≤ δ𝜂(1729, 𝑘3-primes) ≤ δ𝜂(1729, 𝑘odd).
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Traditionally, stochasticity is not defined using optimality deficiency, but using
a slightly different deficiency measure known as randomness deficiency [137, 100].
These two deficiency measures can differ. For traditional algorithmic statistics,
Vereshchagin and Shen [147, Theorem 2] have shown that both measures lead to
essentially the same notion of stochasticity. The same holds true for restricted
model classes, thanks to a result of Vereshchagin and Vitányi [145] [see also 147].
Because it fits our framework better, we therefore prefer optimality deficiency over
randomness deficiency.

Let us take a look at the stochasticity of a string 𝑥 in relation to a parameteriza-
tion 𝜂. There is a frontier of values of 𝛼 and 𝛽 beyond which 𝑥 is (𝛼, 𝛽)-𝜂-stochas-
tic [148, 62]. Suppose that 𝛼 and 𝛽 are so that 𝑥 is (𝛼, 𝛽)-𝜂-stochastic. There is
then an 𝜂-model of complexity at most 𝛼 that is within 𝛽 of being a sufficient
parameterized statistic for 𝑥. Sometimes, relaxing the sufficiency requirement
slightly means that simple models become available. Thus, a string 𝑥 may be
(𝛼, 𝛽)-𝜂-stochastic for values of 𝛼 and 𝛽 that are reasonably small in relation to its
length |𝑥|. Such a string 𝑥 is informally said to be stochastic [147]. Indeed, a small
value of 𝛼 reflects a high prior probability of the model in accordance with our
discussion on page 157. Also, as noted following the definition of parameterized
optimality deficiency, Definition 3.4.16, a small value of 𝛽 suffices for most strings.

3.4.19. Example. In Example 3.4.1, we encountered the JPEG lossy image com-
pression format. The JPEG compression procedure contains a tuning parameter
that determines the amount of degradation in quality that is considered admissible.
This tuning parameter can range in value from 1 to 100, where 100 represents
near-perfect reproduction of the original image. Unfortunately, there is no unique
minimal value of this parameter for which the degradation in image quality is
unnoticeable to some reference observer. In other words, there is no clear-cut
quality value beyond which a JPEG compressed image is a sufficient statistic for
the original image. For Example 3.4.1, a quality value of 90 was used.

With a lower quality setting, the JPEG compression procedure is able to
produce smaller files. The compressed file size can be thought of as the size of a
model for the original image. Thus, the 𝛼 component of stochasticity acts like a
bound on the file size. Because there is no proper sufficiency criterion for JPEG
compression, the quality setting cannot directly be related to the 𝛽 component
of stochasticity. However, there is a conceptual connection between lowering the
quality setting and increasing the value of 𝛽.

We are used to seeing a substantial decrease in file size when we allow the
image quality to degrade only slightly. In Figure 3.6, this can indeed be observed.
At high values of the quality parameter, small changes have a large impact on the
resulting file size.

The traditional notion of stochasticity is a special case of our parameterized
one. A string is called (𝛼, 𝛽)-stochastic, without mention of any 𝜂, if it is stochastic
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Figure 3.6: The mean file size of the images in the Kodak True Color Image
Suite [61] after JPEG compression at different quality settings.

in relation to the parameterization given by (3.8). Not all strings are stochastic.
In fact, some of the strings of which the sophistication is close to the length are
not stochastic at all. Extending a similar result by Shen [137], Gács, Tromp,
and Vitányi [62] showed that some strings are only (𝛼, 𝛽)-stochastic when 𝛼 + 𝛽
nearly exhausts the length of the string. More specifically, for each 𝑛, there is a
string of length 𝑛 that is only (𝛼, 𝛽)-stochastic when 𝛼 + 𝛽 is at least 𝑛 − 𝒪(log 𝑛).
This result about the existence of non-stochastic strings can be extended to the
parameterized form of stochasticity. If, given a parameterization 𝜂, a string of
length 𝑛 is only (𝛼, 𝛽)-𝜂-stochastic when 𝛼 + 𝛽 is at least 𝑛 − 𝒪(log 𝑛), then
we say that the string is non-𝜂-stochastic. The following theorem relates the
parameterized notion of stochasticity to the traditional one.

3.4.20. Theorem. Let 𝑥 be a string and 𝜂 a decidable parameterization. Denote
by K(𝜂) the minimum length of a decision procedure for 𝜂. Furthermore, define
𝛾 = pc𝜂(𝑥) − K(𝑥), meaning that 𝜂 captures the complexity of 𝑥 if 𝛾 is equal to 0.
If 𝑥 is (𝛼, 𝛽)-𝜂-stochastic, then it is (𝛼 + K(𝜂), 𝛽 + 𝛾 + K(𝜂))-stochastic.

Proof:
Let 𝑘 be an 𝜂-model for 𝑥 witnessing that 𝑥 is (𝛼, 𝛽)-𝜂-stochastic and let 𝑗 be
the encoding of a decision procedure for 𝜂𝑘 of minimum length. Recall from
Example 3.4.9 that parameterized complexity in the traditional setting equals
Kolmogorov complexity and observe that we have

|𝑗| ≤ |𝑘| + K(𝜂) ≤ 𝛼 + K(𝜂).
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It remains to show that the optimality deficiency of 𝑥 in 𝑘 with respect to 𝜂 is at
most 𝛽 + 𝛾 + K(𝜂). The first step to this end follows the same reasoning as we
have just encountered,

δ(𝑥, 𝑗) = |⟨𝑗, rank(𝑥 ∶ 𝜂𝑘)⟩| − K(𝑥)
≤ |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| + K(𝜂) − K(𝑥)

which can then be expanded as

= |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| + K(𝜂) − pc𝜂(𝑥) + 𝛾

= δ𝜂(𝑥, 𝑘) + 𝛾 + K(𝜂)
≤ 𝛽 + 𝛾 + K(𝜂).

Thus, 𝜂𝑘 witnesses that 𝑥 is (𝛼 + K(𝜂), 𝛽 + 𝛾 + K(𝜂))-stochastic. 2

When 𝜂 is held fixed, K(𝜂) is constant and the theorem above can be seen
as a translation from 𝜂-stochasticity to traditional stochasticity. The constant 𝛾
depends on 𝑥 and only disappears when 𝜂 captures the complexity of 𝑥. If the
complexity of a non-stochastic string 𝑥 is captured by a parameterization 𝜂, then
𝑥 is also non-𝜂-stochastic. This follows from the contrapositive formulation of
Theorem 3.4.20.

3.4.21. Corollary. Let 𝑥 be a string and 𝜂 a decidable parameterization.
Furthermore, let 𝛾 = pc𝜂(𝑥) − K(𝑥) be the amount by which the complexity
of 𝑥 escapes 𝜂. If 𝑥 is not (𝛼, 𝛽)-stochastic, then it is not (𝛼 − K(𝜂), 𝛽 − 𝛾 −
K(𝜂))-𝜂-stochastic either.

The parameterization defined in (3.8) includes 𝟚+ as a model. Therefore, the
minimization function with respect to that parameterization is bounded from
above by a constant. The same is not true of the sophistication. Put differently,
there is a constant 𝛼 such that for every string 𝑥 there is a constant 𝛽𝑥 such
that 𝑥 is (𝛼, 𝛽𝑥)-stochastic. This constant, 𝛽𝑥, cannot be bounded from above
independently of 𝑥. The same cannot be said for stochasticity with respect to an
arbitrary parameterization 𝜂. A string may fail to be 𝜂-stochastic not only because
simple 𝜂-models are not good enough, but also because the string has no simple
𝜂-models. For all 𝛼 < μ𝜂(𝑥), regardless of 𝛽, the string 𝑥 is not (𝛼, 𝛽)-𝜂-stochastic.
The sophistication of 𝑥 with respect to 𝜂 may even be bigger than its length,
soph𝜂(𝑥) > |𝑥|. For such 𝑥 and 𝜂, there are values of 𝛽 with which 𝑥 is not even
(|𝑥|, 𝛽)-𝜂-stochastic. Consequently, 𝜂 does not capture the complexity of 𝑥 and
the non-𝜂-stochasticity of 𝑥 is not a consequence of Corollary 3.4.21. Indeed, there
would be no reason to assume that 𝑥 is non-stochastic in the traditional sense.
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3.4.4 Parameter Estimation
In Lemma 3.4.10, we found that the parameterized complexity with respect
to a decidable parameterization is computable. Not only does this result ex-
tend to the computability of sophistication, it also entails that optimality defi-
ciency is computable. Therefore, for a fixed 𝛼 and 𝛽, and a decidable 𝜂, the set
of (𝛼, 𝛽)-𝜂-stochastic strings is decidable. Moreover, for an (𝛼, 𝛽)-𝜂-stochastic
string 𝑥, a witness, 𝑘, of its stochasticity can be computed. In particular, for the
case where 𝛽 equals 0, we can compute an 𝜂-model 𝑘 for 𝑥 such that we have
|𝑘| = soph𝜂(𝑥). Let us take a closer look at such mappings from a string 𝑥 to
an 𝜂-model for 𝑥. As the 𝜂-models are represented by parameter values, we can
think of the model class conveyed by 𝜂 as a model class indexed by parameter
values. In that sense, the model class conveyed by 𝜂 is a parametric model class as
known from probabilistic statistics. Likewise, a mapping from strings to 𝜂-models
is also a mapping from strings to parameter values. In other words, such a map-
ping is an estimator. This probabilistic interpretation of concepts in algorithmic
statistics has been recognized early on [127, 150, 62]. An estimator that realizes
the sophistication of its input is particularly exciting, as its output is a sufficient
statistic that is as simple as can be. While computable with respect to decidable
parameterizations, the computation of such an estimator may be prohibitively
resource intensive. For this reason, alternative estimators are of interest.

So far, underlying our investigation has been a two-part code for describing a
string 𝑥. If 𝑘 is an 𝜂-model for 𝑥, then, knowing 𝜂, we can recover 𝑥 from

⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩. (3.11)

We can minimize several quantities related to this two-part specification and each
defines a different estimator.

The simplest model for 𝑥 is one that minimizes the length of the first part
of the specification, |𝑘|. The corresponding 𝑘 can be called the Occam’s razor
estimate, and its length equals μ𝜂(𝑥). In traditional algorithmic statistics, this
estimator is of no interest because the complexity of the simplest model for a
string cannot exceed that of 𝟚+. However, in parameterized algorithmic statistics,
𝟚+ need not occur as a slice in any specific parameterization.

Rather than minimizing the length of the first part of the specification, we could
also minimize the length of the second part, |rank(𝑥 ∶ 𝜂𝑘)|. The corresponding
𝜂-model 𝑘 is one that contains as much information about 𝑥 as possible, and
is known as the maximum likelihood estimate [148]. In traditional algorithmic
statistics, this estimator would yield a model, a finite set, of which the input string
is the first element. This is a form of overfitting, since all information about 𝑥
now resides in the model part of the code, and none is left for the data-to-model
part. Again, in parameterized algorithmic statistics, a model like this need not
occur as a slice in any given parameterization.
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Minimizing the total length of the two-part specification of 𝑥, we recover the
minimum description length estimator. Equivalently, this estimator minimizes
the sum of the lengths of both parts and as such balances the previous two
estimators [148, 127]. A parameter value obtained by this estimator, an estimate, is
a sufficient statistic. When we restrict to the simplest such models, we find that the
length of a minimum description length estimate 𝑘 is the sophistication soph𝜂(𝑥).

In summary, some natural estimators derived from the two-part description of
a string, and their minimization objectives, are the following.

estimator minimizes length
Occam’s razor (OR) first part μ𝜂

maximum likelihood (ML) second part [no name]
minimum description length (MDL) sum soph𝜂

The parameterization defined by (3.8) is not decidable and traditional algo-
rithmic statistics pays attention to the computability of estimators. One approach
to the computability of estimators is to place an upper bound on the model com-
plexity and consider each estimator as a function of this bound [62, 148] [in the
presence of resource bounds, 108]. Specifically, we consider ML and MDL relative
to a selection of the slices of (3.8). The selection is obtained by including only
those models of which the corresponding parameter value has a length shorter
than the anticipated bound. As mentioned before, OR is not interesting in the
traditional context because it can be bounded from above by a constant. On
the other hand, ML and MDL are interesting, but, while the length of their esti-
mates can be approximated from above, they are not computable [148]. Of the
two estimators, MDL is easier to approximate and therefore more convenient to
work with in practice [148, Section V.B]. Additionally, as a function of a bound
on the model complexity, MDL selects a sufficient statistic precisely when ML
does [148, Lemma IV.2]. With respect to decidable parameterizations, OR, ML,
and MDL would all be computable as a function of a bound on the length of
parameter values. Note, though, that without such a bound ML need not be
computable. Unfortunately, in the parameterized setting MDL cannot simply
be used as a substitute for ML. The tight correspondence between the two in
traditional algorithmic statistics is not a given in the parameterized setting.

There are many more estimators than the three we have looked at so far, OR,
ML, and MDL. For a parameterization 𝜂, we may look at those estimators that
are in some sense consistent with 𝜂.

3.4.22. Definition. A function 𝜅∶ 𝟚+ → 𝟚+ is a parameter estimator for a
parameterization 𝜂 if it is consistent with 𝜂 in the sense that, for all strings 𝑥, we
have 𝑥 ∈ 𝜂𝜅(𝑥)

3.4.23. Example. Suppose 𝜅 is a parameterization in the Flum and Grohe
framework for parameterized complexity theory. On page 90, we associated with
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this function the parameterization

𝜂 = ({𝑥 | asInt(𝜅(𝑥)) ≤ asInt(𝑘)})𝑘∈𝟚+ .

For this parameterization, 𝜅 is a polytime-computable parameter estimator.

We have seen that when 𝜂 is decidable, the parameter estimators OR and
MDL are computable. Yet, even when 𝜂 is not decidable, a parameter estimator
for 𝜂 may be computable. For instance, if 𝜅 maps all strings to an encoding of a
decision procedure for 𝟚+, it is a computable parameter estimator for (3.8).

3.4.24. Example (continued from Example 3.2.13). Let 𝐴 be a p-cylinder and
𝑔∶ 𝟚+ → 𝟚+× 𝟚+ a corresponding isomorphism. Recall that we denote by 𝑔1 the
first component of the image of 𝑔 and that the parameterization based on 𝑔 was
defined as

𝜂 = ({𝑥 | asInt(𝑔1(𝑥)) ≤ asInt(𝑘)})𝑘∈𝟚+ .

For this parameterization, 𝑔1 is a parameter estimator. As 𝑔1 is computable in
polynomial time, it is also a parameterization in the sense of Flum and Grohe.
Moreover, we have, for all 𝑥,

μ𝜂(𝑥) = soph𝜂(𝑥) = |𝑔1(𝑥)|.

Note that (3.9) holds for 𝜂, so we find that OR, ML, MDL, and 𝑔1 are all the
same parameter estimator for 𝜂.

As we have seen, a parameter estimator need not produce a sufficient pa-
rameterized statistic for its input. However, we can get a pretty decent upper
bound on the parameterized optimality deficiency of the estimates produced by
a computable parameter estimator. For this, we require two bounds involving
the Kolmogorov complexity of a string 𝑥. The first of these is a straightforward
extension of (3.10) to parameterized complexity,

K(𝑥) ≤ pc𝜂(𝑥) + K(𝜂). (3.12)

If we combine this inequality with a lower bound on the Kolmogorov complexity
of 𝑥, we get a lower bound on the parameterized complexity.

A lower bound on the Kolmogorov complexity of a string can be found using
a computable parameter estimator 𝜅. Since 𝜅 is computable, for every parameter
value 𝑘, the inverse 𝜅−1(𝑘) = {𝑥 | 𝜅(𝑥) = 𝑘} is a decidable set. Therefore, letting
K(𝜅) denote the minimum length of a procedure for computing 𝜅, we have, for
every string 𝑥 and with 𝑘 = 𝜅(𝑥),

K(⟨𝑘, rank(𝑥 ∶ 𝜅−1(𝑘))⟩) ≤ K(𝑥) + K(𝜅). (3.13)
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Specifically, using 𝜅 we can compute 𝑘 and rank(𝑥 ∶ 𝜅−1(𝑘)) from 𝑥, so the
complexity of those values together is at most that of 𝜅 plus that of 𝑥.

These two inequalities, (3.12) and (3.13), allow us to upper bound the param-
eterized optimality deficiency of estimates produced by a computable parameter
estimator. Before we go into more detail, it should be noted that 𝜅−1(𝑘) need not
be a slice of the parameterization 𝜂. However, this is mainly a technical concern
as we can extend 𝜂 to include these inverses for all parameter values. Given 𝜂 and
a parameter estimator 𝜅 for 𝜂, let 𝜂′ be the parameterization defined by

𝜂′
𝑘′ = {

𝜂𝑘 if 𝑘′ = 0𝑘,
𝜅−1(𝑘) if 𝑘′ = 1𝑘.

If 𝜂 is decidable and 𝜅 is computable, then 𝜂′ is decidable too. Moreover, it is
in the same equivalence class as 𝜂 in the uniform order on parameterizations
defined in Definition 3.2.20. For completeness, we lift the parameter estimator 𝜅
to a parameter estimator 𝜅′ defined by 𝜅′(𝑥) = 1𝜅(𝑥). This turns a computable
parameter estimator 𝜅 for 𝜂 into a computable parameter estimator 𝜅′ for 𝜂′ in a
way that gives us, for any string 𝑥,

𝜂′
𝜅′(𝑥) = 𝜅′−1(𝜅′(𝑥)).

Let us say that a parameter estimator 𝜅 for a parameterization 𝜂 that, for all 𝑥,
satisfies 𝜂𝜅(𝑥) = 𝜅−1(𝜅(𝑥)) is a slice-estimator. We then get the following theorem
that allows us to bound the parameterized optimality deficiency of the estimates
provided by a computable slice-estimator. More broadly, this theorem can be used
to identify, though not by any effective means, 𝜂-stochastic strings. Incidentally, we
obtain an improvement on our observation, following Definition 3.4.16, regarding
the density of strings with a high optimality deficiency.
3.4.25. Theorem. Let 𝜂 be a decidable parameterization, and 𝜅 a computable
slice-estimator for 𝜂. There is a constant 𝑐 such that, for every string 𝑥, when we
set

𝑘 = 𝜅(𝑥),
𝑖 = rank(𝑥 ∶ 𝜅−1(𝑘)),
𝛽 = |⟨𝑘, 𝑖⟩| − K(⟨𝑘, 𝑖⟩) + 𝑐,

we find that 𝑥 is (|𝑘|, 𝛽)-𝜂-stochastic.
Proof:
The claimed parameterized stochasticity is witnessed by the slice 𝜂𝑘 = 𝜅−1(𝑘). To
see that the parameterized optimality deficiency of 𝑥 with respect to 𝜂 is indeed
at most 𝛽, consider

δ𝜂(𝑥, 𝑘) = |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| − pc𝜂(𝑥)

= |⟨𝑘, 𝑖⟩| − pc𝜂(𝑥)
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which, by (3.12) and (3.13), satisfies

≤ |⟨𝑘, 𝑖⟩| − (K(𝑥) − K(𝜂))
≤ |⟨𝑘, 𝑖⟩| − K(⟨𝑘, 𝑖⟩) + K(𝜂) + K(𝜅).

As K(𝜂) and K(𝜅) are independent of 𝑥, we may set 𝑐 = K(𝜂) + K(𝜅), with which
the last line becomes equal to 𝛽 and the bound is proven. 2

Of course, a string should only be called 𝜂-stochastic if it has a simple model
with a low optimality deficiency. To see that Theorem 3.4.25 can truly be used to
identify 𝜂-stochastic strings, we first take a closer look at the optimality deficiency.
Observe that |⟨𝑘, 𝑖⟩| can be arbitrarily large, while K(⟨𝑘, 𝑖⟩) is still small. More
importantly, though, is the observation that the two quantities can also be close
to each other. In fact, for any constant 𝑐 and any sufficiently large 𝛽, there are
infinitely many values of 𝑘 and 𝑖 such that we have

|⟨𝑘, 𝑖⟩| − K(⟨𝑘, 𝑖⟩) + 𝑐 ≤ 𝛽.

The incompressibility theorem for prefix complexity [100, Theorem 3.3.1(ii)] tells
us that the above inequality must hold for a large fraction of possible values of 𝑘
and 𝑖. Specifically, for each fixed constant 𝑟, of all ⟨𝑘, 𝑖⟩ of length 𝑛, at most
2𝑛−𝑟+𝒪(1) satisfy K(⟨𝑘, 𝑖⟩) ≤ |⟨𝑘, 𝑖⟩| − 𝑟, or, equivalently, 𝑟 ≤ |⟨𝑘, 𝑖⟩| − K(⟨𝑘, 𝑖⟩).
Moreover, this is still true of all the possible values of 𝑖 after we fix a value of 𝑘
[100, Theorem 3.9.1]. Thus, we can turn Theorem 3.4.25 into a statement about
the prevalence of stochastic strings. A similar statement regarding the traditional
notion of stochasticity was proven by Shen [137, Theorem 4].

3.4.26. Corollary. Let 𝑘 be an 𝜂-model in the range of 𝜅 such that 𝜂𝑘 is an
infinite set. For all 𝛽, among the first 𝑚 elements of 𝜂𝑘 at least (1 − 2−𝑐)𝑚 are
(|𝑘|, 𝛽)-𝜂-stochastic, where 𝑐 equals 𝛽 − 𝒪(1) with the 𝒪(1)-term depending on 𝜂,
𝜅, and 𝑘.

Note that, for a fixed value of 𝛽, the dependence on 𝑘 of the hidden constant
is more specifically a dependence on |𝑘| − K(𝑘). Because of that, the corollary
is especially powerful when the range of 𝜅 contains an infinite random set of
parameter values belonging to infinite 𝜂-models. Here, randomness of the set is
meant as defined in Definition 3.3.16. In that case, the same density of strings
with an optimality deficiency bounded by 𝛽 is achieved on infinitely many 𝜂-models.
Informally, disregarding the density considerations, the corollary can then be
phrased in a way that somewhat resembles the instance complexity conjecture:
Infinitely many 𝜂-models are a near-sufficient parameterized statistic infinitely
often. Sufficiency is a way of saying that all information in a model is useful
information and none of the information is not useful. We thus get a more informal
way of phrasing the corollary.
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3.4.27. Slogan. Infinitely many parameter values reflect precisely all useful
information of infinitely many strings.
This is true for any 𝜂 for which there is a computable slice-estimator of which
the range includes an infinite random set of infinite 𝜂-models. Because of Theo-
rem 3.4.20, the statement remains true if we replace our parameterized notion of
sufficiency with the traditional one. This traditional notion involves Kolmogorov
complexity, therefore Corollary 3.4.26 complements Corollary 3.3.7.

Moreover, a closer look at the proof of Theorem 3.4.25 directs us to a set
of strings of which 𝜂 captures the complexity. Let 𝜂, 𝑥, 𝑘, and 𝑖 be as in the
statement of Theorem 3.4.25. By definition of parameterized complexity, we find
pc𝜂(𝑥) ≤ |⟨𝑘, 𝑖⟩|. Now, if ⟨𝑘, 𝑖⟩ is a random string in the sense that, up to an
additive constant, we have |⟨𝑘, 𝑖⟩| = K(⟨𝑘, 𝑖⟩), then we get pc𝜂(𝑥) ≤ K(⟨𝑘, 𝑖⟩).
By (3.13), we then also get pc𝜂(𝑥) ≤ K(𝑥) + K(𝜅). Finally, combined with (3.12),
we get

K(𝑥) − K(𝜂) ≤ pc𝜂(𝑥) ≤ K(𝑥) + K(𝜅),
showing that 𝜂 captures the complexity of 𝑥. As noted leading up to Corol-
lary 3.4.26, there are infinitely many random strings ⟨𝑘, 𝑖⟩ and the corresponding
strings 𝑥 are 𝜂-stochastic. We point out that if 𝜂 is informative in the sense of
Definition 3.3.19, then our set of strings of which 𝜂 captures the complexity is not
a random set. Likewise, if the slices of 𝜂 are sparse, then most of these strings are
highly non-random.

3.4.28. Example (continued from Example 3.4.24). By capturing the complex-
ity of a string, a parameterization isolates the redundancy in the description of a
string into the second part of a two-part code. Originally, however, parameterized
complexity theory did not target algorithmic complexity. Instead, it revolved
around isolating not descriptive redundancy, but computational redundancy asso-
ciated with a string in light of a decision problem. It is worthwhile to note that a
parameterization can achieve both these feats simultaneously.

Let 𝐴 be a p-cylinder, 𝑔∶ 𝟚+ → 𝟚+× 𝟚+ a corresponding isomorphism and 𝜂
the parameterization based on 𝑔. All slices of 𝜂 are infinite and the range of 𝑔1 is
the entire set 𝟚+. Because of this, it follows from Corollary 3.4.26 that infinitely
many slices of 𝜂 contain infinitely many strings of which 𝜂 captures the complexity.
For those strings, 𝜂 acts as a measure of both algorithmic and computational
complexity.

A parameterization can witness that computational and algorithmic complexity
may coincide infinitely often. However, this does not provide us with a dual
to Theorem 3.3.20, which states that random instances are hard. While some
strings of low algorithmic complexity may appear in a parameterization with short
parameter values, this need not be true of all such strings. In order to control
the expected minimum length of a parameter value for a given string, we need to
tinker with the distribution we use to sample the strings.
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3.4.5 Encodings and Distributions
At the end of Section 3.4.3, several possibilities were discussed for why a string
may fail to be stochastic with respect to a parameterization 𝜂. While any of
these may be used to prove that non-𝜂-stochastic strings exist, they tell us very
little about how likely we are to encounter such strings. The existence of non-
stochastic strings in the traditional sense is described by Vereshchagin and Shen
as a “mathematical existence result; it does not say anything about the possibility
to observe non-stochastic objects in the ‘real world’”. In support of this sentiment,
they show that any effective way of sampling from 𝟚+ may produce a non-
stochastic string only with a negligible probability [109, 147]. This result makes
use of the universal probability distribution, which is the distribution related
to Kolmogorov complexity via the Kraft inequality. A similar result revolving
around the cardinality of the set of non-stochastic strings goes back to Shen [137,
Theorem 3].

For parameterized algorithmic statistics, a bound on the cardinality of the set
of non-𝜂-stochastic strings is available in the form of Corollary 3.4.26. However,
we are not so much interested in how many non-𝜂-stochastic strings there are, as
in how likely we are to encounter such strings in the ‘real world’. For this, we
need a reference distribution on the strings and the universal distribution may
not be our best option. In our framework, we use the slices of parameterizations
as a substitute for the decidable sets. Hence, our reference measure of algorithmic
complexity should be parameterized complexity instead of Kolmogorov complexity.
Of course, parameterized complexity can be equal to Kolmogorov complexity, such
as is the case with respect to the parameterization given by (3.5). In that case, the
resulting distribution equals the universal distribution. Since this parameterization
is not in ℒFPT, there may be more realistic distributions to work with. In line with
Slogan 3.4.15, this implies that the method of encoding objects matters, as only
the universal distribution is encoding-invariant. We shall explore distributions
derived from parameterized complexity, and their effect on the parameter values
we may expect for strings of a given length.

The Uniform Distribution

For a start, if we assume all strings of length 𝑛 are equally likely, the effects of
Corollary 3.4.26 are undone by Theorem 3.3.20. The random strings alone push
the expected minimum length of a parameter value to within a multiplicative
constant of its maximum value. Note that there is a slight abuse of notation in
the following theorem. To turn the uniform distribution on strings of a given
length into a distribution on all strings, we need a prior distribution on the lengths
of strings. However, this prior distribution is canceled out again when we take
an expected value conditional on the length of a string. For this reason, we can
leave the prior distribution implicit and still speak of a ‘uniform’ distribution.
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In actuality, we are dealing with a distribution on strings that is only uniform
conditional on the length of a string.

3.4.29. Theorem. Let 𝜂 be a parameterization that is informative in the sense
of Definition 3.3.19, and consider the expected value, Eunif(μ𝜂(𝑥) ∣ |𝑥|), of μ𝜂(𝑥),
conditional on the length of 𝑥, under the uniform distribution on strings of a given
length. There is a constant 𝑐 such that, for all 𝑛, we have

E
unif

(μ𝜂(𝑥) ∣ |𝑥| = 𝑛) ≥
M𝜂(𝑛)

𝑐
− 𝑐.

Proof:
Pick a constant 𝑟, fix an arbitrary value for 𝑛, and let 𝑋 be the set

{𝑥 ∈ 𝟚𝑛 | K(𝑥) ≥ 𝑛 + K(𝑛) − 𝑟}

that is random in accordance with Definition 3.3.16. By Theorem 3.3.20, there is
a constant ℎ, independent of 𝑛, such that all 𝑥 ∈ 𝑋 satisfy μ𝜂(𝑥) ≥ M𝜂(𝑛) − ℎ.
Further, the incompressibility theorem [100] tells us that 𝑋 contains at least
2𝑛(1 − 2−𝑟+𝒪(1)) strings, where we may assume that 𝑟 is larger than the constant
represented by 𝒪(1). Together, these observations make the following derivation
possible.

E
unif

(μ𝜂(𝑥) ∣ |𝑥| = 𝑛) = ∑
𝑥∈𝟚𝑛

μ𝜂(𝑥) ⋅ 2−𝑛

≥ ∑
𝑥∈𝑋

μ𝜂(𝑥) ⋅ 2−𝑛

≥ ∑
𝑥∈𝑋

(M𝜂(𝑛) − ℎ) ⋅ 2−𝑛

≥ 2𝑛 ⋅ (1 − 2−𝑟+𝒪(1)) ⋅ (M𝜂(𝑛) − ℎ) ⋅ 2−𝑛

≥ (1 − 2−𝑟+𝒪(1)) ⋅ M𝜂(𝑛) − ℎ.

Now, choosing 𝑐 = max { 1
1−2−𝑟+𝒪(1) , ℎ}, we get the statement of the theorem. 2

For parameterizations encountered in application-oriented parameterized com-
plexity theory, we often have M𝜂(𝑛) ∈ 𝒪(log 𝑛). This is so because commonly
the least numeric parameter value asInt(𝑘) with which a string 𝑥 is in 𝜂𝑘 can be
upper bounded by a polynomial in 𝑛 = |𝑥|. The vertex cover parameterization
considered in Example 3.3.24 is an example of such a parameterization. Moreover,
this bound on M𝜂 is usually tight, meaning that there are constants 𝑐1 and 𝑐2
such that, for all 𝑛, we have 𝑐1 log 𝑛 ≤ M𝜂(𝑛) ≤ 𝑐2 log 𝑛. Theorem 3.4.29 then
tells us that the same is true of the expected value of μ𝜂(𝑥). This translates to the
fact that |𝑥| can be bounded from above by a polynomial in the expected value of
asInt(𝑘). Now, suppose 𝜙 is a parameterized procedure with a running time of
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𝑓(asInt(𝑘))|𝑥|𝒪(1), for some convex function 𝑓. This is the kind of running time
associated with fixed-parameter tractability. By Jensen’s inequality [36], we find
E(𝑓(asInt(𝑘)) ∣ |𝑥|) ≥ 𝑓(E(asInt(𝑘) ∣ |𝑥|)). Consequently, the expected running
time of 𝜙, assuming a uniform distribution on the strings of a given length, is
comparable to the worst-case running time. For fixed-parameter tractable prob-
lems outside P, this would mean that, with the uniform distribution, we should
expect instances to be intractable. However, fixed-parameter tractable problems
are found to be tractable in practice. From this, we conclude that the uniform dis-
tribution is not a good model of the ‘real world’. Hence, we should take parameter
values into account in the distributions we consider.

The Random–Hard Distribution

Increasing the role of the parameter value, we can use the encoding that we
encountered in the proof of Theorem 3.3.20 as the basis of a distribution. As we
shall only be concerned with the distribution for a fixed parameterization 𝜂, we
omit the specification of 𝜂 from the encoding. This leaves us with a prefix-free
multi-part encoding that, for a string 𝑥 of length 𝑛, consists of the following parts,
in order:

1. K(𝑛) bits specifying 𝑛,

2. M𝜂(𝑛) + 1 bits specifying a parameter value 𝑘 such that we have 𝑥 ∈ 𝜂𝑘,

3. log N𝜂(𝑛, 𝑘) bits specifying rank(𝑥 ∶ 𝟚𝑛 ∩ 𝜂𝑘).

Observe that this encoding is prefix-free because the length of each part is
determined by the values encoded in the parts preceding it. Indeed, the first part
uses a prefix-free encoding to begin with. Effectively, by our encoding of the first
part, we assume a universal prior distribution on the length of the strings we encode.
Because our multi-part encoding is prefix-free, we can use the Kraft inequality to
derive a probability distribution from it. In light of Theorem 3.3.20, we shall refer
to this probability distribution as the random–hard distribution.

The above multi-part encoding may allow for several different encodings of a
single string 𝑥. This is because there may be multiple parameter values 𝑘, each of
length at most M𝜂(|𝑥|), such that 𝑥 is included in 𝜂𝑘. Later on, we shall also look
at distributions that allow for arbitrary parameter values, not just those with a
length of at most M𝜂(|𝑥|). Here, we shall take all possible encodings in accordance
with the above encoding into account. Specifically, we define our distribution so
that the probability of a string 𝑥 is the same as that of arriving at a description
of 𝑥 by tossing a fair coin. For any string 𝑥, let 𝑆𝑥 be the set of possible parameter
values with which 𝑥 can be encoded, namely

𝑆𝑥 = {𝑘 | |𝑘| ≤ M𝜂(𝑥) and 𝑥 ∈ 𝜂𝑘}.
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Using this set, the probability of a string 𝑥 in accordance with our encoding can
be expressed as

P
r-h

(𝑥) = ∑
𝑘∈𝑆𝑥

2−(K(|𝑥|)+M𝜂(|𝑥|)+1+log N𝜂(|𝑥|,𝑘))

= 1
2K(|𝑥|)+M𝜂(|𝑥|)+1 ∑

𝑘∈𝑆𝑥

1
N𝜂(|𝑥|, 𝑘)

We obtain the probability conditional on the length of the string by simply dropping
the specification of the length, K(|𝑥|). Thus, for all 𝑛 and all 𝑥 of length 𝑛, we have

P
r-h

(𝑥 ∣ |𝑥| = 𝑛) = 1
2M𝜂(𝑛)+1 ∑

𝑘∈𝑆𝑥

1
N𝜂(𝑛, 𝑘)

The terms of the sum on the right side of the equation above represent uniform
distributions on the sets 𝟚𝑛 ∩ 𝜂𝑘. These uniform distributions are combined for
different parameter values, where each parameter value 𝑘 with |𝑘| ≤ M𝜂(𝑛) is
assigned a probability of 1

2M𝜂(𝑛)+1 . The random–hard probability distribution is
thus the marginal distribution of the strings 𝑥 as part of a combined distribution
that includes parameter values. For every 𝑛, all strings of length 𝑛 get a nonzero
probability, because parameter values up to a length of M𝜂(𝑛) are taken into
account. Our distribution assigns a higher probability to strings that occur in
more slices as well as to strings that occur in slices that contain fewer elements.

In Theorem 3.4.29, we computed the expected minimum length of a parameter
value, μ𝜂(𝑥), under the uniform distribution. Because the random–hard distribu-
tion is a marginal distribution, it is not straightforward to compute the expected
value of μ𝜂(𝑥) under this distribution. Therefore, we shall initially consider the
expected length of a parameter value, |𝑘|. Unfortunately, the expected parameter
value length is essentially its maximum value. This suggests that the random–hard
distribution is also not a good model of the ‘real world’.

3.4.30. Theorem. Let 𝜂 be a parameterization and consider the expected length
of a parameter value 𝑘 ∈ 𝑆𝑥, conditional on the length of 𝑥, under the random–
hard probability distribution. For all 𝑛, we have

E
r-h

(|𝑘| ∣ |𝑥| = 𝑛) ≥ M𝜂(𝑛) − 1.

Proof:
By changing the summation order in the computation of the expected value, we
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get rid of anything specific to the string 𝑥,

E
r-h

(|𝑘| ∣ |𝑥| = 𝑛) = ∑
𝑥∈𝟚𝑛

∑
𝑘∈𝑆𝑥

|𝑘| 1
2M𝜂(𝑛)+1 N𝜂(𝑛, 𝑘)

= ∑
𝑘 with |𝑘|≤M𝜂(𝑛)

∑
𝑥∈𝟚𝑛∩𝜂𝑘

|𝑘| 1
2M𝜂(𝑛)+1 N𝜂(𝑛, 𝑘)

= ∑
𝑘, |𝑘|≤M𝜂(𝑛)

|𝑘| 1
2M𝜂(𝑛)+1 N𝜂(𝑛, 𝑘)

∑
𝑥∈𝟚𝑛∩𝜂𝑘

1

= ∑
𝑘, |𝑘|≤M𝜂(𝑛)

|𝑘| 1
2M𝜂(𝑛)+1 N𝜂(𝑛, 𝑘)

N𝜂(𝑛)

= 1
2M𝜂(𝑛)+1 ∑

𝑘, |𝑘|≤M𝜂(𝑛)
|𝑘|.

In the last expression, we recognize the expected length of a string of length at
most M𝜂(𝑛), where all candidate strings are equally likely. To be exact, the full
expression equals M𝜂(𝑛) − 1 + 1

2M𝜂(𝑛) . 2

It is possible to only consider encodings of a string 𝑥 with respect to a specific
witness of μ𝜂(𝑥). The previous theorem would then become a statement about the
expected value of μ𝜂(𝑥). For this, consider the boundary of a parameterization 𝜂
defined by

𝜂𝜕
𝑘 = 𝜂𝑘 ∖ ⋃

𝑗<asInt(𝑘)
𝜂asStr(𝑗).

A string is included in a slice 𝑘 of this boundary of 𝜂 only if 𝜂𝑘 is the first slice
of 𝜂 to include 𝑥. Thus, the only parameter value with which a string is in the
boundary of a parameterization is a shortest parameter value. Because of this, the
expected value of |𝑘| coincides with the expected value of μ𝜂𝜕(𝑥) = μ𝜂(𝑥). The
boundary of a parameterization is not itself a parameterization, as it is no longer
directed. However, if a parameterization 𝜂 is decidable, then so is its boundary 𝜂𝜕.
We can use the boundary of a parameterization to define a distribution along
the lines of the random–hard distribution discussed previously. With respect
to this distribution, the expected value of μ𝜂(𝑥) is thus at least M𝜂(𝑛) − 1, by
Theorem 3.4.30. Note that we only needed to change the distribution and not the
reference parameterization 𝜂, since M𝜂𝜕 is identical to M𝜂.

Parameterized Complexity Distributions

With the distributions considered so far, non-𝜂-stochastic strings are more prevalent
than what we observe in practice. Let us turn to the two-part code (3.11)
underlying parameterized complexity. This two-part code can be used as the basis
of a probability distribution on strings, which we shall refer to as the parameterized
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complexity distribution. We do so via the Kraft inequality, which requires us to
encode the two parts of (3.11) into a prefix-free set. Guided by fixed-parameter
tractability, we shall characterize suitable pairing functions.

We assume that the two parts are encoded independently, each using their own
prefix-free encoding. Thus, for all 𝑘 and 𝑖, the number of bits required for encoding
the pair ⟨𝑘, 𝑖⟩ can be expressed as the sum of the lengths of the encodings of 𝑘 and 𝑖.
Let ℓ1 and ℓ2 express these lengths, so that the pair is encoded using ℓ1(𝑘) + ℓ2(𝑖)
bits. Further, let 𝐴 be a set that is in FPT with a parameterization 𝜂 and let
𝑓 witness the parameter-dependence of the corresponding running time. We are
interested in the expected value of this running time as we know from experience
that the expected running time should be a tractable one. The general form of
this expected value with respect to the parameterized complexity distribution,
before specifying a specific pairing function, is

E
pc

(𝑓(𝑘) ∣ |𝑥| = 𝑛) = ∑
𝑘∈𝟚+

∑
𝑥∈𝟚𝑛∩𝜂𝑘

𝑓(𝑘) ⋅ 2−|⟨𝑘,rank(𝑥∶𝜂𝑘)⟩|/ ∑
𝑥∈𝟚𝑛

P
pc

(𝑥)

= ∑
𝑘∈𝟚+

𝑓(𝑘) ⋅ 2−ℓ1(𝑘) ∑
𝑥∈𝟚𝑛∩𝜂𝑘

2−ℓ2(rank(𝑥∶𝜂𝑘))/ ∑
𝑥∈𝟚𝑛

P
pc

(𝑥).

Here, the division takes care of the normalization needed because we compute the
expected value conditional on the length 𝑛. We shall assume that ℓ1, ℓ2, and 𝜂
are such that the distribution of 𝑛 follows a power law. Under this assumption,
Epc(𝑓(𝑘) ∣ |𝑥| = 𝑛) can be bounded by a polynomial in 𝑛 if and only if

∑
𝑘∈𝟚+

𝑓(𝑘) ⋅ 2−ℓ1(𝑘) ∑
𝑥∈𝟚𝑛∩𝜂𝑘

2−ℓ2(rank(𝑥∶𝜂𝑘))

can be bounded by a polynomial in 𝑛. In this expression, the final sum is a sum
of the probabilities of the individual strings of length 𝑛 in 𝜂𝑘, as obtained via
the Kraft inequality using ℓ2. As such, that sum is at most 1, and, up to factors
polynomial in 𝑛, we find

E
pc

(𝑓(𝑘) ∣ |𝑥| = 𝑛) ≤ ∑
𝑘∈𝟚+

𝑓(𝑘) ⋅ 2−ℓ1(𝑘).

Observe that the bounding value on the right is not sensitive to the length 𝑛.
Therefore, only two things can happen as a result of our choice of a pairing
function. Either the above sum diverges, or it reduces to a constant independent
of 𝑛. In the latter case, the expected running time of a decision procedure for 𝐴
is a tractable one, as the expected value of 𝑓(𝑘) is bounded by a polynomial in 𝑛.
One possibility for our pairing function is to use

ℓ1(𝑘) = asInt(𝑘) + log 𝑓(𝑘) − 𝒪(1) (3.14)

bits, with the 𝒪(1)-term used for normalization, for encoding a parameter value 𝑘.
Depending on 𝜂, the distribution of 𝑛 may still follow a power law, and we would
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then find, up to factors polynomial in 𝑛,

E
pc

(𝑓(𝑘) ∣ |𝑥| = 𝑛) ≤ ∑
𝑘∈𝟚+

2− asInt(𝑘) ∈ 𝒪(1).

If, for some 𝜀 < 1 and all but finitely many strings 𝑘, we have log 𝑓(𝑘) ≤ 𝜀 asInt(𝑘),
then even a simple unary encoding of 𝑘, satisfying

ℓ1(𝑘) = asInt(𝑘),

would suffice. Note that, in practice, the function 𝑓 commonly looks something like
𝑓(𝑘) = 2𝒪(1)⋅asInt(𝑘). For example, this is the case for the parameterized procedures
for Clique and VertexCover discussed in Section 1.3. With such a function 𝑓,
the length prescribed by (3.14) would not be too dissimilar to a unary code.

The best-known two-part encoding that uses a unary code for its first part
is Golomb coding [71, 133]. Crucially, Golomb coding differs from the coding of
strings introduced here in that our coding method does not assign a unique code
to every string. Similarly to Golomb coding, our coding method is suggestive of a
geometric distribution on the occurrence of strings from successive 𝜂-models.

At the same time, a unary encoding of parameter values suggests that the
expected value of the length, |𝑘|, of an 𝜂-model 𝑘 is bounded by a constant.
Most importantly, this constant does not depend on the length bound |𝑥| = 𝑛
conditional on which the expected value is computed. Thus, the probability of
encountering string 𝑥 that has no 𝜂-models of a short length in comparison to |𝑥|
is vanishingly small. In that sense, the probability of observing a non-𝜂-stochastic
string is negligible if 𝜂 is associated with empirical tractability.

3.4.31. Slogan. The expected parameter value is small.

In applications, knowledge of the distribution governing the data you are
working with is important. From the success of fixed-parameter tractability in
practice, we argue that in such distributions E(𝑓(𝑘) ∣ |𝑥| = 𝑛) can be bounded by a
polynomial in 𝑛. Of course, this assumes the thesis by Cobham and Edmonds that
feasible computation is computation with a polynomially bounded running time.
We have seen that, for suitable pairing functions, the parameterized complexity
probability distribution satisfies this criterion. However, recall that in practice, by
Theorem 3.2.41, there is no optimal parameterization with which a set is in FPT.
Hence, there is no best-fitting probability distribution with respect to a fixed-
parameter tractable set outside P. Nevertheless, each parameterization with which
a set is in FPT gives rise to a model of reality. In particular, such distributions
can be used for benchmarking, and even for researching likely properties of relevant
data. In this regard, distributions based on parameterized complexity offer an
alternative for generic distributions of objects that are not inherently strings. For
instance, the Erdős–Rényi model [51, 65, 40] outlines a distribution on graphs
that is not specific to any application. This distribution may not be the most
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suitable when your application involves a parameterized procedure that is found
to perform well in practice. The distribution associated with the parameterization
underlying this procedure may be of greater interest.

3.4.32. Example. In Example 3.3.24, we found that the largest minimum vertex
cover among those of graphs that have 𝑛 vertices contains about 𝑛 vertices.
Combining Theorem 3.3.20 with the incompressibility theorem [100], this can be
linked to the universal distribution. We find that, under the universal distribution,
the expected size of a minimum vertex cover of an 𝑛-vertex graph is linear in 𝑛.
Similarly, the expected size of a minimum vertex cover of an 𝑛-vertex graph is
linear in 𝑛 in the Erdős–Rényi model [152, Theorem 23].

We have seen examples of graph problems that are fixed-parameter tractable
once parameterized by the minimum vertex cover size in Section 1.3. If such a
parameterized approach is successful in practice, then, in line with Slogan 3.4.31,
we encounter mostly graphs with small vertex covers. Thus, in that case, neither
the universal distribution, nor that of the Erdős–Rényi model is a good model of
our data. The parameterized complexity distribution with a unary encoding of
parameter values may be a better model.

In light of the above example, the parameterized complexity probability distri-
bution provides a distinct notion of a random, or typical, graph. Such a notion
may be more meaningful to the application at hand than the notion provided by
the Erdős–Rényi model.

3.4.6 Data Structures
Sampling from a parameterized complexity probability distribution for a parame-
terization 𝜂 is straightforward because of the underlying two-part code, (3.11). In
short, we generate a string of bits by tossing a fair coin until we arrive at a de-
scription of a pair ⟨𝑘, 𝑖⟩, using the appropriate pairing function. This pair is then
mapped to the 𝑖th string in 𝜂𝑘. By definition of the parameterized complexity
distribution, this procedure generates strings according to that distribution. The
procedure can alternatively be described as a random initialization of a two-part
data structure. This data structure can be used instead of the “raw” represen-
tation of strings. Of course, procedures cannot make use of this data structure
directly, but must be adapted. Before going into the adaptations needed, let us
take a look at the benefits the two-part data structure offers.

Let 𝜂 be a parameterization and 𝑥 a string. At its most efficient, the two-
part data structure realizes the parameterized complexity of 𝑥 with respect to 𝜂.
When it does, the data structure decomposes the length of 𝑥 similarly to what
is depicted in Figure 3.5 on page 145. Instead of the traditional measures of
algorithmic complexity, however, the prevailing measure is that of algorithmic
complexity in the context of 𝜂. Thus, the Kolmogorov complexity K(𝑥) is replaced
by pc𝜂(𝑥) and the useful information is replaced by soph𝜂(𝑥). As pc𝜂(𝑥) could be



178 Chapter 3. Parameterizations

bigger than |𝑥|, we may not always identify any algorithmic redundancy. Note,
though, that the difference between pc𝜂(𝑥) and |𝑥| can be bounded by a function
of M𝜂(|𝑥|). The specifics of this bound depend on the chosen pairing function
used in the definition of parameterized complexity.

For any set 𝐴, a data structure derived from a parameterization in ℱFPT(𝐴)
may have an especially desirable characteristic. Consider in relation to 𝐴 a
parameterization 𝜂 ∈ ℱFPT(𝐴) and a string 𝑥 such that μ𝜂(𝑥) is substantially
smaller than M𝜂(|𝑥|). That is, membership in 𝐴 of this string 𝑥 is easy to decide
for the parameterized decision procedure corresponding to 𝜂. Depending on
how informative 𝜂 is, the data structure that corresponds to it will manage to
compress 𝑥. We shall use a variant of the pairing function of Definition 2.1.2 where
we reverse the components. If we let ℓ(𝑘) denote the length of the Elias delta
encoding of the string 𝑘, this pairing function is so that, for all 𝑘 and 𝑖, we have
|⟨𝑘, 𝑖⟩| = ℓ(𝑘) + |𝑖|.

3.4.33. Theorem. Let 𝜂 be a parameterization and 𝑘 a parameter value. If 𝜂
satisfies the mild informativeness criterion N𝜂(𝑛, 𝑘) ∈ o(2𝑛) then, for every
constant 𝑑, all but finitely many strings 𝑥 ∈ 𝜂𝑘 satisfy

|⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| ≤ |𝑥| − 𝑑.

Proof:
The inequality of the theorem can equivalently be put as

ℓ(𝑘) + 𝑑 ≤ |𝑥| − |asStr(rank(𝑥 ∶ 𝜂𝑘))|.

As ℓ(𝑘) and 𝑑 are independent of 𝑥, it suffices to show that the right-hand side,
|𝑥| − |rank(𝑥 ∶ 𝜂𝑘)|, is almost always greater than any fixed constant. In other
words, it should have an unbounded limit inferior, implying that 𝜂𝑘 is meager.
Note that the rank of any 𝑥 in 𝜂𝑘 is at most

∑
𝑛≤|𝑥|

N𝜂(𝑛, 𝑘),

because this is the total number of strings in 𝜂𝑘 with a length of at most that
of 𝑥. As |rank(𝑥 ∶ 𝜂𝑘)| is roughly equal to log rank(𝑥 ∶ 𝜂𝑘), it suffices to show that

|𝑥| − log ∑
𝑛≤|𝑥|

N𝜂(𝑛, 𝑘)

has an unbounded limit inferior.
Let 𝑓 be a function with an unbounded limit inferior that satisfies, for all 𝑛,

N𝜂(𝑛, 𝑘) ≤ 2𝑛

𝑓(𝑛)
.



3.4. as Model Classes 179

Such a function exists because we have N𝜂(𝑛, 𝑘) ∈ o(2𝑛). We may assume that
𝑓 does not grow too fast and also satisfies 𝑓(𝑛) ≤ 3

2𝑓(𝑛 − 1). We claim that we
have, for all 𝑥,

∑
𝑛≤|𝑥|

N𝜂(𝑛, 𝑘) ≤ 4 2|𝑥|

𝑓(|𝑥|)
. (3.15)

Assuming this claim, we find

|𝑥| − log ∑
𝑛≤|𝑥|

N𝜂(𝑛, 𝑘) ≥ |𝑥| − log 4 2|𝑥|

𝑓(|𝑥|)

= log 𝑓(|𝑥|) − 2.

Because 𝑓 has an unbounded limit inferior, so does the function that maps 𝑛 to
log 𝑓(𝑛) − 2, thus the equation above proves the theorem.

We shall prove (3.15) by induction on the length of 𝑥. The base case, |𝑥| = 1,
is immediate. Assume now that (3.15) holds for all 𝑛 less than |𝑥|, which gives us

∑
𝑛≤|𝑥|

N𝜂(𝑛, 𝑘) = N𝜂(|𝑥|, 𝑘) + ∑
𝑛≤|𝑥|−1

N𝜂(𝑛, 𝑘)

≤ 2|𝑥|

𝑓(|𝑥|)
+ 4 2|𝑥|−1

𝑓(|𝑥| − 1)

By the limited growth rate of 𝑓, we then get

∑
𝑛≤|𝑥|

N𝜂(𝑛, 𝑘) ≤ 2|𝑥|

𝑓(|𝑥|)
+ 2 2|𝑥|

2
3𝑓(|𝑥|)

≤ (1 + 2
2
3

) 2|𝑥|

𝑓(|𝑥|)
,

proving (3.15). 2

This result can be extended to other pairing functions as well. Suppose we
have a pairing function and two functions, ℓ1 and ℓ2, such that the length of the
pair consisting of strings 𝑘 and 𝑖 is ℓ1(𝑘) + ℓ2(𝑖). In that case, compression should
be considered with respect to ℓ2 and the key inequality of the theorem should be
changed to

|⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩| ≤ ℓ2(𝑥) − 𝑑.

The above theorem augments our observation in Example 3.4.28 that 𝜂 may
act as a measure of both algorithmic and computational complexity. A data
structure conforming to a parameterization in ℱFPT(𝐴) best compresses those
instances for which deciding membership in 𝐴 is easy. This is especially pleasant
because the success of fixed-parameter tractability hinges on the observation that
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deciding membership of real-world data is easy. Note that this compression is
lossless.

The lossy compression obtained by dropping the second part of the two-part
data structure may be of its own interest. We note that the lossy compression
of a string 𝑥 that has a good lossless compression need not be particularly good.
With this, we mean that it is possible that few other strings of length |𝑥| have as
good of a lossless compression, yet most have a better lossy compression. This is
because having high sophistication may in fact be a compressing property.

3.4.34. Example. Suppose 𝜂 is a parameterization for which μ𝜂 and soph𝜂
coincide, and for which for all 𝑛 we have that M𝜂(𝑛) is roughly log 𝑛. Now, choose
some string 𝑥 and a parameter value 𝑘 such that we have |𝑘| = |𝑥|

2 . We alter 𝜂
by removing 𝑥 from all slices 𝜂𝑘′ of 𝜂 for which we have |𝑘′| < |𝑘|, and replacing
slice 𝜂𝑘 by the singleton {𝑥}. With respect to this modified parameterization, the
sophistication and minimization still coincide. The sophistication of 𝑥 is |𝑥|

2 , and
so is the minimum length of its lossy compression. Additionally, the parameterized
complexity of 𝑥, representing the length of the lossless compression, is also more
or less equal to the sophistication of 𝑥. This is so because the rank of 𝑥 in slice 𝑘
is 1, thus the length of the second part of the two-part code for 𝑥 is negligible.

Let 𝑛 be the length of 𝑥. A lossless compression of length 𝑛
2 is possible

for at most a 2−𝑛/2-fraction of the strings of length 𝑛. Therefore, the lossless
compression available for 𝑥 is pretty good. By contrast, with a length of 𝑛

2 , the
lossy compression available for 𝑥 is comparatively poor. Indeed, because M𝜂(𝑛) is
roughly log 𝑛, all other strings have a lossy compression of roughly length log 𝑛.

In applications, compression performance is often measured by the compression
ratio or, for data streams, the compressed data rate [133, 139] (see also Exam-
ple 3.4.1). Thus, compression performance is assumed to be constant throughout
all input lengths. Contrary to this, a typical parameterization 𝜂 may be so that
M𝜂 is logarithmic as a function of the length of strings. We shall not go into this
discrepancy here and leave it to be explored in future research.

Technically, Theorem 3.4.33 above is not much more than a loose contrapositive
statement of Theorem 3.3.20. Of course, the context is different and with it the
interpretation. Here, the focus is on the two-part data structure. If we are to use
this data structure as the input to a procedure, we should keep an eye on the
way we express the computational complexity of the procedure. Rather than as a
function of the length of the original string, the running time should be measured
as a function of the length of the data structure. Luckily, if a parameterization 𝜂
has uniform exponential density, then for all 𝑘 and 𝑥 ∈ 𝜂𝑘, the quantities |𝑥|
and |rank(𝑥 ∶ 𝜂𝑘)| are related by polynomials. Thus, provided the data structure
can be decoded fast, if a set is in FPT with some parameterization, the recoded
version is also in FPT.
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This finally brings us to the adaptations of procedures needed in order to
make use of the two-part data structure. Simply put, a procedure can be made
to act on the two-part data structure by having it reconstruct the original string
before proceeding as usual. Specifically, we are thus interested in the computa-
tional cost of decoding the two-part data structure. Let 𝜂 be a parameterization
and 𝑘 a parameter value. We are interested in the situation where, for every
string 𝑥 ∈ 𝜂𝑘, we can compute 𝑥 from ⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩ in time polynomial in |𝑥|.
As just mentioned, if 𝜂 has uniform exponential density, the running time of
this procedure would also be polynomial in |rank(𝑥 ∶ 𝜂𝑘)|. Likewise, it would be
polynomial in |⟨𝑘, rank(𝑥 ∶ 𝜂𝑘)⟩|. Using binary search, we find that if 𝑥 can be
computed from its rank in polynomial time, then its rank itself can be computed
in polynomial time [79, Theorem 6.1]. Hence, there is a neat characterization of
the parameterizations of interest.

3.4.35. Definition. A parameterization is fixed-parameter p-rankable if there
is a parameterized procedure 𝜙, a computable function 𝑓, and a polynomial 𝑝
satisfying

• for every parameter value 𝑘, the partial application of 𝜙 to 𝑘 yields a
computation for rank(⋅ ∶ 𝜂𝑘) that runs in 𝑓(𝑘) ⋅ 𝑝 time.

3.4.36. Example. The parameterizations related to certain p-cylinders are ex-
amples of fixed-parameter p-rankable parameterizations. Let 𝑔∶ 𝟚+ → 𝟚+× 𝟚+ be
a polytime-isomorphism that is increasing in its second component. This means
that, for all strings 𝑧1, 𝑧2, and 𝑦, if we have asInt(𝑧1) < asInt(𝑧2), then we also
have asInt(𝑔−1(𝑦, 𝑧1)) < asInt(𝑔−1(𝑦, 𝑧2)). Further, let 𝜂 be the parameterization
related to 𝑔 as described in Example 3.2.13. We shall show that the second com-
ponent of the image of 𝑔, can be used to compute the rank of a string in a slice
of 𝜂.

Recall that we defined the rank of a string 𝑥 in a set 𝑋 as the number of
elements in the set

{𝑦 ∈ 𝑋 | asInt(𝑦) ≤ asInt(𝑥)}.

In particular, the rank is defined also for a string 𝑥 that is not a member of 𝑋.
Therefore, we can express the rank of a string in a slice of 𝜂 as the sum of ranks
in sets defined by a constant first component in the image of 𝑔. If we denote by
𝑔−1

1 (𝑦) the set of strings {𝑔−1(𝑦, 𝑧) | 𝑧 ∈ 𝟚+}, then, for every 𝑘 and 𝑥, we have

rank(𝑥 ∶ 𝜂𝑘) = ∑
𝑗≤asInt(𝑘)

rank(𝑥 ∶ 𝑔−1
1 (asStr(𝑗))). (3.16)

As the number of terms in this sum is a function of 𝑘, all we need to show is that
each term can be computed in a time bound polynomial in |𝑥|. This polynomial
must be independent of 𝑘. To this end, we assume 𝑗 is fixed and employ binary
search. First, we use a series of strings 𝑧1, 𝑧2, 𝑧3, …, each string one bit longer
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than the one before it, in order to find a reasonably small value, 𝑧up, for which we
have

asInt(𝑥) ≤ asInt(𝑔−1(asStr(𝑗), 𝑧up)). (3.17)
Next, we use a binary search below 𝑧up to find the largest 𝑧 for which (3.17)
holds. We have thus found the rank of 𝑥 in 𝑔−1

1 (asInt(𝑗)) as asInt(𝑧). If 𝑝 is the
polynomial bounding the running time of computing 𝑔−1, then, for every 𝑥, the
above procedure finishes in a time in 𝒪(|𝑥|2 ⋅ 𝑝(|𝑥|)). For the complete sum (3.16),
we get a time bound of 𝒪(asInt(𝑘) ⋅ |𝑥|2 ⋅ 𝑝(|𝑥|)), which is as required.

A fixed-parameter p-rankable parameterization of which all slices are sparse
could be called fixed-parameter p-printable. Following our observations at the end
of Section 3.3.3, the slices would then be sets of small generalized Kolmogorov
complexity [8]. In that way, the fixed-parameter p-rankable parameterizations
provide yet another way of combining algorithmic complexity and computational
complexity. The slices of such a parameterization are a model for non-random
sets, and at the same time, they are easy in the sense of Definition 3.3.25.

Being fixed-parameter p-rankable is a property of a parameterization in iso-
lation. This means that such rankable parameterizations can be considered also
in relation to sets that are themselves in no way p-rankable. Indeed, a slice of
a fixed-parameter p-rankable parameterization may contain both members and
nonmembers of the set at hand. In this context, it is worthwhile to note that it is
not even expected that every set in P is p-rankable. If they were, then all slices of
all parameterizations in ℒFPT would be p-rankable. Moreover, the polynomial hi-
erarchy would then collapse to P [79]. This collapse is caused by the fact that the
class of rankable sets is not closed under polytime-isomorphisms. If we broaden
our scope to include such isomorphisms, we are looking at scalable sets instead of
at rankable sets [69]. The difference between fixed-parameter scalable and fixed-
parameter p-rankable sets can conveniently be pointed out in Example 3.4.36. For
the scalable variant, we would not need to require that the polytime-isomorphism
is increasing in its second component. Regarding the existence of non-scalable
sets in P, we know little more than a result of Allender [7] on sparse sets and
one-way functions: A sparse non-scalable set in P exists if and only if there is an
honest, polynomial-to-one, polytime-function without a polytime-inverse on {0}+.

With respect to a parameterization 𝜂, it may be hard to find a two-part
encoding of a string 𝑥, let alone one that uses pc𝜂(𝑥) bits. Note, however, that
two-part encodings that are suboptimal in that they do not realize pc𝜂(𝑥) may
be worthwhile too. The second part of a two-part encoding of 𝑥 is no longer
than |𝑥| and the overhead imposed by the first part may be small. By recording a
parameter value in a two-part data structure, we can keep track of what is known
about 𝑥. The data structure has the advantage that it can be updated whenever
a more compressing parameter value is found.

One way to obtain encodings of strings in our data structure is via trans-
formations inside slices. Operations on data may exist that do not impact the
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parameter value 𝑘, and have a known impact on the rank in a slice. One can
imagine a setting involving graphs where the act of adding an isolated vertex does
not influence the sophistication. It may be possible to perform such operations
on the two-part data structure directly, without first reconstructing the original
graph, or, in general, string. Essentially, we record the steps by which a string
was constructed, as a series of transformations that enumerate the elements of
a slice [see also 80, Theorem 4.2]. In this way, the data structure is transparent
to certain complexity-preserving operations. We could say that the data struc-
ture is thus partially homomorphic. As, by Theorem 3.4.33, the data structure
may be compressing, we could even say that parameterizations allow for partially
homomorphic compression.

Other compression methods that enable operations on the compressed repre-
sentations exist. One nice example is the data store by Agarwal, Khandelwal, and
Stoica [4] called Succinct. This compression method is designed specifically to
allow certain pattern searches to be performed directly on the compressed data.
Whether or not it is suitable in the context of a certain computational workload
is left for the relevant specialist to decide.

Unique to our parameterized approach is that we can link our data structure
to the computational complexity of a set. In general, the data structure we
use determines what operations are feasible. If we require fewer operations to
be feasible, a more compressing encoding of our data may be available. For a
set 𝐴, the parameterizations in ℱFPT(𝐴) are representative of the computational
redundancies in deciding membership in 𝐴. The operations to which our two-part
data structure is transparent are determined by these redundancies. This way, our
approach provides data structures tailored to specific computational workloads.
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3.5 as Computational Redundancy
We can picture a parameterization as an infinite stack of slices. So far, we have
worked under the hypothesis that complexity increases as we ascend through this
stack. As such, parameter values represent levels of complexity. However, when
each slice represents a level of constant complexity, then, relative to their length,
the complexity of instances decreases inside each slice. As the length of instances
in a given slice goes up, their relative complexity goes down.

3.5.1. Example. With FPT, we consider decidability in polynomial time easy,
and use parameter values to express computational complexity beyond polynomial
time. Thinking of FPT as computational complexity up to computability in
polynomial time, we can see the importance of the first elements of slices. Let 𝐴
be a set that is in FPT with a parameterization 𝜂. This means that, for some
function 𝑓 and polynomial 𝑝, membership in 𝐴 can be decided in 𝑓(𝑘) ⋅ 𝑝(|𝑥|) time
steps, whenever we have 𝑥 ∈ 𝜂𝑘. Now, for those 𝑥 and 𝑘 that satisfy |𝑥| ≥ 𝑓(𝑘),
we have

𝑓(𝑘) ⋅ 𝑝(|𝑥|) ≤ |𝑥| ⋅ 𝑝(|𝑥|).
In other words, for sufficiently long strings 𝑥 in a fixed slice 𝜂𝑘, membership in 𝐴
can be decided in polynomial time, irrespective of 𝑘.

The example above shows that the especially interesting elements of a slice 𝜂𝑘
are those of length at most 𝑓(𝑘). Typically, however, the function 𝑓 is rather fast-
growing. Therefore, the observation in the example may not be very effective in
locating where the computational complexity of a set originates. There are simply
too many strings 𝑥 that satisfy |𝑥| ≤ 𝑓(𝑘). In many cases, the computational
complexity of a set can be pinpointed to far shorter initial segments of the slices
of a parameterization.

3.5.2. Example (continued from Example 3.2.13). Let 𝐴 be a p-cylinder and
𝑔∶ 𝟚+ → 𝟚+× 𝟚+ a corresponding isomorphism. Recall that the parameterization
based on 𝑔 was defined as

𝜂 = ({𝑥 | asInt(𝑔1(𝑥)) ≤ asInt(𝑘)})𝑘∈𝟚+ .

In the parameterized decision procedure for 𝐴 outlined in Example 3.2.13, only
the first component of the image of 𝑔 was taken into consideration. Thus, if 𝑔
maps 𝑥 to (𝑦, 𝑧), then the length of 𝑧 is largely irrelevant for the computational
complexity of deciding membership of 𝑥 in 𝐴. We might as well replace 𝑧 with
the constant string 0 of length one. Indeed, the string 𝑥′ = 𝑔−1(𝑦, 0) is a member
of the same slices as 𝑥. Additionally, we can bound the length of 𝑥′, because 𝑔−1

is polytime-computable. In particular, the length of 𝑥′ is polynomial in the length
of 𝑦 = 𝑔1(𝑥). Thus for every 𝑘 for which we have 𝑥 ∈ 𝜂𝑘, we can bound |𝑥′| by
a polynomial of |𝑘|, because we must have asInt(𝑦) ≤ asInt(𝑘). Equivalently, we
can bound |𝑥′| by a polylogarithmic function of asInt(𝑘).
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In the example above, we sent a string 𝑥 to another string 𝑥′ in the same slice
as 𝑥, in a way that preserves membership. Put differently, we defined a reduction
from the set 𝐴 to itself that was well-behaved with respect to the parameterization.
The reduction is akin to an autoreduction in the spirit of Trakhtenbrot [142].
Where the definition of an autoreduction excludes reducing to the input string,
our reduction satisfies a condition that is in some sense stronger. Namely, our
reduction meets a bound, as a function of the parameter value, on the length
of the strings to which an input is reduced. In this light, our reduction can be
compared to a more restrictive type of autoreduction, the self-reduction [106]. In
the textbook treatment by Balcázar, Díaz, and Gabarró [16, Section 4.5], self-
reducibility is defined as autoreducibility where all strings to which an input is
reduced are strictly shorter than the input. However, many of the results around
self-reducibility extend to more general orders than the “shorter than”-order.
Indeed, the definition of self-reducibility can be generalized to encompass such
more general orders [92, 117, 30]. Unfortunately, even this generalized definition
does not adequately capture the behavior of our reduction in Example 3.5.2 [33].
Reductions of this type form a class of reductions of their own.

One of the reasons this class of reductions is of interest is because of its relation-
ship to preprocessing. The goal of preprocessing is to eliminate all computational
redundancy from an input and identify its computationally hard part. In the case
of Example 3.5.2, we could throw away the second component in the image of the
isomorphism 𝑔. Crucially, doing so allowed us to reduce the input in polynomial
time to an equivalent string of a length that was bounded by a function of the
parameter value. Returning once more to Figure 3.5, we see that essentially only
the useful information was relevant for deciding membership. The algorithmic
noise could be considered a form of computational redundancy. Generally, prepro-
cessing may not be so powerful and the image of the reduction may be far longer
than the parameter value. In other words, the length of the result of preprocessing
a string 𝑥 is not guaranteed to be at most that of 𝑥. However, as long as the
length of the result can be bounded by a function of a parameter value for 𝑥, the
preprocessing has some guarantee on its effectiveness.

Synopsis

Preprocessing procedures such as the one introduced in Example 3.5.2 are formally
known as kernelizations. Just like with other forms of reducibility, the definition
of a kernelization allows for some variation. Varying the constraints we place
on a kernelization, we can obtain anything from a many–one kernelization to
a Turing kernelization. The spectrum of possible definitions is the topic of
Section 3.5.1. As far as the existence of a kernelization for a set is concerned, there
is no difference between the various kinds of kernelization. We shall see that a
set 𝐴 has a kernelization of any kind with respect to some given parameterization
precisely when 𝐴 is fixed-parameter tractable. However, a less constrained kind
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of kernelization may be able to reduce its inputs to shorter strings than a more
constrained kind of kernelization could. In that sense, the various kinds of
kernelization may differ in effectiveness.

The difference between the length of an input string and that of the string
to which it is reduced is a measure of the computational redundancy in the
input. Thus, smaller parameter values indicate more computational redundancy.
A kernelization is a way to relate a parameterization with the computational
redundancy present in the inputs to a decision problem. Differences in the
effectiveness of kernelizations can therefore be interpreted as differences in the
amount of computational redundancy that is recognized. Typically, a kernelization
is considered to be reasonably effective if the length of the reduced strings is
polynomial in the numeric parameter value. In Section 3.5.2, we go into detail
about these polynomial kernelizations. We consider the possibility of a relationship
between the size of a kernelization and the running time associated with fixed-
parameter tractability. This relationship turns out to be very weak, thus we
find that computational tractability and computational redundancy are distinct
measures of complexity.

Moreover, we find in Section 3.5.2 that the existence of a polynomial kerneliza-
tion depends on the kind of kernelization we target. For this finding, we introduce
a technique for constructing sets that are kernelizable in one way but not another.
This technique revolves around composing sets as the disjoint union of a hard part
and a computationally redundant part that reduces to the hard part. The same
technique is used in Section 3.5.3 to build a fine-grained hierarchy of polynomial
kernelizability. We identify what additional constraints in the definition of a ker-
nelization lead to a strictly smaller class of sets having polynomial kernelizations.
Thus, the levels in our hierarchy correspond to different kinds of polynomial ker-
nelization. Most of the results concerning the hierarchy are the outcome of a joint
work with Ralph Bottesch and Leen Torenvliet [153].

At one level of our hierarchy of kernelizability, we can reinterpret the compu-
tational redundancy identified by a kernelization as related to “advice”. With the
corresponding definition of a kernelization, more computational redundancy is
linked to less advice being needed by a decision procedure. Specifically, having a
polynomial kernelization is conceptually the same as having a decision procedure
that takes an advice string of polynomial length. In Section 3.5.4, we compare
this notion of polynomial advice with the leading notion of polynomial advice in
computational complexity theory. While the traditional notion is shown to have
some strong ties with polynomial kernelizability, it is nevertheless different from
our new notion of advice. Neither notion of polynomial advice is stronger than
the other.

The level of our hierarchy of kernelizability that represents a notion of advice
appears again in Section 3.5.5. In that section, it is shown that an established
technique for lower bounding the minimum size of a kernelization can be generalized.
The lower bounding technique was originally used to lower bound the size of the
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most restrictive kind of kernelizations for certain decision problems. However,
for less constrained kinds of kernelization, the technique works just as well. We
shall see that it generalizes to the kind of polynomial kernelization that we related
earlier to a notion of polynomial advice.

3.5.1 Types of Kernelization
In the Flum and Grohe framework, a kernelization can be defined as follows.
Let 𝐴 be a set and 𝜅 a parameterization in the sense of Flum and Grohe as we
have seen in Section 1.3. A kernelization for 𝐴 with respect to 𝜅 is a polytime-
computable function 𝜙∶ 𝟚+ → 𝟚+ that satisfies two properties. The first is that
for all strings 𝑥, we have 𝑥 ∈ 𝐴 ⟺ 𝜙(𝑥) ∈ 𝐴. The other property required is
that there is some computable function ℎ∶ 𝟚+ → N such that, for all strings 𝑥, we
have |𝜙(𝑥)| ≤ ℎ(𝜅(𝑥)). In other words, a kernelization is a polytime many–one
reduction with a length bound on the image in terms of the parameter value of
the input.

As we shall soon see, kernelizations are closely related to fixed-parameter
tractability. However, there is no reason we should restrict ourselves to many–one
reducibility. This was first observed by Lokshtanov [101], who introduced the
more general Turing kernelization, where the type of reducibility at play is Turing
reducibility. In our framework, this very general form of kernelization can be
defined as follows.

3.5.3. Definition. Let 𝜙 be a parameterized procedure that can query an oracle
about membership of strings in a set 𝐴. The procedure 𝜙 is a Turing kernelization
for 𝐴 with respect to a decidable parameterization 𝜂 if

• there is a polynomial 𝑝 such that 𝜙 terminates on any input string 𝑥
within 𝑝(|𝑥|) steps, regardless of the parameter value provided as the second
argument to 𝜙,

• 𝜙 converges to 𝐴 on 𝜂, and

• there is a computable function ℎ∶ 𝟚+ → N such that any query made by 𝜙
on an input (𝑥, 𝑘) has a length of at most ℎ(𝑘).

While the definition may seem daunting, the three items really codify the same
properties that were required of traditional kernelizations. That is, a Turing
kernelization runs in polynomial time, decides membership, and obeys a length
bound on the queries it makes.

We remark that every Turing kernelization also has a computable upper bound
on the minimum length of a parameter value with which a queried string is in 𝜂.
In other words, if, on input (𝑥, 𝑘), a Turing kernelization queries a string 𝑞, then
μ𝜂(𝑞) can be bounded from above by a function of 𝑘. This is so because we have
|𝑞| ≤ ℎ(𝑘) and we can compute the value of μ𝜂(𝑞) for all possible queries. That μ𝜂
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is a computable function is a result of the requirement that the parameterization 𝜂
is decidable. In fact, the decidability requirement in the definition can be relaxed
to the criterion that there exists a computable parameter estimator 𝜅 for 𝜂. An
upper bound on the minimum length of a parameter value for the queries is then
found by replacing μ𝜂(𝑞) by |𝜅(𝑞)| in the expression above.

Besides the length bound, more restrictions on the queries made by a Turing
kernelization can be put in place. We observe that in the execution of a Turing
kernelization, which string is queried next may depend on the answers of the
oracle to queries made previously. Because of this, a Turing kernelization is said
to be adaptive. We may restrict a Turing kernelization so that it must determine
all the queries it will make at once, before knowing the feedback of any of them.
With this addition of this restriction, we have defined a truth-table kernelization.
This type of kernelization is relevant in the context of parallelized computation.
As observed by Weller [151], the independence of the queries makes it possible
to compute their answers in parallel. This turns truth-table kernelization into a
design pattern for parallel algorithms.

Note that, by the bound on its running time, a Turing kernelization can be
made to terminate regardless of the oracle it is provided with. In this regard,
Turing kernelizations differ from Turing reductions in computability theory [131,
115], which may never stop querying their oracle. Therefore, a Turing kernelization
is really a bounded Turing kernelization, or, equivalently, a weak truth-table
kernelization [115] [see also 46, Section 2.4.3]. Even then, the names do not fully
describe all properties, as a weak truth-table reduction need not terminate after
it has received the answers to its queries.

Examples of Turing kernelizations can be found in the works of Jansen [87]
and Thomassé, Trotignon, and Vušković [141], and in the textbook by Cygan
et al. [37, Section 9.4]. While the kernelizations in the first two works are adaptive,
the kernelization discussed in the textbook is non-adaptive and thus a truth-table
kernelization. Further examples of both Turing and truth-table kernelizations can
be found in the textbook by Fomin et al. [58].

More restrictive still are Turing kernelizations that are only allowed to make a
constant number of queries. Yet, even Turing kernelizations that only make at
most one query can do something that traditional many–one kernelizations cannot
do. They can invert the answer they receive from the oracle in their membership
decision. A further restriction we shall consider is related to this ability and was
introduced by Jockusch [88] in computability theory and, later, by Selman [135]
in complexity theory.

3.5.4. Definition. Let 𝜙 be a parameterized decision procedure that can query
an oracle. Additionally, denote the set 𝜙 decides when the oracle answers according
to a set 𝐴 by 𝜙−1

𝐴 (1). The procedure 𝜙 is positive if, for all sets 𝐴 and 𝐵 that
satisfy 𝐴 ⊆ 𝐵, we have 𝜙−1

𝐴 (1) ⊆ 𝜙−1
𝐵 (1).

The reason for calling kernelizations that behave as in the above definition
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“positive” can most easily be seen by looking at positive truth-table kernelizations.
As it turns out, the dependence on the oracle of a positive truth-table kernelization
can be expressed as a Boolean formula that does not use negation. The disjunctive
kernelizations and conjunctive kernelizations of Kratsch [97] are examples of
positive truth-table kernelizations.

Finally, a positive Turing kernelization that makes at most one query could
indeed be called a many–one kernelization. The oracle access of a many–one
kernelization is quite restrictive. However, such kernelizations are still quite
powerful from a computational complexity point of view.

3.5.5. Theorem. The following statements about a decidable set 𝐴 and parame-
terization 𝜂 are equivalent.

1. There is a many–one kernelization for 𝐴 with respect to 𝜂.

2. There is a Turing kernelization for 𝐴 with respect to 𝜂.

3. 𝐴 is in FPT with 𝜂.

Proof:
1 ⟹ 2. As a many–one kernelization is a restricted form of a Turing kernelization,
this implication is immediate.

2 ⟹ 3. Let 𝜙 be the Turing kernelization for 𝐴 with respect to 𝜂 and let 𝜓
be a decision procedure for 𝐴. Furthermore, let 𝑝 be the polynomial bounding the
running time of 𝜙 and let ℎ be the function bounding the length of the queries
made by 𝜙. We can modify 𝜙 and turn it into a witness for the fact that 𝐴
is in FPT with 𝜂. Suppose we want to decide membership of a string 𝑥 in 𝐴
and are supplied with a parameter value 𝑘 such that we have 𝑥 ∈ 𝜂𝑘. We run
𝜙 on (𝑥, 𝑘) and whenever 𝜙 would pose a query to its oracle, instead we make
it use 𝜓 to figure out itself what the oracle would answer. Two things we know
about the queries 𝜙 makes are that there are at most 𝑝(|𝑥|) of them and that each
is bounded in length by ℎ(𝑘). Now, if we denote the running time of 𝜓 by 𝑡, we
thus find that the modification to 𝜙 prolongs its running time by no more than
an additional 𝑝(|𝑥|) ⋅ 𝑡(ℎ(𝑘)) steps. Note that ℎ is computable by Definition 3.5.3
and 𝑡 is computable because 𝜓 terminates on all inputs. Thus, the modified 𝜙
indeed witnesses that 𝐴 is in FPT with 𝜂.

3 ⟹ 1. The core idea for this implication was present already in Exam-
ple 3.5.1. Let 𝑓 be the computable function and 𝑝 the polynomial such that, for
all 𝑥 and 𝑘 with 𝑥 ∈ 𝜂𝑘, membership of 𝑥 in 𝐴 can be decided in 𝑓(𝑘) ⋅ 𝑝(|𝑥|) steps.
As shown in Example 3.5.1, membership in 𝐴 of sufficiently long instances can
be decided in polynomial time without using an oracle. This leaves us to define
a parameterized decision procedure for instances 𝑥 and parameter values 𝑘 that
satisfy |𝑥| < 𝑓(𝑘). Such membership questions can, however, simply be delegated
to the oracle while still satisfying the definition of a many–one kernelization. 2
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The previous result urges us to look at even more restricted forms of kerneliza-
tion. A closer look at Example 3.5.1 tells us that kernelizations show us where the
computational complexity in a decision problem resides. If a set 𝐴 has a kernel-
ization with respect to a parameterization 𝜂, then all computational complexity
of 𝐴 resides in initial segments of the slices of 𝜂. Of course, when we attempt to
identify the computationally hard part of the set, we try to keep this hard part
as small as possible. The bound ℎ in Definition 3.5.3 can be used to formalize
what “small” should mean in this case. Because we are primarily interested in the
limiting behavior of ℎ, we shall think of ℎ not as a function of a parameter value 𝑘,
but as a function of asInt(𝑘). In many cases, this is quite natural. For example,
with the parameterization defined in Example 2.2.3, the values of asInt(𝑘) relate
to the lengths of instances. We say that a Turing kernelization is a polynomial
Turing kernelization if the associated bound ℎ can be a polynomial of asInt(𝑘).
More generally, we refer to the bound as a function of asInt(𝑘) as the size of the
kernelization.

3.5.6. Example (continued from Example 3.5.2). The construction of the previ-
ous example lies at the heart of a polynomial many–one kernelization for p-cylin-
ders. For the p-cylinder 𝐴 with isomorphism 𝑔 and parameterization 𝜂, this
kernelization would proceed as follows on an input (𝑥, 𝑘). First, the procedure
would compute 𝑔1(𝑥) and verify that asInt(𝑔1(𝑥)) ≤ asInt(𝑘) holds. If it does
not, we do not have 𝑥 ∈ 𝜂𝑘 and the procedure returns ?. Because 𝑔 is computable
in polynomial time, this can be done in a time that is bounded polynomially
in |𝑥|. When we do have 𝑥 ∈ 𝜂𝑘, the next step of the procedure is to construct
𝑥′ = 𝑔−1(𝑔1(𝑥), 0). As we had seen before, the length |𝑥′| can be bounded by a
polylogarithmic function of asInt(𝑘). Finally, the procedure queries the oracle for
membership of 𝑥′ in 𝐴 and returns the answer of the oracle. By returning the
answer of the oracle, the kernelization ensures it is a positive kernelization. As it
queries at most one string of a length that can be bounded by a polylogarithmic
function, it is a polylogarithmic many–one kernelization. Of course, it is also a
polynomial many–one kernelization.

Most treatments of kernelization, including the standard textbook of Fomin et
al. [58], require an additional property of the size of a kernelization. With respect
to a parameterization 𝜂, this additional property is as follows for a kernelization 𝜙
of size ℎ: For any query 𝑞 that 𝜙 poses to its oracle, there must be a parameter
value 𝑘′ for which we have 𝑞 ∈ 𝜂𝑘′ and asInt(𝑘′) ≤ ℎ(asInt(𝑘)). This is a technical
restriction that codifies that the queries may not have an overly high complexity.
It is not always imposed [e.g. 57], and sometimes relaxed to obtain a notion of
compression [24]. With the additional requirement in place, the kernelization in
the previous example is no longer a polylogarithmic kernelization: The parameter
values for the query are the same as the parameter values for the input instance,
hence asInt(𝑘′) need not be polylogarithmic in asInt(𝑘). However, as each query
is a member of the same slices as the input instance, our kernelization is still a
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polynomial kernelization. With respect to polynomial kernelizations, the additional
requirement is often not much of an issue. In a typical parameterization 𝜂, each
instance 𝑥 has a parameter value 𝑘 that satisfies 𝑥 ∈ 𝜂𝑘 and asInt(𝑘) ≤ |𝑥|. This
subsumes the additional requirement.

Ideally, the order on parameterizations as defined in Definition 3.2.20 should
preserve the size of kernelizations. Suppose we are working with a set 𝐴 and we
have two parameterizations, 𝜂 and 𝜁, both members of ℒFPT, that satisfy 𝜂 ≼ 𝜁.
In Theorem 3.2.27, we have seen that ℱFPT(𝐴) is upward closed, meaning that if
𝐴 is in FPT with 𝜂, it is also in FPT with 𝜁. Unfortunately, it is not the case
that if 𝐴 has a Turing kernelization of size ℎ with respect to 𝜂, it also has one
of size ℎ with respect to 𝜁. This is because the size of a kernelization is not well-
defined with respect to classes of parameterizations that are equivalent in the order
on parameterizations. However, inside a class of equivalent parameterizations,
suitable parameterizations can be found.

3.5.7. Theorem. Let 𝜂 and 𝜁 be parameterizations such that 𝜂 is below 𝜁 in the
order on parameterizations. If a set 𝐴 has a Turing kernelization of size ℎ with
respect to 𝜂, then there is a parameterization 𝜁′ such that

• 𝜁′ is equivalent to 𝜁 in the order on parameterizations, and

• 𝐴 has a Turing kernelization of size ℎ with respect to 𝜁′.

Proof:
Let 𝑓 be a computable function bounding gap𝜂,𝜁 from above. If 𝑓 does not grow
faster than the identity function, a Turing kernelization of size ℎ with respect
to 𝜂 would also be one of size ℎ with respect to 𝜁. In that case, the theorem is
proven by taking 𝜁′ = 𝜁. Assume, therefore, that 𝑓 does grow faster than the
identity function. We shall construct 𝜁′ so that it is equivalent to 𝜁 and the gap
from 𝜂 can be bounded by a function that does not grow faster than the identity
function. For this, the idea is to make the parameter values of 𝜁 longer. Denote,
for a number 𝑚 and string 𝑘, the string consisting of the first 𝑚 bits of 𝑘 by
prefix(𝑚, 𝑘), and consider the parameterization

𝜁′ = ({𝑥 | ∃𝑚∶ 𝑓(𝑚) ≤ |𝑘′| and 𝑥 ∈ 𝜁prefix(𝑚,𝑘′)})𝑘′∈𝟚+ .

If a string 𝑥 is in slice 𝑘 of 𝜁, then it is in a slice 𝑘′ of 𝜁′ where 𝑘 is a prefix of 𝑘′

and we have 𝑓(|𝑘|) ≤ |𝑘′|. The converse is true as well and, for all 𝑥, we have
μ𝜁′(𝑥) = 𝑓(μ𝜁(𝑥)). Thus, the definition of 𝜁′ ensures that gap𝜁′,𝜁 is bounded from
above by 𝑓 and that gap𝜁,𝜁′ is bounded from above by the inverse of 𝑓. Hence,
𝜁′ is equivalent to 𝜁 in the order on parameterizations. Moreover, the definition
is so that gap𝜂,𝜁′ is bounded from above by the identity function. By our earlier
remarks, it follows that 𝐴 has a Turing kernelization of size ℎ with respect to 𝜁′. 2
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Unfortunately, a similar argument can be used to shown that the size of a Turing
kernelization does not mean much on an equivalence class of parameterizations.
If a set 𝐴 has a Turing kernelization of any computable size with respect to a
parameterization 𝜂, then there is a parameterization 𝜂′ such that

• 𝜂′ is equivalent to 𝜂 in the order on parameterizations, and

• 𝐴 has a polynomial Turing kernelization with respect to 𝜂′.

The choice of a specific parameterization is therefore important in the study of
kernelizations. As there is no formal definition of what constitutes a “natural”
parameterization, this will always be more of an art than a science.

3.5.8. Example. A polynomial many–one kernelization that has become part
of parameterized comlexity folklore is that of the vertex cover problem. In
Example 3.3.24, the vertex cover problem was defined as

VertexCover = {(𝐺, 𝑙) | graph 𝐺 has a vertex cover of size at most 𝑙},

A polynomial many–one kernelization for VertexCover with respect to the
parameterization that bounds the size of the solution,

𝜂 = ({(𝐺, 𝑙) | 𝑙 ≤ asInt(𝑘)})𝑘∈𝟚+ ,

may proceed as follows given an instance (𝐺, 𝑙) and a parameter value 𝑘.

1: If 𝑙 > asInt(𝑘), return ?. We do not have (𝐺, 𝑙) ∈ 𝜂𝑘, so we do not need to
decide wether (𝐺, 𝑙) is a member of VertexCover or not.

2: Remove from 𝐺 all isolated vertices. There is no reason to include any of
these vertices in a vertex cover of 𝐺.

3: Set 𝑗 to the number of vertices of 𝐺 that are connected to more than 𝑙 others,
and remove from 𝐺 all these vertices. Observe that each of the removed
vertices must be included in a vertex cover of 𝐺 of size at most 𝑙, since we
cannot include all their neighbors.

4: If more than (𝑙 − 𝑗)(𝑙 + 1) vertices remain in 𝐺, return 0. The original graph
had a vertex cover of size at most 𝑙 if and only if the reduced graph 𝐺 has a
vertex cover of size at most 𝑙 − 𝑗. Each of the at most (𝑙 − 𝑗) vertices in a
vertex cover is connected to at most 𝑙 others. Therefore, at this point, 𝐺
should not have more than (𝑙−𝑗)+(𝑙−𝑗)∗𝑙 = (𝑙−𝑗)(𝑙+1) ≤ (asInt(𝑘)+1)2

vertices.

5: Query the oracle for (𝐺, 𝑙 − 𝑗) and return the result.
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Note that each of the above steps can be performed within a number of steps
that is polynomial in the size of the input (𝐺, 𝑙). Also, note that this procedure
converges to VertexCover on 𝜂. Lastly, the procedure makes at most one query
of which the size can be bounded by a polynomial of asInt(𝑘) and it does not
invert the answer of the oracle. Therefore, the procedure is indeed a polynomial
many–one kernelization for VertexCover.

The queries made by a polynomial Turing kernelization are generally considered
to be reasonably short [57]. Indeed, finding polynomial Turing kernelizations
for various sets has gained significant interest [73, 37, 58]. As we shall soon see,
polynomial many–one kernelizations are strictly less powerful than polynomial
Turing kernelizations. For polynomial kernelizations, a theorem like Theorem 3.5.5
does not exist.

3.5.2 Polynomial Turing Kernelizations
Given Theorem 3.5.5, we may wonder whether the length of queries made by a
kernelization relates to the parameterized running time of a decision procedure.
At least in one direction, such a relationship can be found. Let 𝐴 be a set that is
decidable in exponential time and for which there is a polynomial Turing kernel-
ization with respect to some parameterization 𝜂. We consider the parameterized
running time of the parameterized decision procedure for 𝐴 that is constructed in
the proof of Theorem 3.5.5. Deciding queries in exponential time, we find that
there must exist a polynomial 𝑞 such that the parameter dependence in this run-
ning time is of the form 2𝑞(asInt(𝑘)). Of course, the factor in the running time that
is dependent on the length of the instance can be bounded by a polynomial, say 𝑝.
To summarize, because 𝐴 is in EXP and has a polynomial Turing kernelization
with respect to 𝜂, it is decidable in time 2𝑞(asInt(𝑘)) ⋅ 𝑝(|𝑥|) with respect to 𝜂.

That the converse of this observation fails to hold was proven by Bodlaender
et al. [26] for the restricted case of polynomial many–one kernelizations. Using
a different proof technique, we can extend this result to polynomial Turing
kernelizations in their full generality.

3.5.9. Theorem. Let ℎ be a time-constructible function in 2o(𝑛). There exists a
set 𝐴 and parameterization 𝜂 satisfying

• 𝐴 is in FPT with 𝜂, witnessed by a parameterized procedure, taking input
of the form (𝑥, 𝑘), that has a running time in 𝒪(2asInt(𝑘) + |𝑥|), yet

• 𝐴 admits no Turing kernelization of size ℎ.

In particular, there is a set that is decidable in time 𝒪(2asInt(𝑘) + |𝑥|) with respect
to a parameterization 𝜂, but admits no polynomial Turing kernelization.
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Proof:
We shall derive the existence of a set 𝐴 and parameterization 𝜂 with the desired
properties from the time hierarchy theorem [77, 82]. If the set would have a Turing
kernelization of size ℎ, using it in a decision procedure would lead to a speedup
ruled out by the time hierarchy theorem.

Any set for which there is a kernelization of a size that is bounded from above
by a constant is in P. Hence, we may assume that ℎ is an unbounded function.
Consider the time bound

𝑡(𝑛) = 21
5 ℎ−1(𝑛),

where we define ℎ−1(𝑛) as min{𝑚 | ℎ(𝑚) ≥ 𝑛}. The constant 1
5 in this expression

is fairly arbitrary, but chosen to simplify the last part of this proof. We claim that
the function 𝑡 is time-constructible. If ℎ grows slower than the identity function,
computing ℎ−1(𝑛) and, in turn, 𝑡(𝑛) is possible in (ℎ−1(𝑛))2 steps. Since 𝑡(𝑛) is
bigger than (ℎ−1(𝑛))2 for almost all 𝑛, it follows that 𝑡 is time-constructible. If ℎ
grows at least as fast as the identity function, computing ℎ−1(𝑛) and, in turn, 𝑡(𝑛)
is possible in 𝑛2 steps. Equivalent to the fact that ℎ(𝑛) is in 2o(𝑛), is the fact
that ℎ−1 is superlogarithmic and thus that 𝑡 grows faster than any polynomial.
Again, it follows that 𝑡 is time-constructible.

Now, let 𝐴 be a set that is decidable in time 𝑡, but not in time 𝑡′ for any
function 𝑡′ that satisfies 𝑡′(𝑛) log 𝑡′(𝑛) ∈ o(𝑡(𝑛)). By the time hierarchy theorem,
such a set exists. Our set 𝐴 is in FPT with the parameterization

𝜂 = ({𝑥 ∣ 1
5ℎ−1(|𝑥|) ≤ asInt(𝑘)})

𝑘∈𝟚+
.

As membership of any string 𝑥 in a set 𝐴 can be decided in time 𝑡(|𝑥|), it can be
decided with respect to 𝜂 in time 𝒪(2asInt(𝑘) + |𝑥|). Here, the term |𝑥| serves only
to allow for sufficient time to read the entire input. It remains to show that 𝐴
lacks a Turing kernelization of size ℎ with respect to 𝜂.

A Turing kernelization for 𝐴 is only given a polynomial amount of running
time, yet 𝑡 grows faster than any polynomial. Hence a Turing kernelization for 𝐴
cannot work without querying its oracle. To see why a kernelization for 𝐴 with
respect to 𝜂 cannot be of size ℎ, fix a kernelization and let 𝑝 be the polynomial
bounding its running time. Suppose toward a contradiction that the kernelization
is of size ℎ. We can combine the kernelization with a decision procedure for 𝐴
running in time 𝑡 to answer oracle queries. This yields a parameterized decision
procedure converging to 𝐴 on 𝜂 with a running time of 𝑝(|𝑥|) ⋅ 𝑡(ℎ(asInt(𝑘))). By
using a parameter value 𝑘 such that asInt(𝑘) is at least 1

5ℎ−1(|𝑥|), we can turn
this parameterized decision procedure into a regular decision procedure. The
procedure we end up with is one deciding whether a given string 𝑥 is in 𝐴, roughly
running in time

𝑡′(𝑛) = 𝑝(𝑛) ⋅ 𝑡(ℎ(1
5ℎ−1(𝑛))).

The proof can now be completed by showing that 𝑡′(𝑛) log 𝑡′(𝑛) is in o(𝑡(𝑛)).
By our choice of 𝐴, there is no decision procedure for 𝐴 running in time 𝑡′
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when 𝑡′(𝑛) log 𝑡′(𝑛) is in o(𝑡(𝑛)). Thus, our assumption that 𝐴 has a Turing
kernelization of size ℎ would be violated.

Our strategy is to prove that 𝑡′(𝑛) is in o(√𝑡(𝑛)). Because log 𝑡′(𝑛) would
then also be in o(√𝑡(𝑛)), it would follow that the product of the two would indeed
be in o(𝑡(𝑛)). For proving that 𝑡′(𝑛) is in o(√𝑡(𝑛)), we use a similar strategy:
We verify that both factors in the definition of 𝑡′(𝑛) are in o( 4√𝑡(𝑛)).

Earlier, we observed that 𝑡 grows faster than any polynomial. Therefore, the
polynomial factor, 𝑝(𝑛), in the definition of 𝑡′(𝑛) is in o( 4√𝑡(𝑛)). All that remains
is to show that 𝑡(ℎ(1

5ℎ−1(𝑛))) is in o( 4√𝑡(𝑛)) = o(2 1
20 ℎ−1(𝑛)). By our choice of the

constant 1
5 in the definition of 𝑡, this is straightforward. We have

𝑡(ℎ(1
5ℎ−1(𝑛))) = 21

5 ℎ−1(ℎ( 1
5 ℎ−1(𝑛)))

= 2 1
25 ℎ−1(𝑛),

which is in o(2 1
20 ℎ−1(𝑛)) because ℎ−1 is an unbounded function. 2

While the set of which the above proof establishes the existence is outside P,
it is not too unwieldy. If the kernelization size, ℎ, grows linearly or faster, the
resulting set is even decidable in linear exponential time. That is, it is a member
of the class

E = ⋃
𝑐≥1

TIME(2𝑐⋅𝑛).

This is more or less by necessity, since sets that are too far removed from E
cannot show the desired behavior. In fact, the relationship between kernelization
size and computational complexity we found earlier can be reversed for sets
that are bi-immune for E. Let 𝐴 be a set that is bi-immune for E, let 𝜂 be a
parameterization, and let 𝑝 and 𝑞 be polynomials. Furthermore, suppose there is
a parameterized procedure that converges to 𝐴 on 𝜂 and, on input (𝑥, 𝑘), runs
in time 𝑝(|𝑥|) ⋅ 2𝑞(asInt(𝑘)). We claim that in this case, 𝐴 must have a polynomial
many–one kernelization with respect to 𝜂. To see why this is the case, observe
that for almost all 𝑥 and 𝑘 with 𝑥 ∈ 𝜂𝑘, the expression 𝑝(|𝑥|) ⋅ 2𝑞(asInt(𝑘)) must be
superexponential in |𝑥|. If this were not the case, then 𝐴 would not be bi-immune
for E. A consequence thereof is that 𝑞(asInt(𝑘)) must outgrow |𝑥|. Because of
this, a procedure that simply queries the string it is given as input counts as a
valid polynomial many–one kernelization for 𝐴 with respect to 𝜂.

By Theorem 3.5.9, we cannot infer the existence of a polynomial Turing
kernel by a glance at a parameterized running time. The theorem settles the
unconditional existence of a certain set without a polynomial Turing kernelization.
However, it provides no means to rule out polynomial Turing kernelizations for
any particular set that we may be interested in. Methods for lower-bounding
the size of kernelizations exist, but focus mostly on many–one kernelizations. A
very productive way of coming up with superpolynomial lower bounds on the
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size of many–one kernelizations was developed by Bodlaender et al. [26]. An
overview of the state-of-the-art in these methods is provided by Kratsch [97], and
as an in-depth textbook by Fomin et al. [58]. About Turing kernelizations, far
less is known. The non-existence of polynomial-sized Turing kernelizations has
been linked, conditionally, to hardness for a certain class of sets under a specific
reduction [83]. We shall not go into details about this line of research and focus
on a series of unconditional separations instead. First, we shall show that the
adaptive powers of polynomial Turing kernelizations truly distinguish them from
polynomial truth-table kernelizations.

3.5.10. Theorem. There is a set 𝐴 and a parameterization 𝜂 such that 𝐴 has a
polynomial Turing kernelization, but no polynomial truth-table kernelization with
respect to 𝜂.

Proof:
We shall construct the set 𝐴 as the disjoint union of two sets, and detail the
definition of those two sets, 𝑊 and 𝑋, separately. Specifically, 𝐴 is defined via

𝐴 = {0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 | 𝑥 ∈ 𝑋}.

We shall define 𝑋 and our parameterization 𝜂 so that 𝐴 has a polynomial Turing
kernelization with respect to 𝜂. The set 𝑊 will be used to make sure that 𝐴 has
no polynomial truth-table kernelization with respect to 𝜂.

Ensuring the existence of a polynomial Turing kernelization. Our poly-
nomial Turing kernelization must be adaptive, for we do not want it to be a
polynomial truth-table kernelization. In order to achieve this, we define a function
𝑠∶ 𝟚+ → 𝟚+ by

𝑠(𝑞) = {
0𝑞 if 𝑞 ∉ 𝑊,
1𝑞 if 𝑞 ∈ 𝑊.

Using this function, we build the set 𝑋 from the set 𝑊 as

𝑋 = {𝑥 | log |𝑥| ∈ N and (𝑠 ∘ 𝑠 ∘ ⋯ ∘ 𝑠⏟⏟⏟⏟⏟
(log |𝑥|)2 times

)(0log |𝑥|) ∈ 𝑊}.

Thus, ultimately, membership of a string 𝑥 in 𝑋 depends on membership of a
string of length log |𝑥| + (log |𝑥|)2 in 𝑊. This construction allows us to define
a parameterization with respect to which the set 𝐴 has a polynomial Turing
kernelization, regardless of 𝑊. We define

𝜂 = ({0𝑤 | |𝑤| ≤ asInt(𝑘)} ∪ {1𝑥 | log |𝑥| ≤ asInt(𝑘)})𝑘∈𝟚+ .

With respect to this parameterization, a polynomial Turing kernelization may
query its input when it is of the form 0𝑤. For inputs of the form 1𝑥, a polynomial
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Turing kernelization can compute the appropriate series of strings to query using
our function 𝑠. Note that it is important that the application of 𝑠 in the definition
of 𝑋 is repeated (log |𝑥|)2 times and not just log |𝑥| times. If we would have
repeated the application of 𝑠 only log |𝑥| times, the number of strings that would
potentially be queried is only 2log |𝑥|+1 = 2 ⋅ |𝑥|. This number is polynomial in |𝑥|,
hence a truth-table kernelization could simply query all these strings. By repeating
the application (log |𝑥|)2 we can define 𝑊 so that a polynomial kernelization for 𝐴
with respect to 𝜂 is necessarily adaptive.

Preventing the existence of a polynomial truth-table kernelization. We
construct the set 𝑊 by diagonalizing against polynomial truth-table kernelizations.
To ease our task, we adopt a particularly convenient model of computation
in the presence of an oracle. Let 𝜙1, 𝜙2, 𝜙3, … be an effective enumeration of
parameterized procedures that invoke their oracle at most once, but may present
it with a batch of queries. The oracle is expected to provide an answer to all of
the queries it is presented. We may assume that every truth-table kernelization
occurs in this list infinitely often. To diagonalize against all polynomial truth-
table kernelizations, we run each of these procedures for a limited time, allowing
only queries of limited length. When running some procedure 𝜙𝑖, the running-time
and query-size restriction we employ will be a polynomial of degree 𝑖.

The set 𝑊 is constructed in stages. At stage 𝑖 ∈ N, we set 𝑛 to a value that
satisfies a few constraints, namely

1. we have 𝑛𝑖 ≤ 2𝑛 and 𝑖 < 𝑛, and

2. no decision about membership in 𝑊 is made about any string of length at
least 𝑛.

Having thus set 𝑛, we define 𝑥 = 02𝑛 , which is so that we have 𝑛 = log |𝑥|. Next,
we run 𝜙𝑖 on input instance 1𝑥 and parameter value asStr(𝑛) for |𝑥|𝑖 steps. Note
that these inputs satisfy 1𝑥 ∈ 𝜂asStr(𝑛), so if 𝜙𝑖 is a kernelization with respect to 𝜂,
then it will not output ?. In case 𝜙𝑖 invokes the oracle, let 𝑆 be the set of strings
it queries. If 𝑆 includes a string of length greater than 𝑛𝑖, then 𝜙𝑖 cannot be a
truth-table kernelization of size 𝑛𝑖. Therefore, if 𝑆 includes such a long string, 𝜙𝑖
needs no further attention and we directly move on to the next stage, aborting
the current stage. This way, we also make sure that 1𝑥 is not a member of 𝑆,
because, by constraint 1, its length, 2𝑛 + 1, is greater than 𝑛𝑖. By the bound
imposed on the running time of 𝜙𝑖, we find that 𝑆 contains at most |𝑥|𝑖 = 2𝑛⋅𝑖

strings. Because of constraint 1, this number is strictly less than 2𝑛2 , and there
must be a string 𝑦 ∈ 𝟚𝑛2 such that the string 0𝑦0𝑛 is not in 𝑆. We can enforce
membership of 𝑥 in 𝑋 to depend on membership of 0𝑛 in 𝑊. Because 𝜙𝑖 does
not query 0𝑦0𝑛, it cannot know whether 𝑦0𝑛 is a member of 𝑊, which gives us
the freedom we need to diagonalize. Let 𝑏1, 𝑏2, … , 𝑏𝑛2 be the bits of 𝑦, that is, we
have 𝑦 = 𝑏𝑛2 ⋯ 𝑏2𝑏1 and answer the queries made by 𝜙𝑖 as follows. All queries
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of which the answer is determined by previous stages of our construction of 𝑊
are answered accordingly. This includes queries of the form 1𝑥, which are treated
in accordance with the definition of 𝑋. Queries of the form 0𝑏𝑗 ⋯ 𝑏2𝑏10𝑛, with
𝑗 < 𝑛2, are answered with 𝑏𝑗+1, ensuring that we have

𝑦0𝑛 = (𝑠 ∘ 𝑠 ∘ ⋯ ∘ 𝑠⏟⏟⏟⏟⏟
(log |𝑥|)2 times

)(0log |𝑥|).

All other queries are answered with 0. After thus answering the queries in 𝑆, we
resume 𝜙𝑖 and keep running it for the remainder of its allotted |𝑥|𝑖 steps. Finally,
we place 𝑦0𝑛 in 𝑊 if and only if 𝜙𝑖 terminated and rejected its input 1𝑥. This
ensures that 1𝑥 is a member of 𝐴 if and only if 𝜙𝑖 rejects it.

With 𝑊 constructed this way, we have made sure that there is no polynomial
truth-table kernelization for 𝐴 with respect to 𝜂. Suppose that there were such
a truth-table kernelization of polynomial size 𝑞, running in time 𝑝. There would
then be an index 𝑖 such that 𝜙𝑖 codifies this kernelization and, for all 𝑛 > 𝑖 we
have 𝑝(𝑛 + 1) < 𝑛𝑖 and 𝑞(𝑛) < 𝑛𝑖. At stage 𝑖 of the above construction of 𝑊,
we made sure that the behavior of 𝜙𝑖 is in violation with membership in 𝐴 for
some string 1𝑥. This shows that 𝜙𝑖 could not have been a polynomial truth-table
kernelization for 𝐴 with respect to 𝜂. Note that we simulated 𝜙𝑖 for only |𝑥|𝑖

steps, instead of for |1𝑥|𝑖 steps, hence we needed to choose 𝑖 so that we have
𝑝(𝑛 + 1) < 𝑛𝑖. 2

Even with a bound on the length of queries in place, a truth-table kernelization
cannot query all strings that are potentially queried by a given Turing kernelization.
This observation lies at the heart of the above proof, and can be summarized as
follows.

3.5.11. Slogan. With kernelizations, the queries that could have been made
matter too.

Diagonalization is not a common technique in parameterized complexity theory.
This is because it is not possible to diagonalize against parameterized running
times, as there is no way to dominate the parameter dependence. The proof of
Theorem 3.5.10 shows that it is possible to utilize diagonalization inside FPT. The
running time of a kernelization is polynomial in the length of the input instance,
and has no dependency on a parameter value. This observation can be used to
further distinguish between different types of polynomial kernelizations.

3.5.3 A Hierarchy of Polynomial Kernelizations
The previous two theorems, Theorem 3.5.9 and Theorem 3.5.10, are the beginning
of a hierarchy below FPT. Depending on the ways a kernelization is allowed to
access its oracle, a polynomial kernelization may or may not exist. For convenience,
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let us define some parameterized complexity classes indexed by various forms of
oracle access.

3.5.12. Definition. A set 𝐴 is in PKERTuring with parameterization 𝜂 if there
is a polynomial Turing kernelization for 𝐴 with respect to 𝜂. When the oracle
access is required to be of a restricted kind, this restriction is noted in place of
the “Turing”-subscript.

With this notational aid, we can summarize a consequence of Theorem 3.5.9 as
stating that the inclusion PKERTuring ⊂ FPT is proper. In turn, Theorem 3.5.10
can be summarized by the proper inclusion PKERtruth-table ⊂ PKERTuring.
These two inclusions form the top of a hierarchy between PKERmany–one and FPT.

The approach taken in the proof of Theorem 3.5.10 can be used to obtain
other separation results as well. To distinguish two types of kernelization, we
construct a set that has a kernelization of one of the types, but does not have
a kernelization of the other type. These sets are built as the disjoint union of
two parts, where one part realizes the positive characteristic and the other the
negative characteristic. In the proof of Theorem 3.5.10, we built the hard part,
the part preventing the existence of a polynomial truth-table kernelization, by
diagonalization. The diagonalization explicitly targeted polynomial truth-table
kernelizations. However, it is also possible to reuse a single set as the hard part in
multiple separations. This single set must withstand a form of autoreducibility
and be sparse. We shall require it to be particularly sparse and have at most
logarithmic density. By this, we mean that if we let 𝑑(𝑛) denote the number of
elements in the set that are of length at most 𝑛, then 𝑑(𝑛) is in 𝒪(log 𝑛).

3.5.13. Lemma. There is a decidable set 𝑊 with at most logarithmic density, for
which no approximation that runs in linear exponential time and is allowed to
adaptively query instances of 𝑊 other than its input has an infinite domain.

Proof:
A set 𝑊 that is as required can be said to be bi-immune against linear exponential
time Turing autoreducibility. As is typical for the creation of bi-immune sets, we
shall use a finite injury priority construction [see 46, Section 2.11] for 𝑊.

Let 𝜙1, 𝜙2, 𝜙3, … be an effective enumeration of procedures that can make use
of an oracle. Contrary to what we did in the proof of Theorem 3.5.10, we allow the
procedures to invoke their oracle any number of times. With each invocation, the
membership of a single string is queried. We assign a higher priority to procedures
with a lower index and diagonalize against procedures opportunistically. As a
result, when we diagonalize against a procedure 𝜙𝑖 we may have to redo our
diagonalization against procedures 𝜙𝑗 with 𝑖 < 𝑗.

We shall phrase our construction as a procedure that determines membership
of strings 𝑥 in 𝑊, one string at a time. For this purpose, we think of 𝑊 as a string-
indexed array, or characteristic sequence, to which we can assign values. Initially,
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we know nothing about 𝑊 and we set it to (?, ?, ?, …). Additionally, we keep
track of the indices of procedures we have diagonalized against in a set 𝐼done that
is initially empty, ∅. As a final bookkeeping device, we maintain, for each string 𝑥,
the maximum index of a procedure that we may want to diagonalize against at 𝑥.
We codify this as another string-indexed array, 𝐼max. By initializing 𝐼max uniformly
in 𝑥 as 𝐼max[𝑥] = log log |𝑥|, we shall be able to realize the sparsity required of 𝑊.
Throughout our construction of 𝑊, the set 𝐼done will be finite and both 𝐼max and 𝑊
will only differ from their initial value at finitely many places.

For each successive string 𝑥, we go through each index 𝑖 that satisfies 𝑖 < 𝐼max[𝑥]
and 𝑖 ∉ 𝐼done in increasing order, and try to diagonalize against 𝜙𝑖. We use a
set 𝑄 to keep track of the strings that 𝜙𝑖 queries and of which membership in 𝑊
is not yet determined.

1: Set 𝑄 to ∅ and run 𝜙𝑖 on input 𝑥 for 2|𝑥|2 steps until any of the following
happens:

1.1: In case 𝜙𝑖 returns ? or runs out of time, we cannot diagonalize against 𝜙𝑖
at 𝑥, and continue with the next value of 𝑖 that satisfies 𝑖 ≤ 𝐼max[𝑥]
and 𝑖 ∉ 𝐼done.

1.2: In case 𝜙𝑖 queries a string 𝑞, we continue running 𝜙𝑖 after using the
following to answer the query:

1.2.1: If 𝑊[𝑞] ≠ ?, answer the query accordingly.
1.2.2: Else, add 𝑞 to 𝑄 and answer with 0.

1.3: In case 𝜙𝑖 terminates and returns 𝑏 ∈ 𝟚, we can diagonalize against 𝜙𝑖
at 𝑥:

1.3.1: For each 𝑞 ∈ 𝑄, set 𝑊[𝑞] to 0 and set 𝐼max[𝑞] to 𝑖. This ensures
that 𝑊[𝑞] may only be changed later on in order to diagonalize
against a procedure with a higher priority than 𝜙𝑖.

1.3.2: Set 𝑊[𝑥] to 1 − 𝑏, so that, with the current state of 𝑊, the
procedure 𝜙𝑖 cannot be an approximation for 𝑊.

1.3.3: Add 𝑖 to 𝐼done.
1.3.4: Remove from 𝐼done all values 𝑗 for which we have 𝑖 < 𝑗. It is possible

that 𝑊[𝑥] was previously set to 0 in order to diagonalize against
a procedure of lower priority than 𝜙𝑖. These diagonalizations may
now be broken.

If there are no more values of 𝑖 to try and we have not decided on membership
of 𝑥 in 𝑊, we set 𝑊[𝑥] to 0 and continue with the next string 𝑥.

By running all procedures for 2|𝑥|2 steps on input 𝑥, the allotted time will
outgrow any linear exponential time bound. Suppose that 𝜙𝑖 is an approximation
for 𝑊 that runs in linear exponential time and potentially queries instances of 𝑊
other than its input. We claim that the domain of 𝜙𝑖 is necessarily finite. Assume,
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toward a contradiction, that the domain of 𝜙𝑖 were infinite. There must then exist
a string 𝑥 in the domain of 𝜙𝑖 with the following properties.

• The time taken by 𝜙𝑖 on input 𝑥 is less than 2|𝑥|2 .

• When the above procedure considers 𝑥, the value of 𝐼max[𝑥] is greater than 𝑖.

• From the point where the above procedure considers 𝑥 onward, no value 𝑗 < 𝑖
will ever be added to 𝐼done.

The construction of 𝑊 diagonalizes against 𝜙𝑖 at 𝑥 and this diagonalization is
never broken after that. Thus we may conclude that the domain of 𝜙𝑖 cannot be
infinite.

It remains to show that 𝑊 has at most logarithmic density. Suppose that at
some point in the above construction of 𝑊 only procedures with an index of at
most 𝑐 have been considered. We claim that at that point at most 2𝑐 strings have
been added to 𝑊. Observe that the only place where a string is added to 𝑊 is in
step 1.3.2 of the construction of 𝑊. Thus, at every provisional diagonalization
against a procedure 𝜙𝑖, at most one string is added to 𝑊. Additionally, note that
𝜙1 is diagonalized against at most once, 𝜙2 is diagonalized against at most twice,
𝜙3 at most four times, and so on. Thus, each 𝜙𝑖 contributes at most 2𝑖−1 strings
to 𝑊. From this, our claim follows, and because of the way we initialized 𝐼max,
there will be at most 2log log 𝑛 = log 𝑛 strings of length at most 𝑛 in 𝑊. Therefore,
the set 𝑊 meets all requirements of the lemma. 2

Not only can a set 𝑊 as given by Lemma 3.5.13 be reused for a range of
separation results, we can do so with a single, point-cofinite, parameterization.
This parameterization,

𝜂 = ({0𝑤 | |𝑤| ≤ asInt(𝑘)} ∪ {1𝑥 | log |𝑥| ≤ asInt(𝑘)})𝑘∈𝟚+ , (3.18)

was already encountered in the proof of Theorem 3.5.10.
A first result we obtain is that the positive nature of many–one kernelizations

is a genuine restriction.

3.5.14. Theorem. With respect to the parameterization 𝜂 defined by (3.18), there
is a set that has a polynomial kernelization that makes at most one query, but no
polynomial positive truth-table kernelization.

Proof:
Let 𝑊 be a set as given by Lemma 3.5.13 and consider the set

𝐴 = {0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 | asStr(|𝑥|) ∉ 𝑊}.

Observe that the length of asStr(|𝑥|) is logarithmic in |𝑥|. Therefore, there is a
polynomial kernelization for 𝐴 with respect to the parameterization 𝜂 defined
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by (3.18) that makes at most a single query: On the hard part, the strings of the
form 0𝑤, this kernelization queries its input. On the redundant part, the strings
of the form 1𝑥, this kernelization queries asStr(|𝑥|) and returns the opposite of
the answer of the oracle.

Assume, toward a contradiction, that 𝐴 has a polynomial positive truth-table
kernelization, 𝜙, with respect to 𝜂. Using 𝜙, we shall construct an approximation
for 𝑊 with an infinite domain. This approximation is allowed to query instances
of 𝑊 other than its input and runs in linear exponential time. By our choice of 𝑊
in line with Lemma 3.5.13, such an approximation for 𝑊 cannot exist. From this
contradiction, the theorem follows.

Observe that, on any input of the form 1𝑥, the kernelization 𝜙 does not query
its oracle for a string 0𝑤 for which we have 𝑤 = asStr(|𝑥|). This is because if its
eventual decision would depend on the answer to such a query, 𝜙 would either
be incorrect or not positive. Our approximation for 𝑊 proceeds as follows on
input 𝑤.

1: Set 𝑥 to 0asInt(𝑤), so that we have 1𝑥 ∈ 𝐴 ⟺ 𝑤 ∉ 𝑊.

2: Set 𝑘 to asStr(log |𝑥|), so that we have 1𝑥 ∈ 𝜂𝑘.

3: Run 𝜙(1𝑥, 𝑘) and in case it queries a string 𝑞, respond as follows:

3.1: If 𝑞 is of the form 1𝑦 with |𝑦| = |𝑥|, return ?.
3.2: Else, if 𝑞 is of the form 1𝑦, answer the query in accordance with

non-membership of asStr(|𝑦|) in 𝑊. By the previous if-clause, we
can be sure that asStr(|𝑦|) differs from 𝑤. Therefore, this step does
not require us to query the oracle for the input string 𝑤.

3.3: Else, 𝑞 is of the form 0𝑦 and we answer the query in accordance with
membership of 𝑦 in 𝑊. By our earlier observation, we once again
have 𝑦 ≠ 𝑤.

4: Return the opposite of the value returned by 𝜙(1𝑥, 𝑘).

By construction, this procedure is an approximation for 𝑊. The time required by
this approximation can be bounded by a polynomial in |1𝑥|. Consequently, it can
also be bounded by a linear exponential function of |𝑤|, as required. Moreover,
the approximation does not query the oracle for its input, so all that remains to
be shown is that the domain of the approximation is infinite.

Because 𝜙 is a polynomial kernelization, the length of any query 𝑞 in the above
approximation for 𝑊 can be bounded by a polynomial of asInt(𝑘). Specifically,
the length of the queries made by 𝜙 can be bounded by a polynomial of log |𝑥|.
As a result, the length of a query made by 𝜙 on input (1𝑥, 𝑘) can be greater than
or equal to the length of 𝑥 for only finitely many strings 𝑥. This means that the
if-clause of step 3.1 in the above approximation algorithm for 𝑊 is only satisfied
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for finitely many inputs 𝑤. Consequently, the approximation outputs ? for only
finitely many inputs and the domain of the approximation must be infinite. This
contradicts the nature of 𝑊, from which we conclude that 𝐴 has no polynomial
positive truth-table kernelization with respect to 𝜂. 2

Recall that a many–one kernelization is a positive kernelization that makes at
most one query. Therefore, the above theorem implies an inclusion at the bottom
of our hierarchy between PKERmany–one and FPT.

3.5.15. Corollary. We have PKERmany–one = PKERpositive
1 query ⊂ PKER1 query.

Next to separations based on whether or not a polynomial kernelization is
positive, we find separations based on the number of queries that are permitted.

3.5.16. Theorem. With respect to the parameterization 𝜂 defined by (3.18), for
every constant 𝑐, there is a set that has a polynomial positive kernelization that
makes at most 𝑐 + 1 queries, but no polynomial kernelization that makes at most
𝑐 queries.

Proof:
Let 𝑊 be a set as given by Lemma 3.5.13 and consider the sets defined uniformly
in 𝑐 ∈ N by

𝐴𝑐 = {0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 ∣ ⋁
𝑖≤𝑐

( asStr(𝑐 ⋅ (|𝑥| − 1) + 𝑖) ∈ 𝑊)} .

As in Theorem 3.5.10 and Theorem 3.5.14, by construction these sets have a specific
kernelization with respect to the parameterization 𝜂 defined by (3.18). In this
case, for every value of 𝑐, the set 𝐴𝑐 has a polynomial positive kernelization that
makes at most 𝑐 queries. We shall show that 𝐴𝑐+1 does not have a polynomial
kernelization with respect to 𝜂 that makes at most 𝑐 queries. As in the proof of
Theorem 3.5.14, the proof is by contradiction. Like before, the existence of such
a kernelization implies the existence of a linear exponential time approximation
for 𝑊 with an infinite domain.

Suppose, toward a contradiction, that 𝐴𝑐+1 has a polynomial kernelization 𝜙
that makes at most 𝑐 queries. Our approximation for 𝑊 proceeds as follows on
input 𝑤.

1: Let 𝑛 and 𝑖 be the unique values such that 𝑖 is less than 𝑐 + 1 and we have
asInt(𝑤) = (𝑐 + 1) ⋅ (𝑛 − 1) + 𝑖, and set 𝑥 to 0𝑛. This way, if 𝑤 is a member
of 𝑊, then 1𝑥 is a member of 𝐴𝑐+1.

2: Set 𝑘 to asStr(log |𝑥|), so that we have 1𝑥 ∈ 𝜂𝑘.

3: Run 𝜙(1𝑥, 𝑘) and in case it queries a string 𝑞, respond as follows:
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3.1: If 𝑞 is of the form 1𝑦 with |𝑦| = |𝑥|, or if 𝑞 is of the form 0𝑤, return ?.
3.2: Else, if 𝑞 is of the form 1𝑦, use 𝑐 + 1 queries to 𝑊 to determine

membership of 1𝑦 in 𝐴𝑐+1 and answer the query accordingly. By the
previous if-clause, this does not require us to query the oracle for the
input string 𝑤.

3.3: Else, 𝑞 is of the form 0𝑦 and we answer the query in accordance with
membership of 𝑦 in 𝑊. Again, because of the if-clause in step 3.1,
we have 𝑦 ≠ 𝑤 and we do not need to query the oracle for the input
string 𝑤.

4: If 𝜙(1𝑥, 𝑘) returned 0, we infer that 𝑤 is not a member of 𝑊 and return 0.

5: Else, return ?.

Like in the proof of Theorem 3.5.14, this defines an approximation for 𝑊 that runs
in linear exponential time and only queries strings different from its input. All
that is left is to show that its domain is infinite. Because 𝜙 is a polynomial kernel-
ization, the length of any query 𝑞 can be bounded by a polynomial of asInt(𝑘). As
a result, the length of a query made by 𝜙 on input (1𝑥, 𝑘) is less than the length
of 𝑥 for almost all strings 𝑥 constructed by the approximation. Furthermore,
observe that the same value is assigned to 𝑥 for 𝑐 + 1 different values of 𝑤, while
𝜙 can query at most 𝑐 of those values of 𝑤. Combined, these observations tell us
that the if-clause of step 3.1 is only satisfied for finitely many values of 𝑥. Lastly,
if only finitely many values of 𝑥 that we consider would be such that 1𝑥 is not
in 𝐴𝑐+1, then 𝑊 would have exponential density. Hence, 𝜙(1𝑥, 𝑘) must return 0
for infinitely many values of 𝑥, showing that the domain of the approximation
outlined above is infinite. 2

The above theorem says that, for every 𝑐 and with respect to the parameteri-
zation of (3.18), there is a set in PKERpositive

𝑐 + 1 queries that is not in PKER𝑐 queries.
From this, we obtain two strands of our hierarchy.

3.5.17. Corollary. For every constant 𝑐, we have the two proper inclusions
PKERpositive

𝑐 queries ⊂ PKERpositive
𝑐 + 1 queries and PKER𝑐 queries ⊂ PKER𝑐 + 1 queries.

The proofs of our separation results so far, Theorem 3.5.10, Theorem 3.5.14,
and Theorem 3.5.16, all employed the same proof technique. Yet, each revolved
around a different distinguishing feature of Turing kernelizations. The proof of
the first of these theorems made use of the fact that Turing kernelizations can be
adaptive, while truth-table kernelizations cannot. The proof of the second theorem
demonstrated that requiring a kernelization to be positive is a real restriction
of its capabilities. In the last of these proofs, the same was shown for the
number of queries that we allow a kernelization to make. While we distinguished
kernelizations that can make a constant number of queries, the result extends to
kernelizations where this number grows unbounded.
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3.5.18. Theorem. With respect to the parameterization 𝜂 defined by (3.18), there
is a set that has a polynomial positive truth-table kernelization, but no polynomial
kernelization that makes a number of queries that can be bounded by a constant.

Proof:
Let 𝑊 be a set as given by Lemma 3.5.13 and consider the set

𝐴 = {0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 ∣ ⋁
𝑖≤|𝑥|

(asStr (|𝑥| ⋅ (|𝑥| − 1)
2

+ 𝑖) ∈ 𝑊)} .

Apart from the number of terms in the disjunction, this definition is the same as
that of the sets 𝐴𝑐 in the proof of Theorem 3.5.16. Indeed, the remainder of the
proof is mostly the same as well, and we shall only mention where the current
proof differs from that of Theorem 3.5.16.

A minor, technical detail is that because of the change in the number of terms
in the disjunction, we need a slight change in the approximation for 𝑊. In order
to obtain a suitable string 𝑥 for an input 𝑤, the beginning of the approximation
should be changed as follows.

1: Let 𝑛 and 𝑖 be the unique values such that 𝑖 is less than 𝑛 and we have
asInt(𝑤) = 𝑛⋅(𝑛−1)

2 + 𝑖, and set 𝑥 to 0𝑛. This way, if 𝑤 is a member of 𝑊,
then 1𝑥 is a member of 𝐴.

To see why the modified approximation too has an infinite domain, two obser-
vations are needed. First, we note that the number of terms in the disjunction
defining the redundant part of 𝐴 outgrows any constant. Therefore, any polyno-
mial kernelization making no more than a constant number of queries can be run
to completion for infinitely many inputs 1𝑥. Next, suppose that only finitely many
of the strings 1𝑥 that our approximation for 𝑊 may consider would not be a mem-
ber of 𝐴. In that case, for some constant 𝑐 and all 𝑛, out of the first 𝑛⋅(𝑛−1)

2 strings,
at least 𝑛 − 𝑐 must be a member of 𝑊. As the length of the 𝑛⋅(𝑛−1)

2 th string is
roughly 2 log 𝑛, this would mean that 𝑊 has exponential density. Yet, 𝑊 has at
most logarithmic density, thus the polynomial kernelization we run must reject in-
finitely many of our inputs 1𝑥. However, this then means that our approximation
for 𝑊 has an infinite domain. We conclude that 𝐴 cannot have a polynomial ker-
nelization with respect to 𝜂 that makes a number of queries that can be bounded
by a constant. 2

This theorem places polynomial truth-table kernelizations above those making
at most a constant number of queries in our hierarchy. Assembling our separation
results, we can depict our hierarchy as in Figure 3.7. This depiction includes one
additional level that we have not discussed yet, namely that of psize kernelizations.
These kernelizations, we shall go into next.
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Figure 3.7: A hierarchy of polynomial kernelizations. Inclusions from left to right
follow from Theorem 3.5.14. The vertical inclusions on the bottom part follow from
Corollary 3.5.17. Those at the top follow from Theorem 3.5.22, Theorem 3.5.18,
3.5.10, and Theorem 3.5.9.



3.5. as Computational Redundancy 207

3.5.4 Polynomial Advice

Let us return for a moment to the interpretation of kernelization as preprocessing.
Imagine we are interested in a set 𝐴 and are somehow presented with an instance 𝑥
of which we might later on need to know whether or not it is a member of 𝐴.
We may find that storage space is a scarce resource, so we seek for alternatives
to recording the entire instance. One way to save on storage space is to decide
on membership of 𝑥 in 𝐴 and only record the membership decision. This brings
the storage cost down from however many bits 𝑥 is comprised of to just one bit.
However, deciding membership in 𝐴 may be a computationally costly affair. As
we may never actually need to know whether the instance is in 𝐴 or not, this
computational cost is unacceptable.

This is where a many–one kernelization comes in. If 𝐴 has a many–one
kernelization with respect to some parameterization 𝜂, and 𝜂 has a polytime-
computable parameter estimator, we are in good shape. Running the many–one
kernelization is a computationally manageable task and gets us an instance that
is equivalent to 𝑥 with regard to membership in 𝐴. The storage space required
to store this equivalent instance can be bounded by a function of the parameter
value associated with 𝑥 by the parameter estimator. Especially convenient is the
situation where the many–one kernelization is a polynomial many–one kernelization.
In that case, the required storage space can be bounded by a polynomial of the
numeric value of the parameter. If the length of 𝑥 is large in comparison to the
numeric parameter value, we thus save storage space. Conceptually, we use the
kernelization to get rid of the computationally redundant part of 𝑥.

The hierarchy of polynomial kernelizations, Figure 3.7, shows that there are
sets for which no polynomial many–one kernelization exists. However, these sets
may still have, for instance, a polynomial kernelization that makes at most one
query. Such a kernelization could equally well be used in our scenario. All we
have to do is record the query made by the kernelization and whether or not its
membership decision is to be inverted. Doing so again comes with a guarantee on
the required storage space that is polynomial in the numeric value of the parameter.

This strategy does not extend to the level of polynomial truth-table kernel-
izations. It is true that each of the queries made by a polynomial truth-table
kernelization is of a polynomially bounded length. However, the number of such
queries is only bounded to be polynomial in the length of the input instance.
Therefore, a polynomial truth-table kernelization does not guarantee useful pre-
processing in terms of storage space requirements. Worse still, even if the number
of queries could be bounded by a polynomial in the numeric parameter value, no
such polynomial guarantee is available. This is because the size of the truth-table,
listing the membership decision for all possible replies of the oracle, is exponential
in the number of queries. When the number of queries would be logarithmic in
the numeric parameter value, a polynomial truth-table kernelization would be
useful for preprocessing. However, we can do better than that.
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3.5.19. Definition. A polynomial truth-table kernelization 𝜙 is a psize kernel-
ization if there is a polynomial 𝑝 such that, on any input (𝑥, 𝑘),

• the number of queries made by 𝜙 is at most 𝑝(asInt(𝑘)), and

• the output of 𝜙 can be expressed as the output of a Boolean circuit of size
at most 𝑝(asInt(𝑘)) that takes as input the answers of the oracle to the
queries.

Moreover, the circuits involved must be uniformly computable from the input
instances in polynomial time.

In our scenario where we might, at some point, want to know membership
of 𝑥 in 𝐴, a psize kernelization offers a balance of computational cost and storage
cost. On the one hand, the computational cost of running the kernelization
algorithm is polynomial in the length of the instance. Assuming the thesis by
Cobham and Edmonds, this is feasible. The storage cost, on the other hand,
is polynomial in the numeric parameter value. Instead of recording 𝑥 itself, we
record which strings are queried by the psize kernelization on input 𝑥, along with
the circuit that ties them together. This results in recording a polynomial number
of strings of polynomial length, together with a circuit of polynomial size. All
these polynomials are polynomials of the numeric parameter value, which may be
far smaller than the length of 𝑥.

The name “psize kernelization” was coined by Witteveen, Bottesch, and
Torenvliet [153], but some interesting properties of these kernelizations were
already studied by Weller [151, Chapter 5]. In particular, Weller uncovered how
the non-adaptive nature of psize kernelization influences the number of queries
that are made. We highlight the main result, which presents a trade-off between
being non-adaptive and making few queries.

3.5.20. Theorem (Weller [151, Theorem 5.1]). The following statements about
an NP-complete set 𝐴, a parameterization 𝜂, and a polynomial 𝑝 are equivalent.

• 𝐴 has a psize kernelization with respect to 𝜂 that, on any input (𝑥, 𝑘), makes
at most 𝑝(asInt(𝑘)) queries.

• 𝐴 has a polynomial Turing kernelization with respect to 𝜂 that, on any
input (𝑥, 𝑘), makes at most log 𝑝(asInt(𝑘)) queries.

Not every polynomial truth-table kernelization is a psize kernelization. Yet, all
polynomial kernelizations that make a number of queries that can be bounded by
a constant are psize kernelizations. Indeed, the psize kernelizations fit in between
these levels of our hierarchy of polynomial kernelizations.

3.5.21. Theorem. With respect to the parameterization 𝜂 defined by (3.18), there
is a set that has a positive truth-table kernelization, but no psize kernelization.
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Proof:
The proof of Theorem 3.5.18 actually shows something stronger than Theo-
rem 3.5.18. Let 𝑓∶ N → N be a function such that, for all but finitely many
values of 𝑛, we have 𝑓(𝑛) < 𝑛. The proof of Theorem 3.5.18 can be applied
to polynomial kernelizations that, given an input instance 1𝑥, make at most
𝑓(|𝑥|) queries.

With respect to the parameterization 𝜂 defined by (3.18), the number of strings
a psize kernelization can query on an input of the form 1𝑥 is polynomial in log |𝑥|.
Any polylogarithmic function 𝑓 is so that, for all but finitely many values of 𝑛, we
have 𝑓(𝑛) < 𝑛. Therefore, the proof of Theorem 3.5.18 also proves the current
theorem. 2

This separates the polynomial truth-table kernelizations from the psize ker-
nelizations. Another adaptation of the proof of Theorem 3.5.18 can be used to
separate the psize kernelizations from those making at most a constant number of
queries.

3.5.22. Theorem. With respect to the parameterization 𝜂 defined by (3.18), there
is a set that has a positive psize kernelization, but no polynomial kernelization that
makes a number of queries that can be bounded by a constant.

Proof:
So far, the membership of any string 𝑤 in 𝑊 played a role in the definition of the
computationally redundant part of our sets. This is, however, not a necessity and
the current theorem is more easily proven without such a tidy definition. Instead,
let 𝑊 be a set as given by Lemma 3.5.13 and consider the set

𝐴 = {0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 ∣ ⋁
𝑖≤log |𝑥|

(asStr (|𝑥| ⋅ (|𝑥| − 1)
2

+ 𝑖) ∈ 𝑊)} .

This definition is similar to the one used in the proof of Theorem 3.5.18, but the
number of terms in the disjunction grows more slowly. As a result, 𝐴 is a subset
of the set used in the proof of Theorem 3.5.18.

Note that for all 𝑥 and 𝑘 that satisfy 𝑥 ∈ 𝜂𝑘, where 𝜂 is as in (3.18), we have
log |𝑥| ≤ asInt(𝑘). Thus, a number of queries that is linear in asInt(𝑘) suffices for
a polynomial kernelization for 𝐴 with respect to 𝜂. The answers to the queries
are combined disjunctively. Therefore, the dependence of the kernelization on the
answers to the queries can be expressed as a circuit of a size that is polynomially
bounded in asInt(𝑘). Indeed, 𝐴 has a psize kernelization with respect to 𝜂.

We show that 𝐴 does not have a polynomial kernelization that makes a number
of queries that can be bounded by a constant in the same way as before. This
time, the first step in the approximation for 𝑊 in the proof of Theorem 3.5.16
requires a little more tweaking. It should be replaced by the following three steps.
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1: Set 𝑛 and 𝑖 to the unique values such that 𝑖 is less than 𝑛 and we have
asInt(𝑤) = 𝑛⋅(𝑛−1)

2 + 𝑖.

2: If 𝑖 is at least log 𝑛, then there is no string 1𝑥 such that the definition of 𝐴
depends on 𝑤 and we can only return ?.

3: Set 𝑥 to 0𝑛. This way, if 𝑤 is a member of 𝑊, then 1𝑥 is a member of 𝐴.

As 𝐴 is a subset of the set used in the proof of Theorem 3.5.18, the same
reasoning as used there rules out certain kernelizations for 𝐴 with respect to 𝜂.
Specifically, it follows that 𝐴 does not have a polynomial kernelization that makes
a number of queries that can be bounded by a constant. 2

Combined, the last two theorems isolate the psize level in our hierarchy, as
depicted in Figure 3.7.

So far, our main proof technique has been to create a set with a clear-cut
distinction between its hard part and its computationally redundant part. We
defined the redundant part of the set so that it could be reduced to the hard part in
some specific way. With psize kernelizations, the amount of information about the
hard part available to the kernelization could be said to be bounded polynomially.
This information can be thought of as advice required for deciding the redundant
part. In the study of computability with advice, the amount of advice is typically
bounded by a function of the length of instances. Most prominently, this is the
case with the complexity class P/poly [13]. With psize kernelizations, however,
the bound on the amount of advice is polynomial in the numeric parameter value.
This in itself suggests that the two notions of polynomial advice, the complexity
classes P/poly and PKERpsize, need not have much in common. Of course, by
Corollary 3.1.4, we already know that the two are different, since P/poly contains
undecidable sets, whereas all sets in FPT are decidable. Yet, with respect to
the parameterization defined by (3.18), we can characterize the decidable sets in
P/poly by the kernelizations they have.

3.5.23. Theorem. Let 𝜂 be the parameterization defined by (3.18). The following
statements about a set 𝑋 are equivalent.

1. 𝑋 is decidable and in P/poly.

2. There is a decidable set 𝑊 such that the set

{0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 | 𝑥 ∈ 𝑋}

has a linear truth-table kernelization with respect to 𝜂.

Proof:
1 ⟹ 2. Let 𝜙 be a polytime decision procedure taking advice of polynomially
bounded length that decides membership in 𝑋. Note that, for any length 𝑛, we
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can find an advice string for length 𝑛 by verifying that it makes 𝜙 correct on all
strings of length 𝑛. Consider the set of pairs of numbers

𝑊 = {⟨𝑛, 𝑖⟩ | the 𝑖th bit of the advice string for length 𝑛 is 1},

which is decidable because we can find the advice strings effectively. With this
set 𝑊, a kernelization can retrieve the advice string required by 𝜙 for an instance
of the form 1𝑥. For this, it makes a number of queries that can be bounded by
a polynomial in |𝑥|. It remains to show that the lengths of these queries can be
bounded by a linear function in log |1𝑥|. Suppose that the number of queries made
on an input of the form 1𝑥, where 𝑥 is of length 𝑛, is at most 𝑛𝑐. This means that
the longest query that is made has length |⟨𝑛, 𝑛𝑐⟩|. Indeed, with the standard
encoding of numbers as strings and our pairing function of Definition 2.1.2, this
length can be bounded linearly in log 𝑛. With that, the bound on the lengths of
the queries is proven.

2 ⟹ 1. Suppose we have a linear truth-table kernelization for our disjoint
union with respect to 𝜂. For this kernelization, there is a constant 𝑐 such that all
queries made on an input of the form 1𝑥 are of a length bounded by 𝑐 ⋅ log |𝑥|.
This means that there are no more than 2𝑐⋅log |𝑥| = |𝑥|𝑐 strings the kernelization
could possibly query. Hence, we can replace the oracle by a string of |𝑥|𝑐 bits
where the 𝑖th bit is 1 precisely when we have asStr(𝑖) ∈ 𝑊. As this string is
only dependent on the length of 𝑥, and not on 𝑥 itself, it can serve as polynomial
advice, showing that 𝑋 is in P/poly. Additionally, since 𝑊 is decidable, so is 𝑋. 2

We remark that the second part of the above proof also shows that we could
have replaced truth-table by Turing in the statement of the theorem. A linear
truth-table kernelization may query all strings that a linear Turing kernelization
could potentially query.

In the context of the above theorem, it is noteworthy that the set constructed
in the proof of Theorem 3.5.18 has a linear truth-table kernelization. Thus, the
strengthening of that theorem, Theorem 3.5.21, can be strengthened further. It
can be strengthened to read that there is a set that has a positive linear truth-
table kernelization, but no psize kernelization. This, in light of Theorem 3.5.23,
points at a difference between the notions of polynomial advice represented by
P/poly and PKERpsize: There exists a decidable set 𝑋 in P/poly such that no
set 𝑊 exists such that

{0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 | 𝑥 ∈ 𝑋}

has a psize kernelization with respect to the parameterization 𝜂 defined by (3.18).
However, this does not mean that the notion of advice associated with PKERpsize
is in any way more stringent than that associated with P/poly.

3.5.24. Theorem. Let 𝜂 be the parameterization defined by (3.18). There exist
decidable sets 𝑊 and 𝑋 such that
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• 𝑋 is not in P/poly, and

• {0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 | 𝑥 ∈ 𝑋} has a polynomial many–one kernelization
with respect to 𝜂.

Proof:
We denote the string consisting of the first 𝑖 bits of a string 𝑥 by prefix(𝑖, 𝑥), and
define 𝑋 in terms of 𝑊 as

𝑋 = {𝑥 | log |𝑥| ∈ N and prefix((log |𝑥|)2, 𝑥) ∈ 𝑊}.

This definition ensures that {0𝑤 | 𝑤 ∈ 𝑊} ∪ {1𝑥 | 𝑥 ∈ 𝑋} has a polynomial
many–one kernelization with respect to 𝜂.

Next, we construct 𝑊 in such a way that 𝑋 is not in P/poly. The only instances
of 𝑊 that influence 𝑋 are those of which the length can be written as a square.
Therefore, we may assume that 𝑊 only contains strings of which the length is a
square. Suppose toward a contradiction that 𝑋 is in P/poly and let 𝜙 be a decision
procedure for 𝑋 that takes an advice string as a second argument. Using 𝜙, we
define a procedure for deciding membership in 𝑊 that takes an instance and an
advice string as inputs. Given a suitable advice string 𝑎 for a given instance 𝑤,
this procedure decides whether 𝑤 is a member of 𝑊.

1: If |𝑤| is not a square, return 0.

2: Let 𝑚 be 2√|𝑤| − |𝑤| and set 𝑥 to 𝑤0𝑚. We have prefix((log |𝑥|)2, 𝑥) = 𝑤,
and hence 𝑤 is a member of 𝑊 precisely when 𝑥 is a member of 𝑋.

3: Return 𝜙(𝑥, 𝑎).

The running time required by this procedure is polynomial in |𝑥|, hence it is in
2𝒪(√|𝑤|). By the same token, the length of a suitable advice string for an instance 𝑤
is also in 2𝒪(√|𝑤|). Note that the length of the string 𝑥 constructed in the procedure
is only dependent on the length of 𝑤. As a result, any two instances 𝑤1 and 𝑤2 that
have the same length share the same advice string. Thus, for any number 𝑛, all
2𝑛 strings of length 𝑛 share the same advice string with a length in 2𝒪(

√
𝑛). This

allows us to diagonalize against procedures such as the one we just constructed.
Doing so, we contradict the existence of 𝜙 and thus the assumption that 𝑋 is
in P/poly.

We construct 𝑊 in stages, at each stage resolving membership of all instances
of a given length. For this, we introduce the characteristic sequence, 𝜒, of 𝑊 for a
given length, 𝑛,

𝜒(𝑛) = (𝑏𝑤)𝑤∈𝟚𝑛 , where we have

𝑏𝑤 = {
1 if 𝑤 ∈ 𝑊,
0 otherwise.
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Our task is thus to determine 𝜒(𝑛), for all values of 𝑛. Let 𝜙1, 𝜙2, 𝜙3, … be an
effective enumeration of procedures that take two arguments. We may assume
that each such procedure occurs in this list infinitely often. For a procedure 𝜙𝑖,
we consider the time-constrained characteristic sequence for a given length 𝑛 and
advice string 𝑎, defined by

𝜒𝑖(𝑛, 𝑎) = (𝑏𝑤)𝑤∈𝟚𝑛 , where we have

𝑏𝑤 = {
1 if 𝜙𝑖(𝑤, 𝑎) returns 1 within 2log |𝑤|√|𝑤| steps,
0 otherwise.

The bound on the running time, 2log |𝑤|√|𝑤|, was chosen so that it grows faster
than any function in 2𝒪(√|𝑤|). Using these characteristic sequences, we build 𝑊
by doing the following for each length 𝑛 in N.

1: If 𝑛 is not a square, set 𝜒(𝑛) to

(0, 0, … , 0⏟
2𝑛 times

).

As we have noted earlier, we may assume that 𝑊 only contains strings of
which the length is a square.

2: Else, we consider procedure 𝜙√
𝑛 for diagonalization:

2.1: We gather the decisions of 𝜙√
𝑛 on strings of length 𝑛 for all advice

strings of a limited length and set

𝐻 = {𝜒√
𝑛(𝑛, 𝑎) | 𝑎 ∈ 𝟚+ and |𝑎| < 2log 𝑛

√
𝑛}.

The bound on the length of the advice string is so that it grows faster
than any function in 2𝒪(

√
𝑛).

2.2: Observe that the collection 𝐻 contains fewer than 22log 𝑛
√

𝑛 characteristic
sequences of 2𝑛 items. However, there are 22𝑛 such sequences possible.
Therefore, we can set 𝜒(𝑛) to a characteristic sequence of 2𝑛 items
that is not in 𝐻.

This construction of 𝑊 rules out the existence of a procedure for deciding mem-
bership in 𝑊 that takes advice of length 2𝒪(

√
𝑛) and runs in time 2𝒪(

√
𝑛). 2

Note that a polynomial many–one kernelization is also a psize kernelization.
Because of this, Theorem 3.5.23 and Theorem 3.5.24 show that the notions
of polynomial advice represented by P/poly and PKERpsize are incomparable.
Neither notion is more stringent than the other.
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3.5.5 Lower Bounds
An immediate consequence of our hierarchy, Figure 3.7, is that not all fixed-
parameter tractable problems have polynomial kernelizations. However, with
respect to a given parameterization, the (non-)existence of a polynomial kernel-
ization for any particular set may not be easy to establish. The most fruitful
program for deriving superpolynomial lower bounds on the size of many–one ker-
nelizations was started by Bodlaender et al. [26]. Building on this work, Dell
and Van Melkebeek [39] were able to rule out certain improvements of existing
polynomial kernelizations. They do so by establishing, under complexity-theoretic
assumptions, a minimum amount of communication that is needed with a general-
ized oracle. In particular, this means that there cannot be a Turing kernelization
of which the sum of the lengths of the queries it makes stays below this minimum.
The lower bounds of Dell and Van Melkebeek go beyond psize kernelizations in
that the oracle access may be adaptive.

The technique by Bodlaender et al. [26] for obtaining lower bounds on the
size of kernelizations does not generalize to Turing kernelizations. However, an
extension to psize kernelizations is feasible. We shall adapt a later iteration of the
technique, as laid out by Bodlaender, Jansen, and Kratsch [24, Section 3]. For a
more complete background of the technique, we refer to the survey by Kratsch [97],
and the textbook by Fomin et al. [58].

Central to the lower bounds engine are two similar-looking classifications of
instance aggregation. The first of these does not involve a parameterization.

3.5.25. Definition. A weak and-distillation (weak or-distillation) of a set 𝐴
into a set 𝐵 is a procedure that

• receives as input any finite sequence of strings 𝑥1, 𝑥2, … , 𝑥𝑡,

• uses time polynomial in ∑𝑖≤𝑡 |𝑥𝑖|, and

• outputs a string 𝑦 such that

– we have 𝑦 ∈ 𝐵 if and only if for all (any) 𝑖 we have 𝑥𝑖 ∈ 𝐴, and
– |𝑦| is bounded by a polynomial in max𝑖≤𝑡 |𝑥𝑖|.

Note how the length of the output of a distillation is bounded by a polynomial
in the maximum length of its inputs and not by the sum of the input lengths.
Because of this bound, having a weak or-distillation can be seen as a generalization
of being p-selective, Definition 3.1.22.

Originally, distillations where considered where the target set 𝐵 was equal
to 𝐴, hence the ‘weak’ in this more general definition. Similarly, a parameterized
counterpart to distillation, composition, was originally defined with the same pa-
rameterized set as source and target [26]. This was later generalized [24], with the
additional change that the source set was considered outside the context of any
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parameterization. In the framework of Downey and Fellows, this change is signifi-
cant, because of the distinction between non-parameterized and parameterized
sets. In our framework, parameterizations are distinct entities and the change is
not as significant.
3.5.26. Definition. An and-cross-composition (or-cross-composition) with re-
spect to a parameterization 𝜂 of a set 𝐴 into a set 𝐵 is a procedure that

• receives as input any finite sequence of strings 𝑥1, 𝑥2, … , 𝑥𝑡,

• uses time polynomial in ∑𝑖≤𝑡 |𝑥𝑖|, and

• outputs a string 𝑦 and parameter value 𝑘 satisfying 𝑦 ∈ 𝜂𝑘, such that

– we have 𝑦 ∈ 𝐵 if and only if for all (any) 𝑖 we have 𝑥𝑖 ∈ 𝐴, and
– asInt(𝑘) is bounded by a polynomial in max𝑖≤𝑡 |𝑥𝑖| + log 𝑡.

Contrary to the definition of cross-composition by Bodlaender, Jansen, and
Kratsch [24], we make no mention of a “polynomial equivalence relation”. We
have left this aspect out to keep our presentation focused. Nevertheless, those
familiar with cross-composition will find no trouble reintroducing the equivalence
relation in the upcoming theorem, Theorem 3.5.27.

With cross-composition, a bound is placed on the parameter value of the output
of the procedure, rather than on the length of the output instance. Conceptually,
a bound of this kind makes sense as parameter values serve as a measure of
the computational hardness of instances. Thus, a set has a cross-composition
when instances can be combined efficiently, without an increase in computational
hardness.

It was shown by Bodlaender et al. [26] and Bodlaender, Jansen, and Kratsch [24]
that polynomial many–one kernelizations tie the two ways of aggregating instances
together. We find that the same is true of psize kernelizations. The relevance of the
following theorem lies in its use in ruling out the existence of a psize kernelization
for certain sets and parameterizations.
3.5.27. Theorem. Let 𝐴 be a set that has an and-cross-composition (or-cross-
composition) into a set 𝐵 with respect to a parameterization 𝜂. If 𝐵 has a psize
kernelization with respect to 𝜂, then there is a set 𝐶 into which 𝐴 has a weak
and-distillation (weak or-distillation).
Proof:
We shall track the proof of Bodlaender, Jansen, and Kratsch [24, Theorem 3.4],
which in turn follows the approach of Bodlaender et al. [26, Lemma 2]. Assuming
𝐵 has a psize kernelization, we shall define a weak distillation for 𝐴. The target
of this weak distillation will be the set

Circuit(𝐵) = {⟨𝜙, (𝑞𝑖)𝑖≤𝑟⟩ | 𝑟 ∈ N and 𝜙 is a circuit with 𝑟 inputs, accepting
(𝑞1 ∈ 𝐵, 𝑞2 ∈ 𝐵, … , 𝑞𝑟 ∈ 𝐵)}.
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That is, Circuit(𝐵) is the set of pairs of a circuit 𝜙 and a finite sequence of
strings (𝑞1, 𝑞2, … , 𝑞𝑟), such that 𝜙 outputs 1 when fed (𝑞1 ∈ 𝐵, 𝑞2 ∈ 𝐵, … , 𝑞𝑟 ∈ 𝐵).

We may assume that the input sequence, (𝑥1, 𝑥2, … , 𝑥𝑡), of a distillation
does not contain any duplicates. Indeed, duplicates only make the task of a
distillation easier. If we define 𝑠 = max𝑖≤𝑡 |𝑥𝑖|, we may therefore also assume that
we have 𝑡 ≤ 2𝑠, and hence that we have log 𝑡 ≤ 𝑠. Our weak distillation of 𝐴
into Circuit(𝐵) proceeds as follows on input (𝑥1, 𝑥2, … , 𝑥𝑡).

1: Run the cross-composition on (𝑥1, 𝑥2, … , 𝑥𝑡) to obtain a string 𝑦 and pa-
rameter value 𝑘 satisfying 𝑦 ∈ 𝜂𝑘. The string 𝑦 is so that it is a member
of 𝐵 precisely when all (or any, depending on the type of cross-composition)
input instances are in 𝐴. Furthermore, by our assumption on log 𝑡, we find
that asInt(𝑘) can be bounded by a polynomial in 𝑠.

2: Run the psize kernelization for 𝐵 on 𝑦 and 𝑘 to obtain a circuit 𝜙 and a finite
sequence of query strings 𝑞1, 𝑞2, … , 𝑞𝑟. By definition of a psize kernelization,
the size of the circuit can be bounded by a polynomial in asInt(𝑘), and
therefore also by a polynomial in 𝑠. Likewise, both the number of query
strings and the length of these strings can be bounded by a polynomial in 𝑠.

3: Return ⟨𝜙, (𝑞𝑖)𝑖≤𝑟⟩. By our previous observations, the length of this pair
can be bounded by a polynomial in 𝑠. We remark that if we did take into
account a polynomial equivalence relation in the style of Bodlaender, Jansen,
and Kratsch [24], we would at this point have multiple circuits and inputs.
These circuits would then need to be combined in a way determined by the
type of cross-composition.

The output of this procedure meets the requirements of a distillation. Ad-
ditionally, the time required for each step can be bounded by a polynomial in
∑𝑖≤𝑡 |𝑥𝑖|, which also bounds the length of the output at each step. Therefore, the
above procedure indeed defines a weak distillation of 𝐴 into Circuit(𝐵). 2

In light of the work of Bodlaender, Jansen, and Kratsch [24], we note two
generalizations of the above theorem that can be made. First, as mentioned before,
the definition of a cross-composition can be weakened somewhat. It need not be
possible to aggregate just any finite set of strings. Instead, it is sufficient if we can
quickly partition strings 𝑥1, 𝑥2, … , 𝑥𝑡 into a number of subsets that is polynomial
in the length of the longest string. Each of these subsets is then aggregated
separately. This generalization is formalized by means of “polynomial equivalence
relations” by Bodlaender, Jansen, and Kratsch [24]. The second generalization of
the above theorem that can be made, is in the requirement of the existence of a
psize kernelization. In the proof, it is not necessary that the queries made by the
psize kernelization are queries about membership in 𝐵. Put differently, the psize
kernelization may as well have been a reduction from 𝐵 to a different set. Such a
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relaxed version of kernelization is called compression by Bodlaender, Jansen, and
Kratsch [24].

When the framework behind Theorem 3.5.27 was first published [26], it was
immediately linked to the fact that NP-hard sets are unlikely to have weak
distillations. It was quickly shown by Fortnow and Santhanam [60] that, unless
we have NP ⊆ coNP/poly, no NP-hard set admits a weak or-distillation. The
inclusion of NP in coNP/poly is deemed unlikely, as it implies a collapse of the
polynomial hierarchy to its third level [155]. The history of the result by Fortnow
and Santhanam can be traced back to results on p-selective sets by Selman [136]
and Ko [92]. We remark that in a similar fashion, Hemaspaandra et al. [81] had
shown that sets with nondeterministic selector functions are in (NP ∩ coNP)/poly.

A result like that of Fortnow and Santhanam for weak and-distillations was
initially left as a conjecture [26]. This conjecture was proven by Drucker [47], who
showed that NP-hard sets also do not admit weak and-distillations unless we
have NP ⊆ coNP/poly. These results translate into a technique for obtaining
lower bounds on the size of kernelizations.

3.5.28. Corollary. If an NP-hard language has an and-cross-composition
or an or-cross-composition into a set 𝐴 with respect to a parameterization 𝜂,
then 𝐴 does not have a psize kernelization with respect to 𝜂 unless we have
NP ⊆ coNP/poly.

Many NP-hard sets can be shown to have a cross-composition to themselves
with respect to some natural parameterization [24, 58]. Accordingly, our hierarchy
of polynomial kernelization, Figure 3.7, is not merely relevant to synthetic problems
such as the ones used in our proofs. Of many natural problems, the place in the
hierarchy is lower bounded too, adding to the appeal of the hierarchy.

3.5.29. Example. Recall the definition of Clique from Example 1.2.2,

Clique = {(𝐺, 𝑙) | there is a set of at least 𝑙 vertices of the graph 𝐺 in which
each pair of vertices is connected by an edge}.

In Example 2.2.10, we have seen that Clique is in FPT with the vertex cover
parameterization. Here, the vertex cover parameterization was defined as

𝜂 = ({(𝐺, 𝑙) | 𝐺 has a vertex cover of at most asInt(𝑘) vertices})𝑘∈𝟚+ .

Note that the second component of the instances, 𝑙, is ignored in the definition
of 𝜂. It is only there to align 𝜂 with Clique.

As shown by Fomin et al. [58, Section 17.3.2], there is an or-cross composition
with respect to the vertex cover parameterization of Clique into itself. Thus, by
corollary 3.5.28, there is no psize kernelization for Clique with respect to the
vertex cover parameterization. This can be contrasted with Example 3.5.8, which
shows that VertexCover has a polynomial many–one kernelization.
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Using the technique of Bodlaender et al., we are unable to rule out any
adaptive kernelizations. This is because of the dependence of the technique on
distillations, which do not allow for any adaptive behavior. Sometimes, however,
it is possible to sidestep distillations and directly derive NP ⊆ coNP/poly from
the assumed existence of some form of kernelization. This approach is taken
by Dell and Van Melkebeek in a variant of Corollary 3.5.28 [39, Lemma 1].
They too consider the situation where an NP-hard language has an or-cross-
composition into a set 𝐴 with respect to a parameterization 𝜂. Assuming we do
not have NP ⊆ coNP/poly, Dell and Van Melkebeek rule out a more general
class of parameterizations than ruled out by Corollary 3.5.28. Specifically, 𝐴 does
not have a polynomial kernelization with respect to 𝜂 of which the number of
queries made can be bounded by a polynomial in the numeric parameter value.
This includes adaptive kernelizations. The proof of Dell and Van Melkebeek only
applies to or-cross-composition and a similar result for and-cross-composition
remains open. It appears disjunctive instance aggregation repeatedly yields results
more easily than conjunctive instance aggregation.



Chapter 4
Conclusion

The main results of this thesis were presented not only as formal theorems, but
also as informal slogans. A listing of all the slogans is provided at the front of
this thesis. However, there is more to this thesis than just those results.

We started this thesis with some questions and observations in Section 1.1
and Section 1.2, respectively. In the current chapter, we shall revisit the topics of
those sections. First, in Section 4.1, we shall use our parameterized framework to
finally provide some answer to the question “what is the size of a cube?” Following
that, in Section 4.2, we assemble a historical timeline of parameterized complexity
theory. In this timeline, we have included the milestones in the development of
parameterized analysis of complexity, as far as we encountered them in this thesis.
Lastly, in Section 4.3, we briefly look ahead and point out some possible future
directions for the parameterized analysis of complexity. This includes further
forms of complexity that may be analyzed using our framework, as well as some
ideas for applications. Additionally, we have listed in this section a few major
questions that have remained unanswered in this thesis.
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4.1 The Size of a Cube
The dimensions of a physical cube-shaped object determine how large a pocket,
box, or hangar needs to be in order to contain the object. For an abstract cube,
we can look at how long a description of it is, in accordance to some description
method. This length is also a dimension in the sense that it determines how
much storage space we need to contain the abstract cube. In Section 3.4.5 and
Section 3.4.6 we have used parameterizations as the basis of description methods.
These methods start by specifying a property, as represented by a parameter value,
of the object that is being described. Thus, the length of a specification can serve
as a proxy of the metrics we have considered in Section 1.1.

4.1.1. Example. Suppose we use the number of vertices in a graph as the basis
of our description method for graphs. Because, for any fixed number 𝑛, there are
only finitely many graphs with 𝑛 vertices, we use an encoding where all 𝑛-vertex
graphs are equally likely. This is exactly what is achieved by the adjacency-matrix
representation of graphs [35].

Alternatively, we could use the number of edges as the basis of our description
method for graphs. In this case, all graphs that have some fixed number of edges
cannot be equally likely since, for each 𝑛, there are infinitely many graphs with
𝑛 edges. However, as demonstrated in Section 3.4.5, solutions to this problem
exist. An example of an edge-centric representation of graphs is the adjacency-list
representation, which basically presents a graph as a list of its edges [35].

The second description method is most useful when the graphs we are working
with have relatively few edges. With the graph for the dodecahedron, Figure 1.1c,
for instance, it makes sense to use an adjacency-list representation. Recording for
each possible combination of vertices whether there is an edge connecting them is
wasteful for this graph. By contrast, the graph for the tetrahedron, Figure 1.1a,
has as many edges as are possible, and an adjacency-matrix representation may
be preferable.

What metric most faithfully represents our notion of size of objects depends
on the context in which we are dealing with the objects. Correspondingly, some
ways of describing a graph are more accommodating to answering a given question
about a graph than others. However, when the size of an object is measured by
the length of a description in accordance with some description method, there
exists a universal measure. Kolmogorov complexity is the length corresponding to
the most general description method available. In this description method, any
property of an object may be used in a description, as long as the property itself
is specified as well. As a consequence, we can speak of the Kolmogorov complexity
of a graph, without having to specify a description method. Note that this does
assume that we restrict our attention to effective description methods. Contrary
to the metrics we have considered in Section 1.1, the Kolmogorov complexity of a
graph is not computable.
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We remark that Kolmogorov complexity tells us something about the efficiency
of certain description methods. In particular, it tells us something about descrip-
tion methods with which we can effectively get from an object to its description
and back. For every such description method, there are objects of which that
description method is the best way to describe the object. With this, we mean
that the description method assigns to the object a code that is as short as pos-
sible. Specifically, the length of the code equals the Kolmogorov complexity of
the object. These objects for which the description method is optimal are the
objects that are described by incompressible strings. In that sense, no effective
description method is more “blessed” than any other.

Besides the fact that Kolmogorov complexity is not computable, there are
other objections against its use as a measure of the size of objects. The most
obvious objection is that Kolmogorov complexity does not take computation time
into account. If decoding the description of an object takes prohibitively long,
the description is not very useful. We may want to require that decoding the
description of an object should somehow run in polynomial time, relying on the
thesis by Cobham and Edmond. Unfortunately, we cannot do so unless we are
willing to specify a specific polynomial. This is a consequence of the fact that
Kolmogorov complexity is a nonuniform notion in the sense that it treats each
object separately. As a procedure, a description of an object takes no input and
produces only a single output. We can evaluate a specific function in, say, the
length of the output, but this will only give us a constant. Without fixing a
specific polynomial, there is no way to classify a procedure that does not take any
input as running in polynomial time.

Another source of objections against the use of Kolmogorov complexity is the
fact that it is defined up to an additive constant. We have seen in Section 1.2.3
that we should include as much cultural context in our model of computation
as possible. If we fail to do so, then the additive constant that is involved with
Kolmogorov complexity may overshadow the actual complexity of the objects
we work with. At the same time, the cultural context of human perception of
complexity is continually evolving. As a result, our notion of complexity may
change and the additive constant with respect to any fixed model of computation
may keep increasing without bounds.

The best notion of size, then, depends on the context it is to be used in. In
turn, an analysis of any form of complexity in terms of the size of objects should
be explicit about how the size of objects is measured. Our framework for the
parameterized analysis of complexity offers a mathematical model to do just that.
Central to this framework is the notion of a parameterization, a family of sets
indexed by parameter values. In Chapter 3, we have seen that the framework is
able to deal with a multitude of complexities, both algorithmic and computational
in nature. The framework offers five levels of abstraction for the analysis of
complexity.
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Instance At the instance level, a parameterization 𝜂 links an instance 𝑥 to a set
of parameter values {𝑘 | 𝑥 ∈ 𝜂𝑘}. When expressing complexity in terms
of parameter values, we strike a balance between being too specific and
not being specific enough. What we mean by this can be demonstrated by
considering the running time of some procedure as a form of complexity.
The running time of a procedure can be computed as a function of its input
by running the procedure and clocking the time it takes. This is an overly
specific way of measuring the running-time complexity of instances, as it
does not generalize in any way. On the other hand, a worst-case running
time expressed as a function of the length of inputs is blind for more input-
specific behavior of complexity.

Slice The starting point of a parameterized analysis of complexity is grouping
instances that are somehow comparable. By definition, a parameterization
is a collection of sets of instances. This way, parameterizations enable
the comparison of complexity between instances. Additionally, by not
looking at instances in isolation, but collectively, this opens the door for the
consideration of uniformity constraints.

Parameterization When even more uniformity is required, we turn to collections
of slices. This is the level of abstraction at which parameterized complexity
has been most successful thus far. It allows us to study how complexity
scales as a function of parameter values.

Filter At the level of individual filters, we step away from specific parameteri-
zations and thus from any specific context in which the size of objects is
measured. This higher level of abstraction is appropriate for the study of
what the parameterizations that relate to the complexity of a certain prob-
lem are like. At this level, all notions of length that are relevant to a certain
problem are bundled and studied as a whole.

Filters The level of filters, plural, is where we find out how the form of com-
plexity we are analyzing ties in with specific computational problems. Each
parameterization, or, for that matter, each notion of length, represents a
distribution of complexity. In turn, a filter of parameterizations represents
all applicable distributions of complexity. The relation between such fil-
ters then tells us how specific these distributions are to the computational
problems we are analyzing.

In this thesis, we have looked at various forms of complexity and analyzed
them at various levels of abstraction. At the same time, these analyses provided
insight into the details of the framework, and in particular into the class of fixed-
parameter tractable sets. Section 3.1, where we studied computability as a notion of
complexity, revealed to what sets a notion of fixed-parameter tractability may apply.
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In particular, fixed-parameter tractability is concerned with decidable sets, or, if
we stretch our definitions, with sets at the Δ0

2 level of the arithmetical hierarchy.
Next, in Section 3.2, we found that most sets that interest us have no optimal
parameterizations in relation to fixed-parameter tractability. In Section 3.3, we
obtained results on two levels of abstraction. On the level of filters, plural, we
looked at sets with the same complexity profile from a fixed-parameter tractability
point of view. We found that such sets might alternatively be characterized as sets
of which the symmetric difference is in P. On the level of instances, we looked at
the similarity of parameterized complexity with measures of algorithmic complexity.
We found that the measure of complexity embodied by a parameterization is
more similar to instance complexity than to Kolmogorov complexity. More
so than these two measures of algorithmic complexity, parameterizations offer
opportunities for the consideration of uniformity constraints. Another comparison
with an existing framework was made in Section 3.4. Here, parameterizations were
related to statistical model classes. As it turns out, parameter estimation can be
interpreted both in the context of computational complexity, and in the context
of statistics. These two different interpretation allow insights from both contexts
to be shared. Lastly, in Section 3.5, we returned to a complexity-theoretic study
of the complexity class of fixed-parameter tractability, FPT. This class is closed
under several related notions of reducibility known collectively as kernelization.
By looking at refined version of these reducibilities, polynomial kernelization, we
uncovered a proper hierarchy inside FPT, shown in Figure 3.7.

What, then, is the size of a cube? If the size of a cube relates to how convenient
it is to work with compared to other shapes, the size necessarily depends on what
we try to do with the cube. However, even if we have a specific application in
mind, there may be multiple ways to measure the cube.

Our goal may be to decide membership in a given set and convenience may be
determined purely by the time needed to do so. In that case, the ways to measure
the cube are given by the parameterizations with which our decision problem is
in FPT. As we have seen in Section 3.2, there may thus be no definitive way to
measure the cube. Perhaps the best we can do, mathematically, is to consider the
filter of all these parameterizations. At least, this filter holds information on all
the ways the complexity of the cube can relate to the complexity of other shapes.

Convenience could be determined by more than the time needed to decide
membership in a given set. It could be that our use case desires that a certain
polynomial kernelization exists for our decision problem. In that case, following
Section 3.5, the ways to measure the cube are given by a subset of the parameteri-
zations with which our decision problem is in FPT.

Whatever parameterization we end up with to measure the cube, we know
from Section 3.4 that we are not measuring only computational complexity. Every
measure given by a parameterization is also a measure of useful information.
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4.2 Historical Encounters
In computer science, there is a long, but not extremely visible, tradition of bringing
together different notions of complexity. Our framework for the analysis of
complexity is a continuation of that tradition and aims for an explicit unification
of complexity theories. We feel that using parameters as the basis of a model
of complexity provides us with sufficient generality to do so. The parameterized
approach to complexity theory is not new and has a history even before the first
parameterized complexity classes were defined by Downey and Fellows [41]. In
this thesis, we have come across many incarnations of parameterized complexity
theory before it was “parameterized complexity theory”.

1944, Post [123]. In the context of decidability, Post noted that even sets that
are not decidable may have infinite subsets that are. This is a form of
parameterized analysis of complexity at the level of slices. While a set as
a whole may be complex, in this case meaning undecidable, there may be
subsets, slices, that are not complex.

1965, Putnam [124] and Gold [66]. Staying with undecidability as a notion of
complexity, we mention the work of Putnam and Gold. They noted that
some undecidable sets can be approximated by decision procedures that are
allowed to change their mind. The more often a decision procedure changes
its mind on an instance, the more complex we say the instance is. In that
sense, this form of parameterized analysis of complexity happens on the
level of instances. However, given the focus on decision procedures that are
allowed to change their mind, the analysis can also be placed at the level of
parameterizations.

1968, Jockusch [88]. Next to looking at how complex, in this case undecidable,
instances are in isolation, it is possible to compare the undecidability of
instances. The set of instances that can be reduced to a given instance 𝑥
form a slice of instances that are no more complex than 𝑥. This way, it
is possible to reveal redundancy, even in undecidable sets. The work of
Jockusch in this area can be thought of as a very early study of kernelization.

1974, Flajolet and Steyaert [55]. Parameterized reasoning in computational com-
plexity theory, as opposed to computability theory, can be traced back at
least to the work of Flajolet and Steyaert. They asked the questions that
Post asked in 1944 again, but this time in the context of computational
complexity. To our knowledge, this marks the first time that the polynomial-
time decidable subsets of computationally complex sets were studied.

1975, Lynch [102]. The next step after considering polynomial-time decidable
subsets of computationally complex sets was to look at all such subsets at
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once. By doing so, Lynch pushed the parameterized analysis of computa-
tional complexity from the level of slices to the level of parameterizations.

1979, Selman [136] and Meyer and Paterson [106]. The strengths of various no-
tions of reducibility in the presence of a polynomial running-time bound
were studied by Selman and by Meyer and Paterson. Results in this setting
build on the work of Jockusch from 1968. By the addition of the polyno-
mial running-time bound, similarities with the study of kernelization are
reinforced.

1979, Garey and Johnson [63]. The first to investigate running times of decision
procedures as a function of not only the length of instances, but also of
natural parameters were Garey and Johnson. Their work lacks proper
definitions and, in general, a formal framework. Nevertheless, the beginnings
of a parameterized theory of computational complexity at the level of
parameterizations are recognizable.

1983, Hartmanis [74]. One of the earliest attempts at bringing together algorith-
mic complexity and computational complexity comes from Hartmanis. The
study of the effect of algorithmic complexity on computational complex-
ity takes place at the level of parameterizations. Nevertheless, algorithmic
complexity remains a nonuniform notion and therefore this analysis of com-
plexity can also be placed at the level of instances.

1985, Orponen, Russo, and Schöning [118]. Looking at the polynomial-time de-
cidable subsets of a computationally complex set 𝐴 may provide new insights
into the complexity of 𝐴. Some sets can be approximated reasonably well by
their polynomial-time decidable subsets. For others, such approximations
necessarily proceed in small steps, adding only finitely many instances at a
time. The research in this area by Orponen, Russo, and Schöning has taken
the parameterized analysis of complexity to the level of individual filters.

1986, Orponen [116]. The collections of polynomial-time decidable subsets of
computationally complex sets showcase some algebraic structure with regard
to set-theoretic operations. It was noted by Orponen that there are only
very few possibilities for what the structure that emerges from a set looks
like. The investigations of what structures are possible can be thought of as
a first analysis at the level of filters, plural, and the relations between them.

1992, Downey and Fellows [41]. The first formal framework for the parameter-
ized analysis of computational complexity, including definitions of complex-
ity classes, was given by Downey and Fellows. This framework marks the
start of modern parameterized complexity theory. We observe that the ideas
by Flajolet and Steyaert predate this framework some eighteen years.

Subsequent developments regarding the framework were discussed in Section 2.2.
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4.3 Future Encounters
There is still much unexplored territory in the parameterized analysis of complexity.
Directions in which research can be taken range from purely theoretical to highly
applied. We shall list a few directions in which the work in this thesis can be
continued.

Other Forms of Complexity

In this thesis, the primary computational resource we have looked at is running
time. In light of the sequential computation thesis, this is a good resource to look
at because it is fairly independent of the model of computation. Similarly, we
could have looked at the space usage of computations and indeed, many of our
techniques can be applied to space usage with minimal change [152]. In practice,
however, we sometimes experience forms of complexity that are more strongly
dependent on a model of computation.

One such form of complexity came up in a private communication with Tom
van der Zanden about his work on computing treewidth on the GPU [157]. When
programming for the GPU, the best results are obtained if the same code can
be executed on multiple parts of the data in parallel. We experience instances
on which computation can be parallelized efficiently as not very complex. This
suggests trying to bound the extent to which computation on an instance can
be parallelized as a function of parameter values. As stated, this is not at all
precise, yet it may serve as inspiration for future work on something akin to fixed-
parameter parallel computation. We note that Weller [151] already performed a
parameterized analysis of parallel computation, using kernelization.

Another form of complexity that is encountered in practice is energy con-
sumption. Perhaps surprisingly, not all operations on data require energy to be
performed. As it turns out, no energy expenditure is necessary if the operations
are logically reversible [100, Section 8.2]. This suggests that we try to bound the
number of irreversible steps taken in some computation as a function of param-
eter values. Both for this notion of complexity and the previous one, the most
interesting part of a future study may be finding relevant parameterizations.

Irreversible computation can be simulated in a reversible way. A way to do
so that incurs only a linear overhead in either running time or space usage was
presented by Buhrman, Tromp, and Vitányi [31]. Because of these two extremes,
a linear overhead has become the benchmark in the reversible simulation of
irreversible computation. Thus, a simulation with a linear overhead in terms
of running time is time-efficient, and a simulation with a linear overhead in
space usage is space-efficient. Currently, no reversible simulation of irreversible
computation that is efficient both in terms of running time and in terms of space
usage is known. Of interest, then, is what the precise trade-off between overhead
in running time and overhead in space usage is. Our parameterized framework
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may provide a decent means of analyzing such trade-offs. Parameter values may
be interpreted as pairs ⟨𝑡, 𝑠⟩, where 𝑡 serves as a bound on the running time of
a procedure while the space usage is bounded in 𝑠. In turn, a parameterization
records, for each instance 𝑥, the pairs ⟨𝑡, 𝑠⟩ for which the procedure completes its
computation on input 𝑥. In other words, for each instance, the parameterization
represents the frontier corresponding to the trade-off between the two resource
bounds.

Again, the analysis of frontiers of multiple resource bounds need not be limited
to running time and space usage. For example, in a probabilistic model of
computation, we could look at the trade-off between running time and the use of
randomness. This provides another interface between computational complexity
and algorithmic complexity.

Design Patterns

The results in this thesis are of a theoretical nature. Their implications, however,
may be practical and can sometimes be framed as templates for solving recurring
problems. Such templates are known as design patterns. Some design patterns
were mentioned in Section 3.5, where the spread of a computational workload
over a computing system was discussed. A more straightforward application of
kernelization, not involving system architectures made up of multiple units capable
of computing, is available too. This application concerns the use of kernelizations
in the design of algorithms. A kernelization is in essence a recursive algorithm.
Queries to the oracle can be treated as recursive invocations. This is true not only
of many–one kernelization, where the recursion can be limited to tail-recursion,
but of Turing kernelization in general. Of course, some provision has to be put in
place for the case where on some input 𝑥 the kernelization queries 𝑥 itself, perhaps
indirectly. This may happen when 𝑥 meets the size bound of the kernelization.

A common technique to amortize the cost of multiple invocations of a recursive
algorithm is memoization, which is a form of dynamic programming [see 35,
Chapter 16]. With memoization, the output of an algorithm is stored with the
input in a lookup table so that, for any input, the algorithm needs to be run at
most once. The size of a lookup table can get rather large and care must be taken
that its benefits outweigh this additional storage requirement. With kernelizations,
we can get a grip on the size of a lookup table. To do so, we no longer blindly
store all input and output values that we encounter in a lookup table. Instead, we
only store those values when the input meets the size bound of the kernelization.
This way, the size of the table is kept in check without sacrificing the polynomial
running time of the kernelization.

We remark that dynamic programming is also used in parameterized complexity
theory for the design of parameterized decision procedures [see 113, Chapter 9].
For this case, the technique is used to realize a bound on the running time that is
as required to show that a set is fixed-parameter tractable.
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In Section 3.4.6, we mentioned another way in which our parameterized analy-
sis leads to a design pattern. Here, the observation was that a two-part encoding
of data may be compressing while some operations on the data can be performed
without decompressing first. Moreover, these two-part data structures may be
useful for benchmarking purposes. In benchmarking, we want to sample random
instances from realistic distributions. The relationship between parameterizations
and realistic distributions is discussed in Section 3.4.5 and in particular in Ex-
ample 3.4.32. As a result, with our two-part data structures, random sampling
from realistic distributions simply means initializing data structures uniformly at
random.

Open Problems

Several open problems have been identified in this thesis. We repeat them here.
• Regarding the use of parameterizations for lossy compression, an oddity is

observed in Section 3.4.6 on page 180. The performance of lossy compression
formats is often measured as a compression ratio. This implies that, on
average, a constant percentage of bits is saved by compression, regardless of
the length of the input. By contrast, parameterizations typically promise a
compression performance that increases with the length of the input.

• We have shown in Theorem 3.3.20 that algorithmic complexity is a source
of computational complexity. Whether or not the converse is true as well we
do not know. The best result available in this direction is Theorem 3.3.29,
which goes back to Hartmanis [74, Theorem 14].

• Sets in P are fixed-parameter tractable with any parameterization. In fact,
as mentioned in Section 3.3.2, a set 𝐴 is in P precisely when ℱFPT(𝐴)
equals ℒFPT. Also in that section, we noted that P is a subgroup of
the commutative group of decidable sets with the symmetric-difference
operator, △. In Conjecture 3.3.12, we postulate that ℱFPT preserves this
group structure and is a group homomorphism. Regarding the nonuniform
case, we know by Theorem 3.3.11 that ℱFPTnu

is not a group homomorphism.

• Many sets do not have optimal parameterizations as far as FPT is concerned.
This was the result of Theorem 3.2.41. Recall that the difference between
FPT and XP is that in FPT the degree of the polynomial in the running
time bound is held fixed. At the same time, no specific value for the degree
is prescribed and in the proof of Theorem 3.2.41, this degree is increased.
Possibly, the theorem would be false if we require the degree to stay the
same. Stated formally, there may be a constant 𝑐 and a set 𝐴 without a
maximal 𝒪(𝑛𝑐)-segment such that ℱXTIME(𝑛𝑐)(𝐴) is principal. We shall
leave this as an open problem, but note that ℱXTIME(𝑛𝑐) is indeed a filter.
This can be shown completely analogously to Theorem 3.2.27.



Notation

The following notation is invented in this thesis. In these definitions, 𝑛 s a natural
number, 𝑥 a binary string, 𝑘 a parameter value (also a string), 𝜂 = (𝜂𝑘)𝑘∈𝟚+ a
parameterization, 𝐴 a set, and C a parameterized complexity class.

ℱC (𝐴) = {𝜂 | (𝐴, 𝜂) ∈ C}

ℒC = {𝜂 | ∃𝐴∶ (𝐴, 𝜂) ∈ C}

μ𝜂(𝑥) = min{|𝑘| | 𝑥 ∈ 𝜂𝑘}

M𝜂(𝑛) = max{μ𝜂(𝑥) | 𝑥 ∈ 𝟚𝑛}

N𝜂(𝑛, 𝑘) = the number of elements in 𝟚𝑛 ∩ 𝜂𝑘
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Gearfetting
Oerset troch Janneke Spoelstra

Kompleksiteit kin in protte foarmen hawwe, dochs is der net ien wiskundige
definysje fan kompleksiteit dêr’t se allegearre oan foldogge. Yn dit proefskrift
yntrodusearje wy in wiskundich ramt foar de analyze fan ferskillende foarmen fan
kompleksiteit.

Us ramt is in fuortsetting fan de parametrisearre oanpak fan komputasjonele
kompleksiteit sa’t Downey en Fellows dat earder dien hawwe. Sa giet it yn dit
proefskrift ek net allinnich om de analyze fan kompleksiteit, mar ek om de teory
fan parametrisearre komputasjonele kompleksiteit. Der binne twa typen resultaten
yn dit proefskrift: resultaten oangeande it tapassen fan in unifoarme analyze fan
kompleksiteit mei gebrûk fan ús ramt, en resultaten oangeande de klasse fan goed
te behappen samlingen foar in fêste parameter, FPT.

Twa konkrete domeinen dêr’t wy de kompleksiteit yn analysearje mei gebrûk
fan ús ramt binne statistyske ynferinsje en algoritmeûntwerp. Foar statistyske
ynferinsje jout ús ramt rjochtlinen om it lykwicht te bewarjen tusken underfitting
en overfitting fan statistyske modellen. Us ramt biedt yndikatoaren foar algoritme-
ûntwerp, dy’t brûkt wurde kinne by it besluten fan hoefolle berekkening oft der
wannear en wêr dien wurde moat, foar minimaal totaal gebrûk fan helpboarnen.

Oangeande de aard fan FPT hawwe wy trije resultaten. Mei gebrûk fan in
rangoarder fan parametrisaasjes ôflaat fan FPT litte wy sjen dat der faak gjin
bêste parametrisaasje is ûnder dy dy’t in samling yn FPT pleatse. Twad litte
wy sjen dat der in strikte hiërargy is ûnder FPT dy’t basearre is op polynomiale
kernelisaasjes. As lêste fine wy bewiis foar in alternative karakterisearring fan FPT
as de kosjintgroep Δ0

1/P gebrûk meitsjend fan it symmetrysk ferskil. Hjir is Δ0
1

de klasse fan beslútbere samlingen, it earste trochsneednivo fan de rekkenkundige
hiërargy.
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Samenvatting

Complexiteit kent vele vormen. Iets kan bijvoorbeeld complex zijn omdat het niet
eenvoudig te beschrijven is. In dat geval spreken we van algoritmische complexiteit,
soms ook wel descriptieve complexiteit genoemd. Een andere vorm van complexiteit
vinden we bij computationele vraagstukken waarvoor beantwoording veel rekentijd
of geheugen vereist. Deze vorm van complexiteit is bekend als computationele
complexiteit. Wanneer voor een computationeel vraagstuk geen antwoord te
berekenen valt, ongeacht de beschikbare hoeveelheid rekentijd en geheugen, zeggen
we dat het vraagstuk onberekenbaar is. Onberekenbaarheid kan gezien worden
als een extreme vorm van computationele complexiteit. Hoewel algoritmische
complexiteit, computationele complexiteit, en onberekenbaarheid allen vormen
van complexiteit zijn, is er geen overkoepelende wiskundige definitie waaraan ze
allen voldoen.

In dit proefschrift introduceren we een wiskundig kader waarbinnen complexi-
teit geanalyseerd kan worden. Dit kader is dermate algemeen dat de analyse
van elk van de drie eerdergenoemde vormen van complexiteit erin mogelijk is.
Hierdoor is het ook mogelijk om verschillende vormen van complexiteit met elkaar
te vergelijken. Zodoende vinden we onder andere dat computationele complexiteit
geïmpliceerd wordt door algoritmische complexiteit.

Ons kader behelst een voortzetting van de geparametriseerde benadering van
computationele complexiteitstheorie door Downey en Fellows. Traditioneel wordt
in complexiteitstheorie gekeken naar hoe de benodigde hoeveelheid rekentijd van
een collectie verwante vraagstukken afhangt van de lengte van de specificaties
van de vraagstukken. Deze collectie wordt een computationeel probleem genoemd,
en de afzonderlijke vraagstukken instanties van het probleem. In geparametri-
seerde complexiteitstheorie worden naast de lengte van de specificatie van een
instantie ook andere aspecten ervan in ogenschouw genomen. Hierdoor wordt
de complexiteitsanalyse ingewikkelder, maar kan zij ook beter aansluiten bij hoe
we complexiteit in de praktijk ervaren. Neem bijvoorbeeld het bepalen van de
kortste route tussen twee punten op een kaart. De instanties van dit computatio-
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nele probleem zijn de vraagstukken die ontstaan waarbij een specifieke kaart en
twee specifieke punten gegeven zijn. Wanneer de kaart een erg groot gebied be-
strijkt, kan de instantie tamelijk moeilijk zijn. Echter, zelfs wanneer de kaart erg
groot is, is het bepalen van de kortste route tussen nabijgelegen punten doorgaans
makkelijk. Voor het bepalen van kortste routes hebben we aldus twee factoren
geïdentificeerd die van invloed zijn op de complexiteit. Enerzijds kunnen we stel-
len dat instanties van het probleem moeilijker worden naarmate de kaart groter
wordt. Anderzijds blijft het probleem makkelijk zolang de punten waartussen de
kortste route moet worden gevonden dichtbij elkaar liggen. In geparametriseerde
complexiteitstheorie worden aspecten van een instantie, waaronder de grootte, de
parameters van het probleem genoemd. Een functie die gegeven een probleemin-
stantie de bijbehorende parameterwaarde bepaald heet een parametrisatie.

Ook bij computationele problemen die aanzienlijk ingewikkelder zijn dan het
vinden van kortste routes kunnen we dikwijls verschillende factoren aanwijzen
die van invloed zijn op de complexiteit. Deze observatie ligt aan de basis van
de klasse der fixed-parameter tractable problemen: computationele problemen
waarvan de complexiteit te overzien is zolang we ons beperken tot instanties
met een vaste parameterwaarde. Meer exact zijn de fixed-parameter tractable
problemen die problemen waarbij, voor instanties met een vaste parameterwaarde,
de toename in rekentijd als functie van de lengte van de instantie begrensd kan
worden door een polynoom. De graad van dit polynoom mag niet afhangen van
de parameterwaarde, maar de coëfficiënten van het polynoom mogen dat wel.

Het wiskundig kader voor de analyse van complexiteit dat in dit proefschrift
geïntroduceerd wordt is opgebouwd rondom parametrisaties. Derhalve zijn er
twee soorten resultaten in dit proefschrift: resultaten ten aanzien van een overkoe-
pelende analyse van complexiteit, en resultaten ten aanzien van fixed-parameter
tractability.

We analyseren complexiteit in verschillende domeinen, waaronder dat van
inferentie en model selectie in de statistiek. In dit domein gaat het erom uit
een verzameling modellen een model aan te wijzen dat het meest waarschijnlijk
is gegeven enige waargenomen data. Enerzijds mag dit model niet te specifiek
zijn, aangezien het dan meer structuur in de data suggereert dan geoorloofd is.
Anderzijds verschaft een te algemeen model weinig inzicht in de structuur die
daadwerkelijk in de data aanwezig is. De specificiteit van een model is een vorm
van algoritmische complexiteit en ons wiskundige kader biedt richtlijnen voor de
keuze van de juiste mate van specificiteit gegeven de waargenomen data.

Een vorm van complexiteit die dichter bij computationele complexiteit ligt
treffen we aan in de algoritmiek. Een goed algoritme is in staat een computationeel
probleem, zoals het vinden van kortste routes, efficiënt op te lossen. Hiertoe moet,
gegeven een probleeminstantie, worden bepaald hoeveel rekenwerk er op welk
moment en op welk systeem gedaan moet worden teneinde de totale rekenkosten
te minimaliseren. Wanneer een instantie eenvoudig te herkennen redundantie
bevat, doen we er goed aan de instantie zo vroeg mogelijk van deze redundantie te
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ontdoen. Zonder de redundante delen neemt de specificatie van de instantie minder
geheugen in beslag en kan de instantie efficiënter gecommuniceerd worden naar
andere rekeneenheden. Wanneer redundantie te verwachten is, is een gefaseerd
algoritme dat de instantie eerst van eventuele redundantie ontdoet dus aan te
bevelen. Voor instanties zonder eenvoudig te herkennen redundantie biedt een
gefaseerde aanpak geen voordelen. Echter, wat er wel en niet als redundantie
gezien mag worden hangt af van de details van het systeem waarop het algoritme
draait. In meer abstracte zin kunnen we stellen dat het computationeel model
van invloed is op de notie van complexiteit in het kader van het ontwerp van
algoritmen.

De analyse van complexiteit in verband met gefaseerde algoritmen verschaft
ons tevens inzicht in fixed-parameter tractability. Een standaardresultaat uit de
geparametriseerde complexiteitstheorie luidt dat fixed-parameter tractability over-
eenkomt met de mogelijkheid een probleeminstantie op een bepaalde manier voor
te bewerken. Deze voorbewerking komt erop neer dat de grootte van een instantie
in polynomiale tijd zoveel kan worden teruggebracht, dat zij kan worden begrensd
door een functie van de parameterwaarde behorende bij de instantie. In het licht
van onze complexiteitsanalyse correspondeert dit met een erg algemene vorm van
redundantie. We definiëren in dit proefschrift een hiërarchie van meer specifieke
vormen van redundantie en leggen zodoende een hiërarchie van klassen van com-
putationele problemen bloot binnen de fixed-parameter tractable problemen.

Of een probleem fixed-parameter tractable is hangt af van de parametrisatie
die we in gedachten hebben. Echter, ieder probleem dat met enige parametrisatie
fixed-parameter tractable is, is berekenbaar. We tonen aan dat, omgekeerd,
ieder berekenbaar probleem fixed-parameter tractable gemaakt kan worden. Dit
resultaat laat zich generaliseren naar een meer non-uniforme situatie, waarbij
beslisbaarheid vervangen wordt het Δ0

2-niveau van de arithmetische hiëarchie.
We werpen ook een meer parametrisatie-gerichte blik op fixed-parameter trac-

tability, en bekijken de collectie parametrisaties waarmee een gegeven probleem
fixed-parameter tractable is. In het bijzonder kijken we naar het verband tus-
sen verschillende problemen waarvoor deze collectie hetzelfde blijft. We vinden
aanwijzingen dat het verband tussen zulke problemen ook gekarakteriseerd kan
worden op een manier die los staat van geparametriseerde overwegingen. Een
vergelijkbare karakterisering gaat niet op in de non-uniforme situatie.

Onze intuïtie zegt ons dat naarmate een probleem met meer parametrisaties
fixed-parameter tractable is, het minder moeilijk is. Aan de hand hiervan con-
strueren we een ordening van parametrisaties. Makkelijkere problemen zijn fixed-
parameter tractable met parametrisaties die eerder komen in deze ordening. Het
kan voorkomen dat er onder de parametrisaties die een probleem fixed-parameter
tractable maken een parametrisatie is die in deze ordening voor alle anderen
geordend wordt. Echter, we tonen aan dat dit niet het geval is voor de meest
interessante problemen: dergelijke optimale parametrisaties bestaan niet voor
problemen die niet P-bi-immuun zijn.





Abstract

Complexity can have many forms. An object, for instance, can be complex because
a lot of words are needed to describe it. Such an object is said to have high
algorithmic complexity. This form of complexity is also referred to as “descriptive
complexity”, but that term is used for entirely different concepts as well. Another
example is a computational problem that is complex because it can only be solved
via computations that use a lot of time or memory. Such a problem is said to have
high computational complexity. Of comparable, but more extreme flavor would be
a computational problem that is complex because no amount of time or memory
is enough for solving it. Such a problem is said to be uncomputable. While all
three of these examples are forms of complexity, there is no single mathematical
definition of complexity that they all adhere to.

In this thesis, we introduce a mathematical framework for the analysis of com-
plexity. The framework is versatile enough to deal with the three aforementioned
forms of complexity and more. Because of this versatility, we are able to compare
different forms of complexity to each other. Doing so, we find, for instance, that
algorithmic complexity implies computational complexity.

Our framework is a continuation of the parameterized approach to compu-
tational complexity pioneered by Downey and Fellows. In the parameterized
approach, computational complexity is not measured simply as a function of the
length of the specification of a computational problem. Instead, other information
about the computational problem is taken into account as well. This makes the
analysis of complexity harder, but it can also paint a more accurate picture of
computational complexity as encountered in practice. For example, the problem of
finding the shortest route between two points on a map may be relatively difficult
if the map is very large. However, even on a large map, the problem is easy if
the two points are in close proximity to each other. Thus, we have two factors
that influence the computational complexity of the general problem of finding
shortest routes. On the one hand, instances of the problem potentially become
more difficult as the size of the map increases. On the other, the problem remains
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easy as long as the points are close together. Aspects of a problem instance, in-
cluding, but not limited to, the length of its specification, are called parameters.
A mapping of problem instance to a parameter value is called a parameterization.

The phenomenon of multiple factors influencing the complexity can be observed
in problems far more difficult than finding shortest routes. This leads to the
central notion of the parameterized approach to computational complexity, that
of fixed-parameter tractability. As is common in computational complexity theory,
tractability is equated to computation in polynomial time. Thus, a problem is fixed-
parameter tractable if it can be solved in polynomial time on those instances that
have some fixed parameter value. In other words, the computational complexity
beyond polynomial-time computability is restricted by the parameter.

Parameterizations also form the backbone of our framework for the analysis of
various notions of complexity. As a result, this thesis is not only concerned with
the analysis of complexity, but also with the theory of parameterized computational
complexity. Specifically, we investigate the class of fixed-parameter tractable
problems. Consequently, there are two types of results in this thesis: results on the
application of a unified analysis of complexity using our framework, and results
on fixed-parameter tractability.

One domain to which we apply our analysis of complexity is statistical inference.
Specifically, we look at model selection. In model selection, our task is to select,
from a set of candidate models, a statistical model that best describes some
given data. When selecting a model, we must balance underfitting and overfitting.
Whether or not a model is a good fit depends on the complexity of the model
as well as on the complexity of the given data. A good model captures all the
structure that is present in the data, but is not suggestive of any structure that
cannot reasonably be said to be present. Because of this role of the complexity
of models, we are able to use our framework as a guide in model selection. Our
framework enables us to quantify not only the complexity of statistical models,
but also to what degree they are underfitting or overfitting the given data.

The complexity of a statistical model can be taken as a variant of algorithmic
complexity. A version of complexity more related to computational complexity is
found in the domain of algorithm design. Specifically, we also apply our analysis
of complexity to preprocessing. For preprocessing, we must determine how much
computation to perform at what moment, in order to minimize the total usage
of computational resources. In many cases, we even get to determine on what
part of a system computation is to be performed. In short, we must decide how
much computation to perform when and where. If there is easily recognizable
redundancy in the specification of an instance of a computational problem, then
we might as well remove it immediately. Without the redundant parts, the
instance consumes less memory and can more efficiently be communicated to
other parts of the system. Thus, with instances of a computational problem
that have redundancy in their specification, computation can be pulled apart.
Conversely, we find that with instances that have little or no redundancy in their
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specification, we do best to perform all computation at once. The computational
complexity of such problem instances is high and preprocessing offers no benefits
for these instances. However, we further show that what counts as computational
redundancy depends on the computational system we are working with. More
abstractly, we find that our model of computation and preprocessing is relevant to
our notion of computational redundancy. In other words, the details of the model
influence the notion of complexity.

In parameterized complexity theory, preprocessing is modeled by kernelization
with respect to a parameterization. In its most basic form, a kernelization reduces
an instance of a problem to an equivalent instance of which the size is restricted
by the parameter. Different types of preprocessing correspond to different types
of kernelization. With kernelizations, the parameter functions as a bound on the
amount of information in the specification of a problem that is not redundant.
The redundancy must be easily recognizable, as kernelizations are required to run
in polynomial time. We put the different types of kernelization in a hierarchy and
show that the power of kernelization increases strictly throughout the hierarchy.
Conversely, with respect to a given parameterization, the lower we go in the
hierarchy, the fewer problems have a kernelization with the corresponding power.
It is a standard result in parameterized complexity theory that if a computational
problem has any kernelization at all, then it is fixed-parameter tractable. Thus,
our hierarchy of kernelizations is also a proper hierarchy of computational problems
inside the class of fixed-parameter tractable problems.

Whether or not a computational problem is fixed-parameter tractable depends
on the parameterization that is used. However, every problem that is fixed-
parameter tractable with respect to some parameterization is decidable. In
this thesis, we find that, moreover, every decidable problem can be made fixed-
parameter tractable. Additionally, in a more nonuniform theory, the same is true
when we replace decidability with the Δ0

2 level of the arithmetical hierarchy.
The previous characterization of the fixed-parameter tractable problems is

rather indifferent to parameterizations. Therefore, we consider the collection of
parameterizations with respect to which a given set is fixed-parameter tractable.
We conjecture that two sets for which this collection is the same have a symmetric
difference that lies in P. For a more nonuniform parameterized complexity theory
this is not true, but we are able to provide some evidence for the conjecture in
the uniform setting.

Intuitively, the more parameterizations make a problem fixed-parameter
tractable, the easier the problem is. We take this intuition further and use
it to define an order on parameterizations. Easier problems are fixed-parameter
tractable with respect to parameterizations that are lower in this order. Po-
tentially, there is a parameterization among those that make a given problem
fixed-parameter tractable that is below all others. However, we show that most
interesting sets, specifically those that are not P-bi-immune, do not have such an
optimal parameterization.
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