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Abstract: We study a framework for multiagent resource allocation where autonomous
software agents negotiate over the allocation of bundles of indivisible resources. Connec-
tions to well-known combinatorial optimisation problems, including the winner determi-
nation problem in combinatorial auctions, shed light on the computational complexity
of the framework. We give particular consideration to scenarios where the preferences of
agents are modelled in terms of k-additive utility functions, i.e. scenarios where synergies
between different resources are restricted to bundles of at most k items.

Keywords: resource allocation; negotiation; preference representation; computational
complexity
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Multiagent resource allocation (Chevaleyre et al., 2006) is an emerging interdisciplinary
field, located at the intersection of computer science and artificial intelligence research
on the one hand, and the socio-economic sciences on the other. It is concerned with the
study of resource allocation processes within systems of autonomous agents, that not only
have preferences over alternative allocations of resources but also actively participate in
computing allocations. Special emphasis is put on the computational aspects of these
processes (this is the distinguishing feature that differentiates multiagent resource allo-
cation from classical questions in microeconomics). The multiagent systems paradigm
(Wooldridge, 2002), developed in artificial intelligence, provides a useful framework in
which to study such resource allocation problems. Furthermore, the way agents repre-
sent their individual preferences over alternative bundles of resources is an important
factor; this is where decision theory comes into play.

Distributed systems in which autonomous software agents interact with each other,
in either cooperative or competitive ways, can often be usefully interpreted as societies
of agents; and we can employ formal tools from microeconomics to analyse such systems.
If we model the interests of individual agents in terms of a notion of individual welfare,
then the overall performance of the system provides us with a measure of social welfare.
Individual welfare may, for instance, be measured by defining a utility function mapping
“states of affairs” (outcomes of an election, allocations of resources, agreements on a
joint plan of action, etc.) to numeric values. The concept of social welfare, as studied in
welfare economics, is an attempt to characterise the well-being of a society in relation to
the welfare enjoyed by its individual members (Arrow et al., 2002; Moulin, 1988).

In this paper, we study a framework for multiagent resource allocation where au-
tonomous agents agree on a sequence of multilateral deals to exchange sets of indivisible
resources in order to improve their respective levels of individual welfare. Recent results
pertaining to this framework concern the feasibility of reaching an allocation of resources
that is optimal from a social point of view (Sandholm, 1998; Endriss et al., 2006), as well
as (certain aspects of) the complexity of doing so, in terms of both computational costs
(Dunne et al., 2005) and the amount of communication required to enable negotiation
(Endriss and Maudet, 2005).

A central parameter in a multiagent resource allocation problem is the language used
to represent the preferences of agents over alternative bundles of resources. In the frame-
work discussed here, we assume that agents use utility functions to model their preferences
and we are going to discuss two alternative languages for defining such functions. As we
shall argue, one of these, the so-called k-additive form, is particularly suitable in domains
where agents may be uncertain about their true preferences, as it provides a natural way
of encoding a hierarchy of progressively more and more accurate approximations to the
agent’s complete utility function.

In Section 1, after introducing the negotiation framework used in this paper, we
briefly recall two of the aforementioned feasibility results. As we shall see, in cases
where the utility functions used by agents to model their preferences over alternative
bundles of resources are additive, it is sufficient to use very simple negotiation protocols
that only cater for deals involving a single resource at a time. This result suggests to
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investigate generalisations of the notion of additivity, and hence we consider the case
of k-additive functions, as studied, for instance, in the context of fuzzy measure theory
(Grabisch, 1997). The notion of k-additivity suggests an alternative representation of
utility functions, which we introduce in Section 2. We show that this representation is
as expressive as the “standard” representation (which involves listing the utility values
for all possible bundles) and that it often allows for a more succinct representation of
preferences.

Nevertheless, it turns out that the positive result on the structural complexity of
deals obtained for additive functions cannot be generalised in the expected manner.
Counterexamples are given in Section 3. In Section 4, we discuss connections between
our framework and some well-known combinatorial optimisation problems (Ausiello et al.,
1999). These can be used to prove NP-hardness results for the decision problem associated
with the task of finding a socially optimal resource allocation. We prove complexity
results with respect to both the standard representation of utility functions and the
representation based on k-additivity. In this context, we also discuss connections of our
optimisation problem to the winner determination problem in combinatorial auctions
(Cramton et al., 2006). We are going to point out connections between different ways of
representing utility functions and different bidding languages for such auctions along the
way. Our conclusions are presented in Section 5.

1 Negotiating over Indivisible Resources

An instance of our negotiation framework consists of a finite set of (at least two) agents A
and a finite set of indivisible resources R. A resource allocation A is a partitioning of the
set R amongst the agents in A. For instance, given an allocation A with A(i) = {r3, r7},
agent i would own resources r3 and r7. Given a particular allocation of resources, agents
may agree on a (multilateral) deal to exchange some of the resources they currently hold.
In general, a single deal may involve any number of resources and any number of agents.
It transforms an allocation of resources A into a new allocation A′; that is, we can define
a deal as a pair δ = (A,A′) of allocations (with A 6= A′).

Each agent i ∈ A is equipped with a utility function ui mapping bundles of resources
(subsets of R) to rational numbers (note that we do not impose any restrictions on
utility functions). A deal may be coupled with a number of monetary side payments to
compensate some of the agents involved for an otherwise disadvantageous deal. We call a
deal rational iff it results in a gain in utility (or money) that strictly outweighs a possible
loss in money (or utility) for each of the agents involved in that deal (Endriss et al., 2006).
This notion of rationality can be formalised using the concept of a payment function p

mapping agents to rational numbers. Such a function has to satisfy the side constraint∑
i∈A p(i) = 0, i.e. the overall amount of money in the system remains constant. If

p(i) > 0, then agent i pays the amount of p(i), while p(i) < 0 means that it receives the
amount of −p(i).

Definition 1 (Rational deals) A deal δ = (A,A′) is rational iff there exists a payment
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function p such that ui(A′(i))− ui(A(i)) > p(i) for all i ∈ A, except possibly p(i) = 0 for
agents i with A(i) = A′(i).

While individual agents have their own interests, as a system designer, we are interested
in the social welfare associated with a given allocation.

Definition 2 (Social welfare) The social welfare sw(A) of an allocation A is defined
as follows:

sw(A) =
∑
i∈A

ui(A(i))

This is the utilitarian definition of social welfare. We should stress that other notions of
social welfare have been developed as well (Arrow et al., 2002; Moulin, 1988).

What is the connection between the “local” notion of rationality and the “global”
notion of social welfare? As shown in previous work (Endriss et al., 2006), a deal is ratio-
nal iff it results in an increase in social welfare. The following result, due to Sandholm
(1998), goes even further by establishing that any sequence of rational deals is bound to
converge to a socially optimal allocation:

Proposition 1 (Convergence) Any sequence of rational deals will eventually result in
an allocation of resources with maximal social welfare.

This means that (i) there can be no infinite sequence of deals all of which are rational,
and (ii) once no more rational deals are possible the agent society must have reached an
allocation that has maximal social welfare. The crucial aspect of this result is that any
sequence of deals satisfying the rationality condition will cause the system to converge
to an optimal allocation. That is, whatever deals are agreed on in the early stages of the
negotiation, the system will never get stuck in a local optimum and finding an optimal
allocation remains an option throughout.

A drawback of the general framework is that the above result only holds if deals
involving any number of resources and agents are admissible (Sandholm, 1998; Endriss
et al., 2006). In some cases this problem can be alleviated by putting suitable restrictions
on the utility functions agents may use to model their preferences. A particularly simple
example is the class of additive functions. A utility function is called additive iff the value
ascribed to a set of resources is always the sum of the values of its members. For additive
utilities, the following stronger convergence result is known (Endriss et al., 2006):

Proposition 2 (Additive domains) If all utility functions are additive, then any se-
quence of rational deals involving only a single resource each will eventually result in an
allocation of resources with maximal social welfare.

This result is of great practical relevance, because it shows that it is sufficient to design
negotiation protocols for single resources (rather than sets) and thereby also just pairs of
agents (rather than larger groups) for applications in which preferences can be modelled
in terms of additive utility functions. In the next section, we are going to introduce a
generalisation of this notion of additivity.
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2 Preference Representation

An agent’s utility function may be represented in different ways. This situation is similar,
for instance, to the case of combinatorial auctions, where one can use different bidding
languages to express the preferences of the participating agents (Nisan, 2000; Sandholm,
2002). Maybe the most intuitive representation of a utility function is the bundle form
(or explicit form), which amounts to listing all bundles of resources to which the agent
assigns a non-zero value.

An alternative representation is based on the notion of k-additive functions, which
have been studied in the context of fuzzy measure theory (Grabisch, 1997). Given a
natural number k, a utility function is called k-additive iff the utility assigned to a bundle
of resources R can be represented as the sum of basic utilities ascribed to subsets of R

with cardinality ≤ k. More formally, a utility function ui is k-additive iff there exists a
set of coefficients {αT

i |T ⊆ R} such that αT
i = 0 whenever |T | > k, and the following

holds for all R ⊆ R:

ui(R) =
∑
T⊆R

αT
i (1)

That is, agent i enjoys an increase in utility of αT
i when it owns all the items in T together,

i.e. αT
i represents the synergetic value of this bundle. If a utility function is defined in

terms of such coefficients, we say that it is given in k-additive form.
When describing examples, we are going to use a simplified notation (resembling that

of a polynomial with variables ri taking the values 0 or 1). For instance, ui = 3.r1−2.r2.r3

represents a 2-additive utility function with two non-zero coefficients: α
{r1}
i = 3 and

α
{r2,r3}
i =−2. In the bundle form, the definition of this function would require the speci-

fication of five non-zero values (assuming R = {r1, r2, r3}): ui({r1}) = 3, ui({r1, r2}) = 3,
ui({r1, r3}) = 3, ui({r2, r3}) = −2, and ui({r1, r2, r3}) = 1.

Utility functions that are k-additive with k = 1 are like the additive functions dis-
cussed in the previous section (except that they also allow for a non-zero utility value
to be assigned to the empty set). Hence, the concept of k-additivity is a generalisation
of the familiar concept of additivity. In fact, as we are going to show next, k-additive
utility functions cover a whole range of utility functions, from the very simple additive
functions to the most general utility functions without any restrictions whatsoever.

Proposition 3 (Expressive power) Any utility function can be represented as a k-
additive function with k = |R|.

Proof. Let ui be any utility function mapping subsets of R to rational numbers. We
recursively define coefficients αR

i for R ⊆ R as follows:

α
{ }
i = ui({ })

αR
i = ui(R)−

∑
T⊂R

αT
i for all R ⊆ R with R 6= { }

Hence, ui(R) =
∑

T⊆R αT
i . This is a k-additive utility function for k = |R|. 2
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Given a utility function, we can also compute the values of the coefficients in the k-
additive form directly, using the so-called Möbius inversion (Rota, 1964; Grabisch, 1997).
Namely, the solution to equation (1) is given by the following formula:

αR
i =

∑
T⊆R

(−1)|R\T | · ui(R)

In analogy to Proposition 3, clearly, the bundle form is also fully expressive, i.e. our
two ways of representing utility functions are equivalent in the sense that they can both
express any utility function over the set of resources R. Besides expressive power, another
important consideration concerns the succinctness of a representation. It turns out that
neither of the two forms of representation is more succinct in all cases. In fact, as we are
going to see next, there are cases where translating a utility function given in k-additive
form into the bundle form results in an exponential blow-up of the representation, and
vice versa.1

To state these results, we use the concept of polynomial simulation. We say that
one representation language can polynomially simulate another language iff there is a
polynomial function f such that for any given utility function u, if ` is the size of the
representation of u in the second language then the size of the representation of u in the
first language will be at most f(`).

Proposition 4 (Efficiency of the k-add. form) The bundle form cannot polynomi-
ally simulate the k-additive form of representing utility functions.

Proof. We prove the claim by giving an example for a utility function with a representa-
tion that is linear in the size of R for the k-additive form, but exponential for the bundle
form. Consider a utility function ui that maps a bundle of resources to the number of
elements in that bundle. This is a 1-additive function, which requires the specification
of exactly |R| coefficients in the k-additive form (namely αR

i = 1 for all bundles R with
|R| = 1). For the bundle form, however, the specification of a utility value for each of
the 2|R| − 1 non-empty bundles is required. 2

Proposition 5 (Efficiency of the bundle form) The k-additive form cannot polyno-
mially simulate the bundle form of representing utility functions.

Proof. We give an example for a utility function with a representation that is linear in
the size of R for the bundle form, but exponential for the k-additive form. Consider a
utility function ui that assigns 1 to any bundle consisting of a single resource and 0 to
any other bundle. In the bundle form, ui requires the specification of a utility value for
exactly |R| bundles (namely those with just a single element). For the k-additive form,
on the other hand, the Möbius inversion shows that we have to set αR

i = |R| · (−1)|R|+1.
This is different from 0 for any of the 2|R|−1 non-empty subsets of R. Hence, ui requires
the specification of an exponential number of coefficients in the k-additive form. 2

1Nisan (2000) proves a number of similar separation results for different types of bidding languages for

combinatorial auctions and Coste-Marquis et al. (2004) do the same for a number of logic-based languages

for expressing ordinal preferences.

7



The examples given in the proofs of Propositions 4 and 5 are extreme cases, where one
form of representation is exponentially more succinct than the other. While the difference
is not always going to be this strong, choosing the right representation for a given problem
domain is still important. Broadly speaking, the k-additive form will typically be more
succinct in cases where there are only limited synergies between different items. This is
likely to be the case for many application domains, which makes this a useful language
for expressing utilities in practice.

In general, either representation may require the specification of up to 2|R| values.
However, for utility functions that are k-additive for some value of k, the k-additive form
requires at most

∑k
i=0

(|R|
i

)
coefficients to be specified. This is equal to 2|R| for k = |R|,

but less for lower values of k.
In many application domains, it will be reasonable to assume that utility functions

are k-additive with a relatively small value of k. Indeed, the larger a bundle of resources,
the more difficult would it be for an agent to estimate the additional benefit incurred
by owning all the resources in that bundle together (i.e. beyond the benefit incurred
by the relevant subsets). Our analysis shows that this cognitive argument in favour of
the k-additive form is further supported by computational arguments (small values of
k allow for a succinct representation in the k-additive form, but not necessarily in the
bundle form). By the same argument, even when k is not very small, the utility function
we obtain by disregarding the coefficients associated with the largest bundles will often
serve as a good approximation to an agent’s true preferences (the larger a bundle, the
less likely that that bundle will incur a significant benefit beyond the value derived from
its subsets).

The bundle form corresponds to the so-called XOR-language for expressing bids in
combinatorial auctions (Nisan, 2000; Sandholm, 2002). The potential benefits of exploit-
ing the k-additive form in the context of combinatorial auctions, however, appears not
to have been recognised until very recently (Conitzer et al., 2005). Still, there are also
some interesting parallels between the k-additive form and the “Toolbox DNF” bidding
language (Zinkevich et al., 2003). Indeed, the definitions of both languages are almost
identical. The crucial difference is that the ToolBox DNF is parametrised by the number
of coefficients, while the k-additive form is parametrised by the maximal cardinality of
bundles with non-zero coefficients. The ToolBox DNF will be useful in domains where
there are a (relatively small) number of specific bundles that have cumulative value. The
k-additive form will be useful in situations where no fixed set of valuable bundles can
be specified a priori, but where cognitive or computational arguments can be given that
support the assumption that no bundle exceeding a certain cardinality could possibly
incur any additional synergetic value. Also note that, while the k-additive form natu-
rally gives rise to a meaningful hierarchy of utility functions (from the 1-additive to the
|R|-additive functions), this is not the case for the ToolBox DNF.

The connections between our negotiation framework and combinatorial auctions will
be further explored in Section 4.
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3 Structural Complexity of Deals

Recall that Proposition 2 has shown that it is always possible to negotiate a socially
optimal allocation of resources by means of rational deals involving only a single resource
at a time whenever the utilities of all the agents involved are additive. Intuitively, we
could have expected a similar result for k-additive utilities with k ≥ 2 (i.e. a result
that states that rational deals involving at most k resources at a time are sufficient to
reach optimal allocations whenever all utility functions are k-additive). However, as we
are going to show next, this turns out not to be the case. The deals required to reach
allocations with maximal social welfare in the k-additive case are much more complex.

Proposition 6 (Insufficiency of restricted deals) Even if all utility functions are k-
additive for some k ≥ 2, a deal involving the complete set of resources may be necessary
to reach an allocation with maximal social welfare by means of a sequence of rational
deals.

Proof. To prove the claim, we construct an example with 2-additive utility functions
in which a deal involving all resources in R is needed. Consider two agents sharing n

resources R = {r1, r2, . . . , rn}, with the following 2-additive utility functions:

u1 = 0

u2 = r1 − r1.r2 − r1.r3 − r1.r4 − . . .− r1.rn

Let Ainit be the initial allocation describing which agent owns which resource before
negotiation commences, and let Amax be the allocation maximising social welfare:

Ainit Amax

Agent 1: {r1} {r2, r3, . . . , rn}
Agent 2: {r2, r3, . . . , rn} {r1}

Here, sw(Ainit) = 0 and sw(Amax) = 1. In fact, the only allocation which has a social
welfare greater than sw(Ainit) is Amax. Recall that a deal increases social welfare iff it is a
rational deal (Endriss et al., 2006). Thus, the only rational deal here is δ = (Ainit, Amax),
which is a bilateral deal involving all n resources at the same time. 2

A possible objection to the example used in our proof may be that it is rather artificial.
Utility functions that also have some additional properties, such as being monotonic,2

besides being k-additive may be more relevant in practice. To show that the problem of
requiring complex deals persists even when we make such additional assumptions, we give
a further, similarly simple, example that demonstrates that also for k-additive functions
that are monotonic, rational deals involving no more than k resources do not always
suffice to negotiate socially optimal allocations. Consider the case of three agents and
four resources with the following utility functions:

u1 = 4.r1.r3 u2 = 3.r1.r2 u3 = 2.r3.r4

2A utility function is called monotonic iff the utility of a set of resources is never lower than the utility

assigned to any of its subsets.
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Let Ainit be the initial allocation and let Amax be the optimal allocation with maximal
social welfare:

Ainit Amax

Agent 1: {r1, r3} { }
Agent 2: {r2, r4} {r1, r2}
Agent 3: { } {r3, r4}

We get sw(Ainit) = 4 and sw(Amax) = 5. Clearly, the only rational deal (i.e. the only
deal increasing social welfare) is δ = (Ainit, Amax), which is a deal involving 3 (rather
than just 2) resources at the same time.

In summary, our results show, differently from what one might have expected, that
the restriction to utility functions that are k-additive for a given value of k does not, in
general, reduce the complexity of deals required to reach a socially optimal allocation of
resources in an agent society whose members follow a simple rational negotiation strategy.

To be able to use simple negotiation protocols efficiently, we need to make much
stronger assumptions on the utility functions used by agents. In a recent paper (Cheva-
leyre et al., 2005), we prove a generalisation of Propositions 1 and 2 and show that
rational deals involving at most k items each are sufficient for convergence to an optimal
allocation whenever all utility functions are additively separable with respect to a com-
mon partition of R (i.e. synergies across different parts of the partition are not possible
and overall utility is defined as the sum of utilities for the different sets in the partition
(Fishburn, 1970)), and each set in this partition has at most k elements.

4 Computational Complexity Results

In this section, we are going to analyse the computational complexity of the problem of
finding an allocation that maximises social welfare, both with respect to the bundle form
and with respect to the k-additive form of representing utility functions.3 In Section 2,
we have already mentioned the connection between different representations of utility
functions (in our case the bundle form and the k-additive form) in our distributed ne-
gotiation framework and different bidding languages in combinatorial auctions. In what
follows, we explore a further connection between the two areas.

If we view the problem of finding an allocation with maximal social welfare as an
algorithmic problem faced by a central authority (rather than as a problem of designing
suitable negotiation mechanisms), then we can observe an immediate relation to the so-
called winner determination problem in combinatorial auctions (Cramton et al., 2006;
Rothkopf et al., 1998; Sandholm, 2002). In a combinatorial auction, bidders can put in
bids for different bundles of items (rather than just single items). After all bids have
been received, the auctioneer has to find an allocation for the items on auction amongst
the bidders in a way that maximises his revenue. If we interpret the price offered for a
particular bundle of items as the utility the agent in question assigns to that set, then

3We assume familiarity with the basic concepts of complexity theory; the textbook by Papadimitriou

(1994) provides an excellent introduction to the subject.
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maximising revenue (i.e. the sum of prices associated with winning bids) is equivalent to
finding an allocation with maximal utilitarian social welfare. This equivalence holds, at
least, in cases where the optimal allocation of items in an auction is such that all of the
items on auction are in fact being sold (so-called free disposal).

Winner determination in combinatorial auctions is known to be NP-complete
(Rothkopf et al., 1998).4 The quoted result applies to the case of the “standard” bidding
language, which allows bidders to specify prices for particular bundles and makes the
implicit assumption that they are prepared to obtain any number of disjoint bundles for
which they have submitted a bid (Nisan (2000) calls this the “OR language”). Our lan-
guages for expressing utilities are more general than this (they can express a larger class
of preference structures). Hence, the correspondence to combinatorial auctions suggests
that the problem of finding an allocation with maximal social welfare is at least NP-
hard. We can make this observation more precise by showing how our problem relates to
well-known NP-complete “reference problems” (Garey and Johnson, 1979; Ausiello et al.,
1999). One such problem is Set Packing. We use the schema of Ausiello et al. (1999)
to define combinatorial problems:

Set Packing

Instance: Collection C of finite sets.
Solution: Collection of disjoint sets C′ ⊆ C.
Measure: Cardinality of C′.

The optimisation problem known as Maximum Set Packing is the problem of finding
a solution C′ for which the cardinality of C′ is maximal. The underlying decision problem
is the problem of answering the question whether there exists a solution C′ for which
the cardinality exceeds a given threshold K. This decision problem is known to be NP-
complete in the size of the instance, i.e. with respect to the number of sets in C (Garey
and Johnson, 1979).

Proposition 7 (Complexity wrt. bundle form) The decision problem underlying
the problem of finding an allocation with maximal social welfare with utilities represented
in bundle form is NP-complete.

Proof. NP-membership follows from the fact that the conditions imposed on valid so-
lutions can be checked in polynomial time. We prove NP-hardness by showing how to
reduce Set Packing to our problem. Given an instance C of Set Packing, consider
the following negotiation problem: R =

⋃
C∈C C; A = C ∪ {0}; uC(R) = 1 if R = C and

uC(R) = 0 otherwise; and u0(R) = 0 for all bundles R. That is, the elements of the sets
in C are the resources and there is one agent for every set in C, as well as an additional
agent called 0. Every agent values “its” bundle at 1 and every other bundle at 0. Agent 0

4More precisely, the decision problem underlying the winner determination problem, i.e. the prob-

lem of checking whether there exists an allocation that achieves at least a given minimal revenue K is

NP-complete. The concept of NP-completeness applies to decision problems rather than optimisation

problems (Ausiello et al., 1999). The winner determination problem is still NP-hard in the sense that

solving it is at least as hard as solving any NP-complete decision problem.
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values all bundles at 0. Then for every allocation A there exists an allocation A′ with at
least the same social welfare that directly corresponds to a solution C′, i.e. each of the
agents in C either owns (only) its favourite bundle or no resources at all, and agent 0
owns all other resources. Hence, there exists an allocation A with sw(A) > K iff there
exists a solution C′ with |C′| > K. 2

Dunne et al. (2005) have recently established a similar result. However, Dunne et al.
prove NP-hardness with respect to the number of resources in the system rather than
with respect to the combined size of the representations of utility functions (which will
typically be significantly higher), i.e. our lower complexity bound is sharper than that of
Dunne et al. On the other hand, the NP-membership result of Dunne et al. relies on the
representation of utility functions as programs, which is more succinct than the bundle
form, i.e. their upper complexity bound is sharper than the one reported here. Fargier
et al. (2004) also prove a similar result. In their resource allocation framework agents
can, by default, share individual resources, but if a particular resource can only be owned
by one agent at a time, this can be specified by giving additional constraints. Crucially,
all these results relate to the complexity of finding an optimal allocation by means of a
centralised algorithm. For a discussion of the aspects of complexity that are relevant in
a distributed negotiation setting, we refer to Endriss and Maudet (2005).

Our next aim is to establish the complexity of the same decision problem, but this time
with respect to the k-additive form rather than the bundle form of representing utility
functions. As the bundle form can be exponentially more succinct than the k-additive
form, NP-hardness with respect to the former does not necessarily imply NP-hardness
with respect to the latter. Nevertheless, as we are going to see, deciding whether there
exists an allocation of resources with a utilitarian social welfare that exceeds a given
threshold is also NP-complete. This time, we are going to use a reduction from another
well-known combinatorial problem:

Maximum 2-Satisfiability

Instance: Set C of clauses of length 2.
Solution: Satisfiable set C′ ⊆ C.
Measure: Cardinality of C′.

The decision problem of checking whether there exists a solution C′ for which the car-
dinality exceeds a given threshold K is known to be NP-complete (Garey and Johnson,
1979). Note that this is the case even when the length of clauses is required to be just
2 (the closely related Sat problem, where we ask whether or not all clauses in C are
satisfiable, only becomes NP-hard for clauses with at least 3 literals).5

5The reduction from Maximum 2-Satisfiability has been suggested to us by Jérôme Lang; an al-

ternative proof, using a reduction from Independent Set (Garey and Johnson, 1979) together with a

translation based on an idea from pseudo-boolean optimisation (Boros and Hammer, 2002) for the case

k = 2, may be found in Chevaleyre et al. (2004).
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Proposition 8 (Complexity wrt. k-additive form) For any k ≥ 2, the decision
problem underlying the problem of finding an allocation with maximal social welfare with
utilities represented in k-additive form is NP-complete.

Proof. Again, NP-membership is straightforward. For the NP-hardness result it suffices
to consider the case k = 2; the problem for k > 2 is at least as hard. We show NP-
hardness for k = 2 by means of a reduction from Maximum 2-Satisfiability. Let C be
an instance of this problem. Without loss of generality, we assume that C contains no
clauses of the form (p ∨ p). Now define R as the set of propositional letters occurring in
C and let A = {1, 2}. The utility function u1 of agent 1 is defined using the 2-additive
form as follows:

• For every p ∈ R, the coefficient α
{p}
1 is defined as the number of times p occurs as

a positive literal within a clause in C.

• For every p1, p2 ∈ R with p1 6= p2, the coefficient α
{p1,p2}
1 is defined as the negation

of the number of times (p1 ∨ p2) or (p2 ∨ p1) occur in C.

Furthermore, α
{ }
1 = 0. For agent 2, define u2(R) = 0 for all bundles R. Every assignment

of truth values to the propositional letters corresponds to a resource allocation in the
following sense: agent 1 owns resource p iff p is set to true. Then the number of clauses
satisfied by a given assignment is exactly the social welfare of the corresponding allocation.
Hence, deciding whether there exists an allocation with a social welfare exceeding a given
threshold K is at least as hard as Maximum 2-Satisfiability. 2

Our proof shows that we get NP-hardness even for k = 2 and scenarios with just two
agents (with one agent using the trivial utility function mapping every bundle to 0).
Other refinements of the NP-hardness result can be achieved by exploiting the special
characteristics of the chosen NP-hard reference problem. Conitzer et al. (2005), for
instance, show that NP-hardness persists even when each agent may only use two non-
zero coefficients to represent its 2-additive utility function.

As a final complexity result, we are going to show that the problem of verifying that
a given allocation is socially optimal is coNP-complete. This holds for both the bundle
form and the k-additive form of representing utility functions and is a simple corollary
to Propositions 7 and 8.

Corollary 1 (Verifying optimality) The problem of verifying whether a given alloca-
tion has got maximal social welfare is coNP-complete (for both forms of representation
of utility functions).

Proof. Checking that an allocation A is not optimal involves computing sw(A), which
can be done in polynomial time, and then solving the decision problem “is there an allo-
cation A′ with sw(A′) > sw(A)?”. The latter is NP-complete according to Proposition 7
(Proposition 8) for the bundle (k-additive) form. Hence, the complementary problem
must be coNP-complete. 2

13



Related to this result, Dunne et al. (2005) have shown that the problem of checking
whether a given allocation of resources is Pareto optimal is also coNP-complete.6 Related
complexity results have also been obtained by Bouveret and Lang (2005), who study the
computational complexity of deciding whether a given resource allocation scenario admits
a solution that is both Pareto optimal and envy-free.7

What is the practical relevance of the connections between our negotiation framework
and the combinatorial optimisation problems discussed in this section? In the proof of
Proposition 8, for instance, we have reduced Maximum 2-Satisfiability to a very spe-
cific class of instances of the problem of finding a suitable allocation of resources. While
this reduction has been useful to establish our NP-hardness result, it does not provide us
with much helpful information on how to find an optimal allocation in practice. Here, the
opposite direction, i.e. reductions from resource allocation problems to standard combi-
natorial optimisation problems may be more attractive. Obvious candidates would be
the weighted variants of problems such as Set Packing. Such a reduction would allow
us to exploit existing algorithms, including highly optimised approximation algorithms
(Ausiello et al., 1999), to find optimal (or near-optimal) allocations of resources. We
should, however, stress that, of course, this would be a methodology for a centralised
approach to finding optimal resource allocations. It is not immediately applicable to
negotiation, which is a distributed process. Nevertheless, the techniques used to de-
sign optimisation and approximation algorithms may still inspire useful mechanisms for
distributed resource allocation. We hope to address this issue in our future work.

5 Conclusion

We have further analysed a framework for multiagent resource allocation previously stud-
ied by several authors (Sandholm, 1998; Endriss et al., 2006; Dunne et al., 2005; Endriss
and Maudet, 2005). In particular, we have investigated scenarios where agents use k-
additive utility functions to represent their preferences, which is possible whenever syn-
ergies between different resources are restricted to bundles of at most k items. We see
the work presented in this paper as part of a wider research trend, which brings together
ideas from different areas including microeconomics, operations research, decision theory,
game theory, social choice, artificial intelligence, complexity theory, and algorithm design
(Papadimitriou, 2001; Lang, 2005).

Our results presented in Section 3 show that, despite the positive expectations raised
by the result on negotiation in additive domains (Proposition 2), the structural complexity
of the negotiation protocol required to agree on a socially optimal allocation does not
necessarily decrease for problems with k-additive utility functions when k gets smaller
(as long as k > 1). On the other hand, as we have seen in Section 2, representing utility

6An allocation is called Pareto optimal iff there is no other allocation that would be better for at least

one of the agents without being worse for any of the others. For further results on negotiating Pareto

optimal allocations we refer to Endriss et al. (2006).
7An allocation A is called envy-free iff no agent would rather have the bundle allocated to one of the

other agents (Brams and Taylor, 1996); that is, iff ui(A(i)) ≥ ui(A(j)) for all agents i, j ∈ A.
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functions in the k-additive form rather than the bundle form can be significantly more
succinct, particularly in cases where a representation with a small value for k is possible.

We have also explored connections to well-known combinatorial optimisation prob-
lems, which has allowed us to establish complexity results for the problem of finding a
socially optimal allocation with respect to different representations of utility functions
(Section 4). In this context, we have also briefly discussed the relation of our negotia-
tion framework to combinatorial auctions for different kinds of bidding languages. While
our negotiation framework is clearly not an auction (it is, for instance, not concerned
with the aspect of agreeing on the price for a set of items), the abstract “centralised”
problem of finding a socially optimal allocation (which is not itself a problem faced by
the agents participating in a negotiation process) directly corresponds to the winner de-
termination problem in combinatorial auctions. Under this view, the languages used to
represent utility functions correspond to bidding languages for such auctions. As regards
our complexity results, it is important to stress that the high complexity of the distributed
negotiation framework does not, at least not necessarily, mean that it cannot be usefully
applied in practice. This view is supported by the fact that, in recent years, several
algorithms for winner determination in combinatorial auctions (a problem of comparable
complexity to the problems arising here) have been proposed and applied successfully
(Rothkopf et al., 1998; Fujishima et al., 1999; Sandholm, 2002).

One important aspect of modelling preferences that we have not discussed in this
paper concerns the elicitation of preferences (Keeney and Raiffa, 1993; Boutilier et al.,
1997; Gonzales and Perny, 2004). The very natural representation of utility functions
in the k-additive form suggests that it would also be particularly suited to elicitation,
certainly from a cognitive point of view. Note that, if elicitation is understood in purely
computational terms (“how many queries of a certain type do we need to ask to be able to
fully specify a preference structure?”), then elicitation complexity is closely related to suc-
cinctness (see, for instance, the discussion of elicitation complexity in the combinatorial
auction literature (Sandholm and Boutilier, 2006)). More concretely, if a query language
that emulates a chosen preference representation language is used, then the number of
queries we need to pose to an agent whose preferences are to be elicited directly corre-
sponds to the number of terms required to specify the agent’s preference structure in the
chosen language. For instance, the query type corresponding to the bundle form is the
simple “value query” (Sandholm and Boutilier, 2006; Zinkevich et al., 2003) which asks
for the utility associated with a given bundle, while a query language corresponding to
the k-additive form would allow us to ask for the coefficient αR associated with a given
bundle of resources R.
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get, S. Phelps, J. A. Rodŕıguez-Aguilar, and P. Sousa. Issues in multiagent resource
allocation. Informatica, 30:3–31, 2006.

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource allocation with
k-additive utility functions. In Proc. DIMACS-LAMSADE Workshop on Computer
Science and Decision Theory, Annales du LAMSADE 3, 2004.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Negotiating over small bundles of
resources. In Proc. 4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2005). ACM Press, 2005.

V. Conitzer, T. W. Sandholm, and P. Santi. Combinatorial auctions with k-wise depen-
dent valuations. In Proc. 20th National Conference on Artificial Intelligence (AAAI-
05). AAAI Press, 2005.

S. Coste-Marquis, J. Lang, P. Liberatore, and P. Marquis. Expressive power and suc-
cinctness of propositional languages for preference representation. In Proc. of the 9th
International Conference on Principles of Knowledge Representation and Reasoning
(KR-2004). AAAI Press, 2004.

P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT Press,
2006.

P. E. Dunne, M. Wooldridge, and M. Laurence. The complexity of contract negotiation.
Artificial Intelligence, 164(1–2):23–46, 2005.

U. Endriss and N. Maudet. On the communication complexity of multilateral trading:
Extended report. Journal of Autonomous Agents and Multiagent Systems, 11(1):91–
107, 2005.

16



U. Endriss, N. Maudet, F. Sadri, and F. Toni. Negotiating socially optimal allocations
of resources. Journal of Artificial Intelligence Research, 25:315–348, 2006.
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