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Abstract

This dissertation bridges the theory of algorithmic randomness—a branch of computability

theory—and the foundations of inductive learning. Algorithmic randomness provides a

mathematical analysis of the notion of an individual object (such as a string of bytes

representing a computer file or a sequence of experimental outcomes) displaying no e↵ective

patterns or regularities. Here, we investigate the role that algorithmic randomness plays in

inductive learning when randomness is taken to be a property of sequences of observations,

or data streams, and the learners are computationally limited. Our results constitute a

first step towards a systematic classification and analysis of the learning scenarios where

algorithmic randomness is beneficial for inductive learning and the scenarios where it is

instead detrimental for the learning process.

We focus on three main themes. Firstly, we explore the connections between algo-

rithmic randomness and Bayesian merging-of-opinions theorems. In particular, we show

that algorithmic randomness leads to merging of opinions in the following sense. When

two computable Bayesian agents perform the same experiment, agreeing on which data

streams are algorithmically random su�ces to guarantee that they will eventually reach a

consensus with probability one even if, at the beginning of the learning process, their be-

liefs are otherwise dissimilar. Secondly, we consider the role of algorithmic randomness in

Bayesian convergence-to-the-truth results. More precisely, we show that there is a robust

correspondence between algorithmic randomness and the collection of truth-conducive data

streams. When a computable Bayesian agent is faced with an e↵ective inductive problem,

the algorithmically random data streams are in fact exactly the ones that ensure that their

beliefs will asymptotically align with the truth. Lastly, we investigate a learning-theoretic

approach—in the spirit of formal learning theory—for modelling algorithmic randomness

itself. Building on the local irregularity and unruliness that is the hallmark of algorithmic

randomness, we show that the algorithmically random data streams are, systematically, un-

learnable: i.e., they coincide with the data streams from which no computable qualitative

learning method can extrapolate any patterns.
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Thank you to Pringle for keeping my chair warm.

And, last but foremost, thank you to my husband Krzyś, who is necessary and makes
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Introduction

We see how di�cult it is to not behave inductively

and to not believe in inductive success in the long

run. We see how di�cult it is to act as if one

were not uncertain about chance. The interesting

questions are not whether we do or should behave

inductively, but about how we do or should be-

have inductively with respect to what conception

of chance.

Skyrms, Pragmatics and Empiricism

Hume’s problem of induction and formal models of inductive learning. Induc-

tion is the hallmark of scientific thinking and is at the root of nearly all of our common-sense

reasoning. Most of our knowledge of the world is inductive: we observe certain regularities

in nature and exploit them to make successful predictions about what will be observed next,

or to extrapolate general laws about the world. The miracle of induction lies in the fact

that inductive inferences, which are by their very nature ampliative,1 allow us to success-

fully extend our knowledge from the realm of the observed to that of the unobserved—and

even to the unobservable.

Yet, in spite of being the “the glory of Science” and everyday life, inductive reasoning is

still widely regarded as “the scandal of Philosophy” [Broad, 1952, p. 143]. This is because

of what has come to be known as Hume’s problem of induction, which purports to show

that it is simply not possible to provide a rational justification for our ubiquitous reliance

1That is, their conclusions go beyond their premises: they are not truth-preserving (i.e., they can take
us from true premises to a false conclusion) and typically involve generalisations.
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on inductive reasoning. Hume’s famous argument proceeds as follows (cf. [Hume, 1978,

Book 1, Part iii, Section 6]). There are two possible routes for supplying a rational justi-

fication of a mode of reasoning: a deductively valid argument or an inductive argument.

Since inductive inferences are not truth-preserving, induction cannot be justified deduc-

tively: that is, via a deductively valid (and, thus, truth-preserving) argument relying on

the premise that induction has worked well in the past. Therefore, our only hope is that

induction may itself be justifiable inductively. An inductive justification of induction would

amount to arguing that, since our inductive inferences have worked well in the past, we can

reasonably expect that they will continue to do so in the future. However, as persuasively

argued by Hume, any justification of this type is irremediably circular: by taking the past

successes of induction as a reason to infer that induction will be successful again in the

future, the argument presupposes exactly what it was meant to establish—namely, that

inductive inferences can be rationally relied upon. It then appears that we have reached

an insurmountable impasse: neither a deductive nor an inductive justification of induction

is available, and so there can be no principled justification for our reliance on inductive

reasoning, either in the sciences or in everyday life.

While there has been a plethora of attempts at circumventing Hume’s negative con-

clusion, none of the proposed solutions to the problem of induction is fully general and

assumption-free. Many have thus decided to bite the bullet and accept that Hume’s argu-

ment is simply correct. Savage, for instance, asserts the following:

Hume’s arguments, and modern variants of them such as Goodman’s discussion

of ‘bleen’ and ‘grue’, appeal to me as correct and realistic. That all my beliefs

are but my personal opinions, no matter how well some of them may coincide

with opinions of others, seems to me not a paradox but a truism. [Savage, 1967,

p. 602]

Dreary as it might seem at first, embracing the conclusion of Hume’s argument need

not amount to a debacle and to the abandonment of the project of building a theory of

rational inductive inference. If a fully general justification of induction cannot be obtained,

perhaps it is nonetheless possible to o↵er a local, or conditional, justification:
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[J]ust as the force of Hume’s argument is usually underestimated, so the dev-

astation it is supposed to bring in its wake is usually exaggerated, and my sup-

plementary thesis is that there is none the less a positive solution to Hume’s

problem. Indeed, I will argue the apparently paradoxical claim that there are

nevertheless demonstrably sound inductive inferences! The resolution of the

paradox is that inductive inference arises as a necessary feature of consistent

reasoning, given the sorts of initial plausibility assumptions scientists habitually

make. [...] I believe that Hume genuinely has solved the problem of induction.

He solved it by showing, in general terms, that a sound inductive inference

must possess, in addition to whatever observational or experimental data is

specified, at least one independent assumption (an inductive assumption) that

in e↵ect weights some of the possibilities consistent with that evidence more

than others. I take this to be a great logical discovery, comparable to that

of deductive inference itself, and with consequences of as much practical as

theoretical importance. [Howson, 2000, p. 2]

The basic idea behind this approach is that, even though Hume’s problem of induction

leaves little to no room for the possibility of establishing the rationality of inductive rea-

soning in absolute terms (by either deductive or inductive means), we may nevertheless be

able to evaluate the reasonableness of an inductive inference relative to specific collections

of inductive assumptions. By singling out a family of rational learning methods for each

particular learning situation and class of inductive assumptions, we may still be able to

provide local, rather than global, justifications of induction: that is, justifications which,

by virtue of not being assumption-free, do not work in every case—and therefore fail to

be global—but which nonetheless do succeed, provided that the inductive assumptions on

which they rely hold.

This attitude towards the problem of induction fuels much work in statistics, machine

learning, and formal epistemology (as remarked by Skyrms, perhaps “[t]he scandal of phi-

losophy is not that the logic of induction does not exist, but rather that philosophy has paid

so little attention to it” [Skyrms, 2012, p. 250]). Formal theories and models of inductive

learning—from probability and statistics to logic and computer science—are particularly
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well-suited for advancing this programme, as they allow to unambiguously spell out what

the underlying inductive assumptions are, and to elucidate how the power and reliability

of an inductive method vary as a function of said assumptions. In each case, the adopted

inductive assumptions may of course be called into question; however, a leading objective

of this approach is systematisation: that is, the goal is to gain a clear and comprehensive

understanding of the conditional rationality of inductive reasoning and learning.

The present work follows in this tradition: the results in this dissertation target the

problem of induction from the conditional perspective outlined above. In particular, the

key aim of this work is to clarify the extent to which inductive learning is a↵ected (positively

or negatively) by the presence of randomness in the data—where randomness is understood

as irregularity and lack of discernible patterns. To address this question, we focus on two

central paradigms for modelling inductive learning: the theory of Bayesian learning and

formal (or computational) learning theory. Both paradigms tackle the problem of induction

through the prism of specific classes of inductive assumptions. In return, they provide

precise, yet very general frameworks within which one can represent di↵erent inductive

problems and gauge the performance of various inductive methods. This, in turn, is exactly

what allows to rigorously study the role of randomness in inductive learning. To model

the presence of randomness in the data, on the other hand, we draw on the theory of

algorithmic randomness, which, as we shall see, relies on the tools of mathematical logic

and measure theory to elucidate the concepts of patternlessness and irregularity.

Randomness and learning. Randomness is generally taken to be a property of pro-

cesses that are governed by chance (or, at the very least, that are taken to be best modelled

in probabilistic terms). Phenomena that typically get classified as random processes in this

sense include games of chance—such as rolling a die, tossing a coin, or spinning a roulette

wheel—as well as various processes studied in the natural sciences—such as the growth of

a bacterial population, the dynamics of gas molecules, or radioactive decay—and the social

sciences—such as the fluctuations of the stock market.

However, this process conception of randomness is not the only one available. A second,

complementary way of thinking about randomness is as a property of outcomes, rather than

processes. This second type of randomness, usually called product randomness (as opposed
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to process randomness), plays a significant role in a variety of fields, including informa-

tion theory, cryptography, the foundations of probability and statistics, and computability

theory. Intuitively, product randomness amounts to lack of structure or patternlessness: a

sequence of events, observations, experimental outcomes, or symbols from some alphabet

is product random if it does not display any discernible patterns or regularities.

To build some intuition about the notion of product randomness, consider the two

binary strings below, each of which consists of fifty digits:

01101110110011000100110101011111001011110011100011

10101010101010101010101010101010101010101010101010

The first string is ostensibly more random-looking than the second. This is because, by

contrast to the first string, the second string displays an obvious pattern that is very easy

to describe (the pair “10” is repeated twenty-five times). Moreover, this pattern appears to

be easily exploitable to make successful predictions: observing the first, e.g., twenty digits

of the second string seems to provide useful information for predicting what digits will be

observed next. On the other hand, it is not at all obvious that the same can be said about

the first string.

Random processes can be successfully modelled using the tools of probability theory

and statistics. It is then natural to wonder whether the notion of product randomness just

delineated is amenable to a rigorous conceptual and mathematical analysis, as well. Can

the above intuitions be made precise and combined into a coherent account of product

randomness as lack of patterns?

The most well-developed mathematical treatment of the notion of product randomness

is the theory of algorithmic randomness, a branch of computability theory which equates

randomness with the absence of any regularities discernible using algorithmic means. More

precisely, the theory of algorithmic randomness specifies under what conditions an individ-

ual mathematical object (such as a computer file, encoded as a string of bytes, an infinite

binary sequence, or a graph) can be said not to possess any e↵ectively discernible patterns.

Algorithmic randomness has two fundamental features. First, due to its reliance on

computability theory, it is not a theory of “absolute randomness”. Rather, it yields an

infinite hierarchy of randomness notions, each of which corresponds to a specific “level
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of randomness”—where each level is determined by the e↵ectivity constraints used to de-

marcate the random objects from the non-random ones. The more restricted the kind of

e↵ectivity involved, the logically weaker the resulting algorithmic randomness notion, in

the sense that strictly more objects are classified as random relative to said notion.

Second, algorithmic randomness notions are always defined with respect to some un-

derlying probability measure, so that an object that is classified as random relative to a

certain measure may be classified as non-random relative to a di↵erent measure (for in-

stance, sequences that are algorithmically random relative to the uniform measure fail to

be so relative to any computable biased Bernoulli measure). As we will see, both of these

features will play an important role in the results to come.

The goal of this dissertation is to bridge the theory of algorithmic randomness and the

foundations of inductive learning. The driving question behind this work is the following:

what are the e↵ects of product randomness on inductive learning—where randomness is

taken to be a property of sequences of observations (data streams)? More precisely, to strike

a better balance between generality and realism, we tackle this question in the context of

computationally limited learners. In other words, we focus on how observing a random

data stream a↵ects the learning performance of a computable (and, thus, less-than-ideal)

agent, and investigate to what extent the e↵ects of randomness in the data depend on the

particular learning task to be solved.

We appeal to the theory of algorithmic randomness because it is singularly well-suited

for investigating the relationship between product randomness and learning for computable

agents. Not only does algorithmic randomness provide a coherent formal framework within

which the above questions can be made precise, but, due to its reliance on computability

theory, it is by its very nature congenial to the study of learners whose resources do not

exceed those of a Turing machine.

The results in this dissertation constitute a first step towards a systematic classification

of the learning scenarios where algorithmic randomness is beneficial for inductive learning

and the learning scenarios where it is instead detrimental for the learning process. Each

chapter explores these issues from a di↵erent angle. Chapter 2 and Chapter 3 focus on

the connections between algorithmic randomness and probabilistic learning—specifically,

on the learning performance of computable Bayesian agents. In both chapters, we show



7

that, in the di↵erent learning scenarios under consideration, algorithmic randomness is

not only beneficial for learning: it is conducive to it. Chapter 4, on the other hand, is

centred around the issue of learnability by computable learning functions—traditionally

investigated within the field of formal learning theory—and on how learnability relates to

randomness. In particular, we show that, in that context, algorithmic randomness acts

against learning: in fact, it corresponds to a specific type of unlearnability. Crucially, this

result does not contradict the findings from Chapter 2 and Chapter 3: we will see that

the opposite e↵ects that algorithmic randomness turns out to have on inductive learning

in these two settings can be traced back to the di↵erences between the types of inductive

problems considered in each case.

What this dissertation is not about. Before discussing in some detail the content

and structure of this dissertation, we briefly consider some topics that, although related to

the subject matter of the present work, fall outside its scope.

As mentioned above, Chapter 2 and Chapter 3 bridge algorithmic randomness with

Bayesian learning and Bayesian probability theory. However, there is another interpreta-

tion of probability that is more often discussed in connection with algorithmic randomness:

the frequency interpretation. This is because the theory of algorithmic randomness has a

famous forerunner: von Mises’ theory of collectives [1919; 1981], which is steeped in the

frequency interpretation. According to von Mises, an account of product randomness is

necessary to define the concept of probability: he in fact believed that probabilities are

limiting relative frequencies within collectives—i.e., within infinite random sequences of

events or experimental outcomes. In turn, in von Mises’ theory, a sequence is random if

it is not possible to devise a strategy for selecting from it an infinite subsequence that

allows odds for gambling di↵erent from those allowed by the initial sequence—that is,

such that the limiting relative frequencies of events in the selected subsequence di↵er from

the ones displayed by the initial sequence. Von Mises’ original definition of an admissible

strategy for selecting subsequences was left informal. Church [1940] later made it precise

in computability-theoretic terms by means of identifying admissibility with computability.

This computability-theoretic turn is what paved the way for the development of the theory

of algorithmic randomness.
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Nowadays, von Mises’ definition of product randomness is by and large considered too

weak: as shown by Ville [1939], random sequences in the sense of von Mises can display

regularities that render them highly predictable. Moreover, unlike von Mises’ theory of

collectives, the theory of algorithmic randomness is not based on the tenet that an account

of randomness is required to define the concept of probability. In fact, as mentioned earlier,

algorithmic randomness is heavily measure-theoretic: the notion of a probability measure

is necessary to be able to define randomness. So, while algorithmic randomness does not

depend on any specific interpretation of probability, it is at odds with von Mises’ brand of

frequentism, according to which probabilities are to be defined in terms of limiting relative

frequencies. We will not further discuss von Mises’ approach and how it di↵ers from the

modern theory of algorithmic randomness in this dissertation. The reader interested in an

in-depth analysis of von Mises’ ideas, as well as in a defense of his definition of randomness,

is invited to consult [van Lambalgen, 1987a,b, 1996].

The first author to bridge Bayesian learning and algorithmic randomness—and, in par-

ticular, the theory of Kolmogorov complexity, which equates randomness with incompress-

ibility (see [Li and Vitányi, 2019])—was Solomono↵ [1964], with his theory of inductive

inference. Solomono↵’s induction (as his account is often referred to in the literature) is

a theory of prediction: given an infinite sequence of outcomes or observations generated

probabilistically, the task is to repeatedly estimate the value of the next outcome on the

basis of the values of the previous outcomes. Because of the nature of the task at hand,

the best possible predictor is of course the true distribution generating the data. However,

the true distribution may be unknown, so Solomono↵’s idea was to search for a universally

reliable prior: in a nutshell, one guaranteed to converge to the true distribution no matter

what the true distribution is. Solomono↵ used the theory of Kolmogorov complexity to

define a prior that assigns greater probability to hypotheses that have simpler descrip-

tions (relative to the complexity measure known as Kolmogorov complexity): i.e., that are

highly compressible. Then, he proved that, provided that the true distribution is e↵ective

(an assumption which he took to be realistic, while also allowing to retain a high degree of

generality), this prior is indeed reliable in the above sense.

Solomono↵’s result continues to stir much debate and controversy, since it is often taken
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to o↵er a justification ofOccam’s razor :2 the principle according to which one should always

favour the simplest available hypothesis that fits the observational data. For a thorough

discussion of Solomono↵’s theory, as well as a critical appraisal of its philosophical import,

the reader is invited to consult [Sterkenburg, 2016, 2017, 2018]. For the purpose of this

dissertation, su�ce it to say that Solomono↵’s framework is quite di↵erent from ours.

In Solomono↵’s setting, randomness—or, rather, a lack thereof—is used to define a prior

“biased towards simplicity”. Here, on the other hand, we take randomness to be a property

of data streams and investigate the e↵ects that random data have on learning. In addition,

Solomono↵’s work is usually taken to fall squarely within the objective Bayesianism camp,

since the data-generating probabilistic source can be naturally interpreted as an objective

chance distribution. By contrast, the results in this dissertation are particularly well-suited

for a subjectivist reading. In fact, as we will see shortly, the theorems that we focus on, in

spite of being amenable to an objectivist interpretation, are generally taken to corroborate

the subjectivist viewpoint.

What this dissertation is about. This dissertation comprises four chapters. Chapter

1 provides a concise introduction to the theory of algorithmic randomness. The focus is

on two standard approaches to modelling algorithmic randomness, respectively called the

unpredictability paradigm and the measure-theoretic typicality paradigm. These two frame-

works highlight two distinct, yet complementary aspects of algorithmic randomness, both

of which play an important role in our results. The unpredictability paradigm formalises

the intuition that, locally, the algorithmically random data streams are patternless and

irregular—and, as a consequence, unpredictable. Because of the absence of any (e↵ective)

patterns, the algorithmically random data streams do not possess any distinctive features

that could set them apart and that could be exploited for making successful predictions

about future observations. The measure-theoretic typicality paradigm, on the other hand,

reveals that algorithmic randomness does not amount to absolute lawlessness. As pithily

put by Boëthius [1999], “Chance, too, which seems to rush along with slack reins, is bridled

and governed by law.” A similar moral can be drawn about randomness: as established by

2For instance, Li and Vitányi state that Solomono↵’s induction rests on “an objective and absolute
definition of ‘simplicity’ as ‘low Kolmogorov complexity’. Consequently, one obtains an objective and
absolute version of the classic maxim of William of Ockham.” [Li and Vitányi, 2019, p. 262]
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the measure-theoretic typicality paradigm, by their very nature, the algorithmically ran-

dom data streams, while locally irregular and lawless, must obey certain global, statistical

laws. It is precisely by virtue of satisfying said statistical laws that the algorithmically

random data streams are measure-theoretically typical.

In Chapter 2, Chapter 3, and Chapter 4, we then turn to exploring the ramifications

of algorithmic randomness for inductive learning.

Chapter 2 focuses on the connections between algorithmic randomness and Bayesian

merging-of-opinions theorems: a collection of results of foundational import for Bayesian

epistemology (especially for subjective Bayesianism) that establish under what conditions

the posterior probability distributions of two Bayesian agents become arbitrarily close as

the shared evidence accumulates (i.e., under what conditions their respective beliefs merge).

We argue that two computable Bayesian agents beginning the learning process with di↵er-

ent subjective priors, but who nonetheless agree on which data streams are algorithmically

random can be viewed as sharing certain inductive assumptions: in particular, as having

compatible beliefs about the uniformity of nature. This is because, by virtue of concurring

on which data streams are algorithmically random, the two agents are in agreement about

which global, e↵ectively specifiable laws they expect the data to satisfy. We then show that

the types of doxastic compatibility yielded by algorithmic randomness su�ce to ensure that

any two computable Bayesian agents will eventually reach a consensus. In other words, they

guarantee that the agents’ respective probability assignments will almost surely become ar-

bitrarily close as the number of observations increases. Thus, when shared by computable

Bayesian learners with di↵erent subjective priors, the beliefs about uniformity encoded by

algorithmic randomness notions provably lead to merging of opinions. We conclude the

chapter by examining the phenomenon of polarisation of opinions—the conditions under

which, as the evidence increases, the beliefs of two Bayesian agents grow arbitrarily far

apart—from the perspective of the types of doxastic compatibility (and incompatibility)

induced by algorithmic randomness.

Chapter 3, on the other hand, investigates Bayesian convergence-to-the-truth theorems

from the perspective of algorithmic randomness. Bayesian convergence-to-the-truth results

are another staple of Bayesian epistemology: they show under what conditions a Bayesian

agent expects their beliefs to align with the truth as the available evidence increases. In this
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chapter, we study e↵ectivised versions of a fundamental convergence-to-the-truth result:

Lévy’s Upward Theorem [1937]. This means that we consider Lévy’s Upward Theorem in

the context of computable Bayesian agents and e↵ective inductive problems—namely, in-

ductive problems whose complexity can be characterised in computability-theoretic terms.

We then show that, in this e↵ective setting, the algorithmically random data streams are

exactly the ones that ensure that a computable Bayesian agent’s beliefs will asymptotically

converge to the truth. In other words, we prove that the collections of truth-conducive data

streams systematically correspond to standard algorithmic randomness notions, where the

type of randomness that emerges from Lévy’s Upward Theorem crucially depends on the

complexity of the inductive problems faced by the Bayesian agent. The results in this

chapter were obtained as part of a joint ongoing research project with Simon Huttegger

and Sean Walsh, and they also appear in a joint working manuscript titled “Algorithmic

randomness and Lévy’s Upward Theorem” [Huttegger et al., 2021]. However, the only

characterisation results whose proofs are included in this chapter are the ones that were

the author’s individual contribution to the project.

In Chapter 4, rather than exploring the applications of algorithmic randomness in

formal models of learning, we study algorithmic randomness itself from a learning-theoretic

perspective. Chapter 2 and Chapter 3 rely on the fact that the algorithmically random

data streams have to be globally regular (in that they have to satisfy certain statistical

laws) and are the most typical outcomes of the underlying probability measure. Chapter

4, on the other hand, hinges on the local irregularity of random sequences. In particular,

since algorithmic randomness amounts to local patternlessness, there is a sense in which it

is natural to regard the algorithmically random data streams as incompatible with learning

(after all, they are unpredictable). In this chapter, we vindicate this intuition by exploring

an approach for modelling algorithmic randomness that relies on the conceptual apparatus

of formal learning theory. In particular, we show that the algorithmically random data

streams are, in a precise sense, unlearnable: they coincide with the sequences that do not

display any local patterns that can be extrapolated by computable qualitative learning

methods. Our main results are novel learning-theoretic characterisation of two central

algorithmic randomness notions: Martin-Löf randomness and Schnorr randomness. A

version of this chapter appears in The Review of Symbolic Logic [Za↵ora Blando, 2021].



Chapter 1

Algorithmic randomness

He deals the cards to find the answer

The sacred geometry of chance

The hidden law of a probable outcome

The numbers lead a dance

Sting, Shape Of My Heart

Chance, too, which seems to rush along with

slack reins, is bridled and governed by law.

Boëthius, The Consolation of Philosophy

In this chapter we provide a brief overview of the theory of algorithmic randomness,1

which combines computability theory and measure theory to define what it means for an

individual mathematical object to be (product) random.

As traditionally done in the algorithmic randomness literature, we focus on algorithmic

randomness notions defined over the Cantor space of infinite binary sequences. Algorithmic

randomness can be defined in the context of many other spaces;2 however, for the purpose

1For an in-depth treatment of the theory, the reader may consult the textbook by Nies [2009] or the
textbook by Downey and Hirschfeldt [2010]. The monograph by Li and Vitányi [2019] is the standard
reference for the Kolmogorov complexity approach to algorithmic randomness.

2It is equally standard to define algorithmic randomness in the context of the real numbers (cf. [Downey
and Hirschfeldt, 2010]). For more general spaces, such as computable topological spaces and computable
metric spaces, see, for instance, [Levin and Zvonkin, 1970], [Hertling and Weihrauch, 2003], [Gács, 2005],
[Hoyrup and Rojas, 2009], and [Miyabe, 2014].

12
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of this dissertation, focusing on infinite binary sequences will su�ce. In particular, many

of the learning scenarios investigated in this dissertation are naturally modelled in this

setting, as well.

In spite of their simplicity, infinite binary sequences can in fact be used to capture

a variety of learning situations. For instance, each such sequence may be thought of as

representing the successive outcomes of an idealised, infinitely long coin tossing experiment,

where 1 marks a heads outcome and 0 a tails outcome. Alternatively, infinite binary

sequences could be seen as recording the outcomes of a binary test whose goal is repeatedly

checking whether a certain property holds or not. In this case, 1 indicates that the property

in question has been observed, while 0 indicates that it has not. Yet another possible

interpretation is that binary sequences provide a complete description of the world, so that

a 1 (respectively, a 0) in position n means that property P

n

holds (respectively, does not

hold), given some countable list P
0

, P
1

, P
2

, ... that exhausts all possible properties.

Within the theory of algorithmic randomness, an infinite binary sequence is classified

as random if it does not exhibit any “e↵ectively detectable” regularities. This idea is

standardly formalised in the context of either one of three di↵erent (yet closely connected)

paradigms:

(a) the incompressibility paradigm—pioneered by Kolmogorov [1965] and Solomono↵

[1964], as well as Chaitin [1966] and Levin [1973]—according to which a sequence

is random if none of its initial segments can be produced by a program much shorter

than that initial segment itself;

(b) the measure-theoretic typicality paradigm, initiated by Martin-Löf [1966], which iden-

tifies randomness with the satisfaction of all statistical laws that can be e↵ectively

specified (e.g., the Law of Large Numbers and the Law of the Iterated Logarithm);

(c) the unpredictability paradigm—sparked by Ville’s early work on martingales [1939]

and then further developed by Schnorr [1971b,a] and others in a computability-

theoretic setting—which is based on the intuition that no e↵ective gambling strategy

can gain unbounded capital by betting against a random sequence.

In what follows, we will discuss in some detail both the measure-theoretic typicality

paradigm and the unpredictability paradigm. The focus will be on these two paradigms
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because the proofs presented in this dissertation only rely on characterisations of algorith-

mic randomness notions in terms of either measure-theoretic typicality or unpredictability.

For a thorough discussion of the incompressibility paradigm, the reader may consult [Li

and Vitányi, 2019].

The structure of this chapter is as follows. We begin with some notational conventions

and basic definitions in §1.1. In §1.2, we then introduce the measure-theoretic typical-

ity paradigm. We present two types of statistical tests for randomness used within such

paradigm: sequential tests (§1.2.1) and integral tests (§1.2.2). Lastly, in §1.3, we discuss

the unpredictability paradigm.

1.1 Notation and basic definitions

Strings and sequences. The set of finite binary strings is denoted by 2<N. We use

lowercase Greek letters such as �, ⌧ , and ⇢ to represent finite strings. The empty string

is denoted by ". Given a string � 2 2<N, |�| stands for its length, �(n) for the (n + 1)-st

bit of �, and � � n for the initial segment of � consisting of its first n bits �(0)...�(n� 1).

If |�| < n, � � n = �, and if n = 0, � � 0 = ". By �⌧ , we mean the concatenation of �

and ⌧ . If � is an initial segment of ⌧ , we write � v ⌧ ; � @ ⌧ indicates that the relation is

strict. A set S ✓ 2<N is said to be prefix-free if and only if, for any two distinct strings

�, ⌧ 2 S, neither � v ⌧ nor ⌧ v � holds. The set of infinite binary sequences is denoted by

2N. The elements of this set are denoted by lowercase Greek letters such as ! or ↵. The

terms |!|, !(n), ! � n, �!, and the strict relation � @ ! are defined analogously to the

case of finite strings. Note that infinite binary sequences can be interpreted both as sets

of natural numbers and as real numbers in the unit interval: a sequence ! 2 2N naturally

corresponds to the set S

!

= {n 2 N : !(n) = 1} (in other words, ! is the characteristic

function of S
!

) and to the real number r
!

=
P

n2N !(n) · 2
�n

2 [0, 1].

Computability. We assume some familiarity with the basic notions of computability

theory over the natural numbers N, such as computable functions, computable sets, and

computably enumerable sets. The notion of a computable function from N to N can be

extended to functions from D to D

0, as long as the sets D and D

0 can be identified in a
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computable way with N or a subset thereof. This includes, for instance, N⇥N, the rationals

Q, {0, 1}, and 2<N. A (total) function f : D ! R is computable if there is a two-place

computable function h : D⇥N ! Q such that, for all (x, n) 2 D⇥N, |h(x, n)�f(x)|  2�n

(that is, if f can be e↵ectively approximated by a rational-valued function with any given

precision). A partial function f :✓ D ! R is partial computable if there is a two-place

partial computable function h :✓ D ⇥ N ! Q such that x 2 dom(f) if and only if (x, n) 2

dom(h) for all n 2 N, and, for all (x, n) 2 dom(h), |h(x, n)�f(x)|  2�n. A (total) function

f : D ! R is left-computably enumerable (left-c.e., from now on) if there is a computable

function h : D ⇥ N ! Q such that, for all (x, n) 2 D ⇥ N, the sequence {h(x, n)}
n2N

is non-decreasing and converges to f(x): i.e., lim
n!1

h(x, n) = f(x). If f : D ! R is

left-c.e., the set {(x, q) 2 D ⇥ Q : f(x) > q} is computably enumerable. A partial left-

c.e. function f :✓ D ! R is defined in the obvious way. Similarly, a (total) function

f : D ! R is right-computably enumerable (right-c.e.) if there is a computable function

h : D⇥N ! Q such that, for all (x, n) 2 D⇥N, the sequence {h(x, n)}
n2N is non-increasing

and converges to f(x). If f : D ! R is right-c.e., the set {(x, q) 2 D ⇥ Q : f(x) � q}

is co-computably enumerable. A function is both left-c.e. and right-c.e. if and only

if it is computable. Again, the notion of a partial right-c.e. function is defined in the

obvious way. A sequence of rational numbers q

0

, q

1

, q

2

, . . . is computable if there is a

computable function f : N ! Q which, on input n, outputs the n-th rational number

in the sequence. A real number r 2 R is computable if there is a computable sequence

q

0

, q

1

, q

2

, . . . of rationals such that |r � q

n

|  2�n for all n 2 N. In other words, the q

n

’s

get closer and closer to r at a computable rate, uniformly in n. A sequence r

0

, r

1

, r

2

, . . .

of computable reals is a sequence of uniformly computable reals if there is a computable

function f : N⇥ N ! Q which, on input (n,m), outputs the m-th rational number in the

approximation of r
n

. If r 2 R is such that there is a computable sequence r

0

, r

1

, r

2

, . . . of

uniformly computable reals with |r� r

n

|  2�n for all n 2 N, then r is computable. A real

number r is left-computably enumerable (left-c.e.) if there is a computable monotonically

increasing sequence q

0

, q

1

, q

2

, ... of rationals that converges to r in the limit (equivalently,

a computable non-decreasing sequence q

0

, q

1

, q

2

, ... of rationals that converges to r in the

limit). Similarly, a real number r is right-computably enumerable (right-c.e.) if there is a

computable monotonically decreasing (equivalently, non-increasing) sequence q

0

, q

1

, q

2

, ...
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of rationals that converges to r in the limit. A real is both left-c.e. and right-c.e if and

only if it is computable. An infinite binary sequence ! 2 2N is said to be computable if it

is computable when seen as a function from N to {0, 1}. It is left-c.e. if it is the binary

expansion of a left-c.e. real r 2 [0, 1), and it is right-c.e. if it is the binary expansion of a

right-c.e. real r 2 [0, 1).

Cantor space: topology and measure. Recall that a topological space consists of a

set ⌦, together with a topology T on it: namely, a family of subsets of ⌦ that contains

both the empty set ; and ⌦ itself, and that is closed under arbitrary unions and finite

intersections. The elements of the topology T are called the open sets in ⌦, while a subset

of ⌦ is said to be closed if its complement is open in ⌦. If a subset of ⌦ is both open and

closed, it is called clopen. A base B for a topological space (⌦, T ) is a collection of subsets

of ⌦ such that every open set in ⌦ can be written as a union of elements of B. Then, B is

said to generate T .

The Cantor space of infinite binary sequences is the topological space consisting of 2N

together with the topology of pointwise convergence. A base for this topology is given by the

clopen cylinders [�], where � 2 2<N is a finite binary string and [�] = {! 2 2N : � @ !} is

the set of all infinite binary sequences that extend �. Without loss of generality, every open

set U in 2N can be written as a disjoint union of cylinders: that is, U =
S

�

[�] ✓ 2N : � 2 S

 

for some prefix-free set of strings S ✓ 2<N. For ease of notation,
S

�

[�] ✓ 2N : � 2 S

 

will

be abbreviated as [S].

As mentioned in the introduction, every notion of algorithmic randomness hinges on a

probability measure fixed in advance. Each measure determines a specific set of algorith-

mically random sequences, and a sequence which is random relative to a given measure

may not be random relative to a di↵erent measure.

Recall that a �-algebra F on a set ⌦ is a collection of subsets of ⌦ that includes ⌦

itself, and which is closed under complement and countable unions. A probability measure

µ : F ! R on F is a function whose values lie in the unit interval [0, 1], that returns 0

for the empty set ; and 1 for ⌦, and that is countably additive: namely, for all countable

collections {A

n

}

n2N of pairwise disjoint elements of F , µ(
S

n2NA

n

) =
P

n2N µ(A
n

). A

triple of the form (⌦,F , µ)—with ⌦ a set, F a �-algebra on ⌦, and µ a probability measure
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Figure 1.1: The binary Cantor tree of height !
0

, where each node corresponds to an initial
segment of some sequence in 2N. The cylinder [�] ✓ 2N generated by � 2 2<N corresponds
to the collection of all paths in this tree that go through the node labelled by �.

on F—is called a probability space. In what follows, we will focus on probability spaces

of the form (2N,B(2N), µ), where B(2N) is the Borel �-algebra on 2N—i.e., the smallest

�-algebra containing all open sets of Cantor space—and µ : B(2N) ! [0, 1] is a probability

measure on B(2N).

By Caratheodory’s Extension Theorem, any function m defined on cylinders that takes

values in [0, 1], and such that m(["]) = 1 and, for all � 2 2<N, m([�]) = m([�0]) +

m([�1]) can be uniquely extended to a probability measure on B(2N). Hence, from now

on, probability measures on B(2N) will be identified with their restriction to cylinders. A

canonical probability measure on B(2N) is the uniform (or Lebsegue) measure �, given by

�([�]) = 2�|�| for all � 2 2<N—where, as defined earlier, |�| denotes the length of �. We will

also make use of the notion of a semi-measure: namely, a function � defined on cylinders

and taking values in [0, 1] such that �(["])  1 and, for all � 2 2<N, �([�]) � �([�0])+�([�1]).

Since the only type of measures considered here are probability measures, from now

on we will simply refer to them as measures. Moreover, throughout this dissertation, we

shall restrict attention to computable, lower semi-computable, and upper semi-computable

measures (and semi-measures), which are defined as follows:

Definition 1.1.1 (Computable, lower semi-computable, and upper semi-computable mea-

sures). A measure µ on B(2N) is computable if the function � 7! µ([�]) is computable: that
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is, if µ([�]) is a computable real, uniformly in �. This means that there exists a computable

two-place function f : 2<N
⇥ N ! Q which, on inputs � and n, outputs the n-th rational

in the approximation that witnesses the computability of µ([�]). Analogously, µ is a lower

semi-computable measure if µ([�]) is a left-c.e. real, uniformly in �, and it is an upper

semi-computable measure if µ([�]) is a right-c.e. real, uniformly in �. The notions of

computable, lower semi-computable, and upper semi-computable semi-measure are defined

in an analogous way.

The uniform measure � on B(2N) defined above is an obvious example of a computable

measure, as is any Bernoulli measure with a computable bias.

1.2 The measure-theoretic typicality paradigm

According to the measure-theoretic typicality paradigm, a sequence is algorithmically ran-

dom if it is an e↵ectively typical outcome of the underlying measure: namely, if it satisfies

certain “e↵ectively specifiable” properties that hold with probability one (certain e↵ectively

specifiable statistical laws) relative to the underlying measure. Equivalently, a sequence is

algorithmically random if it cannot be e↵ectively discovered to be atypical: i.e., if it can-

not be determined to violate any relevant e↵ectively specifiable statistical law via suitable

randomness tests.

1.2.1 Sequential tests

A property is e↵ectively specifiable if it coincides with a subset of Cantor space that is

definable by an arithmetical formula. Within the arithmetical hierarchy, a subset of Cantor

space is assigned classifications of the form ⇧0

n

,⌃0

n

, or �0

n

, with n a natural number, as

follows:

Definition 1.2.1 (⇧0

n

,⌃0

n

, and �0

n

classes). A set C ✓ 2N is a ⇧0

n

class if it is definable by

a ⇧0

n

formula: that is, if there is a computable relation R such that

C = {! 2 2N : (8k
1

)(9k
2

)...(Qk

n

)R(! � k

1

,! � k

2

, ...,! � k

n

)},

where Q = 8 if n is odd and Q = 9 if n is even.
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A ⌃0

n

class, on the other hand, is the complement of a ⇧0

n

class. Equivalently, it is a set

C ✓ 2N definable by a ⌃0

n

formula, which means that there exists a computable relation R

such that

C = {! 2 2N : (9k
1

)(8k
2

)...(Qk

n

)R(! � k

1

,! � k

2

, ...,! � k

n

)},

where Q = 9 if n is odd and Q = 8 if n is even.

Lastly, a �0

n

class is a set C ✓ 2N that is both a ⇧0

n

class and a ⌃0

n

class.

Every ⇧0

n

class is also a �0

n+1

, a ⇧0

n+1

and a ⌃0

n+1

class, and the same holds for ⌃0

n

classes. A ⌃0

1

class is the Cantor space analogue of a computably enumerable set of natural

numbers, while a �0

1

class is the analogue of a computable set of natural numbers. In

fact, the ⌃0

1

subsets of Cantor space are exactly the ones that are generated by computably

enumerable sets of binary strings: that is, C is a ⌃0

1

class if and only if there is a computably

enumerable prefix-free set S ✓ 2<N such that C = [S].3 A �0

1

class C, on the other hand,

is one for which there is a finite prefix-free set S ⇢ 2<N such that C = [S]. Thus, ⌃0

1

classes are the e↵ectively open subsets of Cantor space, ⇧0

1

classes are the e↵ectively closed

subsets, while �0

1

classes are simply the clopen subsets. Similarly, ⌃0

2

classes are the

e↵ective analogue of F
�

sets (countable unions of closed sets), while ⇧0

2

classes are the

e↵ective analogue of G

�

sets (countable intersections of open sets). These analogies of

course propagate upwards throughout both hierarchies (the arithmetical hierarchy and the

Borel hierarchy). A sequence {C

n

}

n2N of ⌃0

n

classes is said to be a sequence of uniformly

⌃0

n

classes if
T

n2N C

n

is a ⇧0

n+1

class, while a sequence {D
n

}

n2N of ⇧0

n

classes is said to be

a sequence of uniformly ⇧0

n

classes if
S

n2ND

n

is a ⌃0

n+1

class.

We will now see that a canonical statistical law, the Strong Law of Large Numbers,

corresponds to an e↵ectively specifiable property in the above sense.

Example 1.2.2 (The Strong Law of Large Numbers). Fix the uniform measure � and,

given a sequence ! 2 2N, let #0(!�k)
k

denote the relative frequency of 0’s in the first k digits

of !. The set of sequences that satisfy the Strong Law of Large Numbers (relative to �)

corresponds to the following subset of Cantor space, which is definable by a ⇧0

3

formula

3For a proof, see, for instance, [Downey and Hirschfeldt, 2010, Proposition 2.19.2, p. 74].
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Figure 1.2: The arithmetical hierarchy of subsets of Cantor space.

(thereby being a ⇧0

3

class):

(

! 2 2N : (8n)(9m)(8k > m)

�

�

�

�

�

#0(! � k)
k

�

1

2

�

�

�

�

�

 2�n

)

A sequence ↵ 2 2N fails the Strong Law of Large Numbers (relative to �) if there is some

n 2 N such that ↵ belongs to the ⇧0

2

class
�

! 2 2N : (8m)(9k > m)
�

�

#0(!�k)
k

�

1

2

�

�

> 2�n

 

.

Arguably, the most prominent notion of algorithmic randomness in the literature is

Martin-Löf randomness [1966]. Part of the rationale behind Martin-Löf’s definition comes

from statistical hypothesis testing: e↵ectively determining whether a probability-one law

has been violated can be thought of as performing a sequential statistical test for random-

ness. Given a sequence ! 2 2N, the conjecture (or null hypothesis) is that ! is an e↵ectively

typical outcome of the underlying measure: that it satisfies all relevant e↵ective statistical

laws. Then, ! is categorised as random if and only if it passes all e↵ective sequential

statistical tests for randomness.

Statistical hypothesis testing prescribes that a hypothesis be discarded if, upon suppos-

ing that said hypothesis is true, one observes a statistically significant outcome according

to some pre-specified significance level. Martin-Löf randomness is defined in terms of

tests whose significance levels are determined by a computable function f : N ! Q with

lim
n!1

f(n) = 0—without loss of generality, computable significance levels of the form 2�n.

A sequence ! is rejected at level 2�n if and only if there is some m 2 N such that we would

reject the initial segment ! � m of ! at level 2�n. On the other hand, a sequence ! is

rejected simpliciter if, for every such significance level, there is an initial segment of ! that
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we would discard at that level. A Martin-Löf random sequence is one which is not rejected

at every significance level.

From now on, let µ denote an arbitrary computable measure. Martin-Löf randomness

relative to µ is then defined as follows:

Definition 1.2.3 (Martin-Löf randomness).

(a) Let {U

n

}

n2N be a sequence of uniformly ⌃0

1

classes satisfying µ(U
n

)  2�n for all

n 2 N. Such a sequence is called a sequential µ-Martin-Löf test.

(b) A sequence ! 2 2N is µ-Martin-Löf random if and only if there is no sequential

µ-Martin-Löf test {U
n

}

n2N such that ! 2

T

n2N U

n

.

The collection of µ-Martin-Löf random sequences, which will be denoted by µ-MLR, is

a set of µ-measure one. This is because the above definition ensures that there are only

countably many sequential µ-Martin-Löf tests. Hence, the set of all sequences that fail at

least one sequential µ-Martin-Löf test is a countable collection of µ-null sets and so, by

countable additivity, a µ-null set itself. In fact, for analogous reasons, µ(µ-R) = 1 for every

algorithmic randomness notion R, so we will not argue for it each time.

Note that, without loss of generality, sequential µ-Martin-Löf tests can be assumed

to be nested. This is because, given any sequential µ-Martin-Löf test {U

n

}

n2N, one can

construct a nested sequential µ-Martin-Löf test {V

n

}

n2N such that
T

n2N V

n

=
T

n2N U

n

.

This is done as follows: for every n, let V

n

=
S

m>n

U

m

. Since ⌃0

1

classes are closed

under countable unions, {V

n

}

n2N is a sequence of uniformly ⌃0

1

classes. Moreover, for

each n, µ(V
n

) 

P

m>n

µ(U
m

) 

P

m>n

2�m = 2�n. This establishes that {V

n

}

n2N is a

sequential µ-Martin-Löf test. Moreover, it is easy to see that V

0

◆ V

1

◆ V

2

◆ . . . and
T

n2N V

n

=
T

n2N U

n

.

An important feature of Martin-Löf randomness is the existence of universal Martin-Löf

tests—where a sequential µ-Martin-Löf test {V
n

}

n2N is universal when, for every sequential

µ-Martin-Löf test {U
n

}

n2N,
T

n2N U

n

✓

T

n2N V

n

. This means that, to determine whether

a sequence is µ-Martin-Löf random, it su�ces to check whether it passes a single universal

test.4

4The proof of the existence of universal sequential µ-Martin-Löf tests is due to Martin-Löf [1966] and
it crucially relies on the fact that there is an e↵ective enumeration of all sequential µ-Martin-Löf tests (see,
for instance, [Downey and Hirschfeldt, 2010, pp. 233-234]).
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Example 1.2.4. We now give an example (arguably, the best-known example) of a Martin-

Löf random sequence. Let U be a universal prefix-free Turing machine5 and � the uniform

measure. Then, Chaitin’s halting probability ⌦
U

relative to U is the real number

⌦
U

= �([dom(U)]) =
X

�2dom(U)

2�|�|
.

The binary expansion of ⌦
U

, which we also denote by ⌦
U

, is a �-Martin-Löf random se-

quence (cf. [Chaitin, 1975] or [Downey and Hirschfeldt, 2010, Theorem 6.1.3]). Moreover,

it is also left-computably enumerable.

A sequence {U

n

}

n2N of uniformly ⌃0

1

classes such that
P

n2N µ(U
n

) < 1 is called a

µ-Solovay test. Martin-Löf randomness can also be characterised via Solovay tests:6

Theorem 1.2.5 (Solovay [1975]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Martin-Löf random;

(2) for all µ-Solovay tests {U

n

}

n2N, there are at most finitely many n such that ! 2 U

n

.

By modifying the e↵ectivity constraints imposed on sequential tests for randomness,

one can obtain more or less logically strong notions of algorithmic randomness. As we will

see, the other core algorithmic randomness notions that entail Martin-Löf randomness are

defined in terms of more lenient tests, while the randomness notions that are entailed by

Martin-Löf randomness are defined in terms of more demanding tests.

The first such notion that we consider here is Schnorr randomness, introduced by

Schnorr [1971a,b], which is weaker7 than Martin-Löf randomness.8

5A Turing machine is prefix-free if its domain is a prefix-free set.
6The characterisation of Martin-Löf randomness (and, as we will see later, of other standard algorithmic

randomness notions) in terms of Solovay tests is an e↵ective analogue of the Borel-Cantelli Lemma from
probability theory.

7Unless otherwise specified, we will use “weaker” and “stronger” in the non-strict sense. For most
reasonable probability measures, the implications between algorithmic randomness notions are strict, but
there are also measures (e.g., Dirac measures concentrated on a single sequence) that make the algorithmic
randomness hierarchy collapse.

8See, for instance, [Schnorr, 1971a] or [Downey and Gri�ths, 2004] for some examples of sequences (or
reals) that are �-Schnorr random but not �-Martin-Löf random.
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Definition 1.2.6 (Schnorr randomness).

(a) Let {U

n

}

n2N be a sequential µ-Martin-Löf test such that the measures µ(U
n

) are

computable reals, uniformly in n. Then, {U

n

}

n2N is called a sequential µ-Schnorr

test.

(b) A sequence ! 2 2N is µ-Schnorr random if and only if there is no sequential µ-Schnorr

test {U
n

}

n2N such that ! 2

T

n2N U

n

.

The collection of µ-Schnorr random sequences will be denoted by µ-SR.

Just as in the case of Martin-Löf randomness, the values 2�n may be replaced by the

values of any other computable function f : N ! Q with lim
n!1

f(n) = 0.

Schnorr randomness can also be characterised in terms of Solovay tests. The ones that

give rise to Schnorr randomness are known as total µ-Solovay tests: namely, sequences

{U

n

}

n2N of uniformly ⌃0

1

classes such that
P

n2N µ(U
n

) is not only finite, but also a com-

putable real.

Theorem 1.2.7 (Downey and Gri�ths [2004]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Schnorr random;

(2) for all total µ-Solovay tests {U

n

}

n2N, there are at most finitely many n such that

! 2 U

n

.

Next, we consider another algorithmic randomness notion introduced by Schnorr [1971a,b],

computable randomness, which is known to be weaker than Martin-Löf randomness but

stronger than Schnorr randomness.9

Definition 1.2.8 (Computable randomness).

(a) Let {U
n

}

n2N be a sequential µ-Martin-Löf test for which there is a computable measure

⌫ such that, for all n 2 N and � 2 2<N, µ(U
n

\ [�])  2�n

⌫([�]). Then, {U
n

}

n2N is

called a bounded sequential µ-Martin-Löf test.
9Computable randomness was defined by Schnorr in terms of betting strategies—that is, within the

unpredictability paradigm that we will discuss in §1.3. The definition of computable randomness in terms
of sequential tests given in Definition 1.2.8 is due to Merkle et al. [2006]. Another characterisation of
computable randomness in terms of sequential tests is due to Downey et al. [2004]. For an example of a
sequence that is �-computably random but not �-Martin-Löf random, see, for instance, [Schnorr, 1971a,
Satz 7.2], [Schnorr, 1971b, Theorem 3.2], or [Wang, 1996, Theorem 3.2.1]. For an example of a sequence
that is �-Schnorr random but not �-computably random, on the other hand, see, for instance, [Wang, 1996,
Theorem 3.2.2].
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(b) A sequence ! 2 2N is µ-computably random if and only if there is no bounded se-

quential µ-Martin-Löf test {U
n

}

n2N such that ! 2

T

n2N U

n

.

The collection of µ-computably random sequences will be denoted by µ-CR.

We conclude by defining an entire collection of algorithmic randomness notions: the

weak n-randomness family.10

Definition 1.2.9 (Weak n-randomness). Let n � 1. A sequence ! 2 2N is µ-weakly

n-random if and only if it belongs to every ⌃0

n

class of µ-measure one.

The collection of µ-weakly n-random sequences will be denoted by µ-WnR.

To see that this way of defining randomness is in line with the other definitions given

above, note that belonging to every ⌃0

n

class of µ-measure one is equivalent to avoiding all

⇧0

n

classes of µ-measure zero. Now, take a sequential µ-Martin-Löf test {U
n

}

n2N. Clearly,
T

n2N U

n

is a ⇧0

2

class of µ-measure zero. More precisely, since the definition of a sequential

µ-Martin-Löf test requires that there be a computable bound on the rate of convergence

of the measures µ(U
n

),
T

n2N U

n

is a ⇧0

2

class of e↵ective µ-measure zero. Hence, being

µ-Martin-Löf random amounts to avoiding all ⇧0

2

classes of e↵ective µ-measure zero.

For every n � 1, µ-weak (n + 1)-randomness is stronger than µ-weak n-randomness.

Moreover, µ-weak 2-randomness is stronger than µ-Martin-Löf randomness,11 and µ-weak

1-randomness is weaker than µ-Schnorr randomness.12 Among the notions in the weak

n-randomness hierarchy, µ-weak 2-randomness and µ-weak 1-randomness are the ones that

we shall mostly focus on in this dissertation, as they arguably amount to the logically

strongest and the logically weakest core algorithmic randomness notions.

Both µ-weak 2-randomness and µ-weak 1-randomness can also be characterised in terms

of sequential tests. Call a sequence {U
n

}

n2N of uniformly ⌃0

1

classes with lim
n!1

µ(U
n

) = 0 a

generalised sequential µ-Martin-Löf test. For any such test, the set
T

n2N U

n

is a ⇧0

2

class

of µ-measure zero, so the following proposition is immediate.

10The first systematic treatment of weak n-randomness is due to Kurtz [1981]. The first occurrence of
these notions in print is in [Gaifman and Snir, 1982], although they already appear in [Solovay, 1975].

11Recall that a sequence is �0
2 if it is computable in the halting problem. As shown by Martin (cf.

[Solovay, 1975]) and [Downey and Hirschfeldt, 2010, Corollary 7.2.9]), there are no �0
2 �-weakly 2-random

sequences. However, as evidenced by Example 1.2.4, there are left-c.e. (and, so, �0
2) �-Martin-Löf random

sequences.
12As shown by, for instance, Kurtz [1981] and Kautz [1991], there are �-weakly 1-random sequences that

do not satisfy the Strong Law of Large Numbers. However, all �-Schnorr random sequences satisfy the
Strong Law of Large Numbers (see, for example, Schnorr [1971a] and van Lambalgen [1987a]).
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Proposition 1.2.10 (Folklore). Let ! 2 2N. The following are equivalent:

(1) ! is µ-weakly 2-random;

(2) there is no generalised sequential µ-Martin-Löf test {U
n

}

n2N such that ! 2

T

n2N U

n

.

The characterisation of µ-weak 1-randomness in terms of sequential tests, on the other

hand, is due to Wang [1996]. A sequential µ-weak 1-randomness test is a sequential µ-

Martin-Löf test {U
n

}

n2N such that, for all n 2 N, U
n

= [S
n

]—where {S
n

}

n2N is a sequence

of finite, prefix-free, uniformly computable subsets of 2<N. This entails that both {U

n

}

n2N

and {U

n

}

n2N are sequences of uniformly �0

1

classes. Then, the following holds:

Theorem 1.2.11 (Wang [1996]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-weakly 1-random;

(2) there is no sequential µ-weak 1-randomness test {U
n

}

n2N such that ! 2

T

n2N U

n

.

Next, we will see that the algorithmic randomness notions defined here (see Figure 1.3)

can also be characterised via randomness tests of a di↵erent kind.

...
weak 3-randomness

weak 2-randomness

martin-l

¨

of randomness

computable randomness

schnorr randomness

weak 1-randomness

Figure 1.3: The algorithmic randomness notions introduced in §1.2.1, arranged according to
logical strength. An arrow going from some randomness notion R to some other randomness
notion R

0 indicates that, for all computable measures µ, µ-R ✓ µ-R0. None of the displayed
implications can be reversed.
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1.2.2 Integral tests

Let R denote R[{+1} (since we will not be dealing with�1, we shall write1, rather than

+1). Within the measure-theoretic typicality paradigm, algorithmic randomness can also

be defined in terms of a di↵erent class of tests, called integral tests for randomness: roughly,

classes of e↵ectively approximable functions of the form f : 2N ! R which meet certain

additional measure-theoretic conditions. As we will see, integral tests will be particularly

useful in Chapter 3, which focuses on Bayesian convergence to the truth, and Chapter

4, which is devoted to studying algorithmic randomness from a formal learning-theoretic

perspective.

The relevant notion of e↵ective approximability is captured in terms of lower semi-

computable functions:

Definition 1.2.12 (Lower semi-computable function). A function f : 2N ! R is lower

semi-computable if there is a sequence of uniformly computable rational-valued functions

f

k

: 2<N
! Q such that

(a) f

k+1

(�) � f

k

(�) for all k � 0 and � 2 2<N;

(b) f

k

(�⌧) � f

k

(�) for all k � 0 and all �, ⌧ 2 2<N;

(c) f(!) = sup{f
k

(! � n) : k, n � 0} for all ! 2 2N.

We will often make use of the following equivalent characterisation of lower semi-

computable functions, so we rehearse its proof below.

Proposition 1.2.13 (Folklore). A function f : 2N ! R is lower semi-computable if and

only if, for all q 2 Q, f�1((q,1]) = {! 2 2N : f(!) > q} is a ⌃0

1

class, uniformly in q.

Proof. ()) Let {f
k

}

k2N be the sequence of uniformly computable functions witnessing the

lower semi-computability of f . Fix q 2 Q. Then,

{! 2 2N : f(!) > q} = {! 2 2N : sup{f
k

(! � n) : k, n � 0} > q}

= {! 2 2N : 9n9k f
k

(! � n) > q}

Hence, {! 2 2N : f(!) > q} is a ⌃0

1

class, uniformly in q.

(() Since f is lower semi-continuous, it is bounded below. To see this, for each n > 0, let
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U

n

= {! 2 2N : f(!) > �n}. Then, U
n

✓ U

n+1

and
S

n>0

U

n

= 2N. So, by the compactness

of Cantor space,13 there is some n

0

> 0 such that U
n0 = 2N. Hence, f is indeed bounded

below. Let q

0

, q

1

, q

2

, ... be a computable enumeration of the rationals, where q

0

= �n

0

.

Now, for each q

m

in Q, write the open {! 2 2N : f(!) > q

m

} as a disjoint union of clopens
S

Nm
i=0

[⌧
qm,i

], where N

m

is either a natural number or 1 (depending on whether the open

is itself clopen or not), and where the sequence ⌧
qm,i

is computable. Then, we have that

N

0

= 0 and ⌧
q0,0 = ", corresponding to the fact that U

n0 = 2N. This has the e↵ect that,

for each � 2 2<N and each k � 0, the following set is always non-empty and, in particular,

it contains q
0

:

F

k

(�) = {q

m

: m  k, q

m

� �n

0

and 9i  k with � w ⌧

qm,i

}.

Finally, we define f
k

(�) = max(F
k

(�)). Clearly, the f
k

’s are uniformly computable rational-

valued functions and they satisfy Conditions (a) and (b) from Definition 1.2.12. For Con-

dition (c), take ! 2 2N and suppose first that f(!) < sup{f
k

(! � n) : k, n � 0}.

Then, there are some k, n � 0 with f

k

(! � n) > f(!). Moreover, there must be some

m  k such that f

k

(! � n) = q

m

� �n

0

and some i  k such that ! � n w ⌧

qm,i

.

Thus, ! 2 [⌧
qm,i

], which means that f(!) > q

m

. But this is a contradiction. Similarly,

if f(!) > sup{f
k

(! � n) : k, n � 0}, then there is some rational q

m

� �n

0

in the

enumeration such that f(!) > q

m

> sup{f
k

(! � n) : k, n � 0}. So, ! 2 {↵ 2 2N :

f(↵) > q

m

} =
S

i2N[⌧qm,i

]. Let i be such that ! 2 [⌧
qm,i

] and j = max{m, i}. Then,

f

j

(⌧
qm,i

) � q

m

, which implies that sup{f
k

(! � n) : k, n � 0} � q

m

, a contradiction. Hence,

f(!) = sup{f
k

(! � n) : k, n � 0}.

We will now present the integral-test characterisations of Martin-Löf randomness, Schnorr

randomness, weak 2-randomness, and weak 1-randomness. Computable randomness has

also been given an integral-test characterisation (see Rute [2013, 2016]), but it will not be

needed in what follows. In general, the characterisations of algorithmic randomness notions

via integral tests require said tests to be non-negative functions. In Cantor space, however,

the non-negativity constraint may be dropped. This is because, as evinced by Definition

1.2.12, lower semi-computable functions are bounded below; hence, adding a computable

13Recall that a topological space is compact if each of its open covers has a finite sub-cover.
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constant su�ces to obtain a non-negative lower semi-computable function from one that

takes negative values. The reason why the restriction to Cantor space is important is that,

in more general settings, lower semi-computable functions are standardly defined in terms

of the e↵ective lower semi-continuity condition given in Proposition 1.2.13. However, to

prove Proposition 1.2.13, we relied on the compactness of Cantor space to argue that any

lower semi-continuous function on a compact domain is bounded below.

Once again, let µ denote an arbitrary computable measure. We begin with Martin-

Löf randomness—the first algorithmic randomness notion to be given a characterisation in

terms of integral tests:

Theorem 1.2.14 (Levin [1976]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Martin-Löf random;

(2) f(!) < 1 for all lower semi-computable functions f : 2N ! R with finite expectation:

i.e., such that
R

2

N f dµ < 1;

(3) f(!) < 1 for all lower semi-computable functions f : 2N ! R such that
R

2

N f dµ  1.

Any lower semi-computable function f : 2N ! R with finite expectation relative to µ

(or with expectation at most 1 relative to µ) will be referred to as an integral test for

µ-Martin-Löf randomness.

Schnorr randomness, on the other hand, has the following integral test characterisation:

Theorem 1.2.15 (Miyabe [2013a]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Schnorr random;

(2) f(!) < 1 for all lower semi-computable functions f : 2N ! R with computable

expectation: i.e., such that
R

2

N f dµ is a computable real;

(3) f(!) < 1 for all lower semi-computable functions f : 2N ! R such that
R

2

N f dµ = 1.

Any lower semi-computable function f : 2N ! R with computable expectation relative to

µ (or with expectation exactly 1 relative to µ) will be referred to as an integral test for

µ-Schnorr randomness.

The characterisation of weak 2-randomness via integral tests is instead as follows:



CHAPTER 1. ALGORITHMIC RANDOMNESS 29

Theorem 1.2.16 (Miyabe [2013a]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-weakly 2-random;

(2) f(!) < 1 for all lower semi-computable functions f : 2N ! R that are finite µ-almost

everywhere: i.e., such that µ({↵ 2 2N : f(↵) < 1}) = 1.

Any lower semi-computable function that is finite µ-almost everywhere will be referred to

as an integral test for µ-weak 2-randomness.

Now, a function f : 2N ! R is said to be extended computable (computable, for short) if

and only if, for all q, p 2 Q with q < p, f�1((q, p)) and f

�1((q,1]) are ⌃0

1

classes, uniformly

in q, p (see Miyabe [2013b]). Weak 1-randomness can then be characterised as follows via

computable integral tests:

Theorem 1.2.17 (Miyabe [2013b]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-weakly 1-random;

(2) f(!) < 1 for all computable f : 2N ! R that are finite µ-almost everywhere.

Any computable function f : 2N ! R that is finite µ-almost everywhere will be referred to

as an integral test for µ-weak 1-randomness.

This concludes our review of the measure-theoretic typicality paradigm. Next, we will

discuss the unpredictability paradigm.

1.3 The unpredictability paradigm

According to the unpredictability paradigm, the essence of a random sequence, or data

stream, is that past observations do not provide any information that can be exploited

to make better-than-chance predictions about future outcomes. Accordingly, a sequence

is defined as algorithmically random if it is impossible for a gambler to predict the bits

of that sequence and devise an e↵ective betting strategy that would allow them to gain

infinite wealth by successively wagering on said bits.

The betting strategies employed to define randomness are called dyadic martingales:14

14Here, in generalising the concept of a dyadic martingale from the uniform measure to arbitrary com-
putable measures, we follow Rute [2016].
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Definition 1.3.1 (Dyadic martingale). Given a measure µ, a dyadic µ-martingale is a

partial function d :✓ 2<N
! R�0 such that, for all � 2 2<N,

(a) if d(�) is undefined, then µ([�]) = 0 (impossibility condition);

(b) d(�)µ([�]) = d(�0)µ([�0]) + d(�1)µ([�1]) (fairness condition), where a term of the

form d(⌧)µ([⌧ ]) is taken to be equal to 0 if µ([⌧ ]) = 0 even when d(⌧) is undefined.

A dyadic µ-martingale d is said to be normed if d(") = 1. It is said to succeed on a

sequence ! 2 2N if and only if lim sup
n!1

d(! � n) = 1.

To be precise, dyadic martingales formalise the capital functions associated with betting

strategies. For each � 2 2<N on which d is defined, d(�) represents the capital accumulated

after betting on the first n = |�| bits of a sequence whose initial segment of length n is

�. The impossibility condition and the convention that d(⌧)µ([⌧ ]) = 0 if µ([⌧ ]) = 0 and

d(⌧) is undefined ensure that the fairness condition is well-defined. In turn, as its name

suggests, the fairness condition ensures that the game is fair: it requires that the gambler’s

expected winnings always equal their current capital. A dyadic martingale is successful on

a sequence if the underlying betting strategy wins an unbounded amount of wealth when

played against that sequence.

Dyadic martingales are but a special case of the general notion of a (discrete-time)

martingale from probability theory. First, recall that a random variable is simply a

measurable function. In particular, a function f : 2N ! R is a random variable if

{! 2 2N : f(!) � r} 2 B(2N) for all r 2 R. Moreover, a function f is said to be in-

tegrable if the expectation E
µ

[|f |] of its absolute value relative to the underlying measure

µ is finite. A martingale is then defined as follows: it is a countably infinite sequence of

random variables, all of them integrable and such that, for each n, the conditional expec-

tation of the (n+ 1)-st random variable given the previous n random variables is equal to

the value of the n-th random variable. In other words:

Definition 1.3.2 (Martingale). Given a measure µ, a µ-martingale is a sequence {M
n

}

n2N

of random variables such that, for each n 2 N,

(i) E
µ

[|M
n

|] < 1, and
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(ii) E
µ

[M
n+1

|M

1

, ...,M

n

] = M

n

.

It is easy to see that dyadic martingales satisfy these conditions. A function of the form

d :✓ 2<N
! R�0 can in fact be thought of as a sequence of random variables X

d

0

, X

d

1

, ...

with X

d

n

(!) = d(! � n) whenever d(! � n) is defined. If d is a dyadic µ-martingale, the

impossibility condition ensures that each random variable X

d

n

is defined µ-almost every-

where; the fairness condition, on the other hand, guarantees that E
µ

[Xd

|�|+1

| [�]] = d(�)

whenever d(�) is defined.

A dyadic µ-martingale is computable if it is a total computable function and almost

everywhere computable if it is a partial computable function [Rute, 2016]. Similarly, a

dyadic µ-martingale is left-c.e. if it is a total left-c.e. function and almost everywhere left-

c.e. if it is a partial left-c.e. function. Now, a measure µ is strictly positive if µ([�]) > 0 for

all � 2 2<N. For strictly positive measures, computable and almost everywhere computable

dyadic martingales coincide. Moreover, every almost everywhere computable dyadic µ-

martingale d can be turned into a left-c.e. dyadic µ-martingale d

0 by letting d

0(�) equal

d(�) whenever d(�) is defined and setting it to 0 otherwise (i.e., when µ([�]) = 0). Similarly,

every almost everywhere left-c.e. dyadic µ-martingale can be turned into a left-c.e. dyadic

µ-martingale.

The definition of a dyadic martingale can be relaxed as follows: given a measure µ,

a function d :✓ 2<N
! R�0 will be said to be a dyadic µ-supermartingale if, for all

� 2 2<N, d satisfies the impossibility condition from Definition 1.3.1, and d(�)µ([�])] �

d(�0)µ([�0]) + d(�1)µ([�1]). Dyadic supermaringales di↵er from dyadic martingales in

that they can be wasteful: they are “allowed to discard part of [the] capital, such as by

buying drinks or tipping the dealer” [Downey and Hirschfeldt, 2010, p. 235]. The notion

of success, as well as the notions of computable, almost everywhere computable, left-c.e.,

and almost everywhere left-c.e. dyadic supermartingale are defined analogously to the case

of dyadic martingales.

We are now ready to characterise randomness in terms of dyadic martingales. We will

rehearse the characterisations of Martin-Löf randomness and computable randomness in

this setting, and then we will define an additional randomness notion in terms of martin-

gales: density randomness. All of these notions will play an important role in subsequent

chapters. Schnorr randomness and weak 1-randomness have been given martingale-based
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characterisations, as well (cf. [Schnorr, 1971a,b] and [Kurtz, 1981], respectively, or Downey

and Hirschfeldt [2010]), but we will not make use of them in this dissertation.

We begin with Martin-Löf randomness, which can be characterised in terms of dyadic

(super)martingales as follows:

Theorem 1.3.3 (Schnorr [1971a]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Martin-Löf random;

(2) µ([! � n]) > 0 for all n 2 N and, for all (almost everywhere) left-c.e. dyadic µ-

martingales d, lim sup
n!1

d(! � n) < 1.

(3) µ([! � n]) > 0 for all n 2 N and, for all (almost everywhere) left-c.e. dyadic µ-

supermartingales d, lim sup
n!1

d(! � n) < 1.

Computable randomness was first characterised in terms of (total) computable dyadic

martingales by Schnorr [1971a,b] in the context of the uniform measure. For computable

measures in general, the following holds:

Theorem 1.3.4 (Rute [2016]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-computably random;

(2) µ([! � n]) > 0 for all n 2 N and, for all almost everywhere computable dyadic

µ-martingales d, lim sup
n!1

d(! � n) < 1;

(3) µ([! � n]) > 0 for all n 2 N and, for all almost everywhere computable dyadic

µ-martingales d, lim
n!1

d(! � n) exists and is finite.

Lastly, we consider the following randomness notion, which results from a natural modi-

fication of the characterisation of µ-Martin-Löf randomness in terms of (almost everywhere)

left-c.e. dyadic µ-martingales/µ-supermartingales:

Definition 1.3.5 (Density randomness). A sequence ! 2 2N is µ-density random if and

only if µ([! � n]) > 0 for all n 2 N and, for all (almost everywhere) left-c.e. dyadic µ-

martingales d, lim
n!1

d(! � n) exists and is finite. Equivalently, ! is µ-density random if

and only if µ([! � n]) > 0 for all n 2 N and, for all (almost everywhere) left-c.e. dyadic

µ-supermartingales d, lim
n!1

d(! � n) exists and is finite.
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The collection of µ-density random sequences will be denoted by µ-DR. Clearly, if a

sequence is µ-density random, then it is µ-Martin-Löf random, for all µ. However, as we

shall see, the converse does not hold.

Density randomness owes its name to the following fact. In [2016], in line with a current

trend in algorithmic randomness whereby e↵ective versions of classical almost-everywhere

theorems in analysis are used to define new randomness notions, Miyabe et al.15 define a

randomness concept which relies on an e↵ectivisation of the Lebesgue Density Theorem.

This randomness notion, which Miyabe et al. call density randomness, is defined as follows.

Let C 2 B(2N) and ! 2 2N. Then, the lower density of ! in C is given by

⇢(C |!) = lim inf
n!1

�(C \ [! � n])
�([! � n]) .

A sequence ! 2 2N is a �-dyadic positive density point if ⇢(C |!) > 0 for all ⇧0

1

classes C

such that ! 2 C; it is a �-dyadic density-one point if ⇢(C |!) = 1 for all ⇧0

1

classes C such

that ! 2 C. Then, a sequence ! 2 2N is said to be �-density random if and only if it is

both �-Martin-Löf random and a �-dyadic density-one point.

This definition ensures that �-density randomness entails �-Martin-Löf randomness.

As shown by Bienvenu et al. [2012b], if a sequence ! is �-Martin-Löf random, then, for all

⇧0

1

classes C such that ! 2 C, the upper density of ! in C is one: i.e.,

⇢(C |!) = lim sup
n!1

�(C \ [! � n])
�([! � n]) = 1.

However, a �-Martin-Löf random sequence need not be a �-dyadic density-one point. The

above definition also entails that �-density randomness is weaker than �-weak 2-randomness

(for all ⇧0

1

classes C and rationals q 2 [0, 1], the set {! 2 C : ⇢(C |!) < q} is a ⇧0

2

class

which, by the Lebesgue Density Theorem, has �-measure zero).

Crucially, in the context of the uniform measure, this notion of density randomness

has an equivalent characterisation in terms of dyadic (super)martingales. This result was

proven by Andrews, Cai, Diamondstone, Lempp, and Miller, all members the UW-Madison

Logic Group, and the proof was fully spelled out in print by Miyabe et al. [2016]:

15See also [Bienvenu et al., 2014].
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Theorem 1.3.6 (Madison group). Let ! 2 2N. The following are equivalent:

(1) ! is �-density random (i.e., ! is �-Martin-Löf random, as well as a �-dyadic density-

one point);

(2) for all left-c.e. dyadic �-martingales d, lim
n!1

d(! � n) exists and is finite.

(3) for all left-c.e. dyadic �-supermartingales d, lim
n!1

d(! � n) exists and is finite.

Definition 1.3.5 is the obvious generalisation of Condition (2) and Condition (3) from

Theorem 1.3.6 to arbitrary computable measures. Unless otherwise specified, when talking

about density randomness we will always refer to the notion from Definition 1.3.5.

With this note, we end our discussion of the unpredictability paradigm, as well as our

excursion into the fundamentals of the theory of algorithmic randomness. Next, we will

see how this theory may be employed to better understand inductive learning and the

learning performance of computationally limited learners. We will begin by considering

the applications of algorithmic randomness in Bayesian learning and, in particular, in the

study of Bayesian merging-of-opinions theorems.



Chapter 2

Algorithmic randomness and

merging of opinions

Regularities are where you find them, and you can

find them anywhere.

Goodman, Fact, Fiction and Forecast

[R]andomness... is going to be a concept which is relative

to our body of knowledge, which will somehow reflect what

we know and what we don’t know.

Kyburg, The Logical Foundations of Statistical Inference

Bayesian learning encompasses a family of methods of statistical inference that cru-

cially rely on prior probability distributions (priors), which are meant to encapsulate the

experimenter’s background knowledge and inductive assumptions before performing an ex-

periment. This reliance on priors is often taken to be a cause for concern: when the available

background knowledge does not su�ce to reach inter-subjective agreement on prior proba-

bilities, how can one be possibly guaranteed that the inferences drawn on the basis of one’s

own subjective prior provide any objective epistemic warrant? Perhaps most alarmingly,

does the use of Bayesian methods—and, thus, of prior probability distributions—in the

sciences threaten the objectivity of scientific knowledge?

35
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According to objective Bayesians, such as Jaynes [1968] and Rosenkrantz [1981], this

problem can be overcome by singling out the class of rationally permissible priors, the adop-

tion of which ensures the objectivity of the conclusions derived from them. For instance,

some objective Bayesians might contend that symmetry considerations play a crucial role

in fixing the collection of rationally permissible priors, or that priors should be calibrated

with known frequencies. On the other hand, subjective Bayesians such as Ramsey [1931],

de Finetti [1937], Savage [1954], and Je↵rey [1977] maintain that the only requirement that

rationality imposes on prior probability distributions is probabilistic coherence, and that

there is no principled way of arguing for the superiority of a certain prior over another.

To rebuke accusations of excessive subjectivity, subjective Bayesians then often appeal

to various asymptotic results from probability and measure theory that are meant to show

that a Bayesian agent’s initial beliefs or assumptions, in the form of a prior probability

distribution, are essentially immaterial for the purpose of successful inquiry: the dynamics

of Bayesian conditioning by themselves ensure that priors are eventually washed out by

the shared evidence. Suppes, for instance, expresses this sentiment as follows:

It is of fundamental importance to any deep appreciation of the Bayesian view-

point to realize the particular form of the prior distribution expressing beliefs

held before the experiment is conducted is not a crucial matter. [...] The well-

designed experiment is one that will swamp divergent prior distributions with

the clarity and sharpness of its results, and thereby render insignificant the

diversity of prior opinion. [Suppes, 1966, p. 204]

Similarly, Edwards, Lindman, and Savage argue that

Although your initial opinion about future behavior [...] may di↵er radically

from your neighbor’s, your opinions and his will ordinarily be so transformed by

application of Bayes’ theorem [...] as to become nearly indistinguishable. This

approximate merging of initially divergent opinions is, we think, one reason

why empirical research is called “objective”. [Edwards et al., 1963, p. 197]

The theorems employed to argue that initial diversity of opinions is immaterial have
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their roots in Savage’s work [1954], and they fall under the umbrella of “Bayesian merging-

of-opinions” results. Roughly put, these results establish that, provided that their re-

spective subjective priors are su�ciently compatible, two Bayesian agents1 beginning the

learning process with divergent beliefs are guaranteed to almost surely reach a consen-

sus: as the number of observations increases, their beliefs (in the form of their posterior

probability distributions) will become arbitrarily close with probability one.

In this chapter, we explore the phenomenon of merging of opinions in the context of

more realistic, less-than-ideal agents. We do so by bringing into play the theory of compu-

tation: that is, by focusing on computationally limited Bayesian agents whose subjective

priors are computable probability measures.2 The key insight behind this work is that

merging of opinions for computationally limited Bayesian agents—computable Bayesian

agents, for short—can then be studied through the prism of algorithmic randomness. In

particular, as we shall see, the algorithmic randomness concepts introduced in Chapter 1

can be employed to define refined notions of doxastic compatibility: given an algorithmic

randomness notion R, the beliefs of two computable Bayesian agents will be said to be

compatible relative to R if their respective computable priors agree on which data streams

are R-random. More precisely, given two priors µ and ⌫, ⌫ will be said to be compatible

with µ relative to R if the collection of µ-R-random data streams is a subset of the collection

of ⌫-R-random data streams.

The rationale for modelling doxastic compatibility in terms of algorithmic random-

ness is that the algorithmically random data streams, though maximally irregular when

considered locally, bit by bit, are of necessity globally regular. As seen in Chapter 1, in

spite of being unpredictable (observing a finite initial segment of a random data stream

does not provide any useful information for predicting what the next observation is going

to be), the algorithmically random sequences must nonetheless satisfy various e↵ectively

specifiable statistical laws (such as the Strong Law of Large Numbers and the Law of the

Iterated Logarithm when the underlying measure is i.i.d.). From this perspective, di↵er-

ent notions of algorithmic randomness may be seen as encoding di↵erent beliefs about

the global uniformity of nature: each algorithmic randomness concept corresponds, from

1As shown by Schervish and Seidenfeld [1990], these results are generalisable to the case where there
are more than two Bayesian agents, provided that certain technical conditions are met.

2See Definition 1.1.1.
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the viewpoint of the computable Bayesian agent with respect to whom that randomness

notion is defined, to a precise class of e↵ectively specifiable global regularities. So, when

two computable Bayesian agents agree on what data streams are algorithmically random,

they can be seen as making compatible inductive assumptions: they have compatible be-

liefs (or commitments) about which statistical properties the observational data is going to

satisfy. In other words, they concur on the extent of nature’s global uniformity, where the

type of uniformity in question amounts to the satisfaction of certain e↵ectively specifiable

statistical laws.

To corroborate the legitimacy of using algorithmic randomness to define notions of

doxastic compatibility, we will show that agreeing on which data streams are algorithmi-

cally random provably leads to asymptotic merging of opinions. In other words, the main

results of this chapter establish that, when shared by computable Bayesian agents with

di↵ering subjective priors, the inductive assumptions pertaining to the global uniformity

of nature encoded by algorithmic randomness notions guarantee the eventual (almost sure)

attainment of inter-subjective agreement.

As explained in Chapter 1, the theory of algorithmic randomness is deeply rooted in

measure theory, and the question of what equivalence relations are induced by randomness

notions in the context of computable measures has already received some attention in the

algorithmic randomness literature (see, in particular, [Bienvenu and Merkle, 2009]). We

will review and make use of some of these results in what follows. Our most important

contribution in this chapter consists in connecting algorithmic randomness to the study of

notions of compatibility between subjective priors and in showing that the resulting notions

of compatibility imply merging. This work therefore bridges the theory of algorithmic

randomness and the formal epistemology (and statistics) literature on merging of opinions,

Bayesian learning, and their philosophical ramifications.

The structure of this chapter is as follows. In §2.1.1, we review some canonical notions

of agreement and disagreement between priors. In §2.1.2, we discuss the phenomenon of

merging of opinions in the classical setting and, in particular, what is arguably the most

prominent merging-of-opinions result: the Blackwell-Dubins Theorem [Blackwell and Du-

bins, 1962]. We then also consider the opposite phenomenon: polarisation of opinions. Our

main results are in §2.2. In §2.2.1, we explore the relations between standard notions of
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compatibility/incompatibility and the notions of agreement induced by algorithmic ran-

domness. Then, we show that all core algorithmic randomness notions except for weak

1-randomness generate notions of compatibility that lead to merging. In §2.2.2, we con-

clude with some simple observations about how disagreement over which data streams are

algorithmically random leads to asymptotic polarisation of opinions.

2.1 Merging of opinions

Recall that a probability space (⌦, E , µ) is a triple consisting of a set ⌦, a �-algebra E on ⌦,

and a probability measure µ on E (again, since the only measures that we will be dealing

with in what follows are probability measures, we will simply call them measures from now

on). The set ⌦ is the sample space: the collection of all possible basic outcomes of the

experiment being modelled—or, more generally, the collection of all possible observational

data associated with the inductive problem under consideration. The �-algebra E , on the

other hand, corresponds to the collection of all events (involving observational data) that

get assigned a probability: intuitively, all of the events that a Bayesian learner can entertain

in the given situation. In this setting, hypotheses are thus elements of the algebra E .

We are interested in situations where the same space comes equipped with two measures

µ and ⌫. These measures may be given various interpretations. So far, we have been

taking probability distributions to represent subjective priors; yet, measures admit a non-

personalist interpretation, as well: they can be taken to encode objective distributions.

For instance, a measure may be seen as representing the true chance distribution governing

some stochastic process (e.g., a game of chance or Brownian motion). Merging-of-opinions

theorems apply in this context, too. When one of the measures involved is an objective

chance distribution while the other one is the subjective prior of a Bayesian agent, these

results establish that, with increasing information, the agent’s beliefs will asymptotically

align with the true chances, provided that said beliefs are su�ciently compatible with the

truth. So, in what follows, while µ and ⌫ will generally be assumed to be the subjective

priors of two Bayesian agents, when appropriate, µ may also be viewed as representing the

true distribution governing some process, and ⌫ as the subjective prior of a Bayesian agent

trying to approximate the true distribution.
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Bodies of evidence can be naturally modelled in terms of �-algebras. In particular,

increasing bodies of evidence can be represented as filtrations on (⌦, E): namely, as se-

quences {E

n

}

n2N of sub-�-algebras3 of E such that E

n

✓ E

n+1

for all n 2 N—where the

latter condition ensures that, for each n, the information embodied by E

n+1

refines the

information embodied by E

n

. Given a filtration {E

n

}

n2N on (⌦, E), let E1 denote the Borel

�-algebra �(
S

n2N E

n

) generated by the union of the E

n

’s. If E1 = E , then we say that

the filtration is complete: the cumulating evidence will eventually settle every event that

a Bayesian agent can entertain.

Learning occurs by conditionalising on the (total) available evidence. Since, in this

setting, the growing evidence is encapsulated by a filtration, we need to define the notion

of conditional probability given a sub-�-algebra. Fix a filtration {E

n

}

n2N on (⌦, E), an

event A 2 E , and a prior µ. The conditional probability µ(A | E

n

) of A given E

n

is an

E

n

-measurable function4 (a random variable) µ(A | E

n

) : ⌦! R such that, for all B 2 E

n

,

µ(A \ B) =
R

B

µ(A | E

n

) dµ. Such a function exists for any sub-�-algebra5 and is unique

up to sets of µ-measure zero.6

As explained in Chapter 1, in what follows we shall focus on the space (2N,B(2N))—where

2N is the set of countably infinite binary sequences and B(2N) the Borel �-algebra on

2N—and on measures µ, ⌫ on B(2N). We will think of sequences in 2N as data streams.

In addition, we will restrict attention to the filtration {F

n

}

n2N, where, for each n, F
n

is

the sub-�-algebra of B(2N) generated by the cylinders [�] associated to strings � 2 2<N

of length n. Each such algebra is thus generated by a finite partition of 2N (for instance,

F

1

is the algebra {;, [0], [1], 2N} generated by the finite partition {[0], [1]}). Intuitively, F
n

represents all possible evidential situations that a Bayesian agent could find themselves in

at the n-th stage of the learning process, after having made n observations (after having

3Given two �-algebras F and E on the same set, F is a sub-�-algebra of E if F ✓ E .
4Recall that, given (⌦, E), a function f : ⌦ ! R is E-measurable if, for all r 2 R, {! 2 ⌦ : f(!) � r} 2 E .
5This is a consequence of the Radon-Nikodym Theorem (see, for instance, [Durrett, 2010, Theorem

A.4.8., p. 470]).
6The standard definition of conditional probability given by Bayes’ formula only applies to cases where

the conditioning event has positive probability. Defining conditional probabilities in this more general
setting allows to define conditionalisation with respect to probability zero events, as well. This definition
also ensures that µ(A | En) is a version of the conditional expectation E[�A | En] of the indicator function
�A of A.
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observed the first n digits of the true data stream). Since �(
S

n2NF

n

) = B(2N), this filtra-

tion is complete. We are thus assuming that the evidence is both increasing and complete.

Given that the F

n

’s are generated by finite partitions, learning in this setting essentially

proceeds by standard Bayesian conditioning. We can in fact almost surely recover the

familiar definition of conditional probabilities as follows: for any S 2 B(2N), n 2 N, and

µ-almost every ! 2 2N,7

µ(S | [! � n]) = µ(S \ [! � n])
µ([! � n]) =

1

µ([! � n])

Z

[!�n]
µ(S | F

n

) dµ = µ(S | F

n

)(!),

where the second identity follows from the definition of µ(S | F

n

), and the last identity

from the fact that the value of µ(S | F

n

) is constant within the partition cells generating

F

n

—and so, in particular, within the cylinder [! � n].

2.1.1 Classical notions of compatibility and incompatibility

We begin by reviewing some classical notions of compatibility and incompatibility between

measures, which will serve as a springboard for our study of notions of agreement induced

by algorithmic randomness.

Arguably, the most well-studied notion of compatibility between measures is absolute

continuity, which is defined below.

Definition 2.1.1 (Absolute continuity). Given measures µ and ⌫, µ is said to be absolutely

continuous with respect to ⌫ (in symbols, µ ⌧ ⌫) if, for any event S 2 B(2N), µ(S) > 0

implies that ⌫(S) > 0. If both µ ⌧ ⌫ and ⌫ ⌧ µ, then µ and ⌫ are said to be mutually

absolutely continuous.

If µ and ⌫ encode the subjective priors of two Bayesian agents, then µ being absolutely

continuous with respect to ⌫ intuitively means that µ is at least as dogmatic a prior as ⌫ is.

All of the events that are a priori “excluded” by the agent with prior ⌫ (by virtue of having

been assigned probability zero before any observations are made) are also “excluded” by

the agent with prior µ.8 In other words, the agent with prior ⌫ cannot be surprised by any

7In fact, this holds for every ! 2 2N such that µ([! � n]) > 0 for all n 2 N.
8We write “excluded” within scare quotes because assigning probability zero to an event is not the same

as considering that event impossible (similarly, assigning probability one to an event is not the same as
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event to which the agent with prior µ assigns positive probability. It is however possible for

µ to be strictly more dogmatic than ⌫: i.e., the agent with prior µ may assign probability

zero to some events to which the agent with prior ⌫ assigns positive probability. On the

other hand, if µ represents the true distribution governing some stochastic process while ⌫

is the subjective prior of a Bayesian agent, then µ being absolutely continuous with respect

to ⌫ means that the agent with prior ⌫ assigns probability zero only to events that truly

have probability zero.

Here are two examples to elucidate this type of compatibility.

Example 2.1.2. If ⌫ is a convex combination of µ
1

and µ

2

, then µ

1

⌧ ⌫ and µ

2

⌧ ⌫.

Take the uniform measure � and let ⌫ = 1

4

� + 3

4

µ 1
3
, where µ 1

3
is the Bernoulli measure

given by µ 1
3
([�]) = 1

3

k

·

2

3

n�k

, with n the length of �, k the number of 0’s occurring in �

and (n� k) the number of 1’s occurring in �. Measure ⌫ is a convex combination of � and

µ 1
3
. Now, let S 2 B(2N) such that �(S) > 0. Then, 1

4

�(S) > 0 and 3

4

µ 1
3
(S) � 0, which

together imply that ⌫(S) > 0. Hence, �⌧ ⌫. An analogous argument shows that µ 1
3
⌧ ⌫.

Example 2.1.3. Given a measure ⌫, let f : 2N ! R be a unit-integrable random variable

relative to ⌫: that is, let f be a measurable function with
R

2

N |f | d⌫ = 1. Then, define the

measure µ as follows. For all S 2 B(2N), let µ(S) =
R

S |f | d⌫. Clearly, µ is a probability

measure: since f is unit-integrable, µ(2N) = 1 and µ(;) = 0; moreover, for all countable

collections {A

i

}

i2N of pairwise disjoint sets in B(2N), µ

�

S

i2NA

i

�

=
R

S
i2N Ai

|f | d⌫ =
P

i2N
R

Ai
|f | d⌫ =

P

i2N µ(A
i

). For any S 2 B(2N) with ⌫(S) = 0, we have that µ(S) =
R

S |f | d⌫ = 0. So, µ ⌧ ⌫.

We now consider a canonical notion of incompatibility between measures, as well as its

dual notion, which yields a very minimal form of compatibility.

Definition 2.1.4 (Orthogonality). Two measures µ and ⌫ are said to be orthogonal (in

symbols, µ?⌫) if there is an event S 2 B(2N) such that µ(S) = 1 but ⌫(S) = 0. If there is

no such event, then µ and ⌫ are non-orthogonal (in symbols, µ��?⌫).

taking it to be certain). For a simple illustration of this di↵erence, take the uniform measure � on B(2N).
For every data stream ! 2 2N, �({!}) = 0; however, one data stream has to correspond to the true sequence
of outcomes of the experiment under consideration. So, assigning probability zero to an event amounts to
treating it as extremely unlikely or negligible, but not as literally impossible.
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Orthogonality is diametrically opposed to absolute continuity. If µ and ⌫ are orthog-

onal, then absolute continuity fails in the most extreme way possible, as the event with

(without loss of generality) ⌫-measure zero and positive µ-measure witnessing the failure

of absolute continuity has in fact µ-measure one. So, orthogonality captures a radical type

of disagreement. As a result, non-orthogonality embodies a very weak type of agreement.

Below is an example of two orthogonal measures, followed by an example of two non-

orthogonal measures.

Example 2.1.5. Take the uniform measure � and the Bernoulli measure µ 1
3
from Example

2.1.2. Given a sequence ! 2 2N, let #0(!�n)
n

denote the relative frequency of 0’s in the first n

digits of !. By the Strong Law of Large Numbers, �
⇣n

! 2 2N : lim
n!1

#0(! � n)
n

=
1

2

o⌘

= 1

and µ 1
3

⇣n

! 2 2N : lim
n!1

#0(! � n)
n

=
1

3

o⌘

= 1. As a consequence, µ 1
3

⇣n

! 2 2N :

lim
n!1

#0(! � n)
n

=
1

2

o⌘

= 0, which shows that � and µ 1
3
are orthogonal.

Example 2.1.6. Let µ 1
3
be the Bernoulli measure from the previous example, � the uniform

measure, and ⌫ = 1

2

µ 1
3
+ 1

2

�. Then, µ 1
3
⌧ ⌫ and � ⌧ ⌫. Let S 2 B(2N). If µ 1

3
(S) = 0,

then 1

2

µ 1
3
(S) = 0. Since 1

2

�(S)  1

2

, we then have that ⌫(S)  1

2

, too. On the other hand,

if ⌫(S) = 0, then µ 1
3
(S) = 0, as µ 1

3
⌧ ⌫. Hence, µ 1

3
and ⌫ are non-orthogonal. A similar

argument establishes that � and ⌫ are non-orthogonal.

If µ ⌧ ⌫, then µ and ⌫ are non-orthogonal. The converse, however, does not hold:

non-orthogonality is a much weaker form of compatibility than absolute continuity. The

measures from Example 2.1.6 provide a counterexample: even though, as noted above,

µ 1
3

⌧ ⌫, it is not the case that ⌫ ⌧ µ 1
3
. Since µ 1

3

⇣n

! 2 2N : lim
n!1

#0(! � n)
n

=
1

2

o⌘

= 0

and �
⇣n

! 2 2N : lim
n!1

#0(! � n)
n

=
1

2

o⌘

= 1, ⌫
⇣n

! 2 2N : lim
n!1

#0(! � n)
n

=
1

2

o⌘

=
1

2
,

which shows that ⌫ 6⌧ µ 1
3
. Similarly, even though � ⌧ ⌫, ⌫ 6⌧ �. For an example

of two measures that are non-orthogonal, and such that neither of them is absolutely

continuous with respect to the other, consider the following. Let µ be such that, for all

� 2 2<N, µ([0�]) = 2�(|�|+1), µ([10]) = 0, and µ([11�]) = 2�(|�|+1). In addition, let ⌫

be such that, for all � 2 2<N, ⌫([1�]) = 2�(|�|+1), ⌫([01]) = 0, and ⌫([00�]) = 2�(|�|+1).

Now, for any S 2 B(2N) with µ(S) = 1, µ(S \ [11]) > 0, since µ([11]) > 0. But then

⌫(S \ [11]) = ⌫(S | [11])⌫([11]) = µ(S | [11])1
2

µ([11]) = 1

2

µ(S \ [11]) > 0, which, in turn,
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implies that ⌫(S) > 0. On the other hand, for any S 2 B(2N) with ⌫(S) = 1, ⌫(S\[00]) > 0.

Hence, µ(S \ [00]) = 1

2

⌫(S \ [00]) > 0 and, so, µ(S) > 0. Therefore, µ and ⌫ are non-

orthogonal. However, neither µ ⌧ ⌫ nor ⌫ ⌧ µ, since ⌫([01]) = 0 while µ([01]) = 1

4

, and

µ([10]) = 0 while ⌫([10]) = 1

4

.

The fact that absolute continuity and orthogonality are diametrically opposed notions

is laid bare by the Lebesgue Decomposition Theorem, a classical result in measure theory.9

Given any two probability measures µ and ⌫, the Lebesgue Decomposition Theorem in fact

implies that there is some ↵ 2 [0, 1] such that µ can be decomposed into two probability

measures as follows: µ = ↵µ

a

+ (1� ↵)µ
o

, where µ

a

⌧ ⌫ and µ

o

?⌫. Intuitively, µ
a

is the

part of µ that is compatible with ⌫, while µ

o

is the part of µ that is incompatible with

it. If ↵ = 1, then µ ⌧ ⌫, and if ↵ = 0, then µ?⌫; if, on the other hand, ↵ 2 (0, 1), then

the decomposition of µ into µ

a

and µ

o

can be shown to be unique. As we shall see, this

result plays an important role in the context of merging-of-opinions theorems and their

philosophical implications.

We conclude our review of compatibility notions by discussing a weaker form of absolute

continuity: local absolute continuity.

Definition 2.1.7 (Local absolute continuity). Given measures µ and ⌫, µ is said to be

locally absolutely continuous with respect to ⌫ (in symbols, µ ⌧

loc

⌫) if, for every n 2 N

and every S 2 F

n

, µ(S) > 0 implies that ⌫(S) > 0.10 If both µ ⌧

loc

⌫ and ⌫ ⌧

loc

µ, then

µ and ⌫ are said to be mutually locally absolutely continuous.

Given that the filtration {F

n

}

n2N represents the possible evidence that the agents may

observe, µ ⌧

loc

⌫ means that ⌫ agrees with µ about which evidence they expect to see.

In other words, ⌫ cannot be surprised by any piece of evidence to which µ assigns positive

probability. Another way to think about local absolute continuity is that it amounts to

absolute continuity restricted to finite-horizon events—that is, events that can be settled

by a finite amount of evidence.

Recall that a measure µ is strictly positive if it assigns positive probability to every basic

open set: i.e., if µ([�]) > 0 for all � 2 2<N. Intuitively, strictly positive measures embody

9See, for instance, [Durrett, 2010, Theorem A.4.7, p. 469].
10Given the definition of the filtration {Fn}n2N, in our setting this condition is equivalent to the following:

for any � 2 2<N, µ([�]) > 0 implies that ⌫([�]) > 0.
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a certain type of open-mindedness: they do not a priori rule out any finite sequence of

observations. Clearly, any two strictly positive measures are mutually locally absolutely

continuous. For a concrete example, take once again the uniform measure � and the

Bernoulli measure µ 1
3
, which are both strictly positive. While absolute continuity entails

local absolute continuity, the reverse implication does not hold: as shown in Example 2.1.5,

� and µ 1
3
are orthogonal and, so, neither of them is absolutely continuous with respect to

the other.

The above also establishes that local absolute continuity does not imply non-orthogonality:

Example 2.1.5 reveals that two measures can be locally absolutely continuous, and yet

there can be an infinite-horizon event (i.e., an event that can only be settled by an infinite

amount of evidence) on which these two measures maximally disagree. As a matter of

fact, non-orthogonality and local absolute continuity are independent notions: neither of

them implies the other. To see that non-orthogonality indeed fails to imply local absolute

continuity, note that the example given earlier (after Example 2.1.6) of two non-orthogonal

measures µ and ⌫ such that µ 6⌧ ⌫ and ⌫ 6⌧ µ is also a case where µ 6⌧

loc

⌫ and ⌫ 6⌧

loc

µ.

The notions of compatibility that we discussed above and the logical relationships

between them are summarised in Figure 2.1 below.

µ ⌧ ⌫

µ ⌧

loc

⌫

µ��?⌫

Figure 2.1: Logical dependencies between the notions of compatibility from §2.1.1. An
arrow going from one notion to another indicates that, for any two measures µ and ⌫,
compatibility in the sense of the first notion implies compatibility in the sense of the
second notion.

2.1.2 Merging and polarisation in the classical framework

We are now ready to turn our attention to the phenomenon of merging of opinions—and

to the other extreme: polarisation of opinions.

The most well-studied notion of merging of opinions in the literature was introduced
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in a seminal article by Blackwell and Dubins [1962]:

Definition 2.1.8 (Merging). Given measures µ and ⌫, ⌫ is said to merge with µ (in

symbols, ⌫
M

�! µ) if, for every ✏ > 0 and µ-almost every ! 2 2N, there is some N(✏,!) 2 N

such that, for all n > N(✏,!) and all S 2 B(2N),

�

�

�

⌫(S | F

n

)(!)� µ(S | F

n

)(!)
�

�

�

 ✏.

Having that
�

�

⌫(S | F

n

)(!)�µ(S | F

n

)(!)
�

�

 ✏ for all S 2 B(2N) is equivalent to having

that supS2B(2N)
�

�

⌫(S | F

n

)(!)�µ(S | F

n

)(!)
�

�

 ✏. As a result, merging can be equivalently

characterised as follows: ⌫
M

�! µ if, for µ-almost every ! 2 2N,

lim
n!1

sup
S2B(2N)

�

�

�

⌫(S | F

n

)(!)� µ(S | F

n

)(!)
�

�

�

= 0.

The distance supS2B(2N)
�

�

⌫(S) � µ(S)
�

� between µ and ⌫ is called the total variation

distance. Essentially, it amounts to the largest possible di↵erence between the probabilities

that µ and ⌫ can assign to the same event. Thus, supS2B(2N)
�

�

⌫(S | F

n

)(!)�µ(S | F

n

)(!)
�

�

intuitively represents the maximum possible disagreement between µ and ⌫ after having

observed the outcomes of the first n experiments.

A crucial feature of this type of merging (and what makes it such a strong notion of

consensus) is that it requires that the Bayesian agent with prior ⌫ be eventually able to

forecast correctly, or in agreement with measure µ, the probabilities of any event, including

the probabilities of infinite-horizon events—more precisely, of events in the tail �-algebra

G1 =
T

n2N G

n

, where, for each n 2 N, G
n

= �(
S

i�n

F

i

).

Now, the following result, known as the Blackwell-Dubins Merging-of-Opinions Theo-

rem (the Blackwell-Dubins Theorem, for short), is a foundational result in statistics and

Bayesian epistemology. It establishes that absolute continuity is su�cient for merging: in

other words, if ⌫ is no more dogmatic than µ, then, with µ-probability one, ⌫ will eventually

agree with µ on the probability of all events, as the evidence accumulates.

Theorem 2.1.9 (Blackwell and Dubins [1962]). Given measures µ and ⌫, if µ ⌧ ⌫, then

⌫

M

�! µ.

The Blackwell-Dubins Theorem also has a partial converse: merging entails absolute
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continuity in the presence of local absolute continuity. In other words, under the assump-

tion that ⌫ shares the evidence with µ, merging of opinions in the sense of Blackwell and

Dubins and absolute continuity are equivalent notions.

Theorem 2.1.10 (Kalai and Lehrer [1994]). Given measures µ and ⌫ such that µ ⌧

loc

⌫,

if ⌫
M

�! µ, then µ ⌧ ⌫.

As mentioned at the beginning of this chapter, the Blackwell-Dubins Theorem is philo-

sophically significant because it is commonly taken to vindicate subjective Bayesianism

by demonstrating that divergent initial opinions should not be a cause for concern: they

do not threaten the objectivity of scientific inquiry, since objectivity can be recovered in

a Peircean way in the form of inter-subjective agreement [Peirce, 1965]. Yet, merging

of opinions is not guaranteed in all circumstances: as we have seen, it occurs when the

agents’ initial beliefs are su�ciently compatible. When the agent’s priors are not similar

enough, disagreement may persist, even as the evidence accumulates. For instance, it is

easy to see that merging implies non-orthogonality, which means that if two measures are

orthogonal, then they fail to merge. When combined with the Lebesgue Decomposition

Theorem discussed in §2.1.1, this observation has an interesting consequence: for any two

probability measures µ and ⌫, there is some ↵ 2 [0, 1] such that µ can be decomposed as

µ = ↵µ

a

+ (1� ↵)µ
o

, where µ

a

is the part of µ with which ⌫ asymptotically merges, while

µ

o

is the part of µ with which ⌫ fails to merge.

The most radical failure of merging is polarisation of opinions, which occurs when

disagreement, rather than being gradually eliminated by the shared evidence, becomes

maximal as the available information increases.

Definition 2.1.11 (Polarisation). Measures µ and ⌫ are said to polarise (relative to µ) if

there is a collection P 2 B(2N) of data streams with µ(P) > 0 such that, for all ! 2 P,

lim
n!1

sup
S2B(2N)

�

�

�

⌫(S | F

n

)(!)� µ(S | F

n

)(!)
�

�

�

= 1.

Maximal polarisation of opinions, which we denote by ⌫kµ, occurs when µ(P) = 1.

Orthogonality and local absolute continuity together entail maximal polarisation of

opinions: if two agents agree on what evidence is possible but their priors are orthogonal,
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then, as they obtain more and more information, their beliefs become maximally divergent.

Observation 2.1.12. Given measures µ and ⌫, if µ?⌫ and µ ⌧

loc

⌫, then ⌫kµ.

Proof. Suppose that there is some C 2 B(2N) with µ(C) = 0 and ⌫(C) = 1, and that

µ ⌧

loc

⌫. Let U be the set {! 2 2N : (8n)µ([! � n]) > 0}. Clearly, µ(U) = 1. Moreover,

for all ! 2 U and all n 2 N, ⌫([! � n]) > 0, since µ ⌧

loc

⌫. Hence, for all ! 2 U

and all n 2 N, µ(C | F

n

)(!) = 0 and ⌫(C | F

n

)(!) = 1, from which it follows that
�

�

⌫(C | F

n

)(!)�µ(C | F

n

)(!)
�

� = 1. Therefore, supS2B(2N)
�

�

⌫(S | F

n

)(!)�µ(S | F

n

)(!)
�

� = 1

for all ! 2 U and n 2 N, from which it follows that ⌫kµ.

From the perspective of the Lebesgue Decomposition Theorem, this means that, for any

two probability measures µ and ⌫, if µ ⌧

loc

⌫, then there is some ↵ 2 [0, 1] such that µ can

be decomposed as µ = ↵µ

a

+(1�↵)µ
o

, where µ
a

is the part of µ with which ⌫ asymptotically

merges, while µ

o

is the part of µ with which ⌫ achieves maximal polarisation.11

The results discussed in this section are summarised in Figure 2.2. In light of these

observations, it appears paramount to provide a systematic analysis of the conditions under

which merging occurs and those under which it fails. In particular, a clear understanding

of which notions of compatibility lead to merging—and of how reasonable these notions

are—would certainly help clarify the philosophical implications of the Blackwell-Dubins

Theorem. Our results in the remainder of this chapter o↵er a step in this direction.

2.2 Algorithmic randomness

Classical merging-of-opinions results such as the Blackwell-Dubins Theorem are proven for

arbitrary measures. In what follows, we will restrict attention to computable measures—and

sometimes also make use of the more general concept of a lower semi-computable measure.12

We will indicate it explicitly when the given measures are lower semi-computable; other-

wise, from now on, all mentioned measures should be assumed to be computable. This

11For a generalisation of the Blackwell-Dubins Theorem (which the authors dub the “Bayesian consensus-
or-polarization law”) that combines merging and polarisation under the assumption of local absolute con-
tinuity, see Theorem 3 in [Nielsen and Stewart, 2019].

12See Definition 1.1.1 in Chapter 1.
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µ ⌧ ⌫

⌫

M

�! µ

µ ⌧

loc

⌫

µ��?⌫

µ ⌧

loc

⌫ and µ?⌫

⌫kµ

Figure 2.2: Logical dependencies between the notions of (in)compatibility discussed in
§2.1.1 and the notions of merging/polarisation of opinions discussed in §2.1.2.

restriction is not motivated by normative considerations: we will not argue that com-

putability is a rationality requirement on priors. Rather, it stems from the fact that our

aim in this chapter is to elucidate the phenomenon of merging of opinions in the context

of computationally limited Bayesian agents, which can be naturally identified with agents

whose initial credences are given by computable (or, more generally, e↵ective) priors. This

perspective is in keeping with the overarching goal of this dissertation: namely, study-

ing inductive learning and its connections with algorithmic randomness in the setting of

less-than-ideal, computationally limited learners.

While focusing on e↵ective measures of course means losing some generality, it also

adds structure and allows to draw distinctions that were previously beyond reach (in this

respect, our approach is consonant with that of Gaifman and Snir [1982]13). Notably,

this computability-theoretic perspective allows to introduce many new more fine-grained

notions of compatibility between priors, and to thereby represent the corresponding agents’

inductive assumptions in a more detailed way.

From a methodological point of view, this is especially significant because, as mentioned

earlier, the Blackwell-Dubins Theorem and the philosophical lesson standardly drawn from

it crucially rely on absolute continuity: merging of opinions cannot be gotten for free, it

follows when the agents’ initial beliefs are su�ciently similar. Absolute continuity, however,

is not without detractors (see, for instance, [Earman, 1992] and [Miller and Sanchirico,

13Our setting is, in a sense, less general, since we restrict attention to the Cantor space of infinite
binary sequences, and to �0

1-definable (i.e., computable) and ⌃0
1-definable (i.e., lower semi-computable)

measures. See Chapter 3, §3.3.2 for a brief discussion of Gaifman and Snir’s logical framework for modelling
probabilistic learning.
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1999]). Most recently, Nielsen and Stewart [2019] argued that there does not seem to be

any plausible normative constraint on beliefs entailing that any two rationally permissible

priors must be absolutely continuous, and that absolute continuity is also “of dubious

descriptive value” [Nielsen and Stewart, 2019, p. 17].

The objection targeting the normative status of absolute continuity might very well

be on point (and is in fact perfectly in line with the subjectivist outlook that merging-

of-opinions theorems are meant to vindicate). The second worry voiced by Nielsen and

Stewart, on the other hand, may be di↵used by showing that there are many other forms

of doxastic compatibility with a reasonable interpretation that either imply absolute con-

tinuity (thereby bolstering its descriptive value) or that, by themselves, guarantee the

attainment of asymptotic consensus. Results of this type would provide a new way of look-

ing at absolute continuity and show that, even if inter-subjective agreement cannot always

be achieved, there are su�ciently many circumstances where a type of compatibility from

which merging follows is realised to warrant holding out hope.

This chapter pursues this strategy to lend some additional credibility to the standard

interpretation of merging-of-opinions theorems. In particular, we address the above worry

by defining notions of compatibility induced by algorithmic randomness—a perspective

that goes hand in hand with the computability-theoretic restrictions imposed on priors.

Then, we show that agreeing on which data streams are algorithmically random indeed

leads to merging of opinions between computable Bayesian agents—and that (maximally)

disagreeing on which data streams are algorithmically random leads to (maximal) polari-

sation of opinions.

What motivates our focusing on algorithmic randomness? Though possibly surprising

at first, as already hinted at by Skyrms, algorithmic randomness notions may be thought

of as embodying beliefs in a special version of the principle of the uniformity of nature:

Without pursuing the matter in detail, I want to note a fact that is invariant

over questions of fine tuning the analysis. It is that random sequences must

have a limiting relative frequency. This is a rather spicy revelation in view of

Reichenbach’s taking the existence of limiting relative frequencies as the prin-

ciple of the uniformity of nature. The most chaotic and disordered alternative

to uniformity that we can find entails uniformity-in-the-sense-of-Reichenbach!



CHAPTER 2. RANDOMNESS AND MERGING OF OPINIONS 51

[...] Randomness is indeed a kind of disorder, but it carries with it of necessity

a kind of statistical order in the large. [Skyrms, 1984, p. 38]

In particular, as argued at the beginning of this chapter, algorithmic randomness notions

may be taken to encode a specific type of inductive assumptions—or commitments (either

explicit or implicit)—that result from the subjective prior with respect to which algorithmic

randomness is defined. This is because algorithmic randomness notions embody all e↵ective

global regularities of a certain type that an agent expects to see in the data by virtue of

having a certain prior. For instance, if their initial beliefs are captured by the Bernoulli

measure with bias 2

3

towards 1, the agent is (at least implicitly) making the inductive

assumption that the limiting relative frequency of 0’s in the true data stream is 1

3

. So,

by believing that every sequence of n observations (or outcomes of the experiment under

consideration) featuring k 0’s has probability 1

3

k

2

3

(n�k)

, the agent is also committed to

believing in the relevant version of the Strong Law of Large Numbers. But algorithmic

randomness captures inductive assumptions of exactly this type: i.e., commitments to

believing that the data will display certain e↵ective statistical regularities which stem from

one’s beliefs about events that can be settled with a finite number of observations.

2.2.1 Algorithmic randomness and merging

With this motivation in place, we can now turn to the properties of the notions of com-

patibility induced by algorithmic randomness. Recall that, given two computable priors µ

and ⌫, as well as an algorithmic randomness notion R, we take ⌫ to be compatible with

µ with respect to R if µ-R ✓ ⌫-R. Intuitively, this indicates that the agent with prior ⌫

cannot be surprised by a data stream that the agent with prior µ considers typical.

Let us begin by reviewing some known results concerning the notions of compatibility

yielded by Martin-Löf randomness and computable randomness. First, note that Martin-

Löf randomness and computable randomness can also be characterised in terms of ratios

of semi-measures and measures, respectively.

Theorem 2.2.1 (Folklore). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Martin-Löf random;
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(2) µ([! � n]) > 0 for all n 2 N, and lim sup
n!1

⇠([! � n])
µ([! � n]) < 1 for all lower semi-

computable semi-measures ⇠.

Theorem 2.2.2 (Rute [2016]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-computably random;

(2) µ([! � n]) > 0 for all n 2 N, and lim sup
n!1

⇠([! � n])
µ([! � n]) < 1 for all computable mea-

sures ⇠.

With these characterisations at hand, we can rehearse the proof of the following result,

originally due to Muchnik et al. [1998], which establishes that, for any two computable

measures, agreeing on which data streams are computably random entails agreeing on

which data streams are Martin-Löf random.

Proposition 2.2.3 (Muchnik et al. [1998]). If µ-CR ✓ ⌫-CR, then µ-MLR ✓ ⌫-MLR.

Proof. Suppose that µ-CR ✓ ⌫-CR and that ! 2 µ-MLR. Then, since µ-MLR✓ µ-CR,

! 2 µ-CR, which entails that ! 2 µ-MLR\ ⌫-CR. By Theorem 2.2.1, µ([! � n]) > 0 for

all n 2 N and, by Theorem 2.2.2, ⌫([! � n]) > 0 for all n 2 N. Now, suppose towards a

contradiction that ! /2 ⌫-MLR. Then, by Theorem 2.2.1, there is a lower semi-computable

semi-measure ⇠ such that lim sup
n!1

⇠([! � n])
⌫([! � n]) = 1. The fact that lim sup

n!1

⇠([! � n])
⌫([! � n]) = 1

entails that ⇠([! � n]) > 0 for all n 2 N. Since ⇠ is a lower semi-computable semi-measure

and ! 2 µ-MLR, we also have that lim sup
n!1

⇠([! � n])
µ([! � n]) < 1 by Theorem 2.2.1. But then,

lim sup
n!1

µ([! � n])
⌫([! � n]) = lim sup

n!1

⇠([! � n])
⌫([! � n])

,

⇠([! � n])
µ([! � n]) = 1,

which contradicts the fact that ! 2 ⌫-CR.

We now prove some new results pertaining to the type of compatibility induced by den-

sity randomness (cf. Definition 1.3.5). To this end, we first show that, just like Martin-Löf

randomness and computable randomness, density randomness has a natural characterisa-

tion in terms of ratios of (semi-)measures, as well.

Theorem 2.2.4. Let ! 2 2N. The following are equivalent:
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(1) ! is µ-density random;

(2) µ([! � n]) > 0 for all n 2 N, and lim
n!1

⇠([! � n])
µ([! � n]) exists and is finite for all lower

semi-computable semi-measures ⇠.

The proof of Theorem 2.2.4 relies on the following auxiliary lemma:

Lemma 2.2.5. Fix a (computable) measure µ.

(i) If d is a normed dyadic µ-martingale, then ⇠([�]) = d(�)µ([�]) defines a measure. If d

is left-c.e. or almost-everywhere left-c.e., then ⇠ is lower semi-computable, uniformly

from d.

(ii) If ⇠ is a semi-measure, then

d(�)

8

>

<

>

:

= ⇠([�])

µ([�])

if µ([�]) > 0,

undefined if µ([�]) = 0

is a dyadic µ-supermartingale. If ⇠ is a lower semi-computable semi-measure, then

d is an almost-everywhere left-c.e dyadic µ-supermaringale. If ⇠ is a lower semi-

computable semi-measure and µ is strictly positive, then d is a left-c.e dyadic µ-

supermaringale.

Proof. (i) First, note that ⇠ is well-defined: by Definition 1.3.1, if d(�) is undefined, then

µ([�]) = 0 and d(�)µ([�]) = 0. Now, since d is normed, d(") = 1. Hence, ⇠(["]) =

d(")µ(["]) = 1. Moreover, for all � 2 2<N,

⇠([�]) = d(�)µ([�])

= d(�0)µ([�0]) + d(�1)µ([�1])

= ⇠([�0]) + ⇠([�1]),

where the second identity follows from the fairness condition in Definition 1.3.1. Given that

d and µ are both non-negative, so is ⇠. So, all that we have left to show is that ⇠([�])  1

for all � 2 2<N. This follows from a simple argument by induction. We already know that

⇠(["]) = 1. Now, suppose that ⇠([�])  1. Then, ⇠([�0]) = ⇠([�]) � ⇠([�1])  ⇠([�])  1.
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The reasoning is analogous in the case of ⇠([�1]). Hence, ⇠ is a measure.

Next, suppose that d is left-c.e. (and, thus, total). Let h : 2<N
⇥ N ! Q be a total

computable function such that, for all (�, n) 2 2<N
⇥ N, the sequence {h(�, n)}

n2N is

non-decreasing and lim
n!1

h(�, n) = d(�). Without loss of generality, h can be assumed to

be non-negative. Since µ is computable, it is also lower semi-computable. Therefore, for

each � 2 2<N, µ([�]) is a left-c.e. real, uniformly in �. For each � 2 2<N, let {q

�,n

}

n2N

be a computable non-decreasing sequence of rationals with lim
n!1

q

�,n

= µ([�]). With-

out loss of generality, the q

�,n

’s can be assumed to be non-negative. For each � 2 2<N,

{h(�, n) · q
�,n

}

n2N is thus a computable non-decreasing sequence of rational numbers such

that lim
n!1

h(�, n) · q
�,n

= d(�)µ([�]) = ⇠([�]). Hence, ⇠([�]) is a left-c.e. real, uniformly in

�, which means that ⇠ is lower semi-computable. If, on the other hand, d is merely almost

everywhere left-c.e., then it is a partial left-c.e. function. Let h :✓ 2<N
⇥ N ! Q be a

non-negative partial computable function such that (1) for all � 2 2<N, d(�) is defined if

and only if h(�, n) is defined for all n 2 N, and (2) for all � 2 2<N such that d(�) is defined,

{h(�, n)}
n2N is a non-decreasing sequence with lim

n!1
h(�, n) = d(�). As before, for each

�, let {q

�,n

}

n2N be a computable non-decreasing sequence of non-negative rationals with

lim
n!1

q

�,n

= µ([�]). Now, for each � and n, let

q

0
�,n

=

8

>

<

>

:

h(�, n) · q
�,n

if q
�,n

> 0;

0 otherwise.

Then, {q0
�,n

}

n2N is a computable non-decreasing sequence of rational numbers such that

lim
n!1

q

0
�,n

= d(�)µ([�]) = ⇠([�]), which establishes that ⇠ is lower semi-computable.

(ii) If d(�) is undefined, then µ([�]) = 0 by definition. Hence, the impossibility condition is

satisfied. If µ([�]) = 0, then µ([�0]) = µ([�1]) = 0. Hence, d(�)µ([�]) = 0 = d(�0)µ([�0])+

d(�1)µ([�1]) (again, recall that we follow the convention that d(⌧)µ([⌧ ]) = 0 if µ([⌧ ]) = 0

even when d(⌧) is undefined). If, on the other hand, µ([�]) > 0, then we have two cases to

consider. First, suppose that µ([�0]) > 0 and µ([�1]) > 0. Then,

d(�)µ([�]) =
⇠([�])

µ([�])
µ([�])

� ⇠([�0]) + ⇠([�1])
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=
⇠([�0])

µ([�0])
µ([�0]) +

⇠([�1])

µ([�1])
µ([�1])

= d(�0)µ([�0]) + d(�1)µ([�1]),

where the inequality holds because ⇠ is by assumption a semi-measure. Second, suppose

that either µ([�0]) = 0 or µ([�1]) = 0. Without loss of generality, assume that µ([�0]) = 0.

Then,

d(�)µ([�]) =
⇠([�])

µ([�])
µ([�])

� ⇠([�0]) + ⇠([�1])

� 0 + ⇠([�1])

= d(�0)µ([�0]) + d(�1)µ([�1]).

Hence, the version of the fairness condition for dyadic supermartingales is satisfied in all

cases.

Now, suppose that ⇠ is lower semi-computable. Define the function h :✓ 2<N
⇥ N ! Q

as follows. If µ([�]) = 0, let h(�, n) be undefined for all n 2 N. If µ([�]) > 0, on the

other hand, we do the following. Let {q
�,n

}

n2N be a computable non-decreasing sequence

of (without loss of generality) non-negative rationals witnessing the fact that ⇠([�]) is a

left-c.e. real, uniformly in �. Since µ is a computable measure, it is also upper semi-

computable, which means that µ([�]) is a right-c.e. real, uniformly in �. Let {q0
�,n

}

n2N be

a computable non-increasing sequence of positive rationals witnessing the fact that µ([�])

is right-c.e.: that is, lim
n!1

q

0
�,n

= µ([�]). Hence,
�

1

q

0
�,n

 

n2N is a computable non-decreasing

sequence of positive rationals that converges to 1

µ([�])

. Define h(�, n) as q�,n

q

0
�,n

for all n. Then,

h is a partial computable function, and the sequence {h(�, n)}
n2N is non-decreasing and

converges to ⇠([�])

µ([�])

= d(�) for all � 2 2<N such that d(�) is defined (i.e., all � 2 2<N such

that µ([�]) > 0). Hence, d is almost everywhere left-c.e. (and it is left-c.e. if µ is strictly

positive).

We are now ready to prove Theorem 2.2.4, which o↵ers an alternative characterisation

of the notion of density randomness.



CHAPTER 2. RANDOMNESS AND MERGING OF OPINIONS 56

Proof of Theorem 2.2.4. For the (1)-to-(2) direction, suppose that ! is µ-density random.

Then, ! is also µ-Martin-Löf random. Hence, by Theorem 2.2.1, µ([! � n]) > 0 for all

n 2 N. Now, let ⇠ be a lower semi-computable semi-measure. By Lemma 2.2.5(ii), ⇠

µ

is

an almost everywhere left-c.e. dyadic µ-supermartingale. By Theorem 1.3.6, lim
n!1

d(! � n)
exists and is finite for all almost everywhere left-c.e. dyadic µ-supermartingales d. Hence,

lim
n!1

⇠([! � n])
µ([! � n]) exists and is finite.

For the (2)-to-(1) direction, suppose that ! /2 µ-DR. Then, by Theorem 1.3.6, there is a

left-c.e. dyadic µ-martingale d that fails to converge to a finite value along !. Without

loss of generality, we can assume d to be normed. If µ([! � n]) = 0 for some n 2 N,

then we are done. So, suppose that µ([! � n]) > 0 for all n 2 N. For each � 2 2<N, let

⇠([�]) = d(�)µ([�]). Then, by Lemma 2.2.5(i), ⇠ is a lower semi-computable measure. But

then the sequence
n

⇠([!�n])
µ([!�n])

o

n2N
either does not have a limit or lim

n!1

⇠([! � n])
µ([! � n]) = 1.

The above characterisation can then be put to use to show that agreeing on which

data streams are Martin-Löf random entails agreeing on which data streams are density

random.14

Proposition 2.2.6. If µ-MLR ✓ ⌫-MLR, then µ-DR ✓ ⌫-DR.

Proof. Suppose that µ-MLR ✓ ⌫-MLR and ! 2 µ-DR. Then, ! 2 µ-MLR, which, in turn,

entails that ! 2 µ-DR\ ⌫-MLR. Suppose that ! /2 ⌫-DR. Since ! 2 ⌫-MLR, Theorem 2.2.1

entails that ⌫([! � n]) > 0 for all n. Thus, by Theorem 2.2.4, there must be a lower

semi-computable semi-measure ⇠ such that either lim
n!1

⇠([! � n])
⌫([! � n]) = 1 or the sequence

n

⇠([!�n])
⌫([!�n])

o

n2N
does not have a limit.

Let us consider the second case first. The fact that
n

⇠([!�n])
⌫([!�n])

o

n2N
does not have a limit

entails that ⇠([! � n]) > 0 for all n, and that there are a, b 2 R with 0 < a < b such that

the number of upcrossings of the sequence
n

⇠([!�n])
⌫([!�n])

o

n2N
across the interval [a, b] is infinite.

In addition, since ! 2 µ-DR, Theorem 2.2.4 entails that µ([! � n]) > 0 for all n, and

lim
n!1

⇠([! � n])
µ([! � n]) exists and is finite. Call this limit `. We have two sub-cases to examine.

14Note that the implications that hold among the notions of compatibility induced by algorithmic ran-
domness discussed so far are a mirror image of the implications that hold between the underlying algorithmic
randomness concepts. We have that µ-CR ✓ ⌫-CR entails that µ-MLR ✓ ⌫-MLR, which, in turn, entails that
µ-DR ✓ ⌫-DR. On the other hand, as seen in Chapter 1, density randomness entails Martin-Löf randomness,
which entails computable randomness.



CHAPTER 2. RANDOMNESS AND MERGING OF OPINIONS 57

First, suppose that ` = 0. Then, lim
n!1

1

,

⇠([! � n])
µ([! � n]) = 1. For each n,

µ([! � n])
⌫([! � n]) =

⇠([! � n])
⌫([! � n])

,

⇠([! � n])
µ([! � n])

(all three ratios are well-defined and positive because µ([! � n]) > 0, ⌫([! � n]) > 0, and

⇠([! � n]) > 0 for all n). Since there are infinitely many n with ⇠([!�n])
⌫([!�n]) � b > 0, we have

that

lim sup
n!1

µ([! � n])
⌫([! � n]) = lim sup

n!1

⇠([! � n])
⌫([! � n])

,

⇠([! � n])
µ([! � n]) � lim

n!1

✓

b

,

⇠([! � n])
µ([! � n])

◆

= 1.

This, however, contradicts the fact that ! 2 ⌫-MLR. So, suppose instead that ` > 0. Let

a

0 = 2

3

a + 1

3

b and b

0 = 1

3

a + 2

3

b. Then, 0 < a

0
< b

0, and the number of upcrossings of

the sequence
n

⇠([!�n])
⌫([!�n])

o

n2N
across the interval [a0, b0] is infinite. Moreover, for each of the

infinitely many n such that ⇠([!�n])
⌫([!�n])  a < a

0, a0 � ⇠([!�n])
⌫([!�n]) >

1

3

(b � a), and for each of the

infinitely many n such that ⇠([!�n])
⌫([!�n]) � b > b

0, ⇠([!�n])
⌫([!�n]) � b

0
>

1

3

(b�a). But then we have that

lim sup
n!1

⌫([! � n])
µ([! � n]) = lim sup

n!1

⇠([! � n])
µ([! � n])

,

⇠([! � n])
⌫([! � n]) �

`

a

0 , and

lim inf
n!1

⌫([! � n])
µ([! � n]) = lim inf

n!1

⇠([! � n])
µ([! � n])

,

⇠([! � n])
⌫([! � n]) 

`

b

0 .

Since, `, a0 and b

0 are all positive and a

0
< b

0, `

a

0 >
`

b

0 . Hence, the sequence
n

⌫([!�n])
µ([!�n])

o

n2N
fails to converge, which, by Theorem 2.2.4, contradicts the assumption that ! 2 µ-DR.

Let us now consider the first case: that is, suppose that lim
n!1

⇠([! � n])
⌫([! � n]) = 1. This implies

that ⇠([! � n]) > 0 for all n. Since lim
n!1

⇠([! � n])
µ([! � n]) < 1 by Theorem 2.2.4, we also have

that

lim sup
n!1

µ([! � n])
⌫([! � n]) = lim sup

n!1

⇠([! � n])
⌫([! � n])

,

⇠([! � n])
µ([! � n]) = 1,

which contradicts the fact that ! 2 ⌫-MLR. Hence, ! 2 ⌫-DR.
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Next, we will see that agreeing on which data streams are density random entails abso-

lute continuity. A fortiori, by Proposition 2.2.6 and Proposition 2.2.3, agreeing on which

data streams are Martin-Löf random and agreeing on which data streams are computably

random entail absolute continuity, as well.15

Proposition 2.2.7. If µ-DR ✓ ⌫-DR, then µ ⌧ ⌫.

Proof. Suppose there is some S 2 B(2N) with ⌫(S) = 0, but µ(S) > 0. Then, there is

some q 2 Q with µ(S) > q > 0. Since ⌫ is regular,16 ⌫(S) = inf{⌫(U) : S ✓ U and U 2

B(2N) is an open set}. Hence, for all n 2 N, there is an open set U

n

with S ✓ U

n

such

that ⌫(U
n

) < 2�n and µ(U
n

) > q. Every U

n

is of the form
S

i2N[�n,i]—where, with-

out loss of generality, the sets [�
n,i

] can be taken to be pairwise disjoint. For each U

n

,

there is some K

n

such that (1) µ(
S

iKn
[�

n,i

]) � q, while (2) ⌫(
S

iKn
[�

n,i

]) < 2�n.

Let V

n

= {�

n,0

, ...,�

n,Kn} and let
S

iKn
[�

n,i

] be denoted as [V
n

]. For each m 2 N, let

V

m

=
S

n>m

[V
n

]. Then, we have that ⌫(V
m

) 

P

n>m

⌫([V
n

]) 

P

n>m

2�n

 2�m and,

since µ([V
n

]) � q for all n, µ(V
m

) � q, as well. Note that the sets V
n

can be chosen in such

a way that {V

m

}

m2N is a sequence of uniformly ⌃0

1

classes. Given n, simply enumerate

the strings in 2<N (for instance, in the length-lexicographic order) until conditions (1) and

(2) are met. By the above, we are guaranteed that a finite, prefix-free collection of cylin-

ders satisfying these conditions will eventually be found, e↵ectively. Hence, {V
m

}

m2N is a

⌫-Martin-Löf test. This entails that
T

m2N V

m

\ ⌫-MLR= ;. Given that ⌫-DR ✓ ⌫-MLR,
T

m2N V

m

\ ⌫-DR= ;. However, since µ(V
m

) � q for all m and the sequence {V

m

}

m2N is

nested, µ(
T

m2N V

m

) > 0. Due to the fact that µ-DR has µ-measure one, we therefore have

have that
T

m2N V

m

\ µ-DR 6= ;. Hence, µ-DR 6✓ ⌫-DR.

As mentioned above, Proposition 2.2.7 allows to conclude that agreeing on which data

streams are computably random, Martin-Löf random, and density random all entail ab-

solute continuity. This is epistemologically significant because, by the Blackwell-Dubins

Theorem, we then have that these three di↵erent forms of compatibility induced by al-

gorithmic randomness all ensure asymptotic merging of opinions. In other words, the

15The fact that µ-MLR ✓ ⌫-MLR entails µ ⌧ ⌫ was proven by Bienvenu and Merkle [2009]. The proof
of Proposition 2.2.7 is analogous to the proof of this fact.

16Regularity follows from the fact that ⌫ is a Borel probability measure and Cantor space is a locally
compact Hausdor↵ space with a countable base.
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inductive assumptions encoded by these core algorithmic randomness notions, the commit-

ments to the global uniformity of nature that they each represent, when shared, guarantee

the attainment of inter-subjective agreement between di↵erent Bayesian agents.

Corollary 2.2.8. If µ-DR ✓ ⌫-DR, then ⌫

M

�! µ. A fortiori, if µ-MLR ✓ ⌫-MLR, then

⌫

M

�! µ, and if µ-CR ✓ ⌫-CR, then ⌫
M

�! µ.

While it does not entail the other notions of compatibility induced by randomness,

agreeing on which data streams are Schnorr random entails absolute continuity, too:17

Proposition 2.2.9 (Bienvenu and Merkle [2009]). If µ-SR ✓ ⌫-SR, then µ ⌧ ⌫.

Thus, the inductive assumptions encapsulated by Schnorr randomness lead to almost

sure inter-subjective agreement, as well.

Corollary 2.2.10. If µ-SR ✓ ⌫-SR, then ⌫
M

�! µ.

None of the above implications can be reversed: that is, for each of them, it is possible

to find two computable measures for which the converse implication fails (see Appendix

2.A). This evinces that approaching the question of when inter-subjective agreement is

attainable from the perspective of algorithmic randomness a↵ords a richer, more fine-

grained analysis of the types of commitments and inductive assumptions that a computable

Bayesian agent can make. Taken together, the above results attest to the utility of applying

algorithmic randomness, as a tool for modelling various types of agreement about the

global uniformity of nature, in the study of Bayesian learning—and, specifically, of the

phenomenon of merging of opinions.

Next, we turn our attention to the weak n-randomness hierarchy. First of all, in the

e↵ective setting, it is natural to consider the following versions of absolute continuity, which

only apply to ⇧0

n

and ⌃0

n

classes,18 respectively.

Definition 2.2.11 (⇧0

n

-absolute continuity and ⌃0

n

-absolute continuity). A measure µ is

said to be ⇧0

n

-absolutely continuous with respect to measure ⌫ (in symbols, µ ⌧

⇧

0
n
⌫) if,

for any ⇧0

n

class S 2 B(2N), µ(S) > 0 entails that ⌫(S) > 0. Similarly, µ is said to be

17In fact, by inspecting the proof of Proposition 2.2.7, it can be seen that the measures ⌫(Vm) are
computable reals, uniformly in m, which means that {Vm}m2N is also a ⌫-Schnorr test.

18See Definition 1.2.1 in Chapter 1.
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⌃0

n

-absolutely continuous with respect to ⌫ (in symbols, µ ⌧

⌃

0
n
⌫) if, for any ⌃0

n

class

S 2 B(2N), µ(S) > 0 entails that ⌫(S) > 0.

Without loss of generality, we can focus on ⇧0

n

-absolute continuity, given that ⇧0

n

-

absolute continuity is equivalent to ⌃0

n+1

-absolute continuity:

Observation 2.2.12. For all n � 1, µ ⌧

⇧

0
n
⌫ if and only if µ ⌧

⌃

0
n+1

⌫.

Proof. For the left-to-right direction, suppose that µ ⌧

⇧

0
n
⌫ and let S be a ⌃0

n+1

class with

⌫(S) = 0. Then, S =
S

m2N S

m

, where {S

m

}

m2N is a sequence of uniformly ⇧0

n

classes.

Since ⌫(S) = 0, ⌫(S
m

) = 0 for all m 2 N. Hence, given that µ ⌧

⇧

0
n
⌫, µ(S

m

) = 0 for all

m 2 N, which, in turn, entails that µ(S) = 0.

Since every ⇧0

1

class is also a ⌃0

n+1

class, the right-to-left direction is immediate.

For each n, the notion of compatibility yielded by weak n-randomness coincides with

⇧0

n

-absolute continuity.

Observation 2.2.13. For all n � 1, µ ⌧

⇧

0
n
⌫ if and only if µ-WnR ✓ ⌫-WnR.

Proof. For the left-to-right direction, suppose that ! 2 µ-WnR and let C be a ⌃0

n

class of

⌫-measure one. Then, C is a ⇧0

n

class of ⌫-measure zero. Since µ ⌧

⇧

0
n
⌫, it follows that

µ(C) = 0 and µ(C) = 1. Then, the fact that ! 2 µ-WnR entails that ! 2 C. But since C

was an arbitrary ⌃0

n

class of ⌫-measure one, we can conclude that ! 2 ⌫-WnR.

For the right-to-left direction, suppose that there is a ⇧0

n

class A such that ⌫(A) = 0, but

µ(A) > 0. Then, A is ⌃0

n

class of ⌫-measure one, which entails that ⌫-WnR ✓ A. However,

µ(A) < 1, so µ-WnR 6✓ A, because the collection of µ-weakly n-random sequences has

µ-measure one. Hence, µ-WnR 6✓ ⌫-WnR.

Recall that a ⇧0

2

class is the e↵ective analogue of a G

�

subset of Cantor space: namely,

a countable intersection of open sets. The proposition below is the e↵ective version (in the

context of computable measures) of the well-known equivalence of absolute continuity and

absolute continuity restricted to G

�

sets.

Proposition 2.2.14 (Folklore). Given measures µ and ⌫, µ ⌧ ⌫ if and only if µ ⌧

⇧

0
2
⌫.

Proof. We only go through the non-trivial direction. Suppose there is S 2 B(2N) with

⌫(S) = 0, but µ(S) > q > 0, for some rational q. Since ⌫(S) = inf{⌫(U) : S ✓ U and U 2
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B(2N) is an open set}, for all n, there is an open set U
n

with S ✓ U

n

such that ⌫(U
n

) < 2�n

and µ(U
n

) > q. Every U

n

is of the form
S

i2N[�n,i], where the cylinders [�
n,i

] are pairwise

disjoint. For each U

n

, we can e↵ectively find some K

n

such that µ(
S

iKn
[�

n,i

]) � q� 2�n,

while ⌫(
S

iKn
[�

n,i

]) < 2�n. We will denote
S

iKn
[�

n,i

] as V

n

. Let C =
T

m2N
S

n�m

V

n

.

Then, C is a ⇧0

2

class. By the First Borel-Cantelli Lemma,19 ⌫(C) = 0. However, by the

Reverse Fatou Lemma,20 µ(S) � lim sup
n!1

µ(V
n

) = q.

Proposition 2.2.14 establishes that, past the second level, the ⇧0

n

-absolute continuity

hierarchy collapses: that is, for all n � 2, ⇧0

n

-absolute continuity is not a weaker form of

absolute continuity, it actually coincides with it. Hence, Observation 2.2.13 and Proposition

2.2.14 together entail that, for every n � 2, having compatible beliefs about which data

streams are weakly n-random is the same as absolute continuity.

Corollary 2.2.15. For all n � 2, µ ⌧ ⌫ if and only if µ-WnR ✓ ⌫-WnR.

An immediate consequence of this equivalence is that, for all n � 2, the type of com-

patibility yielded by weak n-randomness guarantees merging of opinions—a fact that lends

further credibility to the use of algorithmic randomness to define notions of doxastic com-

patibility.

Corollary 2.2.16. For all n � 2, if µ-WnR ✓ ⌫-WnR, then ⌫
M

�! µ.

In light of the above, it is then natural to ask whether ⇧0

1

-absolute continuity coincides

with absolute continuity, as well—and if not (that is, if Proposition 2.2.14 turns out to

be the strongest possible result), whether the notion of compatibility yielded by weak 1-

randomness nonetheless entails merging. The first question, first raised by Gaifman and

Snir [1982], was given a negative answer by Bienvenu and Merkle [2009]. The notion of

compatibility induced by weak 1-randomness is the only one, among the compatibility

19The First Borel-Cantelli Lemma is the following result (see, for instance, [Durrett, 2010, §2.3]):

Theorem (First Borel-Cantelli Lemma). Given a measure µ, let {Sn}n2N be a sequence of events in B(2N)
such that

P
n2N µ(Sn) < 1. Then, µ(

T
m2N

S
n>m Sn) = 0.

20The Reverse Fatou Lemma is the following result:

Theorem (Reverse Fatou Lemma for sets). Given a measure µ, let {Sn}n2N be a sequence of events in

B(2N). Then, µ(
T

m2N
S

n>m Sn) � lim sup
n!1

µ(Sn).
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concepts generated by the weak n-randomness family, that is strictly weaker than absolute

continuity.

Proposition 2.2.17 (Bienvenu and Merkle [2009]). There exist computable measures µ

and ⌫ such that µ-W1R ✓ ⌫-W1R, but µ 6⌧ ⌫.

The two measures used in the proof of Proposition 2.2.17 are strictly positive. This

allows us to provide a negative answer to the second question above:

Proposition 2.2.18. There exist computable measures µ and ⌫ with µ-W1R ✓ ⌫-W1R,

and yet ⌫�
�M
�!µ.

Proof. Let µ and ⌫ be the measures from the proof of Proposition 2.2.17 (see Proposition

56 in [Bienvenu and Merkle, 2009]). Since µ and ⌫ are both strictly positive, we have that

µ ⌧

loc

⌫. Hence, by Theorem 2.1.10, if ⌫ were to merge with µ, we would have that µ ⌧ ⌫.

But, by Proposition 2.2.17, we know that µ 6⌧ ⌫. Hence, ⌫�
�M
�!µ.

Thus, while agreement on randomness generally entails merging, weak 1-randomness

is the exception: having compatible inductive assumptions about the global regularities

encoded by weak 1-randomness does not su�ce to attain inter-subjective agreement in the

sense of Blackwell and Dubins. This finding is in itself interesting because, as discussed

in Chapter 1, weak 1-randomness is a bit of an outlier within the algorithmic randomness

hierarchy. In particular, it does not entail several basic statistical laws and global regu-

larities, such as the Strong Law of Large Numbers, the Law of the Iterated Logarithm,

and Borel normality. Hence, it is perhaps not so surprising that agreeing on which data

streams are weakly 1-random does not ensure merging. In fact, this failure can be taken

to corroborate our explanation for why it is reasonable to use algorithmic randomness to

define notions of compatibility, in that it shows that making compatible inductive assump-

tions about the global uniformity of nature—about su�ciently many statistical laws—is

necessary for merging.

Now, even though agreement on weak 1-randomness does not entail absolute continuity,

it does entail local absolute continuity (this simply follows from the fact that cylinders,

being �0

1

classes, are also ⇧0

1

classes). The converse, however, does not hold, as shown by

the following example.
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Example 2.2.19. Take the uniform measure � and the Bernoulli measure µ 1
3
. Then,

� ⌧

loc

µ 1
3
. Let C =

�

! 2 2N : (9m)(8n � m) #0(!�n)
n

>

7

20

 

. Clearly, µ 1
3
(C) = 0, while

�(C) = 1. Since C is a ⌃0

2

class, we then have that � 6⌧

⌃

0
2
µ 1

3
and, consequently, that

�-W1R 6✓ µ 1
3
-W1R (by Observation 2.2.12 and Observation 2.2.13).

A more general reason for why local absolute continuity does not entail agreement

on weak 1-randomness is that the latter entails non-orthogonality (see Proposition 40

and Corollary 41 in [Bienvenu and Merkle, 2009]), while, as seen earlier, local absolute

continuity does not. In [2009], Bienvenu and Merkle also show that non-orthogonality does

not entail agreement on weak 1-randomness (see Proposition 54).

Since the type of compatibility induced by weak 1-randomness does not entail merging

in the sense of Blackwell and Dubins, an immediate question is whether there is some weaker

type of merging that agreement on weak 1-randomness might nonetheless guarantee. A

natural candidate is the following notion, first investigated by Kalai and Lehrer [1994]:

Definition 2.2.20 (Weak merging). Given measures µ and ⌫, ⌫ is said to weakly merge

with µ (in symbols, ⌫
WM

���! µ) if, for any ` 2 N, any ✏ > 0, and µ-almost every ! 2 2N,

there is some N(`, ✏,!) 2 N such that, for all n > N(`, ✏,!) and all S 2 F

n+`

,

�

�

�

⌫(S | F

n

)(!)� µ(S | F

n

)(!)
�

�

�

 ✏.

As shown by Kalai and Lehrer [1994] (see, also, [Lehrer and Smorodinsky, 1996]), weak

merging can be equivalently defined by letting ` = 1. Hence, the above definition can be

rewritten as follows: ⌫
WM

���! µ if, for µ-almost every ! 2 2N,

lim
n!1

sup
S2Fn+1

�

�

�

⌫(S | F

n

)(!)� µ(S | F

n

)(!)
�

�

�

= 0.

The reason why weak merging is a natural candidate is that it only requires merging of

opinions on finite-horizon events (as opposed to requiring merging on all events, as in the

case of the notion of merging considered by Blackwell and Dubins). Likewise, the type of

compatibility induced by weak 1-randomness targets statistical laws that correspond to ⌃0

1

classes: namely, laws whose satisfaction can be verified with a finite number of observations.

Therefore, while the fact that weak 1-randomness does not entail some crucial statistical
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regularities prevents it from yielding a type of compatibility that ensures merging, the

inductive assumptions captured by ⌃0

1

classes of measure one might nonetheless su�ce for

weak merging, which is less demanding. We leave it as an open question whether this is

indeed the case.

µ-CR ✓ ⌫-CR

µ-MLR ✓ ⌫-MLR

µ-DR ✓ ⌫-DR

µ ⌧ ⌫

µ-SR ✓ ⌫-SR

µ-WnR ✓ ⌫-WnR (n � 2)

µ-W1R ✓ ⌫-W1R

⌫

M

�! µ

µ��?⌫
⌫

WM

���! µ

µ ⌧

loc

⌫

Figure 2.3: Logical dependencies between the notions of compatibility induced by algorith-
mic randomness, the classical notions of compatibility we discussed, merging in the sense
of Blackwell and Dubins, and weak merging.

2.2.2 Algorithmic randomness and polarisation

Algorithmic randomness can be used to define not only notions of compatibility between

priors, but also notions of incompatibility or disagreement. Just as orthogonality corre-

sponds to the most radical failure of absolute continuity, for any algorithmic randomness

notion R, two measures µ and ⌫ are radically R-incompatible when µ-R \ ⌫-R = ;.

Surprisingly, the logical dependencies between the compatibility notions yielded by al-

gorithmic randomness are very di↵erent from the logical relations that hold among the
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underlying randomness concepts (compare Figure 2.3 and Figure 1.3). The logical depen-

dencies between the types of incompatibility induced by algorithmic randomness, on the

other hand, are a mirror image of the algorithmic randomness hierarchy.

Observation 2.2.21. Given measures µ and ⌫, the following hold:

(i) if µ-W1R \ ⌫-W1R = ;, then µ-SR \ ⌫-SR = ;;

(ii) if µ-SR \ ⌫-SR = ;, then µ-CR \ ⌫-CR = ;;

(iii) if µ-CR \ ⌫-CR = ;, then µ-MLR \ ⌫-MLR = ;;

(iv) if µ-MLR \ ⌫-MLR = ;, then µ-DR \ ⌫-DR = ;;

(v) if µ-MLR \ ⌫-MLR = ;, then µ-W2R \ ⌫-W2R = ;;

(vi) if µ-WnR \ ⌫-WnR = ;, then µ-Wn+1R \ ⌫-Wn+1R = ; for all n � 1.

Proof. All of the above cases are proved in the same way: they rely on the logical depen-

dencies between the algorithmic randomness notions involved. As an example, consider

case (i). Suppose that µ-W1R \ ⌫-W1R = ;. Since µ-SR ✓ µ-W1R and ⌫-SR ✓ ⌫-W1R, we

can immediately conclude that µ-SR \ ⌫-SR = ;.

It is also easy to see that, for any algorithmic randomness notion R and measures

µ, ⌫, if µ-R \ ⌫-R = ;, then µ?⌫. This follows from the fact that µ(µ-R) = ⌫(⌫-R) = 1,

which, together with µ-R \ ⌫-R = ;, entails that ⌫(µ-R) = 0 and µ(⌫-R) = 0. Hence, if

µ-R \ ⌫-R = ;, then ⌫�
�M

�!µ and µ�
�M

�!⌫. Moreover, if µ-R \ ⌫-R = ; and µ ⌧

loc

⌫, then

⌫kµ: radical disagreement over which data streams are algorithmically random and local

absolute continuity entail polarisation of opinions.

2.3 Conclusion

We conclude the chapter by o↵ering a synopsis of our results, and by discussing some open

questions and possible avenues for future research.

The results presented here evince that the phenomenon of merging of opinions can

be fruitfully studied in a computability-theoretic setting by appealing to the theory of
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algorithmic randomness. Algorithmic randomness can in fact be employed to define notions

of agreement and disagreement between priors which reflect a Bayesian agent’s initial beliefs

about the statistical regularities that they expect to see in the observational data. Our main

contribution consisted in showing that the resulting notions of agreement and disagreement

provably lead to merging and polarisation of opinions, respectively.

We focused on the notion of merging of opinions introduced by Blackwell and Dubins

[1962]. More precisely, we showed that, apart from weak 1-randomness, all core algorithmic

randomness notions give rise to forms of compatibility which secure merging in the sense of

Blackwell and Dubins (by virtue of entailing absolute continuity). The notion of compati-

bility yielded by weak 1-randomness, on the other hand, is too weak to entail merging in

the sense of Blackwell and Dubins. Weaker notions of merging have been studied by Kalai

and Lehrer [1994], Lockett [1971], Diaconis and Freedman [1986, 1990], and D’Aristotile

et al. [1988]. Their results prompt the question of whether agreement with respect to weak

1-randomness might be su�cient to achieve these other weaker types of merging.

We saw that, past level two, the notions of compatibility yielded by weak n-randomness

coincide with absolute continuity, and that there is a hierarchy of compatibility notions

induced by algorithmic randomness that are strictly stronger than absolute continuity. This

raises the question of whether there is a stronger variant of absolute continuity that these

strong forms of compatibility coincide with or are entailed by. Hoyrup and Rojas [2011] o↵er

a first step in this direction. They define the following variant of absolute continuity, which

they call e↵ective absolute continuity : µ is e↵ectively absolutely continuous with respect

to ⌫ if there is a computable function ' : N ! N such that, for all S 2 B(2N) and all n 2 N,

⌫(S) < 2�'(n) entails that µ(S) < 2�n (this is indeed a form of absolute continuity because

the standard version of absolute continuity can be defined in the same way, but dropping

the computability requirement on '). Then, they note that e↵ective absolute continuity

entails compatibility relative to Martin-Löf randomness, but not vice-versa. An immediate

question prompted by this observation is where exactly e↵ective absolute continuity fits

within the hierarchy of compatibility notions induced by algorithmic randomness. More

generally, e↵ective absolute continuity and possible variants thereof are worth investigating

further to better understand the relationship between (forms of) absolute continuity and

the types of agreement generated by algorithmic randomness.
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The above considerations also beg the question of whether there are any forms of

merging stronger than the one introduced by Blackwell and Dubins that the new notions

of compatibility yielded by algorithmic randomness entail. In other words, are there any

types of merging for which absolute continuity is not enough, but which are nonetheless

guaranteed to hold if the two agents agree on the relevant algorithmic randomness notions?

In particular, are there any e↵ective types of merging that are entailed by concurring on

which data streams are algorithmically random?

While absolute continuity is arguably the most prominent type of compatibility in the

literature on Bayesian merging of opinions, there are several alternatives to it, often studied

in the context of weaker forms of merging (see, for instance, [Kalai and Lehrer, 1994] and

[Lehrer and Smorodinsky, 1996]). Another immediate question is thus how these forms of

compatibility relate to the randomness-based notions of agreement investigated here.

In addition to the type of compatibility displayed by the agents’ priors, one might won-

der whether there are any other aspects of a learning situation that can have an impact on

whether merging will occur. For instance, both notions of merging of opinions considered

in this chapter rely on the fact that the agents update their respective beliefs via Bayesian

conditioning (more precisely, as explained in §2.1, using conditional probabilities defined

with respect to the sub-�-algebras in the filtration {F

n

}

n2N). The use of Bayesian con-

ditioning, while standard, in itself reflects an important assumption about how learning

proceeds: namely, that making an observation amounts to learning that an event has oc-

curred for certain (in C. I. Lewis’ words, “[i]f anything is to be probable then something

must be certain” [Lewis, 1946, p. 186]). However, not all learning situations involve certain

evidence. For instance, being told that some event S has occurred by a source one does

not deem fully reliable may increase one’s belief in S without convincing them that S has

happened for certain. The canonical alternative to Bayesian conditioning for dealing with

uncertain evidence is Je↵rey’s probability kinematics (or Je↵rey conditioning) [1957; 1965;

1968]. So, a natural question is whether merging-of-opinions results still hold when the

evidential inputs are uncertain and the agents update their beliefs via Je↵rey conditioning.

This issue is addressed in [Huttegger, 2015a]. Huttegger considers two possible ways

of precisifying the idea that, at each step of the learning process, the agents are faced

with the same uncertain evidence: hard Je↵rey shifts, which are independent of the agents’
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priors, and soft Je↵rey shifts, which instead rely on the agents’ priors. Then, he proves

that merging of opinions is still guaranteed to hold if the agents update their beliefs via

Je↵rey conditioning with hard Je↵rey shifts, while updating via Je↵rey conditioning with

soft Je↵rey shifts does not, in general, guarantee merging. This finding and the results

in this chapter then prompt the following question: what happens to merging-of-opinions

theorems if, in addition to using Je↵rey conditioning to update their beliefs, the agents

begin the learning process with credences that are compatible relative to some algorithmic

randomness notion? Does agreement on algorithmic randomness facilitate merging in this

setting?

To conclude, recall that the Lebesgue Decomposition Theorem discussed earlier entails

that, for any two probability measures µ and ⌫, there is some ↵ 2 [0, 1] such that µ can

be decomposed as follows: µ = ↵µ

a

+ (1 � ↵)µ
o

, where µ

a

⌧ ⌫ and µ

o

?⌫. In view of

our results, a natural question is whether there is a randomness analogue of the Lebesgue

Decomposition Theorem. In other words, given some algorithmic randomness notion R, is

it the case that, for any two computable measures µ and ⌫, there is some ↵ 2 [0, 1] such

that µ can be decomposed as µ = ↵µ

a

+ (1� ↵)µ
o

, where ⌫ is R-compatible with µ

a

(i.e.,

µ

a

-R ✓ ⌫-R) but R-incompatible with µ

o

(i.e., µ
o

-R \ ⌫-R = ;)?

2.A Appendix: converse implications

Bienvenu and Merkle [2009] proved that (i) agreement on Martin-Löf randomness does not

entail agreement on computable randomness, (ii) agreement on computable randomness

does not entail agreement on Schnorr randomness, and (iii) absolute continuity entails

neither agreement on Martin-Löf randomness nor agreement on Schnorr randomness. In

this appendix we complete the picture by showing that none of the implications involving

density randomness can be reversed either.

All of the counterexamples discussed below rely on the use of strictly positive measures.

This is due to the fact that there is an exact correspondence between normed total dyadic

martingales and strictly positive measures which also carries over to the computable setting:

Observation 2.A.1. For every strictly positive measure µ, the normed total dyadic µ-

martingales are exactly the functions of the form ⇠

µ

, where ⇠ is a measure. For every
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computable strictly positive measure µ, the computable normed dyadic µ-martingales are

exactly the functions of the form ⇠

µ

, where ⇠ is a computable measure.

Proof. Let µ be a strictly positive measure and d : 2<N
! R�0 a normed dyadic µ-

martingale. For each � 2 2N, let ⇠([�]) = d(�)µ([�]). Then, by an argument analogous to

the one provided in the proof of Lemma 2.2.5, ⇠ is a measure. Moreover, if µ and d are

computable, then so is ⇠.

For the other direction, take ⇠

µ

, where µ and ⇠ are measures and µ is strictly positive. For

all �, define d(�) as ⇠([�])

µ([�])

. Then, d is normed and non-negative. Moreover, d(�)µ([�]) =

⇠([�]) = ⇠([�0]) + ⇠([�1]) = d(�0)µ([�0]) + d(�1)µ([�1]). So, d is a normed µ-martingale.

If µ and ⇠ are computable, then so is d.

Now, given two computable strictly positive measures µ, ⌫ and k 2 R>0, let S

k

µ/⌫

=
n

! 2 2N : sup
n2N

µ([!�n])
⌫([!�n]) � k

o

. Then, define S
µ/⌫

as
T

k2N S

k

µ/⌫

. The set S
µ/⌫

consists of

all ! with lim sup
n2N

µ([!�n])
⌫([!�n]) = 1. Since ⌫ is strictly positive, we have that ⌫(S

µ/⌫

) = 0 by

Ville’s Theorem21 and Observation 2.A.1. Moreover, by the characterisation of computable

randomness in terms of dyadic martingales and Observation 2.A.1, S
µ/⌫

\ ⌫-CR = ;. A

fortiori, S
µ/⌫

\ ⌫-MLR = ; and S

µ/⌫

\ ⌫-DR = ;.

Proposition 2.A.2. Let µ and ⌫ be computable strictly positive measures. We then have

that µ-DR = ⌫-DR if and only if S
µ/⌫

\ µ-DR = S

⌫/µ

\ ⌫-DR = ;.

Proof. The left-to-right direction follows from the fact that S
⌫/µ

\ µ-DR = ; and the fact

that S
µ/⌫

\ ⌫-DR = ;. For the right-to-left direction, suppose S

µ/⌫

\ µ-DR = S

⌫/µ

\ ⌫-DR

= ;, but that, without loss of generality, there is some ! 2 µ-DR such that ! /2 ⌫-DR.

Then, there is a lower semi-computable semi-measure ⇠ such that either lim
n!1

⇠([! � n])
⌫([! � n]) is

infinite or the sequence
n

⇠([!�n])
⌫([!�n])

o

n2N
fails to have a limit. If lim

n!1

⇠([! � n])
⌫([! � n]) = 1, it then

follows that

lim sup
n!1

µ([! � n])
⌫([! � n]) = lim sup

n!1

⇠([! � n])
⌫([! � n])

,

⇠([! � n])
µ([! � n]) = 1.

Hence, ! 2 S

µ/⌫

. Since S
µ/⌫

\µ-DR= ;, ! /2 µ-DR, which is a contradiction. If, on the other

hand, the sequence
n

⇠([!�n])
⌫([!�n])

o

n2N
does not have a limit, then the sequence

n

⌫([!�n])
µ([!�n])

o

n2N
21Ville’s Theorem [Ville, 1939] establishes that the success set of a dyadic (super)martingale is a measure-

zero set.
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does not have a limit either, since ⌫([!�n])
µ([!�n]) = ⇠([!�n])

µ([!�n])

.

⇠([!�n])
⌫([!�n]) . Hence, ! /2 µ-DR, which is

again a contradiction.

Note that Proposition 2.A.2 continues to hold if we replace S
µ/⌫

with C

µ/⌫

=
T

k2N C

k

µ/⌫

,

where C

k

µ/⌫

=
n

! 2 2N : sup
n2N

µ([!�3n])
⌫([!�3n]) � k

o

. We will appeal to Proposition 2.A.2

and to this latter observation in proving that none of the implications involving density

randomness established in §2.2 can be reversed. We will also make use of the notion of a

�0

2

sequence, where ! 2 2N is said to be �0

2

if there is a computable function f : N⇥N ! N

such that, for all n 2 N, (i) !(n) = lim
k!1

f(n, k), and (ii) f(n, k) is eventually constant (i.e.,

there are only finitely many distinct values among f(n, 0), f(n, 1), f(n, 2), ...). If ! is �0

2

,

then it is computable in the halting problem. We are now ready to prove the following:

Proposition 2.A.3. (a) There are computable measures µ and ⌫ with µ-DR ✓ ⌫-DR,

but µ-MLR 6✓ ⌫-MLR.

(b) There are computable measures µ and ⌫ with µ-DR ✓ ⌫-DR, but µ-SR 6✓ ⌫-SR.

(c) There are computable measures µ and ⌫ with µ ⌧ ⌫, but µ-DR 6✓ ⌫-DR.

Proof. (a) Take the uniform measure �. By Theorem 3.1 in [Day and Miller, 2015], there

is a �0

2

sequence ! 2 �-MLR that is a �-dyadic positive density point, but not a �-dyadic

density-one point. Hence, ! 2 �-MLR\�-DR. Since ! 2 �-MLR, it follows that ! 2 �-SR.

Therefore, by Proposition 49 in [Bienvenu and Merkle, 2009], there is a strictly positive

measure ⌫ such that (i) ! /2 ⌫-SR, (ii) C
⌫/�

= ;, and (iii) C
�/⌫

= {!}. By (i), we have that

! /2 ⌫-MLR, because ⌫-MLR ✓ ⌫-SR. By (ii), it clearly follows that C

⌫/�

\ ⌫-DR= ;. By

(iii) and the fact that ! /2 �-DR, on the other hand, we have that C
�/⌫

\ �-DR= ;. Hence,

by Proposition 2.A.2, �-DR = ⌫-DR. Thus, �-DR ✓ ⌫-DR, while �-MLR 6✓ ⌫-MLR.

(b) The proof of part (a) also establishes this claim.

(c) Let ! 2 2N be a �0

2

sequence such that ! 2 �-DR. The existence of such a sequence

follows, e.g., from the fact that �-density randomness is entailed by a randomness notion

called �-Demuth randomness, together with the fact that there are �-Demuth random

sequences (see, for instance, [Nies, 2009, Theorem 3.6.25] and Demuth [1982]). Then,

! 2 �-SR. Once again, by Proposition 49 in [Bienvenu and Merkle, 2009], there is a strictly

positive measure ⌫ such that (i) ! /2 ⌫-SR, (ii) C

⌫/�

= ;, and (iii) C

�/⌫

= {!}. By
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(ii), ⌫(C
⌫/�

) = 0. Clearly, �({!}) = 0. Hence, (iii) entails that �(C
�/⌫

) = 0. Thus, by

Proposition 47 in [Bienvenu and Merkle, 2009], � and ⌫ are mutually absolutely continuous

(that is, � ⌧ ⌫ and ⌫ ⌧ �). However, (i) implies that ! /2 ⌫-DR, since ⌫-DR ✓ ⌫-SR.

Hence, �⌧ ⌫ while �-DR 6✓ ⌫-DR.



Chapter 3

Algorithmic randomness and

convergence to the truth

But human opinion universally tends in the long run to a

definite form, which is the truth. Let any human being

have enough information and exert enough thought upon any

question, and the result will be that he will arrive at a certain

definite conclusion, which is the same that any other mind

will reach under su�ciently favorable circumstances.

Peirce, Review of Fraser’s “The Works of George Berkeley”

Together with merging-of-opinions theorems, convergence-to-the-truth results are a sta-

ple of Bayesian epistemology: their use in philosophy (especially in debates concerning the

tenability of subjective Bayesianism) dates back to the work of Savage [1954]. In a nutshell,

convergence-to-the-truth results show that, in a wide array of learning scenarios, Bayesian

agents expect their future credences to almost surely converge to the truth as the evidence

accumulates.

Bayesian convergence to the truth is epitomised by Lévy’s Upward Martingale Conver-

gence Theorem [1937] (Lévy’s Upward Theorem, for short), which establishes that, given

some quantity that a Bayesian agent is trying to estimate, the probability of observing a

data stream that will lead the agent’s successive estimates to asymptotically align with

the truth is one. In other words, a Bayesian agent performing successive experiments to

72
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estimate some quantity expects that almost every sequence of observations will bring about

inductive success: eventual convergence to the truth.

While in and of itself significant, convergence to the truth with probability one remains

a somewhat elusive notion. In its classical form, Lévy’s Upward Theorem does not specify

which data streams belong to the probability-one set of sequences on which convergence to

the truth occurs. It does not reveal how the composition of this set changes depending on

the particular quantity that the Bayesian agent is trying to estimate, nor does it indicate

whether the data streams that ensure eventual convergence to the truth share any property

that might explain their conduciveness to successful learning, that sets them apart from the

data streams along which learning fails. Thus, a natural question raised by Lévy’s classical

result is whether the kinds of data streams that are conducive to learning for Bayesian

agents are uniformly characterisable in an informative way.

The results presented here provide an answer to this question. Just as in Chapter 2,

the driving idea behind this chapter is to approach the phenomenon of convergence to

the truth from the perspective of computability theory and, in particular, the theory of

algorithmic randomness. The classical version of Lévy’s Upward Theorem is in fact very

general: it does not impose any restrictions on the kind of prior probability distributions

that a Bayesian agent can begin the learning process with, and the only constraint imposed

on the quantities to be estimated is that they be integrable random variables. This high

degree of generality is precisely the reason why Lévy’s Upward Theorem, in its classical

form, does not a↵ord a precise characterisation of the collection of truth-conducive data

streams. Here, on the other hand, we restrict attention to Bayesian agents whose subjective

priors are computable probability measures and whose goal is estimating quantities that

can be e↵ectively approximated. As argued in Chapter 2, these are natural restrictions to

impose when studying the inductive performance of more realistic, computationally limited

learners. Additionally, as we shall see, they allow to provide a more fine-grained analysis

of the phenomenon of Bayesian convergence to the truth.

More specifically, this chapter is devoted to proving several e↵ective versions of Lévy’s

Upward Theorem, each depending on a di↵erent class of e↵ective integrable random vari-

ables. The main upshot of these results is that, in this e↵ective setting, a certain type of

convergence to the truth holds if and only if the observed data stream is algorithmically
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random. We thus have a positive answer to our initial question: for computable Bayesian

agents whose goal is estimating the values of e↵ectively approximable random variables,

the truth-conducive data streams can indeed be characterised in a uniform way—they are

exactly the algorithmically random ones. More precisely, di↵erent natural e↵ectivity con-

straints imposed on random variables result in di↵erent algorithmic randomness notions

corresponding to the collection of data streams on which Lévy’s Upward Theorem holds.

The weaker the e↵ectivity constraints, the stronger the randomness notion; thus, as the

random variables corresponding to the inductive problems faced by the Bayesian agent be-

come harder to compute, the collection of data streams on which successful learning occurs

shrinks in a fully specifiable way.

While both this chapter and Chapter 2 appeal to computability theory and algorithmic

randomness to clarify issues of epistemological interest, the results established here are

of an importantly di↵erent nature. In Chapter 2, algorithmic randomness was used to

define notions of compatibility between computable priors, which were in turn shown to

imply asymptotic merging of opinions. In this chapter, on the other hand, we show that,

in the e↵ective setting, algorithmic randomness naturally emerges as the property that

characterises the truth-conducive data streams—the data streams along which an agent’s

credences eventually converge to the correct hypotheses. Thus, the provided e↵ectivisations

of Lévy’s Upward Theorem bridge the theory of algorithmic randomness and the literature

on Bayesian convergence to the truth, and they attest, from a di↵erent perspective, to the

utility of algorithmic randomness in the study of probabilistic inference.1

These e↵ectivisations also yield characterisations of some standard algorithmic random-

ness notions. In this sense, this work continues (and is indebted to) a recent line of research

in computability theory which aims at characterising algorithmic randomness concepts in

terms of e↵ective versions of classical almost-everywhere theorems from analysis and prob-

ability, such as the Lebesgue Di↵erentiation Theorem, the Lebesgue Density Theorem, or

Birkho↵’s Ergodic Theorem.2 Our work is also importantly related to that of Gaifman

1In the conclusion of this chapter, we will see how the results in Chapter 2 and the ones presented here
may be combined.

2For some papers exploring the connections between algorithmic randomness and computable analysis,
see, for instance, [V’yugin, 1998], [Bienvenu et al., 2012a], [Franklin et al., 2012], [Rute, 2012], [Miyabe,
2013b], [Bienvenu et al., 2014], [Franklin and Towsner, 2014], [Freer et al., 2014], [Pathak et al., 2014],
[Brattka et al., 2016], [Miyabe et al., 2016], and [Rute, 2018].
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and Snir [1982], who first drew the connection between randomness and Bayesian learning

in our sense. A discussion of Gaifman and Snir’s framework and of how our results di↵er

from theirs can be found in §3.3.2.

The structure of the remainder of this chapter is as follows. In §3.1, we present the

classical version of Lévy’s Upward Theorem and discuss its epistemic significance. The

main results are presented in §3.2. We consider in turn various natural classes of e↵ective

random variables and show that the corresponding e↵ectivisations of Lévy’s Upward Theo-

rem each yield a characterisation of some standard algorithmic randomness notion. These

results therefore establish that, in the Bayesian setting, there is a robust correspondence

between algorithmic randomness and truth-conduciveness. In §3.3, we conclude by o↵ering

a discussion of the results and their philosophical consequences.

3.1 Convergence to the truth

Just as in Chapter 2, a learning scenario is given by a probability space (⌦, E , µ), with ⌦

the sample space, E a �-algebra on ⌦, and µ a probability measure on E . Unless otherwise

specified, we take µ to represent the subjective prior of a Bayesian agent: namely, the

agent’s initial degrees of belief, or credences, about the events in E , which encapsulate

their background knowledge and assumptions before any observation has been made.

In keeping with much of the Bayesian epistemology literature on the topic (see, for

instance, [Earman, 1992], [Belot, 2013], and [Huttegger, 2015b, 2017]), we shall discuss

Bayesian convergence to the truth in the context of the Cantor space of infinite binary

sequences. Once again, we will think of such sequences as data streams, environments,

possible worlds, or possible states of the world. Bayesian agents will be identified with

their respective subjective priors—in this case, with (probability) measures over the Borel

�-algebra B(2N) on 2N. The inductive problems faced by Bayesian agents, on the other

hand, will be modelled as random variables—more precisely, given a measure µ over B(2N),

as µ-measurable functions of the form f : ✓ 2N ! R that are defined on a µ-measure-one

set of sequences. Intuitively, the values of these random variables represent quantities that

a Bayesian agent is interested in estimating by performing repeated experiments, and they

crucially depend on which data stream is observed as a result of such experiments.
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3.1.1 The classical version of Lévy’s Upward Theorem

Bayesian convergence-to-the-truth theorems follow from a fundamental result in probabil-

ity theory: Doob’s Martingale Convergence Theorem [1953]. Recall that, in the general

setting,3 a (discrete-time) martingale is an infinite sequence of random variables, where,

for each n, the conditional expectation of the (n+1)-st random variable given the previous

n random variables equals the value of the n-th random variable. Loosely put, Doob’s

Martingale Convergence Theorem states that, as long as certain technical conditions are

met, the limit of a martingale exists and is finite with probability one. A martingale can

be seen as representing the evolution of a gambler’s capital through an infinite sequence

of fair gambles, where fairness is ensured by the fact that, at each stage, the gambler’s

expected capital at the following stage is exactly the same as their current capital. So,

Doob’s Martingale Convergence Theorem implies that a gambler will almost surely fail to

win an unbounded amount of capital.

From the perspective of Bayesian epistemology, there is an especially salient class of

martingales (also known as Lévy martingales) that goes back to Lévy [1937]: namely, the

conditional expectations of integrable random variables. Recall that, given a measure µ on

B(2N) and a random variable f : ✓ 2N ! R that is defined µ-almost everywhere, E
µ

[f ]

denotes the (unconditional) expectation of f with respect to µ (that is, the average value

of f weighted by µ). A random variable f is integrable, or L1, if E
µ

[|f |] < 1.

As in Chapter 2, we restrict attention to conditional expectations defined with respect

to the filtration {F

n

}

n2N—where, for each n, F

n

is the sub-�-algebra of B(2N) yielded

by the cylinders [�] generated by strings � 2 2<N of length n. We do so because, in our

setting, this collection of algebras has an especially natural epistemic interpretation: each

F

n

intuitively captures the possible information that the Bayesian agent may obtain at the

n-th stage of the learning process.

The conditional expectation E
µ

[f | F

n

] : 2N ! R of a random variable f given F

n

is itself a random variable that, on input ! 2 2N, returns the best estimate of f ’s value

conditional on the first n digits ! � n of ! from the perspective of the Bayesian agent with

prior µ. More suggestively, when ! is the true state of the world, E
µ

[f | F

n

](!) encodes

3As opposed to the special case of algorithmic randomness, where the focus is on dyadic martingales
(see Chapter 1, §1.3).
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the agent’s beliefs regarding the true value of f (namely, f(!)) after having observed the

outcomes ! � n = !(0)...!(n� 1) of the first n experiments.

We use throughout the following version of the conditional expectation (since it is only

almost surely unique): for all ! 2 2N,

E
µ

[f | F

n

](!) =

8

>

>

<

>

>

:

1

µ([! � n])

Z

[!�n]
f dµ if µ([! � n]) > 0,

0 otherwise.

Then, {E
µ

[f | F

n

]}
n2N is a martingale, since, by the tower property of conditional expec-

tations,

E
µ

[E
µ

[f | F

n+1

] | F
n

] = E
µ

[f | F

n

].

Given two integrable functions f and g, kf � gk

1

denotes
R

2

N |f � g| dµ. A sequence

of functions {f

n

}

n2N converges to an integrable function f in the L

1-norm (which we

abbreviate as f

n

! f in L

1) if lim
n!1

kf

n

� fk

1

= 0. Now, Lévy’s Upward Martingale

Convergence Theorem (also known as Lévy’s 0-1 Law) is the following result:4

Theorem 3.1.1 (Lévy’s Upward Theorem, Lévy [1937]). Let f :✓ 2N ! R be an integrable

random variable that is defined µ-almost everywhere. Then,

lim
n!1

E
µ

[f | F

n

] = f

µ-almost everywhere. Moreover, E
µ

[f | F

n

] ! f in L

1.

Let us call the set of sequences {! 2 2N : lim
n!1

E
µ

[f | F

n

](!) = f(!)} along which

convergence occurs the success set of agent µ with respect to f , and its complement the

failure set. As mentioned above, we can think of f as a quantity that the agent is trying

to estimate—for instance, f could record the value of some unknown parameter which

may vary between possible worlds (or di↵erent possible states of the world). Then, Lévy’s

Upward Theorem says that if this quantity can be modelled as an integrable random

variable, then, from the agent’s viewpoint, their failure set is negligible. In other words,

the agent believes that they will eventually converge to the truth about the value of f with

4See, for instance, [Williams, 1991, §14.2].
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probability one: µ({! 2 2N : lim
n!1

E
µ

[f | F

n

](!) = f(!)}) = 1.

A special case that is often the focus of discussions on convergence to the truth in

the philosophy literature is when the integrable random variable to be estimated is the

indicator function �A of some measurable subset A of Cantor space.5 This corresponds to

the case where the inductive problem that the Bayesian agent is facing is a binary decision

problem: does the true world, corresponding to the observed data stream, belong to A?

Or, put di↵erently, does the true world possess the property encoded by A? In this setting,

the quantity that the agent is trying to estimate is thus the truth value of A, and learning

almost surely proceeds by Bayesian conditioning, since, whenever µ([! � n]) > 0,

E
µ

[�A | F

n

](!) =
1

µ([! � n])

Z

[!�n]
�A dµ =

µ(A \ [! � n])
µ([! � n]) = µ(A | [! � n]).

So, Lévy’s Upward Theorem entails that lim
n!1

µ(A | [! � n]) = �A(!) for µ-almost every

! 2 2N. Hence, a Bayesian agent with prior µ expects their beliefs, given by the above

sequence of posterior probabilities, to converge almost surely to the truth about whether

A is the case with increasing information. In other words, the agent is essentially certain

that they will be able to eventually settle the question of membership in A.

3.1.2 The epistemic significance of Lévy’s Upward Theorem

Given a cursory reading of the above discussion, it might be tempting to interpret Lévy’s

Upward Theorem as providing a vindication of the subjectivist (or personalist) brand of

Bayesianism,6 according to which there are no rationality constraints that can be reason-

ably imposed on an agent’s initial credences besides having to comply with the laws of

the probability calculus. After all, does the theorem not establish that prior probability

distributions do not matter in the long run? Does it not ensure that subjective priors are

eventually swamped by the cumulating evidence, so that di↵erent agents starting o↵ the

learning process with divergent beliefs are nonetheless all guaranteed to converge to the

truth in the limit, provided that they make the same observations and correctly update

their credences on the basis of the new evidence?
5That is, �A is the function given by �A(!) = 1 if ! 2 A and �A(!) = 0 if ! /2 A.
6A variety of Bayesianism championed, for instance, by Ramsey [1931], de Finetti [1937], Savage [1954],

and Je↵rey [1977].
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As already evinced by the above description of the result, the main problem with

this reading is that the almost-sure convergence to the truth achieved via Lévy’s Upward

Theorem is always relative to the agent’s prior: that is, to their initial beliefs. The precise

sense in which an agent with prior µ converges to the truth almost surely about a given

hypothesis is that the µ-measure of their success set with respect to that hypothesis is one.

This means that the agent, from their own perspective, is basically ex ante (that is, before

performing any experiments) certain that, with increasing information, their beliefs will

eventually converge to the truth. Yet, there is no objective, external guarantee that this

will indeed be the case.

Thus, as noted by many authors,7 Lévy’s Upward Theorem does not establish the uni-

versal reliability of Bayesian learning methods from an objective, third-person standpoint.

Its epistemic significance stems from within, for it establishes that a certain kind of scepti-

cism about induction is impossible: if an agent is independently committed to probabilistic

coherence (synchronic and diachronic), then, by Lévy’s Upward Theorem, that agent can-

not be a sceptic about the possibility of learning from experience. The agent’s independent

commitment to the Bayesian framework as a way of modelling their uncertainty implies

that, by their own light, their recourse to inductive reasoning is justified. As observed by

Skyrms, from the perspective of the Bayesian agent, it is “inappropriate for you to ask

the standard question, “Why should I believe that the real situation is not in that set of

measure zero?” The measure in question is your degree of belief. You do believe that the

real situation is not in that set, with degree of belief one” [Skyrms, 1984, p. 62].

The epistemic significance of Lévy’s Upward Theorem may also be appraised through

the prism of inter-subjective agreement, since it can also be viewed as a merging-of-opinions

result (though one where the type of merging involved, as we will now see, is rather weak).

Recall that, given two measures µ and ⌫ on B(2N), µ is absolutely continuous with respect

to ⌫ (µ ⌧ ⌫) if, for every event S 2 B(2N), ⌫(S) = 0 implies that µ(S) = 0.8 Take

two measures µ and ⌫ with µ ⌧ ⌫, and let f :✓ 2N ! R be an almost-everywhere

defined integrable random variable relative to the probability spaces (2N,B(2N), µ) and

(2N,B(2N), ⌫). Let E
µ

[f | F

n

] denote the conditional expectation of f with respect to

7See, for instance, [Glymour, 1980], [Earman, 1992], [Kelly, 1996], and [Belot, 2013].
8See Definition 2.1.1 in Chapter 2 and the ensuing discussion.
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µ and E
⌫

[f | F

n

] its conditional expectation with respect to ⌫. Then, Lévy’s Upward

Theorem entails that lim
n!1

E
µ

[f | F

n

] = f µ-almost everywhere and lim
n!1

E
⌫

[f | F

n

] = f

⌫-almost everywhere. Moreover, since µ is absolutely continuous with respect to ⌫,

lim
n!1

E
⌫

[f | F

n

] = f µ-almost everywhere. (?)

This means that the collection of data streams along which both lim
n!1

E
µ

[f | F

n

] = f and

lim
n!1

E
⌫

[f | F

n

] = f hold has µ-measure one. Therefore, on this µ-measure-one set, we have

that ⌫ merges with µ in the following sense: for each data streams ! in this set and for

every ✏ > 0, there is some N such that, for all n > N ,
�

�E
µ

[f | F

n

](!)� E
⌫

[f | F

n

](!)
�

�

< ✏.

If µ and ⌫ are both subjective priors, this type of merging means that, after performing

N experiments, the two agents’ respective estimates of the value of f will di↵er by less

than ✏; hence, in the limit, their estimates—and, thus, their beliefs—will coincide. As

already remarked by Earman [1992], it should however be pointed out that, compared to

other merging-of-opinions results (such as the seminal Blackwell-Dubins Theorem [1962]),

Lévy’s Upward Theorem yields a rather weak form of merging. This is because the type

of convergence attained is not at all uniform: the value of N in fact depends on ⌫, µ, f,!,

as well as ✏.

As seen in Chapter 2, merging-of-opinions theorems can also be taken to establish a

certain type of convergence to the truth. This is because, besides representing subjective

priors, probability measures can also represent objective chance distributions. One may

thus view one of the two measures involved in merging-of-opinions results as representing

the true distribution governing some phenomenon, while the other one is the subjective

prior of a Bayesian agent. From this perspective, these theorems establish that, as long as

the agent’s subjective prior is su�ciently compatible with the truth, their beliefs will almost

surely align with the true measure—where the achievable almost-sure convergence is with

respect to the true measure. Viewing Lévy’s Upward Theorem as a merging-of-opinions

result where one of the two measures is a chance distribution o↵ers a limited vindication of

the intuition with which we opened this discussion: namely, that Lévy’s Upward Theorem

may be seen as establishing that priors, and where they come from, should not be a cause

for concern. This is because, even though, as argued above, the type of merging yielded by
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Lévy’s Upward Theorem is weak, it nonetheless implies that priors will be asymptotically

swamped by the evidence, as long as they are absolutely continuous with respect to the

objectively true distribution.

We conclude our discussion of the philosophical import of Lévy’s Upward Theorem by

noting that Condition (?) above is significant in itself. In cases where µ can be reasonably

interpreted as an objective chance distribution, Condition (?) tells us that convergence to

the truth, in the original sense of Lévy’s Upward Theorem, occurs with objective probability

one. Hence, in this setting, Lévy’s Upward Theorem does provide an external guarantee

that convergence to the truth is bound to almost surely occur.

3.2 E↵ectivising Lévy’s Upward Theorem

As noted earlier, Lévy’s Upward Theorem is very general: it applies to any probability

measure and any integrable random variable. However, while establishing that the collec-

tion of data streams along which convergence to the truth occurs is “measure-theoretically

large” (that is, convergence to the truth happens with probability one), the theorem does

not o↵er any indication as to what this success set might look like. Yet, it is in natural to

wonder whether it is possible to pinpoint any specific data streams that guarantee conver-

gence to the truth, and what a data stream must be like in order to belong to the success

set of a Bayesian learner. In particular, are there any properties that all the data streams

that guarantee convergence to the truth share? Is it possible to single out some property

of data streams that is responsible for leading to convergence to the truth?

In what follows, we will address these questions from the perspective of computability

theory, obtaining in this way various e↵ective versions of Lévy’s Upward Theorem. The

computability-theoretic constraints imposed throughout the chapter essentially amount to

restricting attention to computationally limited learners. The classical versions of the theo-

rems that play a central role in Bayesian epistemology, including Lévy’s Upward Theorem,

apply to ideal agents that do not su↵er from any limitations: the agents’ subjective priors

can be arbitrarily complex, and so can the inductive problems that they have to solve. As

already discussed in Chapter 2, computability theory o↵ers a natural framework for mod-

elling less-than-ideal agents, whose computational power does not exceed that of a Turing
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machine: a computationally limited, or computable, Bayesian agent is one whose subjective

prior is a computable measure (see Definition 1.1.1). In addition, in the computability-

theoretic setting, one can provide a more fine-grained analysis of the inductive problems

faced by the learners. In particular, as we go along, we will impose various e↵ectivity

constraints on the random variables that the Bayesian agents are trying to estimate. The

aim of these constraints is to specify the extent to which the quantities to be estimated are

e↵ectively approximable. The more di�cult to compute a random variable is, the more

complex the corresponding inductive problem. This classification, as we shall see, allows to

clarify how the learning performance of a computable Bayesian agent varies as a function

of the complexity of the inductive problem that they have to solve.

Besides computability, some of the results in this chapter also rely on a second property

of priors: strict positivity.9 Strict positivity is often assumed in the Bayesian epistemology

literature, since strictly positive priors have a natural epistemic interpretation: they intu-

itively capture the beliefs of agents who are maximally open-minded with respect to the

evidence, in that they do not a priori exclude any finite sequence of observations. From

this perspective, if a result holds for all computable strictly positive measures, then it

means that it applies to all computationally limited Bayesian agents that are evidentially

open-minded.10

We do not take strict positivity to be a rationality requirement on priors, and it should

be noted that, while intuitive, strict positivity is sometimes criticised in the literature (see,

for instance, [Belot, 2013]). The type of open-mindedness encoded by strict positivity is in

fact compatible with various kinds of closed-mindedness. For instance, consider the uniform

measure �, which is strictly positive: � assigns probability zero to many events, including

to the collection of data streams that are eventually zero; hence, although open-minded

with respect to all finite sequences of observations, the uniform measure is closed-minded

with respect to the possibility of observing only finitely many ones (and this is just one

possible example among many). This is however a feature more than a bug, as no prior

can be open-minded with respect to every event in B(2N): in order for this to be the

9Recall that a measure is strictly positive if it assigns positive probability to all basic open sets (in our
setting, to all cylinders).

10Most of the characterisation results proven below that rely on strict positivity can in fact be generalised
to arbitrary computable measures. For these more general results, see [Huttegger et al., 2021].
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case, a prior would have to assign positive probability to every singleton {!}, which is not

possible. As noted by Huttegger, “[t]he open-mindedness of a prior with respect to a set

is not a maximally open state of mind that doesn’t rule out any possibilities; it rather

represents a state of mind that is committed to some possibilities at the expense of others.

Open-mindedness with respect to one set implies closed-mindedness with respect to others”

[Huttegger, 2015b, p. 593], and not all closed-mindedness is unreasonable.

The main findings from this chapter may be summarised as follows. In this e↵ective

setting, it is indeed possible to single out a property of data streams that guarantees

that a Bayesian agent’s beliefs will eventually align with the truth: this property is being

algorithmically random. In particular, in what follows, we will consider in succession

various natural e↵ectivity constraints on random variables, and we will show that, for

computable (strictly positive) measures, the resulting e↵ectivisations of Lévy’s Upward

Theorem provide characterisations of several distinct algorithmic randomness notions.11,12

In other words, in each case, the algorithmically random data streams will be shown to

correspond to the collection of sequences on which the relevant e↵ectivisation of Lévy’s

Upward Theorem holds.

3.2.1 L1

-computable functions

We begin by considering L1-computable functions, first introduced by Pour-El and Richards

[1989], which play an important role in computable analysis. According to Weihrauch’s

definition [2000] of computability for functions on the real numbers (and related sets),

all computable functions are continuous. Yet, some discontinuous functions are so simple

that it seems they should count as computable in some sense. For an example of a very

simple discontinuous function, take the function f : 2N ! R given by f(!) = 1 if ! is the

constant-one sequence 1, and f(!) = 0 otherwise—that is, f is the indicator function of

the singleton {1}. The concept of L1-computability is meant to remedy this problem.

Just as the computable reals are the ones that can be computably approximated via

11More precisely, the forward direction of all of our characterisation results will be shown to hold for all
computable measures. In two instances, the backward direction will be shown to hold provided that the
underlying measure is strictly positive, in addition to being computable, and, in two other instances, the
backward direction will be given in the context of the uniform measure.

12Again, see [Huttegger et al., 2021] for the most recent versions of these results.
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computable sequences of rational numbers,13 the L

1-computable functions are those that

can be computably approximated via computable sequences of appropriately simple func-

tions:

Definition 3.2.1 (Rational-valued step function). A rational-valued step function is a

function f : 2N ! R of the form f =
P

k

i=1

q

i

�

[⌧i]
, where q

1

, . . . , q

k

2 Q and ⌧
1

, . . . , ⌧

k

2

2<N. Without loss of generality, the strings ⌧
1

, . . . , ⌧

k

can be assumed to be pairwise disjoint.

Then, a function is L1-computable if it can be approximated at a computable rate via

a computable sequence of rational-valued step functions in the following sense:

Definition 3.2.2 (L1-computable function). A function f :✓ 2N ! R is L

1-computable,

relative to a computable measure µ, if there is a computable sequence {f

n

}

n2N of rational-

valued step functions such that, for all n 2 N,

kf

n

� fk

1

=

Z

2

N
|f

n

� f | dµ  2�n

.

The sequence {f

n

}

n2N is said to be a witness to the L

1-computability of f .

A computable sequence {f

n

}

n2N of rational-valued step functions is said to be a fast

computable L

1-Cauchy sequence relative to µ if, for all n,m 2 N with m � n, kf
n

�f

m

k

1



2�n. The following proposition o↵ers an alternative characterisation of L1-computability

which will later turn out to be useful (from now on, we will omit reference to the underlying

computable measure µ when no ambiguity arises):14

Proposition 3.2.3. (i) Suppose that {f
n

}

n2N is a fast computable L

1-Cauchy sequence

such that f
n

! f in L

1. Then {f

n+1

}

n2N is a witness to the L

1-computability of f .

(ii) Suppose that f is L

1-computable with witness {f

n

}

n2N. Then {f

n+1

}

n2N is a fast

computable L

1-Cauchy sequence with f

n+1

! f in L

1.

Recall the indicator function f : 2N ! R of the singleton set {1} mentioned above.

Fix the uniform measure �. We will see that, in spite of being discontinuous (and, so,

uncomputable, given Weihrauch’s definition), this function is L

1-computable. For each

13See Chapter 1, §1.1.
14For a proof of Proposition 3.2.3, see [Huttegger et al., 2021].
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n 2 N and ! 2 2N, let f
n

(!) = 1 if !(k) = 1 for all 0  k < n, and f

n

(!) = 0 otherwise. In

other words, f
n

is the indicator function of the cylinder [1n] generated by n consecutive 1’s.

Then, the f

n

’s form a computable sequence of rational-valued step functions. Moreover,

for each n,
Z

2

N
|f

n

� f | d� =

Z

2

N
f

n

d��

Z

2

N
f d� = 2�n

,

so the f

n

’s are indeed a witness to the L

1-computability of f .

Now, what happens to Lévy’s Upward Theorem if, rather than considering arbitrary

integrable random variables, one focuses instead on L

1-computable random variables? Is

there a property of data streams that characterises exactly those sequences that guarantee

convergence to the truth in the sense of Lévy’s Upward Theorem when the quantity to

be estimated is L

1-computable? The result below establishes that there is indeed such a

property, and that this property corresponds to a central algorithmic randomness notion:

Schnorr randomness. Before we can state the result, we need some notation: given an

L

1-computable function f :✓ 2N ! R with witness {f

n

}

n2N, define f̂ :✓ 2N ! R as

f̂(!) = lim
n!1

f

n

(!) if such limit exists and is finite; otherwise, let f̂(!) be undefined. We

then have the following:15,16

Theorem 3.2.4. Let µ be a computable strictly positive measure and ! 2 2N. Then, the

following are equivalent:

(1) ! is µ-Schnorr random;

(2) for all L1-computable functions f :✓ 2N ! R with witness {f

n

}

n2N, f̂(!) is defined,

and

lim
k!1

E
µ

[f | F

k

](!) = f̂(!).

As a matter of fact, the forward direction of Theorem 3.2.4 holds for all computable

15For a proof of (the most recent version of) this result, see [Huttegger et al., 2021].
16Theorem 3.2.4 is the Cantor space analogue of the characterisation of Schnorr randomness by Pathak

et al. [2014] in terms of the Lebesgue Di↵erentiation Theorem and the uniform measure in Euclidean space.
Theorem 3.2.4 is also related to, yet distinct from, some similar characterisations of Schnorr randomness
due to Rute [2012]. In particular, Rute independently proved the forward direction of Theorem 3.2.4. He,
however, did not prove an exact analogue of our backward direction. In particular, as opposed to Rute’s
results, the backward direction of the proof of Theorem 3.2.4 establishes that if a sequence ! fails to be µ-
Schnorr random, then there is an L1-computable function for which the limit of the conditional expectations
does not exist along ! (and, so, convergence to the truth fails to occur on !). See [Huttegger et al., 2021]
for a more detailed discussion of the relation between Theorem 3.2.4 and Rute’s results.
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measures, not just the strictly positive ones. This is because, for any computable measure

µ, ! being µ-Schnorr random entails that µ([! � k]) > 0 for all k: if there were some k

such that µ([! � k]) = 0, then the sequence {U

n

}

n2N, where U

n

= [! � k] for all n, would

be a sequential µ-Schnorr test that ! would fail. As a result, ! being µ-Schnorr random

by itself ensures that E
µ

[f | F

k

](!) = 1

µ([!�k])
R

[!�k] f dµ for all k, which, in turn, allows to

do away with the strict positivity assumption.

Theorem 3.2.4 has a natural epistemic interpretation: the Schnorr random data streams

are exactly the sequences of observations along which a computable (open-minded) Bayesian

agent’s beliefs—in the form of their best estimates of the true value of an L

1-computable

random variable—asymptotically align with the truth. So, the collection of Schnorr random

sequences coincides with the collection of data streams where a specific type of inductive

success is attained.

Note that this result does not establish that, given a fixed L

1-computable random

variable, it is impossible for a data stream that is not µ-Schnorr random to be truth-

conducive. Take once again the L

1-computable function f (relative to �) that outputs 1

when given as input the constant-one sequence and 0 otherwise. Let 0 denote the constant-

zero sequence. For all n and k, f
n

(0) = 0 and E
�

[f | F

k

](0) = 0. We therefore have that

lim
k!1

E
�

[f | F

k

](0) = lim
n!1

f

n

(0) = f̂(0) = f(0) = 0: the sequence 0 is truth-conducive.

Yet, 0 not only fails to be �-Schnorr random, but it is also a computable data stream—and,

thus, it is highly non-random. What Theorem 3.2.4 does establish, however, is that if the

observed data stream is µ-Schnorr random, then convergence to the truth is guaranteed for

all L1-computable inductive problems; conversely, if the observed data stream ! fails to be

µ-Schnorr random, then there is at least one L1-computable inductive problem such that the

Bayesian agent’s successive estimates do not align with the truth along !. Hence, µ-Schnorr

randomness characterises the collection of data streams along which inductive success in

the sense of Lévy’s Upward Theorem is attained across all L1-computable problems.

This result bridges the theory of algorithmic randomness and Bayesian learning: in

particular, it shows that algorithmic randomness, when taken to be a property of data

streams, allows to o↵er a more informative analysis of the phenomenon of Bayesian con-

vergence to the truth for computationally limited learners. In addition, Theorem 3.2.4

immediately raises the question of whether the correspondence between the data streams
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along which convergence to the truth occurs and the algorithmically random data streams

survives when one imposes other natural e↵ectivity constraints on the random variables to

be estimated. In other words, is the correspondence between algorithmic randomness and

truth-conduciveness robust?

The e↵ectivity constraints imposed on random variables intuitively track the complex-

ity of the corresponding inductive problems (L1-computability marking one possible level

of complexity). Theorem 3.2.4 thus begs the question of whether, using the theory of algo-

rithmic randomness, it is possible to further gauge the “size” and structure of the success

set of a computable Bayesian agent in terms of the complexity of the inductive problem

that they are facing.

These are the questions to which the remainder of this chapter is devoted. We will con-

sider various natural classes of e↵ective random variables and see how they yield di↵erent

e↵ectivisations of Lévy’s Upward Theorem. Most importantly, each time the success set of

a Bayesian agent across problems in that class will be shown to correspond to a standard

algorithmic randomness notion. As we shall see, the results presented in what follows also

bring to the fore in a perspicuous way the fact that succeeding becomes more and more

di�cult as the complexity of the inductive problem faced by the computable Bayesian

agent increases. More precisely, the harder to compute a random variable is, the logically

stronger (and, thus, more restrictive) the algorithmic randomness notion characterising the

success set for functions in that class.

3.2.2 Integral tests for randomness

We begin by studying e↵ectivisations of Lévy’s Upward Theorem where the e↵ective ran-

dom variables under consideration are integral tests for randomness (as defined in §1.2.2

in the context of the measure-theoretic typicality paradigm).

Lower semi-computable random variables with computable expectation

Recall that an integral test for Schnorr randomness is a lower semi-computable random

variable with computable expectation (cf. Theorem 1.2.15). Many inductive problems

can be naturally modelled as random variables in this class. Suppose, for instance, that

a Bayesian agent with prior � (the uniform measure) were repeatedly tossing a coin and
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wanted to test the following hypothesis: is the coin being tossed going to land heads more

often than tails at least once? This hypothesis corresponds to the set U =
�

! 2 2N :

(9n) #1(!�n)
n

>

1

2

 

, where 1 represents a heads outcome and 0 a tails outcome. From

a Bayesian perspective, this inductive problem amounts to estimating the value of the

indicator function �U : 2N ! {0, 1} of U . Clearly, �U is lower semi-computable, since it is

the indicator function of a ⌃0

1

class. Moreover, given that �(U) = 1, �U has a computable

expectation.

We now show that if one replaces L1-computable functions with lower semi-computable

functions with computable expectation, then the resulting e↵ectivisation of Lévy’s Upward

Theorem once again yields Schnorr randomness.

Theorem 3.2.5. Let µ be a computable strictly positive measure and ! 2 2N. Then, the

following are equivalent:

(1) ! is µ-Schnorr random;

(2) for all lower semi-computable functions f : 2N ! R with computable expectation,

lim
k!1

E
µ

[f | F

k

](!) = f(!) < 1.

As we shall see, just as in the case of Theorem 3.2.4, the forward direction of this result

holds for all computable measures, not just the strictly positive ones.

To prove Theorem 3.2.5, we will appeal to a result due to Miyabe [2013b] (Theorem

3.2.6 below), which reveals that there is a tight correspondence between integral tests for

Schnorr randomness and L

1-computable functions. First, we need the following definition:

a function h :✓ 2N ! R is said to be the di↵erence between two integral tests for Schnorr

randomness if there are two integral tests for Schnorr randomness g and ` such that h(!) =

g(!)� `(!) whenever g(!) < 1 and `(!) < 1, and such that h(!) is undefined otherwise.

Miyabe then proves the following, for all computable measures µ:

Theorem 3.2.6 (Miyabe [2013b]). (i) Let h be the di↵erence between two integral tests

for µ-Schnorr randomness g and `. Then, there is an L

1-computable function f with

witness {f

n

}

n2N such that f̂(!) = h(!) for all µ-Schnorr random sequences !.17

17Recall that f̂(!) equals lim
n!1

fn(!) whenever this limit exists and is finite, and it is undefined otherwise.
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(ii) Let f be an L

1-computable function with witness {f

n

}

n2N. Then, there is a function

h that is the di↵erence between two integral tests for µ-Schnorr randomness such that

h(!) = f̂(!) for all µ-Schnorr random sequences !.

We additionally make use of the following simple lemma, which also holds for all com-

putable measures µ (as opposed to just the strictly positive ones):

Lemma 3.2.7. Let f :✓ 2N ! R be an L

1-computable function with witness {f

n

}

n2N.

Then, kf̂ � fk

1

= 0.

Proof. By Theorem 3.2.4, lim
n!1

f

n

(!) exists and is finite for all µ-Schnorr random ! 2 2N.

Therefore, {f
n

}

n2N converges pointwise—and, as a consequence, f̂ is defined—µ-almost

everywhere. By Proposition 3.2.3, {f
n+1

}

n2N is a fast computable L

1-Cauchy sequence

with f

n+1

! f in L

1. Moreover, we clearly have that lim
n!1

f

n+1

(!) = lim
n!1

f

n

(!) = f̂(!)

for all µ-Schnorr random ! 2 2N. Since
P

n2N kf

n+2

�f

n+1

k

1

< 1, it follows that f
n+1

! f̂

in L

1. But then, since f

n+1

! f in L

1, as well, we have that kf̂ � fk

1

= 0.

We are now ready to prove Theorem 3.2.5, which establishes the following, for com-

putable strictly positive measures µ: (i) if a data stream is µ-Schnorr random, then the

successive estimates of the Bayesian agent with prior µ converge to the truth for all lower

semi-computable random variables with computable expectation; (ii) if a data stream is

not µ-Schnorr random, then there is at least one lower semi-computable random variable

with computable expectation such that the agent’s successive estimates fail to converge to

a limit—and so, a fortiori, fail to converge to the truth. Notably, since ! being µ-Schnorr

random guarantees that, for all n, µ([! � n]) > 0 even in the absence of strict positiv-

ity—which, as mentioned earlier, implies that the forward direction of Theorem 3.2.4 holds

for all computable measures—the proof of (i) works for all computable measures, as well.

Proof of Theorem 3.2.5. (1) ) (2) Suppose that ! 2 2N is µ-Schnorr random, and let f be

an integral test for µ-Schnorr randomness. The function f � 0 (where 0 here denotes the

constant-zero function) is clearly the di↵erence between two integral tests for µ-Schnorr

randomness. Hence, by Theorem 3.2.6, there is an L

1-computable function ⇠ with witness

{⇠

m

}

m2N such that ⇠̂ and f agree on all µ-Schnorr random sequences. So, in particular,

⇠̂(!) = f(!). Moreover, for each n, E
µ

[⇠ | F

n

](!) = E
µ

[⇠̂ | F

n

](!) = E
µ

[f | F

n

](!),
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since ⇠, ⇠̂, and f are µ-almost everywhere equal: ⇠ and ⇠̂ are µ-almost everywhere equal

because, by Lemma 3.2.7, k⇠̂ � ⇠k

1

= 0, while ⇠̂ and f are µ-almost everywhere equal

because the collection of µ-Schnorr random sequences has µ-measure one. By Theorem

3.2.4, lim
n!1

E
µ

[⇠ | F
n

](!) = lim
m!1

⇠

m

(!) = ⇠̂(!). Hence, lim
n!1

E
µ

[f | F

n

](!) = f(!).

(2) ) (1) Suppose that ! is not µ-Schnorr random. We will show that there is a lower semi-

computable function f with computable expectation such that {E
µ

[f | F

i

](!)}
i2N does not

have a limit.18 Since ! is not µ-Schnorr random, there is a sequential test {U

n

}

n2N for

µ-Schnorr randomness such that ! 2

T

n2N U

n

. We will proceed as follows:

• firstly, we will define another sequential test {V
n

}

n2N for µ-Schnorr randomness such

that
T

n2N U

n

✓

T

n2N V

n

;

• secondly, we will show that the function g : 2N ! R given by g(↵) = 0 whenever

↵ 2

T

n2N V

n

and g(↵) =
P

n2N(�1)n�Vn otherwise—where �Vn denotes the indicator

function of V
n

—is L1-computable and fails Lévy’s Upward Theorem on !;

• lastly, we will appeal to Theorem 3.2.6 to show that there is a lower semi-computable

function f with computable expectation that fails Lévy’s Upward Theorem along !,

as well.

We define the test {V

n

}

n2N inductively as follows. Let V

0

= U

0

. Now, suppose that

V

n

has already been defined, so that V

n

=
F

k2N[�n,k] is a ⌃0

1

class. For each [�
n,k

]

enumerated into V

n

, find some j

k

� k with 2�jk
< 2�(n+1)

µ([�
n,k

]) and, if k > 0, with

j

k

> j

k�1

. Such a j

k

can be found computably since µ([�
n,k

]) is a computable real (and

µ is strictly positive, so that µ([�
n,k

]) > 0). Then, enumerate all of the (pairwise disjoint)

cylinders included in U

jk \ [�
n,k

] into V

n+1

. This ends the construction. Note that, since

µ(U
jk)  2�jk

< µ([�
n,k

]), all the cylinders enumerated into V
n+1

on behalf of [�
n,k

] (that is,

all the cylinders in U

jk \ [�
n,k

]) must be generated by strings ⌧ with �
n,k

@ ⌧ . We now show

that {V

n

}

n2N is indeed a sequential test for µ-Schnorr randomness. First of all, {V
n

}

n2N

is a (nested) sequence of uniformly ⌃0

1

classes. For n = 0, we have that µ(V
0

) = µ(U
0

).

So, µ(V
0

) is a computable real (and, obviously, we also have that µ(V
0

)  2�0 = 1). For

18The key idea behind this direction of the proof of Theorem 3.2.5 is adapted from the proof of Theorem
5.1 in [Freer et al., 2014], which provides a characterisation of the �-Schnorr random reals in terms of the
Lebesgue Di↵erentiation Theorem and bounded L1-computable functions.
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n � 1, on the other hand, we have that

µ(V
n

) 
X

k2N
µ(U

jk) 
X

k2N
2�n

µ([�
n�1,k

]) = 2�n

µ(V
n�1

)  2�(2n�1)

 2�n

,

where j

k

denotes the index selected on behalf of cylinder [�
n�1,k

] 2 V

n�1

during the

construction of V
n

. For each K 2 N, µ(
F

kK

U

jk\ [�
n�1,k

]) is a computable real, uniformly

in K. To see this, let [⌧
jk,0], [⌧jk,1], ... be a computable enumeration of the cylinders in U

jk .

Then, U
jk \ [�

n�1,k

] =
F

`2N[⌧jk,`]\ [�
n�1,k

]. Moreover, for each `, [⌧
jk,`

]\ [�
n�1,k

] is either

empty or equal to [⌧
jk,`

], so {µ([⌧
jk,`

]\ [�
n�1,k

])}
`2N is a sequence of uniformly computable

non-negative reals. Now,
P

`2N µ([⌧
jk,`

]) = µ(
F

`2N[⌧jk,`]) = µ(U
jk) and, so, is a computable

real, uniformly in k, since {U

m

}

m2N is a sequential test for µ-Schnorr randomness. Let

{`

m

}

m2N be an increasing computable sequence of natural numbers such that, for all m,
P1

i=`m+1

µ([⌧
jk,i])  2�m. Then, for all m,

µ

✓

G

i�`m+1

[⌧
jk,i] \ [�

n�1,k

]

◆

=
1
X

i=`m+1

µ([⌧
jk,i] \ [�

n�1,k

]) 
1
X

i=`m+1

µ([⌧
jk,i])  2�m

.

Hence, for all m,

�

�

�

�

µ(U
jk \ [�

n�1,k

])� µ

✓

`m
G

i=0

[⌧
jk,i] \ [�

n�1,k

]

◆

�

�

�

�

=

�

�

�

�

X

i2N
µ([⌧

jk,i] \ [�
n�1,k

])�
`m
X

i=0

µ([⌧
jk,i] \ [�

n�1,k

])

�

�

�

�

=

�

�

�

�

1
X

i=`m+1

µ([⌧
jk,i] \ [�

n�1,k

])

�

�

�

�

 2�m

.

Since {

P

`m
i=0

µ([⌧
jk,i] \ [�

n�1,k

])}
m2N is a computable sequence of computable reals, this

su�ces to conclude that µ(U
jk \ [�

n�1,k

]) is computable, uniformly in k. As a result,

µ(
F

kK

U

jk \ [�
n�1,k

]) =
P

K

k=0

µ(U
jk \ [�

n�1,k

]) is also a computable real, uniformly in K.

Now, given that V
n

=
F

k2N(Ujk \ [�
n�1,k

]), for every K, we have that

�

�

�

�

µ(V
n

)� µ

✓

G

kK

U

jk \ [�
n�1,k

]

◆

�

�

�

�

= µ

✓ 1
G

k=K+1

U

jk \ [�
n�1,k

]

◆

 2�K

,

where the inequality holds because, for all k, j
k

� k. Hence, µ(V
n

) is a computable real,
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uniformly in n. This establishes that {V

n

}

n2N is indeed a sequential test for µ-Schnorr

randomness.

Note, in addition, that
T

n2N U

n

✓

T

n2N V

n

. For, suppose that ↵ 2

T

n2N U

n

. Since

V

0

= U

0

and ↵ 2 U

0

, ↵ 2 V

0

. Now, suppose that ↵ 2 V

n

. Then, there is some k such that

↵ 2 [�
n,k

] ✓ V

n

. Let U

jk be such that U

jk \ [�
n,k

] is enumerated into V

n+1

. Given that

↵ 2 U

jk , ↵ 2 U

jk \ [�
n,k

] and, thus, ↵ 2 V

n+1

. Hence, ↵ 2

T

n2N V

n

. Then, in particular,

! 2

T

n2N V

n

.

Next, we prove that the function g defined above is L

1-computable. The functions

�Vn are L

1-computable uniformly in n, since {V

n

}

n2N is a sequential test for µ-Schnorr

randomness. For each n, let {⇠

n,k

}

k2N be a computable sequence of rational-valued step

functions witnessing the L

1-computability of �Vn . We begin by proving that, for all m,

g

m

=
P

m

n=0

(�1)n�Vn is also L

1-computable, uniformly in m. Fix m. For each k, let

g

m,k

=
P

m

n=0

(�1)n⇠
n,k

. Then, {g

m,k

}

k2N is a computable sequence of rational-valued

step functions, uniformly in m. For every k, let `
k

be such that 2�`k
 2�k(m + 1)�1.

Additionally, for each k � 1, also make sure that `
k

> `

k�1

. Let g

0
m,k

= g

m,`k
. Then,

{g

0
m,k

}

k2N, too, is a computable sequence of rational-valued step functions, uniformly in

m. Now,

Z

2

N
|g

0
m,k

� g

m

| dµ =

Z

2

N

�

�

�

�

m

X

n=0

(�1)n⇠
n,`k

�

m

X

n=0

(�1)n�Vn

�

�

�

�

dµ

=

Z

2

N

�

�

�

�

m

X

n=0

n even

(⇠
n,`k

� �Vn) +
m

X

n=1

n odd

(�Vn � ⇠

n,`k
)

�

�

�

�

dµ



Z

2

N

m

X

n=0

n even

|⇠

n,`k
� �Vn |+

m

X

n=1

n odd

|�Vn � ⇠

n,`k
| dµ

=
m

X

n=0

Z

2

N
|⇠

n,`k
� �Vn | dµ

 (m+ 1) · 2�`k

 2�k

.

Hence, g

m

is L

1-computable uniformly in m. Let h

k,k

= g

0
k+1,k+1

. We will now show

that {h
k,k

}

k2N, which is also a computable sequence of rational-valued step functions, is a
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witness to the L

1-computability of g:

Z

2

N
|h

k,k

� g| dµ =

Z

2

N
|g

0
k+1,k+1

� g| dµ



Z

2

N
|g

0
k+1,k+1

� g

k+1

| dµ+

Z

2

N
|g

k+1

� g| dµ

 2�(k+1) +

Z

2

N

�

�

�

�

k+1

X

n=0

(�1)n�Vn �

X

n2N
(�1)n�Vn

�

�

�

�

dµ

=2�(k+1) +

Z

2

N

�

�

�

�

1
X

n=k+2

(�1)n�Vn

�

�

�

�

dµ

 2�(k+1) +
1
X

n=k+2

Z

2

N
�Vn dµ

=2�(k+1) +
1
X

n=k+2

µ(V
n

)

 2�(k+1) + 2�(k+1)

=2�k

.

Now, we argue that the sequence {E
µ

[g | F

i

](!)}
i2N does not have a limit. Since

! 2

T

n2N V

n

, for every n, there is some k

n

such that ! 2 [�
n,kn ] ✓ V

n

, and �
0,k0 @ �

1,k1 @
�

2,k2 @ ... We begin by showing that lim
n!1
n even

1

µ([�
n,kn ])

Z

[�n,kn ]

g dµ = 1. Let n be even. For

all i  n, [�
n,kn ] ✓ V

i

, since {V

m

}

m2N is by construction a nested sequence. Hence,

1

µ([�
n,kn ])

Z

[�n,kn ]

n

X

i=0

(�1)i�Vi dµ = 1.

Let [⌧
0

], [⌧
1

], [⌧
2

], ... be an enumeration of all the cylinders in V

n+1

\ [�
n,kn ]. Then, for

each [⌧
j

], let [⌧
j,0

], [⌧
j,1

], [⌧
j,2

]... be an enumeration of all the cylinders in V

n+2

\ [⌧
j

], so

that V

n+2

\ [�
n,kn ] =

F

j,`2N[⌧j,`]. By the same reasoning, for each i > n, we have that

V

i

\ [�
n,kn ] =

F

j1,...,j(i�n)2N[⌧j1,...,j(i�n)
]. Therefore,

µ(V
i

\ [�
n,kn ]) = µ

✓

G

j1,...,ji�n2N
[⌧
j1,...,j(i�n)

]

◆

=
X

j1,...,j(i�n)2N
µ([⌧

j1,...,ji�n ])
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 2�i

X

j1,...,j(i�1�n)2N
µ([⌧

j1,...,j(i�1�n)
])

 2�i

µ([�
n,kn ]).

It then follows that

�

�

�

�

1

µ([�
n,kn ])

Z

[�n,kn ]

g dµ� 1

�

�

�

�

=

�

�

�

�

R

[�n,kn ]

P

i2N(�1)i�Vi dµ

µ([�
n,kn ])

� 1

�

�

�

�

=

�

�

�

�

�

R

[�n,kn ]

�

P

n

i=0

(�1)i�Vi dµ+
P1

i=n+1

(�1)i�Vi

�

dµ

µ([�
n,kn ])

� 1

�

�

�

�

�

=

�

�

�

�

R

[�n,kn ]

P

n

i=0

(�1)i�Vi dµ

µ([�
n,kn ])

+

R

[�n,kn ]

P1
i=n+1

(�1)i�Vi dµ

µ([�
n,kn ])

� 1

�

�

�

�

=

�

�

�

�

1

µ([�
n,kn ])

Z

[�n,kn ]

1
X

i=n+1

(�1)i�Vi dµ

�

�

�

�



1

µ([�
n,kn ])

Z

[�n,kn ]

1
X

i=n+1

�Vi dµ



1

µ([�
n,kn ])

1
X

i=n+1

µ(V
i

\ [�
n,kn ])



1

µ([�
n,kn ])

1
X

i=n+1

2�i

µ([�
n,kn ])

= 2�n

.

Hence, lim
n!1
n even

1

µ([�
n,kn ])

Z

[�n,kn ]

g dµ = 1, which, in turn, entails that lim sup
i!1

E
µ

[g | F

i

](!) �

1. Next, we show that lim
n!1
n odd

1

µ([�
n,kn ])

Z

[�n,kn ]

g dµ = 0. Let n be odd. Then, for all i  n,

1

µ([�
n,kn ])

Z

[�n,kn ]

n

X

i=0

(�1)i�Vi dµ = 0.

We then have that

�

�

�

�

1

µ([�
n,kn ])

Z

[�n,kn ]

g dµ� 0

�

�

�

�

=

�

�

�

�

R

[�n,kn ]

P

n

i=0

(�1)i�Vi dµ

µ([�
n,kn ])

+

R

[�n,kn ]

P1
i=n+1

(�1)i�Vi dµ

µ([�
n,kn ])

� 0

�

�

�

�

=

�

�

�

�

1

µ([�
n,kn ])

Z

[�n,kn ]

1
X

i=n+1

(�1)i�Vi dµ

�

�

�

�

,
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where the last quantity is at most 2�n. Hence, lim
n!1
n odd

1

µ([�
n,kn ])

Z

[�n,kn ]

g dµ = 0, which, in

turn, entails that lim inf
i!1

E
µ

[g | F

i

](!)  0. Therefore, the sequence {E
µ

[g | F

i

](!)}
i2N

indeed fails to have a limit.

Lastly, by Theorem 3.2.6, there is a function h that is the di↵erence between two integral

tests for µ-Schnorr randomness f

1

and f

2

, and such that h and ĝ agree on all µ-Schnorr

random sequences. For each i, E
µ

[h | F

i

](!) = E
µ

[ĝ | F

i

](!) = E
µ

[g | F

i

](!). Therefore,

{E
µ

[h | F

i

](!)}
i2N does not have a limit either. Since E

µ

[h | F

i

](!) = E
µ

[f
1

| F

i

](!) �

E
µ

[f
2

| F

i

](!), we in turn have that either {E
µ

[f
1

| F

i

](!)}
i2N or {E

µ

[f
2

| F

i

](!)}
i2N fails

to have a limit. Then, let f be whichever one of f

1

or f

2

witnesses this failure. This

concludes the proof.19

Lower semi-computable random variables with finite expectation

Next, we restrict attention to the class of lower semi-computable random variables with fi-

nite expectation (as opposed to computable expectation): namely, the collection of integral

tests for Martin-Löf randomness. To see that, from a learning-theoretic perspective, this

is a natural class to consider, note, for instance, that the indicator functions of ⌃0

1

classes

(including the ⌃0

1

classes whose measure is not computable) fall under this category.

Our main goal in what follows is showing that the type of randomness that emerges

from the e↵ectivisation of Lévy’s Upward Theorem obtained by restricting attention to

lower semi-computable random variables with finite expectation is another natural algo-

rithmic randomness notion: density randomness (as given by Definition 1.3.5). Observing

a density random data stream guarantees that the beliefs of a computable Bayesian agent

will converge to the truth on all inductive problems in this class.

19Note that this direction of Theorem 3.2.5 can be given a more succinct proof by combining Theorem
3.2.4 and Theorem 3.2.6. Our proof, however, does not rely on Theorem 3.2.4. This is because the aim of
the proof is to showcase an alternative route for establishing this direction, which could also be followed
to o↵er a di↵erent proof of the backward direction of Theorem 3.2.4. The shorter proof goes as follows.
Suppose that ! fails to be µ-Schnorr random. Then, by the proof of the backward direction of Theorem
3.2.4, there is an L1-computable function f such that the sequence {Eµ[f | Fk](!)}k2N does not have a
limit. Crucially, f is defined di↵erently from the function g given above. The rest of the proof is then
analogous. By Theorem 3.2.6, there is a function h that is the di↵erence between two integral tests for
µ-Schnorr randomness g and `, and such that h and f̂ agree on all µ-Schnorr random sequences. For each
k, Eµ[h | Fk](!) = Eµ[f̂ | Fk](!) = Eµ[f | Fk](!). Hence, {Eµ[h | Fk](!)}k2N does not have a limit either.
Since Eµ[h | Fk](!) = Eµ[g | Fk](!) � Eµ[` | Fk](!), we in turn have that either {Eµ[g | Fk](!)}k2N or
{Eµ[` | Fk](!)}k2N fails to have a limit. Thus, either g or ` is a witness to the failure of Condition (2).
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If f is a lower semi-computable random variable with finite expectation, then the func-

tion d

f

: 2<N
! R, where d

f

(�) equals
R
[�] f dµ

µ([�])

if µ([�]) > 0 and is undefined otherwise, is

an almost everywhere left-c.e. dyadic µ-martingale. This follows because f is lower semi-

computable, which ensures that d

f

is (almost everywhere) left-c.e., and because, without

loss of generality, f can be assumed to be non-negative. If, in addition, µ is a strictly

positive measure, then d

f

is total and, thus, a left-c.e. dyadic µ-martingale. Density ran-

domness is defined in terms of the convergence of (almost everywhere) left-c.e. dyadic

martingales: this will turn out to be crucial for the characterisation of density randomness

in terms of Lévy’s Upward Theorem. Before presenting this result, however, we will first

see that Martin-Löf randomness is too weak to be characterised via the e↵ectivisation of

Lévy’s Upward Theorem in terms of lower semi-computable random variables with finite

expectation. There are in fact computable strictly positive measures µ and lower semi-

computable random variables f with finite expectation such that d
f

fails to converge along

some µ-Martin-Löf random sequence.

First, we need to introduce the notion of a Borel normal sequence.20 For each m � 1,

consider the set of strings 2m equipped with the lexicographic order. Then, for each 1  i 

2m and ↵ 2 (2m)<N, let Nm

i

(↵) denote the number of occurrences of the i-th string from

2m in ↵. Now, for each � 2 2<N and m � 1, let h�,mi denote the string ⌧
1

...⌧

k

2 (2m)<N,

where k = |�| � (|�| mod m) and, for each 1  j  k, ⌧
j

= �((j � 1)m + 1)...�(jm).

Then, let N

m

i

(�) denote the number of occurrences of the i-th string from 2m in h�,mi.

Intuitively, we divide � into blocks of length m and count the number of occurrences of

the i-th string from 2m among these blocks.

Definition 3.2.8 (Borel normal sequence). (a) Let m � 1. A sequence ! 2 2N is Borel

m-normal if, for all 1  i  2m,

lim
n!1

N

m

i

(! � n)
n

m

= 2�m

.

(b) A sequence ! 2 2N is Borel normal if it is Borel m-normal for all m � 1.

Take the uniform measure �. It is a well-known fact that �-Martin-Löf randomness

implies Borel normality (see, for instance, [Becher, 2012]). We make use of this fact in

20Cf. [Calude, 1994], [Becher, 2012], or [Becher and Figueira, 2002]).
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rehearsing the proof of the result below, from which we can draw an important lesson:

observing a Martin-Löf random data stream does not guarantee convergence to the truth

in the sense of Lévy’s Upward Theorem if the quantity to be estimated is a lower semi-

computable random variable with finite expectation.

Observation 3.2.9 (Miyabe et al. [2016]). There is a �-Martin-Löf random sequence !

and a lower semi-computable random variable f : 2N ! R with finite expectation such that

the sequence {E
�

[f | F

k

](!)}
k2N fails to have a limit.

Proof. Let ! be a left-c.e. �-Martin-Löf random sequence21 and C = {� 2 2<N : � <

L

!},

where <

L

denotes the lexicographic order extended to infinite sequences, so that � <

L

!

if and only if there is ⇢ 2 2<N with ⇢0 v � and ⇢1 @ !. Since ! is left-c.e., C is a

c.e. set. Now,
S

{[�] : � 2 C} = {↵ 2 2N : ↵ <

L

!}. Call this set U . We show that

!

Figure 3.1: A depiction of Cantor space, where the black segmented line represents the
sequence !. The blue-shaded area to the left of ! is U : the collection of sequences that
precede ! in the lexicographic order. The yellow-shaded area to the right of !, on the
other hand, is U , the complement of U .

the indicator function �U of U provides the desired counterexample. Clearly, �U is lower

semi-computable, since U is a ⌃0

1

class. Moreover,
R

2

N �U d� = �(U) < 1. However,

(i) lim sup
k!1

E
�

[�U | F

k

](!) = lim sup
k!1

�(U \ [! � k])
�([! � k]) = 1, while

(ii) lim inf
k!1

E
�

[�U | F

k

](!) = lim inf
k!1

�(U \ [! � k])
�([! � k]) = 0.

21E.g., ⌦ (see Example 1.2.4).
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In both cases, the claim follows from the fact that !, being �-Martin-Löf random, is Borel

normal—and, in particular, Borel normal to base 2. To establish (i), it su�ces to show

that, for every n, there are infinitely many k such that �(U\[!�k])
�([!�k]) � 1� 2�n. So, fix n. By

Borel normality to base 2, we have that the string

� = 1 . . . 1
| {z }

n 1’s

occurs infinitely often along !. For each of the infinitely many occurrences of �, let ! � k
denote the initial segment of ! that precedes �: i.e., ! � k + n = (! � k)_�. Now,

U\[! � k] = U\[(! � k)_�] ✓ [(! � k)_�]. So, �(U\[! � k])  �([(! � k)_�]) = 2�(k+n).

Since U \ [! � k] = [! � k] \ (U \ [! � k]), we then have that

�(U \ [! � k])
�([! � k]) =

�([! � k] \ (U \ [! � k]))
�([! � k])

=
�([! � k])
�([! � k]) �

�(U \ [! � k]))
�([! � k])

� 1� 2�n

.

To establish (ii), on the other hand, it su�ces to show that, for every n, there are infinitely

many k such that �(U\[!�k])
�([!�k])  2�n. The argument is analogous to the previous one. Fix

n. Borel normality to base 2 implies that the string

⌧ = 0 · · · 0
| {z }

n 0’s

occurs infinitely often along !. For each occurrence of ⌧ , let ! � k be the initial segment

of ! that precedes ⌧ . Now, U \ [! � k] = U \ [(! � k)_⌧ ] ✓ [(! � k)_⌧ ]. So,

�(U \ [! � k])
�([! � k]) 

�([(! � k)_⌧ ])
�([! � k]) = 2�n

.

Hence, the sequence {E
�

[f | F

k

](!)}
k2N does not have a limit.

As once again shown by Miyabe et al. [2016], Martin-Löf randomness does however suf-

fice to guarantee that the limit of the conditional expectations of a lower semi-computable
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random variable with finite expectation is equal to the correct value of that function, pro-

vided that this limit exists. Their argument is given in the context of the uniform measure,

but, as shown below, it can be easily generalised to arbitrary computable measures.

Lemma 3.2.10 (Miyabe et al. [2016]). Let f : 2N ! R be a lower semi-computable random

variable with finite expectation and ! 2 2N a µ-Martin-Löf random sequence, with µ a

computable measure. If lim
k!1

E
µ

[f | F

k

](!) exists, then lim
k!1

E
µ

[f | F

k

](!) = f(!).

Proof. Without loss of generality, f can be assumed to be non-negative. Moreover, since

! is µ-Martin-Löf random, µ([! � k]) > 0 for all k. We begin by showing that lim
k!1

E
µ

[f |

F

k

](!) � f(!). Since f is lower semi-computable, by Definition 1.2.12, there is a sequence

of uniformly computable rational-valued functions g
n

: 2<N
! Q such that

(a) g

n+1

(�) � g

n

(�) for all n � 0 and � 2 2<N;

(b) g

n

(�⌧) � g

n

(�) for all n � 0 and all �, ⌧ 2 2<N;

(c) f(↵) = sup{g
n

(↵ � k) : n, k � 0} for all ↵ 2 2N.

Hence, for all ↵ 2 2N, lim
n!1

g

n

(↵ � n) = f(↵). Now, let �
1

, ...,�

2

n be an enumeration of

all strings in 2<N of length n, and, for each ↵ 2 2N, let f

n

(↵) =
P

2

n

i=1

g

n

(�
i

) · �
[�i]

(↵) =

g

n

(↵ � n). Then, {f
n

}

n2N is a computable non-decreasing sequence of rational-valued step

functions such that lim
n!1

f

n

(↵) = f(↵) for all ↵ 2 2N. Clearly, for every ↵ 2 2N with

µ([↵ � k]) > 0 for all k, f

n

(↵) = lim
k!1

E
µ

[f
n

| F

k

](↵), as E
µ

[f
n

| F

k

](↵) is eventually

constant (past k = n), with final value g

n

(↵ � n) 2 Q. By assumption, lim
k!1

E
µ

[f | F

k

](!)

exists. Call this limit `. Since lim
n!1

f

n

= f everywhere, and f

0

 f

1

 f

2

 ..., for every

� 2 2<N we have that

Z

[�]

f

0

dµ 

Z

[�]

f

1

dµ 

Z

[�]

f

2

dµ  ... 

Z

[�]

f dµ.

In particular, for all n, k � 0,

1

µ([! � k])

Z

[!�k]
f

n

dµ 

1

µ([! � k])

Z

[!�k]
f dµ,
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from which it follows that

f

n

(!) = lim
k!1

1

µ([! � k])

Z

[!�k]
f

n

dµ  lim
k!1

1

µ([! � k])

Z

[!�k]
f dµ.

Since lim
n!1

f

n

(!) = f(!), we have that

f(!) = lim
n!1

f

n

(!)  lim
k!1

1

µ([! � k])

Z

[!�k]
f dµ = lim

k!1
E
µ

[f | F

k

](!) = `.

Now, suppose towards a contradiction that f(!) < `. Then, there is some q 2 Q with

f(!) < q < `. In particular, q > 0, since f is by assumption non-negative. We will construct

another lower semi-computable random variable ⇠ : 2N ! R with finite expectation such

that ⇠(!) = 1. This will yield a contradiction because, by the characterisation of Martin-

Löf randomness in terms of integral tests (Theorem 1.2.14), the existence of such a function

contradicts the assumption that ! is µ-Martin-Löf random.

To define ⇠, we first define inductively an auxiliary sequence {S

n

}

n2N of uniformly c.e.

subsets of 2<N
⇥N. First, let S

0

= {h", 0i}. For n � 1, suppose that S
n�1

has already been

defined and is a c.e. set. Uniformly in h�, si 2 S

n�1

, define the set Bh�,si as

⇢

⌧ 2 2<N : � @ ⌧, |⌧ | � s, µ([⌧ ]) > 0,
1

µ([⌧ ])

Z

[⌧ ]

f

s

dµ  q, and (9t)
1

µ([⌧ ])

Z

[⌧ ]

f

t

dµ > q

�

.

Clearly, Bh�,si is c.e. and, without loss of generality, it can be assumed to be prefix-free.

Now, for each ⌧ 2 Bh�,si, let t > s be least with 1

µ([⌧ ])

R

[⌧ ]

f

t

dµ > q and put h⌧, ti in S

n

.

This ends the construction of the S

n

’s.

We now show that none of the S

n

’s is empty: in particular, for each n 2 N, there is

h⌧

n

, t

n

i 2 S

n

such that ⌧
n

@ !. Let ⌧
0

= " and t

0

= 0. Then, h", 0i 2 S

0

by definition. For

n � 1, suppose that h⌧
n�1

, t

n�1

i 2 S

n�1

and ⌧
n�1

@ !. Since

lim
k!1

1

µ([! � k])

Z

[!�k]
f dµ = ` > q,

there is some M such that, for all m � M , 1

µ([!�m])

R

[!�m]

f dµ > q. Moreover, since

lim
n!1

f

n

= f everywhere and f

0

 f

1

 f

2

 ..., the Monotone Convergence Theorem
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implies that, for any � 2 2<N with µ([�]) > 0,

lim
n!1

1

µ([�])

Z

[�]

f

n

dµ =
1

µ([�])

Z

[�]

f dµ.

In particular, for all m � M ,

lim
n!1

1

µ([! � m])

Z

[!�m]

f

n

dµ =
1

µ([! � m])

Z

[!�m]

f dµ > q.

So, for all m � M , there is some N such that, for all n � N , 1

µ([!�m])

R

[!�m]

f

n

dµ > q. Let

h⌧

n

, t

n

i be the pair where ⌧
n

is the shortest string with ⌧

n�1

@ ⌧

n

@ !, |⌧
n

| � t

n�1

and

|⌧

n

| � M , while t

n

is least with 1

µ([⌧n])

R

[⌧n]
f

tn dµ > q (such a t

n

exists by our previous

argument). We also have that

1

µ([⌧
n

])

Z

[⌧n]

f

tn�1 dµ  q,

and, so, t
n

> t

n�1

. This is because |⌧

n

| � t

n�1

, which means that

1

µ([⌧
n

])

Z

[⌧n]

f

tn�1 dµ = f

tn�1(!)  f(!) < q.

Hence, h⌧
n

, t

n

i 2 S

n

.

Next, we proceed to the construction of ⇠ : 2N ! R. Let ⇠
"

= q · �

["]

and, for each n � 1

and h⌧, ti in S

n

, let

⇠

⌧

=

✓

q �

1

µ([⌧ ])

Z

[⌧ ]

f

s

dµ

◆

· �

[⌧ ]

,

where the index s of f
s

comes from the pair h�, si 2 S

n�1

which prompted h⌧, ti to be put

in S

n

. The ⇠
⌧

’s (including ⇠
"

) are uniformly computable and, since 1

µ([⌧ ])

R

[⌧ ]

f

s

dµ  q by

construction, non-negative. Then, let

⇠ =
X

n2N

X

h⌧,ti2Sn

⇠

⌧

.

We now show that ⇠ is indeed lower semi-computable with finite expectation.

To see that ⇠ is lower semi-computable, let q0 2 Q and let S
n,s

be the set of all pairs in S

n
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that are enumerated within s steps. Then,

{↵ 2 2N : ⇠(↵) > q

0
} =

�

↵ 2 2N :
X

n2N

X

h⌧,ti2Sn

⇠

⌧

(↵) > q

0 

=
�

↵ 2 2N : (9j)(9s)
j

X

n=0

X

h⌧,ti2Sn,s

⇠

⌧

(↵) > q

0 
.

Hence, {↵ 2 2N : ⇠(↵) > q

0
} is a ⌃0

1

class, uniformly in q

0. By Proposition 1.2.13, this

su�ces to establish that ⇠ is lower semi-computable.

Next, we show that
R

2

N ⇠ dµ is finite. Since

Z

2

N

X

n2N

X

h⌧,ti2Sn

⇠

⌧

dµ =

Z

2

N
lim

N!1

N

X

n=0

X

h⌧,ti2Sn

⇠

⌧

dµ

= lim
N!1

Z

2

N

N

X

n=0

X

h⌧,ti2Sn

⇠

⌧

dµ

= lim
N!1

N

X

n=0

X

h⌧,ti2Sn

Z

2

N
⇠

⌧

dµ

by the Monotone Convergence Theorem (as well as the linearity of expectations), it is

su�cient to prove that

N

X

n=0

X

h⌧,ti2Sn

Z

2

N
⇠

⌧

dµ  q +

Z

2

N
f dµ < 1

for every N � 0. To see that this is indeed the case, note that, for any n > 0 and h⌧, ti 2 S

n

,

the following holds:

Z

2

N
⇠

⌧

dµ =

Z

2

N

✓

q �

1

µ([⌧ ])

Z

[⌧ ]

f

s

dµ

◆

· �

[⌧ ]

dµ



Z

2

N

✓

1

µ([⌧ ])

Z

[⌧ ]

f

t

dµ�

1

µ([⌧ ])

Z

[⌧ ]

f

s

dµ

◆

· �

[⌧ ]

dµ

=

✓

1

µ([⌧ ])

Z

[⌧ ]

f

t

� f

s

dµ

◆

Z

2

N
�

[⌧ ]

dµ

=

Z

[⌧ ]

f

t

� f

s

dµ
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Z

[⌧ ]

f � f

s

dµ.

Hence,

X

h⌧,ti2Sn

Z

2

N
⇠

⌧

dµ 

X

h⌧,ti2Sn

Z

[⌧ ]

f � f

s

dµ



X

h�,si2Sn�1

Z

[�]

f � f

s

dµ,

where the second inequality follows from the fact that
[

⌧2Bh�,si

[⌧ ] ✓ [�]. Now, for N � 2,

N

X

n=N�1

X

h⌧,ti2Sn

Z

2

N
⇠

⌧

dµ =
X

h�,si2SN�1

Z

2

N
⇠

�

dµ+
X

h⌧,ti2SN

Z

2

N
⇠

⌧

dµ



X

h�,si2SN�1

Z

[�]

(f
s

� f

r

) dµ+
X

h�,si2SN�1

Z

[�]

(f � f

s

) dµ



X

h�,si2SN�1

Z

[�]

(f � f

r

) dµ



X

h⇢,ri2SN�2

Z

[⇢]

(f � f

r

) dµ,

where h⇢, ri is the pair in S

N�2

that prompted h�, si to be put in S

N�1

, which in turn

prompted the pair h⌧, ti to be put in S

N

. This argument can be repeated for sums starting

at N � 2, N � 3, ..., 1, so that

N

X

n=0

X

h⌧,ti2Sn

Z

2

N
⇠

⌧

dµ 

X

h⌧,ti2S0

Z

2

N
⇠

⌧

dµ+
X

h⌧,ti2S0

Z

[⌧ ]

(f � f

0

) dµ

=

Z

2

N
⇠

"

dµ+

Z

2

N
(f � f

0

) dµ

 q +

Z

2

N
f dµ

<1.

This establishes that the expectation of ⇠ is finite.

The last thing to show is that ⇠(!) = 1. Let {a

n

}

n2N be the constant sequence where
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each a

n

= q � f(!) > 0. We have already argued that, for each n, there is h⌧

n

, t

n

i 2 S

n

with ⌧
n

@ !. Hence,

⇠(!) = q +
X

n�1

✓

q �

1

µ([⌧
n

])

Z

[⌧n]

f

tn�1 dµ

◆

= q +
X

n�1

✓

q � f

tn�1(!)

◆

�

X

n2N
a

n

= 1,

which contradicts the assumption that ! is µ-Martin-Löf random.

We are now ready to prove that the density random data streams guarantee that a

computable Bayesian agent’s beliefs will converge to the truth across all inductive problems

that can be modelled as lower semi-computable random variables with finite expectation.

Theorem 3.2.11 below is a straightforward analogue of Theorem 5.8 by Miyabe et al.

[2016], who provide a characterisation of density randomness via the Lebesgue Di↵eren-

titation Theorem in the context of the uniform measure. The significance of Theorem

3.2.11 chiefly lies with its interpretation. In the context of Lévy’s Upward Theorem,

this characterisation of density randomness shows that the correspondence between truth-

conduciveness and algorithmic randomness is not restricted to the case of Schnorr random-

ness: it extends to another natural algorithmic randomness notion, which suggests that

the connection between algorithmic randomness and convergence to the truth is indeed a

robust one.

Theorem 3.2.11. Let ! 2 2N. Consider the following statements:

(1) ! is µ-density random;

(2) for all lower semi-computable f : 2N ! R with finite expectation,

lim
k!1

E
µ

[f | F

k

](!) = f(!) < 1.

For any computable measure µ, (1) implies (2). When µ is the uniform measure �, (1)
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and (2) are equivalent.

Proof. First, let µ be an arbitrary computable measure and ! a µ-density random sequence.

Then, for all k, µ([! � k]) > 0. Let f be a lower semi-computable random variable with

finite expectation. Without loss of generality, f can be taken to be non-negative. Then,

the function d

f

, where d

f

(�) equals
R
[�] f dµ

µ([�])

if µ([�]) > 0 and is undefined otherwise, is an

almost everywhere left-c.e. dyadic µ-martingale. By Definition 1.3.5, lim
k!1

E
µ

[f | F

k

](!)

exists and is finite. By Lemma 3.2.10 and the fact that µ-density randomness implies µ-

Martin-Löf randomness, we can then conclude that lim
k!1

E
µ

[f | F

k

](!) = f(!).

Now, fix the uniform measure �. By the previous argument, we clearly have that (1)

entails (2). For the other direction, suppose that Condition (2) holds along !. Then, f(!)

is finite for all lower semi-computable random variables with finite expectation. Hence, by

Theorem 1.2.14, ! is �-Martin-Löf random. Now, suppose towards a contradiction that

! is not a �-dyadic density-one point (and, so, by Theorem 1.3.6, that it is not �-density

random). Let C be a ⇧0

1

class such that ! 2 C but ⇢(C | !) = lim inf
k!1

�(C \ [! � k])
�([! � k]) =

lim inf
k!1

�(C | [! � k]) < 1. Since C is a ⇧0

1

class, its complement C is a ⌃0

1

class and, so,

the indicator function �C of C is lower semi-computable. Moreover, the expectation of �C

is clearly finite. Given that ! /2 C, we have that �C(!) = 0. Yet, lim sup
k!1

�(C \ [! � k])
�([! � k]) =

lim sup
k!1

�(C | [! � k]) = lim sup
k!1

(1 � �(C | [! � k])) > 0. Therefore, even if the sequence

{E
�

[�C | F

k

](!)}
k2N does have a limit, this limit cannot be 0 and, so, it has to be di↵erent

from �C(!). This, however, contradicts our initial assumption that Condition (2) holds

along !.

Almost-everywhere finite computable random variables

The last family of integral tests for randomness that we shall consider here is the collection

of integral tests for weak 1-randomness: namely, computable functions that are finite

almost everywhere (cf. §1.2.2). The e↵ectivisation of Lévy’s Upward Theorem that results

from restricting attention to computable almost-everywhere finite random variables yields

a characterisation of weak 1-randomness.22 Hence, the weakly 1-random data streams are

precisely the ones along which beliefs converge to the truth when the inductive problems

22Also see Miyabe’s characterisation of weak 1-randomness in terms of the Lebesgue Di↵erentiation
Theorem [Miyabe, 2013b].
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to be solved are computable. As we will see, both directions of this result hold for all

computable measures. For the forward direction, we have that, for any computable measure

µ, if ! is µ-weakly 1-random, then µ([! � n]) > 0 for all k: if there were some k with

µ([! � k]) = 0, there would in fact be a ⌃0

1

class of µ-measure one—the complement of

[! � k]—to which ! would fail to belong.

Theorem 3.2.12. Let µ be a computable measure and ! 2 2N. Then, the following are

equivalent:

(1) ! is µ-weakly 1-random;

(2) for all computable functions f : 2N ! R that are finite almost everywhere,

lim
k!1

E
µ

[f | F

k

](!) = f(!) < 1.

Proof. (1) ) (2) Let f be a computable random variable that is finite almost everywhere.

Let d : 2N ⇥ 2N ! [0,+1) denote the canonical metric on 2N given by

d(↵,↵0) =

8

>

<

>

:

2�n if ↵ 6= ↵

0 and n is least with ↵(n) 6= ↵

0(n);

0 if ↵ = ↵

0
.

For any ↵ 2 2N with f(↵) < 1 and for any ✏ > 0, there is � > 0 such that, for all ↵0
2 2N,

if d(↵,↵0) < �, then |f(↵)� f(↵0)| < ✏. To see this, take ↵ 2 2N with f(↵) < 1 and ✏ > 0.

Let q, p 2 (f(↵) � ✏, f(↵) + ✏) be rationals with q < f(↵) < p. Then, f�1((q, p)) is a ⌃0

1

class, uniformly in q, p. Thus, f�1((q, p)) =
F

n2N[�n] and there is an n such that ↵ 2 [�
n

].

Let � = 2�|�n|
. Then, for all ↵0

2 [↵ � |�

n

| + 1] ⇢ [�
n

], d(↵,↵0) < 2�|�n| and, for all

↵

0
/2 [↵ � |�

n

|+1], d(↵,↵0) � 2�|�n|. Moreover, for all ↵0
2 [↵ � |�

n

|+1], |f(↵)�f(↵0)| < ✏.

Now, since ! is µ-weakly 1-random, f(!) < 1 by Theorem 1.2.17. Fix ✏ > 0. Then, as

just shown, there is � > 0 such that, for all ↵ 2 2N, if d(↵,!) < �, then |f(↵)� f(!)| < ✏.

Fix m with 2�m

< �. Then, for all n � m,

�

�

�

�

�

R

[!�n] f dµ

µ([! � n]) � f(!)

�

�

�

�

�



R

[!�n] |f � f(!)| dµ

µ([! � n]) <

R

[!�n] ✏ dµ

µ([! � n]) = ✏.

All of the ratios above are well-defined because µ([! � n]) > 0 for all n, since ! is µ-weakly
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1-random. The first inequality, on the other hand, holds because f(!) is a constant. Hence,

lim
k!1

E
µ

[f | F

k

](!) = lim
k!1

1

µ([! � k])

Z

[!�k]
f dµ = f(!) < 1.

(2) ) (1) This direction follows immediately from Miyabe’s characterisation of µ-weak 1-

randomness in terms of integral tests. Suppose that ! is not µ-weakly 1-random. Then, by

Theorem 1.2.17, there is a computable random variable f that is finite almost everywhere

and such that f(!) = 1. This fact, by itself, contradicts (2).

3.2.3 Weakly L1

-computable functions

Next, we focus on a computability concept for functions in L

1, weak L

1-computability,23

that is weaker than L

1-computability, and that is the analogue of the notion of a weakly

computable real number [Ambos-Spies et al., 2000].

The main goal of this section is proving the following e↵ectivisation of Lévy’s Upward

Theorem:

Theorem 3.2.13. Let ! 2 2N. Consider the following statements:

(1) ! is µ-density random;

(2) for all weakly L

1-computable functions f :✓ 2N ! R with witness {f

n

}

n2N, f̂(!) is

defined, and

lim
k!1

E
µ

[f | F

k

](!) = f̂(!).

For any computable measure µ, (1) entails (2). When µ is the uniform measure �, (1) and

(2) are equivalent.

We begin by defining weakly computable real numbers.

Definition 3.2.14 (Weakly computable real number). A real number r

0

is weakly com-

putable if there are two left-c.e. real numbers r

1

and r

2

such that r
0

= r

1

� r

2

.

23Weak L1-computability was introduced by Miyabe [2013a]. Our presentation of weakly L1-computable
functions is slightly di↵erent from Miyabe’s, and it mirrors the definition of L1-computable functions given
in §3.2.1.
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Theorem 3.2.15 (Ambos-Spies et al. [2000]). A real number r is weakly computable if

and only if there is a computable sequence {q

n

}

n2N of rationals such that q

n

! r and
P

n2N |q

n+1

� q

n

| < 1.

Now, the definition of a weakly L

1-computable function mirrors the characterisation of

weakly computable reals given in Theorem 3.2.15:

Definition 3.2.16 (Weak L

1-computability). A function f :✓ 2N ! R is weakly L

1-

computable, relative to a computable measure µ, if there is a computable sequence {f

n

}

n2N

of rational-valued step functions such that f
n

! f in L

1 and
P

n2N kf

n+1

�f

n

k

1

< 1 (i.e.,

the sequence {f

n

}

n2N has bounded L

1-variation).

Weakly L

1-computable functions and their properties

In what follows, we will discuss some of the basic properties of weak L

1-computability and

see how it relates to the notion of L1-computability presented in §3.2.1. All of the results

discussed here hold for all computable measures.

First, we show that, in the definition of a weakly L

1-computable function, the com-

putable sequence of rational-valued step functions that serves as a witness may be replaced,

without loss of generality, by a computable sequence of real-valued step functions, as long

as the reals involved are uniformly computable.24

Observation 3.2.17. Let f :✓ 2N ! R be such that there is a computable sequence

f

n

=
P

kn
i=1

r

i

�

[⌧i]
of real-valued step functions, where the r

i

’s are uniformly computable,

with f

n

! f in L

1 and
P

n2N kf

n+1

� f

n

k

1

< 1. Then, f is weakly L

1-computable.

Proof. For each n and each r

i

, with 1  i  k

n

, there is a computable sequence of rationals

q

i,0

, q

i,1

, ... ! r

i

such that |q

i,n

� r

i

|  2�n for all n. For each n, define g

n

: 2N ! Q in

terms of f
n

as follows: g

n

=
P

kn
i=1

q

i,n

�

[⌧i]
. Then, {g

n

}

n2N is a computable sequence of

rational-valued step functions. For every n 2 N, we then have that

Z

2

N
|g

n

� f

n

| dµ =

Z

2

N

�

�

�

�

kn
X

i=1

(q
i,n

� r

i

) · �
[⌧i]

�

�

�

�

dµ

24The same also holds for L1-computable functions.
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Z

2

N

kn
X

i=1

|q

i,n

� r

i

| · �

[⌧i]
dµ



Z

2

N
2�n

dµ

=2�n

.

Let ✏ > 0. Since f

n

! f in L

1, there is some N such that, for all n � N , kf
n

� fk

1

<

✏

2

.

Let K be such that 2�K

<

✏

2

. Then, for all k � K, kg

k

� f

k

k

1

 2�K

<

✏

2

. Let

M = max{N,K}. Then, for all m � M , kg
m

� fk

1

 kg

m

� f

m

k

1

+ kf

m

� fk

1

< ✏. Hence,

g

n

! f in L

1. Moreover,

X

n2N
kg

n+1

� g

n

k

1



X

n2N
kg

n+1

� f

n+1

k

1

+
X

n2N
kf

n+1

� f

n

k

1

+
X

n2N
kf

n

� g

n

k

1

< 1.

Hence, {g
n

}

n2N witnesses the weak L

1-computability of f .

L

1-computability can be characterised in a way analogous to the above definition of

weak L

1-computability. The following also establishes that L1-computability entails weak

L

1-computability.

Observation 3.2.18. A function f :✓ 2N ! R is L

1-computable if and only if there is a

computable sequence {f

n

}

n2N of rational-valued step functions such that f
n

! f in L

1 and
P

n2N kf

n+1

� f

n

k

1

is finite and computable.

Proof. ()) Let {f
n

}

n2N be a witness to the L

1-computability of f . For each n � 0, since

f

n+1

and f

n

are both rational-valued step functions, so are f

n+1

� f

n

and |f

n+1

� f

n

|.

Moreover, the expectations of all these functions are computable, uniformly in n. Further,

to see that
P

m2N kf

m+1

� f

m

k

1

is a computable real, note that, for all n � 0, we have

�

�

�

�

X

m2N
kf

m+1

� f

m

k

1

�

n+1

X

m=0

kf

m+1

� f

m

k

1

�

�

�

�

=
1
X

m=n+2

kf

m+1

� f

m

k

1

 2�n

,

where the inequality follows from Proposition 3.2.3(ii). Therefore,
P

n2N kf

n+1

� f

n

k

1

is

computable, in addition to being finite.

(() Since the sum
P

n2N kf

n+1

� f

n

k

1

is finite and computable, choose an increasing

computable sequence {↵

n

}

n2N of natural numbers such that
P1

m=↵n
kf

m+1

� f

m

k

1

 2�n
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for each n � 0. Then, for all n � 0 and k � n, we have that

kf

↵k � f

↵nk1 

↵k�1

X

m=↵n

kf

m+1

� f

m

k

1



1
X

m=↵n

kf

m+1

� f

m

k

1

 2�n

.

Therefore, {g
n

}

n2N, where g

n

= f

↵n is a fast computable L

1-Cauchy sequence. Moreover,

since f

n

! f in L

1, we also have that g

n

! f in L

1. Hence, by Proposition 3.2.3(i),

{g

n+1

}

n2N is a witness to the L

1-computability of f .

In fact, as its name suggests, weak L

1-computability is strictly weaker than L

1-computability.

Observation 3.2.19. There is a weakly L

1-computable function that is not L1-computable.

To prove Observation 3.2.19, we will make use of the following lemma:

Lemma 3.2.20. Let f :✓ 2N ! R be an L

1-computable function with witness {f

n

}

n2N.

Then, for all � 2 2<N,
R

[�]

f dµ is a computable real number.

Proof of Lemma 3.2.20. Take � 2 2<N and n 2 N. Then,

Z

[�]

f

n

dµ =

Z

[�]

kn
X

i=1

q

i

�

[⌧i]
dµ =

kn
X

i=1

q

i

· µ([�] \ [⌧
i

]).

Hence,
R

[�]

f

n

dµ is computable, uniformly in � and n, and
� R

[�]

f

n

dµ

 

n2N is a sequence

of uniformly computable reals. Moreover, the following holds:

�

�

�

�

�

Z

[�]

f

n

dµ�

Z

[�]

f dµ

�

�

�

�

�

=

�

�

�

�

�

Z

[�]

(f
n

� f) dµ

�

�

�

�

�



Z

[�]

|f

n

� f | dµ 

Z

2

N
|f

n

� f | dµ  2�n

.

Hence,
R

[�]

f dµ is indeed computable.

Proof of Observation 3.2.19. Let {U
n

}

n2N be a µ-Solovay test (cf. Theorem 1.2.5) that is

not a total µ-Solovay test (cf. Theorem 1.2.7). Then, each U

n

can be written as
F

i2N[⌧n,i],

for some uniformly computable sequence of cylinders. Let g =
P

n2N �Un . Then, g is

an integral test for µ-Martin-Löf randomness—i.e., it is lower semi-computable and its

expectation is finite. To see this, first note that, by the Monotone Convergence Theorem,
R

2

N g dµ =
P

n2N µ(U
n

). And, since {U

n

}

n2N is a µ-Solovay test,
P

n2N µ(U
n

) < 1. To see
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that g is also lower semi-computable, observe that, for any q 2 Q,

{! 2 2N : g(!) > q} =
n

! 2 2N :
X

n2N
�Un(!) > q

o

=
n

! 2 2N : (9m)
m

X

n=0

m

X

i=0

�

[⌧n,i]
(!) > q

o

.

Hence, {! 2 2N : g(!) > q} is a ⌃0

1

class, uniformly in q, and so, by Proposition 1.2.13,

g is lower semi-computable. Now, let h be such that h(!) equals g(!) if g(!) < 1 and is

undefined otherwise. We will show that h is weakly L

1-computable but not L1-computable.

Since h = g on all µ-Martin-Löf random sequences, h = g µ-almost everywhere and, so,
R

2

N h dµ =
R

2

N g dµ. Moreover, since {U

n

}

n2N is not a total µ-Solovay test,
P

n2N µ(U
n

) is

not computable. Hence,
R

2

N h dµ is finite but not computable, which, by Lemma 3.2.20,

implies that h is not an L

1-computable function. To show that h is weakly L

1-computable,

for each m, let g
m

=
P

m

n=0

P

m

i=0

�

[⌧n,i]
. Then, {g

m

}

n2N is a computable sequence of non-

negative non-decreasing rational-valued step functions and, for all ! 2 2N, lim
m!1

g

m

(!) =

g(!). By the Monotone Convergence Theorem, we then have that g
m

! g in L

1. Moreover,

since h = g µ-almost everywhere, g
n

! h in L

1, as well. Lastly, we have that

X

m2N

Z

2

N
|g

m+1

� g

m

| dµ =
X

m2N

Z

2

N
(g

m+1

� g

m

) dµ

= lim
k!1

k

X

m=0

⇣

Z

2

N
g

m+1

dµ�

Z

2

N
g

m

dµ

⌘

=
⇣

lim
k!1

Z

2

N
g

k+1

dµ

⌘

�

Z

2

N
g

0

dµ

=

Z

2

N
g dµ�

Z

2

N
g

0

dµ



Z

2

N
g dµ

<1,

where the first identity follows from the fact that the g

m

’s are non-decreasing, the second

identity from the linearity of expectation, and the first inequality from the fact that g
0

is

non-negative and g

0

 g everywhere. This establishes that h is weakly L

1-computable.
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Even though the e↵ectivisation of Lévy’s Upward Theorem in terms of weakly L

1-

computable functions does not yield Martin-Löf randomness, being Martin-Löf random is

equivalent to guaranteeing the convergence of any computable sequence of rational-valued

step functions witnessing the weak L

1-computability of a function.

Proposition 3.2.21. Let µ be a computable measure and ! 2 2N. Then, the following are

equivalent:

(1) ! is µ-Martin-Löf random;

(2) for all weakly L1-computable functions f :✓ 2N ! R with witness {f
n

}

n2N, lim
n!1

f

n

(!)

exists and is finite.

Proof. (1) ) (2) Let f :✓ 2N ! R be a weakly L

1-computable function with witness

{f

n

}

n2N. Then,
P

n2N kf

n+1

� f

n

k

1

< 1. Define ⇠ : 2N ! R as ⇠(↵) =
P

n2N |f

n+1

(↵) �

f

n

(↵)| = lim
k!1

k

X

n=0

|f

n+1

(↵) � f

n

(↵)| for all ↵ 2 2N. Then, by the Monotone Convergence

Theorem, ⇠ has finite expectation. Moreover, ⇠ is lower semi-computable, since it is the

pointwise limit of a computable sequence of non-negative non-decreasing rational-valued

step functions. Hence, ⇠ is an integral test for µ-Martin-Löf randomness. Theorem 1.2.14

then entails that ⇠(!) < 1, since ! is by assumption µ-Martin-Löf random. In turn,

this implies that {f

n

(!)}
n2N is Cauchy. For, suppose that ✏ > 0. Choose N such that

P

n�N

|f

n+1

(!)� f

n

(!)| < ✏. Then, for all m � n � N , we have that

|f

m

(!)� f

n

(!)| 
m

X

k=n

|f

k+1

(!)� f

k

(!)| < ✏.

Thus, {f
n

(!)}
n2N is Cauchy and, so, lim

n!1
f

n

(!) exists and is finite.25

(2) ) (1) Suppose that ! is not µ-Martin-Löf random. Then, there is a µ-Martin-Löf test

{U

n

}

n2N such that ! 2

T

n2N U

n

and each U

n

=
F

i2N[⌧n,i]. Let g =
P

n2N �Un and, for

each n � 0, define g

n

=
P

n

m=0

P

n

i=0

�

[⌧m,i]
. Then, {g

n

}

n2N is a computable sequence of

non-negative non-decreasing rational-valued step functions. Since lim
n!1

g

n

(↵) = g(↵) for

all ↵ 2 2N, g
n

! g in L

1 by the Monotone Convergence Theorem. Now, let f be such that

f(↵) equals g(↵) if g(↵) < 1 and is undefined otherwise. Then, f = g on all µ-Martin-Löf

25This direction can also be proved by appealing to Theorem 3.2.25.



CHAPTER 3. RANDOMNESS AND CONVERGENCE TO THE TRUTH 113

random sequences and, so, g
n

! f in L

1. By the same argument used in the proof of

Observation 3.2.19,

X

n2N

Z

2

N
|g

n+1

� g

n

| dµ  lim
n!1

Z

2

N
g

n

dµ =

Z

2

N
g dµ =

X

n2N
µ(U

n

) < 1.

Therefore, {g
n

}

n2N is a witness to the weak L

1-computability of f . Moreover, ! 2

T

n2N U

n

implies that lim
n!1

g

n

(!) = g(!) = 1.

Given a weakly L

1-computable function f :✓ 2N ! R with witness {f

n

}

n2N, let the

function f̂ :✓ 2N ! R be defined as f̂(!) = lim
n!1

f

n

(!) if this limit exists and is finite, and

let it be undefined otherwise. Then, it is easy to see that the following analogue of Lemma

3.2.7 holds for all computable measures:

Observation 3.2.22. Let f :✓ 2N ! R be weakly L

1-computable with witness {f

n

}

n2N.

Then, kf̂ � fk

1

= 0.

Proof. By Proposition 3.2.21, lim
n!1

f

n

(!) exists and is finite for all µ-Martin-Löf random

sequences ! 2 2N. Therefore, {f
n

}

n2N converges pointwise—and, thus, f̂ is defined—µ-

almost everywhere. Since
P

n2N kf

n+1

� f

n

k

1

< 1, f
n

! f̂ in L

1. But then, since f

n

! f

in L

1, too, we have that kf̂ � fk

1

= 0.

Finally, the following holds for µ-Martin-Löf random sequences:

Observation 3.2.23. Let f :✓ 2N ! R and g :✓ 2N ! R be weakly L

1-computable

functions. Then, kf�gk

1

= 0 if and only if f̂ and ĝ are defined and equal on all µ-Martin-

Löf random sequences.

Proof. ()) Since f and g are both weakly L

1-computable, there are computable se-

quences {f

n

}

n2N and {g

n

}

n2N of rational-valued step functions witnessing the weak L

1-

computability of f and g, respectively. Since kf � gk

1

= 0, lim
n!1

kf

n

� g

n

k

1

= 0. For each

k, computably find n

k

� k such that kf

nk � g

nkk1  2�k. Then, define ⇠ : 2N ! R as

⇠(!) =
P

k2N |f

nk(!)� g

nk(!)| for all ! 2 2N. Clearly, ⇠ is lower semi-computable and has

finite expectation. Hence, ⇠ is an integral test for µ-Martin-Löf randomness, and thus, by

Theorem 1.2.14, ⇠(!) < 1 for all µ-Martin-Löf random sequences ! 2 2N. By Proposition

3.2.21, both lim
n!1

f

n

(!) and lim
n!1

g

n

(!) exist and are finite for all µ-Martin-Löf random



CHAPTER 3. RANDOMNESS AND CONVERGENCE TO THE TRUTH 114

! 2 2N. Hence, for all µ-Martin-Löf random ! 2 2N, lim
k!1

f

nk(!) = lim
n!1

f

n

(!) < 1

and lim
k!1

g

nk(!) = lim
n!1

g

n

(!) < 1. Let ! be µ-Martin-Löf random: we show that

f̂(!) = lim
n!1

f

n

(!) = lim
n!1

g

n

(!) = ĝ(!). Let ✏ > 0. Since ⇠(!) =
P

k2N |f

nk(!)�g

nk(!)| <

1, there is some K such that
P

k>K

|f

nk(!) � g

nk(!)| < ✏. Hence, for all k > K,

|f

nk(!)�g

nk(!)| < ✏, which implies that lim
k!1

f

nk(!)�g

nk(!) = lim
k!1

f

nk(!)� lim
k!1

g

nk(!) =

0. Hence, lim
n!1

f

n

(!) = lim
n!1

g

n

(!): i.e., f̂(!) = ĝ(!).

(() Suppose that f̂(!) = ĝ(!) for all µ-Martin-Löf random ! 2 2N. Then,
R

2

N |f̂ � ĝ| dµ =

0. By Observation 3.2.22,
R

2

N |f̂ � f | dµ = 0 and
R

2

N |ĝ � g| dµ = 0. Hence,

Z

2

N
|f � g| dµ 

Z

2

N
|f � f̂ | dµ+

Z

2

N
|f̂ � ĝ| dµ+

Z

2

N
|ĝ � g| dµ = 0,

which concludes the proof.

Weakly L

1-computable functions and density randomness

Just as in the context of lower semi-computable random variables with finite expectation

(see §3.2.2), Martin-Löf randomness is too weak to be characterisable via the e↵ectivisation

of Lévy’s Upward Theorem in terms of weakly L

1-computable functions. To see this, take

the uniform measure �. Then, the following holds:

Observation 3.2.24. There is a �-Martin-Löf random sequence ! and a weakly L

1-

computable function f :✓ 2N ! R such that lim
k!1

E
µ

[f | F

k

](!) does not exist.

Proof. Just as in the proof of Proposition 3.2.9, consider the indicator function �U of the

set U = {↵ 2 2N : ↵ <

L

!}, where ! is a left-c.e. �-Martin-Löf random sequence. Let

C ✓ 2<N denote the c.e. set of strings that are lexicographically prior to !. Without loss

of generality, C can be taken to be prefix-free. For each n � 0, let f
n

=
P

n

i=0

�

[�i]
, where

�

0

, ...,�

n

are the first n + 1 strings enumerated into C. Then, {f
n

}

n2N is a computable

sequence of rational-valued step functions. Moreover, f
n

! �U in L

1, as

lim
n!1

Z

2

N
|f

n

� �U | d� = lim
n!1

Z

2

N

1
X

i=n+1

�

[�i]
d� = lim

n!1

1
X

i=n+1

�([�
i

]) = 0,
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and
X

n2N

Z

2

N
|f

n+1

� f

n

| d� =
X

n2N

Z

2

N
�

[�n+1]
d� =

X

n2N
�([�

n+1

]) < �(U) < 1.

However, just as in the case of Proposition 3.2.9, lim
k!1

E[�U | F

k

](!) does not exist because

!, by virtue of being �-Martin-Löf random, is Borel normal.

Now, say that a function h :✓ 2N ! R is the di↵erence between two integral tests for

Martin-Löf randomness if there are two integral tests for Martin-Löf randomness g and `

such that h(!) = g(!)� `(!) if g(!) < 1 and `(!) < 1, and h(!) is undefined otherwise.

The proof of Theorem 3.2.13 relies on the following result by Miyabe, which holds for all

computable measures.26

Theorem 3.2.25 (Miyabe [2013b]). (i) Let h be the di↵erence between two integral tests

for µ-Martin-Löf randomness g and `. Then, there is a weakly L

1-computable func-

tion f with witness {f

n

}

n2N such that f̂(!) = h(!) for all µ-Martin-Löf random

sequences !.

(ii) Let f be a weakly L

1-computable function with witness {f

n

}

n2N. Then, there is a

function h that is the di↵erence between two integral tests for µ-Martin-Löf random-

ness such that h(!) = f̂(!) for all µ-Martin-Löf random sequences !.

We are now ready to prove Theorem 3.2.13, which shows that, for weakly L

1-computable

inductive problems, density randomness guarantees that the beliefs of a computable Bayesian

agent will eventually align with the truth.

Theorem 3.2.13. Let ! 2 2N. Consider the following statements:

(1) ! is µ-density random;

(2) for all weakly L

1-computable functions f :✓ 2N ! R with witness {f

n

}

n2N, f̂(!) is

defined, and

lim
k!1

E
µ

[f | F

k

](!) = f̂(!).

For any computable measure µ, (1) entails (2). When µ is the uniform measure �, (1) and

(2) are equivalent.
26This is the analogue of Theorem 3.2.6. Note that Observation 3.2.24 above can also be proved by

appealing to this result and Proposition 3.2.9.
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Proof. First, let µ be a computable measure and ! 2 2N a µ-density random sequence. Let

f be a weakly L

1-computable function with witness {f
n

}

n2N. Since ! is also µ-Martin-Löf

random, by Proposition 3.2.21, lim
n!1

f

n

(!) exists and is finite. Hence, f̂(!) is defined.

Moreover, µ([! � k]) > 0 for all k. Now, suppose towards a contradiction that the sequence

{E
µ

[f | F

k

](!)}
k2N does not have a limit. By Theorem 3.2.25, there is a function h that

is the di↵erence between two integral tests for µ-Martin-Löf randomness g and ` such that

h and f̂ agree on all µ-Martin-Löf random sequences. Then, in particular, they agree

on !. Now, for each k � 0, E
µ

[f | F

k

](!) = E
µ

[f̂ | F

k

](!) = E
µ

[h | F

k

](!) = E
µ

[g |

F

k

](!) � E
µ

[` | F

k

](!). Thus, if {E
µ

[f | F

k

](!)}
k2N does not have a limit, neither does

the sequence {E
µ

[h | F

k

](!)}
k2N. Hence, either {E

µ

[g | F

k

](!)}
k2N or {E

µ

[` | F
k

](!)}
k2N

fails to have a limit. Whichever of these two sequences does not have a limit contradicts

Theorem 3.2.11. Therefore, lim
k!1

E
µ

[f | F

k

](!) does exist. Moreover,

lim
k!1

E
µ

[f | F

k

](!) = lim
k!1

E
µ

[h | F

k

](!)

= lim
k!1

E
µ

[g � ` | F

k

](!)

= lim
k!1

E
µ

[g | F

k

](!)� lim
k!1

E
µ

[` | F
k

](!)

= g(!)� `(!)

= h(!)

= f̂(!),

where the third from last identity follows from Theorem 3.2.11.

Now, fix the uniform measure �. The previous argument establishes that (1) entails (2).

So, assume that Condition (2) holds along !. Then, by Proposition 3.2.21, ! is �-Martin-

Löf random. Now, suppose towards a contradiction that ! is not a �-dyadic density-one

point. Then, there is a ⇧0

1

class C such that ! 2 C and lim inf
k!1

�(C \ [! � k])
�([! � k]) < 1. As in

the proof of Theorem 3.2.11, the indicator function �C is an integral test for �-Martin-Löf

randomness. Hence, by Theorem 3.2.25, there is a weakly L

1-computable function f with

witness {f
n

}

n2N such that f̂(↵) = �C(↵) for all �-Martin-Löf random ↵ 2 2N. In particular,

f̂(!) = �C(!) = 0. Moreover, for all k, E
�

[f | F

k

](!) = E
�

[�C | F

k

](!). Hence, even if

the sequence {E
�

[f | F

k

](!)}
k2N does have a limit, this limit cannot be 0. This, however,
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contradicts our initial assumption that Condition (2) holds along !.

Thus, in addition to being the property that characterises the truth-conducive data

streams when the inductive problem at hand is a lower semi-computable random variable

with finite expectation, density randomness also guarantees convergence to the truth when

the quantities to be estimated are weakly L

1-computable.

This result concludes our present investigation of the connections between algorithmic

randomness and Lévy’s Upward Martingale Convergence Theorem.

3.3 Discussion

In what follows, we o↵er a discussion of the results presented above, as well as some of

their philosophical ramifications.

3.3.1 Why is algorithmic randomness truth-conducive?

The characterisation results in this chapter establish a robust connection between algo-

rithmic randomness and successful Bayesian learning: for many natural classes of e↵ective

inductive problems, the algorithmically random data streams are exactly the ones that

ensure that the beliefs of a computable (open-minded) Bayesian agent will asymptotically

converge to the truth.

The finding that the most irregular data streams turn out to coincide with the sequences

of observations that lead to successful learning might, at first, appear counter-intuitive.

After all, inductive learning is often equated with being able to successfully project into

the future the patterns detected in past observational data. So, when trying to identify the

conditions under which inductive success is attainable, one might conjecture that observing

an algorithmically random data stream is the worst possible evidential situation to be

finding oneself in.

Yet, as already argued in both Chapter 1 and Chapter 2, patterns and uniformity come

in a great many guises. The algorithmically random data streams do not possess any iden-

tifying patterns, they do not stand out, and, as evinced by the unpredictability paradigm,

observing their initial segments does not provide any useful information for consistently

guessing what the next observations are going to be. However, the algorithmically random
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data streams are unruly, irregular, and lawless only when considered locally. When con-

sidered globally, they are, to the contrary, regular and lawful: they satisfy all e↵ectively

specifiable statistical laws—where the type of e↵ective laws involved varies depending on

the particular algorithmic randomness notion in question, as well as the computable prior

with respect to which randomness is defined.

We saw in Chapter 1 that the measure-theoretic typicality paradigm is the approach

that most clearly brings out this feature of algorithmic randomness. Consider, for instance,

the notion of Martin-Löf randomness defined with respect to the uniform measure �. A

�-Martin-Löf random data stream does not possess any atypical properties that can be

expressed as ⇧0

2

classes of e↵ective �-measure zero. This ensures that the �-Martin-Löf

random data streams lack any local patterns that would make them atypical and conspic-

uous in the above sense. On the other hand, by their very definition, the �-Martin-Löf

random data streams are also Borel normal, satisfy the Strong Law of Large Numbers,

the Law of the Iterated Logarithm, and all other statistical laws whose satisfaction can be

captured in terms of membership in ⌃0

2

classes of e↵ective �-measure one. Hence, from

a statistical point of view, the �-Martin-Löf random data streams are extremely uniform

and regular.

It is this type of global, statistical uniformity, as judged from the Bayesian learner’s

standpoint (i.e., from the perspective of their prior), that is ultimately responsible for the

truth-conduciveness of the algorithmically random data streams. As evinced by the classi-

cal version of Lévy’s Upward Theorem, Bayesian convergence to the truth is in fact itself

a statistical law: it holds with probability one, no matter what the underlying probabil-

ity measure is, and it embodies a specific type of global uniformity. E↵ective versions of

Lévy’s Upward Theorem therefore correspond to specific families of e↵ectively specifiable

statistical laws. For example, the e↵ectivisation of Lévy’s Upward Theorem that yields

a characterisation of µ-weak 1-randomness (Theorem 3.2.12) specifies a special class of

epistemically significant statistical laws: all and only the laws that can be expressed as the

satisfaction of Lévy’s Upward Theorem, where the quantity to be estimated is a computable

(extended computable, to be precise) random variable.

From this viewpoint, it makes perfect sense that the algorithmically random data

streams should be truth-conducive. It is in their very nature to be so. However, our



CHAPTER 3. RANDOMNESS AND CONVERGENCE TO THE TRUTH 119

characterisation results go well beyond this observation. First of all, they demonstrate

that the particular collections of e↵ective statistical laws determined by various e↵ectivisa-

tions of Lévy’s Upward Theorem su�ce to yield characterisations of canonical algorithmic

randomness notions. Secondly, given some algorithmic randomness notion R, they estab-

lish a precise correspondence between, on the one hand, the types of e↵ectively specifiable

statistical laws that are standardly used to define R within the measure-theoretic typical-

ity paradigm and, on the other hand, the types of e↵ectively specifiable statistical laws

induced by Lévy’s Upward Theorem that also yield a characterisation of R. For instance,

going back to our previous example, Theorem 3.2.12 shows that µ-weak 1-randomness is

not only characterisable in terms of the satisfaction of all statistical laws that can be ex-

pressed as ⌃0

1

classes of µ-measure one; it is also characterisable in terms of the satisfaction

of all and only the statistical laws that express convergence to the truth in the sense of

Lévy’s Upward Theorem, whenever the underlying inductive problem is computable.

3.3.2 Probabilities over rich languages

Gaifman and Snir [1982] were the first to suggest a bridge between the theory of algorithmic

randomness and Bayesian convergence to the truth.

In keeping with Carnap’s inductive logic programme (cf., for instance, [Carnap, 1952]),

Gaifman and Snir develop a comprehensive treatment of probability and probabilistic learn-

ing in the setting of a rich logical language over which probabilities are defined. The main

advantage of this logical framework is that it allows to factor in the analysis of learning

considerations pertaining to the definability and logical complexity of both probability

measures and inductive problems.

The language in question, L, is the standard language of first-order Peano arithmetic

L

0

, augmented with a collection L

E

of (finitely many) relation and function symbols.

Possible worlds correspond to models for this language L: namely, models with N as their

domain. The basic idea is that L
0

represents our mathematical language: all functions and

relations in L

0

have fixed interpretations over the standard model N of the natural numbers,

so that mathematics is the same in all possible worlds. By contrast, L
E

is the empirical

language. The relation and function symbols in L

E

do not have a fixed interpretation over

the standard model, and the goal of a Bayesian learner is finding out various facts about
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the interpretations of these empirical symbols.

In this very general setting, Gaifman and Snir prove both a version of Lévy’s Upward

Theorem and a version of the Blackwell-Dubins Theorem (and o↵er a unified philosophical

interpretation of them). In this framework, a Bayesian agent begins their epistemic life

with a prior Pr. The agent does not know what the true world (model) w is, but gathers

data about it, thereby obtaining a sequence '(w)

1

, ...,'

(w)

n

, ... of L-sentences—where '(w)

i

=

'

i

if w ✏ '

i

and '

(w)

i

= ¬'

i

otherwise. At each stage n of the learning process, the

total evidence amounts to
V

in

'

(w)

i

, and the agent updates their subjective probability to

Pr

�

· |

V

in

'

(w)

i

�

. Given some hypothesis  , the agent’s beliefs are then said to converge

to the truth about  in the limit if lim
n!1

Pr

�

 

�

�

^

in

'

(w)

i

�

exists and is equal to the actual

truth value J K(w) of  at w (namely, 1 if w ✏  , and 0 otherwise).

In the same paper, Gaifman and Snir also provide a general analysis of randomness.

They define randomness as follows: given a prior Pr and a set of sentences �, a world w is

defined as �-random if, for all ' 2 �, Pr(') = 1 implies that w |= '. On the other hand, a

world is random simpliciter if it is random with respect to the entire collection of sentences

of L. The notion of a randomness test can also be given a general definition within this

framework: given a set of sentences  , a  -test for randomness with respect to Pr is a

sentence  2  such that Pr( ) = 0. A world w passes test  if w 6|=  . The standard def-

initions of algorithmic randomness and tests can then be recovered by restricting attention

to computable metric spaces, such as Cantor space, computable measures (�0

1

-definable

measures), and appropriate sets of sentences to define randomness tests.

Gaifman and Snir then connect randomness and Bayesian convergence to the truth by

showing that if both the agent’s prior and the procedure adopted by the agent to gather

data are definable, then the random worlds (the worlds that are random relative to the

entire collection of sentences of L) are exactly the worlds w on which convergence to J K(w)

occurs for all sentences  .

So, how is Gaifman and Snir’s theorem related to the characterisation results in this

dissertation? Along one axis, their theorem is more general, since our characterisation

results are proven in the context of Cantor space (so, possible worlds correspond to infinite

binary sequences) and computable measures. Along a di↵erent axis, however, our results
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are more general. We in fact show that algorithmic randomness and truth-conduciveness

coincide in the general setting of Lévy’s Upward Theorem, where the inductive problems

to be solved are arbitrary random variables. As evinced by the above discussion, Gaifman

and Snir’s result, on the other hand, is only concerned with the case where the inductive

problem under investigation can be represented as the characteristic function of a definable

set.27

Most importantly, Gaifman and Snir’s theorem does not o↵er a characterisation of

any algorithmic randomness notion: the randomness concept featured in their result is

the one defined with respect to the entire collection of sentences of L. To the contrary,

our results demonstrate that, when the underlying prior is computable, the type of ran-

domness studied within the theory of algorithmic randomness is precisely the one that

robustly characterises the truth-conducive data streams. Moreover, our results establish a

precise relationship between the complexity of the inductive problems to be solved and the

algorithmic randomness notions that characterise the collection of truth-conducive data

streams.

3.3.3 In the long run we are all dead

One of the most common objections to the epistemic significance of Lévy’s Upward Theo-

rem (and other convergence-to-the-truth results, both Bayesian and non-Bayesian) targets

the asymptotic nature of convergence. Lévy’s Upward Theorem guarantees that, with

probability one, a Bayesian agent’s beliefs will align with the truth, but not at any finite

stage of the learning process: in the limit. However, as John Maynard Keynes pointedly

put it, “in the long run we are all dead.” So, what kind of reassurance can asymptotic

convergence to the truth provide to agents like us who are inherently finite and would

like to have a guarantee that correct beliefs will be attained within the span of a human

lifetime?

A familiar response to this objection is that, while legitimate, this kind of worry does

not strip convergence-to-the-truth results of their epistemic relevance. Asymptotic results

o↵er a proof of concept: they demonstrate that, at least in the ideal case where all the

evidence is eventually observed, inductive success is guaranteed. Were these results not to

27Cf. the discussion in §3.1.1.



CHAPTER 3. RANDOMNESS AND CONVERGENCE TO THE TRUTH 122

hold, we would be left in an epistemically disconcerting situation: the inductive methods

that we so confidently rely upon could fail to lead us to correct beliefs even when all the

evidence necessary to settle the question under consideration eventually becomes available.

This response is to some extent assuaging, but we might actually be able to squeeze more

philosophical juice out of convergence-to-the-truth theorems, in spite of their asymptotic

character. In particular, the computability-theoretic perspective adopted here may provide

a promising avenue for achieving a more informative type of convergence. Some of the

results presented in this chapter o↵er a modest step in this direction. In spite of failing to

ensure convergence to the truth in the short run, the classical version of Lévy’s Upward

Theorem does ensure that, as the evidence accumulates, a Bayesian agent’s beliefs will

get closer and closer to the truth (with probability one). Crucially, in the e↵ective setting

discussed here, it is possible to provide a more fine-grained analysis of this phenomenon:

we can get a more concrete grasp of the rate at which convergence to the truth is expected

to occur. More precisely, when the inductive problem faced by the computable Bayesian

agent can be modelled as a random variable that is either (i) L1-computable, (ii) an integral

test for Schnorr randomness, or (iii) an integral test for weak 1-randomness (see Theorem

3.2.4, Theorem 3.2.5 and Theorem 3.2.12, respectively), then convergence to the truth is

expected to happen at a computable rate. In other words, in this setting, for any distance

from the truth that a Bayesian agent might be interested in reaching, they will be able

to computably determine how many observations are required before their beliefs (their

estimates) can achieve that level of closeness to the truth in expectation.

To show that this is indeed the case, we will prove it in the context of L1-computable

functions (the other two cases are analogous):

Proposition 3.3.1. If f :✓ 2N ! R is an L

1-computable function with witness {f

n

}

n2N,

then there is a computable increasing sequence `
0

, `

1

, `

2

, ... of natural numbers such that

kE
µ

[f | F

`m ]� fk

1

 2�m for all m 2 N.

Proof. First note that, for all n, `,

Z

2

N

�

�E
µ

[f
n

| F

`

]� E
µ

[f | F

`

]
�

�

dµ =

Z

2

N

�

�E
µ

[f
n

� f | F

`

]
�

�

dµ



Z

2

N
E
µ

[|f
n

� f | | F

`

] dµ
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=

Z

2

N
|f

n

� f | dµ

 2�n

.

Now, for each m, take f

m+1

and let `
m

be the smallest number greater than `

m�1

such

that E
µ

[f
m+1

| F

`m ] = f

m+1

(for m = 0, simply let `
0

be least with E
µ

[f
1

| F

`0 ] = f

1

).

Such an `
m

can be found computably. Then,

kE
µ

[f | F

`m ]� fk

1

 kE
µ

[f | F

`m ]� E
µ

[f
m+1

| F

`m ]k1 + kE
µ

[f
m+1

| F

`m ]� f

m+1

k

1

+ kf

m+1

� fk

1

 2�(m+1) + 0 + 2�(m+1)

= 2�m

,

which establishes the result.

3.3.4 Epistemic immodesty

Rather than seeing Lévy’s Upward Theorem as a strength of the Bayesian framework, a

number of authors have argued that it constitutes the Achilles heel of Bayesianism (see, for

instance, [Glymour, 1980], [Earman, 1992], [Kelly, 1996], and [Belot, 2013]). Belot [2013],

in particular, contends that the almost sure asymptotic convergence to the truth ensured

by Lévy’s Upward Theorem implies that Bayesian reasoners are plagued by a pernicious

type of epistemic immodesty:

Some have seen in the tendency of Bayesian agents to converge to the truth—and

in related results concerning the eventual merger of opinion between Bayesian

agents whose initial credences share a certain amount of common ground—the

materials for acquitting personalist Bayesianism of the charge of excessive sub-

jectivity. But recent philosophical commentators (some Bayesians among them)

have tended to downplay the significance of these results, pointing out that what

they guarantee is that Bayesian agents think that there is no chance that their

own future opinions will fail to converge to the truth, which is not the same

thing as saying that the opinions of each Bayesian agent are in fact certain to

converge to the truth. The truth concerning Bayesian convergence-to-the-truth
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results is significantly worse than has been generally allowed—they constitute

a real liability for Bayesianism by forbidding a reasonable epistemological mod-

esty. [Belot, 2013, p. 502]

Bayesian convergence-to-the-truth theorems tell us that Bayesian agents are

forbidden to think that there is any chance that they will be fooled in the long

run, even when they know that their credence function is defined on a space

that includes many hypotheses that would frustrate their desire to reach the

truth. [Belot, 2013, p. 500]

By the very nature of the Bayesian framework, Bayesian agents are bound to invariably

expect that their beliefs will converge to the truth. Because of this, Belot argues, they

are forced to ignore the fact that, for many hypotheses, failure, rather than success, is

the “typical” outcome of the learning process—where, crucially, the notion of typicality

employed in his argument is topological, rather than probabilistic.

We have seen that an event is probabilistically, or measure-theoretically, atypical if it

has measure zero and typical if it has measure one (relative to a given probability measure).

In topology, on the other hand, typicality is defined qualitatively. Recall that a nowhere

dense set is one for which the smallest closed set that contains it does not itself contain

any non-trivial open set. Roughly speaking, a nowhere dense set is such that its elements

are not tightly clustered. An event is then topologically atypical if it is meagre: that is,

if it is expressible as a countable union of nowhere dense subsets of the given topological

space. Conversely, an event is topologically typical if it is co-meagre: that is, if it is the

complement of a meagre set. Belot’s criticism of Bayesian convergence to the truth is

motivated by the following observation: there are several learning situations where the

set of data streams along which convergence to the truth occurs turns out to be meagre

(topologically atypical); yet, Bayesian agents must nonetheless assign probability one to

this event, since Lévy’s Upward Theorem establishes that, from the perspective of the

agent, convergence to the truth is measure-theoretically typical.

The observation that measure-theoretic typicality and topological typicality often come

apart is not new (see, for instance, [Oxtoby, 1980]). However, Belot’s argument highlights

that this dichotomy can also occur in an epistemically relevant context, where the event
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witnessing the coming apart of these two notions of typicality is the collection of data

streams on which the beliefs of a Bayesian agent converge to the truth about the hypoth-

esis under investigation. In this setting, according to Belot, this dichotomy is particularly

alarming, for he takes meagreness to embody an objective notion of typicality—in that

it does not depend on any particular agent or their beliefs—while the measure-theoretic

notion of typicality, at least when the measure corresponds to a subjective prior, merely

reflects a particular agent’s opinion. These considerations are what leads him to con-

clude that Bayesian agents su↵er from an irrational over-confidence in their ability to be

inductively successful.28

Recently, Belot’s objection has received a lot of attention in the literature. Most re-

sponses so far have focused on either one of two strategies: criticising some of the premises

in Belot’s argument (see, for example, [Cisewski et al., 2018]) or substantially modifying

the Bayesian framework in order to evade his conclusion. For instance, Huttegger [2015b]

proposes to use metric Boolean algebras29 to avoid drawing distinctions between events

that can only be made by infinite observations, Weatherson [2015] advocates passing to

imprecise Bayesianism,30 while Elga [2016] and Nielsen and Stewart [2019] suggest dropping

countable additivity in favour of finite additivity.

Another way to address Belot’s worry, however, consists in asking whether there are

any natural restrictions that may be imposed on subjective priors and the random variables

featuring in Lévy’s Upward Theorem which allow to circumvent Belot’s observation while

retaining the standard Bayesian (and measure-theoretic) apparatus. The e↵ectivisation of

Lévy’s Upward Theorem we presented in §3.2.2, it turns out, allows to do precisely this.

Recall that the following holds:

28A structurally similar argument was antecedently put forward by Kelly (see, for instance, [Kelly, 1996,
Chapter 13]). Kelly’s argument relies on cardinality, rather than topological considerations. In particular,
he points out that there are learning situations where, even though the collection of data streams along which
convergence to the truth occurs has probability one, the collection of data streams on which convergence to
the truth instead fails is an uncountable set. Kelly locates the culprit of Bayesian immodesty in the axiom
of countable additivity for probability measures.

29A metric Boolean algebra over the Cantor space of infinite binary sequences (endowed with the Borel
�-algebra B(2N)) is the algebra resulting from factoring out measure-zero sets, relative to a Borel probability
measure that is strictly positive (i.e., that assigns positive probability to every open set) and that assigns
probability zero to each particular infinite sequence.

30According to imprecise Bayesianism, an agent’s degrees of belief should be represented as a set of
credence functions, rather than as a single credence function.
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Theorem 3.2.12. Let µ be a computable measure and ! 2 2N. Then, the following are

equivalent:

(1) ! is µ-weakly 1-random;

(2) for all computable functions f : 2N ! R that are finite almost everywhere,

lim
k!1

E
µ

[f | F

k

](!) = f(!) < 1.

Theorem 3.2.12 establishes that, for computable Bayesian agents trying to solve computable

inductive problems, the truth-conducive data streams are exactly the weakly 1-random

ones.

Crucially, weak 1-randomness is the only algorithmic randomness notion that satisfies

both the measure-theoretic and the topological notion of typicality: the collection of weakly

1-random sequences has not only measure one (relative to the prior with respect to which

randomness is defined), but it is also a co-meagre set,31 provided that the underlying

measure is strictly positive. This means that, for computable open-minded Bayesian agents

trying to solve computable inductive problems, believing that the truth is within reach does

not entail the type of epistemic immodesty that Belot is concerned about. In this setting,

Bayesian agents are never forced to ex ante exclude from consideration a topologically

typical failure set. Belot’s challenge can thus be met without deviating from the standard

framework by way of introducing computability-theoretic restrictions that naturally apply

to more realistic, less-than-ideal Bayesian agents.

Though very simple, this observation raises a rather general question: what restrictions

on priors and inductive problems are su�cient for the attainment of almost everywhere

convergence in both the measure-theoretic and the topological sense? Put di↵erently, when

is convergence to the truth a typical phenomenon both probabilistically and topologically?

3.4 Conclusion

We conclude with a brief summary of the results presented here, and by discussing some

possible avenues for future work.

31See, for instance, [Nies, 2009, Fact 3.5.4, p. 128].
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In this chapter, we investigated the e↵ects of observing an algorithmically random data

stream on the learning performance of computationally limited Bayesian agents. Our main

finding was that the algorithmically random data streams coincide with the ones that en-

sure that a computable Bayesian agent’s beliefs will converge to the truth (in the sense

of Lévy’s Upward Theorem). In particular, we saw that (1) Schnorr randomness charac-

terises the truth-conducive data streams whenever the quantities to be estimated are either

lower semi-computable random variables with computable expectation or L

1-computable

random variables (cf. Theorem 3.2.5 and Theorem 3.2.4, respectively), (2) density ran-

domness characterises the truth-conducive data streams whenever the quantities to be

estimated are either lower semi-computable random variables with finite expectation or

weakly L

1-computable random variables (cf. Theorem 3.2.11 and Theorem 3.2.13, re-

spectively), and (3) weak 1-randomness characterises the truth-conducive data streams

whenever the quantities to be estimated are computable almost-everywhere finite random

variables (cf. Theorem 3.2.12).

This robust correspondence between algorithmic randomness and truth-conduciveness

suggests a broader research programme involving the systematic study of the connections

between algorithmic randomness and convergence results that are relevant to epistemology.

From the standpoint of Bayesian epistemology, an immediate question is whether there

are any other philosophically significant convergence results which, when appropriately

e↵ectivised, give rise to the same phenomenon evinced in the context of Lévy’s Upward

Theorem—that is, from which it emerges that the data streams along which the relevant

type of convergence occurs are exactly the algorithmically random ones. A first step in this

direction is taken in [Huttegger et al., 2021], where the Blackwell-Dubins Theorem that

took center stage in Chapter 2, as well as Lévy’s Downward Theorem32 are studied from

this perspective. Further natural candidates for this kind of analysis are other merging-of-

opinions theorems—such as the ones proven by Diaconis and Freedman [1986], D’Aristotile

et al. [1988], and Kalai and Lehrer [1994]—de Finetti’s Theorem [1929; 1937], as well as

32Lévy’s Downward Theorem, also due to Lévy, is the following result. Let (⌦, E , µ) be a probability
space and f an integrable random variable. Moreover, let {En}n2N be any decreasing sequence of sub-�-
algebras of E and define E1 as

T
n2N En. Then, lim

n!1
E[f | En] = E[f | E1] both µ-almost everywhere and in

the L1-norm. From an epistemology point of view, Lévy’s Downward Theorem can be seen as elucidating
the asymptotic behaviour of a Bayesian agent’s beliefs in the setting of gradual information loss
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Solomono↵’s result concerning the convergence of his universal prior [Solomono↵, 1964]

(which we briefly discussed in the Introduction). Some negative results pertaining to

Solomono↵ induction may be found in [Hutter and Muchnik, 2004] and [Lattimore and

Hutter, 2015]. Lattimore and Hutter [2015], in particular, show that there does not exist a

universal prior that converges to the true computable measure on all Martin-Löf random

sequences.

This question may also be addressed by combining the results in this chapter with

the results from Chapter 2. In Chapter 2, we considered several alternatives to absolute

continuity defined in terms of algorithmic randomness: namely, several notions of com-

patibility between measures determined by various forms of agreement about which data

streams are algorithmically random. These notions of compatibility, as we have seen, lead

to merging of opinions. In this richer setting, one may therefore ask: if two Bayesian agents

are in agreement relative to some algorithmic randomness notion R, do the data streams

along which merging of opinions occurs coincide with some (possibly di↵erent) algorithmic

randomness notion R

0?

Convergence-to-the-truth results are not the prerogative of Bayesian epistemology. An-

other field concerned with the phenomenon of convergence to the truth is formal learning

theory (to which we will return in Chapter 4, though from a di↵erent angle). Formal learn-

ing theory encompasses a broad class of mathematical frameworks for modelling inductive

learning that focus on the concept of reliable inquiry. In this setting, a learning problem

consists in (i) a collection of possible worlds or hypotheses, (ii) the data streams that are

compatible with each possible world, (iii) a learning method, and (iv) a notion of success,

which specifies the conditions under which the learning method may be said to converge

to the truth along a data stream. Traditionally, a method is taken to solve the learning

problem at hand if it is reliable: that is, if it succeeds (in the specified sense) no matter

what the true world turns out to be (i.e., if it is logically guaranteed to succeed). This

analysis allows to provide a precise taxonomy of inductive problems, whose complexity can

be determined by identifying the notions of success (or convergence) with respect to which

these problems are solvable. In addition, formal learning theory is well-suited for studying

the learning performance of computationally limited learners, which can be modelled as

computable learning methods. In fact, ever since the pioneering work of Putnam [1963,
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1965] and Gold [1965, 1967], formal learning theory has been developed in a computability-

theoretic direction,33 and the field is also sometimes referred to as computational learning

theory.

Just as in computability theory one may ask whether a problem is decidable given

certain assumptions, in formal learning theory one can ask if an inductive problem is

solvable on the basis of some particular inductive assumptions. One such possible inductive

assumption is algorithmic randomness: as noted by Kelly, “[s]ince randomness is a property

of data streams, it is yet another empirical assumption that is subject to empirical scrutiny.

[...] The e↵ect of randomness assumptions upon logical reliability is an important issue for

further study” [Kelly, 1996, p. 63].

Some interesting results pertaining to the connections between algorithmic randomness

assumptions and reliable learning can be found in [Vitányi and Chater, 2017], [Bienvenu

et al., 2018], and [Barmpalias et al., 2018]. The questions that they consider are the fol-

lowing: is there a single algorithm that succeeds on all data streams that are random with

respect to some computable measure (i.e., an algorithm that eventually correctly guesses

the true computable measure upon observing an algorithmically random data stream gen-

erated by it), no matter what that measure is? If not, are there any natural classes of com-

putable measures for which such an algorithm exists? In all three papers, these questions

are approached from the perspective of Martin-Löf randomness. In particular, Bienvenu

et al. [2018] prove that such an algorithm exists only under an extremely weak notion of

success.34 In light of this result, an immediate question is what happens in the context of

stronger randomness assumptions: that is, if one assumes that the observable data streams

are algorithmically random in the sense of some algorithmic randomness notion stronger

than Martin-Löf randomness. Do stronger assumptions allow to attain a more demanding

type of convergence to the truth?

Algorithmic randomness can be viewed as a theory of (e↵ective) typicality. From this

perspective, the results in this chapter establish that observing a typical data stream

brings about a certain type of inductive success. Typicality, however, comes in many

33For a survey, see, for instance, [Osherson et al., 1986]).
34This notion of success does not require the learning algorithm to guess exactly the true generating

distribution: rather, it requires it to guess measures that are “su�ciently similar” to the correct one. No
algorithm guaranteed to guess the correct distribution exists, since, as we have seen in Chapter 2, di↵erent
computable measures can generate the same collection of algorithmically random data streams.
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stripes. For instance, as discussed in §§3.3.4, in addition to measure-theoretic typicality

there is also the notion of topological typicality. In fact, the theory of algorithmic ran-

domness itself also studies concepts of e↵ective topological typicality—which, much like

their measure-theoretic counterparts, give rise to infinite hierarchies: the n-genericity and

the weak n-genericity hierarchy (see, for example, [Downey and Hirschfeldt, 2010, §8.20]).

This suggests a very broad question: what are the e↵ects of typicality (e↵ective and non),

when taken to be a property of data streams, on inductive learning? The frameworks

for which convergence-to-the-truth results are important are numerous. As we have seen,

they include Bayesian learning (and, more generally, statistics) and formal learning theory.

Another framework worth mentioning is the theory of belief revision, which subsumes nu-

merous logical frameworks aimed at modelling in qualitative terms the process of rational

belief change triggered by new pieces of information, and which has more recently been

studied from the perspective of convergence to the truth.35 Addressing this question in full

generality would thus involve a comprehensive taxonomical e↵ort, aimed at identifying the

learning scenarios and the inductive problems for which observing a typical data stream is

conducive to learning.

35See, for instance, [Kelly, 1998], [Baltag and Smets, 2011], and [Baltag et al., 2019].



Chapter 4

Algorithmic randomness and

unlearnability

But success is not supposed to be a matter

of mere luck or accident. A reliable method

is in some sense guaranteed to converge to

the truth, given the scientist’s assumptions.

Guarantees come in various grades.

Kelly, The Logic of Reliable Inquiry

The results from Chapter 2 and Chapter 3 establish that, for learning tasks such as

merging of opinions and convergence to the truth, algorithmic randomness is conducive

to learning (either because agreeing on which data streams are algorithmically random is

a type of doxastic compatibility that leads to merging of opinions, or because the algo-

rithmically random data streams are precisely the ones that ensure that an agent’s beliefs

will eventually converge to the truth). These results, as we have seen, hinge on the fact

that the algorithmically random data streams, by their very nature, have to display im-

portant statistical regularities and constitute the most typical outcomes of the underlying

probability measure.

Yet, inductive learning is often described as the process of extrapolating patterns into

the future from past empirical data and, since algorithmic randomness amounts to local

patternlessness and irregularity, there is a sense in which it is natural to regard randomness

131
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as antithetical to inductive learning. Intuitively, observing an algorithmically random data

stream should be detrimental for the learning process whenever the the learning task at

hand crucially relies on the presence of patterns in the data that can be used to set them

apart from other possible sequences of observations.

This chapter is devoted to studying algorithmic randomness from this perspective: that

is, rather than exploring the applications of algorithmic randomness in formal models of

learning, in what follows we study algorithmic randomness itself from a learning-theoretic

perspective that hinges on the local irregularity of algorithmically random data streams. In

a nutshell, the goal of this chapter is to o↵er novel characterisations of standard algorithmic

randomness notions in terms of unlearnability.

As explained in Chapter 1, algorithmic randomness notions are customarily defined

in terms of either incompressibility, measure-theoretic typicality, or unpredictability. In a

more recent paper, however, Osherson and Weinstein [2008] propose an alternative frame-

work for modelling algorithmic randomness that builds upon intuitions from the field of

formal (or computational) learning theory—the mathematical approach to learning spear-

headed by Putnam [1963, 1965] and Gold [1965, 1967]. The basic idea behind their ap-

proach is that a sequence is random if it does not possess any patterns whose presence can

be detected by an e↵ective learning function. More specifically, Osherson and Weinstein

define two success criteria for learning functions, which specify under what conditions an

infinite sequence of observations can be said to possess an e↵ectively detectable pattern.

Then, they use these criteria to o↵er learning-theoretic characterisations of two well-known

algorithmic randomness notions: weak 1-randomness and weak 2-randomness, respectively.

In a nutshell, each of these two randomness notions is shown to correspond to the collection

of data streams on which all computable learning functions fail to meet the relevant success

criterion.1

This learning-theoretic approach a↵ords an intuitive perspective on algorithmic ran-

domness which conforms to the well-entrenched intuition that patternlessness is detrimental

1Note that this approach is importantly di↵erent from the possible bridge between formal learning
theory and algorithmic randomness suggested in the conclusion of Chapter 3. The goal of Osherson and
Weinstein’s framework is not to clarify the e↵ects of randomness assumptions on logical reliability; rather,
as already hinted at in the previous paragraph, their main idea is to use tools from formal learning theory
to define randomness itself.
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for learning. Moreover, it invites the question of whether restricting attention to learning-

theoretic success criteria comes at an expressivity cost. In other words, to what extent is

this approach generalisable and capable of yielding natural characterisations of other algo-

rithmic randomness notions? Osherson and Weinstein’s characterisation results arguably

target the weakest (weak 1-randomness) and one of the strongest (weak 2-randomness)

core algorithmic randomness notions. Thus, the most immediate question is whether all

of the most well-behaved and well-studied algorithmic randomness notions are character-

isable in this learning-theoretic setting. An especially pressing issue is whether Martin-Löf

randomness—arguably, the most prominent algorithmic randomness notion in the litera-

ture—is amenable to a learning-theoretic characterisation. Indeed, being able to capture

Martin-Löf randomness seems to be a minimum requirement that any framework aimed at

modelling algorithmic randomness should meet.

The purpose of this chapter is to further explore this learning-theoretic framework and

gauge its expressivity. In particular, we will answer the latter question in the a�rmative

by o↵ering a novel, learning-theoretic characterisation of Martin-Löf randomness. Our

second main result is a learning-theoretic characterisation of Schnorr randomness—as we

have seen, another central algorithmic randomness notion. These characterisation theorems

constitute a first step towards an in-depth study of algorithmic randomness from a learning-

theoretic perspective, both in the setting of Osherson and Weinstein’s framework and, more

generally, through the prism of computational learning theory at large.

The remainder of this chapter is organised as follows. In §4.1, we present the learning-

theoretic approach to algorithmic randomness that shall take centre stage here, as well as

Osherson and Weinstein’s characterisations of weak 1-randomness and weak 2-randomness.

Our interpretation diverges from Osherson and Weinstein’s original formulation of the

framework in terms of a memorisation game (see [Osherson and Weinstein, 2008, §3]); this

translates into a slightly di↵erent presentation of the two success criteria proposed by Os-

herson and Weinstein (which they use in their characterisations of weak 1-randomness and

weak 2-randomness). In §4.2, we then prove our two main results: a learning-theoretic char-

acterisation of Martin-Löf randomness (§§4.2.2) and a learning-theoretic characterisation

of Schnorr randomness (§§4.2.3). Both proofs rely on the identification of a natural bridge

between this learning-theoretic approach and the variant of the standard measure-theoretic
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typicality paradigm built upon integral tests (cf. §1.2.2).

All of the results will be presented in terms of the uniform measure �, but they are

readily generalisable to all other computable measures on Cantor space. Since no ambiguity

will arise, we will write Martin-Löf randomness, Schnorr randomness, etc., rather than �-

Martin-Löf randomness, �-Schnorr randomness, and so on.

4.1 Algorithmic randomness and detectability

All three standard algorithmic randomness paradigms rely on a common intuition: a se-

quence fails to be random if some e↵ective method can detect the presence of a distinguish-

ing pattern in it. Each paradigm hinges on a di↵erent formalisation of the notion of an

e↵ective pattern-detection method: the incompressibility paradigm formalises it in terms

of compression algorithms, the measure-theoretic typicality paradigm in terms of e↵ective

statistical tests for randomness, and the unpredictability paradigm in terms of e↵ective

betting strategies.

Another simple way to capture the notion of an e↵ective pattern-detection method is

in terms of computable functions of the form ` : 2<N
! {yes, no}, which take as input

finite binary strings and output either yes or no. A method of this kind may be viewed as a

qualitative, coarse-grained, black-box testing procedure, whose goal is to ascertain whether

the world, modelled as an infinite binary sequence, is patterned or not. The method is

fed longer and longer initial segments of some infinite sequence and, at each stage, it has

to output a conjecture as to whether said sequence exhibits any of the patterns that the

method is looking for. Whenever the method outputs yes, its current conjecture is that the

observed sequence indeed displays a pattern (and therefore fails to be random); when it

outputs no, on the other hand, the method is guessing that the sequence does not exhibit

any of its target patterns. Methods of this kind will be referred to as (computable) learning

functions.

In Osherson and Weinstein’s framework, whether a learning function counts as having

detected the presence of a pattern in a sequence depends on how high the standards for

detectability are. In particular, pattern detection amounts to the satisfaction of some

success criterion, which, to a first approximation, specifies how often a learning function
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has to answer yes while observing a sequence in order to count as having spotted at least

one of the patterns that it is looking for. The patterns that a learning function is geared

towards, in turn, are defined extensionally: they are taken to coincide with the set of

sequences on which the relevant success criterion is met by the given learning function.

This means that, once a success criterion has been fixed, what counts as a pattern is

determined by the discriminatory power of computable learning functions. Di↵erent success

criteria may then be seen as tracking the complexity of the patterns involved: the weaker,

or the more permissive, the success criterion, the more subtle and di�cult to detect the

patterns defined in terms of such criterion. A set that meets the requirements for being a

learning-theoretic pattern with respect to a certain success criterion may amount to mere

noise from the perspective of a stronger success criterion that imposes higher standards for

detectability—and, thus, for patternhood.

A further constraint imposed on learning-theoretic patterns in this setting is that they

have to be measure-theoretically rare. In other words, to qualify as a relevant pattern, a

set need not only coincide with the collection of sequences on which a computable learning

function satisfies a certain success criterion, but it must also have measure zero. One

way to think about this requirement is that it restricts attention to patterns that allow a

learning function to truly single out sequences displaying them, in the sense that a sequence

possessing a pattern of this kind can be told apart from most other sequences (to be precise,

measure-one many sequences) by a computable learning function.2

As we shall see, algorithmically random sequences (for some suitable notions of ran-

domness) are precisely the ones that no computable learning function can single out, for

they do not possess any patterns whose presence is detectable by a computable learning

function. The learning-theoretic patterns in question, determined by more or less demand-

ing success criteria, will vary with the algorithmic randomness notion under consideration.

The weaker the success criterion, the stronger the randomness notion such criterion yields.

The remainder of §4.1 will be devoted to discussing the two success criteria introduced

by Osherson and Weinstein (renamed in accordance with our interpretation of the frame-

work), as well as their characterisations of weak 1-randomness and weak 2-randomness in

terms of said criteria.

2As a result, this constraint also rules out trivial learning functions that ignore the input.
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4.1.1 Strong detectability

The first success criterion proposed by Osherson and Weinstein echoes the notion of identi-

fiability in the limit [Gold, 1967] from formal learning theory, according to which a learning

function is successful if there is a finite number of observations after which the guesses of

the learning function are always the same and correct. In light of our interpretation of the

framework, we call this success criterion strong detectability.

Definition 4.1.1 (Strong detectability). A learning function ` : 2<N
! {yes, no} is said

to strongly detect that a sequence ! 2 2N is patterned if and only if

(1) `(! � m) = yes for cofinitely many m 2 N, and

(2) �({↵ 2 2N : `(↵ � m) = yes for cofinitely many m 2 N}) = 0, where � denotes the

uniform measure on the Borel �-algebra B(2N).

Strong detectability places constraints on the type of “convergence to the truth” (roughly

speaking, the amount of a�rmative answers) that a learning function has to achieve in order

to count as having detected a pattern, as well as on how “common” the patterns involved

have to be. The relevant notion of convergence to the truth—the success criterion that a

learning function has to meet to qualify for strong detectability—is given by Condition (1)

in Definition 4.1.1: learning requires that a learning function output yes on all but fintely

many initial segments of the observed data stream. This is a demanding success criterion:

it calls for the eventual stabilisation on the conjecture that a pattern is indeed present.

More precisely, strong detectability requires that there be a finite number of observations

after which the learning function conjectures that the sequence displays the target pattern

and then never retracts this conjecture on the basis of further observations.

Condition (2), on the other hand, requires that, to qualify for strong detectability, a

learning function must be looking for some property, or collection of properties, that is rare:

i.e., that only measure-zero many sequences possess. On the technical side, Condition (2)

ensures that the notion of strong detectability does not trivialise: more precisely, it guar-

antees that the concept of pattern employed in Definition 4.1.1 is not so liberal that all se-

quences end up possessing a pattern that can be strongly detected. To see this, let P
`

denote

the success set of `—that is, let P

`

= {↵ 2 2N : `(↵ � m) = yes for cofinitely many m 2
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N}—and suppose that Condition (2) were replaced by the weaker constraint �(P
`

)  r, for

r > 0. Then, for every ! 2 2N, we could take the cylinder [! � n], for some n large enough

to ensure that �([! � n]) = 2�n

 r. The learning function `
!�n : 2<N

! {yes, no} given

by `
!�n(�) = yes if and only if ! � n v � would then strongly detect that ! is patterned,

because ! 2 [! � n] = P

`!�n = {↵ 2 2N : `
!�n(↵ � m) = yes for cofinitely many m 2 N

 

.

Clearly, this argument no longer works if P
`

is required to be a null set, as all cylinders have

positive measure (under the uniform measure).3 More generally, as we shall see shortly,

Theorem 4.1.2 below establishes that there are indeed sequences (in fact, measure-one

many sequences) that do not display any measure-zero patterns detectable by a computable

learning function in the sense of Definition 4.1.1.

The best way to ensure that strong detectability by a learning function captures a rea-

sonable notion of “absence of randomness” consists in characterising a standard algorithmic

randomness notion in terms of this success criterion. This is precisely what Osherson and

Weinstein do in their paper: they prove that weak 1-randomness can be characterised via

strong detectability by restricting attention to computable learning functions.4

Weak 1-randomness is often described as the weakest algorithmic randomness notion

(we have seen that, in general, it does not even imply the Strong Law of Large Numbers).

The success criterion with which it can be characterised in this learning-theoretic setting,

strong detectability, is correspondingly very stringent.

Theorem 4.1.2 (Osherson andWeinstein [2008]). A sequence ! 2 2N is weakly 1-random if

and only if there is no computable learning function that strongly detects that ! is patterned.

The left-to-right direction of the proof of Theorem 4.1.2 is immediate: restricting at-

tention to the class of computable learning functions entails that the patterns targeted by

strong detectability are countable unions of measure-zero ⇧0

1

classes. Given a computable

learning function `, we in fact have that

{↵ 2 2N : `(↵ � m) = yes for cofinitely many m 2 N}

=
[

n2N
{↵ 2 2N : (8m > n) `(↵ � m) = yes}.

3Clearly, this argument generalises to any (computable) regular measure.
4Recall that a sequence ! 2 2N is weakly 1-random if and only if it belongs to every ⌃0

1 class of measure
one (cf. Definition 1.2.9).
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Hence, if a computable learning function strongly detects that a sequence ! is patterned,

then there is a measure-one ⌃0

1

class to which ! fails to belong.

Both directions o↵er a specifically learning-theoretic perspective on the kinds of pat-

terns ruled out by weak 1-randomness. The left-to-right direction says that if a sequence

is weakly 1-random, then no finite amount of observations will ever su�ce to convince a

computable learning function that its target pattern is present. The right-to-left direction,

on the other hand, reveals that any sequence that fails to be weakly 1-random displays

some rare pattern whose presence can be detected by a computable learning function—in

the sense that there is some computable learning function and some initial segment of the

sequence that will make this learning function conjecture that its target pattern is present,

and after which said learning function will never be prompted to change its mind about

this conjecture by further observations. A failure of weak 1-randomness can thus always

be witnessed via this relatively simple behaviour of computable learning functions.

4.1.2 Weak detectability

The second success criterion introduced by Osherson and Weinstein is what we call weak

detectability :

Definition 4.1.3 (Weak detectability). A learning function ` : 2<N
! {yes, no} is said to

weakly detect that a sequence ! 2 2N is patterned if and only if

(1) `(! � m) = yes for infinitely many m 2 N, and

(2) �({↵ 2 2N : `(↵ � m) = yes for infinitely many m 2 N}) = 0.

Weak detectability di↵ers from strong detectability only with respect to Condition

(1): both notions are tailored to the detection of measure-zero patterns, but they rely on

di↵erent success criteria. In particular, the success criterion used in the context of weak

detectability, which echoes the notion of partial learning [Osherson et al., 1986] from formal

learning theory, is a rather permissive one. To see this, suppose that a given learning

function ` weakly detects that some sequence ! 2 2N is patterned. Upon sequentially

observing longer and longer initial segments of !, ` may change its mind as to whether

! displays its target pattern infinitely often—i.e., `(! � m) = no may occur for infinitely
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many m—and yet count as having (weakly) detected that ! is patterned, provided that

` outputs yes infinitely often on !. Thus, ` weakly detecting that ! is patterned only

ensures that there is no finite stage (that is, no initial segment of !) after which ` deems

the hypothesis that ! is patterned falsified. Put di↵erently, there is no finite stage beyond

which ` stops considering it possible that ! displays its target pattern.

In their paper, Osherson and Weinstein show that, when one restricts attention to

computable learning functions, weak detectability can be employed to characterise another

standard algorithmic randomness notion: weak 2-randomness.5

Weak 2-randomness is much stronger than weak 1-randomness. And indeed its learning-

theoretic characterisation operates via the more lenient success criterion of weak detectabil-

ity. This highlights the fact that the patterns which reveal a failure of weak 2-randomness

can be more complex than the ones which reveal a failure of weak 1-randomness.

Theorem 4.1.4 (Osherson andWeinstein [2008]). A sequence ! 2 2N is weakly 2-random if

and only if there is no computable learning function that weakly detects that ! is patterned.

Just as in the case of Osherson and Weinstein’s learning-theoretic characterisation of

weak 1-randomness, it is immediate that weak 2-randomness implies that weak detectability

by computable learning functions is impossible. This is due to the fact that the patterns

targeted by weak detectability in the context of computable learning functions are measure-

zero ⇧0

2

classes. Given a computable learning function ` and a sequence !, ! is patterned

according to ` if and only if

! 2 {↵ 2 2N : (8n)(9m > n) `(↵ � m) = yes},

and this set has measure zero. Thus, if the computable learning function ` weakly detects

that ! is patterned, then there is a ⌃0

2

class of measure one to which ! does not belong.

From a learning-theoretic point of view, both directions of Theorem 4.1.4 are revealing.

The right-to-left direction shows that a failure of weak 2-randomness guarantees the exis-

tence of a computable learning function forever entertaining the possibility that its target

pattern is present. The left-to-right direction, on the other hand, tells us that if a sequence

5Recall that a sequence ! 2 2N is weakly 2-random if and only if it belongs to every ⌃0
2 class of measure

one.
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is weakly 2-random, then any computable learning function looking for a measure-zero pat-

tern will answer no cofinitely often: namely, it will eventually stabilise on the conjecture

that its target pattern is absent.

4.2 Martin-Löf randomness and Schnorr randomness

An immediate question prompted by Osherson and Weinstein’s results is whether this

learning-theoretic framework is expressive enough to a↵ord characterisations of at least

some of the algorithmic randomness notions that lie between weak 2-randomness and weak

1-randomness. Being able to capture Martin-Löf randomness, in particular, seems to be

a benchmark requirement for any framework aimed at modelling algorithmic randomness

(on account of the central role of Martin-Löf randomness in the field). In what follows, we

will show that, by taking the notion of weak detectability from §§4.1.2 and strengthening

the measure-theoretic requirements imposed on the target patterns in a natural way, it is

possible to give a learning-theoretic characterisation of not only Martin-Löf randomness,

but also of Schnorr randomness.

Our results rely on bridging the learning-theoretic approach and the measure-theoretic

typicality paradigm in the context of integral tests for randomness (§§3.2.2). To elucidate

the connections between these two frameworks, we will begin by o↵ering a direct proof

of the equivalence between the characterisation of weak 2-randomness via integral tests

(Theorem 1.2.16) and its characterisation in terms of weak detectability (Theorem 4.1.4).

Then, we will see how similar ideas can be employed to characterise Martin-Löf randomness

and Schnorr randomness learning-theoretically.

4.2.1 A connection with integral tests

Recall that integral tests for randomness are classes of e↵ectively approximable functions of

the form f : 2N ! R which meet certain measure-theoretic conditions—where the relevant

notion of e↵ective approximability is captured in terms of lower semi-computable functions.

The reason why integral tests for randomness o↵er an intuitive bridge between the

measure-theoretic and the learning-theoretic approach to randomness is that, as we will

see, integral tests may be naturally viewed as tracking the number of a�rmative answers
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of a learning function, while learning functions can be seen as tracking the growth of the

computable approximation witnessing the lower semi-computability of an integral test.

To build some intuitions, here is a direct proof of the equivalence between the learning-

theoretic characterisation of weak 2-randomness from Theorem 4.1.4 and its characterisa-

tion in terms of integral tests.

Proposition 4.2.1. Let ! 2 2N. Then, the following are equivalent:

(a) there is a computable learning function that weakly detects that ! is patterned;

(b) there is a lower semi-computable function f : 2N ! R with �({↵ 2 2N : f(↵) <

1}) = 1 (i.e., an integral test for weak 2-randomness) such that f(!) = 1.

Proof. ((a) ) (b)) Let ` denote the computable learning function that weakly detects

that ! is patterned. Then, ! 2 {↵ 2 2N : `(↵ � n) = yes for infinitely many n} and

�({↵ 2 2N : `(↵ � n) = yes for infinitely many n}) = 0. Define the function f : 2N ! R

as f(↵) = #{n 2 N : `(↵ � n) = yes} for every ↵ 2 2N. It then immediately follows

that f(!) = 1 and �({↵ 2 2N : f(↵) < 1}) = 1. So, all that is left to show is that f is

lower semi-computable. Let h : 2<N
! N be given by h(�) = #{n  |�| : `(� � n) = yes}

for every � 2 2<N. Then, for each k 2 N and � 2 2<N, let g

k

(�) = h(�). Since ` is

by assumption computable, so is h. Hence, the g

k

’s trivially form a sequence of uniformly

computable functions. Moreover, for each k, � and ⌧ , g
k+1

(�) = g

k

(�) and g

k

(�⌧) � g

k

(�).

Finally, for each ↵ 2 2N, f(↵) = sup{h(↵ � n) : n � 0} = sup{g
k

(↵ � n) : k, n � 0}. Hence,

by Definition 1.2.12, f is indeed lower semi-computable.

((b) ) (a)) Since f is lower semi-computable, there is a sequence of uniformly computable

functions g

k

: 2<N
! Q satisfying conditions (1)-(3) from Definition 1.2.12. Without loss

of generality, we can assume that f is non-negative and that g
0

(") = 0. First, we prove the

following simple auxiliary lemma.

Lemma 4.2.2. Let ↵ 2 2N and g : 2N ! R a non-negative lower semi-computable function

with approximation {g

k

}

k2N. Then, g(↵) = 1 if and only if, for every i 2 N+, there is

some m

0

2 N+ such that g
m0(↵ � m

0

) � i > g

m0�1

(↵ � m
0

� 1).

Proof of Lemma 4.2.2. ()) Suppose that g(↵) = 1 and i > 0. Since g(↵) = sup{g
k

(↵ � n) :

k, n � 0}, there must be a pair k, n of natural numbers such that g

k

(↵ � n) � i.
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Let m = max{k, n}. Then, g

m

(↵ � m) � g

k

(↵ � n) � i. Now, for all j  m,

g

m

(↵ � m) � g

j

(↵ � j). So, let m
0

be the least natural number such that g
m0(↵ � m

0

) � i.

Again, without loss of generality, we can assume that g

0

(") = 0. Then, since i > 0, we

have that m
0

> 0. Hence, g
m0(↵ � m

0

) � i > g

m0�1

(↵ � m
0

� 1).
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Figure 4.1: The sequence {g

k

}

k2N of uniformly computable functions that approximate
g from the proof of Lemma 4.2.2. For each k 2 N and ↵ 2 2N, g

k

(↵ � k) is the best
approximation of g(↵) from among the values appearing in the quadrant whose bottom
right corner is occupied by g

k

(↵ � k).

(() Immediate. a

Now, for each string � 6= ", let �� denote the initial segment of � of length |�| � 1.

Define a learning function ` as follows: `(") = yes and, for all � 6= ",

`(�) =

8

>

<

>

:

yes if there is some i 2 N+ such that g|�|(�) � i > g|�|�1

(��);

no otherwise.

Since the g

k

’s are uniformly computable functions, ` is computable, as well. Additionally,

we claim that

{↵ 2 2N : f(↵) = 1} = {↵ 2 2N : `(↵ � n) = yes for infinitely many n 2 N}.
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For the left-to-right inclusion, suppose that f(↵) = 1. Then, by Lemma 4.2.2, for ev-

ery i 2 N+, there is some m

0

2 N+ with g

m0(↵ � m

0

) � i > g

m0�1

(↵ � m

0

� 1).

Hence, `(↵ � n) = yes for infinitely many n 2 N. For the right-to-left inclusion, sup-

pose that f(↵) < 1. Let i 2 N+ be least with g

n

(↵ � n) < i for all n 2 N. Then,

#{n 2 N : `(↵ � n) = yes}  i.

Given that f(!) = 1, we have that ! 2 {↵ 2 2N : `(↵ � n) = yes for infinitely many n 2 N}.

Moreover, since �({↵ 2 2N : f(↵) < 1}) = 1, it follows that �({↵ 2 2N : `(↵ � n) =

yes for infinitely many n 2 N}) = 0. Hence, ` is a computable learning function that weakly

detects that ! is patterned.

Next, we will see how the basic ideas underlying the above proof can be adapted to

obtain characterisations of Martin-Löf randomness and Schnorr randomness.

4.2.2 Uniform weak detectability and Martin-Löf randomness

First, recall that, for any computable measure µ, Martin-Löf randomness can be charac-

terised via integral tests for randomness as follows:

Theorem 1.2.14 (Levin [1976]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Martin-Löf random;

(2) f(!) < 1 for all lower semi-computable functions f : 2N ! R with finite expectation:

i.e., such that
R

2

N f dµ < 1;

(3) f(!) < 1 for all lower semi-computable functions f : 2N ! R such that
R

2

N f dµ  1.

Now, the key to providing a learning-theoretic characterisation of Martin-Löf random-

ness lies in appropriately strengthening the notion of weak detectability:

Definition 4.2.3 (Uniform weak detectability). A learning function ` : 2<N
! {yes, no}

is said to uniformly weakly detect that a sequence ! 2 2N is patterned if and only if

(1) `(! � m) = yes for infinitely many m 2 N, and

(2) �({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n})  2�n for all n 2 N.
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What kind of patterns does the notion of uniform weak detectability pick out? Let P
`

denote the success set {↵ 2 2N : `(↵ � m) = yes for infinitely many m 2 N} of `. Since

P

`

=
\

n2N
{↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n},

Condition (2) above implies that P

`

is a measure-zero pattern. However, it also tells us

something more. A sequence ↵ /2 P

`

such that #{m 2 N : `(↵ � m) = yes} � n is one

that “fools” the learning function ` into thinking that ↵ 2 P

`

up to some initial segment

of ↵. Condition (2) then says that, as n increases, fooling ` becomes increasingly “dif-

ficult”—fewer and fewer sequences can fool ` at least n times—and that this increase in

di�culty can be e↵ectively bounded. More precisely, the di�culty increases at a com-

putable rate uniformly in n. Thus, P
`

is a measure-zero pattern on which ` zeroes in at a

computable rate.6

Next, we put the notion of uniform weak detectability to work and show that it in-

deed yields Martin-Löf randomness. First, note that, given a computable learning func-

tion ` that uniformly weakly detects that a sequence ! 2 2N is patterned, the sequence

{U

n

}

n2N—where, for all n 2 N, U
n

= {↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n}—is

a sequential Martin-Löf test (see Definition 1.2.3). It is therefore immediate that Martin-

Löf randomness implies that uniform weak detectability by computable learning functions

is impossible: if a computable learning function uniformly weakly detects that some se-

quence is patterned, then there is a (learning-theoretic) sequential Martin-Löf test that

said sequence fails. Once again, the more interesting implication is the converse one, which

establishes that a failure of Martin-Löf randomness can be converted into an instance of

uniform weak detectability.

To highlight the connections between the learning-theoretic framework and integral

tests for algorithmic randomness, both directions of our learning-theoretic characterisation

of Martin-Löf randomness will proceed by appealing to its characterisation in terms of

6Note that fooling a learning function becomes more and more di�cult in the setting of weak detectabil-
ity, as well. In this case, however, the increase in di�culty cannot be e↵ectively bounded. The patterns
targeted by weak detectability are measure-zero ⇧0

2 classes: that is, countable intersections of uniformly ⌃0
1

classes whose measures converge to zero, albeit not e↵ectively. This means that, given a learning function `
that weakly detects that a certain sequence is patterned, for all n, there is some N such that, for all m � N ,
the collection of sequences that fool ` at least m times has measure at most 2�n. However, in general, this
N cannot be found computably in n.
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integral tests, as given in Theorem 1.2.14.

Theorem 4.2.4. A sequence ! 2 2N is Martin-Löf random if and only if there is no

computable learning function that uniformly weakly detects that ! is patterned.

Proof. ()) Suppose that there is a computable learning function ` which uniformly weakly

detects that ! is patterned. Just as in the ((a) ) (b))-direction of the proof of Proposition

4.2.1, define f : 2N ! R as f(↵) = #{m 2 N : `(↵ � m) = yes} for all ↵ 2 2N. Then, f is

lower semi-computable and f(!) = 1. Moreover, the fact that

�({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n})  2�n

for each n 2 N implies that �({↵ 2 2N : f(↵) � n})  2�n for all n. By definition, f can

take only countably many values. In particular, since the set of sequences ↵ 2 2N with

f(↵) = 1 is a null set, it follows that

Z

2

N
f d� =

X

n2N
n · �({↵ 2 2N : f(↵) = n})



X

n2N
n · �({↵ 2 2N : f(↵) � n})



X

n2N
n · 2�n

.

Hence,
R

2

N f d�  2. By Theorem 1.2.14—and, in particular, the equivalence of (1) and

(2)—! is not Martin-Löf random.

(() Suppose that ! is not Martin-Löf random. Then, by the equivalence of (1) and (3) from

Theorem 1.2.14, there is a lower semi-computable function f : 2N ! R with
R

2

N f d�  1

and such that f(!) = 1. Since f is lower semi-computable, there is a sequence of uniformly

computable functions g

k

: 2<N
! Q satisfying conditions (1)-(3) from Definition 1.2.12.

Without loss of generality, we can assume that f is non-negative and that g
0

(") = 0. We

define a learning function ` : 2<N
! {yes, no} analogously to the way we defined the

learning function in the ((b) ) (a))-direction of the proof of Proposition 4.2.1, except that

now ` will be required to answer yes more sparingly. Let `(") = no. For all � 6= ", recall

that �� denotes the initial segment of � of length |�|� 1, and set
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`(�) =

8

>

<

>

:

yes if there is some i 2 N+ such that g|�|(�) � 2i > g|�|�1

(��);

no otherwise.

Since the g

k

’s are uniformly computable, the learning function ` is computable, as well.

Moreover, the fact that f(!) = 1 implies that ! 2 {↵ 2 2N : `(↵ � m) = yes for infinitely many

m 2 N}, as the proof of Lemma 4.2.2 goes through with i replaced by 2i. Now, for each n,

{↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n}

= {↵ 2 2N : #{m 2 N : 9i 2 N+ with g

m

(↵ � m) � 2i > g

m�1

(↵ � m� 1)} � n}

✓ {↵ 2 2N : 9m 2 N with g

m

(↵ � m) � 2n}

✓ {↵ 2 2N : f(↵) � 2n}.

Since
R

2

N f d�  1, Markov’s inequality entails that, for every n,

�({↵ 2 2N : f(↵) � 2n})  2�n

Z

2

N
f d�  2�n

,

which, in turn, implies that

�({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n})  2�n for all n.

Hence, ` is a computable learning function that uniformly weakly detects that ! is pat-

terned, which concludes the proof.

The above result establishes that Martin-Löf randomness indeed admits a character-

isation in learning-theoretic terms. In particular, Theorem 4.2.4 shows that Martin-Löf

randomness coincides with the collection of sequences along which no computable learning

function is able to forever entertain the possibility that its target pattern is present—where

the patterns involved are rare, in the sense that they correspond to certain e↵ective

measure-zero sets that depend on the given learning function.
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4.2.3 Computably uniform weak detectability and Schnorr randomness

Our second result is a learning-theoretic characterisation of Schnorr randomness (which,

as we have seen, is strictly weaker than Martin-Löf randomness but strictly stronger than

weak 1-randomness).

Recall that Schnorr randomness has the following natural characterisation in terms of

integral tests (where µ denotes an arbitrary computable measure):

Theorem 1.2.15 (Miyabe [2013a]). Let ! 2 2N. The following are equivalent:

(1) ! is µ-Schnorr random;

(2) f(!) < 1 for all lower semi-computable functions f : 2N ! R with computable

expectation: i.e., such that
R

2

N f dµ is a computable real;

(3) f(!) < 1 for all lower semi-computable functions f : 2N ! R such that
R

2

N f dµ = 1.

In proving Theorem 1.2.15, Miyabe relies on the result below, which will turn out to

be useful for the proof of our learning-theoretic characterisation of Schnorr randomness.7

Lemma 4.2.5 (Miyabe [2013a]). Let f : 2N ! R be a lower semi-computable function with
R

2

N f d� = 1 (i.e., an integral test for Schnorr randomness). Then, there is an unbounded

sequence {r

n

}

n2N of uniformly computable reals such that, for all n, �({↵ 2 2N : f(↵) =

r

n

}) = 0 and the measures �({↵ 2 2N : f(↵) � r

n

}) are computable reals, uniformly in n.

Schnorr randomness, as we have seen, is a variant on Martin-Löf randomness that re-

lies on imposing stronger e↵ectivity constraints on tests. The key to obtaining a learning-

theoretic characterisation of Schnorr randomness thus consists in employing a success cri-

terion that strengthens uniform weak detectability along these lines:

Definition 4.2.6 (Computably uniform weak detectability).

A learning function ` : 2<N
! {yes, no} is said to computably uniformly weakly detect

that a sequence ! 2 2N is patterned if and only if

(1) `(! � m) = yes for infinitely many m 2 N,
7We state the result in terms of the uniform measure �, but Lemma 4.2.5 holds for all computable

measures.
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(2) �({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n})  2�n for all n 2 N, and

(3) the values �({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n}) are uniformly computable

reals.

The only di↵erence between computably uniform weak detectability and uniform weak

detectability is Condition (3), which imposes further computability-theoretic constraints.

Let P

`

denote the success set {↵ 2 2N : `(↵ � m) = yes for infinitely many m 2 N} of `.

One way to think about Condition (3) is that it ensures that, for each n 2 N, it is possible

to precisely determine the size (i.e., the measure) of the collection of sequences that are

not in P

`

and yet manage to fool ` at least n times.

Considerations analogous to the ones applicable to uniform weak detectability are per-

tinent in this context, as well. In particular, given a computable learning function ` that

computably uniformly weakly detects that a sequence ! is patterned, if U
n

is defined as the

set {↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n} for all n 2 N, then the sequence {U

n

}

n2N

is a sequential Schnorr test (Definition 1.2.6). Once again, to illustrate the connections

between the learning-theoretic framework and the measure-theoretic typicality paradigm

in the setting of integral tests, both directions of the proof of Theorem 4.2.7 below rely on

the characterisation of Schnorr randomness via integral tests, rather than sequential tests.

The right-to-left direction of the proof of Theorem 4.2.7 is more involved than its

counterpart in the learning-theoretic characterisation of Martin-Löf randomness. Given

a sequence ! that fails to be Schnorr random, the main challenge consists in defining a

computable learning function that outputs yes su�ciently often to count as having de-

tected that ! is patterned, but that, at the same time, outputs yes su�ciently sparingly to

guarantee that Condition (2) and Condition (3) from Definition 4.2.6 are satisfied.

Theorem 4.2.7. A sequence ! 2 2N is Schnorr random if and only if there is no com-

putable learning function that computably uniformly weakly detects that ! is patterned.

Proof. ()) Suppose that there is a computable learning function ` which computably

uniformly weakly detects that ! is patterned. Once again, let f : 2N ! R be the function

given by f(↵) = #{m 2 N : `(↵ � m) = yes} for all ↵ 2 2N. Since ! 2 {↵ 2 2N :

`(↵ � m) = yes for infinitely many m 2 N}, f(!) = 1. Moreover, by the same argument
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used in the proof of Theorem 4.2.4, f is lower semi-computable and
R

2

N f d� =
P

n2N n ·

�({↵ 2 2N : f(↵) = n})  2.

Next, we show that
R

2

N f d� is computable. For each n 2 N, let �
n

be an abbreviation for

�({↵ 2 2N : f(↵) = n})—or, equivalently, for �({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} =

n}). Now, let (#
n

)
n2N be an increasing computable sequence of natural numbers such that

1
X

m=#n+1

m · 2�m

< 2�n

for all n 2 N. Since, for all m 2 N, m · �

m

 m · 2�m,

1
X

m=#n+1

m · �

m

< 2�n

.

This implies that, for all n 2 N,

�

�

�

�

X

m2N
m · �

m

�

#n
X

m=1

m · �

m

�

�

�

�

< 2�n

.

For each n, �
n

= �({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n}) � �({↵ 2 2N : #{m 2

N : `(↵ � m) = yes} � n+ 1}). Hence, {n · �

n

}

n2N is a sequence of uniformly computable

reals. In turn, this implies that {
P

#n
m=1

m · �

m

}

n2N is an increasing sequence of uniformly

computable reals. Hence,
P

m2Nm · �

m

is computable. Thus,
R

2

N f d� is not only finite,

but also computable. By the equivalence of (1) and (2) from Theorem 1.2.15, it follows

that ! is not Schnorr random.

(() Suppose that ! is not Schnorr random. Our ultimate goal is defining a computable

learning function that computably uniformly weakly detects that ! is patterned. The equiv-

alence of (1) and (3) from Theorem 1.2.15 implies that there is a lower semi-computable

function f : 2N ! R with
R

2

N f d� = 1 and such that f(!) = 1. Since f is lower

semi-computable, there is a sequence of uniformly computable functions g

k

: 2<N
! Q

satisfying conditions (1)-(3) from Definition 1.2.12. Without loss of generality, we can

assume that f is non-negative and that g

0

(") = 0. Moreover, by Lemma 4.2.5, there

is an unbounded sequence {r

n

}

n2N of uniformly computable reals such that, for all n,

�({↵ 2 2N : f(↵) = r

n

}) = 0 and the measures �({↵ 2 2N : f(↵) � r

n

}) are computable
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reals, uniformly in n. Let {s

n

}

n2N be a computable, increasing subsequence of {r
n

}

n2N

such that s

n

� 2n for all n. Now, let the following functions be defined by simultaneous

induction (due to the interdependence of the functions).

(1) Let j : 2<N
! N be such that j(") = 0 and, for � 6= ",

j(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

max{i 2 N+ : g|�|(�) � s

i

> g|�|�1

(��)} if {i 2 N+ : g|�|(�) � s

i

>

g|�|�1

(��)} is non-empty;

j(��) otherwise.

Then, j is non-decreasing: if � v ⌧ , then j(�)  j(⌧). Since s

n

� 2n for all n, j(�)

essentially keeps track of the highest power of two that has been jumped over by the

computable approximation witnessing the lower semi-computability of f after having

observed �.

(2) Let c : 2<N
! Z be such that c(") = 0 and, for � 6= ",

c(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

j(�)� y(�) if j(�) > j(��)—function y is defined in (4) below;

c(��) if j(�) = j(��) and c(��) = 0;

c(��)� 1 if j(�) = j(��) and c(��) 6= 0.

Function c works as a counter: for a given �, c(�) represents the number of yes’s that

a learning function still needs to output on extensions of � in order to match j(�).

(3) Let ` : 2<N
! {yes, no} be the learning function given by `(") = no and, for � 6= ",

`(�) =

8

>

<

>

:

yes if j(�) > j(��) or c(��) > 0;

no otherwise.

(4) Let y : 2<N
! N be such that y(") = 0 and, for � 6= ",

y(�) =

8

>

<

>

:

y(��) + 1 if `(�) = yes;

y(��) otherwise.

The purpose of function y is keeping track of the number of yes’s output by the

learning function ` up to the current stage.
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Now, since the g

k

’s are uniformly computable, j is computable. This implies that c, ` and

y are computable, as well. Next, we need to show that

(a) `(! � m) = yes for infinitely many m 2 N,

(b) �({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n})  2�n for all n 2 N, and

(c) the measures �({↵ 2 2N : #{m 2 N : `(↵ � m) = yes} � n}) are computable reals,

uniformly in n.

For (a), recall that f(!) = 1. Lemma 4.2.2 still holds if i is replaced by s

i

. Thus, for

every i � 1, there is some m

0

� 1 with g

m0(! � m
0

) � s

i

> g

m0�1

(! � m
0

� 1). For each of

these infinitely many m

0

’s, j(! � m
0

) > j(! � m
0

� 1). Hence, `(! � m) = yes for infinitely

many m.

To prove (b) and (c), we rely on two intermediate lemmas. (Lemma 4.2.8 below also

establishes that function c, the counter, is in fact non-negative.)

Lemma 4.2.8. For all � 2 2<N, j(�) � y(�).

Proof of Lemma 4.2.8. The proof proceeds by induction. For ", we have that j(") = 0 =

y("). For � 6= ", suppose that j(��) � y(��). If j(�) > j(��), then

j(�) � j(��) + 1

� y(��) + 1

� y(�).

If, on the other hand, j(�) = j(��), then there are two cases to consider.

(1) If c(��)  0, then `(�) = no and y(�) = y(��). Since j(��) � y(��), j(�) � y(�).

(2) If c(��) > 0, then let ⌧ be the longest string with ⌧ @ � such that j(⌧) > j(⌧�). Such

a string must exist, for otherwise c(��) could not be positive, by the definition of c. Then,

for all ⌧ @ ⇢ v �, j(⇢) = j(⇢�), which means that, for all such ⇢, j(⇢) = j(⌧). In particular,

j(�) = j(⌧). Since c(��) > 0, c(⇢) > 0 for all ⌧ v ⇢ @ �

�, as well. For suppose there were

some ⇢0 with ⌧ v ⇢

0 @ �

� and c(⇢0) = 0. Then, since j(⇢) = j(⇢�) for all ⌧ @ ⇢ v �

�, by

definition, the value of c would remain the same on all initial segments of �� extending

⇢

0, including �� itself. Thus, contrary to our assumption, we would have that c(��) = 0.
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Since j(⌧) > j(⌧�), j(⌧) = y(⌧) + c(⌧). Moreover, for each ⌧ @ ⇢ v �, c(⇢) = c(⇢�) � 1

and y(⇢) = y(⇢�) + 1. Hence, for all such ⇢, y(⇢) + c(⇢) = y(⌧) + c(⌧). This implies that

j(�) = j(⌧)

= y(⌧) + c(⌧)

= y(�) + c(�)

� y(�),

where the last inequality follows from the fact that c(�) = c(��)�1 � 0, as c(��) > 0. a

Lemma 4.2.9. For all n 2 N+,

{↵ 2 2N : #{i 2 N : `(↵ � i) = yes} � n} = {↵ 2 2N : f(↵) � s

n

}

up to a set of measure zero.

Proof of Lemma 4.2.9. (✓) Let n � 1 and ⌘ 2 2N with #{i 2 N : `(⌘ � i) = yes} � n.

Then, there are at least n initial segments of ⌘ on which ` outputs yes. Let ⌘ � m
1

, ..., ⌘ � m
n

be the first n such initial segments. Suppose that g
mi(⌘ � m

i

) < s

n

for all 1  i  n. Then,

j(⌘ � m

n

)  n � 1, while y(⌘ � m

n

) = n, so j(⌘ � m

n

) < y(⌘ � m

n

). This, however,

contradicts Lemma 4.2.8. So, there must be some 1  i  n with g

mi(⌘ � m

i

) � s

n

. Hence,

f(⌘) � s

n

. Therefore, {↵ 2 2N : #{i 2 N : `(↵ � i) = yes} � n} ✓ {↵ 2 2N : f(↵) � s

n

}.

(◆) Let n � 1 and suppose that f(⌘) � s

n

. If f(⌘) = 1, then #{i 2 N : `(⌘ � i) =

yes} = 1. On the other hand, if f(⌘) < 1, let k � n be maximal with f(⌘) � s

k

. If

f(⌘) > s

k

, then there is some m � 1 such that g
m

(⌘ � m) � s

k

> g

m�1

(⌘ � m� 1). By the

maximality of k, j(⌘ � m) = k > j(⌘ � m � 1). By the definition of `, `(⌘ � m + i) = yes

for all 0  i  c(⌘ � m), and `(⌘ � m + i) = no for all i > c(⌘ � m). By the definition

of c, j(⌘ � m) = y(⌘ � m) + c(⌘ � m). Hence, y(⌘ � m) + c(⌘ � m) = k, which entails

that #{i 2 N : `(⌘ � i) = yes} = k � n. If f(⌘) = s

k

, on the other hand, then ⌘ belongs

to a null set: by choice of the sequence {s

n

}

n2N (and the sequence {r

n

}

n2N), �({↵ 2 2N :

f(↵) = s

k

}) = 0. It follows that
S

m�n

{↵ 2 2N : f(↵) = s

m

} is a null set, which, in turn,

implies that {↵ 2 2N : f(↵) � s

n

} ✓ {↵ 2 2N : #{i 2 N : `(↵ � i) = yes} � n} up to a set
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of measure zero. a

Now,
R

2

N f d� = 1 by assumption. Hence, Markov’s inequality entails that, for every n,

�({↵ 2 2N : f(↵) � s

n

}) 
1

s

n

Z

2

N
f d� =

1

s

n

.

So, for every n, �({↵ 2 2N : f(↵) � s

n

})  2�n. By Lemma 4.2.9 (and the obvious fact

that �({↵ 2 2N : #{i 2 N : `(↵ � i) = yes} � 0}) = 1), for all n, �({↵ 2 2N : #{i 2 N :

`(↵ � i) = yes} � n})  2�n, which establishes (b).

For (c), recall that the measures �({↵ 2 2N : f(↵) � s

n

}) are computable reals, uniformly

in n, since {s

n

}

n2N is a computable subsequence of {r
n

}

n2N. This, together with Lemma

4.2.9, allows to conclude that the measures �({↵ 2 2N : #{i 2 N : `(↵ � i) = yes} � n})

are computable reals uniformly in n, too. Hence, ` is a computable learning function that

computably uniformly weakly detects that ! is patterned.

Theorem 4.2.7 establishes that, by restricting attention to a certain collection of e↵ective

measure-zero patterns (as specified by Definition 4.2.6), Schnorr randomness too can be

given a learning-theoretic characterisation. This result concludes our present investigation

into the expressive power of this learning-theoretic framework.

4.3 Conclusion

In this chapter, we further explored the learning-theoretic approach to algorithmic ran-

domness first introduced by Osherson and Weinstein [2008]. Our main results are novel

learning-theoretic characterisations of both Martin-Löf randomness and Schnorr random-

ness. To recapitulate: weak 2-randomness, Martin-Löf randomness, Schnorr randomness,

and weak 1-randomness can all be characterised within this framework.

Our characterisations of Martin-Löf randomness and Schnorr randomness rely on im-

posing further measure-theoretic constraints on the success sets of learning functions. It

is thus natural to wonder whether these additional constraints can be weakened, or alto-

gether eliminated, by suitably strengthening the definition of the corresponding success
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criteria. In other words, is it possible to provide characterisations of Martin-Löf random-

ness and Schnorr randomness that do not depend on any measure-theoretic conditions

other than requiring that the target patterns be measure-zero sets? Are there any suc-

cess criteria more stringent than merely having to answer yes infinitely often (but weaker

than having to answer yes cofinitely often) that can make up for the elimination of Con-

dition (2) from Definition 4.2.3 or Condition (2) and Condition (3) from Definition 4.2.6,

in favour of the weaker “�(P
`

) = 0”—where P

`

denotes either success set defined via

these alternative success criteria? Answering this question in the a�rmative would allow

to provide characterisations of Martin-Löf randomness and Schnorr randomness that share

with the measure-theoretic typicality paradigm only very minimal assumptions. Answering

this question in the negative, on the other hand, would highlight the tight dependence of

Martin-Löf randomness and Schnorr randomness on measure-theoretic intuitions, thereby

setting them apart from other algorithmic randomness notions that may be given a “purely

learning-theoretic” characterisation, such as weak 1-randomness and weak 2-randomness.

On closer inspection, however, it is not obvious what providing a negative answer

would exactly amount to. One would first have to specify a collection of allowable success

criteria. Since all of the criteria discussed in this chapter are expressible by arithmetical

sentences of varying complexity, an immediate issue is whether the above may be done by

only appealing to arithmetical sentences. More generally, a natural question is whether

there are any other algorithmic randomness notions (besides weak 1-randomness and weak

2-randomness) that can be characterised via success criteria of the following form:

Let ` be a computable learning function and ' an arithmetical sentence that

features `. Then, ` is said to detect that a sequence ! 2 2N is patterned relative

to the success criterion determined by ' if and only if

(1) ! 2 {↵ 2 2N : ↵ satisfies '}, and

(2) �({↵ 2 2N : ↵ satisfies '}) = 0.

For instance, besides Martin-Löf randomness and Schnorr randomness, do computable

randomness or some of the notions in the algorithmic randomness hierarchy that fall be-

tween 2-randomness (i.e., Martin-Löf randomness relative to the halting problem ;

0) and

Martin-Löf randomness—such as di↵erence randomness [Franklin and Ng, 2011], Demuth
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randomness [Demuth, 1982], and density randomness—admit reasonable learning-theoretic

characterisations that comply with the above specifications? Addressing these questions

would constitute a first step towards a systematic investigation of the expressivity of this

learning-theoretic framework from the perspective of logical definability. This would allow

to classify algorithmic randomness notions in terms of the definitional complexity of the

learning-theoretic success criteria used for their characterisations.

One success criterion that might be worth studying with this goal in mind is the one

below, which requires that the asymptotic density of the positive guesses of a learning

function be 1:

Definition 4.3.1 (Limit detectability). A learning function ` is said to detect in the limit

that a sequence ! 2 2N is patterned if and only if

(1) ! 2

n

↵ 2 2N : lim
n!1

#{m  n : `(↵ � m) = yes}

n+ 1
= 1

o

, and

(2) �
⇣n

↵ 2 2N : lim
n!1

#{m  n : `(↵ � m) = yes}

n+ 1
= 1

o⌘

= 0.

Intuitively, limit detectability targets measure-zero patterns whose presence becomes more

and more evident to the learning function as the number of observations increases—in the

sense that the relative frequency of a�rmative answers goes to 1 in the limit. In terms of

logical strength, limit detectability sits in between strong detectability and weak detectabil-

ity. We leave it as an open question whether it yields a learning-theoretic characterisation

of weak 2-randomness, weak 1-randomness, or any of the core algorithmic randomness

notions that lie in between.8

Another related question worth investigating is whether there are any reasonable success

criteria that, in spite of not giving rise to any standard algorithmic randomness notion,

can nonetheless be used to define new learning-theoretic randomness concepts. Just as

one may define new randomness notions in terms of e↵ective versions of almost-everywhere

theorems from analysis (as in the case of density randomness), there might in fact be

natural randomness concepts that directly emerge from the learning-theoretic perspective

on randomness discussed here.
8This question was answered by Steifer [2021], who showed that limit detectability yields a characteri-

sation of weak 2-randomness.
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The possible connections between algorithmic randomness and formal learning theory

are not exhausted by the framework investigated here. In this chapter, we explored the

use of formal learning-theoretic tools and concepts in the study of algorithmic randomness;

however, it is also natural to ask what algorithmic randomness can do for formal learning

theory. Some promising points of contact between the two fields focusing on this direc-

tion of the relationship were mentioned in the conclusion of Chapter 3 (in the context of

convergence-to-the-truth results), and, as we hope our initial explorations suggest, many

more remain to be uncovered.

More generally, our hope is that this dissertation has succeeded in bringing to the

fore the many diverse ways in which the rich and conceptually illuminating framework

o↵ered by algorithmic randomness can fruitfully interact with the foundations of inductive

learning—especially in the context of computationally limited, less-than-ideal learners.
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Henri Poincaré, 7: 1–68, 1937.

O. Demuth. Borel types of some classes of arithmetical real numbers. Commentationes

Mathematicae Universitatis Carolinae, 23(3): 593–606, 1982.

P. Diaconis and D. Freedman. On the consistency of Bayes estimates. The Annals of

Statistics, 14(1): 1–26, 1986.

P. Diaconis and D. Freedman. On the uniform consistency of Bayes estimates for multino-

mial probabilities. The Annals of Statistics, 18(3): 1317–1327, 1990.

J. L. Doob. Stochastic Processes. Wiley, New York, 1953.

R. G. Downey and E. J. Gri�ths. Schnorr randomness. The Journal of Symbolic Logic,

69: 533–55, 2004.

R. G. Downey and D. R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer,

New York, 2010.

R. G. Downey, E. J. Gri�ths, and G. Laforte. On Schnorr and computable randomness,

martingales, and machines. Mathematical Logic Quarterly, 50(6): 613–627, 2004.

R. Durrett. Probability: theory and examples, volume 31 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition,

2010.

J. Earman. Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory.

MIT Press, Cambridge, 1992.

W. Edwards, H. Lindman, and L. J. Savage. Bayesian statistical inference for psychological

research. Psychological Review, 3(70): 193–242, 1963.

A. Elga. Bayesian Humility. Philosophy of Science, 83: 305–323, 2016.

J. N. Y. Franklin and K. M. Ng. Di↵erence randomness. Proceedings of the American

Mathematical Society, 139(1): 345–360, 2011.

J. N. Y. Franklin and H. Towsner. Randomness and non-ergodic systems. Moscow Math-

ematical Journal, 14: 711–714, 2014.

J. N. Y. Franklin, N. Greenberg, J. S. Miller, and K. M. Ng. Martin-Löf random points
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