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1.1 | Introduction
The 20th century has seen many advances in science and technology. Not only has huge
progress been made, often this was done via groundbreaking ideas and radical shifts in
our thinking, leading to many new disciplines of science. In this thesis we consider the
interplay between three of these disciplines: the field of quantum mechanics, the field
of computer science and the subfield of convex optimization.

Quantum mechanics The field of quantum mechanics finds it roots in 1900 in the
works of Planck [Pla00a; Pla00b], in which he proposes the idea that energy might be
quantized (meaning it would come in discrete packets, opposed to a continuous spec-
trum) in order to explain the observations of black-body radiation. This idea turned out
to be fruitful and allowed Einstein to explain the photoelectric effect in 1905 [Ein05] and
Bohr to explain the spectral lines of the hydrogen atom in 1913 [Boh13]. The notion of
discrete photons (the particles of light), however, seemed to contradict experiments
that found that light behaves like a wave. This led to the works of Schrödinger [Sch26],
Heisenberg, Born and Jordan [Hei25; BJ25; BHJ26] in the 1920s, which introduced the
notions of the wave function and matrix mechanics, fleshing out quantum mechanics
and explaining this particle-wave duality.

Light indeed comes in discrete packets (as do other particles), but the position
of these packets is not precisely defined. Instead there is a certain probability that
a particle is at a certain place, leading to a wave-like behavior as these probabilities
spread through space. Furthermore, these probabilities do not originate from our lack
of knowledge about the world, they are inherent to the world: until observed there is no
real position of the particle. Instead the system is described by a set of amplitudes, one
for each possible position in space, from which the corresponding probability can be
derived. By the end of the 1930s quantum mechanics grew to one of the most important
fields of physics.

Computer science It can be argued that computer science finds it roots thousands
of years ago, starting with the first abacus. Computer science as we know it today,
however, started in the 20th century when Church and Turing built on the work of
Gödel and formalized the notion of an algorithm [Tur36; Chu36]. They formulated the
Church-Turing thesis, stating that any calculation that is possible can be performed
by a machine following an algorithm (if given sufficient resources). Turing formalized
the idea of a machine, now known as a universal Turing machine. During the Second
World War computing became of vital importance for military purposes, leading to
large advances in computing hardware, the most famous example of which is the work
of Turing and others at Bletchley Park that allowed them to break the Enigma codes
used by the German army.

After the war the theoretical study of computing continued. In 1965 Edmonds gave
the first polynomial-time algorithm for finding matchings in general graphs [Edm65]
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and introduced the notions of efficient algorithms (those that run in polynomial time in
the input size) and inefficient algorithms (those that run in superpolynomial time). He
also introduced the notion of the class of problems that have such efficient algorithms,
and in doing so he started the field of complexity theory. While computer science was
evolving as a theoretical field, an even more impressive achievement has been made in
the development of hardware. After the creation of the first working transistor in 1947
by Bardeen, Brattain, and Shockley, progress has been rapid. This progress has for a
long time been described best by Moore’s law [Moo65], which states that the number
of components on a chip and the computational power of chips grows exponentially,
doubling every 12 to 18 months. However, Moore’s law seems to be coming to an end
as transistor sizes are reaching the nanometer scale and quantum mechanical effects
start influencing computations.

Convex optimization An important category of problems in mathematics is opti-
mization problems, an interesting subset of which are the convex optimization prob-
lems. Convex optimization problems have many interesting properties, one of which
is that a local minimum is also a global minimum; due to this there is no way to “get
stuck” in a local minimum that is not the actual optimal solution. Convex optimiza-
tion as a field leads back to the Second World War, during which Dantzig invented lin-
ear programs and the simplex algorithm as a tool to optimize resource allocation for
the army [Dan48]. After the war Von Neumann found a relation between linear pro-
gramming and zero-sum games, and discovered linear programming duality [Neu47].
In 1979 Khachiyan gave the first polynomial-time algorithm for linear programming,
the ellipsoid algorithm [Kha79]. While linear programs have many applications, inter-
est also grew for more general optimization. Grötschel, Lovász and Schrijver in 1988
showed the polynomial-time equivalence of many general problems in convex opti-
mization [GLS88]. Goemans and Williamson applied the framework of semidefinite
programming, a generalization of linear programming, to obtain the first non-trivial
polynomial-time approximation algorithm for the MAXCUT problem in 1995 [GW95].
In recent years convex optimization has seen many applications in machine learning
and operations research, with growing datasets motivating research into evermore ef-
ficient algorithms, often increasing the dependence on the error to allow for linear and
sublinear dependence on the input size.

Quantum computing For most of the 20th century science diversified, with more
specialist fields required for the more complex questions science faced. However, in
the last quarter of the 20th century interdisciplinary research made a comeback. One
example of this is the usage of computers in many fields of science. In the natural sci-
ences computers help to understand complex systems by simulating the dynamics of
these systems, allowing researchers to examine them in a controlled manner. However,
classical computers seem to perform badly at simulating the dynamics of quantum me-
chanics, in part due to the enormous number of amplitudes needed to represent even
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very simple systems. This led Feynman and Manin to coin the notion of a quantum
computer in the early 1980s [Fey82; Fey85; Man80; Man99]. They proposed that this
new type of computer could use quantum mechanical effects to simulate quantum me-
chanics.

In 1992 Deutsch and Jozsa constructed a computational problem for which quan-
tum computers are exponentially better than deterministic classical computers [DJ92].
Their algorithm inspired Simon’s 1994 work where he presents a problem that can
be solved exponentially faster on a quantum computer than on a randomized classi-
cal computer [Sim97]. In the same year Shor built on top of Simons work to prove
his famous result that quantum computers can factor large integers in polynomial
time [Sho97], implying that most of modern public-key cryptography could be bro-
ken using a quantum computer. Two years later Grover showed that searching could be
sped up quadratically on a quantum computer [Gro96]. Although Grover’s algorithm
achieves less of a speedup than the other algorithms mentioned, it can be applied to a
far larger range of problems, leading to speedups for many graph problems [DHHM06],
minimum-finding [DH96], and much more. In recent years much progress has been
made on building quantum computers, increasing the number of qubits and their sta-
bility. Very recently the first quantum computations was performed that can no longer
be simulated on our best classical computers in a reasonable amount of time [Aru+19].

Convex problems in quantum information There also exists a natural connec-
tion between quantum mechanics and convex optimization. Both quantum states
and quantum measurements correspond to positive semidefinite matrices, making
semidefinite programming a natural framework to deal with problems in quantum
information theory. These problems include finding the optimal measurement to dis-
tinguish quantum states [Eld03], computing the fidelity between states [Wat18], and
computing the optimal value of nonlocal two-player XOR games [Tsi87; CHTW04].
Semidefinite programming has also been used in the groundbreaking proof of QIP =
PSPACE [JJUW11].

The developments in quantum mechanics, computer science, convex optimization,
and the interplay between the fields, have led to many advances in science and technol-
ogy. However, until recently little research has focused on how the interplay between
these three fields might inspire quantum algorithms for convex optimization. This the-
sis asks the following central question

Can quantum computers solve convex optimization problems faster?
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1.2 | Overview
The results presented in this work have been split into two parts. In Part 1 we will
discuss what quantum computers can do concerning convex optimization. We will give
quantum algorithms for a number of settings in convex optimization and hence upper
bound the quantum time and query complexity. In Part 2 we consider what quantum
computers cannot do concerning convex optimization. We prove quantum query lower
bounds for certain convex optimization problems and show the limitations of some of
the techniques introduced in Part 1.

In Chapter 2 we start by introducing some basic notation and terminology. We then
give a short introduction to the basics of quantum computation, followed by an
overview of useful quantum algorithmic techniques that will be used throughout this
thesis. These include amplitude amplification, phase estimation, amplitude estima-
tion, quantum gradient calculation and the block-encoding framework. We finish the
chapter with a general introduction to convex optimization, including some motiva-
tions for semidefinite programming and linear programming.

In Chapter 3 we consider convex optimization in a general setting. Here we have no
promise on the structure of the convex problem we are solving, and access to the prob-
lem is given in a black-box manner. We consider five types of black-box oracles for con-
vex sets coming from the classical literature [GLS88] and examine the quantum query
complexity of reductions between these oracles. In recent work Lee et al. [LSV18] gave
a classical algorithm that implements a separation oracle using Õ(n) queries to a mem-
bership oracle (here n denotes the dimension of the space the convex set lies in). We
build on and simplify their result, and show that there exists a quantum algorithm for
the same task that uses only Õ(1) queries, an exponential improvement over the best
known classical complexity. Due to a known reduction from optimization to separa-
tion [LSW15] we also get as a corollary that only Õ(n) quantum queries are enough for
optimization using a membership oracle, while the best known classical upper bound
is quadratic.

In Chapter 4 we introduce more structure into the convex optimization problems we
are solving by considering semidefinite programs (SDPs). As first observed by Brandão
and Svore [BS17], the intermediate solutions of certain classical SDP-solving frame-
works can be stored as quantum states on a logarithmic number of qubits, allowing
for a quadratic speedup in terms of the dimension n and the number of constraints m
of the SDP. We start by refining their techniques to bring down the original complexity
of Õ

(p
nms2γ32

)
(where s is the row and column sparsity of the input matrices and γ

is the inverse of a scale-invariant error parameter) to Õ
(p

nms2γ8
)
. We then introduce

multiple new techniques and ideas to bring down the complexity further and allow for
new input models as well. This results in a complexity of Õ

((p
n +p

m
)
αγ5

)
in the gen-

eral operator input model, where α= s for the classic sparse input model.
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In Chapter 5 we restrict to the even more specific set of linear programming (LP) prob-
lems. In particular we consider quantum algorithms for finding the Nash-equilibrium
of two-player zero-sum games. Via a reduction these algorithms also apply to linear pro-
gramming. The presented algorithms build on the techniques developed in Chapter 4,
but are more efficient than a direct application of the SDP-solvers to LPs. The proven
upper bound is Õ

(p
n +mγ3

)
when the LP has a dense constraint matrix, and Õ

(p
sγ3.5

)
when the LP has at most s non-zero entries in each row or column of its constraint ma-
trix.1 This is the first quantum LP-solver that takes the LP sparsity into account.

In Chapter 6 we give an overview of different techniques that can be used to prove
lower bounds on quantum query complexity. We start by introducing a general model
of query algorithms. After this the polynomial method by Beals et al. [BBCMW01] is
explained. We then state three different forms of the adversary method. The first is the
basic adversary method due to Ambainis [Amb00], the second is a variation on the first
method that allows us to consider the more general phase oracles, and the last method
is the general adversary method due to Høyer, Lee and Špalek [HLŠ07].

In Chapter 7 we return to the setting of Chapter 3 and prove query lower bounds on
the relations between the different black-box oracles for a convex set. We first prove
a classical lower bound of Ω(n) queries for implementing a separation oracle using
membership queries. This shows that our quantum algorithm from Chapter 3 gives an
exponential speedup over the best possible classical algorithm. We then ask whether
quantum computers can optimize faster using queries to a separation oracle. In the
setting where an interior point of the convex set is known in advance we prove an
Ω

(p
n

)
lower bound on the number of quantum queries needed. When no such point is

known, we are able to prove an Ω(n) lower bound, matching the classical upper bound
of O (n) from [LSW15]. This leaves as an open question whether convex optimization
can be sped up on a quantum computer when an interior point is known.

In Chapter 8 we consider a linear version of Simon’s problem. For a matrix A ∈ Fn×n
p

this problem asks to determine whether A is full-rank or not by using matrix-vector
product queries of the form x 7→ Ax. The study of this problem is motivated by the open
question from Chapter 7, since the real-valued version of this problem corresponds to a
convex optimization problem. Koiran et al. [KNP07] have shown that the original non-
linear version of Simon’s problem takes at least Ω(n) quantum queries. We modify their
proof to work when restricted to linear functions, and prove that the Ω(n) lower bound
still holds. Even though this is a stronger result, the proof becomes simpler in certain
parts.

In Chapter 9 we discuss the limitations of quantum LP and SDP-solvers. We start with
the limits of specific methods, including those used in Chapter 4 and Chapter 5. We

1This s is different from the s in the SDP case. LPs correspond to SDPs with diagonal input matrices,
so the row and column sparseness of the corresponding SDP is always 1.
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show that for many natural classes of problems the scale-invariant error parameter can
scale linearly with the number of variables and the number of constraints. Due to the
polynomial dependence of our methods on this parameter, this limits the number of
applications. Another limitation comes from the sparseness of the final solutions given
by the algorithms. These solutions have a number of non-zero entries that grows at
most linearly with the number of iterations of the algorithm. By showing that a solution
cannot be sparse, we can lower bound the number of iterations required. As a second
set of results we prove multiple query lower bounds on LP and SDP-solving in different
input models and parameter regimes.

1.3 | Papers
This dissertation is based on the following papers:

[AG18] J. van Apeldoorn and S. Gribling. “Simon’s problem for linear functions”.
2018. arXiv: 1810.12030v2.

[AG19a] J. van Apeldoorn and A. Gilyén. “Improvements in Quantum SDP-
Solving with Applications”. In: Proceedings of the 46th International Col-
loquium on Automata, Languages, and Programming (ICALP). Vol. 132.
Leibniz International Proceedings in Informatics (LIPIcs). 2019, pp.
99:1–99:15. arXiv: 1804.05058v1.

[AG19b] J. van Apeldoorn and A. Gilyén. “Quantum algorithms for zero-sum
games”. 2019. arXiv: 1904.03180v1.

[AGGW17] J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf. “Quantum SDP-
Solvers: Better upper and lower bounds”. In: Proceedings of the 58th IEEE
Symposium on Foundations of Computer Science (FOCS). 2017, pp. 403–
414. arXiv: 1705.01843v3.

[AGGW18] J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf. “Convex opti-
mization using quantum oracles”. 2018. Accepted to Quantum. arXiv:
1809.00643v3.
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Chapter2

Preliminaries

After listing the basic notation and terminology used in this thesis, we will introduce
the basic concepts from quantum computing that we will need. We then describe mul-
tiple algorithmic techniques that will be useful, which include amplitude amplifica-
tion, phase estimation, quantum gradient computation and the framework of block-
encodings. We finish this chapter with a discussion of some general concepts in convex
optimization.
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2.1 | Notation and terminology
Basic notation We use i2 =−1. We use square brackets [·] to denote the binary value
corresponding to the truth-value of a statement, e.g. [3 ≤ 5] = 1. Square brackets with a
positive integer in between them denote the set of positive integers up to and including
that point: [n] := {1,2, . . . ,n}. For sets B1, . . . ,Bn we use

∏n
i=1 Bi to denote the Cartesian

product B1×·· ·×Bn . For a set B we write P (B) for the power set of B . If b is a uniformly
random element from B , then we write b ∈R B . We abbreviate “such that” with “s.t.”. The
non-negative and positive real numbers are denoted by R≥0 and R>0, respectively. We
write Fp for the finite field with p elements. We let log(x) denote the base-2 logarithm.
The notation poly

(
x, y

)
is used for an arbitrary polynomial in terms of x and y , and

polylog
(
x, y

)
for an arbitrary polynomial in terms of log(x) and log

(
y
)
. We write δi j for

the Kronecker delta: δi j := [
i = j

]
. For a binary string b ∈ {0,1}n the notation |b| denotes

the Hamming weight (number of 1s) of b. For two binary strings x, y ∈ {0,1}n we write
x ⊕ y for their element-wise XOR, and we write x̄ for the element-wise negation of x.
When we say that an algorithm has precision ε or calculates a quantity with error ε, then
we mean additive error, unless stated otherwise. If an algorithm has error probability
at most 1/3 then we say it is a bounded-error algorithm, equivalently that the error
probability is bounded. Unless otherwise stated the error probability can always be
decreased to δ at the cost of an additional log(1/δ) factor in the complexity.

Linear algebra When the dimension is clear from context we use ei to denote the i th
standard basis vector (the vector with a single 1 in position i and zeros everywhere else)
and 1 to denote the all-ones vector. The matrix with a single 1 in position (i , j ) and zeros
everywhere else is denoted by Ei j . Let v, w be vectors and A,B be matrices. We write
v ≥ w if v is entrywise greater or equal to w . The kernel of A is denoted by ker(A), and
rank(A) denotes its rank. The Hadamard, or entrywise, product between two matrices is
denoted by A◦B . The tensor product between spaces, matrices or vectors is denoted by
⊗. The n-fold tensor product of A with itself is written as A⊗n . The direct sum of vector
spaces, matrices or vectors is denoted by ⊕. We write diag(v) for the diagonal matrix
with v on the diagonal. The inner product between real vectors v, w ∈ Rn is written as
〈v, w〉 := vT w . For a complex vector v or matrix M we write v† or M † to denote the
conjugate transpose. A Hilbert space is an inner product space that is complete with
respect to the metric coming from the inner product. A real matrix is called positive
semi-definite (psd) if it is symmetric and all eigenvalues are non-negative, we write
X º 0 for a positive semi-definite matrix X . If H is a Hermitian matrix, then we write
Spec(H) for its spectrum, i.e., the set of its eigenvalues. For a function f : R → R and
Hermitian matrix H we write f (H) for the matrix we get by applying f to the eigenvalues
of H while keeping the eigenvectors the same, i.e.,

f (H) :=U

 f (λ1)
. . .

f (λn)

U−1 where H =U

λ1
. . .

λn

U−1.
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Geometry We write ‖x‖p for the `p -norm of a vector x. If p = 2 then the subscript is
sometimes omitted. We write ‖A‖ for the operator norm of a matrix A, i.e., its largest
singular value:

‖A‖ := max
v 6=0

‖Av‖
‖v‖ .

We write ‖A‖tr for the trace norm of a matrix A, i.e., the `1-norm of the vector of singular
values. For a set C ⊆ Rn and r ≥ 0 we write Bp (C ,r ) for the set of points r -close to C in
the `p -norm, i.e.,

Bp (C ,r ) :=
{

x ∈Rn : ∃y ∈C s.t.
∥∥x − y

∥∥
p ≤ r

}
.

When C = {x} is a singleton set we abuse notation and write Bp (x,r ). We overload
notation by letting

Bp (C ,−r ) := {
x ∈Rn : Bp (x,r ) ⊆C

}
.

If p = 2 then the subscript is sometimes omitted. The set of interior points of C is
written as int(C ).

Functions Let f be a function. If f is a polynomial in terms of x, then degx

(
f
)

is
the degree of f as a polynomial in the variable x. If f only has one variable, then the
subscript is sometimes omitted. Let D,R be sets and let A ⊆ D . We say a function
f : A → R is a partial function on D . A function g : D → R is said to extend f if and
only if g (x) = f (x) for all x ∈ A. We write f ¹ g if g extends f . Let C ⊆ Rn . A function
f : C →R is called L-Lipschitz if there exists a constant L > 0 such that∣∣ f (y ′)− f (y)

∣∣≤ L
∥∥y ′− y

∥∥
2 for all y, y ′ ∈C .

Big-O notation We define O (·) as

f (x) =O
(
g (x)

)⇐⇒∃B ∈R,c ∈R>0 s.t. for all x > B : f (x) ≤ cg (x),

as usual. We define Ω(·) as

f (x) =Ω
(
g (x)

)⇐⇒ g (x) =O
(

f (x)
)

and
f (x) =Θ

(
g (x)

)⇐⇒ f (x) =O
(
g (x)

)
and f (x) =Ω

(
g (x)

)
.

Furthermore we use the following definition of Õ(·):

Õ
(

f (x)
)

:=O
(

f (x) ·polylog
(

f (x)
))

.

If a function depends polylogarithmically on additional variables that we also hide us-
ing the Õ(·) notation, then we write these as a subscript to the Õ(·):

Õa,b
(

f (x)
)

:=O
(

f (x) ·polylog
(
a,b, f (x)

))
.

We define Ω̃(·) and Θ̃(·) in a similar way as above.



12 Chapter 2

2.2 | Basics of quantum computing
Below we give an overview of some of the basic concepts in quantum computing that
will be used later. For a more complete introduction see for example the textbook by
Nielsen and Chuang [NC00] or the lecture notes by de Wolf [Wol19].

2.2.1 | Quantum states, Dirac notation and qubits
In this thesis we consider systems that have a finite number N of classical states. These
classical states often are denoted by |0〉, . . . , |N −1〉. In the classical world these states are
mutually exclusive. The quantum analogue of such a classical system can, however, be
in a superposition of states where each classical state |i 〉 is assigned a complex number
αi called its amplitude. We associate the quantum system with an N -dimensional
Hilbert space and the N classical states with the N standard basis vectors of that space
(also called the computational basis). A pure state of the quantum system is a unit
vector in this Hilbert space, which can be written as

∣∣φ〉= N−1∑
i=0

αi |i 〉 =

 α0
...

αN−1


where

∑N−1
i=0 |αi |2 = 1. The part of the amplitude corresponding to the argument of the

complex number, i.e., the part of the form e iθ is called a phase.
The notation

∣∣φ〉
is called a ket and comes from a system called Dirac notation. For

a column vector
∣∣φ〉

we write
〈
φ

∣∣ (called a bra) for the row vector which is its complex
conjugate. The inner product between states can then be written as

〈
φ

∣∣ψ〉
.

When two quantum systems with Hilbert spaces H1 and H2 are considered to-
gether then the state of the full system lives inside the space corresponding to the ten-
sor product of the two spaces: H1⊗H2. The basis states for this new space correspond
to the tensor products of the basis states of the separate spaces

|0〉⊗ |0〉, |0〉⊗ |1〉, |0〉⊗ |2〉, . . . , |1〉⊗ |0〉, . . .

For ease of writing we also write
∣∣φ〉∣∣ψ〉

for the tensor product between states
∣∣φ〉

and∣∣ψ〉
, and even

∣∣i , j
〉

for the tensor product between classical basis states |i 〉 and
∣∣ j

〉
. A

state in the combined space that can be written as a tensor product
∣∣φ1

〉⊗∣∣φ2
〉

is called
separable. A state that is not separable is called entangled.

The simplest non-trivial classical system is a bit. A bit has two states, |0〉 and |1〉. The
corresponding quantum system is called a qubit. As classical bits can be combined, so
can qubits be combined via tensor products to create larger systems. We often group
qubits in registers, a k-qubit register can be in any of 2k classical states. We sometimes
write |0n〉, or simply |0〉, for the n-qubit zero state.
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2.2.2 | Measurements
Since we ourselves live in the classical world we need some procedure to gain classical
information from a quantum state. This is done via measurements. A measurement
does not give us a classical description of the vector corresponding to a state, but is an
inherently probabilistic process. By measuring we gain some discrete knowledge about
the state. After the measurement the state collapses to the part of the original state that
agrees with this information (and is re-normalized).

The simplest type of measurement is a measurement in the computational basis.
Given a state

∣∣φ〉 = ∑N−1
i=0 αi |i 〉 a measurement in the computational basis yields out-

come i with probability |αi |2. After the measurement the state changes to |i 〉 and re-
peating the measurement will yield the same result. If only part of a state is measured
then the probability of an outcome is equal to the squared norm of the part of the state
consistent with that outcome. For example, consider the state

∣∣φ〉 = 1
2 |0〉|0〉+ 1

2 |0〉|1〉+
1p
2
|1〉|1〉. If the first register is measured, then the probability of getting outcome 0 is

|1/2|2 + |1/2|2 = 1/2. If we get outcome 0, then the state becomes 1p
2
|0〉|0〉 + 1p

2
|0〉|1〉.

Note that the normalization ensures that the probabilities sum to 1.
Measurements in the computational basis suffice for all quantum algorithms, how-

ever, for analysis it is sometimes useful to consider the more general projective measure-
ments. A projective measurement corresponds with a set of projectors P0, . . . ,Pk−1 with
the property that

∑k−1
i=0 Pi = I . The probability of getting outcome i when measuring

the state
∣∣φ〉

is equal to
∥∥Pi

∣∣φ〉∥∥2. After getting outcome i the state collapses to
Pi |φ〉
‖Pi |φ〉‖ .

The projective measurement {Ei i : i ∈ {0, . . . , N −1}} corresponds to a measurement in
the computational basis.

Finally, the most general type of measurement is a positive-operator valued mea-
surement (POVM). A POVM is given by a collection of positive semidefinite matrices
M0, . . . , Mk−1 with the property that

∑k−1
i=0 Mi = I . The probability of getting outcome i

when measuring
∣∣φ〉

is equal to
〈
φ

∣∣M ∣∣φ〉= Tr
(
Mi

∣∣φ〉〈
φ

∣∣).

2.2.3 | Unitaries and gates
Apart from measurements, which are non-linear and destructive, we can also apply
certain linear maps to transform states. Since a state should always remain normalized,
any linear map that we may apply to a state should maintain this property. This implies
that we are limited to unitary maps, i.e., those with eigenvalues on the complex unit
circle. In fact, the unitaries are exactly the maps that can be applied to a quantum state.
For a unitary U the inverse U−1 is equal to the conjugate transpose U †, which is also
unitary. This implies that quantum processes, apart from measurements, are reversible.
Unitaries do not change the inner product between states. Finally, it suffices to specify
their behavior on the computational basis states, since the behavior on superpositions
follows by linearity.

In physics the evolution of a system is often described by a Hamiltonian, which is a
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Hermitian matrix. The Hamiltonian H describes the energy of a quantum system, with
the expectation value of the energy being

〈
φ

∣∣H
∣∣φ〉

. If we start in a state
∣∣φ〉

and evolve
under H for time t then the state becomes e it H

∣∣φ〉
. Since all eigenvalues of H are real

the matrix e it H is a unitary. The reverse is also true, if U is a unitary then there exists a
Hamiltonian H such that e iH =U .

Although all unitaries can in principle be applied to a state, it is not always clear
how to do so efficiently. Similar to the classical concept of gates that apply a function
(often NOT, OR, or AND) to a small number of bits, we also have a notion of a quantum
gate that applies to a small number of qubits. Larger unitaries are then implemented
as a sequence of gates, with the gate count being the main complexity measure. The
following single-qubit gates are of special interest:

I :=
[

1 0
0 1

]
, X :=

[
0 1
1 0

]
, Z :=

[
1 0
0 −1

]
, H := 1p

2

[
1 1
1 −1

]
.

I is the identity and does not change the state, X corresponds to a classical NOT gate (it
flips the qubit it is applied to), and Z applies a phase of −1 to |1〉. Finally H is called the
Hadamard transform and transforms a basis state into a superposition:

H |0〉 = 1p
2

(|0〉+ |1〉) =: |+〉

H |1〉 = 1p
2

(|0〉− |1〉) =: |−〉

It can easily be seen that the Hadamard transform is its own inverse:

H H |0〉 = H
1p
2

(|0〉+ |1〉) = 1

2
(|0〉+ |1〉+ |0〉− |1〉) = |0〉,

and similar for |1〉. The cancelling of the two |1〉 parts of the state is called interference.
Note that a Z gate switches the |+〉 and |−〉 states, just like an X gate does for the |0〉
and |1〉 states. In fact X = H Z H and Z = H X H , since H corresponds with the basis
transform that maps the |0〉, |1〉 basis to the |+〉, |−〉 basis.

Although all these gates act only on one qubit, they can also be applied to a single
qubit of a larger quantum system. In that case we actually apply the unitary that is the
tensor product of a lot of identity gates and the single-qubit gate we want to apply.

Apart from single-qubit gates we also need a two-qubit gate, since otherwise the
qubits could not influence each other. The simplest two-qubit gate is the controlled-
NOT (C NOT ) gate. This gate applies an X gate to the second qubit when the first qubit
is in the state |1〉. As a matrix this can be written as

C NOT := |0〉〈0|⊗ I +|1〉〈1|⊗X = I ⊕X =
[

I 0
0 X

]
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.
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In fact it can be shown1 that any unitary can be implemented using only one-qubit
gates and C NOT gates, although this might require up to O (4n) gates for an n-qubit
unitary. When discussing the number of gates used to implement a quantum algorithm
we will count the number of two-qubit gates used. Sometimes it is easier to implement
a unitary when extra qubits, called ancilla qubits, are used. If this is done then we
often require the ancilla qubits to be returned to their original state in the end, since
otherwise unwanted entanglement could be created between the ancillas and the main
register. Any classical algorithm consisting of T classical gates can also be implemented
with Θ(T ) quantum gates (although more space might be needed to store intermediate
answers that will be used to make the circuit reversible).

Like the C NOT gate is a controlled version of the X gate, other unitaries can also
have controlled versions. In general a controlled version of the unitary U is

CU =
[

I 0
0 U

]
= |0〉〈0|⊗ I +|1〉〈1|⊗U .

Controlled gates allow us to delay measurements until the end of an algorithm, since
we can control the gates we would normally apply after a measurement on the fact that
the measured register is in a particular state.

2.2.4 | Oracles and QRAM
While the output of a quantum algorithms is given by a measurement, we have not
yet discussed the input. For an input string x ∈ {0,1}n a classical algorithm would make
calls to the memory to retrieve the bits of x. Similarly, a quantum algorithm can be given
access to a unitary, called an oracle, that encodes the string x. The simplest encoding is
called a standard oracle and acts as

Ox |i 〉|b〉 = |i 〉|b ⊕xi 〉

for i ∈ [n] and b ∈ {0,1}. Similarly for a function f that outputs values in {0,1}k , a
standard oracle for that function is a unitary that maps

∣∣y
〉∣∣b〉

to
∣∣y

〉∣∣b ⊕ f (y)
〉

for y ∈
dim

(
f
)

and b ∈ {0,1}k .
There is also a different type of oracle called a phase oracle. For a string x ∈ {0,1}n a

phase oracle acts as

Ox,±|i 〉 = (−1)xi |i 〉
for i ∈ [n]. A phase oracle for a string x can be constructed from a standard oracle by
applying the standard oracle Ox with |−〉 in the second register:

Ox |i 〉|−〉 = Ox |i 〉|0〉−Ox |i 〉|1〉p
2

= |i 〉|xi 〉− |i 〉|x̄i 〉p
2

= (−1)xi
|i 〉|0〉− |i 〉|1〉p

2
= (−1)xi |i 〉|−〉,

1See for example [NC00, Sec. 4.5].
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which is exactly the result of a query to Ox,±. In fact, we can implement a conditional
phase oracle, since applying the standard oracle with |+〉 in the second register leaves
the state the same.

The standard quantum oracle described above models problems where there is a
single correct answer to a query. When there are multiple good answers (for instance,
different good approximations to the correct value) and the oracle is only required to
give a correct answer with high probability, then we will work with the more liberal
notion of relational quantum oracles.

Definition 2.1 : Relational quantum oracle Let F : X → P (Y ) be a function, such
that for each x ∈ X the subset F (x) ⊆ Y is the set of valid answers when x is queried. A
relational quantum oracle for F which answers queries with success probability ≥ 1−ρ,
is a unitary that for all x ∈ X maps

U : |x〉|0〉|0〉 7→ ∑
y∈Y

αx,y
∣∣x〉∣∣y

〉∣∣ψx,y
〉

,

where
∣∣ψx,y

〉
denotes some normalized quantum state and

∑
y∈F (x)

∣∣αx,y
∣∣2 ≥ 1−ρ. Thus

measuring the second register of U |x〉|0〉|0〉 in the computational basis gives a valid an-
swer to the query x with probability at least 1−ρ.

This definition is very natural for cases where the oracle is implemented by a quan-
tum algorithm that produces a valid answer with probability ≥ 1−ρ.

For standard oracles we can assume that we can apply their inverse as well, since
they are their own inverse, and we may assume that we can apply them controlled as
well, since they act like identity when the second register is in a uniform superposition.
However, for other oracles this is not always the case. When we additionally assume
access to the inverse of an oracle or a controlled version of an oracle then this will al-
ways be stated. For oracles coming from quantum algorithms, and for quantum algo-
rithms in general, it is natural to assume both since we can always invert the quantum
algorithm by applying the inverses of the gates in inverse order and we can make the
algorithm controlled by making all the gates controlled.2

Finally we return to the classical notion of random access memory, or RAM. In clas-
sical works it is often assumed that a read or write operation to the memory takes O (1)
time, or at most ÕK (1) time for a memory of size K . However, implementing a RAM
using gates takes Ω(K ) gates. This discrepancy comes from the fact that a classical RAM
can be implemented in a highly parallelized manner. Whether an equivalent model
for quantum computing is reasonable is an ongoing debate. To make the comparison
with classical algorithms fair we often assume access to some form of quantum mem-
ory. There are two forms to distinguish. The first is quantum-read/classical-write RAM
(QCRAM), which allows us to store classical data coming from measurements and al-
lows the quantum algorithm to make oracle calls to this data. The second form is a full

2Making all the gates controlled does increase the number of qubits per gate, but these larger gates
can be implemented with a constant number of smaller gates.
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QRAM, which allows the quantum computer to swap a quantum register it is working
on with a quantum register stored in memory as follows:

QR AM : |i , x,r1, . . . ,rK 〉 7→ |i ,ri ,r1, . . . ,ri−1, x,ri+1, . . . ,rK 〉,

where the registers that initially contain r1, . . . ,rK are only accessible through this gate.
Either of these quantum RAMs can be implemented using Õ(K ) two-qubit gates, where
K is the size of the memory.

2.2.5 | Mixed states
In some settings it is natural to consider quantum states that come from a classical
probability distribution. An example of this is when a state is measured and the mea-
surement result is ignored, or when we only have access to a few of the qubits of an
entangled state. A mixed state is a probability distribution over pure states. A mixed
state is represented by a density matrix, also called a density operator, which is a trace-
normalized positive semidefinite matrix. A pure state

∣∣φ〉
corresponds to the rank-one

mixed state
∣∣φ〉〈

φ
∣∣. If for i ∈ [r ] we have the state

∣∣φi
〉

with probability pi , then the cor-
responding density matrix is the linear combination of the individual rank-one density
matrices:

ρ =
r∑

i=1
pi

∣∣φi
〉〈
φi

∣∣,
where pi ≥ 0 and

∑r
i=1 pi = 1.

For every density matrix there is always a decomposition into pure states, although
this decomposition is not always unique. For an N -dimensional density operator such
a decomposition requires at most N pure states. Unitaries act on density operators by
conjugation: ρ is mapped to UρU † under U . POVMs naturally extend to mixed states
as well by averaging the probability over the set of pure states and using the linearity of
the trace. Let {Mi } be a POVM:

Pr
[

j is measured in state ρ
]= r∑

i=1
pi Pr

[
j is measured in state

∣∣φi
〉]

=
r∑

i=1
pi Tr

(
M j

∣∣φi
〉〈
φi

∣∣)
= Tr

(
M j

r∑
i=1

pi
∣∣φi

〉〈
φi

∣∣)
= Tr

(
M jρ

)
.

The idea of measuring one register and ignoring the result gives rise to the definition of
the partial trace. Let

M = MA ⊗MB



18 Chapter 2

be a matrix on H A ⊗HB , then the partial trace over B is

TrB (M) = MATr(MB ),

which is a matrix on H A. We define the partial trace for matrices that are not a tensor
product by linearly extending this definition. We say B is traced out. A pure state∣∣φ〉 ∈ H A ⊗HB is called a purification of a mixed state ρ on H A if tracing out B from∣∣φ〉〈

φ
∣∣ results in ρ.

Sometimes we care only about a certain part of a mixture, for which the correspond-
ing matrix can be of trace less than or equal to one. This leads to the following defini-
tion.

Definition 2.2 : Subnormalized density operators & Purification A subnormalized
density operator % is a psd matrix of trace at most 1. A purification of a subnormalized
density operator % is a 3-register pure state such that tracing out the third register and
projecting on the subspace where the second register is |0〉 yields %.

We write “%” and “ς” for subnormalized density operators to distinguish them from
normalized density operators, for which we write “ρ” and “σ”.

2.2.6 | A first example of an algorithm: the Deutsch-Jozsa algorithm
Consider the following problem:

Let n be a positive integer and N := 2n . Let x ∈ {0,1}N be such that

– either |x| = N /2, in which case we call x balanced,

– or |x| ∈ {0, N }, in which case we call x constant.

Decide whether x is balanced or constant.

Clearly a classical deterministic algorithm would have to read at least N /2+ 1 bits of
x to solve the problem, since after seeing N /2 bits that are 1, we still cannot be sure
whether the input is balanced or constant. However, Deutsch and Jozsa showed [DJ92]
that there exists a quantum algorithm that solves this problem with certainty using only
a single query! First note that the Hadamard transform can be written as

H |b〉 = 1p
2

∑
j∈{0,1}

(−1)b· j ∣∣ j
〉

.

This means that applying a Hadamard gate to each of n qubits acts as

H⊗n |i 〉 = 1p
N

∑
j∈{0,1}n

(−1)〈i , j〉∣∣ j
〉

,

where
〈

i , j
〉

is the inner product between the binary representations of i and j . Now,
consider the following quantum algorithm that uses only one query:
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1. Start in the |0〉 state on n qubits.

2. Apply the Hadamard transform to each of the qubits, creating a uniform super-
position

H⊗n
∣∣0n〉= 1p

N

N−1∑
i=0

|i 〉.

3. Apply a phase query Ox,± to get the state

1p
N

N−1∑
i=0

(−1)xi |i 〉.

4. Apply the Hadamard transform again to all the qubits:

1

N

N−1∑
i=0

(−1)xi
N−1∑
j=0

(−1)〈i , j〉∣∣ j
〉= 1

N

N−1∑
j=0

N−1∑
i=0

(−1)xi+〈i , j〉∣∣ j
〉

.

5. Measure the state in the computational basis and output “constant” if and only if
the outcome is the all-zero state.

The amplitude of the all-zero state before the measurement is

1

N

N−1∑
i=0

(−1)xi+〈i ,0〉 = 1

N

N−1∑
i=0

(−1)xi =


0 if x is balanced

1 if x is all zeros

−1 if x is all ones.

Hence measuring will give the all-zero state as an outcome if and only if x is constant.

2.3 | Useful quantum algorithmic techniques
Below we will give an overview of some of the algorithmic techniques used in the first
part of this thesis.

2.3.1 | Amplitude amplification and Grover search
In classical randomized algorithms there are often outcomes that we deem “good” and
outcomes that we deem “bad”. If there is a probability p of obtaining a good outcome
from a randomized algorithm, then we can repeat the algorithm 1/p times to obtain a
constant success probability. In a similar fashion, for a state coming from a quantum al-
gorithm we can amplify the amplitude on a certain part of the state, without measuring
and retrying. In fact, we gain a quadratic speedup:
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Lemma 2.3 : Amplitude amplification [BHMT02] Let U be a unitary that maps |0〉 to
the state ∣∣ψ〉= cos(θ)

∣∣φ0
〉∣∣0〉+ sin(θ)

∣∣φ1
〉∣∣1〉

for some (small) angle θ. Let G := U (2|0〉〈0|− I )U †(I ⊗Z ) be the unitary that adds a
phase of −1 first to the states ending in a |1〉 and then to the states orthogonal to

∣∣ψ〉
.

Then G is a rotation by angle 2θ in the subspace spanned by
∣∣φ0

〉∣∣0〉
and

∣∣φ1
〉∣∣1〉

. In
particular, after k applications of G to

∣∣ψ〉
we obtain the state∣∣ψ′〉= cos((2k +1)θ)

∣∣φ0
〉∣∣0〉+ sin((2k +1)θ)

∣∣φ1
〉∣∣1〉

.

If we would like to obtain the “good” state
∣∣φ1

〉
and would not like to obtain the

“bad” state
∣∣φ0

〉
, then we could do so with high probability by picking k such that

(2k + 1)θ ≈ π/2. If we would instead measure
∣∣ψ〉

directly then this would give us a
probability p = sin(θ)2 of finding the good state and hence a classical prepare-and-
retry strategy would need an expected number of 1/p tries (and hence applications

of U ). However, using amplitude amplification we see that k = ⌈(
π

2θ −1
)
/2

⌉ = O
(

1p
p

)
applications of U and U † suffice.

Example: Grover search Consider the following problem, called the search problem:

Let x ∈ {0,1}n . Find an i such that xi = 1 or conclude that no such i exists.

Assume that the number of 1s in x is known and call this number t . Classically Ω(n/t )
randomized queries are needed to solve this problem.

Let U be a unitary that prepares a uniform superposition 1p
n

∑n−1
i=0 |i 〉 (starting from

|0〉), and queries a binary oracle for x to get the state

1p
n

n−1∑
i=0

|i 〉|xi 〉 =
√

t

n

(
1p

t

∑
i :xi=1

|i 〉
)
|1〉+

√
n − t

n

(
1p

n − t

∑
i :xi=0

|i 〉
)
|0〉.

Using k =O
(p

n/t
)

calls to U and U † (and hence so many queries) we can with proba-
bility at least 2/3 obtain the state

1p
t

∑
i :xi=1

|i 〉.

Measuring this state results in a solution to the search problem.
This search algorithm was first given by Grover in 1996 [Gro96]. In fact, the more

general algorithm for amplitude amplification was inspired by Grover’s algorithm.

2.3.2 | Phase estimation
Sometimes we will have a clear description and understanding of the unitaries that we
apply to quantum states, but it is also common that we do not have full knowledge
about them. In fact, gaining knowledge about a certain unitary might exactly be the
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problem we are trying to solve, or at least help us solve the problem. A natural question
to ask is what the eigenvalues (or the phases of the eigenvalues) and eigenvectors of a
unitary are.

Lemma 2.4 : Phase estimation [Kit95][CEMM98] Let U be a unitary and
∣∣ψ〉

be an
eigenvector of U with eigenvalue e i2πθ, for −1/2 < θ ≤ 1/2. Let k ∈ N and let V be a
unitary that acts on two registers as V

∣∣ j
〉∣∣φ〉 = ∣∣ j

〉
U j

∣∣φ〉
for all j ≤ k. Then there is

a bounded-error quantum algorithm that on input
∣∣ψ〉

approximates θ up to additive
error ε using a single application of V for k = O

(1
ε

)
. If θ can be described exactly with

t bits of precision then the algorithm works with probability 1, k = 2t suffices, and the
algorithm always outputs θ.

Phase estimation uses a quantum algorithm called the quantum Fourier trans-
form (QFT). This is a unitary that acts on an N -dimensional Hilbert space as

QF TN
∣∣ j

〉= 1p
N

N−1∑
k=0

e i2π j k/N |k〉.

If N = 2n then this unitary (and its inverse) can be implemented using O
(
n2

)
two-qubit

gates, or approximated very closely using O
(
nlog(n)

)
gates.

Assume that θ = j
N . Phase estimation can be implemented by setting up a uniform

superposition over 0, . . . , N − 1, querying V to obtain phases and then applying the
inverse quantum Fourier transform:

∣∣0〉∣∣ψ〉 7→ 1p
N

N−1∑
k=0

∣∣k〉∣∣ψ〉
7→ 1p

N

N−1∑
k=0

|k〉U k
∣∣ψ〉

= 1p
N

N−1∑
k=0

|k〉
(
e i2π j /N

)k ∣∣ψ〉
= 1p

N

N−1∑
k=0

e i2πk j /N
∣∣k〉∣∣ψ〉

7→ ∣∣ j
〉∣∣ψ〉

.

Example: Amplitude estimation [BHMT02] Let U ,
∣∣ψ〉

and G be as in Lemma 2.3.
One of the problems with amplitude amplification as presented in the last section is
that we may not know θ, and hence we may not know how many times we would like
to apply G . Assume that 0 ≤ θ <π, can we compute θ?

Note that G is a rotation by angle 2θ in the 2-dimensional subspace spanned by∣∣φ0
〉∣∣0〉

and
∣∣φ1

〉∣∣1〉
, hence the eigenvalues of G are e i2θ and e−i2θ. We also know that∣∣ψ〉

is some linear combination of the eigenvectors of G , i.e.,∣∣ψ〉=β0|ζ0〉+β1|ζ1〉
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for |ζ0〉 and |ζ1〉 the eigenvectors of G in the 2-dimensional subspace. Assume for sim-
plicity that θ/π (and hence −θ/π) can be described by k bits exactly, then phase esti-
mation on G with input

∣∣ψ〉
gives us

β0|ζ0〉|θ/π〉+β1|ζ1〉|−θ/π〉.
Clearly measuring the second register suffices to learn θ. Note that we learned θ, and
hence sin(θ), up to additive error ε using O

(1
ε

)
applications of G (and hence of U and

U †). If we would simply have measured
∣∣ψ〉

many times and used a classical estimate

then this would have required Ω
(

1
ε2

)
preparations of

∣∣ψ〉
.

2.3.3 | Quantum gradient computation
Many optimization algorithms use the gradient of a function in order to minimize that
function. In some cases we have an explicit description of the gradient of a function,
but often we do not. A natural question is whether it is possible to approximate the
gradient using only black-box access to the function. In general if f : Rn → R then a
classical algorithm will need at least Θ̃δ(n) queries to a black-box oracle for f in order
to approximate the gradient up to error δ in the `∞-norm. In 2005 Jordan proposed a
quantum algorithm that can do better when f is close to a linear function [Jor05]. We
will need the following definition:

Definition 2.5 : Hyper-grid For k ∈ N we define the following discretization of the
interval (−1/2,1/2):

Gk :=
{

j

2k
− 1

2
+2−k−1 : j ∈

{
0, . . . ,2k −1

}}
⊂ (−1/2,1/2).

Similarly we define the n-dimensional hyper-grid Gn
k :=∏n

i=1 Gk .

Note that an element of Gn
k can be represented using n ×k (qu)bits. Basically, Jordan’s

algorithm sets up a uniform superposition over all grid points, applies a “phase query”
to f , and then an inverse quantum Fourier transform over each coordinate. If f (x) ≈
c + 〈

g , x
〉

then the phase of e i f (x) coming from a query is approximately e ic ∏n
i=1 e igi xi ,

where e ic is a global phase that we can ignore. The phases e igi xi = (
e igi

)xi can be dis-
tributed over the n registers (one register for each Gk ). Jordan’s algorithm therefore can
be viewed as n simultaneous applications of phase estimation, where one phase query
to f can be used to run all applications of phase estimation simultaneously. A careful
analysis of Jordan’s algorithm was made by Gilyén, Arunachalam and Wiebe [GAW19].
Their result can be combined with a simple reduction from a standard oracle to a phase
oracle [AGGW18] to obtain the following lemma.

Lemma 2.6 : [GAW19, Thm. 14, Thm. 21][AGGW18, Cor. 15] Let δ,B ,r ∈ R>0, c ∈
R, ρ ∈ (0,1/3]. Let x0, g ∈ Rn with

∥∥g
∥∥∞ ≤ B

r . Let m := ⌈
log2

( B
28πδ

)⌉
and suppose f :(

x0 + rGn
m

)→R is such that ∣∣ f (x0 + r x)−〈
g ,r x

〉− c
∣∣≤ δ (2.1)
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for 99.9% of the points x ∈Gn
m . Then we can compute a vector g̃ ∈Rn such that

Pr

[∥∥g̃ − g
∥∥∞ > 16 ·42πδ

r

]
≤ ρ,

with either of the following complexities:

• Let f̃ be such that f̃ (z) can be described in O
(
log(B/δ)

)
bits and that

∣∣ f̃ (z)− f (z)
∣∣≤

δ for all z ∈ (
x0 + rGn

m

)
. Then O

(
log

(
n
ρ

))
queries to a standard binary quantum

oracle U for f̃ on Gn
m and to the inverse U †, and gate complexity

O

(
nlog

(
n

ρ

)
log

(
B

δ

)
log log

(
n

ρ

)
log log

(
B

δ

))
suffice.

• Alternatively, O
(
log

(
n
ρ

))
queries to a phase oracle O for f on Gn

m acting as O|x〉 =
e i 1

42δ f (x0+r x)|x〉, and gate complexity

O

(
nlog

(
n

ρ

)
log

(
B

δ

)
log log

(
n

ρ

)
log log

(
B

δ

))
suffice.

• Or, if range
(

f
) = [0,1], then O

(
1
δ log

( 1
δ

)
log

(
n
ρ

))
queries to a probability oracle act-

ing as

Op |x〉|0〉|0〉 = |x〉
(√

f (x)
∣∣0〉∣∣ψ0

〉+√
1− f (x)2

∣∣1〉∣∣ψ1
〉)

,

and gate complexity

O

(
1

δ
log

(
1

δ

)
log

(
n

ρ

)
+nlog

(
n

ρ

)
log

(
B

δ

)
log log

(
n

ρ

)
log log

(
B

δ

))
suffice.

This approach for binary oracles can in fact also be extended to relational quantum
oracles, see the appendix of [AGGW18] for details.

Example: Estimating a whole distribution Let p be a probability distribution over
n elements and let U be a unitary that creates this distribution as a quantum state:

U |0〉 =
n∑

i=1

p
pi

∣∣i〉∣∣ψi
〉

,

where the
∣∣ψi

〉
are arbitrary states. Amplitude estimation can be used to estimate one

of the pi up to precision δ using only O
( 1
δ

)
applications of U and U †. However, if we
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would want to estimate all the pi ’s then simply repeating this procedure would give a
rather bad bound of O

(n
δ

)
queries.

Now consider the function f (x) = 〈
p, x

〉
. Clearly ∇x f = p and hence a δ-precise

estimate of the gradient in `∞-norm would give the desired result. We can implement
a probability oracle for f (x) when x ∈ B∞

(1
2 1, 1

2

)
by querying U and then rotating de-

pending on x:

|x〉|0〉|0〉 7→ |x〉
n∑

i=1

p
pi |i 〉|0〉

7→ |x〉
n∑

i=1

p
pi |i 〉

(p
xi |0〉+

√
1−xi |1〉

)
= |x〉

(
n∑

i=1

p
pi xi |i 〉|0〉+

n∑
i=1

p
pi −pi xi |i 〉|1〉

)

= |x〉
(√〈

p, x
〉( n∑

i=1

√
pi xi〈
p, x

〉 |i 〉)|0〉+ (. . . )|1〉
)

.

Hence, by the last bullet of Lemma 2.6, O
(

1
δ

log
(

n
ρ

)
log

( 1
δ

))
queries suffice to estimate p

up to `∞-norm error δ with error probability ρ.

2.3.4 | Block-encodings
Many problems in computer science and machine learning involve linear algebra. Ex-
amples include solving a linear system, solving the least square problem, and many
forms of image transformation. A natural question to ask is whether we can use the
inherent linear nature of quantum mechanics to construct fast quantum algorithms for
these tasks. It seems natural to encode vectors as the amplitudes of quantum states and
then transform these using a quantum algorithm. One problem we need to overcome
for such an approach is the limitation that we can only apply unitaries to quantum
states, and we cannot apply general matrices. We can however embed a general matrix
in one part of a unitary. This leads to the following definition:

Definition 2.7 : Block-encoding [LC16; GSLW19] Suppose that A is a 2w -dimensional
matrix, α ∈R>0, ε ∈R>0 and k ∈N, if for an (a +w)-qubit unitary U we have∥∥A−α

(〈0|⊗a ⊗ I
)
U

(|0〉⊗a ⊗ I
)∥∥≤ ε,

then we call U an (α, a,ε)-block-encoding of A.

Roughly speaking this means that A is represented by a unitary of the form

U ≈
[

A/α ·
· ·

]
where each “·” can be an arbitrary matrix.
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A block-encoding allows us to apply A to a state in a certain way, even if A is not a
unitary. In particular, if we would like to apply A to

∣∣ψ〉
then we could add an ancilla

qubit that starts in the zero state, and apply U to get

U
∣∣ψ〉∣∣0〉= 1

α
A

∣∣ψ〉∣∣0〉+ (. . . )|⊥〉

where 〈0|⊥〉 = 0. Hence by post-selecting on the |0〉 state being in the second register,
or by amplifying this part of the state, we can obtain the state

A
∣∣ψ〉∥∥A
∣∣ψ〉∥∥ .

Since unitaries are also matrices, we will sometimes call a unitary a (1, a,ε)-block-
encoding of another unitary if it uses a ancillary qubits and is an ε-approximation in
the operator norm. Note that every unitary is a (1,0,0)-block-encoding of itself.

Of course this all raises the question whether block-encodings can easily be imple-
mented. As it turns out many natural input models for matrices can be used to imple-
ment block-encodings. For example when a matrix is given via sparse matrix access,
via Hamiltonian simulation, as a density operator or as a measurement then we can ef-
ficiently implement a block-encoding of the matrix as well. We will discuss this in more
depth in Chapter 4.

Block-encodings can be multiplied in the natural way, but they can also be added
together if we have access to a controlled version of the block-encoding. This can
be done using the linear combination of unitaries lemma as proven by [BCK15]. We
consider a slightly more general version of their result, for which we first define State-
preparation pairs:

Definition 2.8 : State-preparation pair Let b,m ∈ N be such that 2b ≥ m. Let y ∈ Cm ,
and β≥ ∥∥y

∥∥
1. The pair of unitaries (PL ,PR ) is called a

(
β,b,ε

)
-state-preparation pair for

y if PL|0〉⊗b =∑2b−1
j=0 c j

∣∣ j
〉

and PR |0〉⊗b =∑2b−1
j=0 d j

∣∣ j
〉

such that
∑m−1

j=0

∣∣∣β ·
(
c∗j d j

)
− y j

∣∣∣≤ ε

and for all j ∈ m, . . . ,2b −1 we have c∗j d j = 0. A symmetric state-preparation pair also
satisfies c j = d j for all j ∈ 0, . . . ,m −1.

As we will show below, the naming of such a pair is not a coincident, a state-
preparation pair can be used to prepare a state with amplitudes that are proportional
to the y j . Consider the unitary

(
I ⊗P †

L

)
COPY

(
I ⊗PR

)
where COPY copies a computational basis state in the second register to the first reg-
ister. Now, if ε= 0 then applying this unitary to the all-zero state, and post-selecting on



26 Chapter 2

the second register being zero, gives

(I ⊗〈0|)(I ⊗P †
L

)
COPY

(
I ⊗PR

)
(|0〉⊗ |0〉)

=
(

I ⊗
2b−1∑
i=0

c∗i 〈i |
)

COPY

(
|0〉⊗

2b−1∑
j=0

d j
∣∣ j

〉)

=
(

I ⊗
2b−1∑
i=0

c∗i 〈i |
)(

2b−1∑
j=0

d j
∣∣ j

〉⊗ ∣∣ j
〉)

=
2b−1∑
i=0

2b−1∑
j=0

c∗i d j
∣∣ j

〉⊗〈
i
∣∣ j

〉
=

2b−1∑
j=0

c∗j d j
∣∣ j

〉
=

2b−1∑
j=0

y j /β
∣∣ j

〉
.

Hence this unitary is a block-encoding of a matrix that has the vector y/β in its first
column.

Lemma 2.9 : Linear combination of block-encodings Let A = ∑m−1
j=0 y j A j be a w-

qubit operator and ε ∈ R>0. Suppose that (PL ,PR ) is a
(
β,b,ε1

)
-state-preparation pair

for y,

W =
m−1∑
j=0

U j ⊗
∣∣ j

〉〈
j
∣∣+(

I2w+a ⊗
(

I2b −
m−1∑
j=0

∣∣ j
〉〈

j
∣∣))

is an w +a +b qubit unitary such that for all j ∈ 0, . . . ,m we have that U j is an (1, a,ε2)-
block-encoding of A j . Then we can implement a

(
β, a +b,ε1 +βε2

)
-block-encoding of A,

with a single use of W, PR and P †
L .

Proof. With a calculation similar to the one for state-preparation pairs we can see that

W̃ =
(
I2w ⊗ I2a ⊗P †

L

)
W

(
I2w ⊗ I2a ⊗PR

)
is a

(
β, a +b,ε1 +βε2

)
-block-encoding of A.

The linear combination of block-encodings lemma, combined with taking the pow-
ers of unitaries by repeatedly applying them, allows us to create a block-encoding of a
polynomial applied to a matrix. This in turn allows us to implement approximations
of smooth functions applied to matrices by (for example) implementing a truncated
Taylor expansion of the function. We give an example of how this can be useful below.
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Example: Hamiltonian simulation Possibly the most useful application of quantum
computing is simulating quantum mechanics. Since quantum systems evolve via a
unitary of the form e iH for a Hermitian Hamiltonian H , we would like to simulate this
type of dynamics. We will now give a rough sketch of how this could be done. Let us
assume that we can apply a controlled version of a (1,0,0)-block-encoding of H , which
is denoted by V , and let us assume that ‖H‖ ≤ 1/2. Consider the function f (x) = e ix

from the reals to the complex unit circle. Then clearly f (H) is the unitary corresponding
to e iH . We can write f (x) as a Taylor series

f (x) = e ix =
∞∑

k=0

ik

k !
xk .

On the interval [−1/2,1/2] we can approximate f up to additive error ε by truncating
the Taylor series after p = max

{
2log(1/ε),2e

}
terms:∣∣∣∣∣e ix −

p∑
k=0

ik

k !
xk

∣∣∣∣∣=
∣∣∣∣∣ ∞∑
k=p+1

ik

k !
xk

∣∣∣∣∣
≤

∞∑
k=p+1

∣∣∣∣xk

k !

∣∣∣∣
≤

∞∑
k=p+1

( e

2k

)k

≤
∞∑

k=p+1

(
e

2p +2

)k

=
(

e

2p +2

)p+1 1

1− e
2p+2

≤ ε.

Also note that
∑p

k=0

∣∣∣ ik

k !

∣∣∣≤ e.

Now let (PL ,PR ) be an (e,
⌊

log
(
p +1

)⌋
,0)-state-preparation pair for the (p + 1)-

dimensional vector y with coefficients yk = ik

k ! (such a pair can efficiently be imple-
mented). Now we use the linear combination of block-encodings lemma with Ui = V i

to implement an (e,0,ε)-block-encoding of e iH .
The following more general Hamiltonian simulation theorem is a corollary of the

results of [LC16, Thm. 1]. For a detailed proof see the work of Chakraborty, Gilyén and
Jeffery [CGJ18].

Theorem 2.10 : [LC16] Suppose that U is an (α, a,ε/|2t |)-block-encoding of the Hamil-
tonian H. Then we can implement an ε-precise Hamiltonian simulation unitary V
which is an (1, a+2,ε)-block-encoding of e it H , with O

(|αt |+ log(1/ε)
)

uses of controlled-
U and its inverse and with O

(
a|αt |+alog(1/ε)

)
two-qubit gates.
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Finally we note that for real-valued polynomials that are bounded on [−1,1] we can
directly apply the following lemma in order to implement the polynomial applied to a
block-encoding.

Lemma 2.11 : [GSLW19, Thm. 56] Suppose that U is an (α, a,ε)-block-encoding of a
Hermitian matrix A, δ > 0 is a precision parameter, and P ∈ R[x] is a degree-d polyno-
mial satisfying that

(i) for all x ∈ [−1,1] : |P (x)| ≤ 1
2 , or

(ii) for all x ∈ [−1,1] : |P (x)| ≤ 1 and |P (x)| = |P (−x)|.

Then there is a quantum circuit Ũ , which is an (1, a + 2,4d
p
ε/α+ δ)-block-encoding

of P (A/α), and which consists of d applications of U and U † (and in item (i) a single
application of controlled-U and controlled-U †), and O ((a +1)d) other one- and two-
qubit gates. Furthermore, we can compute the gates of this circuit on a classical computer
in time O

(
poly

(
d , log(1/δ)

))
.

2.4 | Basics of convex optimization
Optimization is a fundamental area in mathematics and computer science, with
many real-world applications. One of the most successful continuous optimization
paradigms is convex optimization. Below we give a short introduction to some basic
concepts in convex optimization. We start with a look at general convex optimization
problems. After this we consider two specific classes of convex optimization prob-
lems: linear programs and semidefinite programs. For a more in-depth look at convex
optimization we recommend the book Convex optimization by S. Boyd and L. Vanden-
berghe [BV04].

2.4.1 | General convex optimization
Let us start by defining the k-dimensional simplex as the set

∆k =
{

x ∈Rk : ‖x‖1 = 1,0 ≤ xi ≤ 1∀i ∈ [k]
}

.

A convex combination of a set of points is a linear combination of those points where
the vector of coefficients comes from the simplex.

A set C ⊆ Rn is called a convex set if every convex combination of points in the set
also lies in the set, or equivalently, if for all points x, y ∈ C and all λ ∈ [0,1] the point
λx + (1−λ)y also lies in C . Some examples of convex sets are:

• The empty set is convex, as is every singleton set, and so is the whole of Rn .

• Affine subspaces are convex, as are half-spaces.
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• The convex hull of a set of points, which consists of all convex combinations of
the points, is convex.

• The set of positive semidefinite matrices is convex.

• The intersection of convex sets is convex.

• The Cartesian product of convex sets is again convex.

A function f : C → R is called a convex function if the region above the graph of f
(called the epigraph) is convex, or equivalently, if for all x, y ∈C we have

f
(
λx + (1−λ)y

)≤λ f (x)+ (1−λ) f (y).

A function f is called concave if − f is convex. Some examples of convex functions are:

• Linear functions, which follows directly from the definitions.

• Norms, which follows from the triangle inequality.

• The max function, and also the log-sum-exp function log
(∑

i exi
)

which is a
smooth approximation of the max.

• The log(det X ) for matrices X ∈Rn×n .

• The composition of two convex functions is again convex.

In general a convex optimization problem asks to minimize a convex function f (x)
over a convex set C (or maximize a concave function):

inf
x∈C

f (x).

Here f is called the objective function or simply the objective. We call the value of the
infimum the optimal value of the problem, and an x that attains this value is called an
optimizer. We often write x∗ for such an optimizer if the infimum is attained.

An important characteristic of convex optimization problems is that local minima
are also global minima. This means that optimization techniques may be somewhat
greedy when improving their solutions, and that by improving the solution locally we
will eventually get close to a global minimizer (if one exists). Of course this does not
mean that such an algorithm will be efficient in finding a solution.

Instead of only considering f we may also consider its derivatives. Of particular
interest is the first derivative, the gradient, since this tells us in which direction f de-
creases most. Since f does not need to have a derivative at every point of the domain
we have the following more general notion of a subgradient.



30 Chapter 2

Definition 2.12 : Subgradient Let C ⊆ Rn be convex and let x be an element of the
interior of C . For a convex function f : C → R we denote by ∂ f (x) the set of subgradients
of f at x, i.e., those vectors g satisfying

f (y) ≥ f (x)+〈
g , y −x

〉
for all y ∈C .

Note that in the above definition ∂ f (x) 6= ; due to convexity and that if ∇ f (x) exists,
then ∂ f (x) = {∇ f (x)

}
.

If f : C → R is L-Lipschitz, then for any x in the interior of C and any g ∈ ∂ f (x) we
have

∥∥g
∥∥ ≤ L, as follows. Consider a y ∈ C such that y − x = αg for some α > 0. Then

since g is a subgradient of f at x we have

α
∥∥g

∥∥2 = 〈
g , y −x

〉≤ f (y)− f (x) ≤ L
∥∥y −x

∥∥= αL
∥∥g

∥∥, (2.2)

and therefore
∥∥g

∥∥≤ L.
An important property of convex sets is that any point outside of the set can be

separated from the set by a separating hyperplane. Formally this means that for all
x ∉C there exists a g ∈Rn such that

∥∥g
∥∥= 1 and〈

y, g
〉≤ 〈

x, g
〉

for all y ∈C .

Note that this expression is very similar to the definition of a subgradient. In fact, a
subgradient is a hyperplane that separates the epigraph of a function from a point very
close to the epigraph.

Often the convex set C is described via a set of convex functions which should be
smaller than some constant, these inequalities are called constraints:

C = {
x ∈Rn : h j (x) ≤ b j∀ j ∈ [m]

}
for some m ∈N. By absorbing the b j into the h j we can assume without loss of gener-
ality that the right-hand sides are all zero. We can now write the optimization problem
as

min
x∈Rn

f (x)

s.t. h1(x) ≤ 0

...

hm(x) ≤ 0.

For a point x ∉ C we say the constraint h j is violated if h j (x) > 0 and it is satisfied
if h j (x) ≤ 0. If h j is violated then for every g ∈ ∂h j (x) the inequality

〈
g , y

〉 ≤ h j (x)
describes a separating hyperplane for C and x. A point that satisfies all constraints is
called a feasible point, a point that satisfies all constraints with strict inequality is called
strictly feasible. An optimization problem that has a feasible point is called a feasible
problem, and similarly for strictly feasible.



Preliminaries 31

Every point x that is feasible certifies that the optimal value is less than or equal to
f (x). When optimizing we often would like to give lower bounds on the optimal value as
well, since the difference between the upper and lower bound gives us a bound on how
far we are from the optimal value. Consider the following function, called a Lagrangian:

L : Rn ×Rm :
(
x, y

) 7→ f (x)+
m∑

j=1
y j h j (x).

The Lagrangian adds the constraints to the objective as a penalizing term, if y j > 0 then
to minimize the Lagrangian we would like to ensure that h j (x) ≤ 0. In fact we can write
down the Lagrangian dual function that minimizes over x for a fixed choice of y :

g (y) = inf
x∈Rn

L
(
x, y

)= inf
x∈Rn

f (x)+
m∑

j=1
y j h j (x).

Let x be a feasible point for the original problem and let y ≥ 0, then

g (y) ≤ f (x)

because all h j (x) ≤ 0. Since this is true for all feasible x, we in fact know that g (y) lower
bounds the optimal value of the original problem. The best lower bound this method
can give us is then given by

sup
y∈Rm

≥0

g (y).

Since it can be shown that g (y) is a concave function, this problem is again a convex
optimization problem. This problem is called the dual problem of our original problem,
the original problem is called the primal problem. The fact that

sup
y∈Rm

≥0

g (y) ≤ inf
x∈C

f (x)

is called weak duality. Sometimes the optimal values are actually equal, in which case
we say that strong duality holds. It can be shown that the dual of the dual problem is
the primal problem, which justifies the names.

2.4.2 | Linear programming
Arguably the simplest class of convex optimization problems is the class of linear pro-
gramming problems (LPs). These are optimization problems where both f and all the
h j are linear functions.3 Without loss of generality we assume LPs are of the form

max
x∈Rn

〈c, x〉 (2.3)

s.t.
〈

a j , x
〉≤ b j for all j ∈ [m]

x ≥ 0.

3We cannot absorb the b j into the h j since then these would become affine.
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For normalization purposes we assume that all entries of the a j and of c are in [−1,1].
Note that since linear functions are both convex and concave, we may assume with-

out loss of generality that we want to maximize the objective. We can rewrite this prob-
lem in a more concise form by letting A ∈Rm×n be the matrix with rows equal to the a j ’s
in order to obtain the following primal and dual problems:

max
x∈Rn

〈c, x〉
s.t. Ax ≤ b

x ≥ 0

min
y∈Rm

〈
b, y

〉
s.t. AT y ≥ c

y ≥ 0.

If both of these problems are feasible, then strong duality holds [BV04] and the optimal
values are equal (and attained). We call a primal (respectively dual) LP bounded if there
exists an upper (respectively lower) bound on the objective value of all feasible points.
We call an LP unbounded if it is not bounded. If a primal LP is unbounded then by weak
duality the dual LP cannot be feasible (and similarly the other way around).

Consider a point x that is infeasible for the LP. Since x violates at least one of the
constraints, it can be separated from the feasible region of the LP by a subgradient of
that constraint. If x violates the constraint

〈
a j , x

〉≤ b j then clearly a j is the gradient of
this constraint. In fact, the feasible region of an LP is described by the intersection of
affine half-spaces corresponding to the a j constraints and the xi ≥ 0 constraints. Such
a region is called a polytope.4 A point v in a polytope is called a vertex if it cannot be
written as a convex combination of other points in the polytope. A polytope that is
contained in a finite region can alternatively be described as the convex hull of all the
vertices of the polytope. If the feasible region of an LP is bounded, then the LP always
attains its optimal value at a vertex.

Example: A scheduling problem Many natural problems can be written as an LP,
below we give a toy example of how this can be done. Imagine a fictional PhD student
who wants to plan his week so he gets all his work done without too much of a toll on his
mental health. There might be four things he can do at any moment: work on his thesis,
think about new research, do administrative work or play foosball. For every day of the
week he needs to allocate a number of hours to these activities, denoted by variables
Ti , Ri , Ai and Fi for i ∈ [7]. Clearly all these variables should be non-negative. In a
day at most 20 hours can reasonably be spent awake, which introduces the constraints
Ti +Ri + Ai +Fi ≤ 20 for all i ∈ [7].

He might need to do at least 3 hours of administrative work, leading to a constraint∑
i∈[7] Ai ≥ 3. He also needs to work on his thesis for at least 30 hours but knows

4In some parts of the literature the term polyhedron is used to describe such regions, with a polytope
being a bounded polyhedron. We will use the term polytope for both bounded and unbounded regions.



Preliminaries 33

that he is half as productive on Friday, Saturday or Sunday, leading to the constraint∑
i∈[4] Ti + 1

2

∑
i∈{5,6,7} Ti ≥ 30. A research meeting on Wednesday implies that R3 ≥ 2. In

the weekends all colleagues are at home and hence foosball is not an option: F6 = 0 and
F7 = 0. For all other days we can play at most an hour of foosball: Fi ≤ 1 for i ∈ [5].

Next we introduce variables Mi for the misery on day i . We assume that all misery
will be non-negative. For the weekdays any time after 8 hours of work counts towards
the misery for that day. However, since research is interesting it only counts for half
towards the total, and foosball counts for half in the other direction. This gives the
constraints Ti + Ai + 1

2 Ri − 1
2 Fi ≤ 8+Mi for i ∈ [5]. In the weekend any time is overtime

(and foosball is not an option) and hence the constraints are Ti + Ai + 1
2 Ri ≤ Mi for

i ∈ {6,7}. Finally, if less than five hours of research is done then this is demotivating and
adds some misery M0, for each hour that is not done this misery increases by 3. This is
modelled by the constraint

∑
i∈[7] Ri + 1

3 M0 ≥ 5.
Our objective is to minimize the sum of the misery. This leads to the following LP:

min M0 +
∑

i∈[7]
Mi

s.t. Ti +Ri + Ai +Fi ≤ 20 for all i ∈ [7]∑
i∈[7]

Ai ≥ 3

∑
i∈[4]

Ti + 1

2

∑
i∈{5,6,7}

Ti ≥ 30

R3 ≥ 2

Fi ≤ 1 for all i ∈ [5]

Ti + Ai + 1

2
Ri − 1

2
Fi ≤ 8+Mi for all i ∈ [5]

Ti + Ai + 1

2
Ri ≤ Mi for all i ∈ {6,7}∑

i∈[7]
Ri + 1

3
M0 ≥ 5

M0, Mi ,Ti ,Ri , Ai ,Fi ≥ 0 for all i ∈ [7].

2.4.3 | Semidefinite programming
In the last decades, particularly since the work of Grötschel, Lovász, and Schri-
jver [GLS88], semidefinite programs (SDPs) have become an important tool for de-
signing efficient optimization and approximation algorithms. SDPs generalize LPs, but
are still convex and efficiently solvable. Thanks to their stronger expressive power, SDPs
can sometimes give better approximation algorithms than LPs. Examples include ap-
proximation of NP-hard problems like MAXCUT [GW95] and polynomial optimization
through the Sum-Of-Squares hierarchy [Las01; Par00]. SDPs have also found appli-
cations in quantum information theory. Examples include POVM design [Eld03] and
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finding the winning probability of non-local games [Tsi87; CHTW04].
In an SDP we optimize over a matrix X instead of a vector x. The objective and

most of the constraints are still linear in the entries of X , in particular they are of the
form Tr(M X ) for a matrix M . However, the positivity constraint x ≥ 0 is replaced by a
positive semidefinite constraint X º 0. An SDP can be written as

max
X∈Rn×n

Tr(C X ) (2.4)

s.t. Tr
(

A j X
)≤ b j for all j ∈ [m]

X º 0.

For normalization purposes we may assume ‖C‖,
∥∥A j

∥∥≤ 1. LPs correspond to the case
where all matrices are diagonal.

As for LPs we can write down the dual form of this SDP:

min bT y (2.5)

s.t.
m∑

j=1
y j A j −C º 0.

y ≥ 0.

If the primal of the SDP is known to be bounded and strictly feasible, then we will
assume an upper bound is known on the trace of a primal optimizer. In particular we
will assume that Tr(X ) ≤ R is the first constraint in the primal. This ensures that the
primal optimum is attained and we write R∗ for minimal trace of a primal optimizer.
The trace constraint in the primal will also ensure that the dual is strictly feasible. If we
also know that the dual optimum is attained then we assume an upper bound on the
`1-norm of the dual optimizer is known. In particular we assume that we know a r such
that there exists a dual optimizer y with

∥∥y
∥∥

1 ≤ r . We further write r ∗ for the smallest
such r . For SDPs strong duality does not hold in general. However, in the situation
described above the primal and dual optimal values are equal.

Example: MAXCUT and the Goemans-Williamson SDP A famous example of how
semidefinite programming can be used is the algorithm for approximating the size
of a maximum cut in a graph G = ([n],E) by Goemans and Williamson [GW95]. The
maximum cut in a graph is the maximum, over all subsets S of vertices, of the number
of edges between S and its complement S̄. Computing MAXCUT(G) exactly is NP-hard.
It corresponds to the following integer program

max
1

2

∑
{i , j}∈E

(
1− vi v j

)
s.t. v j ∈ {+1,−1} for all j ∈ [n],

using the fact that
(
1− vi v j

)
/2 = 1 if vi and v j are different signs, and

(
1− vi v j

)
/2 =

0 if they are the same. We can relax this integer program by replacing the signs v j
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by unit vectors, and replacing the product vi v j in the objective function by the dot
product vT

i v j . We can implicitly optimize over such vectors (of unspecified dimension)
by explicitly optimizing over an n ×n psd matrix X whose diagonal entries are 1. This
X is the Gram matrix of the vectors v1, . . . , vn , so Xi j = vT

i v j . The resulting SDP is

max
1

2

∑
{i , j}∈E

(
1−Xi j

)
s.t. Tr

(
E j j X

)= 1 for all j ∈ [n]

X º 0.

This SDP is a relaxation of a maximization problem, so it may overshoot the correct
value, but Goemans and Williamson showed that an optimal solution to the SDP can
be rounded to a cut in G whose size is within a factor ≈ 0.878 of MAXCUT(G) (which is
optimal under the Unique Games Conjecture [KKMO04]). This SDP can be massaged
into the form of (2.4) by replacing the equality Tr

(
E j j X

)= 1 by inequality Tr
(
E j j X

)≤ 1
(so m = n) and letting C be a properly normalized version of the Laplacian of G .
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Chapter3

Convex optimization
using quantum oracles

We study to what extent quantum algorithms can speed up solving convex optimiza-
tion problems. Following the classical literature we assume access to a convex set via
various oracles, and we examine the efficiency of reductions between the different or-
acles. In particular, we show how a separation oracle can be implemented using Õ(1)
quantum queries to a membership oracle, which is an exponential quantum speedup
over the Ω(n) membership queries that are needed classically. We show that a quan-
tum computer can very efficiently compute an approximate subgradient of a convex
Lipschitz function. Combining this with a simplification of recent classical work of Lee,
Sidford, and Vempala gives our efficient separation oracle. This in turn implies, via a
known algorithm, that Õ(n) quantum queries to a membership oracle suffice to imple-
ment an optimization oracle (the best known classical upper bound on the number of
membership queries is quadratic.

This chapter is based on the paper Convex optimization using quantum oracles by J.
van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf [AGGW18].
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3.1 | Introduction

The generic problem in convex optimization is minimizing a convex function f : K →
R∪ {∞}, where K ⊆ Rn is a convex set. We consider the setting where an interior point
x0 ∈ int(K ) is given and radii r,R > 0 are known such that B(x0,r ) ⊆ K ⊆ B(x0,R).

It is well-known that if the convex function is bounded on K , then we can equiv-
alently consider the problem of minimizing a linear function over a different convex
set K ′ ⊆ Rn+1, namely minimizing the linear function (x,µ) 7→ µ over the epigraph
K ′ = {

(x,µ) : x ∈ K , f (x) ≥µ
}

of f . Accessing K ′ is easy given access to K and f , and
the parameters involved will be similar. Conversely, for any linear optimization prob-
lem over an arbitrary convex set K , there is an equivalent optimization problem over
a fixed convex set (say, the ball), with a bounded convex objective function f that can
be evaluated easily given access to K . From now on we therefore focus on optimizing a
linear function over a convex set.

In this chapter we consider the setting where access to the convex set is given only
in a black-box manner, through an oracle. The five basic problems (oracles) in convex
optimization identified by Grötschel, Lovász, and Schrijver [GLS88] are: membership,
separation, optimization, violation, and validity (see Section 3.2 for the definitions).
They showed that all five basic problems are polynomial-time equivalent. That is, given
an oracle O for one of these problems, one can implement an oracle for any of the other
problems using a polynomial number of calls to O and polynomially many other ele-
mentary operations. Subsequent work made these polynomial-time reductions more
efficient, reducing the degree of the polynomials. Recently Lee et al. [LSV18] showed
that with Õ R

rε

(
n2

)
classical calls to a membership oracle (and Õ R

rε

(
n3

)
other elementary

arithmetic operations) one can solve an optimization problem. They did so by showing
that Õ R

rε
(n) calls to a membership oracle suffice to do separation, and then compos-

ing this with the known fact [LSW15] (see also [LSV18, Thm. 15]) that Õ R
rε

(n) calls to a

separation oracle suffice for optimization.
The main result of this chapter (Section 3.4) shows that on a quantum computer,

Õ Rn
rε

(1) calls to a membership oracle suffice to implement a separation oracle, and

hence (by the known classical reduction from optimization to separation) Õ R
rε

(n) calls

to a membership oracle suffice for optimization.1 Lee et al. [LSV18] use a geometric
idea to reduce separation to finding an approximate subgradient of a convex Lipschitz

1Although not stated explicitly in our results, we also use Õ R
rε

(
n3

)
additional operations for optimiza-

tion using membership, like [LSV18]. This is because our quantum algorithm for separation uses only
Õ R

rε
(n) gates in addition to the Õ Rn

rε
(1) membership queries, and we use the same reduction from op-

timization to separation as [LSV18]. If queries themselves have significant time complexity, then our
algorithm does lead to a speedup in time complexity over the best known classical algorithm. For exam-
ple, if each membership query (with the required precision) takes time Õ R

rε

(
n2

)
to implement, then our

quantum algorithm for optimization has time complexity Õ R
rε

(
n3

)
, while the classical algorithm will use

time Õ R
rε

(
n4

)
because it uses Õ R

rε

(
n2

)
membership queries.
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function. They then show that Õ LR
rε

(n) evaluations of a convex L-Lipschitz function suf-

fice to get an approximate subgradient.
We use the same geometric idea, but we provide a simpler way to classically com-

pute an approximate subgradient of a convex Lipschitz function (Section 3.3.1). Besides
being simpler, the main advantage of our algorithm is that it is suitable for a quantum
speedup using known quantum algorithms (Jordan’s algorithm) for computing approx-
imate (sub)gradients [Jor05; GAW19] as we show in Section 3.3.2. In Section 3.4 we use
the new algorithms applied to the geometric idea from [LSV18] to construct separation
oracles.

In Section 3.5 we briefly mention how to relate the discussed reductions to other
reductions between the oracles, using a convex polarity argument. As we show, in the
setting where we are given an interior point, the relation between membership and
separation is analogous to the relation between validity and optimization. In particular,
our better quantum algorithm for separation using membership queries implies that
on a quantum computer Õ Rn

rε
(1) queries to a validity oracle suffice to implement an

optimization oracle. That is, on a quantum computer, finding the optimal value is
equivalent to finding an optimizer.

MEM(K ) SEP(K ) OPT(K ) VAL(K )

Classical:

Θ̃(n)

Θ(1)

Θ̃(n)

Θ̃(n)

Θ(1)

Θ̃(n)

MEM(K ) SEP(K ) OPT(K ) VAL(K )

Quantum:

Θ̃(1)Θ̃(1)Θ̃(1)

Θ(1)

Õ(n)
Ω(n)∗Ω(n)∗Ω(n)∗

Ω
(p

n
)

Ω
(p

n
)

Ω
(p

n
)Õ(n)

Θ(1)

Θ̃(1)Θ̃(1)Θ̃(1)

Figure 3.1: The top and bottom diagram illustrate the relations between the basic
(weak) oracles for respectively classical and quantum queries, with boldface entries
marking our new results. All upper and lower bounds are for the setting where we know
an interior point of K , except the ∗-marked Ω(n) lower bound on the number of sep-
aration queries needed for optimization, which stems from a problem where no such
point is known. Notice the central symmetry of the diagrams, which is a consequence
of polarity. The lower bounds will be proven in Chapter 7. Here the notation Õ(·) is
used to hide polylogarithmic factors in n,r,R,ε. The (change in) accuracy of the oracles
is ignored here for simplicity

Related independent work In independent and simultaneous work, Chakrabarti,
Childs, Li, and Wu [CCLW18] discovered a similar upper bound as ours: combining
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the recent classical work of Lee et al. [LSV18] with a quantum algorithm for computing
gradients, they show how to implement an optimization oracle via Õ R

rε
(n) quantum

queries to a membership oracle and to an oracle for the objective function. Their proof
stays quite close to [LSV18] while ours first simplifies some of the technical lemmas
of [LSV18], giving us a slightly simpler presentation and a better error-dependence of
the resulting algorithm.

3.2 | Oracles for convex sets
The five basic oracles for a convex set K that we consider are as follows (in contrast with
the original [GLS88], we allow some error probability ρ in these oracles as in [LSV18]).
Throughout we will assume that real vectors are represented with polylog(nR/(rε)) bits
of precision per coordinate. In particular, we will assume that both the input and output
of the following oracles are represented in such a way.

Definition 3.1 : Membership oracle MEMε,ρ(K ) Queried with a vector y ∈ Rn , the
oracle, with success probability ≥ 1−ρ, asserts one of the following

• y ∈ B(K ,ε), or

• y 6∈ B(K ,−ε).

Definition 3.2 : Separation oracle SEPε,ρ(K ) Queried with a vector y ∈Rn , the oracle,
with success probability at least ≥ 1−ρ, asserts one of the following

• y ∈ B(K ,ε), or

• y 6∈ B(K ,−ε),

and in the second case it returns a unit vector g ∈ Rn such that 〈g , x〉 ≤ 〈g , y〉+ε for all
x ∈ B(K ,−ε).

Definition 3.3 : Optimization oracle OPTε,ρ(K ) Queried with a unit vector c ∈Rn , the
oracle, with success probability ≥ 1−ρ, does one of the following:

• it returns a vector y ∈ Rn such that y ∈ B(K ,ε) and 〈c, x〉 ≤ 〈
c, y

〉+ ε for all x ∈
B(K ,−ε),

• or it asserts that B(K ,−ε) is empty.

Note that the above optimization oracle corresponds to maximizing a linear function
over a convex set; we could equally well state it for minimization.

Definition 3.4 : Violation oracle VIOLε,ρ(K ) Queried with a unit vector c ∈ Rn and a
real number γ, the oracle, with success probability ≥ 1−ρ, does one of the following:

• it asserts that 〈c, x〉 ≤ γ+ε for all x ∈ B(K ,−ε),
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• or it finds a vector y ∈ B(K ,ε) such that
〈

c, y
〉≥ γ−ε.

Definition 3.5 : Validity oracle VALε,ρ(K ) Queried with a unit vector c ∈Rn and a real
number γ, the oracle, with success probability ≥ 1−ρ, does one of the following:

• it asserts that 〈c, x〉 ≤ γ+ε for all x ∈ B(K ,−ε),

• or it asserts that
〈

c, y
〉≥ γ−ε for some y ∈ B(K ,ε).

If in the above definitions both ε and ρ are equal to 0, then we call the oracle strong. If
either is non-zero then we sometimes call it weak.

When discussing quantum oracles we still assume that the inputs and outputs of the
oracles are represented with polylog(nR/(rε)) bits of precision per coordinate. Since
the oracles are randomized and might themselves come from quantum algorithms, it
is natural to assume they are relational quantum oracles (see Definition 2.1). Through-
out this chapter we will work with deterministic quantum oracles for the sake of read-
ability. However, the results presented are also valid for relational oracles by using a
version of the quantum gradient algorithm for relation oracles [AGGW18, Cor. 29]. In
terms of applications, we want to point out that if the membership oracle used in Sec-
tion 3.4 comes from a deterministic algorithm, then we get a standard quantum oracle.
Only when the membership oracle itself is relational (for example, when it is itself com-
puted by a bounded-error quantum algorithm) do we need the more general setting of
[AGGW18, Cor. 29].

When we discuss membership queries, we will always assume that we are given a
small ball which lies inside the convex set. It is easy to see that without such a small
ball one cannot obtain an optimization oracle using only poly(n) classical queries to a
membership oracle (see, e.g., [GLS88, Sec. 4.1] or the example below). As the following
example shows, the same holds for quantum queries. We will use a reduction from a
version of the well-studied search problem:

Given z ∈ {0,1}N such that |z| = 1, find b ∈ [N ] such that zb = 1.

It is not hard to see that if the access to z is given via classical queries i 7→ zi , then Ω(N )
queries are needed. It is well known that if we allow quantum queries then Ω(

p
N )

queries are needed (see Chapter 6). Now let N = 2n and consider an input z ∈ {0,1}N to
the search problem (see also Section 2.3.1). Let b ∈ {0,1}n be the index such that zb = 1.
Consider maximizing the linear function x 7→∑n

i=1 xi over the set Kz =∏n
i=1[bi −1/2,bi ].

Clearly the optimal solution to this convex optimization problem, even with a small
constant additive error in the answer, gives the solution to the search problem. How-
ever, a membership query is essentially equivalent to querying a bit of z and therefore
Ω(

p
N ) =Ω(2n/2) quantum queries to the membership oracle are needed to solve this

optimization problem.
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3.3 | Subgradient approximation for convex Lipschitz
functions

Here we show how to compute an approximate subgradient (at 0) of a convex Lipschitz
function. That is, given a convex set C such that 0 ∈ int(C ) and a convex function
f : C →R, we show how to compute a vector g̃ ∈Rn such that

f (y) ≥ f (0)+〈g̃ , y〉−a
∥∥y

∥∥−b for all y ∈C

for some real numbers a,b > 0 that will be defined later (see Lemma 3.10 and
Lemma 3.13). The idea of the classical algorithm given in the next section is to pick
a point z ∈ B∞(0,r1) uniformly at random and use the finite difference ∇(r2) f (z) (de-
fined below) as an approximate subgradient of f at 0; the radii r1 and r2 need to be
chosen small to make the approximation good. This results in a slightly simplified
version of the algorithm of Lee et al. [LSV18]. In Section 3.3.2 we show how to improve
on this classical algorithm on a quantum computer.

3.3.1 | Classical approach
In the discussion that follows we will use the following approximation of the gradient.

Definition 3.6 : Finite-difference gradient approximation For a function f : C → R,
a real r > 0, and a point x ∈Rn such that B1(x,r ) ⊆C , and i ∈ [n], we define

∇(r )
i f (x) := f (x + r ei )− f (x − r ei )

2r
.

Similarly we define

∇(r ) f (x) :=
(
∇(r )

1 f (x),∇(r )
2 f (x), . . . ,∇(r )

n f (x)
)
.

We will also consider a similar approximation of the Laplacian (the trace of the
Hessian) of a function.

Definition 3.7 : Finite-difference Laplace approximation For a function f : C →R, a
real r > 0, and a point x ∈Rn such that B1(x,r ) ⊆C , and i ∈ [n], we define

∆(r )
i f (x) := f (x + r ei )−2 f (x)+ f (x − r ei )

r 2
.

Similarly

∆(r ) f (x) :=
n∑

i=1
∆(r )

i f (x).
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Note that for a convex function we have ∆(r )
i f (x) ≥ 0 for all x such that B1(x,r ) ⊆C .

The next two lemmas will be needed in the proof of the main result of this section,
Lemma 3.10. In Lemma 3.8 we give an upper bound on the deviation

∥∥g −∇(r2) f (z)
∥∥

1
of a finite difference gradient approximation ∇(r2) f (z) from an actual subgradient g at
the point z, in terms of the finite difference Laplace approximation ∆(r2) f (z). Then,
in Lemma 3.9 we show that in expectation over the choice of z, the finite difference
Laplace approximation is small. Together with Markov’s inequality this gives us good
control over the quality of a finite difference gradient approximation.

Lemma 3.8 If r2 > 0, z ∈Rn , and f : B1(z,r2) →R is convex, then

sup
g∈∂ f (z)

∥∥g −∇(r2) f (z)
∥∥

1 ≤
r2∆

(r2) f (z)

2
.

Proof. Fix a g ∈ ∂ f (z). For every i ∈ [n], we have

f (z + r2ei ) ≥ f (z)+〈g ,r2ei 〉 = f (z)+ r2gi ,

and, similarly,

f (z − r2ei ) ≥ f (z)− r2gi .

Rearranging these two equations gives

f (z)− f (z − r2ei )

r2︸ ︷︷ ︸
:=A

≤ gi ≤ f (z + r2ei )− f (z)

r2︸ ︷︷ ︸
:=B

.

Note that
∣∣gi − A+B

2

∣∣ ≤ B−A
2 for any three real numbers A ≤ gi ≤ B . Moreover, A+B

2 =
∇(r2)

i f (z) and B − A = r2∆
(r2)
i f (z), thus

∣∣∣gi −∇(r2)
i f (z)

∣∣∣≤ r2∆
(r2)
i f (z)

2
.

Now we can finish the proof by summing this inequality over all i ∈ [n].

Lemma 3.9 If 0 < r2 ≤ r1, and f : B∞(x,r1 + r2) →R is convex and L-Lipschitz, then

E
z∈B∞(x,r1)

∆(r2) f (z) ≤ nL

r1
.

Proof. Below we show that E
z∈B∞(x,r1)

∆
(r2)
i f (z) ≤ L

r1
for all i ∈ [n], summing over i then

proves the lemma. Let hi (z) := f (z − r2ei )− f (z). We have that
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E
z∈B∞(x,r1)

∆
(r2)
i f (z)

= 1

(2r1)n

∫
z∈B∞(x,r1)

f (z + r2ei )−2 f (z)+ f (z − r2ei )

r 2
2

d z

= 1

(2r1)n

∫
z j∈[x j−r1,x j+r1],

j∈[n], j 6=i

∫
zi∈[xi−r1,xi+r1]

f (z − r2ei )−2 f (z)+ f (z + r2ei )

r 2
2

d z

= 1

(2r1)n

∫
z j∈[x j−r1,x j+r1],

j∈[n], j 6=i

(∫
zi∈[xi−r1,xi+r1]

hi (z)

r 2
2

d zi

−
∫

zi∈[xi−r1,xi+r1]

hi (z + r2ei )

r 2
2

d zi

) ∏
j∈[n],

j 6=i

d z j

= 1

(2r1)n

∫
z j∈[x j−r1,x j+r1],

j∈[n], j 6=i

(∫
zi∈[xi−r1,xi+r1]

hi (z)

r 2
2

d zi

−
∫

zi∈[xi−r1+r2,xi+r1+r2]

hi (z)

r 2
2

d zi

) ∏
j∈[n],

j 6=i

d z j

= 1

(2r1)n

∫
z j∈[x j−r1,x j+r1],

j∈[n], j 6=i

(∫
zi∈[xi−r1,xi−r1+r2]

hi (z)

r 2
2

d zi

−
∫

zi∈[xi+r1,xi+r1+r2]

hi (z)

r 2
2

d zi

) ∏
j∈[n],

j 6=i

d z j

≤ 1

(2r1)n

∫
z j∈[x j−r1,x j+r1],

j∈[n], j 6=i

2L
∏

j∈[n],
j 6=i

d z j

= L

r1
.

Where the last inequality follows from multiplying the upper bound r2L on |hi (z)| with
the length r2 of the integration intervals.

Note that the above lemma is stated and proved for continuous random variables,
but the same proof holds if we have a uniform hypergrid over the same hypercube,
providing a discrete version of the above result. In the discrete case, in order to get the
same cancellations we need to assume that both r1 and r2 are integer multiples of the
grid spacing.

We are now ready to prove the main result of this section. Informally, the next
lemma proves that an approximate subgradient of a convex Lipschitz function f at 0
can be obtained by an algorithm that outputs ∇(r2) f̃ (z) for a random z close enough
to 0, where f̃ is an approximate version of f . In other words, this lemma gives us
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a classical algorithm to compute an approximate subgradient of f using 2n classical
queries to an approximate version of f .

Lemma 3.10 Let r1 > 0, L > 0, ρ ∈ (0,1/3], δ ∈ (0,r1
p

nL/ρ], then r2 :=
√

δr1ρp
nL

≤ r1. Sup-

pose f : C →R is a convex function that is L-Lipschitz on B∞(0,2r1), and f̃ : B∞(0,2r1) →
R is such that

∥∥ f̃ − f
∥∥∞ ≤ δ. Then for a uniformly random z ∈ B∞(0,r1), with probability

at least 1−ρ,

f (y) ≥ f (0)+〈∇(r2) f̃ (z), y
〉− 3n

3
4

2

√
δL

ρr1

∥∥y
∥∥−2L

p
nr1 for all y ∈C .

Proof. Let z ∈ B∞(0,r1) and g ∈ ∂ f (z). Recall
∥∥g

∥∥ ≤ L by Equation (2.2). Then for all
y ∈C

f (y) ≥ f (z)+〈g , y − z〉
= f (z)+〈g , y − z〉+ (〈∇(r2) f (z), y

〉−〈∇(r2) f (z), y
〉)+ (

f (0)− f (0)
)

= f (0)+〈∇(r2) f (z), y
〉+〈g −∇(r2) f (z), y〉+ ( f (z)− f (0))+〈g ,−z〉

≥ f (0)+〈∇(r2) f (z), y
〉−∥∥g −∇(r2) f (z)

∥∥
1

∥∥y
∥∥∞−L‖z‖−∥∥g

∥∥‖z‖
≥ f (0)+〈∇(r2) f (z), y

〉−∥∥g −∇(r2) f (z)
∥∥

1

∥∥y
∥∥∞−L

p
nr1 −L

p
nr1

≥ f (0)+〈∇(r2) f̃ (z), y
〉− δ

p
n

r2

∥∥y
∥∥−∥∥g −∇(r2) f (z)

∥∥
1

∥∥y
∥∥∞−2L

p
nr1.

Note that in the last line we switched from f to f̃ , using that ∇(r2) f (z) and ∇(r2) f̃ (z)

differ by at most δ/r2 in each coordinate. Our choice of r2 gives δ
p

n
r2

= n
3
4

√
δL
ρr1

and by

Lemma 3.8 and Lemma 3.9 we have

E
z∈B∞(x,r1)

∥∥g −∇(r2) f (z)
∥∥

1 ≤
nLr2

2r1
= n

3
4

2

√
δLρ

r1
.

By Markov’s inequality we get that
∥∥g −∇(r2) f (z)

∥∥
1 ≤ n

3
4

2

√
δL
ρr1

with probability ≥ 1−ρ

over the choice of z. Plugging this bound on
∥∥g −∇(r2) f (z)

∥∥
1 into the above lower

bound on f (y), and using that
∥∥y

∥∥∞ ≤ ∥∥y
∥∥, concludes the proof of the lemma.

3.3.2 | Quantum improvements
In this section we show how to improve subgradient computation of convex functions
via Jordan’s quantum algorithm for gradient computation [Jor05]. We use the formula-
tion given by Gilyén et al. [GAW19, Lem. 21], as introduced in Section 2.3.3.

In order to apply Lemma 2.6 the function needs to be sufficiently close to linear on
a small region. Fortunately, convex Lipschitz functions can be very well approximated
by linear functions over most small-enough regions. Similarly to the classical case
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(Lemma 3.10) we make this claim quantitative using Lemma 3.9. In order to apply the
more efficient quantum gradient computation of Lemma 2.6 we also need the following
two lemmas to ensure that Equation (2.1) holds.

Lemma 3.11 Let S ⊆ Rn be such that S = −S, and let conv(S) denote the convex hull
of S. If f : conv(S) →R is a convex function, f (0) = 0, and

∣∣ f (s)
∣∣≤ δ for all s ∈ S, then∣∣ f (s′)

∣∣≤ δ for all s′ ∈ conv(S).

Proof. Since f is convex and f (s) ≤ δ for all s ∈ S we immediately get that f (s′) ≤ δ

for all s′ ∈ conv(S). Because f (0) = 0 and S = −S, due to convexity we get that f (s′) ≥
− f (−s′) ≥−δ.

Lemma 3.12 If r2 > 0, z ∈Rn and f : B1(z,r2) →R is convex, then

sup
y∈B1(0,r2)

∣∣ f (z + y)− f (z)−〈
y,∇(r2) f (z)

〉∣∣≤ r 2
2∆

(r2) f (z)

2
.

Proof. Let d(y) := f (z + y)− f (z)−〈
y,∇(r2) f (z)

〉
be the difference between f (z + y) and

its linear approximator. Let S := {±r2ei : i ∈ [n]}. It is easy to see that d(0) = 0, S = −S,
and conv(S) = B1(0,r2). Also, for all s ∈ S we have |d(s)| ≤ r 2

2∆
(r2) f (z)/2:

d(±r2ei ) = f (z ± r2ei )− f (z)−〈±r2ei ,∇(r2) f (z)
〉

= f (z ± r2ei )− f (z)∓ r2∇(r2)
i f (z)

= f (z ± r2ei )− f (z)∓ f (z + r2ei )− f (z − r2ei )

2

= f (z + r2ei )−2 f (z)+ f (z − r2ei )

2
= r 2

2∆
(r2)
i f (z)/2 ≤ r 2

2∆
(r2) f (z)/2.

Therefore Lemma 3.11 implies that supy∈B1(0,r2)

∣∣d(y)
∣∣≤ r 2

2∆
(r2) f (z)/2.

Using the results above we are now ready to prove the main result of this section,
the quantum analogue of Lemma 3.10.

Lemma 3.13 Let r1 > 0, L > 0, ρ ∈ (0,1/3], and suppose δ ∈ (0,r1nL/ρ]. Suppose f : C →
R is a convex function that is L-Lipschitz on B∞(0,2r1), and we have quantum query
access2 to f̃ , which is a δ-approximate version of f , via a unitary U over a (fine-enough)
hypergrid of B∞(0,2r1). Then we can compute a g̃ ∈ Rn using O

(
log

(
n/ρ

))
queries to U

and U †, such that with probability ≥ 1−ρ, we have

f (y) ≥ f (0)+〈
g̃ , y

〉−232

√
δn3L

ρr1

∥∥y
∥∥

1 −2L
p

nr1 for all y ∈C ,

2The proof of this lemma assumes that the query access is deterministic, however using Corollary 29
of [AGGW18] instead of Lemma 2.6 shows that a relational quantum oracle also suffices as input. In that
setting access to U † should also be assumed.
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and hence (by Cauchy-Schwarz)

f (y) ≥ f (0)+〈
g̃ , y

〉− (23n)2

√
δL

ρr1

∥∥y
∥∥−2L

p
nr1 for all y ∈C .

Proof. Let r2 :=
√

δr1ρ
nL and note that r2 ≤ r1. The quantum algorithm works roughly as

follows. It first picks a uniformly3 random z ∈ B∞(0,r1). Then it uses Jordan’s quantum
algorithm to compute an approximate gradient at z by approximately evaluating f in
superposition over a discrete hypergrid of B∞(z,r2/n). This then yields an approximate
subgradient of f at 0.

We now work out this rough idea. Since B∞(z,r2/n) ⊆ B1(z,r2), Lemma 3.12 implies

sup
y∈B∞(0,r2/n)

∣∣ f (z + y)− f (z)−〈
y,∇(r2) f (z)

〉∣∣≤ r 2
2∆

(r2) f (z)

2
. (3.1)

Also as shown by Lemma 3.9 and Markov’s inequality we have

∆(r2) f (z) ≤ 2nL

ρr1
(3.2)

with probability ≥ 1−ρ/2 over the choice of z. If z is such that Equation (3.2) holds,
then we get

sup
y∈B∞(0,r2/n)

∣∣ f (z + y)− f (z)−〈
y,∇(r2) f (z)

〉∣∣≤ nLr 2
2

ρr1
= δ.

Now apply the quantum algorithm of Lemma 2.6 with r = 2r2/n, c = f (z), g =∇(r2) f (z),
and B = Lr . This uses O

(
log

(
n/ρ

))
queries to U and U †, and with probability ≥ 1−ρ/2

computes an approximate gradient g̃ such that

∥∥∇(r2) f (z)− g̃
∥∥∞ ≤ 8 ·42πn

2r2
·δ= 4 ·42 ·π

√
δn3L

ρr1
. (3.3)

Also, if z is such that Equation (3.2) holds, then by Lemma 3.8 we get that

sup
g∈∂ f (z)

∥∥∇(r2) f (z)− g
∥∥

1 ≤
r2∆

(r2) f (z)

2
≤ nLr2

ρr1
=

√
δnL

ρr1
,

and therefore by the triangle inequality and Equation (3.3) we get that

sup
g∈∂ f (z)

∥∥g − g̃
∥∥∞ ≤ sup

g∈∂ f (z)

∥∥g −∇(r2) f (z)
∥∥∞+∥∥∇(r2) f (z)− g̃

∥∥∞

≤ sup
g∈∂ f (z)

∥∥g −∇(r2) f (z)
∥∥

1 +
∥∥∇(r2) f (z)− g̃

∥∥∞

≤
√

δnL

ρr1
+4 ·42 ·π

√
δn3L

ρr1
< 232

√
δn3L

ρr1
.

3A discrete quantum computer strictly speaking cannot do this, but (as noted after Lemma 3.9) a
uniformly random point from a fine-enough hypergrid suffices.
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Thus with probability at least 1−ρ, for all y ∈C and for all g ∈ ∂ f (z) we have that

f (y) ≥ f (z)+〈
g , y − z

〉
= f (0)+〈

g̃ , y
〉+〈

g − g̃ , y
〉+ ( f (z)− f (0))+〈g ,−z〉

≥ f (0)+〈
g̃ , y

〉− ∣∣〈g − g̃ , y
〉∣∣−L‖z‖−∥∥g

∥∥‖z‖
≥ f (0)+〈

g̃ , y
〉−∥∥g − g̃

∥∥∞
∥∥y

∥∥
1 −L

p
nr1 −L

p
nr1 (by (2.2))

≥ f (0)+〈
g̃ , y

〉−232

√
δn3L

ρr1

∥∥y
∥∥

1 −2L
p

nr1

≥ f (0)+〈
g̃ , y

〉− (23n)2

√
δL

ρr1

∥∥y
∥∥−2L

p
nr1.

3.4 | Implementing SEP using queries to MEM
Let K ⊆Rn be a convex set such that B(0,r ) ⊆ K ⊆ B(0,R). Given a membership oracle4

MEMε,0(K ) as in Definition 3.1, we will construct a separation oracle SEPη,ρ(K ) as in
Definition 3.2. Let x be the point we want to separate from K . We first make a member-
ship query to x itself, receiving answer x ∈ B(K ,ε) or x 6∈ B(K ,−ε). Suppose x 6∈ B(K ,−ε),
then we need to find a hyperplane that approximately separates x from K . Due to the
rotational symmetry of the separation problem, for ease of notation we assume that
x =−‖x‖en .5 For this x define h : Rn−1 →R∪ {∞} as

h(y) := inf
(y,yn )∈K

yn ,

see also Figure 3.2. Note that although h does not explicitly seem to depend on x, it
does depend on x implicitly since we have rotated the space such that x =−‖x‖en .

4For simplicity we assume throughout this section that the membership oracle succeeds with cer-
tainty (i.e., its error probability is 0). This is easy to justify: suppose we have a classical T -query algorithm,
which uses MEMε,0(K ) queries and succeeds with probability at least 1−ρ. If we are given access to a
MEMε, 1

3
(K ) oracle instead, then we can create a MEMε, ρT

(K ) oracle by O
(
log

(
T /ρ

))
queries to MEMε, 1

3
(K )

and taking the majority of the answers. Then running the original algorithm with MEMε, ρT
(K ) will fail

with probability at most 2ρ. Therefore the assumption of a membership oracle with error probability 0
can be removed at the expense of only a small logarithmic overhead in the number of queries. A similar
argument works for the quantum case.

5For the query complexity this is without loss of generality, since we can always apply a rotation to
all the points such that this holds. If we instead consider the computational cost of our algorithm, then
we have to take into account the cost of this rotation and its inverse. Note, however, that this rotation
can always be written as the product of n rotations on only 2 coordinates, and hence can be applied in
Õ R

rε
(n) additional steps. These rotations can also be found in Õ R

rε
(n) time via a greedy algorithm: first

find a rotation on coordinates n and n −1 that leaves coordinate n −1 zero, then similar for coordinates
n −2 and n, and so on.
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(y,0)

x

−h(y)

(y,h(y))

r

Figure 3.2: Graphical example of the relation between h(y) and the distance from (y,0)
to the border in the −en direction.

Our h is a bit different from the one used in [LSV18], but we can show that it has
many of the same properties. Since K is a convex set, h is a convex function over
Rn−1. As we show below, the function h is also Lipschitz (Lemma 3.14) and we can
approximately compute its value using binary search with Õ Rn

rε
(1) classical queries to

a membership oracle (Lemma 3.15). Furthermore, an approximate subgradient of h
at 0 allows to construct a hyperplane approximately separating x from K (Lemma 3.16).
Combined with the results of Section 3.3 this leads to the main results of this section,
Theorem 3.17 and Theorem 3.18, which show how to efficiently construct a separation
oracle using respectively classical and quantum queries to a membership oracle.

Analogously to [LSV18, Lem. 12] we first show that our h is Lipschitz.

Lemma 3.14 For every δ ∈ (0,r ), h is R
r−δ-Lipschitz on B(0,δ) ⊆Rn−1, that is, we have

∣∣h(y ′)−h(y)
∣∣≤ R

r −δ

∥∥y ′− y
∥∥ for all y, y ′ ∈ B(0,δ).

Proof. Observe that for all y ∈ B(0,r ) we have −R ≤ h(y), because B(0,r ) ⊆ K ⊆ B(0,R),
and we have h(y) ≤ 0 because (y,0) ∈ K . Let y, y ′ ∈ B(0,δ) be arbitrary but distinct
points. Due to symmetry it will suffice to show that h(y ′)−h(y) ≤ R

r−δ
∥∥y ′− y

∥∥.
We will restrict our attention to the line through y and y ′, i.e., the line given by y+λz

for z := y ′−y
‖y ′−y‖ the unit vector corresponding to the direction of the line. Define the

point

p := y + (∥∥y ′− y
∥∥+ (r −δ)

)
z = y ′+ (r −δ)z

on this line and note that p ∈ B(0,r ). Since y ′ lies between y and p on the line it is a
convex combination of these two points. In particular, since

∥∥p − y ′∥∥ = r −δ, it is the
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convex combination

y ′ =
∥∥y ′− y

∥∥∥∥y ′− y
∥∥+ (r −δ)

p + r −δ∥∥y ′− y
∥∥+ (r −δ)

y.

Due to convexity

h(y ′) ≤
∥∥y ′− y

∥∥∥∥y ′− y
∥∥+ (r −δ)

h(p)+ r −δ∥∥y ′− y
∥∥+ (r −δ)

h(y),

which implies

h(y ′)−h(y) ≤
∥∥y ′− y

∥∥∥∥y ′− y
∥∥+ (r −δ)

(
h(p)−h(y)

)≤ ∥∥y ′− y
∥∥

r −δ
R.

Now we show how to compute the value of h using membership queries to K .

Lemma 3.15 For all y ∈ B
(
0, r

2

)⊂Rn−1 we can compute a δ-approximation of h(y) with
O

(
log

(R
δ

))
queries to a MEMε,0(K ) oracle, where ε≤ r

3R δ.

Proof. Let y ∈ B(0, r
2 ), then (y,h(y)) is a boundary point of K by the definition of h. Note

that h(y) ∈ [−R,−r /2]. Our goal is to perform binary search over this interval to find a
good approximation of h(y). If we had access to a perfect membership oracle then we
would be done. However, since our membership oracle can give back a wrong answer
when queried with a point that is ε-close to the boundary of K , a more careful analysis
is needed.

Suppose yn ≤− r
2 is our current binary search guess for h(y). We first show that

(a) if (y, yn) ∈ B(K ,ε), then yn ≥ h(y)−δ, and

(b) if (y, yn) 6∈ B(K ,−ε), then yn ≤ h(y)+ 2
3δ.

For the proof of (a) consider a g ∈ ∂h(y). Since g is a subgradient we have that
h(z) ≥ h(y)+〈

g , z − y
〉

for all z ∈Rn−1. Hence, for all z ∈Rn−1 and zn such that (z, zn) ∈ K
we have 〈(−g

1

)
,

(
y

h(y)

)〉
≤

〈(−g
1

)
,

(
z

h(z)

)〉
≤

〈(−g
1

)
,

(
z

zn

)〉
where the first inequality is a rewriting of the subgradient inequality and the second
inequality uses that zn ≥ h(z) since (z, zn) ∈ K . Since (y, yn) ∈ B(K ,ε) it follows from the
above inequality that〈(−g

1

)
,

(
y

yn

)〉
≥

〈(−g
1

)
,

(
y

h(y)

)〉
−ε

∥∥∥∥(−g
1

)∥∥∥∥≥
〈(−g

1

)
,

(
y

h(y)

)〉
−ε(

∥∥g
∥∥+1).

Lemma 3.14 together with the argument of Equation (2.2) implies that
∥∥g

∥∥≤ 2R
r . Since

ε(
∥∥g

∥∥+1) ≤ ε

(
2R

r
+1

)
≤ ε

3R

r
≤ δ,
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ε

r
2

(y,0)

(y,h(y))

(y,h(y)(1− 2ε
r ))

Figure 3.3: Let C be the convex hull of B((y,0),r /2) and (y,h(y)), drawn in the figure
using a black line. The region B(C ,−ε) is drawn with a red line. Due to similar triangles
the hypotenuse of the small triangle at the bottom has length 2ε

r h(y). It follows that
B(C ,−ε) is the convex hull of B((y,0),r /2−ε) and

(
y,h(y)

(
1− 2ε

r

))
.

we obtain the inequality of (a).
For (b), consider the convex set C which is the convex hull of B((y,0),r /2) and

(y,h(y)). From Figure 3.3 it follows that B(C ,−ε) is the convex hull of B((y,0),r /2− ε)
and

(
y,h(y)

(
1− 2ε

r

))
. Since C ⊆ K , we have B(C ,−ε) ⊆ B(K ,−ε). Therefore (y, yn) 6∈

B(K ,−ε) implies (y, yn) ∉ B(C ,−ε), and

yn ≤ h(y)

(
1− 2ε

r

)
= h(y)−ε

2h(y)

r
≤ h(y)+ε

2R

r
≤ h(y)+ 2

3
δ.

Now we can analyze the binary search algorithm. By making O
(
log

(R
δ

))
MEMε,0(K )

queries to points of the form (y, yn), we can find a value yn ∈ [−R,− r
2 ] such that (y, yn) ∈

B(K ,ε) but (y, yn − δ
3 ) 6∈ B(K ,−ε). By (a) and (b) together we get that

∣∣h(y)− yn
∣∣≤ δ.

The following lemma shows how to convert an approximate subgradient of h to a
hyperplane that approximately separates x from K .

Lemma 3.16 Suppose −‖x‖en = x ∉ B(K ,−ε), and g̃ ∈ Rn−1 is an approximate subgra-
dient of h at 0, meaning that for some a,b ∈R and for all y ∈Rn−1

h(y) ≥ h(0)+〈g̃ , y〉−a
∥∥y

∥∥−b,

then s := (−g̃ ,1)
‖(−g̃ ,1)‖ satisfies 〈s, z〉 ≥ 〈s, x〉− aR+b

‖(−g̃ ,1)‖ −
2R
r

ε
‖(−g̃ ,1)‖ for all z ∈ K .
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Proof. Let us introduce the notation z = (y, zn) and s′ := (−g̃ ,1) = ∥∥(−g̃ ,1)
∥∥s, then〈

s′, z
〉= zn −〈

g̃ , y
〉

≥ h(y)−〈
g̃ , y

〉
≥ h(0)−a

∥∥y
∥∥−b

≥−‖x‖− 2R

r
ε−aR −b

= 〈
s′, x

〉−aR −b − 2R

r
ε,

where the last inequality used claim (b) from the proof of Lemma 3.15 with the point
(0,−‖x‖) and δ= 3R

r ε.

We now construct a separation oracle using Õ (n) classical queries to a membership or-
acle. In particular, to construct an η-precise separation oracle, we require an ε-precise
membership oracle with

ε= η

676
n−2

( r

R

)3( η
R

)2
ρ.

The analogous result in [LSV18, Thm. 14] uses the stronger assumption6

ε≈ η

8 ·106
n− 7

2

( r

R

)6( η
R

)2
ρ3.

Compared to this, our result scales better in terms of n, r
R and ρ.

Theorem 3.17 Let K be a convex set satisfying B(0,r ) ⊆ K ⊆ B(0,R). For any η ∈ (0,R]

and ρ ∈ (0,1/3], we can implement the oracle SEPη,ρ(K ) using O
(
nlog

(
n
ρ

R
η

R
r

))
classical

queries to a MEMε,0(K ) oracle, where ε≤ η(26n)−2
( r

R

)3( η
R

)2
ρ.

Proof. Let x 6∈ B(K ,−ε) be the point we want to separate from K . Let δ := η n−2

9·24

( r
R · ηR

)2
ρ,

then ε ≤ r
3R δ. By Lemma 3.15 we can evaluate h to within error δ using O

(
log

(R
δ

))
queries to a MEMε,0(K ) oracle. Let us choose r1 := r

12
p

n
η
R , then r1

p
n ≤ r

4 , therefore

B∞(0,2r1) ⊆ B(0,r /2). Also note that δ ≤ η
6ρ = 2r1

p
nR

ρr . By Lemma 3.14 we know that

h is 2R
r -Lipschitz on B(0,r /2). Hence by Lemma 3.10, using O (n) queries to h, and

therefore O
(
nlog

(R
δ

))
queries to a MEMε,0(K ) oracle, we can compute an approximate

subgradient g̃ such that with probability at least 1−ρ we have

h(y) ≥ h(0)+〈g̃ , y〉− 3n
3
4

2

√
δ2R

ρr1r

∥∥y
∥∥− 4R

r

p
nr1 for all y ∈Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃ , y〉 − η
2R

∥∥y
∥∥− η

3 , which by
Lemma 3.16 gives an s such that 〈s, z〉 ≥ 〈s, x〉− 5

6η− 2R
r ε≥ 〈s, x〉−η for all z ∈ K

6It seems that Lee et al. [LSV18, Alg. 1] did not take into account the change in precision analogous to
our Lemma 3.15, therefore one would probably need to worsen their exponent of r

R from 6 to 7.
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Finally, we give a proof of our main result: we construct a separation oracle using
Õ (1) quantum queries to a membership oracle.

Theorem 3.18 Let K be a convex set satisfying B(0,r ) ⊆ K ⊆ B(0,R). For any η ∈
(0,R] and ρ ∈ (0,1/3], we can implement the oracle SEPη,ρ(K ) using O

(
log

(
n
ρ

)
log

(
n
ρ

R
η

R
r

))
quantum queries to a MEMε,0(K ) oracle, where ε≤ η(58n)−

9
2
( r

R

)3( η
R

)2
ρ.

Proof. Let x 6∈ B(K ,−ε) be the point we want to separate from K . Furthermore, let

δ := η23−4

4·24 n− 9
2
( r

R · ηR
)2
ρ, then ε ≤ r

3R δ. By Lemma 3.15 we can evaluate h to within
error δ using O

(
log

(R
δ

))
queries to a MEMε,0(K ) oracle. Let us choose r1 := r

12
p

n
η
R , then

r1
p

n ≤ r
4 , therefore B∞(0,2r1) ⊆ B(0,r /2). Also note that δ≤ η

6ρ = 2r1nR
ρr . By Lemma 3.14

we know that h is 2R
r -Lipschitz on B(0,r /2). Hence by Lemma 3.13, using O

(
log

(
n
ρ

))
queries to h, and therefore O

(
log

(
n
ρ

)
log

(R
δ

))
queries to a MEMε,0(K ) oracle, we can

compute an approximate subgradient g̃ such that with probability at least 1−ρ we have

h(y) ≥ h(0)+〈g̃ , y〉− (23n)2

√
2δR

ρr1r

∥∥y
∥∥− 4R

r

p
nr1 for all y ∈Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃ , y〉 − η
2R

∥∥y
∥∥− η

3 , which by
Lemma 3.16 gives an s such that 〈s, z〉 ≥ 〈s, x〉− 5

6η− 2R
r ε≥ 〈s, x〉−η for all z ∈ K .

3.5 | Consequences of convex polarity
Here we justify the central symmetry of Figure 3.1 using the results of Grötschel, Lovász,
and Schrijver [GLS88, Sec. 4.4]. We first need to recall the definition and some basic
properties of the polar K ∗ of a set K ⊆ Rn . This is the closed convex set defined as
follows:

K ∗ = {
y ∈Rn : 〈y, x〉 ≤ 1 for all x ∈ K

}
.

It is straightforward to verify that if B(0,r ) ⊆ K ⊆ B(0,R), then B(0,1/R) ⊆ K ∗ ⊆ B(0,1/r ),
moreover (K ∗)∗ = K if K is a closed convex set.7 For the remainder of this section we
assume that K is a closed convex set such that B(0,r ) ⊆ K ⊆ B(0,R).

We will observe that for the polar K ∗ of a set K the following holds:

MEM(K ∗) ↔ VAL(K ), SEP(K ∗) ↔ VIOL(K ), (3.4)

where MEM(K ∗) ↔ VAL(K ) means we can implement a weak validity oracle for K using
a single query to a weak membership oracle for K ∗, and vice versa. Since VIOL(K )
and OPT(K ) are equivalent up to reductions that use Θ̃(1) queries (via binary search),

7Note that K ∗ is a dual representation of the convex set K . Each point in K ∗ corresponds to a (nor-
malized) valid inequality for K . This duality is not to be confused with Lagrangian duality.
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this justifies the central symmetry of Figure 3.1, because it shows that algorithms that
implement VIOL(K ) given VAL(K ) are equivalent to algorithms that implement SEP(K ∗)
given MEM(K ∗), and similarly algorithms that implement SEP(K ) given VIOL(K ) are
equivalent to algorithms that implement VIOL(K ∗) given SEP(K ∗).

Grötschel, Lovász, and Schrijver [GLS88, Sec. 4.4] showed that the weak member-
ship problem for K ∗ can be solved using a single query to a weak validity oracle for K ,
and that the weak separation problem for K ∗ can be solved using a single query to a
weak violation oracle for K . Using similar arguments one can show the reverse direc-
tions as well, which justifies (3.4). Here we only motivate the equivalences between the
above-mentioned weak oracles by showing the equivalence of the strong oracles (i.e.,
where ρ and ε are 0).

Strong membership on K ∗ is equivalent to strong validity on K First, for a given
vector c ∈Rn and a γ> 0 observe the following:

c

γ
6∈ int(K ∗) ⇐⇒ ∃y ∈ K s.t. 〈c/γ, y〉 ≥ 1 ⇐⇒ ∃y ∈ K s.t. 〈c, y〉 ≥ γ.

Hence, a strong membership query to K ∗ with a point c can be implemented by query-
ing a strong validity oracle for K with the vector c and the value 1. Likewise, a strong
validity query to K with a point c and value8 γ > 0 can be implemented using a strong
membership query to K ∗ with c/γ.

Strong separation on K ∗ is equivalent to strong violation on K To implement a
strong separation query on K ∗ for a vector y ∈Rn we do the following. Query the strong
violation oracle for K with y and the value 1. If the answer is that 〈y, x〉 ≤ 1 for all x ∈ K ,
then y ∈ K ∗. If instead we are given a vector x ∈ K with 〈y, x〉 ≥ 1, then x separates y
from K ∗ (indeed, for all z ∈ K ∗, we have 〈z, x〉 ≤ 1 ≤ 〈y, x〉).

For the reverse direction, to implement a strong violation oracle for K on the vector
c and value8 γ> 0 we do the following. Query the strong separation oracle for K ∗ with
the point c/γ. If the answer is that c/γ ∈ K ∗ then 〈c, x〉 ≤ γ for all x ∈ K . If instead
we are given a non-zero vector y ∈ Rn that satisfies 〈c/γ, y〉 ≥ 〈z, y〉 for all z ∈ K ∗, then
ỹ = y/〈c/γ, y〉 will be a valid answer for the strong violation oracle for K . Indeed, we
have ỹ ∈ K because 〈z, ỹ〉 ≤ 1 for all z ∈ K ∗ and K = (K ∗)∗, and by construction 〈c, ỹ〉 = γ.

3.6 | Discussion and future work
We mention several open problems for future work:

• Our current implementation of an optimization query using Õ R
rε

(n) quantum

membership queries is quadratically better than the best known classical ran-
domized algorithm, which uses roughly n2 membership queries. However, to the

8Observe that validity and violation queries with value γ≤ 0 can be answered trivially, since 0 ∈ K .
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best of our knowledge it is open whether this quadratic classical bound is optimal
(a quadratic classical lower bound is known for deterministic algorithms [Yao75]).

• Are there interesting convex optimization problems where separation is much
harder than membership for classical computers? Such problems would be good
candidates for quantum speedup in optimization in the real, non-oracle setting
of time complexity. It is known that given a deterministic algorithm for a function,
an algorithm with roughly the same complexity can be constructed to compute
the gradient of that function [GW08], so for deterministic oracles separation is not
much harder than membership queries. This, however, still leaves randomized
and quantum membership oracles to be considered.

• The algorithms that give an Õ R
rε

(n) upper bound on the number of separation

queries for optimization (for example [LSW15, Thm. 42]) give the best theoret-
ical results for many convex optimization problems. However, due to the large
constants in these algorithms they are rarely used in a practical setting. A natural
question is whether the algorithms used in practice lend themselves to quantum
speedups.
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Quantum algorithms for SDP-solving

In this chapter we consider semidefinite programs (SDPs). As first observed by Brandão
and Svore [BS17], the intermediate solutions of certain classical SDP-solving frame-
works can be stored as quantum states on a logarithmic number of qubits, allowing
for a quadratic speedup in terms of the dimension n and the number of constraints
m of the SDP. We start by refining their techniques to bring down their original com-
plexity of Õ

(p
nms2γ32

)
(where s is the row and column sparsity of the input matrices

and γ is the inverse of a scale-invariant error parameter) to Õ
(p

nms2γ8
)
. We then in-

troduce multiple new techniques and ideas to bring down the complexity further and
allow for new input models as well. This results in a complexity of Õ

((p
m +p

nγ
)
αγ4

)
in the more general quantum operator input model, where α= s for the classical sparse
matrix input model.

We finish the chapter by applying our SDP-solvers to a few different problems. For
the problem of shadow tomography, where we are asked to approximate the expecta-
tion values of a set of measurements on a quantum state, we give an improvement in
both the number of required samples and the computational complexity. For the prob-
lem of quantum state discrimination, where we need to find the optimal measurement
to distinguish a set of states, and the problem of optimal design, where we need to de-
sign an optimal experiment, we give algorithms that have a quadratic speedup in some
parameters at the cost of a large polynomial complexity in other parameters. These re-
sults show that there is the possibility for a speedup here, and reducing the dependence
on the other parameters is an interesting direction for further research.

This chapter is based on the papers “Quantum SDP-Solvers: Better upper and lower
bounds” by J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf [AGGW17] and
“Improvements in Quantum SDP-Solving with Applications” by J. van Apeldoorn and
A. Gilyén [AG19a].
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4.1 | Introduction
In this chapter we consider quantum algorithms for semidefinite programs. We con-
sider the basic (primal) form of an SDP as introduced in Section 2.4.3:

max
X∈Rn×n

Tr(C X ) (4.1)

s.t. Tr
(

A j X
)≤ b j for all j ∈ [m]

X º 0,

with dual problem

min bT y (4.2)

s.t.
m∑

j=1
y j A j −C º 0

y ≥ 0.

The input to the problem consists of n ×n Hermitian constraint matrices A1, . . . , Am ,
an objective matrix C , and reals b1, . . . ,bm . For normalization purposes we assume
‖C‖,

∥∥A j
∥∥ ≤ 1. The number of constraints is m (we do not count the standard X º 0

constraint for this). The variable X of this SDP is an n ×n positive semidefinite (psd)
matrix. We assume that A1 = I and b1 = R, giving a known bound on the trace of a
solution: Tr(X ) ≤ R. We assume that the dual optimum is attained and that an explicit
r ≥ 1 is known such that at least one optimal dual solution y exists with

∥∥y
∥∥

1 ≤ r . These
assumptions imply that strong duality holds, justifying the use of OPT for both the
optimal value of the primal SDP and for the optimal value of the dual SDP. The goal will
be to find an additive ε-approximation of OPT, and a description of an (almost) feasible
point for the SDP that attains this value (see Section 4.1.1 for a formal definition). We
assume that both R and r are at least 1 and that ε≤ 1/6.

Classical SDP-solvers Ever since Dantzig’s development of the simplex algorithm
for solving LPs in the 1940s [Dan48], much work has gone into finding faster solvers,
first for LPs and then also for SDPs. The simplex algorithm for LPs (with some reason-
able pivot rule) is usually fast in practice, but has worst-case exponential runtime. The
ellipsoid method and interior-point methods can solve LPs and SDPs in polynomial
time; they will typically approximate the optimal value to arbitrary precision [GLS81;
NN94]. The best known general SDP-solvers [LSW15]1 approximate the optimal value
OPT of such an SDP up to additive error ε, with complexity

O (m(m2 +n2.373 +mns)polylog(m,n,R,1/ε)),

1For LP-solvers better results are known. Recently Cohen, Lee and Song gave an LP-solver with a loga-
rithmic dependence on the error and an Õ

(
n2.373

)
dependence on the number of variables [CLS19]. Here

the 2.373 exponent is the currently best known upper bound on the exponent for matrix multiplication;
if this exponent is improved to 2, then their algorithm has a complexity that scales as Õ 1

ε

(
n2+1/6

)
.
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where 2.373 is the currently best known upper bound on the exponent for matrix mul-
tiplication; s is the sparsity: the maximal number of non-zero entries per row of the
input matrices.2 The assumption here is that the rows and columns of the matrices of
SDP (4.1) can be accessed as adjacency lists: we can query, say, the `th non-zero entry
of the kth row of matrix A j in constant time.

Arora and Kale [AK16] gave an alternative way to approximate OPT, using a ma-
trix version of the “multiplicative weights update” method.3 In Section 4.2.1 we will
describe their framework in more detail. The framework of Arora and Kale is really
a meta-algorithm, it does not specify how to implement a certain subroutine. They
themselves provide subroutines that are optimized for special cases, which allows them
to give highly optimized upper bounds for solving these specific SDPs. For example, for
the MAXCUT SDP they obtain a solver with near-linear runtime in the number of edges
of the graph. They also observed that the algorithm can be made more efficient by not
explicitly calculating intermediate solutions in each iteration. Arora and Kale do not
describe how to solve general SDPs, but it can be shown that one can get a general clas-
sical SDP-solver in their framework with complexity

Õ

(
nms

(
Rr

ε

)4

+ns

(
Rr

ε

)7)
. (4.3)

Compared to the complexity of the SDP-solver of [LSW15], this has much worse depen-
dence on R and ε, but better dependence on m and n. Using the Arora-Kale framework
is thus preferable over standard SDP-solvers for the case where Rr is small compared
to mn, and a rough approximation to OPT (say, small constant ε) is good enough.

Prior work on quantum SDP-solvers In 2016 Brandão and Svore [BS17] used the
Arora-Kale framework to implement a general quantum SDP-solver in the sparse matrix
input model. They observed that the n ×n-matrix

ρ := e−∑m
j=0 y j A j+y0C

Tr
(
e−∑m

j=0 y j A j+y0C
) , (4.4)

that is used for calculations in the Arora-Kale framework is in fact a log(n)-qubit Gibbs
state and can be efficiently prepared as a quantum state on a quantum computer. Using
this they achieved a quantum speedup in terms of n. Combining this with a Grover-
like speedup allowed for a speedup in terms of m as well, leading to an ε-approximate

2See Lee, Sidford, and Wong [LSW15, Sec. 10.2 of arXiv version 2], and note that our m,n are their n,m,
their S is our mns, and their M is our R. The bounds for other SDP-solvers that we state later also include
another parameter r ; it follows from the assumptions of [LSW15, Thm. 45 of arXiv version 2] that in their
setting r ≤ mR, and hence r is absorbed in the polylog(mnR/ε) factor.

3See also [AHK12] for a subsequent survey; the same algorithm was independently discovered around
the same time in the context of learning theory [TRW05; WK12]. In the optimization community, first-
order methods for semidefinite programming have been considered for instance in [Ren16; Ren19].
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quantum SDP-solver with complexity

Õ

(p
mns2

(
Rr

ε

)32)
.

They also showed an Ω(
p

m +p
n) quantum query lower bound for solving SDPs when

all other parameters are constant. This left as an open question whether the gap be-
tween the upper and lower bound could be closed.

In our first work on quantum SDP-solvers [AGGW17] we improved the error depen-
dence in the upper bound drastically, leading to a total complexity of

Õ

(p
mns2

(
Rr

ε

)8)
.

These results are discussed in Section 4.4. We also considered the limitations of these
types of SDP-solvers and gave general lower bounds on quantum SDP-solving. This
second set of results is part of Chapter 9.

Recently Brandão et al. [BKLLSW17] gave an improved SDP-solver when the input
matrices are proportional to quantum states that we can prepare4 that has a complexity
bound with logarithmic dependence on n (where A1 = I is threaded separately):

TSDP (ε) = Õn

(p
m poly

(
Rr

ε
,B , max

j∈{2,...,m}
rank

(
A j

)
, rank(C )

))
.

Here B is an upper bound on the scale difference between the input matrices and
the quantum states we can sample (see Section 4.5.1 for a formal definition of this
input model). Brandão et al. also applied their algorithm to the problem of shadow
tomography, giving the first non-trivial application of a quantum SDP-solver.

In the same work these results were further improved by the introduction of the
Fast Quantum OR lemma. Approaches prior to [BKLLSW17] searched for a violated
constraint in the SDP using Grover-like techniques, resulting in a multiplicative com-
plexity of Gibbs-sampling and searching. The Fast Quantum OR lemma can be used to
separate the search phase from the initial Gibbs state preparation phase. This led to the
improved complexity bound [BKLLSW17] of

Õn

((p
m +poly

(
max

j∈{2,...,m}
rank

(
A j

)
, rank(C )

))
poly

(
Rr

ε
,B

))
.

We thank the authors of [BKLLSW17] for sending us an early draft of [BKLLSW17]
introducing the Fast Quantum OR Lemma, which enabled us to work on these im-
provements. During the correspondence [Wu17] the application of the Fast OR lemma
to other input models was independently suggested by Brandão et al. and by us.

4This model was already introduced in the first version of [BS17] together with a similar complexity
statement, but there were some unresolved issues in the proof, that were only fixed by the contributions
of [BKLLSW17].
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This result appeared both in [BKLLSW19] (a later version of [BKLLSW17]) and in our
work [AG19a].

In the same paper we also removed the rank dependence in the setting where the
input matrices are proportional to quantum states that we can sample. We also in-
troduced a new input model based on block-encodings that allowed us to speed up
SDP-solving in several different models, including the sparse matrix input model.

Our results & overview The rest of this section is used to formalize the definitions
of an SDP-solver, the input oracles, and the computational model. In Section 4.2 we
introduce two meta-algorithms that can be used to solve an SDP. Both these meta-
algorithms will still require us to implement a few subroutines. In particular we need
to create purifications of states of the form (4.4) and we need to implement a proce-
dure that on input ρ outputs a random variable with expectation value Tr

(
A jρ

)
. In Sec-

tion 4.3 we show how to do both these things when we have access to block-encodings
of the matrices involved. In Section 4.4 we show how to implement an oracle for the
sum −∑m

j=0 y j A j +y0C when the input matrices are given via sparse matrix access. This
leads to an SDP-solver that uses

Õ

(p
nms2

(
Rr

ε

)8)
queries and elementary operations. In Section 4.5 we consider the more general
quantum operator input model. In this model the input matrices are given as block-
encodings. We start by showing that a few different input models reduce to this model
in a natural way. We then show how a block-encoding for the sum −∑m

j=0 y j A j + y0C
can be implemented more efficiently than before. This leads to an SDP-solver that uses

Õ

(p
nmα

(
Rr

ε

)4)
queries and elementary operations, where α is a parameter for this new model. For
the sparse matrix input model we can take α = s. In Section 4.6 we show how the Fast
Quantum OR Lemma can be used for faster search and minimum-finding techniques.
This leads to an SDP-solver that uses

Õ

((p
m +p

n

(
Rr

ε

))
α

(
Rr

ε

)4)
queries and elementary operations. In Section 4.7 we give a few different reductions
that show that R, r and 1/ε are equivalent, in the sense that we can always make two of
these constant by increasing the third. For this reason we often consider

(Rr
ε

)
as a single

parameter that we call γ. We finish the chapter in Section 4.8 by giving a few different
applications of our SDP-solvers.
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4.1.1 | SDP-solvers
We say an algorithm is an ε-approximate quantum SDP-solver if for all input numbers
ω ∈R and ζ ∈ (0,1), with success probability 1−ζ, all of the following hold:

• The algorithm determines whether OPT ≤ω+ε or OPT ≥ω−ε. If OPT ∈ [ω−ε,ω+
ε], then it may output either.

• The algorithm finds a y ∈ Rm
≥0 that is an ε-feasible solution to the dual problem

with objective value at most ω+ε, i.e., it finds a y such that

m∑
j=1

y j A j −C º−εI

〈y,b〉 ≤ω+ε.

Alternatively, it may conclude correctly that no such y exists if we would set ε= 0
in the inequalities above.

• The algorithm finds a vector y ′ ∈ Rm+1
≥0 and a non-negative real number z such

that for

ρ := e−∑m
j=1 y ′

j A j+y ′
0C

Tr
(
e
−∑m

j=1 y ′
j A j+y ′

0C
) (4.5)

we have that zρ is an ε-feasible primal solution with objective value at least ω−ε,
i.e., zρ is such that

Tr
(
zρA j

)≤ b j +ε ∀ j ∈ [m]

Tr
(
zρC

)≥ω−ε.

Alternatively, it may conclude correctly that no such z and y ′ exist if we would set
ε= 0 in the inequalities above.

For an ε-approximate SDP-solver the relevant scale-invariant parameter is γ := Rr /ε.
An algorithm that only satisfies the last of the three points above will be called an ε-
approximate SDP primal oracle. For such an algorithm the relevant scale-invariant
parameter is γ := R/ε. Due to the form of the objective value constraint in the last
point, and to simplify statements like (4.5), we write A0 :=−C and b0 :=−ω.

Notice that we can easily find an approximation of OPT using binary search on ω

if we have an ε-approximate SDP-solver. It is important to note that this is not the
case for an ε-approximate SDP primal oracle. If an ε-approximate SDP primal oracle
outputs an X , then this does not imply that the optimal value is at least ω−ε, since the
solution that was found might not be feasible. Hence, performing binary search using
an ε-approximate SDP primal oracle will not always yield OPT with error less than or
equal to ε.
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However, if we let ε′ := ε/2r , then binary search with an ε′-approximate SDP primal
oracle does yield an ε-approximation of OPT. In particular, let X be the output of
an ε′-approximate SDP primal oracle, then X is feasible for a primal SDP where the
constraints have right-hand sides b′

i = bi +ε′ and the original left-hand sides. For this
relaxed SDP the optimal value is larger thanω−ε′, as certified by X . The dual of this SDP
has the same feasible region as the original SDP (we did not alter C or the A j ’s) but has

objective
〈

b′
j , y

〉
= 〈

b j , y
〉+ε′∑m

j=1 y j . We know that an original dual optimizer y∗ exists

that is still feasible for the new SDP, and has an `1-norm upper bounded by r , since the

feasible region of the dual did not change. Hence
〈

b′
j , y∗

〉
≤ 〈

b, y∗〉+ ε′r = OPT+ ε′r

where OPT is the optimal value of the original dual SDP. Hence OPT ≥
〈

b′
j , y∗

〉
−ε′r ≥

ω−ε′r −ε′ where the last inequality follows from weak duality for the altered SDP.

4.1.2 | Input oracles & computational model
We will consider two input models: the sparse matrix input model and the quantum
operator input model. The first model is a quantum version of classical sparse matrix
access. The second model is an inherently quantum input model based on the idea of
block-encodings. This last model generalizes the sparse matrix input model, and in fact
many other reasonable model for SDPs, as we will show later.

In all models we assume quantum oracle access to the numbers b j via a standard
binary input oracle Ob satisfying5 for all j ∈ [m] :

Ob
∣∣ j

〉∣∣0〉= ∣∣ j
〉∣∣b j

〉
.

For all input oracles we assume we can apply both the oracle and its inverse6 in a
controlled fashion.

Sparse matrix input model In the sparse matrix input model the input matrices are
assumed to be s-row sparse for a known bound s ∈ [n], meaning that there are at most
s non-zero elements per row. The model is similar to the classical model for sparse
matrices. Access to the A j matrices is provided by two oracles, similar to previous
work on Hamiltonian simulation in [BCK15]. The first of the two oracles is a unitary
Osparse

A , which serves the purpose of sparse access. This oracle calculates the index :
[m]× [n]× [s] → [n] function, which for input ( j ,k,`) gives the column index of the `th
non-zero element in the kth row of A j . We assume this oracle computes the index “in
place”:

Osparse
A

∣∣ j ,k,`
〉= ∣∣ j ,k, index( j ,k,`)

〉
(4.6)

5For simplicity we assume that all the oracles work on at most O
(
log(nmRr /ε)

)
qubits, and hence that

the bitstring representations of the input numbers are at most O
(
log(nmRr /ε)

)
bits.

6When we talk about samples, e.g. in Section 4.8.1, then we do not assume we can apply the inverse
operation.
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(In the degenerate case where the kth row has fewer than ` non-zero entries, we define
index( j ,k,`) to be ` together with some special symbol indicating this case).

We also need another oracle O A, returning a bitstring5 representation of (A j )ki for
every j ∈ [m] and k, i ∈ [n]:

O A
∣∣ j ,k, i , z

〉= ∣∣ j ,k, i , z ⊕ (A j )ki
〉

. (4.7)

This model corresponds directly to a classical way of accessing sparse matrices.

Quantum operator input model Motivated by recent work [LC16; GSLW19] we pro-
pose a new input model that we call the quantum operator input model. In this model
the input matrices are given by a unitary that implements a block-encoding (see Sec-
tion 2.3.4). In particular let U j be an (α, a,0)-block-encoding of A j , for some fixed7 α≥ 1
and a =O

(
log(nmRr /ε)

)
. We assume access to a unitary U that acts as

U
∣∣ j

〉∣∣ψ〉= ∣∣ j
〉
U j

∣∣ψ〉
.

It can be shown that many other input models can be reduced to the quantum
operator input model, for example, the sparse matrix input model can be reduced to
the quantum operator input model with α = s. In Section 4.5.1 we also consider a few
other input models and show how these can be reduced to the quantum operator input
model. These include when the input is given as quantum states or when the input is
given via the ability to evolve under a Hamiltonian. We also show that if we can perform
a measurement corresponding to A j º 0 on our quantum computer using a ancilla
qubits, i.e., accept a state ρ with probability Tr

(
A jρ

)
, then we can implement a (1, a +

1,0)-block-encoding of A j . In this way this input model is a common generalization of
many input models for SDPs, since it is reasonable to assume that other input models
allow our quantum computer to accept a state ρ with probability Tr

(
A jρ

)
.

Computational cost We analyze the query complexity of algorithms and subrou-
tines, i.e., the number of queries to controlled versions of the input oracles and their
inverses. We will denote the optimal quantum query complexity of an ε-approximate
quantum SDP-solver with success probability 2/3 by TSDP (ε). We only consider suc-
cess probability 2/3 to simplify the notation and proofs. However, in all cases an ε-
approximate SDP-solver with success probability 1−ζ can easily be constructed using
O

(
log(1/ζ)TSDP (ε)

)
queries.

In our algorithms we will assume access to a quantum-read/classical-write RAM
(QCRAM), and consider one read/write operation as an elementary operation; the size
of the QCRAM will typically be Õnm

(
γ2

)
bits. Most often in our results the number of

non-query elementary operations, i.e., two-qubit gates and QCRAM calls, matches the
query complexity up to polylog factors. In particular, if not otherwise stated, in our
results a T -query quantum algorithm uses at most Õnm(T ) elementary operations.

7Having a single normalization parameter α is not a serious restriction as it is easy to make a block-
encoding more subnormalized so that every A j gets the same normalization, cf. Lemma 2.9.
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4.2 | Meta-algorithms
In this section we will introduce two different meta-algorithms. These are frameworks
for solving SDPs that leave open the implementation of a certain subroutine. The first
meta-algorithm we will discuss is the Arora-Kale framework. This framework allows
us to find an approximate dual solution and the optimal value for an SDP. The second
meta-algorithm is conceptually simpler and allows us to implement an SDP primal or-
acle. Together these methods implement an approximate SDP-solver when supplied
with correct subroutines. Luckily, both the meta-algorithms require very similar sub-
routines. In this section we will assume that a guess ω ∈ [−R,R] for OPT is fixed.

4.2.1 | The Arora-Kale meta-algorithm
In this section we give a short introduction to the Arora-Kale framework for solving
semidefinite programs. We refer to [AK16; AHK12] for a more detailed description and
omitted proofs.

The key building block is the Matrix Multiplicative Weights (MMW) algorithm in-
troduced by Arora and Kale in [AK16]. The MMW algorithm can be seen as a strategy
for you in a game between you and an adversary. We first introduce the game. There is
a number of rounds T . In each round you present a density matrix ρ to an adversary,
the adversary replies with a loss matrix M satisfying −I ¹ M ¹ I . After each round you
have to pay Tr

(
Mρ

)
. Your objective is to pay as little as possible. The MMW algorithm

is a strategy for you that allows you to lose not too much, in a sense that is made precise
below. In Algorithm 4.1 we state the MMW algorithm, the following theorem shows the
key property of the output of the algorithm.

Theorem 4.1 : [AK16, Thm. 3.1] For every adversary, the sequence ρ(1), . . . ,ρ(T ) of
density matrices constructed using the Matrix Multiplicative Weights Algorithm (Algo-
rithm 4.1) satisfies

T∑
t=1

Tr
(
M (t )ρ(t ))≤λmin

(
T∑

t=1
M (t )

)
+η

T∑
t=1

Tr
(
(M (t ))2ρ(t ))+ ln(n)

η
.

Arora and Kale use the MMW algorithm to construct an SDP-solver. For that,
they construct an adversary who promises to satisfy an additional condition: in each
round t , the adversary returns a matrix M (t ) whose trace inner product with the density
matrix ρ(t ) is non-negative. The above theorem shows that then, after T rounds, the
average of the adversary’s responses satisfies the stronger condition that its smallest
eigenvalue is not too negative: λmin

( 1
T

∑T
t=1 M (t )

) ≥ −η− ln(n)
ηT . More explicitly, given a

guess ω for the optimal value, the MMW algorithm is used to build a vector y ≥ 0 such
that

1

T

T∑
t=1

M (t ) ∝
m∑

j=1
y j A j −C
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Input Parameter η ∈ (0,1], number of rounds T .

Rules In each round player 1 (you) presents a density matrix ρ, and player 2 (the ad-
versary) replies with a matrix M satisfying −I ¹ M ¹ I .

Output A sequence of symmetric n×n matrices M (1), . . . , M (T ) satisfying −I ¹ M (t ) ¹ I ,
for t ∈ [T ] and a sequence of n×n psd matrices ρ(1), . . . ,ρ(T ) satisfying Tr

(
ρ(t )

)= 1
for t ∈ [T ].

Strategy of player 1:

Take ρ(1) := I /n.
In round t :

1. Show the density matrix ρ(t ) to the adversary.

2. Obtain the loss matrix M (t ) from the adversary.

3. Update the density matrix as follows:

ρ(t+1) := e−η∑t
τ=1 M (τ)

Tr
(
e−η∑t

τ=1 M (τ)
) .

Algorithm 4.1: Matrix Multiplicative Weights (MMW) Algorithm

and bT y ≤ω. That is, the smallest eigenvalue of the matrix
∑m

j=1 y j A j −C is only slightly
below zero and y ’s objective value is at most ω. Since A1 = I , increasing the first co-
ordinate of y makes the smallest eigenvalue of

∑
j y j A j −C bigger, so that this matrix

becomes psd and hence dual-feasible. By the above we know how much the minimum
eigenvalue has to be shifted, and with the right choice of parameters it can be shown
that this gives a dual-feasible vector y that satisfies bT y ≤ω+ε. In order to present the
algorithm formally, we require some definitions.

Given a candidate solution X º 0 for the primal problem (4.1) and a parameter ε≥ 0,
define the polytope

Pε(X ) := {y ∈Rm : bT y ≤ω,

Tr

((
m∑

j=1
y j A j −C

)
X

)
≥−ε,

y ≥ 0}.

One can verify the following:

Lemma 4.2 : [AK16, Lem. 4.2] If for a given candidate solution X º 0 the polytope
P0(X ) is empty, then a scaled version of X is primal-feasible and of objective value at
least ω.
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The Arora-Kale framework for solving SDPs uses the MMW algorithm where the role
of the adversary is taken by an ε-approximate advisor:8

Definition 4.3 : Approximate advisor An ε-approximate advisor is an algorithm that
as input takes an n ×n psd matrix X , a parameter ω ∈ [−R,R], and the description of
an SDP as in (4.1). The algorithm either outputs a vector y from the polytope Pε(X ) or
it outputs “fail”. It may only output “fail” if P0(X ) = ;. We write Advisorε for such an
algorithm.

As we will see later, the runtime of the Arora-Kale framework depends on a property of
the advisor called the width:

Definition 4.4 : Width of Advisorε The width of Advisorε for an SDP is the smallest
w∗ ≥ 0 such that for every X º 0 and ω ∈ [−R,R], the vector y returned by Advisorε
satisfies

∥∥∥∑m
j=1 y j A j −C

∥∥∥≤ w∗.

In practice, the width of an advisor is not always known. However, it suffices to work
with an upper bound w ≥ w∗: as we can see in Meta-Algorithm 4.1, the purpose of the
width is to rescale the matrix M (t ) in such a way that it forms a valid response for the
adversary in the MMW algorithm. The following theorem shows the correctness of the
Arora-Kale primal-dual meta-algorithm for solving SDPs, stated in Meta-Algorithm 4.1:

Theorem 4.5 : [AK16, Thm. 4.7] Suppose we are given an SDP of the form (4.1) with
input matrices A1 = I , A2, . . . , Am and C having operator norm at most 1, and input reals
b1 = R,b2, . . . ,bm . If Meta-Algorithm 4.1 does not output “fail” in any of the rounds, then
the returned vector y is feasible for the dual (4.2) with objective value at most ω+ ε. If
Advisorε/3 outputs “fail” in the t-th round, then a suitably scaled version of X (t ) is primal-
feasible with objective value at least ω.

The SDP-solver uses T =
⌈

9w2R2 ln(n)
ε2

⌉
iterations. In each iteration several steps have

to be taken. The most expensive two steps are computing the matrix exponential of the
matrix −H (t ) and the application of the advisor. Note that the only purpose of com-
puting the matrix exponential is to allow the advisor to compute the values Tr

(
A j X

)
for

all j and Tr(C X ), since the polytope depends on X only through those values (where
X = Rρ). To obtain faster algorithms it is important to note, as was done already by
Arora and Kale, that the primal-dual algorithm also works if we provide a (more accu-
rate) advisor with approximations of Tr

(
A j X

)
. Let a j := Tr

(
A jρ

) = Tr
(

A j X
)
/Tr(X ) and

c := Tr
(
Cρ

) = Tr(C X )/Tr(X ). Then, given a list of reals ã1, . . . , ãm , c̃ and a parameter

8In the work by Arora and Kale an approximate advisor is called an approximate oracle. However, we
decided to not use this more standard naming since the term “oracle” might cause confusion with the
input oracles or an SDP primal oracle. We want to stress that our naming is not used elsewhere in the
literature.

9The first coordinate of the vectors that is added to y (t−1) corresponds with the A0 =−C matrix.



70 Chapter 4

Input The input matrices and reals of SDP (4.1) and trace bound R. The current guess
ω of the optimal value of the dual (4.2). An additive error tolerance ε > 0. An
ε
3 -approximate advisor Advisorε/3 as in Definition 4.3 with width-bound w .

Output Either “Lower” and a vector y ∈Rm+ feasible for (4.2) with bT y ≤ω+ε

or “Higher” and a symmetric n×n matrix X that, when scaled suitably, is primal-
feasible with objective value at least ω.

T :=
⌈

9w2R2 ln(n)
ε2

⌉
.

η :=
√

ln(n)
T .

ρ(1) := I /n.
for t = 1, . . . ,T do

Run Advisorε/3 with X (t ) = Rρ(t ).
if Advisorε/3 outputs “fail” then

return “Higher” and a description of X (t ).
end if
Let ŷ be the vector generated by Advisorε/3.

M (t ) := 1
w

(∑m
j=1 ŷ j A j −C

)
.

Update9 y (t ) := y (t−1) + η
w (1, ŷ).

Define H (t ) := η
∑t

τ=1 M (τ) =∑m
j=0 y (t )

j A j .

Update the state matrix as follows: ρ(t+1) := exp
(−H (t )

)
/Tr

(
exp

(−H (t )
))

.
end for
If Advisorε/3 does not output “fail” in any of the T rounds, then output “Lower” and
the dual solution y = ε

R e1 + w
ηT

∑T
t=1 y (t ) (where we drop the 0th coordinate in y (t )).

Meta-Algorithm 4.1: Primal-Dual Algorithm for solving SDPs.

θ ≥ 0, such that |ã j −a j | ≤ θ for all j , and |c̃ − c| ≤ θ, we define the polytope

P̃ (ã1, . . . , ãm , c̃ − (r +1)θ) := {y ∈Rm : bT y ≤ω,
m∑

j=1
y j ≤ r,

m∑
j=1

ã j y j ≥ c̃ − (r +1)θ

y ≥ 0}.

For convenience we will denote ã = (ã1, . . . , ãm) and c ′ := c̃−(r +1)θ. Notice that P̃ also
contains a new type of constraint:

∑
j y j ≤ r . Recall that r is defined as a positive real

such that there exists an optimal solution y to SDP (4.2) with
∥∥y

∥∥
1 ≤ r . Hence, using

that P0(X ) is a relaxation of the feasible region of the dual (with upper bound ω on the



Quantum algorithms for SDP-solving 71

objective value), we may restrict our advisor to return only such y :

P0(X ) 6= ;⇒P0(X )∩
{

y ∈Rm :
m∑

j=1
y j ≤ r

}
6= ;.

The benefit of this restriction is that an advisor that always returns a vector with
bounded `1-norm automatically has a width w∗ ≤ r + 1, due to the assumptions on
the norms of the input matrices. The downside of this restriction is that the analogue
of Lemma 4.2 does not hold for P0(X )∩ {

y ∈Rm :
∑

j y j ≤ r
}
. However, we can find a

primal solution using the SDP primal oracle we will present in Section 4.2.3.10

The following shows that an advisor that always returns a vector y ∈ P̃ (ã,c ′) if one
exists, is a 4Rrθ-approximate advisor as in Definition 4.3.

Lemma 4.6 Let ã1, . . . , ãm and c̃ be θ-approximations of Tr
(

A1ρ
)
, . . . ,Tr

(
Amρ

)
and

Tr
(
Cρ

)
, respectively, where X = Rρ. Then the following holds:

P0(X )∩
{

y ∈Rm :
m∑

j=1
y j ≤ r

}
⊆ P̃ (ã,c ′) ⊆P4Rrθ(X ).

Proof. First, suppose y ∈ P0(X )∩ {
y ∈Rm :

∑
j y j ≤ r

}
. We then have y ∈ P̃ (ã,c ′) be-

cause
m∑

j=1
ã j y j − c̃ ≥

m∑
j=1

(ã j −Tr
(

A jρ
)
)y j − (c̃ −Tr

(
Cρ

)
) ≥−θ∥∥y

∥∥
1 −θ ≥−(r +1)θ,

where we first subtracted
∑m

j=1 Tr
(

A jρ
)
y j −Tr

(
Cρ

) ≥ 0, and then used the triangle in-
equality.

Next, suppose y ∈ P̃ (ã,c ′). We show that y ∈ P4Rrθ(X ). Indeed, since |Tr
(

A jρ
)−

ã j | ≤ θ we have

Tr

((
m∑

j=1
y j A j −C

)
ρ

)
≥

(
m∑

j=1
ã j y j + c̃

)
− (r +1)θ ≥−(2+ r +∥∥y

∥∥
1)θ ≥−4rθ,

where the last inequality used our assumptions r ≥ 1 and
∥∥y

∥∥
1 ≤ r . Hence

Tr

((
m∑

j=1
y j A j −C

)
X

)
≥−4r Tr(X )θ =−4Rrθ.

For the latter inequality we use Tr(X ) = R.

We have now seen the Arora-Kale framework for solving SDPs. To obtain a quantum
SDP-solver it remains to implement a quantum advisor subroutine and supply it with
good approximations of Tr

(
Aρ

)
values. By the above discussion it suffices to set θ =

ε/(12Rr ) and to use an advisor that is based on θ-approximations of Tr
(

Aρ
)

(for A ∈
{A1, . . . , Am ,C }), since with that choice of θ we have P4Rrθ(X ) =Pε/3(X ).

10Using several transformations of the SDP, from Section 4.7 and Lemma 2 of [BS17], one can show that
there is a way to remove the need for this restriction. Hence, the Arora-Kale framework can also be used
to find an approximate primal solution directly.
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4.2.2 | An efficient 2-sparse advisor
In this section we will assume access to approximations ã j of Tr

(
A jρ

)
and to c ′ = c̃−rθ−

θ as introduced in the last section. We will use these approximations to implement an
advisor that always return a 2-sparse vector y . We will start with the strong assumption
that we have a standard binary oracle for these approximations that acts as

∣∣ j
〉∣∣0〉∣∣0〉 7→∣∣ j

〉∣∣ã j
〉∣∣ψ j

〉
, where

∣∣ψ j
〉

is some workspace state depending on j .
At the end of this section we briefly discuss how to modify the analysis when we

have access to a relational quantum oracle that acts as
∣∣ j

〉∣∣0〉∣∣0〉 7→ ∣∣ j
〉∑

i β
i
j

∣∣∣ãi
j

〉∣∣∣ψi
j

〉
where each

∣∣∣ãi
j

〉
is an approximation of a j and the amplitudes βi

j are such that mea-

suring the second register returns an ãi
j which is θ-close to a j with very high proba-

bility. Since our estimates will eventually come from a quantum algorithm, this more
complicated form is often quite natural.

Our goal is to find a y ∈ P̃ (ã,c ′), i.e., a y such that∥∥y
∥∥

1 ≤ r

bT y ≤ω

ãT y ≥ c ′

y ≥ 0.

Our first observation is that the polytope P̃ (ã,c ′) is extremely simple: it has only three
non-trivial constraints and, if it is non-empty, then it contains a point with at most 2
non-zero coordinates (as we will show in Lemma 4.7).

A first naive approach to find a y ∈ P̃ (ã,c ′) would then be to find all vertices of the
polytope, by solving Θ

(
m2

)
linear systems of size 2×2 (this also determines if P̃ (ã,c ′)

is non-empty). Here each linear system is determined by the values ã j , b j and c ′, and
thus we can decide if P̃ (ã,c ′) is non-empty with Θ

(
m2

)
queries to these values.

We use a more sophisticated approach to show that Θ(m) classical queries suffice.
Our approach is amenable to a quantum speedup: we show that only Θ

(p
m

)
quantum

queries suffice. In particular, we now show how to reduce the problem of finding a
y ∈ P̃ (ã,c ′) to finding a convex combination of points (b j , ã j ) that lies within a certain
region of the plane.

First observe that if ω ≥ 0 and c ′ ≤ 0, then y = 0 is a solution and our advisor can
return it. From now on we will assume that ω < 0 or c ′ > 0. Then for a feasible point y
we may write y = N q with N = ∥∥y

∥∥
1 > 0 and hence

∥∥q
∥∥

1 = 1. So we are looking for an N
and a q such that

bT q ≤ω/N (4.8)

ãT q ≥ c ′/N∥∥q
∥∥

1 = 1

q ≥ 0

0 < N ≤ r.
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We can now view q ∈ Rm
>0 as the coefficients of a convex combination of the points

pi := (bi , ãi ) in the plane. We want such a combination that lies to the upper left of
gN := (ω/N ,c ′/N ) for some 0 < N ≤ r . Let GN denote the upper-left quadrant of the
plane starting at gN .

Lemma 4.7 If there is a y ∈ P̃ (ã,c ′), then there is a 2-sparse y ′ ∈ P̃ (ã,c ′) such that∥∥y
∥∥

1 =
∥∥y ′∥∥

1.

Proof. Consider pi = (bi , ãi ) and g = (ω/N ,c ′/N ) as before, and write y = N q where∑m
j=1 q j = 1, q ≥ 0. The vector q certifies that a convex combination of the points pi

lies in GN . But then there exist j ,k ∈ [m] such that the line segment p j pk intersects
GN . All points on this line segment are convex combinations of p j and pk , hence there
is a convex combination of p j and pk that lies in GN . This gives a 2-sparse q ′, and
y ′ = N q ′ ∈ P̃ (ã,c ′).

We can now restrict our search to 2-sparse y . Let G :=⋃
N∈(0,r ] GN , see Figure 4.1 for

the shape of G . Then we want to find two points p j , pk that have a convex combination
in G , since this implies that a scaled version of their convex combination gives a y ∈
P̃ (ã,c ′) with

∥∥y
∥∥

1 ≤ r (this scaling can be computed efficiently given p j and pk ).
Furthermore, regarding the possible (non-)emptiness of G we know the following

by Lemma 4.6 and Lemma 4.7:

• If P0(X )∩ {
y ∈Rm :

∑
j y j ≤ r

}
is non-empty, then some convex combination of

two of the p j ’s lies in G .

• If P4Rrθ(X )∩ {
y ∈Rm :

∑
j y j ≤ r

}
is empty, then no convex combination of the

p j ’s lies in G .

Lemma 4.8 There is an algorithm that returns a 2-sparse vector q such that
∑m

j=1 q j p j ∈
G , if one exists, using one search and two minimizations over the m points p j = (b j , ã j ).
This gives a classical algorithm that uses O (m) calls to the subroutine that gives the en-
tries of ã, and Õ 1

θ
(m) other operations; and a bounded-error quantum algorithm that

uses O
(p

m
)

calls to an (exact quantum) subroutine that gives the entries of ã, and
Õ 1

θ

(p
m

)
elementary operations.

Proof. The algorithm can be summarized as follows:

1. Check if ω≥ 0 and c ′ ≤ 0. If so, then return q = 0.

2. Check if there is a pi ∈G . If so, then return q = ei

3. Find p j , pk so that the line segment p j pk goes through G and return the corre-
sponding q .

4. If the first three steps did not return a vector q , then output ‘Fail’.
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(a) ω< 0,c ′ < 0 (b) ω< 0,c ′ ≥ 0

(c) ω≥ 0,c ′ < 0 (d) ω≥ 0,c ′ ≥ 0

Figure 4.1: The region G in light blue. The borders of two quadrants GN have been
drawn by thick dashed blue lines. The red dot at the beginning of the arrow is the point
(ω/r,c ′/r ).
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The main realization is that in step 3 we can search separately for p j and pk . We
explain this in more detail below, but first we will need a better understanding of the
shape of G (see Figure 4.1 for illustration). The shape of G depends on the sign of ω and
c ′.

(a) If ω< 0 and c ′ < 0. The corner point of G is (ω/r,c ′/r ). One edge goes up vertically
and an other follows the line segment λ · (ω,c ′) for λ ∈ [1/r,∞) starting at the
corner.

(b) If ω < 0 and c ′ ≥ 0. Here GN ⊆ Gr for N ≤ r . So G = Gr . The corner point is
again (ω/r,c ′/r ), but now one edge goes up vertically and one goes to the left
horizontally.

(c) If ω≥ 0 and c ′ ≤ 0. This is the case where y = 0 is a solution, G is the whole plane
and has no corner.

(d) If ω≥ 0 and c ′ > 0. The corner point of G is again (ω/r,c ′/r ). From there one edge
goes to the left horizontally and one edge follows the line segment λ · (ω,c ′) for
λ ∈ [1/r,∞).

Since G is always an intersection of at most 2 halfspaces, steps 1-2 of the algorithm
are easy to perform. In step 1 we handle case (c) by simply returning y = 0. For the other
cases (ω/r,c ′/r ) is the corner point of G and the two edges are simple lines. Hence in
step 2 we can easily search through all the points to find out if there is one lying in G ;
since G is a very simple region, this only amounts to checking on which side of the two
lines a point lies.

Now, if we cannot find a single point in G in step 2, then we need a combination
of two points in step 3. Let L1,L2 be the edges of G and let ` j and `k be the line
segments from (ω/r,c ′/r ) to p j and pk , respectively. Then, as can be seen in Figure 4.2,
the line segment p j pk goes through G if and only if (up to relabeling p j and pk )∠` j L1+
∠L1L2 +∠L2`k ≤ π. Since ∠L1L2 is fixed, we can simply look for a j such that ∠` j L1 is
minimized and a k such that ∠L2`k is minimized. If p j pk does not pass through G for
this pair of points, then it does not for any of the pairs of points.

Notice that these minimizations can be done separately and hence can be done
in the stated complexity (using quantum minimum-finding [DH96] for the quantum
algorithm). Given the minimizing points p j and pk , it is easy to check if they give a
solution by calculating the angle between ` j and `k . The coefficients of the convex
combination q are then easy to compute.

The analysis above applies if there are m points p j = (b j , ã j ), where j ∈ [m], and we
are given a unitary which acts as

∣∣ j
〉∣∣0〉|0〉 7→ ∣∣ j

〉∣∣ã j
〉∣∣ψ j

〉
. We now consider the more

general case where we are given access to a unitary which for each j provides a super-
position over different values ã j . That is, we assume that we are given an oracle that

acts as
∣∣ j

〉∣∣0〉∣∣0〉 7→ ∣∣ j
〉∑

i β
i
j

∣∣∣ãi
j

〉∣∣∣ψi
j

〉
where each

∣∣∣ãi
j

〉
is an approximation of a j and
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L2

L1

p j

pk

∠L2`k

∠L1L2

∠` j L1 (α/r,c ′/r )

Figure 4.2: Illustration of G with the points p j , pk and the angles ∠` j L1,∠L1L2,∠L2`k

drawn in. Clearly the line p j pk only crosses G when the total angle is less than π.

the amplitudes βi
j are such that measuring the second register with high probability

returns an ãi
j which is θ-close to a j . We do so because the procedure to estimate the

trace that we will implement later provides an oracle of this form.
Since we can exponentially reduce the probability that we obtain an ãi

j which is
further than θ away from a j , we will for simplicity assume that for all i , j we have
|ãi

j −a j | ≤ θ; the neglected exponentially small probabilities will only affect the analysis
in negligible ways. We will need the following lemma:

Lemma 4.9 : GeneralizedMinimum-Finding [AGGW17, Thm. 49] Let U be a unitary,
acting on q qubits, such that U |0〉 = ∑N

k=1αk
∣∣ψk

〉|xk〉, where the xk are real numbers
represented in binary and the

∣∣ψk
〉

are arbitrary quantum states. Let x1 < x2 < . . . < xN

and define X to be the random variable obtained by measuring the second register, i.e.,
Pr[X = xk ] = |αk |2. Let x ∈ R and p ∈ R>0 such that p ≤ Pr[X < x]. Then there is an
algorithm that outputs an xi such that xi ≤ x with probability at least 1−δ and uses
O

(
log(1/δ)/

p
p

)
applications of U and U † and O

(
log(1/δ)q/

p
p

)
elementary operations.

Let p i
j := (b j , ãi

j ). Our new goal will be to find a 2-sparse vector q and points p i
j and

p i ′
k such that q j p i

j + qk p i ′
k ∈ G , or to conclude that for all j ,k ∈ [m] there exist i and i ′

such that no q exists for which q j p i
j +qk p i ′

k ∈G .
Note that while we do not allow our quantum algorithm enough time to obtain

classical descriptions of all ã j s (we aim for a runtime of Õ
(p

m
)
), we do have enough
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time to compute c̃ once initially (after this measurement G is well-defined). Knowing c̃,
we can compute the angles defined by the points p i

j = (b j , ãi
j ) with respect to the corner

point of (ω/r, (c̃ −θ)/r −θ) and the lines L1,L2 (see Figure 4.2).
We now apply the Generalized Minimum-Finding algorithm, where U is the uni-

tary that sets up a uniform superposition over the j s, queries the oracle for ã j , and
calculates the relevant angles from the result. With Õ 1

θ

(p
m

)
queries and elementary

operations we find k,` ∈ [m] and points p i
k and p i ′

`
approximately minimizing the re-

spective angles to lines L1,L2. Here ‘approximately minimizing’ means that there is no
j ∈ [m] such that for all i ′′ the angle of p i ′′

j = (b j , ãi ′′
j ) with L1 is smaller than that of p i

k
with L1 (and similarly for ` and L2). From this point on we can simply consider the
model in Lemma 4.8 since by the analysis above there exists an approximation ã ∈ Rm

with ãk = ãi
k and ã` = ãi ′

`
and where k and ` are the correct minimizers.

We want to stress that our solver is meant to work for all SDPs. In particular, our
advisor does not use the structure of a specific SDP. This might lead to an unnecessary
large width-bound; to obtain quantum speedups for a specific class of SDPs it might
be necessary to develop advisors tuned to that problem. We view this as an important
direction for future work. Recall from the introduction that Arora and Kale also ob-
tain fast classical algorithms for problems such as MAXCUT by developing specialized
(classical) advisors.

4.2.3 | An SDP primal oracle
As discussed in Section 4.2.1, the Arora-Kale algorithm returns a primal solution if at
some stage the approximate advisor cannot return a solution. However, due to the
additional constraint

∥∥y
∥∥ ≤ r that we add to the polytope for the advisor, this is no

longer the case. In this section we will construct an SDP primal oracle in order to obtain
descriptions of primal solutions as well.

To construct an SDP primal oracle, we use the same algorithm as Brandão et
al. [BKLLSW19], which comes from the proof of Lemma 4.6 in the work of Lee,
Raghavendra and Steurer [LRS15]. Since we will mostly focus on the Arora-Kale frame-
work we will only give a short sketch here.

The algorithm we will use only solves feasibility problems with an equality con-
straint Tr(X ) = R for the trace, hence a few small reductions are required to apply
this technique. First we will add the objective as a constraint by letting A0 = −C and
b0 =−ω. Then, we add one new variable denoted by w such that

X ′ :=
[

X 0
0 w

]
.

Now Tr
(
X ′)= R and X º 0 imply that Tr(X ) ≤ R, and we get a new SDP that is equivalent

to the previous one. It can be shown that in our input models this reduction does not
introduce more than a constant factor overhead in the complexity. We can now apply
Meta-Algorithm 4.2 with precision ε to construct an ε-approximate SDP primal oracle.
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Input Hermitian matrices A0, . . . , Am ∈ Rn×n and reals b0, . . . ,bm ∈ [−R,R]. An additive
error parameter ε> 0.

Output Either one of the following:

• A vector y ∈ Rm+1
≥0 such that for X = Re

−∑m
j=0 y (t−1)

j A j /Tr

(
e
−∑m

j=0 y (t−1)
j A j

)
we

have Tr
(

A j X
)≤ b j +ε for j = 0, . . . ,m.

• “Infeasible”, indicating that no psd X exists with Tr(X ) = R such that
Tr

(
A j X

)≤ b j for j = 0, . . . ,m.

y (0) := 0 ∈Rm+1.
θ = ε

2R .

T := ln(n)
θ2 .

for t = 1, . . . ,T do

ρ(t ) := e
−∑m

j=0 y(t−1)
j

A j

Tr
(

e
−∑m

j=0
y(t−1)

j
A j

) .

if ∃ j s.t. Tr
(

A jρ
(t )

)≥ b j /R then
Let j be one such index.
y (t ) := y (t−1) +θe j .

alternatively if ∀ j : Tr
(

A jρ
(t )

)≤ b j /R +θ then
Return y (t ).

end if
end for
Output “Infeasible”.

Meta-Algorithm 4.2: The SDP primal oracle.

Theorem 4.10 : [LRS15, Proof of Lemma 4.6] Suppose we are given input matrices
A0, . . . , Am that all have operator norm at most 1, and input reals b0, . . . ,bm that are all
in [−R,R]. If Meta-Algorithm 4.2 outputs vector y, then the matrix

X := R
e−∑m

j=0 y j A j

Tr
(
e−∑m

j=0 y j A j
)

is such that Tr
(
X A j

) ≤ b j + ε for all j . If Meta-Algorithm 4.2 outputs “infeasible” then
there is no matrix X with trace exactly R that satisfies Tr

(
A j X

)≤ b j for all j .

Both frameworks have a very similar structure. The main difference is that the SDP
primal oracle framework (Meta-Algorithm 4.2) requires only a simple search, whereas
the θ-approximate advisor needed for the Arora-Kale framework is slightly more com-
plex. Furthermore the SDP primal oracle has γ = R/ε as a relevant parameter, where
the Arora-Kale framework considered the parameter γ = Rr /ε. However, as discussed
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at the end of Section 4.1.1, to use an SDP primal oracle for finding the optimal value of
an SDP up to error ε we will need to scale down the error of the SDP primal oracle by a
factor r , leading to a similar γ.

The implementation of the advisor that we use for the Arora-Kale framework al-
ways returns a 2-sparse vector, thus in both cases we will work with a y vector that is
non-negative, that will be Õn

(
γ2

)
-sparse, and that has `1-norm at most Õn

(
γ
)

(for the
relevant choice of γ).

4.2.4 | Subroutines
There are two major subroutines which we will need to implement for both meta-
frameworks. First, the algorithms will require an implementation of a Gibbs-sampler.

Definition 4.11 : Gibbs-sampler A θ-precise Gibbs-sampler for the input matrices
A0, . . . , Am is a unitary that takes as input a data structure storing a vector y ∈Rm+1

≥0 and
creates as output a purification of a θ-approximation in trace distance of the Gibbs state

e−∑m
j=0 y j A j /Tr

(
e−∑m

j=0 y j A j
)
. If

∥∥y
∥∥

1 ≤ K and the support of y has size at most d, then we

write TGi bbs(K ,d ,θ) for the optimal number of input queries needed to Gibbs sample.

Note that in physics a Gibbs-sampler is often a procedure that prepares the Gibbs
state as a mixed state, our definition is more demanding. We will use the approximate
Gibbs states in order to estimate the quantity Tr

(
A jρ

)
.

Definition 4.12 : Trace-estimator A (θ,σ)-trace-estimator is a unitary that as input
takes an index j and acts on a state ρ, such that measuring part of the resulting state
gives a sample from a random variable X j ∈R. Here X j is an estimate of the trace that is

at most θ
4 -biased:

|Tr
(

A jρ
)−E[X j ]| ≤ θ/4,

and the standard deviation of X j is at most σ. We write T σ
Tr (θ) for the optimal number

of queries to an input oracle for A j that such a procedure needs to make.

If given access to both of these subroutines, then we can construct an SDP-solver, as
we will prove below. Before we state the theorem we note that in both meta-algorithms
θ =O

(
γ−1

)
, and that in the Arora-Kale framework η= Õn(θ).

Theorem 4.13 Assume that y (t ) ∈Rm+1 is stored in a data structure such that updating
an entry requires at most Õ

(
TGi bbs(γ,γ2,γ−1)

)
elementary operation, where γ := 6Rr /ε.

Furthermore, assume that both TGi bbs
(
γ,γ2,γ−1

)
and T σ

Tr

(
γ−1

)
are at most polynomial

in their parameters. Then

TSDP (ε) = Õn
(p

m
(
T σ

Tr

(
γ−1)+TGi bbs

(
γ,γ2,γ−1))γ3σ

)
.

Similarly there is also a quantum algorithm with the same complexity, but with γ :=
6R/ε, that implements an SDP primal oracle.
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Proof. To obtain an ε-approximate SDP-solver we use binary search and the Arora-Kale
framework to find an ε/4-approximation �OPT of OPT. Then we run the Arora-Kale
algorithm with guess ω= �OPT+ 3

4ε and precision ε/4 to find a feasible dual solution that

is ε-optimal. Finally, we run the SDP primal oracle with ω= �OPT− 3
4ε and precision ε/4

in order to obtain a primal solution that is ε-feasible and has an objective value that is
ε-close to optimal.

Since both frameworks consist of Õn
(
γ2

)
iterations, we know that the y (t ) vector

will be at most Õn
(
γ2

)
-sparse during the run of the algorithm and will have `1-norm at

most Õn
(
γ
)
. This allows us to prepare a purification of ρ that is θ

8 -close in trace distance

using Õn
(
TGi bbs(γ,γ2,γ−1)

)
queries. By applying the trace-estimator with precision θ/8

we can construct a random variable that, when measured, outputs a number that is
θ/8+θ/8 = θ/4-close in expectation to Tr

(
A jρ

)
.

A relational oracle for θ-approximations of the quantities Tr
(

A jρ
)

can be con-
structed by using amplitude estimation techniques [Mon15, Thm. 5] with precision θ/2
on this random variable using

Õn
((

T σ
Tr (γ−1)+TGi bbs(γ,γ2,γ−1)

)
γσ

)
queries in total.

Using amplitude amplification to find a violated constraint, or using generalized
minimum-finding to minimize the angles within the advisor for the Arora-Kale frame-
work, allows us to implement each iteration using

Õn
(p

m
(
T σ

Tr (γ−1)+TGi bbs(γ,γ2,γ−1)
)
γσ

)
queries. Summing this over all T = Õn

(
γ2

)
iterations gives the stated bound.

4.3 | Gibbs-sampling and trace-estimators
We are going to work with Hermitian matrices A, H ∈ Cn×n , and write ρ for the Gibbs
state eH /Tr

(
eH

)
. Our goal will be to prepare the state ρ and implement a trace-

estimator for A. We will first consider the setting in which we have access to block-
encodings of A and H . We will then show how to implement such a block-encoding
when given sparse access to A and H . We will discuss how to obtain query access to H
(either as a sparse matrix or as a block-encoding) in later sections.

4.3.1 | Gibbs-sampling and trace-estimators using block-encodings
In this section we show how to implement a Gibbs-sampler and a trace-estimator when
we are given block-encodings of A and H . We will use the following polynomial approx-
imation of the exponential function:

Lemma 4.14 Let ξ ∈ (0,1/6] and β≥ 1. There exists a polynomial P (x) such that
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• For all x ∈ [−1,0] we have
∣∣P (x)−e2βx/4

∣∣≤ ξ.

• For all x ∈ [−1,1] we have |P (x)| ≤ 1/2.

• deg(P ) = Õ 1
ξ

(
β
)
.

Proof. This is shown in [GSLW19, Cor. 64]. It can also be proven with an argument
similar to the example in Section 2.3.4.

We can now use this approximation lemma to prove our Gibbs-sampling lemma.

Lemma 4.15 Let θ ∈ (0,1/3], β > 1, and let d be the degree of the polynomial from

Lemma 4.14 when we let ξ = θ
128n . Let U be a

(
β, a, θ2β

10242d 2n2

)
-block-encoding11 of a

Hermitian operator H ∈ Rn×n , i.e., a
(
β, a, Õ

(
θ2/βn2

))
-block-encoding. Then we can

create purification of a state ρ̃ such that∥∥∥∥ρ̃− eH

Tr
(
eH

)∥∥∥∥
tr

≤ θ

using Õ 1
θ

(p
nβ

)
applications of U and Õ 1

θ

(p
nβa

)
elementary operations.

Proof. Consider the spectral decomposition of H

H =
n∑

i=1
λi

∣∣ψi
〉〈
ψi

∣∣.
We would like to prepare a purification of the state

ρ = 1∑n
i=1 eλi

n∑
i=1

eλi
∣∣ψi

〉〈
ψi

∣∣.
We will use the fact that a maximally entangled state is basis independent:

1p
n

n∑
i=1

|i 〉|i 〉 = 1p
n

n∑
i=1

∣∣ψi
〉∣∣ψ̄i

〉
for all orthogonal bases

{∣∣ψi
〉}

, where ψ̄i is equal to the state
∣∣ψi

〉
but with all ampli-

tudes conjugated.
The idea is to transform the block-encoding of H by the function f (x) = eβx/2, ap-

ply the new block-encoding to a uniform superposition of the eigenvectors of H (by
applying it to one half of the maximally entangled state), and then use amplitude am-
plification to obtain the correct state. However, to apply f (x) = eβx/2 we need that theλi

are non-positive in order to ensure that
∥∥ f (H)

∥∥ ≤ 1. Furthermore, to apply amplitude
amplification efficiently we need that at least one of the eλi /2 is relatively large.

11A more careful error analysis can drastically reduce the constants here. In our applications we will
always be able to reduce the error in the block-encoding of H exponentially.



82 Chapter 4

To achieve both of these requirements we will shift the spectrum of H . Note that
this does not influence the final state:

eH+λI /Tr
(
eH+λI

)
= eH /Tr

(
eH )

for all λ ∈R.

We would like to shift by −λmax(H) in order to make all the eigenvalues non-positive,
and hence first need to approximate this value. We can do so by using the Gen-
eralized Minimum-Finding algorithm (Lemma 4.9) in a similar way as Lemma 50
from [AGGW17] does for the sparse matrix input model. The proof of this Lemma 50
only uses the input to implement Hamiltonian simulation under H , which we can
achieve using Theorem 2.10. Roughly the procedure is as follows (see [AGGW17,
Lem. 50] for details):

1. Set up a maximally entangled state

1p
n

n∑
i=1

|i 〉|i 〉 = 1p
n

n∑
i=1

∣∣ψi
〉∣∣ψ̄i

〉
.

2. Apply phase estimation with precision 1
5β with e−iH/β applied to the left half of

the maximally entangled state to obtain12

1p
n

n∑
i=1

∣∣ψi
〉∣∣ψ̄i

〉 K∑
j=1

β j

∣∣∣−λ̃( j )
i

〉
.

We do this in such a manner that measuring the last register results in a λ̃
( j )
i with∣∣∣λi − λ̃

( j )
i

∣∣∣≤ 1/4 with probability at least 1−µ, for some very small µ.

3. Use the Generalized Minimum-Finding algorithm to find a λ̃(k)
i that is 1

4 -close to
λmax(H).

This procedure uses Õ
(p

n/β
)

queries to a block-encoding of H . Let λ̃max be our ap-
proximation of the largest eigenvalue. Since we can efficiently reduce the error proba-
bility (exponentially in the number of repetitions, and by decreasing µ) we will for the
rest of the proof assume this procedure was successful.

Now we can use the linear combination of block-encodings lemma (Lemma 2.9)

to implement a
(
4β,O (a), θ2β

5122d 2n2

)
-block-encoding of H ′ = H − (λ̃max + 1/4)I . Let λ′

i

denote the eigenvalues of H ′. We now know that
λ′

i
4β ∈ [−1,0] and that −1/2 ≤λmax(H ′) ≤

0. Note that
eH ′

Tr
(
eH ′) = eH

Tr
(
eH

) .

12Here we need a slightly higher precision in the phase estimation than the error we want to achieve
on λi , due to the fact that our block-encoding of H is not exact.
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We can use Lemma 2.11 and Lemma 4.14 to obtain a (1,O (a), θ
64n )-block-encoding of

eH ′/2/4 using Õ n
θ

(
β
)

applications of U and Õ n
θ

(
aβ

)
elementary operations. We apply

this block-encoding to the first register of the maximally entangled state to get a state
that is θ

64n -close in `2-norm to

∣∣φ〉
:= 1p

n

n∑
i=1

eλ′
i /2/4

∣∣ψi
〉∣∣ψ̄i

〉∣∣0〉+|⊥〉,

where the last register consists of O (a) qubits and |⊥〉 is an arbitrary state that does
not have any overlap with the all-zero state in the last register. Tracing out the second
register of 1p

n

∑n
i=1 eλ′

i /2/4
∣∣ψi

〉∣∣ψ̄i
〉

gives the sub-normalized density matrix that is θ
64n -

close in trace norm to
1

16n

n∑
i=1

eλ′
i
∣∣ψi

〉〈
ψi

∣∣.
Since at least one of the λ′

i is larger than −1/2 we know that the probability of
measuring a zero in the last register of

∣∣φ〉
is at least (ignoring the small θ/64n error)

Tr

(
1

16n

n∑
i=1

eλ′
i
∣∣ψi

〉〈
ψi

∣∣)≥ e−1/2

16n
≥ 1

32n
.

It follows that O
(p

n
)

rounds of amplitude amplification suffice to get a state that is
θ-close in `2-norm to

1√∑n
i=1 eλ′

i /2

n∑
i=1

eλ′
i /2

∣∣ψi
〉∣∣ψ̄i

〉∣∣0〉
.

Since this state is a purification of the Gibbs state that we wanted to prepare, it follows
that Õ 1

θ

(p
nβ

)
uses of U and U †, and Õ 1

θ

(
aβ

p
n

)
elementary operations suffice.

Now that we have a way of creating approximate purifications of ρ, we would like
to construct a trace-estimator for Tr

(
Aρ

)
. A first attempt could be to apply A as a

block-encoding to the first register of our purification of ρ, and then use amplitude
estimation to approximate how much the state gets subnormalized. However, applying
A directly gives us a purification of the subnormalized density operator AρA†, which is
subnormalized by a factor Tr

(
A2ρ

)
, not Tr

(
Aρ

)
. Hence we instead would like to applyp

A to ρ. Since in our applications we will have a block-encoding where the A matrix is
scaled down we will use the following approximation of the linear function αx/4 (for x
close to the origin) to scale it up.

Lemma 4.16 : [GSLW19, Proof of Lemma 30] Let ξ ∈ (0,1/2) and α≥ 4. There exists
a polynomial R(x) such that

• For all x ∈ [−1,1] we have |R(x)| = |R(−x)| ≤ 1.

• For all x ∈ [−1/α,1/α] we have |R(x)−αx/4| ≤ ξ.
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• deg(R) =O
(
αlog(1/ξ)

)
.

We now prove the following lemma that gives a polynomial approximation of the
square root function.

Lemma 4.17 Let θ ∈ (0,1/6] and α≥ 4. There exists a polynomial Q(x) such that

• For all x ∈ [−1/α,1/α] we have
∣∣Q(x)− 1

4

p
1+αx/8

∣∣≤ θ.

• For all x ∈ [−1,1] we have |Q(x)| ≤ 1/2.

• deg(Q) = Õ 1
θ

(α).

Proof. We first consider a polynomial approximation for the function 1
4

p
1+x/2. Con-

sider the Taylor series of 1
4

p
1+x/2 around x = 0:

1

4

∞∑
k=0

2−k

(
1/2

k

)
xk ,

which converges for all x ∈ [−1,1]. Let Q0(x) = 1
4

∑B
k=0 2−k

(1/2
k

)
xk for B = ⌈

log(1/θ)
⌉

.
Then for all x ∈ [−1,1] we have that∣∣∣∣Q0(x)− 1

4

p
1+x/2

∣∣∣∣=
∣∣∣∣∣1

4

∞∑
k=B+1

1

2k

(
1/2

k

)
xk

∣∣∣∣∣
≤ 1

4

∞∑
k=B+1

∣∣∣∣∣ 1

2k

(
1/2

k

)∣∣∣∣∣∣∣∣xk
∣∣∣

≤ 1

4

∞∑
k=B+1

∣∣∣∣∣ 1

2k

(
1/2

k

)∣∣∣∣∣
≤ 1

4

∞∑
k=B+1

(
1

2

)k

= 1

4
·
(1

2

)B

1− 1
2

≤ θ/2,

where we used that ∣∣∣∣∣
(

1/2

k

)∣∣∣∣∣=
∣∣∣∣∣

1
2

(1
2 −1

) · · ·(1
2 −k +1

)
k !

∣∣∣∣∣≤ 1.

Since 1
4

p
1+x/2 ∈ [0,1/3] for all x ∈ [−1,1] we know that Q0(x) ∈ [−1/2,1/2] for all

x ∈ [−1,1].
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Now let R(x) be the polynomial from Lemma 4.16 with precision ξ = θ/α. Let
Q(x) = Q0(R(x)). Then for x ∈ [−1,1] we have Q(x) ∈ [−1/2,1/2] since R(x) ∈ [−1,1].
Furthermore, for x ∈ [−1/α,1/α]∣∣∣∣Q(x)− 1

4

p
1+αx/8

∣∣∣∣≤ θ

2
+

∣∣∣∣1

4

√
1+R(x)/2− 1

4

p
1+αx/8

∣∣∣∣
≤ θ

2
+ θ

α
max

y∈(−2/α,2/α)

∣∣∣∣∣ α

4 ·16
√

1+αy/8

∣∣∣∣∣
≤ θ

2
+ θ

α

∣∣∣ α
32

∣∣∣
≤ θ.

We are now ready to implement a trace-estimator.

Lemma 4.18 Let ρ be an n-dimensional quantum state and U be an (α, a,θ/2)-block-
encoding of a matrix A ∈ Rn×n with ‖A‖ ≤ 1. A trace-estimator for Tr

(
Aρ

)
with bias

at most θ and σ = O (1) can be implemented using Õ 1
θ

(α) uses of U and U † and Õ 1
θ

(α)

elementary operations. Hence, in the quantum operator input model

T O (1)
Tr (θ) = Õ 1

θ
(α).

Proof. First assume that we have an (α, a,0)-block-encoding U of A. Using Lemma 2.11
we can implement a (1,O (a),θ/256)-block-encoding of

p
I + A/8/4 using the polyno-

mial Q from Lemma 4.17 with Õ 1
θ

(α) uses of U . Applying this to ρ and measuring the

last register yields 0 with probability θ
256 -close to

Tr
(p

I + A/8/4ρ
p

I + A/8/4
)
= Tr

(
(I + A/8)ρ

)
/16 = 1/16+Tr

(
Aρ

)
/128.

By outputting 120 when there is a 0 in the last register and −8 otherwise we get a trace-
estimator with bias less than θ/2 and constant σ. To see this, call random variable
corresponding to the output Z , and consider the case where we get a 0 exactly with
probability 1/16+Tr

(
Aρ

)
/128:

E[Z ] = 120 · (1/16+Tr
(

Aρ
)
/128

)−8 · (1−1/16−Tr
(

Aρ
)
/128

)
= 120

16
−8+ 8

16
+ 120

128
Tr

(
Aρ

)+ 8

128
Tr

(
Aρ

)
= Tr

(
Aρ

)
.

Note that an θ
256 error in our probability can at most introduce a 120

256θ ≤ 1
2θ bias in our

trace-estimator.
Now if we do have error in our block-encoding of A, i.e., if we have an (α, a,θ/2)-

block-encoding of A, then we can view this as an (α, a,0)-block-encoding of a matrix Ã
that is θ

2 -close to A in operator norm. We know that
∣∣Tr

(
Aρ

)−Tr
(

Ãρ
)∣∣≤ ∥∥A− Ã

∥∥≤ θ/2
and hence that a trace-estimator for Ã with bias at most θ/2 is a trace-estimator for A
with bias at most θ.
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4.3.2 | Block-encodings for sparse matrices
In the last section we considered Gibbs-sampling and trace-estimating when A and H
are given as block-encodings. If instead these matrices are given via a sparse matrix
oracle, then we can use the following lemma to implement such block-encodings.

Lemma 4.19 Suppose that A is an s-sparse operator in [−1,1]n×n , given in the sparse
matrix input model (oracles (4.6) and (4.7) with respect to a fixed j ), whose entries are all
given as bitstrings of length B. Then we can implement an (s, Õ n

ε
(B),ε)-block-encoding

of A with O (1) queries, and Õ n
ε

(B) elementary operations.13

Proof. The proof is implicit in the work of Childs [Chi10], a more explicit proof is given
in [GSLW19, Lem. 48]. We fix an input matrix A and write index(k, i ) for the index of
the i th non-zero entry in the kth row of A. Let UR be an algorithm that performs the
mapping:14

|k〉|0〉|0〉|0〉 7→ 1p
s

s−1∑
i=0

|k〉|i 〉|0〉|0〉

7→ 1p
s

s−1∑
i=0

|k〉|index(k, i )〉|0〉|0〉

= 1p
s

∑
a:Aka 6=0

|k〉|a〉|0〉|0〉

7→ 1p
s

∑
a:Aka 6=0

|k〉|a〉|Aka〉|0〉

7→ 1p
s

∑
a:Aka 6=0

√
|Aka ||k〉|a〉|Aka〉|0〉+

√
1−|Aka ||k〉|a〉|Aka〉|1〉

7→ 1p
s

∑
a:Aka 6=0

sign(Aka)
√
|Aka ||k〉|a〉|Aka〉|0〉+

√
1−|Aka ||k〉|a〉|Aka〉|1〉

7→ 1p
s

∑
a:Aka 6=0

sign(Aka)
√
|Aka ||k〉|a〉|0〉|0〉+

√
1−|Aka ||k〉|a〉|0〉|1〉.

Similarly, let UC be an algorithm that performs the mapping

|`〉|0〉|0〉|0〉 7→ 1p
s

∑
b:Ab` 6=0

√
|Ab`||b〉|`〉|0〉|0〉+

√
1−|Ab`||b〉|`〉|0〉|2〉.

13 The dependence on s can be improved to roughly a square root when an upper bound on the
operator norm of A is known [Low19].

14Here we ignore the fact that some rows might have less than s non-zero entries. If on a query ` the
sparse oracle returns a symbol indicating that there is no `th non-zero element, then we can simply set
the last register to one. Alternatively, we can assume that the sparse oracle always returns an index, but
that the index may point to an entry that is zero.
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We have

〈k|〈0|〈0|〈0|U †
RUC |`〉|0〉|0〉|0〉

=
(

1p
s

∑
a:Aka 6=0

sign(Aka)
√
|Aka |〈k|〈a|〈0|〈0|+

√
1−|Aka |〈k|〈a|〈0|〈1|

)

·
(

1p
s

∑
b:Ab` 6=0

√
|Ab`||b〉|`〉|0〉|0〉+

√
1−|Ab`||b〉|`〉|0〉|2〉

)
=Ak`/s.

Hence, U †
RUC is a block-encoding of A that is subnormalized by a factor s. Note that

both UR and UC can be implemented using O (1) queries. The indices used in the
algorithm can be stored in O

(
log(n)

)
qubits each, and a binary representation of Ak`

can be stored in B bits. The initial superposition over s elements can be set up with
O

(
log(n)

)
elementary operations. Using Õn/ε(B) elementary operations we can add the

amplitudes
√|Aka | and

√|Ab`| with precision ε/4n and add the sign of the entry as

well. Now the (k,`)-entry of our block-encoding is 2 ε
4n

p
Ak`+ ε2

16n2 ≤ ε/n precise. This
implies that the block-encoding is an ε-approximate block-encoding of A.

Although not needed for our applications, the above proof can easily be extended to
asymmetric complex matrices if we assume access to sparse oracles for both the rows
and columns, and by replacing sign(Aka) with a phase corresponding to the complex
argument of Aka .

4.4 | An SDP-solver in the sparse matrix input model
To obtain a quantum SDP-solver for the sparse matrix input model it now remains to
show how to create a sparse matrix oracle for H (t ). After we do this we will put out
different subroutines together to implement an SDP-solver in the sparse matrix input
model. We conclude this section with a lower bound on sparse matrix summation,
showing that other techniques will be needed in order to speedup SDP-solving in the
sparse matrix input model further.

4.4.1 | Implementing a sparse oracle for H
To keep this section general we simplify the notation: let H be the sum of d different
s-sparse matrices Mi ∈Rn×n as follows

H =
d∑

i=1
Mi .

In this section we study the complexity of implementing one sparse matrix oracle call to
H (denoted by Osparse

H ), given access to respective sparse matrix oracles for the matrices
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M1, . . . , Md . We will only focus on the oracle that computes the non-zero indices of H ,
since the oracle that gives element-access is easy to compute by summing the results of
queries to the separate oracles, which uses O (d) queries.

In the remainder of this section we only consider one row of H . We denote the list of
indices of non-zero entries in this row by RH , and the corresponding lists for the rows of
the matrices Mi by Ri . Notice that each of the Ri is an ordered list of at most s integers,
and that RH will again be an ordered list of integers, containing all integers in the Ri

lists once (i.e., RH does not contain duplicates).
We first show that an oracle for RH can be constructed efficiently classically. The

important observation is that in the classical case we can write down the oracle once
and store it in memory. Hence, we can create an oracle for RH as follows. We start
from the oracle of R1 and then we “add” the oracle of R2, then that of R3, and so on.
By this we mean that we start with an empty list and insert the integers from R1 into
the list, then we insert the integers from R2 that are not present yet into this list, and so
on. When an efficient data structure (for example a binary heap) is used, then each of
such single integer insertions can be done using polylog(d , s,n) time. This shows that
in the classical case we can construct an oracle for RH in time Õn(sd). Multiplying this
complexity with the number of rows gives us an oracle for H in time Õ(nsd). Note that
we only need to compute this oracle once, after which queries can be performed in time
Õsdn(1). In the application we are interested in, Meta-Algorithm 4.1, in each iteration
t only one new matrix M (t ) ‘arrives’, hence from the oracle for H (t−1) an oracle for H (t )

can be constructed in time Õ(ns).
The quantum case is similar, but we need to add all the matrices together each time

a query to Osparse
H is made, since writing down each row of H in every iteration would

take Ω(n) operations, which we cannot afford. Apart from this change we can use the
same technique as for the classical case to compute a list of the non-zero entries in
a row of H . This list allows us to compute the index function once, after which we
uncompute the list again. Given the index of the `th non-zero entry in a row, we can
use the same approach to calculate `. It follows that we can perform these calculations
“in place” as well.

4.4.2 | Putting everything together
Now that we know how to construct a sparse oracle for H , we can give an upper bound
on the complexity of Gibbs-sampling in the sparse matrix input model.

Lemma 4.20 In the sparse matrix input model for s-sparse n ×n matrices

TGi bbs(K ,d ,θ) = Õ K
θ

(p
nd 2s2K

)
.

Proof. Using the argument from Section 4.4.1 we can implement an oracle for the non-
zero entries of the sum of d matrices that are s-sparse using O (d s) queries. An oracle for
the values of the entries can be implemented with O (d) queries and Õ K

θ
(d) elementary

operations by summing the values from the separate oracles.
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Since H is d s-sparse we can use Lemma 4.19 to implement a block-encoding for
H . However, the entries of H can be as large as K , so instead we implement a block-
encoding for H/K by scaling down the results from a query to the value oracle for H .
The result will still be a block-encoding of H , but with a larger scale factor. We end up

with a
(
d sK , Õ K d sn

θ
(1), Õ

(
θ2

K d sn2

))
-block-encoding of H using O (1) queries to the oracle

for H (and hence O (d s) queries to the input) and Õ ndK
θ

(1) elementary operations. The

lemma then follows from Lemma 4.15.

This leads to the following upper bound on quantum SDP-solving.

Theorem 4.21 In the sparse matrix input model

TSDP (ε) = Õ
(p

mns2γ8),

where γ = Rr /ε. For an SDP primal oracle the same complexity can be accomplished
with the choice γ= R/ε.

Proof. Using Lemma 4.20 for K = γ, d = γ2 and θ = γ−1 shows that in the sparse matrix
input model

TGi bbs(γ,γ2,γ−1) = Õ K
θ

(p
ns2γ5).

Using Lemma 4.18 with a block-encoding from Lemma 4.19 we get

T O (1)
Tr (γ−1) = Õγ(s).

It follows from Theorem 4.13 that

TSDP (ε) = Õ
(p

mns2γ8).

4.4.3 | A lower bound on sparse matrix summation
A large contribution to the complexity of the SDP-solver from the last section is the cost
of implementing a sparse oracle for H . In this section we prove that such a sparse oracle
cannot be implemented more efficiently.

We show a lower bound on the query complexity of implementing the oracle Osparse
H

by observing that determining the number of elements in a row of H solves the majority
function. Notice that, given access to Osparse

H , we can decide with a single query whether
there are at least a certain number of non-zero elements in a row of H .

Lemma 4.22 Given d +1 ordered lists of integers R0, . . . ,Rd , each of length at most s. Let
RH be the merged list that is ordered and contains every element in the lists Ri only once
(i.e., we remove duplicates). Deciding whether |RH | ≤ s + sd

2 or |RH | ≥ s + sd
2 + 1 takes

Ω(sd) quantum queries to the input lists in the worst case.
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Proof. We prove this by a reduction from MAJ on sd elements. Let Z ∈ {0,1}s×d be a
Boolean string. It is known that it takes at least Ω(sd) quantum queries to Z to decide
whether |Z | ≤ sd

2 or |Z | ≥ sd
2 +1 [BBCMW01]. Now let R0,R1, . . . ,Rd be lists of length s

defined as follows:

• R0[ j ] = j (d +1) for j = 1, . . . , s.

• Ri [ j ] = j (d +1)+ j Zi j for j = 1, . . . ,r and i = 1, . . . ,d .

By construction, if Zi j = 1, then the value of the entry Ri [ j ] is unique in the lists
R0, . . . ,Rd , and if Zi j = 0, then Ri [ j ] = R0[ j ]. So in RH there will be one element for each
element in R0 and one element for each bit in Zi j that is 1. The length of RH is therefore

s + |Z |. Hence, distinguishing between |RH | ≤ s + sd
2 and |RH | ≥ s + sd

2 +1 would solve
the MAJ problem and therefore requires at least Ω(sd) queries to the lists in the worst
case.

Corollary 4.23 Implementing a query to a sparse matrix oracle Osparse
H for

H =
d∑

j=i
M j ,

where each M j is s-sparse, requires Ω(sd) queries to the Osparse
M j

in the worst case.

In the next section we show how to avoid implementing the sparse matrix queries
for H in order to speed up the quantum SDP-solver further.

4.5 | An SDP-solver in the quantumoperator inputmodel
To implement an SDP-solver in the quantum operator input model it remains to show
how to implement a block-encoding of H =∑m

j=0 y j A j efficiently. This is done by using
an efficient data structure as the intermediate storage of y . This data structure has
recently been used by many quantum algorithms as part of their input model. However,
as far as we are aware this is the first use of it as an intermediate storage in a quantum
algorithm. Combining these techniques for block-encodings with the meta-algorithm
of Theorem 4.33 leads to an efficient quantum SDP-solver for the quantum operator
input model, see Theorem 4.34. This SDP-solver can also be used to implement an
improved SDP-solver in the sparse matrix input model. Before we implement an SDP-
solver in the quantum operator input model we first motivate this model further by
showing that many other input models can be used to implement block-encodings of
the input matrices.

4.5.1 | Other input models
There are multiple input models that reduce to the quantum operator input model. In
this section we give three examples.



Quantum algorithms for SDP-solving 91

Quantum state input model The quantum state input model is inherently quantum
and has no classical counterpart for SDPs. A version of this model was first introduced
by Brandão and Svore [BS17]. In this model we assume that each A j has a fixed decom-
position of the form

A j =µ+
j %

+
j −µ−

j %
−
j +µI

j I

for (subnormalized) density operators %±
j , non-negative reals µ±

j and real number µI
j ∈

R. We assume access to an oracle Oµ that takes as input an index j and outputs binary
representations5 of µ+

j ,µ−
j and µI

j .
Furthermore we assume access to a state-preparing oracle O|·〉 that prepares purifi-

cations (see Definition 2.2)15
∣∣∣ψ±

j

〉
of %±

j :

O|·〉
∣∣ j

〉∣∣±〉∣∣0〉= ∣∣∣ j
〉∣∣∣±〉∣∣∣ψ±

j

〉
.

Here |+〉 or |−〉 are some binary descriptions of “+” or “-”, not the states |0〉+|1〉p
2

and
|0〉−|1〉p

2
.16 Finally we assume that a bound B ∈R>0 is known such that

∀ j : µ+
j +µ−

j ≤ B.

Note that a tight upper bound B can easily be found using O
(p

m
)

quantum queries to
Oµ by means of maximum-finding [DH96].

Lemma 4.24 : [LC16] Let G be a (w + a)-qubit unitary which on the input state
|0〉⊗w |0〉⊗a prepares a purification

∣∣%〉
of the subnormalized w-qubit density operator %.

Then we can implement a (1,O (w +a),0)-block-encoding of %, with single use of G and
G†, and with O (w +a) elementary operations.

Proof. Let

%=
2w∑
i=1

λi
∣∣ψi

〉〈
ψi

∣∣
be a spectral decomposition of % such that the purification

∣∣%〉
is

∣∣%〉= 2w∑
i=1

√
λi

∣∣ψi
〉∣∣0〉∣∣φi

〉+|⊥〉,

where |⊥〉 has no overlap with the |0〉 state in the second register and where
〈
φi

∣∣φ j
〉 =

δi j . Without loss of generality we assume that this second register is a single qubit,
since if it would be multiple qubits then we could compute the OR of these bits in a
new register and use that single qubit instead. Hence |⊥〉 =∑2w

i=1αi
∣∣ψ̃i

〉∣∣1〉∣∣φ̃i
〉

.

15For simplicity we assume that for a d-dimensional density operator a purification has at most
polylog(d) qubits.

16Technically any pair of easy-to-prepare orthogonal states would work, and hence the states |0〉+|1〉p
2

and |0〉−|1〉p
2

could be used as well.
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Consider the state(
I2w+1 ⊗G

)∣∣ψi
〉∣∣0w+a+1〉

=∣∣ψi
〉∣∣0〉( 2w∑

k=1

√
λk

∣∣ψk
〉∣∣0〉∣∣φ j

〉+|⊥〉
)

=
2w∑

k=1

√
λk

∣∣ψi
〉∣∣0〉∣∣ψk

〉∣∣0〉∣∣φk
〉+ 2w∑

k=1
αk

∣∣ψi
〉∣∣0〉∣∣ψ̃k

〉∣∣1〉∣∣φ̃k
〉

,

and the state (where SWAPw+1 swaps the first w+1 qubits with the second w+1 qubits)

(SWAPw+1 ⊗ I2a )
(
I2w+1 ⊗G

)∣∣ψ j
〉∣∣0w+a+1〉

=
2w∑
`=1

√
λ`

∣∣ψ`

〉∣∣0〉∣∣ψ j
〉∣∣0〉∣∣φ`

〉+ 2w∑
`=1

α`

∣∣ψ̃`

〉∣∣1〉∣∣ψ j
〉∣∣0〉∣∣φ̃`

〉
.

The inner product between these two states is

〈
ψi

∣∣〈0w+a+1
∣∣(I2w+1 ⊗G†

)
(SWAPw+1 ⊗ I2a )

(
I2w+1 ⊗G

)∣∣ψ j
〉∣∣0w+a+1〉

=
(

2w∑
k=1

√
λk

〈
ψi

∣∣〈0
∣∣〈ψk

∣∣〈0
∣∣〈φk

∣∣)( 2w∑
`=1

√
λ`

∣∣ψ`

〉∣∣0〉∣∣ψ j
〉∣∣0〉∣∣φ`

〉)

=
2w∑

k=1

2w∑
`=1

√
λkλ`

〈
ψi

∣∣ψ`

〉〈
ψk

∣∣ψ j
〉〈
φk

∣∣φ`

〉
=

2w∑
k=1

λk
〈
ψi

∣∣ψk
〉〈
ψk

∣∣ψ j
〉

=
2w∑

k=1
λkδi kδ j k

=λiδi j

Hence V := (
I2w+1 ⊗G†

)
(SWAPw+1 ⊗ I2a )

(
I2w+1 ⊗G

)
is a (1,O (w +a),0)-block-encoding

of diag(λ) in the
{∣∣ψi

〉}
basis, which is exactly a block-encoding of %.

This lemma shows that we can reduce the quantum state input model to the quan-
tum operator input model with α = B . Brandão et al. [BKLLSW19] showed that in the
quantum state input model the dependence on n for Gibbs-sampling that we would
get via such a reduction can be replaced with a dependence on the maximal rank of the
input matrices, which might be better in certain settings. We later showed in [AG19a]
that the dependence on the rank can be replaced by a dependency on B . However, in
this chapter we will only consider SDP-solvers for the quantum state input model that
are derived from SDP-solvers for the quantum operator input model, and hence we will
only consider SDP-solvers for this model with a

p
n dependence on the dimension.
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Hamiltonian input model In the Hamiltonian input model for SDPs, we have access
to two oracles for the A j matrices. The first oracle, Ot , gives a classical description of a
real vector t ∈Rm+1 in the usual way

Ot
∣∣ j

〉∣∣0〉= ∣∣ j
〉∣∣t j

〉
.

The second oracle, OH si m , performs Hamiltonian simulation with A j and time param-
eter 1/t j :

OH si m
∣∣ j

〉∣∣ψ〉= ∣∣ j
〉

e iA j /t j
∣∣ψ〉

.

Alongside the oracles we also require an upper bound

τ≥ max
j

t j

as part of the input for an SDP. As in the other input models, we assume that we can
also apply the inverse of the oracles. Consider the following lemma:

Lemma 4.25 : [GSLW19, Cor. 71] Suppose that U = e iA/t , where A is a Hamiltonian of
norm at most t/2. Let ε ∈ (0,1/2], then we can implement a (2t/π,2,ε)-block-encoding
of A with O

(
log(t/ε)

)
uses of controlled-U and its inverse, using O

(
log(t/ε)

)
elementary

operations and using a single ancilla qubit.

If all t j are at least 2, then this lemma shows that we can implement the quantum
operator input model using the Hamiltonian input model with α= 2τ. Assuming such
a lower bound on the t j is not a significant limitation. In order to be able to distinguish
e iA j /t j from e−iA j /t j we need that the eigenvalues of A j /t j are not too close to π, and
hence we want a constant lower bound on t j anyway.

POVM input model Similarly to Low and Chuang [LC17], we note that if one can
perform a POVM measurement on a quantum computer, then one can also implement
a block-encoding of the corresponding measurement operator. First we clarify what we
mean by performing a POVM measurement on a quantum computer. For simplicity
assume that the POVM is a two-outcome measurement, represented by the operators
M , (I −M) that correspond to outcomes 0 and 1 respectively. Then we assume (without
too much loss of generality) that an implementation on a quantum computer is as
follows: we get as input a mixed state ρ, and attach a ancilla qubits to it. Then we
apply some unitary on the state, and finally perform a measurement of the last qubit in
the computational basis, accepting only measurement outcomes where the last qubit
is |0〉.

In the POVM input model we assume that 0 ¹ A j and that we have access to a
unitary that performs the measurement under A j as above. Note that this is very similar
(although not exactly equal) to assuming access to an unbiased trace-estimator. Using
such an input model we can also implement block-encodings of the input matrices.
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Lemma 4.26 Let {M , I −M } be a POVM measurement. Suppose we have access to a
unitary U such that

∀ρ :
∣∣∣Tr

(
(I ⊗|0〉〈0|)U (

ρ⊗|0〉〈0|⊗a)
U †

)
−Tr

(
Mρ

)∣∣∣≤ ε. (4.9)

Then we can implement a (1, a+1,ε)-block-encoding of M using a single query to U and
U † and a single CNOT gate.

Proof. Observe that ρ⊗ |0〉〈0|⊗a = (
I ⊗|0〉⊗a

)
ρ
(
I ⊗〈0|⊗a

)
, and thus by the cyclic nature

of the trace

Tr
(
(I ⊗|0〉〈0|)U (

ρ⊗|0〉〈0|⊗a)
U †

)
= Tr

((
I ⊗〈0|⊗a)

U †(I ⊗|0〉〈0|)U (
I ⊗|0〉⊗a)

ρ
)
.

Therefore we can rewrite (4.9) as

∀ρ :
∣∣∣Tr

(
(I ⊗|0〉〈0|)U (

ρ⊗|0〉〈0|⊗a)
U †

)
−Tr

(
Mρ

)∣∣∣≤ ε

⇐⇒∀ρ :
∣∣∣Tr

([(
I ⊗〈0|⊗a)

U †(I ⊗|0〉〈0|)U (
I ⊗|0〉⊗a)−M

]
ρ
)∣∣∣≤ ε

⇐⇒
∥∥∥(

I ⊗〈0|⊗a)
U †(I ⊗|0〉〈0|)U (

I ⊗|0〉⊗a)−M
∥∥∥≤ ε.

Finally we can postpone a measurement by copying the result to an extra qubit, so(
I ⊗〈0|⊗a)

U †(I ⊗|0〉〈0|)U (
I ⊗|0〉⊗a)

= (
I ⊗〈0|⊗a+1)(U † ⊗ I )(I ⊗CNOT)(U ⊗ I )

(
I ⊗|0〉⊗a+1).

We conclude that
(
U † ⊗ I

)
(I ⊗CNOT)(U ⊗ I ) is a (1, a +1,ε)-block-encoding of M .

4.5.2 | Implementing an SDP-solver
In this subsection we show how to efficiently implement a block-encoding for a linear
combination of the input matrices by storing y (t ) in an efficient data structure. Doing so
by-passes the entrywise summation of the input matrices which was a major bottleneck
in the sparse matrix input model. Now we describe how to use a quantum-access
classical RAM (QCRAM) to efficiently implement a state-preparation-pair unitary that
can be used to construct a linear combination of the block-encodings.

Lemma 4.27 There is a data structure that can store an m-dimensional d-sparse vector
y ∈Rm with θ-precision in `1-norm using a QCRAM of size Õ m

θ
(d) such that:

• Initializing the data structure can be done with Õ m
θ

(1) classical operations.

• Given a classical s-sparse vector, adding17 it to the stored vector has classical
cost Õ m

θ
(s).

17In order to avoid error accumulation from repeated rounding, we assume for simplicity that there
can be at most O

(
poly(m/θ)

)
such calls to the data structure in total.
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Figure 4.3: Tree structure for the vector (1,2,3,4)

• Querying the i th element of the stored vector can be done using Õ m
θ

(1) elementary
operations.

• Given a β≥ ∥∥y
∥∥

1 we can implement a (symmetric)
(
β, Õ m

θ
(1),θ

)
-state-preparation

pair for y with Õ m
θ

(1) elementary operations.

Proof. We use the data structure of [KP17, App. A], we will give a rough sketch here, see
their paper for more details. This data structure stores a vector on the leaves of a binary
tree. The sum of the branches is stored at each vertex, see Figure 4.3 for an example.
Now, updating one entry can be done by walking the tree upward and changing each
node as required, which takes O (ln(m)) classical operations. Hence, an s-sparse vector
can be added using O (s ln(m)) classical operations. Given a tree structure for a vector y ,
sampling from y/

∥∥y
∥∥

1 can easily be implemented classically: walk down the tree, going
left or right with probabilities proportional to the node values. With a similar method a
state-preparation pair for y can be implemented. Finally we note that there is no need
to initialize a full-sized empty tree, the tree can be extended every time new entries are
added.

Corollary 4.28 Having access to the above data structure for y, we have TGibbs(K ,d ,θ) =
Õ 1

θ

(
αK

p
n

)
in the quantum operator input model with parameter α.

Proof. This follows from applying the Gibbs-sampling of Lemma 4.15 to the block-
encoding of H = ∑m

j=0 y j A j that is obtained by using Lemma 2.9 with the state-
preparation pair from Lemma 4.27.

This directly gives the following result for SDP-solving:

Theorem 4.29 In the quantum operator input model with parameter α

TSDP (ε) = Õ
(p

mnαγ4),
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where γ = Rr /ε. For an SDP primal oracle the same complexity can be accomplished
with γ = R/ε. The input oracle of the quantum operator input model can be imple-
mented using O (1) queries and Õmnαγ(1) elementary operations in the sparse matrix in-
put model with setting α= s.18

Proof. The complexity statement follows from Theorem 4.13 using Lemma 4.18 and
Corollary 4.28. The reduction of the sparse matrix input model to the quantum operator
input model follows from Lemma 4.19.

4.6 | Two-PhaseQuantumSearch andMinimum-Finding
To further speed up the SDP-solvers derived from the meta-algorithms in Section 4.2
we can use a fast version of the Quantum OR Lemma, as in [BKLLSW19]. They prove
the following lemma, see also [GSLW19]:

Lemma 4.30 : Fast Quantum OR Lemma [BKLLSW19] Let Π1, . . . ,Πm be projectors
and ρ a quantum state. Suppose that either

1. ∃ j s.t. Tr
(
Π jρ

)≥ 1−δ1, or

2. 1
m

∑m
j=1 Tr

(
Π jρ

)≤ δ2

for some 0 < δ1 ≤ 1/2 and 0 < δ2 ≤ (1−δ1)2

12m . Then for all ξ ∈ (0,1) there is a procedure that
accepts with probability at least (1−δ1)2/4−ξ in the first case, and probability at most
3mδ2 + ξ in the second case, and that uses 1 copy of ρ and O

(p
m/ξ

)
applications of a

controlled version of the reflection I−2
∑m

j=1Π j ⊗
∣∣ j

〉〈
j
∣∣, and O

(p
m polylog(m)

ξ

)
elementary

operations.

This lemma is almost the same as the original Quantum OR Lemma [HLM17] but
with the addition that the algorithm requires only O

(p
m/ξ

)
applications of the con-

trolled reflection, compared to a linear number of reflections required by the original.
In a recent paper Aaronson [Aar18] proved the Gentle Quantum Search Lemma using
the Quantum OR Lemma. His proof can easily be extended to use the Fast Quantum
OR Lemma. We call the more efficient version that we get as a result Two-Phase Quan-
tum Search.

In the setting of the Two-Phase Quantum Search we have m procedures for decision
problems and we ask whether one of them evaluates to 1, and if so, we want to find one
that does. We also know that all procedures start with preparing some state ρ, followed
by some procedure U j that depends on the index of the decision problem j ∈ [m]. In
classical deterministic processes it is quite natural that only one preparation of ρ is
needed since the result can be copied and reused. For bounded-error classical pro-
cesses O

(
log(m)

)
preparations of ρ suffice to get the error probability of one decision

18As mentioned in footnote 13 on page 86, this can be improved to α=p
s.
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problem below 1
3m . By the classical union bound this is low enough that we can find a

marked element with constant probability. However, if ρ is a quantum state and the U j

are quantum algorithms, then such a bound is not so straightforward, since progress
made in constructing ρ might be destroyed when running one of the U j . Nevertheless,
using the Fast Quantum OR Lemma it can be shown that Õ

(
log(m)4

)
samples from ρ

suffice to decide if one of the m procedures evaluate to 1.

Lemma 4.31 : Two-Phase Quantum Search Let µ ∈ (0,1). Let ρ be a quantum
state and U1, . . . ,Um be unitaries with the U j accessible through a unitary U that acts as
U

∣∣ j
〉∣∣ψ〉= ∣∣ j

〉
U j

∣∣ψ〉
. Then there is a quantum algorithm that using Õ

(
log(m)4log

(
1/µ

))
samples of ρ and Õ

(p
mlog

(
1/µ

))
applications of U and U †, outputs with success prob-

ability at least 1−µ either

• a j such that Tr
(
(I ⊗|1〉〈1|)U jρU †

j

)
≥ 1/3, i.e., a j such that U j outputs 1 with

probability at least 1/3 on input ρ,

• or concludes correctly that Tr
(
(I ⊗|1〉〈1|)U jρU †

j

)
< 2/3 for all j , i.e., no unitary

outputs 1 with probability at least 2/3 on input ρ.

Proof. This follows directly from the proof of the Gentle Quantum Search Lemma
in [Aar18, Lem. 15], by replacing the normal Quantum OR Lemma by the Fast Quantum
OR Lemma [BKLLSW19].

Using the above lemma we construct the Two-Phase Quantum Minimum-Finding
algorithm. It turns out that we need to use this algorithm in a situation where different
values have different error-bars, therefore the statement gets slightly complicated. In
other use-cases one can typically just choose each error-margin ηi equal to δ resulting
in a simpler statement.

Lemma 4.32 : Two-Phase Quantum Minimum-Finding Let δ,µ′ ∈ (0,1). Let ρ be
a quantum state and U1, . . . ,Um be unitaries, with the U j accessible through a unitary
U that acts as U

∣∣ j
〉∣∣ψ〉 = ∣∣ j

〉
U j

∣∣ψ〉
. Let a1, . . . , am , η1, . . . ,ηm be real numbers such

that min j |a j | + |η j | ≤ M. Assume that with probability at least 2/3, U j computes a
binary representation of a j up to additive error η j using one copy of ρ. Then, with
probability at least 1−µ′, we can find a j such that a j − η j ≤ mini (ai + ηi )+δ using
Õ

(
log(m)4log(M/δ)log

(
1/µ′)) samples of ρ and Õ

(p
mlog

(
1/µ′)log(M/δ)

)
applications

of U and its inverse.

Proof. Do a binary search on the value v to precision δ by checking whether there is
still an element with ai + ηi ≤ v using Lemma 4.31 in each round with setting µ =
Θ

(
µ′/log(M/δ)

)
. This binary search will result in a value v ≤ mini (ai +ηi )+δ with prob-

ability at least 1−µ′/2, and it is not hard to see that the last j found by the algorithm
from Lemma 4.31 during the binary search will be such that a j −η j ≤ v with proba-
bility at least 1−µ/2 ≥ 1−µ′/2. Therefore this j satisfies the required inequality with
probability at least 1−µ′.
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This leads to the following improved bound on SDP-solving.

Theorem 4.33 Assume that y (t ) ∈Rm+1 is stored in a data structure such that updating
an entry requires at most Õ

(
TGi bbs(γ,γ2,γ−1)

)
elementary operations, where γ := 6Rr /ε.

Furthermore, assume that both TGi bbs
(
γ,γ2,γ−1

)
and T σ

Tr

(
γ−1

)
are at most polynomial

in their parameters. Then

TSDP (ε) = Õn
((p

mT σ
Tr (γ−1)+TGi bbs(γ,γ2,γ−1)

)
γ4σ2).

Similarly there is also a quantum algorithm with the same complexity, but with γ :=
6R/ε, that implements an SDP primal oracle.

Proof. To obtain an ε-approximate SDP-solver we use binary search and the Arora-Kale
framework to find an ε/4-approximation of OPT. After we found such an approxima-
tion �OPT, we can run the Arora-Kale algorithm with guess ω= �OPT+ 3

4ε and precision
ε/4 to find a feasible dual solution that is ε-optimal. Finally, we run the SDP primal
oracle with ω = �OPT− 3

4ε and precision ε/4 in order to obtain a primal solution that is
ε-feasible and has an objective value that is ε-close to optimal.

The two meta-algorithms each run for Õn
(
γ2

)
iterations. In each iteration we need

to update at most three entries in the data structure for the y vector, which takes at
most Õ

(
TGi bbs(γ,γ2,γ−1)

)
elementary operations by assumption. To search for a vio-

lated constraint when using the SDP primal oracle framework, we use the Two-Phase
Quantum Search, and we use Two-Phase Quantum Minimum-Finding to implement
the minimum-finding needed in the advisor for the Arora-Kale framework19, following
the geometric approach of Lemma 4.8 for implementing a γ−1-advisor.

Consider ρ̃⊗k , where ρ̃ is a density operator that is a 1
4γ-approximation in trace

distance of the Gibbs state ρ corresponding to the current y vector and where k =
3(4σγ)2. Let U j be the operator that applies a ( 1

4γ ,σ)-trace-estimator to each copy of

ρ̃ and takes the average of the outcomes, i.e., it obtains estimates of Tr
(

A j ρ̃
)

with bias
at most 1

4γ and standard deviation at most σ independently k times, taking the average

at the end. By Chebyshev’s inequality we can see that this way U j computes a 1
2γ-precise

estimate of Tr
(

A j ρ̃
)

with probability at least 2/3. We have that
∥∥ρ̃−ρ

∥∥
tr ≤ 1

4γ and thus

we get a 3
4γ-precise estimate of Tr

(
A jρ

)
with probability at least 2

3 . The preparation of

ρ̃⊗k can be performed using kTGi bbs(γ,γ2,γ−1) queries by definition, while U j can be
implemented with query complexity kT σ

Tr (γ−1).
By using Two-Phase Quantum Search (Lemma 4.31) and Two-Phase Quantum

Minimum-Finding (Lemma 4.32), with µ = Õn
(
γ−2

)
and with ρ̃⊗k as the initially pre-

pared quantum state (called ρ in those lemmas), we can implement each iteration of
the meta-algorithms using Õn

((
(
p

mT σ
Tr (γ−1)+TGi bbs(γ,γ2,γ−1)

)
γ2σ2

)
queries. The

19In the advisor implementation of Lemma 4.8 the minimum-finding is not done over the computed
traces, but rather the angles calculated using these traces. Precision δ = 1/poly

(
γ
)

suffices for the trace
→ angle conversion, and since the magnitude M of angles is bounded by π, we get log(M/δ) =O

(
log

(
γ
))

in Lemma 4.32.
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stated final complexity follows by multiplying the complexity per iteration with the
number of iterations T = Õn

(
γ2

)
.

The following theorem then follows directly.

Theorem 4.34 In the quantum operator input model

TSDP (ε) = Õ
((p

m +p
nγ

)
αγ4),

where γ = Rr /ε. For an SDP primal oracle the same complexity can be accomplished
with γ = R/ε. The input oracle of the quantum operator input model can be imple-
mented using O (1) queries and Õmnαγ(1) elementary operations in the sparse matrix in-
put model with α= s.18

A natural question to ask is whether the dependence on all the parameters is opti-
mal. In Section 9.2.5 we prove an Ω̃

((p
m +p

n
)
αγ

)
lower bound. Hence, apart from

the dependence on γ, our upper bound is tight.

4.7 | Equivalence of R , r , and ε−1

In this section we will prove the equivalence of the three parameters R, r and ε−1 for
SDP-solving. That is, we will show any two of the three parameters can be made con-
stant by increasing the third. Therefore, Rr

ε
as a whole is the interesting parameter. This

appendix is structured as a set of reductions, in each case we will denote the parameters
of the new SDP with a tilde.

Lemma 4.35 For every SDP with R,r ≥ 1 and 0 < ε≤ 1, there is an SDP with parameters
R̃ = 1 and r̃ = r such that solving that SDP with precision ε̃= ε

R solves the original SDP.

Proof. Let Ã j = A j , C̃ = C and b̃ = b
R . Now clearly R̃ = 1, but �OPT = OPT/R. Hence

determining �OPT up to additive error ε̃ = ε
R will determine OPT up to additive error ε.

Notice that the feasible region of the dual did not change, so r̃ = r .

Lemma 4.36 For every SDP with R,r ≥ 1 and 0 < ε≤ 1, there is an SDP with parameters
R̃ = R

ε and r̃ = r such that solving that SDP with precision ε̃= 1 solves the original SDP.

Proof. Let Ã j = A j , C̃ =C and b̃ = b
ε

. Now R̃ = R
ε

and �OPT = OPT/ε. Hence determining�OPT up to additive error ε̃ = 1 will determine OPT up to additive error ε. Notice that
again the feasible region of the dual did not change, so r̃ = r .

Lemma 4.37 For every SDP with R,r ≥ 1 and 0 < ε≤ 1, there is an SDP with parameters
R̃ = R and r̃ = 1 such that solving that SDP with precision ε̃= ε

r solves the original SDP.

Proof. Let Ã j = A j , b̃ = b and C̃ = 1
r C . Now r̃ = 1 and �OPT = OPT/r . Hence determining�OPT up to additive error ε̃ = ε

r will determine OPT up to additive error ε. Since r ≥ 1
and ‖C‖ ≤ 1, we find ‖C̃‖ ≤ 1 as required. Notice that the feasible region of the primal
did not change, so R̃ = R.
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At this point we would like to state the final reduction, the reduction that increases
r in order to get a constant ε, by setting C̃ = 1

ε
C , but this would not guarantee that

‖C̃‖ ≤ 1. Instead we show that each step of the binary search for the optimum can be
performed with constant error by increasing r .

Lemma 4.38 Given an SDP with R,r ≥ 1, a precision 0 < ε ≤ 1 and a guess for the
optimum ω such that |ω−OPT| ≤ 2ε, there is an SDP with parameters R̃ = O (R) and
r̃ =O (r /ε) such that solving that SDP with precision ε̃= 1/2 yields a new guess ω′ for the
optimum of the original SDP with |ω′−OPT| ≤ 3

2ε.

Proof. We introduce a new variable z and consider the SDP

max
z∈R,X∈Rn×n

z

s.t. εz −Tr(C X ) ≤−ω+2ε

Tr
(

A j X
)≤ b j for all j ∈ [m]

z ≥ 0, X º 0.

Rewriting the first constraint gives z ≤ Tr(C X )−ω
ε + 2. Hence z can be maximized by

letting X be an optimal solution to the original SDP. It follows that �OPT = OPT−ω
ε +

2 ∈ [0,4]. Hence we can let R̃ = R + 4. Furthermore, learning whether �OPT ≤ 5/2 or�OPT ≥ 3/2 yields a new guess for OPT with error less than 3
2ε.

It remains to give an upper bound on r̃ . In order to do this, consider the dual
program

min
v∈R,y∈Rm

〈
b, y

〉+ (−ω+2ε)v

s.t. εv ≥ 1
m∑

j=1
y j A j − vC º 0

y ≥ 0, v ≥ 0.

Note that the constraints imply v ≥ 1/ε. We claim that this is tight in the optimum. To
see this, fix v to some value v0 ≥ 1/ε and consider the SDP in the remaining variables.
Let y∗ be an optimizer for the original dual SDP with `1-norm equal to r . Then clearly
v0 y∗ is an optimizer for this new dual SDP with v fixed. The objective value of this
optimizer is v0

(〈
b, y∗〉−ω+2ε

)
. However, by assumption〈

b, y∗〉−ω+2ε= OPT−ω+2ε≥−2ε+2ε= 0.

It follows that the optimal value can only increase by increasing v above 1/ε, and hence
v = 1/ε and y = y∗/ε forms an optimizer for the new SDP. This shows that r̃ = r /ε+1/ε=
O (r /ε) suffices.
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4.8 | Applications
Although quantum SDP-solvers provide a speed up in terms of n and m over classical
algorithms they do suffer an increased dependence on R, r and ε. In the first two pa-
pers on quantum SDP-solving [BS17; AGGW17] it remained an open question whether
any applications could be found in the regime where Rr /ε was small enough to get a
speedup over the best classical methods. Later Brandão et al. [BKLLSW19] showed that
SDP primal oracles can be used to solve the problem of shadow tomography if the input
is given in the quantum state input model. Shadow tomography was recently proposed
by Aaronson [Aar18], who also gave a sample-efficient algorithm. In Section 4.8.1 we
apply our improved SDP primal oracles to this problem, simultaneously improving the
sample complexity and computational complexity compared to the previous works.

We also propose new applications to quantum SDP-solvers, namely the problems of
quantum state discrimination and E-optimal design. In both cases we show a speedup
over the best possible classical algorithm in terms of some input parameters, at the
expense of a large dependence on other parameters. Therefore we do not believe these
results to be useful in practice. However, they do show that an improvement in some
parameters is possible, and further research in this area might be able to improve the
error dependence for these special cases. We end this section with a short discussion
on how out SDP-solvers can be used to implement LP-solvers.

4.8.1 | Improved shadow tomography
We apply the idea from Brandão et al. [BKLLSW19] to use an SDP primal oracle to the
problem of shadow tomography proposed by Aaronson [Aar18]. In shadow tomogra-
phy we are given the ability to prepare samples of an n-dimensional quantum state τ

and we have a description of some measurement operators E1, . . . ,Em ; the goal is to
find ε-approximations of the corresponding expectation values Tr

(
E jτ

)
for all j ∈ [m].

Aaronson showed that this can be done with only20

Õ

(
log(m)4log(n)

ε5

)
samples from τ, but his method has high computational costs. Note that here there
are three different complexity measures: the number of samples from τ, the number
of queries to some input model that describes the E j , and the number of elementary
operations.

In [BKLLSW19] Brandão et al. showed that a slightly relaxed problem can be effi-
ciently solved using an SDP primal oracle. The problem they solved is to find a y ∈ Rm

for which σ := e−∑m
j=1 y j E j /Tr

(
e−∑m

j=1 y j E j
)

is such that |Tr
(
E j (τ−σ)

)| ≤ ε/2 ∀ j ∈ [m], i.e.,

20Aaronson improves the ε-dependence of his algorithm to match our upper bound from Theorem 4.39
in a version of [Aar18] that appeared after our work.
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σ is in

Pε = {σ : σº 0,

Tr(σ) = 1,

Tr
(
σE j

)≤ Tr
(
τE j

)+ε/2 ∀ j ∈ [m],

Tr
(−σE j

)≤ Tr
(−τE j

)−ε/2 ∀ j ∈ [m]}.

We call the problem of finding a classical description of τ that suffices to solve the
shadow tomography problem without any more samples from τ the descriptive shadow
tomography problem. In particular if we get a vector y as above, then for a given j ∈ [m]
using Õm

(
1/ε2

)
invocations of a Gibbs-sampler for y followed by the measurement

E j suffices to find an ε-approximation of Tr
(
τE j

)
with success probability at least 1−

O (1/m) without any more samples from τ. If we can coherently apply E j , then using
amplitude estimation techniques the number of (coherent) Gibbs-sampler calls can be
reduced to Õm(1/ε).

Due to the output size of the shadow tomography problem, a trivial Ω
(
mlog(1/ε)

)
lower bound can be given on the gate complexity, since we need to write down the
results. However, this limitation does not exist for the descriptive shadow tomography
problem. Both problems clearly have the same sample complexity, furthermore the
best known lower bound on the sample complexity is Ω

(
log(m)/ε2

)
[Aar18].

Theorem 4.39 The descriptive shadow tomography problem can be solved using

Õ

(
log(m)4log(n)

ε4

)
samples from τ. Furthermore, when the E j matrices are accessible in the quantum oper-
ator input model, then this can be done using

Õ

((p
m +

p
n

ε

)
α

ε4

)
queries to the E j and elementary operations. It follows that the same bound holds with
α= s for the sparse matrix input model.

Proof. The samples from τ are only used for calculating the values b j , i.e., calculating
ε
4 -approximations of Tr

(
τE j

)
, when checking the constraints in the SDP primal ora-

cle. Like in [BKLLSW19] we make a small adjustment to our SDP primal oracle: when
Gibbs-sampling the Gibbs state ρ, we also sample τ to create the state ρ ⊗ τ. Then,
when checking the constraint, we measure E j ⊗ I − I ⊗E j to obtain an approximation of

Tr
(
E jρ

)−Tr
(
E jτ

)
. Notice that our SDP primal oracle uses Õ

(
log(m)4log(n)

ε4

)
Gibbs states,

Õlog(n)

(
log(m)4/ε2

)
in each of the O

(
log(n)/ε2

)
iterations, and hence the modified ver-

sion uses that many samples from τ too.
The statements about the query complexity and number of elementary operations

follow directly from Theorem 4.34.
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As a final remark we note that the POVM input model we introduced in Section 4.5.1
is very natural in this situation. In particular, this shows that Õ

((p
m +p

n/ε
)
(1/ε)4

)
applications of the measurements suffice.

4.8.2 | Quantum state discrimination

In the Quantum State Discrimination problem we are given k d-dimensional quan-
tum states ρ(1), . . . ,ρ(k) ∈ Cd×d , in some input model. Our goal is to find a POVM
M (1), . . . , M (k) that has the “best” probability of discriminating between the states. Here
“best” has two natural meanings:

• The minimal success probability is maximized: maxM mini∈[k] Tr
(
M (i )ρ(i )

)
.

• The sum of all the success probabilities is maximized.

Both problems can be cast as an SDP [Eld03] but we will only consider the second here
since it lends it self better to the Arora-Kale framework. For the rest of the section,
when we refer to the quantum state discrimination problem, we mean the problem of
maximizing the sum of success probabilities. Our goal will be to get a quantum speedup
in k at the expense of a slowdown in terms of d . Fortunately, the interesting cases of the
problem seem to occur when d ¿ k. Furthermore, we will use the quantum state input
model as introduced in Section 4.5.1 to show that it is possible to solve the problem
even when only given access to unitaries that prepare the quantum states.

Theorem 4.40 Given access to the matrix entries of the quantum states ρ(1), . . . ,ρ(k) ∈
Cd×d the quantum state discrimination problem can be solved up to additive error ε on
a quantum computer using

Õ

(p
k

ε5
poly(d)

)

queries to the input.

Given access to a unitary that creates a purified version of the quantum states
ρ(1), . . . ,ρ(k) ∈ Cd×d the quantum state discrimination problem can be solved up to
additive error ε on a quantum computer using

Õ

(
k1.5

ε5
poly(d)

)
queries.

Proof. To maximize the sum of success probabilities, notice that the probability of
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identifying ρ(i ) correctly is Tr
(
M (i )ρ(i )

)
. Writing the problem as an SDP we get:

max
k∑

i=1
Tr

(
M (i )ρ(i )

)
s.t.

k∑
i=1

M (i ) = Id

M (i ) º 0 for all i ∈ [k].

This can be written in the standard form (4.1) as follows:

• X = diag
(
M (1), . . . , M (k)

)
.

• C = diag
(
ρ(1), . . . ,ρ(k)

)
.

• For s, t ∈ [d ] we let Ast =⊕k
i=1Est and bst = δst , where δst is the Kronecker delta.

Notice that we have strict equalities, as opposed to the inequalities in the standard
form. These equalities can be cast into inequality form by adding a separate upper and
lower bound. However, this is not needed for the analysis, just note that an equality in
the primal corresponds to a variable in the dual without positivity constraint.

To apply our SDP-solvers we need to give bounds on the input parameters. Clearly
here n = kd and m = O

(
d 2

)
. Furthermore, since the objective matrix is block diagonal

with d ×d blocks, the sparsity s is at most d . To bound the parameter B in the quantum
state input model, note that C has trace k and is psd, and all other constraints can
clearly be decomposed with a constant trace. It remains to give a bound for R and r .

For R, the bound on the trace of a primal solution, notice that

Tr(X ) =
k∑

i=1
Tr

(
M (i )

)
= Tr

(
k∑

i=1
M (i )

)
= Tr(Id ) = d .

For r we need to write out the dual. Doing so directly gives:

min
∑

s,t∈[d ]
ystδst =

∑
s∈[d ]

yss

s.t.
∑

s,t∈[d ]
yst

(
⊕k

i=1Est

)
º⊕k

i=1ρ
(i ).

Notice that we do not have a y ≥ 0 constraint since we have strict equalities in the
primal. We could have replaced the equalities by inequalities and then we would get
a y+ and y− vector, both non-negative, such that y = y+ − y−. However, since r is a
upper bound on the sum of the values in one optimal solution, it is enough to bound
the absolute value of the y variables.

To do so, simply rewrite the dual with a separate constraint for each ρ(i ) and reorga-
nize the yst variables in a d ×d matrix Y :

min Tr(Y )

s.t. Y º ρ(i ) for all i ∈ [k].
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Clearly Id is feasible for this problem, so for an optimal Y we have OPT = Tr(Y ) ≤ d .
This gives the following bound, for S ∈ {−1,1}d×d ,

d∑
s,t

|Yst | = max
S∈{−1,1}d×d

Tr(SY ) ≤ Tr(Y ) max
S∈{−1,1}d×d

‖S‖ ≤ dTr(Y ) ≤ d 2, (4.10)

so r = d 2 suffices.21

Applying our results about the complexity of SDP-solving gives the claimed bounds.

Applying our SDP-solver results in a dual solution Y and a description of a primal
solution X . This description of the primal solution is of the form (Y ′, y0) and describes

to primal solution via M (i ) ∝ eY ′−y0ρ
i
. Note that this representation gives an interesting

way of compressing a POVM, since the Y ′ matrix has dimension d ×d , but encodes k
POVM operators with the help of the ρ(i ) matrices. The dual solution Y could be of
independent interest too, solving the following problem: for a set of density operators
ρ(i ), find the matrix Y with the smallest trace such that Y º ρ(i ) for all i .

A lower bound To find a lower bound, fix d = 2, i.e., consider a single qubit. Now let
z ∈ {0,1}k be the input for a search problem. We want to distinguish the cases |z| = 0
and |z| = 1 under the promise that we are in one of these cases. This is known to

take Ω
(p

k
)

quantum queries or Ω(k) classical queries, see also Chapter 6. Now let

ρ( j ) = ∣∣z j
〉〈

z j
∣∣. Given query access to z it is easy to construct the input oracles for

the different input models. Clearly if z = 0k , then all states are equal, thus the sum
of success probabilities is always 1. However, if zk = 1, then by setting M (k) := |1〉〈1| and
choosing the other measurement operators arbitrarily, we clearly get a sum of success
probabilities of 2. Hence a 1/3-approximation to the optimal value of the SDP given

above will solve the search problem and hence takes at least Ω
(p

k
)

quantum queries

or at least Ω(k) classical queries.

4.8.3 | Optimal design
In the optimal design setting we want to learn a hidden (not necessarily quantum) state
θ ∈ Rd through experiments. There is a set of k possible experiments, represented by
unit vectors u(1), . . . ,u(k) ∈Rd , and when we execute the i th experiment we learn 〈θ,u( j )〉
with some Gaussian noise. In particular we get a sample from N (〈θ,u( j )〉,σ j ). Precise
estimation of θ requires a lot of experiments, and the problem in optimal design is to
decide which distribution to use when choosing the experiments in order to “minimize”

21This also proves that for k states of dimension d , the sum of success probabilities of discrimination is
always at most d , so the average will be at most d/k. Thus the error parameter should scale with 1/k if we
would consider the average probability. This is why we choose to look at the sum of success probabilities
instead.
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the covariance matrix of the maximum likelihood estimator of θ. Since the variance of
the maximum likelihood estimator is hard to express analytically, we instead look at
the Fischer information matrix, which is a good approximation for the inverse of the
covariance matrix, and has a nice closed form:

Fp =
k∑

i=1
pi u(i )u(i )T /σ2

i ,

where pi is the probability of doing experiment u(i ). Now, to make the covariance
matrix “small” we would like to make the Fischer information matrix “large”. For a more
detailed explanation, see for example [Sil80].

The precise meaning of “small” and “large” can be defined in several sensible ways.
The most common criteria are called A-optimal, D-optimal and E-optimal design. In
A-optimal design we want to minimize the sum of the eigenvalues of the covariance
matrix, or as an approximation the sum of the eigenvalues of the inverse of the Fischer
information matrix. Unfortunately the SDP formulation of this problem has parameters
r,R that make our methods inefficient. In D-optimal design we want to minimize the
determinant of the covariance matrix, this can be approximated with a convex program,
but sadly this problem does not naturally correspond to an SDP.

We will consider E-optimal design. In this setting we would like to minimize the
operator norm of the covariance matrix. Since this is hard to do, we will try to maximize
the smallest eigenvalue of the Fischer information matrix. Let P := maxi

1
dσ2

i
be an input

parameter dependent on the maximal variance of the experiments. Note that if the
size d of the states increases but the experiments still have the same variance, then the
parameter P decreases. In fact, P can be viewed as a measure of how much information
a single measurement can give about each of the coordinates.

Theorem 4.41 The E-optimal design problem, that is, finding a distribution p ∈ ∆k

such that the smallest eigenvalue of Fp is maximized, can be solved up to additive error ε
using sparse access to the s-sparse experiment (unit) vectors u(1), . . . ,u(k) ∈Rd and oracle
access to the σi values with

Õ

((p
k +

p
d

P 2

ε

)
s

P 8

ε4

)
queries on a quantum computer.

Proof. We consider the following SDP:

max t

s.t.
k∑

i=1
pi u(i )u(i )T /σ2

i º t Id

k∑
i=1

pi ≤ 1

pi ≥ 0 for all i ∈ [k].
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Clearly this SDP would maximize the minimal eigenvalue of Fp = ∑k
i=1 pi u(i )u(i )T /σ2

i .
We can rewrite this in standard dual form, flipping the sign of the optimal value:

min − t

s.t.
k∑

i=1
pi

[−1
u(i )u(i )T /σ2

i

]
+ t

[
0

−Id

]
º

[−1
0

]
pi ≥ 0 for all i ∈ [k]

t ≥ 0.

The corresponding primal problem is then easy to write down:

max − z

s.t. − z +Tr
(

X u(i )u(i )T
)
/σ2

i ≤ 0 for all i ∈ [k]

Tr(X ) ≥ 1

z ≥ 0, X º 0.

From the size of the input it follows that n = 1+d and m = 1+k for this SDP. Further-
more, the row sparsity of the constraint matrices is equal to the vector sparsity of the
u(i ), which justifies the use of s for the sparsity of the vectors u(i ). It remains to give a
bound on r and R. Note that the trace constraint on X will be tight for an optimal X
and hence R = 1+|OPT|, where OPT is the optimal value is the optimal value of the last
SDP. Similar for the sum constraint on p, we get r = 1+|OPT|. To give a bound on |OPT|,
we rewrite the primal again, flip the sign of the optimum:

min z

s.t. Tr
(

X u(i )u(i )T
)
/σ2

i ≤ z for all i ∈ [k]

Tr(X ) ≥ 1

z ≥ 0, X º 0.

Now, let us construct a feasible point. Since we have a minimization SDP, this will
give an upper bound on OPT, which is also an upper bound on |OPT| due to the non-
negativity of z. Let X = Id /d , then Tr

(
X u(i )u(i )T

) = 1/d , so picking z = maxi
1

dσ2
i

will

give a feasible point with objective value z. We conclude that r = R = O

(
maxi

1
dσ2

i

)
= P

suffices. The stated complexity follows using our complexity bounds on quantum SDP-
solving.

4.8.4 | Linear programming
Since semidefinite programming is an extension of linear programming, LP-solving is
a natural application for our SDP-solvers. Remember that linear programs correspond
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to SDPs where all input matrices are diagonal. This means that the SDP sparsity s will
always be 1. Access to the entries of the constraint matrix of an LP via an oracle acting as
O

∣∣i〉∣∣ j
〉∣∣0〉= ∣∣i〉∣∣ j

〉∣∣Ai j
〉

suffices to implement the sparse matrix input model for SDPs.
The constant r has the same meaning for LPs: a bound on the `1-norm of a dual

optimizer. Similar, the bound R corresponds with a bound on the `1-norm of a primal
solution. Naturally we get a quantum LP-solver that uses

Õ
((p

m +p
nγ

)
γ4)

queries and elementary operations.
However, this leaves open two questions. First, is there a better algorithm possible

by considering the extra structure of LPs? And second, the constraint matrix of the LP
might be a sparse matrix, but our SDP algorithm does not consider this. Can we further
speed up LP-solving by considering the sparsity of the LP constraints? We answer both
of these questions affirmatively in the next chapter.



Chapter5

Quantum algorithms
for zero-sum games

We derive sublinear-time quantum algorithms for approximating Nash equilibria of
two-player zero-sum games, based on efficient Gibbs-sampling methods. We are able
to achieve quantum speedups over the best classical algorithms for both dense and
sparse payoff matrices at the cost of a mildly increased dependence on the additive er-
ror. In particular we can find ε-approximate Nash equilibrium strategies in complexity
Õ

(p
n +m/ε3

)
and Õnm

(p
s/ε3.5

)
respectively, where n ×m is the size of the matrix de-

scribing the game, and s is the maximal row and column sparsity. Our algorithms use
the LP formulation of the problem and apply the techniques developed in Chapter 4.
We also show how to reduce general LP-solving to zero-sum games, resulting in quan-
tum LP-solvers that have complexities Õ

(p
n +mγ3

)
and Õnm

(p
sγ3.5

)
for the dense and

sparse access models respectively, where γ is the relevant “scale-invariant” precision
parameter.

This chapter is based on the paper Quantum algorithms for zero-sum games by J. van
Apeldoorn and A. Gilyén [AG19b].
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5.1 | Introduction
A matrix game is a two-player zero-sum game in which both players have only a finite
number of pure strategies. We label the moves for the first player (called Alice) by [n]
and the moves for the second player (called Bob) by [m]. If Alice plays i ∈ [n] and Bob
plays j ∈ [m], then Alice has to pay Bob A j i ∈ [−1,1]. We say that Alice receives a payoff
−A j i and Bob receives a payoff A j i . Their individual goal is to get the highest payoff
possible. The payoffs can be written in matrix form A ∈ [−1,1]m×n , hence the name
matrix game. A game is called symmetric if m = n and A = −AT , in other words, if the
payoff matrix is skew symmetric.

If one of the players would always play the same move, then (for most games) it
would be easy for the other player to get a large payoff. Hence a strategy will be ran-
domized in general. As in Section 2.4.1, let ∆n be the set of all non-negative vectors
in Rn that sum to 1, i.e., the set of all probability distributions over n elements. Given
a randomized strategy x ∈ ∆n for Alice and a randomized strategy y ∈ ∆m for Bob, the
expected payoff for Bob is yT Ax.

Naturally Alice’s goal is to minimize Bob’s expected payoff; the best she can do is to
assume that Bob plays the best strategy y on his side and optimize her x for that:

min
x∈∆n

max
y∈∆m

yT Ax.

We can write this as a linear program (LP) by noting that a linear function over the
simplex (in this case y 7→ yT Ax) is maximized on a vertex of the simplex:

min
x∈∆n

max
y∈∆m

yT Ax = min
x∈∆n

max
j∈[m]

eT
j Ax,

which can be written as an LP:
min λ (5.1)

s.t . Ax ≤λ1

x ∈∆n

λ ∈R.

Notice that since Bob’s strategy y is in ∆m he can indeed not get a better expected value
than λ. In fact, the dual of this LP is the LP that Bob would get if he reasoned similarly.
Due to strong duality both LPs give the same value! Hence we will call the optimal λ∗

in (5.1) the value of the game. The corresponding strategies are together called a Nash
equilibrium. Notice that for a symmetric game the value is always 0 since no player can
have an advantage, and that in general λ∗ ∈ [−1,1]. For completeness, let us also state
the dual problem:

max λ′ (5.2)

s.t . AT y ≥λ′1
y ∈∆n

λ′ ∈R.
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We will call a strategy x for Alice ε-optimal if Ax ≤ (λ∗+ε)1, and similarly for
Bob. Grigoriadis and Khachiyan [GK95] showed that a pair of ε-optimal strategies can
be found using a classical computation consisting of O

(
log(n +m)/ε2

)
iterations, and

with O
(
(n +m)/log(n +m)

)
steps per iteration.1 Notice that this leads to a sub-linear

amount of work! They show this by first converting any game to a symmetric game and
then showing that symmetric games can be solved by a randomized algorithm. In Sec-
tion 5.2, we give a proof of their results that directly applies to non-symmetric games.
In fact, a more careful analysis shows that an iteration can be implemented in Õ mn

ε
(s)

operations, where s is the maximal row and column sparsity of A. In the same paper the
authors also prove that any deterministic algorithm would require at least mn/2 queries
to the input.

As in Chapter 4 we will show that using a quantum computer a quadratic improve-
ment in terms of the dimensions n and m can be achieved, at the expense of a slightly
heavier dependence on the precision. In particular, in Section 5.3.1 we show that on
a quantum computer Õ

(p
n +m/ε3

)
queries to the entries of A and elementary oper-

ations suffice to implement the algorithm by Grigoriadis and Khachiyan [GK95]. In
Section 5.3.2 we show that this can be improved to Õnm

(p
s/ε3.5

)
for sparse matrices.

Note that unlike the algorithms for SDP-solving, the classical algorithm that we speed
up in this chapter (and hence our quantum algorithm) does not depend on additional
scale parameters, thus the achieved speedups seem more applicable in practice.

In Section 5.4 we also show how to reduce general LP-solving to zero-sum games,
resulting in new general-purpose quantum LP-solvers. This reduction reintroduces the
extra dependence on the size of the primal and dual solutions into the complexity.
However, the dependence on these parameters, and on the approximation error, is only
cubic, whereas an LP-solver obtained from our results on SDP-solving from Chapter 4
would have a fifth power dependence. Furthermore, we give the first quantum LP-
solver which depends on the sparsity of the LP instead of on n and m.2

Computational model We will work in the same computational model as we did in
Chapter 4. This means that we will again assume access to a classical-write / quantum-
read random access memory as an elementary operation. We only require such a mem-
ory consisting of Õnm

(
1/ε2

)
bits, so not allowing such an operation will worsen the gate

complexity by at most a factor of Õnm
(
1/ε2

)
.

5.2 | Classical algorithm
In this section we will present the classical zero-sum game algorithm developed by
Grigoriadis and Khachiyan [GK95], with two alterations:

1The authors show that the steps in each iteration can be highly parallelized.
2The sparsity of an LP should not be confused with the sparsity parameter relevant in SDP solving. An

LP that is written as an SDP will have SDP sparsity 1 since all the matrices involved are diagonal. Our goal
here is to get a dependence on the LP sparsity instead of a dependence on n and m.
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1. We give the algorithm and its proof without first reducing the problem to sym-
metric games. In this way we lay more emphasis on the fact that this is a primal-
dual approach and on the connection to fictitious play. Furthermore, we hope
that this view on the algorithm will allow for an easier application to other prob-
lems.

2. The algorithm by Grigoriadis and Khachiyan assumes the desired additive error ε
is known from the start of the algorithm. We present a version of the algorithm
for which the additive error in the intermediate solutions uniformly decreases
during the run of the algorithm, but we also consider a version corresponding to
a fixed accuracy goal more similar to their results.

x(1) ← 0 ∈Rn and y (1) ← 0 ∈Rm .
for t = 1,2, . . . do

η(t ) := 1
2
p

t
(alternatively in the fixed accuracy-goal version choose η(t ) := ε/4).

u(t ) := Ax(t ) and v (t ) :=−AT y (t ).

P (t ) := eu(t ) = e Ax(t )
and Q(t ) := ev (t ) = e−AT y (t )

.
p(t ) := P (t )/

∥∥P (t )
∥∥

1 and q (t ) :=Q(t )/
∥∥Q(t )

∥∥
1.

Sample a ∼ p(t ) and b ∼ q (t ).
y (t+1) = y (t ) +η(t )ea and x(t+1) = x(t ) +η(t )eb .

end for

Algorithm 5.1: Main Zero-Sum game algorithm

We start by proving that this algorithm is correct, before giving an upper bound on
the complexity.

Lemma 5.1 Let δ ∈ (0,1/3). With probability at least 1−δ Algorithm 5.1 produces a
sequence of x(t ) and y (t ) such that for all t the intermediate solutions x(t )/

∥∥x(t )
∥∥

1 and
y (t )/

∥∥y (t )
∥∥

1 are ε′-optimal solutions with

ε′ = 2p
t
· (3ln(t )+ ln(nm)+ ln(1/δ)+2).

Let ε ∈ (0,1). If we run the algorithm with η(t ) := ε/4 instead, then the solutions are ε-

optimal with probability at least 1−δ after T =
⌈

16ln
( nm

δ

)
ε2

⌉
iterations.

Proof. We start by noting that x(t )/
∥∥x(t )

∥∥
1 and y (t )/

∥∥y (t )
∥∥

1 are indeed probability dis-
tributions. Hence

(
x(t )/

∥∥x(t )
∥∥

1,max j (Ax(t )/
∥∥x(t )

∥∥
1) j

) ∈ Rn+1 is a feasible point for the
primal (5.1) and

(
y (t )/

∥∥y (t )
∥∥

1,mini (AT y (t )/
∥∥y (t )

∥∥
1)i

) ∈ Rm+1 is a feasible point for the
dual (5.2). Due to strong duality, to show that these solutions are ε-optimal, it suffices
to show that the difference between their values is at most ε. We do so by showing that

∀i ∈ [n], j ∈ [m] :
(

Ax(t )/
∥∥x(t )

∥∥
1

)
j −

(
AT y (t )/

∥∥y (t )
∥∥

1

)
i ≤ ε,
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since this implies that max j (Ax(t )/
∥∥x(t )

∥∥
1) j −mini (AT y (t )/

∥∥y (t )
∥∥

1)i ≤ ε.
To do so we consider the potential function

Φ(t ) :=
( ∑

j∈[m]
P (t )

j

)( ∑
i∈[n]

Q(t )
i

)
=

( ∑
j∈[m],i∈[n]

P (t )
j Q(t )

i

)

and show that this is bounded from above. In the beginning Φ(1) = nm, moreover

Φ(t +1) =
( ∑

j∈[m]
P (t+1)

j

)( ∑
i∈[n]

Q(t+1)
i

)

=
( ∑

j∈[m]
e

(
Ax(t )

)
j+η(t ) A j b

)( ∑
i∈[n]

e−(
AT y (t )

)
i−η(t ) Aai

)

=
( ∑

j∈[m]
P (t )

j eη(t ) A j b

)( ∑
i∈[n]

Q(t )
j e−η(t ) Aai

)

=
( ∑

j∈[m]
p(t )

j

∥∥P (t )
∥∥

1eη(t ) A j b

)( ∑
i∈[n]

q (t )
i

∥∥Q(t )
∥∥

1e−η(t ) Aai

)

= ∥∥P (t )
∥∥

1

∥∥Q(t )
∥∥

1

( ∑
j∈[m]

p(t )
j eη(t ) A j b

)( ∑
i∈[n]

q (t )
i e−η(t ) Aai

)

=Φ(t )

( ∑
j∈[m]

p(t )
j eη(t ) A j b

)( ∑
i∈[n]

q (t )
i e−η(t ) Aai

)
.

Taking the expectation over the sampling of a and b, and working out the sums, we get

E[Φ(t +1)] =Φ(t )
∑

a∈[m]

∑
b∈[n]

∑
j∈[m]

∑
i∈[n]

p(t )
a q (t )

b p(t )
j q (t )

i eη(t )
(

A j b−Aai
)

≤Φ(t )
∑

a∈[m]

∑
b∈[n]

∑
j∈[m]

∑
i∈[n]

p(t )
a q (t )

b p(t )
j q (t )

i

(
1+η(t )(A j b − Aai

)+3
(
η(t ))2

)
,

where we used the fact that for all x ∈ [−1,1] it holds that ex ≤ 1+ x +3x2/4 , and that∣∣A j b − Aai
∣∣2 ≤ 4. Now also observe that∑

a∈[m]

∑
b∈[n]

∑
j∈[m]

∑
i∈[n]

p(t )
a q (t )

b p(t )
j q (t )

i = 1,

and that all the A j b − Aai terms cancel against another Aai − A j b term with the same

p(t )
a q (t )

b p(t )
j q (t )

i coefficient. Hence

E[Φ(t +1)] ≤Φ(t )
(
1+3

(
η(t ))2

)
,

and by taking the expectation on both sides and expanding the recursion we get

E[Φ(t )] ≤Φ(1)
t−1∏
τ=1

(
1+3

(
η(τ))2

)
≤ nme3

∑t−1
τ=1

(
η(τ)

)2

.
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By Markov’s inequality, for any δ(t ) ∈ (0,1/3), with probability at least 1−δ(t ), we have
that

Φ(t ) ≤ nm

δ(t )
e3

∑t−1
τ=1

(
η(τ)

)2

.

Since Φ(t ) is the sum of positive terms, each term itself is smaller than the sum. It
follows that for all i ∈ [n], j ∈ [m]

P (t )
j Q(t )

i = e
(

Ax(t )
)

j−
(

AT y (t )
)

i ≤ nm

δ(t )
e3

∑t−1
τ=1

(
η(τ)

)2

.

Taking the natural logarithm on both sides, and dividing by
∥∥x(t )

∥∥
1 =

∥∥y (t )
∥∥

1 =
∑t

τ=1η
(τ)

we get that

∀i ∈ [n], j ∈ [m] :
(

Ax(t )/
∥∥x(t )

∥∥
1

)
j −

(
AT y (t )/

∥∥y (t )
∥∥

1

)
i ≤

ln
(

nm
δ(t )

)
+3

∑t
τ=1

(
η(τ)

)2∑t
τ=1η

(τ)
. (5.3)

Until now every step works for both choices of η(t ). First we finish the proof of
the infinitely running version of the algorithm, where we choose δ(t ) := δ

2t 2 . Using the

bounds
∑t

τ=1

(
η(τ)

)2 = 1
4

∑t
τ=1

1
τ ≤ ln(t )+1

4 and
∑t

τ=1η
(τ) = 1

2

∑t
τ=1

√
1
τ ≥p

t/2 we find that,

with probability at least 1− δ
2t 2 , we have for (5.3):

∀i ∈ [n], j ∈ [m] :
(

Ax(t )/
∥∥x(t )

∥∥
1

)
j −

(
AT y (t )/

∥∥y (t )
∥∥

1

)
i

≤ ln
(
2t 2nm/δ

)+ (ln(t )+1)p
t/2

≤ 2p
t
· (3ln(t )+ ln(nm)+ ln(1/δ)+2).

Taking the union bound over the error probabilities we have that the total error

probability over all iterations is less than
∑

t∈N δ
2t 2 = δ

2 · π
2

6 ≤ δ.
Now we finish the analysis of the fixed-error version of the algorithm choosing

η(t ) := ε/4 and δ(t ) := δ. In this setting we will not use the union bound since we only
require the last iteration to be correct. With probability at least 1−δ we have for (5.3)

∀i ∈ [n], j ∈ [m] :
(

Ax(t )/
∥∥x(t )

∥∥
1

)
j −

(
AT y (t )/

∥∥y (t )
∥∥

1

)
i

≤ ln
(nm

δ

)+3tε2/16

tε/4

= 3

4
ε+ 4ln

(nm
δ

)
tε

.

For t ≥ 16ln
( nm

δ

)
ε2 this can be further upper bounded by ε.

Once we get the ε-optimal solutions we can estimate the value of the game by sim-
ply playing the game with the corresponding randomized strategies. Since in each run
the game has bounded value, by Chernoff’s bound we get the following:
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Claim 5.2 Given a pair of strategies x, y, let us take k = O
(
1/ε2

)
independent samples

i1, . . . , ik from x and similarly j1, . . . , jk from y. Then, with bounded error probability, the
average

∑k
`=1 A j`,i`/k is an ε-approximate estimate of the value of the game correspond-

ing to these strategies.

This clearly shows that obtaining the approximate solutions via Algorithm 5.1 domi-
nates the complexity of approximately computing the corresponding value.

If access to A is given by an oracle for the entries of A, then the following lemma
gives a bound on the cost of the algorithm for finding the optimal strategies.

Lemma 5.3 Algorithm 5.1 can be implemented to find an ε-optimal pair of solutions on
a classical randomized computer with probability at least 1−δ in 16

ε2 ln
(nm

δ

)
iterations,

using Õ 1
ε

(n +m) time per iteration, and n +m queries to the entries of A per iteration.

Proof. The iteration bound follows from Lemma 5.1. In the rest of the proof we drop
the (t ) superscript for ease of notation. Since in each iteration only one entry of x
changes, the change in u can be computed using m queries. It then requires Õ 1

ε
(m)

work to compute P and p. In the same amount of time the cumulative distribution
corresponding to p can be calculated. By generating a random number between 0 and 1
and performing binary search on the cumulative distribution we can sample a from p.
A similar approach works for y , v , Q, q and b.

When A is given by a sparse oracle which also allows querying for any j the location
of the j -th non-zero entry in each row and column, then a further speedup is possible.

Lemma 5.4 Let s be the maximum number of non-zero entries in a column of A, and
d the maximum number of non-zero entries in a row of A. Algorithm 5.1 can be used to
find an ε-optimal pair of solutions on a classical randomized computer with probability
at least 1−δ in 16

ε2 ln
(nm

δ

)
iterations, Õ nm

ε
(s +d) time per iteration, and s +d queries to a

sparse oracle for A per iteration.

Proof. The iteration bound follows from Lemma 5.1. In the rest of the proof we drop the
(t ) superscript for ease of notation. Now, since there is a sparse oracle for the columns
of A, the change in u can be computed using s queries and Õ nm

ε
(s) time. Hence, also

the multiplicative change in P can be calculated in Õ nm
ε

(s) time.
Now, instead of keeping P as a list, we keep it in the tree data structure from

Lemma 4.27. Updating one leaf can be done in Õ nm
ε

(1) time, so P can be updated

in Õ nm
ε

(s) time. Given a tree structure for the vector P , sampling from P/‖P‖1 can
easily be implemented. A similar approach works for y , v , Q, q and b and the lemma
statement follows.

5.3 | Quantum implementation of the algorithm
In the quantum case we aim at a sublinear-time algorithm in m and n. This means
that we cannot even read through a single column or row of A. We define two types of
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quantum query access for the matrix A. In the dense input model we assume access to
an oracle that returns a binary representation of the queried matrix entry, similar to an
oracle of the form (4.7) in the SDP setting. In the sparse input model we additionally
assume access to an oracle that returns positions of the non-zero entries in a row or
column, similar to an oracle of the form (4.6) in the SDP setting.

Observe that Algorithm 5.1 is very similar to the SDP-solving meta-algorithms of
Chapter 4. In each iteration we take a linear combination of inputs (now the rows
or columns of A) and consider the distribution proportional to the exponent of this
linear combination. There are two differences that make the quantum algorithm for
zero-sum games simpler than those for SDP-solving. The first difference is that only a
single sample from the exponential distribution is needed, while in the SDP frameworks
we required many more samples in order to estimate the trace values. The second
difference is that we are dealing with vectors instead of matrices. This leads us to the
following definition.

Definition 5.5 : Classical Gibbs distribution For a vector v ∈ Rn let ev denote the
vector whose i -th coordinate is evi . Then G(v) := ev

‖ev‖1
denotes the Gibbs distribution

corresponding to v.

The algorithm always maintains x(t ) and y (t ) that have at most t non-zero elements.
We store x(t ) and y (t ) in the tree data structure from Lemma 4.27, similar to how we
stored y (t ) in the SDP algorithms. This enables us to query elements, sample from the
distributions that are proportional to the vectors, and create state-preparation pairs
for x(t ) and y (t ). Implementing one iteration of Algorithm 5.1 essentially boils down
to efficient Gibbs-sampling, i.e., implementing a single sampling from the distribution
e Ax/

∥∥e Ax
∥∥

1.

5.3.1 | Dense matrices
In this section we will assume that all the entries in A are non-negative. This is without
loss of generality since we can consider A′ = 1

2 (J + A), where J is the all-ones matrix. An
ε
2 -approximate solution for A′ is an ε-approximate solution for A.

Before we state the quantum algorithm, let us describe a classical algorithm that
mirrors its behavior. We will focus on the t-th iteration of Algorithm 5.1. We will write x
instead of x(t ) for simplicity. We assume that x is t-sparse and is stored in the tree data
structure from Lemma 4.27, our goal is to sample from the Gibbs distribution G(Ax).
Since x is t-sparse we can compute a single element of u = Ax using Õn(t ) steps. Since
we have a procedure to calculate u j , we can find the maximal element u j using O (m)
calls to this procedure. Call this maximum umax. We will sample from G(Ax −umax1) =
G(Ax) since this allows us to use that eu j−umax ≤ 1 for all j . To do this sampling we
will use rejection sampling: sample j ∈ [m] uniformly at random, then with probability
eu j−umax output j and with probability 1−eu j−umax output ⊥. If we would post-select on
the outcome not being ⊥, then we would have sampled from G(Ax −umax1) = G(Ax).
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Hence we repeat this procedure an expected O

(
meumax∑m

j=1 e
u j

)
≤ O (m) times until we get an

output other than ⊥.
All the steps described above have quadratically faster quantum counterparts. Esti-

mating a single value u j can be done via amplitude estimation, finding the maximum
can be done by the Generalized Minimum-Finding Lemma (Lemma 4.9), and rejection
sampling can be done in O

(p
m

)
steps via amplitude amplification.

All these methods are already present in Chapter 4 by only considering diagonal
matrices. However, we will prove them again below since the proofs are simpler when
considering vectors. For this we will use the following lemma to implement block-
encodings of diagonal matrices:

Lemma 5.6 Let v ∈ Rn
≥0 with ‖v‖∞ ≤ 1 and let a ∈ N. Let U be a unitary that on in-

put
∣∣0a+1

〉∣∣ j
〉

prepares a quantum state
(p

v j
∣∣0〉∣∣ψ j

〉+√
1− v j

∣∣1〉∣∣φ j
〉)∣∣ j

〉
for some states∣∣ψ j

〉
and

∣∣φ j
〉

. Then a single query to both U and U †, and a single SWAP gate, suffice to
implement a (1, a +2,0)-block-encoding of diag(v).

Proof. Let SWAP12 be the gate that swaps the first two qubits. Now observe that for

V := (I ⊗U †)(SWAP12 ⊗ I )(I ⊗U )

we have (〈
0a+2

∣∣⊗ I
)
V

(∣∣0a+2〉⊗ I
)= diag(v),

with a similar argument to Lemma 4.24. Hence V is a (1, a +2,0)-block-encoding of the
matrix diag(v).

We are now ready to prove the first of our two quantum results.

Lemma 5.7 Suppose that x ∈ Rn is stored in QCRAM using the data structure from
Lemma 4.27, such that ‖x‖1 ≤ β for some known β ≥ 1. If we have quantum query
access to a dense oracle for the matrix elements of A ∈ [0,1]n×m , then we can sample
from a distribution that is µ-close in total variation distance to G(Ax), using Õ n

µ

(
β
p

m
)

quantum queries to A and elementary operations.

Proof. Using the tree data structure we can implement a unitary in Õ nβ
ξ

(1) elementary

operations that maps

|0〉|0〉 7→ |0〉 ∑
i∈[n]

√
xi /β|i 〉+ ∣∣1〉∣∣φ〉

,

up to an `2-norm error O (ξ) in the result. Here
∣∣φ〉

is some subnormalized quantum
state on a (possibly multi-qubit) register. Similarly, with a single additional query to A,
and Õ m

ξ
(1) additional elementary operations, we can implement a unitary U that on

input
∣∣0〉∣∣0〉∣∣ j

〉
prepares a state that is O (ξ)-close in `2-norm to(

|0〉 ∑
i∈[n]

√
A j i xi /β|i 〉+ ∣∣1〉∣∣φ′〉)∣∣ j

〉
.
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The probability of getting outcome 0 when measuring the first register in the computa-
tional basis is O (ξ)-close to u j /β, hence we can 1

4 -approximate (if ξ = O
(
1/β

)
) a single

u j with bounded error probability using amplitude estimation, using Õ nm
ξ

(
β
)

queries

and elementary operations.
Let umax := max j∈[m] u j . We can also find a constant additive approximation ũmax ∈

[umax,umax+1] using Õ n
ξ

(
β
p

m
)

queries and elementary operations with bounded error

probability using Generalized Quantum Minimum-Finding (Lemma 4.9). We can boost
the success probability to 1− µ

3 with O
(
log

(
1/µ

))
repetitions, hence we will for the rest

of the proof assume this process was successful.

Using Lemma 5.6 with the unitary U we can implement a

(
β, Õ mnβ

ξ

(1),O (ξ)

)
-block-

encoding of diag(Ax). Using the Linear combination of block-encodings lemma

(Lemma 2.9) we can then also implement U ′, a

(
2β, Õ mnβ

ξ

(1),O (ξ)

)
-block-encoding

of M := diag(Ax − ũmax1).
Now we are ready to implement the rejection sampling. We first prepare the uni-

form superposition 1p
m

∑
j∈[m]

∣∣ j
〉

using Õm(1) elementary operations. Then ideally we

would like to apply the map∣∣0〉∣∣ j
〉 7→√

eu j−ũmax
∣∣0〉∣∣ j

〉+ ∣∣1〉∣∣⊥′′〉
= |0〉eβ

diag(Ax−ũmax1)
2β

∣∣ j
〉+ ∣∣1〉∣∣⊥′′〉

= |0〉eM/2
∣∣ j

〉+ ∣∣1〉∣∣⊥′′〉
to this uniform superposition.

We implement a good approximation of the above by replacing the function eβz

with an approximating polynomial P (z) and using Lemma 2.11. For this we use the
approximation polynomial P (z) from Lemma 4.14. We can then prepare a state that is
Õ

(√
βξ

)
-close in `2-norm to

1p
m

( ∑
j∈[m]

|0〉P
(

diag(Ax − ũmax1)

2β

)∣∣ j
〉)+ ∣∣1〉∣∣φ′′′〉,

for some arbitrary subnormalized state
∣∣φ′′〉. This will use the block-encoding for M

a total of Õ
(
deg(P )

) = Õ
(
βlog(1/ξ)

)
times, as shown by Lemma 2.11. Since P (z) is an

O (ξ)-approximation of eβz/4, this last state is O
(√

βξ
)
-close in `2-norm to

1p
m

( ∑
j∈[m]

|0〉eβ
diag(Ax−ũmax1)

2β /4
∣∣ j

〉)+ ∣∣1〉∣∣φ′′′〉.

We now consider the probability of getting outcome 0 when measuring the first
register in the computational basis. Since there is at least one j in the sum for which the

amplitude is e−
1
8

4
p

m
, namely the j corresponding to umax, we know that this probability is

at least Ω(1/m) (if βξ is small enough).
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Finally, we obtain a sample with probability at least 1− µ
9 with O

(p
mlog

(
1/µ

))
ap-

plications of the full procedure (and its inverse) using amplitude amplification. If we

pick ξ = Õ
(

µ2

βm2

)
then we sample from a distribution that is µ-close to G(Ax) in total

variation distance. In total we used Õ n
µ

(p
mβ

)
queries and elementary operations.

Theorem5.8 Algorithm 5.1 can be used to find an ε-optimal pair of solutions with prob-
ability at least 1−δ in 16

ε2 ln
(nm

δ

)
iterations. On a quantum computer with QCRAM the

t-th iteration can be implemented in Õ 1
δ

(
(1+ tε)

p
n +m

)
quantum queries to the entries

of A and the same number of elementary operations, leading to a total of Õ 1
δ

(p
n +m/ε3

)
queries and elementary operations.

Proof. We use the fixed-error version of Algorithm 5.1. The theorem follows from
Lemma 5.1 and Lemma 5.7, by setting the error µ in total variation distance to
O

(
ε2δ/ln(nm/δ)

)
in the latter.

5.3.2 | Sparse matrices
For sparse matrices we can no longer assume that all entries in A are non-negative,
since adding the all-ones matrix to A would result in a dense matrix. To sample from
the Gibbs distribution for sparse matrices we will use the following polynomial approx-
imation lemma.

Lemma 5.9 : [GSLW19, Cor. 67] Let ξ ∈ (0,1/6] and β ≥ 1. There exists a polynomial
R(x) such that

• For all x ∈ [ 1
2β ,1] we have

∣∣∣∣R(x)− 1p
4βx

∣∣∣∣≤ ξ.

• For all x ∈ [−1,1] we have |R(x)| = |R(−x)| ≤ 1.

• deg(R) = Õ 1
ξ

(
β
)
.

We state our next result with s denoting an upper bound on the sparsity of both the
rows and the columns of A. Note that if separate bounds are known for each, then s is
simply the maximum of the two bounds.

Lemma 5.10 Suppose x ∈ Rn
≥0 is stored in the data structure from Lemma 4.27, and

‖x‖1 ≤ β for some known β ≥ 1. If we have quantum query access to a sparse oracle
for A ∈ [−1,1]m×n , and if A has s-sparse rows and columns, then we can sample from

a distribution that is µ-close to G(Ax) in total variation distance, using Õ mn
µ

(
β

3
2
p

s
)

quantum queries and elementary operations.

Proof. We can assume without loss of generality that βs ≤ m/4, otherwise the state-
ment follows from Lemma 5.7. Let us define w ∈Rm by

w j := ∑
i∈[n]

|A j i |xi ≥ u j .
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While u is no longer guaranteed to be non-negative, w j is.
In Lemma 5.7 we used a quantum version of rejections sampling, starting from the

uniform distribution and “accepting” an outcome with a probability proportional to
the exponent of that outcome. Since the uniform distribution might be far away in total
variation distance from the Gibbs distribution, this process required Õ

(p
m

)
amplitude

amplification steps. The main idea is to again use rejection sampling: for the parts
of the Gibbs distribution that are close to uniform we again start from the uniform
distribution, but for the parts that are far from uniform we start from a distribution
proportional to w j .

As
∑

j∈[m] w j ≤βs ≤ m/2 we know that w j ≤ 1 for at least half of the j s. For such j we
have |u j | ≤ 1 and hence the distribution G(u) is quite uniform on these positions. On
the other hand, we can sample from a distribution proportional to w j by first sampling

an i with probability xi /β and then sampling a j with probability
|A j i |

s . For the j s where
w j ≥ 1/2 this distribution is not too far from the Gibbs distribution and we will only use
Õ

(√
sβ

)
amplitude amplification steps. Since the two regimes cover every j ∈ [m] we

can Gibbs sample a j by combining the two sampling procedures, in a similar fashion
to [BKLLSW19; AG19a].

The proof is structured as follows. We start by showing how to implement a block-
encoding of u, and how to approximate the entries of u. We then show how to approxi-
mate umax to constant additive error. After this we give a method for distinguishing the
two regimes. We then show how to Gibbs sample for both the small and large values,
and finish by combining these samples.

Ablock-encoding and approximation foru In order to implement a block-encoding
of diag(u) we modify the proof of Lemma 5.6. Let UR be a unitary that, starting from∣∣0〉∣∣0〉∣∣0〉∣∣ j

〉
, prepares a state that is O (ξ)-close in `2-norm to

|0〉
(
|0〉 ∑

i∈[n]
sign

(
A j i

)√|A j i |xi /β|i 〉+ ∣∣1〉∣∣φ′〉)∣∣ j
〉

.

We can implement such a unitary with a similar argument to that of Lemma 5.7. Fur-
thermore, let UL be a unitary that, starting from

∣∣0〉∣∣0〉∣∣0〉∣∣ j
〉

, prepares a state that is
O (ξ)-close in `2-norm to

UL :
∣∣0〉∣∣0〉∣∣0〉∣∣ j

〉 7→ (
|0〉 ∑

i∈[n]

√
|A j i |xi /β|i 〉+ ∣∣1〉∣∣φ′′〉)∣∣ j

〉
.

Then
V :=U †

L(SWAP12 ⊗ I )UR

is a (β, Õ mnβ
ξ

(1),O (ξ))-block-encoding of diag(Ax) = diag(u).

Using Hamiltonian simulation and phase estimation we can approximate u j with
precision 1

4 using Õ mnβ
ε

(
β
)

queries to A and elementary operations in total.
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Finding the maximal element We start by assuming that umax is greater than 1. As
in Lemma 5.7 we use the tree data structure for x to prepare a state that is O (ξ)-close in
`2-norm to

|0〉
( ∑

i∈[n]

√
xi /β|i 〉

)
+ ∣∣1〉∣∣φ〉

,

for some arbitrary subnormalized state
∣∣φ〉

, using Õ nm
ξ

(1) elementary operations. With

a single additional query, we can prepare a state that is O (ξ)-close in `2-norm to

∣∣ψ〉
:= |0〉

( ∑
i∈[n]

∑
j : A j i 6=0

√
|A j i |xi /(βs)

∣∣i〉∣∣ j
〉)+ ∣∣1〉∣∣φ′〉,

for some arbitrary subnormalized
∣∣φ′〉. Observe that if u j > 1, then measuring the first

and last registers of
∣∣ψ〉

would, with probability at least w j /(2βs) ≥ u j /(2βs) > 1/(2βs),
result in the outcomes 0 and j . We now add a new register, and for the

∣∣0〉∣∣i〉∣∣ j
〉

part
of

∣∣ψ〉
we approximate u j up to additive error 1/4 using a total of Õ nm

ξ

(
β
)

queries and

elementary operations.
We can find a constant additive approximation ũmax ∈ [umax,umax + 1] of the

maximum value by using the Generalized Quantum Minimum-Finding algorithm
(Lemma 4.9). This will use Õ nm

ξ

(p
sβ3/2

)
queries and elementary operations in to-

tal to succeed with 2/3 probability, and (as in Lemma 5.7) we can boost the success
probability to 1−µ/3 with O

(
log

(
1/µ

))
repetitions.

Now if umax is less than 1, then the procedure above will result in a ũmax below 2
(that might not be close to the actual maximum). However, since w j ≤ 1 for at least
half of the j , we know that if we get such a result, then u j ∈ [−1,2] for at least half of
the j (and no u j is larger than 2). This implies that the Gibbs distribution is very close
to uniform, and that we do not need to make the distinction between small and large
values of w j . Instead we can use the argument from Lemma 5.7, with the difference
that we only need a constant number of amplitude amplification steps. For the rest of
the proof we therefore assume that umax > 1.

Distinguishing small and large values To distinguish the j with a large w j from
those with a small w j we would ideally implement a unitary that sets the second register
of

∣∣ j
〉∣∣0〉

to 1 if and only if w j ≥ 3/4. This would be a block-encoding of the projection
on all j such that w j < 3/4. We cannot implement this procedure exactly, but we can
set the flag correctly with bounded error probability for all j where w j ∉ [1/2,1].

Consider the unitary UL from before. Using UL we can approximate w j up to ad-
ditive error 1/8 with bounded error probability using Õ nm

ξ

(
β
)

queries and elementary

operations. We can boost the success probability exponentially in the number of rep-
etitions, hence we will for the rest of the proof assume that this procedure never fails.
If we now set a flag depending on our approximation of w j then the flag will be cor-
rectly set for all j where w j ∉ [1/2,1]. We denote the unitary that on input

∣∣ j
〉∣∣0〉

sets
the second register in this way by Q.



122 Chapter 5

It is important to note that for w j ∈ [1/2,1] this unitary Q can set the flag to an
arbitrary superposition of |0〉 and |1〉. However, for a specific j this will always be the
same superposition. Hence, if we use this flag to either include j when Gibbs sampling
the small values, or to include j when Gibbs sampling the large values, then in the end
j will still be sampled with the correct probability.

Gibbs-sampling for the small values To Gibbs-sample for the small w j , consider
the following procedure. First (using Õm(1) elementary operations) prepare the state

1p
m

∑
j∈[m]

∣∣ j
〉∣∣0〉∣∣0〉

.

Then apply Q to the first and second register to set a flag. For the part of the superpo-
sition where this flag is 0 we have that w j ≤ 1 for the corresponding j , if this flag is 1,
then w j ≥ 1/2.

For now we only consider the part of the state corresponding to the first case, which

implies that u j ≤ w j ≤ 1. We apply the map diag
(
e

u−1
2 /4

)
to the first register, indicating

“success” with the third register being set to 0. This can be done with Õ mn
ξ

(
β
)

queries

and elementary gates in total, similarly to Lemma 5.7.
The probability of getting outcome 0 twice when measuring both flags, and getting

outcome j for the first register now is (for a j where w j ≤ 1/2)

1

m
· eu j

32e
≥ e−|u j |

32em
≥ e−w j

32em
≥ 1

32e2m
.

There are at least m/4 such j , so the probability of getting outcome 0 for both flags
(indicating success) is constant.

Gibbs-sampling for the large values Now, to Gibbs-sample for the large w j s we
consider a similar procedure starting from the state

∣∣ψ〉
instead of the maximally en-

tangled state. We rewrite this state as

∣∣ψ〉= |0〉
( ∑

j∈[n]

√
w j

βs

∣∣ψ j
〉∣∣ j

〉)+ ∣∣1〉∣∣φ′′〉
for some arbitrary subnormalized state

∣∣φ′′〉 and some (normalized) states
∣∣ψ j

〉
. We will

consider the part of
∣∣ψ〉

where the first qubit is in the |0〉 state as “success”. As before we
apply Q, now to the third register (and some ancilla qubits), but now we care about the
part of the state where the resulting flag is 1.

Now we will apply e
(u j −ũmax)/2

8
p

w j
in two steps. First we apply the map e(u j−ũmax)/2/4

to the third register as before. Next, we can implement a

(
1, Õ βnm

ξ

(1), Õ(ξ)

)
-block-

encoding of diag
(
w/β

)
using Lemma 5.6 with the unitary UL . Using the polynomial R
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from Lemma 5.9, and with Lemma 2.11, we can apply a

(
1, Õ βnm

ξ

(1), Õ
(√

βξ
))

-block-

encoding of diag
(
1/
p

4w
)

to the third register.
In total we get a state that is Õ

(√
βξ

)
-close in `2-norm to

|0〉
( ∑

j∈[n]

e(u j−ũmax)/2

8
√
βs

∣∣ψ j
〉(

Q
∣∣ j

〉∣∣0〉))+ ∣∣1〉∣∣φ′′′〉
using Õ nm

ξ

(
β
)

queries and elementary operations. Now for the j corresponding to umax

we know that e(u j−ũmax)/2 = Ω̃ ξ
βs

(1), and that the last register is in the state |1〉. Therefore

if we would measure the first and last registers, then the probability of getting outcomes
0 and 1 respectively (indicating success) is at least Ω̃ξ

(
1/βs

)
.

Combining the samples Finally, notice that the two resulting partial Gibbs states are
subnormalized in different (but known) ways. Let us define N := 16em + 64βse ũmax .
We sample a j from the full distribution in the following way: with probability 16em

N

sample j using the first procedure, and with probability 64βse ũmax

N sample j using the

second procedure. Since both procedures have total success probability Ω̃ξ

(
1
βs

)
the

success probability of the final algorithm is also Ω̃ξ

(
1
βs

)
. Therefore we can sample a j

with O
(√

βs
)

rounds of amplitude amplification with bounded error probability, and
we can boost the success probability to 1−µ/9 by O

(
log

(
1/µ

))
repetitions. If we set ξ=

O
(

µ

mβ2s

)
= O

(
µ

βm2

)
, then the distribution will be µ-close to the true Gibbs distribution.

The complexity of each round of amplitude amplification is Õ mn
µ

(
β
)
, which leads to the

final complexity statement.

Theorem 5.11 Algorithm 5.1 can be used to find an ε-optimal pair of solutions with
probability at least 1−δ in 16

ε2 ln
(nm

δ

)
iterations. On a quantum computer with QCRAM

the t-th iteration can be implemented using Õ nm
δ

(
(1+ tε)

3
2
p

s
)

elementary operations

and quantum queries to a sparse oracle of A, where A has s-sparse rows and columns,
giving a total of Õ mn

δ

(p
s/ε3.5

)
queries and elementary operations.

Proof. This follows from Lemma 5.1 and Lemma 5.7, by setting the error in total varia-
tion distance µ to O

(
ε2δ/ln(nm/δ)

)
in the latter.

5.4 | Reduction of LP-solving to zero-sum games
In this section we will reduce general LPs to zero-sum games to obtain a faster quantum
algorithm for LP-solving. A similar argument can be found in for example [CDST19]. We
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consider an LP in the standard form as introduced in Section 2.4.2:

max
x∈Rn

cT x (5.4)

s.t. Ax ≤ b

x ≥ 0,

with the dual LP

min
y∈Rm

bT y (5.5)

s.t. AT y ≥ c

y ≥ 0.

We assume without loss of generality that all entries of A and c are in [−1,1]. We assume
that both LPs are feasible. It follows that strong duality holds and the two optimal values
coincide. We will write OPT for this optimal value. Furthermore, we assume bounds R
and r are known that are similar to the bounds in the SDP setting: adding the constraint∑n

i=1 xi ≤ R to the primal will not change the optimal value of the primal and adding the
constraint

∑m
j=1 y j ≤ r to the dual will not change the optimal value of the dual. We can

assume without loss of generality that |b j | ≤ R for all j ∈ [m], since if b j < −R, then
the LP would be infeasible, and if b j > R, then we could remove the constraint without
changing the value of OPT.3 We will assume that R,r ≥ 1. Finally, let s denote a bound
on the row and column sparsity of A, as well as on the sparsity of b and c. Our reduction
will consist of the following steps:

1. Reduce an optimization problem to feasibility using binary search.

2. Scale the problem such that the solutions will be in the simplex.

3. Reduce to a problem where all right-hand sides of the inequality constrains are 0.

4. Reduce to a zero-sum game.

Reduction to feasibility Note that −R ≤ OPT ≤ R, because ‖c‖∞ ≤ 1 and there is
an optimal solution with ‖x‖1 ≤ R. Hence, if we can answer questions of the type
“is OPT ≥ α− ε or OPT ≤ α” then we can use log(R/ε) iterations of binary search to
determine OPT up to additive error ε. To answer questions of this form we add cT x ≥ α

as a constraint and ask whether there is a feasible x. That is, we want to know whether

3Note that for a sublinear algorithm we do not actually have time to remove a constraint. In fact, in an
oracle model it is not even clear what this would mean. However, we can implement a new oracle for the
values A j i , with one additional query to b, that returns 0 if b j > R, effectively removing the constraint.
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there is no x satisfying

−cT x ≤−α
Ax ≤ b

n∑
i=1

xi ≤ R

x ≥ 0,

indicating that OPT ≤ α, or that4 (for some fixed ε(1)) there is an x such that

−cT x ≤−α+ε(1)

Ax ≤ b +1ε(1)

n∑
i=1

xi ≤ R

x ≥ 0,

indicate that OPT ≥ α− ε. Here we need to be careful with our choice of ε(1) since
relaxing all the constraints by ε(1) might change the value of OPT by as much as ε(1)(r +
1), as argued in Section 4.1.1. Hence we pick ε(1) =Θ(ε/(r +1)).

Scale to the simplex Note that by dividing all the right-hand sides by R we simply
scale down x such that

∑
i xi ≤ 1. This, however, does imply that we want a lower

additive error: ε(2) = Θ(ε/(R(r +1))). Let us define x(2) := (x, z)T where z ∈ R is a new
variable. Then we obtain the new feasibility problem

∃?x(2) ∈∆n+1 s.t .

A(2)x(2) ≤ b(2),

where

A(2) =
( −cT 0

A 0

)
, b(2) =

( −α/R
b/R

)
.

Right-hand sides zero For the final reduction to a zero-sum game, we want that all
right-hand sides are equal to zero. To achieve this we use that

∑
i x(2)

i = 1. We introduce

an extra variable h and add the constraint
∑

i x(2)
i = h. If we now constrain the new

vector x(3) = (x(2),h)T to be in the simplex (instead of x(2) being in the simplex) then we
find that

∑
i x(2)

i = h = 1/2. Hence by scaling all the right-hand sides by a factor 1/2 we
will not have changed whether the LP is feasible. But now we have a variable h that is
fixed to a constant, so we can shift the inequalities by setting the right-hand side to zero

4These cases are potentially overlapping. In the intersection we are happy with either conclusion.
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while appropriately changing the coefficient of h on the left-hand side. In particular we
get the new feasibility problem

∃?x(3) ∈∆n+2 s.t .

A(3)x(3) ≤ 0,

where

A(3) =
 1T −1

−1T 1
A(2) −b(2)

, x(3) =
(

x(2)

h

)
.

It suffices to bring down the additive error by a factor of two in order to solve the
previous feasibility problem using this new problem.

A zero-sum game To construct a zero-sum game as in (5.1) we simply observe that

min
x(3)∈∆n+2,λ∈R

λ

s.t. A(3)x(3) ≤λ1

has a value less than ε(3) if and only if there is a point that is ε(3)-feasible for the last LP.
The final game matrix now is

A(3) =


1T 1 −1

−1T 1 1
−cT 0 α/R

A 0 −b/R

. (5.6)

Now let us prove that the sketch above indeed gives the desired result.

Lemma 5.12 Finding the optimal value λ∗ of the game (5.6) up to additive error ε(3) =
ε/(6R(r + 1)) suffices to correctly conclude either OPT < α or OPT ≥ α− ε for the corre-
sponding LP.

Proof. Finding the optimal value λ∗ of the game (5.6) up to additive error ε(3) will tell
us at least one of the following two things:

• λ∗ > 0

• λ∗ ≤ 2ε(3).

First assume we are in the case where λ∗ > 0. In this case there is no x(3) ∈ ∆n+2 such
that

A(3)x(3) ≤ 0.
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On the other hand if we had OPT ≥ α, then there would be an x such that Ax ≤ b,∑
i xi ≤ R, x ≥ 0 and cT x ≥ α. For this x let

x̂ =
 x/(2R)

1/2−∑
i xi /(2R)

1/2

.

Then

A(3)x̂ =


0
0

(−cT x +α)/(2R)
(Ax −b)/(2R)

≤ 0,

which is a contradiction, hence OPT < α.
Now we treat the other case: if λ∗ ≤ 2ε(3) and x∗ = (x, z,h) is a strategy with value λ∗,

then we find that
A(3)x∗ ≤ 2ε(3).

This implies that |h −1/2| ≤ ε(3). Since −cT x +hα/R ≤ 2ε(3) we get that cT x ≥ hα/R −
2ε(3) ≥ α/(2R)−2(α/(2R)+1)ε(3). A similar argument also shows that for all j ∈ [m]

(Ax) j ≤ b j /(2R)+2(b j /(2R)+1)ε(3).

Let x̂ = 2Rx, then

cT x̂ ≥ α−2(α+2R)ε(3) ≥ α−6Rε(3) (5.7)

Ax̂ ≤ b +2(b +2R1)ε(3)≤ b +6Rε(3)1. (5.8)

Let y∗ be an optimal solution for the dual (5.5), such that
∑

i yi ≤ r . Then by applying
weak duality on the relaxed constraints in (5.8) we find that

cT x̂ ≤ (b +6Rε(3)1)T y∗ ≤ OPT+6Rrε(3),

and hence by (5.7) we can conclude

OPT ≥ α−6R(r +1)ε(3) = α−ε.

Via this reduction we give two new quantum LP-solvers. The first improves the
error dependence of quantum LP-solvers to cubic; in contrast, an LP-solver obtained
from our quantum SDP-solvers would have a fifth-power error dependence (see Sec-
tion 4.8.4). The second solver is based on our sparse algorithm and is the first quantum
LP-solver that depends on the sparsity of the LP instead of on n and m.

Theorem 5.13 Given quantum query access to an LP of the form (5.4), an ε-optimal
and ε-feasible y can be found with probability 1−δ using either

• Õ
(
(
p

n +p
m)γ3

)
quantum queries to a dense matrix oracle and the same number

of other gates, or
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• Õnm
(p

sγ3.5
)

quantum queries to a sparse matrix oracle and the same number of
other gates.

where γ= Rr
ε .

Proof. The Õ
(
(
p

n +p
m)γ3

)
bound follows directly from Lemma 5.12 and Theorem 5.8.

For the sparse case let s be the maximum of the sparsity of A, b and c. Then apart
from the first two rows, every row and column of A(1) is (s+3)-sparse. However, the row
sparsity only matters in the complexity of the Gibbs-sampling step, in which multiples
of the all-one vector can be added to the exponent without changing the Gibbs state.
Since the first two rows are the all-one vector plus a 1-sparse vector, we can treat them
as effectively 1-sparse for the Gibbs-sampling step. The stated complexity bound then
follows from Lemma 5.12 and Theorem 5.11.

5.5 | An open question about non-negative LPs
The algorithm by Grigoriadis and Khachiyan was the starting point for a line of work
about sublinear-time classical algorithms for linear programming [LN93; KY14]. These
algorithms include so called width-free non-negative LP-solvers. Non-negative LPs are
linear programs where all entries of A are non-negative, b = 1, and c = 1. An LP in pri-
mal form with these properties is called a packing LP, since for these kind of LPs we
want to increase x as much as possible without violating constraints on the weighted
sum of the entries. The dual of such an LP is called a covering LP. Packing and Cover-
ing LPs can be solved up to a multiplicative error in the optimal value without a de-
pendence on R and r , making the algorithms a lot more practical then our general
LP-solvers. It would be an interesting direction of research to see if these methods
lend themselves to quantum speedups, possibly using the techniques discussed in this
chapter. In Section 9.2.4 we will prove some negative results in this direction, but our
results still leave some room for a quantum speedup.
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Limitations of quantum computation





Chapter6

Methods for lower bounding
quantum query complexity

This chapter will introduce some basic concepts and results that will be used to prove
lower bounds in the next chapters. In particular we will focus on lower bounding the
quantum query complexity. We start by introducing the polynomial method as given by
Beals et al. [BBCMW01], which allows us to lower bound the quantum query complexity
of a function with the approximate degree of that function. After this, we will introduce
the adversary bound as given by Ambainis [Amb00] and followup work by Høyer et
al. [HLŠ07]. The adversary bound has many different forms, the most general of which
can be written as an SDP and completely characterizes the quantum query complexity.
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6.1 | Introduction
In Part 1 we stated algorithms in a query model: the input to an algorithm was given in
the form of a unitary, called an oracle, that encodes the input. In complexity statements
we counted both the number of queries to the oracle and the number of other two-qubit
gates used. Since the query model hides the way the input is stored in the oracle, it
allows us to focus on the structure of the algorithm. Furthermore, it allows for the input
to be the output of another algorithm, where the query complexity gives the number of
calls to this other algorithm.

The quantum query model also has an important application to lower bounds.
While it is unclear how to lower bound the (quantum) time complexity directly, multiple
ways of lower bounding the (quantum) query complexity are known. Since all queries
take at least Ω(1) time, a lower bound on the query complexity also gives a lower bound
on the time complexity. Of course these methods can never prove a lower bound on
the time complexity that is larger than the input length, since the query complexity is
always upper bounded by the input length. However, query lower bounds have been
used to show the optimality of many quantum algorithms, including the Grover search
algorithm.

Throughout this chapter we will use the problem of computing the OR-function, a
decision version of the search problem, as an example:

Given an x ∈ {0,1}n such that |x| = 0 or |x| = 1, decide which of these cases holds
using queries of the form Ox |i 〉|b〉 = |i 〉|b ⊕xi 〉 for i ∈ [n] and b ∈ {0,1}.

6.2 | The query model
In this section we will introduce a query-focused model of quantum computation.
Let D be the set of labels for each possible input to a problem and let R be the
set of possible outputs to this problem. For the search problem given above, D ={

x ∈ {0,1}n : |x| = 0 or |x| = 1
}

and R = {0,1} (where the outcomes corresponds the pos-
sible Hamming weights of the input). Furthermore, let {Ox : x ∈ D} be a set of unitaries,
one for each possible input label. For the search problem these unitaries are the uni-
taries that act as Ox |i 〉|b〉 = |i 〉|b ⊕xi 〉.

We consider quantum algorithms that compute f (x) for a function f : D → R using
a number of applications of Ox and a number of x-independent gates. In addition to
the qubits that Ox acts on, an algorithm might also use a workspace register.

Now assume we have a T -query algorithm and let us look at its general structure.
All x-independent gates between the i th application of Ox and the (i +1)th application
can be combined into a single unitary Ui that acts on all the qubits in the system.
Additionally we write U0 for the unitary consisting of the gates before the first query,
and UT for the unitary after the last query. Without loss of generality we may assume
that our algorithm starts in the all-zero state, since any other state could be prepared
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by U0, so after all the steps we end up with the state

UT (Ox ⊗ I ) . . . (Ox ⊗ I )U1(Ox ⊗ I )U0|0. . .0〉.

We then measure this state in the computational basis. If the algorithm has error prob-
ability at most ρ, then the probability of measuring f (x) in the first part of the state
should be at least 1−ρ for all x:∥∥(〈

f (x)
∣∣⊗ I

)
UT (Ox ⊗ I ) . . . (Ox ⊗ I )U1(Ox ⊗ I )U0|0. . .0〉∥∥2

2 ≥ 1−ρ for all x ∈ D. (6.1)

The query complexity of f is the minimal query count T over all algorithms that com-
pute f with the desired error probability. We write Qρ

(
f
)

for the query complexity of f
with error probability ρ. For error probability 1/3 we simply write Q

(
f
)
.

6.3 | The polynomial method
The first method of lower bounding the quantum query complexity that was applicable
to multiple problems was introduced by Beals et al. [BBCMW01] in 1998. They con-
sidered how the amplitudes of the state changed during the run of an algorithm and
showed that the final measurement probability is a multivariate polynomial in terms
of the input. For an algorithm which makes few queries to the input this polynomial
will be of low degree. Hence, if we can show that all correct algorithms for a problem
require high degree polynomials, then we can lower bound the query complexity. Un-
surprisingly, their method is called the polynomial method.

For simplicity we will fix a finite set Σ, the elements of which are described by binary
strings, and only consider decision problems for inputs x ∈Σn with queries of the form
Ox |i 〉

∣∣y
〉= |i 〉∣∣y ⊕xi

〉
(where ⊕ denotes the bitwise XOR of two binary strings).

Lemma 6.1 : [BBCMW01] Let Σ be a finite set and f : Σn → {0,1} be a decision problem.
If Ox is of the form Ox |i 〉

∣∣y
〉 = |i 〉∣∣y ⊕xi

〉
, then the final acceptance probability of a T -

query algorithm (the probability that the algorithm outputs a 1) is a polynomial of degree
at most 2T in the variables δxi ,y := [

xi = y
]
.

Proof. Let A be a T -query quantum algorithm. Let s be the number of bits used to
represent the elements of Σ and let m be the number of qubits used as additional
workspace. Then A acts on the space Cn ⊗C2s ⊗C2m

. We will track the amplitudes of
the state through the algorithm for an input x. Let α(t )

i ,y,w be the amplitude of the state∣∣i , y, w
〉

before Ut is applied. Let α̂(t )
i ,y,w be the amplitude of the state

∣∣i , y, w
〉

after Ut is

applied. We will prove via induction on t that all the α̂(t )
i ,y,w are polynomials of degree at

most t in terms of the δxi ,y .

Since the algorithm starts in the state |0,0,0〉, all α(0)
i ,y,w are 0 apart from α(0)

0,0,0 which

is 1. Then α̂(0)
i ,y,w is the (i , y, w) entry of the first column of U0 and hence is of degree 0 in

terms of the variables δxi ,y .
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Now assume α̂(t )
i ,y,w is of degree at most t . Since Ox |i 〉

∣∣y
〉|w〉 = |i 〉∣∣y ⊕xi

〉|w〉 we get

α(t+1)
i ,y⊕xi ,w = α̂(t )

i ,y,w , or equivalently α(t+1)
i ,y,w = α̂(t )

i ,y⊕xi ,w . This last equation can be rewritten
using the δxi ,y variables as

α(t+1)
i ,y,w = ∑

z∈Σ
δxi ,z α̂

(t )
i ,y⊕z,w .

Since the α̂(t ) are all of degree at most t , the α(t+1) are of degree at most t +1 in terms
of the δxi ,y variables. Because Ut+1 is a linear map and independent of x, the α̂(t+1) are
just linear combinations of the α(t+1), and hence also of degree at most t +1.

Since

‖(〈1|⊗ I )UT (Ox ⊗ I ) . . . (Ox ⊗ I )U1(Ox ⊗ I )U0|0. . .0〉‖2
2 =

∑
y∈Σ,w∈[2m ]

∣∣∣α̂(T )
1,y,w

∣∣∣2
,

the final acceptance probability is a polynomial of degree at most 2T in terms of the
δxi ,y variables.

Lemma 6.1 naturally leads to a method for lower bounding the quantum query
complexity of a function f : if a bounded-error algorithm A computes f on all inputs
x, then the acceptance probability P (x) of the algorithm should be close to f (x) for all
inputs. Hence, if all polynomials in the δxi ,y variables that approximate f (x) are of a
large degree, then the query complexity must be large as well.

Corollary 6.2 Let Σ be a finite set, f : Σn → {0,1} be a decision problem, and Ox be of
the form Ox |i 〉

∣∣y
〉 = |i 〉∣∣y ⊕xi

〉
. If every polynomial in terms of the δxi ,y variables that

approximates f (x) up to an additive error ρ has degree at least 2T , then Qρ( f ) ≥ T .

It might seem that this corollary would be hard to use since f (x) is often stated
in terms of the xi and not the δxi ,y variables. However, in many cases the δxi ,y are
quite natural. For example, if Σ = {0,1}, then δxi ,1 = xi and δxi ,0 = 1− xi . Hence for
Boolean functions f it holds that approximate degree of f , i.e., the minimal degree of
a polynomial that approximates f , lower bounds 2Q( f ). In fact, the exact degree of
f lower bounds the exact quantum query complexity as well. Recently Arunachalam,
Briët and Palazuelos [ABP19] introduced a stricter notion of approximate degree that is
exactly equal to the quantum query complexity.

Another obstacle in applying Corollary 6.2 might be that the multivariate degree
can be hard to lower bound. However, as we will see in the next example, by averaging
over certain sets of similar inputs we will often be able to only consider univariate
polynomials.

An example: the OR function [BBCMW01] Let f :
{

x ∈ {0,1}n : |x| = 0 or |x| = 1
} →

{0,1} be the OR function restricted to x with Hamming weight 0 or 1, that is, f (0n) = 0
and f (x) = 1 for all x with Hamming weight 1. Let A be a T -query bounded-error
algorithm that computes f , and let p(x) be the degree-2T polynomial that gives its
acceptance probability. Since A is a correct algorithm, p(0n) ≤ 1/3 and p(x) ≥ 2/3 if



Methods for lower bounding quantum query complexity 135

|x| = 1. The algorithm will still produce some probability distribution when an oracle
Ox is given for an x ∈ {0,1}n outside the domain, therefore p(x) ∈ [0,1] for all x ∈ {0,1}n .

Since f (x) does not change when we permute the entries of x, we know that the
average

q(x) = 1

n!

∑
π∈Sn

p(π(x))

still approximates f and still has degree 2T . Note that way me assume that q is multi-
linear since x2

i = xi for xi ∈ {0,1}. In q all degree-d monomials have the same coeffi-
cient, which we will denote by αd . We rewrite q as

q(x) =
2T∑

d=0
αd

∑
S⊆[n]:|S|=d

∏
i∈S

xi =
2T∑

d=0
αd

∑
S⊆[n]:|S|=d

[∀i ∈ S : xi = 1].

On input x there are
(|x|

d

)
terms in

∑
S⊆[n]:|S|=d [∀i ∈ S : xi = 1] that are one, and all other

terms are zero. This shows that q only depends on |x|, hence we can define

r (|x|) := q(x) =
2T∑

d=0
αd

(
|x|
d

)
.

Since
(|x|

d

)
is a degree-d polynomial in |x|, r (|x|) is an degree-2T polynomial. Note that

while q(x) was multilinear, r is a higher degree polynomial in a single variable.
We know that r (0) ≤ 1/3, r (1) ≥ 2/3 and that r (w) ∈ [0,1] for all w ∈ [n]. Classical ap-

proximation theory now tells us that deg(r ) ≥Ω
(p

n
)

[RC66; EZ64]. Hence T ≥Ω
(p

n
)
.

6.4 | The adversary method
In 2000 Ambainis introduced an alternative method for proving quantum query lower
bounds, the adversary method [Amb00]. This method considers how well an algorithm
can distinguish inputs that should lead to different outputs. In particular, the unitary
Ut matrices do not change the angle between states, so if the final states the algorithm
ends with for two inputs x and y are very different, then the oracle queries must have
introduced this difference. The adversary method gives a method for showing that this
cannot be the case for all input pairs without using a large number of queries. Often
the adversary method is easier to apply than the polynomial method, however, the ad-
versary method is not capable of lower bounding the exact quantum query complexity.

There are many different versions of the adversary method known [ŠS05]. In the
next section we will introduce the most basic version without a proof. In Section 6.4.2
we will prove a version of the adversary method that works for phase oracles |x〉 7→
e iz(x)|x〉 where z : D → R is a function. Finally we will introduce the general adversary
method due to Høyer, Lee and Špalek [HLŠ07]. This version of the adversary method
can be written as an SDP and fully characterizes the bounded error quantum query
complexity (up to a constant).



136 Chapter 6

Many other versions of the adversary method are known. The most complete char-
acterization is due to Belovs in [Bel15]. In his work tight characterizations in almost
any quantum query setting are given. However, the resulting optimization problems
are very complex and hard to work with.

6.4.1 | The basic adversary method
In its most basic version the adversary lower bound can be stated as follows:

Lemma 6.3 : The basic adversary method [Amb00] Let Σ be a finite set, D ⊆ Σn ,
f : D → {0,1} be a decision problem, and Ox be of the form Ox |i 〉|b〉 = |i 〉|b ⊕xi 〉. Let
X ⊆ f −1(0) and Y ⊆ f −1(1). Furthermore let R ⊆ X ×Y be a binary relation on X ×Y . For
x ∈ X , we write R(x) = {y ∈ Y : (x, y) ∈ R} (and similar for y ∈ Y ). Define

m0 := min
x∈X

|R(x)|
m1 := min

y∈Y
|R(y)|

`0 := max
i∈[n],x∈X

∑
y∈R(x)

[
xi 6= yi

]
`1 := max

i∈[n],y∈Y

∑
x∈R(y)

[
xi 6= yi

]
.

Then

Q1/3( f ) ≥Ω

(√
m0m1

`0`1

)
.

Using the adversary method comes down to choosing appropriate X , Y and R, and
proving bounds on m0,m1,`0 and `1. As an example we again use the OR function.

An example: the OR function [Amb00] Let f :
{

x ∈ {0,1}n : |x| = 0 or |x| = 1
} → {0,1}

be the OR function. Let X = f −1(0) = {
0n

}
and Y = f −1(1) = {

y ∈ {0,1}n : |y | = 1
}
. Take

R = X ×Y . Then:

m0 = min
x∈X

|R(x)| = n

m1 = min
y∈Y

|R(y)| = 1

`0 = max
i∈[n],x∈X

∑
y∈R(x)

[
xi 6= yi

]= 1

`1 = max
i∈[n],y∈Y

∑
x∈R(y)

[
xi 6= yi

]= 1,

and hence

Q1/3( f ) ≥Ω
(p

n
)
.
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6.4.2 | The adversary method for phase oracles
In this section we consider problems for which the input is a function from x : Q → R

where Q is a finite set of possible queries. We assume that x can be accessed via queries
Ox

∣∣q〉 = e ix(q)
∣∣q〉

. We consider a finite subset D of all possible such functions, and are
asked to solve some decision problem f : D → {0,1}. For example, for Boolean decision
problems on n bits we would have Q = [n], D ⊆ {0,1}n , and we would identify a string
x ∈ D with a function x : [n] → {0,1} that on input i returns the i th entry in x.

Even though this type of queries are often used for accessing a binary string (see
for example Section 2.2.6) and are used in quantum gradient computation (see Sec-
tion 2.3.3), we are not aware of any prior direct proof of the adversary method for
this setting. It is possible to obtain the following lemma as a corollary of the results
in [Bel15], but due to the complex nature of the results in [Bel15] a direct proof is eas-
ier and clearer. The proof is very similar to the proof of the basic adversary method
from [Amb00].

Lemma 6.4 : The phase adversary method Let Q be a finite set, and let D be a
finite set of functions from Q to R. Let f : D → {0,1} be a decision problem on this set
of functions, and Ox for x ∈ D be of the form Ox

∣∣q〉 = e ix(q)
∣∣q〉

. Let X ⊆ f −1(0) and
Y ⊆ f −1(1). Furthermore let R ⊆ X ×Y be a binary relation on X ×Y . For x ∈ X , we write
R(x) = {y ∈ Y : (x, y) ∈ R} (and similar for y ∈ Y ). Define

m0 := min
x∈X

|R(x)|
m1 := min

y∈Y
|R(y)|

`q,x := ∑
y∈R(x)

|x(q)− y(q)|

`q,y := ∑
x∈R(y)

|x(q)− y(q)|

`max := max
q∈Q,x∈X ,y∈Y

`q,x`q,y .

Then

Q1/3( f ) ≥Ω

(√
m0m1

`max

)
.

Proof. Assume there is an algorithm that makes T queries to the input. Let
∣∣ψt

x

〉
be the

state we get by running the algorithm for input x up to and including the t th query. We

define the progress measure Φ(t ) :=∑
(x,y)∈R

∣∣∣〈ψt
x

∣∣∣ψt
y

〉∣∣∣. Notice that Φ(0) = |R| and since

the algorithm has to distinguish all pairs in R with bounded error probability we have
Φ(T ) ≤ 0.99|R|. To complete the proof we will show that the progress matter does not
change too much in each step:

Φ(t −1)−Φ(t ) ≤ 2

√
`max

m0m1
|R|.
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First, since all the Ut are unitary and input-independent, the progress measure can

only change in the query steps. Now, consider a particular x, y and t . Write
∣∣∣ψt

x

〉
for the

state on input x, just before the t th query, and similarly for y . We can write∣∣∣ψt
x

〉
= ∑

q∈Q
αq

∣∣q〉⊗ ∣∣φq
〉

and ∣∣∣ψt
y

〉
= ∑

q∈Q
βq

∣∣q〉⊗ ∣∣ξq
〉

.

Hence after the query we get

∣∣ψt
x

〉= ∑
q∈Q

e ix(q)αq
∣∣q〉⊗ ∣∣φq

〉
and ∣∣∣ψt

y

〉
= ∑

q∈Q
e iy(q)βq

∣∣q〉⊗ ∣∣ξq
〉

.

So the absolute change in their inner product is:

∣∣∣〈ψt
x

∣∣∣ψt
y

〉
−

〈
ψt

x

∣∣∣ψt
y

〉∣∣∣≤ ∣∣∣∣∣ ∑
q∈Q

αqβ
∗
q

〈
φq

∣∣ξq
〉(

1−e i(x(q)−y(q)))∣∣∣∣∣
≤ ∑

q∈Q

∣∣αq
∣∣ · ∣∣βq

∣∣ · ∣∣〈φq
∣∣ξq

〉∣∣ · ∣∣x(q)− y(q)
∣∣

≤ ∑
q∈Q

∣∣αq
∣∣ · ∣∣βq

∣∣ · ∣∣x(q)− y(q)
∣∣,

where we used that
∣∣1−e iθ

∣∣≤ |θ|. Now let xq = argmaxx∈X`q,x and yq = argmaxy∈Y `q,y .
We can now analyze the difference in the progress measure:

|Φ(t )−Φ(t −1)| ≤ ∑
(x,y)∈R

∑
q∈Q

|αq | · |β∗
q | · |x(q)− y(q)|

= ∑
q∈Q

∑
(x,y)∈R

|x(q)− y(q)|

√√√√√|αq |2
√√√√m0`q,yq

m1`q,xq

|β∗
q |2

√√√√m1`q,xq

m0`q,yq

≤ 1

2

∑
q∈Q

∑
(x,y)∈R

|x(q)− y(q)|
|αq |2

√√√√m0`q,yq

m1`q,xq

+|β∗
q |2

√√√√m1`q,xq

m0`q,yq

,

where we used the arithmetic mean geometric mean inequality. Let us look at the two
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terms separately:

1

2

∑
q∈Q

∑
(x,y)∈R

|x(q)− y(q)||αq |2
√√√√m0`q,yq

m1`q,xq

= 1

2

√
m0

m1

∑
q∈Q

|αq |2
√√√√`q,yq

`q,xq

∑
x∈X

∑
y∈R(x)

|x(q)− y(q)|

= 1

2

√
m0

m1

∑
q∈Q

|αq |2
√√√√`q,yq

`q,zq

∑
x∈X

`q,x

≤ 1

2

√
m0

m1

∑
q∈Q

|αq |2
√√√√`q,yq

`q,xq

`q,xq |X |

= 1

2

√
m0

m1

∑
q∈Q

|αq |2
√

`q,yq`q,xq |X |

≤ 1

2

√
m0

m1

√
`max|X | ∑

q∈Q
|αq |2

≤ 1

2

√
m0

m1

√
`max|X |

≤ 1

2

√
m0

m1

√
`max

|R|
m0

= 1

2

√
`max

m0m1
|R|.

By symmetry we have the same bound for the other term. We conclude that

|Φ(t )−Φ(t −1)| ≤
√

`max

m0m1
|R|,

which concludes the proof.

It can be shown that Lemma 6.3 follows from Lemma 6.4. We will not give an exact
proof, but the reasoning is roughly as follows. It suffices to show that there is a phase
oracle that can be used to implement the oracle from Lemma 6.3 and that for this phase
oracle `max is not bigger than the `0`1 from Lemma 6.3. Without loss of generality
assume that Σ= [k] for some positive integer k. Now for a x̂ ∈ [k]n , let

x(i ,c) = 2πx̂i c/k mod 2π

be a function from [n]× [k] to the reals.
To implement a query of the form |i ,0〉 7→ |i , x̂i 〉 using phase queries to x, set up

the superposition |i 〉∑c∈[k]|c〉, query Ox to get |i 〉∑c∈[k] e i2πx̂i c/k |c〉 and then apply the



140 Chapter 6

inverse quantum Fourier transform to the second register to get |i , x̂i 〉. This allows
us to implement the queries from Lemma 6.3 using phase queries to the x functions
and hence the phase queries are at least as strong as the queries from Lemma 6.3.
Note that if x̂i = ŷi , then |x(i ,c) − y(i ,c)| = 0 and that for all i and c the difference
|x(i ,c)− y(i ,c)| ≤ 2π. It follows that the parameter `max of the phase adversary bound
is upper bounded by the quantity O (`0`1) from the basic adversary bound.

Example : Ground state energy finding using Hamiltonian evolution As an exam-
ple of how the phase adversary method can be applied, consider the following problem:
let H be a Hamiltonian with ‖H‖ ≤ 1 acting on n qubits, accessed by queries of the form
OH = e iH , determine whether the ground state energy λmin(H) is 0 or larger than ε.

To prove a lower bound on this problem, let N = 2n and consider the sets X = {εI }
and Y = {ε(I −Ei i ) : i ∈ [N ]} of N ×N matrices. Let R = X ×Y . All matrices are diagonal,
so the unitaries corresponding to these Hamiltonians correspond to phase queries. The
matrix εI corresponds to the constant function x(q) = ε, and the matrices ε(I −Ei i )
correspond to functions that are ε everywhere except at input i , where they are zero.

Considering the inputs as functions we get

m0 = min
x∈X

|R(x)| = N

m1 = min
y∈Y

|R(y)| = 1

`q,x = ∑
y∈R(x)

|x(q)− y(q)| = ε

`q,y =
∑

x∈R(y)
|x(q)− y(q)| ≤ ε

`max = max
q∈Q,x∈X ,y∈Y

`q,x`q,y ≤ ε2,

and hence the quantum query complexity is at least

Ω

(p
N

ε

)
.

In fact, this matches the upper bound that can be achieved using Lemma 4.9.

6.4.3 | The general adversary method
We finish this chapter by stating the general adversary method, which was first intro-
duced in [HLŠ07]. This version of the adversary method takes the form of an SDP. It
has been shown for Boolean functions that a feasible point for the dual of this SDP can
be turned into a quantum algorithm that uses a number of queries equal to the objec-
tive value [Rei11] (up to a multiplicative constant). This implies that the general adver-
sary method is actually tight and completely characterizes the bounded-error quantum
query complexity up to a multiplicative constant.



Methods for lower bounding quantum query complexity 141

Lemma 6.5 : The general adversary method [HLŠ07] Let Q be a finite set of possible
queries, f : D → R be a query problem, and Ox be of the form Ox

∣∣q〉|b〉 = |i 〉∣∣b ⊕x(q)
〉

where x(q) is the result of query q on input x. We call Γ ∈ RD×D an adversary matrix if
Γ is not zero and for x, y ∈ D with f (x) = f (y) we have Γx,y = 0. Let G be the set of all
adversary matrices and define ∆q by

(
∆q

)
x,y := [

x(q) 6= y(q)
]
. Let

ADV±( f ) = max
Γ∈G

‖Γ‖
maxq∈Q

∥∥Γ◦∆q
∥∥ .

Then
Q1/3( f ) ≥Ω

(
ADV±( f )

)
.





Chapter7

Lower bounds on the query
complexity of convex optimization

In Chapter 3 we introduced five black-box oracles for convex optimization and we gave
a quantum algorithm for efficiently implementing a SEP oracle using a MEM oracle. In
this chapter we will finish our discussion of black-box oracles for convex optimization
by proving query lower bounds on reductions between those oracles. We first prove an
Ω(n) classical query lower bound on implementing a SEP oracle using a MEM oracle,
which shows that the result from Chapter 3 is indeed an exponential speedup. After
this we consider two settings for implementing OPT using SEP queries, while knowing
an interior point and while not knowing an interior point of the convex set. We prove
Ω

(p
n

)
and Ω(n) quantum query lower bounds respectively for these settings.

This chapter is based on Section 5 of the paper Convex optimization using quantum
oracles by J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf [AGGW18].
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7.1 | Introduction
For a convex set K satisfying B(0,r ) ⊆ K ⊆ B(0,R), we have shown in Theorem 3.18 that
one can implement a SEP(K ) oracle with Õ Rn

rε
(1) quantum queries to a MEM(K ) oracle

if the membership oracle is sufficiently precise. In this chapter we start by showing that
this is exponentially better than what can be achieved using classical access to a mem-
bership oracle. We also investigate how many queries to a membership/separation or-
acle are needed in order to implement an optimization oracle. Our results are as follows
(see also Figure 3.1):

• We show that Ω(n) classical queries to a membership oracle are needed to imple-
ment a weak separation oracle.

• We show that Ω(n) classical (respectively Ω
(p

n
)

quantum) queries to a separa-
tion oracle are needed to implement a weak optimization oracle; even when we
know an interior point in the set.

• We show an Ω(n) lower bound on the number of classical and/or quantum
queries to a separation oracle needed to optimize over the set when we do not
know an interior point.

Although these results imply that there is no quantum speedup for finding a point
in the interior of K using separation queries, they do leave open the possibility for a
quadratic speedup for optimization when an interior point is known in the convex set.
We view the closing of the gap between the upper and lower bound for this problem
as an important direction for future work. As we describe in Section 7.5 one possible
approach that could lead to an Ω(n) lower bound is lower bounding the number of
matrix-vector queries x 7→ Ax needed to determine the rank of a matrix A ∈ Rn×n . In
Chapter 8 we will consider this problem over Fp instead of R.

The same polarity argument as in Section 3.5 shows that algorithms for optimiza-
tion using separation are essentially equivalent to algorithms for separation using op-
timization. This turns our lower bound on the number of separation queries needed to
implement an optimization oracle into a lower bound on the reverse direction.

In this chapter we will always assume that the input oracle is a strong oracle but
the output oracle is allowed to be a weak oracle with error ε. Furthermore, we will
make sure that R, 1/r , and 1/ε are all upper bounded by a polynomial in n. This
guarantees that the lower bound is based on the dimension of the problem, not the
required precision.

7.2 | Classical lower bound on SEP using MEM
Here we show that a separation query can provide Ω(n) bits of information about the
underlying convex set K ; since a classical membership query returns a 0 or a 1 and
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hence can give at most 1 bit of information1, this theorem immediately implies a lower
bound of Ω(n) on the number of classical membership queries needed to implement
one separation query.

Theorem 7.1 Let ε ≤ 39
1600 . There exist a set of m = 2Ω(n) convex sets K1, . . . ,Km ⊆ Rn

and points y, x0 ∈Rn such that B(x0,1/3) ⊆ Ki ⊆ B
(
x0,2

p
n

)
for all i ∈ [m], and such that

SEPε,0(Ki ) and SEPε,0(K j ) cannot return the same result when queried with the point y,
unless i = j .

Proof. Let h1, . . . ,hm ∈Rn be a set of m = 2Ω(n) entrywise non-negative unit vectors such
that

〈
hi ,h j

〉≤ 0.51 for all distinct i , j ∈ [m].2

Now pick an i ∈ [m] and define K̂i := {x : 〈hi , x〉 ≤ 0}∩B
(
0,
p

n
)

and Ki := B
(
K̂i ,ε

)
.

Then K̂i = B(Ki ,−ε). Note that for x0 =−1/3 we have B(x0,1/3) ⊆ Ki ⊆ B
(
x0,2

p
n

)
. We

claim that a query to SEPε,0(Ki ) with the point y = 3ε1 ∈Rn will identify hi . In particular,
we will show that SEPε,0(Ki ) will return a vector g that has a large inner product with hi

and a small inner product with all other h j .
First note that y 6∈ B(Ki ,ε), since K̂i does not contain any entrywise positive vectors

and y has distance at least 3ε from all vectors that have at least one non-positive entry.
Hence a separation query with y will return a unit vector g such that for all x ∈ K̂i〈

g , x
〉≤ 〈

g , y
〉+ε≤ ∥∥g

∥∥ ·∥∥y
∥∥+ε≤ (

3
p

n +1
)
ε≤ 4

p
nε. (7.1)

Now consider the specific point x that is the projection of g onto h⊥
i (the hyperplane

orthogonal to hi ) scaled by a factor
p

n, i.e., x =p
n

(
g −〈

g ,hi
〉

hi
)
. Since 〈hi , x〉 = 0 and

‖x‖ ≤p
n, we have x ∈ K̂i . Therefore (7.1) gives the following inequality

p
n

(
1−〈

g ,hi
〉2

)
= 〈

g , x
〉≤ 4

p
nε.

Hence
∣∣〈g ,hi

〉∣∣ ≥ p
1−4ε ≥ 19

20 . This implies that g −hi or g +hi has length at most√
2−2

∣∣〈g ,hi
〉∣∣≤√

1
10 ; assume the former for simplicity. Now for all j 6= i we have

∣∣〈g ,h j
〉∣∣≤ ∣∣〈g −hi ,h j

〉∣∣+ ∣∣〈hi ,h j
〉∣∣≤√

1

10
+0.51 < 9

10
.

Hence g can only be returned by SEPε,0(Ki ).

1This is not true for quantum membership queries!
2We can show that such a set of vectors exists as follows. Let n = ck for sufficiently large constant c.

Choose m = 2k (which is 2Ω(n)) uniformly random vectors v1, . . . , vm in {0,1}n . Note that the expected
Hamming weight of one such vector is n/2, and the expected inner product between two such vectors
is n/4 (the inner product just counts for how many of the n bit-positions both vectors have a 1). By
a standard calculation (Chernoff bound plus a union bound), one can show that with high probability
these 2k vectors each have Hamming weight ≥ 0.495n, and the inner product between any two of them is
≤ 0.252n. Fix 2k such vectors with these properties, and define hi := vi /‖vi‖. These are unit vectors with
non-negative entries, and pairwise inner products

〈
hi ,h j

〉 = 〈
vi , v j

〉
/(‖vi‖

∥∥v j
∥∥) ≤ 0.252n/(0.495n) ≤

0.51.
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If we would be given one of the m = 2Ω(n) convex sets uniformly at random, then
a single separation query would allow us to learn Ω(n) bits of information about our
input. However, a classical membership query can teach us only a single bit of informa-
tion about our input. It follows that Ω(n) classical membership queries are necessary
to implement a single separation query.

7.3 | Query lower bound for OPT using SEP with an
interior point

We now consider lower bounding the number of quantum queries to a separation or-
acle needed to do optimization. In fact, we prove a lower bound on the number of
separation queries needed for validity, which implies the same bound on optimization.
We will use a reduction from a version of the search problem:

Given z ∈ {0,1}n such that either |z| = 0 or |z| = 1, decide which of the two holds.

It is not hard to see that if the access to z is given via classical queries, then Ω(n) queries
are needed. As seen in Chapter 6, Ω

(p
n

)
queries are needed if we allow quantum

queries. We use this problem to show that there exist convex sets for which it is hard
to construct a weak validity oracle, given a strong separation oracle. Since a separation
oracle can be used as a membership oracle, this gives the same hardness result for
constructing a weak validity oracle from a strong membership oracle.

Theorem 7.2 Let 0 < ρ ≤ 1/3. Let A be an algorithm that implements a VAL(5n)−1,ρ(K )
oracle for every convex set K (with B(x0,r ) ⊆ K ⊆ B(x0,R)) using only queries to a
SEP0,0(K ) oracle, and unitaries that are independent of K . Then the following state-
ments are true, even when we restrict to convex sets K with r = 1/3 and R = 2

p
n:

• if the queries to SEP0,0(K ) are classical, then the algorithm uses Ω(n) queries.

• if the queries to SEP0,0(K ) are quantum, then the algorithm uses Ω
(p

n
)

queries.

Proof. Let z ∈ {0,1}n have Hamming weight |z| = 0 or |z| = 1. We construct a set Kz

in such a way that solving the weak validity problem solves the search problem for z,
while separation queries for Kz can be answered using a single query to z. The known
classical and quantum lower bounds on the search problem then imply the two claims
of the theorem, respectively.

Define Kz := ∏n
i=1[−1, zi ]. Observe that if we set x0 = (−1/2, . . . ,−1/2), then

B
(
x0, 1

3

)⊆ Kz ⊆ B
(
x0,2

p
n

)
.

We first show how to implement a strong separation oracle using a single query to
z. Suppose the input is the point y . The strong separation oracle works as follows:

1. If y ∈ [−1,0]n , then return the statement that y ∈ B(Kz ,0) = Kz .
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2. If y 6∈ [−1,1]n , then return a hyperplane that separates y from [−1,1]n (and hence
from Kz).

3. Let i be such that yi > 0. Query zi .

(a) If zi = 1 and i is the only index such that yi > 0, then return that y ∈
B(Kz ,0) = Kz .

(b) If zi = 1 and there is a j 6= i such that y j > 0, return the separating hyper-
plane corresponding to x j ≤ y j .

(c) If zi = 0, then return the separating hyperplane corresponding to xi ≤ yi .

We show that a validity query over Kz with the direction c = 1p
n

(1, . . . ,1) ∈ Rn , value

γ= 1
2
p

n
and error ε= 1

5n solves the search problem:

• If |z| = 0, then for all points x ∈ K0 we have 〈c, x〉 ≤ 0. Thus, for all points x ∈
B(K0,ε) we have 〈c, x〉 ≤ ε < γ−ε. Hence validity will have to return that 〈c, x〉 ≤
γ+ε holds for all x ∈ B(K0,−ε) since the other possible output is not true.

• If |z| = 1, then the point z ∈ Kz satisfies 〈z,c〉 = 1p
n

and therefore x = z − εe ∈
B(Kz ,−ε) satisfies 〈c, x〉 = 1p

n
−p

nε> γ+ε. Hence validity will have to return that

〈c, x〉 ≥ γ−ε holds for some x ∈ B(Kz ,ε) since the other possible output is not true.

7.4 | Query lower bound for OPT using SEP without an
interior point

We now lower bound the number of quantum queries to a separation oracle needed
to solve the optimization problem, if our algorithm does not already know an interior
point of K . In fact we prove a lower bound on finding a point close to K using separation
queries, which implies the lower bound on the number of separation queries needed
for optimization since OPT returns a point close to the set.

We prove our lower bound by a reduction to the problem of learning z with first-
difference queries:

Let z ∈ {0,1}n be a unknown binary string. For a given guess g ∈ {0,1}n a query
returns the first index in [n] for which the binary strings z and g differ (or it
returns n +1 if z = g ). Recover the whole of z.

First we prove an Ω(n) quantum query lower bound for this problem.3

3Note that this is a strengthening of the Ω(n) quantum query lower bound for binary search on a
space of size 2n by Ambainis [Amb99], since first-difference queries are at least as strong as the queries
one makes in binary search.
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Theorem 7.3 Let z ∈ {0,1}n be an unknown string accessible by an oracle acting as
Oz

∣∣g ,b
〉 = ∣∣g ,b ⊕ f (g , z)

〉
, where f (g , z) is the first index for which z and g differ, more

precisely f (g , z) = min{i ∈ [n] : gi 6= zi } if g 6= z and f (g , z) = n +1 otherwise. Then every
bounded-error quantum algorithm that outputs z uses at least Ω(n) queries to Oz .

Proof. We will use the general adversary bound [HLŠ07] as introduced in Section 6.4.3
in Lemma 6.5. For this problem all inputs require different outputs, hence Γ ∈ R2n×2n

is an adversary matrix if it is a non-zero matrix with zero diagonal whose rows and
columns are indexed by all z ∈ {0,1}n . For g ∈ {0,1}n , the ∆g ∈ {0,1}2n×2n

matrix is such
that the (z, z ′) entry of ∆g is 0 if and only if f (g , z) = f (g , z ′).

We claim that Lemma 6.5 gives a lower bound of Ω(n) for the adversary matrix Γ

defined as

Γz,z ′ =
{

2 f (z,z ′) if z 6= z ′

0 if z = z ′.

It is easy to see that Γ is indeed an adversary matrix since it is zero on the diagonal and
non-zero everywhere else. Furthermore, the all-one vector e is an eigenvector of Γ with
eigenvalue n2n :

(Γe)z =
∑

z ′∈{0,1}n

Γz,z ′

=
n∑

d=1
2d · |{z ′ ∈ {0,1}n : f (z, z ′) = d}|

=
n∑

d=1
2d 2n−d

= n2n .

So Γe = n2ne and hence ‖Γ‖ ≥ n2n . It remains to upper bound the operator norm of the
Γ◦∆g matrices. From the definition of ∆g it follows that(

Γ◦∆g
)

z,z ′ = 2 f (z,z ′)[ f (g , z) 6= f (g , z ′)
]
.

Let Γg := Γ◦∆g . We will show an upper bound on
∥∥Γg

∥∥. We decompose Γg in an “upper-
triangular” and a “lower-triangular” part:(

ΓU
g

)
z,z ′

:= 2 f (z,z ′)[ f (g , z) < f (g , z ′)
]= 2 f (g ,z)[ f (g , z) < f (g , z ′)

]
(7.2)(

ΓL
g

)
z,z ′

:= 2 f (z,z ′)[ f (g , z ′) < f (g , z)
]= 2 f (g ,z ′)[ f (g , z ′) < f (g , z)

]
.

So Γg = ΓU
g +ΓL

g and ΓU
g =

(
ΓL

g

)T
. Hence by the triangle inequality we have

∥∥Γg
∥∥≤

∥∥∥ΓU
g

∥∥∥+∥∥∥ΓL
g

∥∥∥= 2
∥∥∥ΓU

g

∥∥∥. (7.3)
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It thus suffices to upper bound
∥∥∥ΓU

g

∥∥∥. Notice that as (7.2) shows,
(
ΓU

g

)
z,z ′

only depends

on the values f (g , z), f (g , z ′). Since the range of f (g , · ) is [n + 1], we can think of ΓU
g

as an (n + 1)× (n + 1) block-matrix, where the blocks are determined by the values of
f (g , z) and f (g , z ′), and within a block all matrix elements are the same. Also observe
that for all k ∈ [n] there are 2n−k bitstrings y ∈ {0,1}n such that f (g , y) = k, which
tells us the sizes of the blocks are 2n−k × 2n−k . Motivated by these observations we
define an orthonormal set of vectors in R2n

by vn+1 := eg , and for all k ∈ [n] we let

vk :=∑
y : f (g ,y)=k

eyp
2n−k

.

Since the row and column spaces of ΓU
g are spanned by {vk : k ∈ [n + 1]}, we can

project on the span of the vk without changing ΓU
g . This allows us to reduce ΓU

g to an
(n +1)× (n +1)-dimensional matrix G :

ΓU
g =

(
n+1∑
k=1

vk vT
k

)
ΓU

g

(
n+1∑
`=1

v`vT
`

)

=
(

n+1∑
k=1

vk eT
k

)(
n+1∑
k=1

ek vT
k

)
ΓU

g

(
n+1∑
`=1

v`eT
`

)
︸ ︷︷ ︸

G :=

(
n+1∑
`=1

e`vT
`

)
.

It follows from the above identity, together with the orthonormality of the vectors
{v1, . . . , vn , vn+1}, that ∥∥∥ΓU

g

∥∥∥=
∥∥∥∥∥
(

n+1∑
k=1

ek vT
k

)
ΓU

g

(
n+1∑
`=1

v`eT
`

)∥∥∥∥∥= ‖G‖. (7.4)

Note that G ∈R(n+1)×(n+1) is a strictly upper-triangular matrix, with the following entries
for k,` ∈ [n]:

Gk,` = vT
k Γ

U
g v`

=
( ∑

z: f (g ,z)=k

eT
zp

2n−k

)
ΓU

g

( ∑
z ′: f (g ,z ′)=`

ez ′p
2n−`

)

= 2
k+`

2

2n

( ∑
z: f (g ,z)=k

eT
z

)
ΓU

g

( ∑
z ′: f (g ,z ′)=`

ez ′

)

= 2
k+`

2

2n

∑
z: f (g ,z)=k

∑
z ′: f (g ,z ′)=`

(
ΓU

g

)
z,z ′

= 2
k+`

2

2n

∑
z: f (g ,z)=k

∑
z ′: f (g ,z ′)=`

2k [k < `] (by (7.2))

= 2
k+`

2

2n
2n−k 2n−`2k [k < `]

= 2n− `−k
2 [k < `].
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Similarly for ` = n +1 we get that Gk,` = p
22n− `−k

2 [k < `] for all k ∈ [n +1]. Note that
the matrix entries only depend on the difference `− k. For each d ∈ [n] define Gd ∈
R(n+1)×(n+1) such that (Gd )k,` = Gk,`[d = `−k]. This Gd is only non-zero on one non-
main diagonal (namely the (k,`)-entries where d = `−k), and its non-zero entries are

all upper bounded by
p

22n2− d
2 . We have G =∑n

d=1 Gd and therefore

‖G‖ ≤
n∑

d=1

‖Gd‖ ≤
n∑

d=1

p
22n2− d

2 = 2n
n−1∑
d=0

(p
2
)−d ≤ 2n

1−1/
p

2
≤ 2n+2. (7.5)

Inequalities (7.3)-(7.5) give that
∥∥Γg

∥∥≤ 2n+3 and hence Lemma 6.5 yields a lower bound

of Ω
(

n2n

2n+3

)
=Ω(n) on the number of quantum queries to Oz needed to learn z.

Theorem 7.4 Finding a point in B∞(K ,1/7) for an unknown convex set K such that
K ⊆ B∞(0,2) ⊆ Rn requires Ω(n) quantum queries to a separation oracle SEP0,0(K ), even
if we are promised there exists some unknown x ∈Rn such that B∞(x,1/3) ⊆ K .

Proof. We will prove an Ω(n) quantum query lower bound for this problem by a reduc-
tion from learning with first-difference queries. Let z ∈ {0,1}n be an unknown binary
string, and let us define Kz := B∞(z,1/3) ⊂ Rn as a small box around the corner of the
hypercube corresponding to z. Then clearly Kz ⊂ B∞(0,2), and finding a point close
enough to Kz is enough to recover z.

We can easily reduce a separation oracle query to a first-difference query to z, as
follows. Suppose y is the vector that we need to answer a SEP query for:

1. If y ∉ [−1/3,4/3]n , then output a hyperplane separating y from [−1/3,4/3]n .

2. If y ∈ [−1/3,4/3]n , then let g be the nearest corner of the hypercube.

3. Let i be the result of a first-difference query to z with g .

(a) If the query returns n +1, indicating that z = g , then we know Kz exactly, so
we can find a separating hyperplane or conclude that y ∈ Kz .

(b) If z 6= g , then return ei if gi = 1, and −ei if gi = 0.

Hence our Ω(n) quantum lower bound on learning z with first-difference queries
implies an Ω(n) lower bound on the number of quantum queries to a separation oracle
needed for finding a point close to a convex set.

Since optimization over a set K gives a point close to the set K , this also implies
a lower bound on the number of separation queries needed for optimization. This
theorem is tight up to logarithmic factors, since it is known that Õ R

rε
(n) classical sep-

aration queries suffice for optimization, even without knowing a point in the convex
set [LSW15]. Finally we remark that, due to our improved algorithm for optimization
using validity queries that follows from Section 3.5, this also gives an Ω̃(n) lower bound
on the number of separation queries needed to implement validity.4

4It is easy to modify Theorem 7.3 to prove a lower bound on computing the majority function of z,
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7.5 | An open question
The main open question remaining is whether we can improve our Ω(

p
n) lower bound

on the number of separation queries needed to implement an optimization oracle
when an interior point of K is known. We conjecture that the correct bound is Θ̃(n),
in which case knowing a point in K would not yield a benefit for query complexity.

We propose linear system solving as a candidate for proving an Ω(n) quantum query
lower bound. In particular, for an n ×n matrix A, we conjecture that Ω(n) quantum
queries of the form |x〉|0〉 7→ |x〉|Ax〉 are needed to find an x such that Ax = b.5 In Chap-
ter 8 we will show that the corresponding lower bound for finite fields holds, although
this has no direct implications for convex optimization. For the real-valued problem no
non-trivial lower bound is known, let alone an Ω(n) lower bound. It might even be that
there is an exponential speedup for this problem, which could have many applications
in convex optimization, machine learning and many other fields.

which would imply an Ω(n) lower bound on the number of separation queries needed to implement a
validity oracle, without the log factors.

5Here the states |x〉 and |Ax〉 are binary finite-precision representations of the vectors, not an encod-
ing in the amplitudes of the states.





Chapter8

A quantum query lower bound
on the linear Simon’s problem

Simon’s problem asks the following: determine if a function f : {0,1}n → {0,1}n is one-
to-one or if there exists a unique non-zero s ∈ {0,1}n such that f (x) = f (x ⊕ s) for all x ∈
{0,1}n , given the promise that exactly one of the two holds. Simon [Sim97] showed that
a classical bounded-error algorithm that can solve this promise problem for every f
requires Ω

(p
2n

)
queries to f . In the same paper Simon showed that there is a quantum

algorithm that can solve this promise problem using only O (n) quantum queries to f . A
matching lower bound on the number of quantum queries was given in [KNP07], even
for a generalization of the problem to functions f : Fn

p → Fn
p . We give two short proofs

that O (n) quantum queries is optimal even when we are additionally promised that f
is linear. This is somewhat surprising because for linear functions there even exists a
classical n-query algorithm.

This chapter is mostly based on the paper Simon’s problem for linear functions by J. van
Apeldoorn and S. Gribling [AG18].
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8.1 | Introduction
In 1994, Simon [Sim97] showed the existence of a query problem where quantum al-
gorithms offer an exponential improvement over the best randomized bounded-error
classical algorithms. The problem he considers is the following:

Given a function f : {0,1}n → {0,1}n with the promise that it either (1) is one-to-
one or (2) admits a unique non-zero s ∈ {0,1}n such that f (x) = f (x ⊕ s) for all
x ∈ {0,1}n , decide which of the two holds.

Simon showed that there is a quantum algorithm which can solve this problem for any
f satisfying the promise using O (n) quantum queries to f , i.e., using O (n) applications
of the unitary |x〉|b〉 7→ |x〉∣∣b ⊕ f (x)

〉
.1 This offers an exponential improvement over

classical algorithms, since Simon also showed that at least Ω
(p

2n
)

classical queries of
the form x 7→ f (x) are needed in order to succeed with probability at least 2/3. The
question we are interested in is the optimality of Simon’s quantum algorithm and its
generalization to finite fields. Let p be a prime power and let Fp be the finite field with
p elements. Simon’s problem over Fp can be formulated as follows:

Given a function f : Fn
p → Fn

p with the promise that it either (1) is one-to-one or
(2) admits a one-dimensional subspace H ⊂ Fn

p such that for all x, y ∈ Fn
p , f (x) =

f (y) ⇔ x − y ∈ H , decide which of the two holds.

Koiran et al. [KNP07] (for an earlier version see [KNP05]) showed that the quantum
query complexity of Simon’s problem over Fp is Θ(n).2 Here we show that the lower
bound of Ω(n) quantum queries holds even when f is additionally promised to be
linear. That is, a quantum algorithm which can solve Simon’s problem over Fp for any
linear function requires Ω(n) quantum queries to f . Interestingly, this shows that for
the class of linear functions there is no quantum advantage: classically, one can also
fully determine a linear function using n queries. To see this, note that a linear function
f : Fn

p → Fn
p corresponds to a matrix A ∈ Fn×n

p , and a function evaluation is a matrix-
vector product. By querying all standard basis vectors we can recover all columns of A
and hence know f fully.

Definition 8.1 : Linear Simon’s problem Let p be a prime power. Given a linear
function f : Fn

p → Fn
p , with the promise on the kernel of f that either |ker

(
f
)| = 1 or

|ker
(

f
)| = p, decide which of the two holds.

Our main result (proved in Section 8.2) is the following.

1In fact, Simon considered the problem of finding the non-zero string s, if it exists. Here we focus on
the decision version of his problem. However, all upper bounds mentioned are derived from algorithms
which also find s.

2They even prove the analogous lower bound for the hidden subgroup problem over Abelian groups,
see our Section 8.4.



A quantum query lower bound on the linear Simon’s problem 155

Theorem 8.2 Let p be a prime power. Let A be a T -query bounded-error quantum
algorithm for the linear Simon’s problem over Fp . Then T =Ω(n).

In Theorem 8.2 we follow the same proof structure as [KNP07], using the polyno-
mial method (see Section 6.3). More specifically, we show that, averaged over a subset
of functions, the acceptance probability of a T -query quantum algorithm is a polyno-
mial of degree at most 2T in the size of the kernel. We then obtain the lower bound by
appealing to [KNP07, Lem. 5] which states that any polynomial with the correct success
probabilities has degree Ω(n). However, where [KNP07] average over all functions, we
only consider linear functions over Fn

p . Surprisingly, this simplifies the proof substan-
tially. We also give a slightly simplified proof of [KNP07, Lem. 5].

In Section 8.3 we will give an alternative and shorter method for proving Theo-
rem 8.2 when p is a prime (note that in the rest of this chapter p may be a prime power).
This shorter method uses a known lower bound on the communication complexity of
the linear Simon’s problem. The alternative proof is not included in [AG18] since we
only recently found it.

Notation For the rest of this chapter we define F := { f : Fn
p → Fn

p | f linear} as the set

of all linear functions from Fn
p to Fn

p . For each k ∈ {0,1, . . . ,n} and D = pk we let FD be
the subset of F consisting of linear functions whose kernel has size D , i.e., FD = { f ∈ F |
|ker

(
f
)| = D}.

8.2 | Proof of Theorem 8.2

Let A be a T -query bounded-error algorithm for the linear Simon’s problem and let
P ( f ) be the acceptance probability of A on the input f . As in Section 6.3, we can write
P ( f ) as a polynomial in the δ f (x),y :

P ( f ) = ∑
s⊆Fn

p×Fn
p

|s|≤2T

βs
∏

(x,y)∈s
δ f (x),y .

When we view s as a partial function, this expression can be rewritten in terms of f
extending s: (remember that we write s ¹ f if f extends s)

P ( f ) = ∑
s∈S2T

βs
[
s ¹ f

]
,

where S2T is the set of all partial functions s with |dom(s)| ≤ 2T . As in the example in
Section 6.3, it will be useful to average P ( f ) over certain sets of inputs. We consider the
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average acceptance probability Q(D) over all functions with a kernel of size D :

Q(D) = ∑
f ∈FD

1

|FD |P ( f )

= ∑
f ∈FD

1

|FD |
∑
s∈S

βs
[
s ¹ f

]
= ∑

s∈S
βs

1

|FD |
∑

f ∈FD

[
s ¹ f

]
= ∑

s∈S
βsQs(D).

Here Qs(D) is the probability that a uniformly random f ∈ FD extends s:

Qs(D) = 1

|FD |
∑

f ∈FD

[
s ¹ f

]= Pr f ∈R FD

[
s ¹ f

]
.

In the next two sections we will prove that the degree of Q needs to be at least linear in
n, and that the degree of each Qs (and hence of Q) is upper bounded by 2T . Together
these results imply Theorem 8.2.

8.2.1 | Lower bound on the degree
For k ∈ {0,1, . . . ,n}, Q(pk ) represents an acceptance probability and therefore Q(pk ) ∈
[0,1]. Moreover, if the algorithm succeeds with probability at least 2/3, then Q(1) ≥ 2/3
and Q(p) ≤ 1/3. The lemma below was already present in [KNP07] and shows that such
a Q has degree Ω(n). We give a slightly simplified proof for completeness.

Lemma 8.3 : [KNP07, Lem. 5] For every univariate polynomial Q such that Q(1) ≥ 2/3,
Q(p) ≤ 1/3 and Q(pk ) ∈ [0,1] for all k ∈ {0, . . . ,n}, it holds that deg(Q) ≥ n/4.

Proof. We start by noticing that by the mean value theorem we know that there is an
x0 ∈ [1, p] for which |Q ′(x0)| ≥ 1

3(p−1) . Assume that Q is a polynomial of degree d ≤
n/2 (otherwise we are done), so that its derivative Q ′ is of degree d −1 and its second
derivative Q ′′ is of degree d − 2. Consider the 2d − 2 intervals of the form (pa , pa+1)
where a = n − (2d − 2), . . . ,n − 1. Since together Q ′ and Q ′′ have at most 2d − 3 roots,
there is such an interval for which both polynomials have no roots with real part in it;
let a ≥ n − (2d − 2) be the integer corresponding to this interval and let M := 1+p

2 pa

be the middle of this interval. To show the degree lower bound it suffices to prove the
following chain of inequalities:

1

p2d−2

(∗)≤
∣∣∣∣Q ′(M)

Q ′(x0)

∣∣∣∣ (∗∗)≤ 6

pn−2d+2
.

Indeed, if the above chain of inequalities holds, then 6 ≥ pn−4d+4 ≥ 2n−4d+4 which
implies that n −4d +4 ≤ 3, i.e., d ≥ n+1

4 . We now prove (∗) and (∗∗) separately.
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(∗) For the lower bound we will use the following elementary fact:

if 0 ≤ v < w and 0 ≤ y, then
v + y

w + y
≥ v

w
. (8.1)

Denote the roots of Q ′ by b j + c j i, for j ∈ [d −1]. Then Q ′(x) = λ
∏d−1

j=1 (x −b j − c j i) for
some λ ∈R and hence

∣∣∣∣Q ′(M)

Q ′(x0)

∣∣∣∣=
∣∣∣∣∣d−1∏

j=1

M −b j − c j i

x0 −b j − c j i

∣∣∣∣∣= d−1∏
j=1

∣∣∣∣M −b j − c j i

x0 −b j − c j i

∣∣∣∣= d−1∏
j=1

√√√√√(
M −b j

)2 + c2
j(

x0 −b j
)2 + c2

j

.

We will show that each factor in the product is bounded from below by 1/p2. Consid-
ering the j -th factor. If |x0 −b j | ≤ |M −b j |, then we are clearly done. Hence, assume
|x0 −b j | > |M −b j |. This implies that

b j > x0 +
∣∣M −b j

∣∣
≥ x0 +

|M −x0|
2

> |M −x0|
2

≥ pa−1.

We now use (8.1): √√√√√(
M −b j

)2 + c2
j(

x0 −b j
)2 + c2

j

≥
∣∣∣∣M −b j

x0 −b j

∣∣∣∣.
Since we know that b j > pa−1, and because by the definition of a there is no b j 6∈
(pa , pa+1), there are two cases to consider:

• If b j ∈ (pa−1, pa], then∣∣∣∣M −b j

x0 −b j

∣∣∣∣≥ inf
x∈(pa−1,pa )

∣∣∣∣M −x

x0 −x

∣∣∣∣= ∣∣∣∣M −pa

x0 −pa

∣∣∣∣≥ 1

2
≥ 1

p2
.

• If b j ∈ [pa+1,∞), then

∣∣∣∣M −b j

x0 −b j

∣∣∣∣= −1+p
2 pa +b j

−x0 +b j
=

p−1
2 pa + (b j −pa+1)

pa+1 −x0 + (b j −pa+1)
≥ pa−1

pa+1 −x0
≥ 1

p2
,

where we use (8.1) and p−1
2 ≥ 1

p for the first inequality.
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(∗∗) By construction we have |Q ′(x0)| ≥ 1
3(p−1) , so it remains to show that |Q ′(M)| ≤

( p−1
2 pn−2d+2)−1. Assume towards a contradiction that |Q ′(M)| > ( p−1

2 pa)−1. Since Q ′′

has no roots with real part in the interval (pa , pa+1), Q ′ is either strictly increasing or
strictly decreasing on the interval (pa , pa+1). Therefore, there is an interval (α,β) (with

(α,β) = (pa , M) or (α,β) = (M , pa+1)) of length p−1
2 pa where |Q ′(x)| >

(
p−1

2 pa
)−1

. By the

fundamental theorem of calculus this implies that |Q(α)−Q(β)| > 1. Since Q ′(x) does
not have any roots with real value in (pa , pa+1) we know that Q(x) is monotone on this
interval. We get a contradiction, since we have 1 ≥ |Q(pa+1)−Q(pa)| ≥ |Q(α)−Q(β)|. It
follows that

|Q ′(M)| ≤
(

p −1

2
pa

)−1

≤
(

p −1

2
pn−2d+2

)−1

.

We conclude that
1

p2d−2
≤

∣∣∣∣Q ′(M)

Q ′(x0)

∣∣∣∣≤ 3(p −1)
p−1

2 pn−2d+2
and hence that d ≥ n/4.

8.2.2 | Upper bound on the degree
We now show that the degree of each Qs is upper bounded by 2T .

Lemma 8.4 Let s : dom(s) ⊆ Fn
p → Fn

p be a partial linear function, then

degD (Qs) ≤ dim
(
span(dom(s))

)
Proof. Let K := span(dom(s)) and k := dim(K ). We can extend s uniquely to a linear
function on K . Define Z := ker(s) ⊆ K and z := dim(Z ), and Y := Z⊥∩K . For a function
f : Fn

p → Fn
p in FD we write H := ker

(
f
)
, h := dim(H) and hence D = |H | = ph . We show

that Pr f ∈R FD

[
s ¹ f

]
has degree at most k as a polynomial in D . If f extends s, then the

kernel of s has to be a subset of f . Furthermore, all points where s is defined that are
not in the kernel of s cannot be in the kernel of f . Using this observation we analyze
the probability Pr f ∈R FD

[
s ¹ f

]
in three parts:

Pr f ∈R FD

[
s ¹ f

]= Pr f ∈R FD [Z ⊆ H ∧Y ∩H = {0}]

·Pr f ∈R FD

[
s ¹ f | Z ⊆ H ∧Y ∩H = {0}

]
= Pr f ∈R FD [Z ⊆ H ] ·Pr f ∈R FD [Y ∩H = {0} | Z ⊆ H ]

·Pr f ∈R FD

[
s ¹ f | Z ⊆ H ∧Y ∩H = {0}

]
.

We show that

(1) Pr f ∈R FD [Z ⊆ H ] is a polynomial in D of degree at most z,

(2) Pr f ∈R FD [Y ∩H = {0} | Z ⊆ H ] is a polynomial in D of degree at most k − z,

(3) Pr f ∈R FD

[
s ¹ f | Z ⊆ H ∧Y ∩H = {0}

]
does not depend on D .

Together, this implies that Pr f ∈R FD

[
s ¹ f

]
is a polynomial in D of degree at most k.
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(1) Pr f ∈R FD [Z ⊆ H ] equals the fraction of h-dimensional subspaces of Fn
p that con-

tain Z . There are α(n,h) := 1
h!

∏h−1
i=0

(
pn −p i

)
ways to pick h linearly indepen-

dent vectors in a space of dimension n. Each way gives us a basis for an h-
dimensional subspace, however, each h-dimensional subspace has α(h,h) dif-
ferent bases. Hence there are α(n,h)

α(h,h) different subspaces of dimension h in Fn
p .

The number of h-dimensional subspaces that contain Z equals the number of
(h − z)-dimensional subspaces in an (n − z)-dimensional space. Hence

Pr f ∈R FD [Z ⊆ H ] =
α(n−z,h−z)
α(h−z,h−z)

α(n,h)
α(h,h)

=
∏h−z−1

i=0
pn−z−p i

ph−z−p i∏h−1
i=0

pn−p i

ph−p i

=
∏h−1

i=z
pn−p i

ph−p i∏h−1
i=0

pn−p i

ph−p i

=
z−1∏
i=0

ph −p i

pn −p i
,

which is a degree-z polynomial in terms of D = ph .

(2) We have

Pr f ∈R FD [Y ∩H = {0} | Z ⊆ H ] = Pr f ∈R FD [Y /Z ∩H/Z = {0}]

where both Y /Z and H/Z are subspaces of Fn
p /Z ' Fn−z

p . By construction
we have that dim(Y /Z ) = dim(Y ) = k − z, dim(H/Z ) = h − z. The probability
Pr f ∈R FD [Y /Z ∩H/Z = {0}] equals the number of (h − z)-dimensional subspaces
of Fn−z

p which are linearly independent from Y /Z , divided by the total number of
(h−z)-dimensional subspaces. The number of (h−z)-dimensional subspaces of
Fn−z

p which are linearly independent from Y /Z is equal to the number of ways to

pick a basis for such a subspace, which is 1
(h−z)!

(∏h−z−1
i=0 pn−z −pk−z+i

)
, divided

by the number of such bases, which is α(h − z,h − z). We get

Pr f ∈R FD [Y /Z ∩H/Z = {0}] =
1

(h−z)!

∏h−z−1
i=0

(
pn−z−pk−z+i

)
α(h−z,h−z)

α(n−z,h−z)
α(h−z,h−z)

=
1

(h−z)!

∏h−z−1
i=0

(
pn−z −pk−z+i

)
α(n − z,h − z)

=
∏h−z−1

i=0

(
pn−z −pk−z+i

)∏h−z−1
i=0

(
pn−z −p i

)
=

∏h+k−2z−1
i=k−z

(
pn−z −p i

)
∏h−z−1

i=0

(
pn−z −p i

)
(a)=

∏h+k−2z−1
i=h−z

(
pn−z −p i

)
∏k−z−1

i=0

(
pn−z −p i

)
=

∏k−z−1
i=0

(
pn−z −p i+h−z

)∏k−z−1
i=0

(
pn−z −p i

) .
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To see equality (a), if k < h then cancel the terms for i = k − z, . . . ,h − z on both
sides of the fraction, and if k > h then add the terms for i = h−z, . . . ,k−z on both
sides of the fraction.

It follows that

Pr f ∈R FD [Y /Z ∩H/Z = {0}] =
∏k−z−1

i=0

(
pn−z −ph p−z−i

)∏k−z−1
i=0

(
pn−z −p i

)
is a polynomial in D = ph of degree k − z. We mention in passing that, alterna-
tively, one can arrive at the same expression by looking at the probability that a
random Y is linearly independent from a fixed H .

(3) Finally we consider Pr f ∈R FD

[
s ¹ f | Z ⊆ H ∧Y ∩H = {0}

]
. Since Z ⊆ H , we know

that f and s agree on Z . Hence, f extends s if their values agree on Y . Let
b1, . . . ,bk−z be a basis for Y , then f and s agree on Y if and only if they agree
on b1, . . . ,bk−z . Since we condition on the event Y ∩H = {0}, the probability that
this happens does not depend on D = ph .

8.3 | An alternative proof of Theorem 8.2
An alternative proof of Theorem 8.2 can be given via lower bound results in quantum
communication complexity3. This approach was hinted at in [SWYZ19] as a method
for lower bounding the number of matrix-vector queries needed to determine certain
properties of a matrix. It should be noted that this proof only works if p is a prime, while
the other proof also works if p is a prime power. Consider the following problem:

Definition 8.5 : Linear Simon’s communication problem Let p be a prime, A,B ∈ Fn×n
p

and M = A+B be such that rank(M) ∈ {n−1,n}. Let A be given to Alice and B to Bob. The
linear Simon’s communication problem is the communication problem of deciding the
rank of M.

In [LSWW14] this problem is introduced as RANKn,n−1 and a lower bound is proven
on the randomized communication complexity. However, as noted by the authors, the
proof given in [LSWW14] actually lower bounds the quantum communication com-
plexity as well, leading to the following lemma:

Lemma 8.6 : [LSWW14, Thm. 1] Let p be a prime. Every protocol that solves the
linear Simon’s communication problem with success probability at least 9/10 requires
Ω

(
n2log

(
p

))
qubits of quantum communication.

We are now ready to state the alternative proof of Theorem 8.2.

3For an introduction into quantum communication complexity, see for example [Wol02].
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Alternative proof of Theorem 8.2 when p is a prime. Let p be a prime and A be a T -
query quantum algorithm for the linear Simon’s problem over Fn

p . Consider an instance
(A,B) of the linear Simon’s communication problem. To solve the communication
problem Alice executes the algorithm A for M = A +B . To implement a query Alice
and Bob use O

(
nlog

(
p

))
qubits of communication: Alice sends |x〉|0〉 and bob replies

with |x〉|B x〉, which allows Alice to compute |(A+B)x〉, after which they uncompute
|B x〉. In total the protocol will use O

(
T nlog

(
p

))
qubits of communication to solve the

linear Simon’s problem for M , and hence to solve the linear Simon’s communication
problem for (A,B). We conclude that T =Ω(n).

The restriction that p is a prime in Lemma 8.6 might be liftable by a careful analysis
of the proof in [LSWW14]. This alternative approach has the benefit that a similar com-
munication lower bound over the integers or the real numbers would directly translate
to a query lower bound those as well.

8.4 | Open problems
To conclude, we mention the following open problems:

• Koiran et al. [KNP07] lift the lower bound on Simon’s problem over Fn
p to the

hidden subgroup problem over finite Abelian groups:

Given a (finite Abelian) group G and a function f : G → X with the promise
that there is a subgroup H ≤ G of rank either 0 or 1 (i.e., either trivial, or
generated by a single element), such that f (g ) = f (g ′) if and only if g − g ′ ∈
H , decide which of the two holds.

One recovers Simon’s problem over Fn
p by taking G = X = Fn

p . A natural question is
whether the hidden subgroup problem over finite Abelian groups also remains
equally hard when we are additionally promised that f is an endomorphism.
The reduction used by Koiran et al. combined with our result gives a smaller
and more structured set of hard instances of the hidden subgroup problem over
Abelian groups. However, the functions obtained from this reduction will only be
endomorphisms on a subgroup of G , not on all of G .

• While the general Simon’s problem has no natural extension to Rn , the linear
Simon’s problem can possibly be extended to Rn . For example: given matrix-
vector multiplication queries x 7→ Ax for a psd matrix A with ‖A‖ ≤ 1, and given
an error parameter ε> 0, decide if λmin(A) ≤ ε or λmin(A) ≥ 2ε. It remains an open
question to prove a lower bound on this problem. As mentioned in Section 7.5,
an Ω(n) lower bound for this problem could resolve whether there is a speedup
for implementing an optimization oracle using a separation oracle.
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• Aaronson and Ben-David [AB16] introduced the idea of sculpting functions. They
characterized the total Boolean functions for which there is a promise on the in-
put such that restricted to that promise there is an exponential separation be-
tween quantum and classical query complexity. We propose the related idea of
over-sculpting: bringing the classical query complexity down to the quantum
query complexity. More specifically, for which (possibly partial) Boolean func-
tions f does there exist a promise P such that:

Q1/3( f ) ≤ o
(
R1/3( f )

)
Q1/3( f ) =Θ

(
Q1/3( f |P )

)=Θ
(
R1/3( f |P )

)
.

Simon’s problem does not correspond to a Boolean function since the input al-
phabet is not Boolean4, but our results show that Simon’s problem can be over-
sculpted in this slightly different setting.

• Although we know that over Fp we need to query a matrix fully in order to deter-
mine its rank, the time complexity of this problem is not yet known, both in the
classical and the quantum setting.

4An input for Simon’s problem is a function f : Fn
p → Fn

p , which can be viewed as a string of length pn

over the alphabet Fn
p .
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Limitations of quantum
LP and SDP-solvers

We start this chapter by considering the limitations of specific types of quantum LP and
SDP-solvers. In Chapter 4 we developed algorithms that had a polynomial dependence
on the scale invariant error parameter γ in their complexity. Here we show that for
many natural families of LPs and SDPs this γ parameter grows linearly with n and m,
making methods with a large dependence on γ unsuitable for solving these problems.
We then consider methods that always return sparse solutions. We show that these
solutions cannot be useful for solving problems with a lot of symmetry. For our LP and
SDP-solvers this implies that a high iteration count (and hence a large γ parameter) is
needed in order to find a useful solution for certain problems.

In the second part of this chapter we give six different quantum query lower bounds
for LP and SDP-solving. These bounds show that in the sparse matrix input model for
SDPs our n, m and s-dependence is optimal, and that a polynomial dependence on γ

is required in order to achieve an o(nm) dependence on n and m. We also give lower
bounds on the query complexity of solving non-negative LPs, a special subclass of LPs.
Here we show that for certain non-negative LPs the classical algorithms are already
optimal in the quantum setting. We finish the chapter by showing quantum query lower
bounds for the Hamiltonian input model, the quantum operator input model, and the
quantum state input model.

This chapter is mostly based on the papers “Quantum SDP-Solvers: Better upper and
lower bounds” by J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf [AGGW17] and
“Improvements in Quantum SDP-Solving with Applications” by J. van Apeldoorn and
A. Gilyén [AG19a], as well as on some unpublished results.



164 Chapter 9

9.1 | Downsides of specific methods
In this section we show some of the limitations of our methods and methods like them.
We start by showing that many natural families of SDPs have a γ parameter that in-
creases linearly with n and m. This implies that quantum SDP-solvers with a large
polynomial dependence on γ, like our SDP-solvers, will be ill-suited for these SDPs.

We then consider SDP-solvers (and LP-solvers) that return sparse dual solutions,
like our methods do. We will show, that for problems with a lot of symmetry, a dual
solution cannot be too sparse if it contains useful information. Hence, any solver that
returns a dual solution for these problems, and that only generates a constant number
of non-zero entries of this dual solution per iteration, requires many iterations.

9.1.1 | Families of SDPs with a large γ parameter
In this section we use r ∗ to denote the smallest `1-norm of an optimal solution to the
dual of an SDP (remember that r only denotes an upper bound), and R∗ to denote the
smallest trace of an optimal solution to the primal. It turns out that for many natural
classes of SDPs the parameters r ∗,R∗, ε, n and m can grow linearly for some instances.
In particular, this is the case if SDPs in a class combine in a natural manner. Take for
example two SDP relaxations for the MAXCUT problem on two graphs G (1) and G (2) (on
n(1) and n(2) vertices respectively):

max Tr
(
L(G (1))X (1))

s.t. Tr
(
X (1))≤ n(1)

Tr
(
E j j X (1))≤ 1 for j = 1, . . . ,n(1)

X (1) º 0

max Tr
(
L(G (2))X (2))

s.t. Tr
(
X (2))≤ n(2)

Tr
(
E j j X (2))≤ 1 for j = 1, . . . ,n(2)

X (2) º 0.

Where L(G) is the Laplacian of a graph G , i.e., L(G) = D(G)− A(G) with A(G) the adja-
cency matrix of G and D(G) the diagonal matrix with the degrees of the vertices on the
diagonal. Note that this is not normalized to operator norm ≤ 1, but for simplicity we
ignore this here. If we denote the direct sum of two matrices by ⊕, that is

A⊕B =
[

A 0
0 B

]
,

then, for the disjoint union of the two graphs, we have

L(G (1) ∪G (2)) = L(G (1))⊕L(G (2)).

This, plus the fact that the trace distributes over direct sums of matrices, means that the
SDP relaxation for MAXCUT on G (1) ∪G (2) is the same as a natural combination of the
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two separate maximizations:

max Tr
(
L(G (1))X (1))+Tr

(
L(G (2))X (2))

s.t. Tr
(
X (1))+Tr

(
X (2))≤ n(1) +n(2)

Tr
(
E j j X (1))≤ 1 for j = 1, . . . ,n(1)

Tr
(
E j j X (2))≤ 1 for j = 1, . . . ,n(2)

X (1), X (2) º 0.

It is easy to see that the new value of n is n(1)+n(2), the new value of m is m(1)+m(2)−1
and the new value of R∗ is n(1) + n(2) = R∗(1) + R∗(2). Since it is a natural choice for
the MAXCUT relaxation to pick the allowed additive error so that they add together
under such combinations, all these parameters would increase linearly if we would
keep adding instances together. It remains to see what happens to r ∗. As we will see
later in this section, under some mild conditions, these kinds of combinations imply
that there are MAXCUT-relaxation SDPs for which r ∗ also increases linearly, but this
requires a bit more work.

Definition 9.1 : Combineable class of SDPs We say that a class of SDPs (each with
an associated allowed approximation error) is combinable with k global constraints if
for every two elements in this class, (SDP (a),ε(a)) and (SDP (b),ε(b)), there is an instance
in the class, (SDP (c),ε(c)), that is a combination of the two in the following sense:

• C (c) =C (a) ⊕C (b).

• A(c)
j = A(a)

j ⊕ A(b)
j and b(c)

j = b(a)
j +b(b)

j for all j ∈ [k].

• A(c)
j = A(a)

j ⊕0 and b(c)
j = b(a)

j for j = k +1, . . . ,m(a).

• A(c)
m(a)+ j−k

= 0⊕ A(b)
j and b(c)

m(a)+ j−k
= b(b)

j for j = k +1, . . . ,m(b).

• ε(c) ≤ ε(a) +ε(b).

In other words, some fixed set of constraints are summed pairwise, and the remaining
constraints get included in the SDP separately.

Note that this is a natural generalization of the combining property of the MAXCUT
relaxations (in that case k = 1 to account for the trace bound).

Theorem 9.2 Let k be a non-negative integer. If a class of SDPs is combinable with k
global constraints, and there is an element SDP (1) for which every optimal dual solution
has the property that

m(1)∑
j=k+1

y j ≥ δ

for some δ> 0, then there is a sequence (SDP (t ))t∈N in the class such that R∗(t ), r ∗(t ), ε(t ),

n(t ), and m(t ) all increase linearly with t . Hence γ(t ) = R∗(t )r∗(t )

ε(t ) =Ω
(
n(t )

)
.
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Proof. Note that k is fixed and that k < m(1). The sequence we will consider is the t-fold
combination of SDP (1) with itself. If for SDP (1) the primal and dual are

max Tr(C X )

s.t. Tr
(

A j X
)≤ b j for j ∈ [

m(1)]
X º 0

min
m(1)∑
j=1

b j y j

s.t.
m(1)∑
j=1

y j A j −C º 0

y ≥ 0,

then SDP (t ) is

max
t∑

i=1
Tr(C Xi )

s.t.
t∑

i=1
Tr

(
A j Xi

)≤ tb j for j ∈ [k]

Tr
(

A j Xi
)≤ b j for j = k +1, . . . ,m(1) and i = 1, . . . , t

Xi º 0 for all i = 1, . . . , t

with dual (where the variables are y ∈Rk and y1, . . . , y t ∈Rm(1)−k )

min
k∑

j=1
tb j y j +

t∑
i=1

m(1)∑
j=k+1

b j y i
j

s.t.
k∑

j=1
y j A j +

m(1)∑
j=k+1

y i
j A j ºC for i = 1, . . . , t

y ≥ 0 and y i ≥ 0 for all i ∈ [t ].

First, let us consider the value of OPT(t ). Let X (1) be an optimal solution to SDP (1) and
for all i ∈ [t ] let Xi = X (1). Since these Xi form a feasible solution to SDP (t ), this shows
that OPT(t ) ≥ t ·OPT(1). Furthermore, let y (1) be an optimal dual solution of SDP (1), then(

y (1)
1 , . . . , y (1)

k

)
⊕

(
y (1)

k+1, · · · , y (1)
m(1)

)⊕t
is a feasible dual solution for SDP (t ) with objective

value t ·OPT(1), so by weak duality OPT(t ) = t ·OPT(1).
Next, let us consider the value of r ∗(t ). Let ỹ⊕y1⊕·· ·⊕y t be an optimal dual solution

for SDP (t ), split into the parts of y that correspond to different parts of the combination.
Then ỹ ⊕ y i is a feasible dual solution for SDP (1) and hence bT (ỹ ⊕ y i ) ≥ OPT(1). On the
other hand we have

t ·OPT(1) = OPT(t ) =
t∑

i=1
bT (ỹ ⊕ y i ),

this implies that each term in the sum is actually equal to OPT(1). But if (ỹ ⊕ y i ) is an
optimal dual solution of SDP (1) then

∥∥(ỹ ⊕ y i )
∥∥

1 ≥ r ∗(1) by definition, and
∥∥y i

∥∥
1 ≥ δ. We

conclude that r ∗(t ) ≥ r ∗(1) −δ+ tδ.
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Now we know the behavior of r ∗ under combinations, let us look at the primal to

find a similar statement for R∗(t ). Define a new SDP, �SDP
(t )

, in which all the constraints
are summed when combining, that is, in Definition 9.1 we take k = m(1) and also sum
the psd constraints:

max
t∑

i=1
Tr(C Xi )

s.t.
t∑

i=1
Tr

(
A j Xi

)≤ tb j for j ∈ [
m(1)]

t∑
i=1

Xi º 0.

This SDP has the same objective function as SDP (t ) but a larger feasible region: every

feasible X1, . . . , X t for SDP (t ) is also feasible for �SDP
(t )

. However, by a change of vari-

ables, X :=∑t
i=1 Xi , it is easy to see that �SDP

(t )
is simply a scaled version of SDP (1). So,�SDP

(t )
has optimal value t ·OPT(1). Since optimal solutions to �SDP

(t )
are scaled optimal

solutions to SDP (1), we have R̂∗(t ) = t ·R∗(1). Combining the above, it follows that every

optimal solution to SDP (t ) is optimal to �SDP
(t )

as well (up to scaling with a factor t ),
and hence has trace at least t ·R∗(1), so R∗(t ) ≥ t ·R∗(1).

We conclude that (since ε(t ) ≤ tε(1) by assumption)

R∗(t )r ∗(t )

ε(t )
≥ tR∗(1)(r ∗(1) + (t −1)δ)

tε(1)
=Ω(t )

and n(t ) = tn(1), m(t ) = t (m(1) −k)+k.

This shows that for many natural SDP formulations for combinatorial problems,
such as the MAXCUT relaxation, or LPs that have to do with resource management,
γ =Ω(n) for some instances. Methods with a large polynomial dependence on γ, like
our LP and SDP-solvers, are therefore not well suited for these problems.

9.1.2 | Sparse methods are restrictive
Our LP and SDP-solvers have the property that they return sparse dual solutions,
mainly Õn

(
γ2

)
-sparse dual solutions. In this section we consider to what extent this

limits their usefulness. Of course it could be the case that almost every SDP of interest
has a sparse approximate dual solution (or can easily be rewritten so that it does), and
hence sparseness might be not a restriction at all. However, as we will see below, this is
not the case. We will prove that for certain kinds of SDPs, no “useful” dual solution can
be very sparse. Intuitively, a dual solution to an SDP is “useful” if it can be turned into
a solution of the problem that the SDP is trying to solve. We make this more precise in
the definition below. This lower bound on the sparseness of a dual solution for these
problems implies a lower bound on γ. In cases where this lower bound is large, our LP
and SDP-solvers will have a bad bound on the complexity.
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Definition 9.3 : Solving a problem via the dual A problem is defined by a function
f that, for every element p of the problem domain D, gives a subset of the solution
space S , consisting of the solutions that are considered correct. We say a family of SDPs,{
SDP (p)

}
p∈D , solves the problem via the dual if there is an ε ≥ 0 and a function g such

that for every p ∈D and every ε-optimal dual-feasible vector y (p) to SDP (p):

g
(
y (p)) ∈ f (p).

In other words, an ε-optimal dual solution can be converted into a correct solution of the
original problem without more knowledge of p.

For these kinds of SDP families we will prove a lower bound on the sparsity of the
dual solutions. The idea for this bound is as follows. If you have a lot of different in-
stances that require different solutions, but the SDPs are equivalent up to permuting
the constraints and applying basis transformations on Rn , then a dual solution y should
have a lot of unique permutations (i.e.,

{
π(y) : π ∈ Sm

}
should be large) and hence can-

not be too sparse.

Theorem 9.4 Consider a problem defined by f : D →P (S ), and a family of SDPs as in
Definition 9.3. Let T ⊆D be such that for all p, q ∈T :

• f (p)∩ f (q) =;. That is, a solution to p is not a solution to q and vice versa.

• The number of constraints m, and the primal variable size n, are the same for
SDP (p) and SDP (q).

• Let
{

A(p)
j

}
be the constraints of SDP (p) and

{
A(q)

j

}
those from SDP (q) (and define

C (p), C (q), b(p)
j , and b(q)

j in the same manner). There exist a unitary U ∈Cn×n and

a π ∈ Sm s.t. U † A(p)
π( j )U = A(q)

j (and U †C (p)U =C (q), b(p)
π( j ) = b(q)

j ). That is, the SDPs
are the same up to permutations of the labels of the constraints, and up to basis
transformations.

If y (p) is an ε-optimal dual-feasible vector to SDP (p) for some p ∈T , then y (p) is at least
log(|T |)
log(m)

-dense (i.e., has at least that many non-zero entries).

Proof. Let SDP (p) and SDP (q) be as in the lemma. We claim that, up to the permutation
of the coordinates of Rm , the feasible regions of the dual problems of the two SDPs are
the same. In particular, let y (p) be feasible for the dual of SDP (p) and define

y (q)
j := y (p)

π( j ),

then

0 ¹
m∑

j=1
A(p)
π( j ) y (p)

π( j ) −C (p) =
m∑

j=1
U A(q)

j U † y (q)
j −UC (q)U † =U

(
m∑

j=1
A(q)

j y (q)
j −C (q)

)
U †,
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which implies

0 ¹
m∑

j=1
A(q)

j y (q)
j −C (q).

It follows that y (q)
j is feasible for the dual of SDP (q). With a similar argument the other

direction follows as well. If y (p) is an ε-optimal dual-feasible vector of SDP (p), then y (q)

is an ε-optimal dual vector for SDP (q), since
〈

y (q),b(q)
〉= 〈

y (p),b(p)
〉

.
Since f (p)∩ f (q) = ; we know that g

(
y (p)

) 6= g
(
y (q)

)
and so y (p) 6= y (q). Since this

is true for every q in T , there should be at least |T | different vectors y (q) that are
permutations of y (p). A k-sparse vector can have k different non-zero entries and hence
the number of possible unique permutations of that vector is at most(

m

k

)
k ! = m!

(m −k)!
=

m∏
t=m−k+1

t ≤ mk

so
log(|T |)
log(m)

≤ k.

For many applications U will simply be a permutation matrix. The requirements
of Theorem 9.4 might seem restrictive at first sight, but for many problems it is natural
to assume such a symmetry in the SDP formulation. For example, for graph problems
it is often the case that the numbering of the vertices is arbitrary, and that a different
labeling should result in a permutation of the SDP and the dual solution.

Example: (s, t )-mincut Consider the (s, t )-mincut problem, i.e., the dual of the (s, t )-
maxflow. Specifically, consider a simple set of instance of this problem: all the inputs
that are the union of two complete graphs of size z+1, where s is in one subgraph, t is in
the other, and the other vertices are named {1,2, . . . ,2z}. Every assignment of the names
over the two halves gives a different instance with a unique mincut (in terms of which
names fall on which side of the cut). There is exactly one partition of the vertices in two
sets that cuts no edges (namely the partition consists of the two complete graphs), and
every other partition cuts at least z edges. Hence a z/2-approximate cut is a mincut.
This means that there are

(2z
z

)
instances that require a different output. So for every

family of LPs (or SDPs) that is symmetric under permutation of the vertices and for
which a z/2-approximate dual solution gives an (s, t )-mincut, the sparsity of a z/2-
approximate dual solution is at least1

log
((2z

z

))
log(m)

≥ z

log(m)
,

where we used that
(2z

z

)≥ 22z

2
p

z
.

Let us now quickly discuss what this implies for our SDP-solvers.

1Here m is the number of constraints, not the number of edges in the graph.
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Lemma 9.5 If, for some specific SDP of the form (2.4), every ε-optimal dual-feasible vec-
tor has at least ` non-zero entries, then our upper bound on SDP-solving in the quantum
operator input model (with parameter α) from Theorem 4.34 is at least

Ω̃
((p

n`+p
m

)
α`2

)
.

Proof. The vector ȳ returned by Meta-Algorithm 4.1 is the average of T vectors y (t ) that
are all 3-sparse, plus one extra 1-sparse term of ε

R e1, and hence `≤ 3T +1. This implies
that γ =Ω

(p
`/ln(n)

)
by combining the above with T = O

(
γ2 ln(n)

)
. The lower bound

from the lemma follows.

This lemma shows that our SDP-solvers can only give an o(n +m) upper bound
when approximate dual solutions can be 4

p
n +m-sparse. As a final note we mention

that our LP-solvers give sparse primal and dual solutions. Therefore, a similar argument
as above applies with ` equal to the minimal sparsity of both the primal and dual
solutions.

9.2 | Lower bounds on the quantum query complexity
The previous section discussed the limitations of specific LP and SDP-solving methods,
in this section we will prove general quantum query lower bounds that apply to all
methods. The lower bounds will all address different settings and input models. Many
of the lower bounds for SDP-solving will follow from a lower bound on LP-solving. It
is important to note that the dense input model for LPs corresponds with the sparse
matrix input model for SDPs. We prove:

• A lower bound of Ω
(p

n +p
m

)
quantum queries for LP-solving in the dense input

model for LPs with a constant γ parameter. This lower bound shows that the
n and m-dependence of our LP-solver and SDP-solvers is optimal. This lower
bound was first shown by Brandão and Svore [BS17].

• A lower bound of Ω
(p

ns
)

quantum queries in the sparse matrix input model for
SDPs, where s is the maximum row and column sparsity as in Chapter 4, with
m = 1 and a constant γ parameter. This lower bound shows that a dependence
on s is necessary.

• A lower bound of Ω(nm) quantum queries for LP-solving in the dense input
model when n =Θ(m) with a γ parameter that is Θ

(
n4

)
. This shows that a poly-

nomial dependence on γ is necessary to obtain an o(nm) dependence on m and
n.

• A lower bound of Ω(n) quantum queries for obtaining a solution to a non-
negative LP up to a constant multiplicative error (here n =Θ(m)). This matches
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the classical upper bound for the parameters of the specific problem we con-
sider, and hence shows that there is no general speedup in terms of n and m for
non-negative LP solving.

• A lower bound of Ω
((p

m +p
n

)
τ
ε

)
queries in the Hamiltonian input model with

parameter τ (see Section 4.5.1). This implies an Ω̃
((p

m +p
n

)
α
ε

)
lower bound in

the operator input model, and allows us to conclude that our dependence on α is
optimal.

• A lower bound of Ω̃
(p

m B
ε

)
queries in the quantum state input model (see Sec-

tion 4.5.1). This matches our B-dependence, and the m and n-dependence
of [AG19a].

9.2.1 | Dependence on the size in the sparse matrix input model
The first lower bound on quantum SDP-solving was given by Brandão and Svore [BS17].
They showed via a reduction from a search problem that there exists an LP with γ=O (1)
that requires Ω

(p
n +p

m
)

quantum queries to solve, which implies a lower bound on
SDP-solving.

Theorem 9.6 : [BS17] Let n,m ≥ 1. There exists an LP (and hence an SDP) with dimen-
sion n and with m constraints (and with R = 1 and r = 1), such that approximating OPT
up to additive error 1/3 (with bounded error probability) requiresΩ

(p
n +p

m
)

quantum
queries in the dense input model for LPs (and hence in the sparse matrix input model for
SDPs).

Proof. Let k = max{n,m}. Let v ∈ {0,1}k be an instance of a search problem that asks us
to determine whether |v | = 0 or |v | = 1. As discussed in Chapter 6, solving this search

problem requires Ω
(p

k
)

quantum queries to the input string.

If m ≤ n then we construct an LP as follows: let c = v , and only include the con-
straint

∑n
i=1 xi ≤ 1. Clearly R = 1 for this LP. Furthermore, the dual only has one variable,

y1, which in the optimum will be equal to the optimal value, so r = OPT. The optimal
value is 0 if |v | = 0 and 1 if |v | ≥ 1, and hence solving this LP with additive error 1/3
solves the search problem.

If n ≤ m then we simply use the dual of this LP. Finally we note that in both cases
the LP can be padded with zeros in order to make the dimensions match the parameters
from the lemma.

Note that this also proves an Ω
(p

s
)

quantum query lower bound on LP-solving
using the sparse input model for LPs, since we can embed an (s × s)-sized dense LP
in a larger (m ×n)-sized s-sparse LP.
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9.2.2 | Dependence on the sparsity of an SDP
In the previous section we obtained a lower bound on SDP-solving via a lower bound
on LP-solving. In this section we give a lower bound specifically on SDP-solving by con-
sidering non-diagonal constraint matrices. We will show an Ω

(p
ns

)
quantum query

lower bound in the sparse matrix input model for SDPs with a constant γ parameter.
As mentioned in footnote 13 on page 86, our upper bound can be improved to match
the

p
s-dependence of this lower bound [AG19c]. This does leave the open question

whether an Ω
(p

ms
)

lower bound can be proven as well. The work in this section is not
yet published.

Lemma9.7 Let n ≥ 1, and let s ∈ [n] be odd. Approximating the largest eigenvalue (up to
additive error 1/3 and with bounded error probability) of an s-sparse symmetric matrix
C ∈Rn×n with ‖C‖ ≤ 1, requires Ω

(p
ns

)
quantum queries to a sparse matrix input oracle

for C in the worst case.

Proof. Let k = s+1
2 . Let v ∈ {0,1}(n−k)×k be an instance of a search problem that asks us

to determine whether |v | = 0 or |v | = 1 using queries to the entries of v . Solving this

search problem requires Ω
(p

nk
)
=Ω

(p
ns

)
quantum queries to v .

Now we let C ∈Rn×n be defined by (where we index starting from 0)

Ci j =


vi , j−i if i ≤ j < i +k < n

v j ,i− j if i −k < j < i < n −k

0 else.

The first clause says that a row of v is placed in each row of C (except in the last k rows),
starting from the diagonal and going to the right (i.e. Ci ,i = vi ,0,Ci ,i+1 = vi ,1, and so on).
The second clause ensures that C is symmetric.

If v = 0 then all the entries in C are zero and hence λmax(C ) = 0 and ‖C‖ = 0. If
|v | = 1, then there is an entry in C that is 1, and hence λmax(C ) ≥ 1. In fact, if |v | = 1,
then ‖C‖ = 1. We conclude that finding the largest eigenvalue of C up to a 1/3 error
solves the search problem.

From the definition of C it should be clear that there are at most 2k −1 = s entries
in each row and column of C that could be non-zero. We can give an s-sparse oracle
for C by simply returning the locations the possible non-zero entries, i.e., the locations
where we have placed the bits of v . A value query for C can clearly be implemented
using O (1) queries to an oracle for v .

Note that our C is not actually s-sparse, it is in fact 1-sparse. If we want that all
the values of positions that our sparse oracle returns are indeed non-zero, then we can
simply change the zero-valued entries that are returned to 1

8n , since this changes the
eigenvalues by at most 1

8 .2

2We would need to scale C slightly to ensure ‖C‖ ≤ 1, and we would require a slightly more precise
solution.
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Theorem 9.8 Let n ≥ 1 and s ∈ [n] odd. There exists an SDP with dimension n and
sparsity s (and with m = 1, R = 1 and r = 1), such that approximating OPT up to addi-
tive error 1/3 (with bounded error probability) requires Ω

(p
ns

)
quantum queries in the

sparse matrix input model.

Proof. Let C be an instance from Lemma 9.7. Consider the following SDP

max
X∈Rn×n

Tr(C X )

s.t. Tr(X ) ≤ 1

X º 0.

Clearly R = 1 for this SDP, and r = OPT since b1 = 1. It is well known that this SDP
approximates the largest eigenvalue of C . To see that this is indeed true, let x be an
eigenvector of C corresponding to the largest eigenvalue. Now let X := xxT , then X
is feasible, and X is also optimal since Tr

(
C xxT

) = xT C x = λmax(C ). It follows that
solving the SDP with ε = 1/3 approximates the largest eigenvalue of C up to error 1/3,
and hence that this SDP requires Ω

(p
ns

)
quantum queries to solve in the sparse matrix

input model.

9.2.3 | Dependence on γ in the sparse matrix input model
In this section we will show that every LP-solver in the dense input model (and hence
every SDP-solver in the sparse input model) that can distinguish two integer optimal
values with bounded error probability requires Ω

(p
max{n,m}(min{n,m})3/2

)
quantum

queries in the worst case. At first sight this might seem to conflict with our upper
bounds from Chapter 4. However, the LP that we construct here will have a γ parameter
that is polynomial in n and m. In fact, our lower bound shows that if m = Θ(n), then
a polynomial dependence on γ is required in order to get an algorithm with an o(nm)
dependence on n and m. We will give a reduction from a composition of Majority and
OR functions.

Definition 9.9 : Promise Majority-OR-Majority problem Let MAJk be the Majority
function on k bits and let ORk be the OR function on k bits. Given input bits Zi j` ∈
{0,1}a×b×c the problem of computing

M AJa(

ORb(M AJc (Z111, . . . , Z11c ), . . . , M AJc (Z1b1, . . . , Z1bc )),

. . . ,

ORb(M AJc (Za11, . . . , Za1c ), . . . , M AJc (Zab1, . . . , Zabc ))

)

with the promise that
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• Each inner MAJc is a boundary case, in other words
∑c

`=1 Zi j` ∈ {c/2,c/2+1} for
all i , j .

• The outer MAJa is a boundary case, in other words, if Z̃ ∈ {0,1}a is the bitstring that
results from all the OR functions, then |Z̃ | ∈ {a/2, a/2+1}.

is called the promise MAJa-ORb-MAJc problem.

Lemma 9.10 It takes at least Ω
(
a
p

b c
)

quantum queries to the input to solve the

promise MAJa-ORb-MAJc problem with bounded error probability.

Proof. The promise version of MAJk is known to require Ω(k) quantum queries. Like-
wise, it is known that the ORk function requires Ω(

p
k) queries. Furthermore, the ad-

versary bound tells us that query complexity is multiplicative under composition of
functions; Kimmel [Kim13, Lem. A.3 (Lem. 6 on arXiv)] showed that this even holds for
promise functions.

Lemma 9.11 Determining the value

a∑
i=1

max
j∈[b]

c∑
`=1

Zi j`

for a Z from the promise MAJa-ORb-MAJc problem up to additive error ε = 1/3, solves
the promise MAJa-ORb-MAJc problem.

Proof. Notice that due to the first promise,
∑c

`=1 Zi j` ∈ {c/2,c/2+1} for all i ∈ [a] and
j ∈ [b]. This implies that

• If the i th OR is 0, then all of its inner MAJ functions evaluate to 0 and hence

max
j∈[b]

c∑
`=1

Zi j` =
c

2
.

• If the i th OR is 1, then at least one of its inner MAJ functions evaluates to 1 and
hence

max
j∈[b]

c∑
`=1

Zi j` =
c

2
+1.

Now, if we denote the string of outcomes of the OR functions by Z̃ ∈ {0,1}a , then

a∑
i=1

max
j∈[b]

c∑
`=1

Zi j` = a
c

2
+ ∣∣Z̃

∣∣.
Hence determining the left-hand side will determine

∣∣Z̃
∣∣; this Hamming weight is either

a
2 if the full function evaluates to 0, or a

2 +1 if it evaluates to 1.
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Lemma 9.12 For an input Z ∈ {0,1}a×b×c there is an LP with m = c +a and n = c +ab
for which the optimal value is

a∑
i=1

max
j∈[b]

c∑
`=1

Zi j`.

Furthermore, a query in the dense input model for this LP can be implemented with 1
query to Z .

Proof. Let Z (i ) be the matrix one gets by fixing the first index of Z and putting the
entries in a c ×b matrix, so Z (i )

` j = Zi j`. We define the following LP:

OPT = max
c∑

k=1
wk

s.t.


I −Z (1) · · · −Z (a)

0 1T

...
. . .

0 1T




w
v (1)

...
v (a)

≤


0
1
...
1


v (1), . . . , v (a) ∈Rb

≥0, w ∈Rc
≥0.

Notice that every Z (i ) is of size c ×b, so that indeed m = c +a and n = c +ab.
For every i ∈ [a] there is a constraint that says

b∑
j=1

v (i )
j ≤ 1.

The constraints involving w say that for every k ∈ [c]

wk ≤
a∑

i=1

b∑
j=1

v (i )
j Z (i )

k j =
a∑

i=1
(Z (i )v (i ))k ,

where (Z (i )v (i ))k is the kth entry of the matrix-vector product Z (i )v (i ). Clearly, for an
optimal solution these constraints will be satisfied with equality, since in the objective
function wk has a positive weight, and each w j is only part of a single constraint. Sum-
ming over k on both sides, we get the equality

OPT =
c∑

k=1
wk

=
c∑

k=1

a∑
i=1

(Z (i )v (i ))k

=
a∑

i=1

c∑
k=1

(Z (i )v (i ))k

=
a∑

i=1

∥∥∥Z (i )v (i )
∥∥∥

1
,
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so in the optimum
∥∥Z (i )v (i )

∥∥
1 will be maximized. Note that we can use the `1-norm as

a shorthand for the sum over vector elements since all elements of Z (i )v (i ) are positive.
In particular, the value of

∥∥Z (i )v (i )
∥∥

1 is given by

max
∥∥∥Z (i )v (i )

∥∥∥
1

s.t.
∥∥∥v (i )

∥∥∥
1
≤ 1

v (i ) ≥ 0.

Now ‖Z (i )v (i )‖1 will be maximized by putting all weight in v (i ) on the index that corre-
sponds to the column of Z (i ) that has the highest Hamming weight. In particular, in the
optimum ‖Z (i )v (i )‖1 = max j∈[b]

∑c
`=1 Z (i )

` j . Putting everything together gives:

OPT =
a∑

i=1

∥∥∥Z (i )v (i )
∥∥∥

1
=

a∑
i=1

max
j∈[b]

c∑
`=1

Z (i )
` j =

a∑
i=1

max
j∈[b]

c∑
`=1

Zi j`.

Theorem 9.13 Let n,m ≥ 3. There exists an LP (and hence an SDP) with dimension n
and with m constraints (and with R,r = O

(
min{n,m}2

)
), such that approximating OPT

up to additive error 1/3 (with bounded error probability) requires

Ω
(√

max{n,m}(min{n,m})3/2
)

quantum queries in the dense input model for LPs (and hence in the sparse matrix input
model for SDPs with s = 1).

Proof. We start with the case where m ≤ n. We first assume that there exist a ≥ 1 and
k ≥ 2 such that m = 2a and n = ka. Let c = a = m/2 and b = 2k = n−c

a = 2n
m −1, so that

n = c+ab and m = c+a. By Lemma 9.12 there exists an LP with n = c+ab and m = c+a
that computes

a∑
i=1

max
j∈[b]

c∑
`=1

Zi j`

for an input Z to the promise MAJa-ORb-MAJc problem. By Lemma 9.11, computing
this value will solve the promise MAJa-ORb-MAJc problem. By Lemma 9.10 the promise
MAJa-ORb-MAJc problem takes Ω(a

p
b c) quantum queries in the worst case. This im-

plies a lower bound of

Ω

(
m2

√
n

m

)
=Ω(m3/2pn)

quantum queries on solving these LPs.
For the upper bound on R note that for an optimal point ‖w‖1 = OPT and∑a

i=1

∥∥v (i )
∥∥

1 = a. Hence

R = OPT+a ≤ ac

2
+ a

2
+1+a =O (ac) =O

(
m2).
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For the upper bound on r we consider the dual of the LP:

OPT = min
a∑

i=1
yi

s.t.


I 0 · · · 0

−Z (1) 1
...

. . .
−Z (a) 1



φ

y1
...

ya

≥


1
0
...
0


φ ∈Rc

≥0, y ∈Ra
≥0.

Clearly all entries of φ are going to be as small as possible for an optimal point, so φ= 1
and

∥∥φ∥∥
1 = c. It is easy to see that for an optimal point

∥∥y
∥∥

1 = OPT, so

r = OPT+ c ≤ ac

2
+ a

2
+1+ c =O (ac) =O

(
m2).

Now, if m is odd, then we let a = m−1
2 and add a dummy constraint to the LP. If n

is not a multiple of a then we let b = ⌊n
a

⌋
and add n − c − ab dummy variables to the

LP. Since n ≥ m = 2a we find that b ≥ 1. Finally, the case where n ≤ m follows from
duality.

It is important to note that the parameters R and r are not constant for the LP
from Theorem 9.13, and hence this lower bound does not contradict the scaling withp

m +p
n of the complexity of our LP-solver (see Theorem 5.13). The lower bound

implies that any algorithm with an o(mn) dependence on n and m has to depend at
least polynomially on γ= Rr /ε. For example, the lower bound shows that an algorithm
with a

p
m +p

n dependence has to have an γκ factor in its complexity with κ≥ 3/8. It
remains an open question whether a tighter lower bound on the error dependence can
be proven.3

9.2.4 | Non-negative LP-solvers
A non-negative LP (NNLP) is an LP of the form

max
x∈Rn

n∑
i=1

xi

s.t. Ax ≤ 1

x ≥ 0.

3For LP-solvers with a
p

m +p
n dependence on n and m a slightly better lower bound of κ≥ 1/2 fol-

lows from Theorem 9.15. However, in other settings Theorem 9.15 will not always give a lower bound
on κ. For example, Theorem 9.15 will not give any such lower bound for LP-solvers with a

p
nm-

dependence.
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where A ∈ Rm×n
≥0 is entrywise non-negative. Many of the algorithms for this type of LP

assume access to A in the form of a single list of indices that includes the indices of all
non-zero entries. The notation nnz(A) is used to denote the length of this list. We call
this input model the entrywise input model. An important result about NNLPs by Luby
and Nisan [LN93] is that there exists a classical algorithm that approximates OPT up to

multiplicative error δ in Õnm

(
nnz(A)

δ4

)
steps. The main point here is the lack of a depen-

dence on R and r . Their results have later been improved in many different settings,

including by Koufogiannakis and Young [KY14] to Õnm

(
n+m
δ2 +nnz(A)

)
for sequential

algorithms (there are also many results in parallel or distributed settings).
In this section we give a family of NNLPs with n =Θ(m) =Θ(nnz(A)), for which Ω(n)

quantum queries to a dense input oracle for A, or to an entrywise input oracle for A, are
needed in order find a primal solution that has objective value at least (1−δ)OPT. The
work in this section is not yet published.

Lemma 9.14 There exists a constant ε0 such that for all ε ∈ (0,ε0) the following holds:
given an oracle for a string z ∈ {0,1}n with |z| ∉ {0,n}, finding a string z̃ (with probability
at least 5/6) such that |z − z̃| ≤ εn, requires Ω(n) quantum queries to the entries of z in
the worst case.

Proof. Assume A is a quantum algorithm that uses T quantum queries to z and with
probability at least 5/6 finds a z̃ such that |z − z̃| ≤ εn. We will construct a bounded-
error quantum algorithm that recovers z fully. It is known that such an algorithm re-
quires at least n/2−2 queries to the input, since it allows us to compute the parity of
z [BBCMW01].4

Boyer et al. [BBHT98] showed that Grover’s algorithm can be used to find one out of
t solutions in a search space of size n using an expected number of O

(p
n/t

)
quantum

queries, even if we do not know t . Let c be the constant hidden in the big-O notation,
so c

p
n/t quantum queries suffice in expectation. Then, to find all t solutions

c
t−1∑
i=0

√
n

t − i
= c

t∑
i=1

√
n

i
≤ c

∫ t

0

√
n

x
d x = 2c

p
nt

quantum queries suffice in expectation, since we can exclude already-found solutions
from subsequent searches.

Now to reconstruct z fully. We first apply A (using T queries) to find a z̃ such that
|z − z̃| ≤ εn with probability at least 5/6. Let x = z ⊕ z̃ be the string of differences,
so |x| ≤ εn. Clearly we can make queries to x given access to quantum queries to z.
We can now use at most 2c

p
n ·εn = 2c

p
εn quantum queries in expectation to find

all differences between z and z̃, and hence reconstruct z. We can modify the search
algorithm to stop after 12c

p
εn queries, so by Markov’s inequality it finds a correct z

with probability at least 5/6.

4Note that we do not get an n/2 lower bound since we excluded the all-ones and all-zeros strings.
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Now, with probability at least (5/6)2 ≥ 2/3, we can learn z using T +12c
p
εn queries.

Since at least n/2−2 queries are required to learn z, it follows that

T ≥
(

1

2
−12c

p
ε

)
n −2.

So by letting ε0 < 1
576c2 we get the stated lower bound.

Theorem 9.15 Let ε0 be the constant from Lemma 9.14. Let n ≥ 4/ε0, and let 0 < δ <
ε0/10. There exists a non-negative LP with dimension n, with m = n+1 constraints, and
with at most 2n fixed positions in the constraint matrix that might be non-zero, such
that approximating OPT up to multiplicative error δ (with bounded error probability)
requires Ω(n) quantum queries in the dense input model for LPs, as well as in the entry-
wise input model for LPs.

Proof. Let ε = 2
n + 5δ < ε0. Let z ∈ {0,1}n be an input from Lemma 9.14 for this ε, so

|z| ∉ {0,n}. Consider the following non-negative LP:

max
n∑

i=1
xi

s.t. 〈z, x〉 ≤ 1

xi ≤ 1 for all i ∈ [n]

x ≥ 0.

It is easy to see that a dense input oracle for this LP can easily be implemented using a
single query to an oracle for z. Furthermore, the number of positions in the constraint
matrix that can be non-zero is 2n, and these positions can easily be listed. Let x∗ be
an optimal solution. Clearly x∗

i = 1 for all i where zi = 0. Furthermore,
∑

i :zi=1 xi ≤ 1.
Hence OPT = |z̄|+1, where z̄ is the entrywise negation of z.

Now let x̃ be a feasible point with optimal value at least (1−δ) ·OPT. Then

n∑
i=1

x̃i ≥ (1−δ)OPT = (1−δ)(|z̄|+1).

Since x̃ is feasible we know that ∑
i :zi=1

x̃i ≤ 1,

hence there are at most two indices i such that zi = 1 and x̃i ≥ 1/2. It also follows that∑
i :zi=0

x̃i ≥ (1−δ)(|z̄|+1)−1 ≥ (1−2δ)|z̄|.

Hence, for at least (1− 5δ)|z̄| of the i where zi = 0 we have x̃i > 1/2, and for at most
5δ|z̄| ≤ 5δn of these i we have x̃i ≤ 1/2. Let z̃ be the string we get by rounding the
entries of x̃ to {0,1} and then flipping all the bits. Then

|z − z̃| ≤ 2+5δn = εn.
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We conclude that, due to Lemma 9.14, at least Ω(n) quantum queries in the dense
input model are needed to solve the non-negative linear program. Similarly Ω(n) quan-
tum queries in the entrywise input model with parameter nnz(A) = 2n are needed.

Due to duality we know that the same lower bound holds for finding a dual solution.
As mentioned at the beginning of this section, some classical algorithms already run in

time Õ
(

n+m
ε2 +nnz(A)

)
, which is O

(
n
ε2

)
for the parameters of the LP from Theorem 9.15.

This shows that, apart from a possible improvement in the error dependence, there is
no unconditional quantum speed-up possible for non-negative linear programming.

One area in which a quantum speedup is still possible would be approximating
only the optimal value, without also giving an optimizing point. For such an algo-
rithm the LP above would not give an Ω(n) lower bound, since approximating the
Hamming weight of a string up to a multiplicative error δ can be done using O

(p
n/δ

)
queries [BHT98]. Another approach for finding a quantum speed-up could be to look
for an algorithm that is fast when m ¿ n (or the other way around), for example, an
algorithm with a

p
nm complexity. Finally, a quantum algorithm might get a better

bound for dense matrices, by improving (or removing) the dependence on nnz(A).

9.2.5 | The Hamiltonian & quantum operator input models
We now modify the lower bound from Theorem 9.6 to prove a lower bound in the Hamil-
tonian input model. This lower bound will also imply a lower bound in the quantum
operator model.

Lemma 9.16 Let τ ≥ 1 and δ ∈ (0,1]. Let x ∈ {0,1}n such that |x| = 0 or |x| = 1. Given
access to an oracle acting as

Ox |i 〉 = e
i
(

1
2τ+

δxi
τ

)
|i 〉,

determining (with probability 2/3) which of the cases for x holds requires at least
Ω

(p
n τ

δ

)
queries to Ox .

Proof. This follows from the Phase Adversary Method (Lemma 6.4) with a similar argu-
ment to the example in Section 6.4.2.

We now reprove Theorem 9.6 for the Hamiltonian input model. Remember that
in this model (with parameter τ) we access A j via a unitary e iA j /t j with t j ≤ τ (see
Section 4.5.1 for details).

Theorem 9.17 Let n,m ≥ 1, τ≥ 1 and ε ∈ (0,1/3]. There exists an SDP with dimension n
and with m constraints (and with R,r = O (1)), such that approximating OPT up to
additive error ε (with probability at least 5/6) requires Ω

((p
n +p

m
)
τ
ε

)
queries in the

Hamiltonian input model with parameter τ.



Limitations of quantum LP and SDP-solvers 181

Proof. Let k = max{n,m}. Let v ∈ {0,1}k be an instance of the problem in Lemma 9.16,
with δ= 3ε.

If m ≤ n then we define an SDP as follows: let C = I /2+diag(δv), and only include
the constraint Tr(X ) ≤ 1. We let the parameters of the Hamiltonian input model be
t0 = t1 = τ. As in Theorem 9.6 we have R,r = O (1). A query in the Hamiltonian input
model for this SDP can be implemented using a single phase query to the oracle from
Lemma 9.16. Finally we note that OPT = 1/2 if |v | = 0, and that OPT = 1/2+δ if |v | = 1.
Hence, approximating OPT with error ε solves the search problem from Lemma 9.16,
and therefore requires Ω

(p
n τ

ε

)
queries.

If n ≤ m then consider the dual of this SDP. Since the input matrices are diagonal,
this dual can again be written as a primal problem by negating both sides of each
constraint. The dual has a single variable and the queries to the Hamiltonian input
model for this SDP will again be implementable with a single query to the oracle from
Lemma 9.16.

Finally we note that we can add dummy constraints or variables in order to make
the dimensions of the problem match n and m.

Using Lemma 4.25 we get the following result in the quantum operator input model.

Corollary 9.18 Let n,m ≥ 1, α≥ 4
π and ε ∈ (0,1/3]. There exists an LP (and hence SDP)

with dimension n and with m constraints (and with R,r =O (1)), such that approximat-
ing OPT up to additive error ε (with probability 5/6) requires Ω̃

((p
n +p

m
)
α
ε

)
queries in

the quantum operator input model with parameter α.

Proof. Let A be a T -query algorithm that approximates OPT up to additive error ε in
the operator input model with probability 5/6. Consider an input from Theorem 9.17
for τ ≥ 2. If Lemma 4.25 would work without error then we could implement a query
to the operator input model for this SDP using O (1) queries to the Hamiltonian input
model for this SDP. It would follow that T =Ω

((p
n +p

m
)
α
ε

)
.

However, Lemma 4.25 does introduce error. Let U be the unitary corresponding to
A when we apply the algorithm with perfect queries in the operator input model. Let
Ũ be the unitary corresponding to A if we use Lemma 4.25 to approximate the queries,
with the error set to µ. Then ∥∥U −Ũ

∥∥≤ T ·µ,

so if we pick µ=O
( 1

T

)
then A finds a solution with probability at least 2/3. One query in

the operator model can then be implemented using ÕT (1) queries in the Hamiltonian
input model. It follows that T = Ω̃

((p
n +p

m
)
α
ε

)
.

9.2.6 | The quantum state input model
We finish this section with a lower bound for the quantum state input model. Remem-
ber that in this model (with parameter B) we access A j via a unitary that prepares pu-
rification of subnormalized states ρ+

j and ρ−
j , such that a given linear combination of
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ρ+
j , ρ−

j , and I is equal to A. Recall that B is an upper bound on the sum of the coef-

ficients of ρ+
j and ρ−

j in this linear combination (see Section 4.5.1 for details). In this

model we will not be able to prove an Ω
(p

n
)

lower bound due to the upper bounds
of [BKLLSW19] and [AG19a].

Lemma 9.19 Let ξ ∈ (0,1/3]. Assume we are given an SDP in the quantum operator
input model with parameter α ≥ 2. Using Õ nα

ξ
(1) queries to the oracle for the quantum

operator input model, an oracle for the quantum state input model can be implemented
encoding matrices Ã j that are ξ-close in trace distance to the original A j matrices. This
new oracle for the quantum state model has a B parameter equal to 128nα.

Proof. We consider a single A j , and for ease of notation we omit the subscript. The
proof will draw heavily on the ideas developed for Gibbs-sampling in Lemma 4.15. Let
the spectral decomposition of A be

A =
n∑

i=1
λi

∣∣ψi
〉〈
ψi

∣∣.
By assumption we have an (α, a,0)-block-encoding U of A for some number of qubits a.

Using Lemma 2.11 we can implement a
(
1,O (a), ξ

128nα

)
-block-encoding of√

I + A
8α

4

with Õ nα
ξ

(1) applications of U using the polynomial Q from Lemma 4.17. Applying this

block-encoding to the first half of a maximally entangled state results in a state that is
ξ

128nα-close in `2-norm to

1p
n

n∑
i=1

√
1+ λi

8α

4

∣∣ψi
〉∣∣ψ̄i

〉∣∣0〉+|⊥〉,

where |⊥〉 has no overlap with the all-zero state in the last register.
Would we trace out the second register, and project on the part of the state with a 0

in the last register, then we would get a subnormalized state that is ξ
128nα-close in trace

norm to
1

16n

(
I + A

8α

)
.

Now, by letting µI = − 1
16n and µ+ = 128nα we have implemented a query in the quan-

tum state input model with B = 128nα for an Ã that is ξ-close to A in trace norm.

Corollary 9.20 Let ε ∈ (0,1/6], m ≥ 2, and B ≥ 256. Then there is an LP (and hence an
SDP) dimension n = 2 and with m constraints (and with R,r = O (1)) for which finding
an ε-approximation of the optimal value (with probability 11/12) requires Ω̃

(p
m B

ε

)
queries in the quantum state model with parameter B.

Proof. This follows from the reduction above with a similar argument as in the proof of
Corollary 9.18.
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9.3 | Discussion and future work
The results from Section 9.2 show that our SDP-solving algorithms from Chapter 4 and
our LP-solving algorithms from Chapter 5 are optimal, apart from a possible improve-
ment in the γ-dependence. Furthermore, Theorem 9.13 shows that a polynomial de-
pendence on γ is required in order to get an o(nm) upper bound in terms of n and m.
Considering that the results from Section 9.1 show that a large γ parameter is natural
for many problems, the only way we see that further research into these types of LP and
SDP-solvers could yield useful results, is to improve the γ-dependence drastically. For
our type of solvers this would require an improvement in the iteration count and in the
γ-dependence of each iteration.

However, little work has yet been done on quantum LP and SDP-solvers with a
polylogarithmic error dependence. Classically, cutting plane methods have given very
strong theoretical results, and interior point methods are widely used in practice. It
would be an interesting direction for future work to consider if these methods can be
sped up using quantum algorithms.
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Abstract

Every day we need to make many decisions: what we should have for dinner, what to
vote for, or whether to kiss that special person for the first time. There are also many
decisions that need to be made at a larger scale, for example, groups, governments, and
corporations have to make decisions in order to use their resources wisely. Every de-
cision asks us to consider many possibilities and to try to get the optimal outcome (or
more often than not, to simply avoid disaster). Making these decisions is further com-
plicated by the constraints that are put on us. Even though people have become quite
good at making decisions, the increasing complexity of the world around us means that
“going with our guts” is often an ill-advised optimization strategy.

The field of mathematics allows us to formulate an abstract version of some of the
more complex problems we encounter, and allows us to quantify what the objectives
and constraints are. For some problems mathematics even gives us a simple closed-
form solution, e.g. many of us have learned in school how find the extreme points on
a parabola. However, for many problems there is no such simple closed-form solution,
the best we can do is to use a method, or algorithm, to construct a solution. This puts
us in the realm of computer science.

Computer science considers how to solve problems systematically, and more im-
portantly how many steps the decision-making process has to take. Most optimiza-
tion problems can be solved by simply listing all possible combinations of decisions
and then searching for the best option, but as the number of decisions increases, so
does the number of combinations. In fact, for many situations the number of possi-
ble combinations increases exponentially, making the process of writing down all the
options impractical. Instead we often look for a smarter, more efficient algorithm, one
that scales better with the problem size.

It is not always easy (or even possible) to find an efficient algorithm. Consider the
problem of finding the lowest place in the Swiss Alps. We may walk down into what
seems the deepest valley, only to learn later that a farmer three valleys over has dug a
really deep well. One of the problems in such a scenario is that we may find a local
minimum, but due to a lack of structure in the problem we have no clear way of finding
a global minimum. Some problems do have more structure, an important class of these
is the class of convex optimization problems. Convex optimization problems have the
useful property that local minima are also global minima. For our example about the
Alps this means that, as long as we keep going down, we will always reach the lowest
point. However, as anyone who ever went snowboarding can tell you, how you go down
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matters a lot for how fast you will get there.
Apart from considering the structure of the problem we are trying to solve we should

also consider what steps we can take to solve it. We may want to use pen and paper, use
our laptop, or use a supercomputer, all of which function differently. However, these
methods are not inherently different, with enough time we could perform the same
computation as a supercomputer with nothing more than a pen and a piece of paper.
Although this would be significantly slower, the scaling with the problem size would
stay the same since the basic steps we can use are the same, only slower. What basic
steps we may perform is ultimately dictated by the laws of physics: we can only change
the state of our piece of paper, or our computer, in ways that are allowed by physics.
Specifically, our piece of paper and our computers both follow the laws of classical
physics, the physics that we see around us every day.

During the 20th century our understanding of physics has changed and we now
know that classical physics does not give a full description of the natural world. One of
the places where classical physics breaks down is at the scale of atoms and elementary
particles, at this small scale the universe is governed by the laws of quantum physics.
Quantum physics predicts behavior that is not possible in classical physics. Particles
might be in a superposition of many different classical states, only becoming a specific
one of those states at random when interacting with our classical world via a measure-
ment. Miraculously, and contrary to classical randomness, this quantum randomness
does not stem from our inherent lack of knowledge about the particle, the different
parts of the superposition are all present until we measure and can interfere with each
other. A natural question to ask is whether these phenomena can be used to our ben-
efit when performing computations. A computer that works according to the rules of
quantum physics is called a Quantum computer, such devices have a wider range of
basic operations that they can perform than classical computers do.

This thesis asks the following central question

Can quantum computers solve convex optimization problems faster?

In order to answer this question we consider a few different types of problem that we
may encounter in convex optimization.

If we have some black-box procedure to evaluate how good a proposed solution
to a convex optimization problem is, for example a way of estimating the height of a
point in the Alps or a method of estimating our profits given a business strategy, then a
classical computer would have to try a lot of small changes in order to find the change
that improves our objective the most. However, we show that a quantum computer can
find the optimal direction for improvement exponentially faster.

We then consider specific categories of convex optimization problems, mainly lin-
ear programming and semidefinite programming. These problem categories include
many natural problems and have been widely used both for theoretical and practical
purposes. For example, linear programming can be used for finding the optimal strate-
gies of zero-sum games, coming up with a diet plan, or planning resources. Semidef-
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inite programming is a generalization of linear programming and can additionally be
useful for designing optimal experiments, approximately solving hard problems, or op-
timize processes involving quantum mechanics. Our quantum algorithms for these
problems use a natural connection between quantum physics and semidefinite pro-
gramming: the solutions to a semidefinite programming problem correspond to the
states of a quantum system. We show that quantum computers can solve semidefinite
programming problems and linear programming problems quadratically faster than a
classical computer can. In fact, our algorithms take less time to solve the problem than
that it would take to read through the whole input.

We also take a more negative view and discuss the limitations of quantum comput-
ers. We show that, even though quantum computers can find the optimal direction of
improvement exponentially faster, there is no general exponential speedup for finding
the optimal value. We also show that in many ways our methods for solving linear and
semidefinite programming problems are optimal: faster methods would not be able to
read enough of the input to still get a good solution.

To conclude, we showed that in a few different settings the answer to our central
question is yes. The results in this dissertation show that quantum computers can solve
some convex optimization problems faster, but there are also limits to this. There are
still many open questions regarding convex optimization on quantum computers and
we regard this topic as an important direction of future research.





Samenvatting

Iedere dag moeten we veel verschillende beslissingen nemen: wat te eten vanavond,
waar op te stemmen, en of we die ene speciale persoon voor de eerste keer zullen zoe-
nen. Ook op een grotere schaal moeten er veel beslissingen genomen worden; groepen,
overheden, en bedrijven moeten bijvoorbeeld beslissingen nemen om hun middelen
goed te benutten. Voor iedere beslissing moeten we rekening houden met veel verschil-
lende mogelijkheden om zo een optimale uitkomst te bereiken (alhoewel we vaak al te-
vreden zijn als we simpelweg een ramp kunnen voorkomen). Het nemen van al deze
beslissingen wordt alleen nog maar ingewikkelder als we ook rekening moeten houden
met alle beperkingen die ons worden opgelegd. Hoewel mensen redelijk goed zijn in
ingewikkelde beslissingen nemen, wordt de wereld om ons heen ook steeds ingewik-
kelder en is simpelweg dingen op gevoel doen vaak een slechte optimalisatie-strategie.

Gelukkig staat de wiskunde ons toe om een abstracte versie van ingewikkelde pro-
blemen te formuleren en zo duidelijk vast te leggen wat het doel en de beperkingen
zijn. Voor sommige problemen krijgen we zelfs een oplossing in gesloten vorm, zo heb-
ben veel van ons op school geleerd hoe we het extreme punt op een parabool kunnen
vinden. Echter, er zijn ook problemen zonder zo’n simpele oplossing in gesloten vorm.
Voor dit soort problemen kunnen we vaak alleen maar een algoritme vinden om het
probleem op te lossen, de problemen vallen dan onder het vakgebied van informatica.

In de informatica vragen we ons af hoe we problemen op een systematische wijze
kunnen oplossen. Vaak is het hierbij belangrijk hoeveel stappen nodig zijn voor het be-
sluitvormingsproces. Zo zouden de meeste optimalisatieproblemen opgelost kunnen
worden door alle mogelijke combinaties voor alle beslissingen uit te schrijven en dan
de beste optie te kiezen, maar als het aantal te maken beslissingen groeit dan groeit
ook het aantal combinaties dat we moeten uitwerken. Dit aantal combinaties zal vaak
zelfs exponentieel groeien, waardoor deze strategie niet praktisch zal zijn. In dat geval
zoeken we naar slimmere en efficiëntere algoritmes die beter schalen.

Het is niet altijd makkelijk (of zelf mogelijk) om een efficiënt algoritme te vinden.
Neem bijvoorbeeld het probleem om het laagste punt in de Zwitserse Alpen te vinden.
Je begint mogelijk op de top van een berg en loopt het dal in dat het diepste lijkt, maar
later blijkt dat een boer een paar valleien verderop een hele diepe put heeft gegraven.
Het probleem in dit geval is dat je mogelijk een lokaal minimum vind, maar door een
gebrek aan structuur is het niet duidelijk hoe we een globaal minimum kunnen vin-
den. Sommige problemen hebben wel meer structuur. Een belangrijke klasse van zulke
problemen zijn de convexe optimalisatieproblemen. Convexe optimalisatieproblemen
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hebben de fijne eigenschap dat lokale minima ook globale minima zijn. In het voor-
beeld over de Alpen betekent dit dat, zolang we maar naar beneden blijven gaan, we
altijd op het laagste punt aan zullen komen. Echter, zoals elke snowboarder je kan ver-
tellen, speelt hoe je naar beneden gaat een grote rol bij hoe snel je uiteindelijk zal zijn.

Behalve naar de structuur van het probleem te kijken, dienen we er ook over te den-
ken welke stappen we kunnen nemen om het op te lossen. Zo kunnen we een probleem
met pen en papier oplossen, met onze laptop, of met een supercomputer. Allemaal ver-
schillende methodes die anders zullen functioneren. Echter, deze methodes zijn niet
inherent verschillend: als we genoeg tijd nemen kunnen we dezelfde berekeningen als
een supercomputer uitvoeren met pen en papier. Hoewel dit significant trager zal zijn,
zal de schaling met de probleemgrote wel hetzelfde zijn, we kunnen immers dezelfde
basisstappen uitvoeren (alleen trager). Welke basisstappen we kunnen uitvoeren wordt
uiteindelijk bepaald door de natuurwetten: we kunnen de staat van ons stuk papier
(of onze computer) alleen maar veranderen op manieren die toegestaan worden door
de natuurwetten. Zowel ons papier als onze computers opereren volgens de klassieke
natuurkunde, de natuurkunde die het dagelijks leven om ons heen beschrijft.

In de 20e eeuw is onze blik op de natuurkunde veranderd, we weten nu dat de klas-
sieke natuurkunde geen volledige beschrijving geeft van de wereld. De klassieke fysica
werkt bijvoorbeeld niet op de kleinste schalen, de schaal van atomen en elementaire
deeltjes. Op dit soort kleine schalen gedragen de deeltjes zich volgens de wetten van de
quantumfysica, dit staat gedrag toe dat in onze klassieke dagelijkse wereld niet moge-
lijk is. Zo kunnen deeltjes zich in een superpositie van toestanden bevinden, een deel-
tje wordt willekeurig een van deze toestanden nadat er interactie met onze klassieke
wereld heeft plaatsgevonden via een meting. Wonderbaarlijk genoeg is deze willekeur
anders dan de klassieke willekeurigheid die voortkomt uit ons gebrek aan kennis over
een deeltje: de verschillende delen van een superpositie zijn echt allemaal aanwezig
totdat er gemeten word en kunnen met elkaar interfereren. Een natuurlijke vraag is dan
ook of deze quantum verschijnselen ons kunnen helpen bij het uitvoeren van bereke-
ningen. Een computer die zich gedraagt volgens de regels van de quantummechanica
heet een quantumcomputer en kan een grotere set aan basisoperaties uitvoeren dan
een klassieke computer.

In dit proefschrift staat de volgende vraag centraal:

Kunnen quantumcomputers convexe optimalisatieproblemen sneller oplossen?

Om deze vraag te beantwoorden kijken we naar een verschillende soorten problemen
die voorkomen in convexe optimalisatie.

Zo kijken we bijvoorbeeld naar optimalisatiemethodes voor wanneer we kunnen
bepalen hoe goed een mogelijke oplossing voor een probleem is. We zijn specifiek ge-
ïnteresseerd in het geval dat we hiertoe toegang hebben in een “black-box manner”,
met andere worden, we weten niet hoe deze evaluatie achter de schermen werkt. Zo’n
manier van evalueren kan bijvoorbeeld een manier zijn om de hoogte van een punt
in de Alpen te schatten of een manier om te bepalen hoe goed een handelsstrategie
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is. Gegeven een mogelijke oplossing zou een klassiek algoritme alle verschillende ver-
anderingen moeten uitproberen om te zien welke aanpassing de grootste verbetering
oplevert. We tonen echter aan dat je met een quantumcomputer exponentieel sneller
een optimale aanpassing kan vinden.

We kijken daarna naar bepaalde klassen aan convexe optimalisatieproblemen, spe-
cifiek kijken we naar lineair programmeren en semidefiniet programmeren. Deze cate-
gorieën bevatten veel natuurlijke problemen en zijn breed toepasbaar voor zowel the-
oretische als praktische doeleinden. Bijvoorbeeld, lineair programmeren kan gebruikt
worden om de optimale strategieën in nulsomspelen uit te rekenen, om een dieetplan
op te stellen, of om middelen slim te verdelen. Semidefiniet programmeren is een ver-
algemenisering van lineair programmeren en kan ook nog gebruikt worden om bijvoor-
beeld optimale experimenten te ontwerpen, moeilijke problemen te benaderen, en om
processen waar quantummechanica een rol speelt te optimaliseren. Onze quantumal-
goritmen voor deze problemen gebruiken een natuurlijke connectie tussen quantum-
fysica en semidefiniet programmeren: de oplossingen van semidefiniete programma’s
komen overeen met de toestanden van een quantumsysteem. We laten zien dat quan-
tumcomputers semidifiniete programma’s en lineaire programma’s kwadratisch snel-
ler kunnen oplossen dan klassieke computers dat kunnen. Onze algoritmen lossen het
probleem zelfs sneller op dan de tijd die een klassieke computer nodig zou hebben om
door de hele invoer heen te lezen.

We kijken echter ook naar de beperkingen van quantumcomputers. Zo laten we
zien dat, ondanks dat quantumcomputers exponentieel sneller de optimale richting
voor verandering kunnen bepalen, er geen algemene exponentiële verbetering is voor
het vinden van een optimale oplossing. Ook laten we zien dat op veel verschillende
manieren onze methodes voor het oplossen van semidefiniete en lineaire programma’s
niet verder te versnellen zijn: snellere methodes zouden te weinig van de invoer moeten
bekijken en daardoor geen goede oplossing meer kunnen vinden.

Samengevat, we laten zien dat er meerdere situaties zijn waarin het antwoord op
onze centrale vraag ja is. De resultaten in dit proefschrift laten zien dat quantumcom-
puters sommige convexe optimalisatieproblemen sneller kunnen oplossen, maar dit is
wel beperkt. Er zijn nog vele open vragen over convexe optimalisatie op quantumcom-
puters en we zien dit dan ook als een belangrijk onderwerp voor vervolgonderzoek.
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