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Chapter 1

Introduction

The way that musical rhythm sounds to us—the result of our rhythm perception—is
contingent on our history of experiences and interactions with music (London,
2012). In this thesis, I develop and apply computational modeling techniques in an
attempt to better understand how these experiences and interactions contribute
to rhythm perception.

It is not straightforward to define what exactly is being perceived when we hear
the rhythm of music, nor is it immediately clear how our understanding of rhythm
perception can benefit from developing computational models, or what such models
should look like. Below, I will first give a brief characterization of what the term
“rhythm perception” refers to and point out which of its aspects are relevant to this
thesis. Then, to contextualize the approach taken in this thesis, I discuss the role
that computational models of cognition might play in understanding perception
and cognition and discuss different conceptions of what such models might look
like.

Rhythm perception can be decomposed into several aspects that contribute to
the experience of the listener. At a basic level, time intervals between events in a
rhythm (such as the beginning of a note) are categorized into a small number of
perceptual categories (Clarke, 1987; Desain & Honing, 2003; Jacoby & McDermott,
2017): the listener perceives for example that one note is half the length of the
previous note, or that it is three times the length of the next note, even when
actual ratios between the time intervals do not precisely reflect this.

Beat and meter are perceived regularities in a rhythm related to listeners’ ability
to coordinate their movements with rhythms (Repp, 2005; Repp & Su, 2013).
The perceived regularity causes some events in a rhythm to become “marked for

1



2 Chapter 1. Introduction

consciousness” (Cooper & Meyer, 1960, p. 8) and tends to persist in the “mind and
musculature of the listener” (Cooper & Meyer, 1960, p. 3), even in the absence
of sounded notes that reinforce it. While beat (or sometimes pulse) perception
refers to the perception of one level of regularity, meter perception refers to the
perception of multiple levels of regularity, resulting in a recurring pattern of strong
and weak beats.

Tempo is related to a sense of motion that is perceived in a rhythm, making it
possible for a rhythm to sound as if it is speeding up or slowing down. Timing
relates to small adjustments in the timing of notes that can be used expressively
and makes it possible for the same rhythm to be played in different ways that
listeners may perceive as, for example, “laid back”, “rushed”, or “stiff” (Iyer, 1998;
Honing & Bouwer, 2019).

The above characterization of the main aspects of rhythm cognition is very
condensed (for a more elaborate description, see Honing & Bouwer, 2019) but
serves to provide a sense of the variety of perceived aspects of rhythms. This
thesis is concerned only with a narrow sense of rhythm perception, namely the
perception of meter in what might be called a categorized representation of time
intervals in rhythms: symbolic representations corresponding to the different note
values found in Western music notation. Often when we use the term “rhythm
perception” in this thesis, we mean to refer to this narrow interpretation of the
term.

That brings us to computational cognitive modeling, to which I will devote a
slightly longer discussion. While generally considered a worthwhile endeavor, it
is not easy to define precisely the roles that computational modeling can play in
furthering understanding of cognition. This is partly because it is not entirely
agreed upon what a model of cognition should look like.

A dominant tradition in cognitive science considers computer models to be the-
ories of the “computations” performed by the mind in order to bring about the
perceptions of the world of which we are aware. These computations can be
described independently, without considering the particular way in which they
are implemented, as formulated most famously by Marr (1982). Christopher
Longuet-Higgins, who is credited for having first used the term “cognitive science”
(Hünefeldt & Brunetti, 2004), describes an example of this perspective in a fictional
conversation between a physicist and a biologist in which the biologist tells the
physicist: “Ask yourself, what kind of thing do we really want to know about
the brain? I suggest that what we would like is a detailed account, among other
things, of the ‘software’ ” (Longuet-Higgins, 1981, p. 12). This line of thinking
licenses computer programs to serve as explanations of the mental operations that
give rise to perception. A cognitive model, in this view, is a precise description
of the information-processing steps involved in a certain task, mapping a set of
inputs to a certain set of outputs. This reasoning has intimately connected the
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field of cognitive science to early artificial intelligence.

A compelling motivation for using computational models to formulate theories of
perception and cognition is that it “sets new standards of precision and detail in
the formulation of models of cognitive processes” (Longuet-Higgins, 1973, 1987,
p. 46). The very process of trying to formulate a precise and working solution to
some problem often leads to a deeper understanding of the problem itself, as well
as the proposed solutions. More recent echoes of this line of thinking can be found
in characterizations of the role of computational models in cognitive science as
“reverse engineering” the mind (Tenenbaum, Kemp, Griffiths, & Goodman, 2011,
p. 1279).

Another motivation relates to a certain frustration with theories that, often based
closely on empirical observations, could be said to describe perception but not
to explain how perception actually works, or why it works in that way (Longuet-
Higgins, 1981, 1973, 1987; Marr, 1982). How, for example, is a person with arms,
hands, and a brain (among other body parts) to know where the coffee cup is
on the table and how to grasp for it? To identify the physiological processes
involved in this task, such mechanisms involved in the activation of muscles and
increased blood flow to certain areas of the brain, does not by itself answer this
question. Computer models, theories precise enough to be implemented as such, or
mathematical models provide an attractive framework in which possible answers
to how and why questions about cognition can be formulated. The neuroscientist
Horace Barlow once made the following analogy, which elegantly illustrates the
necessity of understanding a complex system at multiple levels: 1

A wing would be a most mystifying structure if one did not know that
birds flew. One might observe that it could be extended a considerable
distance, that it had a smooth covering of feathers with conspicuous
markings, that it was operated by powerful muscles, and that strength
and lightness were prominent features of its construction. These are
important facts, but by themselves they do not tell us that birds fly.
Yet without knowing this, and without understanding something of
the principles of flight, a more detailed examination of the wing itself
would probably be unrewarding. (Barlow, 1961, p. 217).

Returning to music perception, a perceptual “problem” in rhythm perception may
be stated in computational terms as follows: how does a trained musician, tasked
with transcribing a melody they are hearing for the first time, know where to
place the bar lines and which time signature to place at the beginning of the
staff (loosely after Longuet-Higgins & Lee, 1982)? While concepts like bar lines

1Marr (1982) later, and more famously, formulated a strikingly similar analogy: “trying to
understand perception by studying only neurons is like trying to understand to understand bird
flight by studying only feathers: it just cannot be done” (p. 27).
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and time signatures are foreign to most listeners who have not received formal
music education, listeners are usually at some level aware of the difference between
a march and a waltz. Longuet-Higgins and Lee (1982) draw a comparison to
language: just like being able to speak a language grammatically does not require
the ability to describe its structure, so too does the perception of melodies not
require the ability to read and write music. Concepts like bar lines and time and
key signatures are thus proposed to be descriptions of the intuitive understanding
that listeners have of music, similar to how a linguist might use a syntax tree to
represent a person’s intuitive grammatical understanding of a sentence. A theory
of a listener’s rhythmic understanding of a melody might therefore take the form
of a computer program that is able to perform the transcription task of the trained
musician described above. A significant part of the research in modeling rhythm
perception can be seen as addressing variants of this problem (e.g., Longuet-Higgins
and Steedman, 1971; Longuet-Higgins and Lee, 1982; Lerdahl and Jackendoff,
1983; Temperley and Sleator, 1999; Temperley, 2007; see also Temperley, 2013).

The elegant and clear formulations in which Longuet-Higgins and colleagues defined
various computational problems involved in music perception have inspired a vast
amount of research and led to many valuable insights that played a crucial role in
bringing about the area of research that today is known as music cognition. A
significant part of this research focused on a search for “the rules” of beat and
meter perception (Povel & Essens, 1985; Lerdahl & Jackendoff, 1983; Steedman,
1977; Longuet-Higgins & Steedman, 1971; Longuet-Higgins & Lee, 1982, 1982;
Lee, 1991; Desain & Honing, 1999). However, among the insights of this research
is perhaps the realization that it is very hard to find a set of rules whose results
agree precisely with the musical intuitions of trained musicians for any input.
There always appear to be cases where the rules do not quite produce the desired
result (see for example Lee, 1991).

The computational approach applied by these models represents a particular kind
of view of cognition that is introspective and represents perception as information
processing, involving computations whose goal it is to produce the right repre-
sentations from sensory input. This way of thinking has spilled over from early
artificial intelligence, in which symbol representation and heuristic search were
dominant (Newell & Simon, 1976). Brooks (1991a) argued that this dominance is
mainly a result of technological constraints of the time but has biased the field to
consider thought and reason, and not perception and motor skills, as the aspects of
intelligence most worthy of investigation. Philosophers have called the information
processing view of perception and cognition “cognitivism” (see e.g., Anderson,
2003). They have argued that cognitivist approaches run the risk of losing sight of
the role that both the environment and the body play in perception and cognition
by focusing narrowly on cognitive mechanisms in the brain.

A very different view has been described by J. J. Gibson (1979), who argued
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that perception involves active exploration of the environment by walking around,
touching, hearing, and moving one’s head and eyes. These actions cause sensory
stimulation to change as a function of one’s movements in a way that is informative
about the environment, implying that perception and action are inextricably
intertwined. Instead of focusing on how various cognitive mechanisms might
infer information about the environment from sensory input, Gibson dedicates
almost half of his book on vision to a description of the environment and how it is
specified by stimulation of the sensory surfaces of animals like humans. Inspired in
part by these views, some philosophers and cognitive scientists have stressed that
cognition is embodied and that describing it in abstract terms that are independent
from the body and the environment misses out on important parts of the picture
(Chemero, 2009; Wilson & Golonka, 2013).

Music perception is often described in entirely abstract terms that sometimes
appear to bear no connection to physical reality. What, for example, is meter,
besides a regular pattern of strong and weak beats (Lerdahl & Jackendoff, 1983), or
a grammar from which a rhythm is generated (as proposed by Longuet-Higgins &
Lee, 1984). Iyer (1998) has elaborately described how aspects of rhythm perception
may be grounded in physical embodied interaction with the environment. The
observation that “musical motion is, first and foremost, audible human motion”
(p. 25) by which Iyer describes a point made by Shove and Repp (1995), compactly
summarizes that what we are aware of when we perceive music is likely to be
much more than abstract structure.

Two characteristics of early cognitivist models of rhythm perception stand out
in this light. First, they often focus on theory. For example, Longuet-Higgins
and Lee’s (1984) account of metrical interpretation is based on a computational
formulation of the music-theoretic concept of syncopation. Lerdahl and Jackendoff
(1983) propose a very detailed (but informal and not strictly computational) set of
well-formedness rules that specify constraints on perceived structure in music, and
a set of preference rules that describe which properties of music tend to give rise
to which interpretations. Temperley and Sleator (1999) and Temperley (2007),
in turn, propose computational models of music perception constrained strongly
by the theoretical ideas of Lerdahl and Jackendoff (1983). Second, cognitivist
models tend to pay little attention to the ways in which music perception might
be shaped by training, practice, and experience in different musical environments.
This is perhaps understandable, because slow and gradual shaping of perception
through long-term exposure is not easily captured by symbolic rules.

The lack of consensus, mentioned earlier, about the “rules” for beat and meter
perception may arguably be seen as symptomatic of the cognitivist approach.
Van Gelder (1995) showed that the paradigm of symbolic computation is not the
only way in which cognition can be described; for some phenomena, the language
of dynamical systems theory seems much more appropriate. If beat and meter
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perception is more appropriately described as a dynamical system, as some have
argued (e.g. Eck, Gasser, & Port, 2000; Large & Kolen, 1994; McAuley, 1995),
then it is not surprising that it is difficult to find a set of rules that adequately
describe it. Furthermore, rhythm perception has been argued (Iyer, 1998; London,
2012; Clayton, 2000) and demonstrated (Stobart & Cross, 2000; Hannon & Trehub,
2005b; Soley & Hannon, 2010; Hannon, Soley, & Ullal, 2012; Jacoby & McDermott,
2017; Polak et al., 2018) to be shaped by practice, experience, and training that
results from embedding in a musical environment (referred to as enculturation in
this thesis). This suggests that even if rules can appropriately describe rhythm
perception, there may not be a single set of rules that can fully account for it. 2

There is a class of rhythm perception models that are formulated as dynamical
systems. These models describe beat and meter perception as a form of coupled
oscillation (Large & Kolen, 1994; McAuley, 1995), or as resonance in dynamical
models of neural networks (Large, Herrera, & Velasco, 2015). Such approaches
do not propose rules by which symbolic representations are inferred from input.
Instead, they propose a mathematical description of a physical phenomenon as an
explanation of beat and meter perception (Large, 2010b). However, while these
models are to some extent capable of simulating effects that enculturation might
have on rhythm perception (Large et al., 2015), the degree to which patterns
and regularities in rhythms can influence the behavior of these models is at the
moment limited.

A primary contribution of this thesis is a probabilistic generative model of rhythm
perception that can learn from patterns and regularities in empirical samples
of rhythms that represent musical environments. Although there are significant
differences between probabilistic models and rule-based models, the work presented
in this thesis is in many ways unashamedly cognitivist. It trades primarily in
abstract representations of rhythm and meter and does not explicitly make contact
with what is arguably one of the defining characteristics of rhythm: its ability to
inspire and induce movement. However, there is one important sense in which it
takes inspiration from the ecological and embodied views of cognition mentioned
above: we argue that rhythm perception cannot be understood independently
from the musical environment by which it has been shaped and view rhythm
perception as a product of the patterns and regularities in a listener’s musical
environment.

Compared to earlier probabilistic approaches to rhythm perception (Temperley,
2007, 2010), the emphasis of this thesis lies less on music theory and more on
what can be learned from patterns and regularities in the musical environment.
We are therefore interested in the diversity of patterns and regularities in different

2It should be noted that the authors of the rule-based approaches stressed that their models
are intended to reflect listeners familiar with Western classical music (e.g., Longuet-Higgins,
1979).
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musical environments and adopt a cross-cultural approach. We model rhythm
perception as a function of the musical environment by which it has been shaped
and investigate how “enculturated” models perform on both culturally familiar
rhythms and culturally unfamiliar rhythms. That is, instead of attempting to
model the listener, we model experienced listeners.

This approach is motivated by a theory which suggests that prediction-error
minimization is a more useful concept for describing perception and cognition
than information processing. This theory is known as predictive processing (or
predictive coding) and has been gaining popularity in recent years (Clark, 2013).
It has roots in work in computational neuroscience (Rao & Ballard, 1999), the
efficient coding hypothesis (Barlow, 1961; Simoncelli & Olshausen, 2001; Smith &
Lewicki, 2006), and Bayesian theories of perception (Weiss, Simoncelli, & Adelson,
2002; Knill & Pouget, 2004). According to the predictive processing theory,
perception is not just influenced by patterns and regularities in the environment
but is fine-tuned by them in a principled way. Perception, it is proposed, relies
on internal probabilistic generative models that describe, or learn to describe,
how objects and events in the environment (including body movement) cause
sensory stimulation. By minimizing prediction error between this model and
sensory stimulation, the parameters of the generative model will come to reflect
the causes of sensations. Prediction-error minimization is achieved by probabilistic
(Bayesian) inference on the parameters of the generative model.

Predictive processing explains both perception and perceptual learning (E. J.
Gibson, 1963) as prediction-error minimization and therefore naturally accommo-
dates modeling the influence of the musical environment on rhythm perception of
culturally embedded listeners. Although the work in this thesis does not engage
with embodiment, Clark (2016) argues that the predictive processing theory leads
to an embodied view of the mind. The primary model presented in this thesis may
be regarded as a theory of the kind of generative model that listeners might, if
the predictive processing theory is accurate, employ when they perceive rhythms.

1.1 Outline of this thesis

This thesis discusses topics that may be categorized as theoretical, methodological,
and empirical. First, it presents a theory based on predictive processing, in the form
of a probabilistic generative model, of how rhythm perception is influenced by the
musical environment. Second, regarding methodology, it presents a framework in
which a variety of music perception models can be represented as dynamic Bayesian
networks: generative models that iteratively perform probabilistic inference on a
sequence of observations. Finally, it describes model simulations in which different
probabilistic generative models are tested on empirical samples of rhythms from
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different cultures to investigate how statistical regularities in rhythms may influence
the way enculturated listeners perceive meter.

The main contribution is a novel probabilistic model of meter perception. Rhythm
and meter, according to this model, are related in a different way than other
models of beat and meter perception propose (e.g., Povel & Essens, 1985; Large &
Palmer, 2002; Large et al., 2015; Temperley, 2007). Most other models describe
meter as a periodic pattern of event expectations, in which events at metrically
strong positions establish or reinforce the meter and the absence of events at
metrically strong positions serves as counterevidence to the meter. These models
provide no means by which internalized rhythmic patterns can bias the metrical
interpretation of a rhythm. The model presented in this thesis learns to infer
meter based on empirical samples of rhythms. Specifically, it learns the sequential
statistics of rhythmic patterns expressed in relation to the metrical cycle (London,
2012, p. 96).

The model, which is introduced in Chapter 6 (a more technical description is given
in Chapter 5), can be viewed as a generator of predictions that evaluates a rhythm
note by note. Before encountering a note, the model generates a probability
distribution that assigns probabilities to different times at which that note may
occur (these are the predictions). These predictions are based on a probability
distribution over metrical interpretations that has been inferred from the previous
notes encountered in the current rhythm.

Consider, for example, the rhythm shown in two different representations in
Figure 1.1. The top half of the figure represents the rhythm as a set of evenly-
spaced time-points, visualized by dots, some of which contain a sound (e.g., a
drum stroke) indicated by vertical lines. The bottom half shows one possible
transcription of the rhythm, in which it has been metrically interpreted in 2/4
time. If we would evaluate the model on this rhythm, it would process the rhythm
sound by sound. Before observing each sound, it would generate a probability
distribution over the possible times (with respect to the present) at which the
sound could occur. After observing each sound, it would revise its probability
distribution over possible metrical interpretations of the sounds based on where
the sound actually occurred.

If the model, after evaluating the first five sounds, has inferred that the rhythm
is likely to be in 2/4 time, as shown in the transcription of the rhythm in the
bottom half of the figure, its predictions of where the sixth sound will occur are
based on where onsets have tended to occur in previous times that the model has
encountered the preceding pattern of five sounds in a 2/4 meter. In this way, the
predictions of the model are based on its previous encounters with rhythms. If the
timing at which the next sound (the sixth) occurs confirms the model’s prediction,
that confirmation reinforces the model’s inferred 2/4 interpretation of the rhythm.
If the prediction is not fulfilled, other interpretations of the rhythm might become
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Figure 1.1: Two representations of a rhythmic cliché. The top part of the figure
depicts the rhythm as dots that represent evenly-spaced time points. Moments at
which a sound occurs are indicated by vertical lines. The bottom part shows the
same rhythm, notated in Western music notation, including a time signature and
bar lines that indicate its metrical interpretation.

more likely.

An interesting perceptual phenomenon occurs when a listener encounters the rest
at the beginning of the second bar (corresponding to the second dot after the fifth
sound in the top half of Figure 1.1). Even though there is no sound at this moment,
the silence is unusually noticeable. This phenomenon has been called a loud rest
(London, 1993) and is a direct result of a listener’s metrical interpretation of a
rhythm. Loud rests are commonly described as a strong violation of expectation:
a silence where a sound was expected based on the perceived meter (e.g., Honing,
2009). Accordingly, most existing theories of beat and meter perception treat loud
rests as counter evidence to the metrical interpretation that gave rise to them.

Perhaps depending on the reader’s cultural background, they are likely to have
heard the rhythm in Figure 1.1 more often than they have ever wished for. If the
sample of rhythms from which the model presented in this thesis has learned is
anything like this reader’s experience, it will strongly predict the sixth sound to
occur precisely where it does in this example, namely at the second eighth-note
position of the second bar. That means that to this model, the loud rest that
occurs after the fifth sound is strongly expected. In fact, the confirmed prediction of
the timing of the sixth sound will reinforce the metrical interpretation under which
the loud rest occurred (in a similar vein, Witek et al., 2020 recently suggested
syncopations can reinforce a sense of beat). This conflicts with the predictions of
most existing models of meter perception (Longuet-Higgins & Lee, 1984; Povel &
Essens, 1985; Large & Palmer, 2002; Large et al., 2015) in which the absence of a
sound on a metrically strong position, under some metrical interpretation, cannot
reinforce that metrical interpretation (but cf. Desain & Honing, 1994).

That is not to say that the model assumes that listeners do not experience loud
rests, but this experience is, in some sense, outside the scope of the model. It has
been suggested that listeners maintain different kinds of expectations regarding
the timing of sounds in musical rhythms (Teki, Grube, & Griffiths, 2012; Bouwer,
Honing, & Slagter, 2020). Vuust, Gebauer, and Witek (2014) and Vuust and
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Witek (2014) suggested that loud rests may simultaneously be a violation of
expectations at one level and a confirmation of expectations at another level by
appealing to different levels of the predictive processing hierarchy: loud rests may
be violations of (more embodied) expectations at lower levels in the hierarchy,
while they may simultaneously confirm (more abstract) expectations at higher
levels. In the context of this view, the proposition explored by the current model
is that the expectations at higher levels may influence the metrical interpretation
that drives expectations at lower levels.

This thesis is also about computational modeling of music cognition (Pearce, 2005;
Honing, 2006; Temperley, 2013) and a significant part of it (Chapters 3 and 4) is
dedicated to developing a framework in which such models can be defined and
demonstrating the use of this framework. The framework enables different music
perception models to be represented in a unified way, namely as dynamic Bayesian
networks with deterministic constraints. Computational cognitive models are
sometimes presented in ways that are not completely formal and explicit, which
harms the reproducibility of modeling research and makes it difficult to build and
improve upon existing models. The framework may alleviate these problems, since
it facilitates formal definitions of models that can straightforwardly be translated
into executable implementations.

Dynamic Bayesian networks are probabilistic generative models that describe
processes that develop dynamically over time (such as music). They can be
used to model perception as a cyclical process in which observations occur in a
sequence of temporally indivisible moments: In each moment, a model generates
a prediction (a probability distribution over possible observations), after which
an observation is made. Based on the observation, probabilistic inference is
performed to update the parameters of the model, such that each observation
influences subsequent predictions. This gives rise to a dynamic interaction between
observations and expectations unfolding and evolving across time, making dynamic
Bayesian network models well-suited for modeling music perception.

At each event in a sequence, both the uncertainty of a prediction and the dis-
crepancy between the prediction and observation (the prediction error) can be
quantified. Such quantifications of prediction and uncertainty have been recently
been applied in music perception research using statistical models of melodies
(e.g., Omigie, Pearce, Williamson, & Stewart, 2013; Egermann, Pearce, Wiggins,
& McAdams, 2013; Hansen & Pearce, 2014). Models formulated as dynamic
Bayesian networks are consistent with this approach and can be used to generate
theoretical predictions for experiments investigating musical expectations and
uncertainty (see also Pearce, 2018).

For any computational model, “the proof of the pudding is in the eating.” Even
apparently simple models may interact with empirical data in unexpected and
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unanticipated ways (Longuet-Higgins, 1981, 1987; Desain & Honing, 1999). 3 This
is especially true for models that learn from large amounts of empirical data. When
different models and different empirical datasets are involved, these simulations
can be set up like an experiment in which we investigate how characteristics of the
empirical data and characteristics of a model contribute to the model’s behavior.

In Chapter 7 we describe such experiments. Here, we consider the ability of
a listener to perceive meter as a function of three variables: different ways in
which the listener might be open to shaping by a musical environment (modeled
by different probabilistic models), the musical environment itself (represented
by empirical samples from music corpora), and the statistical properties of a
current rhythm (drawn from one of the samples representing different musical
environments). These three factors give rise to what we call statistical affordances
for meter. In the experiments, we compare two models defined in Chapter 5
using three different empirical samples of rhythms: one sample of Turkish makam
music and two samples of German and Dutch folksongs. One of these models is
the primary model presented in this thesis and the other is based on traditional
theories of meter perception (Temperley, 2007). As such we compare both the
effect of generative models representing different theories of meter perception and
the effect of different musical environments by which perception might be shaped.

We suggest such a comparison can be enlightening. For one, it may reveal patterns
that remain stable between different musical environments as well as patterns that
vary between different musical environments. This topic has received considerable
attention in recent years (Savage, Brown, Sakai, & Currie, 2015; Jacoby et al.,
2019; Mehr et al., 2019; Jacoby et al., 2020). The consideration of different
models representing different theories of perception, however, illustrates that
similarities and differences also depend on the model used to characterize them.
This comparative approach is furthermore interesting, we suggest, because it shifts
the focus from evaluating the performance of different computational models
relative to what has been labeled as the “correct” interpretation of a rhythm
(i.e., the “ground truth” [Gouyon and Dixon, 2005]) to comparing the relative
performance of models on materials from different cultures.

Based on the results, we find evidence that there are statistical patterns in rhythms
that listeners could use to infer meter from rhythms. These patterns are more
nuanced than the statistical patterns to which a model derived from Temperley’s
(2007) model is sensitive. Furthermore, we find evidence that there are idiom-
specific patterns and regularities that potentially provide only serve as cues for
meter to enculturated listeners familiar with these idiom-specific patterns. These
findings may serve as theoretical predictions that could be tested in cross-cultural

3Such surprises may themselves be enlightening as they may reveal overlooked consequences
of theories and models of cognition that come to light only when they are implemented algorith-
mically and tested on empirical data.
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experiments in the future.

1.2 Summary of chapters

Chapter 2 discusses ways in which rhythm and meter perception has been found
to be influenced by prior experience, practice, and training. Against this backdrop,
it reviews some of the different rhythm perception modeling approaches that
have been pursued in the past decades. It shows that these approaches can be
associated with different philosophies of perception and cognition: cognitivism,
embodied cognition, and predictive processing. The aim of the chapter is to draw
attention to the remarkable diversity displayed by modeling approaches proposed
previously and to suggest that predictive processing is an attractive framework
for modeling the influence of experience, practice and training.

Chapters 3, 4, and 5 are methodological. In Chapter 3, a framework for the
specification of dynamic Bayesian networks with deterministic constraints is intro-
duced. We discuss how deterministic constraints can be encoded by congruency
constraints, functions that encode the assumption that some values of a random
variable have zero probability of occurring. We discuss the consequences that
these assumptions have for calculating marginal probabilities and performing
inference in dynamic Bayesian networks. We then propose a model-definition
framework in which the variables and congruency constraints that constitute a
dynamic Bayesian network with deterministic constraints are expressed in a single
table.

To illustrate how such tables can compactly define music perception models,
Chapter 4 presents an adaptation of Temperley’s (2007) rhythm perception model.
Since this adaptation is a dynamic Bayesian network, it can be evaluated in
temporally incremental way. This requires a few relatively minor technical and
conceptual changes to the original model. The chapter draws attention to how
the use of the model-definition framework results a detailed yet concise definition
of the model.

Chapter 5 uses the model-definition framework to define two rhythm perception
models: a simplification of Temperley’s model, as described in Chapter 4, and an
adaptation of the model introduced in Chapter 6. Common Lisp implementations
of these models, based on an implementation of the framework of Chapter 3, can
be found in Appendix A. We describe the notion of a rhythm space, which is a
set of unique rhythms over which the two models define a complete probability
distribution. We furthermore describe how empirical distributions of rhythms in
this space can be used to estimate the parameters of the two models. In Chapter 7,
we apply this process in a pair of experiments in which we compare the two models
using different empirical samples of rhythm spaces.
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Figure 1.2: A graphical representation of how to read this thesis. Chapters
corresponding to the numbers in the gray shaded nodes are self-contained and
can be read independently. Before reading chapters corresponding to numbers in
nodes that have incoming arrows, it is recommended to first read the chapters
corresponding to numbers in nodes from which the arrows originate. If an incoming
arrow has a dotted line, reading the chapter corresponding to the node from which
it originates is not a prerequisite for understanding the chapter but will allow the
chapter to be understood in more depth.

Chapter 6 introduces and motivates the primary probabilistic rhythm perception
model proposed in this thesis. The model is intended to describe effects that
long-term exposure to rhythms from a certain musical environment may have
on rhythm perception. This chapter describes the model as an extension of the
IDyOM modeling framework (Pearce, 2005), using the terminology of multiple
viewpoint systems (Conklin & Witten, 1995). A technical description and self-
contained description of this model is given in Chapter 5. Simulation results are
reported which assess the model’s ability to classify the meter of rhythms in an
empirical corpus and its ability to predict the timing of onsets in rhythms, based
on the preceding onsets in the rhythm. It furthermore presents exploratory results
that identify rhythms for which inferential biases towards different meters can tip
the model’s metrical interpretation. The main difference between the presentation
of the model in Chapter 5 and in this chapter is that Chapter 5 defines the model
in its own right, rather than in terms of multiple viewpoint systems. Furthermore,
courtesy of the congruency-constraint definitions, the definition in Chapter 5 is
more concise and explicit and can be compared directly to the adaptation of
Temperley’s (2007) meter perception model defined in the same chapter.

Finally, Chapter 7 describes three experiments, two of which use the models
described in Chapter 5. Here, we investigate the effects that (1) the statistical
learning capabilities of a model, (2) the musical idiom from the model learns
(its patterns and regularities) and (3) the musical idiom on which the model is
evaluated have on the model’s ability to infer meter and to predict the timing
of onsets in rhythms. Each of these factors is varied independently. Datasets of
Turkish makam music and German and Dutch folksongs represent the different
musical idioms. The results suggest that there are statistical patterns in rhythms
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that may contribute to meter perception and are more complex than the degree
to which a rhythm aligns its onsets with metrically strong beats. Furthermore, we
find evidence that some of these patterns are specific to Turkish makam music
and others to Dutch and German folksongs but also that the differences between
rhythms of these two musical idioms are limited.

Figure 1.2 shows a graph representing which chapters in this thesis rely on concepts
developed in preceding chapters. Chapter corresponding to numbers shown in
gray nodes, that is Chapters 2, 3, 6, and 7, are self-contained and can be read
independently. Chapters 4 and 5 build on the concepts developed in Chapter 3.
While Chapter 7 is self-contained, readers interested in the technical details of
the models and methods may want to read Chapters 3 and 5 first. Readers not
familiar with Temperley’s (2007) meter perception model may furthermore benefit
from reading 4 before reading Chapter 5.

Theoretical motivation for the work pursued in this thesis can be found most
prominently in Chapter 2, and also in Chapters 6 and 7. The technical details of
the modeling approach are discussed primarily in Chapters 3, 4, and 5. Empirical
results based on model simulations performed with samples of rhythms can be
found in Chapters 6 and 7.



Chapter 2

Computational modeling of rhythm
perception and the role of enculturation

2.1 Introduction

In the music cognition literature, a conceptual distinction is often drawn between
rhythm and meter. Rhythm refers to a temporal pattern of sounds, while meter
refers to a subjective mental phenomenon (Honing & Bouwer, 2019). Listening to
rhythms tends to induce a sense of pulsation in listeners (Povel & Essens, 1985).
This pulsation, known as beat or tactus (Lerdahl & Jackendoff, 1983), provides
a temporal reference with which movements can be coordinated (Repp, 2005;
Repp & Su, 2013). We speak of meter when some beats appear as more accented
than others and these accented beats recur more or less regularly (Cooper &
Meyer, 1960). Pulse and meter form the basis of temporally coordinated musical
activities such as clapping, dancing, singing or playing an instrument. While these
characteristics of meter are generally regarded as uncontroversial among music
cognition scholars, two aspects that elude consensus are the precise nature of the
mental phenomenon known as meter, and the degree to which it is shaped by a
listener’s history of prior musical experiences and activities.

Regarding the nature of the mental phenomenon, a range of approaches have
been proposed. Some of these highlight abstract hierarchical structures (Longuet-
Higgins, 1978; Longuet-Higgins & Lee, 1984; Lerdahl & Jackendoff, 1983), others
entrainment of attention (Jones & Boltz, 1989; Large & Jones, 1999), neural
resonance (Large & Snyder, 2009), or embodied and ecological aspects of rhythm
perception (Shove & Repp, 1995; Iyer, 1998; Clarke, 1987; Todd & Lee, 2015).

15
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More recently, approaches based on predictive processing have been proposed
(Vuust & Witek, 2014; Van der Weij, Pearce, & Honing, 2017).

Computational cognitive models of rhythm and meter perception (for brevity, we
refer to such models collectively as rhythm perception models) are the focus of this
chapter. By computational models, we mean models that are described—ideally in
a formal language—with a level of precision that allows them to be implemented as
a computer program, without the need to fill in many details (see also Temperley,
2013). Such models may be distinguished from verbal-conceptual models, which
are expressed in prose or as conceptual diagrams, and may be consistent with
multiple computational models.

We discuss rhythm perception models in the context of three broad theoreti-
cal perspectives, namely cognitivism (cf. Anderson, 2003), embodied cognition
(Brooks, 1991b; Van Gelder, 1995; Anderson, 2003; Chemero, 2009), and predictive
processing (Clark, 2013). Each of the above approaches can be associated with
one of these perspectives. In turn, these perspectives can be associated with
different computational modeling principles that underlie the models discussed in
this chapter.

Briefly, cognitivism views cognition as being primarily involved in rule-governed
information processing. This perspective is associated strongly with classical
artificial intelligence approaches (e.g., see Newell & Simon, 1976). Among rhythm
perception models, classic rule-based models (e.g., Longuet-Higgins & Steedman,
1971; Longuet-Higgins & Lee, 1982) and preference-rule models (Temperley &
Sleator, 1999; Temperley, 2001) may be associated with this perspective (see
Section 2.3). Embodied cognition may be characterized by a rejection of the
idea that information processing and abstract representation provide the most
appropriate explanation of many behaviors. It instead emphasizes the role of
continuous dynamic interaction between brain, body and environment. Many
characteristics of adaptive oscillator (e.g., McAuley, 1995; Large & Palmer, 2002),
and neural resonance (e.g., Large et al., 2015) models harmonize well with this
perspective (see Section 2.4). Finally, the term predictive processing (introduced by
Clark, 2013) covers a class of theories that build on the Bayesian brain hypothesis
(Knill & Pouget, 2004) and predictive coding (Rao & Ballard, 1999). These
theories propose that perception and cognition can be understood as prediction-
error minimization in a probabilistic generative model. Probabilistic generative
approaches to rhythm perception (Temperley, 2007; Van der Weij et al., 2017)
are consistent with this perspective (see Section 2.5).

The question of the degree to which rhythm perception of individual listeners
is shaped by their history of prior experiences and activities is often considered
in the context of cultural background. Cultural background is one predictor
of stable tendencies in histories of prior musical experiences and activities of
individual listeners. If these stable tendencies have the power to influence rhythm
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perception, cultural background may predict certain individual characteristics of
rhythm perception in listeners from different cultural backgrounds. We use the
term enculturation to refer to the acquisition of implicit cultural knowledge by
exposure to, and participation in, cultural activities. The predictive processing
perspective most prominently draws attention to the role that enculturation might
play in the shaping of perception and cognition. Although neither cognitivism, nor
embodied cognition are explicitly incompatible with this role, predictive processing
accounts for it normatively, namely as a consequence of a domain-independent
prediction-error minimization mechanism.

While there is considerable evidence, some of which is discussed in Section 2.2 of this
chapter, suggesting that enculturation shapes rhythm perception, enculturation
plays little to no role in the majority of existing rhythm perception models. Many of
these models have been inspired by Western music theory, and have been evaluated
only on Western tonal music. A related lack of diversity can be identified in the
materials and participants used in empirical and experimental music cognition
research (Huron, 2008; Jacoby et al., 2020). This situation is problematic, because,
assuming rhythm perception undergoes shaping by enculturation, it results in a
biased understanding of rhythm perception.

Among models that do not account for effects of enculturation, some explicitly
limit their scope to Western tonal music (e.g., Longuet-Higgins, 1979). Others
aim to reflect universal constraints on perception and cognition (Povel & Essens,
1985; Large, 2010b). Parameters of such models are typically determined by
musical intuition (e.g., Longuet-Higgins, 1976; Povel & Essens, 1985; Temperley &
Sleator, 1999), or by optimal fit to experimental data (e.g., Shmulevich & Povel,
2000). On the other hand, there are models that aim to simulate the effects of
prior exposure (one aspect of enculturation) to certain kinds of music on rhythm
perception (Van der Weij et al., 2017; Tichko & Large, 2019). Parameters of
these models are derived from empirical samples of rhythms that are intended
to represent previous exposure to rhythms (see also Patel & Demorest, 2013;
Pearce, 2018; Morrison, Demorest, & Pearce, 2019). Some of these models are
probabilistic generative models, which are consistent with the mechanisms posited
by the predictive processing perspective.

In summary, this chapter discusses computational cognitive models of rhythm
perception and aligns them with three broad theoretical perspectives on cognition.
It furthermore considers the role that enculturation may play in rhythm and
meter perception, and the degree to which models take this role into account.
The next section reviews research related to the role of enculturation in shaping
rhythm perception. The remaining sections of this chapter are dedicated to each
of the three broad theoretical perspectives on cognition: cognitivism, embodied
cognition, and predictive processing. Each section opens with a brief discussion of
the theoretical perspective, before turning to the rhythm perception models that
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are consistent with it.

Finally, we note that evaluating the performance of the discussed models, and
the connection between model predictions and empirical observations receive less
attention in this chapter than the reader might have expected. This is partly
because the emphasis lies on theoretical differences between cognitive models, and
partly because extensive comparisons between computational models, especially
on culturally diverse datasets are simply not available (but for an exception, see
Desain & Honing, 1999).

2.2 A cross-cultural perspective on rhythm per-
ception

Perhaps in part due to its high level of pervasiveness,1 Western tonal music has,
explicitly or implicitly, played a significant role in the formation of theories and
models in music cognition (see also Jacoby et al., 2020). However, this musical
tradition represents only a small slice of the variety in musical cultures that exists
around the world (Trehub, Becker, & Morley, 2015; Savage et al., 2015; Mehr
et al., 2019). If rhythm perception shaped by enculturation, it can be expected to
vary for individual listeners depending on kind of music they are familiar with.

Below we discuss studies that suggest rhythm perception is shaped by enculturation.
The discussion is considers three aspects of rhythm perception: the relation between
metrical hierarchies and the likelihood of events, constraints for tactus beats to
be isochronous, and the shape of perceptual categories for temporal intervals.

2.2.1 Metrical hierarchies and event likelihood

Arguably due to the familiarity of theorists with the Western musical idiom,
metrical hierarchy plays a prominent role in theories of rhythm perception. The way
such hierarchies are commonly conceptualized can be attributed to the influential
work of Lerdahl and Jackendoff (1983), Longuet-Higgins (1978), Longuet-Higgins
and Lee (1984). These authors describe meter as a hierarchy of metrical levels,
popularly depicted as metrical grids by Lerdahl and Jackendoff (see Figure 2.1).
Each metrical level consists of beats that are spaced evenly in time (isochronous).
Beats are described as duration-less points in time, represented abstractly in the
mind of the listener. The resulting representation imposes a pattern of alternating

1Huron (2008, p. 457) illustrates this point anecdotally, describing an episode in which he,
joining an expedition of biologists, encountered subsistence hunters in the western Amazon that,
thanks to their transistor radios, were familiar with Western popular music.
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Figure 2.1: A metrical grid visualizing the putative hierarchical organization of two
bars of a ternary time signature (such as 3/4 time). The hierarchy contains three
metrical levels. The dots represent beats, the horizontal dimension represents time
(which flows from left to right), and the vertical dimension represents metrical
salience (towards the top of the figure is more salient). The top level usually
indicates the bar-level periodicity. Note that between each pair of dots on a higher
level, two or three dots occur at a lower level. For each top-level beat, there are
three middle-level beats, and for each middle-level beat there are two beats on the
lowest level, indicating ternary subdivision of the top level and binary subdivision
of the middle level. Also note that beats at each level are equidistant in time.

strong and weak beats onto a perceived rhythm, where the metrical strength
(or accent, or salience) of a beat is determined by the highest metrical level in
which it occurs. Lerdahl and Jackendoff (1983) distinguish between phenomenal
accents, which are due to way a piece of music is performed, and metrical accents,
which are due to the metrical interpretation of the music by a listener, and occur
on metrically strong beats. This distinction highlights the conceptual difference
between the rhythm and its metrical interpretation by a listener.

It is commonly assumed in computational and verbal-conceptual theories of
rhythm perception that the metrical strength of a beat represents the strength
of prediction or expectation that an event will occur (Temperley, 2007; Large,
2008). The metrical phenomena of “loud rests” (London, 1993) and syncopation
are commonly related to this assumption. A loud rest occurs when an event
unexpectedly does not occur at a metrically salient beat. Syncopation occurs
when a metrically salient beat passes silently or unaccented and is preceded by
an onset or accent at a metrically weaker beat (Longuet-Higgins & Lee, 1984).
These phenomena are generally described as deviations from the norm, or as
violations of expectation (Fitch & Rosenfeld, 2007; Bouwer, Burgoyne, Odijk,
Honing, & Grahn, 2018). Consequently, measures of syncopation are sometimes
used to estimate the perceptual complexity of rhythms based on the idea that
rhythms whose constituent events have unpredictable timing will be experienced
as more complex (e.g., see Witek, Clarke, Wallentin, Kringelbach, & Vuust, 2014).
However, recent studies have suggested that the presumed correlation between
metrical strength and event expectation may not hold for all listeners.

Palmer and Krumhansl (1990) hypothesized that the “frequency with which
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musical events in a piece occur in a given metrical context may provide important
perceptual cues to meter”. Using a set of Western classical music compositions
by four different composers, Palmer and Krumhansl constructed event-frequency
distributions based on the relative frequency of onsets at different positions in
a bar. Such distributions were constructed separately for different meters and
composers. In support of their hypothesis, Palmer and Krumhansl found that
metrical salience more or less predicts the relative frequency of events, and that
this effect is stable for different composers. Palmer and Krumhansl furthermore
conducted a pair of behavioral experiments, the results of which indicated that
expectations of listeners (especially if they are musicians) for notes to occur in
different metrical contexts correlated with metrical salience of those contexts.

While Palmer and Krumhansl highlight the role of statistical regularities in music,
they interpret this role in the context of multileveled representations of metrical
hierarchies. They suggest that observed frequency distributions of musical events
in different metrical contexts result from the presence of such metrical hierarchies
in the minds of composers and listeners, rather from stylistic constraints in the
music. However, Palmer and Krumhansl qualify this finding by noting that their
observations are limited to Western classical music. Indeed, subsequent corpus
studies applying the same methodology to rhythms from different musical idioms
suggest a more prominent role for stylistic constraints in the shaping of frequency
distributions of event timing.

Holzapfel (2015) analyzed event-frequency distributions derived from a corpus of
Turkish makam music (Karaosmanoğlu, 2012). Turkish makam music is a style of
both classical and folk music in which rhythmic organization is centered around
the notion of an usul (Marcus, 2001). Usuls are rhythmic modes, characterized
by a pattern of drum strokes. Holzapfel derived these distributions for Turkish
makam music by collapsing over usul cycles, which are annotated in the corpus.
The results show that compared to Western music, onsets in Turkish makam
music were more spread out over different positions in the metrical cycle, and that
usul patterns could be used to classify the usul underlying makam compositions.

London, Polak, and Jacoby (2017) examined a set of Malian djembe ensemble
recordings using event-frequency distributions. This music does not make use
of music notation, so London and colleagues relied on onset annotations of the
recordings. After correcting for tempo changes, the observed onsets were collapsed
over metrical cycles. Results show that the relative frequencies of events at
different positions in the metrical cycle do not appear to be structured by metrical
salience patterns, even though the the rhythms are metrically structured and the
consistent timing subdivisons suggests the presence of a regular beat.

The above findings are consistent with the idea that the distribution of events over
positions in the metrical cycle provides a cue for meter. However, metrical hierarchy,
as predicted by theories based on Western music theory (Longuet-Higgins, 1978;
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Longuet-Higgins & Lee, 1984; Lerdahl & Jackendoff, 1983), appears not to be
the only predictor of those patterns. Based on their findings in Malian djembe
ensemble recordings, London et al. (2017) claim that “the shared presumption
that onset frequency is correlated with metrical accent holds only contingently,
that is, for the corpora of Western classical and popular music that were used in
these studies, and for which these models were developed” (p. 478). This also
calls into question the view that syncopations necessarily reflect violations of
expectation. Iyer (1998) anticipated this, suggesting that one “should not regard
the global musical preponderance of ‘syncopation’ (off-beat accents) as a vast set
of exceptions to the ‘normal’ accentual rules of meter, but rather as convincing
counterexamples to such proposed accentual rules.” (p. 44).

2.2.2 Meters with non-isochronous tactus beats

Theories metrical structure often include constraints for the beats at the tactus
level to be evenly spaced (isochronous). Longuet-Higgins (1978), Longuet-Higgins
and Lee (1984) described meter generatively as the recursive subdivision of intervals
into two or three evenly spaced beats. Similarly, Lerdahl and Jackendoff (1983)
suggested that beats in well-formed metrical hierarchies must be more or less
evenly spaced. The authors cited here have indicated that their theories apply
primarily to Western music, but their ideas have nevertheless shaped subsequent
research, which does not always acknowledge this qualification.

Meters with uneven (non-isochronous) intervals between tactus beats, while rela-
tively uncommon in Western classical music, are prevalent in many musical styles
(e.g., see London, 1995; Polak et al., 2018). Cross-cultural studies have suggested
that these meters are readily processed by listeners familiar with these structures.
London (1995) calls such non-isochronous meters “complex”, and argues that a
non-isochronous tactus beat needs to be anchored in a faster, and isochronous,
underlying pulse, such that tactus beats are measured by either two or three of
these faster pulses. This suggestion has been challenged by observations that non-
isochronous tactus beats do not always adhere to an underlying isochronous grid
(Kvifte, 2007). Furthermore, it has been suggested that the purported complexity
of non-isochronous meters is overridden by familiarity: adults and infants with
exposure to non-isochronous meters are able to detect violations of the meter
while adults with limited exposure to such meters can only do this for isochronous
meters (Hannon & Trehub, 2005b; Soley & Hannon, 2010; Hannon et al., 2012).
For such listeners, rhythms in non-isochronous meter are no more complex than
those in an isochronous meter.
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2.2.3 Perceptual categories for temporal duration ratios

It is thought that ratios between continuous time intervals in rhythms are perceived
as a small number of discrete perceptual categories (Clarke, 1987; Desain & Honing,
2003). These categories appear to be centered around small-integer ratios (such
as 1:2:1 and 1:2:3), but their size and shape varies, resulting in perceptual biases
(Desain & Honing, 2003; Jacoby & McDermott, 2017). It has been hypothesized
that small-integer ratios are a universal constraint on perceptual categories for
duration intervals (Mehr et al., 2019). In support of this hypothesis, Mehr et al.
found that simple-integer duration ratios are prevalent in a culturally diverse
sample of music recordings. Furthermore, Savage et al. (2015) found evidence for
the widespread occurrence for binary and ternary subdivision as well as isochronous
beats to occur in music.

Jacoby and McDermott (2017) found evidence that biases in categorical perception
of temporal intervals, that is, the size and shape of perceptual categories, may be
attributable in part to enculturation. In a cross-cultural study involving adult
members of a native Amazonian society (the Tsimané) and North American adults,
they found that size and shape of perceptual categories for temporal intervals
differed significantly between these two groups, but also that in both groups,
perceptual categories appeared centered around small-integer ratios. Since the
musical practices of the Tsimané and North American participants are apparently
different enough to cause the observed differences in perceptual biases, this
commonality is especially remarkable and consistent with the potential universality
of small-integer ratio categories for ratios between temporal intervals in rhythms.

Polak, London, and Jacoby (2016), Polak et al. (2018), however, present work that
challenges the hypothesized universality of (perceptual categories for) small-integer
duration ratios in rhythms. Malian djembe ensemble performances commonly
contain “swung” subdivisions—intervals subdivided into intervals related by a
complex ratio. Polak and colleagues show that these non-isochronous subdivisions
afford the production of precise and consistent timing patterns in an ensemble
context. This seems to suggest that these Malian musicians are able to entrain to
complex-ratio beat subdivisions. Polak et al. (2018) suggest that the production
of such non-isochronous subdivisions may be supported by non-isochronous per-
ceptual categories that depend on experience and training and, in a cross-cultural
study, found evidence for the presence of a such a category expert musicians from
Mali, but not in expert musicians from Germany or Bulgaria.

Musical features that are surprisingly prevalent in music from all over the world,
known as statistical universals (Savage et al., 2015), are commonly interpreted as
evidence for innate cognitive constraints. However, while the statistical universality
of a musical feature may be a necessary condition for such constraints, it is
not a sufficient condition. Individuals from different cultures share more than
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genes: bodily constraints and stable properties of natural environments that are
independent of geographic location may influence development in universal ways
and could therefore also underlie universal tendencies. The link between innate
constraints and statistical universals is perhaps further weakened by the dynamics
of cultural transmission. Based on simulations with a Bayesian model of cultural
transmission, Thompson, Kirby, and Smith (2016) argue that it is possible for
strong universals to arise from weak and defeasible cognitive biases.

2.2.4 Reconciling enculturation with universal tendencies
in rhythm perception

Some authors, such as Temperley (2000) and Agawu (1995), warn that there exists
a tendency, primarily in the ethnomusicological literature, to overstate differences
in rhythmic practices and rhythm perception between cultures. Others, such as
Iyer (1998), Huron (2008), and, recently, Jacoby et al. (2020) lament the sparsity
of cross-cultural work in music cognition and caution against interpreting the
idiosyncrasies of a familiar musical (usually Western) culture as the norm, or of
culture-specific perceptual constraints as universal.

A theoretical account of rhythm perception that can potentially reconcile these
views has been proposed by London (2004). In accord with ideas of Jones and
Boltz (1989) and Large and Jones (1999), London suggests that meter perception
is a form of entrainment behavior, which serves to guide our attention over
time in synchrony with musical rhythm. However, its openness to shaping—
by experience, practice, music education and other forces of influence that an
individual’s embeddedness in a cultural environment entails—makes metrical
entrainment a skilled behavior. Thus, meter perception is regarded more than
a passive response to music, or a bottom-up analysis of sensations. However,
London also argues that although the structure of metrical entrainment behavior
is plastic, it simultaneously is constrained by a set of well-formedness conditions
which he sets forth (echoing Lerdahl and Jackendoff’s [1983] approach). London
explicitly avoids proposing universal preference rules, since, he argues, the relation
between rhythm and meter is malleable and ambiguous.

This theoretical account thus argues that certain aspects of rhythm perception
can be shaped by enculturation while other aspects are less adaptable and can be
captured by well-formedness constraints and occupies a middle-ground between
work emphasizing cultural differences in rhythmic practices and work emphasizing
universal constraints on perception. Specifically, constraints on metrical entrain-
ment behavior are argued to arise universally, while an individual’s capacity for
metrical entrainment depends on their previous experiences and activities and is
therefore subject to the influence of enculturation.
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2.2.5 Enculturation and embodiment

A more radical reading of some of the above literature suggests that the encultur-
ation of rhythm perception may involve information that cannot be gleaned from
(symbolic or recorded) music corpora alone. London et al. (2017) suggest that

[. . . ] while the frequency of onset occurrence of events doubtless plays
a role in our acquisition of rhythmic and metrical knowledge, those
frequencies occur in holistic contexts that include timing, timbre and
other auditory, visual, and sensorimotor channels of perception. Com-
binations of these cues forge associations between statistically common
rhythms and their characteristic metrical orientations. (p. 479).

Some information about such holistic contexts may be encoded in music cor-
pora, but these annotations provide no substitute for tightly coupled sensing
and acting involved in participation in music-related cultural practices such as
dancing, attending a concert, or singing in a group. These experiences involve
coordinated movements and sensations in, most prominently, the auditory, visual
and proprioceptive modalities.

An embodied view of rhythm perception acknowledges the role that these aspects
might play in musical experiences. An action-oriented interpretation of predictive
processing (Clark, 2013), however, in addition to emphasizing the role of embodi-
ment in perception, suggests how embodied experience shapes perception (see also
Clark, 2016). A theory of rhythm perception based on action-oriented predictive
processing might therefore be consistent with the theoretical account described by
London (2012), in that it may describe the role of practice and training in shaping
rhythm perception.

The above considerations, if true, appear troublesome for computational models
of rhythm perception that aim to simulate enculturation using samples from
music corpora. Nevertheless, stable probabilistic properties of the music to which
enculturated individuals are exposed may still play a significant role in shaping
rhythm perception. Samples drawn from music corpora are likely to reflect these
probabilistic properties. Models that use these samples to simulate the effects of
enculturation on rhythm perception may therefore successfully capture some of
these effects.

To conclude, the research reviewed above suggests that the experience of meter
depends to a large extent on being situated in a cultural environment. If so, it
seems that rhythm perception models that aim to be applicable to music from
different cultures cannot be rely on a bottom-up analysis of a rhythm based
on hypothetically universal mechanisms for rhythm perception. They must also
account, in some way, for the effects of being intimately familiar with certain
musical idioms. For computational modeling, empirical samples from music
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corpora may go some way toward simulating the musical exposure of enculturated
individuals. However, such corpora do not capture the holistic context in which
exposure to music occurs, possibly leaving some aspects of enculturated rhythm
perception unaddressed.

2.3 The cognitivist perspective

We now turn to rhythm perception models associated with the first of the three
different broad theoretical perspectives discussed in this chapter, namely cogni-
tivism. The cognitivist perspective is characterized by the view that cognition is
most appropriately explained as pure information processing, involving rule-based
computation performed on symbolic representations. These representations are
derived from sensory input through bottom-up perceptual processes (e.g., Newell
and Simon, 1976; Marr, 1982, cf. Anderson, 2003). This emphasis on information
processing is typically reflected in terminology used to motivate and describe
cognitivist models. Perceptual and cognitive phenomena are described as involving
“problems” or “tasks” that cognition must “solve” or “decide”. Modeling a cogni-
tive process entails identifying the task it performs, identifying the appropriate
representations of input and output, and finding an algorithm that generates the
appropriate output given an input.

One motivation for the epistemological value of such models is that designing
an algorithm to solve a specific cognitive task may provide insight into the
cognitive process itself. Commonly, the process of designing such algorithms
reveals unanticipated intricacies and complexities of the task itself that were
overlooked by verbal-conceptual theories. The cognitivist approach was especially
popular in the early days of cognitive science and its methodology was significantly
influenced by contemporary developments in artificial intelligence. These influences
have been noted by authors like Longuet-Higgins (1978), Newell and Simon (1976)
and Bundy (1990).

2.3.1 Rule-based models of rhythm perception

The sections below describe a set of cognitivist rhythm perception models, proposed
by Longuet-Higgins and colleagues, who pioneered computational modeling of
music cognition in the 1970s and 1980s. These models propose specific mechanisms
for various computational problems that are hypothesized to be involved in
rhythm perception. Longuet-Higgins and colleagues point out at several occasions
(Longuet-Higgins & Steedman, 1971; Longuet-Higgins, 1978, 1979) that their work
aims to account for perception of Western tonal music by listeners familiar with
such music. Therefore, the models described below are not intended as universal



26 Chapter 2. Computational modeling of rhythm perception

accounts of rhythm perception, but rather as reflections of the perception of
enculturated listeners. Clarke (1999) more extensively discusses these models, and
many that followed in this early period of music-cognition modeling. Some of
these models are still actively used in empirical studies (e.g., Fitch & Rosenfeld,
2007; Grahn & Brett, 2007; Song, Simpson, Harte, Pearce, & Sandler, 2013; Witek
et al., 2014; Bouwer et al., 2018).

Longuet-Higgins and colleagues described a number of key issues that still inspire
modelers of music perception to this day. The central issue is to understand
listeners’ ability to reconstruct the rhythmic and tonal relations, intended by the
composer, between sounds from a performance of Western classical music. Western
tonal music notation contains considerable information about the tonal and
temporal relations in music. Trained musicians can reconstruct this information
from “even a mediocre performance” (Longuet-Higgins & Steedman, 1971, p. 221).
Therefore, it is argued, scores are likely to provide strong clues towards the kind of
rhythmic and tonal relations that listeners infer from a performance. This ability
is furthermore argued to be available to anyone “familiar with the composer’s
language” (Longuet-Higgins, 1978, p. 149). In the models described below, the
inference of rhythmic relations (meter) and tonal relations (key) are treated
independently. The discussion below considers only the parts of these models
relevant to the interpretation of rhythm.

Longuet-Higgins and colleagues divided the central issue into a set of sub-problems,
which were addressed individually by the computational models that we describe
below. These models describe the inference problem from the perspective of the
listener, who is processing a piece of music note by note. This listener must,
from the first few notes, infer the phase and period of the beat. This problem is
addressed by Longuet-Higgins and Lee (1982). Then, the established beat must be
subdivided recursively until each note initiates a metrical unit at some level of beat
subdivision. Sometimes, notes are played slightly earlier or later than expected.
In these cases, the listener must figure out whether these deviations represent a
change in tempo, a subdivision of the beat, or expressive timing of the performer.
Such tracking and subdivision of a beat is addressed by Longuet-Higgins (1976).
Finally, to find the correct time signature, beats must be grouped into higher-level
metrical units such as bars. This problem is addressed by Longuet-Higgins and
Steedman (1971). The sections below discuss these models in chronological order.

2.3.1.1 Grouping metrical units

Longuet-Higgins and Steedman (1971) propose an algorithm that addresses how,
based on a pattern of note durations in a deadpan performance, a listener may
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identify metrical units and group them into bars. 2 Motivated by “the progressive
character of musical comprehension” (p. 223), Longuet-Higgins and Steedman
propose a fundamental principle, which they call rule of congruence, by which
the other rules of the model are motivated. The intuitive motivation for this
principle is described eloquently by the observation that “music would be a dull
affair if all notes had to be in the key and all accents on the beat, but it would be
incomprehensible if the key and metre were called into question before they were
established” (p. 224). The rule of congruence stresses the important role played by
temporal order of musical events. This emphasis on the temporal incrementality of
music listening sets this early approach apart from later approaches, which ignore
the temporal order of events (e.g., Povel & Essens, 1985; Palmer & Krumhansl,
1990).

The rules of the model contain many subtleties, but can be summarized approxi-
mately as follows: The duration of the first or second note (whichever is shorter)
establishes the smallest metrical unit. By the rule of congruence, an established
metrical unit is never abandoned. The metrical hierarchy is progressively con-
structed from this smallest unit by means of grouping. Such grouping is prompted
by one of three cues: (1) the occurrence of a long note beginning on an already
established metrical unit, (2) a dactyl, a pattern consisting of two long followed
by one short interval, or (3) a long note followed by a short note. If any of these
is encountered, the current metrical unit is multiplied in length by two or three
(depending on the length of the cue-pattern) to form a metrical unit at the next
level of the hierarchy.

2.3.1.2 Beat tracking and subdivision

Longuet-Higgins (1976) proposes an algorithm addressing a different issue: how
to track and subdivide a beat in a performance with a changing tempo? While
Longuet-Higgins and Steedman’s (1971) model and its extension (Steedman, 1977)
assume deadpan performances, listeners are able to follow along with a beat
despite tempo changes and expressive timing. Another way of stating the problem
that this work aims to address is as follows: when an onset occurs close to where a
beat is expected, how does a listener decide whether the onset marks a subdivision
of the beat, a change of tempo, or an expressive deviation?

Longuet-Higgins proposes the following procedure: 3 Assuming a given beat
2A deadpan (or mechanical) performance is one that exactly reproduces the note duration

ratios dictated by a notated musical score. For musicians performing music from a score, the
goal is rarely to produce such (mechanical-sounding) performances. Instead, expressive tempo
changes and deviations deadpan timing are the norm (Clarke, 1989; Repp, 1995).

3This procedure is used in a computer program that can transcribe a melody, played on an
organ console connected to a high-speed paper tape punch (a MIDI keyboard would nowadays
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interval, it can be determined where, assuming deadpan timing, the next beat is
expected. Based on this, the amount of time by which the next note deviates from
this expected beat can be determined. A temporal window around the expected
next beat location is created by a parameter called tolerance. If the next note
falls within the tolerance window, the next beat interval is increased or decreased
by half the amount of deviation of the note from deadpan timing. If the next note
instead occurs before the tolerance window, the beat interval is subdivided by two
or three. The upshot is that, once processing is complete, each note occurs at the
beginning of a metrical unit.

This mechanism for adapting beat duration based on deviation from deadpan
timing bears some resemblance to beat perception models based on coupled
oscillation (Large & Kolen, 1994) that are discussed in Section 2.4. The resemblance
is notable because coupled oscillation models align with a theoretical perspective
that is rather different from cognitivism.

2.3.1.3 Beat finding

Longuet-Higgins and Lee (1982) address another puzzle: assuming that a beat can
be tracked and subdivided once established, how is the tactus beat established to
begin with? How do we know whether the rhythm begins with an anacrusis? If it
does, where does the first beat occur? How do we know the interval between the
first and the second beat? Borrowing terminology used by Desain and Honing
(1999), Longuet-Higgins and Lee‘s model maintains a current beat hypothesis. This
hypothesis is specified by two variables representing virtual points in time: a ’first
beat’, t1, and a ‘second beat’, t2. These variables are initialized by the onset times
of the first and second note. Subsequent notes revise and update the current
beat hypothesis by subjecting it to two types of transformations: lengthening
(stretching) it or shifting its position. These transformations are triggered by a
set of rules that, in the interest of brevity, we will not attempt to summarize here.
The algorithm aims to output values of t1 and t2 that encode the position and
duration of the first tactus beat interval in a performance, thereby providing an
answer to the questions at the beginning of this paragraph.

Desain and Honing (1999) note that this model and some of its successors were
evaluated only qualitatively on small toy domains. Furthermore, it is difficult to
derive general properties of their functioning since the rules in these models interact

suffice), into musical notation. The program has to be supplied an initial beat interval, similar
to a drummer’s count off before a performance. It then tries to track and, if necessary, subdivide
this beat throughout a performance. No detailed description of the program is provided, but its
source code (written in the POP2 programming language), was made available. The program, as
well as a translation into the LISP programming language, can be found in Desain and Honing’s
(1992) book, Music, Mind and Machine.
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with input in complex and unpredictable ways. Desain and Honing propose a
unified framework in which the models can be expressed, and systematically
analyze the behavior of the models using an empirical dataset and Monte-Carlo
samples from the models’ input space: the set of all possible input rhythms of
up to thirty-five grid points. Desain and Honing’s results show that these simple
models perform surprisingly well. Their work represents one of the few existing
systematic comparisons between computational models on the same dataset.

2.3.2 Optimization and preference-rule models

We describe optimization models here as cognitivist models, but differ significantly
from the rule-based models described above. Instead of what are sometimes called
“hard and fast” rules, optimization models employ soft constraints that can be
satisfied to various degrees. In some ways, which we return to below, these models
are similar to probabilistic generative models (described in Section 2.5). Unlike
these models, however, optimization models provide no theoretically motivated
interpretation of the metric that is optimized.

The well-known clock model of Povel and Essens (1985) is an optimization model
that also contains some rule-based aspects. This model operates by generating a
combinatorically exhaustive set of “clocks”, defined by a unit (period) and location
(the phase of the first event in the rhythm relative to the clock’s period), calculating
a score for each clock given a rhythm. Input rhythms are first preprocessed to
mark events that, according to a set of rules, are predicted to be perceived as
accented. The score that is calculated for each clock is based on how well the
clock’s ticks align with events marked as accented. The model selects the clock
that optimizes this score, and its corresponding score is used to predict the degree
to which the rhythm induces the clock.

Temperley and Sleator (1999) introduce another optimization approach, which
they call a preference-rule model. Preference rule models are intended to be
a computational implementation of the system of preference rules proposed by
Lerdahl and Jackendoff (1983). Lerdahl and Jackendoff’s ideas were influential,
but lacking in formal rigor (see Hansen, 2010, for an extensive discussion), and
preference-rule models are an attempt to address this. Temperley and Sleator
propose independent models for meter and harmony. As before, our discussion
considers only the meter model.

Preference rule models operate by generating an exhaustive set of analyses of a
rhythm, specified by a set of well-formedness constraints. Each of these analyses
receives a score based on a set of preference rules. Given an analysis and a piece of
music, a preference rule yields a score representing the degree to which the analysis
is preferred for the piece of music. The total score of the analysis is calculated
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as a weighted linear combination of the scores of the individual preference rules.
The analysis with the highest total score is the analysis that the model predicts
to be correct.

For their meter model, Temperley and Sleator formalize three preference rules:
the regularity rule, which prefers analyses in which beats are equally spaced, the
event rule, which prefers analyses in which beats are aligned with events, and
the length rule, which prefers analyses that align strong beats with the onsets
of longer durations. Well-formed metrical hierarchies are constrained to contain
exactly five metrical levels. Generalizing from Lerdahl and Jackendoff (1983), who
based their theory primarily on music as notated in scores, Temperley and Sleator
allow beats to be irregularly spaced. Analyses in which beats are regularly spaced
are nevertheless preferred by the regularity rule.

The regularity rule is the only preference rule that depends only on the analysis,
and not on its relation to a piece of music. This type of rule resembles the
concept of a prior probability in probabilistic generative models. This probability
represents the a priori probability of an analysis, which is independent of the
rhythm that is analyzed. Preference-rule as well as generative approaches entail a
trade-off between the a priori preferability of an analysis and its congruence with
a piece of music: the more unlikely an analysis is a priori, the more strongly it
needs to be supported by the piece of music.

Preference rule models have some advantages compared to rule-based models.
Because preference rules represent soft constraints, they naturally allow for a
certain degree of deviation from the norm: decreased congruence in one aspect
(e.g., the degree to which beats are spaced evenly), may be compensated for
by increased congruence in another (e.g., alignment of strong beats with notes).
Furthermore, some rule-based approaches have been criticized for being opaque:
it is difficult to describe regularities in their behavior based on the formulation of
their rules, because the rules interact in complex ways (Desain & Honing, 1999).
Preference-rule models, by contrast, have the benefit of being easy to interpret,
because preference rules represent aspects of the relation between music and
interpretation that are to be preferred.

A limitation of the optimization model of Povel and Essens (1985), but not
necessarily of preference rule models (see Temperley, 2001, pp. 205–376), is that
it does not consider the dynamic interplay between the unfolding music and the
listener’s perception and expectations. It is commonly emphasized (Longuet-
Higgins & Steedman, 1971; Longuet-Higgins, 1978; Lee, 1991; Large & Kolen,
1994) that this interplay should be central to any account of rhythm perception.
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2.4 The embodied perspective

The term embodied cognition carries a variety of connotations (Wilson & Golonka,
2013). Here we interpret it as emphasizing continuous dynamic interaction between
brain, body, and environment, from which various behavioral and cognitive
phenomena are emergent (Brooks, 1991b; Van Gelder, 1995; Chemero, 2009).
This poses a contrast with the emphasis that cognitivist approaches place on strict
information processing, which downplays the role of an agent’s physical interaction
with its environment. The emphasis on dynamic interaction is reflected in the type
of models typically associated with this perspective, namely dynamical systems
models (Chemero, 2009).

There is a class of cognitive models of rhythm perception that proposes that
pulse and meter perception is based on coupled oscillation (Large & Kolen, 1994;
McAuley, 1995). These models posit that constraints on meter, and how it is
induced, emerge jointly from the dynamics of coupled oscillation. While cognitivist
approaches describe meter perception as a cognitive mechanism that infers an
abstract representation (meter), often in a bottom-up fashion, from perceptual
input (rhythm), coupled oscillation models pose no sharp distinction between
representations and a cognitive mechanisms that infer representations from sensory
input.

Although coupled oscillation models do not necessarily emphasize a role for the
body and environment in rhythm perception, they are compatible with two
central tenets of embodied cognition: a rejection or downplay of the importance
of cognitive representations (Anderson, 2003; Wilson & Golonka, 2013) and a
rejection of the idea that cognition is most appropriately described in terms of
computation and symbol manipulation (see Van Gelder, 1995). This sentiment
is reflected strongly in the fragment below, which appears in an introduction to
neural resonance models (a type of coupled oscillation models) of music perception
(Large, 2010b).

The brain does not “solve” problems of missing fundamentals, it does
not “compute” keys of melodic sequences, and it does not “infer” meters
of rhythmic input. Rather, it resonates to music. (p. 201, italics occur
in original).

Coupled oscillation models can account for a remarkable number of phenomena
in rhythm perception, without resorting to domain-specific constraints. 4 Among

4Coupled oscillation models do arguably incorporate some domain-specific constraints: Adap-
tive and neural oscillators need to be tuned to frequencies that are relevant to musical rhythms.
Period coupling and temporal receptive fields in adaptive oscillator models are explicitly intro-
duced to account for music perception and do not occur in physical coupled oscillation systems
such as clocks suspended from the same beam or metronomes on the same moving platform.



32 Chapter 2. Computational modeling of rhythm perception

these phenomena are aspects that are argued to pose challenges for other ap-
proaches, namely tracking a beat in rhythms with tempo changes (Large & Jones,
1999) or expressive timing (Large & Palmer, 2002), and entraining to syncopated
rhythms in which the pulse frequency is absent from the Fourier spectrum of
the rhythm (Velasco & Large, 2011). Coupled oscillation models have therefore
emerged as popular models of rhythm perception. Below, two types of coupled
oscillation models are discussed: adaptive oscillator models and neural resonance
models.

2.4.1 Adaptive oscillator models

McAuley (1994) proposes the term adaptive oscillator for a class of oscillators
that adapt their period in response to external rhythms. McAuley (1994, 1995)
and Large and Kolen (1994) independently (McAuley, 1995, p. 67) proposed
oscillators of this type as models for rhythm perception. McAuley (1995) describes
the theoretical status of these models as somewhere in between a “single-neuron
model and that of a psychological theory”. Large and Kolen (1994) describe their
model as representing “a single abstract processing unit, amenable to connectionist
implementation”. Thus, both proposals describe these models as abstract, rather
than mechanistic, accounts of rhythm perception (in contrast to neural resonance
models).

Different aspects of the behavior of coupled oscillators may be connected to
different aspects of rhythm perception. Large and Kolen (1994) describe an
oscillator that synchronizes with a periodic component of a rhythmic pattern as
“embodying the notion of musical pulse, or beat”. Similarly, McAuley (1995, p. 12)
writes that oscillators model “global dynamics of perceptual mechanisms involved
in the processing of rhythmic patterns”. Metrical hierarchy is proposed to emerge
from two or more internal oscillators entraining to each other, as well as to an
external rhythm (Large & Kolen, 1994; McAuley, 1995). McAuley (1995) also
raises dimensionality reduction, or efficient memory encoding, as a motivation for
the approach: an oscillator may be seen as an efficient memory representation
of where the pulse is. Finally, it is often stated that the oscillators encode a
prediction or expectation of when events are expected.

An oscillator produces periodic behavior that is described by two state variables,
period, p, and phase, φ. Period represents the amount of time required for an
oscillator to complete its cycle. Phase represents the relative position of the
oscillator within its cycle and evolves from zero to one, at which point it wraps
back to zero. An oscillator is sometimes said to “fire” when its phase reaches zero.

The paragraphs below describe a general mathematical framework for adaptive
oscillator models. This framework is limited to describing how one oscillator is
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influenced by another. Extensions to two endogenous oscillators that entrain
to different periodicities in a rhythm are described by Large and Jones (1999)
and Large and Palmer (2002). The oscillator that is being influenced is the
endogenous oscillator: a source of endogenous oscillations. The other is an external
“oscillator”, which, in adaptive oscillator models, is not really an oscillator, but an
external rhythm. Causation is unidirectional: the external oscillator (the rhythm)
exerts influence on the endogenous oscillator, but the endogenous oscillator has
no influence on the behavior of the external oscillator. This influence is called
coupling and causes the phase and period of endogenous oscillator to be perturbed
by activity of the external oscillator.

Adaptive oscillator models can be evaluated in a sequence of discrete time steps.
Because the phase and period are only perturbed by the firing of the external
oscillator (or the presence of an onset, since the external oscillator is a rhythm),
the dynamic behavior of the system can be described entirely by considering only
the relative phase of the two oscillators at moments when the external oscillator
fires. The relative phase is the (circular) difference between the endogenous and
external oscillator’s phase. The relative phase at the (n + 1)th firing of the
external oscillator, given the relative phase at the nth firing and the periods of
the endogenous and external oscillators, is described by

φn+1 =
(
φn + q

p

)
mod 1, (2.1)

where q represents the period of the external oscillator and p represents the period
of the endogenous oscillator This equation is known as a circle map. In the
above form, it describes the relative phase of two uncoupled oscillators (e.g., two
metronomes ticking away independently at their own tempos).

Coupling is introduced by allowing the external oscillator to perturb the phase
of the endogenous oscillator. Such phase coupling is incorporated by adding a
coupling term to the circle map.

φn+1 =
(
φn + q

p
+ ηφFφ(φn)

)
mod 1. (2.2)

Here, ηφ is a parameter that controls the coupling strength. The term Fφ(φn) is
the coupling function, which, given the relative phase, calculates the amount by
which the phase is perturbed.

To model the relative phase of an endogenous oscillator and a rhythm, the “period”,
q of the external oscillator is replaced by the nth inter-onset interval, in, in a
rhythm. The equation below illustrates this.
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φn+1 =
(
φn + in

p
+ ηφFφ(φn)

)
mod 1. (2.3)

If tm is themth onset in a rhythm, then the nth inter-onset interval is in = tn+1−tn.

Musical rhythms tend to fluctuate in tempo in a way that listeners can track
(Repp, 2005). To account for this, adaptive oscillator models implement period
coupling. The ability of oscillators to adapt their period to a rhythm motivates
McAuley (1994) to call these oscillators adaptive.

The function below calculates a new period at each onset tn.

pn+1 = pn + pnηpFp(φn). (2.4)

The function is parameterized by a coupling-strength parameter, ηp, and a period
coupling function, Fp(φn), which calculates the change in period given a relative
phase φn.

Given suitable coupling functions, the endogenous oscillator will entrain (be
driven to fire in synchrony) to an approximately periodic rhythm. The degree to
which this happens depends on how close the period p of the oscillator is to a
(sub)harmonic of the period of the rhythm, q.

The dynamic behavior of the system can be visualized by regime diagrams. Such
illustrations (e.g., see Large & Kolen, 1994) visualize the time it takes for an
oscillator settle into a mode-locked state as a function of the coupling strength
and the ratio between the endogenous oscillator’s period and a driving pulse. 5

Regime diagrams reveal regions centered around p/q values, where p and qs are
small integers, in which stable phase-locked (entrained) states emerge readily.
These entrainment regions are wider around points where the ratio between p and
q can be expressed by small integers (e.g., 1:1, 1:2, 2:3), and increase in width
as coupling strength increases. Entrainment regions describe the constraints on
pulse and meter perception predicted by adaptive oscillator models.

The oscillator described so far is easily disturbed by rhythms that contain onsets
far from where the oscillator “expects” the onset. To allow an oscillator to entrain
to a single periodic component in a rhythm that contains more onsets apart
from periodic ones, Large and Kolen (1994) propose period and phase coupling
functions for which the strength of their effect depends on how close the onset
occurs to where the endogenous oscillator predicts it to occur. The further an
onset deviates from the prediction, the smaller the influence it exerts on the
endogenous oscillator’s phase and period. This endows the oscillator with what

5Mode-locking is a generalization of phase-locking that describes states in which one oscillator
aligns its phase with another oscillator exactly every n cycles (where n is an integer).
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Large and Kolen call a temporal receptive field. The width and sharpness of the
temporal receptive field are parameterized. In Large and Kolen’s model, these
parameters remain fixed throughout a simulation, but Large and Palmer (2002)
propose a model in which the temporal receptive field sharpens as onsets occur
closer to where they are predicted.

In Large and Kolen’s model, another pair of parameters specifies a lower and
upper bound on the oscillator’s period. The oscillator’s initial period, called its
resting period, lies halfway between the lower and upper bound. When no onsets
are encountered within its temporal receptive field, the oscillator maintains its
current period. Large and Kolen associate this behavior with the tendency of a
pulse percept to be sustained in the absence of rhythmic events (Cooper & Meyer,
1960).

A set of adaptive oscillator models proposed by McAuley (McAuley, 1993, 1994,
1995), are similar to Large and Kolen’s adaptive oscillator. Instead of gradual
phase adaptation, McAuley’s models reset their phase based on the relative phase.
Furthermore, these oscillators have a resting period to which they gradually return
in absence of inputs.

Both Large and Kolen (1994) and McAuley (1995) have associated their models
with dynamic attending theory (Jones & Boltz, 1989). Large and Jones (1999)
present an adaptive oscillator model where self-sustained oscillations take on the
role of attending rhythms (Jones & Boltz, 1989). An attending rhythm consists of
periodic pulses of attention, defined as periods of sharp perceptual acuity during
which an event is anticipated. In Large and Jones’ model, an attentional pulse is
implemented by a bell-shaped probability density function centered around phase
zero. The width of this distribution is governed by a concentration parameter,
reflecting attentional focus. As synchronization (due to entrainment implemented
by sinusoidal phase and period coupling) increases, the pulse of attention sharpens,
focusing attention in time.

The adaptive oscillator of Large and Jones is further developed by Large and
Palmer (2002). In this extension, phase and period coupling depend on the
strength of attention (as indexed by the attentional pulse), creating a temporal
receptive field. However, since the width of the attentional pulse depends on
the degree of synchrony between the oscillator and the rhythm, this temporal
receptive field narrows as synchrony increases. Increased synchrony thus leads the
oscillator to become less sensitive to events deviating far from where the beat is
expected and more sensitive to events close to where the beat is expected.

Large and Jones report simulation results of a model in which two adaptive
oscillators, both driven by a rhythm, are bidirectionally coupled to each other.
Inter-oscillator coupling is defined such that the oscillators are driven towards either
a 2:1 or 3:1 period ratio, to ensure metrical entrainment between them. Simulations
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carried out by Large and Palmer (2002) show that such inter-oscillator coupling
can improve entrainment stability in tracking expressive piano performances, and
that the models can be used to detect phrase-boundaries based on phrase-final
lengthening, and also to detect melody notes in chords which are accentuated by
being timed slightly early (melody leads). Furthermore, Large and Palmer show
that in performances performed with strong rubato, detection of melody leads can
in certain situations improved beat tracking performance of the adaptive oscillator
model.

Large and Palmer (2002) also describe some of their adaptive oscillator model’s
limitations. First, the model is not suitable for finding the initial beat and has
to be provided with this information. Furthermore, for inter-oscillator coupling,
functions that actively drive the oscillators to the desired metrical ratios are
required, introducing an asymmetry between rhythm-to-oscillator and oscillator-
to-oscillator coupling.

2.4.2 Neural resonance models

Interactions between excitatory and inhibitory populations of neurons can give
rise to neural oscillations (Large et al., 2015). It has been hypothesized that
pulse and meter perception are emergent phenomena of such oscillations (Large,
2008; Large & Snyder, 2009). The neural resonance theory of rhythm and meter
perception proposes an explanation based on a mathematical description of a
biological mechanism, rather than an abstract model like an adaptive oscillator.

At a high level of mathematical abstraction, the dynamics of neural oscillations
may be described by a canonical model (Large, 2008), which describes dynamical
behavior that is shared by a large class of more detailed models. Neural resonance
models of pulse and meter perception are based on a canonical model of neural
oscillation.

These models share some characteristics with adaptive oscillator models. Both
approaches propose explanations of pulse and meter perception based on coupled
oscillation. The phase dynamics (but not amplitude dynamics) of neural resonance
models can also be described by a circle map (Large, 2008). Unlike adaptive
oscillator models, however, neural resonance models posit a specific neural mecha-
nism from which oscillations arise. Furthermore, neural oscillators do not exhibit
period coupling: they oscillate near their natural frequency, which does not adapt
to tempo fluctuations. Instead neural resonance models posit gradient-frequency
networks of neural oscillators, in which oscillators with natural frequencies close
to (harmonics of) periodicities in the rhythm resonate to the rhythm (Velasco &
Large, 2011; Large et al., 2015).

Neural resonance models exhibit three behaviors associated with different aspects
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of pulse and meter perception (Large, 2010b). Spontaneous oscillation relates
to the perception of pulse, and, in particular, the tendency for pulse to persist
in the absence of external events. Entrainment of neural oscillations to external
rhythms reflects the perception of a periodic pulse in rhythms that are not strictly
periodic. Higher-order resonance—the capacity of neural oscillation to resonate
at harmonics or sub-harmonics of periodicities in a rhythm—is posited to account
for meter induction and for the perception of pulse at frequencies that are absent
from the Fourier spectrum of a rhythm (Velasco & Large, 2011).

2.4.3 Coupled oscillation models and enculturation

Large (2010a) describes how neural resonance models can be extended with plastic
inter-oscillator connections that adapt their strength based on the principles of
Hebbian learning. Large et al. (2015) note that this makes it possible to simulate
the effect of enculturation on neural resonance models. Recently, Tichko and
Large (2019) proposed a simulation of effects of exposure to music with non-
isochronous meters in infants observed by Hannon and Trehub (2005a, 2005b),
using a gradient-frequency network of neural oscillators inter-connected by plastic
connections. This model resembles to a model proposed by Large et al. (2015),
which consists of two networks connected to each other. One represents a sensory
network that receives input from a rhythm, the other represents a motor network
that is connected via bidirectional coupling to the sensory network. Citing findings
of limited development of movement-to-rhythm synchronization in infants, Tichko
and Large only use a sensory network.

To represent exposure to non-isochronous meters in Balkan music and isochronous
meters in Western tonal music, Tichko and Large expose two instantiations of
their network to a different rhythm. One network is exposed to a 4/4 rhythm,
intended to represent exposure to Western tonal music, the other to a 7/8 rhythm,
intended to represent exposure Balkan music in a non-isochronous meter. Both
networks, and a third network without prior exposure, are exposed to six rhythms:
the two training rhythms, and two modified versions of each training rhythm: one
that preserves the meter and one that violates it. Analyzing the response of the
networks to the different rhythms, Tichko and Large show an effect of training that
resembles the results obtained by Hannon and Trehub (2005a, 2005b). However,
because these results are based on simulations involving a single training and
a single test rhythm per condition, it remains unclear how robust they are to
variation in the specific rhythms used for training and testing. Furthermore, the
results appear to be influenced by the frequencies of periodicities in the training
rhythm. It could be that , which may have influenced the results more than the
type of meter (isochronous or non-isochronous) used.

Large (2010b) suggests that innate constraints on music perception may emerge
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from the intrinsic dynamics of the brain. An important question for these models
is therefore whether the dynamic behavior of neural resonance models sufficiently
explains empirically observed variance in metrical entrainment behavior. Both
adaptive oscillators and neural resonance models predict that perceived pulses are
constrained to be isochronous. Coupled oscillation models can entrain to periodic
components related by simple integer ratios, which may be polyrhythmic (such
as 3:2 or 4:3), but they cannot entrain to a non-isochronous beat. For example,
while the networks described by Tichko and Large (2019) resonate to rhythms in
(isochronous) 4/4 and (non-isochronous) 7/8 meters, they do not entrain to the
non-isochronous tactus level of the 7/8 meter. It could be that, as Large (2008,
p. 221) suggests, non-isochronous meters are “compelling specifically because
they thwart an intrinsic expectation of periodicity”. However, as discussed in
Section 2.2, there is evidence suggesting that non-isochronous meters are readily
processed given familiarity with music in which they are prevalent (Hannon &
Trehub, 2005b; Soley & Hannon, 2010; Hannon et al., 2012). There also is evidence
that, given the right kind of training, metrical entrainment to non-isochronous
beat-subdivisions is possible (Polak et al., 2016; Polak et al., 2018). Whether
rhythm perception shows more flexibility than the constraints of coupled oscillation
models allow remains an active topic of discussion.

2.5 The predictive processing perspective

The predictive processing perspective (described elaborately by Clark, 2013) builds
on a class of theories that notably include predictive coding (Rao & Ballard, 1999)
and the Bayesian brain hypothesis (Knill & Pouget, 2004). It has recently come to
be associated with a number of different theoretical perspectives that range from
cognitivist to radically embodied (for discussions, see Allen & Friston, 2018; Wiese
& Metzinger, 2017). Nevertheless, these perspectives share a commitment to the
idea that perception is based on minimizing prediction error, which in turn is based
on Bayesian inference. Predictive processing theories propose a domain-general
mechanism that underlies both perception and perceptual learning.

More specifically, predictive processing posits that perception and cognition in-
volve an internal, multilayered generative model of sensations. This model can
be represented as a Bayesian network: a directed acyclic graph that may be
interpreted to reflect causal dependencies between random variables (Pearl, 2000).
Sensations are considered to be the result of a stochastic generative process (the
environment), that is predicted by the outcomes generated by leaf nodes of an
(internal) generative model. The better the generative model resembles the gener-
ative process underlying sensations, which involves the underlying environmental
causes of sensations, the more accurately sensations can be predicted. Prediction
error, which is continuously generated by the discrepancy between observed and
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predicted outcomes, revises the generative model to better predict future sensa-
tions. These changes, that are driven by prediction error, are hypothesized to
underlie both perception and perceptual learning.

Note, however, that this process, and its implied outcome (convergence to a perfect,
barring physiological limitations, generative model of the environment), is argued
to be significantly altered when the role of action—the ability of an organism
to influence the flow of sensory stimulation and to shape its environment—is
considered (see Clark, 2016). This role can be integrated into predictive processing
to create what Clark (2013) calls action-oriented predictive processing. In any
case, sensitivity to the statistical structure of the environment plays a significant
role in all predictive processing accounts (action-oriented or not). The probabilistic
generative models discussed in this chapter are passive models that do not account
for effects that action may have on their input. Such effects remain an important
topic for future research, together with the question of how they interact with
effects of passive exposure simulated by probabilistic generative models.

Prediction-error minimization in predictive processing is equivalent to probabilistic
inference in a probabilistic generative model. In such a model, random variables
upon which outcomes are conditioned are called latent variables. Latent variables
cannot directly be observed, but their probability distribution may be inferred
through probabilistic inference. The marginal distribution of observed variables
corresponds to the generative model’s predictions of stochastic outcomes. This
distribution assigns a probability to every possible outcome of the generative
process. The probability of a given observation is known as the model evidence
for that observation.

Prediction error is operationalized by the negative logarithm of the model evidence,
such that minimizing prediction error corresponds to maximizing model evidence.
This quantity corresponds to a measure of information defined in information
theory (Shannon, 1948). A system that minimizes prediction error thus also
minimizes information transmission. The intuition behind this is that only parts
the sensory signal that have not already been predicted by the generative model
need to be considered.

The approaches discussed below estimate their parameters directly from samples
of empirical data, annotated with underlying structure (meter), using a maximum
likelihood approach. These samples are called the training data of the model. The
maximum likelihood approach ensures that the estimated parameters cause the
model to assign the maximum possible probability to the training data. This
training process has been used to simulate the effects prior exposure to music
on rhythm perception. Section 2.5.6 describes in more detail how probabilistic
generative models can be used to simulate enculturation.

It is worth noting that the maximum likelihood approach is different from the
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so-called “fully Bayesian” approach, in which a model describes its own parameters
as random variables. This allows the models to infer their own parameters from
data using probabilistic inference, and eliminates the need for annotated (also
known as labeled) training data, allowing the model to “bootstrap” itself off mere
observations. The distinction between a training phase in which the model is
parameterized and a testing phase in which the model is evaluated thereby also
disappears. Furthermore, the fully Bayesian approach accounts in a principled way
for uncertainty that the model has about its own parameters. Such uncertainty
plays an important role in predictive processing (see Clark, 2016), but is beyond
the scope of this chapter.

2.5.1 Probabilistic generative modeling of rhythm percep-
tion

Temperley (2007) makes a strong case for probabilistic approaches to music
perception based on the hypothesis that knowledge of musical style is probabilistic
in nature and inferred by listeners from regularities in the music they have
been exposed to. The basic framework outlined by Temperley applies to all
models described in this chapter, and also corresponds to the predictive processing
framework described above. In this framework, observed variables represent the
musical surface and latent variables represent its underlying structure. For rhythm
models, the musical surface corresponds to a pattern of event times, and its
structure corresponds to some conceptualization of meter. In predictive processing
terms, the musical surface is the outcome of a generative process involving latent
variables that represent perceptual concepts like meter.

A generative model of rhythm perception may represent rhythms and meter
by multiple random variables, but to obtain a compact representation, these
variables can be merged into two variables, namely R (for rhythm) and M (for
meter). According to the product rule of probability, the joint distribution of
these variables, p(R,M), can be written in one of the following ways:

p(R,M) = p(M | R)p(R) = p(R |M)p(M). (2.5)

Since the goal is to describe the generative process underlying rhythms, generative
models of rhythm perception aim to estimate the factors p(M)—the a priori
probability of a meter—and p(R |M)—the probability of a rhythm given a meter.
When these factors appear in Bayes’ theorem, as shown below, they are known
as the prior distribution and the likelihood function. It follows from Equation
2.5 that the probability of a meter given a rhythm, p(M |R), can be expressed in
terms of the generative model as follows:
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posterior︷ ︸︸ ︷
p(M |R) =

likelihood︷ ︸︸ ︷
p(R|M)

prior︷ ︸︸ ︷
p(M)

p(R)︸ ︷︷ ︸
model evidence

. (2.6)

This equation is known as Bayes’ theorem, and forms the basis of probabilistic
inference in generative models. Since it enables inferring the distribution of latent
variables given an observed outcome, inference is sometimes called the inversion
of a generative model (MacKay, 2003).

Equation 2.6 reveals some similarities between probabilistic generative models
and preference-rule models (described in Section 2.3.2). Since model evidence is
independent of latent variables, the posterior probability of a meter is influenced
only by the two factors in the numerator of the fraction on the right-hand side
of the equation. Meters that are probable a posteriori strike a balance between
a priori probability and the probability of the rhythm given the meter. Meters
that are a priori improbable require strong bottom-up evidence to be a posteriori
probable, compared to meters that are a priori probable. A similar dynamic
interaction occurs in preference-rule models, which postulate rules that apply
only to a given metrical analysis (e.g., the regularity rule), comparable to a prior
distribution, and rules that measure the fit between an analysis and a rhythm
(e.g., the event and length rules), comparable to a likelihood function.

Model evidence, recall, is the probability that a generative model assigns to an
outcome. In (2.6), it is given by the denominator of the fraction, which may also
be written as

p(R) =
M∑
p(R|M)p(M). (2.7)

Differences between generative rhythm perception models, which are all compatible
with this general framework, reside in how the prior distribution and likelihood
function are implemented. The sections below describe different possibilities that
have been explored in the literature. Were applicable, we describe how these
possibilities are applied in different generative models of rhythm proposed by
Temperley (2007, 2009) and Van der Weij et al. (2017).

2.5.2 Rhythmic outcomes: grids, intervals, and phases

How a generative model represents a rhythm corresponds to how the stochastic
outcomes of the model should be interpreted. All of the models we discuss below
represent rhythms as temporally ordered sequences of outcomes. These sequences
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depend only on note-onset times: the times at which note events begin (i.e.,
when they are played, struck, plucked, or sung). Temporal intervals are always
represented as integer multiples of some atomic temporal unit, which may either
be an absolute duration (e.g., 50 milliseconds), or a symbolic score-duration (e.g.,
a sixteenth note). However, the models differ in whether they represent rhythms
by grids of temporal bins, sequences of temporal intervals, or more abstractly
in terms of the metrical functions of notes. Below, we introduce a distinction
between four types of models: grid, interval, phase and metrical salience models.

In grid models, stochastic outcomes represent temporally adjacent grid cells, each
of which represents an atomic temporal interval. Outcomes in such models are
binary variables representing whether an onset occurs within (or at) the current
grid cell, or whether it remains silent. Grid models, in other words, predict what
happens at the current moment.

Interval models, by contrast, predict when an onset occurs relative to the last
onset. In interval models, outcomes represent the temporal interval between two
note-onsets: the inter-onset interval. When a model is temporally discrete, this
intervals is often one out of prespecified set of possibilities that may occur with
non-zero probability. This set of possibilities is sometimes called an alphabet
(Conklin & Witten, 1995).

Phase and metrical salience models predict a more abstract property of the next
event, namely its metrical function. By the phase of an onset, we mean its
position in a metrical cycle denoted by bars notated in a score. By metrical
salience, we mean the highest metrical level in which a beat associated with the
current onset occurs. Phase and metrical salience representations are variant with
respect to meter: how a given note-onset event is represented, depends its metrical
interpretation. Given a meter and the position of bar lines, predictions of metrical
salience or phase do not predict a unique point in time, but constrain the possible
points in time at which an event may occur in order to be in agreement with the
prediction. Like interval models, phase and metrical salience models predict when
onset occurs, but do so more abstractly.

A final important aspect of representation, which is of relevance generative rhythm
models, is that the granularity of a representation affects expected prediction error.
Predictions that have a low temporal granularity are more likely to be correct,
since they are consistent with a large number of events. When the granularity of
a representation depends on the value of a latent variable, as is the case for phase
and salience models, this introduces a (possibly unintended) bias into the model.
Since in phase and salience models, the temporal granularity of a prediction
depends on the period of the metrical cycle, such models are susceptible to biases
favoring meters with shorter metrical cycles.
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2.5.3 The prior probability of meters

The prior distribution of meters, p(M), describes the probability of meters inde-
pendently, that is, without considering observations (which represent bottom-up
sensory input). Van der Weij et al. (2017) employ a categorical distribution that
reflects the relative frequency of meters derived from notated time signatures in
empirical training data. This approach makes no assumptions about the internal
structure of meter, assuming that this structure may be culture-specific. On the
other hand, it has no way of estimating the probability of meters that do not
occur in its training data.

Models proposed by Temperley (2007, 2009) employ prior distributions based
on a hierarchical view of meter consistent with ideas of Lerdahl and Jackendoff
(1983). In these prior distributions, a meter is generated by a set of stochastic
outcomes, represented by different random variables, such as the duration of a
tactus interval, whether tactus beats are grouped by two or three, and whether
tactus beats are subdivided into two or three sub-tactus beats. Compared to the
approach of Van der Weij et al., this prior requires fewer parameters, and can,
due to its compositional nature, estimate the probability of meters not occurring
in training data. On the other hand, it makes assumptions about the structure of
meter that may be specific to the Western musical idiom.

Priors may also be based on abstract theoretical measures. Studying the production
and categorical perception of interval ratios, Sadakata, Desain, and Honing
(2006) assign prior probabilities to interval ratios that are proportional to a
theoretical quantification of the ratio complexity. Such priors are consistent with
the hypothesis that due to cognitive constraints, some meters may be generated
more readily than others.

2.5.4 Likelihood functions: generating rhythms from me-
ters

To illustrate how the design of the likelihood function affects which cues for
meter a generative model is sensitive to, we discuss six models described by
Temperley (2010) in a model comparison study investigating the probabilistic
principles underlying what the study calls “common practice rhythm”. Unlike
the multilayered generative models of Temperley (2007, 2009) and Van der Weij
et al. (2017), these models assume that the meter is known and fixed. 6 The six
models can be distinguished by two aspects of their design: the representation of
rhythms and metrical structure, and the probabilistic independence assumptions

6By a multilayered generative model we mean a generative model that conditions observations
on underlying latent variables.
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Table 2.1: An overview of six likelihood functions discussed by Temperley (2010).
The middle column indicates whether each model uses a grid, interval, or phase
representation. The right-most column indicates which representation of metrical
context observations are conditioned on. In the right-most column, the empty set
symbol ∅ indicates that outcomes are modeled independently.

Model Representation Metrical context
Uniform Position Model Grid N/A
Zeroth-Order Duration Model Interval N/A
Metrical Position Model Grid Salience
Fine-grained Position Model Grid Phase
Hierarchical Position Model Grid Salience, Metrical anchoring
First-Order Metrical Duration
Model

Phase Previous phase

they make. These aspects are summarized in Table 2.1 for the six models that
Temperley (2010) presents, and the paragraphs below discuss them in more detail.

Regarding representation, Temperley distinguishes between “position models” and
“duration models”. As Table 2.1 shows, four different position models, and two
duration models are discussed. The four position models correspond to what we
call grid models. Grid cells, in this case, correspond to eighth-notes. Of the two
duration models discussed, one corresponds to what we call an interval model,
while the other is a phase model. 7

The number of probabilistic independence assumptions made by a model must
fall somewhere in between two extremes. At one extreme, each random variable
depends on all other random variables, which corresponds to a fully connected
Bayesian network. At another extreme, the outcome of each variable is assumed
to be independent of all other outcomes, which corresponds to an unconnected
Bayesian network. The Uniform Position Model, which models the independent
probability of an onset at a grid cell, and the Zeroth-Order Duration Model, which
models the independent probability of inter-onset intervals, posit only a single
variable at each time step. In the search for a model that balances prediction
performance with complexity, these models may be seen as baselines against which
the effect of progressively removing independence assumptions from the models
may be compared.

Some generative models can be evaluated incrementally over a sequence of time
steps. This is possible only when variables are conditioned on no other variables
other than those occurring in the same or the preceding time steps. Models in
which variables in each time step are conditioned on variables in the n immediately

7We use the term phase for what Temperley calls metrical position.



2.5. The predictive processing perspective 45

preceding time steps are called nth-order Markov models. For example, in zeroth-
order Markov models, outcomes are independent of preceding outcomes, while in
first-order Markov models, outcomes depend on variables in the preceding time step.
Except for the First-Order Metrical Duration Model and the Hierarchical Position
Model, all models compared by Temperley are zeroth-order. The Hierarchical
Position Model is not a Markov model: it conditions outcomes at a given metrical
level on outcomes at higher metrical levels. Rhythms are generated hierarchically,
rather than in temporal order, by this model.

Within a time step, the presence or absence of independence assumptions may
incorporate sensitivity to metrical structure into a model. The Uniform Position
model and Zeroth-Order Duration Model are not sensitive to metrical structure,
that is, the probability of their outcomes is independent of meter. The Metrical
Position Model, Fine-Grained Position Model, and Hierarchical Position Model,
however, condition outcomes on the metrical status of a grid cell. Of these, the
Fine-Grained Position Model differs from the other two in the representation of
metrical status: outcomes are conditioned on the phase of a grid cell, while in other
two models they depend on the metrical salience of a grid cell. In the Hierarchical
Position Model outcomes depend on the metrical salience of the current grid cell
and on whether the surrounding metrically stronger beats contain onsets. In
Table 2.1, this situation is referred to as metrical anchoring (Temperley, 2009).

Another means of introducing sensitivity to meter into a model is by choosing
a representation of outcomes that is itself sensitive to meter. This strategy is
employed in the First-Order Duration Model, which is a phase model: it predicts
the phase of an outcome. Since this is a first-order Markov model, the probability
of a phase is additionally conditioned on the previous outcome.

The Metrical Position Model is a grid model which most faithfully embodies
the theory that the frequent occurrence of onsets on metrically strong beats is
a strong cue for meter (Palmer & Krumhansl, 1990). The model conditions the
probability of an onset at a grid cell on the metrical salience of that grid cell.
The metrical salience representation has a lower temporal granularity than the
phase representation: for example, the second and fourth beat of a 4/4 bar have
different phases, but are indistinguishable by metrical salience. If the assumption
that metrical salience, rather than phase, most strongly predicts onset likelihood
is true, then models based on metrical salience would more compactly capture
statistical patterns in common-practice rhythms than models based on phase, and
the Metrical Position Model should perform as well as the Fine-Grained Position
model, despite having fewer parameters.

A phase representation, on the other hand, assumes periodicity of meter, but
otherwise makes few theoretical commitments its organization. For example, the
phase representation of a rhythm does not depend on whether the underlying meter
is 3/4 or 6/8. A phase model may be able to distinguish between these meters, but
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differences between them must be encoded in a probability distribution of phases
that is conditioned on meter. These difference may be learned during model
training, where the parameters of the model are estimated from empirical training
data. In any case, this aspect is irrelevant in Temperley’s model comparison study
where all considered rhythms have a 4/4 meter.

Temperley evaluates the performance of these six models in terms of the per-
rhythm cross-entropy (the negative logarithm of model evidence). 8 The definition
cross-entropy is identical to that of prediction error. Results can therefore be
interpreted as representing how well the models predict rhythms in the style of the
chosen samples. The objective is to investigate which general principles underlie
the composition of what Temperley calls “common-practice rhythm”. Accordingly,
the models are trained and evaluated on empirical samples of European folksongs
and first-violin parts of string quartets by Mozart and Haydn.

The results show that in general, the four models sensitive to metrical structure
achieve better prediction performance than those not sensitive to such structure.
Overall, the First-Order Metrical Duration Model achieves the best performance,
and the Fine-Grained Position Model outperforms the Metrical Position model.
Both of these models are based on a phase representation, suggesting that, even
in common-practice rhythm, phase may provide greater predictive power for the
timing of notes in the empirical samples of Western music than metrical salience.
However, the model comparison does not include a first-order salience model, which
would allow for a more elaborate comparison of phase and salience representations.

While the best performance is achieved by the First-Order Metrical Duration
Model, the Hierarchical Position Model achieves comparable performance using
significantly fewer parameters. Taking this into account, Temperley concludes that
the Hierarchical Position Model most accurately captures statistical properties
of common-practice rhythms. Findings of Holzapfel (2015), and London et al.
(2017), however, suggest that the relatively strong performance of this model might
not generalize well to non-Western musical idioms, in which metrical salience
sometimes is less predictive of onset probability.

Some of the likelihood functions described above are used in multilayered generative
8It should be noted that there are subtle issues, not mentioned by Temperley, involved in

comparing these results between different (grid, interval, or phase) representations. For example,
a grid representation of a rhythm is (1 0 1 0 1), which is a sequence of five binary outcomes. This
rhythm is one of 25 = 32 possible rhythms. In an interval representation each outcome is one
of x possible intervals. For a model that considers x = 8 intervals per outcome with non-zero
probability, the same rhythm, represented as (2 2), is one of 82 = 64 possible outcomes. In
a phase representation, assuming atomic temporal units of quarter notes and a meter with a
period of four quarter notes, the same rhythm is represented as (0 2 0), which is one of 43 = 64
possibilities. Predicting one out of sixty-four possibilities is more difficult than predicting one
out of thirty-two possibilities. Grid models are thus likely to have an advantage over interval
and phase models.
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rhythm models. In particular, Temperley (2007, 2009) proposes grid models, in
which the grid cells (or pips) represent not symbolic score-units but real absolute
durations. The model described by Temperley (2007) uses the Metrical Position
Model as its likelihood function. The Hierarchical Position Model is used as the
likelihood function in the model described by Temperley (2009). However, this
model is not a Markov model and violates temporal incrementality. Accordingly,
the model is presented primarily as a music analysis model, rather than a music
perception model. Both models contain a number of variables that accommodate
a certain degree of freedom in tempo and timing, but these aspects are beyond
the scope of this chapter. Another multilayered generative model of rhythms
described recently by Van der Weij et al. (2017) uses a different representation
and a different likelihood function. The next section describes this model in more
detail.

2.5.5 Modeling sequential structure in rhythms

The models described so far are based on zeroth- or first-order Markov models,
or on hierarchical models (Temperley, 2009, 2007, 2010). Van der Weij et al.
(2017) instead propose a probabilistic generative model using a variable-order
Markov model. In this model, events (outcomes) are conditioned on all preceding
events in a sequence that represents a rhythm. This is achieved using a modeling
technique called prediction by partial match (PPM), proposed originally as a data
compression method (Cleary & Witten, 1984).

Instead of a grid or phase representation, Van der Weij et al. (2017) propose a
representation of outcomes that is sensitive to meter, but maps one-to-one onto
inter-onset intervals. The representation combines the phase of an onset with the
number of metrical cycles elapsed since the last onset: it encodes the temporal
interval between the current event and the bar-level downbeat preceding the last
event. The representation is referred to here as the downbeat distance. This
representation ensures that the temporal granularity of predictions is independent
of meter. It therefore avoids biases that depend on the period of the metrical
cycle into the model (see Section 2.5.2).

Compared to zeroth-order models, a variable-order Markov model of events
represented by downbeat distances widens the range of cues for meter that Van
der Weij et al.’s model is sensitive to. The probability of an event given a
meter depends not only its metrical context, but also on the downbeat distances
of previous events. This changes to role of meter from a periodic template of
onset probabilities (Palmer & Krumhansl, 1990; Temperley, 2007) into a periodic
temporal reference with respect to which patterns of events are interpreted and
remembered. It allows a model to learn rhythmic patterns that occur predictably in
particular metrical contexts. For example, it may be the case that in a hypothetical
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musical sample, syncopations occur predictably in certain contexts, even though in
the same style, notes generally begin on metrically strong beats. Such predictable
deviations from the norm would be undetectable in event-frequency distributions
(Palmer & Krumhansl, 1990; Holzapfel, 2015; London et al., 2017), which are
sensitive to only to zeroth-order statistical properties of rhythms.

Simulations performed by Van der Weij et al. suggest that variable-order Markov
modeling improves prediction performance of rhythms derived from German
folksongs. Applying different variants of their model, in which the maximum order
of the variable-order Markov model (the order bound) varies between zero and four,
they find that the prediction of rhythms derived from German folksongs improves
when the order bound is increased. The performance gain is most pronounced
between zeroth-order and first-order modeling, but small improvements occur
beyond first-order models.

The increased complexity of the relation between rhythm and meter supported
by Van der Weij et al.’s model may improve the model’s applicability to music
from different cultures. In music from, for example, regions in western Africa
(Locke, 1982) and the African diaspora (Iyer, 1998), it is common for onsets to
occur consistently on beats that, according to a Western theoretical understanding
of meter (Longuet-Higgins, 1978; Lerdahl & Jackendoff, 1983), are metrically
weak instead of on metrically strong beats. Findings presented by London et al.
(2017) illustrate this quantitatively for Malian djembe music, and Holzapfel (2015)
shows that rhythms in Turkish makam music also deviate from norms based on
patterns of metrical salience. It nevertheless remains an open question whether
these observations warrant the level of flexibility in the relation between rhythm
and meter afforded by Van der Weij et al.’s model. Comparing the performance
of different probabilistic generative rhythm models on culturally diverse samples
of rhythms may provide more insight into this matter.

The applicability of Van der Weij et al.’s model to rhythms from diverse musical
cultures is somewhat hampered by its reliance on Western music notation. Music
notation plays little or no role in many musical traditions around the world,
and transcribing music from these traditions in Western music notation may not
be appropriate. For example, Western music notation’s emphasis on temporal
intervals related by small-integer ratios cannot naturally express so called “swung”
beat subdivisions, as found, for example, in jazz music (Honing & De Haas, 2008)
and Malian djembe music (Polak et al., 2016; Polak et al., 2018).

It appears, in any case, that the model partially fulfills a set of requirements that
Iyer (1998) proposes for rhythm perception models, namely that

[. . . ] any model of rhythm perception and cognition must include stages
at which incoming rhythms are compared to known rhythms, matched
against known meters, and situated among broader expectations about
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musical events. It also must involve some degree of what may be
called active perception, by which is meant the assessment of various
alternative readings of the musical signal, and the switching among
them, all carried out in time and continually revised and updated.
(p. 55, italics occur in original).

2.5.6 Simulating enculturation with probabilistic genera-
tive models

Probabilistic generative models offer a principled way of simulating the effects of
prior exposure on perception. To understand this, it is helpful to consider the
exhaustive set of possible outcomes of a generative rhythm perception model,
namely the entire set of event-timing patterns that the model can generate. For
each item in this set, there is an unknown probability of encountering it as a
musical rhythm. For some items, this probability is low, because they are unlikely
rhythms, for others, it is high, for example because they correspond to stereotypical
rhythms. There is, in other words, an unknown probability distribution of musical
rhythms. To minimize prediction error, a generative rhythm perception model
aims to approximate this distribution as closely as possible.

The approximation is performed by inferring the model’s parameters model from
a (relatively) small sample drawn from the target distribution. How well the
model has approximated the unknown target distribution is usually evaluated
by testing the model on another small sample from this distribution. How well
the model generalizes based on the small sample depends on the way that the
designers of the model have constrained it. Evaluating which constraints improve
the model’s approximation of the target distribution may provide insights into
the probabilistic constraints of rhythms.

However, the target distribution of relevance to culturally situated individuals
depends on their cultural environment. A generative model aiming to simulate
the perception of such individuals should derive its parameters from a sample that
represents the music they are likely to encounter. Music corpora, such as the Essen
folksong collection (Schaffrath & Huron, 1995), may be used for this purpose.
Parameterizations that result from training a generative model on such a sample
can be seen as a simulation of an enculturated listener (Van der Weij et al., 2017).
The success of the enculturated model in predicting perceptual idiosyncrasies
resulting from such biased sampling, may provide evidence as to whether learning
mechanisms of listeners resemble those posited by predictive processing. This
approach is entirely compatible with the cultural distance hypothesis of Demorest
and Morrison (2016), Morrison et al. (2019), according to which the degree of
overlap in statistical structure between the music of two cultures predicts the



50 Chapter 2. Computational modeling of rhythm perception

ability of listeners from those cultures to process music from the other culture.

2.6 Summary

A great variety of rhythm perception models exists in the music cognition literature.
Some of these models propose incremental changes to other models, but others
propose radically different principles. This chapter reviews a selection of previ-
ously proposed rhythm perception models and associates them with three broad
perspectives—cognitivism, embodied cognition, and predictive processing—that
each entail a different view on the nature of perception and cognition.

The cognitivist perspective describes cognition as information processing involving
the rule-based manipulation of symbolic representations. Rule-based models of
rhythm perception, such as those proposed by Longuet-Higgins and Steedman
(1971), Longuet-Higgins (1976), Longuet-Higgins and Lee (1982), can be associ-
ated with this perspective. Embodied cognition instead emphasizes the role of
continuous dynamic interaction between brain, body, and environment. Coupled
oscillation models (McAuley, 1994; Large & Kolen, 1994; Large & Snyder, 2009),
although they do not always emphasize an explicit role of embodiment, are consis-
tent with this view. Finally, predictive processing views perception and perceptual
learning as the result of a single underlying mechanism, namely prediction error
minimization based on Bayesian inference. Probabilistic generative models, such
as those proposed by Temperley (2007, 2009), are consistent with this perspective.

Additionally, this chapter reviewed literature that studies the role of enculturation
in shaping rhythm perception. Although the extent to which rhythm perception
is constrained by enculturation and by universal principles remains a topic of
debate, it seems uncontroversial that experience, training, and practice play a role.
Despite this consensus, few models of rhythm perception account for the possible
effects of enculturation. Instead, some models aim to represent universal aspects
of perception (such as Povel & Essens, 1985; Large, 2010b), while others aim to
model the perceptual processes of listeners enculturated in a musical idiom (such
as Longuet-Higgins, 1979).

Probabilistic generative models, which are consistent with the principles of predic-
tive processing, can simulate the effect of previous exposure to rhythms by deriving
their parameters from empirical samples of music. Neural resonance models have
recently been extended to use plastic connections and Hebbian learning enabling
them to adapt based on previous exposure to rhythms (Large, 2010a; Large et al.,
2015). In general, rhythm perception models have primarily been evaluated on
datasets of Western tonal music. It would therefore be a fruitful avenue for future
research to evaluate and compare these models on culturally diverse samples of
rhythms.
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Definition of dynamic Bayesian
networks with deterministic constraints

3.1 Introduction

Probabilistic generative models have been an established modeling tool in the
cognitive sciences for some time (Chater, Tenenbaum, & Yuille, 2006). Two
significant advantages of these models are their ability to deal with uncertainty
and their ability to learn from data. Formalisms like Bayesian networks (see for
example Pearl, 2000) have made it easier to define probabilistic generative models
involving high-level abstract concepts in terms of which theories in cognitive
science are often stated (Chater et al., 2006).

In the cognitive science of music, well-known examples of theories expressed in
terms of such abstract concepts are Longuet-Higgins and Lee’s (1984) theory of
meter perception and syncopation and Lerdahl and Jackendoff’s (1983) generative
theory of tonal music. Instead of engaging with sound signals, these theories
operate on symbolic representations related closely to concepts in Western music
notation such as notes, rests, bars, and time signatures. Probabilistic generative
models of music perception, such as those described by Pearce (2005), Temper-
ley (2007), and Van der Weij et al. (2017 [Chapter 6]), also make use of such
abstract concepts. These models commonly involve a mixture of probabilistic and
deterministic constraints.

Consider, for example, Temperley’s (2007) probabilistic model of rhythm and meter
perception. This model represents meter as abstract hierarchical structure based
on cognitive theories of meter (Lerdahl & Jackendoff, 1983). These structures are
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generated by a set of probabilistic decisions regarding the hierarchical structure of
meter. For example, the number of tactus beats in a bar, how the tactus level
is subdivided, and so on. The possible outcomes of some of these decisions are
constrained by the outcome of other decisions. For example, which tactus beat
aligns with the first note is constrained by the number of tactus beats in a bar.

While the constraints described above are straightforward, other constraints in the
model are significantly more subtle and interact in complex ways (see Chapter 4,
where we describe these constraints). In publications where cognitive models are
proposed, these more detailed constraints are sometimes considered implementation
details: details that are explicit only in algorithmic implementations of the model.
There often is, in other words, a gap between the description of a model in a
publication and its algorithmic implementation. This means that researchers
wishing to significantly extend or change a model often need to consult these
algorithmic implementations in order to fully understand the model. This tends
to be impractical and cumbersome because implementations are often complex
and tailored specifically to a specific model. Furthermore, understanding these
implementations requires familiarity with the programming language in which
they are stated.

It is in general useful and desirable to have an algorithmic implementation of a
model available, as it enables other researchers to reproduce simulation results,
experiment with different parameter settings, and improve or build upon the
model. These advantages are tempered, however, by the problems described above.
The framework developed in this chapter is intended to improve this situation. It
affords formal and concise definitions of discrete probabilistic models that map
closely to algorithmic implementations. These definitions are based on congruency
constraints: functions associated with a random variable that encode deterministic
constraints on the values that it may assume with non-zero probability as a
function of the values of other random variables.

Music and its perception evolve dynamically over time. The relevance of these
across-time aspects of music to its perception has long been noted (Meyer, 1957;
Longuet-Higgins & Steedman, 1971) and has been of significant interest to modelers
(e.g., Longuet-Higgins & Steedman, 1971; Pearce & Wiggins, 2012). Dynamic
Bayesian networks (see for example Murphy, 2002) are a broad class of probabilistic
models suitable for modeling phenomena that evolve over time. The framework
described in this chapter is tailored to describing discrete dynamic Bayesian
network with deterministic constraints. It can be used to express a variety of
music perception models. These model definitions, in a sense, disentangle the
deterministic aspects of a model from its probabilistic aspects.

The central concept in the framework is a model-definition table, which enumerates
random variables and their congruency constraints. These tables formally define
the deterministic constraints at play in a probabilistic model. Combined with a
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definition of the conditional probability distributions, they provide a complete
specification of a probabilistic model. These specifications can straightforwardly
be translated into algorithmic implementations, as illustrated in Appendix A
for two models defined in Chapter 5. The framework aims to facilitate the
implementation, exploration, and comparison of probabilistic generative models
of music perception. It has been implemented as a Common Lisp package, which
the author aims to make available as free and open-source software as soon as
possible at https://osf.io/z4389/.

We demonstrate the use of the framework in Chapters 4 and 5. Chapter 4 defines an
adaptation of Temperley’s (2007) rhythm model and Chapter 5 defines adaptations
of two rhythm perception models that we evaluate in Chapter 7. These chapters
illustrate how distilling the deterministic constraints of probabilistic models clearly
reveals conceptual differences and commonalities between different models.

Following a brief discussion of related work below, Section 3.2 enumerates relevant
concepts in probability and Bayesian network theory. Section 3.3 introduces
congruency constraints and shows how model evidence is calculated and inference is
performed in Bayesian networks with congruency constraints. Section 3.4 describes
dynamic Bayesian networks and the consequences that congruency constraints
have for calculating model evidence and performing inference in these models.
Section 3.5 describes a framework for defining the congruency constraints of a
dynamic Bayesian network. In this section, model-definition tables are introduced.
Finally, Section 3.6 wraps up by summarizing the introduced concepts.

3.1.1 Related work

The mixing of deterministic constraints with probabilistic inference in Bayesian
networks has been well studied. Dechter and Larkin (2001) and Mateescu and
Dechter (2008) describe a framework for performing inference on mixed networks:
Bayesian networks in which deterministic constraints may be represented as
zero-probability values in conditional probability distributions or as formulas in
first-order logic. The congruency constraints described in this chapter are of the
former type: they imply that certain values in conditional probability distributions
have zero probability. As such, they do not impose a separate set of deterministic
constraints onto a Bayesian network but only describe constraints encoded in its
probability distributions.

In some ways, the merits of the framework we describe here are similar to those
of IDyOM (Pearce, 2005), a modeling framework for sequence prediction models
based on the framework of multiple viewpoint systems (Conklin & Witten, 1995).
This framework allows a set of representations of sequences to be defined, different
subsets of which can be used in parallel for a sequence-prediction task. The

https://osf.io/z4389/
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framework described here is similar to multiple viewpoint systems and IDyOM
in the sense that it supports the definition of sequence prediction models but
different in the sense that it supports the definition of a more general class of
dynamic Bayesian network models. In fact, the present framework emerged out of
an attempt to generalize multiple viewpoint systems to include latent variables.

With regard to providing a flexible representation language for probabilistic
models that facilitates the exploration of different probabilistic models, the merits
provided by the framework are similar to those provided by first-order probabilistic
languages (e.g., BLOG, Milch, 2006) and probabilistic programming languages
(see e.g., Gordon, Henzinger, Nori, & Rajamani, 2014). First-order probabilistic
languages are more expressive than Bayesian networks and support types of
probabilistic reasoning that Bayesian networks do not (see Russell, 2015, for a
recent overview of such approaches).

Congruency constraints are more limited in scope than both mixed networks
(Mateescu & Dechter, 2008) and first-order probabilistic languages. They represent
a subset of the types of deterministic constraints described by Mateescu and
Dechter (2008). For the cognitive models of music perception of relevance to this
thesis, however, they are sufficiently expressive and provide a convenient means
for expressing their deterministic constraints.

3.2 Preliminaries

Below we provide an overview of those aspects of probability and Bayesian network
theory relevant to the development of the current framework. The primary goal of
this section is to introduce the notation used in this chapter, and not to rigorously
discuss these topics. Elaborate treatments of Bayesian networks and probability
theory can be found elsewhere (regarding Bayesian networks, see for example
Pearl, 2000, or Bishop, 2006 and regarding probability theory, see for example
Hoel, Port, and Stone, 1971).

3.2.1 Probabilities and random variables

We closely follow the notation conventions used by Pearl (2000) for probabilities
and random variables. A random variable represents or measures an aspect of a
momentary state of affairs. Following Pearl, we call the set of possible values that
a random variable may assume its domain and allow this domain to be any set of
symbols. Additionally, we use the word state to refer to a particular value of a
random variable. The symbol DX denotes the domain from which the values of a
random variable X are drawn. The values that a random variable may assume are
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mutually exclusive and exhaustive. By exhaustive, we mean that for any possible
state of affairs, there is a corresponding value that a random variable assumes. By
mutually exclusive, we mean that each possible state of affairs uniquely determines
the value of a random variable. In this chapter, we are concerned only with
discrete random variables that can assume a finite number of values.

We consistently use capital letters to refer to random variables and lower case
letters to refer to their states. For example, if X, Y , and Z are random variables
the symbols x, y, and z are used to refer to their respective values.

The notation Pr(X = x) denotes the total probability of all states of affairs in
which X assumes the value x. Probabilities are always larger than or equal to
zero and smaller than or equal to one. Pr(X = x) = 1 indicates that X equals x
with absolute certainty, while Pr(X = x) = 0 indicates that X does not equal x
with absolute certainty. Both of these cases represent deterministic constraints.
Probabilities in between zero and one describe intermediate degrees of certainty
about the value of X. We usually abbreviate Pr(X = x) to Pr(x), except in some
cases where this could cause confusion.

If X and Y are both random variables, then the values (x, y) that may be assumed
by X and Y simultaneously for a given state of affairs are described by a compound
random variable with the domain DX × DY . We denote a compound random
variable as a set of variables {X0, X1, · · · }. A compound random variable is itself
a random variable whose states are denoted by tuples (x0, x1, · · ·).

A probability distribution is the set of probabilities corresponding to the possible
values of a random variable. A probability distribution of a random variable X
is denoted as Pr(x). A conditional distribution describes the probabilities that a
random variable assumes values in its domain given the values of other random
variables. The conditional probability that X = x given that Y = y is denoted by
Pr(X = x | Y = y), which we usually abbreviate to Pr(x | y).

3.2.2 Directed acyclic graphs

Bayesian networks are defined as directed acyclic graphs. A directed acyclic graph
is defined by a pair G = (V,E), where V is a finite set of vertices and E ∈ V ×V is
a set of directed edges. An edge e ∈ E is a pair (X,X ′) that represents a directed
edge from X to X ′. There is said to be a path from X ∈ V to X ′ ∈ V if X ′
can be reached by starting at X and following directed edges in E to X ′. The
parents of a vertex X are the set of vertices from which edges run to Xi, given by
{X ′ ∈ V | (X ′, X) ∈ E}. A vertex that has no parents is called a root of G.

In a directed acyclic graph, paths do not form cycles. That is, it is impossible to
follow directed edges from one vertex and arrive at the same one. If a graph is
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a directed acyclic graph, then it is possible to sort their vertices in a way that
whenever there is an edge from X ∈ V to X ′ ∈ V and X 6= X ′, X must occur
before X ′ in the ordering. Vertices arranged in this way are said to be sorted
topologically.

3.2.3 Bayesian networks

We describe a discrete Bayesian network as a set of n random variables V =
{Xi}n−1

i=0 that are simultaneously the vertices of a directed acyclic graph G = (V,E).
If V is a Bayesian network with respect to G, then the graph encodes for each
variable, Xi ∈ V , the minimal set of variables that have to be observed in order
to render the probability distribution of Xi independent of all its ancestors in G.
Variables in this set are also known as the Markovian parents of Xi (Pearl, 2000).
PAi denotes the compound random variable consisting of the Markovian parents
of Xi. The symbol pai denotes a state of this random variable. The defining
property of a Bayesian network is that its joint distribution, the distribution of
V , can be written as the following product of conditional distributions of Xi ∈ V
given pai:

Pr(v) =
n∏
i=0

Pr(xi | pai).

In this chapter, we commonly refer to the Markovian parents, PAi, as the depen-
dencies of Xi.

Since G is a directed acyclic graph, its vertices can be sorted topologically. In this
chapter, whenever we refer to the variables of a Bayesian network, V , we assume
that every Xi ∈ V has been assigned a unique index i ∈ N of consecutive natural
numbers beginning at 0 such that sorting Xi by their indices in ascending order
ensures that the variables are sorted topologically with respect to G.

The structure of the network graph can be exploited to more efficiently compute
marginal probabilities, which are required to perform exact inference. The graph
can furthermore be used to more efficiently specify the parameters of V , since
only parameters of the conditional distributions require specification in order to
define the joint distribution.
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3.3 Congruency constraints for Bayesian net-
works

Deterministic constraints in a Bayesian network may be encoded as zero-probability
values of its conditional probability distributions. Congruency constraints describe
these constraints by defining the set of states of a random variable that are not
a priori known to have zero probability as a function of its dependencies in the
network graph. These states are called congruent states and the states which are
a priori known to have zero-probability states are called incongruent states.

When a Bayesian network has deterministic constraints, we can deterministically
infer from observing the state of one variable that some states of the joint distri-
bution that were possible before the observation are no longer possible after the
observation. This gives rise to a distinction between a priori congruent states and
a posteriori congruent states: the states congruent respectively before and after an
observation. The a posteriori congruent states represent a deterministic inference
that can be made from observations. When computing the marginal probability
of an observation (its model evidence), only a posteriori congruent states need to
be considered.

Below, we define congruency constraints and the a priori and a posteriori congruent
states of a Bayesian network. We then show how these deterministic constraints
can be exploited when calculating model evidence and performing inference. First,
however, we will clarify the concept of congruency constraints with a concrete
example.

3.3.1 Example

Consider a Bayesian network that describes the probability that a light bulb is
on depending on whether that light bulb is broken and whether there is a power
outage. These states of affairs are described by three random variables: L, B,
and O. Each variable has a Boolean-valued domain: {t, f }, for true and false.
The outcome L = t should be interpreted to mean that the bulb is emitting light,
B = t that the bulb is broken, and O = t that there is a power outage. While the
probability that the light bulb is on depends both on whether it is broken and
whether there is a power outage, the latter two events are independent. These
causal dependency relations can be described intuitively in a Bayesian network
graph, as shown in Figure 3.1.

The Bayesian network guarantees that joint distribution Pr(l, b, o) can be written as
Pr(b) Pr(o) Pr(l | b, o). Six parameters are required to define this joint distribution:
the probability that a light is broken, that there is a power outage, and four



58 Chapter 3. Dynamic Bayesian networks with deterministic constraints

L

BO

Figure 3.1: A Bayesian network model of a light bulb represented as a Bayesian
network.

conditional probabilities that a light is on given whether it is broken and whether
there is a power outage. We will assume a priori probabilities that there is
an outage and that the light is broken to be respectively 0.001 and 0.05. The
probability that the light is on depends on whether there is an outage and whether
the light is broken. We assume that the probability that the light is on is 1 if it
is not broken and there is no power outage. Otherwise, the probability that the
light is on is 0. (For simplicity, we assumed that there is no light switch.)

If the states of both O and B are known (or if one of them is known to be
true), there is no uncertainty about L. These deterministic constraints can
be described by a congruency constraint. Deterministic constraints commonly
represent simplifications of a model that constrain its dimensionality: in the real
world, there are many situations not included in our model that can cause a light
to be off.

The states of the joint distribution are enumerated fully in Table 3.1. Notice that,
due to the deterministic constraint, some states have zero probability. We will call
such states incongruent and the remaining states congruent. Table 3.1 shows that
there are four incongruent states, corresponding to situations where the light is
on while there is a power outage or while the light is broken. Rows corresponding
to congruent states are highlighted in gray.

Let us assume that we can observe whether the light is on, but we cannot observe
whether it is broken or whether there is a power outage. That is, L is an observed
variable (indicated, as is customary, in Figure 3.1 by a node with a shaded
background) and B and O are latent variables. Before observing whether the light
is on, there are four congruent states. These are a priori congruent states. After
observing whether the light is on, the number of states that remain possible reduces
to one if the light is on or three if the light is off. These states are a posteriori
congruent states. In Table 3.1, a posteriori congruent states corresponding to
the observation that the light is on are highlighted in dark gray, while those
corresponding to the observation that the light is off are highlighted in a lighter
shade of gray.

The model evidence is the marginal probability that a probabilistic model assigns
to an observed value of one of its variables. The model evidence of an observed
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Table 3.1: The joint probability distribution of three random variables representing
whether a light is on, whether the light is broken, and whether there is a power
outage. A priori congruent states are highlighted in different shades of gray. The
state shaded dark gray is a posteriori congruent given the observation that the
light is on, while light gray states are a posteriori congruent given the observation
that the light is off.

Variable Probability
L B O

t t t 0× 0.05× 0.001 = 0.000
t t f 0× 0.05× 0.999 = 0.000
t f t 0× 0.95× 0.001 = 0.000
t f f 1× 0.95× 0.999 ≈ 0.949
f t t 1× 0.05× 0.001 ≈ 0.000
f t f 1× 0.05× 0.999 ≈ 0.050
f f t 1× 0.95× 0.001 ≈ 0.001
f f f 0× 0.95× 0.999 = 0.000

value of L is the total probability of all states of the joint distribution in which L
has this value. When a model has congruency constraints, the model evidence
corresponds to the sum of the probabilities of a posteriori congruent states. For
example, if we observe the light to be on, the model evidence corresponds to the
probability of the only congruent state in which the light is on.

While we cannot observe whether the light is broken, or whether there is a power
outage, observing the state of the light tells us something about the state of these
variables. The posterior distribution of the latent variables is given by:

Pr(b, o | l) = Pr(l | b, o) Pr(b, o)
Pr(l)

Note that the denominator, Pr(l), is the model evidence (the sum of probabilities
of a posteriori congruent states). The numerator, Pr(l | b, o) Pr(b, o) may also be
written as Pr(l | b, o) Pr(b) Pr(o) since the Bayesian network defines L and O to
be independent. The numerator can now be recognized as the joint distribution.
Therefore the posterior probability of each state (b, o), given an observed value
l, is given by the joint probability, Pr(l, b, o) divided by the model evidence of
the observed state of l. Obtaining the posterior distribution by conditioning the
model on observation is known as probabilistic inference.



60 Chapter 3. Dynamic Bayesian networks with deterministic constraints

3.3.2 Congruency constraints

We will now formally define congruency constraints. Let Xi be a random variable
in a Bayesian network and let PAi be the set of Markovian parents of Xi. A
congruency constraint of Xi is a function κXi : DPAi → P(DXi), where P(DXi)
denotes powerset of DXi (the set of all possible subsets of DXi). The function κXi
generates a set of states that are congruent given a state, pai, of another (possibly
compound) random variable. The congruent states of a variable Xi are in general
a subset of its domain, DXi . A probability distribution of Xi, Pr(x | pai), is said
to conform to congruency constraint κXi if it is zero for all incongruent states of
Xi. That is, if x /∈ κXi(pai) then Pr(x | pai) = 0 for any x ∈ DXi and pai ∈ DPAi .

Congruency constraints can restrict uncertainty in a probabilistic model to a
variable degree: At one extreme, the congruent states of Xi may be a singleton
given pai, that is, κXi(pai) = {x}. In that case, Xi is deterministically known
given pai. At the other extreme, the congruent states of Xi given pai may be
equal to its domain, that is, κXi(pai) = DXi , which is identical to the situation
without congruency constraints.

Returning to the light bulb example, we may specify a single congruency constraint
for the conditional distribution of L as a function of the states of O and B:

κL((o, b)) =

{f } if t ∈ {o, b},
{t} otherwise.

3.3.3 A priori congruent states

The states of a variable that are congruent prior to an observation are called
a priori congruent states. Below, we show how a priori congruent states of a
Bayesian network are generated using the congruency constraints of its constituent
variables. This process resembles ancestral sampling.

We again use V to denote a set of n random variables, {Xi}n−1
i=0 , that constitute

a Bayesian network. That is, each variable, Xi, is also a vertex in a directed
acyclic graph G = (V,E) that encodes the conditional independence relations
among variables in V . Furthermore, there is a congruency constraint, κXi , for
each variable Xi ∈ V except if Xi is a root of G, since the congruent states of
variables corresponding to root vertices are identical to their domains.

The symbol V i denotes the compound variable constituted by {Xj}i−1
j=0 ⊆ V . That

is, V n = V and V i, for 0 ≤ i < n consists of all variables Xj in V for which
0 ≤ j < i. The a priori congruent states of V i, for 1 ≤ i ≤ n, are a set that is
defined recursively using the given congruency constraints as follows:
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KV i =


DV 1 if i = 1,
{(x0, · · · , xi−1, xi) | (x0, · · · , xi−1) ∈ KV i−1 , xi ∈ DXi} if Xi is a root of G,
{(x0, · · · , xi−1, xi) | (x0, · · · , xi−1) ∈ KV i−1 , xi ∈ κXi(pai)} otherwise.

The congruent states of a Bayesian network with n variables V = {Xi}n−1
i=0 , are

generated by evaluating KV n and expanding the recursion to lower i until i = 1.
Recall that indices i have been assigned such that they define a topological ordering
of the variables Xi. Therefore, X0 must be a root of G and the congruent states
of V1 = {X0} correspond to the domain of {X0}. The congruent states of V i

for 1 < i < n are constructed by using each congruent state of V i−1 to generate
the congruent states of Xi using KXi(pai) and combining each of these with the
congruent state of V i−1 from which they were generated. 1 Note that the state
pai to which the congruency constraint of Xi is applied is always contained in a
congruent state of V i−1, since Xi are sorted topologically.

For any state v ∈ KV , (x0, · · · , xi, · · · , xn−1), and any given value x′i of a variable
Xi ∈ V , it is the case that if x′i /∈ κXi(pai), then Pr((x0, · · · , xi, · · · , xn−1)) = 0.
That is, if the value of Xi, x′i, in a state v ∈ KV does not occur in the set of states
that are congruent given the values of its Markovian parents, pai, as encoded
in a given state v, then the joint probability of that state must be zero if the
probability distribution of V conforms to the congruency constraints. We will say
that a state, x′i of a variable Xi ∈ V is congruent with a state, s, of V \Xi if s
and x′i occur together in an a priori congruent state of V .

3.3.4 A posteriori congruent states

When the value of one of the variables in V is observed, a subset of a priori
congruent states remains possible. That is, if we observe that the value of a
variable Xi ∈ V is x′i, we can deterministically infer that only the states of other
variables Xj ∈ V that are congruent with x′i remain possible. We call these states
the a posteriori congruent states given that Xi = x′i. This set is given by a subset
of the congruent states of V , KV , in which the value of Xi is equal to x′i.

The function κ̂XiV : DXi → P(DV ) generates a posteriori congruent states of a
Bayesian network, V , given an observation x′i of Xi ∈ V . This function is defined
as

κ̂XiV (x′i) = {(x0, · · · , xi, · · · , xn−1) ∈ KV | x′i = xi}.
1This procedure can be made more efficient by evaluating the congruent states of Xi only for

the unique states of pai contained in the congruent states of V i−1.
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Note that if x′i /∈ KV , then κ̂XiV (x′i) = ∅.

3.3.5 Model evidence

The model evidence, or marginal probability, of a state x′i of a variable Xi ∈ V
is the marginal probability that Pr(Xi = x′i). By the product rule of probability,
Pr(v) may be written as Pr(xi | V \Xi = s) Pr(V \Xi = s) where s is a state of
of V \Xi (the compound variable consisting of all variables in V except Xi). The
marginal probability Pr(Xi = x′i) is given by

Pr(Xi = x′i) =
∑

s∈DV \Xi

Pr(x′i | V \Xi = s) Pr(V \Xi = s).

That is, the model evidence is the sum of probabilities of all states of the joint
distribution in which the value of Xi corresponds to its observed value x′i. This
involves a summation over the states of V \Xi, which correspond to the Cartesian
product ∏Xj∈V \Xi DXj = DV \Xi .

Infamously, this summation makes model evidence computationally expensive to
compute, since the number of such states is exponential in the number of variables
in V . Since V is a Bayesian network, there exist exact inference algorithms that
exploit the network graph to optimize this calculation (see e.g., Bishop, 2006).
However, if the conditional probability distributions of the Bayesian network also
conform to a set of congruency constraints {KXi}, where Xi are non-root vertices
of G, the incongruent states of V are guaranteed to have zero probability and do
not contribute to model evidence. Therefore, when congruency constraints are
given, model evidence is given by the total probability of a posteriori congruent
states:

Pr(Xi = x′i) =
∑

v∈κ̂XiV (x′i)

Pr(V = v)

3.3.6 Inference

Given an observation of the state x′i of a variable Xi ∈ V , the posterior distribution
over the states of the remaining variables in V is given by

Pr(V \Xi = s | Xi = x′i) = Pr(V \Xi = s,Xi = x′i)
Pr(Xi = x′i)

.
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While the above equation uses the explicit notation Pr(V \Xi = s | Xi = x′i) to
indicate the posterior distribution, in the remainder of the chapter, we simply
refer to the posterior distribution of V conditioned on x′i: Pr(v | x′i).

The denominator in the equation above corresponds to the model evidence, defined
previously as the sum of the probabilities of a posteriori congruent states. As such
the posterior distribution may be written as

Pr(v | x′i) = Pr(v)∑
v∈κ̂XiV (x′i)

Pr(v) .

3.4 Congruency constraints for dynamic Bayesian
networks

In this section, we extend the definition of the congruent states of Bayesian
networks developed above to dynamic Bayesian networks. Dynamic Bayesian
networks encompass a broad class of probabilistic models that include, for example,
hidden Markov models (see e.g. Russel & Norvig, 2003). A dynamic Bayesian
network evolves over a series of time steps. We refer to these as moments. Each
moment corresponds to an observation of the value of the observed variables
of the dynamic Bayesian network. Given a sequence of observations, we show
how the model evidence of each observation and the posterior distribution given
each observation is obtained by considering only moments relative to the present,
namely the current moment, the previous moment, and the first moment.

Congruency constraints reflect facts that a model assumes to deterministically
hold about possible states of affairs. Dynamic Bayesian networks model a state of
affairs that undergoes change from moment to moment. Therefore, congruency
constraints of a Bayesian network can reflect deterministic constraints on the ways
in which states of affairs evolve over time.

Since observations constrain the congruent states of a Bayesian network that has
deterministic constraints, the congruent states of a dynamic Bayesian network
evolve over moments (time steps) as a function of the observations made in
each moment. This evolution can be described by a finite-state automaton that
processes observations of variables of the Bayesian network as input. We call the
set of possible sequences of observations accepted by this finite-state automaton
the congruent input sequences of a model.

Below, we first define dynamic Bayesian networks. We then show how the evolution
of a dynamic Bayesian network from moment to moment can be described as a
cyclical process. First, we sketch an absolute-time version of this process in which
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we use absolute indices, t, to refer to different moments. Next, we show how the
explanation can be expressed in terms of moments relative to the present: t and
t − 1 and introduce notation to refer to these moments. This present-relative
formulation allows all absolute indices, except for zero, to be dropped from the
notation. Finally, after describing the present-relative formulation of the cyclical
process, we show how congruent input sequences are described by a finite-state
automaton.

3.4.1 Dynamic Bayesian networks

A dynamic Bayesian network is defined by two Bayesian networks: an initialization
model and a transition model. The initialization model describes the distribution
of a set of random variables V in the first moment. The transition model describes
the probability distribution of V conditioned on the previous moment (which
may be the first or any subsequent moment). In order to distinguish between
V in different moments, we temporarily give V an absolute-time index, t ∈ N,
indicating the number moments elapsed since the first moment, such that V0
represents the first moment. The transition model is a conditional distribution
Pr(Vt | Vt−1) for t > 0. Note that while there is an arbitrary number of moments,
there is only one transition model.

The initialization model is a regular Bayesian network and the dependency relations
between its variables are described by an acyclic directed graph G0 = (V0, E0).
The transition model is also a Bayesian network, involving the variables Vt−1 ∪ Vt.
Its dependency relations are described by Gt = (Vt−1 ∪ Vt, Et). The variables
Vt represent the current moment, while the variables in Vt−1 represent the same
variables in the previous moment. The edges of Gt, Et can be partitioned into a
set EH and a set EV , indicating respectively the horizontal dependencies and the
vertical dependencies of the transition model, such that Gt = (Vt∪Vt−1, E

H ∪EV ).
Horizontal dependencies represent temporal (across-moment) dependencies, which
may run only from Vt−1 to Vt. Vertical dependencies represent instantaneous
(within-moment) dependencies, which may run only between variables in Vt.

The following example illustrates horizontal and vertical dependencies: Imagine
that we wish to infer the location of a moving vessel from a sequence of imprecise
GPS measurements. We can consider each measurement to be an observed
variable in a generative transition model in which the vessel’s actual location is
a hidden (latent) variable. This latent variable has a horizontal dependency on
the variable representing vessel’s actual location in the previous moment. The
observed variable, representing a measurement, has a vertical dependency on the
latent variable representing the actual location of the vessel in the current moment
(this model is an example of what is known as a hidden Markov model). The
probability distribution over the vessel’s current location is constrained, via a
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horizontal dependency, by its previous location, and the measurements in the
current moment are constrained via a vertical dependency by the vessel’s current
location.

3.4.2 Absolute-time moment transitions

From here onward, we denote the state of a compound variable, X ∪ Y , con-
sisting of two disjoint sets of variables X and Y as xy. This represents the
concatenation of the two tuples: if x = (x0, x1, · · ·) and y = (y0, y1, · · ·), then
xy = (x0, x1, · · · , y0, y1, · · ·).

A moment represents an atomic (indivisible) unit of time corresponding to the
observation of a state x′i,t of one of the variables in Xi,t ∈ Vt. Evaluating a model
on a sequence of observations—that is, obtaining model evidence and posterior
distributions—on a sequence of observations, (x′i,0, x′i,1, · · ·), of arbitrary length
can be described as a cyclical process in which for each observation, congruent
states are generated, model evidence is calculated and a posterior distribution is
derived. Finally, the posterior distribution is marginalized to serve as the prior
distribution in the next moment.

The cyclical process is initialized in the first moment by observing the state
x′i,0 of a variable Xi in the initialization model V0. The posterior distribution,
Pr(v0 | Xi,0 = x′i,0), is a probability distribution over a posteriori congruent
states of V0, which are of the form {v0, v

′
0, v
′′
0 , · · · }. In the second moment, the

transition model defines the a priori congruent states of Pr(v1 | v0, x
′
i,0). Observing

x′i,1 yields the posterior distribution Pr(v0 | Xi,0 = x′i,0), defined for a posteriori
congruent states of Pr(v0 | x′i,0) Pr(v1, | v0, x

′
i,0, x

′
i,1). These are of the form

{v0v1, v0v
′
1, v0v

′′
1 , · · · }. Before transitioning to the third moment, we can calculate

the marginal posterior distribution over states in V1 as follows:

Pr(V1 | xi,0, xi,1) =
∑

v0∈κ̂
Xi,0
V0

(x′i,0) Pr(v0 | x′i,0) Pr(v1, | v0, x
′
i,0, x

′
i,1).

The congruent states of the marginal distribution are of the form {v1, v
′
1, v
′′
1 , · · · }.

This marginal posterior distribution serves as the prior distribution in the next
step.

To summarize: in the second moment, at which t = 1, we used the posterior
distribution of Vt−1 = V0 as a prior distribution for the transition model. Posterior
to the second observation, we obtain the posterior distribution over the states of
Vt−1 ∪ Vt given the first and second observations. This posterior distribution is
then marginalized to a marginal posterior distribution of Vt by summing over a
posteriori (with respect to the first observation) congruent states of Vt−1. This
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last step completes the cycle, because in the third moment, at which t = 3, we can
once again use the marginal posterior distribution of V1 as a prior distribution for
the transition model and repeat the process of observation and marginalization.

3.4.3 Present-relative formulation

The process described above can be described by referring only to the first (t = 0),
previous (t−1) and current moment (t). If we define the moment indicated by t as
the present, we can describe a present-relative formulation of the cycle described
above. In order to refer to a variable in the previous moment, we decorate it
with a hat, such that x̂i and X̂i refer respectively to xi,t−1 and Xi,t−1, while plain
variable symbols x and X refer to xt and Xt. The only other temporal distinction
that is relevant is whether the present is the first moment since the initialization
model applies at that moment. Therefore, we use X0 and x0 to refer to variables
and states of variables in the first moment.

We assume that whenever we reference V , we do so from the perspective of a
specific moment and that V̂ refers to the marginal posterior distribution of V in
the previous moment given all observations preceding the current moment. To
minimize clutter, we omit the dependency of the posterior distribution on all these
preceding observations. In this way, in each moment, we perform inference on a
generative model Pr(v̂) Pr(v | v̂) by observing the state x′i of a variable Xi in V .

The emphasis on describing the model from the perspective of the current moment
has two motivations: First, we stress the continuity of V , which describes a system
(e.g., a model of a perceiver) the state of which is updated by observations that
follow each other in temporal order. Second, in the cognitive models that we
will define later, we are primarily interested in the posterior distribution of latent
variables in a given moment and the model evidence as a measure of “expectedness”
or surprisal of observations.

3.4.4 Present-relative moment transitions

A present-relative formulation of the cyclical process described in Section 3.4.2
is summarized in Table 3.2 as a four-step process, divided into two a priori
(before observation) and two a posteriori (after observation) steps. The probability
distributions that describe the state of the system are shown in each step. The
congruent states of these distributions (the states that are not a priori known to
have zero probability) are shown next to each distribution. Below, we describe
each step in detail.

Step one is not so much a step as it is a state of affairs: we have a prior
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Table 3.2: The cycle in which the congruent states of a dynamic Bayesian network
are updated by an observation and marginalized in order to transition to the next
moment. The dashed line indicates the moment at which an observation occurs.

Step Distribution Congruent states Orientation

1 (prior) Pr(v̂) KV̂ ⊆ DV A priori
2 (prediction) Pr(v | v̂) Pr(v̂) KV̂ ∪V ⊆ {v̂v | v̂ ∈ KV̂ , v ∈ DV }

3 (inference) Pr(v | v̂, x′i) Pr(v̂) κ̂Xi
V̂ ∪V (x′i) ⊆ KV̂ ∪V A posteriori

4 (marginaliza-
tion)

Pr(v | x′i)→ Pr(v̂) κ̂XiV (x′i) ⊆ DV

distribution, indicated by Pr(v̂), which is a probability distribution over a set of a
priori congruent states KV̂ . The state of affairs in step one can be seen as either
the result of the fourth step of the four-step process in the previous time step
or as the result of observing one of the variables of the initialization model. In
the latter case, Pr(v̂) is equated to the posterior distribution of the initialization
model: a probability distribution over a posteriori congruent states of V0 given an
observation x′i, given by

Pr(V0 | x′i) = Pr(V0)∑
v0∈KV0

Pr(V0) .

Since V0 is a normal Bayesian network, the procedure described in Section 3.3.6
can be used to obtain the above posterior distribution.

In step two, a priori congruent states of the current moment are generated
using the transition model. The result is a probability distribution over a priori
congruent states of the transition model, KV̂ ∪V . In order to define this set, we
introduce some additional notation to indicate horizontal and vertical dependencies
of variables in the transition model.

Horizontal dependencies are denoted by PAH
i ∈ V̂ and defined as PAH

i = {X ∈
V̂ | (X,Xi) ∈ EH}. Vertical dependencies are denoted by PAV

i ∈ V and defined
as PAV

i = {X ∈ V | (X,Xi) ∈ EV }. Similarly, paHi and paVi denote states of
PAH

i and PAV
i respectively. Again, V i ⊆ V is a compound variable constituted by

{Xi}i−1
i=0 ⊆ V .

The a priori congruent states of the transition model depend on a set of congruent
states,KV̂ . These can be either the a posteriori congruent states of the initialization
model, or the congruent states of a marginal posterior distribution of the previous
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time step, as described in step four. Given this set, a priori congruent states of
the transition model are given by

KV̂ ∪V i =



KV̂ if i = 0,
{v̂(x0, · · · , xi−1, xi) | v̂(x0, · · · , xi−1) ∈ KV̂ ∪V i−1 , xi ∈ DXi} if Xi is

a root of
G,

{v̂(x0, · · · , xi−1, xi) | v̂(x0, · · · , xi−1) ∈ KV̂ ∪V i−1 , xi ∈ κXi(paHi paVi )} otherwise.

This definition is similar to that of a priori congruent states of a Bayesian network,
except that there now is a set of congruent states from which the congruent
states of the transition model branch. The most important point here is that the
congruency constraint of each variable in the transition model has both horizontal
and vertical dependencies (paHi and paVi ), and may thus restrict the possible states
of a variable based on states of variables in the previous moment. The horizontal
dependencies are contained in the states v̂ ∈ KV̂ .

Step three is the first step after observing x′i. Here, inference is performed to
obtain the posterior distribution of V given x′i and v̂. This distribution is given by

Pr(v | v̂, x′i) Pr(v̂) = Pr(v | v̂) Pr(v̂)∑
v̂∈κ̂Xi

V̂ ∪V
(x′i)

Pr(v | v̂) Pr(v̂)

Note that the model evidence (in the denominator) corresponds to the sum of the
probabilities of a posteriori congruent states of Pr(v | v̂) Pr(v̂) given x′i. These
are given by the states in KV̂ ∪V that are congruent with the observed value xi of
Xi ∈ V . The definition of a posteriori congruent states is given in Section 3.3.4.

In step four, we obtain the marginal posterior distribution. This distribution is
obtained by summing across a priori congruent states of the prior distribution,
KV̂ (see step one):

Pr(v | x′i) =
∑
v̂∈KV̂

Pr(v | xi, v̂) Pr(v̂).

The cycle is completed by equating the resulting marginal posterior distribution
to Pr(v̂) in the next moment and returning to step one.

Note that an upper-bound on the computational cost of inference in step three is
linearly proportional to the maximum number of congruent states of V ∪ V̂ .
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3.4.5 Congruent input sequences

The congruent states of the model in each moment constrain the possible values
that can be observed. How the set of congruent states changes as a function of
observations may be described by a transition function, δ : P(DV )×DXi → P(DV ),
which takes as its input the set of congruent states of the prior, V̂ (the congruent
states in step one in Table 3.2), and an observation x′i of one of the variables in V .
As its output, the transition function produces the set of a posteriori congruent
states of the marginal posterior distribution (the congruent states in step four of
Table 3.2).

Given this function, we can define a finite-state automaton (FSA) (see e.g. Carroll
& Long, 1989) that describes how the congruent states of a dynamic Bayesian
network evolve by “processing” observations x′i of a variable Xi ∈ V as “input”.
A FSA is defined by a 5-tuple (Σ, s0, S, δ, F ), where Σ is the input alphabet, a
finite set of input symbols, S is a finite and non-empty set of states, s0 ∈ S is a
start state, δ : S × Σ → S is a transition function, which produces a new state
given a state and an input, and F ⊆ S is a possibly empty set of final states.
A FSA that describes how the congruent states of a dynamic Bayesian network
with congruency constraints evolve across moments has the transition function
δ described above, its states correspond to S = P(DV ), its input alphabet is
the domain of an observed variable Σ = DXi , its initial state, s0, is the set of a
posteriori congruent states of V0 given an initial observation x0

i : s0 = κ̂V0(x0
i ), and

its set of final states is empty.

Note that if, at any state s, an input x′i that is not a priori congruent is provided
to the transition function, then, by the definition of a posteriori congruent states,
δ(s, x′i) = ∅. Once this state is reached, the FSA cannot escape it. We call the
set of sequences of observations of length n that the FSA can process without
reaching this state, the congruent input sequences.

The set of congruent input sequences of a dynamic Bayesian network model of a
given length n correspond to the set of possible sequences of observations over
which the model defines a complete probability distribution.

3.5 Model-definition framework

In this section, we describe a framework that is used in Chapters 4 and 5 to
define a variety of rhythm perception models. Section 3.4 showed that a dynamic
Bayesian network is described by an initialization model, a transition model,
and a set of congruency constraints. The framework described below provides
a format in which the congruency constraints of the transition model can be
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defined. The need to define an initialization model is eliminated by assuming a
fixed initialization model in which each variable has one congruent state, namely
∗. That is, Pr(Xi,0 = ∗) = 1 for any Xi,0 ∈ V0. This allows us to focus on the
transition model and avoid the need to specify custom initialization models for
each model.

Strictly speaking, the fixed initialization model causes ∗ to occur in the domain of
every variable in models defined this way. However, we consider this information
redundant and will not explicitly include the value ∗ when defining variable
domains. That is, when we define the domain of a variable as DX = {a, b, c}, it
should be understood that the actual domain of X is {a, b, c, ∗}.

A model-definition table defines the variables of a dynamic Bayesian network, their
domains, their horizontal (across-moment) and vertical (instantaneous within-
moment) dependencies, and their congruency constraints. This table fully defines
the deterministic and representational aspects of a model and completing the
specification of a model requires only the additional definition of the conditional
probability distributions of each variable. In model-definition tables, we follow
the notational convention used throughout this chapter that capital letters denote
random variables and non-capitalized letters denote states of random variables
indicated by their capitalized counterpart. Each row in the table defines one
variable, and different columns in each row define the horizontal and vertical
dependencies, the domain, and the congruency constraints of that variable. Below,
we introduce model-definition tables by means of an example.

3.5.1 Example

Consider a hypothetical keyboard instrument that provides rather limited musical
possibilities: it has only three keys and allows only one them to be played at
the same time. Melodies that can be played on this keyboard are monophonic
and consist of different sequences of the three notes. We will describe a simple
probabilistic model of such melodies. We represent the notes of the three keys by
the natural numbers 0, 1, and 2. In this melody model, it does not matter which
notes are encoded by these numbers. Figure 3.2 shows the dependency graph of
this model. We will explain it bit by bit in the following paragraphs.

In the melody model, a moment corresponds to a note being played. This note
is described by a random variable N that can assume the values {0, 1, 2}. Any
pair of notes played subsequently creates a pitch interval, which is described by a
variable I. We assume that the probability of a melody depends on the probability
of the pitch intervals that it contains. We furthermore assume that we can observe
the value of N directly.

The domain of I—the set of possible pitch intervals—is {−2,−1, 0, 1, 2}. However,
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N

I

N̂

Figure 3.2: A network graph representing the transition model of a dynamic
Bayesian network representing a model of notes played on a keyboard conditioned
on the interval between notes. The variable N̂ represents a note played in the
previous moment, the variable I represents a pitch interval, and the variable N
represents a note played in the current moment.

the set of pitch intervals that can occur in a given moment depends on which
note was played previously. The conditional distribution of I therefore has a
horizontal dependency: Pr(i | n̂) and a deterministic constraint stating that pitch
intervals that cannot be created in a moment given the previous note must have
a probability of zero. For example, if the previous note was 1, the set of pitch
intervals that can be created in the current moment is {−1, 0, 1}.

We assume that given a pitch interval is deterministically known given two
consecutive notes. However, we encode this constraint generatively: the next
note is known deterministically given the previous note and the pitch interval.
Therefore, the conditional distribution of N depends horizontally on the previous
note and vertically on the current pitch interval: Pr(n | n̂, i). The joint distribution
of the transition model is given by Pr(n, i) = Pr(n | i, n̂) Pr(i | n̂), in agreement
with the graph in Figure 3.2.

One more issue requires addressing: in the first moment, there is no previous note,
so the pitch interval is undefined. We will assume that, in the first moment, N has
a uniform distribution and that I deterministically generates the symbol ∗. These
constraints can be defined fully in the transition model. In the first moment, n̂
and î refer to the values of N and I in the initialization model. Since we have
assumed that, in the initialization model, these values deterministically are ∗, the
congruency constraints can check whether the current moment is the first moment
by checking whether n̂ = ∗ (I also generates ∗ in the first moment, so checking
that î = ∗ would cause I to forever generate ∗).

The deterministic constraints on the conditional distributions of I and N described
above are implemented by congruency constraints. The congruency constraint of
I is:

κI((n̂)) =

{∗} if n̂ = ∗,
{i ∈ DI | n̂+ i ∈ DN} otherwise.
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Table 3.3: The congruency constraints of a dynamic Bayesian network describing
melodies that can be played on a small keyboard allowing for uncertainty about
the pitch intervals between subsequent notes.

Xi PAi DXi κXi(paXi)

I {N̂} {−2,−1, 0, 1, 2}

{∗} if n̂ = ∗,
{i ∈ DI | n̂+ i ∈ DN} otherwise.

N {N̂ , I} {0, 1, 2}

DN if n̂ = ∗,
{n̂+ i} otherwise.

The congruency constraint of N is:

κN((n̂, i)) =

DN if n̂ = ∗,
{n̂+ i} otherwise.

The constraints indeed ensure that I is deterministic in the first moment by
generating the singleton {∗} and that N has multiple a priori congruent states,
namely {0, 1, 2}. However, after observing, N , the state of the model is fully
known. After observing that N is, for example, 2, the joint distribution of {I,N}
has only one a posteriori congruent state, namely (∗, 2). In the next moment, I
is no longer deterministic and generates the following a priori congruent states:
{1, 0,−1}. However, since N is deterministic given I, the value of both variables
are deterministically known a posteriori. For example, if we would observe that
N is 0, the only a posteriori congruent state of {I,N} would be (−1, 0).

A model-definition table concisely enumerates these constraints and simultaneously
defines the dependency graph of a model. Table 3.3 shows the model-definition
table of the example model described above. Horizontal and vertical dependencies
are given in the column PAi. They are specified as a single set in which horizontal
and vertical dependencies can be distinguished by the present-relative notation
conventions. The congruency constraints are listed as function definitions in the
column κXi(pai). These definitions make use of the states of variables in pai,
which are the arguments to the congruency constraint. The dependency graph of
the model G = (V,E), where V = {N, I, N̂ , Î} and E = {(N̂ , I), (N̂ ,N), (N, I)}
(shown in Figure 3.2), is specified completely by the model-definition table. Com-
bined with a definition of conditional probability distributions (not given for
this example) of each variable, the model-definition table completely specifies a
dynamic Bayesian network. Note finally that we have highlighted the variable
that can be observed, N , by giving its row a shaded background.

The behavior of the model described in this example is similar to the behavior
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of multiple viewpoint systems (Conklin, 1990; Conklin & Witten, 1995). Such
models predict sequences of symbols by constructing derived representations that
are constrained by the symbol sequence from which they derive. The mechanism
that constrains the possible continuations of a derived representation in a multiple
viewpoint systems is similar to the mechanism described in this example.

In fact, the framework described here could be used to define a dynamic-Bayesian-
network formulation of multiple viewpoint systems. While multiple viewpoint
systems are fully observed models—that is, after an observation, there is no
uncertainty about its state—a dynamic Bayesian network represents derived rep-
resentations as latent variables in the manner illustrated in the above example
(which is also fully observed). This would enable treating multiple viewpoint
systems as a general-purpose Bayesian network, rather than a unique representa-
tional formalism. We leave the precise definition of multiple viewpoint systems as
dynamic Bayesian networks with deterministic constraints as an opportunity for
future work to address.

3.5.2 Terminology

Some general patterns of behavior arise in the definition of congruency constraints
for music-cognition models in the next chapters. Below, we enumerate some of
them and introduce a vocabulary for referring to them.

In the example described in the previous section, the variable N had a horizontal
dependency on itself in the previous moment (n̂). We will call variables with such
dependencies recursive variables.

Furthermore, I deterministically generates the symbol ∗ in the first moment. We
will say that variables whose only a priori congruent state in a given moment is ∗
are inactive at that moment. All variables are inactive in the initialization model.
We will furthermore say that a variable activates the first time that it generates
symbols other than ∗.

The fixed initialization model in a sense defers the definition of the initialization
model to the congruency constraints of the transition model. This theoretically
enables the initialization model to be spread out across multiple moments: Notice
that I deterministically generates ∗ in the first moment and activates in the second
moment. The variable encodes the first-order pitch derivative, which is defined
only from the second moment onward. Another variable could be introduced that
checks whether Î = ∗ and deterministically generates ∗ otherwise, resulting in
a variable that activates in the third moment. This mechanism can be used to
define variables that encode higher-order representations (such as a second-, or
higher-order pitch derivatives) of sequences that activate once enough observations
have occurred for the higher-order information to become available.
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Another behavior that commonly occurs is when a latent variable generates a
set of states once and retains its state in all subsequent moments. We call such
variables persistent variables. An example of a congruency constraint of such a
variable is

κX((x̂)) =

DX if x̂ = ∗,
{x̂} otherwise.

The condition x̂ = ∗ is deterministic, since it only holds in the first moment.
A persistent variable generates multiple a priori congruent states in when it
activates and is deterministic given its previous state in subsequent moments.
Persistent variables need not be recursive: they may also rely on other deterministic
conditions, such as whether the state of another variable equals ∗ to activate.

Persistent variables are useful for modeling latent variables that are assumed
to apply to an entire sequence. The models presented in Chapters 4 and 5 use
persistent variables to describe the meter of a rhythm.

3.6 Summary

We have shown how congruency constraints can describe deterministic constraints.
When applied to conditional probability distributions of Bayesian networks, these
constraints can be exploited to calculate marginals, which are required for exact
inference, more efficiently. The deterministic constraints reduce uncertainty in
probabilistic models and replace it by deterministic restrictions. These restrictions
may be motivated, for instance, by a modeler’s expert knowledge of a certain
domain. Like Bayesian networks, congruency constraints provide a means of
controlling the dimensionality of a probabilistic model. Congruency constraints
are an example of how deterministic constraints can be mixed into Bayesian
networks (Mateescu & Dechter, 2008).

We described the consequences that congruency constraints have for a class of
models known as dynamic Bayesian networks. Here, we emphasized how such
models evolve from moment to moment by updating their congruent states,
performing inference, and marginalizing the congruent states. We showed that
deterministic constraints cause the set of congruent states of a dynamic Bayesian
network to change as a function of the sequence of observations. This process can
be described by a finite-state automaton whose state corresponds to possible sets
of congruent states.

Finally, we introduced a framework in which a dynamic Bayesian network and
its deterministic constraints can be fully specified in a model-definition table.
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Chapters 4 and 5 use this framework to present compact definitions of different
rhythm perception models. Chapter 4 shows that the compact definitions can
reveal complex and interacting deterministic mechanisms in such models, and
the framework described here allows them to be disentangled from these models,
revealing the underlying dynamic Bayesian network model.





Chapter 4

Deterministic constraints of a
probabilistic rhythm perception model

4.1 Introduction

The previous chapter developed a framework in which discrete dynamic Bayesian
networks with deterministic constraints can be defined compactly. This chapter
aims to demonstrate both the expressive capacities of the framework and the
advantages it brings to the definition of cognitive models. We do so by using the
framework to formulate an adaptation of a probabilistic generative model of meter
perception proposed by Temperley (2007).

Temperley’s model is intended to simulate how listeners infer a rich and complex
hierarchical structure, namely meter, from a melody. Temperley describes this
model in a top-down fashion: first, the model generates a metrical grid that
represents a hierarchical metrical structure, then, on top of this grid, it generates
a rhythm represented by a sequence of “pips”—consecutive time points at which
onsets may occur, separated by a fixed and small temporal duration. Here, we
present a dynamic Bayesian network adaptation of the model. Since dynamic
Bayesian networks are by definition temporally incremental, this adaptation can
process a rhythm in a temporally incremental, “left-to-right” fashion. This requires
some of the probabilistic decisions that the original model makes globally, while
generating a metrical grid and before generating a rhythm, to be localized to a
specific moment in time. A few minor changes to the original model are proposed
to achieve this.

One advantage of the model-definition framework that we hope to demonstrate

77
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is that the formal definitions that it produces are detailed yet relatively concise.
In order to arrive at the definition of Temperley’s model below, we sometimes
needed to consult the algorithmic implementation provided by Temperley. 1 This
brought to light a few constraints that are not explicit in the model’s original
description, illustrating that informal, or partially formal, definitions of theories
and computational models, which are prevalent in the literature (e.g., Temperley,
2007; Van der Weij et al., 2017 [Chapter 6]), may leave a, sometimes surprising,
number of details and subtle interactions unarticulated. 2 The model-definition
framework introduced in Chapter 3, by contrast, requires a model’s constraints to
be specified formally and makes these constraints explicit.

Furthermore, compact but precise definitions of computational models facilitate
their implementation and comparison. This is demonstrated in Chapter 5, where
we present two rhythm models that are compared in Chapter 7. The differences
between models are reduced to the differences between their model-definition
tables and conditional distribution definitions, instead of being hidden in textual
model descriptions. In Chapter 5, we define a constrained version of Temperley’s
model.

In Section 4.2 we give a high-level overview of Temperley’s model. The dynamic
Bayesian network formulation is presented in Section 4.3. Finally, in Section 4.4
we summarize the definition of the model and reiterate some of the observations
we made along the way.

4.2 Model overview

Temperley’s original model and the version described here are based on a discretized
representation of continuous time. This representation describes rhythms as a
sequence of consecutive time points, separated by a small and constant unit of
duration. These time points are called pips and the duration separating them is
defined to be fifty milliseconds by Temperley (2007, p. 31). Each pip represents a
binary random event, namely whether or not an onset occurs at its time point.
The random variable N describes this outcome. It can assume two values: t or f
(for true if a note occurs and false if it does not). In Chapter 2, we called models
employing this type of rhythm representation grid models, because they represent
rhythms as a discrete grid of time points.

1The implementation that we consulted can, at the time of writing, be found in a file called
meter16.c downloadable from http://davidtemperley.com/music-and-probability/.

2Desain and Honing (1999) made a similar observation about rule-based models of beat
induction. In their effort to implement these models, they found that the rules of these models,
for some of which only verbal descriptions were available, interacted in ways not made explicit
in the descriptions, and sometimes unforeseen by their authors.

http://davidtemperley.com/music-and-probability/
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Meter is conceptualized as an abstract multileveled hierarchical structure, pre-
scribed in notated music by a time signature. The model always generates three
levels of metrical hierarchy: an upper level, a tactus level, and a lower level. Each
level represents a more or less regular stream of perceived pulses or beats. The
tactus level represents a pulse at a moderate rate to which the listener would, for
example, tap their foot (Lerdahl & Jackendoff, 1983). The upper level corresponds
to a measure—that is, a grouping of tactus beats by two or three. The lower
level corresponds to faster pulses obtained by subdividing the tactus beats by
two or three. A hierarchical relation between levels is established by requiring
that points in time corresponding to a beat at one level must also be a beat at
all levels below: for example, a beat at the upper level (indicating the beginning
of a bar), must also be a beat at the tactus level and at the lower level. This is
equivalent to metrical well-formedness rule (MWFR) 2 described by Lerdahl and
Jackendoff (1983).

The model describes metrical structure by two random variables: U (UT in
Temperley’s description) describes the number of tactus beats per upper-level
beat and can assume the values two or three. L (LT in Temperley’s description)
describes the number of lower-level beats per tactus beats and can also be two or
three. This structure is determined globally and does not change throughout a
rhythm.

The variable Uph describes how the metrical grid aligns with a rhythm. More
precisely, it describes the phase of the first tactus beat with respect to the upper
level. In other words, it encodes whether the first tactus beat is the first, second,
or third beat in the bar (the latter is only possible if the upper level is triple). The
dynamic Bayesian network version of the model that we describe below introduces
an additional variable, Tph, that describes the offset of an onset from the last
tactus beat.

Two aspects of the model engage with tempo and expressive timing aspects of
rhythms: the duration of the tactus interval can fluctuate throughout a rhythm
and lower-level beats may be unevenly spaced between tactus beats. The duration
of the nth tactus interval is described by the variable Tn and the positions of
lower-level beats are described, for the nth tactus interval, by three random
variables: Dbn (for duple beat) describes the location of a lower-level beat when
the lower level is duple (L = 2), Tb1 n and Tb2 n (for triple beat one and two)
describe the locations of the first and second lower-level beat when the lower level
is triple (L = 3). However, both irregular spacing of lower-level beats and changes
to the tactus interval decrease the a priori probability of the metrical structure.
That is, the model considers these irregularities as deviations from an abstract
ideal posited by the model: a metrical analysis in which the tactus interval does
not fluctuate and in which lower-level beats are spaced equally in between tactus
beats.
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The model outlined above is subject to deterministic constraints. Some of these
are evident in the model’s description. For example, if the number of tactus beats
per bar is two, there are only two possible upper-level phases, namely zero and
one, while if there are three tactus beats per bar, three upper-level phases are
possible. Others are more subtle. For example, the positions of lower-level beats
fall within a set of possible positions determined by the tactus interval. If there
are two lower-level beats, the second one must occur after the first one, and the
first one must leave room for the second one to occur. Additionally, lower-level
beats must not deviate by more than three pips from their most probable location.
The congruency constraints described in Section 4.3.1 formally defined these
constraints.

4.3 A dynamic Bayesian network formulation

Below, we define Temperley’s original model (the original model) as a dynamic
Bayesian network with deterministic constraints (the DBN model). This model is
based on an interpretation of the generative model that conceptually is different
from the one Temperley presents: 3 The original model and its algorithmic
implementation emphasize a generative view: a metrical grid, which must always
begin and end with a tactus beat, is generated first, on top of which a rhythm is
generated, with the restriction that the first onset must occur before the second
tactus beat. The DBN model may be said to emphasize the perspective of a
listener who listens to a rhythm that is revealed incrementally in time. The
listening begins when the first onset of a rhythm occurs. Therefore, in the DBN
adaptation, the first moment corresponds to the first onset of a rhythm, which
may align with any position in a tactus interval. Practically, this necessitates the
addition of a tactus phase variable, Tph, which encodes the offset in pips of the
current pip from the last tactus beat.

A variable in the original model that is not included in the DBN model is
the “another beat” variable, A, which decides whether another tactus beat is
generated at the end of each tactus interval. The variable A makes the number of
moments that occur a random outcome that determines the duration of a grid
that is generated. In the DBN model, moments correspond to subsequent atomic
temporal units and this progression of time is not part of the generative model.

The DBN model generates a rhythm moment by moment. A moment corresponds
to a pip in Temperley’s model. A Dynamic Bayesian network is a first-order
Markov model. This means that in each moment, a probability distributions
describing a state of affairs must be generated from information that is locally
available. These restrictions force us pick precise moments in time at which

3We thank David Temperley for clarifying this to us in private communication.
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certain probabilistic decisions are made. This decisions propose an answer to
questions like: when are the positions of lower-level beats are decided and when
is the duration of the next tactus interval decided? In Temperley’s top-down
formulation, these decisions are made when the metrical grid is generated, which
happens before the rhythm is generated. In the DBN formulation, such decisions
are made at specific moments in time (namely the first moment, and whenever a
tactus interval ends, as explained below).

The deterministic constraints of the model are defined in Section 4.3.1, and dis-
cussed in Sections 4.3.1.1, 4.3.1.3, and 4.3.1.4. In Section 4.3.2, we discuss issues
regarding the interpretation of the first and the final moment. Section 4.3.3
describes some possibly unintended inferential biases that are the result of deter-
ministic constraints on conditional probability distributions. Finally, the model’s
parameters, and probability distributions of its variables are described in Sec-
tion 4.3.4.

4.3.1 Deterministic constraints

Table 4.1 defines the deterministic constraints of the DBN model. Two basic
observations can be made upfront. First, the variables U and L are persistent (see
Chapter 3), reflecting the fact that they are generated once and do not change their
value throughout a rhythm. Second, the piece-wise function definitions in Table 4.1
are used to differentiate between two special states of the joint distribution: The
first moment is identified by checking that the previous value of some variable
is ∗. Every variable, except Bs, uses this pattern to define custom congruency
constraints for the initial moment. The conditions tph = 0, and ˆtph + 1 = t̂
both check for the situation that a tactus interval has ended. This situation is
used by Uph to check whether the upper-level phase needs to be increased, by
Db, Tb1 , and Tb2 to check whether new lower-level beat positions need to be
generated, and by Bs to check whether the metrical salience of the current moment
is higher than one. Below, we describe the congruency constraints related to phase
(Section 4.3.1.1), tactus interval (Section 4.3.1.2), positioning of lower-level beats
(Section 4.3.1.3), and determination of metrical salience (Section 4.3.1.4) in more
detail.

4.3.1.1 Phase

Uph represents the offset of the current moment from the last upper-level beat,
measured in tactus beats. Tph represents the offset of the current moment from
the last tactus beat, measured in pips (which correspond to moments). We hope
to be forgiven for the slight inconsistency in nomenclature that upper-level phase
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Table 4.1: A dynamic Bayesian network version of the rhythm model described
by Temperley (2007), with congruency constraints describing its deterministic
constraints.

Xi PAi DXi κXi(paXi)

U {Û} {2, 3}
{
DU if û = ∗,
{û} otherwise.

L {L̂} {2, 3}
{
DL if l̂ = ∗,
{̂l} otherwise.

T {T̂ , T̂ph} {n ∈ N | 9 ≤ n ≤ 22}
{
DT if ˆtph = ∗ or ˆtph + 1 = t̂
{t̂} otherwise.

Uph { ˆUph,Tph,U} {0, 1, 2}


{n ∈ N | 0 ≤ n < u} if ˆuph = ∗,
{( ˆuph + 1) mod u} if tph = 0,
{ ˆuph} otherwise.

Tph {T̂ph, T̂ ,T} {n ∈ N | 0 ≤ n ≤ 22}
{
{n ∈ N | 0 ≤ n < t} if ˆtph = ∗
{( ˆtph + 1) mod t̂} otherwise

Db {D̂b,Tph,T ,L} {n ∈ N | 1 ≤ n < 22}


{−1} if l = 3
lb(0, 1, t, l) if tph = 0 or d̂b = ∗
{d̂b} otherwise.

Tb1 { ˆTb1 ,Tph,T ,L} {n ∈ N | 1 ≤ n < 21}


{−1} if l = 2
lb(0, 1, t, l) if tph = 0 or ˆtb1 = ∗
{ ˆtb1} otherwise.

Tb2 { ˆTb2 ,Tb1 ,Tph,
T ,L}

{n ∈ N | 2 ≤ n < 22}


{−1} if l = 2
lb(tb1 , 2, t, l) if tph = 0 or ˆtb1 = ∗
{ ˆtb2} otherwise.

Bs {Db,Tb1 ,Tb2 ,
Tph,Uph} {0, 1, 2, 3}


{3} if tph = 0 and uph = 0,
{2} if tph = 0 and uph 6= 0,
{1} if tph ∈ {db, tb1 , tb2},
{0} otherwise.

N {N̂ ,Bs} {t, f }
{
{t} if n̂ = ∗,
{t, f } otherwise.
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Uph
Tph
Bs

0 0 0 0 0 0 1 1 1 1 1 1 0
0 1 2 3 4 5 0 1 2 3 4 5 0
3 0 1 0 1 0 2 0 1 0 1 0 3

Uph
Tph
Bs

1 1 0 0 0 0 0 0 1 1 1 1 1
4 5 0 1 2 3 4 5 0 1 2 3 4
1 0 3 0 1 0 1 0 2 0 1 0 1

Figure 4.1: Two metrical interpretations of a sequence of thirteen moments (pips).
In both interpretations, the meter is given by U = 3,L = 2,T = 6. The moments
themselves are indicated by unfilled circles below the metrical grid (a rhythm is
not shown). The values of the upper-level phase, Uph, the tactus phase, Tph, and
the beat salience, Bs, corresponding to each moment are shown below the grid.
The way in which the grid aligns with the meter is specified by the first (left-most)
values of Uph and Tph in the sequence of moments.

is measured in tactus beats (the level immediately below the upper level), while
the tactus phase is measured in pips (rather than lower-level beats).

These variables serve a dual purpose: in the first moment, they generate a set of
alternative hypotheses about the tactus and upper-level phase of the first moment,
while in subsequent moments they deterministically track the metrical status of
the current moment. In the first moment, the values of Uph are constrained by
the value of U (the number of tactus beats per bar). Tph may assume values
constrained by the value of T , the number of pips in the current tactus interval.

In non-initial moments, the state of Uph is deterministic and is incremented by
one, modulo U , whenever a tactus interval ends (when tph = 0). Similarly, the
state of Tph is deterministic given ˆtph and t̂ (the tactus phase and tactus interval
in the previous moment) and is incremented by one, modulo t̂ (the tactus interval
prevailing in the previous moment). The reason that Tph uses the tactus interval
in the previous moment is that the moment that a tactus interval ends (when
tph + 1 = t) a new tactus interval is generated by T .
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The interpretation of Uph and Tph is illustrated in Figure 4.1, which shows two
metrical interpretations, represented by a metrical grid (Lerdahl & Jackendoff,
1983; Temperley, 2007), of a sequence of pips (represented by unfilled circles).
The meter of both interpretations is the same, but the initial values of Uph and
Tph are different. That is, the Figure illustrates how Uph and Tph encode the
way in which a meter aligns with a grid of pips.

As mentioned before, the original model does not have a Tph variable. In the
original model, the first pip represents the first tactus beat, which may occur
at different moments with respect to the first onset. As such, the time point
represented by a pip is interpreted relative to the first tactus beat and it is not
possible to link a pip to an absolute moment in time. In the DBN model, the
addition of the Tph enables a pip to be interpreted as an absolute moment in time,
during which the model may have an exhaustive set of alternative hypotheses of
the metrical status of that moment.

4.3.1.2 Tactus interval

T is deterministic and generates its previous value, t̂, in in any moments except
the first and whenever the previous tactus interval ends, as indicated by the
previous tactus phase plus one being equal to the tactus interval: ˆtph+ 1 = t̂. In
other words, a new tactus interval is generated in the first moment and whenever
a tactus interval ends. Following Temperley’s definition, the tactus interval is
bound by a minimum and maximum interval, set to 9 and 22 pips (moments),
corresponding to between 450 and 1100 milliseconds.

4.3.1.3 Lower-level beats

Like the tactus interval, the locations of lower-level beats, Db,Tb1 , and Tb2 , are
generated whenever the tactus interval changes (when tph = 0) and in the first
moment. These positions are restricted by several interacting constraints that
can be isolated into a single function, lb. The need for three different variables
described by similar constraints and probability distributions reflects a limitation
of the expressive power of Bayesian networks. While the position of a lower-level
beat could be described by one conditional probability distribution, the number
of lower-level beats that occur is contingent on the outcome of another random
variable, namely L. Since such contingencies cannot be expressed by a Bayesian
network (see Russell, 2015), separate variables for each lower-level beat are required.
Since whether Db or Tb1 and Tb2 apply to a metrical analysis depends on the
value of L, these variables can “disable” themselves by deterministically generating
an arbitrary symbol that does not occur in DTph (we chose −1, as can be seen in
Table 4.1).
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The definition of lb, which describes the constraints on the positions of lower-level
beats, is somewhat detailed because lower-level beats are subject to multiple
constraints: Lower-level beats must occur before the end of tactus interval, they
must not deviate from their most probable location by more than three pips, and,
if L = 3, they must leave room for the next lower-level beat to occur.

The most probable locations of lower-level beats are the points that divide the
tactus interval into two or three equal intervals, rounded down to the nearest pip.
The function dev : DTph × {1, 2} ×DT ×DL → {n ∈ N | 0 ≤ n < 21} describes
how far a given lower-level beat deviates from this point. Given the location
b ∈ DTph and phase, bph ∈ {1, 2} of a lower-level beat, a tactus interval, t, and
the number of lower-level beats per tactus interval, l, dev is defined as

dev(b, bph, t, l) = abs (b− floor (bph · t/l)) .

where the function abs(r) returns the absolute value of r, and the function
floor(r) returns the highest integer below r. Note that bph, unlike a value of
Tph, encodes the phase of a lower-level beat with respect to the tactus interval
measured in lower-level beats, rather than pips.

The function lb : DTph × {1, 2} × DT × DL → DTph generates a set of possible
locations of a lower-level beat. Given the location of the previous (lower-, tactus-,
or upper-level) beat, b̂ ∈ DTph, its phase, bph ∈ {1, 2}, a tactus interval, t, and
the number of lower-level beats per tactus interval, l, lb is defined as

lb(b̂, bph, t, l) = {b ∈ DTph | b̂+ 1 ≤ b ≤ t − (l − bph),dev(b, bph, t, l) < 4}.

For Db and Tb1 , the position of the previous beat is zero, while for Tb2 it is tb1
(see Table 4.1). Each beat must occur at least one pip after the previous beat (i.e.,
it must be greater or equal to b̂+ 1), it must leave room for any subsequent beats
(i.e., it must be smaller than or equal to t − (l − bph)), and it must not deviate by
more than three pips from its most probable location.

The description of the original model does not make explicit that the distribution
of Tb2 is conditioned on Tb1 since Tb2 must occur after Tb1 . The constraints
described above do occur in the algorithmic implementation provided by Temperley.
As such, they are an example of how implementation details are made explicit by
congruency constraints.
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4.3.1.4 Metrical salience

Finally, a deterministic variable Bs determines the metrical salience of a moment
given the tactus and upper-level phase and the locations of the lower-level beats.
The possible levels of metrical salience are {0, 1, 2, 3}. Moments that do not align
with any beat have a metrical salience of zero, and moments that align with a
lower-level, tactus-level, or upper-level beat have a metrical salience of respectively
one, two, or three. The variable N , which is conditioned on Bs, describes whether
or not a note onset occurs within the current moment. An example of how a
metrical interpretation specifies the metrical salience of a sequence of moments is
provided by Figure 4.1, where the beat salience of each moment given two different
interpretations of a sequence of moments is shown.

4.3.2 Interpretation of the first and the final moment

An issue of some delicacy is how to interpret the meaning of “the first moment”
and “the final moment”. It seems reasonable to let the first moment correspond
to the first onset in a rhythm. This leads to a deterministic constraint that the
first pip always contains an onset, as reflected by the congruency constraint of N
in Table 4.1. 4

One possibility for the interpretation of the final pip is that it corresponds to
the final onset in a rhythm. This represents a deterministic constraint: the final
pip always contains an onset. However, this constraint cannot be captured by
congruency constraints of a dynamic Bayesian network since it would violate
temporal order: it is not possible to know a priori when the last onset occurs.
Alternatively, one could consider only rhythms represented on a grid of a pre-
determined fixed duration. In this case, the final onset could occur anywhere
within this sequence. Since the best solution seems to be application-dependent,
we will leave the issue of how to interpret the final pip open.

4.3.3 Period-dependent biases

Both the original model and the DBN model exhibit biases that depend on the
duration of tactus intervals. First, analyses positing long tactus intervals are
favored a priori. This can be seen by considering two alternative analyses of
a rhythm represented by n pips. An analysis that posits short tactus intervals
will contain more moments in which a tactus interval ends ( ˆtph + 1 = t̂), and a
new tactus interval has to be selected from the congruent states of T (see the

4Interestingly, dropping this deterministic constraint leads to the the “rhythm” of John
Cage’s 4′33′′ to be included in the set of possible rhythms that can be generated by the model.
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congruency constraint of T in Table 4.1), compared to an analysis positing long
tactus intervals. Therefore, the short-tactus-intervals analysis is a priori less likely
than the long-tactus-intervals analysis. This bias could be addressed in future
work by allowing a prevailing tactus interval to shrink or expand within each
moment, rather than only when a tactus interval ends.

Second, a bias in the reverse direction is present for the first tactus interval. If the
first tactus interval is long, the probability of any given value of Tph (except Tph =
0), due to the definition of its probability distribution (see Section 4.3.4) is less likely
than if the tactus interval is short. In general, models with deterministic constraints
seem especially susceptible to such biases: when the number of congruent states
of a latent variable depends on the outcome of another variable, biases are likely.

4.3.4 Model parameters

Parameters of probability distributions of the congruent states of each variable
are given by maximum likelihood estimates derived from an empirical sample
of rhythms. Temperley (2007) uses a subset of the Essen folksong collection
(Schaffrath & Huron, 1995) for this purpose. Since this collection does not
represent tempo and timing aspects of musical performances, a few distributions
are based on musical intuition or prior research.

The distribution of the tactus interval, T , given the previous tactus interval, is
given by

Pr(t | ˆtph, t̂) =


θT

t /
∑

t′∈DT θ
T
t′ if t̂ = ∗,

f t(t, t̂)/∑t′∈κT ((t, ˆtph)) f(t ′, t̂) if t ∈ κT (( ˆtph, t̂)),
0 if otherwise.

where the function f t is a function that returns a score representing how likely it
is that tactus interval t follows the previous tactus interval, t̂. This function is
given by

f t(t, t̂) = e
−
(

t−t̂
2

)2

.

In the distribution of T , these scores are normalized to create a probability distri-
bution over tactus intervals given a previous tactus interval. These probabilities
are maximal when the tactus interval is equal to the previous tactus interval. Note
that the normalization factor automatically ensures that when the tactus interval
has not ended, the probability of whatever tactus interval has been generated is
one, since the congruent states of the variable are a singleton in that case.
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Table 4.2: The initial tactus interval distribution as defined by Temperley (2007).

t 9 10 11 12 13 14 15 16 17 18 19 20 21 22

θT
t .1 .2 .3 .23 .13 .03 .006 .002 .001 .0006 .0002 .0001 .00005 .00005

The parameters of the tactus interval distribution in the initial moment (when
t̂ = ∗), {θT

t }22
t=9, are shown in Table 4.2. These parameters represent the prior

probability of different tactus interval durations.

The probability of a lower-level beat location depends on how far it deviates
from its most probable location. The conditional probability distributions of
Db,Tb1 , and Tb2 are shown below.

Pr(db | d̂b, tph, t, l) =
θBdev(db,1,t,l)∑

b∈κDb((d̂b,tph,t,l)) θ
B
dev(db,1,t,l)

,

Pr(tb1 | ˆtb1 , tph, t, l) =
θBdev(tb1 ,1,t,l)∑

b∈κTb1 (( ˆtb1 ,tph,t,l)) θ
B
dev(tb1 ,1,t,l)

,

Pr(tb2 | ˆtb2 , tb1 , tph, t, l) =
θBdev(b,bph,t,l)∑

b∈κTb2 (( ˆtb2 ,tb1 ,tph,t,l)) θ
B
dev(tb2 ,2,t,l)

.

Note that the three definitions above are virtually identical except for the constant
parameters supplied to dev, and the arguments to the congruency constraints.
These distributions share a set of parameters, {θBd }3

d=0, that represent the proba-
bilities of different degrees of beat deviation, d. Temperley defines these as follows:
θB0 = .32, θB1 = .24, θB2 = .08, and θB3 = .02.

The remaining parameters are estimated from an empirical sample of rhythms.
The parameters θU and θL represent respectively the probability that the upper
level is triple and that the lower level is triple. The distribution of Uph has three
parameters, θUph

0 , θUph
1 , and θUph

2 representing respectively the probabilities that
the upper-level phase is zero given that upper level is duple, and the probabilities
that the upper-level phase is zero or one given that the upper level is triple.

The distribution of whether an onset occurs at the present moment, Pr(n | n̂, bs)
has four parameters: {θN

s }3
s=0. These represent the probabilities with which notes

occurs at different levels of metrical salience, s. As described in Section 4.3.1.4,
there are four levels of metrical salience: 0, 1, 2, and 3. Level 0 applies to any
moment that does not align with a beat in the three metrical levels defined by
the model. Levels 1, 2, and 3 apply to moments that represent respectively lower-,
tactus-, and upper-level beats. Temperley estimated the following values for these
parameters based on a collection of German folksongs: θN

0 = .01, θN
1 = .38, θN

2 =
.74, and θN

3 = .95. The probability distribution of N is shown below.
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Pr(n | n̂, bs) =


1 if n̂ = ∗,
θN

bs if n = t,
(1− θN

bs) otherwise.

Finally, the distribution of TPH has one parameter, θTph, that reflects the prob-
ability of whether a rhythm begins on a tactus beat. The original model gives
extra weight to analyses in which the first onset aligns with a tactus beat. This is
achieved using a special value of Bs, namely “first tactus beat”, which it assumes
only when the current moment corresponds to the first tactus beat. Since we have
constrained the first pip to always contain an onset, this situation corresponds to
whether Tph is or is not equal to zero. The distribution of Tph is given by

Pr(tph | t̂, ˆtph, t) =


θTph if tph = 0 and ˆtph = ∗,
θTph/(t − 1) if tph 6= 0 and ˆtph = ∗,
1 otherwise.

4.4 Summary

In this chapter, we defined a dynamic Bayesian network model with deterministic
constraints based closely on a probabilistic rhythm model proposed by Temperley
(2007). To present this model, we used the model-definition framework developed
in Chapter 3. Detailed aspects of the model, such as the complex and interacting
deterministic constraints that govern the position of the lower-level beats, are
made fully explicit in a congruency-constraints-based definition. Details such as
these are commonly considered “implementation details” of a model and therefore
remain hidden in an algorithmic implementation of the model (if one is provided
at all). Although they might seem minute, understanding these details is necessary
for completely understanding and replicating a model and its behaviour. The
model-definition framework of Chapter 3 could be said to reduce the gap between
a published definition of a probabilistic generative model and its algorithmic
implementation. A model-definition table completely specifies the deterministic
constraints at play in a model in a relatively concise manner.

Our efforts to define the model’s deterministic constraints brought to light some
nuanced issues: The DBN model represents a temporally incremental model of
rhythm perception, while the original model emphasizes a generative perspective.
The DBN model considers the first moment to represent the onset of the first
note in a rhythm, while the original model generates a metrical grid, the first
position of which represents the beginning of the first tactus interval. Arguably,
the original model represents the perspective of the performer or composer of
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a rhythm, who is aware of the position of the first tactus beat, while the DBN
model represents the perspective of the listener, whose experience of the rhythm
begins at the moment the first onset occurs.

Finally, we highlighted that the model exhibits independent biases toward a short
initial tactus interval, and toward long tactus intervals over the entire rhythm (see
Section 4.3.3). In general, such biases are easily introduced in probabilistic models
with deterministic constraints. However they can be easy to miss, especially when
the definition of a model is not fully formal.

We also demonstrated that models defined in the framework of Chapter 3 are
temporally incremental process models. That is, moments are processed one by
one, and the joint distribution over all the model’s variables must be generated
on the basis of locally available information. In the DBN model, this led us
to use the tactus-phase variable to keep track of the metrical status of the
current moment. These variables, and their deterministic constraints, enable all
probabilistic decisions, such as when to generate a new tactus interval or when to
generate new positions for the lower-level beats, to be made at the moment that
they become relevant.



Chapter 5

Rhythm spaces and two rhythm models

5.1 Introduction

In this chapter, we use the model-definition framework described in Chapter 3
to define adaptations of two different rhythm perception models. One model,
which we call the enculturation model, is a reformulation of a model proposed
by Van der Weij et al. (2017 [Chapter 6]). The other model, which we call the
classical model, is based on a probabilistic rhythm perception model proposed
by Temperley (2007). We presented a dynamic Bayesian network version of this
model in Chapter 4. The classical model, in contrast to Temperley’s original
model, generates sequences of symbolic inter-onset intervals, rather than metrical
grids. This change enables us to compare the classical directly to the enculturation
model. Algorithmic implementations of the model-definition tables presented in
this chapter can be found in Appendix A. This chapter discusses the technical
details of these models, while in Chapter 7, where the two models are compared
in a cross-cultural experiment, they are discussed at a more conceptual level.

The purpose of this chapter is to present formal definitions of two generative
rhythm perception models and to describe how their parameters are estimated
from empirical samples of rhythms in a rhythm space. A rhythm space is a finite
set of rhythms over which a probabilistic generative model of rhythms defines a
complete probability distribution. In this chapter, we use the term rhythm model
to refer to models like the classical and enculturation model that define probability
distributions over a rhythm space. The rhythm space of a rhythm model defined
as a dynamic Bayesian network with deterministic constraints corresponds to its
congruent input sequences of a specific length (see Chapter 3, p. 69).

91
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The classical model and the enculturation model represent different theoretical
views of how meter is inferred from rhythms. The classical model, like Temperley’s
original model, assumes that, when the meter is known, the probability that an
onset occurs at a particular point in time depends exclusively on the metrical
salience of that point in time. The enculturation model, by contrast, assumes that,
when the meter is known, the probability that an onset occurs at a particular
point in time depends on the preceding context—that is, the rhythmic pattern
preceding the current onset—and the meter in which the preceding context is
interpreted. While the classical model is constrained primarily by music theory,
the enculturation model is constrained primarily by the empirical rhythm sample
from which it learns. Regarding the probability of a rhythm given a meter, the
classical model only learns the probabilities with which onsets occur at different
levels of metrical salience from empirical samples, whereas the enculturation model
learns associations between rhythmic patterns and meters from such samples.

The parameters of the two rhythm models can be estimated from an empirical sam-
ple of rhythms that occur in a specific rhythm space. This causes the probability
distribution over the rhythm space defined by the rhythm model to approximate
the distribution from which the sample was drawn. We can distinguish between
empirical and learned probability distributions over the set of rhythms in a rhythm
space. The empirical distribution represents the hypothetical distribution under-
lying an empirical sample. The learned distribution is defined by a model whose
parameters have been estimated from an empirical sample. To estimate the degree
to which the learned distribution approximates an empirical distribution, we can
evaluate the probability that rhythms drawn from the empirical distribution have
in a learned distribution. This probability is known as the model evidence of a
rhythm given a model.

In Chapters 6 and 7, we interpret the parameter estimation procedure as a
simulation of the influence of long-term exposure to a certain musical environment
on rhythm perception. An empirical rhythm distribution, in this scenario, reflects
the average probability with which different rhythms are encountered in that
musical environment.

The comparison in Chapter 7 uses an evaluation metric, namely estimated cross-
entropy that is based on model evidence. This is the same metric that Temperley
(2010) uses to compare different rhythm models. However, to be able to compare
the behavior of rhythm models in this way, it is important that these models define
probability distributions over the same rhythm space. In a grid-based model, for
example, model evidence is affected by the duration of a rhythm, since the number
of random events described by such a model depends on the duration of a rhythm.
In a model that generate sequences of inter-onset intervals, model evidence is
affected instead by the number of events (i.e., note onsets) in a rhythm, since in
such models, the timing of each onset onset is a random event. Ensuring that
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Table 5.1: A full enumeration of the eight rhythms in a rhythm space with rhythms
of length three and inter-onset interval domain {1, 2}.

1 1 1 1 5 2 1 1
2 1 2 1 6 2 2 1
3 1 1 2 7 2 1 2
4 1 2 2 8 2 2 2

models generate the same rhythm space avoids these issues.

This chapter lays the groundwork for the simulations reported in Chapter 7 in
which the behavior of the two models is systematically assessed and compared as a
function of the empirical rhythm sample from which their parameters are estimated.
This is done by defining a fixed rhythm space in which empirical samples are
represented and over which the models learn probability distributions. Rhythm
spaces and empirical rhythm samples are discussed in Section 5.2. The models are
defined in Sections 5.3 (the classical model) and 5.4 (the enculturation model).
These sections describe the congruency constraints of the models and explain
how their parameters are estimated from empirical rhythm samples. Finally,
Section 5.5 summarizes the concepts developed in this chapter.

5.2 Rhythm spaces

The two rhythm models described in Sections 5.3 and 5.4 define, in each moment,
a marginal probability distribution over inter-onset intervals. We sometimes refer
to this distribution as a model’s prediction of the inter-onset interval that is to
occur in the current moment. An inter-onset interval is the temporal interval
between the moments at which two consecutive notes are played. Inter-onset
interval predictions are described, in both models, by a random variable I. We
assume for simplicity that there is a finite set of inter-onset intervals that can
occur. This set, the inter-onset interval domain, corresponds to the domain of I.

A rhythm space is the set of congruent input sequences of length n of a rhythm
model. Since both models discussed in this chapter generate the domain of I
in each moment, a rhythm space is defined by the sequence length, n, and the
inter-onset interval domain, DI . In Chapters 6 and 7, the inter-onset interval
domain is defined as the set of unique inter-onset intervals observed in a set of
empirical rhythm samples.

Table 5.1 shows an example of a rhythm space for which n = 3 and DI = {1, 2}. In
general, the set of rhythms in a rhythm space with rhythms of length n corresponds
to the Cartesian product of n inter-onset interval domains: DI

n.
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5.2.1 Rhythms

We interpret inter-onset intervals to be a symbolic representation of time intervals.
Specifically, an inter-onset interval denotes an integer multiple of an atomic
(indivisible) temporal unit. These units encode a symbolic duration, namely the
duration of a whole note (denoted in music notation by the symbol � ) divided
by an integer number ρ ∈ N, called the resolution of the representation. We call
these units ρ-units. In Chapters 6 and 7 we use a resolution of ρ = 16, such that
units correspond to the duration of a sixteenth note.

Note durations and ρ-units do not directly correspond to physical time intervals.
Instead, they specify the ratios between temporal intervals that must hold approx-
imately in a rhythm that they represent. Since the range of durations with which
different musical note values are typically played is constrained, the time intervals
represented by ρ-units correspond to a constrained range of time intervals.

5.2.2 Empirical rhythm samples and parameter estima-
tion

The parameters of the models are estimated from empirical rhythm samples.
In Chapters 6 and 7, we use music corpora to obtain these samples. These
corpora contain digital representations of music in formats that capture the same
information as can be found in music notation. That information includes note
and rest durations, bar lines, and time signatures.

Rhythms in a rhythm sample are represented as a sequence of inter-onset intervals.
However, a rhythm sample additionally contains information about the metrical
interpretation of each rhythm in the form of a time signature and the location
of the first bar line. Time-signature changes are not supported by the rhythm
models presented here and do not occur in the samples that we use in Chapters
6 and 7. Metrical interpretation information is used only when we estimate the
parameters of a rhythm model.

We represent the time signature and position of the first bar line as follows: The
numerator of the time signature is denoted by num ∈ N, and the denomina-
tor by denom ∈ N, such that (num, denom) = (4, 4) represents 4/4 time and
(num, denom) = (6, 8) represents 6/8 time. A pickup, also known as an anacrusis,
describes a situation where the first note in a rhythm does not occur at the begin-
ning of the first bar. We define the pickup interval, pickup ∈ N, as the interval
in ρ-units between the beginning of the bar in which the first note onset occurs
and the first note onset. 1 For example, if a rhythm notated in 4/4 time begins

1Lerdahl and Jackendoff (1983, p. 30) define an anacrusis in the context of grouping structure
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a quarter-note before the first bar line, then pickup = 12 (assuming ρ = 16; a
sixteenth-note resolution). That is, the first note is positioned three quarter notes
away from the beginning of the bar in which it occurs. While the classical model
and the enculturation model represent meter in different ways, their representation
of meter can be derived from the metrical interpretation information supplied in
a rhythm sample.

An empirical rhythm sample is a multiset (a set in which elements may occur
multiple times). Each item in a rhythm sample is a 4-tuple (r, num, denom, pickup),
where r is a sequence of inter-onset intervals that occurs in a rhythm space. We
use all information in these items—that is, rhythm and meter—for estimating
the parameters of the rhythm models. The parameter estimation procedure is
sometimes referred to as training a model. We use maximum-likelihood estimates
of the model parameters: the parameter values that maximize the probability of the
empirical sample. More details are provided in the Model parameters subsections
of Sections 5.3 and 5.4. When we evaluate (or test) a model, for example, by
calculating the model evidence of the sequence of inter-onset intervals, we only
use the sequence of inter-onset intervals, r, and not the metrical interpretation
information.

Both models use the first moment to generate a pickup interval. Since the pickup
interval is an aspect of the metrical interpretation it cannot be observed by the
model. While the pickup interval is generated in the first moment, both models
generate the symbol ∗ as a deterministic state of I (the only observable variable
in both models). This is reflected by the congruency constraints of I shown in
Tables 5.2 and 5.4. All sequences of inter-onset intervals on which these models
are evaluated are defined to begin with this symbol as the first observation. Since
the ∗ symbol is generated deterministically, its observation carries no information
with regard to metrical interpretation.

Conceptually, the first moment corresponds to the moment at which the first
onset in a rhythm occurs. Subsequent moments represent subsequent onsets, each
of which creates an inter-onset interval with the previous onset. That is, in the
second moment, I describes the time interval between the first and second onset,
in the third moment, it describes the time interval between the second and third
onset, and so on. When we speak of the onset corresponding to a given moment,
we mean the onset to which an inter-onset interval generated in that moment
leads. Both the classical model and the enculturation model predict rhythms
represented as a sequence of inter-onset intervals prefixed by the ∗ symbol. With

as the “span from the beginning of a group to the strongest beat in the group.” A pickup interval,
as we have defined it, applies only to the first note in a rhythm (grouping structure is outside
the scope of this chapter) and instead refers to the interval from the strongest beat preceding it
to the first note. This means that we can treat pickup interval simply as the phase of the first
onset.
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a common representation of rhythms in place, we now turn to the definition of
the classical model and the enculturation model.

5.3 The classical model

The classical model is based on a probabilistic rhythm perception model described
by Temperley (2007). In Chapter 4, we described a dynamic Bayesian network
version of this model. The classical model, in contrast to these models, generates
distributions of symbolic inter-onset intervals expressed in ρ-units (see Section 5.2)
in each moment. Since these inter-onset intervals are a symbolic and score-like
representation of rhythms, the classical model omits all aspects related to tempo
and timing present in Temperley’s original model. That is, the tactus-interval
duration cannot change during a rhythm and the positions of the lower-level beats
are fixed.

Importantly, the classical model preserves the primary assumptions made by the
original model regarding the probability of a rhythm given a meter and the prior
probabilities of meter: the prior probability of a meter and pickup interval is
determined by a set of probabilistic decisions regarding the structure of a metrical
hierarchy and the distribution of inter-onset intervals is based on four parameters
that are learned from empirical data. These parameters represent the probabilities
with which onsets occur at different levels of metrical salience.

Temperley (2007) uses the Essen folksong collection (Schaffrath & Huron, 1995)
to estimate the parameters of the model. Since this corpus does not encode
observations of tempo and expressive timing in rhythms, some parameters of
the model are derived from musical intuition or prior research. By contrast, all
parameters of the classical model can be estimated from empirical rhythm samples,
since it does not model tempo and expressive timing.

Below, Section 4.3.1 describes the congruency constraints of the model, and
Section 4.3.4 describes the conditional probability distributions of its variables.
The latter section also describes how the parameters of these distributions are
estimated from rhythm samples.

5.3.1 Deterministic constraints

Table 5.2 defines the random variables, dependency relations, and congruency
constraints of the classical model. Below, we briefly describe the congruency
constraints of each variable. Note, first, that the definitions of the variables U
and L are identical to the corresponding definitions in Chapter 4. That is, the
classical model generates the same meters as Temperley’s original model.
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Table 5.2: The congruency constraints of the classical model.

Xi PAi DXi κXi(paXi)

U {Û} {2, 3}
{
DU if û = ∗,
{û} otherwise.

L {L̂} {2, 3}
{
DL if l̂ = ∗,
{̂l} otherwise.

T {T̂} DT

{
DT if t̂ = ∗,
{t̂} otherwise.

Uph { ˆUph,U} {0, 1, 2}
{
{n ∈ N | 0 ≤ n < u} if ˆuph = ∗,
{∗} otherwise.

Tph {T̂ph,T} {n ∈ N | 0 ≤ n ≤ t,
t ∈ DT}

{
{n ∈ N | 0 ≤ n < t} if ˆtph = ∗,
{∗} otherwise.

P
{P̂ , I,U ,
Tph,Uph,T}

{n ∈ N | 0 ≤ n < u ·t,
u ∈ DU , t ∈ DT}

{
{tph + uph · t} if p̂ = ∗,
{(p̂+ i) mod (u · t)} otherwise.

I {P̂ ,U ,L,T} DI

{
{∗} if p̂ = ∗,
DI otherwise.

As in Chapter 4, the variable T represents the time interval between tactus beats.
However, since the atomic temporal units of the model are symbolic ρ-units, T
encodes the duration of the tactus-beat interval that is suggested by the time
signature (see Section 5.3.2). In contrast with the original model, the tactus
interval does not change during a rhythm. This, in a sense, causes T to be part of
the representation of meter. The variables that describe meter, namely U , L, and
T , are all defined as persistent variables. In Chapter 3, we defined a persistent
variable to be a variable that generates multiple congruent states only in one
moment and retains its value in subsequent moments. The congruency constraints
of U , L, and T , correspondingly, show that they generate their domain in the
first moment and a singleton set containing their previous value in subsequent
moments.

The variables Uph and Tph generate a value only in the first moment and are
disabled in subsequent moments. Given T , they encode the pickup interval as
follows: pickup = tph + uph · t. As in Chapter 4, the possible upper-level phases
are constrained by the number of tactus beats per bar, U , and the possible tactus
phases are constrained by the duration of the tactus interval, Tph.

P is a deterministic variable that keeps track of the phase (position in the metrical
cycle, measured in ρ-units) of the previous onset. Recall that each moment
represents a time interval created by an onset with the previous onset. In the first
moment, there is no previous onset. Here, the value of P represents the pickup
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interval. In subsequent moments, P records, given a previous phase, p̂ (beginning
with the pickup interval) and an inter-onset interval, i, generated in the current
moment, the phase created by moving forward along the metrical cycle by the
inter-onset interval: (p̂+ i) mod (u · t).

Temperley’s original model and the version described in Chapter 4 predict in each
moment whether or not an onset will occur in a small temporal interval represented
by that moment. This prediction is described by the observed random variable N .
The classical model, by contrast, predicts the duration of an inter-onset interval
in each moment. This prediction is described by the observed random variable I.
The first moment is, as we mentioned in Section 5.2.2, used to generate a pickup
interval. During this moment, I deterministically generates ∗. In subsequent
moments, I has a probability distribution over the pre-defined inter-onset interval
domain, DI .

The probability distribution of inter-onset intervals, which is described in the next
section, relies on the metrical salience of each ρ-unit occurring between the last
and current (second of the two onsets of an inter-onset interval). These metrical-
salience values are derived from the phase of the last onset and the meter. This is
why the dependencies of I are {P̂ ,U ,L,T}. Correspondingly, the deterministic
variable Bs that encodes the metrical salience of a pip in Chapter 4 is redundant
in the classical model since pips have been replaced by inter-onset intervals. Since
U , L, and T contain all information required to derive the metrical salience of any
ρ-unit, the variables that describe the positions of lower-level beats in Chapter 4
(Db, Tb1 , and Tb2 ) also also redundant in the classical model.

5.3.2 Model parameters

The variables U , L, and T have categorical distributions. Maximum-likelihood
estimates of the probability of each of their possible values are given by the relative
frequency with which those values are observed in an empirical rhythm sample. In
order to obtain these estimates, however, the time signatures and pickup intervals
provided for each rhythm in an empirical rhythm sample need to be translated
into values of U , L, T , and Uph. Below, we describe how this could be done.

Time signatures in some cases under-specify the metrical hierarchy. A 3/4 time
signature, for example, prescribes that a bar consists of three tactus beats but
does not specify whether these tactus beats are subdivided by two or by three.
Following conventional use in Western classical music, we will assume such cases
to indicate duple subdivision of tactus beats.

The values of U and L can be derived from the numerator of the time signature
(represented by a pair (num, denom)), following conventional interpretations of
time signatures (see London, 2012, p. 17). To determine the value of U , the
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Table 5.3: A possible mapping between time signatures and the parameters of the
classical model that represent meter. The set of time signatures shown here are
the time signatures that occur in empirical rhythm samples used in Chapter 7,
where simulation results involving the classical model are reported.

(num, denom) U L T
(2, 4) 2 4 2
(3, 4) 3 4 2
(4, 4) 2 4 2
(6, 8) 2 6 3

following rules could be used (these cover most time signatures used commonly
in Western music): if num ∈ {2, 4, 6, 12}, then U = 2 and if num ∈ {3, 9}, then
U = 3. A possible set of rules for determining L is: if num ∈ {2, 3, 4} then
L = 2 and if num ∈ {6, 9, 12}, then L = 3. The duration of the tactus interval,
T , in ρ-units, corresponds to the duration of a bar divided by the value of L:
T = ρ · num/(denom · l).

The empirical samples used in simulations in Chapter 7 contain a small set of
time signatures that are covered by the rules. For illustration purposes, Table 5.3
shows the values of U , L, and T corresponding to time signatures that occur in
rhythm samples in Chapter 7. Since the classical model represents only three
levels of metrical hierarchy, and since the tactus level must the second of these,
the bar level of 4/4 time cannot be accommodated. Therefore, rhythms in 2/4
and 4/4 time receive the same interpretation.

Once a set of meters that the model should generate has been determined, the
domain of T can be set such that it supports these meters. For example, to
generate meters corresponding to the time signatures in Table 5.3, assuming
ρ = 16, the domain of T , DT must be {4, 6} (corresponding to a quarter-note and
a dotted quarter-note tactus interval).

The variable Uph has a conditional probability distribution that depends on U :
Pr(uph | u). The upper-level phase is derived from the pickup interval as follows:

Uph = floor(pickup/t),

where floor(r) returns the highest integer ≤ r.

To obtain the maximum-likelihood estimates of the parameters of U , L, T , and
Uph, each time signature and pickup interval observed in an empirical rhythm
sample is transformed into an observation of these variables using the mechanisms
described above. Since time-signature changes do not occur in the rhythm samples
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used in this thesis, each rhythm corresponds to one observation of a time signature
and pickup interval. The maximum-likelihood estimate of the probability that
U , L, T , or Uph assumes a certain value corresponds to the number of times
that that value is observed in the empirical rhythm sample, divided by the total
number of rhythms in the sample.

The probability distribution of Tph has one parameter, p, which represents the
probability that a rhythm begins on a tactus beat. This parameter is estimated by
the relative frequency with which rhythms begin on a tactus beat in an empirical
rhythm sample. That is, the number of times that pickup mod t = 0, divided by
the total number of rhythms in the sample. Given p, the distribution of Tph is

Pr(tph | t̂, ˆtph, t) =


p if tph = 0 ∧ ˆtph = ∗,
p/(t − 1) if tph 6= 0 ∧ ˆtph = ∗,
1 otherwise.

The probability distribution of the observed variable I assigns a probability to each
i ∈ DI . This inter-onset interval distribution is based on four onset-probability
parameters that are estimated from empirical rhythms: {θIs}3

s=0. These parameters
represent the probability with which onsets occur at different levels of metrical
salience, s, in the empirical rhythm sample. They are the same parameters as
those of the distribution of the N variable, {θN

s }3
s=0, described in Chapter 4. The

lowest level of metrical salience, s = 0, represents positions not corresponding to
a beat in the metrical hierarchy, and levels 1, 2, and 3 represent respectively a
lower-, tactus-, and upper-level beat.

To estimate the onset-probability parameters, {θIs}3
s=0, each rhythm in a sample

is represented as a metrical grid: a grid of subsequent temporal intervals with a
symbolic duration of one ρ-unit. Each grid position represents an silence/onset
event: it either does or does not contain an onset. For example, if we encode onsets
as 1 and no onset (silence) as 0, the inter-onset interval pattern (2, 1, 2) corresponds
to the following grid: (1, 0, 1, 1, 0, 1). The metrical salience of each grid position
is derived from the time signature and pickup interval. The onset-probability
parameters for each level of metrical salience, s, are estimated by counting the
number of times that an onset occurs at a grid position with metrical salience s
and dividing it by the total number of grid points with metrical salience s.

The inter-onset interval distribution is derived from the onset-probability pa-
rameters by viewing an inter-onset interval as a set of silence/onset events on a
grid. Each inter-onset interval, i, implies that an onset occurs at a grid position
exactly i units away from that of the previous onset. That is, it implies the
following silence/onset events: first, i− 1 silence events occur at the grid positions
between the previous onset and the current onset, then a silence/onset event
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occurs at the grid position at the end of the inter-onset interval, i. Given the
meter (u, l, and t) and the phase of the previous onset (p̂), the metrical salience
of each of these grid positions can be determined. Given the metrical salience
of each grid position, the probability of each silence/onset event is given by the
onset-probability parameters, {θN

s }3
s=0. Below, we describe two functions that

determine respectively the metrical salience of each grid position and the joint
probability of silence/onset events implied by an inter-onset interval.

The metrical salience of a grid position that is i ∈ N units away from the position
of the previous onset, given a meter (u, l, and t) and the phase of the previous onset
(p̂) is determined by the function bsal : DU ×DL ×DT ×DP × N→ {0, 1, 2, 3}.
This function is defined as follows:

bsal(u, l, t, p̂, i) =


3 if (p̂+ i) mod (u · t) = 0,
2 if (p̂+ i) mod t = 0 ∧ (p̂+ i) 6= 0,
1 if (p̂+ i) mod (t/l) = 0 ∧ (p̂+ i) mod t 6= 0,
0 otherwise.

The joint probability of the silence/onset events implied by an inter-onset interval
is calculated by the function f i : DU ×DL×DT ×DP ×DI → [0, 1). This function
is defined as follows:

f i(u, l, t, p̂, i) = θIbsal(u,l,t,p̂,i)

i−1∏
i′=1

(1− θIbsal(u,l,t,p̂,i′)).

This function represents the probability that Temperley’s original model assigns
to an inter-onset interval if the duration of pips would correspond to ρ-units
and if the model were constrained to not consider tempo and expressive timing
aspects of rhythms. Note that the probability of onsets decays exponentially as
the inter-onset interval duration increases.

The function f i represents a probability distribution over inter-onset intervals of
any duration. However, we would like to obtain a probability distribution over
the finite inter-onset interval domain, DI . This is achieved by normalizing the
probabilities returned by f i as follows:

Pr(i | î, p̂, u, l, t) = f i(i, p̂, u, t, l)∑
i′∈DI f

i(i, p̂, u, t, l) .

The resulting distribution depends on both the meter and the phase of the previous
onset. Figure 5.1 illustrates the inter-onset interval distributions for two different
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Figure 5.1: Two examples of inter-onset interval (IOI) distributions (the black
squares) of the classical model generated at different points in the metrical cycle.
The figure on the left shows the IOI distribution when the phase of the previous
onset corresponds to the last position in the measure (i.e., Pr(i | P̂ = 11,U =
2,L = 3,T = 6)). The figure on the right shows the IOI distribution when the
phase of the previous onset is the downbeat (i.e., Pr(i | P̂ = 0,U = 2,L = 3,T =
6)). The onset-probability estimates corresponding to the metrical salience of the
grid positions to which each IOI leads are visualized by the gray squares. The
onset-probability parameter estimates used for this distributions are given in the
main text.

values of p̂. These distributions are derived from onset-probability parameter
estimates provided by Temperley (2007, p. 35) for Pr(n | bs): θI0 = .01, θI1 =
.38, θI2 = .74, and θI3 = .95. Both distributions are based on a duple compound
meter (U = 2 and L = 3) with a period of 12 ρ-units. The figure on the right
shows the distribution of I when the previous phase is 11, the moment just before
the downbeat. In this distribution, most probability mass is absorbed by the
downbeat position that immediately follows phase 11. When the previous onset
occurred on the downbeat, probability mass is spread out more evenly over the
next two lower-level beats (inter-onset intervals 2 and 4), and some probability
mass is also assigned to the next tactus beat (inter-onset interval 6).

Note, finally, that the only parameters of the distribution in Figure 5.1 that are
estimated from empirical data are the four onset-probability parameters, {θIs}3

s=0.
This means that the amount of information that the classical model can learn
about the relation between rhythm and meter from empirical data is limited.

5.4 The enculturation model

The enculturation model is based closely on a model presented by Van der Weij
et al. (2017 [Chapter 6]). Compared to the classical model, it can learn significantly
more complex associations between rhythm and meter. The model infers meter
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from rhythms based on rhythmic patterns that it learned from empirical data.
In contrast to the classical model, the enculturation model does not require that
onsets in these patterns align with levels of metrical salience in a particular way.
In order for the model to infer meter, rhythmic patterns only need to align with
the metrical cycle in an approximately consistent within rhythms in a particular
style or idiom (as represented by an empirical rhythm sample).

We use the term metrical category instead of meter to refer to the structure
that the enculturation model infers from rhythms. This is to emphasize the
following point: a metrical category need not constrain the rhythmic patterns by
a recurring pattern of strong and weak beats. Metrical categories may correspond
to any continuous cyclical structure that might underlie a rhythm (e.g., clave,
tala, timeline, or usul). In this thesis, however, time signatures serve as metrical
categories.

The key mechanism by which the model learns to associate metrical categories
with rhythmic patterns is by representing a rhythm as a sequence of metrical
fingerprints. These fingerprints encode how inter-onset intervals in a rhythm
align with the metrical cycle. We call these fingerprints downbeat distances. A
downbeat distance represents an inter-onset interval as the phase of the last onset
plus the inter-onset interval (this is described in more detail in Section 5.4.2).
Patterns of downbeat distances are learned from an empirical rhythm sample by
a sequence model. Each metrical category is associated with its own sequence
model describing the sequential statistics of the metrical fingerprints of rhythms
associated with that category.

Before we define the congruency constraints of the enculturation model in Sec-
tion 5.4.2, we introduce notation and terminology that we use to describe variables
that represent sequences in Section 5.4.1. We then contextualize some aspects of
the model’s design as mechanisms that avoid biases that depend on the duration of
the metrical cycle in Section 5.4.3. The conditional probability distributions and
parameter-estimation methods are described in Section 5.4.4. Finally, Section 5.4.5
compares our reformulation to the original formulation and explains the differences
and similarities.

5.4.1 Sequences and accumulator variables

Metrical fingerprints are recorded by a variable whose states correspond to
sequences of downbeat distances. A sequence of n symbols, s, is an n-tuple
s = (s0, s1, · · · , sn). We consistently use bold-face symbols to refer to variables
and states of variables that represent sequences. The elements si of s, where
0 ≤ i < n, are drawn from a set A called the alphabet. The set of all sequences
that can be formed by elements from A is denoted by A∗.
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Recall that in Chapter 3, we defined xy to denote the concatenation of the tuples
x and y. As such, x(s) denotes the sequence obtained by appending the symbol
s to the sequence x. Here, we additionally define an operation final that returns
the final symbol of a sequence such that final((· · · , sn)) = sn.

Dynamic Bayesian networks are first-order Markov models, but higher-order
Markov models can be accommodated by using sequences as the values of its
random variables. We define an accumulator variable to be a variable that
incrementally generates sequences. In the first moment, an accumulator variable
generates either an empty sequence or a sequences consisting of one element from
A. In subsequent moments, an accumulator variable generates states obtained by
appending an element from the alphabet, A, to its previous state (a sequence of
elements from A). The congruency constraints of an accumulator variable is of
the following form:

κX((x̂)) =

{(s) | s ∈ A} if x̂ = ∗,
{x̂(s) | s ∈ A}} otherwise.

The probability of a state of X given its previous state, Pr(x | x̂) corresponds to
the probability that a symbol from s ∈ A follows the context x̂. The enculturation
model uses an accumulator variable to represent rhythmic patterns. Accumulator
variables may be modeled by a sequence model that estimates the probability that
a symbol s ∈ A follows a given context.

5.4.2 Deterministic constraints

Table 5.4 defines the deterministic constraints of the enculturation model. We
describe these constraints in more detail below.

The persistent variable M represents a metrical category. Each metrical category,
m, is associated with a metrical cycle duration, denoted by Tm and measured in
ρ-units. The metrical category domain, DM , and the period associated with each
m ∈ DM are given a priori. If metrical categories correspond to time signatures,
which are represented by pairs (num, denom), the duration of their metrical cycle,
Tm, is given by ρ · num/denom, which corresponds to the duration of a bar.

Like the classical model, the enculturation model has a variable P that represents
the phase of the onset to which the current inter-onset interval leads. In all
moments but the first, P is deterministic and its value is based on a value of D
(a downbeat distance, see below). In the first moment, P generates the possible
pickup intervals given a metrical category. The possible pickup intervals represent
the possible positions in the metrical cycle at which the first onset may occur.
These are constrained by the period of the metrical category, Tm. The pickup
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Table 5.4: Model-definition table of the enculturation model.

Xi PAi DXi κXi(paXi)

M {M̂} DM

{
DM if m̂ = ∗,
{m̂} otherwise.

P {P̂ ,M,D}
⋃
m∈DM {n ∈ N | 0 ≤ n < Tm}

{
{n ∈ N | 0 ≤ n < Tm} if p̂ = ∗,
{final(d) mod Tm} otherwise.

D {D̂, P̂ ,M} {p+ i | p ∈ DP , i ∈ DI}∗
{
{()} if d̂ = ∗,
{d̂(p̂+ i) | i ∈ DI} otherwise.

I {P̂ ,D} DI

{
{∗} if d = (),
{final(d)− p̂} otherwise.

interval corresponds to what Van der Weij et al. (2017 [Chapter 6]) call the “phase”
of a metrical interpretation.

D is an accumulator variable whose states represent sequences of metrical finger-
prints called downbeat distances. A downbeat distance is defined as the phase of
the last onset plus the inter-onset interval: p̂+ i. As such, a downbeat distance
indirectly represents the position of an onset in the metrical cycle. Given the last
downbeat distance in a state of D, the corresponding position in the metrical
cycle is the downbeat distance modulo the duration of the metrical cycle.

Consider, for example, the inter-onset interval pattern (1, 2, 1, 1, 1, 1). If the first
value of P (the pickup interval) is 5, and Tm = 6, the following sequence of
downbeat distances would result: (6, 2, 3, 4, 5, 6). If the pickup interval is 0, the
downbeat distance pattern (1, 3, 4, 5, 6, 1) emerges. If the pickup interval is 0 and
Tm = 3, the pattern is (1, 3, 1, 2, 3, 1). Note that downbeat distances correspond
generally to phases, but values greater than the duration of the metrical cycle
indicate that an inter-onset interval bridges subsequent metrical cycles.

Given a previous phase, p̂, and a metrical category, m, each inter-onset interval,
i ∈ DI , that could occur in the current moment will result in a different downbeat
distance (namely p̂ + i). The a priori congruent states of D, given p̂ and m,
and a context, d̂ (the sequence of preceding downbeat distances) are obtained by
appending each of these possible downbeat distances to the context d̂, as can be
seen in Table 5.4. While the variable D is not observed directly, its congruent
states are constrained by observing I (as explained below). After observing the
inter-onset interval, only one downbeat distance state per meter and per previous
phase remains congruent.

In the first moment, the value of P represents the pickup interval. Since D
generates a set of congruent states for each value of meter, m, and previous
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phase, p̂h, and since only one downbeat distance per meter and phase remains
congruent a posteriori, the a posteriori congruent states of D reflect the possible
metrical interpretations of the rhythm. That is, given each meter and each pickup
interval, there is exactly one downbeat distance that is consistent with each
possible inter-onset interval.

The downbeat-distance variable D is constrained by observations of I, which may
be considered a representation variable as it defines how inter-onset intervals are
represented, given a meter and previous phase, by downbeat distances. Given a
downbeat distance, d, and a previous phase, p̂, I has one congruent state: the
inter-onset interval that corresponds to the difference between the previous phase
and the downbeat distance (which, recall, is defined as a previous phase plus an
inter-onset interval). 2 Therefore, observing the inter-onset interval causes only
downbeat distances that are consistent with the observed inter-onset interval to
remain congruent.

To summarize: In each moment, the model generates a set of possible downbeat
distances. Given a metrical category and a phase, there is a one-to-one corre-
spondence between downbeat distances and inter-onset intervals. The variable
D accumulates downbeat distances into sequences, each of which represents an
alternative reading of a rhythm that depends on the pickup interval (the first
phase that was generated) and the cycle duration of a metrical category. These
downbeat-distance sequences are modeled by a sequence model as described
Section 5.4.4.

5.4.3 Period-dependent biases

The reason that we chose to represent the metrical status of onsets as downbeat
distances, rather than phases, is that the latter representation results in unwanted
inferential biases. Since the model predicts sequences of metrical fingerprints,
rather than sequences of inter-onset intervals, it must make use of a mapping
between inter-onset intervals and metrical fingerprints. Downbeat distances,
crucially, map one-to-one to inter-onset intervals (given a metrical interpretation).
Phases, on the other hand, may map to multiple inter-onset intervals. The number
of inter-onset intervals that are consistent with a given phase depends on the
inter-onset interval domain and on the duration of the metrical cycle. In other
words, the duration of the metrical cycle affects the granularity of the phase
representation. This period-dependent granularity introduces a bias towards

2This mechanism is similar to a mechanism in multiple viewpoint systems that Conklin (1990)
calls the completion of a viewpoint and which is described by Pearce (2005, p. 114) as an inverse
viewpoint function. The difference between this mechanism and the model described here is that
the downbeat-distance representation depends not only on observed events but also on the value
of a hidden (latent) variable, namely meter.
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metrical interpretations with short cycles: the phases of these short cycles are
more likely to correspond to an observed inter-onset interval. The downbeat-
distance representation avoids this bias by ensuring that there is a one-to-one
correspondence between downbeat distances and inter-onset intervals.

Potential for another period-dependent bias lies in the distribution of pickup
intervals, The number of a priori congruent states of this distribution is equal to
the period of the metrical cycle. Therefore, its entropy (inherent uncertainty) is
on average higher for metrical categories with long metrical cycles, and pickup
intervals of such categories tend to have a lower probability. This would result in
a preference for metrical categories with short metrical cycles. In the next section,
we describe a correction factor encoded in the distribution of metrical categories
that neutralizes this bias.

Note that in the classical model, too, the duration of the tactus interval constrains
the number of a priori congruent states of the tactus phase, Tph. This causes the
model to have a small bias toward meters with short tactus intervals. The effect
of this bias is small since the tactus interval is generated only once in the first
moment.

5.4.4 Model parameters

In the first moment, a priori congruent states of P correspond to the possible
pickup intervals given a meter. In this moment, P , has a uniform distribution,
following the definition of Van der Weij et al. (2017 [Chapter 6]). In subsequent
moments, the distribution P is deterministic. As such, its probability distribution
is given by

Pr(p | p̂,d) =

1/|κP (p̂,d)| if p ∈ κP (p̂,d),
0 otherwise.

P has more than one a priori congruent state given each value of its dependencies
only in the first moment. Therefore, the above definition ensures that Pr(p | p̂,d)
is a uniform distribution in the first moment and a deterministic distribution in
subsequent moments.

The prior distribution of M , Pr(m | ∗), represents the a priori probabilities
of metrical categories. These probabilities are based on the relative frequency
with which a metrical category is observed in a training sample. However, the
distribution of M is defined to incorporate a correction factor that neutralizes a
bias towards meters with short cycles created by the prior distribution of P (the
pickup interval; see Section 5.4.3). Let θMm ∈ [0, 1) be the relative frequency of
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a metrical category, m, in an empirical sample. The probability distribution of
metrical categories is then given by

Pr(m | m̂) =


Tmθ

M
m /

∑
m′∈κM (m̂) Tm′θ

M
m′ if m̂ = ∗,

1/|κM(m̂)| if m ∈ κM(m̂),
0 otherwise.

In the above piece-wise definition, the second and third cases apply to non-initial
moments. They specify a uniform distribution over congruent states and assign
zero probability to incongruent states. Since a priori congruent states of M are
a singleton in non-initial moments, the probability Pr(m | m̂) is one if m is
congruent—that is, if m = m̂ (see the congruency constraint in Table 5.4)—and
zero otherwise. The correction factor applied in the above equation multiplies the
estimated prior probability of a metrical category, θMm , by its period, Tm, to cancel
out the effect that cycle duration has on the prior probability of pickup intervals:
pickup-interval probabilities of meters with long cycle durations are smaller than
those of meters with short cycle durations since the number of possible pickup
intervals depends on Tm.

Note that Van der Weij et al. define a joint prior distribution over meter and
phase (which in our definition is the pickup interval). It can easily be seen that
their definition is identical to the joint distribution of the prior (initial-moment)
distributions of meter and pickup interval: Pr(m | ∗) Pr(p | ∗, ()).

Downbeat-distance sequences are modeled by a sequence model. There is a different
sequence model for each metrical category. The parameters of the sequence models
are obtained by representing each rhythm in an empirical rhythm sample as a
sequence of downbeat distances. These sequences can be derived from inter-
onset-interval sequences in empirical training data based on the pickup interval
and metrical category of the rhythm as provided in the sample. The resulting
downbeat-distance sequences are are grouped by their metrical category and the
parameters of a sequence model are estimated from each group of downbeat-
distance sequences. How this parameter estimation process works depends on the
details of the sequence model.

For a given state of D, a sequence model estimates the probability with which
a generated downbeat distance, final(d) (the last downbeat distance in the
sequence), follows a context, d̂ (the downbeat distances preceding the last). We
denote the estimate of this probability of a sequence model associated with a
metrical category, m, as qm(final(d)). The distribution of D is given by

Pr(d | d̂, p̂,m) = qm(final(d), d̂)∑
d′∈κD(d̂,p̂,m) q

m(final(d′), d̂)
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Note that these probabilities are normalized by the total probability that the
sequence model, qm, assigns to all possible downbeat distances that can occur given
a meter and a downbeat-distance context, d̂. This normalization is necessary for
sequence models that generate probability distributions over the entire sequence
alphabet. The a priori congruent states of D, however, are constrained by the
preceding downbeat distance, d̂ and may not correspond to the alphabet of a
sequence model of D.

In Chapters 6 and 7, we use a prediction algorithm called prediction by partial
match (PPM) (Cleary &Witten, 1984; Cleary & Teahan, 1997) as a sequence model
for downbeat distances. This algorithm implements a variable-order Markov model.
It also serves as the sequential prediction mechanisms of the IDyOM modeling
framework described by Pearce (2005). Pearce (2005, pp. 79–110) describes several
configurations of PPM models. The configurations used in Chapters 6 and 7 use
interpolated smoothing, rather than the backoff-smoothing strategy described
originally by Cleary and Witten (1984), Cleary and Teahan (1997) and Method C
for calculating escape probabilities (Moffat, 1990). Simulations in Chapter 6 use
a bounded model where the order of the variable-order Markov models used by
the PPM model is constrained to a maximum. Simulations in Chapter 7 use both
a bounded model and an unbounded model, in which the maximum order of the
variable-order Markov models used by the PPM model is unconstrained.

5.4.5 Connection with original formulation

The differences between the current definition and that of Van der Weij et al.
(2017 [Chapter 6]) (referred to below as the original model) relate primarily to
the manner of presentation. The original model is presented as an extension of
IDyOM and is stated in multiple-viewpoint systems terminology. In this chapter,
we gave a self-contained definition of the model based on congruency constraints.

Instead of using a metrical viewpoint, as in the original model, we represent
metrically interpreted rhythms by a latent variable, D, that represents sequences
of downbeat distances and is constrained by observed inter-onset intervals by
means of a representation variable, I. This mechanisms is equivalent to that of
metrical viewpoints, but the definition presented here shows how the mechanism
is represented by a Bayesian network with deterministic constraints.

At the surface level, the representations of metrical fingerprints are different:
we used downbeat distance, while the original model represents onsets, given
a metrical interpretation, as a pair consisting of the phase of an onset and the
number of bar lines crossed since the last onset. At a deeper level, however, the
downbeat-distance representation can be mapped one-to-one to the representation
of the original model. The two representations are therefore interchangeable
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without affecting the behavior of the model.

In one respect, the behavior of the original model is slightly different from that of
the current formulation. The original model is based on rhythms represented by
sequences of absolute onset times. In this representation, it is possible that the
first note has an onset time not equal to zero. Simultaneously, however, the model
has a variable, phase, that represents how a meter aligns with a rhythm. The
phase of an interpretation is represents “the interval between the first bar and the
time point marked by zero in the encoding of the rhythmic pattern” (Van der Weij
et al., 2017 [Chapter 6], p. 4). Since both the phase and the absolute onset time
of the first note can be used to encode how a meter aligns with a rhythm, one
of them is redundant. While the effect on the model’s behavior is marginal, the
current formulation avoids this redundancy by representing rhythms as sequences
of inter-onset intervals.

5.5 Summary

In this chapter, we introduced the notion of a rhythm space and described a specific
rhythm space for rhythms represented by symbolic inter-onset intervals. We then
described two probabilistic generative rhythm models—the classical model and
the enculturation model—that define probability distributions over this rhythm
space. The parameters of the models can be estimated from empirical rhythm
samples containing rhythms from a rhythm space and in which the metrical
interpretation information of each rhythm is provided. This procedure causes a
model to approximate an empirical distributions of rhythms represented by the
empirical sample.

The enculturation model is an alternative formulation of the model proposed by
Van der Weij et al. (2017 [Chapter 6]). The classical model is based on a model
proposed by Temperley (2007) with two modifications: First, the classical model
does not model tempo and expressive timing aspects and generates symbolic
representations of rhythms. Second, we have derived an inter-onset interval
distribution from the original model’s distribution over whether or not an onset
occurs at a certain position in a metrical grid. This ensures that the model defines
probability distributions over the same rhythm space as the enculturation model
and enables the classical model and the enculturation model to be compared
quantitatively, as we will do in Chapter 7.

In the enculturation model, the probability with which onsets occur at different
positions in the metrical cycle of a given meter depends both on the metrical
category of the rhythm and the preceding pattern of onsets, represented by
metrical fingerprints. In the classical model, the probability that an onset occurs
at a position with a given level of metrical salience depends only on the level
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of metrical salience. The classical model learns the probabilities with which
onsets occur at different levels of metrical salience from empirical rhythm samples.
The enculturation model, by contrast, learns the sequential statistics of patterns
of metrical fingerprints (metrically interpreted onsets) associated with different
meters. Compared to the enculturation model, the classical model may be said to
rely primarily on music theory, while the enculturation model relies primarily on
patterns learned from empirical data.

The purpose of this chapter was to introduce the classical and enculturation model,
to provide detailed and formal definitions of their deterministic and representation
constraints, and to show how their parameters are derived from empirical rhythm
samples. These concepts are applied in Chapter 7, where we compare the behavior
of these models using rhythm samples from different musical idioms.





Chapter 6

A probabilistic model of meter
perception∗

6.1 Introduction

In a variety of settings, perception appears to be tuned to statistical properties of
the environment. It has for example been found that certain properties of neuron
receptive fields in early visual processing (Olshausen & Field, 1996) and early
auditory processing (Smith & Lewicki, 2006) emerge from information theoretically
efficient learning algorithms trained respectively on natural images or sounds.
Perception, it has been suggested, is actively shaped by statistical properties of
the environment, both on an evolutionary time-scale through gradual adaptation,
and on an ontogenetic time scale, through brain plasticity (Clark, 2013).

The perception of meter in music appears to be shaped by cultural differences in
musical conventions. Exposure to rhythmically different music has been shown
to influence perception from an early age (Hannon & Trehub, 2005a, 2005b), but
such shaping possibly continues into adulthood (Creel, 2011, 2012). In the current
paper, we hypothesize that considering meter perception from the perspective of
predictive coding (Clark, 2013; Friston, 2005; Rao & Ballard, 1999) can help to
understand how meter perception is shaped by one’s environment.

Rhythm is an important component of music traditions all over the world (Savage
et al., 2015). When listening to rhythms, onsets in the rhythm are perceived

∗This chapter was previously published as van der Weij, B., Pearce, M. T., & Honing, H.
(2017). A probabilistic model of meter perception: Simulating enculturation. Frontiers in
Psychology, 8, 1–18.
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relative to a periodic and hierarchically organized framework of beats (Honing,
2013). This mental framework, called meter, is induced in the mind of the listener
by the rhythm. The relation between rhythm and meter is complex. For a meter
to be perceived, not every beat in the meter needs to coincide with onsets in
the rhythm. In many cases, listeners can, through conscious effort, alter their
metrical interpretation of a rhythm. At the same time, not every meter is equally
easy to hear in every rhythm. Meter, once induced, tends to show a certain
resistance to change. Therefore, meter perception is a fundamentally incremental
process (Longuet-Higgins & Steedman, 1971): the same rhythmic passage can
sound different depending on the meter induced by the rhythm preceding the
passage (Honing, 2013).

The organizing structure of meter is commonly described as a hierarchy of pulses,
yielding a periodic pattern of metrical accents varying in salience at different
points in time. Metrical accent, or metrical salience, is commonly treated as a
proxy for temporal expectation, or the probability of an event onset at a particular
pulse (Palmer & Krumhansl, 1990). By investigating a corpus of Western classical
music, Palmer and Krumhansl (1990) found that the distribution of onsets over
different positions relative to the meter reflected theoretical descriptions of metrical
hierarchy (Lerdahl & Jackendoff, 1983). Using a goodness-of-fit paradigm, Palmer
and Krumhansl (1990) found that temporal expectations of North-American
listeners also reflect metrical hierarchy, although musicians showed evidence of
deeper hierarchical differentiation than nonmusicians. Based on these findings,
Palmer and Krumhansl (1990) suggested that composers communicate meter
to listeners through the distribution of onsets at different metrical positions.
Listeners, in turn, acquire their knowledge about meter through the distribution
of onsets over metrical positions in the music they are exposed to.

More recent work has addressed the question of whether hierarchical organization
of onset distributions is a general property of rhythmic organization or whether
it is specific to Western classical music and related styles. Holzapfel (2015), for
instance, found that in traditional Turkish makam music, the distribution of onsets
is modulated by the specific usul—a type of rhythmic mode, corresponding in
some ways to meter—underlying a piece. Furthermore, the distribution of onsets
within one usul in Turkish makam music does not always exhibit hierarchical
organization. London et al. (2017) found that peaks in onset distributions in a
corpus of Malian drumming recordings are not periodically spaced. London et al.
(2017) conclude that in makam music and Malian drumming, distributions of
onsets do reflect metrical structure, but this structure is not always isochronous
or strictly hierarchical.

London et al. (2017) point out that their and Holzapfel’s (2015) results question a
basic assumption made by many computational models, as well as empirical studies,
namely that metrical accent is equivalent to the likelihood of an onset. A more
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likely alternative is that metrical expectations are derived from extensive exposure
to a musical idiom, by which, beyond distributions of onsets and style-specific,
stereotypical rhythmic patterns associated with certain meters are learned.

Consistent with this suggestion, an increasing number of empirical studies show
that rhythm perception is affected by enculturation (cf. Morrison & Demorest,
2009). For example, Bulgarian or Macedonian adults are better in detecting
metrical violations in meters with a non-isochronous tactus level—the level of
beat that listeners are most likely to tap along with—(e.g., 5/8 or 7/8) than
North-American listeners (Hannon & Trehub, 2005a). This effect appears to be
specific to complex meters to which the listeners have been exposed (Hannon
et al., 2012).

There have also been a number of observations in the ethnomusicological literature
suggesting that individuals from different cultures perceive rhythms differently.
For example, during field work in the Bolivian Andes, while studying Easter songs
from Northern Potosí, Stobart and Cross (2000) realized that while they had
assumed many of the tunes where indisputably anacrustic (i.e., a rhythm starting
on an off-beat), the local populations appeared to perceive them as beginning
on a downbeat. Another example is provided by rhythms from West-African
Sub-Saharan musical cultures, which are characterised by a great deal of metrical
ambiguity (Locke, 1982). In particular, many of these rhythms can be interpreted
as having a binary or ternary pulse. While individuals from West-African cultures
appear to perceive both pulses with equivalent ease, it can take great effort for
Western listeners to hear the ternary pulse in some of these rhythms.

The idea that perception, in general, is shaped by statistical properties of the
environment is not new (e.g. Barlow, 1961). However, it recently has been
developed into a framework which has been argued to bear the promise of providing
an overarching theory of perception (Clark, 2013). Under the name of predictive
coding (Rao & Ballard, 1999), this framework firmly grounds perception in
prediction, based largely on previous sensory experience. In fact, the theory
proposes that the brain’s primary occupation is to explain sensory input using
hierarchical generative models gleaned from previous experience (Clark, 2013).
Such models are realized in a hierarchical organization of layers. The lowest
layer in the hierarchy represents sensations received directly from the senses.
Through feed-forward connections, information travels upward in the hierarchy.
Meanwhile, layers higher up in the hierarchy attempt to predict information,
propagated by layers below. These predictions are cast to lower layers through
feedback connections. Successful prediction cancels out the upward propagation
of information. As a result, only prediction error, information that higher layers
failed to predict, propagates upwards in the hierarchy. Based on prediction error,
layers gradually adapt their processing characteristics in a way that minimizes
prediction error with respect to layers lower in the hierarchy. By this process of
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adaptation, the hierarchy of layers is gradually shaped into a generative model of
sensations, where layers higher up in the hierarchy track causes in the external
world that underlie the received sensations (Friston, 2005). From an information-
theoretic point of view, the resulting coding scheme is highly efficient: the more
accurate the top-down predictions, the less bottom-up information is left to be
processed.

We propose a predictive coding account of meter perception that involves statistical
learning of musical rhythms and generation of probabilistic expectations for event
timings. Meters are modeled as distinct causes underlying the musical surface.
Inferring the underlying meter from rhythm allows the rhythm to be related to
rhythms previously heard in that meter, which may help prediction performance.
Enculturation is modeled by estimating the parameters of the generative model on
a corpus of quantized rhythms annotated with meter. Since the model learns the
statistical properties of rhythms through exposure and performs metrical inference
based on these, it has the potential to simulate enculturation effects in meter
perception.

The paper is organized in six sections. In the remaining part of the current
section, Section 6.1.1 develops an account of meter perception based on predictive
coding, while Section 6.1.2 discusses relevant work in computational modeling of
music perception. Section 6.2 presents the probabilistic model of meter perception
in detail, concluding with a set of behaviors we expect the model to exhibit.
Section 6.3 presents the methods used in a series of simulations designed to test
these behaviors, while Section 6.4 presents the results of the simulations. Section
6.5 discusses the results in the context of the existing literature and includes
implications for future research.

6.1.1 Meter perception as predictive coding

The dynamic interaction of top-down and bottom-up processing postulated by
predictive coding is reminiscent of dynamic interaction of bottom-up meter-
induction and top-down influence exerted by the induced meter, as pointed out
by (Vuust & Witek, 2014).

The hypothesis we explore in this paper is that predictive coding can explain
how meter perception is influenced by enculturation. To explore the consequences
of this idea, we present a probabilistic model of meter perception, based on
an empirical Bayes scheme. Empirical Bayes schemes describe how generative
systems, such as the generative models posited by predictive coding, are updated
by experience (Friston, 2005). We model meters as virtual causes underlying the
rhythmic surface: a meter imposes constraints the likelihood of rhythms. A listener
commanding an appropriate generative model reflecting this relationship (i.e., how
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rhythms are generated from meters), can, when presented only with a rhythmic
surface, infer the underlying meter. This process of inferring underlying causes
(meters) of experienced sensations (rhythms) involves inverting the generative
model of those sensations (which are the end-product of the generative process).
We hypothesize that interpreting the rhythm in the context of an inferred meter
will reduce the discrepancy between predicted and experienced sensations. In
other words, inferring meter makes the rhythm more predictable.

The generative model includes prior expectations, obtained from previous experi-
ence, about which metrical categories are likely to occur in general. For example,
meters with non-isochronous pulses (“complex” meters) are relatively uncommon
in Western-European music, but much more common in music from the Balkans
and Eastern Mediterranean region. Listeners from these regions may be more
likely to interpret a rhythm in a meter with non-isochronous pulses than listeners
from Western Europe. These kind of prior biases might underlie the findings of
Hannon and Trehub (2005a) mentioned in the previous section.

Metrical categories favored by prior biases entail expectations regarding the surface
structure of rhythms. As bottom-up evidence from the rhythm begins to flow in,
these (top-down) expectations are either confirmed or violated. Prediction error
results from a violation of the top-down expectations by the incoming evidence.
To reduce prediction error, the listener revises their metrical interpretation of
the rhythm, which in turn alters the flow of top-down predictions. A predictive
coding perspective of meter perception thus posits a dynamic interplay between
bottom-up evidence and top-down expectations.

Crucially, both prior biases towards certain meters and the dependencies between
meter and the rhythmic surface—which rhythms can be generated by a certain
meter—are the result of previous exposure. The generative model in the mind of
the listener underlying these representations is carved out by previous experience
in predictive processing of rhythmic signals. Since the statistical properties of
rhythms vary between styles (e.g., Holzapfel, 2015; London et al., 2017), the
processing biases of listeners with significant differences in their exposure to
musical styles are likely to vary as well.

6.1.2 Related work

Our approach in some respects resembles other recent probabilistic models, in
particular a generative model presented by Temperley (2007). Temperley (2007, pp.
23–48) models meter perception as probabilistic inference on a generative model
whose parameters are estimated using a training corpus. Meter is represented as a
multileveled hierarchical framework, which the model generates level by level. The
probability of onsets depends only on the metrical status of the corresponding onset
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time. Temperley (2009) generalizes this model to polyphonic musical structure,
and introduces a metrical model that conditions onset probability on whether
onsets occur on surrounding metrically stronger beats. This approach introduces
some sensitivity to rhythmic context into the model. In later work, Temperley
(2010) evaluates this model, the hierarchical position model, and compares its
performance to other metrical models with varying degrees of complexity. One
model, called the first-order metrical position model, was found to perform slightly
better than the hierarchical position model, but this increase in performance
comes at the cost of a higher number of parameters. Temperley concludes that the
hierarchical position model provides the best trade-off between model-complexity
and performance.

In a different approach, Holzapfel (2015) employs Bayesian model selection to
investigate the relation between usul (a type of rhythmic mode, similar in some
ways to meter) and rhythm in Turkish makam music. The representation of met-
rical structure does not assume hierarchically organization, allowing for arbitrary
onset distributions to be learned. Like the models compared by Temperley (2010),
this model is not presented explicitly as a meter-finding model, but is used to
investigate the statistical properties of a corpus of rhythms.

The approach presented here diverges from these models in that it employs a
general purpose probabilistic model of sequential temporal expectation based
on statistical learning (Pearce, 2005) combined with an integrated process of
metrical inference such that expectations are generated given an inferred meter.
The sequential model is a variable-order metrical position model. Taking into
account preceding context widens the range of statistical properties of rhythmic
organization that can be learned by the model. In particular, the model is capable
of representing not only the frequency of onsets at various metrical positions, but
also the probability of onsets at metrical positions conditioned on the preceding
rhythmic sequence. The vastly increased number of parameters of this model
introduces a risk of over-fitting; models with many parameters may start to fit to
noise in their training data, which harms generalization performance. However,
we employ sophisticated smoothing techniques that avoid over-fitting (Pearce &
Wiggins, 2004). Furthermore, we to some extent safe-guard against over-fitting by
evaluating our model using cross-validation.

6.2 The probabilistic model

In this section and the sections that follow, we use the words metrical category
and metrical interpretation in a specific sense. Metrical categories, denoted by
m, represent different metrical frameworks in which rhythms can be interpreted.
Metrical categories correspond directly to time signatures taken from scores. Each
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metrical category has an associated period, denoted by Tm. The period is encoded
as a discrete number representing the duration of one bar of m in basic quantized
units of time (see Section 6.2.1). The phase parameter, ψ, encodes how a metrical
category aligns with the rhythmic surface. More precisely, ψ encodes the time-
interval between the downbeat of the first bar and the time point marked by zero
in the encoding of the rhythmic pattern. Together, a metrical category and phase
form a metrical interpretation.

The approach described below deals not with real audio signals. Instead, the
musical surface is represented as a sequence of events. Each event corresponds to
a note, as it might be found in a musical score. The nth event in a sequence is
denoted by en. A sequence of events, starting at event n and ending at event m is
denoted by emn . Section 6.2.1 provides more details the representation of rhythmic
patterns.

Predictive coding postulates internal generative models reflecting the causal
structure of the external world. In analogy to this, we model meter perception as
the inversion of a generative model of rhythms. Enculturation through exposure
to rhythms is modeled by deriving the parameters of the generative model from a
corpus of rhythms annotated with metrical interpretation. During listening, the
metrical category underlying a given rhythm is generally not known to the listener.
Instead, it has to be inferred from rhythmic surface, which is assumed to result
from the generative model. The likelihood of a metrical interpretation given an
observed rhythm (i.e., a sequence of events) can be inferred from the generative
model through the application of Bayes’ formula, as shown in Equation 6.1.

posterior︷ ︸︸ ︷
p(m,ψ | en0 ) =

likelihood︷ ︸︸ ︷
p(en0 | m,ψ)

prior︷ ︸︸ ︷
p(m,ψ)

p(en0 )︸ ︷︷ ︸
evidence

. (6.1)

Two factors play a role in calculating the likelihood of a metrical category: The a
priori likelihood of the metrical category itself, operationalized here as the metrical
category’s conventionality. In Equation 6.1, this distribution is labeled prior. The
other factor is the likelihood of the rhythmic pattern given a certain metrical
structure. In Equation 6.1, this function is labeled likelihood. The distribution over
metrical interpretations inferred from the observed events is called the posterior
distribution. The factor labeled evidence in Equation 6.1 is a constant with respect
to metrical interpretation. It ensures that the distribution sums to unity.

The proposed generative model is illustrated in Figure 6.1. To generate a rhythm,
a metrical category is first generated from a distribution, p(m), reflecting the
prior likelihood of metrical categories. Next, a phase is sampled from a uniform
distribution over a range of discrete phases allowed in m. From a model associated
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êen. . .e1e0 . . .

m,ψ

Figure 6.1: Conditional dependency relations assumed by the model between its
probabilistic variables visualized as a graphical model Bishop (2006). Shaded
nodes represent observed variables, unshaded nodes represent unobserved, hidden
variables. Each node in the graph is associated with a discrete probability
distribution. If one or more arrows terminate at a node, its associated probability
distribution is conditioned on the node(s) that the arrows originate from. Nodes
labeled en represent musical events indexed by n. The hidden variable at the top
represents a metrical interpretation. The hidden variable labeled ê represents a
predicted subsequent event.

with the selected metrical category, events are then generated in an incremental
fashion. As can be seen in Figure 6.1, the likelihood of an event is conditioned on
underlying metrical category and preceding events.

Equation 6.1 can be expanded into the incremental and recursive equation shown
in Equation 6.2. This equation expresses the posterior distribution given all events
as proportional to the product of the likelihood of the last event, en and the
posterior given all but the last event, en−1

0 . Inferring the posterior incrementally
after each event by refining the posterior that resulted from the previous events can
be interpreted intuitively as the listener integrating the (bottom-up) information
provided by each event into their (top-down) beliefs about the underlying metrical
category. Note that the evidence normalization constant has been omitted for
clarity.

per-event posterior︷ ︸︸ ︷
p(m,ψ | en0 ) ∝


per-event likelihood︷ ︸︸ ︷
p(en | m,ψ, en−1

0 )
updated prior︷ ︸︸ ︷

p(m,ψ | en−1
0 ) if n > 0,

p(en | m,ψ)p(m,ψ) else.
(6.2)

To infer the posterior distribution over metrical interpretations, Equation 6.2 is
evaluated for a set of possible metrical interpretations. This set is constrained
to include only metrical categories that occur in the model’s training data. The
number of different phases considered per metrical category depends on the period
of the category, Tm.

To evaluate Equation 6.2, two probability distributions need to be approximated:
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the prior distribution over metrical interpretations, p(m,ψ), and the likelihood
function p(en0 | m,ψ). We discuss both in the following paragraphs.

First, we consider estimating the prior, which uses supervised learning from
a corpus of rhythms labelled with metrical category. The parameters of the
distribution defining the a priori likelihood of metrical categories (not phases),
p(m), are set to their maximum likelihood estimate, namely the relative frequency
of occurrence of a metrical category in the empirical training data.

p(m) = Nm

N
, (6.3)

where Nm is the number of times m was observed in the training data and N is
the total number of training examples (rhythms) in the training data.

The prior distribution over metrical interpretations (i.e., the joint distribution
over phase and metrical category) is defined as follows:

p(m,ψ) = p(m)∑m′ Tm′p(m′)
. (6.4)

Each metrical interpretation is assigned a probability proportional to the proba-
bility of its category. This definition entails a reweighing of metrical categories to
compensate for the duration of their periods; it prevents meters with long periods
(many possible phases) from being at a disadvantage due to the uniform spreading
out of their probability over a large number of phases.

Second, we consider estimating the likelihood. Calculating the likelihood of an
observed rhythm given a hypothesized metrical interpretation involves two steps:
First, the rhythm under consideration is interpreted in a hypothesized metrical
interpretation specified by m and ψ. Interpretation is operationalized in the
present model as converting the events in the rhythm into a sequence of symbols
encoding the position of each event relative to the beginning of the bar in which it
occurs under the currently considered metrical interpretation. The details of this
conversion are discussed in Section 6.2.3. Second, the likelihood of the resulting
sequence of symbols is estimated using an unsupervised probabilistic model trained
on metrically interpreted rhythms in the training corpus annotated with the same
metrical category, m. The likelihood that a rhythm is generated by given metrical
interpretation thus becomes the likelihood of the sequence of symbols resulting
from metrically interpreting the event onset times in the rhythm. The likelihood
of the metrically interpreted rhythm, in turn, is determined on the basis of a
corpus of rhythms belonging to the same metrical category.

Equation 6.2 decomposes the likelihood function into the product of the per-event
likelihoods, i.e., the likelihood of each (metrically interpreted) event given the



122 Chapter 6. A probabilistic model of meter perception

sequence of preceding (metrically interpreted) events. In the present work, IDyOM
(Pearce, 2005) is used to approximate the per-event likelihood function.

IDyOM is a flexible modeling framework based on variable-order Markov modeling
combined with a multiple-viewpoint system for music prediction (Conklin &
Witten, 1995). It was designed for modeling dynamically changing auditory
expectations, based on long-term and short-term statistical learning, which evolve
as a piece of music unfolds. Empirical research has demonstrated that IDyOM
accurately simulates listeners’ predictive processing of melody in many perceptual
tasks involving pitch expectation (Pearce, 2005; Pearce, Müllensiefen, & Wiggins,
2010; Omigie, Pearce, & Stewart, 2012; Omigie et al., 2013), uncertainty (Hansen
& Pearce, 2014), segmentation (Pearce et al., 2010) and emotional response
(Egermann et al., 2013; Gingras et al., 2016).

Section 6.2.3 describes how our model is implemented on top of IDyOM. While
the present model does not make use of the full range of modeling opportunities
that the multiple-viewpoint approach has to offer, presenting the model as an
extension of IDyOM highlights the continuity between the two probabilistic
modeling approaches.

Aspects of multiple viewpoint systems and IDyOM relevant to the present model
are introduced in Section 6.2.1 and Section 6.2.2. Our treatment of this topic is
far from complete; for a complete overview, we refer the reader to Conklin and
Witten (1995) and Pearce (2005).

6.2.1 Representation of rhythmic patterns

Multiple viewpoint systems represent the musical surface as a sequence of multi-
dimensional datapoints encoding basic attributes of musical events, such as pitch,
onset time and duration. These basic attributes of events are accessed through
viewpoints. A viewpoint maps sequences of events, rather than individual events,
to an element of its corresponding type, τ . The set of all possible elements of a
type τ is called the alphabet of τ and is denoted by [τ ]. A viewpoint function may
be undefined for some sequences of events. The inter-onset-interval viewpoint, for
example, is undefined for the sequence e0

0, which consists of only a single event,
e0. Hence, a viewpoint is defined by a partial function that maps sequences of
events to elements of a type

Ψτ : ζ∗ ⇀ [τ ],

where the symbol ζ∗ denotes the set of all possible sequences of events.

A distinction between two types of viewpoints is made. A basic viewpoint simply
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returns one of the basic attributes of the last event in the sequence to which it
was applied (i.e., a projection function). The alphabet of a basic viewpoint is
determined by the set of values of its corresponding attribute observed in the
training corpus (see Section 6.2.2). A derived viewpoint derives more abstract
attributes from one or more basic attributes of one or more basic events. Its
alphabet can be derived from the alphabets of the basic viewpoints that the
viewpoint is derived of. The inter-onset-interval viewpoint and metrical viewpoints
introduced in Section 6.2.3 are examples of derived viewpoints. For derived
viewpoints, multiple different sequences of events may map to the same element.

The function Φτ returns the sequence of viewpoint elements of type τ obtained by
applying the viewpoint function Ψτ incrementally to to all prefixes of the sequence
in order of increasing length:

Φτ (en0 ) =

Φτ (en−1
0 )Ψτ (en0 ) if Ψτ (en0 ) 6=⊥,

Φτ (en−1
0 ) else,

where ⊥ is a symbol indicating that the viewpoint is undefined for the given
sequence of events.

The model introduced here makes use of a single basic viewpoint, namely on,
returning the onset attribute of the last event in a sequence, and a set of derived
metrical viewpoints. The alphabet of onset, [on], contains natural numbers that
encode the temporal position of a note as an integer-multiple of basic quantized
units. To obtain a finite, meaningful alphabet for on, the onset alphabet is
constructed online by adding the set of inter-onset intervals encountered in the
training data to the onset of the previous event.

6.2.2 Predicting musical events

Predicting sequences of musical events in IDyOM requires specifying a set of
viewpoints, τ0, τ1, · · · , τn, on which to base predictions. A predictive model is
associated with each of these viewpoints. Each predictive model is trained on the
set of symbol sequence obtained by applying the associated viewpoint function
Φτ to all event sequences in the training corpus. To approximate the predictive
distribution for a future event, p(ê | en0 ), given a sequence of preceding events
en0 , the function Φτ is applied, once for each of the specified viewpoints, to en0 to
obtain a set of sequences of viewpoint elements.

The per-viewpoint predictions, pτ (Ψτ (ê) | Φτ (en0 )) are then combined into a single
event prediction, using a mechanism that involves a weighted geometric mean.
Some subtleties are involved in converting the predictive distributions to a single
domain so that they can be combined (see Pearce, 2005, pp. 111–128). These need
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not concern us, as the model proposed here only uses a single viewpoint to predict
a single attribute of the event representation (although it could be extended in
the future to include use multiple viewpoints).

IDyOM thus reduces the challenge of estimating p(ê | en0 ) to the parallel predic-
tion of symbol sequences by estimating pτ (Ψτ (ê) | Φτ (en0 )) for each viewpoint
τ0, τ1, · · · , τn. The (domain-general) method employed by IDyOM for predicting
symbol sequences is based on a data-compression scheme called prediction by
partial matching (PPM) introduced by Cleary and Witten (1984). Pearce and
Wiggins (2004) provide an overview of various modifications and improvements
to the original PPM scheme that have been proposed over the years, and com-
pare their performance using an information-theoretic performance measure (see
Section 6.2.4). IDyOM implements multiple prediction schemes and furthermore
allows predictions to be based on two separate models: a long-term model trained
on a corpus of training data and a short-term model trained, online, on only the
current sequence of events. In our simulations, we use only a long-term model (see
Pearce, Conklin, & Wiggins, 2005), employing a PPM* scheme using method C
(Moffat, 1990) for calculating escape probabilities and adapted to use interpolated
smoothing—the configuration Pearce and Wiggins (2004) found to yield the best
results for a long-term model. A parameter called model order-bound parameter
limits the amount of previous events taken into account in the predicting the next
event, ê: An order-bound of b means that it is assumed that p(ê | en0 ) ≈ p(ê | enn−b).
While Pearce and Wiggins (2004) found that an unbounded model order worked
best, the present paper presents results for varying model order-bounds of up to
four.

6.2.3 Metrical viewpoints, metrical models, and metrical
inference

The per-event likelihood function in Equation 6.2 is a predictive distribution
that, based on events observed so far and a hypothesized metrical interpretation,
specified by m and ψ, predicts the next event. This relies on interpreting the
sequence of events in the given metrical interpretation and estimating the likelihood
of the resulting sequence of symbols given a predictive model of such sequences in
the provided metrical category. Interpretation of a rhythm in a specific metrical
interpretation is achieved in IDyOM through the introduction of a set of metrical
viewpoints. Metrical viewpoints transform a sequence of absolute onset times into
a sequence of symbols that depend on the metrical interpretation implemented by
the viewpoint.

The general form of a metrical viewpoint τm,ψ is
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Ψτm,ψ(en0 ) = f(m,ψ, en0 ),

where f is a function that implements the metrical interpretation given a phase
and metrical category.

The present model uses a simple metrical interpretation function that returns the
metrical position of an onset. This function makes few assumptions about the
structural organization of meter, and can accommodate complex, non-isochronous
meters. The metrical position of an onset is defined as its position relative to
the period and phase of an interpretation. The general definition of the resulting
metrical position viewpoint, mp, is given below

Ψmpm,ψ(en0 ) = (Ψon(en0 )− ψ) mod Tm,

where the viewpoint on is a basic viewpoint that returns the onset of the last
event in a sequence of events.

One metrical viewpoint is created for each metrical interpretation considered by
the model by instantiating m and ψ to a specific value.

The alphabet of the mp viewpoint is given by

[mpm,ψ] = {0, 1, · · · , Tm − 1}.

Using metrical viewpoints, metrical inference can be implemented on top of the
standard IDyOM machinery, with one important caveat: the predictive model of
a metrical viewpoint, τm,ψ is trained only on those sequences in the training data
that have been annotated with metrical category m. Hence, the predictability of
a metrically interpreted rhythm depends only on rhythms previously observed in
the corresponding metrical category.

One further subtlety needs to be addressed to complete the model. Note that the
per-viewpoint predictive distributions mentioned in Section 6.2.2 are defined over
a viewpoint’s alphabet [τ ]. In order to predict the onset of the next event this
alphabet needs to be mapped back to the alphabet of the onset viewpoint, [on].
However, any metrical position in [mp] theoretically corresponds to an infinite
number of periodically spaced onset times. To be able to generate predictions for
specific onset times, and for metrical inference to work correctly, it is necessary
that the alphabet of a metrical viewpoint maps to unique onset times. This can be
achieved by linking the metrical position viewpoint to another metrical viewpoint,
which encodes the distance in bars between the last event and the predicted event.
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The equation below defines the bar distance viewpoint, bd in terms of an interme-
diate metrical viewpoint, bn (bar number), which calculates the number of bars
elapsed between time zero and the onset of the last event.

Ψbdm,ψ(en0 ) = Ψbnm,ψ(en0 )−Ψbnm,ψ(en−1
0 ),

where metrical viewpoint bn is defined as

Ψbnm,ψ(en0 ) = integer
(

(Ψon(en0 )− ψ)
Tm

)
.

A linked viewpoint is a special case of a derived viewpoint composed of a number
of constituent viewpoints. The elements of linked viewpoints are tuples containing
the values of the constituent viewpoints. A linked viewpoint composed of τ1, · · · , τn
is denoted by τ1 ⊗ · · · ⊗ τn , its alphabet is given by the Cartesian product of the
constituent viewpoints’ alphabets: [τ1]× · · · × [τn].

The linked metrical viewpoint used in our simulations is denoted by mp⊗ bd, and
encodes metrical position and distance in bars between the last event. Elements
in the alphabet of this viewpoint have a one-to-one correspondence to elements in
[on].

To summarize: metrical viewpoints and separate predictive models per metrical
category enable using IDyOM to estimate the per-event likelihood function in
Equation 6.2. In this model, the likelihood of a metrical interpretation m depends
on the predictability of the sequence of symbols that results from interpreting the
rhythm in that metrical interpretation. This predictability in turn depends on
the set of rhythms previously observed in m.

6.2.4 Expectation and information content

We have focussed our discussion so far on the issue of inferring a posterior
distribution over metrical interpretations. In order to calculate prediction error, it
is necessary to derive the predictive distribution over future note onsets given a
preceding rhythmic context and an inferred meter.

To estimate prediction error, we look at the amount of information communicated
by each observation. Although it is sometimes referred to as cross-entropy (e.g.
Manning & Schütze, 1999), we call this quantity the information content (MacKay,
2003) of an event. Information content is defined as the negative logarithm of the
likelihood of observing the next event given the predictive distribution conditioned
on the sequence of events observed so far:
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h(ê | en0 ) = − log2 p(ê | en0 ). (6.5)

In an information-theoretic sense, this quantity is equivalent to prediction error.
An unlikely (unexpected) event results in a high prediction error, signaled by high
information content. Conversely, a likely event results in a low prediction error,
signaled by low information content.

The predictive distribution corresponds to the probability distribution associated
with the hidden variable labeled ê in the graphical model in Figure 6.1. This
distribution is obtained from the generative model by marginalizing out meter
and phase from the posterior distribution inferred from the preceding events:

p(ê | en0 ) =
m∑ ψ∑

p(ê | m,ψ, en0 )p(m,ψ | en0 ), (6.6)

where the summation over meters sums over all metrical categories considered by
the model, m ∈M , and the summation over phases sums over all possible phase
of category m, ψ ∈ {0, 1, · · · , Tm − 1}.

Equation 6.6 shows that the prediction of the onset of the next event is subject
to top-down influence from the distribution over metrical interpretations inferred
from bottom-up information from the events observed so far.

6.2.5 Hypotheses

We expect an accurate computational model of human meter perception to show
certain patterns of behavior. First, we expect it to be able to infer meters that
agree with the time signatures in notated scores (Longuet-Higgins & Lee, 1982;
Temperley, 2004). Second, we argued that the metrical knowledge, acquired
by listeners through exposure to a musical idiom, is characterized not only by
the distribution of onsets over metrical positions, but also by the probabilistic
properties of how rhythms in particular meters sequentially unfold. Thus, we
expect that a model that can learn such properties will lead to increased perfor-
mance in finding time signatures notated in scores compared to a similar model
that does not learn these properties. Third, we argued above that categorizing
rhythms into metrical categories can plausibly be regarded as a strategy to reduce
prediction error for those rhythms. Therefore, we expect that our model will show
better performance in predicting the timing of musical events than a comparable
model that is agnostic of meter. Fourth, we expect that our model will simulate
enculturation by showing sensitivity to the statistical properties of the rhythms it
was trained on. A model trained on rhythms with similar statistical properties as
the rhythms it is evaluated on will perform better than a model that was trained
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on rhythms with different statistical properties. If the statistical properties of
rhythms originating from two cultures with different cultural practices regarding
rhythm are sufficiently different, we expect that a model trained on rhythms from
the same culture as the rhythms it is evaluated on will outperform a model trained
on rhythms from a culture with different rhythmic practices. We evaluate these
expectations in Sections 6.3 and 6.4.

6.3 Methods

6.3.1 Resolution of onset time and phase

For reasons of computational efficiency, the resolution the phase parameter of
metrical interpretations is restricted to sixteenth notes. This means that, for
example, in the 3/4 category twelve different phases are possible (since the duration
of one 3/4 bar is twelve sixteenth notes). Since all onset times in rhythms used in
this study encode distance from the beginning of the first bar in the annotated
meter the correct phase of a rhythm can be represented under any phase resolution.
The representation of rhythms in a phase of zero does not influence the evaluation:
as far as the model is concerned, all phases are initially equally likely, since the
prior distribution over phase is uniform. The presence of 32th notes and 16th-note
triplets in the training data requires that onset times are represented as integer
multiples of symbolic units corresponding to 96th notes.

6.3.2 Training data

Except for one artificially constructed test set, the datasets used in our simulations
are all derived from the Essen folksong collection (Schaffrath & Huron, 1995).
The Essen folksong collection is a corpus consisting of monophonic transcriptions
of folksongs, originating from various geographical regions across the globe. The
majority of the folksongs in this dataset originate from regions in Germany and
China. We use a version of the Essen folksong collection encoded in humdrum
format, which we obtained from http://kernscores.stanford.edu.

Folksongs without an annotated time signature, or with multiple time signatures
are filtered out. The simulations described below use different subsets of this
filtered version of the Essen folksong collection.

http://kernscores.stanford.edu
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6.3.3 Classification performance and the influence of pre-
ceding context

The first expectation formulated in Section 6.2.5 concerns the model’s ability to
infer meters that agree with time signatures notated in scores. To evaluate this,
classification performance is measured using ten-fold cross validation on a dataset
of German folksongs. In a cross validation scheme, the model is trained and
evaluated ten times on different partitions of the dataset into a training set and
a test set. Reported classification scores are based on the average classification
score over all ten partitions.

The second expectation we formulated is that models exploiting sequential proba-
bilistic properties will perform better in this task than a similar model that does
not exploit such properties. To evaluate this, we measure classification performance
of five different models configured with order-bounds ranging from zero to four
using cross validation. The order-bound parameter (see Section 6.2.2) allows us to
vary the degree to which the model can learn sequential probabilistic properties
of rhythms, interpolating between a model that can only learn distributions of
onsets over metrical positions (order-bound zero) and a model that predicts the
subsequent metrical position based on the metrical positions of the last four events
(order-bound four).

The result of performing inference on the generative model—inferring meter from
a rhythm—is not a single classification, but a posterior probability distribution
over metrical interpretations. To determine in which meter the model interprets a
rhythm, an additional inferential step is required. All classification scores reported
in this paper are based on the interpretations with the highest posterior probability
after observing the entire rhythm. An interpretation is considered correct if its
phase and category agree with the annotated time signature.

For these simulations, we used rhythms extracted from 4966 German folksongs in
the Essen folksong collection. This set is constructed by selecting all melodies with
an “ARE” record (area of origin; Huron, 1999) indicating a region of Germany
from the Essen folksong collection, subject to the constraints described in Section
6.3.2. Figure 6.2 shows the distribution of meters in the resulting dataset. The
most frequently appearing time signatures in this set are 4/4, 2/4, 3/4, and 6/8.

6.3.4 Does metrical inference reduce prediction error?

The third expectation we formulated is that a model using inferred meter to
predict the onsets of musical events will outperform comparable models that
do not use metrical inference. To assess whether metrical inference increases
predictive performance we compare the model an IDyOM model that predicts
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Figure 6.2: Histogram showing the of the distribution of meters in the dataset of
4966 German folksongs from the Essen folksong collection.

event onset time without inferring meter. Prediction performance is measured by
looking at average information content (see Section 6.2.4), which represents the
discrepancy between predicted and observed events.

This IDyOM model is configured to use a single viewpoint, encoding inter-onset
intervals between subsequent events, to predict onset time. Inter-onset interval is
defined as the difference between the onset time of the final and penultimate event.
Both models are trained and evaluated on the same dataset using cross-validation,
and the input of both models consists only of onset times encoded in the event
representation.

The results are reported, as before, for order-bounds varying from zero to four.
The values represent average information content over cross validation folds.

6.3.5 Simulating enculturation

The fourth expectation concerning the model’s behavior we formulated is that
it should show sensitivity to the statistical properties of its training data. To
investigate this, two types of statistical aspects of training data that affect the
model’s behavior in different ways are distinguished. The first aspect is the
distribution of metrical categories in the training rhythms. This distribution is
directly reflected in the prior distribution, encoding a priori likelihood of different
metrical categories. The effect of the prior distribution on the model’s behavior
can be seen as inferential biases. The second aspect concerns the sequential
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structure of the training rhythms themselves. This aspect includes the distribution
of onsets over different metrical positions, but also the typical unfolding of rhythms
interpreted in a specific meter and the presence of stereotypical rhythmic patterns.

These two aspects of training data may influence the encountered prediction error
on novel rhythms as well as the metrical category in which rhythms are interpreted.
To investigate the effect of inferential biases, we focus on consequences of inferential
biases for metrical interpretation. In the investigation of the statistical properties
of rhythms themselves we focus on the effects of training data on prediction error.

The simulations described below are all conducted using an order-bound of four,
since the cross validation results indicate that, out of the considered order-bounds,
four works best (see Section 6.4).

6.3.5.1 Inferential biases

A high prevalence of certain metrical categories in the music to which a listener
has been exposed to previously may lead to inferential biases: a tendency to
interpret rhythms in the pervasive category. In probabilistic terms, this is a
sensible behavior: in the presence of uncertainty, it is optimal to tend towards
categories with a high a priori likelihood of occurring. Such likelihoods are
represented in the prior distribution over metrical categories. Inferential biases
are top-down in the sense that they are independent of the particular rhythm
encountered by the model. Once the model begins to process a rhythm, the prior
distribution is updated by bottom-up evidence from the rhythm. Inferential biases
can alternatively be understood as changing the initial state of meter induction.
Meters favored by the prior distribution require less evidence from rhythmic events
to gain a high posterior likelihood. In cases where a rhythm is ambiguous (i.e.,
provides evidence for two or more metrical categories), inferential biases towards
either category can be decisive in the model’s interpretation.

To we investigate the effect of inferential biases, we train two models on a subset
of the German folksongs described in Section 6.3.3 containing 658 2/4 (a simple
duple meter), 658 3/4 (a simple triple meter) and 658 6/8 (a compound duple
meter) training examples. We bias the prior distribution of one model to favor
3/4 interpretations while the other model is biased to favor 6/8 interpretations.

In this simulation the prior distribution is not estimated empirically using the rela-
tive frequency of metrical categories in the training data. Instead, the parameters
of the prior distribution are manually set to the values shown in Table 6.1. The
rationale behind this choice is that if we would manipulate the prior distribution
by altering the number of training rhythms in a metrical category, the number
of training examples from which the model predictive model of that category is
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Table 6.1: Prior probabilities of metrical categories used for simulating inferential
biases.

Category 3/4 biased 6/8 biased
2/4 4/9 4/9
3/4 4/9 1/9
6/8 1/9 4/9

learned would be affected, which introduces performance differences that cannot
be attributed solely to the prior distribution.

The consequences of the biased prior distribution are investigated using an artifi-
cially constructed test set. To construct this set, first, a set of rhythmic patterns
is constructed by generating all possible patterns within the following constraints:
the total duration of a pattern is exactly twelve sixteenth notes, none of the
patterns begin with a rest and the minimum inter-onset interval is a sixteenth
note. The resulting set consists of 211 rhythmic patterns: each pattern begins
with an onset and each sixteenth-note time point between the second and twelfth
sixteenth-note can contain an event onset. Because twelve sixteenth notes is
exactly the duration of one 3/4 or 6/8 bar, this set contains all rhythms with a
minimum interval of a sixteenth note that fit in one bar of a 3/4 or 6/8 meter.
To construct the final test set, each of these patterns is repeated four times. The
repetition allows the model more time to converge on a single interpretation.

Both models are used to infer meter for each rhythm in the test set. Note that
while three different categories, 2/4, 3/4, and 6/8, are considered, the quadruple
repetition of patterns with a duration of twelve sixteenth notes may favor 3/4
and 6/8 interpretations. Since this potential bias is a property of the test set on
which both models are evaluated, it does not cause problems for the evaluation of
the effect of inferential biases.

We expect that inferential biases will increase the number of rhythms interpreted
in the category corresponding to the bias. Due to the juxtaposition of 3/4 and
6/8 inferential biases, and the bar-level period-correspondence between these two
meters, we expect to find the greatest degree of disagreement in interpretation of
rhythms in the test set between the 3/4 and 6/8 categories: the 3/4 biased model
will likely interpret rhythms classified by the 6/8 biased model as 6/8 in 3/4 and
vice versa.

It seems plausible that 3/4 and 6/8 inferential biases will lead to some disagreement
about the 2/4 category. An inferential bias may lead a model to interpret rhythms
classified by the other model as 2/4 in the category corresponding to its bias. At
the tactus level, 2/4 and 3/4 exhibit structural similarities: by convention, 2/4
and 3/4 both imply simple meters, where beats are subdivided into two smaller
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units. The 6/8 time signature, on the other hand, implies a compound meter.
These (music-theoretic) similarities between 2/4 and 3/4 may lead the 3/4 biased
model to interpret more rhythms, interpreted in 2/4 by the 6/8 biased model,
according to its bias than the 6/8 biased model will out of the rhythms interpreted
in 2/4 by the 3/4 biased model. It is worth noting that 2/4 and 6/8 have a
different structural similarity at the level above the tactus: they are both duple
meters. However, the duration of beat in 2/4 and 6/8, in our quantized input
representation, is different, preventing this similarity from playing a role in our
model.

The set of rhythms interpreted differently by both models likely consists of rhythms
that do not strongly imply one specific interpretation. We expect such rhythms
to be either ambiguous, or metrically over- or under-determined (London, 2012,
pp. 75–76). Because we define a classification as the interpretation with the
maximum posterior probability, the model always produces an interpretation of a
rhythm, even if evidence from the rhythm is weak or conflicting. Therefore, some
of the rhythms about which the models disagree may be metrically vague, i.e., not
strongly suggesting any interpretation.

6.3.5.2 Cultural distance between Chinese and German rhythms

In two simulations, we investigate how the model responds to being trained
on folksongs originating from China or Germany. Music from these two areas
might be different enough to lead to differences in rhythmic processing between
enculturated individuals. By training the model on a dataset of Chinese and
German folksongs, we can simulate how, according to the model, exposure to
these stylistically different sets of rhythms affects perception.

To this end, we use two dataset sets: containing folksongs originating respectively
from Germany and China. The German dataset is the same one that is used for
the cross validation simulations described in Section 6.3.3. The dataset of Chinese
folksongs is constructed in the same way as the German dataset, namely by
selecting all folksongs from the Essen folksong collection whose “ARE” reference
record (Huron, 1999) indicated a region in China and after first filtering out
folksongs with zero or more than one annotated time signatures.

We run simulations in two separate conditions. In both conditions, two models are
trained: one on a Chinese training set, and one on a German training set. Both of
these models are subsequently evaluated on a separate Chinese and German test
set consisting of rhythms that do not occur in the training data. In contrast to
the simulation described above, we estimate the prior distribution in its normal
way (see Equation 6.3 and 6.4).

The number of rhythms of each metrical category used in the test and train sets
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in the first and second condition are shown in Table 6.2.

In the first condition (see the columns under “identical” in Table 6.2), we control
for the effect of the prior distribution and use identical distributions of metrical
categories in the training data of both models. This allows us to attribute observed
effects to differences in the statistical properties of rhythms, ruling out effects
of differences in the number of training examples or the differences in prior
distributions. Meters considered in the simulation need to be well represented in
both datasets. In the German and Chinese dataset that we have available, this
constraint leaves 2/4, 3/4, and 3/8 as suitable categories. Despite this reduction,
the number of rhythms in meters other than 2/4 in the Chinese dataset remains
rather small.

Due to the small number of rhythms in meters other than 2/4 in the Chinese
dataset, it is not possible to use a uniform distribution of meters in the test sets
for this condition. Instead, we only include rhythms in 2/4 in the German and
Chinese test set.

In the second condition (see the columns under “empirical” in Table 6.2), we
allow the prior distribution to influence results and use empirical distributions of
metrical categories in the training data of both models. By empirical, we mean
that the relative frequencies of meters in the test and training sets that we used
are equal to those observed in the Essen folksong collection. Both training sets
contained in total an equal number of training examples.

Rhythms in the test sets for this condition are distributed to the same proportions
as in the corresponding training sets. The Chinese test set predominantly contains
rhythms annotated in 2/4 while the German test set also contains substantial
numbers of rhythms in 3/4 and 4/4.

We expect that, on the Chinese and the German test sets, the model trained and
tested on culturally similar music will exhibit lower average information content
and higher classification performance than the model trained on culturally different
music. We expect to see this pattern of results both for the identical, as well as
for the empirical distribution of meters in the training data.

6.4 Results

6.4.1 Classification performance and preceding context

Figure 6.3a shows the average number of correct interpretations found by our
model at order-bounds ranging from zero to four. The averages are obtained by
first averaging all per-event information contents (see Section 6.2.4) in the test set
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Table 6.2: Number of rhythms in different metrical categories in training and test
sets in two different conditions (identical or empirical) used in the simulation of
enculturation. The upper table shows the counts for the identical condition and
the lower table shows counts for the empirical condition.

Distribution of meters Identical
Country of origin Germany China
Dataset Training Test Training Test

Meter

2/4 950 200 950 200
4/4 132 0 132 0
3/4 35 0 35 0
3/8 19 0 19 0

Total count 1136 200 1136 200

Distribution of meters Empirical
Country of origin Germany China
Dataset Training Test Training Test

Meter

2/4 339 60 1009 178
4/4 427 75 90 16
3/4 296 52 24 4
3/8 74 13 13 2

Total count 1136 200 1136 200

of one cross validation fold, and subsequently over all cross-validation folds. The
standard deviations are calculated over the averages per cross validation fold. At
order-bound zero, the model interprets rhythms in agreement with annotated the
time signatures in, on average 38%, of the cases. At order-bound one, classification
performance increases sharply to, on average, 67% of the rhythms in agreement
with the annotated time signature. Increasing order-bound further yields modest
improvements. At order-bound four, the highest we tested, on average, 71% the
rhythms were interpreted in agreement with the annotated time signature.

Variability in performance between different partitions of the data in a training
and test set is low, as the small error bars in Figure 6.3a show.
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Figure 6.3: Classification performance and average information content for five
different models varying in order-bound, evaluated using ten-fold cross-validation.
Markers represent values obtained by averaging over the ten folds. Error bars
represent one standard deviation above and below the average.

6.4.2 Metrical inference and prediction error

Figure 6.3b shows prediction performance in terms of average per-event information
content of rhythms under IDyOM (without metrical inference) and our extended
version of IDyOM (with metrical inference). Both models were tested at order-
bounds ranging from zero to four.

The results shows that, in general, information content decreases as order-bound
increases for both the IDyOM model (without metrical inference) and our model
(with metrical inference). The results also show that for all tested order-bounds,
the average information content is lower our model (with metrical inference): for
example 2.19 compared to 2.29 for order-bound zero and 1.34 compared to 1.54
at order-bound four.

6.4.3 Simulating enculturation

6.4.3.1 Inferential biases

The results obtained from contrasting two models with manually manippulated
prior distributions on an artificially generated test set are summarized in Table
6.3.
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Table 6.3: A contingency table showing the number of time-signature classifications
by a 3/4 biased model and a 6/8 biased model.

3/4 Biased
6/8 3/4 2/4 All

6/8 Biased
6/8 471 83 40 594
3/4 0 395 0 395
2/4 0 54 1005 1059
All 471 532 1045 2048

The results shows that both models interpret approximately half of all rhythms in
2/4. The rightmost column in bold shows that the 6/8 biased model interprets
more rhythms in 6/8 than in 3/4, while the bottom row in bold shows that the
3/4 biased model interprets more rhythms in 3/4 than in 6/8.

The numbers on the diagonal show that both models agree on the vast majority
of interpretations. Both models agree on the interpretation of rhythms that are
classified despite an inferential bias as 3/4 or 6/8: None of the rhythms that the
3/4 biased model interprets as 6/8 are interpreted differently by the 6/8 biased
model. Similarly, none of the rhythms that the 6/8 biased model interprets as 3/4
are classified differently by the 3/4 biased model.

The numbers off the diagonal show that the greatest degree of disagreement occurs
between the 6/8 and 3/4 categories, but there is also substantial disagreement
between 2/4 and 3/4 and 2/4 and 6/8.

There are two categories of rhythms sensitive to inferential biases: The first
category consists of 83 rhythms that the 6/8 biased model interprets in 6/8 while
the 3/4 biased model interprets them in 3/4. The second category consists of
rhythms that one model interprets in 2/4 while the other model interprets them
in the category its biased towards. The 6/8 biased model interprets 40 rhythms
in 6/8 that the 3/4 biased model interprets in 2/4. Out of the rhythms classified
by the 6/8 biased model as 2/4, the 3/4 biased model interprets slightly more
rhythms in agreement with its bias (namely 54), than the 6/8 biased model does
out of the rhythms classified by the 3/4 biased model as 2/4 (namely 40).

6.4.3.2 Cultural distance between Chinese and German rhythms

Table 6.4 shows average information content and classification performance ob-
tained in the simulations of enculturation with German or Chinese folksongs.
Results from two conditions are reported: one in which the German and Chinese
training sets have an identical distribution of metrical categories and one in which
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Table 6.4: Average information content and classification performance of models
trained and evaluated on test sets with rhythms from Germany and China. Results
are reported for two different conditions. One in which training sets contain
identical distributions of metrical categories, and one in which training sets
contain empirical distributions of metrical categories.

Test set
Identical priors Empirical priors

Training set German Chinese German Chinese

Information content German 1.21 1.63 1.34 1.72
Chinese 1.32 1.49 1.70 1.49

Classification German 0.84 0.80 0.73 0.72
Chinese 0.59 0.77 0.47 0.75

they have empirical distributions of metrical categories.

In both conditions the results can be said to show effects of enculturation: The
average information content for models evaluated on rhythms from the same
country as the rhythms in their training data (culturally familiar) is lower than
for models trained on rhythms from the other country (culturally unfamiliar).
Classification performance shows a similar pattern: in most cases, classification
performance is better for models evaluated on culturally familiar rhythms. However,
in the identical prior condition, classification performance of the German model on
the Chinese test set was slightly higher than of the Chinese model. Furthermore,
in the identical prior condition, the average information content of the Chinese
model is lower when evaluated on the German test set compared to the Chinese
test set.

For both models and in both conditions, but most notably in the identical priors
condition, information content of rhythms in the Chinese test set was slightly
higher than that of rhythms in the German test set.

Figure 6.4a and 6.4b project the rhythms from both test tests onto a two-
dimensional plane. The coordinates of each rhythm are determined by the average
information content of events in the rhythm under the Chinese model (x-axis) and
German model (y-axis). Under this projection, rhythms from the two cultures
form clusters that are to some degree spatially separated. The degree of separation
is stronger in the empirical prior condition (Figure 6.4b). For both conditions,
average information content of events in a single test set is highly correlated
between both models (see Table 6.5).



6.5. Discussion 139

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Chinese training set

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
er

m
an

tr
ai

ni
ng

se
t

German rhythms
Chinese rhythms

(a) Results for the training and test sets
with fixed distributions of meters.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Chinese training set

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

G
er

m
an

tr
ai

ni
ng

se
t

German rhythms
Chinese rhythms

(b) Results for the training and test sets
with empirical distributions of meters.

Figure 6.4: Scatter plots of the average information content of rhythms for the
Chinese and German models.

Table 6.5: Pearson product-moment correlation coefficients between average
information content per rhythm under the German and the Chinese model, showing
the degree to which information-content assigned to the same rhythms by both
models is related.

Test set
German Chinese

Prior Fixed 0.74 0.94
Empirical 0.86 0.89

6.5 Discussion

A predictive coding view of perception entails that perception depends on genera-
tive models in the mind of the perceiver that are tuned by statistical properties of
the environment, both through evolutionary adaptation and sensory experience,
to predict sensations. We hypothesized that effects of enculturation on the per-
ception of meter can be understood in terms of predictive coding. To explore the
consequences of this idea, we presented a probabilistic model of meter perception
for which predictive coding served as the conceptual basis. The underlying hy-
pothesis is that meter perception is the result of a strategy, based on statistical
learning, probabilistic prediction and inference, for increasing predictive accuracy
in processing of temporal events in music.

A set of expectations concerning the model’s behavior was derived based on:
the relevance of the model as a cognitive model of meter perception, theoretical
proposals about the relation between rhythm and meter, the model’s ability to
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reduce prediction error, and finally the model’s potential to simulate enculturation.
To investigate the degree to which the model meets these expectations, we ran a
series of simulations. The results show that the model can infer metrical structure
from rhythms, and that this ability improves when statistical properties of the
succession of onsets in the metrical context are taken into account. A comparison
with a similar model that does not use metrical inference demonstrates that
metrical inference reduces prediction error in predicting the timing of musical
events. Finally the results show hypothesised patterns of enculturation when
models are trained on corpora varying, both naturally and artificially, in terms of
distribution of metres and rhythmic properties.

The following sections discuss the simulation results in detail.

6.5.1 Meter classification and preceding context

A model of meter perception can reasonably be expected to interpret a simple
rhythm in a meter that agrees with the time signature that an educated listener
would use when transcribing that rhythm. The used rhythms were taken from
folksongs in the Essen folksong collection (Schaffrath & Huron, 1995). Despite
its possible relevance to determining the time signature, melodic information was
disregarded. This limitation notwithstanding, cross-validation results indicate
that the model generally infers interpretations that agree both in category and
phase with annotated time signatures. The best performing model configuration
interprets rhythms in a time signature and phase that agrees with annotations
in the Essen folksong collection in 71% of the cases. These classifications were
selected by the model out of a large pool of alternatives. Summing the number
of possible phases per considered metrical category (see Section 6.2) yields 320
possible metrical interpretations. Many of these categories occur very infrequently
in the training data, resulting in a low a priori likelihood for these categories. If we
limit interpretations to the four most frequently occurring metrical categories—4/4,
2/4, 3/4, and 6/8—the number of interpretation options reduces to 48.

By varying the model’s order-bound (the amount of preceding events that inform
the prediction of the next event, see Section 6.2.2), we investigated to what degree
learning statistical properties of the succession of metrical positions in rhythms
improved the model’s performance.

Increasing the order-bound from zero to one yields the most significant improve-
ment in classification performance. This finding is consistent with results obtained
by Temperley (2010) in a comparison of six onset-prediction models. Some of
these models were metrical, which means they made use of provided (rather than
probabilistically inferred) metrical information. Temperley (2010) found that out
of the compared models, the two metrical and context-sensitive models, namely
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(a) (b)

Figure 6.5: Two rhythms that result in different orderings of the same set of
mp⊗ bd viewpoint elements. The number-pairs below the notes are the values of
mp⊗ bd. The top number represents the value of the bd (bar-distance) viewpoint,
the bottom number represents the value of the mp (metrical position; expressed in
multiples of an eighth note duration) viewpoint.

the first-order metrical duration model and hierarchical position model, yielded
the lowest cross-entropy (information content) score.

The performance increase between order bound zero and one is unsurprising. In
a zeroth-order model, events in a rhythm are conditionally independent given a
meter. If the meter is known, the probability of the next event only depends on
its metrical status and is independent of preceding events. 1 In a zeroth-order
model, a rhythm is a “bag of notes”: the order in which notes occur is irrelevant
to the final outcome. However, note-order bears consequences for the metrical
interpretation of a rhythm, as illustrated in Figure 6.5. The rhythm in Figure 6.5a
is structurally different from the rhythm in Figure 6.5b, yet under a zeroth-order
model using mp ⊗ bd metrical viewpoints (see Section 6.2.3) these rhythms are
indistinguishable.

The results show that classification and prediction performance, increases further
when order-bound is increased to four. Since this improvement is relatively modest,
it remains to be seen to what extent probabilistic information about the succession
of multiple events facilitates metrical inference. Perhaps the effect of order-bound
would be more pronounced for music styles with more complex rhythms than the
folksongs used here.

6.5.2 Metrical inference reduces prediction error

We proposed that meter perception may result from predictive coding: interpreting
onsets in a rhythm as the result of a generative model with different periodic
categories (meters), that are inferred from the pattern of onsets itself, may facilitate
prediction of future onsets. Interpreting a rhythm in a metrical framework allows
a listener to relate the observed events to patterns they observed previously. A

1The bd viewpoint used in our simulations indirectly introduces minor context dependency:
if its value zero it means that the current note is the first note in the bar.



142 Chapter 6. A probabilistic model of meter perception

computational probabilistic model that infers meter to predict the timing of events,
such as the one presented here, should therefore encounter a lower prediction error
in empirical rhythms compared to a similar model that does not infer meter.

To evaluate this, we compared prediction performance of the presented model
to an IDyOM model that predicts the event onset times without using metrical
inference. This comparison seems natural because the presented model implements
metrical inference directly on top of IDyOM as explained in Section 6.2.

Simulations show that the meter inferring model reduces prediction error compared
to IDyOM (without metrical inference) under all tested order-bounds. These re-
sults support the suggestion that inferring meter may improve temporal prediction
of events in rhythms.

6.5.3 Simulating enculturation

The goals of the simulations concerning enculturation were to investigate how our
model’s behavior is shaped by the statistical properties of rhythms in its training
data, and to investigate the extent to which these statistical properties can be
exploited to improve the prediction and metrical interpretation of stylistically
similar rhythms. We first explored the consequences of inferential biases on an
artificially constructed set of potentially ambiguous rhythms. Then, we studied
the effect of statistical properties of sets of rhythms on metrical inference. The
results show that when tested on Chinese rhythms, models trained on rhythms
of Chinese folksongs show better prediction performance than models trained
on German folksongs. The converse was true when the models were tested on
German folksongs.

This simulation of enculturation should be seen as a proof-of-concept: Patterns
of quantized onset times annotated with meter are a limited representation of
the rich variety of musical and non-musical experiences that may shape listeners’
perception of meter. In the musical domain, timbre, polyphony, expressive timing
and dynamics are some examples of aspects not considered by our approach that
all could plausibly form part of the experiences that shape meter perception.
Nevertheless, it is possible that monophonic corpora of rhythms from different
cultures can predict some enculturation effects. The methodology presented here
is an illustration of how such predictions could be made.

6.5.3.1 Inferential biases

Inferential biases were introduced into the model by directly manipulating the
prior distribution, to avoid differences in the amount of training examples per
metrical category, which would influence the results.
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We contrasted two models: one with a 6/8 inferential bias, another with a 3/4
inferential bias. The models were evaluated on an artificially constructed test set
of rhythms with the potential for ambiguity between 3/4 and 6/8. These test
rhythms were not annotated, as we intended find the set of rhythms for which
inferential biases could swing the model’s interpretation.

The results show that inferential biases affected the distribution of interpretations
over metrical categories in ways that we expected: Each model interpreted more
rhythms in the category corresponding to its bias than the other model. Both
models agreed on the interpretation of the majority rhythms. These rhythms
contained enough evidence towards a particular interpretation to override the
model’s inferential bias. As we expected on music theoretic grounds, the 3/4
biased model swung the interpretation of slightly more rhythms, interpreted in
2/4 by the 6/8 biased model, to a 3/4 interpretation than the 6/8 model did out
of the set of rhythms interpreted in 2/4 by the 3/4 biased model.

Eight rhythms interpreted were interpreted in 3/4 without pick up by the 3/4
biased model and in 6/8 without pick up by the 6/8 biased model. These
rhythms are shown, by way of example, in Figure 6.6, along with metrical grids
contrasting a simple 3/4 interpretation with a compound 6/8 interpretation. That
the interpretation of these rhythms could be influenced depending on inferential
bias of the model suggests that they are ambiguous (e.g., 6.6vi), and/or metrically
underdetermined (e.g., 6.6i and 6.6iv), or metrically vague, i.e., not strongly
suggesting any interpretation (e.g., 6.6viii).

6.5.3.2 Cultural distance between Chinese and German rhythms

In general agreement with the hypotheses presented in Section 6.2.5, the results in
Table 6.4 show that models evaluated on a test set with rhythms from the same
country as the rhythms they were trained on exhibit a lower average per-event
information content. The classification scores for models trained on culturally
familiar rhythms were also higher compared to models trained on culturally un-
familiar rhythms, except on the Chinese test set in the identical prior scenario.
It could be that rhythms in the Chinese portion of the Essen folksong collec-
tion (Schaffrath & Huron, 1995) were less consistently annotated, but further
investigation is necessary to determine whether this is the case. The pattern of
results suggests that the statistical properties of Chinese and German rhythms
are different, and that these differences can be exploited to optimize prediction
and metrical inference on rhythms from one of the countries.

In a recent study comparing recognition memory in North American listeners on
Turkish classical music and Western art music, (Demorest, Morrison, Nguyen, &
Bodnar, 2016) found that rhythmic properties of music did not contribute to an
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Figure 6.6: The full set of rhythms interpreted as non-anacrustic 3/4 rhythm by a
model with a 3/4 inferential bias and a non-anacrustic 6/8 rhythm by a model
with a 6/8 inferential bias. Each rhythm is shown in dot notation between a
compound 6/8 metrical grid (above) and a 3/4 simple metrical grid (below). The
grey bars highlight onsets that fall on beats with different theoretical saliencies
in both interpretations. Score transcriptions of the rhythms in 6/8 and 3/4 are
shown above and below the grids.

enculturation effect on memory performance. At a first sight, these results seem
surprising in the light of earlier studies that did find effects of enculturation related
to rhythmic organization of music (Hannon & Trehub, 2005a, 2005b; Hannon et al.,
2012). However, it is possible that while rhythms are capable of eliciting effects
of enculturation, such rhythms did not occur in the stimuli used by Demorest
et al. (2016). Demorest et al. (2016) used a small set of stimuli that were not
specifically selected to contain rhythms likely to elicit an effect of enculturation.
The methodology applied in this simulation of enculturation is an example of
how probabilistic models of rhythm perception can be employed to predict which
rhythms are likely to elicit an effect of enculturation.

We hypothesized that fine-tuning of perception to the statistical properties of
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musical rhythms in one’s environment in a way that leads to a reduction of
prediction-error in rhythms typical of one’s environment leads to differences in
the processing of meter. This idea is closely related to the notion of cultural
distance—the degree to which pitch relations in a musical excerpt resemble the
pitch relations typical to music from one’s own culture—introduced recently by
Demorest and Morrison (2016). The cultural distance hypothesis (Demorest &
Morrison, 2016) states that cultural distance is predictive of various culturally
dependent responses such as preference, tension, expectation, and memory. This
hypothesis is supported by a series of studies where cultural distance of stimulus
material was found to affect memory performance (for an extensive overview, see
Morrison & Demorest, 2009). Demorest and Morrison (2016) propose that cultural
distance could be measured using probabilistic models of melodic expectancy,
such as IDyOM, that learn the statistical properties of music from a particular
culture. Music that is culturally distant from the music such a model is trained
on should be predicted less effectively than culturally familiar music. As such,
in the context of a cross-cultural study, average information content—the degree
to which observed events deviate from one’s expectations—can be seen as an
operational definition of cultural distance.

The model presented here can supplement predictions about melodic cultural
distance as provided by existing probabilistic models, with predictions about
rhythmic cultural distance. Cultural distance, as predicted by our probabilistic
model, can then be read directly from Figures 6.4a and 6.4b. If the probabilistic
aspects of rhythm learned by the presented model correspond to those implicitly
learned by human listeners, then, according to the cultural distance hypothesis,
rhythms in the top-right part of Figure 6.4a and 6.4b should be more difficult to
remember for German listeners while rhythms in the bottom-right part of Figure
6.4a and 6.4b should be more difficult to remember for Chinese listeners.

Other culturally dependent responses mentioned by Demorest and Morrison
(2016) such as, expectation, preference, and tension can be potentially linked
to information content as well. Regarding expectation, information content is a
direct consequence of predictive failure and has been shown to account well for
human pitch expectations (Pearce, 2005; Hansen & Pearce, 2014). Regarding
preference, perceived groove and experienced pleasure have been hypothesized to
depend on the right balance between predictability and unpredictability (Witek
et al., 2014). Furthermore, influential proposals have postulated close ties between
expectation and both emotional responses to music (Huron, 2006) and musical
meaning (Meyer, 1957). Regarding tension, melodic expectation has recently been
linked to expressive performance, which in turn was linked to perceived tension
(Gingras et al., 2016).
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6.5.4 General discussion

While it is commonly assumed that the metrical accent of a beat, as derived
from formal hierarchical descriptions of meter (Lerdahl & Jackendoff, 1983), is
proportional to the probability of onsets at those beats, recent findings by Holzapfel
(2015) and London et al. (2017) challenge this view. London et al. (2017) suggested
that onset frequency need not be correlated with metrical accent for effective
communication of meter. Instead, they argue, it is the recurrence and stability of
rhythmic figures in the context of specific meters that may play a key role in the
relation between rhythm and meter.

The results we presented show that models which take into account the preceding
context of musical events, thus possessing the potential to learn the typical
unfolding of multiple characteristic rhythmic patterns under different meters, are
generally better at predicting rhythms and reconstructing annotated meters from
note onsets alone. These findings, we would argue, provide further support for
the idea the relationship between rhythm and meter is not only characterised by
the distribution of note onsets, but also by characteristic rhythms and statistical
properties of succession of interval between events.

The model we presented learns a generative model of rhythms from an annotated
corpus. The supervised aspect of this approach challenges the cognitive plausibility
of our model. Humans develop a feel for meter in their own culture without someone
explicitly informing them about the “right” metrical interpretation. Nevertheless,
situated exposure to rhythm almost always happens within a context containing an
abundance of multi-sensory information related to the rhythmic practice. Within
the music itself, other instruments, expressive timing and dynamics may provide
strong metrical cues. In the environment, being rocked to music as an infant,
participating in dancing or observing other people dance all contribute to the
multi-sensory context by which rhythm perception is shaped. While not entirely
putting concerns related to the supervised aspect of our approach to rest, metrical
annotations in our training data can potentially be seen as capturing some of the
information communicated in situated exposure to rhythms.

We have only considered event onset times in the present study while other musical
aspects such as melodic repetition are known influence the perception of meter
as well (Hannon, Snyder, Eerola, & Krumhansl, 2004). A full account of meter
perception should take these aspects into account. Our model could be a good
starting point for such an account: due to the implementation of the model in
IDyOM, it is possible to link metrical viewpoints with melodic viewpoints and
incorporate melodic aspects into the generative model.

Another limitation of the current model is its relatively simple representation
of metrical structure. Time signatures fall short in capturing the structural
complexity of perceived meter. The model treats metrical categories as independent
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generative models and structural similarities between meters remain unexploited.
The model is limited in its interpretation of rhythms into metrical categories by
the categories observed in training data. In future work, we will seek to address
these limitations by extending the model’s representation of metrical structure.

The model introduced here represents an extension of previous work in probabilistic
modelling of music (Conklin & Witten, 1995; Pearce, 2005). It is worth pointing
out that the predictive mechanisms on which the model presented here is based, are
domain independent (Pearce & Wiggins, 2004). The PPM* sequence prediction
methods we employ can be applied to any domain that can be represented as
structured sequences of symbols. Indeed, they were originally proposed in the field
of text compression, but have proven to be useful in cognitive models of melodic
expectation as well (Pearce, 2005; Pearce & Wiggins, 2012).

In summary, we have presented a computational probabilistic model meter per-
ception, grounded in a predictive coding perspective of perception. The model
has the potential to simulate musical expectations resulting from the perception
of meter, shaped by previous exposure. The results show that the model can
interpret simple rhythms in meters that agree with annotated time signatures
and that it generates the hypothesized effects of enculturation. Simulations such
as the ones presented here, can be used to generate theoretical predictions for
cross-cultural studies of rhythm perception. Future research will determine the
extent to which the learning processes implemented by our model capture aspects
of those at work in human listeners.





Chapter 7

Statistical affordances for meter in
makam and Western rhythms

7.1 Introduction

It is commonly claimed that the perception and appreciation of music are affected
by internalized statistical patterns characteristic of musical styles that listeners are
familiar with (Meyer, 1957; Huron, 2006; Temperley, 2007; Longuet-Higgins, 1979;
Pearce, 2018). Cross-cultural studies have shown that the musical environment
can indeed significantly influence music perception (for reviews, see Stevens, 2012;
Patel & Demorest, 2013). These claims and findings have fueled interest in
probabilistic generative approaches to modeling music perception (Temperley,
2007; Pearce, 2005). Such models can be used to model how music perception may
adapt to statistical patterns in music (Temperley, 2007; Pearce, 2018; Morrison
et al., 2019).

Using probabilistic generative models to simulate how perception is shaped by
statistical patterns in the environment is consistent with predictive processing
theories of perception and cognition. These theories posit that perception and
perceptual learning (E. J. Gibson, 1963) both are symptoms of prediction-error
minimization (respectively on fast and slow timescales) in a probabilistic generative
model of sensations (Clark, 2013). Because of this unification, the shaping of
perception by statistical patterns in the environment fits naturally in a predictive
processing perspective on perception and cognition. This study adopts such a
perspective by viewing generative models of rhythm perception as theories of the
predictive models that listeners employ while perceiving a musical rhythm. If
predictive processing theories are accurate, then the shaping of rhythm perception

149



150 Chapter 7. Statistical affordances for meter

by statistical patterns in the musical environment can be described maximizing
the probability of rhythms encountered by a generative model of rhythms over
time, based on rhythms encountered previously.

There is empirical and quantitative evidence that rhythm perception is influenced
by previous activities and experiences (Hannon & Trehub, 2005b; Soley & Han-
non, 2010; Hannon et al., 2012; Cameron, Bentley, & Grahn, 2015; Jacoby &
McDermott, 2017; Polak et al., 2018). However, along which dimensions rhythm
perception is shaped, whether statistical patterns in rhythms play a role in bring-
ing this shaping about, and if so, which patterns are most important remain
interesting questions. Both statistical patterns present in the musical environment
and the statistical learning mechanisms of listeners are relevant to these questions.

In the current study, we approach these questions by considering the effect that
the musical environment, the learning mechanisms of listeners, and the stylistic
properties of a rhythm may have on the ability to perceive meter in a rhythm.
These three factors give rise to the concept of statistical affordances for meter which
we describe in Section 7.2.2. We represent musical environments by three empirical
samples of rhythms (see Section 7.2.1), two of which contain rhythms from German
and Dutch folk melodies, and one of which contains rhythms from Turkish makam
music. Learning mechanisms are modeled using two probabilistic generative models
of rhythm perception. One, which we call the classical model Section 7.3.2), is
based closely on a probabilistic rhythm model described by Temperley (2007),
and one, which we call the enculturation model (Section 7.3.4), is based on a
model described by Van der Weij et al. (2017 [Chapter 6]). The classical model
is consistent with what we call classical theories of meter (Section 7.3.1). The
enculturation model is consistent with theories of meter that posit a greater
influence of the musical environment on rhythm perception than classical theories
do (Section 7.3.3). We compare three variants of the enculturation model that
are constrained to various degrees in the length of statistical patterns they are
sensitive to. Both models are described in detail in Chapter 5. All models and
their variants used in this study can be ordered in a hierarchy of sensitivity to
statistical patterns, described in Section 7.3.5.

After describing the concepts of musical environments and statistical affordances
for meter in Section 7.2 and the models in Section 7.3, we formulate a set of
research questions in Section 7.4 and explain how we investigate these questions in
a set of three experiments. The first two experiments involve model simulations of
listeners with long-term exposure to a certain musical environment. Here, we assess
how different models of listeners are shaped by different musical environments
and how this affects the ability of these models to predict inter-onset intervals,
based on inferences about the underlying meter, in rhythms drawn from either
the same or a different musical environment. The general methodology applied in
the first two experiments is explained in Section 7.5. In the third experiment, we
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consider the statistical properties of the rhythm samples directly and compare
two different representations of metrical context of onsets in a rhythm: metrical
salience, and phase (position in the metrical cycle).

7.2 General concepts

7.2.1 Musical environments

Rhythm perception takes place in a context of rich and multi-modal sensations,
commonly accompanied by forms of movement, such as dancing, or active partici-
pation in the music-making (Trehub et al., 2015). While these aspects plausibly
play a role in the shaping of rhythm perception, this study focuses only on the
possible effects of passive exposure to rhythms. Therefore, we describe the musical
environment conceptually as a probability distribution that describes the proba-
bility with which a listener encounters different rhythms. This listener-specific
distribution depends on aspects like the listener’s social and cultural context, as
well as their actions and preferences.

However, instead of attempting to obtain such listener-specific distributions, we
focus on coarse-grained distributions of rhythms that may conceivably represent
a certain musical environment. To represent these distributions, we use music
corpora containing relatively large amounts of music, categorized by style or
geographical region of origin. In the current study, we draw independent samples
from three different corpora: one containing Dutch folk melodies, one containing
German folk melodies, and one containing Turkish makam music. These samples
represent three musical environments, two of which (the German and Dutch folk
melodies) may be expected to be similar, and one of which may be expected to
be different from the other two (the Turkish makam music). The samples can
be classified as belonging to two different musical idioms: the folk melodies as
Western tonal music, and the Turkish music as Middle-Eastern makam music (see
Section 7.5.6).

Two further limitations apply: we consider only the rhythms created by the
timing of note onsets in monophonic melodies, specifically the intervals between
note onsets, represented by a discrete, symbolic, and score-like representation.
We therefore refrain from making statements about the influence of expressive
timing (notes that are timed slightly early or late, for example for expressive
reasons) or tempo (such as rubato, the natural speeding up and slowing down of
rhythms for expressive reasons). Motivations for these simplifications are partly
practical—they reflect the format in which empirical datasets representing music
from different musical idioms are available—and partly theoretical—they help to
narrow the scope of our study.
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7.2.2 Statistical affordances for meter

Meter is a perceived recurring pattern of strong and weak accents that is a
prerequisite for moving to a rhythm and playing music in synchrony. It has been
described in a multitude of ways by different authors. Some consider it an abstract
mental phenomenon (Longuet-Higgins & Lee, 1984; Lerdahl & Jackendoff, 1983),
emphasizing its perceptual nature. Others view it as coupled oscillation (Large &
Kolen, 1994; McAuley, 1995), emphasizing its dynamic, in-time character. Yet
others describe it as skilled active behavior (London, 2012), emphasizing the role
of experience and training. These perspectives were discussed in more detail in
Chapter 2 of this thesis.

Traits of listeners, such as the ability to perceive meter, that enable them to
participate in musical activities have been considered from an evolutionary per-
spective (Honing, Ten Cate, Peretz, & Trehub, 2015). However, these traits are
also shaped by the diverse cultural environments (Trehub et al., 2015) in which
listeners are embedded. Furthermore, due to the musical diversity of different
cultural environments, rhythms prevalent in one cultural environment may offer
more (or different) opportunities to perceive meter to listeners embedded in that
environment than to other listeners (Stobart & Cross, 2000; Hannon & Trehub,
2005a, 2005b). To emphasize that the ability to perceive meter depends on the
listener, the style of a rhythm, and the musical environment in which the listener
is embedded, we introduce the concept of statistical affordances for meter.

An affordance may be described as a relation between an animal and a property
of a situation that affords a certain behavior (Chemero, 2003). For example,
Chemero (2003) notes that the affordance of “eating” is provided by an apple only
to animals capable of eating and digesting apples. Affordances can be perceived:
an animal capable of eating and digesting apples can perceive the edibility of
apples. Similarly, we might say that the affordance to entrain metrically to a
rhythm may be perceived by listeners with the cognitive capacities required for
detecting certain kinds of regularity in rhythms. In this view, meter is a perceived
affordance that can be characterized as a relation between properties of listeners
and properties of rhythms.

However, since the cognitive capacities of listeners appear to be shaped by patterns
and regularities in their musical environment, the musical environment and the
learning mechanisms of listeners also play a role in whether the affordance of
entraining metrically to a rhythm is available. A statistical affordance for meter
is available when internalized rhythmic patterns and regularities enable a listener
to perceive meter in a given rhythm. Whether a statistical affordance for meter
is available depends on three factors: (1) the characteristics of a rhythm (e.g.,
its style or idiom), (2) the statistical patterns in the musical environment that
have shaped the listener, and (3) how listeners are shaped by these patterns
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and regularities—that is, their learning mechanisms, or sensitivity to statistical
patterns. In summary, statistical affordances for meter can be perceived in rhythms
belonging to a certain style or idiom by enculturated listeners.

For example, in Western classical music, the frequency with which onsets occur in
different positions in the metrical cycle can serve as a cue for meter (Temperley,
2007, 2010; Palmer & Krumhansl, 1990). This cue for meter is available to listeners
who internalize these frequencies through long-term exposure to Western music.
Such listeners may perceive statistical affordances for meter in Western classical
music courtesy of their sensitivity to this statistical pattern and their long-term
exposure to Western classical music.

7.3 Models

7.3.1 Classical theories of meter

Classical theories of meter describe meter as a multileveled hierarchy of beats
(Lerdahl & Jackendoff, 1983), or as trees generated by grammars associated with
different meters that recursively subdivide metrical intervals (Longuet-Higgins &
Lee, 1984). These hierarchies create a recurring pattern of beats with alternating
levels of metrical salience (also referred to as beat strength, such that metrically
salient beats are strong beats). The metrical salience of a beat is determined
by the number of beats that align with its onset (Lerdahl & Jackendoff, 1983),
or highest metrical level that the beat initiates (Longuet-Higgins & Lee, 1984).
For example, the bar-level beats of a 6/8 meter are separated by the duration
of six eighth notes, which is subdivided by two into a new metrical level with a
period of three eighth notes. Finally, this level is subdivided to produce the lowest
metrical level containing three beats per mid-level beat, each of which is separated
by the duration of one eighth note. A 3/4 meter has the same inter-beat interval
at the bar level as a 6/8 meter but entails a different hierarchy: the bar-level is
subdivided first by three and then by two.

Classical theories of meter are consistent in their requirement that in order to
establish the perception of a metrical hierarchy, onsets and accents must reinforce
this hierarchy by accentuating metrically strong beats: Lerdahl and Jackendoff
(1983) say that metrical interpretations in which strong beats at each metrical level
are stressed (by events in the rhythm) are to be preferred. Longuet-Higgins and
Lee (1984) defined meter as a grammar and rhythm as the structures generated
by that grammar. Meters that minimize syncopation by ensuring that if onsets
occur on metrically weak beats, they are followed by onsets on metrically strong
beats, are preferred according to this theory. These requirements leave relatively
little room for idiomatic or stylistic influences on the structure of rhythms.
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7.3.2 The classical model

The classical model is an adaptation of a rhythm perception model proposed by
Temperley (2007). It posits the same assumptions concerning the way rhythm is
constrained by meter as Temperley’s model but omits aspects related to tempo
and timing. An adaptation of Temperley’s model that does incorporate these
aspects and is very close to Temperley’s original was described in Chapter 4.
Meter, in these models, is represented by a multileveled hierarchy of beats, subject
to well-formedness constraints outlined by Lerdahl and Jackendoff (1983). Based
on the meter, the metrical salience of each position in which an onset can occur
can be calculated. The classical model assumes that the probability of whether a
note onset occurs at any of these positions is explained fully, if the meter were
known, by the metrical salience of that position. These onset probabilities are
described by a set of parameters that Temperley calls the note-beat profile, as they
describe the probability of a note occurring at a particular beat. The note-beat
profile is estimated from empirical rhythm samples and thus reflects the statistical
patterns that listeners internalize from prior exposure to rhythms according to
the classical model.

While the model does not a priori require that onsets are most likely to occur
on metrically salient positions, the model is primarily compatible with classical
theories of meter: the only way in which it can infer meter from a rhythm is
if onsets align with different levels of metrical salience in a consistent, context-
independent way. Temperley argues that the alignment of onsets with strong
beats is required to clearly establish meter in a listener’s mind. Styles in which
rhythmic onsets align less strongly with metrically salient beats, for example by
means of syncopation, create more metrical ambiguity, which, Temperley argues,
must be compensated for by stricter adherence to tempo (tolerance for tempo
changes is a parameter of Temperley’s original model but is not included in the
classical model since tempo and expressive timing aspects are omitted).

Its small number of parameters endows Temperley’s model, and the classical
model, with the desirable quality of making narrow predictions about rhythm
perception. However, it simultaneously constrains the model’s ability to adapt to
diverse rhythm distributions. Although the model does have the ability to learn
some statistical patterns from rhythms, it may be characterized as conservative
with regard to the plasticity of rhythm perception. This causes the structure
of rhythms that afford listeners (as simulated by the model) to perceive meter
to be strongly constrained by the hierarchical structure of meter, and less by
the statistical patterns in the rhythms to which listeners have been previously
exposed.
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7.3.3 Alternative theories of meter

The frequency with which onsets occur at different positions in the metrical
cycle in a given empirical sample of rhythms can be made visible by histograms
depicting these frequencies for each metrical position. Palmer and Krumhansl
(1990) constructed such histograms using music samples from different styles and
periods of Western classical music and found the results to be constrained more
by the hierarchical structure of meter, as described by classical theories of meter,
than by the style or period of a rhythm. They concluded from this that patterns
of metrical salience serve as reliable cues for meter, that listeners may learn
patterns of metrical salience from extensive exposure to music but also that the
probabilities with which onsets occur at different positions in the metrical cycle
are constrained primarily by the metrical salience patterns predicted by classical
theories of meter, despite having investigated only Western classical music.

Simultaneously, classical theories of meter were inspired primarily by the study
and analysis of Western classical music, and were developed by authors who,
as they themselves readily acknowledge (Lerdahl & Jackendoff, 1983; Longuet-
Higgins, 1979), are primarily familiar with this musical idiom. The extent to
which the constraints that these theories impose on meter perception generalize
to rhythms and listeners familiar with styles beyond Western classical music has
been questioned. In particular, the requirement that a rhythm must, in order to
reliably establish a meter, place onsets and accents primarily on metrically salient
positions has been argued not to hold universally.

Iyer (1998, p. 44), for example, argued that “one should not regard the global
musical preponderance of ‘syncopation’ (off-beat accents) as a vast set of exceptions
to the ‘normal’ accentual rules of meter but rather as convincing counterexamples
to such proposed accentual rules.” The normal accentual rules for meter here
refer to the principles posited by classical theories of meter, according to which
syncopation is a deviation from the norm and according to which the pattern of
strong and weak beats prescribes where onsets should (predominantly) occur.

An alternative view is that there are ways complementary to reinforcing metrically
salient beats with rhythmic accents by which meter can be established. These
complementary ways may rely on learned associations between rhythmic patterns
and meters, as has been suggested by London (2004, 2012). As long as certain
rhythmic patterns occur consistently in a certain orientation to a metrical cycle,
listeners with the appropriate experience and training may be able to perceive
meter in rhythms that evoke these learned associations. Syncopations, in this view,
are not deviations from a norm but a property of how onsets in a rhythm align
with the metrical accents of a meter. Crucially, in this view metrical salience is not
seen as identical to expectancy but as a phenomenological aspect of the perception
of meter which may or may not coincide with expectations for events. This view
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demands a certain skillfulness of listeners for them to perceive the (culturally
appropriate) meter which involves sensitivity to more complex statistical patterns
in rhythms than only the frequency with which onsets occur at different levels of
metrical salience. 1

There is empirical evidence suggesting that meter can be established when onsets
do not occur predominantly on metrically strong beats. London et al. (2017)
analyzed recordings of three Malian drum ensemble pieces. They found that the
pieces, importantly, do suggest a metrical cycle and a regular beat, yielding a
metrical organization comparable to a 12/8 time signature. However, they also
found that onsets in these rhythms occur more frequently in off-beat positions
than in on-beat positions (apart from the downbeat). These findings are at odds
with the predictions of classical theories of meter, and also at odds with the theory
that the probability of onsets in a rhythm depends primarily on metrical salience
(Palmer & Krumhansl, 1990; Temperley, 2007). Based on these results, London
et al. (2017) propose that metrical entrainment can be supported by statistical
associations between rhythmic patterns and metrical orientations, which are
learned through practice and experience.

Furthermore, Holzapfel (2015) presented evidence suggesting that metrical cate-
gories can be inferred on the basis of drum-stroke patterns associated with different
rhythmic modes. Holzapfel investigated rhythms derived from a corpus of makam
music (which is also used in this study) and used drum-stroke patterns associated
with different usuls (rhythmic modes) to classify the usul of a rhythm, represented
by the way they onsets in the rhythm are distributed over different positions in the
metrical cycle. Holzapfel found that this could be done successfully, showing that
the frequency with which onsets occur in different metrical positions in makam
music is influenced by the usul pattern, in addition to meter.

7.3.4 The enculturation model

The enculturation model is based on a model proposed by Van der Weij et al.
(2017 [Chapter 6]). A detailed and technical description of this model is given
in Chapter 5. The model learns associations between metrical categories and
rhythmic patterns. What is regarded as a metrical category by the enculturation
model is to some extent arbitrary. In principle clave patterns, timelines or usuls
could all serve as metrical categories. The only requirement of meter is that it can

1 It should be noted that (purely perceptual) statistical learning is not the only way in which
enculturated meter perception can be established. Agawu (2006, p. 18), for example, noted the
importance of the integration of rhythm in dance in different African communities to arrive
at a “culturally sanctioned” understanding of rhythm. Such cultural customs may give rise
to patterns in symbolic representations of rhythms that are detectible by statistical learning
mechanisms.
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be associated with a metrical cycle. In the current study, time signatures are used
as metrical categories, and the duration of metrical cycles corresponds to a bar.

A metrical interpretation of a rhythm is defined by a metrical category and by a
representation of how the metrical cycle aligns with the sequence of inter-onset
intervals (that is, where the first onset occurs in the metrical cycle). Given a
metrical interpretation, a sequence of inter-onset intervals can be represented as a
sequence of downbeat distances, which is a representation that incorporates the
position of the second of the two onsets in an inter-onset interval relative to the
metrical cycle. The way in which inter-onset intervals are represented, given a
metrical interpretation, thus depends on the duration of the metrical cycle and
the way in which the metrical cycle aligns with the rhythm. Downbeat distances
can therefore be seen as metrical fingerprints that are left by inter-onset intervals
given a metrical interpretation.

Since the enculturation model learns associations between metrical categories and
patterns of onsets, it is sensitive to more complex statistical patterns and supports
more nuanced associations between rhythm and meter than the classical model.
Patterns of metrical fingerprints are learned by a sequence model that describes
probability distributions of the possible metrical fingerprints to follow a sequence
of preceding metrical fingerprints, given an underlying meter. This supports
the learning of complex statistical associations between metrical categories and
rhythmic patterns. It can be likened to how sequence models of melodies can
expose differences between statistical properties of musical idioms (Pearce, 2018).

The length of the patterns to which the enculturation model is sensitive can be
controlled. In the current study, we test variants of the model sensitive to patterns
of up to two (short patterns), five (long patterns), or an unbounded number of
metrical fingerprints. While a pair of subsequent note onsets create nothing but
an inter-onset interval, two metrical fingerprints can arguably be called a rhythmic
pattern since they represent not just an interval but encode locations of the onset
in a metrical cycle (their metrical context).

7.3.5 Hierarchy of sensitivity

The classical model and the three variants of the enculturation model can be
ordered in terms of the complexity of statistical patterns to which they are sensitive,
creating a hierarchy of sensitivity. Models sensitive to simple statistical patterns
are placed at lower levels than models sensitive complex statistical patterns.
Crucially, a model at any particular level is also sensitive to the statistical patterns
that models at lower levels are sensitive to.

Table 7.1 shows the classical model and three variants of the enculturation model
ordered in this manner. The table also shows the kind of representation of metrical
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Table 7.1: A hierarchy of sensitivity to statistical patterns in musical environments.
The classical model and the three variables of the enculturation model are arranged
hierarchically by the complexity of statistical patterns to which they are sensitive.

Level Model Metrical context Maximum pattern length
0 Classical Metrical salience N/A
1 Enculturation Downbeat distance Two (short)
2 Five (long)
3 Unbounded

context used by the model and the length of rhythmic patterns that it is sensitive to.
The classical model, which is sensitive only to the note-beat profile of a sample of
rhythms, is placed at level zero of the hierarchy. The enculturation model sensitive
to rhythmic patterns of two metrical fingerprints (downbeat distances) occupies
level one. This model can learn the note-beat profiles from a sample of rhythms
but is additionally sensitive to the metrical fingerprints of two subsequent notes.
Above this model, at levels two and three, are variants of the enculturation model
sensitive to patterns of five metrical and an unbounded number of fingerprints.

7.4 Research questions

We investigate how the learning mechanisms of a listener (as simulated by a
model) and their musical environment (the source sample) affect the availability
of statistical affordances for meter (as measured by cross-entropy reduction) in
rhythms drawn from either the same or a different musical environment (the target
sample) by comparing both between models at successive levels of the hierarchy
of sensitivity, between within-sample, within-idiom and across-idiom simulations,
and between different musical environments.

The source sample refers to the rhythm sample from which a model learns and
the target sample refers to the rhythm sample on which a model is evaluated. In
within-sample and within-idiom simulations, the idiom of the source and target
samples is the same while in across-idiom simulations the source and target samples
reflect different musical idioms. These concepts are explained in more detail in
Sections 7.5.1 and 7.5.2. How we measure the availability of statistical affordances
for meter as cross-entropy reduction is explained in Section 7.5.3.

In the experiments, we assess three kinds of effects:

1. In within-sample simulations, we compare models at successive levels of the
hierarchy of sensitivity to investigate whether sensitivity to more complex
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statistical patterns increases the availability of statistical affordances for
meter. This assesses the effect of model.

2. In within-sample simulations, we test whether patterns to which a model
is sensitive make affordances for meter available to the same degree in
different musical environments. This assesses the interaction between musical
environment and model.

3. In within-sample, within-idiom, and across-idiom simulations, we test
whether patterns learned from one musical environment make affordances for
meter available in rhythms from similar and dissimilar musical environments.
This assess the interaction between simulation type and model.

In Experiment 1, we investigate whether there are statistical affordances for meter
that rely on sensitivity to long or unbounded-length patterns by investigating
effects 1 and 2. This experiment involves only the enculturation model, for
which we can vary the maximum length of patterns to which it is sensitive. In
Experiment 2, we investigate two questions: do statistical affordances for meter
rely on similar or different statistical patterns in different musical idioms and do
statistical affordances for meter in different musical environments require different
kinds of sensitivity to statistical patterns? Here, we investigate effects 2 and 3
involving the classical model and the enculturation model.

If we find in Experiment 1 that there are statistical affordances for meter available
exclusively to models sensitive to long patterns or patterns of unbounded length,
that suggests that such patterns can in principle serve as cues for meter. This would
mean that there are other statistical patterns, besides the frequency with which
onsets occur at different positions in the metrical cycle (Palmer & Krumhansl,
1990), or at different levels of metrical salience (Temperley, 2007), that can support
metrical inference, at least for listeners with sufficient prior exposure to rhythms
prevalent in a certain musical environment.

Classical theories of meter do not strictly rule out the existence of such patterns
but do hold that these patterns are not necessary for meter perception. That the
distribution of onsets across different positions can be used to infer the meter,
however, is posited to be a necessary condition. Therefore, if classical theories
are accurate and if rhythms from the studied musical environments are equally
metrically unambiguous, the classical model should not perform disproportionally
worse in across-idiom simulations in Experiment 2 compared to the enculturation
model.

If, on the other hand, the alignment of onsets with metrically strong beats is
a cue for meter especially in rhythms from the Western musical idiom, then
in Experiment 2 the classical model may perform better in within-sample and
within-idiom simulations involving Western rhythms than in simulations involving
the makam target sample compared to the enculturation model. Furthermore, if
the perception of meter relies partly on internalized statistical patterns specific
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to different musical environments, the classical model may be expected to show
a smaller performance difference between within- and across-idiom simulations
in Experiment 2 than the enculturation model, which is able to exploit these
idiom-specific statistical patterns.

In terms of the constraints that meter perception poses on rhythms in the musical
environment, classical theories posit that rhythms are constrained relatively
strongly by their meter, since a rhythm must reinforce the metrical hierarchy by
accentuating metrically strong beats. Alternatively, if musical environments can
influence rhythm perception, then listeners with enculturated rhythm perception in
turn influence the musical environment, resulting in complex dynamics of cultural
transmission (Ravignani, Thompson, Grossi, Delgado, & Kirby, 2018; Thompson
et al., 2016). Through these dynamics, different musical environments may emerge
in which metrical entrainment relies partly on culture-specific statistical patterns.
In Experiment 2, we would then expect to find statistical affordances for meter that
rely on exposure to idiom-specific statistical patterns. That is, we would expect
to find that statistical patterns learned from a source sample make statistical
affordances available in within-sample and within-idiom simulations but not in
across-idiom simulations.

Finally, if in Experiment 2 we find performance differences between the classical
model and the enculturation model sensitive to short patterns, these differences
may result from the enculturation model’s sensitivity to statistical patterns of
multiple (two) metrical fingerprints, or only from the more detailed representation
of metrical context as downbeat distances rather than metrical salience. In
order to investigate which of these properties is likely to be responsible for
any observed performance differences, we investigate the samples directly in
Experiment 3 and compare the degree to which their statistical properties can
be described by metrical salience representations or by phase representations.
These experiments are comparable to those performed by Temperley (2010) to
investigate which statistical principles best describe “common-practice rhythm”.
The phase representation is more fine-grained than metrical salience and similar to
the metrical fingerprints used by the enculturation model. If we find that the phase
representation is significantly better at describing the statistical properties of the
different samples than metrical salience, that suggests that performance differences
between the classical model and the enculturation model are attributable to their
representation of metrical context while finding few differences between the two
representations would suggest that the enculturation model’s sensitivity to patterns
of multiple metrical fingerprints is more important.
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7.5 General methodology

7.5.1 Model training and rhythm spaces

Probabilistic generative models define probability distributions of what they are
designed to model, which in our case is rhythms. The models can be made to
approximate specific distributions by estimating their parameters from empirical
samples of rhythms drawn from these distributions. The process of parameter
estimation is referred to as training a model on an empirical sample.

When training the models used in this study, information about the metrical
interpretation of each rhythm is provided. After training, a rhythm model defines
a probability distribution of rhythms that is learned from the training sample. The
probability of each rhythm (without information about metrical interpretation)
according to this distribution is called its model evidence. The model training
strategy that we use maximizes the total model evidence of the training sample.
Equivalently, the procedure causes the model to maximize the model evidence of
rhythms it expects to encounter, thereby minimizing prediction error. The actual
model evidence of encountered rhythms depends on how well the training sample
represents the probability with which rhythms are encountered in a given musical
environment, and on how well the model learns the relevant statistical patterns in
the rhythms.

In Chapter 5, we described the concept of rhythm spaces: a finite set of rhythms,
defined by an inter-onset interval domain and a sequence length, over which a
probability distribution can be defined by a generative model. We described
how the parameters of the classical model and the enculturation model can be
derived from a sample of rhythms, which consists of rhythms that occur in the
rhythm space. In the present study, we use a symbolic rhythm space consisting
of all rhythms that can be represented by a sequence of twenty-nine inter-onset
intervals (this choice is motivated in Appendix B), using a resolution of sixteenth
notes. The inter-onset interval domain is based on the unique inter-onset intervals
observed in empirical data. In the current study, the inter-onset interval domain
is {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 24}. We use three music corpora (see
Section 7.5.6) to derive samples from different empirical probability distributions
of this rhythm space and use the techniques described in Chapter 5 to train the
models.

7.5.2 Within- and across-idiom simulations

Different empirical samples are used to represent different musical environments.
We call the sample on which a model is trained, which represents long-term
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exposure to a specific musical environment, the source sample. The trained model
defines a probability distribution of rhythms that is the model’s approximation of
the distribution underlying the source sample. The sample on which a model is
evaluated is called the target sample.

The source sample may be drawn from the same dataset as the target sample, or
from a different dataset. We distinguish between three simulation types, depending
on the datasets from which the source and target sample have been drawn. When
drawn from the same dataset, we speak of within-sample simulations, when drawn
from different datasets representing the same musical idiom, we speak of within-
idiom simulations, and when drawn from different datasets representing different
musical idioms, we speak of across-idiom simulations.

7.5.3 Measuring statistical affordances for meter as pre-
dictive success

The goal of the evaluation procedure is to measure how closely a probability
distribution of rhythms learned from a source sample by a given model resembles
the empirical distribution underlying the target sample. We measure this by
estimating the cross-entropy of distribution learned from the source sample relative
to the target sample. This may be understood intuitively as measuring the overall
“surprisingness” of the target sample to the model trained on the source sample.
Cross-entropy-based evaluation methods have been used previously in probabilistic
approaches to music cognition (Temperley, 2010; Pearce & Wiggins, 2004; Conklin
& Witten, 1995), and are popular for evaluating statistical models of language
(Jurafsky & Martin, 2000).

Cross-entropy estimation involves generating predictions for each inter-onset
interval in each rhythm, based on the preceding inter-onset intervals, and evaluating
the accuracy of the prediction (see Section 7.5.5). These predictions rely not on
the surface pattern of inter-onset intervals but on the meter that has been inferred
from these inter-onset intervals. Predictive success thus measures the degree to
which the model successfully uses metrical inference to predict the unfolding of a
sequence of inter-onset intervals. We therefore interpret this measure to reflect
the degree to which statistical affordances for meter are available in rhythms from
a particular target sample, to a particular model, trained on a particular source
sample.

There are two main motivations for using cross-entropy as a measure for the
availability of statistical affordances for meter instead of something that directly
considers the specific meters inferred by the models. First, we consider meter to
be part of the generative model that is brought to bear by a listener to predict
the temporal unfolding of rhythms (Van der Weij et al., 2017 [Chapter 6]). Cross-
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entropy is a measure of predictive success, which is what listeners, according to
predictive processing accounts of cognition, optimize for. Second, especially in
across-idiom simulations where models are evaluated on “unfamiliar” rhythms, it
may be that the metrical interpretation inferred by the model is not exactly the
same as the metrical interpretation observed in the corpus but that it still enables
the model to successfully predict inter-onset intervals. By using cross-entropy, we
avoid the need to label one metrical interpretation as the “correct” interpretation
and also avoid problems in judging how appropriate a metrical interpretation is
given the “correct” interpretation (see Temperley, 2004).

An important caveat of using cross-entropy is that its lower bound is the entropy
of the target distribution. The entropy of a probability distribution of rhythms
may be seen as the inherent complexity of these rhythms. While this complexity
cannot be measured directly, cross-entropy results are sensitive to it. Therefore,
whenever we draw comparisons between different source or target distributions,
we do consider the performance differences between these samples only in relation
to those of another model. That is, when comparing different target or source
samples (including different simulation types such as within- and across-idiom), we
only interpret interactions between the effects of model and the target or source
sample on cross-entropy.

7.5.4 Metrical inference versus sequential prediction

A caveat of the enculturation model’s use of sequence models is that these models
have a very large number of parameters. A sequence model can, in theory, and
given enough training data, approximate any probability distribution of sequences.
2 However, how readily a distribution of sequences is learned by a sequence model—
that is, the amount of training data required to obtain a reliable estimate of its
parameters—depends on whether the sequence representation describes properties
to which the sequence-distribution is variant. For example, the distribution of
pitch sequences in melodies is somewhat invariant to absolute pitch of the first
note, therefore pitch intervals or pitch classes are examples of representations
that effectively capture relevant properties of pitch sequences. Another aspect
that affects the efficiency with which distributions can be learned is on which
latent variables sequences are assumed to depend. In a melody, for example, the
distribution of pitch-class sequences is likely to depend strongly on a melody’s

2An upper bound on the number of parameters of a PPM model, which underlies sequential
modeling the enculturation model, is the number of unique sequences of lengths up to the length
of the sequence. The number of unique contexts of length n, given an alphabet Σ (the set of
symbols that occur in the sequence), is |Σ|n, which, in many cases, is an astronomically large
number. The upper bound on the number of parameters of a PPM model for sequences up to
length l is

∑l
n=0|Σ|n.
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tonal center. A model that conditions such sequences on their underlying key is
therefore likely to do well in approximating distributions of melodies.

In light of the above caveat, in Experiment 1, we compare the prediction perfor-
mance of the enculturation model with that of another model that we call the
IOI model. The IOI model predicts inter-onset interval sequences directly, instead
of generatively by assuming an underlying meter. This comparison enables us to
assess whether the enculturation model is able to learn distributions of rhythms
more readily than the IOI model due to its inferring of meter.

7.5.5 Evaluation measures

We primarily use estimated cross-entropy as an evaluation measure, but in Ex-
periment 1 we additionally verify whether, in within-sample evaluations, lower
cross-entropy corresponds to a greater agreement between the meter inferred
by the enculturation model and the meter by measuring metrical interpretation
performance.

7.5.5.1 Metrical interpretation performance

We define metrical interpretation performance as the posterior probability that the
enculturation model assigns to the metrical interpretation of a rhythm that agrees
with the one observed in the corpus after having processed the last inter-onset
interval. Metrical interpretation performance is not considered in Experiment 2,
where we compare the enculturation model to the classical model. The classical
model estimates the parameters of variables that determine the probability of
pickup intervals from the training data, while the enculturation model assumes a
uniform distribution (see Chapter 5). There is significantly less variety in pickup
intervals in the Turkish sample compared to the Dutch and German samples,
which confounds the interpretation of metrical interpretation performance of the
classical model and the enculturation model across different source samples.

7.5.5.2 Cross-entropy

Cross-entropy is proportional to the dissimilarity between two probability
distributions—for example, a learned distribution of rhythms and an empirical
distribution. Let Rt be a random variable describing the distribution of rhythms
underlying a target sample, and Rs a random variable describing the distribution
of rhythms underlying a source sample. In general, let a model’s estimate of the
distribution of a random variable X be described by the variable X̃. The model
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evidence of a rhythm is then given by P (R̃s = r). The cross-entropy of R̃s with
respect to R is given by

H(Rs, R̃t) = −
∑

r∈DRt

P (Rt = r) log2 P (R̃s = r). (7.1)

The quantity − log2 P (R̃s = r) corresponds to the information content, measured
in bits, carried by the observation of rhythm r to an observer represented by the
model. The cross-entropy is the average amount of information the observer is
expected to receive by encountering rhythms with probabilities described by the
actual distribution of rhythms. This actual distribution is unknown, but we do
have access to samples drawn from this distribution. Let the multiset St represent
a sample from the target distribution. If we assume that the stochastic process
that generates rhythms is stationary and ergodic (Cover & Thomas, 2006), then
the cross-entropy is approximated by

H̃(St, R̃s) = − 1
|St|

∑
r∈St

log2 P (R̃s = r), (7.2)

which corresponds to the average per-rhythm information content. We refer to
H̃(St, R̃s) as the estimated cross-entropy of a model with respect to a target
sample.

Estimated cross-entropy is minimized if the target distribution and the model’s
estimate of the source distribution of rhythms are identical. The entropy of a
rhythm distribution represents the irreducible uncertainty about which rhythm
will be encountered next, when rhythms are drawn from the distribution. Cross-
entropy is maximized if the model’s estimate of the true distribution is a uniform
distribution: a distribution that assigns equal probability to each possible outcome.
Thus, while cross-entropy is proportional to dissimilarity of two distributions, its
lower bound depends on the entropy of the target distribution.

In within-sample simulations, H̃(St, R̃s) estimates the cross-entropy of the model’s
estimate of the source with respect to the source distribution. In across-sample
simulations, it estimates the cross-entropy the model’s estimate of the source
distribution with respect to the target distribution. When the source and target
distributions are similar, cross-entropy estimates in within- and across-sample
simulations should be similar.

In our simulation results, we report the estimated per-inter-onset-interval entropy,
which corresponds to H̃(St, R̃s)/29 (where 29 is the fixed length of a rhythm).
This measures the mean cross-entropy per observation of I (an inter-onset interval).
The upper bound on this cross-entropy is the entropy of a uniform distribution of
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I. Since the size of the inter-onset interval alphabet used in our simulations is 15,
the upper bound estimated cross-entropy is − log2

1
15 ≈ 3.91.

7.5.5.3 Within- and across-sample cross-validation

In order to estimate cross-entropy and metrical inference performance, a testing
sample that is independent of the training sample is required. If the source and
target sample are independent, the target sample can be used for this. However,
in within-sample simulations, the source and target sample are identical. Splitting
the sample into two non-overlapping independent samples would yield either a
training sample that is too small to reliably estimate model parameters from or a
testing sample too small to obtain a good estimate of performance. Therefore,
we employ a generalization of a technique known as ten-fold cross-validation to
estimate model performance. The generalization enables cross-validation to be
applied to different source and target samples, ensuring that simulations results
are comparable between within- and across-sample simulations.

To perform ten-fold cross-validation, the source and target samples are randomly
split into ten approximately equal-sized samples, called folds. Ten pairs of training
and testing samples are constructed by combining nine folds from the source
sample into a training sample and using one fold from the target sample for
testing. When the source and target sample are identical, the fold used for testing
is the remaining fold that is not used in the training sample. A model is trained
and tested ten times, each time using a different pair of testing and training
samples. When the source and target samples are identical, this procedure is
identical to ten-fold cross-validation. This method enables us to iteratively test
a model on all available data, while using most of the data for training in each
iteration.

The samples contain rhythms in different meters and we expect meter to play a
significant role in the performance of models. We therefore constrain the relative
number of rhythms in each meter in training and test sample to be the same as
in the whole sample, a technique known as stratified cross-validation. Finally, it
should be kept in mind that cross-validation inevitably under-estimates variance
due to the sampling of training data because the training samples are overlapping
and therefore not independent (Dietterich, 1998).

7.5.6 Materials

We derived three rhythm samples from Turkish makam music, and German and
Dutch folk songs. Dutch and German folk songs are treated here as Western
tonal music, and part of the Western musical idiom, while the Turkish makam
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Figure 7.1: Skeletal rhythms associated with each usul in our sample of Turkish
music. The text above and below the rhythms denotes the type of drum stroke.
Left-hand strokes are shown below the rhythm, while right-hand strokes are
shown above. “Düm” strokes are associated with the highest intensity. The time
signatures correspond to the time signatures in which pieces using these usuls are
notated in the SymbTr corpus.

music is taken to represent a different musical idiom. The German folk songs were
sourced from the Essen folksong collection (Schaffrath & Huron, 1995), which
contains a large number of folk songs from Germany in addition to folk songs from
a variety of geographical regions. The Dutch folk songs were sourced from the
Meertens Tunes Collection, which has been compiled by the Meertens Institute
(Van Kranenburg, Bruin, De Grijp, & Wiering, 2014). Turkish makam music was
sourced from the SymbTr dataset, which contains some pieces that are considered
art music as well as some considered folk music (Karaosmanoğlu, 2012).

Regarding rhythmic organization, a relevant theoretical difference between Western
and makam music is that makam pieces are categorized by rhythmic modes called
usuls. These rhythmic modes are characterized by a rhythmic pattern of two
types of drum strokes: “düm” strokes, which produce a deep and resonant sound
and are considered most important in establishing the rhythmic mode, and “tek”
strokes (Marcus, 2001). These usuls, and the time signatures in which they are
notated in the SymbTr corpus, are shown in Figure 7.1. Usul patterns have been
shown to influence the distributions of onsets at different positions in the metrical
cycle (Holzapfel, 2015). Rhythms of Western music, by contrast, can be expected
to be constrained strongly by the patterns of metrical salience associated with
their time signature (Palmer & Krumhansl, 1990; Temperley, 2010).

Details on how we derived datasets of German, Turkish, and Dutch rhythms from
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Table 7.2: The number of rhythms that occur in each dataset for different meters,
sorted in descending order by the minimum number of rhythms in each meter
across datasets. Only the top-8 meters are shown. Rows corresponding to meters
selected to be included in our samples are colored gray.

Meter Dutch German Turkish Minimum count
4/4 990 1323 247 247
3/4 379 879 107 107
6/8 982 603 97 97
2/4 289 945 80 80
6/4 69 82 149 69
3/8 54 216 7 7
4/8 9 4 3 3
9/8 37 1 308 1

these corpora are provided in appendix B. Importantly, the samples that we use
are subject to three constraints: First, the total number of rhythms in each sample
is identical. This ensures that performance differences across samples cannot be
attributed to differences in sample size. Second, each sample contains rhythms in
the same four meters, and the number of rhythms in each meter is the same in
each sample. This ensures that performance differences across samples cannot be
attributed to the presence of different meters. Third, within the Turkish samples,
rhythms in the same meter must also be associated with the same usul. In the
SymbTr corpus, some time signatures are associated with multiple usuls. Holzapfel
(2015) has shown that usul patterns influence represent statistical affordances for
meter. The third constraint rules out that this influence plays a role in our results.

Ensuring that the number of rhythms in each meter is the same within a sample
is a precaution. The enculturation model estimates an independent sequence
model from the rhythms in each meter. The sequence modeling algorithm involves
certain heuristics that make the effect that the size of the training sample has
on its performance unpredictable. This could introduce biases if the number of
rhythms used to estimate the parameters of each sequence model is not constant.

These constraints impose strong limitations on the size of the empirical samples
that we can use: the constraint that the number of rhythms in each meter must be
balanced means that the maximum number of rhythms in each meter is constrained
by the smallest number of rhythms that is available in each of the involved meters
in any of the datasets. Since we are interested in the effects of metrical inference,
we want to ensure that testing and training data contain rhythms in a variety of
meters. We therefore look for a set of meters for which each dataset contains a
reasonable number of rhythms in those meters.
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Table 7.3: The number of rhythms observed for each combination of time signature
and usul in the Turkish dataset. Rows corresponding to usuls selected to be
included our samples are colored gray.

Meter Usul Count
4/4 Sofyan 247

Yürüksemai 7
3/4 Semai 107
6/8 Yürüksemai II 81

Âzeri Yürüksemai 9
2/4 Nimsofyan 79

Yürüksofyan 1

Table 7.2 shows the number of rhythms in each dataset per meter, sorted by the
minimum number of examples of rhythms in that meter in either of the datasets.
This table only shows meters for which each dataset contains at least one rhythm
in that meter. In order to ensure that a sufficient number of rhythms each meter
can be used for training, we select the meters in the top four rows of this table
(highlighted in bold) for constructing the samples. Table 7.3 shows the different
usuls observed in the Turkish rhythms for the selected meters. The usuls selected
for inclusion in the samples are highlighted in bold in Table 7.3.

The resulting selection represents a reasonable amount of metrical variety: two
binary simple meters (2/4 and 4/4), one binary compound meter (6/8), and one
ternary simple meter (3/4). Each sample contains seventy-nine rhythms in each
of the four meters, and contains 316 rhythms in total, corresponding to 9164
inter-onset intervals. To construct these samples, seventy-nine rhythms in each
meter are drawn at random and without replacement from each dataset.

7.6 Experiment 1

7.6.1 Methods

The three variants of the enculturation model and the IOI model (with short,
long, and unbounded maximum pattern lengths) are evaluated in within-sample
simulations using the Turkish, German, and Dutch samples. We are not specifically
interested in differences between the Dutch and German samples and we merge the
results of these simulations into the results for Western rhythms (the distinction
becomes relevant in Experiment 2, where we compare within-sample to within-
idiom and across-idiom simulations). The Turkish rhythms are referred to as the



170 Chapter 7. Statistical affordances for meter

makam rhythms.

The sequence models used by the enculturation model and the IOI model are
variable-order Markov models that are also used by the IDyOM modeling frame-
work (see Pearce, 2005, pp. 79–110). The maximum pattern length to which the
sequence models are sensitive is controlled by considering two versions of the
sequence modeling algorithm used by these models: a bounded and an unbounded
version. The order of a Markov model indicates the number of notes immediately
preceding the current moment on which the probability distribution of inter-onset
intervals is conditioned: e.g., a first-order Markov model is sensitive to two notes.
The bounded sequence model has a parameter called order bound n ∈ N, which
constrains the maximum order of the Markov models that it combines. The
unbounded version uses Markov models of any order up to the length of a rhythm.
We consider two unbounded models with order bounds of one and four (maximum
pattern lengths two and five), and one unbounded model.

While Van der Weij et al. (2017 [Chapter 6]) also consider an order bound
of zero, we do not consider this option here. The probability distribution of
a metrical fingerprint of an inter-onset interval is strongly constrained by the
metrical fingerprint of the previous inter-onset-interval. No sensitivity to sequential
patterns corresponds to assuming independence between these two events, which
would cause a significant drop in performance (as can be seen in Van der Weij
et al.’s results) that cannot only be attributed to the decreased sensitivity to
sequential patterns.

7.6.2 Results

Figure 7.2a shows estimated cross-entropy as a function of the maximum pattern
length and which model (enculturation or IOI) is used. Figure 7.2b shows estimated
cross-entropy as a function of the training (source) sample and which model is
used. We analyzed the results by performing a three-way factorial analysis of
variance with estimated cross-entropy as the dependent variable and source sample
(Western or makam), maximum pattern length (short, long, or unbounded) and
model (enculturation or IOI) as the independent variables.

We find that the cross-entropy, averaged across models and source samples, is
lower for models sensitive to long patterns (M = 1.52) rather than short patterns
(M = 1.63), PRE = 0.36, F (1, 169) = 94.5, p < 0.001 and marginally lower
for models sensitive to patterns of unbounded length (M = 1.47) rather than
long, PRE = 0.08, F (1, 169) = 14.1, p < 0.001. Cross-entropy, averaged across
models and levels of sensitivity, is higher when using the makam source sample
(M = 1.66) than when using the Western samples (M = 1.48). We find that which
model (enculturation or IOI) is used interacts with whether the Western or makam
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Figure 7.2: Estimated cross-entropy of the enculturation model and the IOI model
in within-sample simulations with Western or makam source samples. Figure
7.2a shows cross-entropy estimates averaged across source samples for models
sensitive to patterns of different maximum lengths. Figure 7.2b shows cross-
entropy estimates averaged across maximum pattern lengths for the Western
or makam source samples. Figure 7.2c shows the results of different maximum
pattern lengths of the enculturation model in isolation. Figure 7.2d shows the
result of the IOI and enculturation model sensitive to patterns of unbounded
length for Western or makam source samples.
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source sample is used PRE = 0.18, F (1, 169) = 36.9, p < 0.001 and whether
the maximum pattern length is short or long, PRE = 0.19, F (1, 169) = 38.2,
p < 0.001: When the maximum pattern length is long, the difference between the
average performance of the enculturation model (M = 1.44) and the IOI model
(M = 1.59) is smaller than when it is short (where the cross-entropy is 1.48 using
the enculturation model and 1.78 using the IOI model).

To investigate whether sensitivity to longer patterns results in lower cross-entropy
for the enculturation model, we analyze its results in isolation. These results are
shown in Figure 7.2c. To analyze them, we performed a two-way factorial analysis
of variance with cross-entropy as the dependent variable and source sample and
maximum pattern length as independent variables. We find that the enculturation
model achieves lower cross-entropy when the maximum pattern length is long
(M = 1.44) rather than short (M = 1.48), PRE = 0.12, F (1, 85) = 11.1, p = 0.001.
When an unbounded maximum pattern length is used (M = 1.42), cross-entropy
is marginally lower than when it is long, PRE = 0.06, F (1, 85) = 5.1, p = 0.027.
Again, cross-entropy is on average higher in the makam source sample (M = 1.53)
than in the Western source sample (M = 1.41). We find no interactions between
whether the source sample is Western or makam and the maximum pattern length
is short or long, PRE = 0.00, F (1, 85) = 0.3, p = 0.603, or whether it is long or
unbounded, PRE = 0.01, F (1, 85) = 0.5, p = 0.487.

Since it looks like the IOI model performs almost as well as the enculturation
model when they are sensitive to patterns of unbounded length, we analyze these
results in isolation. Figure 7.2d shows the results of both models with unbounded
maximum pattern lengths. We performed a two-way factorial analysis of variance
with cross-entropy as the dependent variable and source sample and model as
the independent variables. We again find an interaction between whether the
source sample is Western or makam and which model is used, PRE = 0.23,
F (1, 57) = 17.1, p < 0.001. When the source sample is Western, the average
estimated cross-entropy of the enculturation model is 1.38, versus 1.45 for the IOI
model, but when the source sample is makam, the cross-entropy of the IOI model
(M = 1.69) increases more than that of the enculturation model (M = 1.49).
An analysis of the simple effects shows that the enculturation model performs
better than the IOI model both in case of the Western rhythms, PRE = 0.24,
F (1, 39) = 11.8, p = 0.001, and in case of the makam rhythm, PRE = 0.76,
F (1, 19) = 55.5, p < 0.001.

Finally, we assess whether lower cross-entropy corresponds to a higher posterior
probability of the metrical interpretation observed in the corpus. Figure 7.3 shows
the average posterior probability of the meters observed in the corpus as predicted
by the enculturation model as a function of its source sample and the maximum
pattern length. We find that the posterior probability of the observed metrical
interpretation is higher when maximum pattern length is unbounded (M = 0.64)
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Figure 7.3: A comparison of the effects of the source sample and maximum pattern
length on the average posterior probabilities of the meter observed in the corpora
for each rhythm.

rather than short (M = 0.58), PRE = 0.15, F (1, 85) = 14.5, p < 0.001, but we do
not find that the model sensitive to patterns of unbounded length performs better
than the model sensitive to long patterns, PRE = 0.02, F (1, 85) = 1.6, p = 0.205.
The enculturation model assigns less posterior probability to the observed metrical
interpretation (M = 0.55) in simulations involving the makam source sample than
in simulations involving the Western source sample (M = 0.65), PRE = 0.30,
F (1, 85) = 36.8, p < 0.001. We observe no interactions between whether the
source sample is makam or Western and whether the maximum pattern length
is short or long, PRE = 0.01, F (1, 85) = 0.5, p = 0.470, or whether it is long or
unbounded, PRE = 0.01, F (1, 85) = 0.7, p = 0.396.

7.6.3 Discussion

The results suggest that statistical affordances for meter relying on sensitivity
to patterns of two to five metrical fingerprints are available in both makam and
Western rhythms: the cross-entropy of the enculturation model sensitive to patterns
of length five is lower than that of the enculturation model sensitive patterns
of length two. Patterns longer than five metrical fingerprints also occasionally
improve prediction of the timing of onsets: the enculturation model sensitive
to patterns of unbounded length performed marginally better than the model
sensitive to patterns of five. This suggests that besides the statistical cues for
meter posited by classical theories of meter (Lerdahl & Jackendoff, 1983; Palmer
& Krumhansl, 1990; Temperley, 2007), both Western and makam rhythms contain
more complex statistical patterns that can provide cues for meter.

Sensitivity to patterns of more than two metrical fingerprints also helps the encul-
turation model predict the time signatures observed in the score representations
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of the melodies from which rhythms are derived. Here, the effect of pattern length
was less pronounced and we found no evidence that sensitivity to patterns beyond
five metrical fingerprints improves metrical interpretation. This suggests that
lower cross entropy indeed is associated with enhanced metrical interpretation
performance, although it also seems possible for cross-entropy to improve when
metrical interpretation does not.

The results do not clearly indicate that sensitivity to long- or unbounded-length
patterns is useful to different degrees in makam or Western rhythms: neither in
the case of cross-entropy, nor in the case of metrical interpretation performance
does the source sample interact with the maximum pattern length.

The results reveal a general pattern where for all models, cross-entropy is higher
with respect to the makam rhythms. This suggests that the hypothetical prob-
ability distribution from which these rhythms are drawn has a higher entropy
than the distribution of the Western rhythms. A possible explanation for this
may be the musical styles from which the rhythms in both samples are derived:
The makam sample consists of both folk and Turkish art music (Karaosmanoğlu,
2012), while the Western samples consist of folk song melodies, which arguably
exhibit relatively simple melodic and rhythmic structure.

Finally, the results show that the enculturation model is better at predicting
inter-onset intervals in rhythms than a sequence model of inter-onset intervals.
This shows that inferring meter allows the timing of onsets in a rhythm to be
predicted more accurately. However, for Western rhythms, the difference in cross-
entropy of the IOI and enculturation model is relatively small when the maximum
pattern length is long or unbounded, while for makam rhythms, the difference
remains substantial for these pattern lengths. Apparently, when the IOI model
is sensitive to sufficiently long patterns, it predicts the inter-onset intervals in
Western rhythms almost as well as the enculturation model, without inferring the
underlying meter. When sensitive to shorter patterns, the enculturation model
has a more significant advantage over the IOI model in predicting inter-onset
intervals.

Earlier findings of Van der Weij et al. (2017 [Chapter 6]) suggested that models
sensitive to longer patterns are better able to learn probability distributions and
better able to predict the time signatures of rhythms as observed in the Essen
folksong collection. The present findings replicate these earlier findings using the
refined enculturation model and generalize them to the three different samples
used in this study.
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7.7 Experiment 2

7.7.1 Methods

The results of Experiment 1 suggested that sensitivity to statistical patterns
of multiple subsequent metrical fingerprints makes statistical affordances for
meter available to the enculturation model in both Western and makam rhythms.
Since the difference in cross-entropy between sensitivity to patterns of up to five
or an unbounded number of metrical fingerprints is marginal, we only include
two variants of the enculturation model in Experiment 2: one sensitive to short
(maximum length two) patterns and one sensitive to patterns of unbounded length.

The applied methodology is the same as in the previous experiment, except that
we now evaluate each model on all target samples, rather than only on a target
sample drawn from the same distribution as the source sample. This results in
three sets of within-sample simulations (using German, Dutch and Turkish training
samples), two sets of within-idiom simulations (where the source–target pairs are
German–Dutch or Dutch–German) and four sets of across-idiom simulations (a
German or Dutch source sample with a Turkish target sample, or a Turkish target
sample with a German or Dutch source sample). In this experiment, the distinction
between Dutch and German samples is relevant as we compare within-sample to
within-idiom results in order to distinguish between potential sample-specific or
idiom-specific statistical affordances for meter.

7.7.2 Results

Figures 7.4a, 7.4b, and 7.4c show average per-note cross-entropy (surprisal) results
of individual rhythms (from all cross-validation folds and target samples) obtained
with the enculturation model sensitive to patterns of unbounded length. Figures
7.4d, 7.4e, and 7.4f show the same results obtained with the classical model. The
figures show two dimensional projections of a three-dimensional space. The x, y,
and z axes of this space represent average per-note information content (surprisal)
of a rhythm for a model trained on the Dutch, German, or Turkish source sample.
As such, the coordinates of each rhythm in this space represent the degree to which
its inter-onset intervals are predicted accurately by models trained on different
source samples. The figures show two-dimensional projections of this space on
planes spanned by different pairs of training samples.

If a rhythm is located on the diagonal of any of these figures, the cross-entropy
of models trained on either source sample with respect to that rhythm is similar.
In the results of the enculturation model, Turkish rhythms extend outward from
the diagonal when one of the axes represents a Turkish model (Figures 7.4b and
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Figure 7.4: (Figure continues on the next page.) Two-dimensional projections of a
three-dimensional space containing all rhythms in all target samples.
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Figure 7.4: (Continued). Two-dimensional projections of a three-dimensional
space containing all rhythms in all target samples. Each rhythm’s coordinates
correspond to the average per-inter-onset-interval surprisal (negative logarithm,
base two, of the probability of each inter-onset interval) of models trained on
different source samples with respect to the rhythm. The three figures in the top
row (7.4a, 7.4b, and 7.4c) visualize the results of the enculturation model sensitive
to patterns of unbounded length and the three figures in the bottom row show the
results of the classical model (7.4d, 7.4e, and 7.4f). The lines represent first-degree
polynomials fitted to the rhythms in each target sample.
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7.4c). In Figure 7.4a, the rhythms center predominantly around the diagonal
(although there are some clear exceptions), indicating that the Dutch and German
predict all rhythms to similar degrees. Compared to the results of the classical
model (Figures 7.4d, 7.4e, and 7.4f), the enculturation model clearly shows greater
differentiation between models, as indicated by the rhythms spreading farther
from the diagonal than in the results of the classical model.

We first analyze the results separately, per source sample, in order to compare the
results of within-sample to within-idiom simulations and to investigate whether
the model used interacts with the simulation type, which would indicate the
presence of sample- or idiom-specific affordances for meter. For the Dutch and
German source samples, we performed two-way factorial analyses of variance
with estimated cross-entropy as the dependent variable, and model (classical,
or enculturation sensitive to short or long patterns, or patterns of unbounded
length), and simulation type (within-sample, within-idiom, and across-idiom) as
the independent variables. For example, in the analysis of the German source
sample, the within-idiom group would represent the Dutch rhythms, and the
across-idiom group would represent the Turkish rhythms. For the Turkish source
sample, the only simulation types are within- and across-idiom since we have no
other sample representing Middle-Eastern makam music.

In the German source sample results (Figure 7.5a), averaged across all models,
cross-entropy is slightly lower in within-sample simulations (M = 1.46) than in
within-idiom simulations (M = 1.51), PRE = 0.07, F (1, 82) = 6.2, p = 0.015. In
the Dutch source sample results (Figure 7.5b), we find a small and not statistically
significant difference in cross-entropy between within-sample (M = 1.48) and
within-idiom simulations (M = 1.50), PRE = 0.03, F (1, 82) = 2.3, p = 0.137. In
neither the Dutch source sample nor the German source sample results do we
find that there is an interaction between whether the simulation type is within-
sample or within-idiom and any of the contrasts between between models. The
differences between the within-sample and within-idiom simulations are small and
only significant in the German source sample results. This is consistent with the
expectation that patterns useful for inferring meter are consistent within musical
idioms. For further analyses, we merged the results of these two simulation types
into a within-idiom group.

Furthermore, in none of the per-source-sample analyses do we find that whether
the enculturation model is sensitive to short patterns or patterns of unbounded
length interacts with the simulation type (within-sample, within-idiom, or across-
idiom). Therefore, we exclude the enculturation model sensitive to patterns of
unbounded length from consideration in further analyses, enabling us to focus
on the contrast whether simulation type (within- or across-idiom) interacts with
model (classical or enculturation with a short maximum pattern length).

We first analyze the results of the Western source samples (Dutch and German)
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Figure 7.5: The results of Experiment 2. The estimated cross-entropy of the two
variants of the enculturation model and the classical model on different target
samples. The results are shown separately for each source sample. The results
using the German source sample are shown in Figure 7.5a, those using the Dutch
source sample in Figure 7.5b, and those using the Turkish source sample in
Figure 7.5c.

and the makam source sample separately. For each, we perform a two-way
factorial analysis of variance with cross-entropy as the dependent variable and
simulation type (within- or across-idiom) and model (enculturation or classical)
as independent variables.

In the Western source sample results (Figure 7.6a), we find that, averaged across
all models, cross-entropy is lower in within-idiom simulations (M = 1.53) than in
across-idiom simulations (M = 1.96), PRE = 0.88, F (1, 117) = 873.2, p < 0.001.
However, we observe an interaction between model (enculturation or classical)
and simulation type (within- or across-idiom), PRE = 0.17, F (1, 117) = 23.9,
p < 0.001: in within-idiom simulations, the enculturation model performs better
(M = 1.46) than the classical model (M = 1.59), while in across-idiom simulations,
the performance of the enculturation model (M = 1.97) is similar to that of the
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Figure 7.6: The re-grouped results of Experiment 2, with the German and Dutch
source samples merged into a group of Wester source samples, and excluding
results of the enculturation sensitive to long patterns. The two figures on top show
the results using the Western (German and Dutch) source samples (Figure 7.6a)
and makam (Turkish) source sample (Figure 7.6b). Below, Figure 7.6c shows the
results of within-idiom simulations comparing the Turkish and Western source
samples and the classical model and the enculturation model.

classical model (M = 1.96).

In the makam source sample results (Figure 7.6b), we again find an interaction
between model and simulation type, PRE = 0.46, F (1, 57) = 47.7, p < 0.001.
This time, however, the performance of the classical model is worse in within-
idiom simulations (M = 1.82) than in across-idiom simulations (M = 1.68).
The performance of the enculturation model is slightly better in within-idiom
(M = 1.57) than in across-idiom simulations (M = 1.65). An analysis of the simple
effect shows that this difference is significant, PRE = 0.32, F (1, 179) = 13.2,
p = 0.001 (Figure 7.6b).

Analyses of other simple effects show that in within-idiom simulations, the encul-
turation model obtains lower cross-entropy than the classical model, both when
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using the Western, PRE = 0.47, F (1, 179) = 69.4, p < 0.001 (Figure 7.6a), or the
makam source sample, PRE = 0.11, F (1, 117) = 14.4, p < 0.001 (Figure 7.6b).
In across-idiom simulations, however, the differences between the cross-entropy
of the classical and enculturation model are no longer statistically significant,
both when using the Western source sample, PRE = 0.01, F (1, 179) = 0.3,
p = 0.572 (Figure 7.6a), and when using the makam source sample, PRE = 0.07,
F (1, 179) = 2.8, p = 0.104 (Figure 7.6b).

The cross-entropy of both the classical model and the enculturation model is
higher for the makam rhythms compared to the Western rhythms. To investigate
whether this difference is greater for one of the models, we analyze the within-
sample results in isolation. Figure 7.6c shows the cross-entropy results for the two
source samples as a function of which model is used. A two-way factorial analysis
of variance with cross-entropy as the dependent variable and model (classical
or enculturation) and source sample (Western or makam) as the independent
variables reveals an interaction between the source sample (Western or makam)
and model (classical or enculturation), PRE = 0.18, F (1, 87) = 19.4, p < 0.001.
Using the Western source samples, the difference in performance between the
classical and enculturation model is smaller (M = 1.39 for the enculturation model
and M = 1.59 for the classical model), than when using the makam source sample
(M = 1.51 for the enculturation model and M = 1.82 for the classical model).

7.7.3 Discussion

Visual inspection of the results of the enculturation model and the classical model
in Figure 7.4 illustrates the inter-dependence between patterns in the environment
and learning mechanisms: The enculturation model is sensitive to complex patterns
in rhythms and reveals a gradient of degrees to which rhythms conform to the
statistical properties learned from different samples. A gradient which to some
extent separates the Turkish rhythms from the German and Dutch rhythms
because these rhythms can be predicted more accurately by models trained on
a Turkish source sample. The classical model is significantly less sensitive to
statistical patterns in the musical environment and less clearly distinguishes
German and Dutch rhythms from Turkish rhythms.

Complementing the results of Experiment 1, Experiment 2 shows that in within-
sample simulations, more statistical affordances for meter are available to the
enculturation model (sensitive to short patterns) in German and Dutch rhythms
than to the classical model.

As in Experiment 1, the cross-entropy of both models is higher on the makam
rhythms than on the Western rhythms. However, in Experiment 2 we observed
that the cross-entropy of the classical model increases more sharply than that
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of the enculturation model (sensitive to patterns of two metrical fingerprints)
when evaluated on makam rhythms compared to Western rhythms: the classical
model is able to learn fewer statistical patterns in makam rhythms that are useful
for inferring meter than the enculturation model. This suggests that while the
makam rhythms do contain statistical patterns that experienced listeners can
use to perceive meter, these patterns rely, more than is the case for the Western
rhythms, on statistical patterns detected by the enculturation model but not by
the classical model. In fact, when trained on Turkish rhythms, cross-entropy of
the classical model is higher in within-idiom simulations compared to across-idiom
simulations (with German or Dutch target samples).

The results show that both makam and Western rhythms contain idiom-specific
statistical patterns that can serve as cues for meter. These cues rely on statistical
patterns that can be detected by the enculturation model sensitive to patterns
of two metrical fingerprints but cannot be detected by the classical model. The
difference in cross-entropy between this enculturation model and the classical
model in within-idiom simulations largely disappears in across-idiom simulations.
Furthermore, the patterns appear to be idiom-, rather than sample-specific:
cross-entropy of all models was comparable in within-sample and within-idiom
simulations.

Although we found in Experiment 1 that patterns longer than two metrical
fingerprints can serve as cues for meter, the results of Experiment 2 do not provide
evidence these patterns longer than two metrical fingerprints are idiom-specific:
We did not find that whether enculturation model is sensitive to patterns of
unbounded length or not interacts with whether the simulation is within- or
across-idiom.

It is possible that sensitivity to longer patterns has consequences for which metrical
interpretations are inferred for a given target sample by models trained on different
source samples. The cross-entropy measure represents the extent to which inter-
onset intervals in a rhythm can be predicted based on meter inferred from the
rhythm but is not informative about the actual inferred metrical interpretations
on which these predictions are based. Investigating which meters are inferred by
in with- and across-idiom simulations remains a topic for future work to address.

7.8 Experiment 3

Experiment 2 showed that the enculturation model sensitive to patterns of two
metrical fingerprints learns idiom-specific patterns that provide affordances for
meter in within-idiom simulations and that statistical affordances for meter are
less available to the classical model than the enculturation model in the case of
makam rhythms. However, these results do not reveal whether the statistical
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patterns learned by the enculturation model rely on the model’s representation of
metrical fingerprints, or to its sensitivity to patterns of two of such fingerprints.

In Experiment 3, we investigate whether the representation of metrical context
phase could plausibly account for the observed differences between the classical
model and the enculturation model. We investigate two representations: the
representation of metrical salience used by the classical model and phase: the
position of an onset in the metrical cycle. Although the enculturation model’s
metrical fingerprints, downbeat distances, are marginally more informative than
phase, they encode the same information.

Figure 7.7 shows the relative frequencies with which onsets occur at different
phases (the black bars) and at the level of metrical salience associated with these
phases (the gray bars) for each sample and each meter. Here we use the four
levels of metrical salience posited by the classical model: three, two, one, and zero,
indicating respectively a bar-level downbeat, a tactus beat, a beat immediately
below the tactus level and any other beat (see Chapter 5 for details). For example,
the height of the black bar at phase two of the 2/4 meter in the Dutch sample
represents the proportion of times at which second sixteenth-note position in a 2/4
bar contains an onset out of the total number of times that this position occurs in
the Dutch sample. The corresponding level of metrical salience is one, and the
relative frequency of onsets at this level of metrical salience corresponds to the
proportion of times that an onset occurs at this level of metrical salience (in any
meter) in the Dutch sample. The proportion of times that an onset occurs at the
four different levels of metrical salience in a given sample specifies the note-beat
profile that is used by the classical model. Note that we are assuming a grid-based
representation of rhythms here, in which rhythms are represented by a grid of
sixteenth-note durations during which an onset either does or does not occur.

It is apparent from Figure 7.7 that the overall pattern of the probabilities with
which onsets fall on metrical positions corresponding to different levels of metrical
salience are similar in German, Dutch, and Turkish rhythms. However, the
onset probability distributions of the Turkish rhythms exhibit more uncertainty,
especially in the case of the 2/4 and 4/4 rhythms: the probabilities are less close
to one and zero. This pattern was also noted by Holzapfel (2015), who suggested
that meter in Turkish makam rhythms may be less stratified.

We consider two simple models that describe the probability that a note occurs
at each grid point used to represent a rhythm of which the meter is given. That
is, the position of each grid point in the metrical cycle—its phase—is known.
The probability that a note occurs at a grid point is described by the random
variable N , with the possible values {0, 1}, where 1 indicates the occurrence of
an onset and 0 indicates no onset at a grid point. The phase model describes the
probability that a note occurs at a given phase, p, in the metrical cycle of a meter,
m: P (n | p,m). These probabilities are estimated by the black bars in Figure 7.7.
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The salience model describes the probability that an onset occurs at a given level
of metrical salience, s: P (n | s). 3 These probabilities are estimated by the gray
bars in Figure 7.7.

Since in a grid representation of a rhythm, every phase occurs an approximately
equal number of times, we can calculate the cross-entropy of these models for
different target samples. We denote the probability with which notes occur at
different phases in different meters in a target sample, t, by P (nt | p,m). The
cross-entropy of the phase model with respect to a target sample t is given by

− 1
2Tm

Tm−1∑
p=0

1∑
n=0

P (nt | p,m) log2 P (n | p,m),

where Tm is the period of a meter m in sixteenth notes. For example, if m = 4/4,
then Tm = 16. Note that the above equation corresponds to the expected value
of information content of each observation of a note, given that notes occur at
different phases, p, of a meter , m, with probability P (nt | p,m).

The cross-entropy of the salience model with respect to a target sample t is given
by

− 1
2Tm

Tm−1∑
p=0

1∑
n=0

P (nt | p,m) log2 P (n | sal(m, p)),

where sal is a function that returns the metrical salience of a given phase, p, and
meter, m. For example, if m = 2/4 and p = 4, then sal(2/4, 4) = 2 (a tactus beat).
Similarly, sal(2/4, 0) = 3 (a bar-level downbeat), and sal(2/4, 1) = 0 (not a beat).

Table 7.4 shows the cross-entropies obtained by applying the above formulas to
the phase and salience distributions estimated from different source samples with
respect to different target samples (the numbers shown in the Table are averaged
across the four meters). Note that the phase and salience models do not infer
meter, like the models in Experiment 1 and 2. Nevertheless, the numbers in
Table 7.4 provide an indication of the degree to which the occurrence of onsets
at grid points can be predicted by the phase model and the salience model given
that the meter is known.

Overall, cross-entropies of the phase and salience models in Table 7.4 can be
seen to describe the same pattern as the results of the classical model: Using
Western source samples, the cross-entropies are lower when the target sample is
also Western compared to when it is Turkish. When using the Turkish source

3 The phase model is identical to the fine-grained position model and the salience model to
the metrical position model described by Temperley (2010).
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Table 7.4: The average cross-entropies of onset distributions estimated from each
source sample with respect to each target sample. The onset probabilities are
conditioned on different representations of metrical context: either their position
in the metrical cycle (phase) or their metrical salience.

Target
Phase Metrical salience

Dutch German Turkish Dutch German Turkish

Source
Dutch 0.429 0.454 0.805 0.508 0.504 0.680
German 0.456 0.427 0.839 0.510 0.502 0.687
Turkish 0.564 0.582 0.601 0.532 0.530 0.650

sample, the cross-entropies are higher when the target sample is also Turkish
compared to when it is Dutch or German. The same pattern was observed for the
classical model in Experiment two in within-idiom and across-idiom simulations.
There, too, the estimated cross-entropy was higher in within-idiom simulations
than in across-idiom simulations when the source sample was Turkish. The cross-
entropy of the enculturation model, on the other hand, was lower in within- versus
across-idiom simulations using the Turkish source sample.

This suggests that the different results of the enculturation model cannot be
attributed primarily to the more detailed representation of metrical context but
derive, at least in part, from its sensitivity to patterns of two metrical fingerprints.
However, it remains an opportunity for future work to investigate this issue more
directly, for example by using models in which the representation of metrical
context and maximum pattern length can be varied independently. The design
of the enculturation model did not allow us to reduce the maximum length of
patterns to which it is sensitive to one.

7.9 General discussion

Classical theories of meter propose that its perception relies on schematic patterns
of metrical salience that are inferred from a rhythm and influence the subsequent
perception of the rhythm. These perceived patterns arise, according to classical
theories, from the alignment of hierarchically organized periodicities (Lerdahl &
Jackendoff, 1983), or from a generative grammar underlying a rhythm (Longuet-
Higgins & Lee, 1984). How, precisely, meter is inferred from a rhythm is described
by these classical theories in different ways, but they both agree that onsets and
accents must predominantly fall on metrically strong beats, either to minimize
syncopation (Longuet-Higgins & Lee, 1984) or to increase congruency between



188 Chapter 7. Statistical affordances for meter

rhythm and meter (Lerdahl & Jackendoff, 1983).

It has been suggested that listeners learn schematic patterns of metrical salience
patterns from extended exposure to music, while the schemas themselves have
been argued to be constrained primarily by the hierarchical structure of meter,
and not the style or period, of a rhythm (Palmer & Krumhansl, 1990). Similarly,
Temperley (2007) proposes that listeners are sensitive to the frequency with which
onsets occur at different levels of metrical salience (the note-beat profile). Both
of these theories, which are largely consistent with classical theories of meter,
view metrical salience to be strongly linked to onset expectancy. It has been
argued, however, that this relation holds primarily in Western classical musical.
Iyer (1998) and London et al. (2017), for example, cite musics from West-Africa
and from the African diaspora as counterexamples.

In this study, we investigated statistical affordances for meter that might be
available to enculturated listeners in makam and Western rhythms. A statistical
affordance for meter is an opportunity for an enculturated listener to perceive meter
in a rhythm from a specific musical idiom. The availability of such affordances
depends on three factors: (1) the statistical characteristics of the rhythm, (2) the
statistical patterns to which a listener (or model) is sensitive and (3) the musical
environment that reflects the long-term previous exposure of a listener (or model).
That is, if a statistical affordance for meter is available, a particular rhythmic
pattern serves as a cue for meter to an enculturated listener that has internalized
certain statistical patterns in a musical idiom.

We investigated whether in addition to the frequency with which onsets occur at
different levels of metrical salience there are other statistical patterns that make
statistical affordances for meter available. We also compared the effectiveness
with which different kinds of sensitivity to statistical patterns make statistical
affordances for meter available in rhythms from different musical idioms. Finally,
we investigated whether rhythms from different musical idioms contain statistical
patterns that make affordances for meter available specifically in that idiom.

The results suggest, first, that rhythms in both Western folk melodies and Turkish
makam music contain statistical patterns more complex than note-beat profiles
that can serve as cues for meter to enculturated listeners. Second, both makam
and Western rhythms appear to contain idiom-specific patterns that can serve
as cues for meter. Third, we found that note-beat profiles are less effective as
statistical cues for meter in makam rhythms than statistical patterns in the metrical
fingerprints (see Section 7.3.4) of up to two subsequent inter-onset intervals.

We found that sensitivity to patterns of between two and five metrical fingerprints of
subsequent note onsets makes statistical affordances for meter available in rhythms
from the same musical environment as the musical environment representing the
model’s long-term exposure. That is, statistical affordances for meter relying on
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such relatively long patterns are available in both Western and makam rhythms
to listeners familiar with the corresponding musical idioms.

Furthermore, we found that while all models we tested are worse at predicting
inter-onset intervals in the makam rhythms compared the Western rhythms, the
performance of the classical model, which is sensitive only to note-beat profiles,
decreased to a greater extent than that of the enculturation model. This suggests
that while note-beat profiles are less useful for inferring meter in makam rhythms,
makam rhythms do contain other statistical patterns that can serve as cues for
meter. The results of Experiment 3 suggested that it is the sensitivity of the
enculturation model to patterns of two metrical fingerprints, in addition to its
representation of metrical context, that is responsible for these results.

Finally, we found that the enculturation model learns idiom-specific statistical
patterns in both makam and Western rhythms, which are not learned by the
classical model. This suggests that statistical affordances for meter are available
in makam and Western rhythm to listeners with long-term familiarity with the
respective musical idioms. In other words, enculturated listeners may have more
rhythmic patterns at their disposal by which they can infer meter when hearing a
rhythm in a musical idiom that they are familiar than when hearing a rhythm
in a musical idiom that they are not familiar with. Simultaneously, however, we
did not find evidence that these idiom-specific patterns consist of more than two
metrical fingerprints, even though we found that these longer patterns can serve
as cues for meter in Western and makam rhythms.

Our results may be compared to the predictions of the cultural distance hypothesis
(Demorest & Morrison, 2016; Morrison et al., 2019), which states that the degree
to which the statistical properties of music from different cultures are similar
predicts the ability of listeners from those cultures to process music from the
other culture. The evidence that we found for idiom-specific statistical patterns
in rhythms is consistent with this hypothesis.

However, we note that when quantifying cultural distance using cross-entropy, one
must be aware that cross-entropy is not a symmetric metric, and therefore not
strictly a distance: the cross-entropy of a model that has learned the statistical
properties of culture X on the music from culture Y may be different from the
cross-entropy of culture Y with respect to culture X. For example, our results
suggested that the entropy of the distribution of the makam rhythms in our sample
is higher than that of the rhythms of Western folk melodies. Especially when a
musical idiom is reduced to a low-dimensional representation of only one of its
facets, such as monophonic melodies, or patterns of inter-onset intervals, such
effects are likely to play a role since the complexity of different musical idioms
may reside in different representations.

Across-idiom simulation results reported by Pearce (2018) for Chinese and Western
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and by Morrison et al. (2019) for Chinese, Western and makam melodies suggest
that the statistical differences between melodies from different cultures are more
pronounced than is the case for rhythms in our samples, judging from visual
comparison of the results in Figure 7.4 of this chapter and, for example, Figure 4
of Pearce (2018). Similarly, our analyses suggested that, as far as the Western
and Turkish melodies from which our samples were derived, rhythms contain only
a modest amount of idiom-specific structure. This may explain why Demorest
et al. (2016) found that rhythm did not contribute to an enculturation effect
observed in an earlier study (Demorest, Morrison, Münir, & Jungbluth, 2008).
If the differences in the distributions of rhythms typical of different musical
cultures are more subtle than the differences in distributions of melodies, then
it may be comparatively likely that a rhythm sampled from either culture has a
low cultural distance. The approach that we proposed for finding idiom-specific
statistical affordances for meter using probabilistic generative models can be used
to construct stimuli that are specifically predicted by models to elicit differences
based on the previous cultural exposure of listeners. Such stimuli could be used in
a cross-cultural experiment, similar to the experiment of Demorest et al. (2008), to
investigate whether idiom-specific cues for meter can predict cultural differences
in rhythm perception.

Our findings can also be related to a recent debate concerning the degree to
which so-called beat-based timing and memory-based (or duration-based) timing
contribute to expectations regarding the timing of auditory events on short
timescales (Bouwer et al., 2020). Beat-based timing refers to the prediction of
auditory events based on inferred regularity and is generally interpreted in terms of
the entrainment of attention based on mechanisms of coupled oscillation (Large &
Jones, 1999). Memory-based timing refers to expectations derived from predictable
patterns (Bouwer et al., 2020). Predictable, in the context of these experiments,
means predictable from the stimulus itself rather than from internalized stylistic
aspects of music. Bouwer and Honing (2015) and Bouwer et al. (2020) interpret
memory-based to rely on mechanisms posited by predictive processing theories of
perception. These studies have found evidence that both beat- and memory-based
expectations contribute to auditory expectations of the timing of events (Bouwer
& Honing, 2015; Bouwer et al., 2020). The present findings appear consistent with
these observations: while rhythms from different musical idioms contain some
idiom-specific patterns, these differences are modest, suggesting that rhythms are
constrained partly by principles shared between different idioms.

The approach pursued in this chapter suggests several topics that could be
investigated in future work. For example, it would be interested to perform a
more fine-grained comparison between the classical model and the enculturation
model in which representation of metrical context (metrical salience or phase)
and sensitivity to patterns (none or short) are varied independently. Furthermore,
while our results did not provide evidence for idiom specific affordances for meter
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relying on patterns of more than two metrical fingerprints, we did not consider the
actual meters inferred by the tested models. It could be that the length of patterns
to which a model is sensitive does influence the meters in which models interpret
rhythms in within- and across-idiom simulations. As more empirical data becomes
available from which rhythm samples can be drawn, it would be interesting to
extend the study to include samples that represent musical idioms more broadly
by including for example both folk and art music. Finally, it would be interesting
to investigate whether the affordances for meter available to real listeners rely on
statistical patterns identified in this study. To this end, cross-cultural studies are
crucial since they enable the testing of hypotheses about the effects that statistical
patterns in the environment may have had on perception.

The materials used in this study—score-like representations of the inter-onset
interval patterns in rhythms—are in many ways impoverished representations
of music. It seems plausible that expressive timing, tempo and tempo changes,
dynamics, timbre, note durations (articulation), and the broader embodied context
in which rhythm perception occurs can have a significant influence on enculturated
rhythm perception and the differentiation of musical idioms. It is interesting,
however, that even in this constrained representation, statistical patterns that
are specific to different musical idioms can be observed. Accordingly, we think
that computational models of music perception and cognition can play a valuable
role in identifying the similarities and differences between musical idioms found in
music across the world (Honing & Bouwer, 2019; Savage et al., 2015; Mehr et al.,
2019).





Chapter 8

Discussion and conclusion

Predictive processing is an exciting and relatively new framework in which per-
ception and cognition can be described and modeled. As reviewed in Chapter 2,
rhythm and meter perception show considerable flexibility and plasticity under the
influence of the previous experience, practice, and training of culturally embedded
listeners. I have argued that the existing offering of computational models of
rhythm perception does not sufficiently address these aspects. Predictive pro-
cessing suggests a modeling framework, namely probabilistic generative models,
that is particularly suitable for describing and modeling such flexibility and plas-
ticity. This thesis takes one step toward an account of rhythm perception that
considers the effects of experience, practice, and training. In Chapter 6, I propose
a probabilistic generative model intended to simulate the effects of long-term
exposure to rhythms in a musical environment on meter perception. Compared to
earlier probabilistic generative approaches, this places significantly more emphasis
on learning from musical patterns and regularities in the environment, and less
emphasis on music theory.

Chapters 3, 4, and 5 were concerned with the technical and formal details of the
modeling approach pursued in this thesis. In Chapter 3, I proposed a framework
in which dynamic Bayesian network models with deterministic constraints can
be defined. The framework supports the definition of a variety of probabilistic
generative models of music perception that operate on abstract and symbolic
representations. These formal definitions demand a high level of precision and
explicitness, which results in compact definitions of the, sometimes complex and
interacting, deterministic constraints of such models. Such definitions transparently
reveal the structure and assumptions of probabilistic cognitive models.
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Furthermore, the model definitions can be translated, with relatively little effort,
into implementations that can be used in computer simulations. This may facil-
itate the sharing of modeling work and make it easier for other researchers to
reproduce simulation results and to extend and build upon modeling work defined
in the framework. The framework itself has been implemented as a cognitive
modeling toolkit, which was used to generate the simulation results presented
in Chapter 7. 1 In Appendix A, the model definitions are stated in Common
Lisp, demonstrating the close mapping between model definition tables and their
functional implementations in this framework.

The advantages of the toolkit are comparable to those of the IDyOM modeling
framework (Pearce, 2005), which enables researchers to specify statistical models of
sequences based on multiple derived representations of these sequences. Compared
to IDyOM, however, the framework is more general and supports the specification
of models that infer latent underlying structure (key or meter). On the other hand,
it also is more low-level and requires a greater degree of programming ability on
the part of the researcher using it. Dynamic Bayesian network models defined in
this framework are directly comparable to models of statistical learning of multiple
representations of melodies, as can be defined in IDyOM (Pearce, 2005, 2018):
they incrementally predict events in a sequence, from which quantifications of
expectedness and uncertainty can be derived.

The modeling framework arose from my efforts to generalize IDyOM and the
multiple viewpoint systems (Conklin & Witten, 1995) on which it is based, to
support inferring structure such as key and meter from sequences of events. The
work presented in Chapter 6, which uses the terminology of multiple viewpoint
systems to define the novel model presented in this thesis, is a result of that
approach. It turned out, however, that the resulting framework could be formulated
in a more general way, and the current modeling framework is the result of this.

There are many opportunities for future work to build and improve upon the
models and their algorithmic implementations presented in this thesis. For
example, the temporal prediction capabilities of the present model could be
used in tandem with IDyOM’s melodic prediction capabilities to yield a richer
characterization of the dynamic interplay between listener expectations and musical
progression. Furthermore, the meter perception model presented in this thesis
could be extended to simultaneously infer other latent structure, such as key
signatures. The probabilistic approach naturally accommodates inferring multiple
kinds of latent structure simultaneously.

Chapters 4 and 5 provide practical examples of the usage of the framework

1The author intends to make this implementation and that of the models used in the present
research available as free (as in freedom) and open-source software as soon as possible at
https://osf.io/z4389/.

https://osf.io/z4389/
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of Chapter 3. Chapter 4 defines an adaptation of Temperley’s (2007) rhythm
perception model that can evaluate a rhythm incrementally in time. The original
formulation of this model emphasizes a top-down perspective in which a metrical
grid is generated first and a rhythm is generated on top of it. A few minor
modifications were required to enable the model to be evaluated in a temporally
incremental fashion, similar to the other models presented in this thesis that are
of an incremental nature (i.e., process models). Furthermore, by defining the
model as a dynamic Bayesian network with deterministic constraints, some of
its interacting deterministic constraints are revealed more explicitly than in the
model’s original definition.

Chapter 5 defines two generative models of meter perception and describes the
technical details of a methodology that allows them to be compared systematically.
There are two key steps to this methodology: first, the definition of a rhythm space
over which both models define complete probability distributions, and, second,
training the models on empirical samples of rhythms in this space. Training a model
(estimating its parameters from an empirical sample) causes it to approximate an
empirical distribution over the rhythms in the rhythm space. As such, these two
steps allow us to assess how well different models approximate different empirical
distributions of rhythms.

The emphasis on modeling the flexibility and plasticity of rhythm perception led
us to adopt a cross-cultural approach. That is, we evaluate models not only on
rhythms of the same style, repertoire, or idiom as that of the rhythms from which
they have learned but also on rhythms from a different style, idiom or repertoire
than those from which they have learned. The importance of a cross-cultural
approach for investigating perception has been recognized for some time (Huron,
2006; Patel & Demorest, 2013), and appears recently to have gained a new impulse
and urgency (London et al., 2017; Jacoby et al., 2019; Mehr et al., 2019; Jacoby et
al., 2020). The role that probabilistic modeling approaches can play in generating
theoretical predictions about the effect of enculturation in perception has recently
been highlighted too (Pearce, 2018; Morrison et al., 2019). The work in this thesis
concerns precisely the kind of models that could be used in this setting.

The cross-cultural approach is elaborated most fully in Chapter 7, where I consider
the influence of three factors on the availability of statistical affordances for meter
(whether statistical patterns in rhythms enable a model of an enculturated listener
to infer meter): (1) the musical environment that represents long-term exposure,
(2) the statistical patterns to which a model is sensitive, and (3) the musical
environment in which the model is evaluated. I investigate this using empirical
samples of rhythms from two different musical idioms: Western folk melodies and
Turkish makam melodies.

The results suggest, first, that rhythmic pattern matters: Western and Turkish
rhythms contain patterns that can serve as cues for meter consisting of patterns
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of multiple events. Such cues are more complex than the frequency with which
onsets occur at different levels of metrical salience (Palmer & Krumhansl, 1990;
Temperley, 2007, 2010). This supports claims by London (2004, 2012, p. 68) and
London et al. (2017) that musical styles contain characteristic rhythmic patterns
that facilitate beat and meter perception in listeners familiar with these patterns.
Second, as has been previously been argued by Iyer (1998), it appears that metrical
salience is most useful in Western rhythms: the frequency with which onsets occur
at different levels of metrical salience is significantly less useful for inferring meter
in Turkish rhythms compared to Western rhythms. Third, cultural familiarity
matters: some of the patterns that can serve as cues for meter appear to be idiom-
specific. Listeners exposed to rhythms that rely on idiom-specific cues for meter
may more clearly perceive the meter if they are familiar with the relevant musical
idiom. Simultaneously however, idiom-specific patterns in rhythms appear to be
short and to provide only a modest contribution to the availability of statistical
affordances for meter overall. The patterns useful for inferring meter in Western
and makam rhythms thus appear to an extent to be shared. This is consistent
with studies suggesting that rhythms worldwide share common patterns, most
prominently simple integer ratios between the durations of temporal intervals
(Savage et al., 2015; Jacoby & McDermott, 2017; Mehr et al., 2019). Furthermore,
neurobiological studies have suggested that different kinds of auditory expectations
can be distinguished: beat-based expectations, which rely on inferred regularity,
and memory-based expectations, which rely on predictable patterns (Bouwer
et al., 2020). While “predictable” in this work refers to the context of a single
stimulus, and not to internalized patterns from long-term exposure, the results are
consistent with the suggestion that expectations regarding the timing of events
in a rhythm are driven both by patterns shared between cultures and patterns
specific to different cultures.

The above findings concern only patterns that matter for models of meter percep-
tion. Whether they matter for listeners too is at the moment an open question.
The computational models on which these results are based can be used to inves-
tigate this. It would, for example, be possible to quantify the extent to which
individual rhythms rely on idiom-specific cues. Such quantifications could be used
in a cross-cultural experiment involving listeners with different histories of musical
experience to construct rhythmic stimuli containing idiom-specific patterns that
these listeners are or are not expected to be familiar with.

The methodology used in Chapter 7 is closely related to the cultural distance
hypothesis proposed by Demorest and Morrison (2016) and Morrison et al. (2019).
Demorest and Morrison (2016, p. 189) define cultural distance as “the degree to
which the musics of any two cultures differ in the statistical patterns of pitch and
rhythm” and propose that it can be quantified by statistical models of melodies.
The hypothesis states that cultural distance between music from different cultures
predicts the efficacy with which familiar with either culture process music of the
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other culture. The approach pursued in Chapter 7 adds another dimension to
this concept by showing that the way in which the perceptual and perceptual
learning abilities of listeners are modeled plays a role in the quantification cultural
distance. Furthermore, I have cautioned (in the General discussion section of
Chapter 7, beginning at page 187) that one should be mindful of the information-
theoretic properties of measures used to quantify cultural distance: estimates
of cross-entropy (the average information content of events in a composition)
have a lower bound that corresponds to the entropy (the inherent uncertainty, or
loosely, complexity) of the distribution from which a sample of music is drawn. In
practical terms, there may be differences in the complexity of stimulus materials
from different cultures that confound observed differences between the performance
of (human or modeled) test subjects on these materials. A similar point has been
made by Cameron et al. (2015), who emphasized that in a cross-cultural study,
only statistical interactions between the cultural background of participants and
the cultural origin of stimulus materials should be interpreted.

Predictive-processing accounts of rhythm perception have been previously proposed
by Vuust et al. (2014), Vuust and Witek (2014) and Vuust, Dietz, Witek, and
Kringelbach (2018). These accounts, however, are based on a conceptual analysis
and description of the predictive processing theory. As the introduction of this
thesis states, a compelling argument for the use of computational or mathematical
models to express theories is that they demand a high level of precision and
explicitness and that they can be used to work out the precise consequences of
a theory. This is valuable especially when a theory proposes interacting and
path-dependent processes. For example, Vuust and Witek (2014) observe that a
predictive processing account of rhythm perception suggests that prior experience
plays an important role in rhythm perception. However, regarding this conclusion,
it might seem invoking the predictive processing theory does not offer much
additional insight. On the other hand, a generative model such as the one
described in this thesis provides the opportunity to simulate the effect of prior
experience, using empirical samples of rhythms, and to generate precise predictions
of the consequences for rhythm perception. These predictions are based partly on
the predictive processing theory and partly on the particular implementation of
the generative model.

It could be argued that one of the main strengths of the predictive processing
theory is that it suggests a specific way in which perception and cognition can be
modeled, namely using probabilistic generative models. Vuust et al. (2018) suggest
that syncopations cause prediction error and that prediction error can therefore
be calculated using Longuet-Higgins and Lee’s (1984) model of syncopation.
Simultaneously, however, Vuust et al. (2014) suggest that syncopations may
“become predicted at the higher levels” (p. 349). This illustrates that the meaning
of “prediction error” depends crucially on the generative model and how prediction
errors emerge in this model as a result of an organism’s interaction with the
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environment. The ideas and findings of Vuust and Witek (2014) and Vuust et al.
(2018) are interesting but could be made more powerful when combined with
concrete descriptions of a generative model such as the one described in this thesis.
Their theory of rhythmic incongruity (Vuust et al., 2018), for example, is based
on notions like prediction error and “metrical uncertainty”, both of which can
be precisely quantified by a generative model of rhythms, making it possible to
actually test whether the predictions of the theory agree with musical intuitions
or are borne out in experiments.

The above considerations show that probabilistic generative models of rhythm
perception can play a relevant role in contemporary theorizing about rhythm
perception. The unified approach of using dynamic Bayesian network models that
generate the same type of observations (rhythms) based on different underlying
generative models, as demonstrated in Chapter 7, makes it possible not only to
quantify concepts like syncopation, rhythmic incongruity, and metrical uncertainty
but to quantify them as a function of different histories of previous exposure
to music and different theories of rhythm perception. This makes it possible to
investigate many new questions: Which rhythms are predicted to be metrically
ambiguous according to a generative model based on traditional theories of meter?
At which points in the same rhythm do the strongest violations of expectation occur
for listeners with different histories of previous exposure? Can we find rhythms that
contain salient syncopations that are nevertheless strongly predicted? Addressing
such questions depends crucially on formal descriptions of generative models that
can be implemented and tested in computer simulations.

In summary, I have argued that existing models of rhythm and meter perception do
not sufficiently account for the effects of culturally embedded experience, practice,
and training on rhythm perception. I have proposed a model that learns from
patterns and regularities in datasets of rhythms and presented a set of tools
and methodologies for designing, describing, and evaluating probabilistic models
of music perception in a cross-cultural context. The model represents one step
toward greater consideration in computational modeling of rhythm perception of
the environment in which perception is shaped and fine-tuned. I believe that the
direction in which this step takes us is both fruitful and worth pursuing further,
and I hope that the tools, techniques, and results presented in this thesis will
promote this.
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Common Lisp model implementations

Below, implementations of the enculturation model and the classical model, as
defined in Chapter 5, are shown. These implementations are complete specifications
the two models save for a definition of the conditional probability distributions.

The definitions make use of a Common Lisp implementation of the framework
described in Chapter 3, developed by the author. It is the author’s current
intention to make this framework, tentatively named “jackdaw” available as free
(as in freedom) software as soon as possible.

Models are defined by a macro DEFMODEL, which extends DEFCLASS. The general
form of a model definition is (DEFMODEL NAME SUPER-CLASSES SLOTS VARIABLES
DISTRIBUTIONS), where SLOTS is a set of parameters of the congruency constraints,
VARIABLES is a list of variable definitions, and DISTRIBUTIONS defines the prob-
ability distribution of each variable that does not have a uniform distribution
(which is the default). An example of a parameter to the congruency constraints
used by the classical model and the enculturation model is the inter-onset interval
domain, stored in the ioi-domain class slot in the definitions below.

Each variable definition has the following form: (VARIABLE-NAME DEPENDENCIES
CONGRUENCY-CONSTRAINT). DEPENDENCIES is a the subset of the variable’s depen-
dencies that are relevant to the congruency constraints. In this list, horizontal
dependencies are marked by the ˆ prefix, such that ˆX refers to a horizontal
dependency on X. CONGRUENCY-CONSTRAINT defines the congruency constraint.
Congruency constraints are defined as an anonymous function that is applied
to the variables listed in DEPENDENCIES. The values of these dependencies are
referenced in the congruency constraint by prefixing their name with the $ symbol
(this is to ensure the reserved symbol T can also be used as a variable name). For
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example, $x refers to a value of X and $ˆx refers to the previous value of X. For
the sake of consistency with the notation conventions used in Chapter 3, I use
capital letters to define variable names and lowercase letters to reference their
values.

Probability distribution definitions in DISTRIBUTIONS are of the form
(VARIABLE-NAME DEPENDENCIES DISTRIBUTION). DEPENDENCIES is the set of
variables required to assign a probability to each congruent state. DISTRIBUTION
is a reference to an implementation of the probability distribution, which is not
shown here.

In Chapter 3, there is no distinction between the dependencies of a variable’s
probability distribution and of its congruency constraint. In the implementation,
however, they may be different sets. This is because it may be that not all
variables on which a probability distribution depends are relevant to the congruency
constraint and vice versa. An example of this is the D variable of the enculturation
model: its probability distribution depends on the metrical category while its
congruency constraint depends on the previous downbeat distance, d, and the
previous phase, ˆp. The actual dependencies of the variable are given by the union
of probability-distribution dependencies and congruency-constraint dependencies.
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A.1 Enculturation model

The code snippet below shows an implementation of the enculturation model.

(defmodel enculturation (generative-model)
((ioi-domain :initarg :ioi-domain :reader ioi-domain)
(meter-domain :initarg :meter-domain :reader meter-domain)
(training? :initarg :training? :accessor training?

:initform nil))
;; Congruency constraints
((M (^m)

(if (eq $^m ’*)
(meter-domain model)
(list $^m)))

(D (^d ^p)
(if (eq $^d ’*)
(list ’(*))
(loop for i in (ioi-domain model)

collect (cons (+ $^p i) $^d))))
(P (^p m d)

(if (eq $^p *)
(list (mod (car $d) (car $m)))
(loop for p below (car $m)

collect p)))
(I (d ^p)
(if (eq $d ’(*))

(list ’*)
(list (- (car $d) $^p)))))

;; Probability distributions
((D (m) (accumulator-model))
(M () (categorical)))
:required-fields (ioi-domain))

The names of the variables are the same as those used in the model-definition table
in Chapter 5. The above definition is intentionally verbose in order to explicitly
highlight the continuity with the model-definition table. For example, the variable
definition of M (M) shows that its congruency constraint has one dependency, ˆm
(m̂). If ˆm equals the symbol ∗, which is the deterministic state of each variable in
the initialization model, it generates the meter domain (a set of possible metrical
categories). Otherwise, it generates its previous value.

The variable definitions can compressed by introducing some macros which de-
fine different types of generic behavior. In particular, the macros PERSISTENT,
RECURSIVE, and DETERMINISTIC are used to define persistent, recursive, and
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deterministic variables. Their definitions are shown below.

(defmacro recursive (constraint initialization-constraint)
`(if (eq $^self ’*) ,initialization-constraint ,constraint))

(defmacro persistent (constraint)
`(recursive (list $^self) ,constraint))

(defmacro deterministic (congruent-value)
`(list ,congruent-value))

Here, ˆself is a special variable name that always refers to the variable itself.

The DETERMINISTIC macro does not save any typing, but is intended to enhance
readability.

Using these macros, the definition of the enculturation model can be compressed
into the definition below.

(defmodel enculturation (generative-model)
((ioi-domain :initarg :ioi-domain :reader ioi-domain)
(meter-domain :initarg :meter-domain :reader meter-domain)
(training? :initarg :training? :accessor training?

:initform nil))
;; Congruency constraints
((M (^m) (persistent (meter-domain model)))
(D (^d ^p)

(recursive (loop for i in (ioi-domain model)
collect (cons (+ $^p i) $^d))

(deterministic ’(*))))
(P (^p m d)

(recursive (loop for phase below (car $m)
collect phase)

(list (mod (car $d) (car $m)))))
(I (d ^p)
(recursive (list (- (car $d) $^p))

(list ’*))))
;; Probability distributions
((D (m) (accumulator-model))
(M () (categorical)))
:required-fields (ioi-domain))
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A.2 Classical model

The definition of the classical model, using the macros defined above, is shown
below.

(defmodel classical (generative-model)
((tactus-intervals :initarg :tactus-intervals

:reader tactus-intervals)
(ioi-domain :initarg :ioi-domain :reader ioi-domain))
((U (^u) (persistent ’(2 3)))
(L (^l) (persistent ’(2 3)))
(T (^t) (persistent (tactus-intervals model)))
(UPH (^uph u) (persistent (loop for uph below $u collect uph)))
(TPH (^tph t) (persistent (loop for tph below $t collect tph)))
(P (^p i u t uph tph)

(recursive (deterministic (mod (+ $^p $i) (* $u $t)))
(deterministic (+ $tph (* $uph $t)))))

(I (^i ^p)
(recursive (ioi-domain model)

(deterministic ’*))))
((U () (bernouilli :symbols ’(3 2)))
(L () (bernouilli :symbols ’(3 2)))
(T () (categorical))
(UPH (u) (bar-phase))
(TPH (t) (tactus-phase))
(I (^p t u l) (classical-ioi))))
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Empirical rhythm space samples

This appendix describes how the rhythm datasets used in Chapter 7 were derived
from music corpora. The German rhythms were derived from the Essen Folksong
Collection (Schaffrath & Huron, 1995), Dutch rhythms from the Meertens Tunes
Collection (Van Kranenburg et al., 2014), and Turkish rhythms from the SymbTr
corpus (Karaosmanoğlu, 2012).

We used all melodies from the SymbTr corpus and Meertens Tunes Collections.
From the Essen folksong collection, we used only melodies that originate from
Germany (based on the ARE reference record [Huron, 1999]).

The melodies were first converted from the representations used by the corpora into
a common tabular format. We then segmented each rhythm into passages during
which the time signature does not change. This yields three rhythm datasets.
From these dataset, empirical samples of a rhythm space were created. These two
steps are described below.

B.1 Dataset construction

The SymbTr corpus represents melodies in a format called mu2 and a text-based
format consisting of tab-separated data derived from the mu2 format, described
by Karaosmanoğlu (2012). Because we could not find a precise definition the mu2
format, we derived our samples from the text-based format. We used a custom
script to extract the onset information from the text files and to create a tabular
representation that records the onset time of each note in each melody. Melodies
in the Meertens Tunes collection and the Essen folksong collection are provided
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in the **krn representation of the Humdrum syntax (Huron, 1999). We used a
custom script (based on IDyOM’s **krn parser) to convert each melody into the
same tabular representation format. The resulting rhythms were then segmented
into passages during which the time signature does not change. Any unmetered
passages were discarded.

B.2 Empirical rhythm space samples

We chose a rhythm length of 29 for the rhythm space to make optimal use of
the available data within the constraints imposed by the study. Longer rhythm
lengths would have resulted in having to discard more rhythms because they are
not long enough, but a shorter rhythm length means more notes are discarded
because they are truncated. The value of 29 approximately optimizes the total
number of events that end up in the dataset.

Sixteenth notes were chosen as a resolution because most rhythms in the three
corpora can be accommodated by this resolution. Furthermore, the computational
requirements of the models, in particular the enculturation model, are affected by
this resolution. Using sixteenth-notes, these computational requirements remain
acceptable.

To obtain a set of rhythms that satisy the length and resolution constraints, we
first discarded all rhythms with less than 29 inter-onset intervals, which would
have resulted in a larger sample. From the resulting rhythms, we discarded all
rhythms that contain inter-onset intervals that cannot be expressed by integer
multiples of sixteenth notes. Each rhythm was then truncated to the first 29
inter-onset-intervals. The resulting set of rhythms is treated as a sample of an
empirical distribution over rhythms in the rhythm space.

We opted not to split each rhythm into segments of 29 inter-onset intervals. This
choice was made to rule out a “beginning effect” or an “ending effect”: It could
be that being near the beginning or near the ending of a melody influences the
statistical properties of rhythms.

Data-driven studies involving rhythms sometimes choose to discard only the events
that cannot be accommodated (e.g. Holzapfel, 2015; Temperley, 2010), rather
than the entire rhythm as we have done. Our choice to discard the entire rhythm
is motivated by our interest in the sequential statistics of rhythmic patterns:
removing events in the middle of a rhythm may disrupt these statistics.
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Samenvatting

Ervaren Luisteraars: De invloed van langetermijnblootstel-
ling aan muziek op ritmeperceptie
In dit proefschrift onderzoeken we ritmeperceptie met behulp van computatio-
nele modelleertechnieken en ontwikkelen we gereedschappen en technieken om
probabilistische generatieve modellen van ritmeperceptie te definiëren en evalue-
ren. We beargumenteren dat eerdere computationele modellen van ritmeperceptie
onvoldoende verklaren hoe deze vorm van waarneming is gevormd door eerdere
ervaringen, oefening en training van cultureel ingebedde luisteraars. Op basis
van predictive processing-theorieën van waarneming stellen we een probabilistisch
generatief model van metrumwaarneming voor, dat, vergeleken met eerdere mo-
dellen, voor een groter deel leert van patronen en regelmatigheden in datasets van
ritmes (die de muzikale omgeving representeren). De uitkomst van dit leerproces
simuleert de effecten van de langetermijnblootstelling aan ritmes die luisteraars
ondergaan in hun muzikale omgeving.

De nadruk die het proefschrift legt op patronen en regelmatigheden in muzikale
ritmes in de omgeving van de luisteraar leidt ons ertoe het model in een inter-
en intra-culturele context te evalueren. We onderzoeken hoe een variatie in de
gevoeligheid voor statistische patronen, de stijl of culturele oorsprong van ritmes
waaruit het model leert en die van de ritmes waarop het wordt geëvalueerd
bijdragen aan de prestaties van het model. Dat wil zeggen dat het model, samen
met een alternatief model dat traditionele Westerse theorieën van metrumperceptie
vertegenwoordigt, wordt geëvalueerd op cultureel bekende ritmes (ritmes in dezelfde
stijl als de ritmes waarvan het model heeft geleerd) en cultureel onbekende ritmes
(ritmes in een andere stijl dan de ritmes waarvan het model heeft geleerd). Op
deze manier onderzoeken we of er variatie is tussen stijlen in de patronen en
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regelmatigheden die nuttig zijn voor het afleiden van metrum en onderzoeken we
de hoeveelheid en aard van de gevoeligheid voor statistische patronen die nodig is
om deze variatie te kunnen detecteren.

Concreet gezien onderzoeken we empirische selecties van ritmes van Westerse
volksliederen en Turkse makammuziek. We stellen vast dat zowel Westerse als
Turkse ritmes regelmatigheden bevatten die een luisteraar die bekend is met deze
regelmatigheden kan gebruiken om een metrum af te leiden uit individuele ritmes.
Deze regelmatigheden omvatten patronen van meerdere ritmische gebeurtenissen
en zijn complexer dan de schematische patronen van verwachting, die geassocieerd
worden met traditionele theorieën van metrumperceptie. Verder ontdekken we
dat sommige patronen alleen voorkomen in Westerse muziek en andere alleen
in Turkse makammuziek. De resultaten suggereren echter ook dat makam en
Westerse ritmes een groot deel van de patronen en regelmatigheden die het afleiden
van metrum faciliteren delen.

Verder presenteert dit proefschrift een kader voor het ontwerp en de implementa-
tie van discrete dynamische Bayesiaanse netwerkmodellen met deterministische
beperkingen. Dit kader maakt het mogelijk om formele, bondige en expliciete
definities van zulke modellen te geven die eenvoudig vertaald kunnen worden naar
werkende en uitvoerbare implementaties. Het kader heeft tot doel de transparantie
en reproduceerbaarheid van modelleeronderzoek te verbeteren en het voor andere
onderzoekers gemakkelijker te maken om verder te bouwen op bestaand model-
leerwerk dat gebruik maakt van dit kader. Het kader is geschikt om theorieën
gebaseerd op predictive processing te definiëren. Zulke cognitieve modellen, zo ook
de modellen besproken in dit proefschrift, kunnen worden gezien als sequentiële
muziekvoorspellingsmodellen en kunnen worden gebruikt om muzikale verwachtin-
gen en onzekerheid te modelleren, die zich samen met de muziek dynamisch in de
tijd ontwikkelen.

De opbouw van dit proefschrift is als volgt: Hoofdstuk 2 beschrijft een verschei-
denheid aan eerdere aanpakken van het modelleren van ritmeperceptie en geeft
een overzicht van de eerder aangetoonde manieren waarop ritmeperceptie door
eerdere ervaringen, training en oefening wordt beïnvloed. Hoofdstuk 3 ontwikkelt
de technische details van het modelleerkader. Hoofdstuk 4 illustreert het gebruik
van dit kader door een aanpassing van een eerder voorgesteld generatief model van
ritme- en metrumperceptie te presenteren. Hoofdstuk 5 beschrijft de technische
details van twee modellen die verderop in het proefschrift worden onderworpen
aan empirische evaluaties. Hoofdstuk 6 definieërt en motiveert het primaire mo-
del van dit proefschrift (Hoofdstuk 5 bevat een technischer beschrijving van dit
model). Tot slot beschrijft Hoofdstuk 7 een inter- en intraculturele studie waarin
de modellen en methodologieën ontwikkeld in Hoofdstuk 5 worden toegepast op
empirische selecties van Turkse makammuziek en Westerse volksliederen.



Summary

Experienced Listeners: Modeling the influence of long-
term musical exposure on rhythm perception
This thesis investigates rhythm perception using computational modeling tech-
niques and develops a set of tools and techniques for the definition and evaluation
of probabilistic generative models of music perception. We argue that previously
proposed computational models of rhythm perception insufficiently account for
how perception has been shaped by culturally embedded listeners’ prior experience,
practice, and training. Motivated by predictive processing theories of perception,
we propose a probabilistic generative model of meter perception which, compared
with previous models, to a greater extent learns from patterns and regularities
in datasets of rhythms (representing a musical environment). The outcome of
this learning process simulates the effects of the long-term exposure that listeners
receive to rhythms in their musical environment.

The emphasis on patterns and regularities in musical rhythms in the environment
leads us to evaluate the model in a cross-cultural context. We investigate how
varying degrees of sensitivity to statistical patterns, the style or cultural origin
of rhythms from which the model learns, and that of rhythms on which it is
evaluated factor into the model’s performance. That is, the model, together with
an alternative model representing traditional Western theories of meter perception
is evaluated on culturally familiar rhythms (of the same style as the rhythms it
has learned from) and culturally unfamiliar rhythms (of a different style than
the rhythms it has learned from). In this way, we investigate whether there is
between-style variety in the patterns and regularities useful for inferring meter, and
the amount and type of sensitivity to statistical patterns necessary for detecting
this variation.
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Concretely, we investigate empirical samples containing rhythms of Western
folksongs and Turkish makam music. We find that the Western as well as the
Turkish rhythms contain regularities that allow a listener familiar with these
regularities to infer meter from individual rhythms. These regularities involve
patterns of multiple rhythmic events and are more complex than schematic
patterns of expectation associated with traditional theories of meter perception.
Furthermore, we find that some of these patterns occur only in Western or only
in makam rhythms. However, the results also suggest that the patterns and
regularities by which meter can be inferred are to a significant extent shared
between makam and Western rhythms.

Additionally, this thesis presents a framework for the design and implementation
of discrete dynamic Bayesian network models with deterministic constraints. The
framework enables formal, concise, and explicit definitions of such models that can
straightforwardly be translated into functional and executable implementations.
The framework aims to enhance the transparency and reproducibility of modeling
research and to make it easier for other researchers to build further on modeling
work that uses the framework. The framework is suitable for defining predictive-
processing based theories of music perception. Such cognitive models, including
the models discussed in this thesis, can be seen as sequential music prediction
models and can be used to model musical expectancy and uncertainty evolving
dynamically over time, in lockstep with the temporal progression of music.

Concerning the structure of this thesis, Chapter 2 surveys a variety of previously
pursued approaches to modeling rhythm perception and reviews ways in which
rhythm perception has been found to be influenced by prior experience, training,
and practice. Chapter 3 develops the technical details of the modeling framework.
Chapter 4 demonstrates its use by presenting an adaptation of a previously
proposed generative model of rhythm and meter perception. Chapter 5 provides
technical definitions of two models that are subjected to empirical evaluations
later in the thesis. Chapter 6 defines and motivates the main model proposed
in this thesis (Chapter 5 contains a more technical description of this model).
Finally, Chapter 7 presents cross-cultural evaluations in which the models and the
methodology developed in Chapter 5 are applied to empirical samples of Turkish
makam music and Western folksongs.
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