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1.1 Secret messages

Humans like secrets. We like making secrets, keeping secrets, and finding out other
people’s secrets. From a recipe for a pottery glaze to military plans to personal let-
ters [Kah96], we have attempted to shield our writings from prying eyes all throughout
history.

Initially, hiding a message involved nothing more than writing it down in a slightly
complicated way. The sender would, for example, replace certain symbols with less
common ones, or with ones with a different meaning but a similar sound. Or perhaps
she would write some words backwards while leaving out vowels, or replace them
with obscure jargon.

These message-hiding techniques may have been sufficient in a time where writ-
ten communication was anyway reserved for a small fraction of the population. How-
ever, in principle, anyone with the ability to read and a knack for puzzles would be
able to figure out the message eventually. The techniques lacked a certain ingredient
that is now considered essential to cryptography: a key, a secret piece of information
that is needed to decode the ciphertext back into the original message.

In Roman times, the first known cipher requiring such a key emerged. In the
Caesar cipher, the key specifies the number of places to transpose each letter in the
message. If it is 2, for example, every A in the message becomes a C in the ciphertext,
every B becomes a D, et cetera. Despite the secret key, a lot of information about
the underlying message is maintained by this method of encryption: by counting
the frequency of each letter, observing repeating patterns, or even just trying all 26
different possible keys, it would still be fairly easy to recover the message.

In the centuries that followed, increasingly complicated ciphers were invented.
The idea was that more intricate combinations of transpositions, substitutions, and
permutations would lead to ciphers that were harder to break. The receiver of a
message would need to remember more secret steps in order to successfully decode
the message, and for an eavesdropper, guessing all of these steps would become
increasingly difficult. Effectively, concatenating several types of ciphers increased the
size of the secret key.

In 1883, Kerckhoffs observed that a proper secret key is crucial to a successful
cryptographic protocol. He postulated that the security of a protocol should not rely
on obscurity of the inner workings of the protocol itself, but instead only on the fact
that an eavesdropper does not know the secret key [Ker83]. Kerckhoffs’s principle has
been essential to shaping cryptography as we know it today.

Shortly after the Second World War, which featured many newly designed and
quickly broken cryptographic protocols, Shannon formalized the notion of informa-
tion content of a message [Sha48]. He viewed information as a quantifiable resource
that can be expressed in bits. To properly hide a message, one has to ensure that there
is no information about the message present in the ciphertext. At the same time, a
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receiver that knows the secret key should of course be able to decipher all the informa-
tion about the message. Shannon showed that the only way to simultaneously achieve
these properties is to use a secret key of the same length as the message [Sha49].

The canonical example of an information-theoretically secure encryption scheme
is the one-time pad. Encrypting an n-bit message x ∈ {0,1}n with the one-time pad
requires an n-bit secret key k ∈ {0,1}n . The ciphertext c ∈ {0,1}n is defined by simply
taking the bitwise XOR between the message and the key: ci := xi ⊕ ki for every
1 É i É n. If the key is chosen uniformly at random, one can prove that the message x
and ciphertext c share no information: the one-time pad provides perfect information-
theoretic security.

1.1.1 Public-key cryptography

Information-theoretically secure encryption using a secret key that is as long as the
message is not very practical in most cases: in order to securely send an n-bit message,
one would first have to communicate an n-bit key to the receiver. Public-key cryp-
tography [DH76; RSA78] reduces the amount of secret key by slightly relaxing what it
means to keep a message secret: instead of requiring that the ciphertext contains no
information about the message, it is only required that the information is hard to find.
This idea is usually formalized by stating that if one is able to recover the message from
the ciphertext, then one is also able to solve a specified mathematical problem. Under
the assumption that this problem is hard to solve, it should be practically impossible
to break the encryption. This type of security is called computational security (or
security under computational assumptions), and is almost always used in practice.

Public-key cryptography relates to an important question in theoretical computer
science: which problems are hard? The cryptographic systems in use today are based
on problems which are believed not to be solvable by a computer in a reasonable (i.e.,
polynomial in the input length) amount of time, such as integer factorization [RSA78]
or discrete logarithms of elliptic curves [DH76]. The possibility always remains that
a new, efficient algorithm for one of those mathematical problems is discovered,
rendering the cryptographic protocols based on them insecure.

One may wonder why cryptosystems cannot just be designed based on problems
that are known to be hard (e.g., an EXP-complete problem), instead of working with
problems that are on the edge of being solvable by an efficient algorithm. This is
unlikely to be a successful endeavor, because the underlying mathematical problem
needs to provide enough structure to allow for efficient honest usage: encryption
should be efficient in practice, and so should decryption for someone holding the
secret key. Thus, cryptosystem design requires us to walk a fine line between efficiency
for the user and computational intractability for the attacker.

Enter the quantum computer. This relatively new model of computation shakes
the foundations of our knowledge about which problems are hard and which are
not. Although not yet implemented for large inputs in practice, Shor showed that
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a quantum computer has the ability to factor integers efficiently [Sho94], thereby
breaking cryptosystems that are based on the assumption that integer factorization is
hard.

To stay ahead of potential quantum adversaries, and secure our communications
going forward, we need to identify mathematical problems that are hard enough to
resist quantum attacks, but structured enough to support meaningful cryptosystems.
The field of post-quantum cryptography is concerned with finding such problems,
analyzing them, and designing cryptosystems around them. Currently, there are sev-
eral promising candidates almost ready to be implemented, but also still very actively
under review by the scientific community [AAA+20]. Post-quantum secure encryption,
although not the main topic of this dissertation, will feature as a prominent building
block of many of the protocols throughout this work.

1.1.2 Quantum cryptography

Although they form a threat for the security of many cryptographic protocols, the
hope is that quantum computers will become useful for a wide array of computa-
tional applications. Quantum computing can potentially enhance search and opti-
mization algorithms [Gro96; BS17], speed up the development of chemical products
such as drugs [LD12] and fertilizers [RWS+17], and maybe even aid artificial intelli-
gence [DB18].

Once commercial-scale quantum computers become available that can provide
these applications, they will not exist in isolation. In contrast to the classical com-
puter, the quantum computer will be born into the age of the Internet, big data, and
commercial computing. We need to be careful to securely store and communicate
quantum data right from the start.

In the design of protocols to encrypt quantum messages, one has to essentially
start from scratch. This is because the structure of quantum data differs fundamentally
from that of classical data: while a classical message is usually modeled as a string of
bits (0 or 1), a quantum message consists of qubits, a much richer object that can be
in one of infinitely many different states.

In the search for quantum-cryptographic protocols that are simultaneously ef-
ficient and secure, the possibility of information-theoretic security came into view
again [BB84]. Quantum mechanics can potentially circumvent the limitations in-
herent to classical cryptographic tasks. Indeed, by making clever use of quantum
entanglement and the uncertainty principle, it is possible to design information-
theoretically secure quantum protocols for tasks such as key distribution [BB84;
Eke91], secret sharing [CGL99; Got00], and fingerprinting [BCWW01].

A notable example of an information-theoretically secure quantum protocol is
the quantum one-time pad [AMTW00], which securely encrypts quantum messages.
Similarly to the classical one-time pad, the secret key for the quantum one-time pad
is fairly large: to encrypt a message consisting of n qubits, one needs a secret key
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of length 2n. The crucial fact that makes the quantum one-time pad a useful tool,
however, is the fact that the secret key can be classical. Thus, the quantum one-time
pad reduces the task of privately sending n qubits to communicating a classical key
of 2n bits. Since qubits are considered to be a much more precious resource than
classical bits, at least for the foreseeable future, this reduction can be quite powerful.
The quantum one-time pad therefore plays a prominent role in many protocols that
require some form of privacy, like the protocols in this dissertation.

1.2 Delegated and distributed quantum computation

Around the turn of the millennium, it became apparent that even though quantum
mechanics provided possibilities that were out of reach with just classical techniques,
some cryptographic primitives could still not be realized information-theoretically.
Among them are fundamental primitives such as bit commitment [May97; LC97;
LC98], coin tossing [LC97], and oblivious transfer [Lo97]. Some more complex tasks,
which could in theory be achieved via many different routes, turned out to be impos-
sible without computational assumptions as well: two examples that will be relevant
to this dissertation are two-party quantum computation [BCS12] and quantum fully
homomorphic encryption [YPF14].

Precisely those more complex tasks, where a computation is distributed amongst
multiple parties, or delegated to a computationally more powerful party, are desirable
in a quantum setting. A potential near-future scenario is one where a few universities,
institutes and companies around the globe will have the capability to build and
operate a full-scale quantum machine. It is not very likely that such machines will
be available to and affordable for the general public, or even to the average company
or government, in the short term. For that, quantum computers simply require too
much expertise and precise equipment to operate. To facilitate the use of quantum
computers by other parties, they could be hooked up onto a (classical or quantum)
internet. Third parties, interested in using the quantum capabilities to perform
computations, could “log on” to the quantum computer via some secure cloud service,
and delegate their computation to this quantum server.

Even for classical computations, the above scenario is much more complex than
merely sending a message over a network. When sending a message, one needs to
protect against external parties that may eavesdrop (or even actively try to sabotage
the protocol), but the sender and receiver can be trusted. In this new setting, however,
we also need security against internal adversaries: the participants of a distributed
or delegated computation do not necessarily trust each other, but they still have to
work together to achieve a certain task. For instance, a client buying the services of a
cloud-computing provider needs to send that provider certain information to perform
the computation, but at the same time, may want to keep their inputs, outputs, and
perhaps even computations secret from the provider. For such scenarios, a protocol
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needs to provide all parties involved with enough information to appropriately per-
form their assigned tasks, but not so much information that they are able to break the
security of the protocol.

To complicate matters further, quantum computers and networks are still in active
development, causing a moving target for quantum cryptographers. Should a protocol
be optimized for the amount of communication, memory, or computation steps? As
long as we do not know which will be the most expensive commodity in quantum
computing, it is hard to tell which trade-offs are worth it and which are not. The only
safe assumption that we can make is that classical computation and communication
will remain easier than their quantum variants for quite some time.

In summary, protocol design for delegated and distributed quantum compu-
tation is challenging for a variety of reasons. Firstly, we are still exploring which
cryptographic primitives are even achievable: those that are impossible information-
theoretically may still be possible under computational assumptions. Secondly, the
desired applications are relatively young in classical cryptography as well, and there-
fore not yet well understood. Often, the quantum primitive is a generalization of the
classical one, and there is no reason to assume that it will be simpler to achieve. Finally,
it is not always clear by what metric to judge the efficiency of quantum protocols.

1.2.1 Related work

Despite the uncertainties mentioned above, the field of delegated and distributed
quantum computation has steadily been moving forward over the last fifteen years.

Childs initiated the study of securely delegating quantum computations [Chi05].
He observed that the quantum one-time pad has a certain structure: some physical
operations on the ciphertext always correspond to certain logical operations on the
plaintext message, regardless of the value of the classical secret key. By analyzing the
commutation relations between the one-time pad and certain quantum operations,
Childs designed a protocol which allowed a client to partially outsource a quantum
computation to a more powerful server. This protocol is still highly interactive, and
the client has to do a fair amount of computation (both classical and quantum) that
depends on the secret key.

In subsequent developments, the situation for the client was improved in a variety
of ways. Several protocols reduced the workload for the client by limiting it to only
classical operations [RUV13; CGJV19] (sometimes requiring the presence of a second
server that cannot communicate with the first one). Others reduced the amount
of communication required between client and server [FHM18; Gri17], or provided
additional perks for the client, such as privacy [BFK09; DFPR14] or verifiability [ABE10;
Mor14; Bro15; HM15; FK17] of the executed quantum program.

Despite these developments, the boundary of what is possible to achieve informa-
tion-theoretically has to be respected. At that point, it is time to turn to a solution that
has proven to be very powerful classically: the computational assumption. Primitives
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that may be hard or impossible to achieve against unbounded adversaries, have been
found to be achievable if the adversaries are computationally bounded.

Interestingly, in the quantum setting, computational assumptions are usually not
woven directly into the structure of the quantum encryption. Instead, the security of
computationally secure quantum-cryptographic primitives is based on a two-step
mechanism. First, the security is reduced to the classical realm, such as a classical
secret key or a classical computation. Then, the classical variant of that primitive
is employed to ensure security. If the latter is secure only under computational
assumptions, then so is the resulting quantum scheme.

As a prime example, consider the quantum one-time pad, which itself provides
information-theoretically secure encryption of quantum states, using only a classical
key k: let us call the encryption procedure QOTP.Enck . To turn this private-key
scheme into a public-key one, we can encrypt the classical key k under a public-key
encryption scheme Classical.Enc (with independent public key pk and secret decryp-
tion key sk), and attach the encrypted secret key to the ciphertext. The encryption of
a quantum state

∣∣ψ〉
then becomes:

QOTP.Enck
(∣∣ψ〉)⊗ ∣∣Classical.Encpk(k)

〉
. (1.1)

Note that the computational assumption only comes in on the classical level: this type
of hybrid between an information-theoretical quantum scheme and a computational
classical scheme will appear several times throughout this work.

1.3 Contributions

The goal of this dissertation is to explore the possibilities and impossibilities of various
cryptographic primitives for delegated and distributed quantum computation. We
will mainly focus on the possibilities that computational assumptions bring beyond
what can be achieved information-theoretically. Specifically, we will consider the
following three quantum-cryptographic primitives:

Quantum homomorphic encryption (Chapters 5 and 6). A homomorphic encryp-
tion can be used to delegate a quantum computation noninteractively while pre-
serving secrecy of the input to the computation. The requirement of noninteractiv-
ity forms the main hurdle in the design of a (quantum or classical) homomorphic-
encryption scheme: the client cannot use his knowledge about the secret key to
“guide” the server during the computation. Instead, the server must perform the entire
computation without knowledge of the secret key.

We overcome this hurdle by providing the server with a state that depends on the
secret key, thereby allowing the server to extract the client’s directions herself. We take
this one step further by enabling the server to construct a proof that the computation
was performed correctly, so that the client can verify the homomorphic computation
at decryption time.
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Multi-party quantum computation (Chapter 4). In multi-party quantum computa-
tion, several players (each with their own quantum input) want to perform a joint
computation without fully trusting each other. In particular, they do not want to
reveal their inputs to each other, and they want to ensure that the computation is not
sabotaged by another player. In this distributed-computation setting, the difficulty
is that there is no single trusted party that can generate and hold the secret key: in
principle, all players are potentially adversarial.

We solve this difficulty by observing that, in its core, it is again a classical problem:
through classical multi-party computation, the players can agree on, keep track of,
and choose actions based on a classical secret key. This way, we “lift” multi-party
classical computation to multi-party quantum computation.

Quantum obfuscation (Chapter 7). In obfuscation, the roles are reversed compared
to delegated computation: the client (or “user”) has sufficient computational power
to run a quantum computation, but is not allowed to learn the specification of the
computation. The server (or “obfuscator”) hands out an obfuscated version of the
program, to which the user can choose his own input. In this setting, the obfuscator
holds the secret information. The difficulty is that this obfuscator is not involved in
the computation after encrypting the program: thus, the user needs to be able to not
only perform the computation, but also decrypt the result, without access to the secret
information or communication with the obfuscator.

The initial goal for this dissertation was to “lift” a protocol for classical obfusca-
tion to a quantum protocol, using the verifiable quantum homomorphic encryption
scheme we construct. Instead, we show that quantum obfuscation in its strongest
sense is impossible to achieve, even under computational assumptions. It may still
be possible to lift weaker variants of obfuscation from the classical to the quantum
setting; we leave that as a future direction to explore.

A recurring theme in the three cryptographic primitives just discussed is verifica-
tion: the client wants to verify that the server performed a homomorphic computation
correctly, the players want to verify that no other player sabotaged the multi-party
computation, and the obfuscator wants to build in a verification procedure that only
reveals the plaintext output if the obfuscation was used in the intended way.

In this dissertation, we explore how this verification property can be achieved
using tools from message authentication. Traditionally, a message authentication
code is used to ensure that a message arrives at a receiver unaltered. In other words,
the receiver can verify that after being encoded by the sender, the message has only
undergone the identity operation. (Quantum) computing on authenticated data
extends this idea to allow the receiver to verify that a specific nonidentity operation
has been applied to the message instead. As such, the message authentication code
necessitates the application of a specified operation by the untrusted server (or other
untrusted party).

In reminiscence of the fine line we have to walk between efficiency for the user
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and intractability for the attacker when designing encryption schemes, quantum
computing on authenticated data needs to find a balance between structure (allowing
an honest server to perform the specified computation) and lack thereof (preventing
a dishonest server from performing unauthorized computations). Certain more
complex verification primitives require even stronger properties from the underlying
message authentication code. We investigate properties such as integrity of the
ciphertext and reusability of the key in Chapter 3.

1.3.1 Techniques

The general security framework that we will work in is the so-called real-vs.-ideal
paradigm. In an ideal scenario, the adversary or eavesdropper is very limited in what it
can do to break privacy or sabotage a computation: this scenario reflects the situation
we want to achieve. The real scenario is the actual protocol, with no restrictions on
the adversary. By showing that the real scenario is indistinguishable from the ideal
one, we prove that the real protocol achieves the desired level of security.

We opt for the real-vs.-ideal paradigm because of the composability it provides:
once a real protocol is proven indistinguishable from a certain ideal one, that ideal
protocol can then be used as a subprotocol in other, more complex settings. At that
point, we do not have to concern ourselves with the implementation details of the
subprotocol, but instead can model it as an ideal interaction. This approach makes
our results directly useful for future research.

To reinforce the composable and modular nature of our results, we will often turn
to proofs by reduction. That is, many of our protocols are black-box upgrades from
either classical or simpler quantum primitives. The advantage of this approach is
twofold: (1) it simplifies the analysis by isolating the elements that are required for the
upgrade, allowing us to focus exclusively on those elements in the proof; (2) improve-
ments of the underlying simpler primitives directly benefit our constructions without
having to augment the proofs. For example, if the underlying simpler primitive can
be based on a simpler or more promising computational assumption, then so can our
quantum primitives. This flexibility is especially useful since it is currently unclear
which computational assumptions will turn out to be realistic.

A downside of the modular approach is that the security and efficiency bounds are
likely not tight. At every composition step, general bounds are combined (multiplied
or added), whereas more specific bounds could potentially be achieved if the specific
protocol is analyzed in its entirety. However, we stress that the aim of this dissertation
is not to construct practically implementable cryptographic primitives. Rather, our
contribution is to show that certain quantum-cryptographic primitives are achievable
(or unachievable) on a theoretical level. For that goal, general asymptotic bounds
suffice.
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2.1 Introduction

No twenty-first-century dissertation exists in isolation, and this one does not either.
It is set within existing frameworks, and some of the notation and techniques have
been developed in previous work. This chapter discusses several of these prelimi-
nary concepts. It by no means substitutes a thorough introduction into the fields
of cryptography and quantum computing: there already exist excellent books and
lecture notes that achieve that goal [KL14; NC00; Wat11; Wol19]. Instead, the goal of
this chapter is to establish notation and conventions, and to highlight a number of
concepts that will be central to this work.

2.2 Theoretical computer science

2.2.1 Sets and strings

Sets are denoted by Roman capital letters. The number of elements in a set S is |S|,
and can possibly be infinite. The intersection S ∩T contains only those elements that
are in both S and T . The difference S \ T contains the elements that are in S, but not
in T . The union S ∪T contains the elements that are in S or T , or both. If we want to
stress that S and T are known to be disjoint, then we write S tT for their union. We
will use the notation S Ú T for strict subsets, and S ⊆ T if it is possible that S = T .

Several specific sets will appear often in this work.
The blackboard-bold letters N, Z, R, and C denote the set of natural numbers,

group of integers, field of real numbers, and field of complex numbers, respectively.
The notation [n] refers to the set {1,2, . . . ,n}.

The set {0,1}n contains all possible n-bit strings. Given such a string x, we write xi

to denote the i th bit of that string. In situations where that notation may be confusing
(for example, when talking of sequences (xi )i∈[m] of strings), we use the notation or
xi [ j ] for the j th bit of the string xi ∈ {0,1}n . The Hamming weight, i.e., the number of
ones in x, is denoted |x|. The set {0,1}∗ contains all bit strings of unspecified length,
including the empty string, that is, {0,1}∗ =⋃∞

i=0{0,1}i . For two strings x, y ∈ {0,1}n , we
write x ⊕ y for the bitwise XOR, and x · y for their scalar product

∑n
i=1 xi · yi (mod 2).

By convention, 0 denotes the all-zero string 0n whenever n is clear from context.
Another set of special interest is the Galois field of two elements, F2, with addi-

tive identity 0, and multiplicative identity 1. Addition corresponds to a logical XOR
(denoted ⊕), with identity element 0. Multiplication corresponds to a logical AND
(denoted ·), with identity element 1.

For any field F , GL(n,F ) is the general linear group of degree n over F . It consists
of all n ×n invertible matrices with elements from F as their entries, with the group
operation being matrix multiplication.
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In Chapter 3, we will use the following general upper bound on the number of sets
in a family of sets, given a restriction on the sizes of their intersections.

Lemma 2.2.1 (Ray-Chaudhuri–Wilson inequality [RW75]). Let F be a family of subsets
of some set of n elements, with each subset containing exactly k elements. Let L =
{l1, . . . , ls } be a collection of allowed intersection sizes (with li É k for all i ). If F is
L-intersecting, i.e.,

∣∣Fi ∩F j
∣∣ ∈ L for all i 6= j , then

|F | É
(

n

s

)
.

In the above lemma,
(n

s

)
denotes the binomial coefficient.

2.2.2 Algorithms and protocols

An algorithm is a set of instructions for a computer that, given an input, follows a set of
basic steps to produce some output. Most of this work will be set in the circuit model,
where the algorithm is represented by a circuit C consisting of some set of elementary
gates, that represent very primitive functionalities, like addition or multiplication.
Unless otherwise specified, we assume that the circuits can be generated uniformly
for all input sizes. That is, there exists an efficient Turing machine or circuit that, given
n as input, produces a circuit description Cn that handles inputs of size n.

We consider an algorithm to be efficient if it runs in time polynomial in the size
of its input. In the circuit model, this means that the size of the circuit is polynomial
in the input size. We usually do not specify the exact polynomial, but simply write
poly(n) to denote the running time.

An algorithm A can be probabilistic, which is modeled by a deterministic algo-
rithm Adet such that the output distribution Prr [Adet(x,r )] equals the distribution
of A(x), for all x. Most of the classical algorithms featured in this dissertation are
probabilistic polynomial-time (PPT) algorithms.

When combining circuits, we write C2 ◦C1 for the composition of two circuits C1

and C2: first, the circuit C1 is run on the input, and its output is fed into C2, similarly
to function composition.

A protocol is a collection of algorithms in a specific setting. For example, an
encryption protocol consists of separate algorithms for key generation, encryption,
and decryption (see Section 2.3.1). Protocols can involve multiple parties and even be
interactive. Depending on the setting, it may be possible to run one protocol right
after another. In that case, we writeΠ2 ¦Π1 for the composition of the two protocols
Π1 andΠ2. For an algorithm A interacting with a protocolΠ, potentially with several
rounds of inputs and outputs, we write A�Π for the final output of A after the entire
interaction.
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2.2.3 Probabilities

If D is a distribution, we write x ← D to signify that x is sampled according to D, or
x ←D S if we want to be explicit about the universe S on which the distribution is
defined. For a finite set S, we write x ←R S to signify that x is sampled uniformly at
random from the set S.

For a distribution D on some finite universe S, the expected value of a real function
f is written as

E
x←D

f (x) := ∑
x∈S

Pr[x ← D] · f (x). (2.1)

If the distribution D is clear from the context, we may simply write Ex instead of

Ex←D .

Probabilities are implicitly taken over the randomness of any probabilistic algo-
rithms inside the expression. For example, Prx [A(x) = 1] is actually a shorthand for
Prx,r [Adet(x,r ) = 1], where Adet is the deterministic algorithm corresponding to A.

The statistical distance between two distributions D and D ′ over the same finite
universe S is defined as

1

2

∑
x∈S

∣∣Pr[x ← D]−Pr[x ← D ′]
∣∣ . (2.2)

We write D ≈ε D ′ to signify that the statistical distance between D and D ′ is upper
bounded by ε.

In certain cases, we want to express that even though two distributions are not
statistically close, they are indistinguishable to any efficient algorithm. Two distri-
bution ensembles {Dλ}λ∈N and {D ′

λ
}λ∈N (where the λ functions as a security parame-

ter; see Section 2.3.1) are computationally indistinguishable, written Dλ
c≈ D ′

λ
, if no

polynomial-time algorithm can distinguish between a sample from one distribution
or the other. That is, for all PPT A,

∣∣∣∣∣ Pr
x←Dλ

[A(x) = 1]− Pr
y←D ′

λ

[A(y) = 1]

∣∣∣∣∣É negl(λ). (2.3)

We sometimes write x
c≈ y if it is clear from which distributions x and y are sampled.

If not even an efficient quantum algorithm can distinguish them, the distributions
are quantum computationally indistinguishable. We use the same notation for the
quantum setting.
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2.3 Cryptography

2.3.1 Encryption: correctness and security

A classical encryption protocol (or scheme) consists of three efficient algorithms: a
key generation algorithm KeyGen, an encryption algorithm Enc, and a decryption
algorithm Dec. If the protocol is symmetric (or private-key), then the same (secret)
key k is used by both Enc and Dec: we write Enck (x) for the encryption of a message
x, and similarly, Deck (y) for the decryption of a ciphertext y . An asymmetric (or
public-key) protocol generates two different keys: a public key pk for the encryption,
and a secret key sk for decryption. In a public-key scheme, anyone can encrypt a
message, but only the party holding a secret key should be able to decrypt.

Any encryption protocol should be correct: for all x, Deck (Enck (x)) = x. A protocol
that is correct for all keys is perfectly correct. Sometimes, we may accept a small
correctness error, i.e., it may be acceptable that Deck (Enck (x)) = x only with high
probability over k.

For security, we take an asymptotic approach. There is a security parameter λ ∈N,
which is usually given as a unary argument to KeyGen. Intuitively, we require that
the honest executions of KeyGen, Enc, and Dec run in time polynomial in λ, but that
breaking the encryption (in a sense that we will specify below) only succeeds with
probability negligible in λ.

Definition 2.3.1. A function f : N→ R is negligible if for all constants c ∈ N there
exists an n0 ∈N such that for all n > n0, | f (n)| < n−c .

A negligible function is (eventually) smaller than any inverse polynomial. We
let negl(λ) denote an unspecified negligible function. The definition of a negligible
function can be extended by stating that f (n) is negligible in another function g (n) if
for all c ∈N, there exists an n0 such that for all n Ê n0, | f (n)| < (g (n))−c .

A negligible probability of successfully breaking a primitive is deemed a secure
margin, because an adversary that can try polynomially many times (e.g., by interact-
ing polynomially many times with the primitive) still cannot break the primitive with
a noticeable probability.

2.3.2 Game-based security

One possible way to characterize security is by defining a security game, which is
played between an honest challenger and a potentially dishonest adversary. A protocol
for a certain cryptographic primitive is deemed secure if no adversary can win the
game with more than a negligible advantage.

The game-based security framework is very well suited for protocols that are de-
fined in terms of one or more already-existing cryptographic primitives. One can
often proceed by reduction, proving a statement of the following form: “If there exists
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an adversary that can win the security game with a more-than-negligible advantage,
then there exists another adversary that can win the security game for the other cryp-
tographic primitive with a (related) more-than-negligible advantage. Since we know
the latter to be impossible, security follows.” In other words, the game-based security
framework connects the security of a protocol to that of lower-level protocols.

One of the most basic security games for encryption is the indistinguishability
game, which is played as follows1, a (for a private-key scheme):

1. The challenger runs k ←KeyGen.

2. The adversary, on input 1λ, outputs a message x. (This message is called the
challenge plaintext.)

3. The challenger samples a random bit b ←R {0,1}. If b = 1, he computes the
ciphertext c ←Enck (x). Otherwise, he computes c ←Enck (0|x|).

4. The adversary receives c (the challenge ciphertext), and outputs a bit b′.

If the adversary manages to output b′ = b, we say that she “wins” the game.

Definition 2.3.2 (IND). A private-key encryption scheme (KeyGen,Enc,Dec) is IND-
secure if no adversary can properly distinguish between an encryption of x and of 0|x|.
That is, for any probabilistic adversary A,

Pr
[
A wins the indistinguishability game

]É 1

2
+negl(λ).

The probability is taken over the randomness inside the game (from the key genera-
tion, encryption, and selection of the bit b), and the randomness used by A.

Aside from IND, there are several common game-based security notions for en-
cryption protocols. They are increasingly demanding: IND-CPA (“indistinguishability
under chosen-plaintext attacks”), allows the adversary to request a polynomial num-
ber of plaintexts to be encrypted before having to choose the challenge plaintext.
IND-CCA1 (“indistinguishability under chosen-ciphertext attacks”), additionally al-
lows the adversary to request decryptions of arbitrary ciphertexts before selecting the
challenge plaintext. Finally, in IND-CCA2, the adversary may even request decryp-
tions after receiving the challenge ciphertext, but is of course not allowed to request
decryption of the challenge ciphertext c itself.

For public-key encryption, analogous notions of IND, IND-CPA, IND-CCA1, and
IND-CCA2 can be defined. In this setting, the adversary receives the public key as
input before having to select the challenge plaintext. Using this public key, she can

1Conventionally, the indistinguishability game is stated in a slightly different way [KL14]: the adversary
chooses two messages, x0, and x1, and the challenger encrypts xb . This formulation of the indistinguisha-
bility game is equivalent to the one presented here.
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simulate her own encryption oracle, rendering IND and IND-CPA equivalent. In the
public-key setting, we often only require security to hold if the adversary A is a PPT
algorithm (see Section 2.3.4).

2.3.3 Semantic security (real-vs.-ideal)

Another way to characterize security is within the so-called real-vs.-ideal framework.
In this framework, an ideal functionality is defined in which the information flow is
very limited. Anything that an adversary can learn or do in an interaction with the
actual protocol (the “real world”) should be simulatable in an interaction with this
ideal functionality (the “ideal world”). No environment should be able to tell the
difference between the two worlds, not even if it has control over the plaintext.

As an example, consider the private-key encryption scheme (KeyGen,Enc,Dec).
The environment, through a message-generation algorithm M, generates a message
x, along with any extra side information s. In the real world, an adversary A receives
(Enck (x), s). In the ideal world, the simulator S receives only s. Both the adversary
and the simulator produce an output: the environment tries to distinguish between
those two outputs using a distinguisher algorithm D. The semantic security notion
SEM states that the probability that the environment succeeds is very small:

Definition 2.3.3 (SEM). A private-key encryption scheme (KeyGen,Enc,Dec) is SEM-
secure if for any adversary A, there exists a simulator S , such that for all environments
(M,D), ∣∣∣Pr[D (A (Enck (x), s)) = 1]−Pr

[
D

(
S(s,1λ)

)
= 1

]∣∣∣É negl(λ),

where (x, s) ←M(1λ). The probability is taken over KeyGen, Enc, A, S , M, and D.

In other words, the statistical distance between A (Enck (x), s) and S(s,1λ) should
be negligible. Again, in a public-key setting, we often only require Definition 2.3.3 to
hold for efficient adversaries A: in that case, the simulator and environment should
also be efficient, and the message generator M receives the public key as input.

Definition 2.3.3 is equivalent to Definition 2.3.2 [KL14]. However, semantic se-
curity notions have two major advantages over game-based security notions. First,
it is often clearer that the semantic definition really captures the desired level of
security: in SEM, for example, it is directly clear that whatever you are able to learn
when given the ciphertext Enck (x), you can also learn without it. Second, semantic
security notions are (sequentially) composable: because they take into account the
environment (including any side information) so explicitly, they can more easily be
integrated into higher-level cryptographic primitives. If one proves that a certain
protocol satisfies some semantic notion of security, one can then safely use the ideal
functionality as a building block for more complex protocols, without worrying about
the exact implementation of it.
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Game-based security and semantic security each have their pros and cons. In this
dissertation, we will use notions from both security frameworks, proving them to be
equivalent where applicable.

2.3.4 Computational assumptions

The notions of security discussed in Sections 2.3.2 and 2.3.3 are unconditional, or
information-theoretic: no adversary, no matter how powerful or patient, can succeed
in breaking the encryption. Because of its formulation in terms of a security parameter
and a statistical distance, these notions are also called statistical.

In practice, however, we often rely on computational assumptions. As discussed
in the introduction, computational assumptions allow for more efficient encryption
schemes, and can in some cases circumvent impossibility results.

In a computational security notion, the adversary (and, if applicable, the simulator
and environment) is a polynomial-time algorithm. Security statements are phrased in
terms of some computational problem P , parametrized by the security parameter λ:
“Under the assumption that P (λ) is hard, no efficient adversary can break the protocol
with probability more than negl(λ).”

Traditionally, the security of cryptographic schemes is based on problems such as
integer factorization (where λ determines the size of the integer to be factorized), or
computing the discrete logarithm over certain groups (where λ determines the order
of the group). These problems, although still thought to be hard for classical comput-
ers, can be solved efficiently on a quantum computer [Sho94]. Therefore, we need
to shift our attention to cryptographic protocols based on different computational
assumptions.

In this dissertation, we will work with the learning-with-errors (LWE) problem as a
computational assumption. There, the problem is to find a secret vector s ∈Zn

q , given
polynomially many samples of the form (a,〈a,s〉+ e), with a ←R Z

n
q , and e ←χ Zq .

The size (or dimension) n, modulus q , and distribution χ all depend on the security
parameter λ. A typical choice of parameters is n = poly(λ), q = poly(λ), and χ the
normal distribution with mean 0 and standard deviation 1/poly(λ) [Reg10]. For a
weaker assumption, one can choose q to be exponential in λ, but this may jeopardize
the efficiency of the cryptographic scheme.

2.4 Quantum computing

2.4.1 States

Quantum information is carried by qubits which can be in a certain state. Pure states
are represented by length-1 vectors

∣∣ψ〉
(or

∣∣ϕ〉
, . . . ) in a complex Hilbert space H.

Mixed states, represented by density operators ρ (or σ,µ,ν, . . . ) on that Hilbert space,
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are more general and can represent mixtures of pure quantum states. The state space
D(H) contains all possible density operators, i.e., the set of Hermitian, positive semi-
definite matrices with trace 1. As a special case, a pure quantum state

∣∣ψ〉
can be

represented as a density operator
∣∣ψ〉〈

ψ
∣∣ (where

〈
ψ

∣∣ is the adjoint of
∣∣ψ〉

).
There are several well-known quantum states that have their own notation. The

computational-basis states are represented as |0〉 or |1〉, or, for a higher-dimensional
system, |s〉 for some string s ∈ {0,1}d . Note that |s〉 is an abbreviation for |s1〉⊗ |s2〉⊗
· · ·⊗ |sd 〉. In the Hadamard basis, the basis states are written |+〉 := 1p

2
(|0〉+ |1〉) and

|−〉 := 1p
2

(|0〉− |1〉). We reserve the special state |⊥〉 as the “reject” state, which is

orthogonal to all other states2. The EPR (Einstein-Podolsky-Rosen) pair
∣∣Φ+〉

is the
entangled two-qubit state 1p

2
(|00〉+ |11〉). The other three Bell pairs are written as

|Φ−〉 := 1p
2

(|00〉− |11〉),
∣∣Ψ+〉

:= 1p
2

(|01〉+ |10〉), and |Ψ−〉 := 1p
2

(|01〉− |10〉). Finally,

we reserve the symbol τ for the completely mixed state I/d .

2.4.2 Gates

Quantum states are computed upon, in general, by completely positive trace preserv-
ing (CPTP) maps (or “quantum channels”), generally written as capital Greek letters
Φ,Ψ,Λ, . . . , or as a calligraphic letter referring to their role in a protocol, such as A
(for adversary) or S (for simulator). We sometimes abuse notation and give a classical
input x to a quantum algorithm, writingΦ(x): in that case, the algorithmΦ is actually
given the computational-basis state |x〉 as input.

A subcategory of CPTP maps is formed by the (reversible) unitary operations,
denoted with the letters U ,V ,W, . . . . The complex conjugate of U is written U †. For an
n-bit string s = s1s2 · · · sn , define U s :=U s1 ⊗U s2 ⊗·· ·⊗U sn (where U 1 =U and U 0 = I).

For a projectorΠ onto a subspace of the Hilbert space, we writeΠ for its comple-
ment I−Π.

We work in the quantum circuit model, with circuits C composed of elementary
unitary gates, preparation of auxiliary inputs in the state |0〉, and computational-
basis measurements. We consider those measurement gates to be destructive, i.e., to
destroy the post-measurement state immediately, and only a classical wire to remain.
Since subsequent gates in the circuit can still classically control on those measured
wires, this point of view is as general as keeping the post-measurement states around
after a computational-basis measurement.

For a set of quantum gates G, the G-depth of a quantum circuit is defined as the
minimal number of layers such that in every layer, gates from G do not act on the
same qubit.

For a quantum circuit C , we writeΦC for the channel induced by C . We consider
the channel ΦC to run in quantum polynomial time (QPT) if the circuit C has size

2This can straightforwardly be modeled using a single extra qubit to expand the dimension of the state.
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polynomial in the number of input wires (and can be efficiently generated from
that number, see Section 2.2.2). Conversely, every efficient quantum map can be
represented by a polynomial-size circuit that initializes all noninput wires to |0〉
before applying unitary gates and computational-basis measurements.

To enable a clear discussion of the different parts of a circuit, we group several
wires together into quantum registers (denoted M ,R,S,T, . . . ). We write |R| for the
dimension of the Hilbert space underlying a register R : that is, a register R containing
n qubits has |R| = 2n . The registers in which a certain quantum state exists, or on
which some channel acts, are written as gray superscripts whenever they may be
unclear otherwise. For example, a unitary U that acts on register A, applied to a state
ρ in the registers AB , is written as U AρABU †, where the registers on which U † acts
can be determined by finding the matching U and reading the gray subscripts. Note
that we do not explicitly write the operation IB with which U is in tensor product.
The gray superscripts are purely informational, and do not signify any mathematical
operation. If we want to denote, for example, a partial trace of the state ρAB , we use
the conventional notation ρA .

The standard set of elementary gates that we will use throughout this work is
known as the “Clifford+T” set. It consists of three “levels”: the Pauli group, the Clifford
group (which is a superset of the Pauli group), and the T gate.

Pauli group. The single-qubit Pauli group P1 is, up to global phase, generated by
the bit flip and phase flip operations,

X=
[

0 1
1 0

]
, Z=

[
1 0
0 −1

]
.

The X and Z operators anti-commute (XZ=−ZX). Up to a global phase, all four single-
qubit Pauli operators are of the form XaZb with a,b ∈ {0,1}. We generally ignore the
global phase of a quantum state, as it is not observable by measurement.

The m-qubit Pauli group Pm consists of m-fold tensor products of single-qubit
Paulis. Using the notation introduced earlier, we can write XaZb =: Pa,b with a,b ∈
{0,1}m to denote an element of Pm (again, up to a global phase). For notational
brevity, we may refer to Pauli operators as P`, where ` can either be understood to be
a number between 0 and 22m−1, or a 2m-bit string. By convention, P0 refers to the
identity operation (i.e., a = b = 0m).

The weight of a Pauli is the number of locations i in which it is nonidentity, i.e.,
where ai ∨bi = 1. We can also talk about the X-weight (defined as the Hamming
weight |a|) or the Z-weight (defined as |b|) separately.

The identity gate is an element of the Pauli group, and is written as I (for a single
qubit) or I⊗m (for m qubits). It equals the identity matrix I of dimension 2m .



22 Chapter 2. Preliminaries

Clifford group. The m-qubit Clifford group Cm consists of all unitaries U that com-
mute with the Pauli group as a whole: that is, the Clifford group is the normalizer of
the Pauli group. Since all m-qubit Pauli operators are of the form XaZb , this means
that U is a Clifford operator if for any a,b ∈ {0,1}m there exist a′,b′ ∈ {0,1}m such that
(up to a global phase):

UXaZb =Xa′
Zb′

U .

All Pauli operators are easily verified to be elements of the Clifford group (in that case,
a′,b′ = a,b). The entire Clifford group is generated [Got98] by

P=
[

1 0
0 i

]
, H= 1p

2

[
1 1
1 −1

]
, and CNOT=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.4)

In the literature, the P gate is also referred to as the phase gate or the S gate, or
sometimes the K gate. It relates to the phase-flip gate as P2 =Z.

Three consecutive CNOT gates (with alternating control and target wires) result in
a SWAP gate, which swaps the contents of two wires. Generalizing, for any n-element
permutation π ∈ Sn , the unitary that permutes n wires according to π is also a Clifford
operation:

π
(∣∣ψ1

〉 · · · ∣∣ψn
〉)= ∣∣ψπ(1)

〉 · · · ∣∣ψπ(n)
〉

. (2.5)

We have the following commutation relations between elements of the Pauli group
and the Clifford group:

PX= iXZP, (2.6)

PZ=ZP, (2.7)

HX=ZH, (2.8)

HZ=XH, (2.9)

CNOT(X⊗ I) = (X⊗X)CNOT, (2.10)

CNOT(I⊗X) = (I⊗X)CNOT, (2.11)

CNOT(Z⊗ I) = (Z⊗ I)CNOT, (2.12)

CNOT(I⊗Z) = (Z⊗Z)CNOT. (2.13)

In situations where global phase is irrelevant, we may leave it out in Equation (2.6).
Whenever a protocol mandates handing an element from the Clifford group to

an agent, we mean that a (classical) description of the group element is given, e.g. as
a normal-form circuit. That means that if a protocol defines the Clifford element as
a product of several other group elements, those individual group elements are not
necessarily revealed to the receiving party.

Because of its definition in terms of the Pauli group, the Clifford group has an
intricate relation with it. Given any two nonidentity Paulis, there are a number of
Cliffords that map the first Pauli to the second Pauli by conjugation. This number is
always the same:
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Lemma 2.4.1 (Pauli partitioning by Cliffords [ABEM17]). For every P,Q ∈Pn\{I⊗n},∣∣∣{C ∈Cn |C †PC =Q
}∣∣∣= |Cn |

|Pn |−1
.

As a corollary, every nonidentity Pauli is mapped to a random nonidentity Pauli
when conjugated by a random Clifford.

Corollary 2.4.2 (Clifford randomization). For every P ∈Pn\{I⊗n},

1

|Cn |
∑

C∈Cn

C †PC = 1

|Pn |−1

∑
Q∈Pn \{I⊗n }

Q.

Proof. By definition of the Clifford group, C †PC =Q for some Q ∈Pn . The proof is
then a straightforward derivation using Lemma 2.4.1:

1

|Cn |
∑

C∈Cn

C †PC = 1

|Cn |
∑

Q∈Pn

∣∣∣{C ∈Cn |C †PC =Q
}∣∣∣Q (2.14)

= 1

|Cn |
∑

Q∈Pn

|Cn |
|Pn |−1

Q (2.15)

= 1

|Pn |−1

∑
Q∈Pn \{I⊗n }

Q. (2.16)

T gate. The Clifford group itself does not suffice to perform arbitrary quantum
computations: in fact, Clifford computations on classical inputs are classically simu-
latable [Got99]. However, by adding any non-Clifford gate, any quantum circuit can
be efficiently computed with only a small error. We choose this non-Clifford gate to
be the T gate (also known as the π/8 gate),

T=
[

1 0
0 e iπ/4

]
. (2.17)

Note that the T gate, because it is non-Clifford, does not commute with the Pauli
group. More specifically, we have TXaZb = e−πi /4PaXaZbT. Again, in situations
where the global phase is irrelevant, we may leave it out.

Pictorial representations of circuits are often instructive. In figures, the circuit input
is on the left, and the output on the right. Gates are applied from left to right. Single
wires represent quantum data, whereas double wires represent classical information.
For more high-level circuits, a single wire may represent one or more registers, which
may actually consist of many wires.
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Below, we list several common elements in circuit figures. Any additional elements
will be introduced in the caption of the figure in question.

U unitary or gate (2.18)

Φ map or algorithm (2.19)

measurement (computational basis) (2.20)

H measurement (Hadamard basis) (2.21)

{Π, I−Π} projective measurement (2.22)

Φ

controlled gate/unitary/map/algorithm (2.23)

CNOT (controlled-X) (2.24)

×

×
SWAP (2.25)

$ fresh, uniform randomness (2.26)

2.4.3 Norms and distances

Let ‖·‖2 be the vector 2-norm, i.e.,
∥∥∣∣ψ〉∥∥

2 :=
√〈

ψ
∣∣ψ〉=√∑

i αiα
∗
i for a vector

∣∣ψ〉=∑
i αi |i 〉.

For matrices, we will encounter the Schatten p-norm for p = 1,2,∞: for finite p,
this norm (on a matrix A) is defined as

‖ A‖p :=
(
Tr

√(
A† A

)p
)1/p

. (2.27)

The case p = 1 is known as the trace norm, and we write ‖ A‖tr := ‖ A‖1 = Tr
p

A† A.
It satisfies the triangle inequality, (‖ A+B ‖tr É ‖ A‖tr +‖B ‖tr), Hölder’s inequality
(specifically, ‖ AB ‖tr É ‖ A‖2 +‖B ‖2), submultiplicativity (‖ AB ‖tr É ‖ A‖tr · ‖B ‖tr),
and multiplicativity with respect to the Kronecker product (‖ A⊗B ‖tr = ‖ A‖tr · ‖B ‖tr).

For p =∞, the Schatten norm ‖ A‖∞ := limp→∞ ‖ A‖p is the operator norm in-
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duced by the vector 2-norm. That is, for A :H1 →H2,

‖ A‖∞ = sup
|ψ〉∈H1

‖|ψ〉‖2=1

∥∥ A
∣∣ψ〉∥∥

2 . (2.28)

It satisfies multiplicativity w.r.t. the Kronecker product: ‖ A⊗B ‖∞ = ‖ A‖∞ · ‖B ‖∞.
In Chapter 4, we will use the following variant of Hölder’s inequality, modified for

a partial trace:

Lemma 2.4.3 ([Maj20]). For a matrix A with domain X , and matrix B with domain
X Y , ∥∥TrX

[
AX B X Y ]∥∥

tr É
∥∥ AX ∥∥∞ ·∥∥B X Y ∥∥

tr . (2.29)

Proof. Using an alternative characterization [Wat11, Equation (1.173)] of the trace
norm, ‖E ‖tr = supF |Tr[F E ]| · ‖F ‖−1∞ , we derive

∥∥∣∣TrX
[

AX B X Y ]∣∣∥∥
tr = sup

C

Tr
[
C Y

(
TrX

[
AX B X Y

])]∥∥C Y
∥∥∞ (2.30)

= sup
C

∣∣Tr
[(

AX ⊗C Y
)

B X Y
]∣∣∥∥C Y

∥∥∞ (2.31)

= ∥∥ AX ∥∥∞ · sup
C

∣∣Tr
[(

AX ⊗C Y
)

B X Y
]∣∣∥∥ AX

∥∥∞ ·∥∥C Y
∥∥∞ (2.32)

= ∥∥ AX ∥∥∞ · sup
C

∣∣Tr
[(

AX ⊗C Y
)

B X Y
]∣∣∥∥ AX ⊗C Y

∥∥∞ (2.33)

É ∥∥ AX ∥∥∞ · sup
D

∣∣Tr
[
D X Y B X Y

]∣∣∥∥D X Y
∥∥∞ (2.34)

= ∥∥ AX ∥∥∞ ·∥∥B X Y ∥∥
tr . (2.35)

The trace norm has many applications across quantum information theory. In
this dissertation, we will mainly use it to express the trace distance 1

2

∥∥ρ−σ∥∥
tr, a

measure for how different two mixed states ρ and σ are. Note that if ρ and σ are
classical mixtures of computational-basis states, their trace distance amounts to the
statistical distance between the classical distributions. We write ρ ≈ε σ whenever the
trace distance is upper bounded by ε.

The diamond norm of a channelΦ acting on the input state space D(H) is written
as ‖Φ‖¦ := supρ∈D(H⊗2)

∥∥ (I⊗Φ)(ρ)
∥∥

tr. Here, the identity serves to take into account
any additional registers with which the input state ofΦmay be entangled. If we want
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to talk about the distance between two channels Φ and Ψ, we use the normalized
quantity 1

2‖Φ−Ψ‖¦, which we refer to as the diamond-norm distance. Similarly to
the trace distance, we may writeΦ≈εΨ to express an ε upper bound to the diamond-
norm distance.

2.4.4 Magic-state computation

In some contexts, applying non-Clifford gates is not straightforward for different
reasons: common quantum error-correcting codes do not allow transversal3 imple-
mentation of non-Clifford gates, and non-Clifford gates do not commute with the
Pauli group which is used in many quantum encryption schemes.

In order to concentrate the hardness of non-Clifford gates in an offline pre-
processing phase, we can use “magic-state computation” [BK05]: if we are able to
prepare so-called magic states of the form |T〉 :=T |+〉, then we do not need the ability
to apply a T gate directly. Using a single copy of this state as a resource, we are able to
implement a T gate using the circuit in Figure 2.1. The circuit only requires (classically
controlled) Clifford gates and measurements.

∣∣ψ〉
T |+〉 Xc Pc

c

T
∣∣ψ〉

Figure 2.1: Using a magic state |T〉 =T |+〉 to implement a T gate.

Magic-state computation is also possible for other gates than the T gate. By using
a different magic state as a resource, and applying a different classically-controlled
correction unitary, we can for example apply a phase gate P, or identity. Magic-state
computation for other gates is discussed in more detail in Section 3.4.2.

2.4.5 Oracles

A (classical or quantum) algorithm can have access to an oracle: a black-box object
that accepts inputs and computes a certain function on those inputs. The algorithm
with oracle access can see the input/output behavior of the function, but not its inner
workings. An oracle is often a convenient way to model some ideal functionality,
which is guaranteed not to leak any unwanted information.

If an algorithm A has oracle access to some classical function f (or quantum map
Φ), we write A f (or AΦ). If A has access to multiple oracles with separate input/output
interfaces, we write, e.g., A f ,g .

3In quantum error correction, n physical qubits represent a single logical qubit. A gate U is transversal
for the code if applying U⊗n to the physical qubits has the same effect as applying U to the logical state.
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The algorithm A has query depth d if its queries can be partitioned into d (finite)
sets, where each set only depends on the outcomes of the previous queries. In this
work, we will usually assume that A poses a single query at a time.

A quantum algorithm, when given a classical oracle, is always assumed to have su-
perposition access to it. For a classical function f : {0,1}n → {0,1}m , the superposition
oracle acts as the following quantum map O f :

O f∣∣y
〉

|x〉
∣∣y ⊕ f (x)

〉
|x〉

(2.36)

The “one-way to hiding” lemma [Unr15] provides an upper bound on the proba-
bility that a quantum adversary can tell the difference between two different classical
oracles f and g . Classically, this probability can be bounded by looking at the content
of the queries: what is the probability that an adversary queries an input from the set
on which f and g differ? Quantumly, the situation is more delicate: since the adver-
sary can query in superposition, it can easily submit a query with nonzero weight on
the differing set. The one-way to hiding lemma, stated below in its formulation by
Ambainis, Hamburg, and Unruh [AHU19], claims that the probability can be bounded
by measuring a random query in the computational basis, and observing whether the
measurement result lies in the differing set.

Lemma 2.4.4 (One-way to hiding [AHU19, Theorem 3]). Let f , g : {0,1}n → {0,1}m

and z ∈ {0,1}∗ be sampled from an arbitrary joint distribution. Let S := {x ∈ {0,1}n |
f (x) 6= g (x)}. Let A be a quantum algorithm with oracle query depth d. Define B f to
be the following quantum algorithm: on input z, it picks i ←R {1,2, . . . ,d}, and runs
A f until (just before) the i th query. It then measures the query input register in the
computational basis, and outputs the measurement result. Then we have∣∣∣Pr

[
A f (z) = 1

]
−Pr

[
Ag (z) = 1

]∣∣∣É 2d
√

Pr
[
B f (z) ∈ S

]
.

By symmetry, Lemma 2.4.4 also holds if B is given oracle access to g instead of f .

2.4.6 Twirling

One of the techniques we use in this work is the twirl over a group G of unitary
operators, which maps a state (or channel) to its ‘G-averaged’ version. Specifically,
the twirl of a state ρ is defined as

TG(ρ) := 1

|G|
∑

U∈G
UρU †, (2.37)
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and the twirl of a channelΛ is defined as

TG(Λ(·)) := 1

|G|
∑

U∈G
U †(Λ(U (·)U †))U . (2.38)

We sometimes abuse notation for nonunitary groups: for example, in Chapter 4, we
use TGL(2n,F2)(·) to denote a twirl over the unitary group {Ug | g ∈GL(2n,F2)}, where Ug

is defined as the unitary that applies g in-place, i.e., Ug |t〉 =
∣∣g (t )

〉
for all t ∈ {0,1}2n .

The Pauli twirl, i.e., the twirl of a channel over the Pauli group, is of special interest
to us. The reason is that any unitary U can be written as a (weighted) sum of Pauli
operators. More generally, if U acts on an n-qubit register A and some other register
B , we can rewrite it as:

U AB = ∑
P∈Pn

P A ⊗U B
P . (2.39)

Here, the UP are not normalized: the weighting of the Pauli P is absorbed into it.
Given the above decomposition of a unitary into a superposition of its Pauli

components, we can see that the Pauli twirl has the effect of transforming that super-
position of Pauli attacks into a classical mixture of Pauli attacks. This transformation
greatly simplifies analysis in many cryptographic settings:

Lemma 2.4.5 (Pauli twirl of a channel [ABEM17, Lemma 5.1]). For all unitaries U AB =∑
P∈Pn

P A ⊗U B
P ,

T A
Pn

(U (·)U †) = ∑
P∈Pn

(P ⊗UP )(·)(P ⊗UP )†,

where the twirl is applied on the 2n-dimensional register A.

At the heart of the proof of Lemma 2.4.5 lies the following fact, which is also
sometimes known as the Pauli twirl lemma:

Lemma 2.4.6 (Pauli twirl lemma [DCEL09]). Let ρ be an arbitrary n-qubit state. Then
for any P,P ′ ∈Pn , it holds that

1

22n

∑
Q∈Pn

Q†PQρQ†P ′†Q =
{

PρP † if P = P ′

0 otherwise

Lemma 2.4.6 tells us that certain cross terms cancel out when twirling over the
Pauli group. This cancellation effect is also captured by the following equality [Por17,
Equation (2)], which effectively restates Lemma 2.4.6 in a different language. We will
appeal to the formulation in Lemma 2.4.7 regularly in Chapter 3.

Lemma 2.4.7. For all pairs `= (a,b) with a,b ∈ {0,1}n , we have

∑
x,z∈{0,1}n

(−1)((x,z),`)Sp =
{

22n if `= (0n ,0n)

0 otherwise.
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Here, the symplectic product ((x, z), (a,b))Sp is defined as (x · b)⊕ (z · a) (with ·
representing the scalar product modulo 2).

For the Clifford group, a statement similar to Lemma 2.4.5 holds. The cross terms
(with P 6= P ′) also cancel, but the Clifford elements remain in the final expression,
because they cannot be trivially commuted out. Using Corollary 2.4.2, it is possible to
simplify the expression below further if necessary.

Lemma 2.4.8 (Clifford twirl of a channel [ABEM17]). For all U AB =∑
P∈Pn

P A ⊗U B
P

where U is unitary,

T A
Cn

(U (·)U †) = ∑
P∈Pn

E
C∈Cn

(C †PC ⊗UP )(·)(C †PC ⊗UP )†,

where the twirl is applied on the 2n-dimensional register A.

2.4.7 Quantum encryption

The majority of the cryptographic framework presented in Section 2.3 generalizes to
the quantum case, except that we are now interested in encrypting quantum plaintexts
into quantum ciphertexts. The triple (KeyGen,Enc,Dec) thus consists of quantum
algorithms, although the keys are usually assumed to be classical, so that they can
easily be reused. The security notions IND, IND-CPA, IND-CCA1, and SEM generalize
to the quantum setting [BJ15; ABF+16] by allowing the adversary, simulator, message
generator and distinguisher to be quantum algorithms, and the challenge plaintext to
be quantum as well. Importantly, the adversary may generate a challenge plaintext
that is entangled with her own registers. A quantum version of IND-CCA2 is more
subtle [AGM18; CEV20], because one needs to define what it means to query the
challenge ciphertext to the decryption oracle. We often write q-IND (q-IND-CPA, et
cetera) to stress the fact that the security notion is quantum.

A widely used (information-theoretically secure) quantum encryption protocol is
the quantum one-time pad (QOTP) [AMTW00]. For a single-qubit state ρ, it works as
follows. The key generation selects two random bits a,b ←R {0,1}. Encryption and
decryption are both the application of the Pauli XaZb . From the point of view of an
adversary that does not know the secret key (a,b), the resulting state contains no
information about the original message ρ, since

∑
a,b∈{0,1}

(
1

4
XaZbρ

(
XaZb

)†
)
= τ, (2.40)

where τ is the fully mixed state.
Generalizing this idea to n qubits, we see that encryption is actually a twirl of

the message ρ over the n-qubit Pauli group Pn . This twirl always results in the fully
mixed state:
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Lemma 2.4.9 (Pauli twirl of a state). For all n-qubit quantum states ρ,

TPn

(
ρ
)= τ.

Proof. Write ρ =∑
i , j∈{0,1}n αi j

∣∣i〉〈 j
∣∣. For every i , j we have

TPn

(∣∣i〉〈 j
∣∣)= E

x,z∈{0,1}n
XxZz ∣∣i〉〈 j

∣∣ZzXx (2.41)

= E
x,z∈{0,1}n

(−1)z(i⊕ j ) ∣∣i ⊕x
〉〈

j ⊕x
∣∣ . (2.42)

Note that Ez∈{0,1}n (−1)z(i⊕ j ) = 0 whenever i 6= j (i.e., i ⊕ j 6= 0), and that the term
evaluates to 1 whenever i = j . So

TPn

(∣∣i〉〈 j
∣∣)= {

Ex |i ⊕x〉〈i ⊕x| = τ if i = j
0 otherwise.

(2.43)

To conclude the proof, sum all terms of ρ and use
∑

i αi i = Tr(ρ) = 1 to get

TPn
(ρ) =∑

i , j
αi jTPn

(∣∣i〉〈 j
∣∣)=∑

i
αi iτ= τ. (2.44)

Since the Pauli group is a subgroup of the Clifford group, Lemma 2.4.9 also holds
when twirling over the n-qubit Clifford group.

The quantum one-time pad naturally appears after a quantum teleportation: if
a state

∣∣ψ〉
is teleported through an EPR pair

∣∣Φ+〉
, the resulting state is XaZb

∣∣ψ〉
,

where (a,b) is the outcome of the teleportation Bell measurement. As long as the
sender of the teleportation does not communicate (a,b) to the receiver, that receiver
does not know anything about

∣∣ψ〉
. In some interactive settings, we adopt the view of

teleporting a state through an EPR pair to perform the QOTP encryption, rather than
applying the unitary XaZb directly.
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3.1 Introduction

A central topic in cryptography is authentication: how can we make sure that a
message remains unaltered when we send it over an insecure channel? How do we
protect a file from being corrupted when it is stored someplace where adversarial
parties can potentially access it? And, especially relevant in the current era of cloud
computing, can we let an untrusted third party compute on such authenticated data?

Following extensive research on authentication of classical data, which started
with the seminal work by Wegman and Carter [WC81], several schemes have been
proposed for authenticating quantum states [BCG+02; BCG+06; ABEM17; BGS13;
GYZ17]. Barnum et al. [BCG+02] built schemes for the authentication of quantum
data based on quantum error-correcting codes that are purity testing, meaning that
any bit or phase flip on the message is detected with high probability.

Working in the abstract-cryptography framework, Portmann [Por17] showed that
if the underlying code satisfies a stronger requirement called strong purity testing,
the resulting authentication scheme provides “total authentication” [GYZ17], where
no information about the key is leaked if the client accepts the authentication. This
stronger guarantee allows for complete key recycling in the accept case, and even for
partial key recycling in the reject case.

In a different direction, Alagic, Gagliardoni, and Majenz [AGM18] define a no-
tion of quantum ciphertext authentication (QCA), where also the integrity of the
ciphertext is guaranteed, and not just that of the plaintext. Ciphertext authentica-
tion is incomparable with total authentication: neither one implies the other (see
Section 3.2.1).

A notable quantum message-authentication code is the trap code [BGS13], which
surrounds the data with dummy qubits that function as traps, revealing any unautho-
rized attempts to alter the plaintext. The trap code is very well suited for quantum
computing on authenticated data (see Section 3.4): it was originally designed for its
use in quantum one-time programs [BGS13], but has found further applications in
zero-knowledge proofs for QMA [BJSW16], and in quantum homomorphic encryption
with verification [ADSS17].

The extraordinary structure of the trap code, which allows quantum computing
on its ciphertexts, is simultaneously its weakness: an adversary can learn information
about the secret key by altering the ciphertext in a single location, and observing
whether or not the result is accepted by the client. Thus, to ensure security after
de-authentication, the key needs to be refreshed before another quantum state is
authenticated. More specifically, the error-correcting code that underlies the trap
code is purity testing, but not strong purity testing. The need for a key refresh for every
qubit inhibits the usefulness of the trap code as a code, because all qubits involved in
a trap-code-authenticated computation need to be encoded under the same key to
ensure correctness of the computation.
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3.1.1 Contributions

In this chapter, we give an overview of existing quantum message-authentication
codes, and the various definitions they may satisfy (Sections 3.2 and 3.3). We briefly
describe how to compute on authenticated states without knowledge of the key
(Section 3.4), as those techniques will be relevant for later chapters. We investigate
the relation between (strong) purity testing and quantum ciphertext authentication
(Sections 3.5 and 3.6), and give a variation on the trap code with stronger security
guarantees (Section 3.7). We specify our new contributions in more detail below.

Quantum ciphertext authentication with key recycling (Section 3.2.1). We give a
new definition for quantum authentication, QCA-R, that provides both ciphertext
authentication and key recycling, and is strictly stronger than existing definitions.

Purity-testing codes result in QCA encryption (Section 3.5). We prove that Bar-
num et al.’s canonical construction of authentication schemes from purity-testing
codes [BCG+02] produces schemes that are not only plaintext authenticating, but
also ciphertext authenticating (QCA). The proof is a generalization of the plaintext-
authentication proof [BW16], using a different (but still efficient) simulator. Note that
our result immediately implies that the trap code is ciphertext authenticating.

Strong-purity-testing codes result in QCA-R encryption (Section 3.6). Purity-test-
ing codes are generally not sufficient for constructing QCA-R schemes, but strong-
purity-testing codes are: we prove that Barnum et al.’s canonical construction achieves
QCA-R when a strong-purity-testing code is used as a resource. In case the authen-
ticated message is accepted, the entire key can be reused. Otherwise, all but the
quantum-one-time-pad key can be reused.

A strong-purity-testing version of the trap code (Sections 3.3.4 and 3.7). We give
an explicit construction of a strong-purity-testing code that is inspired by the trap code.
In this strong trap code, the underlying error-correcting code is not only applied to the
data qubits, but also to the trap qubits. The result is a quantum authentication scheme
which satisfies the strong notion of QCA-R, but still maintains the computational
properties that make the original trap code such a useful scheme.

A constant-memory version of the trap code (Section 3.3.3). We present another
variation on the trap code which has weaker security guarantees, but may be more
useful in some practical settings. Its encoding and decoding procedures can be
realized by a client with only a constant-sized quantum memory. On the downside,
the code only provides plaintext authentication with an inverse-polynomial security
error (versus an inverse-exponential error for the regular trap code).
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Security under parallel encryption (Section 3.8). To illustrate the power of recy-
cling key in the reject case, we consider a setting with a different type of key reuse:
reusing (part of) a key immediately to authenticate a second qubit, even before
the first qubit is verified. We show that, if multiple qubits are simultaneously au-
thenticated using a scheme that is based on a strong-purity-testing code, then de-
authenticating some of these qubits does not jeopardize the security of the others,
even if their keys overlap. This property is especially important when using the com-
putational capabilities of the strong trap code, since computing on authenticated
qubits needs multiple qubits to use overlapping keys.

3.2 Definitions

3.2.1 Quantum message authentication

A quantum authentication code transforms a quantum state (the logical state or
plaintext) into a larger quantum state (the physical state or ciphertext) in a way that
depends on a secret key. An adversarial party that has access to the ciphertext, but
does not know the secret key, cannot alter the logical state without being detected at
decoding time.

Quantum authentication codes are syntactically the same as secret-key quantum
encryption schemes (Section 2.4.7), and consist of three (efficient) algorithms: key
generation KeyGen, encryption Enck , and decryption Deck . Throughout this chapter,
we will assume for simplicity that KeyGen selects a key k uniformly at random from
some set K. However, our results still hold if the key is selected according to some
other distribution.

A result by Alagic and Majenz [AM17, Lemma B.9] implies that we can characterize
the encryption and decryption maps as being of the form

Enck : ρM 7→U MT
k

(
ρ⊗σT

k

)(
U †

k

)MT
, (3.1)

Deck : ρMT 7→ TrT

[(
Πacc

k

)T
(
U †

kρU MT
k

)(
Πacc

k

)T
]
+

DMT
k

[(
Π

rej
k

)T (
U †

kρU MT
k

)(
Π

rej
k

)T
]

. (3.2)

Here, M is the message register, σk is some key-dependent tag state in register T ,

and Uk is a unitary acting on both. Πacc
k andΠrej

k are orthogonal projectors onto the
support of σk and its complement, respectively. Finally, Dk is any channel: we will
usually think of it as Dk (·) := TrMT (·)⊗ |⊥〉〈⊥|M , i.e., it traces out the message and
tag register entirely, and replaces the message with some fixed dummy state |⊥〉 that
signifies a reject. Because of the above characterization, we will often talk about
encryption schemes as a keyed collection {(Uk ,σk )}k∈K of unitaries and tag states.
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Apart from hiding a message, one may require an encryption scheme to authenti-
cate that message. There are several definitions of authentication of quantum data.
All definitions involve some parameter ε, the security error. We usually require ε to be
negligibly small in the size of the ciphertext.

The simplest definition is that of plaintext authentication, first defined by Barnum
et al. [BCG+02], but stated here in a more general form that takes the possible presence
of side information into account.

Definition 3.2.1 (Quantum plaintext authentication [DNS12]). A quantum encryp-
tion scheme {(Uk ,σk )}k∈K is plaintext ε-authenticating (or ε-DNS) if for all CP maps
A (acting on the message register M , tag register T , and a side-information register
R), there exist CP maps Sacc and Srej such that S :=Sacc+Srej is trace-preserving, and

1

2

∥∥∥∥E
k

[
Deck ◦AMT R ◦Enck

]MR −
(
IM ⊗SR

acc +|⊥〉〈⊥|M
(
TrM ⊗ SR

rej

))∥∥∥∥
¦
É ε,

where Enck and Deck are of the form of Equations (3.1) and (3.2).

The simulator in Definition 3.2.1 reflects the ideal functionality of an authenti-
cation scheme: in the accept case, the message remains untouched, whereas in the
reject case, it is completely discarded and replaced with the fixed state |⊥〉. Any action
on the side-information register R is allowed, as reflected by the fact that we pose no
further constraints on Sacc and Srej.

Remark. All codes that will be discussed in Section 3.3 satisfy Definition 3.2.1.

A feature that is unique to quantum authentication is that any scheme satisfying
Definition 3.2.1 automatically provides secrecy [BCG+02]. That is, any quantum au-
thentication code is automatically also a quantum encryption scheme. The intuition
behind this implication stems from the fact that being able to distinguish between two
encoded basis states allows an adversary to disturb basis states in the conjugate basis.
Turning the previous sentence around, if we want to ensure that the conjugate basis
cannot be disturbed, we need to ensure that the original basis is properly encrypted.
If we want to authenticate both the computational basis and the Hadamard basis,
both need to be encrypted. In classical message authentication, there is only one
basis to authenticate, and authenticating it does not necessarily imply encrypting
that one basis.

Definition 3.2.1 specifies a form of so-called one-time authentication: the key k
needs to be freshly random for every message that is sent. In reality, one might hope to
use a single key k to send multiple messages. Under certain circumstances, reusing or
recycling the key may be possible. As an alternative to Definition 3.2.1, Garg, Yuen and
Zhandry define a notion they call “total authentication” [GYZ17]: in this definition,
if verification accepts, the key can safely be recycled for another round of use. The
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definition below models this concept by revealing the key to the environment after
verification, and requiring that it is indistinguishable from a completely fresh and
uncorrelated key.

Definition 3.2.2 (Quantum plaintext authentication with key recycling [GYZ17]). A
quantum encryption scheme {(Uk ,σk )}k∈K is plaintext ε-authenticating with key
recycling (or ε-GYZ) if for all CP maps A (acting on the message register M , tag
register T , and a side-information register R), there exist CP maps Sacc and Srej such
that S :=Sacc +Srej is trace preserving, and

1

2

∥∥∥∥E
k

[
ρMR 7→ TrT

(
Πacc

k U †
k

(
AMT R

(
Uk

(
ρ⊗σT

k

)
U †

k

))
UkΠ

acc
k

)
⊗|k〉〈k|

]
−

(
IM ⊗SR

acc ⊗τK
)∥∥∥∥

¦
É ε.

Note that Definition 3.2.2 only specifies what should happen in the accept case.
It is possible to put constraints on the amount of key that is leaked in the reject case
as well: we will see an example of how to do so in Definition 3.2.4. Either way, the
above definition is strictly stronger than DNS authentication, meaning that all ε-GYZ
authentication codes are also ε-DNS [AM17].

Quantum plaintext authentication with key recycling has been studied before.
Oppenheim and Horodecki [OH05] showed partial key recycling for schemes based
on purity testing codes, under a weaker notion of security. Hayden, Leung, and
Mayers [HLM16] adapted Barnum et al.’s construction to use less key and show
its authenticating properties in the universal-composability framework. Fehr and
Salvail [FS17] developed a quantum authentication scheme for classical messages
that achieves the same key-recycling rate as Portmann [Por17], but is not based on
quantum error-correction and only requires the client to prepare and measure.

Strengthening Definition 3.2.1 in a different direction, Alagic, Gagliardoni, and
Majenz introduced the notion of quantum ciphertext authentication [AGM18]. This
notion does not limit the amount of key leaked, but requires that if authentication
accepts, the entire ciphertext was completely untouched, rather than only the plain-
text. This enhanced security is important for defining security notions such as a
quantum analogue of IND-CCA2 security, where an adversary has access to a decryp-
tion oracle which it may query on any ciphertext other than the challenge ciphertext.
Being able to slightly alter a ciphertext without altering the plaintext undermine
the spirit of IND-CCA2. Classical message-authentication codes naturally have the
ciphertext-authenticating property [AGM18].

Definition 3.2.3 (Quantum ciphertext authentication (QCA) [AGM18]). A quantum
encryption scheme {(Uk ,σk =∑

r pk,r
∣∣ϕk,r

〉〈
ϕk,r

∣∣)}k∈K is ciphertext ε-authenticating
(or ε-QCA) if it is plaintext ε-authenticating as in Definition 3.2.1, and the accepting
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simulator Sacc is of the form

Sacc : ρR 7→ E
k ′,r

[〈
ϕk ′,r

∣∣T 〈
Φ+∣∣M1M2 U †

k ′AM1T R
(
U M1T

k ′ ρ
RM1M2T
k ′,r U †

k ′
)

Uk ′
∣∣ϕk ′,r

〉∣∣Φ+〉]
,

where ρk ′,r := ρR ⊗∣∣Φ+〉〈
Φ+∣∣M1M2 ⊗∣∣ϕk ′,r

〉〈
ϕk ′,r

∣∣T is the input state before (simulated)
encryption.

In QCA, the accepting simulator tests whether the message remains completely
untouched by encrypting half of an EPR pair (in register M1) as a “dummy message”,
under a key k ′ that it generates itself. It remembers the randomness r used in creating
the tag state σk , so that it can accurately test whether the tag state was untouched.

In general, key recycling as in Definition 3.2.2 does not imply QCA [AM18]. To see
this, take any scheme {(Uk ,σk )}k∈K that is plaintext authenticating with key recycling,
and alter it by appending a qubit in the fully mixed state to σk (and extending Uk to
act as identity on this qubit). This scheme still satisfies Definition 3.2.2. However, it
cannot be ciphertext authenticating: attacks on this last qubit are not noticed in the
real scenario, but the simulator Sacc remembers the randomness with which this last
qubit was chosen, and will test for it at decryption time.

Conversely, not all ciphertext-authenticating schemes have key recycling [AM18].
Take any scheme that is QCA, and alter it by adding one extra bit b of key, and setting
σkb := σk ⊗|b〉〈b| and Ukb :=Uk ⊗ I, effectively appending the (independent) bit of
key at the end of the ciphertext. This scheme still satisfies Definition 3.2.3, but leaks
at least one bit of key. For an overview of the relations between DNS, GYZ, and QCA,
refer to Figure 3.1.

In addition to Definitions 3.2.1 to 3.2.3, we define a notion of quantum authentica-
tion that combines key recycling and ciphertext authentication. It is strictly stronger
than the definitions mentioned before. In Section 3.6, we will show that Barnum et
al.’s construction, when used with a strong-purity-testing code, results in an authenti-
cation scheme in this new, stronger sense.

Definition 3.2.4 (Quantum ciphertext authentication with key recycling (QCA-R)).
A quantum encryption scheme {(Uk ,σk = ∑

r pk,r
∣∣ϕk,r

〉〈
ϕk,r

∣∣)}k∈K is ciphertext ε-
authenticating with key recycling (or ε-QCA-R), with a key recycling function f , if
for all CP maps A (acting on the message register M , tag register T , and a side-
information register R), there exists a CP map Srej such that

R : ρMR 7→ Ek
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(
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k

(
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kA
MT R
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U MT

k

(
ρ⊗σT

k

)
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)
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)
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k

)
⊗|k〉〈k|

+ |⊥〉〈⊥|M ⊗ TrMT
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rej
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⊗ ∣∣ f (k)

〉〈
f (k)

∣∣]
is ε-close in diamond-norm distance to the ideal channel,

I : ρMR 7→ (
IM ⊗Sacc

)(
ρMR)⊗τK + |⊥〉〈⊥|M ⊗ Srej(ρ

R )⊗Ek
[∣∣ f (k)

〉〈
f (k)

∣∣] ,
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GYZ QCA-R

DNS QCA

plaintext
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ciphertext
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no key
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Figure 3.1: Overview of different definitions of quantum authentication. Three previously
defined notions (in gray) and their relations were already known: DNS [DNS12] is strictly weaker
than GYZ [GYZ17] (total authentication) and QCA [AGM18]. These last two are incomparable:
there exist schemes that satisfy either one, but not the other. On the bottom right, our new
definition QCA-R is displayed: it is strictly stronger than both GYZ and QCA.

where S :=Sacc +Srej is trace preserving, and Sacc is as in Definition 3.2.3, i.e.,

Sacc : ρR 7→ E
k ′,r

[〈
ϕk ′,r

∣∣T 〈
Φ+∣∣M1M2 U †

k ′AM1T R
(
U M1T

k ′ ρ
RM1M2T
k ′,r U †

k ′
)

Uk ′
∣∣ϕk ′,r

〉∣∣Φ+〉]
for ρk ′,r := ρR ⊗ ∣∣Φ+〉〈

Φ+∣∣M1M2 ⊗ ∣∣ϕk ′,r
〉〈
ϕk ′,r

∣∣T .

The first condition (closeness of the real and ideal channel) is a strengthening of
Definition 3.2.2: following Portmann [Por17], we also consider which part of the key
can be recycled in the reject case. If the recycling function f is the identity function, all
of the key can be recycled. If f maps all keys to the all-zero string, then no constraints
are put on key leakage in the reject case.

QCA-R strengthens both GYZ and QCA, but not vice versa: the codes sketched
above that separate GYZ from QCA are immediately examples of codes that are GYZ
(or QCA) but cannot be QCA-R. See Figure 3.1.

3.2.2 Quantum error-correcting codes

An [[n,m]] quantum error-correcting code (QECC), characterized by a unitary opera-
tor V , encodes a message ρ consisting of m qubits into a codeword V (ρ⊗ ∣∣0t

〉〈
0t

∣∣)V †

consisting of n qubits, by appending t := n−m tags |0〉〈0|, and applying the unitary V .
Decoding happens by undoing the unitary V , and measuring the tag register in the
computational basis. The measurement outcome is called the syndrome: an all-zero
syndrome indicates that no error-correction is necessary. In this work, we will only
use the error-detection property of QECCs, and will not worry about how to correct
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the message if a nonzero syndrome is measured. If that happens, we will simply
discard the message (i.e., reject).

For any bit string x ∈ {0,1}m , let |xL〉 (for “logical |x〉”) denote a valid encoding of
|x〉, i.e., a state that will decode to |x〉 without error. A defining feature of any QECC is
its distance: the amount of bit and/or phase flips required to turn one valid codeword
into another. If we want to be explicit about the distance d of an [[n,m]] code, we will
refer to it as an [[n,m,d ]] code.

Definition 3.2.5 (Distance). The distance of an [[n,m]] code is the minimum weight1

of a Pauli P such that P |xL〉 =
∣∣yL

〉
for some x 6= y , with x, y ∈ {0,1}m .

An important class of quantum error-correcting codes is formed by the CSS
codes [CS96; Ste96]. A CSS code is constructed from two classical codes, C1 and
C2 ⊆C1. If C1 is an [n,m1] code (encoding m bits into a codeword of length n), C2 is
an [n,m2] code, and the distance of C1 and the dual C⊥

2 is at least d , then the resulting
quantum error-correcting code C SS(C1,C2) is an [[n,m1 −m2,d ]] code, also with
distance d .

The stabilizer of an [[n,m,d ]] QECC is the group of Paulis that leaves all codewords
intact, i.e., the set {P ∈Pn | ∀x ∈ {0,1}m : P |xL〉 = |xL〉}. The stabilizers of a CSS code
C SS(C1,C2) are generated by the rows of the following table [NC00]:[

H(C⊥
2 ) 0

0 H(C1)

]
, (3.3)

where H(·) represents the parity-check matrix of the classical code. Each row in
the check matrix is a concatenation of two strings x and z, from the left-hand side
and the right-hand side of the dividing line, respectively. The stabilizer generator
corresponding to that row is XxZz .

3.2.3 (Strong) purity testing

A generic way to build quantum authentication codes is from purity-testing families
of quantum error-correcting codes. In a cryptographic setting, it can be useful to
select a code from a set of codes {Vk }k∈K for some key set K. We will again assume
that the key k is selected uniformly at random.

Following earlier work [BCG+02; Por17], we restrict our attention to codes for
which applying a Pauli to a codeword is equivalent to applying a (possibly different)
Pauli directly to the message and tag register. In other words, the unitary V must
be such that for any P` ∈ Pm+t , there exists a P`′ ∈ Pm+t and a θ ∈ R such that
P`V = e iθV P`′ . With our attention restricted to codes with this property, we can
meaningfully define the following property:

1The weight of a Pauli is the number of non-identity components. See Section 2.4.2.
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Definition 3.2.6 (Purity testing [BCG+02]). A family of quantum error-correcting
codes {Vk }k∈K is purity testing with error ε if for any Pauli P` ∈Pm+t \{I⊗(m+t )},

Pr
k

[
V †

k P`Vk ∈ (Pm\{I⊗m})⊗ {I,Z}⊗t
]
É ε.

In words, Definition 3.2.6 states that for any nonidentity Pauli, the probability
(over the key) that the Pauli alters the message but is not detected (i.e., no tag bit is
flipped) is upper bounded by ε.

Note that purity-testing codes do not necessarily detect all Pauli attacks with high
probability: it may well be that a Pauli attack remains undetected, because it acts as
identity on the message. In Section 3.3.2, we will see an example of such an attack, and
how it can be used to learn information about the encoding key. This exploitation of
purity-testing codes has led Portmann to consider a stronger notion of purity testing
that should allow for keys to be safely reusable. In this definition, even Paulis from
the set {I⊗m}⊗ {I,Z}⊗t , which act as identity on the message, should be detected:

Definition 3.2.7 (Strong purity testing [Por17]). A family of quantum error-correcting
codes {Vk }k∈K is strong purity testing with error ε if for any Pauli P` ∈Pm+t \{I⊗(m+t )},

Pr
k

[
V †

k P`Vk ∈Pm ⊗ {I,Z}⊗t
]
É ε.

Barnum et al. [BCG+02] described a canonical method of turning a QECC set
{Vk1 }k1∈K1 into a symmetric-key encryption scheme. The encryption key k consists
of two parts: the key k1 ∈ K1 for the QECC, and an additional one-time pad key
k2 ∈ {0,1}2(m+t ). The encryption map is then defined by setting Uk1,k2 := Pk2Vk1 ,
and σk1,k2 =

∣∣0t
〉〈

0t
∣∣. Since σk1,k2 is key-independent, the projectors Πacc = ∣∣0t

〉〈
0t

∣∣
and Πrej = I− ∣∣0t

〉〈
0t

∣∣ are key-independent as well. In Construction 3.2.8, the com-
plete protocol is described. Protocols of this form are also called “encode-encrypt
schemes” [BGS13].

Construction 3.2.8 ([BCG+02]). Let {Vk1 }k1∈K1 be an [[m+ t ,m]] quantum error-
correcting code. Define the following symmetric-key encryption scheme:

Key generation: Sample k1 ←K1. Sample k2 ←K2 := {0,1}2(m+t ).

Encryption: ρM 7→ P MT
k2

V MT
k1

(
ρM ⊗ ∣∣0t

〉〈
0t

∣∣T
)

V MT
k1

P MT
k2

.

Decryption: ρMT 7→ 〈
0t

∣∣(V †
k1

P †
k2
ρPk2Vk1

)∣∣0t
〉

+ |⊥〉〈⊥|M ⊗TrM

[ ∑
i 6=0t

〈i |
(
V †

k1
P †

k2
ρPk2Vk1

)
|i 〉

]

When using Construction 3.2.8 with a strong-purity-testing code, plaintext au-
thentication with key recycling is achieved:
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DNS GYZ QCA QCA-R

Signed polynomial code [BCG+06] � ? ? ?
8-design code [GYZ17] � � � �
Clifford code [ABEM17] � � � �
Trap code [BGS13] � × � ×
Auth-QFT-Auth [GYZ17] � × ? ×
Constant-memory trap code (this work) � × � ×
Strong trap code (this work) � � � �

Figure 3.2: Overview of quantum authentication codes and the security definitions they satisfy.
For all codes except the constant-memory trap code, the security error ε is inverse exponential
in the ciphertext size (provided that a sensible choice is made for the underlying CSS code for
the trap code, or the underlying classical message-authentication code for the Auth-QFT-Auth
code). For the constant-memory trap code, the error ε is inverse polynomial.

Lemma 3.2.9 ([Por17, Theorem 3.5]). Let {Vk1 }k1∈K1 be a strong-purity-testing code
with error ε. The encryption scheme resulting from Construction 3.2.8 is quantum
plaintext

(p
ε+ 1

2ε
)
-authenticating with key recycling (GYZ). In the reject case, the key

k1 (but not necessarily k2) can still be recycled.

If a code is used for the construction that is only purity-testing, the resulting
encryption scheme is plaintext authenticating [BCG+02], but not necessarily with key
recycling.

In Theorems 3.5.1 and 3.6.1, we will show that the analogous statements also
hold for ciphertext authentication: purity-testing codes give rise to ciphertext-au-
thenticating schemes through Construction 3.2.8, while strong-purity-testing codes
additionally provide key recycling.

3.3 Codes

In this section, we take a look at a few concrete quantum authentication codes. We will
analyze which variants of the authentication definitions presented in Section 3.2 they
satisfy. Many codes are built on (purity-testing) quantum error-correcting codes using
Construction 3.2.8, so we may immediately conclude that they provide ciphertext
authentication and/or key recycling (see Lemma 3.2.9 and the text below it). Two
codes do not follow Construction 3.2.8: the signed polynomial code encodes qudits
rather than qubits, and the Auth-QFT-Auth is structured differently altogether. Hence,
for those two codes a separate proof of their key recycling and/or ciphertext authenti-
cating properties would be required. For an overview of the codes and their known
properties, see Figure 3.2.
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3.3.1 The Clifford code

A simple yet powerful code is the Clifford code [ABEM17]. For an m-qubit message,
the code is specified by fixing a parameter t , setting σk = ∣∣0t

〉〈
0t

∣∣ for all k, and Uk =
C ∈R Ct+m , where the key k determines the random selection of C . Concretely, a
ciphertext for an m-qubit message

∣∣ψ〉
is of the form

C
(∣∣ψ〉⊗ ∣∣0t 〉) , (3.4)

where C is a uniformly random Clifford. Note that, from the point of view of someone
who does not know the key k, the encoding of the Clifford code looks like a Clifford
twirl (see Section 2.4.6) of the input state plus some trap states.

We can interpret the Clifford code either as an authentication code {(Uk ,σk )}k

as described above, or, alternatively, as a family of quantum error-correcting codes
{Vk } with each Vk being a Clifford group element. Taking on this second point of view,
and applying Construction 3.2.8 to the set of codes {Vk }, we recover exactly the code
{(Uk ,σk )}k : the additional quantum one-time pad, consisting of a random Pauli, is
absorbed into the random Clifford.

Viewing the Clifford code as a family of quantum error-correcting codes, we can
show the following property (which in fact still holds if the Clifford group is replaced
by any other unitary 2-design [Por17]).

Lemma 3.3.1. The Clifford code on m qubits with tag-register size t is strong purity
testing with error O(2−t ).

Proof. The statement follows from the fact that random Clifford group elements
map nonidentity Paulis to random nonidentity Paulis by conjugation, as stated in
Corollary 2.4.2. Only a small fraction of those random nonidentity Paulis will leave
the computational basis of all tag states intact.

More formally, for all nonidentity Pauli operators P` ∈Pm+t \ {I⊗(m+t )},

Pr
C∈Cm+t

[
C †P`C ∈Pm ⊗ {I,Z}⊗t

]
= ∑

Q∈Pm⊗{I,Z}⊗t

Pr
C∈Cm+t

[
C †P`C =Q

]
(3.5)

= ∑
Q∈Pm⊗{I,Z}⊗t

|{C ∈Cm+t |C P`C =Q}|
|Cm+t |

(3.6)

Cor. 2.4.2= ∑
Q∈Pm⊗{I,Z}⊗t

1

|Pm+t |−1
(3.7)

= |Pm | ·2t

|Pm+t |−1
(3.8)

=O(2−t ). (3.9)
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Note that the security error of the Clifford code does not depend on the message
size m. For simplicity, we will mostly work with messages of size m = 1, but in
principle, much larger messages can be securely authenticated in the Clifford code.

From the fact that it is strong purity testing, we can conclude that the Clifford code
is plaintext O(2−t )-authenticating (DNS). It was already shown to have this property
directly [ABEM17; AM17], combining Corollary 2.4.2 with the fact that the Clifford
twirl decomposes unitaries into Pauli mixtures (Lemma 2.4.8). For completeness, we
restate the proof here to establish the exact form of the simulator maps Sacc and Srej.

Lemma 3.3.2 (Variation on [AM17, Theorem 3.7]). Let U MT R be a unitary, and write
U =∑

x,z∈{0,1}m+t (XxZz )MT ⊗U R
x,z . Then for any state ρMR ,∥∥∥∥T MT

Cm+t
(U )

(
ρMR ⊗ ∣∣0t 〉〈0t ∣∣T

)
−(

U R
0,0ρU †

0,0 ⊗
∣∣0t 〉〈0t ∣∣T +TrM

[ ∑
(x,z)6=(0,0)

U R
x,zρU †

x,z

]
⊗τMT

)∥∥∥∥
tr
É negl(t ).

Proof. Using the Clifford twirl in the first step, and writing U =∑
x,z (XxZz )MT ⊗U R

x,z ,
we derive

T MT
Cm+t

(U )
(
ρ⊗ ∣∣0t 〉〈0t ∣∣)

= ∑
x,z
E
C

(CXxZzC † ⊗Ux,z )
(
ρ⊗ ∣∣0t 〉〈0t ∣∣) (C †XxZzC ⊗U †

x,z )

=U R
0,0ρU †

0,0 +
∑

(x,z)6=(0,0)
E
C

(CXxZzC † ⊗Ux,z )
(
ρ⊗ ∣∣0t 〉〈0t ∣∣) (C †XxZzC ⊗U †

x,z )

(3.10)

=U R
0,0ρU †

0,0 +
∑

(x,z)6=(0,0)
E

(x′,z ′)6=(0,0)
(Xx′

Zz ′ ⊗Ux,z )
(
ρ⊗ ∣∣0t 〉〈0t ∣∣) (Xx′

Zz ′ ⊗U †
x,z )

(3.11)

≈negl(t ) U R
0,0ρU †

0,0 +
∑

(x,z) 6=(0,0)
U R

x,z

(
T MT

Pm+t

(
ρ⊗ ∣∣0t 〉〈0t ∣∣))U †

x,z

=U R
0,0ρU †

0,0 +τMT ⊗ ∑
(x,z)6=(0,0)

TrM

[
U R

x,zρU †
x,z

]
.

In the step from Equation (3.10) to Equation (3.11), we used the fact that any noniden-
tity Pauli is mapped to a random nonidentity Pauli by expectation over the Clifford
group (Corollary 2.4.2). The approximation is due to the fact that the Pauli given by
(x ′, z ′) = (0,0) needs to be included into the expectation in order to form the Pauli
twirl.

Corollary 3.3.3. The Clifford authentication code with t trap qubits is negl(t )-DNS.
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Proof. In the decoding procedure for the t-trap Clifford code, the register T is mea-
sured using the two-outcome measurement defined by the projector Π := ∣∣0t

〉〈
0t

∣∣.
Note that, given an attack A,

E
k∈K

[
Deck

(
A

(
Enck

(
ρ
)))]=LΠ

(
TCm+t

(A)
(
ρMR ⊗ ∣∣0t 〉〈0t ∣∣T

))
,

where LΠ(X ) := TrT [ΠXΠ]+ |⊥〉〈⊥|M ⊗TrMT [ΠXΠ]. Then apply Lemma 3.3.2, and
use the fact that Tr[|0〉〈0|T τMT ] = 2−t . In the terminology of Definition 3.2.1, we may
explicitly describe Sacc :=U0,0(·)U †

0,0 and Srej :=∑
(x,z)6=(0,0) Ux,z (·)U †

x,z for A=U (·)U †

and U decomposed as in the statement of Lemma 3.3.2. In words, the only part of
the attack map that will be accepted is the identity Pauli P0,0 on the message and tag
registers.

The Clifford code fulfills all security definitions from Section 3.2.1. That is, in
addition to DNS, it also allows key recycling (GYZ), fulfills QCA [AGM18], and, as we
will see in Section 3.6, even QCA-R.

So why would one want to look further? A possible drawback in a client-server
setting is that encoding and decoding of the Clifford code require the client to be able
to perform arbitrary Clifford group operations. If the goal is to minimize the required
quantum capabilities of the client, we may want to look for simpler codes that have
similar security guarantees.

3.3.2 The trap code

An example of an authentication code with a simpler encoding procedure is the
trap code [BGS13]. This scheme encrypts single-qubit messages by applying a fixed
[[n,1,d ]] CSS code E to the message, which produces n physical qubits, and then
appending 2n “trap” qubits (n computational-basis traps in the state |0〉〈0|, and n
Hadamard-basis traps in the state |+〉〈+|). The resulting 3n qubits are permuted in
a random fashion according to a key k1, and one-time padded with a second key
k2. At decryption, the one-time pad and permutation are removed, the traps are
measured in their respective bases, and the syndrome of the CSS code is checked.2

The trap code, for a key k = (k1,k2), is characterized by Uk = Pk2πk1 (E⊗I⊗n⊗H⊗n) and
σk = |0〉〈0|⊗(3n−1), where πk1 is a unitary that permutes the 3n qubits. See Figure 3.3.

We may view the first part of the trap code, without the one-time pad Pk2 , as
a set of error-correcting codes. In this framework, the trap code is described as a
QECC family {Vk1 } with m = 1, t = 3n −1, and Vk1 = πk1 (E ⊗ I⊗n ⊗H⊗n). This code is
purity testing with error ε= (2/3)d/2 [BGS13]. Intuitively, an attack Pauli P` can only act
nontrivially on the data if its weight is at least d : otherwise, it will be detected by the

2We differ from the analysis by Broadbent and Wainewright [BW16] in that we consider the variant that
uses error detection instead of error correction on the data qubits.
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∣∣ψ〉
|0〉
...
|0〉
|0〉
...
|0〉
|0〉
...
|0〉 H

...

H

CSS

code

E
permu-

tation
πk1

one-time

pad

Pk2

n −1

n

n

Figure 3.3: The encoding circuit for the trap code. The CSS code E maps a single logical qubit∣∣ψ〉
to n physical qubits, using n −1 auxiliary qubits in the state |0〉 as input.

CSS code E . However, since the permutation is random and unknown by the attacker,
a high-weight attack P` has a significant probability of landing on a trap. The proof
idea [BGS13; BW16] is similar to the proof of Lemma 3.3.4 below. As we will show in
Section 3.6, the purity testing property causes the trap code to satisfy QCA as well.

The trap code is not strong purity testing for subconstant ε. To see this, consider
the Pauli P =X⊗ I⊗(m+t−1): with probability 2/3, the X is permuted onto a data qubit
or a |0〉〈0| trap, and is detected. With probability 1/3, it hits a |+〉〈+| trap and remains
undetected, that is, it acts as H†XH = Z on one of the 2n tag qubits. P forms a
counterexample to the strong-purity-testing property that must hold for all Paulis.

An attacker may use the above strategy to learn information about the permutation
πk1 . Applying the attack P , and observing whether or not the verification accepts, the
attacker can learn whether or not πk1 permutes a |+〉〈+| trap into the first position.
Repeating this attack at different locations in the ciphertext, and also with single-
qubit Z Paulis, an attacker can learn all locations and types of traps in at most 2(m+ t )
rounds. For this reason, the trap code is also not plaintext ε-authenticating with key
recycling for sub-constant ε. It is not even clear whether the trap code can be regarded
as a scheme with partial key leakage [GYZ17], because of the adaptive way in which it
can be attacked.

3.3.3 The constant-memory trap code (variation)

In its original definition, exactly half of the 2n traps are designated as computational-
basis traps, and half as Hadamard-basis traps. Similar security guarantees can be
achieved if each trap is independently chosen to be a computational-basis trap (with
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probability 1/2), or a Hadamard-basis trap (with probability 1/2). On expectation, n
traps of each type will be present. Assigning the traps in this way requires a bigger
secret key, because the type of each of the 2n traps needs to be stored. However, it
can in some cases simplify the analysis of the trap code.

In this section, we will build a variant of the trap code (the “constant-memory trap
code”) that assigns traps in this way [AG19]. We stress, however, that this change is not
unique to this variant of the trap code. One could easily define the regular trap code
with randomly assigned traps, or the constant-memory trap code with fixed traps.

The code presented in this section requires only a constant-size quantum memory
from the encoder and decoder. Its security guarantee is weaker than that of the regular
trap code: the purity-testing error is inverse polynomial in n, rather than inverse
exponential. However, for near-term applications in delegated quantum computation
this trade-off between security and client memory size may be worthwhile.

The constant-memory trap code is very similar to the regular trap code, except
we use a CSS code E which maps a single logical qubit to a constant number of phys-
ical qubits c. A client can perform the trap-code encoding of this variant using a
quantum memory of size c +1, as follows. First, he computes the encoded data state
E

(∣∣ψ〉⊗ ∣∣0c−1
〉)

. Then, he classically samples keys k1, k2, and k3 (the third key con-
tains 2n bits, and is used to determine the type of trap). He can now send the encoded
state to a server qubit-by-qubit: whenever the permutation key k1 dictates that a
data qubit should be sent, it is retrieved from the first c bits of quantum storage, the
appropriate one-time pad is applied using key k2, and the qubit is sent off. Whenever
a trap qubit is supposed to be sent, it can be generated independently using the last
space in the quantum memory (and keys k2 and k3), and immediately be sent.

Lemma 3.3.4. The constant-memory trap code, when based on a [[c,1,d ]] CSS code
for constants c and d, is O(n−d/2)-purity testing.

Proof. Consider a Pauli P` ∈ P2n+c \ {I⊗(2n+c)}. We consider two possible cases for
the weight w of P`: either w > d logn, or w É d logn. Intuitively, the first case (a
“high-weight” Pauli) will cause at least one trap to be triggered with high probability,
while the second case (a “low-weight” Pauli) will likely not hit enough of the c data
qubits in order to alter the logical state. We now analyze the two cases in detail.

In case w > d logn, the probability of not triggering any traps is upper bounded by
this probability for the lowest-possible weight w∗ = d logn +1. For big enough n, we
have that d logn+1 > c , and so at least d logn+1−c of the nonidentity Pauli terms will
land on one of the 2n traps qubits. Each term that lands on a trap has probability at
least 1/2 of being detected, since each trap is a random choice between a computational
or Hadamard trap (and an X or Y is detected if it lands on a computational trap, while
a Z or Y will be detected on a Hadamard trap). In total, the probability of not being
detected is upper bounded by

1

2d logn+1−c
= 2c−1 · 1

2lognd
=O(n−d ). (3.12)
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In case w É d logn, the analysis is somewhat more involved. We are interested in
an upper bound on the probability that at least d of the Pauli terms land on the c data
qubits, which is required to act nontrivially on the data. Again, a first step is to notice
that this probability is upper bounded by the extreme case w∗ = d logn.

For big enough n, we have that n > d logn. We then analyze the probability as a
sum over the possible number j of Pauli terms that land on the c data qubits:

Pr[P` hits at least d data qubits] =
c∑

j=d
Pr[P` hits at exactly j data qubits] (3.13)

=
c∑

j=d

(c
j

)( 2n
d logn− j

)
( 2n+c

d logn

) (3.14)

É
c∑

j=d

(c
j

)( 2n
d logn−d

)
( 2n+c

d logn

) (since d logn < 2n/2) (3.15)

= a ·
( 2n

d logn−d

)
( 2n+c

d logn

) , (3.16)

where a is some constant independent of n. Now, writing out the binomials and
rearranging terms, we continue the derivation as

Eq. (3.16) = a · (2n)!

(2n + c)!
· (d logn)!

(d logn −d)!
· (2n −d logn + c)!

(2n −d logn +d)!
(3.17)

É a · 1

(2n)c · (d logn)d · (2n −d logn + c)c−d (3.18)

= a ·
(

d logn

2n

)d

·
(

2n −d logn + c

2n

)c−d

. (3.19)

Going from Equation (3.17) to Equation (3.18), we used the fact that for x Ê y ,
(x!)/(y !) = (y + 1)(y + 2) · · ·(x − 1)x É xx−y . If n is big enough such that c < d logn,
the right-most term in the product in Equation (3.19) is smaller than 1. Furthermore
using the fact that logn =O(

p
n), we can upper bound Equation (3.19) as

O

((
d
p

n

2n

)d
)
=O

((
1p
n

)d
)
=O

(
n−d/2

)
. (3.20)

We conclude that in both cases (w > d logn and w É d logn), the probability that P`
acts as identity on the data qubit and at the same time triggers no traps, is inverse
polynomial as O(n−d/2).



3.3. Codes 49

∣∣ψ〉
|0〉
...
|0〉
|0〉
...
|0〉
|0〉
...
|0〉

H

CSS

code

E

CSS
code

E

CSS
code

E

permu-

tation
πk1

one-time

pad

Pk2

n −1

n

n

Figure 3.4: The encoding circuit for the strong trap code. Each of the three qubits
∣∣ψ〉

(the
data), |0〉 (the computational-basis trap), and |+〉 (the Hadamard-basis trap) are encoded under
E . This contrasts the regular trap code, which only encodes the data qubit under a CSS code.

3.3.4 The strong trap code (variation)

We present another modified version of the trap code, which we call the strong trap
code. Contrary to the regular trap code, which appends 2t trap qubits, the strong trap
code only appends a single |0〉 trap and a single |+〉 trap. These two traps are subse-
quently encoded using a quantum error-correcting code, resulting in a ciphertext of
the same length as the original trap code. See Figure 3.4.

The strong trap code invokes two layers of security: the CSS codes E , which detect
low-weight attacks, and the traps |0〉 and |+〉, which detect higher-weight attacks by
revealing bit and phase flips, respectively. Because of this double layer of security, an
attack such as described in Section 3.3.2 will not be successful.

In Section 3.7, we will show that the strong trap code is strong purity testing,
provided that the underlying CSS code E is chosen correctly. In particular, the sta-
bilizers for E should not have low weight, and should not be concentrated around
one particular weight. In Section 3.7, we provide details on the properties the CSS
code should satisfy, construct an explicit code that satisfies them, and give a formal
specification of the strong trap code.

3.3.5 Other codes

For a complete exposition, we briefly mention several other quantum authentication
codes that have appeared in the literature. They do not play a prominent role in the
rest of this work.
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The (signed) polynomial code

The polynomial code [AB08] is a quantum error-correcting code that encodes general
qudits (i.e., quantum states in a higher-dimensional Hilbert space) instead of qubits.
It employs the CSS construction (see Section 3.2.2) on two classical codes C1 and C⊥

2 .
Both C1 and C2 consist of lists of 2d +1 points from degree-d polynomials. Since such
polynomials are fixed by any set of d +1 points, if one changes d or fewer points in
the list, the resulting list is only consistent with polynomials of degree greater than
d (and therefore cannot be a valid codeword for C1 or C2). This principle makes the
polynomial code a distance-d QECC.

The signed polynomial code [BCG+06] is an adaptation of the polynomial code
into an authentication code. Every element in the list of points is multiplied by a secret
value ki ∈ {−1,1}, independently sampled for every 1 É i É 2d +1. Additionally, a ran-
dom Pauli operator (generalized for qudits) is applied to the entire state. As such, we
can view the signed polynomial code as a family {Vk }k∈{−1,1}2d+1 of encoding unitaries
Vk , followed by a quantum one-time pad, very much akin to Construction 3.2.8.

The signed polynomial code is strong purity testing [ABEM17; Por17], but since
it acts on qudits rather than qubits, plaintext authentication with key recycling does
not immediately follow. Portmann’s proof [Por17] would have to be generalized from
qubits to qudits. The polynomial code is separately proven to be (2−d )-plaintext
authenticating [ABEM17].

Encoding of the signed polynomial code requires a Fourier transform (which is
a generalized Hadamard), a multiplication gate (which does not have an analogue
in the qubit setting), and several SUM gates (which are generalized CNOT gates).
This encoding procedure is arguably less demanding than the Clifford code, but an
objective comparison between this set of qudit operations and the qubit Clifford
group heavily depends on the architecture underlying the quantum computer.

The Auth-QFT-Auth code

Essentially, a quantum authentication code needs to authenticate both the infor-
mation in the computational basis, and the information in the Hadamard basis. A
code that explicitly does so is the Auth-QFT-Auth code [GYZ17]: it applies a classical
message-authentication code in the computational basis (the “inner encoding”), per-
forms a quantum Fourier transform to shift the state to the Hadamard basis, and then
applies the classical message-authentication code again (the “outer encoding”).

The Auth-QFT-Auth code does not follow the structure of Construction 3.2.8, so
nothing can be said about the purity testing of some underlying quantum error-
correcting code. It can be directly shown [GYZ17] that the Auth-QFT-Auth code is
plaintext ε-authenticating where ε depends on the security of the underlying classical
code. The key of the inner authentication can be recycled in the accept case, but the
key of the outer authentication cannot. Therefore, it does not provide key recycling in
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the sense of definition Definition 3.2.2.

A code based on unitary 8-designs

The first known code to allow full key recycling was presented by Garg, Yuen and
Zhandry [GYZ17]: its structure is exactly like the Clifford code, except that instead
of the Clifford group it requires a more complicated group of unitaries that forms a
so-called 8-design. Later, it was shown that any 2-design (and in particular the Clifford
group) actually suffices for key recycling [Por17]. The 8-design code satisfies the same
security properties as the Clifford code, but is not known to be strictly stronger in any
sense. Therefore, the Clifford code is preferable due to the relative simplicity of its
encoding and decoding, compared to an 8-design.

3.4 Quantum computing on authenticated data

The central role of (quantum) authentication codes is to ensure that a message re-
mains unaltered while it is sent over a communication channel or stored at an un-
trusted location. Their applications are much wider than that, however: some quan-
tum authentication codes have the option to allow only a very specific (set of) compu-
tation(s) on the plaintext message. The idea of quantum computing on authenticated
data (QCAD) has found applications in multi-party quantum computation [BCG+06]
(see also Chapter 4), interactive delegated quantum computation [ABEM17], one-time
programs [BGS13], and quantum homomorphic encryption (see Chapter 5).

In this section, we explain the ideas behind quantum computing on data that is
encoded in the Clifford code or the trap code. Both procedures will be used later on
in this work. Computing on quantum states authenticated with the strong trap code
works in much the same way as for the original trap code.

For both codes, the setup is as follows. There is a client (the delegating party) that
generates the key and encrypts some input state ρ. The other party is the server (the
computing party, sometimes called the prover), who receives the encoded state (but
not the key!), and is supposed to perform some circuit D on the logical level. That is,
the server sends a state back to the client that should decode to ΦD (ρ), if the client
uses an updated key k ′, that is a function of the original key k, the circuit D, and
possibly some extra information generated by the server. The server achieves this by
applying a procedureΨD so that

Deck ′
(
ΨD

(
Enck (ρ)

))=ΦD (ρ). (3.21)

Generally, ΨD is a concatenation of subprocedures for the gates in D. Similarly to
Definition 3.2.1, for any action of the server, the decoding will only accept if the output
state is close to the correct outputΦD (ρ) in trace norm.
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The circuit D is public, and known to both parties. Depending on the application,
we can think of D as a fixed circuit, a circuit chosen by the client (and communicated
to the server), or vice versa.

3.4.1 On the Clifford code

Basic quantum computation on Clifford-authenticated data is fairly straightforward,
since the encoding/decoding procedures are very powerful. In fact, all of the Clifford
computational tasks will de facto be performed by the client. This also means that the
Clifford code is not very well suited for outsourcing computations from a client to a
server.

Suppose that D is a single-qubit Clifford unitary, to be applied to a Clifford-
encoded state of the form C

(
ρ⊗ ∣∣0t

〉〈
0t

∣∣)C †. Then we can achieve QCAD by setting
ΨD = I, and defining the decryption key C ′ to be C ′ :=C (D†⊗ I⊗t ). Then the state after
the decrypting Clifford (but right before the measurement of the traps) is(

D ⊗ I⊗t )C †C
(
ρ⊗ ∣∣0t 〉〈0t ∣∣)C †C

(
D† ⊗ I⊗t

)
= DρD† ⊗ ∣∣0t 〉〈0t ∣∣ . (3.22)

Thus, updating the key in this way effectively applies the unitary D to the logical state.
The above strategy, if used on multiple qubits (and a circuit D with multiple

wires) entangles the decoding keys for the individual qubits. For example, if D =
CNOT, the decoding key for two qubits (with original keys C1 and C2) becomes
(C1 ⊗C2)(CNOT1,t+2 ⊗ I⊗2t ), which itself cannot be written as a product of two keys
C ′

1 ⊗C ′
2. Thus, the entire output state has to be decoded at once, rather than qubit-by-

qubit.
When going beyond Clifford computation, computing on Clifford-encoded data

becomes significantly more challenging. This is due to the fact that the Clifford code
has very little structure, apart from its own group structure. Thus, there is very little
that the server (who does not know the encoding Clifford) can do without effectively
performing a random action.

The simplest way to implement a computational-basis measurement is for the
client to perform it himself, right after decoding. Without loss of generality, we may
assume that the circuit D does not perform any gates on any measured wires, and
only uses them to classically control Clifford gates on other wires. Since Clifford gates
are performed by the client updating his key, he can choose to only perform those key
update if the measurement outcome was 1.

With procedures for Clifford computation and computational-basis measurement
in place, performing a T gate can be done using magic-state computation (see Sec-
tion 2.4.4). At encoding time, the client supplies the server with a sufficient number
of encoded magic states T |+〉 (one for each T gate in the circuit D). The server can
then perform the encoded formΨM of the magic-state-computation circuit M , since
M consists of only Cliffords and measurements.
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It is clear that QCAD using the Clifford code is generally not suitable for outsourc-
ing computations from a less powerful client to a more powerful server. In practice,
the client would still have to be able to perform all Clifford gates, measurements, and
generate magic states for the T gates.3 However, this type of computation has found
an application in the slightly different setting of multi-party quantum computation,
where different players outsource parts of the computation to other (equally powerful)
players. Chapter 4 will describe the use of the Clifford code in this setting in more
detail. In particular, it describes how measurements can be outsourced from one
player to another in a more intricate way than described above.

3.4.2 On the trap code

The trap code distinguishes itself from the Clifford code in two ways. First, individually-
authenticated input qubits can be entangled during the computation, but still be de-
authenticated individually. In contrast, de-authentication in the Clifford code needs to
happen simultaneously on all qubits that were involved in the computation, including
any auxiliary ones. Second, the trap code allows for “authenticated measurements”: if
a third party measures a ciphertext, the client can verify the authenticity of the result
from the classical measurement outcomes only. That is, the client does not have to
physically perform the measurement himself.

Combined with the fact that encoding/decoding the trap code does not require
the client to execute arbitrary Clifford operations, the above properties make the trap
code more suitable for outsourcing computations from a less powerful client to a
more powerful server, as compared to the Clifford code. Broadbent, Gutoski, and
Stebila describe in detail how a server can compute on trap-code-encoded quan-
tum states [BGS13]. Variations appear (sometimes implicitly) in other work [SP00;
BJSW16]. We give an intuitive overview here, without providing proofs of correctness
and security. In Sections 5.5, 5.6 and 6.4, we will apply these techniques in the context
of quantum homomorphic encryption, ensuring verifiability for the client.

Quantum computing on the trap code relies on two different concepts: transver-
sal computation and magic-state computation. Simpler gates (Pauli, CNOT and
measurement) can be computed transversally, i.e., the gate is applied to the logical
quantum state by applying it to each physical qubit individually. Other gates (H, P,
and T) are applied using magic-state computation, similarly to Section 3.4.1.

Pauli gates. Suppose the server intends to apply an X gate to the encoded single-
qubit state ρ,

Pk2Vk1

(
ρ⊗ ∣∣03n−1〉〈03n−1∣∣)V †

k1
P †

k2
. (3.23)

3Depending on the architecture, the latter may still be easier to achieve than performing T gates, since
it would be possible to generate the magic states using multiple attempts, discarding magic states that are
too noisy, and distilling better-quality magic states from the less noisy ones.
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(Recall that Vk1 =πk1 (E ⊗ I⊗n ⊗H⊗n).) The simplest way is for the server to do nothing,
and for the client to update the key k2 such that Pk ′

2
= Pk2πk1 (X⊗n ⊗ I⊗2n)π−1

k1
: that is,

all n data qubits (and none of the traps) receive an extra X gate. Since E is a CSS code,
it allows transversal Pauli application, i.e., X⊗nE(

∣∣ψ〉⊗ ∣∣0n−1
〉

) = E(X
∣∣ψ〉⊗ ∣∣0n−1

〉
)

for all single-qubit states
∣∣ψ〉

. Thus, decoding the state in Equation (3.23) with keys
(k1,k ′

2) results in the state XρX†. The procedure for Z is similar.

CNOT gates. Suppose the server intends to apply a CNOT gate to the logical two-
qubit state ρAB , which is encoded as(

P ATA
kA,2

V ATA
kA,1

⊗P BTB
kB ,2

V BTB
kB ,1

)(
ρAB ⊗ ∣∣06n−2〉〈06n−2∣∣TA TB

)(
PkA,2VkA,1 ⊗PkB ,2VkB ,1

)† .

(3.24)

For the encoded CNOT to work correctly, we require that kA,1 = kB ,1, i.e., both encod-
ings are permuted in exactly the same way. The trap code is still secure in this case, as
long as the Pauli keys kA,2 and kB ,2 are independent [BGS13].

A logical CNOT is then executed by applying 3n physical CNOT gates to Equa-
tion (3.24), each between one qubit of ATA , and one qubit of BTA . The CNOT gates
commute through PkA,2 ⊗PkB ,2 , as long as the client updates the Pauli keys kA,2 and
kB ,2 in a fixed way (see the commutation relations between Paulis and CNOT, Equa-
tions (2.10) to (2.13)). Because the permutations are identical, the CNOT gates
commute through them unchanged. Because E is a CSS code, it is transversal for
CNOT: that is, CNOT⊗nE⊗2(

∣∣ψ〉⊗ ∣∣02n−2
〉

) = E⊗2(CNOT
∣∣ψ〉⊗ ∣∣02n−2

〉
) for any two-

qubit state
∣∣ψ〉

. Finally, since CNOT |00〉 = |00〉 and CNOT(H ⊗H ) |00〉 = (H ⊗H ) |00〉,
the CNOT operations do not affect the 2n traps. Thus, the final state is identical to
Equation (3.24), except that ρ is now CNOTρCNOT†, and that the Pauli keys kA,2 and
kB ,2 have changed according to the commutation of CNOT and the Pauli group.

Computational-basis measurements. To do a computational-basis measurement,
the server measures all 3n physical qubits in the computational basis, resulting in
a measurement string s ∈ {0,1}3n . The client, knowing the permutation, can divide
the string into three n-bit strings: a data string sdata, a computational-trap string
s0, and a Hadamard-trap string s+. He discards the string s+,4 and checks whether
the string s0 is consistent with the relevant part of the Pauli key k2: undoing the X
operations on the string s0 should result in the all-zero string. If that is the case, the
client removes the X operations on on sdata (again, as dictated by k2), and runs a
classical decoding procedure ClassicalDec on the result: it either rejects, or gives the
logical measurement outcome as a single bit. The procedure ClassicalDec exists for

4The string s+ is a fully random string, since it consists of the measurement results of |+〉 and |−〉 states.
Note that measuring and discarding it means that, e.g., a logical Z attack is not detected. This does not
matter, however, since such attacks do not affect the computational-basis measurement outcome.
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every CSS code E [BGS13], and essentially realizes transversal measurements on the
code E .

P gates. Phase gates are applied through magic-state computation: the client sup-
plies the server with an encoding of the magic state P |+〉, and the server runs the en-
coding of the magic-state computation circuit, consisting of a CNOT, computational-
basis measurement, and an XZ conditioned on the measurement result:

ρ

P |+〉〈+|P† •

c

XcZc PρP†
(3.25)

Note that the client can only compute the key update for XZ after decoding the
measurement result.

H gates. Hadamard gates are similar to P gates, except they require an encoding of
a more complicated magic state, (H⊗ I)

∣∣Φ+〉
, where

∣∣Φ+〉
is the EPR pair. The magic-

state computation performed by the server involves a CNOT, two measurements, and
two Pauli corrections:

ρ

(H⊗ I)
∣∣Φ+〉〈

Φ+∣∣ (H⊗ I)†
{

• c

dH

ZdXc HρH†

(3.26)

One of the measurements is in the computational basis, and one is in the Hadamard
basis: the server can measure in the Hadamard basis by applying H gates transversally
to all qubits right before starting the procedure for a computational-basis measure-
ment. Doing so swaps the role of the |0〉 and |+〉 traps, so the client needs to check the
string s+ against the (updated) Pauli key, instead of s0.

The procedure for H gates requires the CSS code to be self-dual, so that Hadamard
gates are indeed transversal for it [BGS13]. The concatenated Steane code is an
example of a self-dual CSS code, as is the family of codes we construct in Section 3.7.3.

T gates. Finally, T gates are also similar to P gates in that they require a magic state
T |+〉 and a magic-state computation (see Figure 2.1). The complicating factor is that
the measurement result in the magic-state computation dictates whether or not a non-
Pauli correction PX is to be applied. The client cannot perform this correction on his
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own at decoding time, but needs to decode the measurement result before knowing
whether to assist the server in applying PX. Broadbent et al. solve this apparent
deadlock by letting client and server communicate during the protocol [BGS13]. In
Chapter 6, we manage the problem in a noninteractive way, by having the client
prepare a special gadget state (in addition to the magic state) before the computation.

With the procedures described above, a client holding the classical encryption key can
guide a server in performing computation directly on the ciphertext. The client sends
input-independent auxiliary states (the magic states) that help bypass the traps, and
updates the classical keys during the computation. One can verify that computing on
states authenticated with the constant-memory trap code or strong trap code works
in much the same way as for the original trap code.

3.5 Purity testing implies QCA

It was already observed that if a set of quantum error-correcting codes {Vk1 }k1∈K1

is purity testing, then the encryption scheme resulting from Construction 3.2.8 is
plaintext authenticating [BCG+02]. We strengthen this result by showing that the
construction turns purity-testing codes into ciphertext-authenticating schemes (see
Theorem 3.5.1 below). Later, in Section 3.6, we will show that strong-purity-testing
codes are similarly turned into QCA-R schemes (Theorem 3.6.1). Only purity testing
is in general not enough to achieve QCA-R: the trap code is a counterexample.

Theorem 3.5.1. Let {Vk1 }k1∈K1 be a purity-testing code with error ε. The encryption
scheme resulting from Construction 3.2.8 is quantum ciphertext ε-authenticating (ε-
QCA).

The proof of Theorem 3.5.1 uses ideas and techniques that are similar to Port-
mann’s proof [Por17, Theorem 3.5], but with a simulator that runs the adversary
on encrypted halves of EPR pairs, so that it is suitable for QCA. We prove that the
ideal and the real channel are close by considering the accept and the reject cases
separately, and by showing that they are both ε/2-close. First, we decompose the
adversarial attack into Paulis by Pauli twirling (Lemma 2.4.5) it with the quantum-
one-time-pad encryption from Construction 3.2.8. In the accept case, the differ-
ence between the real and the ideal scenario lies in those attacks that are accepted
in the real case, but not in the ideal case. These are exactly those Paulis that, af-
ter conjugation with the key k1 that indexes the purity-testing code, are in the set
(Pm ⊗ {I,Z}⊗t )\({I⊗m}⊗ {I,Z}⊗t ) = (Pm\{I⊗m})⊗ {I,Z}⊗t . The purity-testing property
guarantees that the probability over k1 of a Pauli attack landing in this set is small.
The reject case is similar.

Proof. Let A be an adversary as in Definition 3.2.3. Define a simulator S on the side-
information register R as follows: prepare an EPR pair

∣∣Φ+〉〈
Φ+∣∣ in the register M1M2
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and encrypt the first qubit M1 using a freshly sampled key (k ′
1,k ′

2) ∈K :=K1×K2 (that
is, initialize the tag register T in the state

∣∣0t
〉〈

0t
∣∣, and apply Pk ′

2
Vk ′

1
to M1T ). Then,

run the adversary on the registers M1T R, keeping M2 to the side. Afterwards, run the
decryption procedure by undoing the encryption unitary and measuring whether the
registers M1M2T are in the state

∣∣Φ+,0t
〉〈
Φ+,0t

∣∣ (= ∣∣Φ+〉〈
Φ+∣∣⊗ ∣∣0t

〉〈
0t

∣∣). If so, accept,
and if not, reject. Note that this simulator is of the required form in the accept case
(see Definition 3.2.3).

We show that for this simulator, the distance 1
2‖I−R‖¦ between the ideal and the

real channel is upper bounded by ε. Let ρMRE be any quantum state on the message
register, side-information register, and an environment register E . Let U MT R be a
unitary5 map representing the adversarial channel A, and let µreal

k1,k2
and µideal

k1,k2
be the

effective output states in the real and ideal world, respectively:

µreal
k1,k2

:=V †
k1

P †
k2

U MT R P MT
k2

V MT
k1

(
ρ⊗ ∣∣0t 〉〈0t ∣∣)V †

k1
P †

k2
U †Pk2Vk1 , (3.27)

µideal
k1,k2

:=V †
k1

P †
k2

U M1T R P M1T
k2

V M1T
k1

(
ρ⊗ ∣∣0t ,Φ+〉〈

0t ,Φ+∣∣)V †
k1

P †
k2

U †Pk2Vk1 . (3.28)

The effective output states represent the states after the encoding, attack, and de-
coding (without measurement) of the input state ρ⊗ ∣∣0t

〉
. The map V †

k1
P †

k2
U Pk2Vk2

is often called the effective attack. We can write the result of the real and the ideal
channels as

R(ρ) = E
k1,k2

[〈
0t ∣∣T

µreal
k1,k2

∣∣0t 〉 + |⊥〉〈⊥|M ⊗ TrM

( ∑
i 6=0t

〈i |T µreal
k1,k2

|i 〉
)]

, (3.29)

I(ρ) = E
k ′

1,k ′
2

[〈
Φ+,0t ∣∣M1M2T

µideal
k ′

1,k ′
2

∣∣Φ+0t 〉 +|⊥〉〈⊥|M ⊗ TrM

( ∑
i 6=(Φ+,0t )

〈i |µideal
k ′

1,k ′
2
|i 〉

)]
.

(3.30)

These expressions are obtained simply by plugging in the description of the au-
thentication scheme (see Construction 3.2.8) and the simulator into the channels of
Definition 3.2.3. Since the accept states are orthogonal to the reject states in the M
register, the distance 1

2

∥∥I(ρ)−R(ρ)
∥∥

tr can be written as

1

2

∥∥∥∥ E
k ′

1,k ′
2

(〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉)− E
k1,k2

〈
0t ∣∣µreal

k1,k2

∣∣0t 〉
+ |⊥〉〈⊥|M ⊗

(
E

k ′
1,k ′

2

(
TrM

∑
i 6=(0t ,Φ+)

〈i |µideal
k ′

1,k ′
2
|i 〉

)
− E

k1,k2

(
TrM

∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
))∥∥∥∥

tr

(3.31)

5We can assume unitarity without loss of generality: if the adversary’s actions are not unitary, we can
dilate the channel into a unitary one by adding another environment and tracing it out afterwards. In
the proof, the environment takes on the same role as the side-information register R, so we omit it for
simplicity.
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= 1

2

∥∥∥∥∥ E
k ′

1,k ′
2

(〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉)− E
k1,k2

〈
0t ∣∣µreal

k1,k2

∣∣0t 〉∥∥∥∥∥
tr

+ 1

2

∥∥∥∥∥ E
k ′

1,k ′
2

(
TrM

∑
i 6=(0t ,Φ+)

〈i |µideal
k ′

1,k ′
2
|i 〉

)
− E

k1,k2

(
TrM

∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
)∥∥∥∥∥

tr

. (3.32)

We can thus focus on bounding the two terms in Equation (3.32), for accept and re-
ject, separately. Intuitively, the two states inside the first trace norm in Equation (3.32)
differ on those Paulis P` that are accepted in the real scenario, but not in the ideal
one. The purity-testing property promises that these Paulis are very few. We will work
out this case; the second (the reject case) is similar.

Decompose the attack as U MT R =∑
`α`P MT

`
⊗U R

`
. Rewrite the real accept case as

E
k1,k2

〈
0t ∣∣µreal

k1,k2

∣∣0t 〉 (3.33)

= E
k1,k2

〈
0t ∣∣V †

k1
P †

k2

(∑
`

α`P MT
` ⊗U R

`

)
P MT

k2
V MT

k1
(ρ⊗ ∣∣0t 〉〈0t ∣∣)

V †
k1

P †
k2

(∑
`′
α∗
`′P`′ ⊗U †

`′

)
Pk2Vk1

∣∣0t 〉 (3.34)

= E
k1,k2

∑
`,`′

α`α
∗
`′

〈
0t ∣∣(V †

k1
P †

k2
P`Pk2Vk1 ⊗U R

`

)
(ρ⊗ ∣∣0t 〉〈0t ∣∣)(

V †
k1

P †
k2

P`′Pk2Vk1 ⊗U †
`′

)∣∣0t 〉 . (3.35)

By the Pauli twirl lemma (Lemma 2.4.6), this last line equals

E
k1

∑
`

|α`|2
〈

0t ∣∣(V †
k1

P`Vk1 ⊗U R
`

)(
ρ⊗ ∣∣0t 〉〈0t ∣∣)(V †

k1
P`Vk1 ⊗U †

`

)∣∣0t 〉 (3.36)

= E
k1

∑
`:V †

k1
P`Vk1∈Preal

|α`|2
(
QM

k1,`⊗U R
`

)
ρ

(
Qk1,`⊗U †

`

)
, (3.37)

where Qk1,` is the effective Pauli on the message register, induced by V †
k1

P`Vk1 , and

where Preal :=Pm ⊗ {I,Z}⊗t is the set of (effective) Paulis that are undetected by the
measurement after undoing Vk1 in the real scenario.

With the same techniques, we can rewrite the ideal accept case as

E
k ′

1,k ′
2

〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉 = E
k ′

1

∑
`:V †

k′1
P`Vk1∈Pideal

|α`|2
(
QM

k1,`⊗U R
`

)
ρ

(
QM

k1,`⊗U R
`

)
,

(3.38)

where Pideal := {I⊗m}⊗ {I,Z}⊗t is the set of Paulis that are undetected in the ideal
scenario. Note that for k1 and ` such that V †

k1
P`Vk1 ∈Pideal, Q`,k1 = I⊗m .
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The distance between the ideal and the real accept states is thus

1

2

∥∥∥∥∥ E
k ′

1,k ′
2

(〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉)− E
k1,k2

〈
0t ∣∣µreal

k1,k2

∣∣0t 〉∥∥∥∥∥
tr

(3.39)

= 1

2

∥∥∥∥∥∥∥Ek1

∑
`:V †

k1
P`Vk1∈Preal\Pideal

|α`|2
(
QM

k1,`⊗U R
`

)
ρ

(
QM

k1,`⊗U R
`

)∥∥∥∥∥∥∥
tr

(3.40)

É 1

2
E
k1

∑
`:V †

k1
P`Vk1∈Preal\Pideal

|α`|2 , (3.41)

by the triangle inequality for the trace norm. Let δ(Pa∈A) be 1 whenever Pa ∈ A,

and 0 otherwise. Note that for all k1, V †
k1

P0Vk1 = I⊗(m+t ) 6∈ Preal\Pideal, because

P0 = I⊗(m+t ). This justifies the continuation of the derivation:

Eq. (3.41) = 1

2

∑
`
E
k1

δ(V †
k1

P`Vk1∈Preal\Pideal)
|α`|2 (3.42)

= 1

2

∑
6̀=0
E
k1

δ(V †
k1

P`Vk1∈Preal\Pideal)
|α`|2 (3.43)

É 1

2

∑
6̀=0
ε |α`|2 (3.44)

É ε

2
. (3.45)

The first inequality is due to the fact that Preal \Pideal = (Pm \ {I⊗m})⊗ {I,Z}⊗t , and
the purity-testing property of the code {Vk1 }k1∈K1 .

This concludes the proof that in the accept case, the real and the ideal scenarios
are ε/2-close (i.e., the first term of Equation (3.32) is upper bounded by ε/2). The reject
case is completely analogous.

Summing the accept and reject case as in Equation (3.32), we see that

1

2

∥∥I(ρ)−R(ρ)
∥∥

tr É ε (3.46)

for all ρ. This concludes the proof.

3.6 Strong purity testing implies QCA-R

We are now ready for one of the main results of this chapter: the fact that Construc-
tion 3.2.8, when used on a strong-purity-testing code, results in a quantum ciphertext
authentication code with key recycling. In the accept case, all key can be recycled; in
the reject case, the one-time-pad key needs to be refreshed.
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Theorem 3.6.1. Let {Vk1 }k1∈K1 be a strong-purity-testing code with error ε. The en-
cryption scheme resulting from Construction 3.2.8 is quantum ciphertext (

p
ε+ 3

2ε)-
authenticating with key recycling (QCA-R), with recycling function f (k1,k2) := k1.

The proof outline is similar to the proof of Theorem 3.5.1, except that (part of) the
secret key is appended to the state in the real and ideal scenarios. This extra register
containing the secret key prevents us from immediately applying the Pauli twirl, as in
the proof of Theorem 3.5.1. We thus have to employ some heavier machinery, again
inspired by Portmann’s proof [Por17, Theorem 3.5]. To preserve the flow of the proof,
we postpone some derivation details to Section 3.6.1.

Proof. Let A be an adversary as in Definition 3.2.4. Define a simulator S in the same
way as in the proof of Theorem 3.5.1. Note that this simulator is of the required form
in the accept case (see Definition 3.2.4).

We show that for this simulator, the distance 1
2‖I−R‖¦ between the ideal and the

real channel is upper bounded by
p
ε+ 3

2ε. Let ρMRE be any quantum state on the
message register, side-information register, and an environment register E . Assume,
as in the proof of Theorem 3.5.1, that A is a unitary map U MT R . Let µreal

k1,k2
and µideal

k1,k2
be the effective output states in the real and ideal world, respectively:

µreal
k1,k2

:=V †
k1

P †
k2

U MT R P MT
k2

V MT
k1

(
ρ⊗ ∣∣0t 〉〈0t ∣∣)V †

k1
P †

k2
U †Pk2Vk1 , (3.47)

µideal
k1,k2

:=V †
k1

P †
k2

U M1T R P M1T
k2

V M1T
k1

(
ρ⊗ ∣∣0t ,Φ+〉〈

0t ,Φ+∣∣)V †
k1

P †
k2

U †Pk2Vk1 . (3.48)

Then we can write the result of the real and the ideal channels as

R(ρ) = E
k1,k2

[〈
0t ∣∣T

µreal
k1,k2

∣∣0t 〉⊗|k1k2〉〈k1k2|

+ |⊥〉〈⊥|M ⊗ TrM

( ∑
i 6=0t

〈i |T µreal
k1,k2

|i 〉
)
⊗|k1〉〈k1|

]
, (3.49)

I(ρ) = E
k ′

1,k ′
2

[〈
Φ+,0t ∣∣M1M2T

µideal
k ′

1,k ′
2

∣∣Φ+0t 〉⊗τK
+ |⊥〉〈⊥|M ⊗ TrM

( ∑
i 6=(Φ+,0t )

〈i |M1M2T µideal
k ′

1,k ′
2
|i 〉

)
⊗τK1

]
. (3.50)

These expressions are obtained simply by plugging in the description of the authenti-
cation scheme (see Construction 3.2.8) and the simulator into the channels of Defini-
tion 3.2.4. Since the accept states are orthogonal to the reject states in the M register,
and since the key states are all mutually orthogonal, the distance 1

2

∥∥I(ρ)−R(ρ)
∥∥

tr
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can be written as

E
k1,k2

1

2

∥∥∥∥∥ E
k ′

1,k ′
2

(〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉)−〈
0t ∣∣µreal

k1,k2

∣∣0t 〉∥∥∥∥∥
tr

+ E
k1

1

2

∥∥∥∥∥ E
k ′

1,k ′
2

(
TrM

∑
i 6=(0t ,Φ+)

〈i |µideal
k ′

1,k ′
2
|i 〉

)
−E

k2

(
TrM

∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
)∥∥∥∥∥

tr

. (3.51)

For a full derivation, see Section 3.6.1. We can thus focus on bounding the two
terms in Equation (3.51), for accept and reject, separately. Note the difference between
the two terms: in the reject case, the expectation over the one-time pad key k2 does
not have to be brought outside of the trace norm, since it is not recycled after a reject.
This will make bounding the second term in Equation (3.51) the simpler of the two, so
we will start with that one.

Decompose the attack as U MT R = ∑
`α`P MT

`
⊗U R

`
. Intuitively, the two states

inside the second trace norm differ on those Paulis P` that are rejected in the ideal
scenario, but not in the real one. The strong-purity-testing property promises that
these Paulis are very few. However, we have to be careful, because the simulator
independently generates its own set of keys. We will now bound the second term in
Equation (3.51) more formally.

By rearranging sums, commuting Paulis, and applying projectors (for details: see
Section 3.6.1), we can rewrite the second term inside the trace norm, the state in the
real reject case for k1, as

E
k2

(
TrM

∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
)
= TrM

 ∑
` : V †

k1
P`Vk1 6∈Preal

|α`|2 U R
` ρ

MRU †
`

 , (3.52)

where Preal contains the Paulis that are accepted by the real projector, i.e., Preal :=
Pm ⊗ {I,Z}⊗t . Similarly, defining Pideal := {I⊗m}⊗ {I,Z}⊗t to be the set of Paulis that
are allowed by the ideal projector, the resulting state in the reject case is

E
k ′

1,k ′
2

(
TrM

∑
i 6=(0t ,Φ+)

〈i |µideal
k ′

1,k ′
2
|i 〉

)
= TrM


∑
6̀=0

E
k ′

1∈K1

V †
k′1

P`Vk′1
6∈Pideal

|α`|2 U R
` ρ

MRU †
`

 (3.53)

≈ε TrM

(∑
6̀=0

E
k ′

1∈K1

|α`|2 U R
` ρ

MRU †
`

)
. (3.54)

The approximation follows from the strong-purity-testing property of the code: the
two states differ in those keys k ′

1 for which V †
k ′

1
P`Vk ′

1
∈ Pideal ⊆ Preal, and for any
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nonidentity Pauli P`, this set is small by strong purity testing. Combined with the
facts that Tr(U`ρU †

`
) = 1 and

∑
` |α`|2 = 1, it follows that the states in Equations (3.53)

and (3.54) are ε-close. Note that none of the terms in Equation (3.54) depend on k ′
1,

so we can remove the expectation over it.
Applying the triangle inequality (twice), the second term in Equation (3.51) is

found to be small:

E
k1

1

2

∥∥∥∥∥ E
k ′

1,k ′
2

(
TrM

∑
i 6=(0t ,Φ+)

〈i |µideal
k ′

1,k ′
2
|i 〉

)
−E

k2

(
TrM

∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
)∥∥∥∥∥

tr

(3.55)

É ε

2
+E

k1

1

2

∥∥∥∥∥∥∥TrM

 ∑
` : V †

k1
P`Vk1∈Preal\{I⊗(m+t )}

|α`|2 U`ρU †
`


∥∥∥∥∥∥∥

tr

(3.56)

É ε

2
+ 1

2
E
k1

∑
` : V †

k1
P`Vk1∈Preal\{I⊗(m+t )}

|α`|2 , (3.57)

which we can upper bound by ε by applying the strong-purity-testing property once
more.

Next, we bound the first term of Equation (3.51): the difference between the ideal
and the real channel in the accept case. The strategy is identical to the reject case
that we just treated, but because we want to recycle both k1 and k2 in the accept case,
we have to be more careful. The state in the real scenario,

〈
0t

∣∣µreal
k1,k2

∣∣0t
〉

, cannot be
rewritten into the compact form of, e.g., Equation (3.52), because we cannot average
over the Pauli key k2. Using a technical lemma due to Portmann [Por17] and Jensen’s
inequality in order to take the expectation over the keys inside, we obtain the bound

E
k1,k2

∥∥∥∥∥ E
k ′

1,k ′
2

(〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉)−〈
0t ∣∣µreal

k1,k2

∣∣0t 〉∥∥∥∥∥
tr

É ε

2
+p

ε. (3.58)

For a full derivation, see Section 3.6.1.
We have now upper bounded 1

2

∥∥I(ρ)−R(ρ)
∥∥

tr É p
ε+ 3

2ε for any state ρMRE ,
resulting in 1

2‖I−R‖¦ É
p
ε+ 3

2ε, as desired.

3.6.1 Details for the proof of Theorem 3.6.1

Derivation of Equation (3.51)

We give details on how to arrive at Equation (3.51) given the expressions for I and R
in the proof of Theorem 3.6.1.

1

2

∥∥I(ρ)−R(ρ)
∥∥

tr (3.59)
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= 1

2

∥∥∥∥ E
k ′

1,k ′
2

[〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉⊗τK]
+ E

k ′
1,k ′

2

[
|⊥〉〈⊥|⊗ TrM

( ∑
i 6=(Φ+,0t )

〈i |µideal
k ′

1,k ′
2
|i 〉

)
⊗τK1

]
− E

k1,k2

[〈
0t ∣∣µreal

k1,k2

∣∣0t 〉⊗|k1k2〉〈k1k2|
]

− E
k1,k2

[
|⊥〉〈⊥|⊗ TrM

( ∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
)
⊗|k1〉〈k1|

]∥∥∥∥
tr

(3.60)

= 1

2

∥∥∥∥ E
k ′

1,k ′
2

[〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉⊗τK]
− E

k1,k2

[〈
0t ∣∣µreal

k1,k2

∣∣0t 〉⊗|k1k2〉〈k1k2|
]∥∥∥∥

tr

+ 1

2

∥∥∥∥ E
k ′

1,k ′
2

[
TrM

( ∑
i 6=(Φ+,0t )

〈i |µideal
k ′

1,k ′
2
|i 〉

)
⊗τK1

]

− E
k1,k2

[
TrM

( ∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
)
⊗|k1〉〈k1|

]∥∥∥∥
tr

, (3.61)

because
∥∥ρ+σ∥∥

tr =
∥∥ρ∥∥

tr +‖σ‖tr whenever ρ and σ are orthogonal (and the accept
and reject states are orthogonal in the M register), and because

∥∥ |a〉〈a|⊗ρ∥∥
tr =

∥∥ρ∥∥
tr

for basis states |a〉 (this allows us to get rid of the |⊥〉〈⊥|).
Observing that the |k1k2〉〈k1k2| states (or |k1〉〈k1| in the case of reject) are all

orthogonal to each other, we obtain Equation (3.51).

Derivation of Equation (3.52)

We give details on how Equation (3.52) is derived in the proof of Theorem 3.6.1.

E
k2

(
TrM

∑
i 6=0t

〈i |µreal
k1,k2

|i 〉
)

(3.62)

= E
k2

(
TrM

∑
i 6=0t

〈i |V †
k1

P †
k2

(∑
`

α`P MT
` ⊗U R

`

)
P MT

k2
V MT

k1

(
ρMRE ⊗ ∣∣0t 〉〈0t ∣∣T

)
V †

k1
P †

k2

(∑
`′
α∗
`′P`′ ⊗U †

`′

)
Pk2Vk1 |i 〉

)
(3.63)

= E
k2

(
TrM

∑
i 6=0t

∑
`,`′

α`α
∗
`′ 〈i |

(
V †

k1
P †

k2
P MT
` P MT

k2
V MT

k1
⊗U R

`

)(
ρMRE ⊗ ∣∣0t 〉〈0t ∣∣T

)
(
V †

k1
P †

k2
P`′Pk2Vk1 ⊗U †

`′
)
|i 〉

)
, (3.64)
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where the second equality is obtained by moving summation signs further out and
rearranging the unitaries so that they are sorted according to the register they act
on. Recall that the ` and `′ index an (m + t )-qubit Pauli, and thus consist of 2(m + t )
bits: we can regard any such Pauli-index a as (xa , za) where the two parts are (m + t )-
bit strings describing the locations of the X and Z Paulis, respectively. Recall from
Lemma 2.4.7 that the symplectic inner product (a,b)Sp := xa · zb − xb · za equals 1
whenever the Paulis Pa and Pb commute, and −1 when they anti-commute. We can
then continue the derivation as follows:

= E
k2

(
TrM

∑
i 6=0t

∑
`,`′

α`α
∗
`′ (−1)(`⊕`′,k2)Sp 〈i |

(
V †

k1
P`V MT

k1
⊗U R

`

)(
ρMRE ⊗ ∣∣0t 〉〈0t ∣∣T

)
(
V †

k1
P`′Vk1 ⊗U †

`′
)
|i 〉

)
(3.65)

= TrM
∑

i 6=0t

∑
`

|α`|2 〈i |
(
V †

k1
P`V MT

k1
⊗U R

`

)(
ρ⊗ ∣∣0t 〉〈0t ∣∣)(V †

k1
P`Vk1 ⊗U †

`

)
|i 〉 . (3.66)

If we now apply the projector on the tag register T , and observe that the projection
preserves exactly those ` such that V †

k1
P`Vk1 6∈Preal (i.e., those P` that are rejected),

the right-hand side of Equation (3.52) is obtained.

Derivation of Equation (3.58)

We give details on how to obtain Equation (3.58), which bounds the difference between
the accept and reject case in the real scenario.

For this derivation, it will be useful to purify ρMRE as
∑

i βi
∣∣ψi

〉MREE ′
, where E ′ is

an extra environment register for the purification. Note that
〈
ψi

∣∣ψ j 〉 = 0 for i 6= j .

With the same strategy as in the derivation of Equation (3.52), except for the last
step, we can rewrite the real state as〈

0t ∣∣µreal
k1,k2

∣∣0t 〉 (3.67)

= 〈
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k1
P †
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)
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i ,i ′
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∗
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〉〈
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`′P`′ ⊗U †

`′
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∑
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∗
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〈
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P`Pk2V MT
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⊗U R

`

)∣∣ψi
〉∣∣0t 〉

〈
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∣∣〈0t ∣∣(V †
k1

P †
k2

P`′Pk2Vk1 ⊗U †
`′

)∣∣0t 〉 (3.69)
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=∑
i ,i ′

∑
`,`′

βiα`β
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∗
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)∣∣0t 〉 , (3.70)

which, as a pure state, can be expressed as∑
i

∑
`

βiα`(−1)(`,k2)Sp
〈

0t ∣∣(V †
k1

P`V MT
k1

⊗U R
`

)∣∣ψi
〉∣∣0t 〉 (3.71)

= ∑
`:V †

k1
P`Vk1∈Preal

α`(−1)(`,k2)Sp (QM
k1,`⊗U R

` )
∑

i
βi

∣∣ψi
〉

, (3.72)

where Qk1,` is the Pauli on the message register M that results from V †
k1

P`Vk1 ∈Preal =
Pm⊗{I,Z}⊗t . In much the same way, but using Lemma 2.4.7 as we did in the derivation
of Equation (3.52), we can write the accept state in the ideal scenario,

E
k ′

1,k ′
2

(〈
Φ+,0t ∣∣µideal

k ′
1,k ′

2

∣∣Φ+,0t 〉) , (3.73)

as the pure state
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 ∑
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α`U R
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, (3.75)

where δ(V †
k′1

P`Vk′1
∈Pideal)

is the indicator function that is equal to 1 whenever V †
k ′

1
P`Vk ′

1
∈

Pideal, and 0 otherwise. Continuing, we rewrite the ideal accept state as
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. (3.76)

(Recall that P0 = I⊗(m+t ) by convention.) By the strong-purity-testing property of the
code {Vk1 }k1∈K1 , and the fact that Pideal ⊆Preal, the second term in Equation (3.76)
has very small amplitude. Thus, the ideal accept state is ε-close in trace distance to
α0U R

0
∑

i βi
∣∣ψi

〉
.

We are now ready to bound the expected distance between the ideal and the real
case:
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(3.77)
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É ε

2
+ E

k1,k2

∥∥∥∥∥∥∥α0U0
∑

i
βi

∣∣ψi
〉−

 ∑
`:V †

k1
P`Vk1∈Preal

α`(−1)(`,k2)Sp (Qk1,`⊗U`)
∑

i
βi

∣∣ψi
〉

∥∥∥∥∥∥∥
2

.

(3.79)

The first inequality is the triangle inequality, and the second one follows from the fact
that 1

2

∥∥∣∣ϕ〉〈
ϕ

∣∣− ∣∣ψ〉〈
ψ

∣∣∥∥
tr É ‖ ∣∣ϕ〉− ∣∣ψ〉‖2 [Por17, Lemma C.2] (where the latter is the

vector 2-norm, see Section 2.4.3).
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. Then,

continuing our derivation from Equation (3.79),
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|α`|2
〈
ψi

∣∣ (Qk1,`⊗U †
`

)(Qk1,`⊗U`)
∣∣ψi ′

〉
, (3.83)

by Jensen’s inequality and by Lemma 2.4.7. This last line can be greatly simplified to

= ε

2
+

√√√√E
k1

∑
i

∣∣βi
∣∣2 ∑

6̀=0:V †
k1

P`Vk1∈Preal

|α`|2
〈
ψi

∣∣ψi 〉 (3.84)

= ε

2
+

√√√√E
k1

∑
6̀=0:V †

k1
P`Vk1∈Preal

|α`|2 (3.85)
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= ε

2
+

√∑
6̀=0
E
k1

δ(V †
k1

P`Vk1∈Preal)
|α`|2 (3.86)

É ε

2
+

√∑
6̀=0
ε |α`|2 (3.87)

É ε

2
+p

ε. (3.88)

The first inequality is again due to the strong-purity-testing property of the code
{Vk1 }K1 . This concludes the derivation of Equation (3.58).

3.7 The strong trap code is strong purity testing

Theorem 3.6.1 already gives us a quantum-ciphertext-authenticating code with key
recycling: the Clifford code. However, as explained in Section 3.3, the Clifford code
requires significant resources from the encoding party, making it less suitable for
delegated quantum computation. In this section, we therefore present a strong-purity-
testing variation on the trap code, the strong trap code (already briefly discussed in
Section 3.3.4), which does allow for computation on the ciphertexts in a meaningful
and efficient way. By Theorem 3.6.1, this construction immediately gives rise to a
ciphertext authentication scheme with key recycling (QCA-R).

The strong trap code will be based on a family of CSS codes. In Sections 3.7.1
and 3.7.2, we describe the properties that we want this family of codes to satisfy. In
Section 3.7.3, we construct a family of CSS codes that satisfies those two properties,
and in Section 3.7.4, we will use this family to detail the construction of the strong
trap code and to prove that it is strong purity testing.

The strong trap code requires the existence of a family of quantum error-correcting
codes with two specific properties: a high benign distance, and weight sparsity. We
define these properties first.

3.7.1 Benign distance

If a QECC has distance d , it is not necessarily able to detect all Pauli errors of weight
less than d . For example, if one of the qubits in a codeword is in the state |0〉, then a
Pauli-Z remains undetected. In general, any Pauli error that stabilizes all codewords
will remain undetected by the code. Of course, such an error does not directly cause
harm or adds noise to the state, because it effectively performs the identity operation.
However, in an adversarial setting, even such “benign” Pauli errors indicate that
someone tried to modify the state.

As an alternative to Definition 3.2.5, we consider a distance measure for quantum
error-correcting codes that describes the lowest possible weight of a stabilizer:
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Definition 3.7.1 (Benign distance). The benign distance of an [[n,m]] code is the
minimum weight of a nonidentity Pauli P` such that P` |xL〉 = |xL〉 for all x ∈ {0,1}m . If
such P` does not exist, the benign distance is ∞.

To distinguish the benign distance from the notion of distance defined in Defini-
tion 3.2.5, we will often use the term conventional distance to refer to the latter.

The benign distance is not in a fixed relation to the conventional distance. For
example, the [[7,4]] Steane code has distance 3, but benign distance 4. On the other
hand, the [[49,1]] concatenated Steane code has distance 9, but a benign distance
of only 4 (any nonidentity stabilizer for the [[7,4]] Steane code is also a stabilizer on
the [[49,1]] code if it is concatenated with identity on the other blocks). Even though
the two quantities do not bound each other in general, we observe that the benign
distance of weakly self-dual CSS codes (i.e., CSS codes constructed from a weakly
self-dual classical code) grows with their conventional distance:

Lemma 3.7.2. Let C1 an C2 be two classical linear codes such that C2 ⊆C1 and C⊥
1 =C2.

Then the benign distance of C SS(C1,C2) is greater than or equal to its conventional
distance.

Proof. Let d denote the distance of the classical code C1. By the construction of CSS
codes, C SS(C1,C2) also has (conventional) distance d .

Also by construction, the check matrix of C SS(C1,C2) is given by[
H(C⊥

2 ) 0
0 H(C1)

]
=

[
G(C2) 0

0 G(C2)

]
, (3.89)

where G(·) the generator matrix (see Equation (3.3)).
The rows of G(C2) form a basis for the codewords in C2. Since C1 has distance d ,

and C2 ⊆C1, any row in G(C2), and any linear combination of these rows, has weight
at least d . Thus, any linear combination of rows in the above check matrix also has
weight at least d .

The rows of the check matrix generate the stabilizers of the code (see Section 3.2.2).
We conclude that the stabilizers of the code C SS(C1,C2) all have weight at least d , and
therefore the benign distance of the code is at least d .

Furthermore, if the CSS code is built from a so-called punctured classical code,
then its distance (and therefore benign distance) is high.

Lemma 3.7.3. Let C be a classical [n,m,d ] self-dual linear code for some d > 1. Assume
w.l.o.g.6 that not all codewords in C end in 0. Define

C1 := {c ∈ {0,1}n−1 | c0 ∈C ∨ c1 ∈C }

and C2 :=C⊥
1 . Then C SS(C1,C2) is an [[n −1,1,d ′]] code with d ′ ∈ {d −1,d} and with

benign distance db Ê d ′ Ê d −1.
6If they do, pick a different position to puncture at. Since d 6= 0, such a position always exists.
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Proof. The code C1 is a [n −1,m,d ′] code for some d ′ ∈ {d −1,d}. Firstly, it has length
n −1, because one bit is removed (punctured) from the codewords of C . Secondly,
it has rank m: there are no two codewords in C that differ at only the punctured
bit (since d > 1), and so the punctured versions of two distinct codewords are also
distinct. Thirdly, it has distance d −1, again because one bit is removed from the
codewords in C which all had weight at least d .

In order to prove the statement of the lemma, we need to show two things: firstly,
that C2 has rank m −1 (from which the parameters of the CSS code will follow), and
secondly, that C2 ⊆ C1 (from which db Ê d ′ will follow by Lemma 3.7.2, and which
shows that C1 and C2 are valid candidates for the CSS construction).

We start by showing a stronger version of the second claim, namely that C2 = {c2 |
c20 ∈C }. The latter set is then clearly a subset of C1. For the forward inclusion, pick
an arbitrary c2 ∈C2. For all c ∈C , which by definition of C1 we can write as c = c1b
for c1 ∈C1 and b ∈ {0,1}, it follows that 〈c20,c〉 = 〈c20,c1b〉 = 〈c2,c1〉+0 = 0. The last
equality follows from the fact that C2 =C⊥

1 . And so, c20 ∈C⊥ =C (as C is self-dual).
For the other inclusion, pick a c2 ∈ {c2 | c20 ∈C }. To show that c2 ∈C2 =C⊥

1 , we show
that 〈c1,c2〉 = 0 for all c1 ∈C1: let c1 ∈C1, and note that by definition, there is a b ∈ {0,1}
such that c1b ∈C . Then 〈c1,c2〉 = 〈c1b,c20〉 = 0, as C is self-dual.

It remains to show that |C2| = 1
2 |C1|, i.e., C2 has rank m −1. For this, the stronger

statement C2 = {c | c0 ∈C } proven above will be useful. To see that |{c | c0 ∈C }| = 1
2 |C1|,

consider a basis {v1, . . . , vm} for C , and let I ⊆ [m] be the set of indices i such that
vi [n] = 1 (recall that we assumed without loss of generality that I 6= ;). Note that all x ∈
{0,1}m represent a (unique) codeword c = x1v1+x2v2+·· ·+xm vm of C , and conversely
every codeword in C is represented by some x ∈ {0,1}m as x1v1+x2v2+·· ·xm vm . Since
I is nonempty, exactly half of all x ∈ {0,1}m have

∑
i∈I xi = 0 mod 2 (resulting in the

nth bit of c being 0), and exactly half have
∑

i∈I xi = 1 mod 2 (resulting in the nth
bit of c being 1). Thus, exactly half of the elements in C are of the form a0 for some
a ∈ {0,1}n−1. Since d > 1, and so distinct codewords in C are punctured to distinct
codewords in C1, the statement |{c | c0 ∈C }| = 1

2 |C1| follows.
We may conclude that the rank of C2 is m−1. Thus, C SS(C1,C2) is an [[n−1,1,d ′]]

code for d ′ ∈ {d −1,d}.

3.7.2 Weight sparsity

We define a second property of interest: weight sparsity. Intuitively, weight sparsity
means that for any set of X-, Y-, and Z-weights, randomly selecting a Pauli operator
with those weights only yields a stabilizer with very small probability. This probability
should shrink whenever the codeword length grows; for this reason, we consider
weight sparsity as a property of code families rather than of individual codes.

Definition 3.7.4 (Weight-sparse code family). Let (Ei )i∈N be a family of quantum
error-correcting codes with parameters [[n(i ),m(i ),d(i )]]. For each i ∈N, and for all
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nonnegative integers x, y, z such that x + y + z É n(i ), let Ai (x, y, z) denote the set of
n(i )-qubit Paulis with X-weight x, Y-weight y , and Z-weight z. Let Bi (x, y, z) denote
the set of benign Paulis in Ai (x, y, z).

The family (Ei )i∈N is weight-sparse if the maximum benign ratio

f (i ) := max
x,y,z

x+y+zÉn(i )

|Bi (x, y, z)|
|Ai (x, y, z)|

is negligiblein n(i ).

As it turns out, for CSS-code families it suffices to show that the family is X-weight
sparse, as illustrated by the definition and lemma below.

Definition 3.7.5 (X-weight-sparse code family). Let (Ei )i∈N be a family of quan-
tum error-correction codes with parameters [[n(i ),m(i ),d(i )]], and define the sets
Ai (x, y, z) and Bi (x, y, z) as in Definition 3.7.4. Moreover, define AX

i (x) := Ai (x,0,0)

and BX
i (x) := Bi (x,0,0).

The family (Ei )i∈N is X-weight sparse if the function

fX(i ) := max
wÉn(i )

|BX
i (w)|

|AX
i (w)|

is negligible in n(i ).

Note that for weakly self-dual CSS codes, X-weight sparsity immediately implies
Z-weight sparsity (defined analogously): by construction, the stabilizers of a weakly
self-dual CSS code are are symmetric in their X and Z stabilizers (see Equation (3.89)).
It also implies general weight sparsity:

Lemma 3.7.6. If the codes in the family (Ei )i∈N are all CSS codes, and the family is
X-weight sparse, then the family is also weight sparse.

Proof. Recall from Section 3.2.2 that a CSS code has a stabilizer generating set con-
taining elements that are built up of either exclusively X and I (we will call these
X-stabilizers), or exclusively Z and I (which we will call Z-stabilizers). Thus, any stabi-
lizer P` for the CSS code can be written as a product P`x P`z of an X-stabilizer P`x and
a Z-stabilizer P`z .

Consider a code Ei in the family, and arbitrary nonnegative integers x, y, z such
that x + y + z É n(i ). Then every element of Ai (x, y, z) can be constructed by first
selecting a Pauli P`x of the appropriate weight, and then selecting a Pauli P`z of the
appropriate weight that overlaps with P`x at an appropriate number of positions:

Ai (x, y, z) = {P`x P`z | P`x ∈ AX
i (x + y) and P`z ∈ AZ

i (y + z | P`x , y)}, (3.90)



3.7. The strong trap code is strong purity testing 71

where AZ
i (y + z | P`x , y) denotes the subset of Ai (0,0, x + y) that overlap with P`x on

exactly y positions. Note that for all P`x ∈ AX
i (x + y),∣∣∣AZ

i (y + z | P`x , y)
∣∣∣= ∣∣∣AZ

i (y + z | P`0 , y)
∣∣∣ , (3.91)

for the canonical P`0 :=X⊗(x+y)I⊗(n(i )−x−y). Hence,∣∣Ai (x, y, z)
∣∣= ∣∣∣AX

i (x + y)
∣∣∣ · ∣∣∣AZ

i (y + z | P`0 , y)
∣∣∣ . (3.92)

Similarly, define BZ
i (y + z | P`x , y) to be the benign subset of AZ

i (y + z | P`x , y). Using
the same reasoning as above, we can arrive at the inequality∣∣Bi (x, y, z)

∣∣= ∣∣∣BX
i (x + y)

∣∣∣ · ∣∣∣BZ
i (y + z | P`0 , y)

∣∣∣É ∣∣∣BX
i (x + y)

∣∣∣ · ∣∣∣AZ
i (y + z | P`0 , y)

∣∣∣ .

(3.93)

Combining the above results, we conclude that for all nonnegative integers x, y, and z
such that x + y + z É n(i ),∣∣Bi (x, y, z)

∣∣∣∣Ai (x, y, z)
∣∣ É

∣∣BX
i (x + y)

∣∣ · ∣∣AZ
i (y + z | P`0 , y)

∣∣∣∣AX
i (x + y)

∣∣ · ∣∣AZ
i (y + z | P`0 , y)

∣∣ =
∣∣BX

i (x + y)
∣∣∣∣AX

i (x + y)
∣∣ . (3.94)

Maximizing over x, y, z on both sides of the inequality, and noting that x + y É n(i ),
the statement of the lemma follows.

3.7.3 A high-benign-distance, weight-sparse QECC family

In this subsection, we construct a family of quantum error-correcting codes from a
punctured version of classical Reed–Muller codes [Sho96; Pre97]. We show that it has
distance and benign distance O(

p
n(i )), where n(i ) is the codeword length of the i th

code in the family, and that it is weight sparse.
Reed–Muller codes are a class of codes based on polynomials on the field Fa

2 for
some a ∈N. Every polynomial on the field is associated with a vector of length 2a ,
representing the values of that polynomial on every possible input. The Reed–Muller
code R(i , a) consists of all these vectors for polynomials of degree up to i . Increasing i
while keeping a constant results in a higher-ranked code, but with a smaller distance.
For a discussion, see [Pre97, Chapter 7].

For our purposes, we will be interested in Reed–Muller codes where a scales with
i as a = 2i +1 (for i ∈ N), as these codes happen to be self-dual. They have code-
word length 22i+1, rank 22i , and distance 2i+1 [Pre97]. Instantiating the construction
in Lemma 3.7.3 with R(i ,2i + 1), we see that the resulting quantum code Ri is an
[[n(i ),m(i ),d(i )]] code with n(i ) = 22i+1 −1, m(i ) = 1, and d(i ) = 2i+1 −1. In the re-
sulting family (Ri )i∈N, the codeword length grows approximately quadratically with
the desired distance (since n(i ) = 1

2 (d(i )+1)2 +1). The benign distance is also high, at
least d(i )−1.
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Lemma 3.7.7. The family (Ri )i∈N of quantum error-correction codes, where Ri is con-
structed by puncturing the self-dual Reed–Muller code R(i ,2i +1), is weight sparse.

Proof. Since all the codes Ri are CSS codes, by Lemma 3.7.6 we only need to show
that the family is X-weight sparse, i.e.,

max
wÉn(i )

∣∣BX
i (w)

∣∣∣∣AX
i (w)

∣∣ É negl(n(i )) (3.95)

Recall from Lemma 3.7.6 that AX
i (w) refers to the set of Paulis consisting of w Pauli-Xs

and n(i )−w identity operations, in any order. BX
i is the benign subset of AX

i .

The cardinality of AX
i (w) can be expressed as

(n(i )
w

)
. Define Ci ,1 := Ri and Ci ,2 := R⊥

i .
By construction of Ri , all its X-stabilizers are generated by the generators of Ci ,2 (see
also the proof of Lemma 3.7.2). Hence, the quantity BX

i (w) is equal to |Ci ,2(w)|, the
number of codewords in Ci ,2 of weight w . This in turn is upper bounded by |Ci ,1(w)|,
where Ci ,1 is the punctured Reed–Muller code. (Ci ,2 is the even subcode of Ci ,1.) Since
1n(i ) 6∈Ci ,2 and so |Ci ,2(n(i ))| = 0, it suffices to show that

max
wÉn(i )−1

∣∣Ci ,1(w)
∣∣(n(i )

w

) É negl(n(i )). (3.96)

First, note that since 1n(i ) ∈ Ci ,1, and so for every string s ∈ Ci ,1 also 1n(i ) ⊕ s ∈ Ci ,1,
there are an equal amount of strings with weight w in the code as with weight n(i )−w .
Because the denominator is also the same when exchanging w with n(i )−w , it suffices
to consider only those w ∈ {1, . . . , (n(i )−1)/2}. We find an upper bound to the above
expression, for three separate cases:

0 < w < d(i ): The bound follows directly from the error-correcting property of the
code: there is no codeword in Ci ,1 with weight less than the distance d(i ).
Hence,

∣∣Ci ,1(w)
∣∣/

(n(i )
w

)= 0 for these values of w .

d É w < n(i )
8 : For this case, we can use the Ray-Chaudhuri-Wilson inequality (see

Lemma 2.2.1). Consider two (nonidentical) strings s, t ∈Ci ,1 with |s| = |t | = w .
Then, since Ci ,1 is a linear code, if we define u = s ⊕ t , we have that also u ∈Ci ,1.
In particular, |u| Ê d . Now write |u| = |s|+ |t |−2|s ∧ t | Ê d(i ), so that we have

|s ∧ t | É 1

2
(|s|+ |t |−d(i )) = w − d(i )

2
. (3.97)

Now, instead of bitstrings, we view all strings in Ci ,1 of weight w as a family Fw

of subsets of [n(i )]. To be more precise, define Fw = {
{ j | j ∈ [n(i )], s j = 1} | s ∈

Ci ,1(w)
}
. We will bound the size of this set family, noting that |Fw | = |Ci ,1(w)|.

From the previous argument, we have ∀F,G ∈Fw ,F 6=G : |F ∩G| É w − d(i )
2 .
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From the Ray-Chaudhuri–Wilson inequality, it then immediately follows that

|Fw | É
(

n(i )

w − d(i )
2

)
. (3.98)

Now, it remains to analyze the ratio of this bound to the total number of strings
of weight w .

|Fw |(n(i )
w

) É
( n(i )

w− d(i )
2

)
(n(i )

w

) (3.99)

= w !(n(i )−w)!

(w − d(i )
2 )!(n(i )−w + d(i )

2 )!
(3.100)

= w
d(i )

2

(n(i )−w + d(i )
2 )

d(i )
2

(3.101)

É
(

n(i )
8

) d(i )
2

(
7n(i )

8

) d(i )
2

(3.102)

É
(

1

7

) d(i )
2

. (3.103)

Here, mk is the falling factorial.7 The second-to-last inequality is by filling in
the worst case for w (and dropping the additional d(i )/2 in the denominator).
The final inequality follows by suitably grouping terms in the falling factorial
and noting that x−k

y−k É x
y for all 0 É x É y and 0 É k < y .

Since for the Reed–Muller code the distance d(i ) is Ω(
p

n(i )), this bound is
negligible in n(i ).

n(i )
8 É w É n(i )−1

2 : For these weights we will compare the total number of elements of

Ci ,1 with
(n(i )

w

)
, and show that

|Ci ,1|(n(i )
w

) = negl(n(i )).

The total number of elements of Ci ,1 is 222i = 2
1
2 (n(i )+1). Without loss of general-

ity, assume we look at w = n(i )
8 , since the quantity we are computing,

|Ci ,1|(n(i )
w

) , is

monotonically decreasing for all w in the range we are considering. Using gen-
eral bounds on factorials (

p
2πkk+1/2e−k É k ! É ekk+1/2e−k ) to bound

( n(i )
n(i )/8

)
,

7i.e., mk = m(m −1) · · · (m −k +1).
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we can derive that∣∣Ci ,1
∣∣(n(i )

w

) É e2pn(i )p
2π

·2
( 1

8 + 7
8 log2

7
8

)
n(i )+( 1

2 log2
7
8 −1

)
(3.104)

< 2−0.043n(i )+ 1
2 log2(n(i ))+1, (3.105)

which is negligible in n(i ).

Combining the cases in the above analysis, note that the maximum of BX
i (w)/AX

i (w)
over all w É n(i ) is upper bounded by the maximum of two negligible functions, which
is itself negligible in n(i ). As an aside, we note that the upper bound for the second

case in the analysis,
( 1

7

) d(i )
2 , exceeds the upper bound for the third case whenever

i Ê 6.

3.7.4 The strong trap code

With the terminology described in the previous subsections, we can now give a more
formal definition of the strong trap code from Section 3.3.4. We define the code in
terms of a parameter i , which is used to select the appropriate Reed–Muller code. For
adequate security of the strong trap code, the parameter i should be chosen such that
n(i ) is the desired security parameter.

Definition 3.7.8 (Strong trap code). Let (Ei )i∈N be a weight-sparse family of weakly
self-dual CSS codes with parameters [[n(i ),1,d(i ) =Ω(

p
n(i )]] and benign distance

Ω(
p

n(i )). Then the i th strong trap code {Vi ,k }k∈Ki encodes m = 1 qubit using t =
3n(i )−1 tags with the unitaries Vi ,k :=πk E⊗3

i H2n(i )+1 (where H2n(i )+1 = I⊗2n(i ) ⊗H⊗
I⊗(n(i )−1)).

Theorem 3.7.9. The strong trap code is a strong-purity-testing code with error negligi-
ble in n(i ).

Proof. Consider an arbitrary i and nonidentity Pauli P` ∈ P3n(i )\{I⊗3n(i )}. Let wx

and wz denote the X-weight and Z-weight (respectively) of P`, and note that their
maximum max(wx , wz ) > 0.

We consider the probability (over k) that P`′ :=π†
k P`πk remains undetected by the

code Ei and the traps. Because Ei is a CSS code, it detects X and Z errors separately:
let us write P`′ = Px Pz with Px ∈ {I,X}⊗3n(i ) and Pz ∈ {I,Z}⊗3n(i ), and focus first on the
probability that Px remains undetected, i.e., the probability that

H2n(i )+1(E †
i )⊗3Px E⊗3

i H2n(i )+1 ∈P1 ⊗ {I,Z}⊗3n(i )−1. (3.106)
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Because of the permutation πk , Px is a random Pauli in {I,X}⊗3n(i ) with weight wx .
(Note that Pz is also a random Pauli with weight wz , but is correlated with Px : any
overlap in the locations of X and Z operators in P` is preserved by the permutation.)

Consider all possible values of wx = w1 +w2 +w3, where w1 denotes the weight
of Px on the first (data) codeword, w2 the weight on the second (|0〉-trap) codeword,
and w3 the weight on the third (|+〉-trap) codeword:

• If wx = 0, then the Pauli Px is identity, and remains undetected with probability
1.

• If 0 < wx < d(i ), then 0 < w j < d(i ) for at least one j ∈ {1,2,3}. Ei detects an
error on the j th block with certainty, since the weight of the error is below the
distance and the benign distance.

• If d(i ) É wx É 3n(i )−d(i ), the attack Px will likely be detected on the second
block, the |0〉-trap. We can be in one of four cases:

– w2 > 0 and Px is detected in the second block by the CSS code Ei .

– w2 > 0 and Px acts as a logical operation on the second block. Since Px

consists of only I’s and X’s, this logical operation can only be an X by the
construction of CSS codes. In this case, Px is detected by the projection
that checks whether the trap is still in the |0〉 state.

– w2 > 0 and Px acts as a stabilizer on the second block, and remains unde-
tected on that block. However, by the weight-sparsity of the code family,
the probability that this is the case is at most f (i ) (see Definition 3.7.4),
which is negligible in n(i ).

– w2 = 0. In this case, Px acts as identity on the second block. The probabil-
ity that this case occurs, however, is small:

Pr
k

[w2 = 0] =
(2n(i )

wx

)
(3n(i )

wx

) < (
2

3

)wx

É
(

2

3

)d(i )

. (3.107)

The first inequality holds in general for binomials, and the second one
follows from the fact that wx Ê d(i ). Since d(i ) =Ω(

p
n(i )), this probability

is negligible in n(i ).

In total, the probability of the attack remaining undetected for d(i ) É wx É
3n(i )−d(i ) is negligible in n(i ).

• If 3n(i )−d(i ) < wx < 3n(i ): as in the second case, there is at least one j ∈ {1,2,3}
such that n(i )−d(i ) < w j < n(i ), causing the attack to be detected (recall that
X⊗3n(i ) is a logical X, and therefore this mirrors the 0 < wx < d(i ) case).
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• If wx = 3n(i ), then the logical content of the second block, the |0〉-trap, is flipped.
This is detected with certainty as well.

We see that unless wx = 0, the Pauli Px remains undetected only with probability at
most

max

{
f (i ),

(
2

3

)d(i )
}

. (3.108)

For a weight-sparse CSS family (i.e., f (i ) is negligible in n(i )) with distance d(i ) =
Ω(

p
n(i )), this probability is negligible in n(i ).

A similar analysis can be made for Pz : it is always detected with high probability,
unless wz = 0. We stress that these probabilities are not independent. However, we
can say that

Pr
k

[Px and Pz undetected] É min

{
Pr
k

[Px undetected], Pr
k

[Pz undetected]

}
, (3.109)

and since at least one of wx and wz is nonzero, this probability is negligible in n(i ).

When the trap code is instantiated with punctured Reed-Muller codes, then the

weight-sparsity function f (i ) = ( 1
7

) d(i )
2 whenever i Ê 6 (see Lemma 3.7.7). Therefore,

for this choice of underlying code, the dominant term in the error calculation is simply( 2
3

)d(i )
. For example, if one wanted to construct a strong-purity-testing code with

error ε < 10−20 using this construction, one would need to use the 7th code in the
code family, which requires codewords of 215 −1 physical qubits.

3.8 Simultaneous encryptions with key reuse

Earlier work on key reuse for quantum authentication deals explicitly with key recy-
cling, the decision to reuse (part of) a key for a new encryption after completing the
transmission of some other quantum message. The key is reused only after the honest
party decides whether to accept or reject the first message, so recycling is a strictly
sequential setting.

If Construction 3.2.8 is instantiated with a strong-purity-testing code (such as the
strong trap code), the resulting scheme is able to handle an even stronger parallel
notion of key reuse. As long as the one-time pads are independent, it is possible to
encrypt multiple qubits under the same code key while preserving security. Even if
the adversary is allowed to interactively decrypt a portion of the qubits one-by-one,
the other qubits will remain authenticated. This property is especially important for
the strong trap code: computing on data authenticated with the strong trap code
requires all qubits to be encrypted under the same permutation key.
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Figure 3.5: The real channelR. The “key reveal box” at the end corresponds to the key-recycling
term in the real channel, the content of which depends on whether the scheme accepts or
rejects.

The original trap code is secure in this setting (as long as the one-time pads are
fresh [BGS13, Section 5.2]), but only if all qubits are decrypted at the same time. If
some qubits can be decrypted separately, the adversary can sacrifice a few encoded
qubits to apply the attack described in Section 3.3.2, and deduce the location of the
traps. The authentication on the remaining qubits is then completely broken.

Suppose we encrypt two messages using an authentication scheme based on a
strong-purity-testing code {Vk0 }K0 , using the same code key k0 but a fresh one-time
pad. If we then decrypt the first message, the scheme is still QCA-R-authenticating
on the second message with only slightly worse security, as described by the following
theorem. The argument easily extends to any polynomial number of authenticated
qubits.

Theorem 3.8.1. Let (KeyGen,Enc,Dec) be an ε-QCA-R scheme resulting from Con-
struction 3.2.8, using a strong-purity-testing code {Vk0 }K0 . Let M1, M2 denote the
plaintext registers of the two messages, C1 = M1T1,C2 = M2T2 the corresponding ci-
phertext registers, and R a side-information register. Let A1, A2 be arbitrary adversarial
channels. Define the effective real channel Realk0,k1,k2 , for keys k0,k1,k2, as

DecC2→M2
k0,k2

◦AM1,C2,R
2 ◦DecC1→M1

k0,k1
◦AC1,C2,R

1 ◦
(
EncM1→C1

k0,k1
⊗EncM2→C2

k0,k2

)
.

(See Figure 3.5 for a pictorial representation.) Define the channels Πacc and Πrej as
projecting on the accepting and rejecting outcomes of the decryption procedure, respec-
tively. That is,

ΠM
acc : ρ 7→

(
IM −|⊥〉〈⊥|M

)
ρ
(
IM −|⊥〉〈⊥|M

)†

ΠM
rej : ρ 7→ |⊥〉〈⊥|M ρ

(
|⊥〉〈⊥|M

)†
.
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Then there exist a simulator S =Sacc+Srej where Sacc is as in Definition 3.2.4, and Srej

is such that the key-recycling real channel

R : ρM1M2R 7→ Ek0,k1,k2

[(
Π

M2
acc ◦Realk0,k1,k2 (ρ)

)
⊗|k0,k2〉〈k0,k2|

+
(
Π

M2
rej ◦Realk0,k1,k2 (ρ)

)
⊗|k0〉〈k0|

]
is 2ε-close in diamond-norm distance to the ideal channel,

I : IM2 ⊗Sacc ⊗Ek0,k2 [|k0,k2〉〈k0,k2|] + |⊥〉〈⊥|M2 TrM2 ⊗ Srej ⊗Ek0 [|k0〉〈k0|] .

That is, the scheme is 2ε-QCA-R-authenticating on the second qubit.

Proof sketch. As a first step, we rewrite the encryption of the second qubit as using
encoding and teleportation, by using the equivalence between applying a random
quantum one-time pad and teleporting a state (see Section 2.4.7). The encryption
of the second qubit can then be thought of as happening after decryption of the
first qubit. Next, we apply QCA-R security of the first qubit, where we are using the
property that k0 is recycled both in the accept and the reject case. Finally we undo
the rewrite and can directly apply QCA-R security on the remaining state.

Proof. First, note that the one-time-pad key k1 is picked completely at random, used
only for the encryption and decryption of the first qubit. In particular, in the final
situation as represented by R we do not require key recycling for k1.

A quantum one-time pad that uses a uniformly random key is completely equiva-
lent to a teleportation. Therefore, in the real channel R, it does not matter whether
the key k2 is picked randomly beforehand, or whether it is the random outcome k̂2 of
a teleportation measurement. We denote the channel where the key of the second
qubit comes from teleportation by R2 (see Figure 3.6). Because this rewriting doesn’t
change functionality, we have that ‖R2−R‖¦ = 0.

While Figure 3.6 likely provides the clearest description of R2, we also write out
its symbolic definition below for completeness.

Let ΓEC2→K̂2 be the quantum channel that performs a pairwise Bell measurement
between the n qubits in register E and the n qubits in C2, and stores the 2n classical
outcome bits as the “key” k̂2. That is, let

|Φk〉EC2
:=

(
n⊗

i=1
Xki

)E (
2n⊗

i=n+1
Zki

)E n⊗
i=1

∣∣Φ+〉(E)i (C2)i (3.110)

be the basis of all possible n-qubit Bell states between pairwise qubits of E and C2.
The measurement channel is then defined by the operation

ΓEC2→K̂2 (ρ) :=∑
k̂2

∣∣k̂2
〉〈

k̂2
∣∣〈Φk̂2

∣∣∣EC2
ρEC2

∣∣∣Φk̂2

〉EC2
. (3.111)
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Figure 3.6: The channel R2, which is equivalent to R. The encryption of the second qubit is
done by first encrypting it without a one-time pad (key 0), and then teleporting it through a set
of EPR pairs

∣∣Φ+〉
, yielding the key k̂2. We separate the channel into two parts, R1 and U.

Define the shorthand:

Real′M1M2R→M2RK̂2
k0,k1

:= DecC2→M2

k0,K̂2
◦AM1,C2,R

2 ◦DecC1→M1
k0,k1

◦(
AC1,D,R

1 ⊗ΓEC2→K̂2
)
◦
(
EncM1→C1

k0,k1
⊗EncM2→C2

k0,0 ⊗ ∣∣Φ+〉〈
Φ+∣∣DE

)
, (3.112)

where we slightly abuse notation in letting the final Dec use a copy of the contents of
the K̂2 register as a key. The rewritten channel becomes

R2 : ρM1M2R 7→ Ek0,k1

[(
Π

M2
acc ◦Real′M1M2R→M2RK̂2

k0,k1
(ρ)

)
⊗|k0〉〈k0|

+
(
TrK̂2

Π
M2
rej ◦Real′M1M2R→M2RK̂2

k0,k1
(ρ)

)
⊗|k0〉〈k0|

]
. (3.113)

(In the accept branch, the ΓEC2→K̂2 outputs the register K̂2, so that it is output as part
of the recycled key.) This concludes the formal definition of the channel R2.

Our next step will be to apply the QCA-R security of the first qubit. Note that
none of the registers M2,E ,K̂2 are used by A1 in the channel R2. Thus, we can freely
shift the timing of the encryption and Bell measurement of the second qubit around,
and make them occur only after decryption of the first qubit. Doing so allows us to
view R2 as a concatenation of two channels (see Figure 3.6), where the first (R1) only
depends on k0,k1, and the second (UK0 ) on k0,k2.

More formally, define R1 as the real channel (as in Definition 3.2.4) of adversary

A1 acting on qubit 1. That is, RM1DR→M1RK0K1
1 equals the map
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Figure 3.7: The channel R3, where the real channel R1 is replaced by the ideal channel I1.
The dotted box represents the conditional replacement of M1 by the state |⊥〉〈⊥|, in the reject
case of the simulator S1.

ρ 7→ E
k0,k1

[(
Π

M1
acc ⊗DecC1→M1

k0,k1
◦AC1,D,R

1 ◦EncM1→C1
k0,k1

)
(ρ)⊗|k0,k1〉〈k0,k1|

+
(
Π

M1
rej ⊗DecC1→M1

k0,k1
◦AC1,D,R

1 ◦EncM1→C1
k0,k1

)
(ρ)⊗|k0〉〈k0|

]
. (3.114)

Then we can write

R2(ρ) =UK0 ◦ (TrK1R
M1DR
1 ⊗ IE ,C2 )(ρM1,M2,R ⊗ ∣∣Φ+〉〈

Φ+∣∣DE ) , (3.115)

where we emphasize that the key k1 is not revealed to the second channel UK0 .

By QCA-R security of the scheme, we know that there exists a simulator SD,R
1 =

S1
acc +S1

rej such that the corresponding ideal channel I1 is ε-close to R1 in the dia-

mond norm. The ideal channel IM1DR→M1RK0K1
1 is given by

ρ 7→(
IM1 ⊗S1

acc

)(
ρ⊗Ek0,k1 [|k0,k1〉〈k0,k1|]

)
+

(
|⊥〉〈⊥|M1 TrM1 ⊗S1

rej

)(
ρ⊗Ek0 [|k0〉〈k0|]

)
. (3.116)

Within R2, we can replace R1 by its ideal channel I1. Call the resulting channel
R3 (see Figure 3.7). Since 1

2‖R1−I1‖¦ É ε, and the distance between any two channels
is monotonically nonincreasing when concatenated with another quantum operation,
we have that 1

2‖R2 −R3‖¦ É ε.
By replacing the real channel on the first qubit by the ideal one, we have effec-

tively gotten rid of any prior dependence of key k0. We can now shift back from the
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Figure 3.8: An equivalent representation of the channel R3, where the encryption via telepor-
tation is replaced with a regular encryption map for the second qubit.

teleportation point-of-view, and encrypt the second qubit at the start of the circuit
again (see Figure 3.8). Doing so does not change the functionality of the channel.

On the channel depicted in Figure 3.8, we can apply the security of QCA-R again,
with as adversarial map

A2 ◦ (IM1 ⊗S1
acc +|⊥〉〈⊥|M1 TrM1 ⊗S1

rej). (3.117)

Applying the security definition gives rise to an ideal channel I such that 1
2‖I−R3‖¦ É

ε.
Earlier on, we established that 1

2‖R−R2‖¦ = 0, and 1
2‖R2 −R3‖¦ É ε. By triangle

inequality, the original real channel R is at most 2ε from the ideal channel I.

3.9 Conclusion

We presented a new security definition, QCA-R, for ciphertext authentication with key
recycling, and showed that schemes based on purity-testing codes satisfy quantum
ciphertext authentication, while strong purity testing implies both ciphertext authen-
tication and key recycling. This is analogous to the security of quantum plaintext-
authentication schemes from purity-testing codes [BCG+02; Por17].

Additionally, we constructed the strong trap code, a variant of the trap code which
is a strong-purity-testing code and therefore is QCA-R secure (as well as secure under
all notions of plaintext authentication). This new scheme can strengthen security
and add key recycling to earlier applications of the trap code. It is also applicable in
a wider range of applications than the original trap code, because encrypted qubits
remain secure even if other qubits sharing the same key are decrypted earlier.
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A potential application of the strong trap code is the design of a quantum CCA2-
secure encryption scheme [AGM18, Definition 9] that allows for computation on the
encrypted data. By only using the pseudo-random generator for the one-time-pad
keys, and recycling the key for the underlying error-correcting code, this security level
could be achieved.

3.9.1 Future directions

As future work, our definition of QCA-R could be generalized in different ways.
First, one can consider a variant of the definition in the abstract-cryptography or
universal-composability framework, in order to ease the composition with other cryp-
tographic primitives. Second, because it can be useful to authenticate measurements
in delegated-computation applications, one could extend the definition of QCA-R to
deal with the measurement of authenticated data. We expect no real obstacles for this
extension of the definition, and refer to comparable work on the original trap code for
guidance [BGS13, Appendix B.2].

Quantum message authentication can also be explored in a much broader sense.
The notions described in this chapter are all forms of one-time authentication, where
security is guaranteed as long as the key is used only once. In Section 3.8, we saw that
for codes based on strong purity testing, part of the key could be used several times,
simultaneously, as long as the one-time-pad part of the key was refreshed. It may
be possible to adapt the code to allow reusing the entire key. Because of the relation
between quantum authentication and quantum encryption, such codes would likely
require computational assumptions: for example, one could use a classical authenti-
cated encryption scheme to encrypt the pad keys. We take this approach in Chapter 5
in the context of homomorphic encryption, but only consider security in a single
round.

Another direction to explore could be authentication under the presence of noise.
In this work, we think of our communication channels and computation steps as
being perfectly noiseless, but in a real-world application this will not be the case. To
be able to verify authenticated messages in such situations, one can add an error-
correcting code on top of the authentication code. However, it would be more efficient
to use the error-correcting properties inside the quantum authentication code directly.
The receiver may decide to accept a message if only a small amount (or a certain
pattern) of error occurs in the tag state, since that could be attributed to natural noise.
One would have to investigate whether such a change to the protocols would still
yield sufficiently secure authentication.
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4.1 Introduction

In secure multi-party computation (MPC), two or more players want to jointly com-
pute some publicly known function on their private data, without revealing their
inputs to the other players. Since its introduction by Yao [Yao82], MPC has been
extensively developed in different setups, leading to applications of both theoretical
and practical interest (see, e.g., [CDN15] for a detailed overview).

With the emergence of quantum technologies, it becomes necessary to understand
its consequences in the field of MPC. First, classical MPC protocols have to be secured
against quantum attacks. But also, the increasing number of applications where
quantum computational power is desired motivates protocols enabling multi-party
quantum computation (MPQC) on the players’ private (possibly quantum) data. In
this chapter, we focus on the second task.

MPQC was first studied by Crépeau, Gottesman and Smith [CGS02], who proposed
a k-party protocol based on verifiable secret sharing that is information-theoretically
secure, but requires the assumption that at most k/6 players are dishonest. The
fraction k/6 was subsequently improved to < k/2 [BCG+06] which is optimal for
secret-sharing-based protocols due to no-cloning. The case of a dishonest majority
was thus far only considered for k = 2 parties, where one of the two players can be
dishonest [DNS10; DNS12; KMW17]1. These protocols are based on different crypto-
graphic techniques, in particular quantum authentication codes in conjunction with
classical MPC [DNS10; DNS12] or quantum-secure bit commitment and oblivious
transfer [KMW17]. In an authentication-based protocol, the players encode their
inputs using a quantum authentication code to prevent the other, potentially adver-
sarial, players from making unauthorized alterations to their data. That way, they can
ensure that the output of the computation is in the correct logical state.

In this chapter, we propose the first secure MPQC protocol for any number k
of players in the dishonest majority setting, i.e., the case with up to k −1 colluding
adversarial players. (In the case where there are k adversaries and no honest players,
there is nobody whose input privacy and output authenticity is worth protecting.) Our
protocol builds on the authentication-based two-party protocol of Dupuis, Nielsen,
and Salvail [DNS12], which we now describe in brief.

Two-party quantum computation. The DNS protocol uses a classical MPC proto-
col, and involves two parties, Alice and Bob, of whom at least one is honestly following
the protocol. Alice and Bob encode their inputs using a technique called swaddling:
if Alice has an input qubit

∣∣ψ〉
, she first encodes it using the n-qubit Clifford code

(see Section 3.3.1), resulting in A
(|0n〉⊗ ∣∣ψ〉)

, for some random (n +1)-qubit Clifford
A sampled by Alice, where n is the security parameter. Then, she sends the state to

1Kashefi and Pappa [KP17] consider an asymmetric setting where the protocol is secure only when some
specific sets of k −1 players are dishonest.
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Bob, who puts another encoding on top of Alice’s: he creates the “swaddled” state
B

(
A

(|0n〉⊗ ∣∣ψ〉)⊗|0n〉) for some random (2n +1)-qubit Clifford B sampled by Bob.
This encoded state consists of 2n +1 qubits, and the data qubit

∣∣ψ〉
sits in the middle.

If Bob wants to test the state at some point during the protocol, he simply needs
to undo the Clifford B , and test that the last n traps are |0〉. However, if Alice wants to
test the state, she needs to work together with Bob to access her traps. Using classical
multi-party computation, they jointly sample a random (n+1)-qubit Clifford B ′ which
is only revealed to Bob, and compute a Clifford C := (I⊗n ⊗B ′)(A† ⊗ I⊗n)B † that is only
revealed to Alice. Alice, who will not learn any relevant information about B or B ′,
can use C to “flip” the swaddle, revealing her n trap qubits for measurement. After
checking that the first n qubits are |0〉, she adds a fresh (2n +1)-qubit Clifford on top
of the state to re-encode the state, before computation can continue.

Single-qubit Clifford gates are performed simply by classically updating the inner
key: if a state is encrypted with Cliffords B A, updating the decryption key to B AG†

effectively applies the gate G . See also Section 3.4 for a detailed discussion on how to
compute on Clifford-authenticated data. In order to avoid that the player holding the
inner key A skips the step of updating it to AG†, both players keep track of their keys
using a classical commitment scheme. This can be encapsulated in the classical MPC,
which we can assume acts as a trusted third party with a memory [BCG+06].

CNOT operations and measurements are slightly more involved, and require both
players to test the authenticity of the relevant states several times. Hence, the commu-
nication complexity scales linearly with the number of CNOTs and measurements in
the circuit.

Finally, to perform T gates, the DNS protocol makes use of magic states (see
Section 2.4.4). To obtain reliable magic states, Alice generates a large number of them,
so that Bob can test a sufficiently large fraction. He decodes them (with Alice’s help),
and measures whether they are in the expected state. If all measurements succeed,
Bob can be sufficiently certain that the untested (but still encoded) magic states are
in the correct state as well.

Extension to multi-party quantum computation. A natural question is how to lift
a two-party quantum computation protocol to a multi-party quantum computa-
tion protocol. We discuss some of the issues that arise from two straightforward
approaches, making them either infeasible or inefficient.

The first naive idea is trying to split the k players in two groups and make the
groups simulate the players of any two-party protocol, whereas internally, the players
run k/2-party computation protocols for all steps in the two-party protocol. Those
k/2-party protocols are in turn realized by running k/4-party protocols, et cetera, until
at the lowest level, the players can run actual two-party protocols.

Trying to construct such a composition in a black-box way, using the ideal func-
tionality of a two-party protocol, one immediately faces a problem: at the lower levels,
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players learn intermediate states of the circuit, because they receive plaintext outputs
from the ideal two-party subfunctionality. This immediately breaks the privacy of
the protocol. If, on the other hand, we required the ideal two-party functionality to
output encoded states instead of plaintexts, the size of the ciphertext would grow
at each level. The overhead of this approach would be O(nlogk ), where n Ê k is the
security parameter of the encoding: that overhead is superpolynomial in the number
of players.

Another idea is to extend the two-party protocol [DNS12] to multiple parties by
adapting the subprotocols to work for more than two players. While this approach
likely leads to a correct and secure protocol for k parties, the computational costs of
such an extension could be high. First, note that in such an extension, each party
needs to append n trap qubits to the encoding of each qubit, causing an overhead in
the ciphertext size that is linear in k. Secondly, in this naive extension, the players need
to createΘ(2k ) magic states for T gates, since each party would need to sequentially
test at least half of the ones approved by all previous players.

4.1.1 Contributions

In this chapter, we present a protocol for multi-party quantum computation that is
actively secure against up to k −1 actively colluding adversaries. Our protocol builds
on the work of Dupuis, Nielsen, and Salvail [DNS10; DNS12], and like it, assumes a
classical MPC, and achieves the same security guarantees as this classical MPC. In
contrast to the naive extension described above, the quantum round complexity of
our protocol for the computation of a circuit of {CNOT,T} depth d is O(k(d + logn)).

We remark that we achieve composable security, which is proven according to the
standard ideal-vs.-real definition (see Section 2.3.3). Like other authentication-based
protocols [DNS10; DNS12], our protocol assumes a classical MPC that is secure against
a dishonest majority, and achieves the same security guarantees as this classical MPC.
In particular, if we instantiate this classical MPC with an MPC in the pre-processing
model [BDOZ11; DPSZ12; KPR18; CDE+18], our construction yields an MPQC pro-
tocol consisting of a classical “offline” phase used to produce authenticated shared
randomness among the players, and a second “computation” phase, consisting of our
protocol, combined with the “computation” phase of the classical MPC. The security
of the “offline” phase requires computational assumptions, but assuming no attack
was successful in this phase, the second phase has information-theoretic security.

In order to achieve our result, we make two major alterations to the two-party
protocol of Dupuis et al. [DNS12] to efficiently extend it to a general k-party protocol.
We briefly describe them below.

Public authentication test. In the two-party protocol, given a security parameter n,
each party adds n qubits in the state |0〉 to each input qubit in order to authenticate it.
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The size of each ciphertext is thus 2n +1. The extra qubits serve as check qubits (or
“traps”) for each party, which can be measured at regular intervals: if they are nonzero,
somebody tampered with the state.

In a straightforward generalization to k parties, the ciphertext size would become
kn +1 per input qubit, putting a strain on the computing space of each player. In
our protocol, the ciphertext size is constant in the number of players: it is usually
n +1 per input qubit, temporarily increasing to 2n +1 for qubits that are involved in a
computation step. As an additional advantage, our protocol does not require that all
players measure their traps every time a state needs to be checked for its authenticity.

To achieve this smaller ciphertext size, we introduce a public authentication test.
Our protocol uses a single, shared set of traps for each qubit. If the protocol calls
for the authentication to be checked, only the player that currently holds the state
has to measure them. Of course, she cannot be trusted to simply honestly measure
those traps. Instead, she temporarily adds extra trap qubits, and fills them with an
encrypted version of the content of the existing traps. Now she measures only the
newly created ones. The encryption ensures that the measuring player does not know
the expected measurement outcome. If she is dishonest and has tampered with the
state, she would have to guess a random n-bit string, or be detected by the other
players. We design a similar test that checks whether a player has honestly created
the first set of traps for their input at encoding time.

Efficient magic-state preparation. For the computation of non-Clifford gates, the
protocol requires the existence of authenticated “magic states”, auxiliary qubits in
a known and fixed state that aid in the computation. In a two-party setting, one of
the players can create a large number of such states, and the other player can, if he
distrusts the first player, test a random subset of them to check if they were honestly
initialized. Those tested states are discarded, and the remaining states are used in the
computation.

In a k-party setting, such a “cut-and-choose” strategy where all players want to test
a sufficient number of states would require the first party to prepare an exponential
number (in k) of authenticated magic states, which quickly gets infeasible as the
number of players grows. Instead, we need a testing strategy where dishonest players
have no control over which states are selected for testing. We ask the first player to
create a polynomial number of authenticated magic states. Subsequently, we use
classical MPC to sample random, disjoint subsets of the proposed magic states, one
for each player. Each player continues to decrypt and test their subset of states. The
random selection process implies that, conditioned on the test of the honest player(s)
being successful, the remaining registers indeed contain encrypted states that are
reasonably close to magic states. Finally, we use standard magic-state distillation to
obtain auxiliary inputs that are exponentially close to magic states.

In Section 4.2, we discuss the precise definitions of MPC and MPQC. In Section 4.3,
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we give a basic overview of our protocol, and describe a technical tool that we will use
throughout this chapter. Section 4.4 describes details of the setup phase, including
input encoding. Sections 4.5 and 4.6 give explicit protocols for Clifford computation
and Clifford+T computation, respectively, and prove their security.

4.2 Definitions

4.2.1 Classical multi-party computation

In k-party computation, each player i ∈ [k] holds a secret input xi . The goal is to
compute a function (represented by a circuit) on the input (x1, x2 . . . , xk ). A trivial way
to do so is for all players to send their inputs to one central player, who computes
the output and announces it. However, the players want to keep their individual
inputs private, and furthermore they do not necessarily trust each other to perform
an honest computation. We thus have to employ more clever techniques in order to
achieve MPC functionality.

There are many different possible adversarial models [CDN15], so we only discuss
the main types here. In all models, we assume that there is a single adversary that
“corrupts” a number of players: behind the scenes, that single adversary replaces
all those players, sees all of their incoming communication, and can use all of that
combined information to produce their outgoing communication. Thus, when talking
about a set of dishonest players, one may think of those players as actively sharing all
their knowledge between themselves.

The first main distinction in types of adversaries is passive versus active. A passive
adversary can see the inputs of the players it corrupted, and listens in on their ingoing
and outgoing communication wires. It tries to learn as much information as possible
(about the other players’ inputs) as it can while doing so, but it cannot influence the
internal computations of the corrupted players. An active adversary, on the other
hand, is allowed to completely take over the corrupted players’ computations, and
actively deviate from the protocol, sending false messages in an attempt to learn
information or to sabotage the computation. For convenience, we will assume that
an active adversary communicates messages of appropriate sizes to honest players
at appropriate times during the protocol; if it does not, it is of course easy to detect
that adversarial action is going on. In the quantum setting, there is an intermediate
type called a specious adversary, who can deviate from the protocol, but has to be
able to revert the corrupted players’ internal memory to an “honest” state at any
time [DNS10].

The second distinction in types of adversaries is static versus dynamic (or adap-
tive). A static adversary chooses which players to corrupt before the start of the
protocol, and that choice is fixed. A dynamic adversary, on the other hand, can choose
to corrupt additional adversaries during the protocol. This choice can be based on
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any information the adversary has access to at that point in the protocol. In this
work, we will consider static adversaries, but note that if an adversary can corrupt
all-but-one player, it does not matter whether they do so at the start, or progressively
throughout the protocol.

Informally, we say that an MPC protocol is secure if the following two properties
hold: (1) the adversary gains no information about the honest players’ private inputs,
and (2) if the players do not abort the protocol, then at the end of the protocol they
share a state corresponding to the correct computation applied to the inputs of honest
players, and some choice of inputs for the dishonest (corrupted) players.

For multi-party computations where possibly more than half of the players are
corrupted by the adversary, the possibility of an “abort” in point 2 is necessary: Cleve
has shown [Cle86] that an MPC protocol against a dishonest majority cannot provide
fairness, which asks that either all parties receive the protocol output or nobody does.
In that setting, a dishonest player can always abort the protocol at any point, for
example after having learned an unfavorable outcome of the protocol, before the
honest player(s) have obtained their output(s). Hence, we have to settle for protocols
allowing abort.

The formal security of MPC is captured by an ideal functionality, from which an
actual protocol should be indistinguishable from the point of view of an environment.
Throughout this chapter, we will utilize the following ideal MPC functionality as a
black box:

Definition 4.2.1 (Ideal classical k-party stateful computation with abort). Let f1, . . . , fk

and fS be public classical deterministic functions on k +2 inputs. Let a string s repre-
sent the internal state of the ideal functionality. (The first time the ideal functionality
is called, s is empty.) Let IA Ú [k] be a set of corrupted players.

1. Every player i ∈ [k] chooses an input xi of appropriate size, and sends it (se-
curely) to a trusted third party.

2. The trusted third party samples a bit string r uniformly at random.

3. The trusted third party computes fi (s, x1, . . . , xk ,r ) for all i ∈ [k]∪ {S}.

4. For all i ∈ IA, the trusted third party sends fi (s, x1, . . . , xk ,r ) to player i .

5. All i ∈ IA respond with a bit bi , which is 1 if they choose to abort, or 0 otherwise.

6. If b j = 0 for all j , the trusted third party sends fi (s, x1, . . . , xk ,r ) to the other play-
ers i ∈ [k]\A and stores fS (s, x1, . . . , xk ,r ) in an internal state register (replacing
s). Otherwise, he sends an abort message to those players.

A few remarks about Definition 4.2.1 are in order. First, each player i gets an
individual outcome determined by the function fi . This choice provides more flexi-
bility than computing the same function f for everyone: for example, we can reveal
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the outcome of some computation to only a subset of players (by fixing fi = 0 for all
other players), or we can give every player a different random string. Note that the
description of fi is not secret for the other players: only the input xi is.

Second, the functions fi are described as deterministic functions, taking a random
string r as input. We do this in order to facilitate shared randomness: by supplying
a common reference string, the outcomes of, e.g., f1 and f2 can be random but
correlated. We do not specify an exact length for the string r , but we assume that it is
sufficiently long to supply both private and public randomness for the execution on
all functions fi .

Third, the ideal functionality has memory that can carry over through multiple
rounds of computation. The memory is represented by a string s, and at each round,
can be updated as a function fS of the previous memory, all inputs, and the random-
ness. In this work, we will mainly use the memory to store authentication keys: at the
beginning of the protocol, secret keys for the authentication of the players’ inputs are
stored inside the memory, so that they may be updated throughout the computation,
and retrieved at decryption time.

A concrete protocol is a (computationally) secure k-party computation protocol
with abort if, informally, its execution is (quantum computationally) indistinguishable
from the ideal functionality described in Definition 4.2.1, for all sets of (quantum)
adversaries IA (cf. Definition 4.2.3 for the formal definition in the quantum setting).
Although many protocols exist for multi-party computation, each with their own
strengths and weaknesses, only recently a post-quantum secure protocol that meets
the requirements from Definition 4.2.1 was developed [ABG+20]. Its security relies on
the hardness of the learning-with-errors problem.

4.2.2 Quantum multi-party computation

In this subsection, we describe the ideal functionality we aim to achieve for multi-
party quantum computation (MPQC) with a dishonest majority. As noted in Sec-
tion 4.2.1, we cannot hope to achieve fairness: therefore, we consider an ideal func-
tionality with the option for the dishonest players to abort.

Definition 4.2.2 (Ideal quantum k-party computation with abort). Let C be a quan-
tum circuit on W ∈N>0 wires. Consider a partition of the wires into the players’ input
registers plus an ancillary register, as [W ] = R in

1 t·· ·tR in
k tRancilla, and a partition

into the players’ output registers plus a register that is discarded at the end of the
computation, as [W ] = Rout

1 t·· ·tRout
k tRdiscard. Let IA Ú [k] be a set of corrupted

players.

1. Every player i ∈ [k] sends the content of R in
i to the trusted third party.

2. The trusted third party populates Rancilla with computational-zero states.
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Figure 4.1: (1) The environment interacting with the protocol as run by honest players
P1, . . . ,P`, and an adversary who has corrupted the remaining players. (2) The environment
interacting with a simulator running the ideal functionality.

3. The trusted third party applies the quantum circuit C on the wires [W ].

4. For all i ∈ IA, the trusted third party sends the content of Rout
i to player i .

5. All i ∈ IA respond with a bit bi , which is 1 if they choose to abort, or 0 otherwise.

6. If bi = 0 for all i , the trusted third party sends the content of Rout
i to the other

players i ∈ [k]\IA. Otherwise, he sends an abort message to those players.

In Definition 4.2.2, all corrupted players individually choose whether to abort the
protocol (and thereby to prevent the honest players from receiving their respective
outputs). In reality, however, one cannot prevent several corrupted players from
actively working together and sharing all information they have among each other. To
ensure that our protocol is also secure in those scenarios, we consider security against
a general adversary that corrupts all players in IA, by replacing their protocols by a
single (interactive) algorithm A that receives the registers R in

A := Rt⊔
i∈IA R in

i as input,
and after the protocol produces output in the register Rout

A := R t⊔
i∈IA Rout

i . Here, R
is a side-information register in which the adversary may output extra information.

We will always consider protocols that fulfill the ideal functionality with respect
to some gate set G: the protocol should then mimic the ideal functionality only for
circuits C that consist of gates from G. This security is captured by the definition
below.

Definition 4.2.3 (Computational security of quantum k-party computation with
abort). Let G be a set of quantum gates. Let ΠMPQC be a k-party quantum com-
putation protocol, parameterized by a security parameter n. For any circuit C , set
IA Ú [k] of corrupted players, and adversarial (interactive) algorithm A that performs
all interactions of the players in IA, defineΠMPQC

C ,A : R in
At⊔

i 6∈IA R in
i → Rout

A t⊔
i 6∈IA Rout

i

to be the channel that executes the protocol ΠMPQC for circuit C by executing the
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honest interactions of the players in [k]\ IA, and letting A fulfill the role of the players
in IA (See Figure 4.1, (1)).

For a simulator S that receives inputs in R in
A, then interacts with the ideal func-

tionalities on all interfaces for players in IA, and then produces output in Rout
A , let

IMPQC
C ,S be the ideal functionality described in Definition 4.2.2, for circuit C , simula-

tor S for players i ∈ IA, and honest executions (with bi = 0) for players i 6∈ IA (See
Figure 4.1, (2)). We say that ΠMPQC is a computationally ε-secure quantum k-party
computation protocol with abort, if for all IA Ú [k], for all quantum polynomial-time
(QPT) adversaries A, and all circuits C comprised of gates from G, there exists a QPT
simulator S such that for all QPT environments E ,∣∣∣Pr

[
1 ← (E �ΠMPQC

C ,A )
]
−Pr

[
1 ← (E � IMPQC

C ,S )
]∣∣∣É ε. (4.1)

Here, the notation b ← (E � (·)) represents the environment E , on input 1n , interact-
ing with the (real or ideal) functionality (·), and producing a single bit b as output.

Remark. In the above definition, we assume that all QPT parties are polynomial in
the size of circuit |C |, and in the security parameter n.

4.3 Overview of our protocol

The rest of this chapter will be concerned with stating our k-player MPQC protocol,
and proving its security. We start by describing some details of the input encoding (see
Section 4.4 for full details), and the protocol for circuits consisting only of classically-
controlled Clifford operations and measurements (see Section 4.5). Such circuits
suffice to perform magic-state computation and distillation, so that the protocol can
be extended to arbitrary circuits (see Section 4.6).

The Clifford+measurement protocol consists of several subprotocols, of which
we highlight four here: input encoding, public authentication test, single-qubit gate
application, and CNOT application. In the following description, the classical MPC
is treated as a trusted third party with memory. The general idea is to first ensure
that initially all inputs are properly encoded into the Clifford authentication code,
and to test the encoding after each computation step that potentially exposes the
encoded qubits to an attack. During the protocol, the encryption keys for the Clifford
authentication code are only known to the MPC, who stores them in its internal
memory.

Input encoding. For an input qubit
∣∣ψ〉

of player i , the MPC hands each player a
circuit for a random (2n +1)-qubit Clifford group element. Now player i appends
2n “trap” qubits initialized in the |0〉-state, and applies her Clifford. The state is
passed around, and all other players apply their Clifford one-by-one, resulting in a
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Clifford-encoded qubit F
(∣∣ψ〉⊗ ∣∣02n

〉)
for which knowledge of the encoding key F is

distributed among all players. The final step is our public authentication test, which is
used in several of the other subprotocols as well. Its goal is to ensure that all players,
including player i , have honestly followed the protocol.

The public authentication test (details). Player i , holding the state F
(∣∣ψ〉⊗ ∣∣02n

〉)
,

will measure n out of the 2n trap qubits, which should all be 0. To enable player i to
measure a random subset of n of the trap qubits, the MPC could instruct her to apply
(E ⊗Xr ) (I⊗π)F † to get E

(∣∣ψ〉⊗|0n〉)⊗|r 〉, where π is the unitary that permutes the
2n trap qubits, E is a random (n +1) qubit Clifford, and r ∈ {0,1}n is a random string.
Then when player i measures the last n trap qubits, if the encoding was correct, she
will obtain r and communicate this to the MPC. However, this only guarantees that
the remaining traps are correct up to polynomial error.

To get a stronger guarantee, we replace the random permutation with an element
from the sufficiently rich yet still efficiently samplable group of invertible transforma-
tions over F2n

2 , GL(2n,F2). An element g ∈ GL(2n,F2) may be viewed as a unitary Ug

acting on computational-basis states as Ug |x〉 =
∣∣g x

〉
where x ∈ {0,1}2n . In particular,

Ug
∣∣02n

〉= ∣∣02n
〉

, so if all traps are in the state |0〉, applying Ug does not change this,
whereas for nonzero x, Ug |x〉 =

∣∣x ′〉 for a random x ′ ∈ {0,1}2n . Thus the MPC instructs
player i to apply (E ⊗Xr )(I⊗Ug )F † to the state F

(∣∣ψ〉⊗ ∣∣02n
〉)

, then measure the last n
qubits and return the result, aborting if it is not r . Crucially, (E ⊗Xr )(I⊗Ug )F † is given
as an element of the Clifford group, hiding the structure of the unitary and, more
importantly, the values of r and g . So if player i is dishonest and holds a corrupted
state, she can only pass the MPC’s test by guessing r . If player i correctly returns r , we
have the guarantee that the remaining state is a Clifford-authenticated qubit with n
traps, E

(∣∣ψ〉⊗|0n〉), up to exponentially small error.

Single-qubit Clifford gate application. As in the protocol of Dupuis et al. [DNS12],
a single-qubit Clifford is applied by simply updating encryption key held by the MPC.
If a state is currently encrypted with a Clifford E , decrypting with a “wrong” key EG†

has the effect of applying G to the state. This strategy also works if the application of
the Clifford is controlled by a classical bit (even if the classical bit is known only to the
MPC). See also Section 3.4.1.

CNOT application. Applying a CNOT gate to two qubits is slightly more compli-
cated: as they are encrypted separately, we cannot just implement the CNOT via a
key update like in the case of single qubit Clifford gates. Instead, we bring the two
encoded qubits together, and then run a protocol that is similar to input encoding
using the (2n+2)-qubit register as “input”, but using 2n additional traps instead of just
n, and skipping the final authentication-testing step. The joint state now has 4n +2
qubits and is encrypted with some Clifford D only known to the MPC. Afterwards,
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CNOT can be applied via a key update, similarly to single-qubit Cliffords. To split
up the qubits again afterwards, the executing player applies (F1 ⊗F2)D†, where F1

and F2 are freshly sampled by the MPC. The two encoded qubits can then be tested
separately using the public authentication test.

As described above, our protocol consists of several subprotocols. To show the security
of the full protocol, one may be tempted to define ideal functionalities for each of the
subprotocols: an ideal application of a single-qubit gate, for example. This strategy
will not work, because such a chain of ideal functionalities is unable to reflect the
authentication key that is carried over via the internal memory of the MPC, and
correlates the functionality of the different subprotocols.

We solve this difficulty by adopting an inductive strategy to proving security.
We define a sequence of ideal functionalities, each one comprising a slightly larger
functionality than the last. The first ideal functionality only encodes the inputs; The
next ideal functionality applies the first gate of the circuit and encodes the result; The
next applies the first two gates and encodes the result; Et cetera, until we arrive at an
ideal functionality that applies the entire circuit. This approach allows us to focus on
analyzing one subprotocol at a time, without losing the key correlation between the
different subprotocols.

4.3.1 Pauli filter

In our protocol, we repeatedly use a technique which alters a channel that would act
jointly on registers S and T , so that its actions on S are replaced by a flag bit into a
separate register. The flag is set to 0 if the actions on S belong to some set P , or to 1
otherwise. This way, the new channel “filters” the allowed actions on S. In this section,
we describe this tool.

Definition 4.3.1 (Pauli filter). For registers S and T with |T | > 0, let U ST be a unitary,

and let P ⊆ (
{0,1}log2 |S|)2

contain pairs of bit strings. The P-filter of U on register
S, denoted PauliFilterS

P (U ), is the map T → T F (where F is some single-qubit flag
register) that results from the following operations:

1. Initialize two separate registers S and S′ in the state |Φ〉〈Φ|, where

|Φ〉 := ∣∣Φ+〉⊗ log2 |S| =
(

1p
2

(|00〉+ |11〉)
)⊗ log2 |S|

(4.2)

consists of log2 |S| EPR pairs. Half of each pair is stored in S, the other in S′.

2. Run U on ST .
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|Φ〉
S′

S

T
U

{Π, I−Π} 0/1
F

T

Figure 4.2: The circuit for PauliFilterS
P (U ) from Definition 4.3.1. By the definition ofΠ in Equa-

tion (4.3), the choice of the set P determines which types of Paulis are filtered out by the
measurement {Π, I−Π}. The IdFilter and XFilter are special cases of this filter. Replacing |Φ〉
with a different initial state yields a wider array of filters, e.g., the ZeroFilter.

3. Measure SS′ with the projective measurement {Π, I−Π} for

Π := ∑
(a,b)∈P

(
XaZb

)S |Φ〉〈Φ|
(
ZbXa

)
. (4.3)

If the outcome isΠ, set the F register to |0〉〈0|. Otherwise, set it to |1〉〈1|.
Figure 4.2 depicts the circuit for the Pauli filter. Its functionality becomes clear in

the following lemma, which we prove by straightforward calculation:

Lemma 4.3.2. For registers S and T with |T | > 0, let U ST be a unitary, and let P ⊆(
{0,1}log2 |S|)2

. Write U =∑
x,z (XxZz )S ⊗U T

x,z . Then running PauliFilterS
P (U ) on register

T equals the map T → T F :

(·)T 7→ ∑
(a,b)∈P

U T
a,b(·)U †

a,b ⊗|0〉〈0|F + ∑
(a,b)6∈P

U T
a,b(·)U †

a,b ⊗|1〉〈1|F .

Proof. Given an arbitrary state ρT R (for some reference system R), we calculate the
result of applying PauliFilterS

P (U ) to ρ. The state in T R corresponding to |0〉〈0| in the
flag register F is:

TrSS′
[
ΠU ST

(
|Φ〉〈Φ|SS′ ⊗ρT R

)
U †

]
(4.4)

= ∑
(a,b)∈P
x,z,x ′,z ′

TrSS′
[
XaZb |Φ〉〈Φ|ZbXaXxZz |Φ〉〈Φ|Zz ′Xx′]⊗U T

x,zρ
T RU †

x′,z ′ (4.5)

= ∑
(a,b)∈P
x,z,x′,z ′

TrSS′
[
|Φ〉〈Φ|Xa⊕xZb⊕z |Φ〉〈Φ|Zb⊕z ′Xa⊕x′]⊗U T

x,zρ
T RU †

x′,z ′ · (−1)b·(x⊕x′)

(4.6)

= ∑
(a,b)∈P

U T
a,bρ

T RU †
a,b . (4.7)
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|00〉⊗ log2 |S|

S′

S

T
U

{Π, I−Π}
F

T

=
|0〉⊗ log2 |S| S

T
U

{Π′, I−Π′}
F

T

Figure 4.3: The Pauli filter ZeroFilter, where the initial state |Φ〉 is replaced by |00〉log2 |S|. This
filter, with measurementΠ := |00〉〈00|⊗ log2 |S|, is equivalent to the map which does not prepare
the register S′, and measures withΠ′ := |0〉〈0|⊗ log2 |S|.

The calculation for the |1〉〈1|-flag is very similar, after observing that

I− ∑
(a,b)∈P

XaZb |Φ〉〈Φ|ZbXa = ∑
(a,b)6∈P

XaZb |Φ〉〈Φ|ZbXa . (4.8)

A special case of the Pauli filter for P = {(0log2 |S|,0log2 |S|)} is due to Broadbent
and Wainewright [BW16]. This choice of P represents only identity: the operation
PauliFilterP filters out any components of U that do not act as identity on S. We will
denote this type of filter with the name IdFilter.

In this work, we will also use XFilterS (U ), which only accepts components of U
that act trivially on register S in the computational basis. It is defined by choosing
P = {0log2 |S|}× {0,1}log2 |S|.

Finally, we note that the functionality of the Pauli filter given in Definition 4.3.1
can be generalized, or weakened in a sense, by choosing a different state than |Φ〉〈Φ|.
In this work, we will use the ZeroFilterS (U ), which initializes SS′ in the state |00〉log2 |S|,
and measures using the projectorΠ= |00〉〈00|. It filters U by allowing only those Pauli
operations that leave the computational-zero state (but not necessarily any other
computational-basis states) unaltered:

(·) 7→U T
0 (·)U †

0 ⊗|0〉〈0|F + ∑
a 6=0

U T
a (·)U †

a ⊗|1〉〈1|F , (4.9)

where we abbreviate Ua :=∑
b Ua,b . Note that for ZeroFilterS (U ), the extra register S′

can also be left out (see Figure 4.3).
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4.4 Protocol: setup and encoding

4.4.1 Input encoding

In the first phase of the protocol, all players encode their input registers qubit-by-
qubit. For simplicity of presentation, we pretend that player 1 holds a single-qubit
input state, and the other players do not have input. In the actual protocol, multiple
players can hold multiple-qubit inputs: in that case, the initialization is run several
times in parallel, using independent randomness. Any other player i can trivially take
on the role of player 1 by relabeling the player indices.

Definition 4.4.1 (Ideal functionality for input encoding). Without loss of generality,
let R in

1 be a single-qubit input register, and let dim(R in
i ) = 0 for all i 6= 1. Let IA Ú [k]

be a set of corrupted players.

1. Player 1 sends register R in
1 to the trusted third party.

2. The trusted third party initializes a register T1 with |0n〉〈0n |, applies a random
(n +1)-qubit Clifford E to MT1, and sends these registers to player 1.

3. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all i ,
then the trusted third party stores the key E in the state register S of the ideal
functionality. Otherwise, it aborts by storing ⊥ in S.

The following protocol implements the ideal functionality. It uses, as a black box,
an ideal functionality MPC that implements a classical multi-party computation with
memory.

Protocol 4.4.2. (Input encoding) Without loss of generality, let M := R in
1 be a

single-qubit input register, and let |R in
i | = 0 for all i 6= 1.

1. For every i ∈ [k], MPC samples a random (2n +1)-qubit Clifford Fi and
tells it to player i .

2. Player 1 applies the map ρM 7→ F1

(
ρM ⊗ ∣∣02n

〉〈
02n

∣∣T1T2
)

F †
1 for two n-qubit

(trap) registers T1 and T2, and sends the registers MT1T2 to player 2.

3. Every player i = 2,3, . . . ,k applies Fi to MT1T2, and forwards it to player
i +1. Eventually, player k sends the registers back to player 1.

4. MPC samples a random (n +1)-qubit Clifford E , random n-bit strings r
and s, and a random classical invertible linear operator g ∈GL(2n,F2). Let
Ug be the (Clifford) unitary that computes g in-place, i.e., Ug |t〉 =

∣∣g (t )
〉

for all t ∈ {0,1}2n .
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5. MPC givesa

V := (
E MT1 ⊗ (XrZs )T2

)(
I⊗ (Ug )T1T2

)
(Fk · · ·F2F1)†

to player 1, who applies it to MT1T2.

6. Player 1 measures T2 in the computational basis, discarding the measured
wires, and keeps the other (n +1) qubits as its output in Rout

1 = MT1.

7. Player 1 submits the measurement outcome r ′ toMPC, who checks whether
r = r ′. If so, MPC stores the key E in its memory-state register S. If not, it
aborts by storing ⊥ in S.

aMPC gives V as a group element, and the adversary cannot decompose it into the different parts
that appear in its definition.

If MPC aborts the protocol in Step 7, the information about the Clifford encoding key
E is erased. In that case, the registers MT1 will be fully mixed. Note that this result
differs slightly from the “reject” outcome of a quantum authentication code as in
Definition 3.2.1, where the message register M is replaced by a dummy state |⊥〉〈⊥|.
In our current setting, the register M is in the hands of (the possibly malicious) player
1. We therefore cannot enforce the replacement of register M with a dummy state:
we can only make sure that all its information content is removed. Depending on
the application or setting, the trusted MPC can of course broadcast the fact that they
aborted to all players, including to the honest one(s).

To run Protocol 4.4.2 in parallel for multiple input qubits held by multiple players,
MPC samples a list of Cliffords Fi ,q for each player i ∈ [k] and each qubit q . The Fi ,q

operations can be applied in parallel for all qubits q : with k rounds of communication,
all qubits will have completed their round past all players.

We will show that Protocol 4.4.2 fulfills the ideal functionality for input encoding:

Lemma 4.4.3. LetΠEnc be Protocol 4.4.2, and IEnc be the ideal functionality described
in Definition 4.4.1. For all sets IA Ú [k] of corrupted players and all adversaries A
that perform the interactions of players in IA with Π, there exists a simulator S (the
complexity of which scales polynomially in that of the adversary) such that for all
environments E ,

|Pr[1 ← (E �ΠEnc
A )]−Pr[1 ← (E � IEnc

S )| É negl(n).

Note that the environment E also receives the state register S, which acts as the
“output” register of the ideal functionality (in the simulated case) or of MPC (in the
real case). It is important that the environment cannot distinguish between the
output states even given that state register S, because we want to be able to compose
Protocol 4.5.5 with other protocols that use the key information inside S. In other
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words, it is important that, unless the key is discarded, the plaintext states inside the
Clifford encoding are also indistinguishable for the environment.

We start by providing a sketch of the proof for Lemma 4.4.3, and then state and
prove an auxiliary lemma before its full proof.

Proof sketch. We divide our proof into two cases: when player 1 is honest, or when
she is dishonest.

For the case when player 1 is honest, we know that she correctly prepares the
expected state before the state is given to the other players. That is, she appends 2n
ancilla qubits in state |0〉 and applies the random Clifford instructed by the classical
MPC. When the encoded state is returned to player 1, she performs the Clifford V as
instructed by the MPC. By the properties of the Clifford encoding, if the other players
acted dishonestly, the tested traps will be nonzero with probability exponentially close
to 1.

The second case is a bit more complicated: the first player has full control over
the state and, more importantly, the traps that will be used in the first encoding.
In particular, she could start with nonzero traps, which could possibly give some
advantage to the dishonest players later on the execution of the protocol.

In order to prevent this type of attack, the MPC instructs the first player to apply a
random linear function Ug on the traps, which is hidden from the players inside the
Clifford V . If the traps were initially zero, their value does not change, but otherwise,
they will be mapped to a random value, unknown by the dishonest parties. As such,
the map Ug removes any advantage that the dishonest parties could have in Step 7 by
starting with nonzero traps. Because any nonzero trap state in T1T2 is mapped to a
random string, it suffices to measure only T2 in order to be convinced that T1 is also
in the all-zero state (except with negligible probability). This intuition is formalized in
Lemma 4.4.4 below.

Other possible attacks are dealt with in a way that is similar to the case where
player 1 is honest (but from the perspective of another honest player).

In the full proof, we present two simulators, one for each case, that tests (using
Pauli filters from Section 4.3.1) whether the adversary performs any such attacks
during the protocol, and chooses the input to the ideal functionality accordingly.
See Figure 4.4 for a pictorial representation of the structure of the simulator for the
case where player 1 is honest.

Before we prove Lemma 4.4.3, let us begin by zooming in on the test phase (Steps 4–
6): we show in a separate lemma that, with high probability, it only checks out if the
resulting state is a correctly-encoded one.

For a projectorΠ on two n-qubit quantum registers T1 and T2, define the quantum
channel LΠ on T1T2 by

LΠ(X ) :=Π(X )Π+|⊥〉〈⊥|Tr
[
Π̄X

]
(4.10)
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MPC

P1

E
M M

T1T2
∣∣02n

〉 E

R R

Fk · · ·F2

A

F2 . . . Fk

JEnc

P1

M
M MT1

S

R R

F

F ′
2, . . . ,F ′

k ← $

IdFilterMT1T2 (A)

bkb2 · · ·

Figure 4.4: On the left, the adversary’s interaction with the protocolΠEnc in case player 1 is the
only honest player. The R register contains side information for the adversary. We may assume
that the adversarial map consists of a unitary A followed by the honest protocol Fk · · ·F2 (see
the full proof of Lemma 4.4.3). On the right, the simulator’s interaction with JEnc. It performs
the Pauli filter IdFilterMT1T2 on the adversary’s attack on the encoded state.

where |⊥〉 is a distinguished state on T1T2 withΠ |⊥〉 = 0.
Furthermore, for s ∈ {0,1}n , define the “full” and “half” projectors

Πs,F :=
{∣∣02n

〉〈
02n

∣∣T1T2 if s = 0n

0 else
(4.11)

Πs,H := IT1 ⊗|s〉〈s|T2 . (4.12)

The following lemma shows that the full measurement Πs,F is an equivalent test to
applying a twirl TGL(2n,F2) followed by a half measurement ofΠs,H .

Lemma 4.4.4. For any s ∈ {0,1}n , applying a random element of GL(2n,F2) followed
by LΠs,H (see Equation (4.10)) is essentially equivalent to applying LΠs,F :∥∥LΠs,F −LΠs,H ◦TGL(2n,F2)

∥∥
¦ É 8 ·2−

n
2 = negl(n).

Proof. First, observe the following facts about a random g ∈ GL(2n,F2). Of course,
g 0 = 0 by linearity. On the other hand, g x is uniformly random on F2n

2 \ {0} for x 6= 0.
More generally, nonzero x, y are linearly independent if and only if x 6= y : for those

values of x and y , (g x, g y) is uniformly random on
{

(x ′, y ′) ∈ (
F2n

2 \ {0}
)2 |x ′ 6= y ′

}
.

We want to calculate the effect of twirling over GL(2n,F2), followed by the half
projector, for an arbitrary state ρT1T2E . Throughout this proof, we will abbreviate

T := TGL(2n,F2). Expanding ρ as ρ =∑
x,y∈{0,1}2n

∣∣x〉〈
y
∣∣T1T2 ⊗〈x|ρ ∣∣y

〉E , we have

LT1T2
Πs,H

(
T T1T2 (ρ)

)= ∑
x,y∈{0,1}2n

LT1T2
Πs,H

(
T

(∣∣x〉〈
y
∣∣))⊗〈x|ρ ∣∣y

〉
. (4.13)

Thus, it suffices to analyze the effect of the twirl and projector on states of the form∣∣x〉〈
y
∣∣. Define the unit vector∣∣+′〉 := (

22n −1
)− 1

2
∑

x∈F2n
2 \{0}

|x〉 (4.14)
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as the superposition over all nonzero elements x. We calculate, for x, y ∈ F2n
2 \ {0} with

x 6= y ,

T(|0〉〈0|) = |0〉〈0| ; (4.15)

T(|x〉〈x|) = I−|0〉〈0|
22n −1

; (4.16)

T(|x〉〈0|) = (
22n −1

)−1 ∑
x∈F2n

2 \{0}

|x〉〈0|

= (
22n −1

)− 1
2
∣∣+′〉〈0

∣∣ ; (4.17)

T(
∣∣x〉〈

y
∣∣) = (

22n −1
)−1 (

22n −2
)−1 ∑

z,t∈F2n
2 \{0}

z 6=t

|z〉〈t |

= (
22n −2

)−1
(∣∣+′〉〈+′∣∣− I−|0〉〈0|

22n −1

)
=: S. (4.18)

Then, in order to analyze the effect of the half projector, we first calculate the subex-
pressions ∥∥Πs,H

∣∣+′〉∥∥
2 É

√
2n

22n −1
; (4.19)

∥∥Πs,H
∣∣+′〉〈0

∣∣Πs,H
∥∥

tr É
√

2n

22n −1
; (4.20)∥∥Πs,H

∣∣+′〉〈+′∣∣Πs,H
∥∥

tr É
2n

22n −1
; (4.21)∥∥∥∥Πs,H

I−|0〉〈0|
22n −1

Πs,H

∥∥∥∥
tr
É 2n

22n −1
. (4.22)

Equations (4.20) and (4.21) follow from Equation (4.19) by Hölder’s inequality (see
Section 2.4.3).

We use the above inequalities, and the fact that
∥∥ρ∥∥

tr = 1, to compute the effect
of the GL(2n,F2)-twirl and the half projector on states of the form |0〉〈0| , |x〉〈x| , |x〉〈0| ,
and

∣∣x〉〈
y
∣∣, for x 6= 0 6= y and x 6= y . For the state |0〉〈0|, we are interested to know the

exact output state:

Πs,HT (|0〉〈0|)Πs,H ⊗〈0|ρ |0〉 =
{
|0〉〈0|T1T2 ⊗〈0|ρ |0〉 if s = 0

0 otherwise.
(4.23)

For the other three cases, we are merely interested in their trace norm: we will show
that this norm is, in all cases, negligible in n. For states of the form |x〉〈x| with x 6= 0,
we use triangle inequality of the trace norm to obtain∥∥∥∥∥ ∑

x 6=0
Πs,HT (|x〉〈x|)Πs,H ⊗〈x|ρ |x〉

∥∥∥∥∥
tr

(4.24)
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(4.16)=
∥∥∥∥∥Πs,H

I−|0〉〈0|
22n −1

Πs,H ⊗ ∑
x 6=0

〈x|ρ |x〉
∥∥∥∥∥

tr

(4.25)

=
∥∥∥∥Πs,H

I−|0〉〈0|
22n −1

Πs,H

∥∥∥∥
tr
·∥∥TrT1T2

[
(I−|0〉〈0|)ρ]∥∥

tr (4.26)

(4.22), Lem. 2.4.3É 2n

22n −1
· ‖ I−|0〉〈0|‖∞ ·∥∥ρ∥∥

tr (4.27)

É 2n

22n −1
. (4.28)

For states of the form |x〉〈0| (and, analogously, those of the form |0〉〈x|) with x 6= 0, a
similar derivation gives ∥∥∥∥∥ ∑

x 6=0
Πs,HT (|x〉〈0|)Πs,H ⊗〈x|ρ |0〉

∥∥∥∥∥
tr

(4.29)

(4.17)=
∥∥∥∥∥(

22n −1
)− 1

2 Πs,H
∣∣+′〉〈0

∣∣Πs,H ⊗ ∑
x 6=0

〈x|ρ |0〉
∥∥∥∥∥

tr

(4.30)

= ∥∥Πs,H
∣∣+′〉〈0

∣∣Πs,H
∥∥

tr ·
∥∥〈+′∣∣ρ |0〉∥∥tr (4.31)

(4.20), Lem. 2.4.3É
√

2n

22n −1
·∥∥∣∣0〉〈+′∣∣∥∥∞ ·∥∥ρ∥∥

tr (4.32)

É
√

2n

22n −1
. (4.33)

And finally, for states of the form
∣∣x〉〈

y
∣∣ with x 6= 0 6= y and x 6= y , we use the triangle

inequality of the trace norm to derive∥∥∥∥∥∥∥∥
∑

x 6=0 6=y
x 6=y

Πs,HT
(∣∣x〉〈

y
∣∣)Πs,H ⊗〈x|ρ ∣∣y

〉∥∥∥∥∥∥∥∥
tr

(4.34)

(4.18)=

∥∥∥∥∥∥∥∥Πs,H SΠs,H ⊗ ∑
x 6=0 6=y

x 6=y

〈x|ρ ∣∣y
〉∥∥∥∥∥∥∥∥

tr

(4.35)

= ∥∥Πs,H SΠs,H ⊗TrT1T2

[((
22n −1

)∣∣+′〉〈+′∣∣− (I−|0〉〈0|))ρ]∥∥
tr (4.36)

É (
22n −1

)∥∥Πs,H SΠs,H ⊗TrT1T2

[∣∣+′〉〈+′∣∣ρ]∥∥
tr

+∥∥Πs,H SΠs,H ⊗TrT1T2

[
(I−|0〉〈0|)ρ]∥∥

tr . (4.37)

We continue the derivation similarly to the previous derivations, using the multiplica-
tivity of the trace norm w.r.t. the Kronecker product, combined with Lemma 2.4.3 and
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several inequalities established above:

Eq. (4.37)
Lem. (2.4.3)É (

22n −1
)∥∥Πs,H SΠs,H

∥∥
tr ·

∥∥∣∣+′〉〈+′∣∣∥∥∞ ·∥∥ρ∥∥
tr

+∥∥Πs,H SΠs,H
∥∥

tr · ‖ I−|0〉〈0|‖∞ ·∥∥ρ∥∥
tr (4.38)

É 22n ∥∥Πs,H SΠs,H
∥∥

tr (4.39)

(4.18)É 22n

22n −2

(∥∥Πs,H
∣∣+′〉〈+′∣∣Πs,H

∥∥
tr +

∥∥∥∥Πs,H
I−|0〉〈0|
22n −1

Πs,H

∥∥∥∥
tr

)
(4.40)

(4.21),(4.22)É 22n

22n −2
·
(

2n

22n −1
+ 2n

22n −1

)
(4.41)

É 4 · 2n

22n −1
. (4.42)

Using the inequalities obtained above, let us now compare the effect of the full
projector,

Π
T1T2
s,F ρT1T2EΠs,F =

{
|0〉〈0|T1T2 ⊗ (〈0|ρ |0〉)E if s = 0

0 otherwise,
(4.43)

to the effect of the twirl followed by the half projector. The term for |0〉〈0| will cancel,
and by the triangle inequality, we have

∥∥LΠs,F (ρ)−LΠs,H

(
T(ρ)

)∥∥
tr É

∥∥∥∥∥ ∑
x 6=0

Πs,HT(|x〉〈x|)Πs,H ⊗〈x|ρ |x〉
∥∥∥∥∥

tr

+
∥∥∥∥∥ ∑

x 6=0
Πs,HT(|x〉〈0|)Πs,H ⊗〈x|ρ |0〉

∥∥∥∥∥
tr

+
∥∥∥∥∥ ∑

x 6=0
Πs,HT(|0〉〈x|)Πs,H ⊗〈0|ρ |x〉

∥∥∥∥∥
tr

+

∥∥∥∥∥∥∥∥
∑

x 6=0 6=y
x 6=y

Πs,HT(
∣∣x〉〈

y
∣∣)Πs,H ⊗〈x|ρ ∣∣y

〉∥∥∥∥∥∥∥∥
tr

(4.44)

É 2 ·
√

2n

22n −1
+ 2n

22n −1
+4 · 2n

22n −1
(4.45)

É 8 ·2−
n
2 , (4.46)

which is negligible. Since the bound holds for arbitrary ρT1T2E , the bound on the
diamond norm follows.

Now that we have established that it suffices to measure only the T2 register (after
applying a random g ∈GL(2n,F2)), we are ready to prove the security of Protocol 4.4.2:
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Proof of Lemma 4.4.3. We consider two cases: either player 1 is honest, or she is
corrupted.

Case 1: player 1 is honest. For the setting where player 1 is honest, we prove security
in the worst case, where all other players are corrupted: IA = {2,3, . . . ,k}. If, instead,
some of these players are not corrupted, a simulator can simulate the actions of every
honest player h 6= 1 (by applying a random Clifford), and interleave these honest
actions with the adversarial maps of the corrupted players. The resulting map is a
special case of the adversarial map we consider below. Since the only task of the
honest players h 6= 1 is to apply a random Clifford, it is sufficient if the simulator
samples this Clifford itself.

The corrupted players act as one entity whose honest action is to apply UH :=
Fk Fk−1 · · ·F3F2, and return the state to player 1 (see the left-hand side of Figure 4.4.).
Without loss of generality, assume that A is unitary by expanding the side-information
register R as necessary. Then, define an attack unitary A :=U †

HA, so that we may write
A=UH A. In other words, we establish that A consists of a unitary attack A, followed
by the honest unitary UH . Note that A may depend arbitrarily on its instructions F2

through Fk .
The simulator S has access to the ideal functionality only through the ability to

submit the bits bi for players i 6= 1. It does not receive any input from the environment,
except for a side-information register R. Define the simulator as follows (in terms of
an adversarial map A):

Simulator 4.4.5 (see the right-hand side of Figure 4.4). On input register R
received from the environment, do:

1. Sample random F ′
2, . . . ,F ′

k ∈C2n+1.a

2. Run IdFilterMT1T2 (A) on the register R , using the instructions F ′
2,F ′

3, . . . ,F ′
k

to determine A. (See Section 4.3.1.)

3. If the flag register is 0, set bi = 0 for all i 6= 1. Otherwise, set bi = 1 for all
i 6= 1. Submit the bits bi to the ideal functionality.

aWhenever a simulator samples random elements, it does so by running the ideal functionality
for classical MPC with the adversary it is currently simulating. If that ideal functionality aborts, the
simulator will also abort by setting bi = 1 for the adversarial players i . In that case, the simulated
output state and the real output state will be indistinguishable by security of the classical MPC. To
avoid clutter in the exposition of our simulators and proofs, we will ignore this technicality, and
pretend that the simulator generates the randomness itself.

We will consider the joint state in the output register Rout
1 = MT1, the state register S,

and the attacker’s side-information register R in both the real and the ideal (simulated)
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case. In both cases, it will be useful to decompose the attack map A as

A = ∑
a,c∈{0,1}n+1

(
XaZc)MT1 ⊗ AR

a,c . (4.47)

We start by analyzing the ideal case. By Definition 4.4.1 of the ideal encoding func-
tionality and Lemma 4.3.2, and using P = {(0,0)} with 0 as an abbreviation for 0n , the
output state in MT1RS in case of accept (setting all bi = 0) is

E
E

E MT1
(

AR
0,0ρ

MR A†
0,0 ⊗

∣∣0n〉〈
0n∣∣T1

)
E † ⊗|E〉〈E |S . (4.48)

The output state in MT1RS in case of reject is (by Definition 4.4.1 and Lemma 4.3.2)

T MT1
Cn+1

( ∑
(x,z) 6=(0,0)

AR
x,zρ

MR A†
x,z ⊗

∣∣0n〉〈
0n∣∣T1

)
⊗|⊥〉〈⊥|S (4.49)

= τMT1 ⊗ ∑
(x,z)6=(0,0)

Ax,zρR A†
x,z ⊗|⊥〉〈⊥|S . (4.50)

Next, we consider the state in MT1RS after the real protocol is executed, and argue
that it is negligibly close to Equations (4.48)+(4.50). Again, we first consider the accept
case. Following the steps in Protocol 4.4.2 on an input state ρMR , and noting that(

F †
1

)MT1T2
AMT1T2R F1

(
ρMR ⊗ ∣∣02n〉〈

02n∣∣T1T2
)

F †
1 A†F1 =

(
T MT1T2

C2n+1
(A)

)(
ρ⊗ ∣∣02n〉〈

02n∣∣) ,

(4.51)

the output state in the case of accept is

E
E ,r,s

〈r |T2
(
E ⊗XrZs)T T1T2

GL(2n,F2)

((
T MT1T2

C2n+1
(A)

)(
ρ⊗ ∣∣02n〉〈

02n∣∣))(
E ⊗XrZs)† |r 〉⊗ |E〉〈E |S

(4.52)

=E
E

E MT1
〈

0n∣∣T2 T T1T2
GL(2n,F2)

((
T MT1T2

C2n+1
(A)

)(
ρ⊗ ∣∣02n〉〈

02n∣∣))∣∣0n〉
E † ⊗|E〉〈E |S (4.53)

≈negl(n) E
E

E MT1
〈

02n∣∣T1T2
((
T MT1T2

C2n+1
(A)

)(
ρ⊗ ∣∣02n〉〈

02n∣∣))∣∣02n〉
E † ⊗|E〉〈E |S , (4.54)

where the approximation follows from Lemma 4.4.4. This is where the authentication
property of the Clifford code comes in: by Lemma 3.3.2, only the part of A that acts
trivially on MT1T2 remains after the measurement of T1T2. Thus, Eq. (4.54) ≈negl(n)

Eq. (4.48).
The reject case of the real protocol is similar: again using Lemmas 3.3.2 and 4.4.4,

we can see that it approximates (up to a negligible factor in n) Eq. (4.50).
We conclude that, from the point of view of any environment, the real output state

in registers MT1SR (encoding, memory state, and side information) is indistinguish-
able from the simulated state.
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Figure 4.5: Execution of the input-encoding protocolΠEnc (see Protocol 4.4.2), where player 2
is the only honest player (case 2).

Case 2: player 1 is dishonest. For the same reason as in the first case, we assume
that the only honest player is player 2, i.e., IA = {1,3,4, . . . ,k}.

In the real protocol, the adversary interacts with the honest player 2, and has two
opportunities to attack: before player 2 applies its Clifford operation, and after.

The adversaries’ actions before the interaction with player 2 can, without loss of
generality, be described by a unitary UH ,A · A, that acts on the input state ρMR , plus
the registers T1T2 that are initialized to zero. The unitary UH ,A is player 1’s honest
operation F MT1T2

1 .
Similarly, the adversaries’ actions after the interaction with player 2 can be de-

scribed by a unitary B ·UH ,B , followed by a computational-basis measurement on T2

which results in an n-bit string r ′. Again, UH ,B is the honest unitary V Fk · · ·F4F3 that
should be applied jointly by players 3,4, . . . ,k,1. See Figure 4.5.

For any adversary, described by such unitaries A and B , define a simulator as
follows (see Figure 4.6):

Simulator 4.4.6. On input register MR received from the environment, do:

1. Initialize bi = 0 for all i ∈ IA.

2. Sample random F1,F2, . . . ,Fk ∈C2n+1. RunZeroFilterT1T2 (A) on MR , using
the instructions Fi (for all i ∈ IA) to determine A. If the filter flag is 1, abort
by setting b1 = 1.

3. Input the M register into the ideal functionality, and receive a state in the
register MT1.
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ρMR

R R

M

M

ZeroFilterT1T2 (A)

F

T1

T1

M

M

XFilterT2 (B)

F
or

bi

IEnc

F1,F3, . . . ,Fk ← $

S

Figure 4.6: Interaction between the ideal functionality and the simulator S (see Simulator 4.4.6)
for the case in which only player 2 is honest (case 2). The simulator performs two filters, and
sets the abort bit to 1 whenever at least one of the flags F is set to 1.

4. Run XFilterT2 (B) on MT1R , using the instruction V := F †
3 F †

4 · · ·F †
k to deter-

mine B . (This choice of V ensures that the honest action UH ,B is identity.)
If the filter flag is 1, abort by setting b1 = 1.

5. Submit all the bi to the ideal functionality.

Similarly to the previous case, we consider the output state in the registers MT1RS
in both the ideal (simulated) case, and the real case, as computed on an input state
ρMR .

Again, we decompose the attack maps A and B as

A = ∑
a,c∈{0,1}2n

(
XaZc)T1T2 ⊗ AMR

a,c , (4.55)

B = ∑
b,d∈{0,1}n

(
XbZd

)T2 ⊗B MT1R
b,d . (4.56)

Note that the decompositions are taken over different registers for A and B . In the
derivations below, we will often abbreviate Aa :=∑

c Aa,c , and, in the subscripts, we
will abbreviate 0 for the all-zero string.

In the ideal or simulated case, one of three things may happen: the simulator sets
b1 to 0 (signaling accept to the ideal functionality), or sets b1 to 1 in Step 2, or sets b1

to 1 in Step 4 (both signaling reject to the ideal functionality). The ideal output state is
thus the sum of three separate terms, which we will analyze separately.

We start with the the accept case, where both filters result in a |0〉〈0| flag. Using
the decompositions from Equations (4.55) and (4.56), we apply Lemma 4.3.2 to see
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that the resulting state is

E
E

∑
d

B MT1R
0,d E

(
A0ρA†

0 ⊗
∣∣0n〉〈

0n∣∣T1
)

E †B †
0,d ⊗|E〉〈E |S . (4.57)

Here, E is the key that the ideal functionality samples (and stores in the register S)
when it is called to encode M .

Next, we consider the simulator choosing b1 = 1 already in Step 2, the zero filter
has failed. In this case, the ideal functionality does not store the encoding key E in the
register S. This allows us to view the Clifford encoding as a twirl on the Clifford group.
The output state is (by Lemma 4.3.2)∑

a 6=02n ,b,d

Bb,dT MT1
Cn+1

(
Aaρ

MR A†
a ⊗

∣∣0n〉〈
0n∣∣T1

)
B †

b,d ⊗|⊥〉〈⊥|S (4.58)

= ∑
a 6=02n ,b,d

Bb,d

(
TrM

[
Aaρ

MR A†
a

]
⊗τMT1

)
B †

b,d ⊗|⊥〉〈⊥|S . (4.59)

Note that in this case, the flag in the X filter does not influence the bit b1 (it is already
set to 1). Therefore, both terms in Lemma 4.3.2 survive, and all pairs (b,d) are included
in the sum.

Finally, we look at the case where the zero filter does not result in changing b1, but
the X filter does, in Step 4. If this happens, the key E is erased so we can again apply a
Clifford twirl, and the output state is (by Lemma 4.3.2)∑

b 6=0n ,d
Bb,dT MT1

Cn+1

(
A0ρ

MR A†
0 ⊗

∣∣0n〉〈
0n∣∣T1

)
B †

b,d ⊗|⊥〉〈⊥|S

= ∑
b 6=0n

Bb,d

(
TrM

[
A0ρ

MR A†
0

]
⊗τMT1

)
B †

b,d ⊗|⊥〉〈⊥|S . (4.60)

In summary, the output state in the ideal case is

Eq. (4.57)+Eq. (4.59)+Eq. (4.60). (4.61)

In the real protocol, only one measurement is performed at the end. The output
state in the real case is thus a sum of only two terms: an accept and reject case. We will
again analyze these separately, and will show that the accept state is approximately
equal to Equation (4.57), while the reject state approximates Equations (4.59)+ (4.60).

Following Protocol 4.4.2 on an input state ρMR , and canceling out the Fi and F †
i

terms that are part of the honest actions, we first consider the state in case of accept.
We abbreviate

σ := E
g

E MT1U T1T2
g

(
A

(
ρ⊗ ∣∣02n〉〈

02n∣∣) A†
)

U †
g E † (4.62)

= E MT1T T1T2
GL(2n,F2)

(
A

(
ρ⊗ ∣∣02n〉〈

02n∣∣) A†
)

E †, (4.63)
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where we are allowed to view Eg Ug (·)U †
g as a Twirling operation, since A and B are

independent of g . We decompose the attack B as in Equation (4.56), and derive the
accept case

E
E ,r,s

〈r |T2 B
(
XrZs)T2 σ

(
XrZs)† B † |r 〉⊗ |E〉〈E |S (4.64)

= E
E ,r,s

〈0|T2
(
XrZs)†T2 B

(
XrZs)T2 σ

(
XrZs)† B † (

XrZs) |0〉⊗ |E〉〈E |S (4.65)

= E
E ,r,s

∑
b,d ,b′,d ′

〈0|T2
((
XrZsXbZdXrZs

)
⊗Bb,d

)
σ

((
XrZsXb′

Zd ′
XrZs

)
⊗B †

b′,d ′
)
|0〉

⊗ |E〉〈E |S (4.66)

=E
E

∑
b,d

〈b|T2 Bb,dσB †
b,d |b〉⊗ |E〉〈E |S (4.67)

=E
E

∑
b,d

Bb,d TrT2

[
Π

T2
b,HσΠ

†
b,H

]
B †

b,d ⊗|E〉〈E |S , (4.68)

whereΠb,H is defined in Equation (4.12). From Equation (4.66) to (4.67), we used the
Pauli twirl to remove all terms for which (b,d) 6= (b′,d ′). This application of the Pauli
twirl is possible, because neither A nor B depends on r, s.

We continue with the accept case by expanding σ in Equation (4.68), and evaluate
the effect of the random GL2n,F2 element on T1T2 using Lemma 4.4.4. It ensures that,
if A altered the T1T2 register, then B cannot successfully reset the register T2 to the
correct value r . It follows that

Eq. (4.68) (4.69)

≈ E
E

∑
b,d

B MT1R
b,d E MT1 TrT2

[
Π

T1T2
b,F A

(
ρ⊗ ∣∣02n〉〈

02n∣∣) A†Π†
b,F

]
E †B †

b,d ⊗|E〉〈E |S (4.70)

= E
E

∑
d

B MT1R
0,d E MT1 TrT2

[∣∣02n〉〈
02n∣∣ A

(
ρ⊗ ∣∣02n〉〈

02n∣∣) A† ∣∣02n〉〈
02n∣∣]E †B †

0,d

⊗|E〉〈E |S (4.71)

= E
E

∑
d

B MT1R
0,d E MT1

(
A0ρA†

0 ⊗
∣∣0n〉〈

0n∣∣)E †B †
0,d (4.72)

= Eq. (4.57). (4.73)

The difference in the approximation is bound by negl(n), since for each b we can
use Lemma 4.4.4 (and there is an implicit average over the bs because of the normal-
ization factor induced by the Bb,d operator). Essentially, the only way to pass the
measurement test successfully is for A not to alter the all-zero state in T1T2, and for B
to leave T2 unaltered in the computational basis. This is reflected in the simulator’s
zero filter and X filter, respectively.
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If the real protocol rejects, the MPC stores a dummy ⊥ in the key register S. The
resulting state can be derived in a similar way, up to Equation (4.70), after which the
derivation becomes slightly different. The output state in the case of reject approxi-
mates (up to a difference of negl(n))

E
E

∑
b,d

B MT1R
b,d E MT1 TrT2

[(
I−Πb,F

)T1T2 A
(
ρ⊗ ∣∣02n〉〈

02n∣∣) A† (
I−Πb,F

)†
]

E †B †
b,d

⊗|⊥〉〈⊥|S (4.74)

= ∑
b,d

B MT1R
b,d T MT1

Cn+1

(
TrT2

[(
I−Πb,F

)T1T2 A
(
ρ⊗ ∣∣02n〉〈

02n∣∣) A† (
I−Πb,F

)†
])

B †
b,d

⊗|⊥〉〈⊥|S (4.75)

= ∑
b 6=0n

d ,a,a′

B MT1R
b,d T MT1

Cn+1

(
TrT2

[
Aaρ

MR A†
a′ ⊗

∣∣a〉〈
a′∣∣])B †

b,d ⊗|⊥〉〈⊥|S

+ ∑
a,a′ 6=02n

d

B MT1R
0,d T MT1

Cn+1

(
TrT2

[
Aaρ

MR A†
a′ ⊗

∣∣a〉〈
a′∣∣])B †

0,d ⊗|⊥〉〈⊥|S (4.76)

= ∑
(b,a)6=(0n ,02n )

d

B MT1R
b,d

(
TrM

[
Aaρ

MR A†
a

]
⊗τMT1

)
B †

b,d ⊗|⊥〉〈⊥|S (4.77)

= Eq. (4.59)+Eq. (4.60). (4.78)

Tracing out register T2 ensures that the second half of a and a′ have to be equal;
Twirling over the Clifford group ensures that the first half (acting on register T1) of a
and a′ have to be equal (see the proof of Lemma 2.4.9).

These derivations show that the output state that the environment sees (in regis-
ters MT1RS) in the real protocol are negligibly close to the output state in the ideal
protocol. This concludes our proof for the second case, where player 1 is dishon-
est.

4.4.2 Preparing ancilla qubits

Apart from encrypting the players’ inputs, we also need a way to obtain encoded
ancilla-zero states, which may be fed as additional input to the circuit. Since none of
the players can be trusted to simply generate these states as part of their input, we
need to treat them separately.

In the two-party protocol [DNS12], Alice generates an encoding of |0〉〈0|, and
Bob tests it by entangling (with the help of the classical MPC) the data qubit with a
separate |0〉〈0| qubit. Upon measuring that qubit, Bob then either detects a maliciously
generated data qubit, or collapses it into the correct state. For details, see [DNS12,
Appendix E].
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Here, we take a similar approach, except with a public test on the shared traps. In
order to guard against a player that may lie about the measurement outcomes during
a test, we entangle the data qubits with all traps. We do so using a random linear
operator, similarly to the encoding described in the previous subsection.

Essentially, the protocol for preparing ancilla qubits is identical to Protocol 4.4.2
for input encoding, except that now we do not only test whether the 2n traps are in
the |0〉〈0| state, but also the data qubit: concretely, the linear operator g acts on 2n +1
elements instead of 2n. That is,

V := (E ⊗P )Ug (Fk · · ·F2F1)†. (4.79)

As a convention, Player 1 will always create the ancilla |0〉〈0| states and encode them.
In principle, the ancillas can be created by any other player, or by all players together.

Per the same proof as for Lemma 4.4.3, we have implemented the following ideal
functionality, again making use of a classical MPC as a black box.

Definition 4.4.7 (Ideal functionality for encoding of |0〉〈0|). Let IA Ú [k] be a set of
corrupted players.

1. The trusted third party initializes a register T1 with |0n〉〈0n |, applies a random
(n +1)-qubit Clifford E to MT1, and sends these registers to player 1.

2. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all i ,
then the trusted third party stores the key E in the state register S of the ideal
functionality. Otherwise, it aborts by storing ⊥ in S.

4.5 Protocol: Clifford computation and measurement

After all players have successfully encoded their inputs and sufficiently many ancillary
qubits, they perform a quantum computation gate-by-gate on their joint inputs.
In this section, we will present a protocol for circuits that consist only of Clifford
gates and computational-basis measurements. The Clifford gates may be classically
controlled (for example, on the measurement outcomes that appear earlier in the
circuit). In Section 4.6, we will discuss how to expand the protocol to general quantum
circuits.

Concretely, we wish to achieve the functionality in Definition 4.2.2 for all circuits
C that consist of Clifford gates and computational-basis measurements. As an inter-
mediate step, we aim to achieve the following ideal functionality, where the players
only receive an encoded output, for all such circuits:

Definition 4.5.1 (Ideal quantum k-party computation without decoding). Let C be a
quantum circuit on W wires. Consider a partition of the wires into the players’ input
registers plus an ancillary register, as [W ] = R in

1 t·· ·tR in
k tRancilla, and a partition
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into the players’ output registers plus a register that is discarded at the end of the
computation, as [W ] = Rout

1 t·· ·tRout
k tRdiscard. Let IA Ú [k] be the set of corrupted

players.

1. All players i send their register R in
i to the trusted third party.

2. The trusted third party instantiates Rancilla with |0〉〈0| states.

3. The trusted third party applies C to the wires [W ].

4. For every player i and every output wire w ∈ Rout
i , the trusted third party sam-

ples a random (n +1)-qubit Clifford Ew , applies ρ 7→ Ew (ρ⊗|0n〉〈0n |)E †
w to w ,

and sends the result to player i.

5. All players i ∈ IA send a bit bi to the trusted third party.

(a) If bi = 0 for all i , all keys Ew and all measurement outcomes are stored in
the state register S.

(b) Otherwise, the trusted third party aborts by storing ⊥ in S.

To achieve the ideal functionality, we define several subprotocols. The subproto-
cols for encoding the players’ inputs and ancillary qubits have already been described
in Section 4.4. It remains to describe the subprotocols for (classically-controlled)
single-qubit Clifford gates (Section 4.5.1), (classically controlled) CNOT gates (Sec-
tion 4.5.2), and computational-basis measurements (Section 4.5.3).

In Section 4.5.5, we show how to combine the subprotocols in order to compute
any polynomial-sized Clifford+measurement circuit. Our approach is inductive in the
number of gates in the circuit. The base case is the identity circuit, which is essentially
covered in Section 4.4. In Sections 4.5.1 to 4.5.3, we show that the ideal functionality
for any circuit C , followed by the subprotocol for a gate G , results in the ideal func-
tionality for the circuit G ◦C (C followed by G). As such, we can chain together the
subprotocols to realize the ideal functionality in Definition 4.5.1 for any polynomial-
sized Clifford+measurement circuit. Combined with the decoding subprotocol we
present in Section 4.5.4, such a chain of subprotocols satisfies Definition 4.2.2 for
ideal k-party quantum Clifford+measurement computation with abort.

In Definition 4.5.1, all measurement outcomes are stored in the state register
of the ideal functionality. We do so to ensure that the measurement results can be
used as a classical control to gates that are applied after the circuit C , which can be
technically required when building up to the ideal functionality for C inductively. Our
protocols can easily be altered to broadcast measurement results as they happen, but
the functionality presented in Definition 4.5.1 is the most general: if some player is
supposed to learn a measurement outcome m`, then the circuit can contain a gate
Xm` on an ancillary zero qubit that will be part of that player’s output.
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4.5.1 Subprotocol: single-qubit Cliffords

Due to the structure of the Clifford code, applying single-qubit Cliffords is simple: the
classical MPC, who keeps track of the encoding keys, can simply update the key so
that it includes the single-qubit Clifford on the data register (see Section 3.4.1). We
describe the case of a single-qubit Clifford that is classically controlled on a previous
measurement outcome stored in the MPC’s state. The unconditional case can be
trivially obtained by omitting the conditioning.

Protocol 4.5.2 (Single-qubit Cliffords). Let Gm` be a single-qubit Clifford to be
applied on a wire w (held by a player i ), conditioned on a measurement outcome
m`. Initially, player i holds an encoding of the state on that wire, and the classical
MPC holds the encoding key E .

1. MPC reads result m` from its state register S, and updates its internally
stored key E to E((Gm` )† ⊗ I⊗n).

If m` = 0, nothing happens. To see that the protocol is correct for m` = 1, consider
what happens if the state E(ρ⊗ |0n〉〈0n |)E † is decoded using the updated key: the
decoded output is

(E(G† ⊗ I⊗n))†E
(
ρ⊗ ∣∣0n〉〈

0n∣∣)E †(E(G† ⊗ I⊗n)) = GρG† ⊗ ∣∣0n〉〈
0n∣∣ . (4.80)

Protocol 4.5.2 implements the ideal functionality securely: given an ideal implemen-
tation IC for some circuit C , we can implement Gm` ◦C (i.e., the circuit C followed by
the gate Gm` ) by performing Protocol 4.5.2 right after the interaction with IC .

Lemma 4.5.3. Let Gm` be a single-qubit Clifford to be applied on a wire w (held by
a player i ), conditioned on a measurement outcome m`. Let ΠGm` be Protocol 4.5.2
for the gate Gm` , and IC be the ideal functionality for a circuit C as described in
Definition 4.5.1. For all sets IA Ú [k] of corrupted players and all adversaries A that
perform the interactions of players in IA, there exists a simulator S (the complexity of
which scales polynomially in that of the adversary) such that for all environments E ,

Pr[1 ← (E � (ΠGm` ¦IC )A)] = Pr[1 ← (E � IGm`◦C
S )].

Proof. For the sake of clarity, assume again that there is only one wire, held by player
1 (who might be honest or dishonest). Generalizing the proof to multiple wires does
not require any new technical ingredients, but simply requires a lot more (cluttering)
notation.

In the protocol ΠGm` ¦IC , an adversary has two opportunities to attack: once
before its input state is submitted to IC , and once afterwards. We define a simulator
that applies these same attacks, except that it interacts with the ideal functionality
IGm`◦C .
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The adversary A receives a state ρMR from the environment (where again, M :=
R in

1 ). It potentially alters this state with a unitary map A, submits the result to the
ideal functionality, and receives the register MT1 = Rout

1 . The adversary may again act
on the state, say with a map B , and then gets a chance to submit (for all players i ∈ IA)
bits bi to IC , and b′

i toΠGm` ). If one or more of those bits are 1, the ideal functionality
(or the MPC) aborts by overwriting the state register S with ⊥.

In case all bits are 0, the output register MT1RS contains

E
E

B MT1R E MT1
(
ΦM

C

(
AρMR A†

)
⊗ ∣∣0n〉〈

0n∣∣T1
)

E †B †

⊗
∣∣∣E ((

Gm`
)† ⊗ I⊗n

)〉〈
E

((
Gm`

)† ⊗ I⊗n
)∣∣∣S

(4.81)

=E
E

B MT1R E MT1
(
Gm`

)M
(
ΦM

C

(
AρMR A†

)
⊗ ∣∣0n〉〈

0n∣∣T1
)(

Gm`
)† E †B † ⊗|E〉〈E |S , (4.82)

whereΦC (·) is the map induced by the circuit C .
In case not all bits are 0, the output register MT1RS contains

B ′A′ρR (B ′A′)† ⊗τMT1 ⊗|⊥〉〈⊥|S , (4.83)

where A′ and B ′ are the reduced maps A and B on register R.
Define a simulator S as follows:

Simulator 4.5.4. On input ρMR from the environment, do:

• Run A on MR.

• Submit M to the ideal functionality for Gm` ◦C , and receive MT1.

• Run B on MT1R, and note its output bits (bi ,b′
i ) for all i ∈ IA. Submit

max{bi ,b′
i } to the ideal functionality for Gm` ◦C .

From the point of view of the adversary, the state it receives from the ideal functionality
is the same: a Clifford-encoded state. Thus, the bits bi and b′

i will not be different in
this simulated scenario. In fact, the output state is exactly Eq. (4.82) + Eq. (4.83).

4.5.2 Subprotocol: CNOT gates

The application of two-qubit Clifford gates (such as CNOT) is more complicated than
the single-qubit case, for two reasons.

First, a CNOT is a joint operation on two states that are encrypted with separate
keys. If we were to classically update two keys E1 and E2 in a similar fashion as in
Protocol 4.5.2, we would end up with a new key (E1 ⊗E2)(CNOT1,n+2), which cannot



116 Chapter 4. Multi-party quantum computation

be written as a product of two separate keys. The keys would become “entangled”,
which is undesirable for the rest of the computation.

Second, the input qubits might belong to separate players, who may not trust the
authenticity of each other’s qubits. Dupuis et al. guarantee authenticity of the output
state by having both players test each state several times [DNS12]. In a multi-party
setting, both players involved in the CNOT are potentially dishonest, so it might seem
necessary to involve all players in this extensive testing. However, because all our
tests are publicly verified, our protocol requires less testing. Still, interaction with all
other players is necessary to apply a fresh “joint” Clifford on the two ciphertexts.

Protocol 4.5.5 (CNOT). This protocol applies a CNOT gate to wires wi (control)
and w j (target), conditioned on a measurement outcome m`. Suppose that
player i holds an encoding of the first wire, in register M i T i

1 , and player j of the

second wire, in register M j T j
1 . The classical MPC holds the encoding keys Ei

and E j .

1. If i 6= j , player j sends their registers M j T j
1 to player i . Player i now holds

a (2n +2)-qubit state.

2. Player i initializes the registers T i
2 and T j

2 both in the state |0n〉〈0n |.
3. For all players h, MPC samples random (4n +2)-qubit Cliffords Dh , and

gives them to the respective players. Starting with player i , each player

h applies Dh to M i j T i j
12 ,a and sends the state to player h +1. Eventually,

player i receives the state back from player i −1. MPC remembers the
applied Clifford

D := Di−1Di−2 · · ·D1Dk Dk−1 · · ·Di .

4. MPC samples random (2n +1)-qubit Cliffords Fi and F j , and tells player i
to apply

V := (Fi ⊗F j )CNOTm`
1,2n+2(E †

i ⊗ I⊗n ⊗E †
j ⊗ I⊗n)D†.

Here, the CNOT acts on the two data qubits inside the encodings.

5. If i 6= j , player i sends M j T j
12 to player j .

6. Players i and j publicly test their encodings. The procedures are identical,
we describe the steps for player i :
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(a) MPC samples a random (n +1)-qubit Clifford E ′
i , which will be the

new encoding key. Furthermore, MPC samples random n-bit strings
si and ri , and a random classical invertible linear operator gi on F2n

2 .

(b) MPC tells player i to apply

Wi :=
(
E ′

i ⊗ (Xri Zsi )T i
2

)
U

T i
12

gi
F †

i .

Here, Ugi is as defined in Protocol 4.4.2.

(c) Player i measures T i
2 in the computational basis and reports the n-bit

measurement outcome r ′
i to the MPC.

(d) MPC checks whether r ′
i = ri . If it is not, MPC sends abort to all

players. If it is, the test has passed, and MPC stores the new encoding
key E ′

i in its internal memory.

aWe combine subscripts and superscripts to denote multiple registers: e.g., T
i j
12 is shorthand for

T i
1 T i

2 T
j

1 T
j

2 .

Lemma 4.5.6. Let ΠCNOTm` be Protocol 4.5.5, to be executed on wires wi and w j ,
held by players i and j , respectively. Let IC be the ideal functionality for a circuit
C as described in Definition 4.5.1. For all sets IA Ú [k] of corrupted players and all
adversaries A that perform the interactions of players in IA, there exists a simulator S
(the complexity of which scales polynomially in that of the adversary) such that for all
environments E ,∣∣∣Pr[1 ← (E � (ΠCNOTm` ¦IC )A)]−Pr[1 ← (E � ICNOTm`◦C

S )]
∣∣∣É negl(n).

Proof. There are four different cases, depending on which of the players i and j are
dishonest: both players involved in the CNOT are honest (i , j 6∈ IA), both players are
dishonest (i , j ∈ IA), only player i is honest (i 6∈ IA, j ∈ IA), or only player j is honest
(i ∈ IA, j 6∈ IA). Without loss of generality, we will assume that all other players are
dishonest (except in the second case, where at least one of the other players has to
be honest), and that they have no inputs themselves: their encoded inputs can be
regarded as part of the adversary’s side information R . Note that these four cases also
cover the possibility that i = j . We describe simulators separately for all four cases.

Case 1: player i and j are honest. In this case, the adversarial players in IA only
have influence on the execution of Step 3 of the protocol, where the state is sent
around in order for the players to jointly apply the random Clifford D .

As in the first case of the proof of Lemma 4.4.3 for the encoding protocol ΠEnc

(where the encoding player is honest), define a simulator that performs a Pauli filter
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IdFilter on the attack of the adversary. The simulator and proof are almost identical
to those in Lemma 4.4.3, so we omit the details.

Case 2: player i and j are dishonest. The proof for this case is the most involved,
so we start off with an intuitive description of why the protocol is secure against
dishonest players i and j .

There are a few ways in which the adversary may attack. First, he may prepare

a nonzero state in the registers T i
2 (or T j

2 ) in Step 2, potentially intending to spread

those errors into M i T i
1 (or M j T j

1 ). Doing so, however, will cause Ugi (or Ug j ) to
map the trap state to a random nonzero string, and the adversary would not know
what measurement string r ′

i (or r ′
j ) to report. Since gi is unknown to the adversary,

Lemma 4.4.4 is applicable in this case: it states that it suffices to measure T i
2 in order

to detect any errors in T i
12.

Second, the adversary may fail to execute its instructions V or Wi ⊗W j correctly.
Doing so is equivalent to attacking the state right before or right after these instruc-
tions. In both cases, however, the state in M i T i

1 is Clifford-encoded (and the state
in T i

2 is Pauli-encoded) with keys unknown to the adversary, so the authentication
property of the Clifford code prevents the adversary from altering the outcome.

The simulator we will define tests the adversary exactly for the types of attacks
above. With Pauli filters, the simulator checks whether the attacker leaves the au-
thenticated states and the trap states T i

2 and T j
2 (both at initialization and before

measurement) unaltered.
We now analyze the security in more detail. Without loss of generality, we can

break up the attack of the adversary (acting jointly for players i , j and any other
players in IA) into three unitary operations, acting on the relevant register plus a
side-information register. As in the proof of Lemma 4.4.3, we may assume that the
honest actions are executed as well, since each attack may start or end with undoing

that honest action. The first attack AM i j R is executed on the plaintexts, before any

protocol starts. The second attack ÃM i j T
i j
12 R happens after Step 2 of Protocol 4.5.5, on

the output of IC and the initialized registers T i j
2 . Finally, the third attack ˜̃AM i j T

i j
12 R

happens toward the end of the protocol, right before the T i j
2 registers are measured in

Step 6c of Protocol 4.5.5. Note that ˜̃A may depend on the instructions V , Wi and W j .
It will be useful to decompose the second and third attacks as follows:

Ã = ∑
ai

1,ai
2,a

j
1 ,a

j
2 ,c i

1,c i
2,c

j
1 ,c

j
2

(Xai
1Zc i

1 )M i T i
1 ⊗ (Xai

2Zc i
2 )T i

2

⊗(Xa
j
1Zc

j
1 )M j T

j
1 ⊗ (Xa

j
2Zc

j
2 )T

j
2 ⊗ ÃR

a
i j
12,c

i j
12

(4.84)

˜̃A = ∑
b,d

(XbZd )T
i j
2 ⊗ ˜̃A

M i j T
i j
1 R

b,d (4.85)
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Whenever the order is clear from the context, we will abbreviate, for example, ai j
12 for

the concatenation ai
1ai

2a j
1 a j

2 , as we have done in the last term of Equation (4.84).

In terms of an arbitrary attack A, Ã, ˜̃A, define the simulator S as follows:

Simulator 4.5.7. On input ρM i M j R from the environment, do:

1. Initialize bi = 0.

2. Run A on M i j R.

3. Submit M i j to ICNOTm`◦C , and receive M i j T i j
1 , containing an encodings

of the M i and M j registers of CNOTm` (C (ρ)), under some (secret) keys
Ei ,E j .

4. Run ZeroFilterT
i j
2 (IdFilterM i j T

i j
1 (Ã)) on R (see Section 4.3.1). If one of the

filter flags is 1, set bi = 1.

5. Sample random V ′ ∈C4n+2 and W ′
i ,W ′

j ∈C2n+1, and run XFilterT
i j
2 ( ˜̃A) on

M i j T i j
1 R, where ˜̃A may depend on V ′,W ′

i ,W ′
j . If the filter flag is 1, set

bi = 1.

6. Submit bi to the ideal functionality, along with all other b` = 0 for ` ∈
IA \ {bi }.

The simulator should also abort whenever the adversary signals abort during an
interaction with MPC. For simplicity, we leave out these abort bits in the simulator
and proof. They are dealt with in the same way as in the proof of Lemma 4.5.3.

As before, we derive the real and ideal output states in the registers Rout
i = M i T i

1

and Rout
j = M j T j

i , the state register S, and the attacker’s side information R, and aim

to show that they are negligibly close in terms of the security parameter n.
In the ideal (simulated) case, there are two points at which cheating may be

detected by the simulator: once during the zero/identity filter of Ã, and during the X
filter of ˜̃A. Thus, there are three possible outcome scenarios: both tests are passed,
the first test is passed but the second is not, or the first test fails (in which case it does
not matter whether the second test is passed or not).

If both tests pass, then by three applications of Lemma 4.3.2, the simulated output
state is

E
Ei ,E j

˜̃A
M i j T

i j
1 R

0 ÃR
0,0

(
Ei ⊗E j

)M i j T
i j
1

(
CNOTm`C

(
AρA†

)
CNOTm`† ⊗ ∣∣02n〉〈

02n∣∣T
i j
1

)
(
Ei ⊗E j

)† Ã†
0,0

˜̃A†
0 ⊗

∣∣Ei ,E j
〉〈

Ei ,E j
∣∣S , (4.86)
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where we write Ã0,0 to denote the attack
∑

c
i j
2

Ã
0000,0c i

20c
j
2

that passes through the

zero/identity filter, and ˜̃A0 to denote the attack
∑

d
˜̃A0,d that passes through the X

filter.
If the first test is passed but the second test is not, then the storage register S gets

erased, so that we may view the Ei and E j operations as Clifford twirls of the registers
they encode. In that case, the (simulated) output state is

∑
b 6=0

˜̃Ab Ã0,0T
M i T i

1
Cn+1

(
T M j T

j
1

Cn+1

(
CNOTm`C

(
AρA†

)
CNOTm`† ⊗ ∣∣02n〉〈

02n∣∣)) Ã†
0,0

˜̃A†
b

⊗|⊥〉〈⊥|S (4.87)

= ∑
b 6=0

˜̃Ab Ã0,0

(
TrM i j

[
AρM i j R A†

]
⊗τMT

i j
1

)
Ã†

0,0
˜̃A†

b ⊗|⊥〉〈⊥|S . (4.88)

The Clifford twirls cause the data and trap registers to become fully mixed, thereby
also nullifying the effect of the CNOT and circuit C on the data.

Finally, we consider the third scenario, where already the first test (the zero /
identity filter) fails. As in the previous scenario, the storage register S is erased,
allowing us to apply the Clifford twirl again. By Lemma 4.3.2, the output state in this
case is∑

b

∑
(a

i j
12,c

i j
1 )6=

(04n+2,02n+2)

˜̃Ab Ã
a

i j
12,c

i j
1

(
TrM i j

[
AρM i j R A†

]
⊗τMT

i j
1

)
Ã†

a
i j
12,c

i j
1

˜̃A†
b ⊗|⊥〉〈⊥|S , (4.89)

writing Ã
a

i j
12,c

i j
1

:=∑
c

i j
2

Ã
a

i j
12,c

i j
12

. Note that for the second test (the X filter), the terms

for both possible flag values remain: the cheating bit bi is already set to 1, regardless
of the outcome of this second test.

We move on to the analysis of the real protocol ΠCNOTm` ¦IC , and aim to show
that the output state is equal to Eq. (4.86) + Eq. (4.88) + Eq. (4.89). To do so, consider
the output state of the real protocol, right before the final measurement.

We continue to argue why the attacks are independent of Ei j , E ′
i j , gi j , ri j and si j .

The intuition for this fact is that D is uniformly random and independent of Ei j from
the perspective of the adversary. Therefore it “hides” all other information that is used
to compile V , including Fi j . Therefore Fi j are as random and independent as D from
the perspective of the adversary, i.e., given V . This allows for a similar argument for
the Cliffords Wi j , where F hides all the other information, i.e., E ′

i j , gi j ,ri j and si j .

For the following more formal argument, we treat all the mentioned quantities as
random variables. Initially, Ei j are uniformly random. D is the product of a number
of Clifford group elements, at least one of which is generated honestly and therefore
sampled uniformly at random. But for any group G , given two independent random
variables ζ and η on G , where ζ is uniformly random, we have that ηζ is uniformly
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random and ηζ⊥η, where ⊥ denotes independence. This implies that D is indeed a
uniformly random Clifford itself. Using the same argument, V is uniformly random
and V ⊥(Ei j ,Fi j ). The quantities E ′

i j , gi j , ri j and si j are sampled independently and

uniformly after V is handed to player i , so we even have V ⊥(Ei j ,Fi j ,E ′
i j , gi j ,ri j , si j ).

After Step 4 in Protocol 4.5.5, the adversary has a description of V , so when analyzing
Wi j , we have to derive independence statements given V . But as shown before Fi j

are independent of V , so the the group random variable property above we have
Wi j⊥(E ′

i j , gi j ,ri j , si j )|V . Clearly, Ei j is independent of all the random variables used

in Wi j , and we have shown that Ei j⊥V , so Wi j⊥(Ei j ,E ′
i j , gi j ,ri j , si j )|V . In summary,

(V ,Wi j )⊥(Ei j ,E ′
i j , gi j ,ri j , si j ). (4.90)

According to the decomposition of the attack into attack maps A, Ã and ˜̃A, that we
made without loss of generality, the Clifford operations Fi , F j , and D cancel again
after having fulfilled their task of hiding information, which allows us to utilize Equa-
tion (4.90) to carry out the expectation values over various variables from the right
hand side of that equation.

The output state of the real protocol is

E
E ′

i ,E ′
j ,gi ,g j

ri ,si ,r j ,s j

˜̃AM i j T
i j
12 R

(
E ′

i ⊗
(
Xri Zsi

)T i
2 ⊗E ′

j ⊗
(
Xr j Zs j

)T
j

2

)(
U

T i
12

gi
⊗U

T
j

12
g j

)
CNOTm`σ

CNOTm`†
(
U †

gi
⊗U †

g j

)(
E ′

i ⊗
(
Xri Zsi

)⊗E ′
j ⊗

(
Xr j Zs j

))† ˜̃A† ⊗
∣∣∣E ′

i ,E ′
j

〉〈
E ′

i ,E ′
j

∣∣∣S
, (4.91)

where (again writingΦC (·) for the map induced by the circuit C )

σ := E
Ei ,E j ∈Cn+1

(
E †

i ⊗E †
j

)
ÃM i j T

i j
12 R

((
E

M i T i
1

i ⊗E
M j T

j
1

j

)(
ΦC

(
AρM i j R A†

)
⊗ ∣∣02n〉〈

02n∣∣T
i j
1

)
(
E †

i ⊗E †
j

)
⊗ ∣∣02n〉〈

02n∣∣T
i j
2

)
Ã† (

Ei ⊗E j
)

(4.92)

= T M i T i
1

Cn+1

(
T M j T

j
1

Cn+1

(
Ã

))(
ΦC

(
AρM i j R A†

)
⊗ ∣∣04n〉〈

04n∣∣T
i j
12

)
(4.93)

≈negl(n) Ã
T

i j
2 R

00

(
ΦC

(
AρM i j R A†

)
⊗ ∣∣02n〉〈

02n∣∣T
i j
2

)
Ã†

00 ⊗
∣∣02n〉〈

02n∣∣T
i j
1

+TrM i

[
Ã

T
i j
2 R

01

(
ΦC

(
AρM i j R A†

)
⊗ ∣∣02n〉〈

02n∣∣T
i j
2

)
Ã†

01

]
⊗τM i T i

1 ⊗ ∣∣0n〉〈
0n∣∣T

j
1

+TrM j

[
Ã

T
i j
2 R

10

(
ΦC

(
AρM i j R A†

)
⊗ ∣∣02n〉〈

02n∣∣T
i j
2

)
Ã†

10

]
⊗ ∣∣0n〉〈

0n∣∣T i
1 ⊗τM j T

j
1

+TrM i j

[
Ã

T
i j
2 R

11

(
ΦC

(
AρM i j R A†

)
⊗ ∣∣02n〉〈

02n∣∣T
i j
2

)
Ã†

11

]
⊗τM i j T

i j
1 , (4.94)
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and

Ãpq := ∑
a

i j
2 ,c

i j
2

ai
1c i

1∈Sp

a
j
1 c

j
1∈Sq

(Xa
i j
2 Zc

i j
2 )T

i j
2 ⊗ ÃR

ai
12a

j
12,c i

12c
j
12

. (4.95)

for p, q ∈ {0,1} and S0 := {02n+2}, S1 := {0,1}2n+2 \ S0. The approximation follows by a
double application of Lemma 3.3.2. We can twirl with the keys Ei and E j , since none
of the attacks can depend on the secret encoding keys Ei ,E j , and the keys have been
removed from the storage register S, and replaced by the new keys E ′

i ,E ′
j .

Having rewritten the state σ in this form, we consider the state in Equation (4.91)

after the T i j
2 registers are measured in the computational basis, as in Step 6c of

Protocol 4.5.5. We first consider the case where the measurement outcome is accepted
by the MPC (i.e., the measurement outcome is ri r j ). Using the same derivation steps
as in Equations (4.64) to (4.75), we see that the real accept state approximates (up to a
negligible error in n)

E
E ′

i ,E ′
j

˜̃A
M i j T

i j
1 R

0

(
E ′

i ⊗E ′
j

)M i j T
i j
1

Tr
T

i j
2

[∣∣04n〉〈
04n∣∣T

i j
12 CNOTm`σCNOTm`† ∣∣04n〉〈

04n∣∣]
(
E ′

i ⊗E ′
j

)† ˜̃A†
0 ⊗

∣∣∣E ′
i ,E ′

j

〉〈
E ′

i ,E ′
j

∣∣∣S
. (4.96)

To derive the above expression, we applied a Pauli twirl, which relies on the fact
that the adversary cannot learn ri ,r j , si , s j . Furthermore, the derivation contains an

application of Lemma 4.4.4 to expand the effect of measuring T i j
2 to measuring both

registers T i j
12 . To apply this lemma, we use the aforementioned fact that gi and g j

remain hidden from the adversary.
The second, third, and fourth terms of the sum in the approximation of σ (see

Equation (4.94)) have negligible weight inside Equation (4.96), since the probability

of measuring an all-zero string in the T i j
1 registers is negligible in n whenever one

or both are in the fully mixed state τ. Additionally, the only components in Ã00 that

survive are those that act trivially in the computational basis on T i j
2 . Hence,

Eq. (4.96) ≈negl(n) Eq. (4.86). (4.97)

In case the measurement outcome is rejected by the MPC (i.e., it is anything other
than ri r j ), the output state can be derived using the same steps that were used to
obtain Equation (4.75) in the proof of Lemma 4.4.3. Up to an error negligible in n, it
approximates∑

b

˜̃A
M i j T

i j
1 R

b T M i T i
1

Cn+1

(
T M j T

j
1

Cn+1

(
Tr

T
i j
2

[
(I−Πb,F )T

i j
12CNOTm`σCNOTm`†(I−Πb,F )†

]))
˜̃A†

b

⊗|⊥〉〈⊥|S . (4.98)
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The encoding under the keys E ′
i ,E ′

j in Equation (4.91) can be regarded as two Clifford

twirls, because these keys are removed from the storage register S, and because the
attack maps also cannot depend on them, since they are unknown by the adversary.

The next step is to substitute the expression for σ that was derived in Equa-
tion (4.94). We distinguish between the case b 6= 0, where I−Πb,F = I and thus all
terms of Equation (4.94) remain, and the case b = 0, where one has to more care-
fully count which (parts of the) terms remain. To do so, observe that the first term

is projected to nonzero in T i j
12 whenever a2

i j is nonzero. The other three terms are
always projected to nonzero, up to a negligible contribution of the all-zero string in
the fully mixed state τ. In summary, exactly those terms ÃR

a
i j
12,c

i j
12

remain for which

(ai j
12,c i j

1 ) 6= (04n+2,02n+1).
Because the two Clifford twirls map the M i j registers to a fully mixed state, the

four terms in Equation (4.94) can be combined, resulting in the following output state
in the reject case∑

b 6=0

∑
a

i j
12,c

i j
1

˜̃Ab Ã
a

i j
12,c

i j
1

(
TrM i j

[
AρM i j R A†

]
⊗τMT

i j
1

)
Ã†

a
i j
12,c

i j
1

˜̃A†
b ⊗|⊥〉〈⊥|S

+ ∑
(a

i j
12,c

i j
1 )6=

(04n+2,02n+2)

˜̃A0 Ã
a

i j
12,c

i j
1

(
TrM i j

[
AρM i j R A†

]
⊗τMT

i j
1

)
Ã†

a
i j
12,c

i j
1

˜̃A†
0 ⊗|⊥〉〈⊥|S (4.99)

= Eq. (4.88)+Eq. (4.89). (4.100)

We have shown that the sum of the three terms of the output state in the simulated
case (both tests accept, the first test accepts but the second rejects, and the first test
rejects) is approximately equal to the sum of the two terms of the output state in
the real case (the MPC accepts the measurement outcome, or the MPC rejects the
measurement outcome).

Case 3: only player i is honest. At first, it may seem that this is just a special case
of the previous one, where both players are dishonest. While this is true in spirit, we
cannot directly use the simulator from the previous case. The reason is syntactical:
a simulator would not have access to the registers M i T i

12, because they are held by
honest player i . Thus, the simulator needs to differ slightly from the previous case.
However, it is very similar, as is the derivation of the real/ideal output states. We
therefore omit the full proof, and instead only define the simulator.

The adversary again has three opportunities to attack: an attack A on the plaintext
and side-information register M j R, which happens before the ideal functionality IC

is called; an attack Ã on the output of IC in registers M j T j
1 R (right before player j

sends their state to player i ); and an attack ˜̃A on M j T j
12R, after an honest application

of W j (which we may assume to happen without loss of generality), but before the
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computational-basis measurement of T2. Given these attacks, define the simulator as
follows.

Simulator 4.5.8. On input ρM j R from the environment, do:

1. Initialize b j = 0.

2. Run A on M j R.

3. Submit M j to the ideal functionality ICNOTm`◦C , and receive M j T j
1 , con-

taining an encoding under a secret key E j . (Honest player i holds the
other output, encoded under Ei .)

4. Run IdFilterM j T
j

1 (Ã) on R. If the filter flag is 1, then set b j = 1.

5. Sample random W ′
j ∈ C2n+1, and run XFilterT

j
2 ( ˜̃A) on M j T j

1 R, where ˜̃A

may depend on W ′
j . If the filter flag is 1, then set b j = 1.

6. Submit b j to the ideal functionality, along with all other b` = 0 for ` ∈
IA \ {b j }.

Intuitively, the simulator tests whether player j sent the actual outcome of IC without
altering it (Step 4 of the simulator), and whether player j left the computational basis
of T2 invariant before measuring it (Step 5 of the simulator).

Case 4: only player j is honest. Similarly to the previous case, we need to provide
a separate simulator for the case where player i is dishonest, player j is honest, and
(without loss of generality) all other players are dishonest.

The adversary has three opportunities to attack: an attack A on the plaintext and
side-information register M i R, which happens before the ideal functionality IC is

called; an attack Ã on registers M i j T i j
12 R that is applied on the outputs of the ideal

functionality and on the extra registers T2, right before D is applied; and an attack ˜̃A

on M i j T i j
12 R, right before the measurement on T i

2 (as part of player i ’s test) and the
application of W j (so right before sending the appropriate registers to player j ). Given
these attacks, define the simulator as follows.

Simulator 4.5.9. On input ρM i R from the environment, do:

1. Initialize bi = 0.

2. Run A on M i R.
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3. Submit M i to the ideal functionality ICNOTm`◦C , and receive M i T i
1 , con-

taining an encoding under a secret key Ei . (Honest player j holds the
other output, encoded under E j .)

4. Run ZeroFilterT
i j
2

(
IdFilterM i j T

i j
1

(
Ã

))
on R. If the filter flag is 1, then set

bi = 1.

5. Sample random V ,W ′
i ∈ C2n+1, and run XFilterT i

2

(
IdFilterM j T

j
12

(
˜̃A
))

on

M i T j
1 R, where ˜̃A may depend on V and W ′

i . If the filter flag is 1, then set
bi = 1.

6. Submit bi to the ideal functionality, along with all other b` = 0 for ` ∈
IA \ {bi }.

Intuitively, the simulator tests (in Step 4) whether player i leaves the states received

from the ideal functionality and player j intact, as well as the traps in T i j
2 that are

initialized to
∣∣02n

〉〈
02n

∣∣. In Step 5, it tests both whether player i executes the test
honestly by not altering the computational-basis value of T i

2 , and whether he would
give the correct (uncorrupted) state to player j .

4.5.3 Subprotocol: measurement

Measurement of authenticated states introduces a new conceptual challenge. For
a random key E , the result of measuring E

(
ρ⊗|0n〉〈0n |)E † in a fixed basis is in no

way correlated with the logical measurement outcome of the state ρ. However, the
measuring player is also not allowed to learn the key E , so they cannot perform a
measurement in a basis that depends meaningfully on E .

Dupuis et al. solve this challenge by entangling the state with an (encoded) ancilla-
zero state on a logical level [DNS10, Appendix E]. After this entanglement step, Alice
gets the original state while Bob gets the ancilla state. They both decode their state
(learning the key from the MPC), and can measure it. Because those states are entan-
gled, and at least one of Alice and Bob is honest, they can ensure that the measurement
outcome was not altered, simply by checking that they both obtained the same out-
come. The same strategy can in principle also be scaled up to k players, by making
all k players hold part of a big (logically) entangled state. However, doing so requires
the application of k −1 logical CNOT operations, making it a relatively expensive
procedure.

We take a different approach in our protocol. The player that performs the mea-
surement essentially entangles, with the help of the MPC, the data qubit with a
random subset of the traps. The MPC later checks the consistency of the outcomes:
all entangled qubits should yield the same measurement result.
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Our alternative approach has the additional benefit that the measurement out-
come can be kept secret from some or all of the players. In the description of the
protocol below, the MPC stores the measurement outcome in its internal state. This
allows the MPC to classically control future gates on the outcome. If it is desired to
instead reveal the outcome to one or more of the players, this can easily be done
by performing a classically-controlled X operation on some unused output qubit of
those players.

Protocol 4.5.10 (Computational-basis measurement). Player i holds an encod-
ing of the state in a wire w in the register MT1. The classical MPC holds the
encoding key E in the register S.

1. MPC samples random strings r, s ∈ {0,1}n+1 and c ∈ {0,1}n .

2. MPC tells player i to apply

V :=XrZsCNOT1,c E †

to the register MT1, where CNOT1,c denotes the unitary
∏

i∈[n]CNOT
ci
1,i

(that is, the string c dictates with which of the qubits in T1 the M register
will be entangled).

3. Player i measures the register MT1 in the computational basis, reporting
the result r ′ to MPC.

4. MPC checks whether r ′ = r ⊕ (m,m · c) for some m ∈ {0,1}.a If so, it stores
the measurement outcome m in the state register S. Otherwise, it aborts
by storing ⊥ in S.

5. MPC removes the key E from the state register S.

aThe · symbol represents scalar multiplication of the bit m with the string c.

Lemma 4.5.11. Let C be a circuit on W wires that leaves some wire w ÉW unmeasured.
Let IC be the ideal functionality for C , as described in Definition 4.5.1, and letΠ be
Protocol 4.5.10 for a computational-basis measurement on w. For all sets IA Ú [k] of
corrupted players and all adversaries A that perform the interactions of players in IA,
there exists a simulator S (the complexity of which scales polynomially in that of the
adversary) such that for all environments E ,∣∣Pr[1 ← (E � (Π ¦IC )A)]−Pr[1 ← (E � I ◦C

S )]
∣∣É negl(n).

Before we prove Lemma 4.5.11, we prove a separate lemma, capturing the fact that
CNOT1,c makes it hard to alter the outcome of a computational-basis measurement
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with a (Pauli) attack Xb if b does not depend on c.
The operation CNOT1,c entangles the data qubit in register M with a random

subset of the trap qubits in register T1, as dictated by c. In Step 4 of Protocol 4.5.10,
the MPC checks both for consistency of all the bits entangled by c (they have to match
the measured data) and all the bits that are not entangled by c (they have to remain
zero). Checking the consistency of a measurement outcome after the application of
CNOT1,c is as good as measuring the logical state: any attacker that does not know c
will have a hard time influencing the measurement outcome, as he will have to flip all
qubits in positions i for which ci = 1 without accidentally flipping any of the qubits in
positions i for which ci = 0.

Lemma 4.5.12. Let m ∈ {0,1}, and let ρ be a single-qubit state. Let p : {0,1}n+1 → [0,1]
be a probability distribution. Then the following expression is upper bounded by 2−n :∥∥∥∥ E

b,c
〈m,m · c|XbCNOT1,c

(
ρ⊗ ∣∣0n〉〈

0n∣∣)CNOT†
1,cX

b |m,m · c〉−p(0n+1)〈m|ρ |m〉
∥∥∥∥

tr

,

where b ←p {0,1}n+1 and c ←R {0,1}n .

Proof. By commutation relations between CNOT and X, we have that for all b and c,

XbCNOT1,c =CNOT1,cX
b⊕(0,b1·c), (4.101)

where b1 denotes the first bit of b. Furthermore, CNOT1,c |m,m · c〉 = |m,0n〉. Using
these two equalities, we have

E
b←p {0,1}n+1

c←R {0,1}n

〈m,m · c|XbCNOT1,c
(
ρ⊗ ∣∣0n〉〈

0n∣∣)CNOT†
1,cX

b |m,m · c〉 (4.102)

= E
b←p {0,1}n+1

c←R {0,1}n

〈
m,0n∣∣Xb⊕(0,b1·c) (ρ⊗ ∣∣0n〉〈

0n∣∣)Xb⊕(0,b1·c) ∣∣m,0n〉
. (4.103)

Let us consider which values of b result in a nonzero term. In order for the last n
qubits to be in the |0n〉〈0n | state after Xb⊕(0,b1·c), it is necessary that b ⊕ (0,b1 · c) ∈
{(0,0n), (1,0n)}. By considering the two possible cases b1 = 0 and b1 = 1, we see that
the only two values of b for which this is the case are b = (0,0n) and b = (1,c). Thus
Equation (4.103) equals

E
c←R {0,1}n

p(0n+1)
〈

m,0n∣∣(ρ⊗ ∣∣0n〉〈
0n∣∣) ∣∣m,0n〉

+p(c)
〈

m,0n∣∣X1,0n (
ρ⊗ ∣∣0n〉〈

0n∣∣)X1,0n ∣∣m,0n〉
(4.104)

= p(0n+1)〈m|ρ |m〉+ E
c∼un

p(c)〈m +1|ρ |m +1〉 (4.105)

≈2−n p(0n+1)〈m|ρ |m〉 . (4.106)

The last step follows from the fact that Ec p(c) = 2−n .
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We now move on to proving the security of Protocol 4.5.10 by showing that its
outcome resembles that of the ideal functionality.

Proof of Lemma 4.5.11. Let player i be the player holding (the encoding of) the state
in wire w (assume, for simplicity, that w is the only wire in the computation). If player
i is honest, then it is simple to check that the outcome is correct: the unitary V is
designed so that, whatever the first (data) qubit collapses to, all other qubits that
appear in s measure to the same value. In step 4, the MPC checks that this is indeed
the case, and stores the measured value in the state register.

For the rest of this proof, we will assume that player i is dishonest. The other
players do not play a role, except for their power to abort the ideal functionalities
and/or MPC. We do not fix which players in [k] \ {i } are honest: as long as at least one
of them is, the encoding key E will be unknown to the adversary.

In an execution ofΠ ¦IC , an adversary has two opportunities to influence the
outcome: before and after interacting with the ideal functionality for C . Before the
adversary submits the register M = R in

i to IC , it applies an arbitrary attack unitary A to
the register MR it receives from the environment. (Recall that R is a side-information
register.) Afterwards, it can act on MT1 = Rout

i and R, and produces two bits (bi to

signal cheating to IC , and b′
i to signal cheating to the MPC which is part ofΠ ), plus

a bit string. We may assume, without loss of generality, that the adversary first applies
the honest unitary V , followed by an arbitrary (unitary) attack B and subsequently by
an honest computational-basis measurement of the registers MT1.

For any adversary, specified by the unitaries A and B , define a simulator S as
follows:

Simulator 4.5.13. On input ρMR from the environment, do:

1. Run A on registers MR.

2. Sample a random F ∈Cn+1 and a random r ∈ {0,1}n+1.

3. Prepare the state F |r 〉〈r |F † in a separate register X T1, and apply the map
B to X T1R, using the instruction F † instead of T .

4. Measure X T1 in the computational basis, and check that the outcome is r .
If so, submit M to I ◦C , along with a bit b = 0 (no cheating). Otherwise,
submit M and b = 1.

Throughout this proof, we decompose the attack B as

B = ∑
b,d∈{0,1}n+1

(
XbZd

)MT1 ⊗B R
b,d , (4.107)
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and similarly as before, we abbreviate Bb :=∑
d Bb,d (and B0 for B0n+1 ).

We analyze the output state in registers RS (note that the MT1 registers are de-
stroyed by the measurement) in both the ideal and the real case, and aim to show that
they are indistinguishable, whatever the input ρMR was.

In the ideal (simulated) case, first consider the output state in case of accept.
Following the steps of the simulator, abbreviating σ= AMRρMR A†, and decomposing
B as in Equation (4.107), we see that the output in RS in case of accept is

∑
m∈{0,1}m

E
r
〈m|M ΦM

C

(
〈r |X T1 B X T1R

(
σ⊗

(
F †F |r 〉〈r |F †F

)X T1
)

B † |r 〉
)
|m〉⊗ |m〉〈m|S

(4.108)

= ∑
m∈{0,1}

∑
b,d ,b′,d ′

E
r
〈m|M

(
ΦM

C

(
B R

b,dσB †
b′,d ′

)
⊗〈r |XbZd |r 〉〈r |Zd ′

Xb′ |r 〉X T1
)
|m〉⊗ |m〉〈m|S

(4.109)

= ∑
m∈{0,1}

〈m|M ΦM
C

(
B R

0 AMRρMR A†B †
0

)
|m〉⊗ |m〉〈m|S . (4.110)

The ideal reject case is similar, except we project onto I−|r 〉〈r | instead of onto |r 〉〈r |.
The output state is∑

m∈{0,1}

∑
b 6=0n+1

〈m|M ΦM
C

(
B R

b AMRρMR A†B †
b

)
|m〉⊗ |⊥〉〈⊥|S

= ∑
b 6=0n+1

TrM

[
B R

b AMRρMR A†B †
b

]
⊗|⊥〉〈⊥|S . (4.111)

In the real protocol, the unitary V does not reveal any information about c , so the
attack B is independent of it. This allows us to apply Lemma 4.5.12, after performing
a Pauli twirl to decompose the attack B . Again abbreviating σ= AρA†, the state in the
accept case is

=E
c

∑
m

〈r ⊕ (m,m · c)|MT1 B MT1RXrZsCNOT1,c E †E
(
ΦM

C (σ)⊗ ∣∣0n〉〈
0n∣∣T1

)
E †ECNOT†

1,cZ
sXr B † |r ⊕ (m,m · c)〉⊗ |m〉〈m|S (4.112)

=E
c

∑
m,b

〈m,m · c|XbCNOT1,c

(
ΦM

C

(
B R

b σB †
b

)
⊗ ∣∣0n〉〈

0n∣∣)
CNOT†

1,cX
b |m,m · c〉⊗ |m〉〈m|S (4.113)

≈2−n Eq. (4.110). (4.114)

For the last step, observe that the probabilities p(b) in the statement of Lemma 4.5.12
are part of Bb .
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Similarly, the real reject state is

E
c

∑
m,b

∑
x 6=(m,m·c)

〈x|MT1 XbCNOT1,c

(
ΦM

C

(
B R

b σB †
b

)
⊗ ∣∣0n〉〈

0n∣∣T1
)

CNOT†
1,cX

b |x〉⊗ |⊥〉〈⊥|S (4.115)

≈2−n Eq. (4.111). (4.116)

In summary, we have shown that the output state in the real case is close to Eq. (4.110)
+ Eq. (4.111), for any input state ρMR provided by the environment E .

4.5.4 Subprotocol: decoding

After the players run the computation subprotocols for all gates in the Clifford and
measurement circuit, all they need to do is to decode their wires to recover their
output. At this point, there is no need to check the authentication traps publicly: there
is nothing to gain for a dishonest player by incorrectly measuring or lying about their
measurement outcome. Hence, it is sufficient for all (honest) players to apply the
regular decoding procedure for the Clifford code.

Below, we describe the decoding procedure for a single wire held by one of the
players. If there are multiple output wires, then Protocol 4.5.14 can be run in parallel
for all those wires.

Protocol 4.5.14 (Decoding). Player i holds an encoding of the state w in the
register MT1. The classical MPC holds the encoding key E in the state register S.

1. MPC sends E to player i , removing it from the state register S.

2. Player i applies E to register MT1.

3. Player i measures T1 in the computational basis. If the outcome is not 0n ,
player i discards M and aborts the protocol.

Lemma 4.5.15. Let C be a circuit on W wires that leaves a single wire w ÉW (intended
for player i ) unmeasured. Let IC be the ideal functionality for C , as described in
Definition 4.5.1, and let IMPQC

C be the ideal MPQC functionality for C , as described in

Definition 4.2.2. LetΠDec be Protocol 4.5.14 for decoding wire w. For all sets IA Ú [k]
of corrupted players and all adversaries A that perform the interactions of players in
IA, there exists a simulator S (the complexity of which scales polynomially in that of
the adversary) such that for all environments E ,

Pr[1 ← (E � (ΠDec ¦IC )A)] = Pr[1 ← (E � IMPQC
C ,S )].
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Proof sketch. If player i is honest, then he correctly decodes the state received from
the ideal functionality IC . A simulator would only have to compute the adversary’s
abort bit for IMPQC

C based on whether the adversary decides to abort in either IC or

the MPC computation inΠDec.
If player i is dishonest, a simulatorS runs the adversary on the input state received

from the environment before inputting the resulting state into the ideal functionality
IMPQC

C . The simulator then samples a key for the Clifford code and encodes the

output of IMPQC
C , before handing it back to the adversary. It then simulates ΠDec

by handing the sampled key to the adversary. If the adversary aborts in one of the
two simulated protocols, then the simulator sends abort to the ideal functionality
IMPQC

C .

4.5.5 Combining subprotocols

Finally, we show how to combine the subprotocols from the previous sections in order
to perform multi-party Clifford computation.

Recalling the notation from Definition 4.2.2, let C be a quantum circuit on W ∈N>0

wires, which are partitioned into the players’ input registers plus an ancillary register,
as [W ] = R in

1 t·· ·tR in
k tRancilla, and a partition into the players’ output registers plus

a register that is discarded at the end of the computation, as [W ] = Rout
1 t·· ·tRout

k t
Rdiscard. We assume that C is decomposed in a sequence G1, . . . ,Gm of operations
where each Gi is one of the following operations:

• a single-qubit Clifford on some wire j ∈ [M ], possibly controlled on a classical
value;

• a CNOT on wires j1, j2 ∈ [M ] for j1 6= j2, possibly controlled on a classical value;

• a measurement of the qubit on wire j in the computational basis.

In Sections 4.4 and 4.5.1 to 4.5.3, we have presented subprotocols for encoding single
qubits and perform these types of operations on single wires. The protocol for all
players to jointly perform the bigger computation C is simply a concatenation of
those smaller subprotocols:

Protocol 4.5.16 (Encoding and Clifford+measurement computation). Let C be a
Clifford + measurement circuit composed of the gates G1, . . . ,Gm on wires [W ] as
described above.

1. For all i ∈ [k] and j ∈ R in
i , run Protocol 4.4.2 for the qubit in wire j to

encode the inputs.
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2. For all j ∈ Rancilla, run Protocol 4.4.2 (with the differences described in Sec-
tion 4.4.2) to encode the ancillary qubits.

3. For all j ∈ [m]:

(a) If G j is a single-qubit Clifford, run Protocol 4.5.2 for G j .

(b) If G j is a CNOT, run Protocol 4.5.5 for G j .

(c) If G j is a computational-basis measurement, run Protocol 4.5.10 for
G j .

4. For all i ∈ [k] and j ∈ Rout
i , run Protocol 4.5.14 for the qubit in wire j to

decode the outputs.

Lemma 4.5.17. Let ΠCliff be Protocol 4.5.16, and ICliff be the ideal functionality de-
scribed in Definition 4.2.2 for the special case where the circuit consists of (a polynomial
number of) Cliffords and measurements. For all sets IA Ú [k] of corrupted players and
all adversaries A that perform the interactions of players in IA withΠ, there exists a
simulator S (the complexity of which scales polynomially in that of the adversary) such
that for all environments E ,

|Pr[1 ← (E �ΠCliff
A )]−Pr[1 ← (E � ICliff

S )| É negl(n).

Proof. We start by introducing some notation. For a circuit C composed of gates
G1, . . . ,Gm , we write ΠC := ΠGm ¦ · · · ¦ΠG1 . Also, we write Ci , j := G j ◦ · · · ◦Gi for the
subcircuit from gates i through j (for 1 É i É j É m), so thatΠC =ΠC1,m . For the real
protocols, we will omit the subscript A, implicitly breaking up the adversary into
multiple algorithms that attack each subprotocol.

Note that the real protocol ΠCliff = ΠDec ¦ΠC ¦ΠEnc. Initially, we compare the
real protocol without decoding with the functionality for ideal quantum k-party
computation without decoding given in Definition 4.5.1. More specifically, we will
prove by induction that for all i , there exists a simulator S ′ such that following holds
holds for all environments E ′:

∣∣∣Pr
[

1 ← (E ′ �ΠC ¦ΠEnc)
]
−Pr

[
1 ← (E ′ �ΠCi ,m ¦IC1,i−1

S ′ )
]∣∣∣É i ·negl(n), (4.117)

where IC1,i−1 refers to the ideal functionality without decoding described in Defi-
nition 4.5.1: recall that it returns encoded states to each player.

For the basis case i = 1 (yielding the empty circuit C1,0), Lemma 4.4.3 guarantees
the existence of a simulator S ′ such that for all E ′,∣∣∣Pr

[
1 ← (E ′ �ΠEnc)

]
−Pr

[
1 ← (E ′ � IEnc

S ′ )
]∣∣∣É negl(n), (4.118)
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where IEnc is the ideal functionality of the encoding given in Definition 4.4.1. In
particular, for every E ′′ we have that∣∣∣Pr

[
1 ← (E ′′ �ΠC ¦ΠEnc)

]
−Pr

[
1 ← (E ′′ �ΠC ¦IEnc

S ′ )
]∣∣∣É negl(n). (4.119)

For the induction step, assume that our statement holds for some i Ê 1. If Gi+1 is
a single-qubit Clifford, then there exist simulators S ′ and S ′′ such that∣∣∣Pr

[
1 ← (E ′ �ΠC ¦ΠEnc)

]
−Pr

[
1 ← (E ′ �ΠCi+1,m ¦IC1,i

S ′ )
]∣∣∣ (4.120)

É
∣∣∣Pr

[
1 ← (E ′ �ΠC ¦ΠEnc)

]
−Pr

[
1 ← (E ′ �ΠCi ,m ¦IC1,i−1

S ′′ )
]∣∣∣

+
∣∣∣Pr

[
1 ← (E ′ �ΠCi ,m ¦IC1,i−1

S ′′ )
]
−Pr

[
1 ← (E ′ �ΠCi+1,m ¦IC1,i

S ′ )
]∣∣∣ (4.121)

É (i +1)negl(n). (4.122)

In the first step, we used the triangle inequality. In the second step, we used the
induction hypothesis and Lemma 4.5.3. In case Gi+1 is a CNOT or measurement, the
same argument follows by using Lemmas 4.5.6 and 4.5.11 accordingly.

Finally, by Lemma 4.5.15, we can also replace ΠDec ¦IC by ICliff (which returns
a plaintext output to the players), at the cost of negl(n). We note that the m =
poly(n) negligible functions we accumulated by the use of Lemmas 4.5.3, 4.5.6, 4.5.11
and 4.5.15 only depend on the type of operation and not on the position i . Therefore,
the result follows since m ·negl(n) = negl(n).

4.6 Protocol: general quantum circuits

In this section, we show how to lift the MPQC protocol for Clifford operations (as laid
out in Sections 4.4 and 4.5) to MPQC for general quantum circuits.

The main idea is to use magic states for T gates, as described in Sections 2.4.4
and 3.4.2. Our main difficulty here is that the magic states must be supplied by the
possibly dishonest players themselves. We solve this problem in two steps: first, player
1 is asked to produce a large number of encodings of (supposed) T magic states, and
the other players will test a fraction of them (see Section 4.6.1). After this step, if none
of the players have reported an error during the testing, then with high probability
the remaining resource states are at least somewhat good. As the second step, the
players run a distillation procedure to further increase the quality of the magic states
(see Section 4.6.2).

The protocols presented in Sections 4.6.1 and 4.6.2 describe how to distill magic
states from a list of untrusted states in the plaintext setting. The distillation procedure
consists entirely of (classically controlled) Clifford operations and computational-
basis measurements. Thus, we can execute the entire distillation using the protocols
from Sections 4.4 and 4.5. For details on the final multi-party quantum computation
protocol, see Section 4.6.3.
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4.6.1 Step 1: sampling

Classically, some properties of a bit string can be estimated just by querying a small
random fraction of it. For instance, in order to estimate the Hamming weight of an
n-bit string x, one could calculate the Hamming weight ws of a random sample of ` of
the bits of x, and get the guarantee that |x| ∈ [ nws

` −δ, nws
` +δ]

except with probability

O(2−δ
2`) [Hoe63; BF10].

Such a statement does not trivially carry over to the quantum setting, since the
tested quantum state could, for instance, be entangled with the environment. How-
ever, Bouman and Fehr [BF10], having studied this problem in the quantum setting,
showed that such sampling arguments are possible, albeit with a quadratic loss in the
error probability. A corollary of their result that will be important in this work is the
following.

Lemma 4.6.1 (Application of [BF10, Theorem 3]). Let
∣∣ϕAE

〉 ∈ (C2)⊗n ⊗HE be a quan-
tum state and let B = {|v0〉 , |v1〉} be a fixed single-qubit basis. If we measure ` random
qubits of TrE

(∣∣ϕAE
〉〈
ϕAE

∣∣) in the B-basis and all of the outcomes are |v0〉, then with

probability 1−O(2−δ
2`), we have that∣∣ϕAE

〉 ∈ span
(
π(|v0〉⊗n−t ⊗|v1〉⊗t )⊗ ∣∣ψ〉 ∣∣∣ 0 É t É δn,π ∈ Sn ,

∣∣ψ〉 ∈HE

)
.

In words, if ` out of n qubits are tested and all turn out to be in the “correct” state
|v0〉, then with high probability the original list of qubits had most of its weight (except
for a fraction up to δn) on that state. In Section 4.6.3, we will use this fact when all
players test a fraction of the magic states created by player 1.

4.6.2 Step 2: distillation

Bravyi and Kitaev [BK05] proposed a distillation protocol that allows the creation of
states that are δ-close to true magic states, given poly(log(1/δ)) copies of noisy magic
states. Specifically, writing

∣∣T⊥〉
:=T |−〉, we have:

Theorem 4.6.2 (Magic-state distillation [BK05]). There exists a circuit of CNOT-depth
ddistill(n) ÉO(log(n)) consisting of pdistill(n) É poly(n) many classically controlled Clif-
fords and computational-basis measurements such that for any ε < 1

2

(
1−p

3/7
) ≈

0.173, if ρ is the output on the first wire when the circuit is run on input(
(1−ε) |T〉〈T|+ε ∣∣T⊥〉〈

T⊥∣∣)⊗n
, (4.123)

then 1−〈T|ρ |T〉 ÉO
(
(5ε)nc

)
, where c = (log2 30)−1 ≈ 0.2.

Theorem 4.6.2 requires that the inputs to the distillation circuit are already ε-close
to the correct state |T〉. Our starting point is a bit different, since our MPQC protocol
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asks a possibly dishonest player to prepare the states. We show that the output of the
sampling step from Section 4.6.1 suffices as an input to the magic-state distillation
protocol, as long as we properly dephase and permute it. The full circuit (for creating
t magic states from m qubits that remain after sampling) is as follows.

Circuit 4.6.3 (Magic-state distillation). Given an m-qubit input state and a
parameter t < m:

1. To each qubit, apply Ẑ :=PX with probability 1/2.

2. Permute the qubits by a random π ∈ Sm .

3. Divide the m qubits into t blocks of size m/t , and apply magic-state distil-
lation from Theorem 4.6.2 to each block.

Remark. Circuit 4.6.3 can be implemented with (classically controlled) Clifford gates
and measurements in the computational basis.

For the rest of this section, fix a basis
∣∣0̂〉

:= |T〉 and
∣∣1̂〉

:= ∣∣T⊥〉
. For strings

w ∈ {0,1}m , we will write |ŵ〉 := |ŵ1〉⊗ · · ·⊗ |ŵm〉 . In this basis, the all-zero string of
length m represents m copies of |T〉.

We analyze Circuit 4.6.3. Note that Ẑ = ∣∣0̂〉〈
0̂
∣∣− ∣∣1̂〉〈

1̂
∣∣ (up to a global phase).

The first step of the circuit is to apply Ẑ with probability 1/2 to each qubit, which has
the effect of dephasing the qubit, or equivalently, making the state diagonal, in the{∣∣0̂〉

,
∣∣1̂〉}

basis. More precisely, if we let ρ = ∑
w,w ′∈{0,1}m αw,w ′ |ŵ〉〈ŵ ′∣∣, applying Ẑ

with probability 1/2 has the following effect:

ρ 7→ ∑
w,w ′∈{0,1}m

αw,w ′
m⊗

i=1

1

2

(|ŵi 〉
〈

ŵ ′
i

∣∣+ Ẑ |ŵi 〉
〈

ŵ ′
i

∣∣ Ẑ)
(4.124)

= ∑
w,w ′∈{0,1}m

αw,w ′
m⊗

i=1

1

2

(
|ŵi 〉

〈
ŵ ′

i

∣∣+ (−1)wi+w ′
i |ŵi 〉

〈
ŵ ′

i

∣∣) (4.125)

= ∑
w∈{0,1}m

αw,w |ŵ〉〈ŵ | =: ρ′. (4.126)

LetΞ′ denote the quantum channel given by steps 2–3 of Circuit 4.6.3. Note thatΞ′
is symmetric: any inputs ρ1 and ρ2 =πρ1π

† will both be mapped to 1
m!

∑
π′∈Sm π

′ρ1π
′†

after step 2. Thus, the following theorem applies, where for any ` É m, Π` is the
orthogonal projector onto span{π(|T〉⊗m−w

∣∣T⊥〉w
) | w É `,π ∈ Sm}.

Theorem 4.6.4 ([DNS12, Theorem D.1]). Let `É m, letσ be an m-qubit state, diagonal
in the basis {|ŵ〉 : w ∈ {0,1}m}, and supposeΠ`σ=σ. Let Ξ′ be any CPTP map from m
qubits to t qubits such that Ξ′(πωπ†) =Ξ′(ω) for any n-qubit state ω and any π ∈ Sm .
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Then, letting δs = s
m : ∥∥∥Ξ′(σ)− (∣∣0̂〉〈

0̂
∣∣)⊗t

∥∥∥
tr

É (m +1)max
sÉ`

∥∥∥Ξ′
((

(1−δs )
∣∣0̂〉〈

0̂
∣∣+δs

∣∣1̂〉〈
1̂
∣∣)⊗m

)
− (

∣∣0̂〉〈
0̂
∣∣)⊗t

∥∥∥
tr

.

The above observations allow us to prove the following lemma, which states that
the output of Circuit 4.6.3 is exponentially (in m/t ) close to the desired state (t copies
of the magic state |T〉), if we start with a state on which the sampling procedure was
successful.

Lemma 4.6.5. Let Ξ denote the CPTP map induced by Circuit 4.6.3. If ρ is an m-qubit
state such that Tr(Π`ρ) Ê 1−ε, then

∥∥Ξ(ρ)− (|T〉〈T|)⊗t ∥∥
tr ÉO

(
m
p

t

(
`

m

)O((m/t )c /2)

+ε
)

,

for some constant c > 0.

Proof. Let ρ′ be as in Equation (4.126). We have

Tr(Π`ρ
′) = Tr(Π`ρ) Ê 1−ε. (4.127)

Thus, we can write ρ′ = (1−ε)σ+εσ′ for σ= 1
1−εΠ`ρ

′, and σ′ another quantum state.

We will first bound the trace distance between Ξ′(σ) and the desired state
(∣∣0̂〉〈

0̂
∣∣)⊗t

,
and later on will use a trivial upper bound of 1 for the trace distance between Ξ′(σ′)
and that desired state.

On a symmetric state, Ξ′ is simply the state distillation protocol of Bravyi and
Kitaev [BK05], applied t times in parallel to m/t qubits each time. LetΦ be one state
distillation protocol distilling one qubit from m/t (so Ξ′ acts as Φ⊗t on symmetric
states). Abbreviating

µs := (
(1−δs )

∣∣0̂〉〈
0̂
∣∣+δs

∣∣1̂〉〈
1̂
∣∣)⊗m/t

, (4.128)

and applying Theorem 4.6.4, we get∥∥∥Ξ′(σ)− (∣∣0̂〉〈
0̂
∣∣)⊗t

∥∥∥
tr

(4.129)

É (m +1)max
sÉ`

∥∥∥Ξ′
((

(1−δs )
∣∣0̂〉〈

0̂
∣∣+δs

∣∣1̂〉〈
1̂
∣∣)⊗m

)
− (∣∣0̂〉〈

0̂
∣∣)⊗t

∥∥∥
tr

(4.130)

= (m +1)max
sÉ`

∥∥∥Φ(µs )⊗t − (∣∣0̂〉〈
0̂
∣∣)⊗t

∥∥∥
tr

(4.131)

É 2(m +1)max
sÉ`

√
1− (

〈
0̂
∣∣Φ(µs )

∣∣0̂〉
)t . (4.132)
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The last step is due to the general inequality
∥∥ρ− ∣∣ψ〉〈

ψ
∣∣∥∥

tr É 2
√

1−〈
ψ

∣∣ρ ∣∣ψ〉
that

relates trace distance to fidelity.
By Theorem 4.6.2, using δs = s

m É `
m , we have

1−〈
0̂
∣∣Φ(µs )

∣∣0̂〉ÉO
(
(5δs )(m/t )c

)
ÉO

((
5
`

m

)(m/t )c )
(4.133)

for c ≈ 0.2. Now abbreviate δ := (5`/m)(m/t )c
. Since the fidelity is bounded between 0

and 1, it follows that

1− (〈
0̂
∣∣Φ(µs )

∣∣0̂〉)t ÉO(1− (1−δ)t ). (4.134)

Continuing our derivation, we have (using the general inequalities for x É 1
2 , that state

1−x Ê e−2x Ê 1−2x)

Eq. (4.132) ÉO
(
2(m +1)

√
1− (1−δ)t

)
(4.135)

ÉO
(
2(m +1)

√
1−e−2δt

)
(4.136)

ÉO
(
2(m +1)

p
2δt

)
. (4.137)

(4.138)

That concludes our upper bound on the trace distance between Ξ′(σ) and
(∣∣0̂〉〈

0̂
∣∣)⊗t

.
Putting everything together, we have∥∥∥Ξ(ρ)− (∣∣0̂〉〈

0̂
∣∣)⊗t

∥∥∥
tr
=

∥∥∥Ξ′(ρ′)− (∣∣0̂〉〈
0̂
∣∣)⊗t

∥∥∥
tr

(4.139)

= ∥∥ (1−ε)Ξ′(σ)+εΞ′(σ′)− (∣∣0̂〉〈
0̂
∣∣))⊗t ∥∥

tr (4.140)

É (1−ε)O
(
2(m +1)

p
2δt

)
+ε=O

(
m
p

t (5`/m)(m/t )c /2 +ε
)

.

(4.141)

4.6.3 Protocol: MPQC for general circuits

In this section, we describe how to incorporate the sampling and distillation tech-
niques into a protocol for multi-party quantum computation of circuits that may
contain (classically controlled) Clifford gates, computational-basis measurements,
and T gates. Essentially, we lift the procedures described in Section 4.6.1 and Cir-
cuit 4.6.3 into the authenticated setting.
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Protocol 4.6.6 (Magic-state creation). Let t be the number of magic states we
wish to create. Let ` := (t +k)n.

1. Player 1 creates ` copies of |T〉 and encodes them separately using Proto-
col 4.4.2 (jointly with the other players).

2. MPC picks random disjoint sets S2, . . . ,Sk ⊆ [`] of size n each.

3. For each i ∈ 2, . . . ,k, player i decodes the magic states indicated by Si

(see Protocol 4.5.14), measures in the {|T〉 ,
∣∣T⊥〉

}-basis and aborts if any
outcome is different from |T〉 .

4. On the remaining encoded states, the players run Protocol 4.5.16 for multi-
party computation of Clifford circuits (but skipping the input-encoding
and output-decoding steps) to perform the magic-state distillation proto-
col described in Circuit 4.6.3. Any randomness required in that protocol is
sampled by the classical MPC.

Protocol 4.6.6 implements the following ideal functionality for creating t magic
states, up to a negligible error:

Definition 4.6.7 (Ideal functionality for magic-state creation). Let t be the number of
magic states we wish to create. Let IA Ú [k] be a set of corrupted players.

1. For every i ∈ IA, player i sends a bit bi to the trusted third party.

(a) If bi = 0 for all i , the trusted third party samples t random (n +1)-qubit
Clifford E j for 1 É j É t , and sends E j (|T〉⊗ |0n〉) to Player 1.

(b) Otherwise, the trusted third party sends abort to all players.

2. Store the keys E j , for 1 É j É t in the state register S of the ideal functionality.

Lemma 4.6.8. LetΠMS be Protocol 4.6.6, and IMS be the ideal functionality described
in Definition 4.6.7. For all sets IA Ú [k] of corrupted players and all adversaries A
that perform the interactions of players in IA with Π, there exists a simulator S (the
complexity of which scales polynomially in that of the adversary) such that for all
environments E , ∣∣Pr[1 ← (E �ΠMS

A )]−Pr[1 ← (E � IMS
S )

∣∣É negl(n).

Proof. The simulator forΠMS is similar to the composed simulator forΠDec¦ΠC ¦ΠEnc,
where C is Circuit 4.6.3. The difference is that the input is now chosen by player 1
instead of being given by the environment, and that each player tests if the decoded
qubit is correct. We make a small modification for each of the following cases:
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Case 1: player 1 is honest. In this case, the simulator only needs to also set bi = 1
whenever the adversary aborts after it receives the output of the ideal quantum
computation in Step 3 of Protocol 4.6.6. Otherwise, the simulator is exactly the same
as the composed one.

Case 2: player 1 is dishonest. In this case, the simulator runs the entire Proto-
col 4.6.6, simulating all players, including the honest ones. If any of the honest players
aborts in Step 3, the simulator aborts by setting b1 = 1. For the other adversaries, the
simulator sets bi = 1 if that adversary aborts in this step, similarly to the previous case.
Notice that the simulator aborts at this step with the same probability that any of the
players would abort in Step 3 of the real protocol.

If none of the players (honest or dishonest) aborts, the simulator replaces the
qubits in [`] \ (

⋃
2ÉiÉk Si ) by honestly generated magic states |T〉, which it encodes un-

der the same keys given before by the (simulated) MPC, and continues the composed
simulation

We now argue that when there is no abort, the output ofΠMS is exponentially close
to that of IMS . Notice that picking the disjoint S2, . . . ,Sk ⊆ [`] uniformly at random
is equivalent to first picking the test sets {Si }i∈IA from [`], and then picking {Si }i 6∈A
from the remaining [`] \ (

⋃
i∈A Si ) elements. From this perspective, if the honest

players do not abort in Step 3, then Lemma 4.6.1 implies that the state created by

player 1 in the other positions [`] \
(⋃

i 6∈A Si
)

is O(2ε
2(k−|IA|)n)-close to the the sub-

space span
(
π

(
|T〉⊗tn− j

∣∣T⊥〉⊗ j
)∣∣∣0 É j É εtn,π ∈ Stn

)
. If we choose ε É 1

2

(
1−p

3/7
)
,

by Lemma 4.6.5 and the union bound, the output of the distillation procedure is
O (tε)nc

-close to |T〉⊗t . In this case, the output ofΠMS will be negl(n)-close to encod-
ings of |T 〉⊗t , which is the output of IMS in the no-abort case.

Given Protocol 4.6.6 for generating encoded magic states, performing universal
quantum computation in the multi-party setting is a matter of chaining the protocols
together.

For this setting, we consider quantum circuits C =Gm · · ·G1 where Gi can be single-
qubit Cliffords, CNOTs, measurements or, additionally, T gates. We will consider a
circuit C ′ where each gate Gi =T acting on qubit j is replaced by the a magic T-gate
computation as depicted in Figure 2.1, acting on the qubit j and a fresh new T magic
state.

Protocol 4.6.9 (Protocol for universal MPQC). Let C be a polynomial-sized quan-
tum circuit, and t be the number of T-gates in C .

1. Run Protocol 4.6.6 to create t magic states.
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2. Run Protocol 4.5.16 for the circuit C ′, which is equal to the circuit C , except
each T gate is replaced with the circuit from Figure 2.1.

Theorem 4.6.10. LetΠMPQC be Protocol 4.6.9, and IMPQC be the ideal functionality
described in Definition 4.2.2. For all sets IA Ú [k] of corrupted players and all adver-
saries A that perform the interactions of players in IA withΠ, there exists a simulator
S (the complexity of which scales polynomially in that of the adversary) such that for
all environments E ,∣∣∣Pr

[
1 ←

(
E �ΠMPQC

A

)]
−Pr

[
1 ←

(
E � IMPQC

S

)]∣∣∣É negl(n).

Proof. Direct from Lemmas 4.5.17 and 4.6.8.

4.7 Conclusion

In this chapter, we constructed a k-party quantum computation protocol that is
computationally secure against k −1 actively colluding adversaries. We have shown
its security in the real-vs.-ideal paradigm, adopting an unconventional “inductive”
approach: rather than showing our subprotocols to fulfill certain ideal subfunctionali-
ties, and then chaining those together, we showed that a smaller ideal subfunctionality
can be combined with a subprotocol to achieve a slightly bigger ideal subfunctional-
ity. Repeating this step, we eventually arrived at the ideal functionality IMPQC. The
reason for taking this inductive approach is that our subprotocols crucially ensure
that they output properly authenticated states. In the ideal realm, the concept of
authentication is not present, so it is not possible to capture this crucial property of
our subprotocols by ideal functionalities only.

For completeness, we give an overview of our protocol’s (quantum) round com-
plexity, and the number of calls to the classical MPC.

Protocol 4.4.2 encodes a single-qubit input (or an ancilla |0〉 state) using k rounds
of quantum communication and O(1) MPC calls. Note that this protocol can be run
in parallel for all input qubits per player, simultaneously for all players. Hence, the
overall number of communication rounds for the encoding phase remains k, and the
total number of calls to the MPC is O(w) where w is the total number of qubits.

Protocol 4.5.2 for single-qubit Cliffords, Protocol 4.5.10 for measuring in the com-
putational basis and Protocol 4.5.14 for decoding do not require quantum commu-
nication and use O(1) MPC calls each, whereas Protocol 4.5.5 for CNOT requires at
most k +2 rounds of quantum communication, and makes O(1) MPC calls. Overall,
Protocol 4.5.16 for encoding and Clifford+measurement computation requires O(dk)
rounds of quantum communication and O(w + g ) calls to the MPC, where d is the
CNOT-depth of the quantum circuit, and g is the total number of gates in the circuit.

Protocol 4.6.6 for magic-state creation encodes ` := (t+k)n qubits in parallel using
k rounds of quantum communication (which can be done in parallel with the actual
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input encoding, and therefore does not require any extra communication rounds),
and O((t +k)n) MPC calls. Then a circuit of size pdistill(n) and CNOT-depth ddistill(n)
classically controlled Cliffords and measurements is run on each of the t blocks of n
qubits each, which can be done in parallel for the t blocks, requiring O(k ·ddistill(n))
rounds of quantum communication and O(tn ·pdistill(n)) calls to the MPC.

Eventually, all T-gate operations in the original circuit C are replaced by the T-
gadget from Figure 2.1, resulting in one CNOT and classically controlled Cliffords.
Overall, our Protocol 4.6.9 for universal MPQC requires O(k · (ddistill(n)+d)) rounds
of quantum communication and O(tn ·pdistill(n)+w + g ) calls to the classical MPC,
where d is the {CNOT,T}-depth of the circuit, w is the total number of qubits and g
is the total number of gates in the circuit.

We notice that instead of evaluating each Clifford operation gate-by-gate, we could
evaluate a general w-qubit Clifford using O(k) rounds of quantum communication,
similarly to the CNOT protocol. This could improve the parameter d to be the T
depth of the circuit, at the cost of requiring the players to communicate significantly
larger states per round.

4.7.1 Future directions

Our results leave a number of exciting open problems to be addressed in future
work. The first class of open problems concerns applications of MPQC. For instance,
classical MPC can be used to devise zero-knowledge proofs [IKOS09] and digital
signature schemes [CDG+17].

An interesting open question concerning our protocol more specifically is whether
the CNOT subprotocol can be replaced by a different one that has round complexity
independent of the total number of players, reducing the quantum round complexity
of the whole protocol. We see no fundamental reason for testing the authenticity of
the encoded states multiple times during the protocol, rather than only at decoding
time: in principle, any evidence of cheating that happens during the protocol should
be carried over to decoding via the traps. Without the intermediate tests, however, we
do not know how to prove the security of our protocol against active adversaries as
we do now.

We also wonder if it is possible to develop more efficient protocols for narrower
classes of quantum computation, instead of arbitrary (polynomial-size) quantum
circuits.

Finally, it is interesting to investigate whether the public authentication test we use
can be leveraged in quantum protocols for specific MPC-related tasks like oblivious
transfer.
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5.1 Introduction

The 2009 discovery of fully homomorphic encryption (FHE) in classical cryptography
is widely considered to be one of the major breakthroughs of the field [Gen09]. Unlike
standard encryption, FHE enables noninteractive computation on encrypted data
even by parties that do not hold the decryption key. Crucially, the input, output, and all
intermediate states of the computation remain encrypted, and thus hidden from the
computing party. While FHE has some obvious applications (e.g., cloud computing),
its importance in cryptography stems from its wide-ranging applications to other
cryptographic scenarios. For instance, FHE can be used to construct secure two-party
computation, efficient zero-knowledge proofs for NP, functional encryption [GKP+13a;
GVW13; GKP+13b; SW14], and indistinguishability obfuscation [BB12; GGH+13]. In
fact, the breadth of its usefulness has led some to dub FHE “the swiss army knife of
cryptography” [BB12].

Early classical FHE schemes were limited in the sense that they could not facilitate
arbitrary operations on the encrypted data: some early schemes only implemented a
single operation (addition or multiplication) [RSA78; GM84; Pai01]; later on it became
possible to combine several operations in a limited way [BGN05; GHV10; SYY99].
Gentry’s first fully-homomorphic-encryption scheme [Gen09] relied on several non-
standard computational assumptions. Subsequent work [BV14; BGV12; GW13] has
relaxed these assumptions or replaced them with more conventional assumptions
such as the hardness of the learning-with-errors (LWE) problem, which is believed to
be hard also for quantum attackers. It is impossible to completely get rid of computa-
tional assumptions for a classical FHE scheme, since the existence of such a scheme
would imply the existence of an information-theoretically secure protocol for private
information retrieval (PIR) [KO97] that breaks the lower bound on the amount of
communication required for that task [CKGS98; Fil12].

Recent progress on constructing quantum computers has led to theoretical re-
search on “cloud-based” quantum computing. In such a setting, it is natural to ask
whether users can keep their data secret from the server that performs the quan-
tum computation. In quantum homomorphic encryption, quantum input data is
encrypted in such a way that a server can carry out arbitrary quantum computations
on the encrypted data, without interacting with the encrypting party. This contrasts
blind or delegated quantum computation where some interaction between client and
server is usually required [Chi05; BFK09; ABEM17; VFPR14; FBS+14; Bro15; Lia15;
CGJV19].

Yu, Pérez-Delgado and Fitzsimons [YPF14] showed that perfectly information-
theoretically secure QFHE is not possible unless the size of the encryption grows ex-
ponentially in the input size. Thus, any scheme that attempts to achieve information-
theoretically secure QFHE has to leak some proportion of the input to the server [AS06;
RFG12] or can only be used to evaluate a subset of all unitary transformations on the
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input [RFG12; Lia13; TKO+16]. Like the multiplication operation is hard in the classi-
cal case, the hurdle in the quantum case seems to be the evaluation of non-Clifford
gates. Ouyang, Tan and Fitzsimons provide information-theoretic security for circuits
with at most a constant number of non-Clifford operations [OTF15].

The impossibility result by Yu et al. has shifted focus toward constructing quantum
homomorphic-encryption schemes using computational assumptions, which may al-
low bypassing the impossibility and working toward a (quantum) fully-homomorphic-
encryption scheme. Broadbent and Jeffery [BJ15] describe a quantum homomorphic-
encryption scheme called CL, that is computationally secure for circuits with only
Clifford gates. The construction is based on a very natural idea: to encrypt a message
qubit under the quantum one-time pad, and to encrypt the (classical) keys to the
quantum one-time pad under classical FHE, attaching the ciphertexts to the quan-
tum ciphertext, as in Equation (1.1). An evaluator can perform arbitrary Clifford
operations on encrypted qubits, simply by applying the actual Clifford circuit to the
ciphertext. Since the Pauli operations that constitute the one-time pad commute with
the Clifford group in a known way, the evaluator only needs to (homomorphically)
update the classical keys, according to those commutation rules. The scheme CL can
be based on any classical FHE scheme, so any advances in classical FHE (e.g., more
efficient evaluation) directly improves CL. In fact, the classical key updates required
for Clifford gates are only additive: an additively homomorphic classical encryption
scheme suffices.

We describe CL in more detail in Section 5.3. It can be regarded as analogous to
additively-homomorphic-encryption schemes in the classical setting. The challenge,
like multiplication in the classical case, is to perform non-Clifford operations such as
the T gate. That will be the topic of Chapter 6.

The construction of quantum homomorphic encryption raises an important
question: do the numerous classical applications of FHE have suitable quantum
analogues? As it turns out, most of the classical applications require an additional
property which is simple classically, but nontrivial quantumly. That property is ver-
ification: the ability of the user to check that the final ciphertext produced by the
server is indeed the result of a particular computation, homomorphically applied to
the initial user-generated ciphertext. In the classical case, this is a simple matter: the
server makes a copy of each intermediate computation step, and provides the user
with all these copies. In the quantum case, such a “transcript” or “log” appears to
violate no-cloning.

Verification of quantum computations has been a topic of interest in various
contexts over the last few years. Protocols have been designed for outsourcing a quan-
tum computation to multiple (entangled, but noncommunicating) servers [RUV13;
GKW15; CGJV19; Gri19], and/or using multiple rounds of communication [BFK09;
ABEM17]. Recently, proving an instance to be in BQP was shown to be possible
with a single prover and a classical verifier [Mah18b], even noninteractively and in
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zero-knowledge [ACGH19]. These protocols do not immediately yield a verifiable
QFHE scheme, however, since the reduction from a computation to a BQP instance
might require multiple rounds of interaction.

5.1.1 Contributions

In this chapter, we lay the ground work for constructing quantum fully homomorphic
encryption (see Chapter 6), both without and with verification. Here, we focus on
quantum encryption that is homomorphic for Clifford circuits only. We outline the
framework set up by Broadbent and Jeffery (Section 5.2), and describe the scheme
CL in detail (Section 5.3). In terms of new contributions, this chapter contains the
following.

Circuit privacy (Section 5.3.1). In homomorphic encryption, the server is allowed
to choose which circuit she wants to apply to the (encrypted) data. In some settings,
the server may need to keep the evaluated circuit secret from the client. In CL, circuit
privacy in the passive setting almost comes for free: the evaluating party can add an
extra randomization layer to the output state by applying her own one-time pad. We
show that if the classical FHE scheme has circuit privacy, then this extra randomization
step provides circuit privacy for CL.

Definition of verifiable QHE (Section 5.4). We define a new primitive: verifiable
quantum homomorphic encryption (QHE). A standard QHE scheme consists of four
algorithms: KeyGen, Enc, Eval and Dec. We define verifiable QHE similarly, with two
changes: (1) Eval provides an extra classical “computation log” output; (2) decryption
is now called VerDec, and accepts a ciphertext, a circuit description c, and a compu-
tation log. A crucial parameter is the relative difficulty of performing c and VerDecc

k .
In a nontrivial scheme, the latter must be simpler.

Informally, security requires that, if a server deviates significantly from the honest
evaluation, then VerDec will reject. We give two alternative definitions of security,
that adapt the notions of computational semantic security SEM and computational
indistinguishability security IND to the verifiable setting. Generalizing the relation
SEM ⇔ IND [ABF+16], we show that the two definitions are equivalent:

1. Semantic security (SEM-VER). Consider a QPT adversary A which manipu-
lates a ciphertext and declares a circuit. This adversary defines a channel
ΦA :=VerDec◦A◦Enc. A simulator S does not receive or output a ciphertext,
but does declare a circuit; it defines a channelΦS which first runs S and then
runs a circuit on the plaintext based on the outputs of S . We say that a verifiable
QHE scheme is semantically secure (SEM-VER) if for all adversaries A there
exists a simulator S such that the channelsΦA andΦS are computationally in-
distinguishable. Restricting SEM-VER to the empty-circuit case, we recover (the
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computational version of) the definition of quantum message authentication
(see Definition 3.2.1).

2. Indistinguishability (IND-VER). Consider the following security game. Based
on a hidden coin flip r ∈ {0,1}, A participates in one of two protocols. For
r = 0, it is normal verifiable QHE. For r = 1, it is a modified execution, where
we secretly swap out the plaintext ρA to a private register (replacing it with
an encryption of a fixed state), apply the desired circuit to ρA, and then swap
ρA back in. We then discard this plaintext if VerDec rejects the outputs of A.
Upon receiving the final plaintext of the protocol, A must guess the bit r . A
verifiable QHE scheme is IND-VER if no adversary A has a more than negligible
advantage in guessing r .

A verifiable QHE scheme for Clifford gates (Section 5.6). We construct a new QHE
scheme where the server can certify, using a classical computation log as “proof”,
that a particular homomorphic computation was performed on a ciphertext. The
verification of the proof is mostly classical; if the output of the quantum circuit is
classical, then the verification is entirely so. Unlike all previously known quantum
homomorphic-encryption schemes, the underlying encryption is now authenticated.

We briefly sketch the scheme, which is called TCL (for “trap-code CL”). It is based
on the ideas of quantum computing on authenticated data for the trap code (see
Section 3.4.2). The inputs to the computation are encrypted using the trap code, and
the keys to the trap code (the permutation and one-time-pad keys) are encrypted
under a classical homomorphic-encryption scheme. Similarly to CL, the evaluator
applies gates to the trap code while homomorphically updating the classical keys,
and keeps a “log” (i.e., transcript) of all those classical evaluation steps. For some
gates (P and H), the evaluator needs encoded magic states to successfully apply the
gate: these are supplied by the key generator. At decryption time, the classical FHE
transcript is checked for consistency, and the resulting keys are used to decrypt the
trap-code-encoded output state, outputting either the plaintext or a reject flag.

Our scheme TCL is compact: the number of elementary quantum operations
performed by the verified-decryption function scales only with the size of the plaintext,
and not with the size of the circuit. We do require a classical computation which can
scale with the size of the circuit; this is reasonable since the decryption function must
receive a description of the circuit as an input.

As a building block for TCL, we first construct a noncompact scheme TC (Sec-
tion 5.5), which is homomorphic only for a small number of gates, but does not rely on
classical homomorphic encryption. As such, TC is information-theoretically secure.

For an overview of the schemes discussed in this chapter and the next, refer to
Figure A on page 289.
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5.2 Homomorphic encryption

We start by defining (classical and quantum) homomorphic encryption more formally,
and specifying the security conditions for such schemes. We will focus on the public-
key setting, and briefly comment on how to adapt the definitions for the symmetric-
key setting. Broadbent and Jeffery [BJ15] treat the variations on the standard public-
key definition more thoroughly.

5.2.1 The classical setting

A classical homomorphic-encryption scheme HE consists of four algorithms: key
generation, encryption, evaluation, and decryption. The key generator produces three
keys: a public key and evaluation key, both of which are publicly available to everyone,
and a secret key which is only revealed to the decrypting party. Anyone in possession
of the public key can encrypt the inputs x1, . . . , x`, and send the resulting ciphertexts
y1, . . . , y` to an evaluator who evaluates some circuit c on them. The evaluator sends
the result to a party that possesses the secret key, who should be able to decrypt it to
c(x1, . . . , x`).

Traditionally, the evaluation key is considered as part of the public key, since it is
itself publicly known [Gen09]. We purposefully distinguish between the two, because
in the quantum setting we will allow only the evaluation key to be a quantum state. It
becomes a resource that is consumed during the evaluation, while the public key can
in principle be reused to securely encrypt other messages.

Definition 5.2.1 (Classical homomorphic encryption [BV14]). A classical homomor-
phic-encryption scheme HE consists of four algorithms, which run in classical proba-
bilistic polynomial time in terms of their input and parameters:

Key generation: (pk,evk,sk) ←HE.KeyGen(1λ), where λ ∈N is the security parame-
ter. Three keys are generated: a public key pk, which can be used for the
encryption of messages; a secret key sk used for decryption; and an evaluation
key evk that may aid in evaluating the circuit on the encrypted state. The keys
pk and evk are announced publicly, while sk is kept secret.

Encryption: y ←HE.Encpk(x) for some one-bit message x ∈ {0,1}. This probabilistic
procedure outputs a ciphertext y , using the public key pk.

Evaluation: y ′ ← HE.Evalcevk(y1, . . . , y`) uses the evaluation key to output some ci-
phertext y ′ which decrypts to the evaluation of circuit c on the plaintexts for
y1, . . . , y`. We will often think of Eval as an evaluation of a function f instead of

some canonical circuit for f , and write HE.Eval fevk(y1, . . . , y`) in this case.

Decryption: x ′ ←HE.Decsk(y ′) outputs a message x ′ ∈ {0,1}∗, using the secret key sk.
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The way it is defined, HE.Encpk can only encrypt single bits. When encrypting an
n-bit message x ∈ {0,1}n , we encrypt the message bit-by-bit, applying the encryption
procedure n times. We abuse the notation HE.Encpk(x) to denote this bitwise encryp-
tion of the string x. Note that Definition 5.2.1 does not require the decryption to work
bit-by-bit: if we do require every bit of x ′ to be recoverable from separate parts of y ′,
the homomorphic-encryption scheme is called divisible.

Of course, we want the output plaintext x ′ to be equal to c(x1, . . . , x`), the applica-
tion of c to the input plaintexts. This property is captured by the following definition.

Definition 5.2.2 (Correctness). A classical C-homomorphic-encryption scheme HE is
correct (for a circuit class C) if for every circuit c ∈ C, input x, and key set (pk,evk,sk) ←
HE.KeyGen(1λ),

Pr[HE.Decsk(HE.Evalcevk(HE.Encpk(x))) 6= c(x)] É negl(λ) . (5.1)

For clarity of exposition, we assume that the classical schemes HE we use are
perfectly correct, and that it is possible to immediately decrypt after encrypting
(implicitly evaluating the identity circuit). We will use the notation x̃ to denote any
ciphertext for x: that can be the result of running HE.Encpk(x), but also the output of
an evaluation. In any case, x̃ is such that Decsk(x̃) = x with overwhelming probability.

A homomorphic-encryption scheme HE is secure if the underlying encryption
scheme is secure under chosen-plaintext attacks by quantum adversaries:

Definition 5.2.3 (q-IND-CPA security of classical HE [BJ15, Definition 3.1]). A classical
homomorphic-encryption scheme HE is q-IND-CPA secure (quantum indistinguisha-
bility under chosen-plaintext attacks) if for any quantum polynomial-time adversary
A and for (pk,evk,sk) ←HE.KeyGen(1λ),∣∣Pr

[
A(pk,evk,HE.Encpk(0)) = 1

]−Pr
[
A(pk,evk,HE.Encpk(1)) = 1

]∣∣É negl(λ).

Given any nonhomomorphic-encryption scheme E= (KeyGen,Enc,Dec), we can
trivially build a homomorphic-encryption scheme, as follows. Define the scheme
TRIV by setting key generation and encryption to be identical to the nonhomomor-
phic-encryption scheme (the key generation does not generate an evaluation key;
it is left empty). Then, define TRIV.Evalcevk(y1, . . . , y`) := (y1, . . . , y`,c) to be the func-
tion that simply appends a description of the circuit c to the ciphertexts, without
performing any computation on them. Finally, define

TRIV.Decsk(y1, . . . , y`,c) := c
(
E.Dec(y1), . . . ,E.Dec(y`)

)
, (5.2)

that is, the decryption function decrypts the input ciphertexts, and computes the
circuit c itself.

Although TRIV satisfies Definitions 5.2.1 to 5.2.3, its spirit is clearly not what
one wants in homomorphic encryption: namely, to outsource a computation to an
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evaluator. In TRIV, the entire computational burden of the circuit c lies with the
decrypting party. To enforce transferring the computational burden from the client to
the server, we aim for a homomorphic-encryption schemes to be compact, requiring
that the complexity of the decryption function does not depend on the size of the
circuit:

Definition 5.2.4 (Compactness). A classical homomorphic-encryption scheme HE
is compact if there exists a polynomial p(λ) such that for any circuit c with nout

output bits, and any input x, the complexity of applying HE.Dec to the result of
HE.Evalcevk(HE.Encpk(x)) is at most p(λ,nout).

A scheme that is both correct for all circuits and compact, is called fully homo-
morphic (FHE). If it is only correct for a subset of all possible circuits (e.g., all circuits
with no multiplication gates) or if it is not compact, it is considered to be a somewhat
homomorphic or partially homomorphic scheme.

Often, we wish to consider FHE schemes which require an a priori upper bound
(polynomial in the security parameter) on the depth of circuits to be homomorphically
evaluated [Vai11]. In the current state of the art, such schemes (referred to as leveled
FHE) can be constructed under milder assumptions than unleveled schemes: in
particular, they do not require circular-security-type assumptions. There are a few
variants of leveled FHE defined in the literature. We use the following.

Definition 5.2.5 (Leveled FHE). A leveled FHE scheme is a scheme where the key
generation takes an additional parameter KeyGen(1λ,1d ) and outputs (pk,evk,sk).
Correctness holds only for evaluating circuits of total depth at most d . Furthermore,
the length of sk and the complexity of decryption are independent of d .

Secure homomorphic encryption, in the sense of Definition 5.2.3, ensures the
privacy of the input data. It does not guarantee, however, that whoever generates the
keys, encrypts, and decrypts cannot gain information about the circuit c that was
applied to the input by the evaluator. Obviously, the output value c(x) often reveals
something about the circuit c, but apart from this necessary leakage of information,
one may require a homomorphic-encryption scheme to ensure circuit privacy in
the sense that an adversary cannot statistically gain any information about c from
the output of the evaluation procedure that it could not already gain from c(x) itself.
In the definition below, we consider passive adversaries, that follow the protocol
honestly but try to learn from the information they receive in the protocol.

Definition 5.2.6 (Statistical circuit privacy in the semi-honest setting [IP07]). A clas-
sical homomorphic-encryption scheme HE has statistical circuit privacy in the semi-
honest (“honest-but-curious”) model if there exists a PPT algorithm SHE such that for
any security parameter λ, input x, keys (pk,evk,sk) ←HE.KeyGen(1λ), and circuit c:

HE.Evalcevk

(
HE.Encpk(x)

)≈negl(λ) SHE(1λ,pk,evk,c(x)).

That is, the statistical distance (see Section 2.2.3) is upper bounded by negl(λ).
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5.2.2 The quantum setting

A quantum homomorphic-encryption scheme QHE is a natural extension of the
classical case, and differs from it in only a few aspects [BJ15]. The secret and public
keys are still classical, but the evaluation key is now allowed to be a quantum state.
This means that the evaluation key is not necessarily reusable, and can be consumed
during the evaluation procedure. The messages to be encrypted can be qubits instead
of bits, and the evaluator should be able to evaluate quantum circuits on them.

Definition 5.2.7 (Quantum homomorphic encryption [BJ15]). A quantum homomor-
phic-encryption scheme QHE consists of four algorithms, which run in quantum
polynomial time in terms of their input and parameters:

Key generation: (pk,ρevk,sk) ←QHE.KeyGen(1λ), where λ ∈N is the security para-
meter. In contrast to the classical case, the evaluation key is a quantum state.

Encryption: σ←QHE.Encpk(ρ) produces, for every valid public key pk and input
state ρ from some message space, a quantum ciphertext σ in some cipherspace.

Evaluation: σ′ ← QHE.Evalcρevk
(σ) represents the evaluation of a circuit c. If c re-

quires n input qubits, then σ should be a product of n ciphertexts. The evalua-
tion function maps it to a product of n′ states in some output space, where n′ is
the number of qubits that c would output. The evaluation key ρevk is consumed
in the process.

Decryption: ρ′ ←QHE.Decsk(σ′) maps a single ciphertext σ′ from the output space
to a single-qubit quantum state ρ′ in the message space. Note that if the evalua-
tion procedure QHE.Eval outputs a product of n′ states, then QHE.Dec needs
to be run n′ times.

The decryption procedure differs from the classical definition in that we require
the decryption to happen subsystem-by-subsystem: this is fundamentally different
from the more relaxed notion of indivisible schemes [BJ15] where an auxiliary quantum
register may be built up for the entire state, and the state can only be decrypted as a
whole. In this work, we only consider the divisible definition.

Correctness in the quantum setting is as in Definition 5.2.2, except that we require
the trace distance between the decrypted state and the ideal state Φc (ρ) (rather
than the probability that they differ) to be negligible. The notions of compactness,
partial/fully homomorphic encryption, and leveled homomorphic encryption carry
over unchanged.

In terms of security, we again aim for indistinguishability under chosen-plaintext
attacks, where the attacker may have quantum computational powers (q-IND-CPA).
The difference with the classical setting described in Section 2.3.2 is that the plaintext
message may be quantum, and therefore may be entangled with an environment.
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Figure 5.1: [BJ15, reproduced with permission of the authors] The quantum CPA indistin-
guishability experiment PubKcpa

A,QHE
(λ). Double lines represent classical information flow,

and single lines represent quantum information flow. The adversary A is split up into two
separate algorithms A1 and A2, which share a working memory represented by the quantum
state in the register R.

Security is captured by a security game which, if no adversary can have a significant
advantage to win the game, ensures semantic security [ABF+16]. We restate it here for
completeness.

Game 5.2.8 (quantum CPA indistinguishability game [BJ15]). The q-IND-CPA game
with respect to a scheme QHE and a quantum polynomial-time adversary A =
(A1,A2), denoted by PubKcpa

A,QHE
(λ), is defined by the following procedure:

1. KeyGen(1λ) is run to obtain keys (pk,sk,ρevk).

2. Adversary A1 is given (pk,ρevk) and outputs a quantum state on the registers
X R (these are the message register, and a reference register containing any side
information).

3. For r ∈ {0,1}, let Ξcpa,r
QHE

be defined as:

Ξ
cpa,0
QHE

(pk,ρ) :=QHE.Encpk(|0〉〈0|), (5.3)

Ξ
cpa,1
QHE

(pk,ρ) :=QHE.Encpk(ρ). (5.4)

A random bit r ∈ {0,1} is chosen and Ξcpa,r
QHE

is applied to the state in X (the
output being a state in CX ).

4. Adversary A2 obtains the system in CX R and outputs a bit r ′.

5. The output of the experiment is defined to be 1 if r ′ = r and 0 otherwise. In the
output is 1, we say that A wins the experiment.

The game PubKcpa
A,QHE

(λ) is depicted in Figure 5.1. Informally, the challenger
randomly chooses whether to encrypt some message, chosen by the adversary, or
instead to encrypt the state |0〉〈0|. The adversary has to guess which of the two
happened. If he cannot do so with more than negligible advantage, the encryption
procedure is considered to be q-IND-CPA secure:
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Definition 5.2.9 (q-IND-CPA security of quantum HE [BJ15, Definition 3.3]). A (clas-
sical or quantum) homomorphic-encryption scheme S is q-IND-CPA secure if for any
quantum polynomial-time adversary A= (A1,A2),

Pr[PubKcpa
A,S(λ) = 1] É 1

2
+negl(λ).

Analogously to PubKcpa
A,S(λ), we can define a game PubKcpa−mult

A,S (λ), in which the
adversary can give multiple messages to the challenger. The messages are either all
encrypted, or all replaced by zeros. Broadbent and Jeffery [BJ15] show that these
notions of security are equivalent.

For a private-key scheme, q-IND-CPA security is defined analogously, but based
on the indistinguishability experiment SymKA,S(λ) [BJ15]: this game is the same as
Game 5.2.8, except that the adversary A1 is not given the encryption key sk (pk in
the public-key game). Instead, A1 gets access to an encryption oracle, to which it can
submit any number of plaintexts, and receive the corresponding ciphertexts, before
having to select a challenge plaintext.

To define circuit privacy in the quantum setting, we need to take into account
the fact that the input state may be part of some larger (possibly entangled) system.
This leads to the following definition of quantum circuit privacy in the semi-honest
setting:

Definition 5.2.10 (Quantum circuit privacy in the semi-honest setting). A quan-
tum homomorphic-encryption scheme QHE has statistical circuit privacy in the
semi-honest setting if there exists a QPT algorithm SQHE such that for any security
parameter λ, keys (pk,ρevk,sk) ←QHE.KeyGen(1λ), and circuit c:∥∥∥QHE.Evalcρevk

(
QHE.Encpk(·))−SQHE

(
1λ,pk,evk,Φc (·)

)∥∥∥¦ É negl(λ).

There are various ways to define passive adversaries in a quantum setting [DNS10;
BB14]. In Definition 5.2.10, we consider adversaries that follow all protocol instruc-
tions exactly.

5.3 CL: a partially-homomorphic scheme

All quantum homomorphic-encryption schemes discussed in this work are extensions
of a basic schemeCL [BJ15], an encryption that is homomorphic for all Clifford circuits.
The CL scheme can be regarded as analogous to additively-homomorphic-encryption
schemes in the classical setting. In this section we discuss it and its properties as a
warm-up for the definition and analysis of more complicated protocols later on.

CL relies on two ingredients: the information-theoretically secure quantum one-
time pad, and a post-quantum secure classical FHE scheme (which necessarily relies
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on computational assumptions). Input quantum states are encrypted using the quan-
tum one-time pad, and the Pauli keys are themselves encrypted under the classical
FHE. CL allows an evaluator to compute arbitrary Clifford operations on encrypted
qubits, simply by performing the actual Clifford circuit, followed by homomorphi-
cally updating the quantum one-time pad keys according to the commutation rules
between the performed Clifford gates and the Pauli encryptions.

In Protocol 5.3.1, we assume that the evaluated circuit c is given in terms of the
Clifford generator set {P,H,CNOT}. This allows us to evaluate c gate-by-gate, each
time only affecting one or two wires. We specify the evaluation procedure only for the
gates P, H, and CNOT: a larger circuit is evaluated by concatenating the evaluation
procedures for those basic gates1.

Protocol 5.3.1 (CL: quantum homomorphic encryption for Clifford circuits).
Let HE be a classical fully-homomorphic-encryption scheme. The quantum
homomorphic-encryption scheme CL is defined by the following algorithms:

Key generation (CL.KeyGen(1λ)). Run (pk,evk,sk) ←HE.KeyGen(1λ), and out-
put (pk, |evk〉 ,sk).

Encryption (CL.Encpk(ρ)). A single-qubit state ρ is encrypted with a quantum
one-time pad, and the pad key is classically encrypted and appended to
the state, resulting in the classical-quantum state

1

4

∑
a,b∈{0,1}

XaZbρZbXa ⊗ ∣∣HE.Encpk(a,b)
〉〈
HE.Encpk(a,b)

∣∣ . (5.5)

We will call the qubits on the left-hand side of the tensor product the
data qubits, and those on the right-hand side the (encrypted) key state.
Recall that we abuse the notation HE.Encpk(a,b) to denote the separate
encryptions of a and b. Anyone holding the state in Equation (5.5) has
access to the individual (classical) ciphertexts ã and b̃.

Phase-gate evaluation (CL.EvalP|evk〉(σ)). Apply P to the relevant data qubit of σ,
and apply the following key update to the key state:

P-update : (a,b) 7→ (a,b ⊕a). (5.6)

1Pauli gates can be implemented using P and H, since Z = P2 and X = HP2H. However, it is more
efficient to implement them directly: the evaluation of an X gate, for example, leaves the quantum state
untouched, and classically updates the key a to a ⊕1 using HE.Eval.
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Since σ only contains encryptions ã and b̃, the key update is performed by

evaluating HE.EvalP-update
evk (ã, b̃).

Hadamard evaluation (CL.EvalH|evk〉(σ)). Similar to phase-gate evaluation, ex-
cept with the key-update function

H-update : (a,b) 7→ (b, a). (5.7)

Controlled-not evaluation (CL.EvalCNOT
|evk〉 (σ)). Since CNOT is a two-qubit gate,

apply it jointly to the two relevant data qubits of σ, which each have their
own independent one-time pad keys (a1,b1) and (a2,b2), encryptions of
which are stored in the key state. Homomorphically apply the classical
key-update function

CNOT-update : (a1,b1, a2,b2) 7→ (a1,b1 ⊕b2, a1 ⊕a2,b2). (5.8)

Measurement evaluation (CL.Eval|evk〉(σ)). For a computational-basis measure-
ment, measure the encrypted qubit σ in the computational basis, resulting
in a single measurement bit m.

Decryption (CL.Decsk(σ)). For each data qubit, run HE.Decsk twice in order to
retrieve the updated keys a′ and b′ to the quantum one-time pad. Apply the
Pauli decryption Xa′

Zb′
to the data qubit. For measured qubits, compute

m ⊕a′ to retrieve the plaintext measurement result.

To see why the gate evaluations are correct, we work out the case for the phase gate in
detail. The two other cases work similarly. When the phase-gate evaluation procedure
is applied to an input state of the form

σ=XaZbρZbXa ⊗ ∣∣ã, b̃
〉〈

ã, b̃
∣∣ , (5.9)

the resulting state is

PXaZbρZbXaP† ⊗
∣∣∣HE.EvalP-update

evk (ã, b̃)
〉〈

HE.EvalP-update
evk (ã, b̃)

∣∣∣ (5.10)

=XaZb⊕aPρP†Zb⊕aXa ⊗
∣∣∣ã, �b ⊕a

〉〈
ã, �b ⊕a

∣∣∣ . (5.11)

The equality follows from (perfect) correctness of the classical homomorphic-encryption
scheme, and the commutation relation between P and the Pauli group (see Sec-
tion 2.4.2).

CL is correct (for all Clifford+measurement circuits), compact, and secure, as long
as the underlying classical homomorphic encryption has those properties [BJ15]. To
provide intuition for the upcoming protocols, we briefly sketch security here. A similar
proof is given for Lemmas 5.6.11 and 6.3.4.
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The security of CL is proven in two steps: the first relies on the security of HE, the
second on that of the quantum one-time pad.

In the first step, it is shown that no adversary A can have a significantly better
winning probability in the q-IND-CPA game (Game 5.2.8) when given an encrypted
state as in Equation (5.5), as opposed to an encryption of the form

1

4

∑
a,b∈{0,1}

XaZbρZbXa ⊗ ∣∣HE.Encpk(0,0)
〉〈
HE.Encpk(0,0)

∣∣ , (5.12)

where the key state is replaced with encryptions of zeros. If A does have a significant
advantage in the first game, then it can be used as a subroutine to win the q-IND-CPA
game against the classical scheme HE. Essentially, an adversary A′ for the HE game
plays the role of the challenger against A. In the encryption step, after sampling
keys (a,b), the “challenger” A′ submits the keys to its own challenger, so that the
encryption it returns to A is either of the form of Equation (5.5) or Equation (5.12). If
A answers the challenge posed by A′ correctly, then A′ will assume that the keys (a,b)
really were encrypted. Otherwise, A′ will assume that its own challenger encrypted
zeros. If A indeed has a significantly better winning probability whenever it receives
an encryption like Equation (5.5), then this strategy gives A′ a significant advantage
in guessing the actions of its own challenger.

The second step is to observe that the quantum part of an encryption of the form
of Equation (5.12) is a quantum one-time pad. Hence, no adversary A can have an
advantage in Game 5.2.8 when given encryptions of the form of Equation (5.12).

5.3.1 Circuit privacy

By itself, CL does not provide circuit privacy in the sense of Definition 5.2.10, even if
the underlying classical scheme HE is circuit private. As a counterexample, consider
the input |0〉〈0|, encrypted with Pauli keys (a,b). On the plaintext level, there is no
difference between the identity circuit, and the single-gate circuit P: in both cases,
the plaintext output is |0〉〈0|. However, the decrypting party can tell the difference
between the two by looking at the decrypted Pauli keys: if identity was applied, the
keys will still be (a,b), whereas if P was applied, they will be (a,b ⊕a). Even though
the difference in keys does not matter for the plaintext value of the output, they reveal
information about the circuit that cannot be deduced from the decrypted output by
itself.

Nonetheless, CL can straightforwardly be adapted to a quantum homomorphic-
encryption scheme CL′ with circuit privacy. At the end of the evaluation, the eval-
uator simply has to apply a freshly random quantum one-time pad to the (already
encrypted) evaluation result, and update the classical keys accordingly. The keys
themselves are uniformly random, and therefore do not reveal any information about
the circuit. Circuit privacy of HE ensures that even the classical encryption of the keys
contains no information about the circuit.
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Theorem 5.3.2. If HE has circuit privacy in the semi-honest setting, then CL′ is a
quantum homomorphic-encryption scheme with circuit privacy.

Proof. For notational convenience, we will write S(c(x)) instead of S(1λ,pk,evk,c(x))
in case all other variables are clear. Furthermore, for simplicity we will assume that the
computation does not contain any measurements. The same proof, but with slightly
lengthier notation, goes through if measurements are part of the computation.

Let SHE be the classical simulator guaranteed to exist by the classical circuit pri-
vacy of HE (see Definition 5.2.6). Define the simulator SCL′ (for an n-qubit quantum
state σ in a message register M) as

SCL′ (1λ,pk, |evk〉 ,σM ) := 1

22n

∑
x,z∈{0,1}n

XxZzσZzXx ⊗|SHE(x, z)〉〈SHE(x, z)| . (5.13)

We claim that SM
CL′ (cM (ρMR )) is negligibly close to CL′.Evalc M

|evk〉
(
CL′.EncM

pk(ρMR )
)

for

any ρMR , where R is a side-information register with which the input message may be
entangled. During CL′.Eval, the evaluator updates the keys to the quantum one-time
pad for all n qubits in the circuit, homomorphically evaluating the appropriate key-
update function fi for each gate i . Write (da,b ,ea,b) := ( f|c| ◦· · ·◦ f2 ◦ f1)(a,b), where |c|
is the number of gates in c , and abbreviate gc,x : (a,b) 7→ da,b ⊕x (and hc,z accordingly
for the Z key). Then the state CL′.Evalc|evk〉

(
CL′.Encpk(ρ)

)
equals

1

24n

∑
a,b,x,z∈{0,1}n

(
Xda,b⊕xZea,b⊕z

)M
ΦM

c (ρMR )Zea,b⊕zXda,b⊕x⊗∣∣∣HE.Eval
(gc,x ,hc,z )
evk

(
HE.Encpk(a,b)

)〉〈
HE.Eval

(gc,x ,hc,z )
evk

(
HE.Encpk(a,b)

)∣∣∣ (5.14)

≈ 1

24n

∑
a,b,x,z∈{0,1}n

(
Xda,b⊕xZea,b⊕z

)M
ΦM

c (ρMR )Zea,b⊕zXda,b⊕x⊗∣∣SHE
(
da,b ⊕x,ea,b ⊕ z

)〉〈
SHE

(
da,b ⊕x,ea,b ⊕ z

)∣∣ (5.15)

= 1

22n

∑
x,z∈{0,1}n

(
XxZz)M

ΦM
c (ρMR )ZzXx ⊗|SHE (x, z)〉〈SHE (x, z)| . (5.16)

The approximation is in terms of trace norm, holds up to a factor of negl(λ), and
follows from classical circuit privacy of HE. The final equality is due to the fact that x
and z randomize the quantum one-time pad keys, so the keys (da,b ⊕x,ea,b ⊕ z) are
themselves uniformly random.

Note that Equation (5.16) equals SM
CL′ (Φ

M
c (ρMR )), completing the proof.
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5.4 A new primitive: verifiable quantum homomorphic
encryption

In this section, we propose a new definition of verifiable quantum homomorphic
encryption (or vQHE), in the symmetric-key setting. We start by expanding the basic
definition of QHE, replacing the decryption procedure Dec by a “verify-and-decrypt”
procedure VerDec, which potentially rejects the output ciphertext, if it is not the result
of the desired computation. Then, we discuss the definitions of compactness and
security in this setting. We propose two alternative definitions of security, which we
prove to be equivalent.

The definition of vQHE has two parameters: the class C of circuits which the user
can verify, and the class V of circuits which the user needs to perform in order to verify.
We are interested in cases where C is stronger than V .

Definition 5.4.1 (Verifiable quantum homomorphic encryption). Let C and V be
(possibly infinite) collections of quantum circuits. A (C,V)-vQHE scheme S is a set of
four QPT algorithms:

Key generation: (sk,ρevk) ← S.KeyGen(1λ), where λ ∈ N is the security parameter.
Again, the evaluation key is a quantum state.

Encryption: σ← S.Encsk(ρ) produces a quantum ciphertext in the space D(HC ),
given a quantum plaintext in the space D(HX ), and a secret key.

Evaluation: (log,σ′) ← S.Evalcρevk
(σ) represents the evaluation of a circuit c ∈ C. In ad-

dition to the output ciphertext, the evaluation produces a classical computation
log log, which will count as a proof that the circuit c was honestly evaluated.

Decryption: ρ′⊗ ∣∣flag
〉〈

flag
∣∣ ← S.VerDecsk(c, log,σ′) decodes a ciphertext σ′ in the

space D(HC ) into a plaintext ρ′ in the space D(HX ). It additionally appends
a flag qubit, which is in one of the states |acc〉〈acc| or |rej〉〈rej|. The circuits for
S.VerDec must belong to the class V .

In the above definition, the (classical and quantum) registers are implicitly infinite
families of registers, each consisting of poly(λ)-many (qu)bits. In some later defini-
tions, it will be convenient to assume that VerDec also outputs a copy of the (classical)
description of the circuit c that it verified.

Similarly to Definition 5.2.2, we want verifiable homomorphic-encryption schemes
to yield the correct outcome if executed honestly. In this setting, correctness also
requires that an honest execution causes VerDec to accept with high probability.

Definition 5.4.2 (Correctness). A (C,V)-verifiable quantum homomorphic-encryp-
tion scheme S is correct if for every circuit c ∈ C, input state ρX R (where R is some
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side-information register), and all keys (sk,ρevk) ← S.KeyGen(1λ),∥∥∥S.VerDecX
sk

(
c,S.Evalcρevk

(
S.EncX

sk(ρ)
))−ΦX

c (ρ)⊗|acc〉〈acc|
∥∥∥

tr
É negl(λ).

5.4.1 Compactness

There are trivial vQHE schemes for some choices of (C,V): for example, if C ⊆V , then
the user can simply authenticate the ciphertext and then perform the computation
during decryption, similarly to the scheme TRIV described in Section 5.2.1. In non-
verifiable QHE, such trivial schemes are ruled out by requiring the encryption scheme
to be compact (see Definition 5.2.4).

When considering QHE with verification, however, some tension arises. On the
one hand, trivial schemes like the above still need to be excluded. On the other
hand, verifying that a circuit c has been applied requires, at the very least, reading a
description of c , which violates the quantum variant of compactness (Definition 5.2.4).
Thus, a more careful consideration of the relationship between the desired circuit
c ∈ C and the verification circuit V ∈ V is required. In our work, we will allow the
number of classical gates in V to scale with the size of c, but only if it is required for
verification. We propose a new definition of compactness in this context.

Informally, a vQHE scheme S is compact if S.VerDec is divisible into a classical
verification procedure S.Ver (outputting only an accept/reject flag), followed by a
quantum decryption procedure S.Dec. The running time of S.Ver is allowed to depend
on the circuit size, but the running time of S.Dec is not. The procedure S.Dec is
not allowed to receive and use any other information from S.Ver than whether or
not it accepts or rejects. This prevents the classical procedure S.Ver from de facto
performing part of the decryption work (e.g., by computing classical decryption keys).
In Section 5.5, we will see a scheme that does not fulfill compactness for this reason.

Definition 5.4.3 (Compactness of verifiable QHE). Let S be a verifiable quantum
homomorphic-encryption scheme, and writeσ′ = ∣∣y

〉〈
y
∣∣⊗σ′′ for the output quantum

state of S.Eval (that is, σ′ contains a, possibly empty, classical component y). The
scheme S is compact if the following conditions hold:

1. S.VerDec can be broken up into subprocedures S.Ver and S.Dec, as

S.VerDec(c, log,σ′′, y) = S.Decsk
(
σ′′, y,S.Versk(c, log, y)

)
.

2. S.Ver is a classical polynomial-time algorithm that outputs a single flag bit (acc
or rej).

3. S.Dec is a quantum algorithm. There exists a polynomial p such that for any cir-
cuit c with nout output qubits, and for any input ρ, S.Dec runs in time p(nout,1λ)
on the output of S.Evalcρevk

(S.Encsk(ρ)).
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Note that in the above definition, the classical values sk and y are copied and
fed to both S.Dec and S.Ver. The classical computation log, the length of which will
likely depend on the size of c, is only given to S.Ver. The quantum part of the output
ciphertext is only given to the quantum algorithm S.Dec.

5.4.2 Secure verifiability

In this section, we formalize the concept of verifiability. Informally, one would like
the scheme to be such that whenever VerDec accepts, the output can be trusted to
be close to the desired output. We will consider two equivalent formalizations of this
idea: a semantic one, and an indistinguishability-based one. We will also show that
they imply privacy in the sense of q-IND-CPA (see Definition 5.2.9).

The semantic definition states that every adversary with access to the ciphertext
can be simulated by a simulator that only has access to an ideal functionality that
simply applies the claimed circuit. It is inspired by quantum authentication [DNS12;
BW16] and semantic secrecy [ABF+16].

The real-world scenario (Figure 5.2, top) begins with a state ρX R1R2 prepared by
a QPT M (the “message generator”) . The register X (plaintext) is subsequently en-
crypted and sent to the adversary A. The registers R1 and R2 contain side information.
The adversary acts on the ciphertext and R1, producing some output ciphertext CX ′ , a
circuit description c, and a computation log log. These outputs are then sent to the
verified-decryption function. The output, along with R2, is sent to a distinguisher D,
who produces a bit 0 or 1.

In the ideal-world scenario (Figure 5.2, bottom), the plaintext X is not encrypted
or sent to the simulator S . The simulator outputs a circuit c and chooses whether to
accept or reject. The channelΦc implemented by c is applied to the input register X
directly. If reject is chosen, the output register X ′ is traced out and replaced by the
fixed state |⊥〉〈⊥|; this controlled channel is denoted ctrl-®.

Definition 5.4.4 (SEM-VER). A vQHE scheme S = (KeyGen,Enc,Eval,VerDec) is se-
mantically λ-verifiable if for any QPT adversary A, there exists a QPT S such that for
all QPTs M and D,∣∣∣Pr

[
D

(
RealAsk (M(ρevk))

)
= 1

]
−Pr

[
D

(
IdealSsk(M(ρevk))

)
= 1

]∣∣∣É negl(λ),

where RealAsk =VerDecsk ◦A◦Encsk and IdealSsk = ctrl-®◦ Φc ◦Ssk, as depicted in Fig-

ure 5.2, and the probability is taken over (ρevk,sk) ←KeyGen(1λ) and all QPTs above.

Note that the simulator (in the ideal world) gets the secret key sk. We believe
that this is necessary, because the actions of an adversary may depend on superficial
properties of the ciphertext. In order to successfully simulate this, the simulator
needs to be able to generate (authenticated) ciphertexts. He cannot do so with a fresh
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Figure 5.2: The real world (top) and ideal world (bottom) for SEM-VER.
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Figure 5.3: The indistinguishability game VerGameA,S (λ), as used in the definition of IND-
VER.

secret key, because the input plaintext may depend on the correlated evaluation key
ρevk. Fortunately, the simulator does not become too powerful when in possession
of the secret key, because he does not receive any relevant plaintexts or ciphertexts
to encrypt or decrypt: the input register X is untouchable for the simulator. Later, in
Lemmas 5.4.7 and 5.4.9, we will see that SEM-VER, even with the secret key given to
the simulator, implies secure encryption.

Next, we present an alternative definition of verifiability, based on a security game
motivated by indistinguishability.

Game 5.4.5. For an adversary A= (A1,A2,A3), a scheme S, and a security parameter
λ, the VerGameA,S (λ) game proceeds as depicted in Figure 5.3.

The game is played in several rounds. Based on the evaluation key, the adversary
first chooses an input (and some side information in R). Based on a random bit r ,
this input is either encrypted and sent to A2 (if r = 0), or swapped out and replaced
by a dummy input |0n〉〈0n | (if r = 1). If r = 1, the ideal channel Φc is applied by the
challenger, and the result is swapped back in right before the adversary (in the form of
A3) has to decide on its output bit r ′. If A2 causes a reject, the real result is also erased
by the channel ®. We say that the adversary wins (expressed as VerGameA,S (λ) = 1)
whenever r ′ = r .

Definition 5.4.6 (IND-VER). A vQHE scheme S has λ-indistinguishable verification if
for any QPT adversary A,

Pr[VerGameA,S (λ) = 1] É 1

2
+negl(λ).
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Definitions 5.4.4 and 5.4.6 both capture the property that an adversary cannot
effectively touch the real input state (in the ideal scenario or in the r = 1 scenario),
and therefore it cannot do so in the real or r = 0 scenarios either. This guarantees that
the only action it can take is the honest one of applying the circuit.

Apart from verifiability, the above definitions also capture privacy in the sense of
q-IND [ABF+16]: the security game SymKA,S (λ) for q-IND is the same as PubKcpa

A,S (λ)
(Game 5.2.8 and Figure 5.1), except that the adversary does not receive a public
key, because there is none. The idea that verifiability necessarily implies privacy is
reminiscent of the analogous result that authentication implies encryption [BCG+02].

To achieve q-IND-CPA security in a symmetric-key setting, the adversary would
have to get access to an encryption oracle before the challenge plaintext is cho-
sen [BJ15]. We could straightforwardly adapt Definition 5.4.6 in this manner by giving
A1 access to such an encryption oracle, in which case the definition would imply
q-IND-CPA, using a similar proof as below. For simplicity, we will focus on the ver-
ifiability definition that provides q-IND security only. Not all protocols presented
in this chapter will be q-IND-CPA secure, but those that are can be shown to be so
independently of the IND-VER property.

Lemma 5.4.7. If a vQHE scheme S is IND-VER, then it is q-IND.

Proof. We will argue that any adversary A = (A1,A2) that can win the quantum
indistinguishability game SymKA,S (λ) (defined above) with nonnegligible advan-
tage can be turned into a successful adversary A′ = (A′

1,A′
2,A′

3) against the game
VerGameA′,S (λ).

The adversaryA′ is defined as follows. A′
1 simply runsA1 on its input, and outputs

whatever it outputs into the registers X R . A′
2 runs A2, and outputs its guess r ′ ∈ {0,1}

into the side-information register R ′. Its other outputs (CX ′ , c, and log) can remain
empty, or be set to dummy values. Doing so will cause S.VerDec to reject, but that
does not matter: A′

3 ignores the output from S.VerDec, and simply outputs the bit r ′
it received via its side-information register.

By noticing that up until the actions of A2 (resp. A′
2), the two games are identical,

we see that

Pr[SymKA,S (λ) = 1] = Pr[VerGameA′,S (λ) = 1]. (5.17)

Thus, if there exists an A such that the left-hand probability is bounded away from 1/2

by a nonnegligible factor, then there exists an A′ such that the right-hand probability
is, too. By contraposition, the statement of the lemma follows.

5.4.3 Equivalence of IND-VER and SEM-VER

In this subsection, we formally show that the two verifiability concepts presented in
Definitions 5.4.4 and 5.4.6 are equivalent.
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Lemma 5.4.8. If a vQHE scheme S is IND-VER, then it is SEM-VER.

Proof. We will show this by contraposition: suppose that S is not SEM-VER. Then
there exists a QPT A such that for all simulators S , there exist QPTs M and D and a
polynomial p such that the difference in acceptance probability between the real and
ideal scenarios is at least 1/p(λ).

Denote the output registers of A as CX ′ (the ciphertext), C (the circuit), L (the
computation log), and R ′

1 (the side-information register). Choose the simulator map
S to be

S : (sk,ρR1 ) 7→ TrX ′
[

S.VerDec
CX ′C L
sk

(
A

(
S.Encsk

(∣∣0n〉〈
0n∣∣)⊗ρ))]

, (5.18)

That is, S encrypts a dummy state |0n〉〈0n |, feeds it to the adversary, and checks the
outcome. Note that in the accept case, the plaintext output is not the output of a
correct computation, since the claimed circuit is applied to the dummy state instead
of the real input. This does not matter, however, because the simulator traces out the
result immediately, and only outputs the claimed circuit c and the accept/reject flag.

Since S is a possible simulator, there exist M and D as given by the assumption
that SEM-VER is false. We construct a QPT adversary A′ = (A′

1,A′
2,A′

3) for the VER in-
distinguishability game VerGameA,S (λ) simply by setting A′

1 =M (letting the register
R = R1R2), A′

2 =ACX R1 , and A′
3 =D. Informally, the probability that this adversary

wins is

Pr[r = 0]Pr[A′
3 guesses 0 | r = 0] + Pr[r = 1]Pr[A′

3 guesses 1 | r = 1] . (5.19)

More precisely, let F denote the flag register (holding acc or rej), setΠacc = |acc〉〈acc|
andΠrej =

∣∣rej
〉〈

rej
∣∣, and abbreviate

(c,σX F R ′
) := TrX ′

[
S.VerDec

CX ′C L
sk

(
A′CX R1

2

(
S.Encsk

(∣∣0n〉〈
0n∣∣)⊗A′

1(ρevk)
))]

. (5.20)

Then the winning probability of A′ is

1

2
Pr

[
A′

3

(
S.VerDec

CX ′C L
sk

(
A′CX R1

2

(
S.EncX

sk

(
A′

1(ρevk)
))))= 0

]
+1

2
Pr

[
A′

3

(
ΦX

c

(
ΠF

accσ
X F R ′

Π†
acc

)
+|⊥〉〈⊥|X ⊗TrX

[
ΠF

rejσ
X F R ′

Π†
rej

])
= 1

]
. (5.21)

Equation (5.21) can be verified by following the wires of Game 5.4.5 in Figure 5.3. By
our definition of A′ and S , the probability equals

1

2

(
1−Pr

[
D

(
S.VerDec

CX ′C L
sk

(
ACX R1

(
S.EncX

sk

(
M(ρevk)

))))= 1
])

(5.22)

+1

2
Pr

[
D

(
(ctrl-®◦ Φc ◦ Ssk)(M(ρevk))

)
= 1

]
. (5.23)
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By the assumption that S is not SEM-VER, Equation (5.23) is 1/2 plus a nonnegligible
factor. Hence, this adversary A′ wins the IND-VER indistinguishability game with
nonnegligible advantage.

Lemma 5.4.9. If a vQHE scheme S is SEM-VER, then it is IND-VER.

Proof. Suppose that a scheme S is SEM-VER, and let A= (A1,A2,A3) be an arbitrary
QPT adversary for the IND-VER indistinguishability game. We will define a semantic
adversary, message generator, and distinguisher, that together simulate the game
for A. The fact that S is SEM-VER allows us to limit the advantage of the semantic
adversary over any simulator, and thereby the winning probability of A.

By definition of SEM-VER, for A2 there exists S such that for all QPTs M and D,
the inequality from Definition 5.4.4 holds (with A2 instead of A). We choose M and
D as in Figure 5.4. More precisely, M does:

1. Run A1 on input.

2. Prepare the state |0n〉〈0n |, plus a random bit r ∈R {0,1}, and store them in the
side information register R2.

3. Swap the wires X and R2, conditioned on r .

We also choose D to do the following:

1. Run A3 on the appropriate input wires.

2. Either apply Φc or ® on the quantum state in the register R2, conditioned on
the accept/reject flag.

3. Swap the wires X ′ and R2, conditioned on r .

4. Output 1 if A3 correctly outputs r ′ = r , and 0 otherwise.

These choices of M and D ensure that the real channel is an execution of the
IND-VER game. In the ideal scenario, A3 receives exactly the same state in the cases
r = 0 and r = 1. Hence, the best A3 can do is guess, and the probability that r ′ = r
(and thus that D outputs 1) is at most 1/2.

By the assumption that S is SEM-VER, the probability that D outputs 1 in the real
scenario can only be negligibly higher than in the ideal case. As discussed above,
the real scenario corresponds exactly to the adversary A playing the IND-VER game.
Therefore, the winning probability for A (i.e., the probability that VerGameA,S (λ) = 1)
is at most negligibly (in λ) higher than 1/2.
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Figure 5.4: The definition of M and D in terms of the adversary A= (A1,A2,A3). This figure
depicts the ideal scenario in the SEM-VER definition with M and D chosen as described in the
proof of Lemma 5.4.9.

5.5 TC: a noncompact partially-homomorphic scheme
with verification

We now present a partially-homomorphic scheme with verification, which will serve
as a building block for both the Clifford-homomorphic scheme in Section 5.6, and
the fully homomorphic scheme in Section 6.4. It is called TC (for “trap code”), and is
homomorphic only for CNOT, (classically controlled) Paulis, and measurement in
the computational and Hadamard basis. It does not satisfy compactness: as such,
it performs worse than the trivial scheme where the client performs the circuit at
decryption time. However, TC lays the groundwork for the vQHE schemes we present
in Sections 5.6 and 6.4, and is therefore important to understand in detail. It is a
variant of the trap code [BGS13] (which requires classical interaction for T gates),
adapted to our vQHE framework. For simplicity we consider the regular trap code in
this chapter, but the scheme can easily be modified to work with the strong trap code.

Key generation and encryption

Let CSS be a (publicly known) self-dual [[n,1,d ]] CSS code, so that H and CNOT
are transversal. We choose d = 2λ+1. The code needs to satisfy n = poly(λ): the
concatenated Steane code satisfies this relationship, as does the Reed–Muller code
presented in Section 3.7.3.

For a circuit with m input wires, we generate keys for the trap code as follows.
Choose a single random permutation π ∈R S3n . For each qubit i ∈ {1, . . . ,m}, sample
x[i ] ∈R {0,1}3n and z[i ] ∈R {0,1}3n . The secret key sk is (π, x[1], z[1], . . . , x[n], z[n]), and
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ρevk is left empty.
Encryption of the i th qubit is the trap-code encoding using the permutation π

and Pauli key x[i ], z[i ]. We denote the encoding procedure as TC.Enc, and write σ̃ for
an encrypted version of a state σ.

Evaluation

For a more detailed explanation on how to compute on trap-code encoded qubits,
refer to Section 3.4.2. Here, we give a brief overview of how those techniques fit within
the setting of vQHE.

The application of Pauli gates (X and/or Z) can be achieved without touching the
actual state, by updating the keys to the quantum one-time pad in the appropriate way.
This is a classical task, so we can postpone it to TC.VerDec. (Recall that TC.VerDec
gets the circuit description.) So, formally, the evaluation procedure for Pauli gates
is the identity map. Paulis conditioned on a classical bit b known to TC.VerDec at
execution time (e.g., a measurement outcome) can be applied in the same manner.

To apply a CNOT to encrypted qubits σi and σ j , we apply CNOT transversally
between the 3n qubits of σ̃i and the 3n qubits of σ̃ j . Ignoring the quantum one-time
pad for the moment, the effect is a logical application of CNOT on σi ⊗σ j . The
quantum one-time pad requires a key update, which happens in TC.VerDec.

Computational-basis measurement is performed by measuring all 3n physical
qubits. During TC.VerDec, the contents of the measured qubits (now a classical string
w̃ ∈ {0,1}3n) will be interpreted into a logical measurement outcome.

Finally, we handle Hadamard-basis measurements. A transversal application of H
to all 3n relevant physical qubits precedes the evaluation procedure for a computa-
tional-basis measurement. Since CSS is self-dual, this action applies a logical H. Since
H |0〉 = |+〉 and H |+〉 = |0〉, all computational traps are swapped with the Hadamard
traps. This is reflected in the way TC.VerDec checks the traps (see Protocol 5.5.2).

Verification and decryption

If a qubit is unmeasured after evaluation (because it is not measured in the circuit),
then TC.VerDecQubit is applied: this is the regular decoding procedure of the trap
code which, given a key (π, x, z), undoes the permutation, checks all traps against he
keys x and z, and decodes the CSS code.

If a qubit is measured during evaluation,TC.VerDec receives a list w̃ of 3n physical
measurement outcomes for that qubit. These outcomes are classically processed to
produce the plaintext measurement outcome:

Protocol 5.5.1 (TC.VerDecMeasurement). Given a secret key (π, x, z), a measure-
ment string w̃ ∈ {0,1}3n , and a basis basis ∈ {+,×}, do the following:
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1. If basis =+, let w ′ :=π−1(x ⊕ w̃), Check the second n bits of w ′: if they are
not all zero, return (0, rej).

2. If basis = ×, let w ′ := π−1(z ⊕ w̃), Check the third n bits of w ′: if they are
not all zero, return (0, rej).

3. If the previous steps did not reject, compute CSS.ClassicalDec on the first
n bits of w ′, and return its result (both the decryption value and the ac-
cept/reject flag).

Here, CSS.ClassicalDec is the classical decoding procedure that recovers the logi-
cal measurement outcome from the physical ones (see Section 3.4.2): therefore,
TC.VerDecMeasurement is also completely classical. Note that we only check the |0〉
traps for a computational-basis measurement. Intuitively, this does not affect security,
since any attack that affects only |+〉 but not |0〉 will be canceled by the measurement.
A similar reasoning applies for a Hadamard-basis measurement.

The complete procedure TC.VerDec updates the quantum-one-time-pad keys
according to the gates in the circuit description, and then decrypts all qubits and
measurements as described above.

Protocol 5.5.2 (TC.VerDec). Given a secret key (π, x, z), an output ciphertext σ̃
(some qubits σ̃i may be interpreted as classical measurement strings), and a
circuit c, do the following:

1. For all gates G in the circuit c, do the following:

If G =Xi : update x[i ] ← x[i ]⊕π(1n02n).

If G =Zi : update z[i ] ← z[i ]⊕π(1n02n).

If G =CNOTi j : update (x[i ], z[i ]), (x[ j ], z[ j ]) ← (x[i ], z[i ]⊕ z[ j ]), (x[i ]⊕
x[ j ], z[ j ]).

If G is a measurement in basis basis on qubit i : Execute Protocol 5.5.1 to
get (ai ,flag) ← TC.VerDecMeasurement((π, x[i ], z[i ]), σ̃i ,basis). If
flag = rej, return |⊥〉〈⊥|⊗ |rej〉〈rej|. Otherwise, continue with the next
gate.

2. Execute TC.VerDecQubit (the regular trap-code decoding) on all unmea-
sured qubits using the updated keys. If one rejects, return |⊥〉〈⊥|⊗|rej〉〈rej|.

3. Trace out all wires that are not part of the output of c (e.g., because they
were auxiliary wires), and return the remaining list of decoded qubits and
measurement outcomes, along with the flag |acc〉〈acc|.

For CNOT, the key update is motivated by Equations (2.10) to (2.13) that describe
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the commutation relations between CNOT and the Pauli group. Since both qubit i
and j are permuted in the same way, updating the key as described in Protocol 5.5.2
correctly deals with commuting the CNOT through the quantum one-time pad.

5.5.1 Correctness, privacy, and noncompactness

After an honest evaluation, TC.VerDec accepts with probability 1. This correctness is
straightforward to check by following the evaluation (and decryption) gate-by-gate.

For privacy, since we will show that TC is IND-VER (in the next section), it follows
from Lemma 5.4.7 that it is also q-IND. However, note that the final step in the en-
cryption procedure is the application of a information-theoretically secure quantum
one-time pad with fresh, independent keys. Thus, the privacy of TC does not rely on
computational assumptions.

TC is not compact in the sense of Definition 5.4.3, however. In order to compute
the final decryption keys, the whole gate-by-gate key update procedure needs to be
executed, aided by the computation log and information about the circuit. Thus, we
cannot break TC.VerDec up into two separate functionalities, Ver and Dec, where
Dec can successfully retrieve the keys and decrypt the state, based on only the output
ciphertext and the secret key.

5.5.2 Secure verifiability

We already know that the trap code provides authentication of quantum states [BW16;
BGS13] (see also Section 3.3.2). We use similar strategies to prove IND-VER for TC:

Theorem 5.5.3. TC is a IND-VER secure (somewhat-)homomorphic-encryption scheme.
That is, for any adversary A,

Pr[VerGameA,TC(λ) = 1] É 1

2
+negl(λ).

Proof. Let A= (A1,A2,A3) be an adversary for TC, for the VerGameA,TC(λ) security
game (see Figure 5.3). Let sk = (π, x, z) be a uniformly random key, with π ∈ S3n ,
x, z ∈ {0,1}3mn (where m is the number of input qubits). Let CSS be the underlying
[[n,1,d ]] CSS code, with d = 2λ+1.

We argue that the probability that TC.VerDec accepts in VerGameA,TC(λ) is inde-
pendent of r , and that in the reject case, A has no advantage in guessing r . These two
facts allow us to focus our attention to the accept case only, by showing that A does
not have significant advantage in guessing r in that case either.

To see that the accept probability does not depend on r , first note that the choice
of the circuit c (output by A2 in register C ) cannot depend on the bit r chosen by the
challenger. The output of TC.Enc looks fully mixed regardless of the value of r , due to
the quantum one-time pad. Furthermore, note that the decryption procedure only
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considers the tag qubits when deciding whether to accept or reject, plus the claimed
circuit c (which does not depend on r ). In particular, it does not depend on the data
qubits, which do depend on r . In fact, we can imagine delaying undoing the QOTP on
those data qubits until after the accept or reject choice, leaving r fully hidden at the
time the decision to accept or reject is made.

In the reject case, TC.VerDec outputs a fixed quantum state |⊥〉〈⊥|, and will never
reveal the QOTP key that is applied to the input of TC.Enc. Thus, in that case, A3

cannot do better than a random guess for r .
For the rest of this proof, we consider only the accept case, and show that even

then, A has a negligible advantage in guessing r .
For each logical qubit i ∈ [m], let B c

i ∈ {id,comp,had} describe whether the qubit is
supposed to be unmeasured, measured in the computational basis, or measured in
the Hadamard basis, respectively, in the circuit c . Define Mid = I2n ⊗|0〉〈0|⊗n⊗|+〉〈+|⊗n

as the projector corresponding to accepting the traps of an unmeasured qubit (after
undoing the permutation and one-time pad). Similarly define Mcomp = I2n ⊗|0〉〈0|⊗n ⊗
I2n and Mhad = I2n ⊗ I2n ⊗|+〉〈+|⊗n as the projectors corresponding to accepting the
traps of a measured qubit. For B c := (B c

1 ,B c
2 , . . . ,B c

m), write MB c :=⊗
i∈[m] MB c

i
.

To simplify notation, we assume without loss of generality that HR =HR ′ , and
that A2 is a unitary 2 acting on registers CX (the ciphertext), R (the side information),
C (the circuit, initialized to the all-zero state) and L (the log, initialized to the all-zero
state). Since the log is left empty in TC, we will ignore it for this proof. Again without
loss of generality, we can assume that A2 consists of two parts: an arbitrary attack
unitary UCX C R , followed by an “honest” unitary DCX C , consisting of the quantum
operation prescribed by TC.Eval for the circuit in the C register: transversal CNOT
gates on the encrypted states in CX . We do not include the honest measurement
actions in A2, but instead postpone them to TC.VerDec.

We would like to apply the Pauli twirl (Lemma 2.4.5) in order to break up the
attack unitary U into a mixture of Pauli attacks. However, TC.VerDecMeasurement
prevents us from doing so: it does not completely undo the one-time pad on the
measured qubits (e.g., for a computational-basis measurement, the Z keys are not
undone). To enable the use of the Pauli twirl, we use the fact that for the trap code,
measure-then-decode is equivalent to decode-then-measure [BGS13]: instead of the
honest measurement followed by a classical decoding of the measurement result, we
can quantumly decode the state and then measure it. In the accept case, these two
approaches are completely equivalent.

Let σ ∈HX R be the output state of A1, and define

ρCX R :=CSS.EncX
sk(σ)⊗|0〉〈0|⊗n ⊗|+〉〈+|⊗n (5.24)

to be the state after the CSS encoding, but before the permutation and one-time
pad: that is, the state (XxZzπ⊗m)CX ρ(XxZzπ⊗m)† is the encrypted input to A2 in case

2We can expand HR to a bigger space to achieve unitarity of A2, if necessary.
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r = 0, together with a circuit register that is initialized to the all-zero state |0〉〈0|C of
unspecified size polynomial in m.

Furthermore, let Fπ,x,z :
∣∣ψ〉CX |c〉C 7→

(
π†⊗mX fc (x,z,π)Z f ′

c (x,z,π)
∣∣ψ〉) |c〉 be the uni-

tary map that reads a circuit description c, updates the keys x and z according to
that circuit, and removes the quantum one-time pad and permutations. Essentially,
it is TC.VerDec without the CSS.Dec and measurement steps. Note that Fπ,x,z can
be written as F ′ (π†⊗m ⊗ IC )

D
(
XxZz ⊗ IC )

D†, where F ′CX C is a Pauli correction (condi-
tioned on the register C ) that does not depend on π, x, z. It represents the Pauli gates
that occur in the circuit, applied transversally to the first n qubits of each ciphertext,
and can be delayed until the end of the decryption by commuting them through the
CNOT operations in the honest unitary D , and the permutations.

The plaintext that TC.VerDec holds right before running CSS.Dec, projected to
the accept case, equals

MB c E
π∈S3n

x,z∈{0,1}3mn

[
F CX C
π,x,z DCX CUCX C R (

XxZzπ⊗m)CX ρπ†⊗mXx Z zU †D†F †
π,x,z

]
(5.25)

= MB c F ′
E

π∈S3n
x,z∈{0,1}3mn

[
π⊗mDXxZzUXxZzπ⊗mρπ†⊗mXx Z zU †XxZz D†π⊗m

]
F ′† (5.26)

= MB c F ′D E
π∈S3n

x,z∈{0,1}3mn

[
π⊗mXxZzUXxZzπ⊗mρπ†⊗mXx Z zU †XxZzπ⊗m

]
D†F ′†. (5.27)

The last equality is due to the fact that π⊗mD = Dπ⊗m , since the honest action D
applies CNOT operations transversally on all 3n + 3n physical qubits whenever a
logical CNOT appears in the circuit. This transversal operation is invariant under the
permutation π.

We are finally able to apply the Pauli twirl (Lemma 2.4.5), because other than the
XxZz , no other terms depend on x and z. Write U =∑

P∈P3mn
αP PCX UC R

P . Then we
can decompose U into a probabilistic mixture of Pauli operations, rewriting Equa-
tion (5.27) as

MB c F ′D E
π∈S3n

P∈P3mn

[
|αP |2π⊗m(P ⊗UP )π⊗mρπ†⊗m(P ⊗U †

P )π⊗m
]

D†F ′†. (5.28)

Expressions of this form have been carefully analyzed in earlier trap-code security
proofs: see, e.g., the analysis of Broadbent and Wainewright [BW16]. For completeness,
we will sketch the analysis here. The goal is to argue that Equation (5.28) is negligibly
close (in λ) to the state at that point in the game if r = 1.

We start by noting that F ′D represents the application of the circuit stored in C
to the state ρ: namely, it applies CNOT gates transversally, followed by a Pauli that
represents the Paulis in the circuit, commuted through the CNOT operations and
applied transversally to the first n qubits of each ciphertext.
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Whether or not the state in Equation (5.28) is equal to the r = 1 case (where the
input is swapped out, the circuit is applied, and it is swapped back in) depends on
whether or not the Pauli operators P =⊗

i Pi alter any logical qubit i . The permutation
π ensures that the attacker cannot choose on which locations the nonidentity terms
in Pi act, so they essentially only choose how many X, Y, and Z terms the operator Pi

contains.
Let us first consider an unmeasured qubit i . Because CSS can correct up to λ

errors (since d = 2λ+1), only those Paulis Pi that are nonidentity in more than λ

locations will cause the logical qubit after decoding to change. For such Pauli terms,
assume without loss of generality that Pi has X-weight at least λ/2 out of the 3n
physical qubits that encode the i th qubit.3 The probability over π that none of the
X components ends up on the computational-basis traps (i.e., positions m + 1 to
2m) is upper bounded by (2/3)λ/2, since each individual X operation has probability
2/3 of missing the computational-basis traps. (A more careful combinatorial analysis
including the Z operations can improve the bound to (2/3)λ [BW16], but this simple
bound suffices for us.)

Next, consider a qubit i that is measured in the computational basis (the argument
for Hadamard-basis measurements is similar). For these qubits, the Z components of
the attack are not detected, but they also do not change the output: since the data
qubits are also measured, only the X Paulis will change the data contents. Therefore,
the operator Pi will have to contain at least λ Pauli X operators on the 3n physical
qubits. Repeating the same argument as for the unmeasured qubits, we see that the
probability over π that all computational-basis traps are missed is at most (2/3)λ.

The above analysis shows that a Pauli operator Pi either does not have enough
weight to affect the logical outcome (for those terms, the cases r = 0 and r = 1 are
identical), or it only has very small probability of being accepted, and therefore very
small norm in Equation (5.28). Hence, the trace distance between the states that A3

receives in the r = 0 and r = 1 case is negligible. The final guessing probability is
bounded as

Pr[VerGameA,TC(λ) = 1] É 1

2
+ 1

2

(
2

3

)λ
, (5.29)

so that the guessing advantage is negligible in λ.

In Section 5.6, we will use the IND-VER property of TC to prove verifiability for our
new scheme. In order to achieve verifiability for that scheme, we will actually need
a slightly stronger notion of verifiability for TC: IND-VER-n, where the adversary is
allowed to submit plaintexts in n rounds, which are either all encrypted or all swapped
out. In this subsection, we show that TC also fulfills this stronger notion. For our
purposes in Section 5.6, it suffices to show that TC is secure against an adversary that

3For operators with more Z components than X components, we could argue using Z instead.
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Figure 5.5: The game VerGame2
A,S (λ). The integers m1 and m2 are the respective sizes of the

X1 and X2 registers.

is allowed two rounds (IND-VER-2), but the definitions and proof trivially extend to
the general case.

Definition 5.5.4 (IND-VER-2 game). For an adversary A= (A0,A1,A2,A3), a scheme
S, and a security parameter λ, VerGame2

A,S (λ) is shown in Figure 5.5. It is identical to
VerGameA,S (λ), except that the adversary gets to submit two plaintexts for encryption,
which are both encrypted with the same permutation, but fresh quantum one-time
pads. The circuit c may act on both encrypted inputs.

Definition 5.5.5 (IND-VER-2). A vQHE scheme S = (KeyGen,Enc,Eval,VerDec) has
2-round λ-indistinguishable verification (IND-VER-2) if for any QPT adversary A=
(A0,A1,A2,A3),

Pr[VerGame2
A,S (λ) = 1] É 1

2
+negl(λ).

Here, the probability is taken over KeyGen(1λ),Enc,VerDec, and A.

Lemma 5.5.6. TC is IND-VER-2.

Proof. Let A = (A0,A1,A2,A3) be an arbitrary polynomial-time adversary for the
VER-2 indistinguishability game for TC. For notational convenience, write the se-
cret key as sk = (π, x1, z1, x2, z2), where x1 and z1 are lists of 3nm1 bits, sufficient for
encrypting X1, and analogously x2 and z2 are lists of 3nm2 bits.

We now slightly alter the VER-2 game in the following way. In the first encryption
step of the game, instead of providing A1 with TC.Enc(π,x1,z1) applied to the register
X1, we provide A1 with halves of m1 EPR pairs, and perform Bell measurements
between the other halves and the qubits in X1, after they have been encrypted with
TC.Enc(π,x1,z1). Let the outcomes of these measurements be given by a,b ∈ {0,1}3nm1 :
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a and b describe the effective X and Z Paulis that are applied to X1 by these telepor-
tation measurements. To undo these Paulis, we update sk to (π, x1 ⊕a, z1 ⊕b, x2, z2)
at this point. Since the quantum one-time pad keys x1 and z1 are chosen uniformly
at random, and are completely hidden from the perspective of the adversary, the
new keys x1 ⊕a and z1 ⊕b are valid keys that are sampled from the same distribution.
Hence, the winning probability of A is not affected by this change of the game.

A second small change to the game is the following: instead of performing the
Bell measurements and the secret-key update immediately, it is done only after A1

has provided its query in X2. Since these actions happen only on wires which are
not accessible to A1 (and otherwise also not touched in this stage of the game), this
change also does not affect the execution or outcome of the game in any way.

We have now arrived at an interesting situation: A1 only receives halves of EPR
pairs, and so its choice for X2 or R ′ is not based on the first ciphertext received from
the challenger – that ciphertext will only be generated after execution of A1. We can
mergeA0 andA1 into a single QPT algorithm that produces X1 and X2 simultaneously.
When viewed as such, A is an adversary for the single-query VER indistinguishability
game, and we can conclude that

Pr[VerGame2
A,TC(λ) = 1] = Pr[VerGameA,TC(λ) = 1]. (5.30)

Since we know that the latter probability is bounded by 1/2 + negl(λ) from Theo-
rem 5.5.3, so is the first.

Lemma 5.5.6, and its generalization to IND-VER-n, may be seen as an argument
that TC is also q-IND-CPA secure. After all, in q-IND-CPA, the adversary is supplied
with an encryption oracle which it can query before submitting its challenge plaintext.
In IND-VER-n, we do the same, except we make it easier to tell the difference between
r = 0 and r = 1 by having all encryption queries depend on r . However, the crucial
difference between IND-VER-n and q-IND-CPA is that in the former, (part of) the
secret key is resampled for every encryption. q-IND-CPA requires the encryptions
to use the same secret key for every query, and for the challenge encryption. TC
does therefore not provide q-IND-CPA security out of the box. If q-IND-CPA security
is desired, one could easily extend TC by using a pseudorandom function for the
quantum one-time pad [ABF+16]. Alternatively, TC can be adapted by sampling the
one-time-pad keys freshly every time, during encryption: we adopt this strategy for
later schemes. Both adaptations of TC require computational assumptions.

5.6 TCL: a partially-homomorphic scheme with verifi-
cation

In this section, we introduce an encryption scheme TCL that is homomorphic for
all Clifford operations. In contrast to CL, it is verifiable, and in contrast to TC, it is
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compact. The scheme TCL will be leveled (see Section 5.2.1), because the evaluation
of a phase gate P and a Hadamard gate H will consume an encoded magic state from
the evaluation key. The number of magic states in the evaluation key gives an upper
bound to the number of P and H gates in the evaluated circuit.

The scheme TCL is very similar to TC, but with a few additions. First, the key
generation procedure will be given parameters p and h, which indicate the amount of
encoded magic states to be produced. Second, to ensure compactness, one-time-pad
key updates will be performed during evaluation rather than decryption. To accom-
modate the key updates, we encrypt the pad keys under a classical homomorphic
scheme HE, just as in the unverifiable Clifford scheme CL. The evaluator writes all
classical homomorphic computations in the computation log, so that the verification
procedure may check that they were performed honestly. However, we need to ensure
that the computation log starts with the honest encryption of the one-time-pad keys
(and that the evaluator did not secretly apply an extra gate before starting the official
log). To this end, we authenticate the initial encryptions of the pad keys using a
classical message authentication code.

Let λ ∈ N be a security parameter, and let p,h ∈ N be an upper bound on the
number of P and H gates (respectively) that will be in the evaluated circuit. Fix a
classical message authentication code MAC= (KeyGen,Tag,Ver) that is existentially
unforgeable under adaptive chosen message attacks (EUF-CMA [KL14]) by a quantum
adversary. For example, one may take the standard pseudorandom-function construc-
tion [KL14] with a post-quantum PRF. The Tag procedure defines an authentication
procedure MAC.Signk : m 7→ (m,MAC.Tagk (m)). Note that, contrary to the quantum
setting, the classical authentication code does not provide privacy by itself.

Let CSS be the same [[n,1,d ]] CSS code as in Section 5.5. That is, n = poly(λ),
d = 2λ+1, and the gates H and CNOT are transversal.

The evaluation key will contain a number of auxiliary states for the P and H
gates (see also Section 3.4.2). Those states are encrypted using the same “global”
permutation π, but with fresh one-time pad keys.

Protocol 5.6.1 (TCL.KeyGen). Given a security parameterλ and gate parameters
p,h, do the following:

1. Sample classical keys as

k ←MAC.KeyGen, (5.31)

π← S3n , (5.32)

(sk,pk,evk) ←HE.KeyGen. (5.33)

2. Set (π,k,sk,pk) to be the secret key.
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3. For i ∈ [p], let µP
i ←TCL.Enc(π,k,sk,pk)(P |+〉) be the encrypted magic state

for P. For TCL.Enc, see Protocol 5.6.2 below.

4. For i ∈ [h], let µH
i ← TCL.Enc(π,k,sk,pk)

(
1p
2

(H⊗ I) (|00〉+ |11〉)
)

be the en-

crypted magic state for H.

5. Let keys ←MAC.Signk (pk,evk,HE.Encpk(π)) be the authenticated list of
keys. The secret information π is encrypted before it is signed.

6. Output the secret key (π,k,sk,pk), along with the quantum evaluation key
(keys,µP

1 ,µP
2 , . . . ,µP

p ,µH
1 ,µH

2 , . . . ,µH
h ).

Perhaps somewhat counter-intuitively, the secret key contains the classical public
key pk. This is merely because pk is required for encryption, and we have no specific
intention of keeping the information pk private.

The encryption of a quantum state is a combination of TC.Enc and CL.Enc: the
state is encoded in the trap code, but the keys to the one-time pad are chosen during
encryption (rather than during key generation), and appended to the ciphertext in an
encrypted and authenticated form.

Protocol 5.6.2 (TCL.Enc). Given the secret key (π,k,sk,pk) and the quantum
plaintext σ, output the state

σ̃ := ∑
x,z∈{0,1}3n

(
TC.Encπ,x,z (σ)⊗MAC.Signk

(
HE.Encpk(x, z)

))
. (5.34)

Evaluation of gates is analogous to the interactive evaluation scheme using the
trap code [BGS13], briefly discussed in Section 3.4.2, except that the interactions are
replaced by classical homomorphic evaluation.

Evaluation of a circuit c is done gate-by-gate, as described by the algorithms below.
We will assume throughout that HE.Enc and HE.Eval produce, apart from their actual
output, a complete computation log describing all classical randomness used, all
classical computation steps, and all intermediate classical results.

Measurement. Recall that TC.VerDecMeasurement is a completely classical proce-
dure that decodes the list of 3n measurement outcomes into the logical outcome,
and checks the relevant traps. A computational-basis measurement in TCL is then
defined as:

Protocol 5.6.3 (TCL.EvalMeasurement). Given a ciphertext σ̃ (with encrypted
one-time pad keys x̃ and z̃) and an evaluation key containing π̃, pk, and evk, do
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the following:

• Measure the qubits of σ̃ in the computational basis. Call the result a ∈
{0,1}3n .

• Let (ã, log1) ←HE.Encpk(a).

• Let (b̃, fl̃ag, log2) ← HE.EvalTC.VerDecMeasurement
evk ((π̃, x̃, z̃), ã,HE.Encpk(+)).

The (encrypted) bit b represents the logical measurement outcome, and
the flag is either accept or reject.

• Output b̃, fl̃ag, (log1, log2).

Essentially, TCL.EvalMeasurement performs both the server-side and client-side com-
putation of the TC measurement protocol. The client-side computations are classical,
and can be performed homomorphically.

Hadamard-basis measurement is performed similarly, except the qubits of σ̃ are
measured in the Hadamard basis and HE.Encpk(×) is given as the last argument for
the evaluation of TC.VerDecMeasurement.

Pauli gates. A logical Pauli-X is performed by (homomorphically) flipping the X-key
bits of the QOTP, as in TC. The (classically controlled) evaluation of a Pauli-Z works
the same way, only the relevant bits in z̃ are flipped.

Protocol 5.6.4 (TCL.EvalX). Given a ciphertext σ̃ (with encrypted one-time pad
keys x̃ and z̃) and an evaluation key containing π̃, pk, and evk, do the following:

1. Homomorphically update the key x̃ in three steps:

(a) Let (ỹ , log1) ← HE.Evalunpermute
evk (π̃, x̃). Here, unpermute is the func-

tion that takes a permutation π and a string x as input, and outputs
π−1(x).

(b) Let (ỹ ′, log2) ←HE.Eval⊕evk(ỹ ,HE.Encpk(1n02n)). This operation flips
the first n bits, containing the data.

(c) Let (x̃ ′, log3) ←HE.Evalpermute
evk (π̃, ỹ ′).

2. Output σ̃ (with x̃ replaced by x̃ ′) and (log1, log2, log3).

Since the key-update operation is classical, the functionality extends straightfor-
wardly to a classically controlled Pauli-X (by specifying an additional bit b encrypted
into b̃ that indicates whether or not X should be applied):
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Protocol 5.6.5 (TCL.EvalCondX). Given a ciphertext σ̃ (with encrypted one-time
pad keys x̃ and z̃) and an evaluation key containing π̃, pk, and evk, do the
following:

1. Homomorphically update the key x̃ in four steps:

(a) Let (ỹ , log1) ← HE.Evalunpermute
evk (π̃, x̃). Here unpermute is the func-

tion that takes a permutation π and a string x as input, and outputs
π−1(x).

(b) Let s̃ ←HE.Evalz 7→zn 02n

evk (b̃).

(c) Let (ỹ ′, log2) ←HE.Eval⊕evk(ỹ , s̃). This operation flips the first n bits,
but only if b = 1.

(d) Let (x̃ ′, log3) ←HE.Evalpermute
evk (π̃, ỹ ′).

2. Output σ̃ (with x̃ replaced by x̃ ′) and (log1, log2, log3).

CNOT gates. The evaluation of CNOT in TCL is analogous to TC, only the key
updates are performed homomorphically during evaluation.

Protocol 5.6.6 (TCL.EvalCNOT). Given ciphertexts σ̃1 and σ̃2 (with encrypted
one-time pad keys x̃1, z̃1, x̃2, z̃2) and an evaluation key containing π̃, pk, and evk,
do the following:

1. Apply CNOT transversally, each time between the i th qubit in σ̃1 and the
i th qubit in σ̃2.

2. Homomorphically update the keys according to the commutation rule in
Equation (5.8). That is, let

(x̃ ′
1, x̃ ′

2, z̃ ′
1, z̃ ′

2, log) ←HE.EvalCNOT-update
evk (x̃1, x̃2, z̃1, z̃2). (5.35)

3. Output σ1,σ2 (with x̃1, z̃1, x̃2, z̃2 replaced by x̃ ′
1, x̃ ′

2, z̃ ′
1, z̃ ′

2) and log.

Phase gates. Performing a P gate requires homomorphic evaluation of all the above
gates: (classically controlled) Paulis, CNOTs, and measurements. We also consume
the stateµP

i (an encryption of the magic stateP |+〉) for the i th phase gate in the circuit.

We define TCL.EvalP to be the concatenation of the evaluations corresponding to
the gates in the magic-state-computation circuit from Equation (3.25). The overall
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computation log is just a concatenation of the logs.

Hadamard gates. The Hadamard gate can be performed in the same manner as the
phase gate. The i th gate consumes µH

i , an encryption of the magic state (H⊗ I)
∣∣Φ+〉

.
See the circuit from Equation (3.26).

The decryption procedure for TCL consists of two parts. First, we perform several
classical checks. This includes MAC-verification of all classically authenticated mes-
sages, and checking that the gates listed in the log match the circuit description. We
also check the portions of the log which specify the (purely classical, FHE) steps taken
during HE.Enc and HE.Eval; we call this last step TCL.CheckLog. Secondly, we check
all unmeasured traps and decode the remaining qubits, just as in TC. We reject if
TCL.CheckLog rejects, or if the traps have been triggered.

Protocol 5.6.7 (TCL.VerDec). Given ciphertext qubits σ̃i (with encrypted one-
time pad keys x̃[i ], z̃[i ]), a secret key (π,k,sk,pk), a circuit description c, and a
classical computation log log, do the following:

1. Verify all classically authenticated messages (in log) using MAC.Verk . If
one of these verifications fails, output |⊥〉〈⊥|⊗ |rej〉〈rej|.

2. Check whether all claimed gates in log match the structure of c. If not,
output |⊥〉〈⊥|⊗ |rej〉〈rej|.

3. Check the correctness of the classical log usingTCL.CheckLog(log,pk,evk).
If it is not correct, output |⊥〉〈⊥|⊗ |rej〉〈rej|.

4. Check whether the claimed final QOTP keys in log match x̃ and z̃. If not,
output |⊥〉〈⊥|⊗ |rej〉〈rej|.

5. For all measurement gates of the circuit c, extract the encrypted measure-
ment result b̃ and accept/reject flag fl̃ag from log. If flag = rej, output
|⊥〉〈⊥|⊗ |rej〉〈rej|. Otherwise, append b to the output list.

6. For all unmeasured qubits σ̃i , do the following:

(a) Decrypt the pad keys x[i ], z[i ] ←HE.Decsk(x̃[i ], z̃[i ]).

(b) Run σi ← TC.VerDec(π,x[i ],z[i ])(σ̃i ). If that rejects, output |⊥〉〈⊥|⊗
|rej〉〈rej|. Otherwise, append σi to the output list.

7. Output the list of decrypted qubits and measurement outcome that are
part of the output of c, together with the flag |acc〉〈acc|.

Note that Step 7 is only reached if none of the previous steps trigger a reject. If even
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one of the checks fails (for example, one output qubit contains an error in the traps),
then the entire procedure rejects.

5.6.1 Correctness, compactness, and privacy

If all classical computation was unencrypted, checking correctness of TCL could
be done by inspecting the evaluation procedure for the different types of gates, and
comparing them to the interactive protocol for quantum computing on authenticated
data (Section 3.4.2). Since HE and the MAC authentication both satisfy correctness,
the full scheme TCL is then also correct.

Compactness as in Definition 5.4.3 is also satisfied: verifying the computation log
and checking all intermediate measurements (up until Step 4 in Protocol 5.6.7) is a
completely classical procedure and runs in polynomial time in its input. The rest of
TCL.VerDec only uses the secret key and the ciphertext (σ̃, x̃, z̃) as input, not the log
or the circuit description. Thus, we can separate TCL.VerDec into two algorithms Ver
and Dec as described in Definition 5.4.3, by letting the second part (Dec, Steps 5 to 7)
reject whenever the first part (Ver, Steps 1 to 4) does. It is worth noting that, because
the key-update steps are performed homomorphically during the evaluation phase,
skipping the classical verification step (i.e., only executing Dec) yields a QHE scheme
without verification that satisfies compactness in the original sense of Definition 5.2.4.
This is not the case for the scheme TC, where the classical computation is necessary
for the correct decryption of the output state.

In terms of privacy, TCL satisfies q-IND-CPA (see Definition 5.2.9 for the public-
key version: the private-key version is the same, except that the adversary A1 gets
access to an encryption oracle instead of the encryption key). This type of security
is shown in the same way as for CL (Section 5.3): by reduction to q-IND-CPA of the
underlying classical scheme HE. Security of HE allows us to replace the classical
information accompanying ciphertexts and magic states with the all-zero message.
What is left is a collection of one-time-padded quantum states, where the one-time
pad is freshly chosen at each new encryption. This contrasts with TC, where the
one-time-pad key was contained in the secret key, posing a security risk when an
encryption oracle was provided.

5.6.2 Secure verifiability

In this section, we will prove that TCL is IND-VER. By Lemma 5.4.8, it then follows
that TCL is also verifiable in the semantic sense (SEM-VER). We will define a slight
variation on the VER indistinguishability game, followed by several hybrid schemes
(variations of the TCL scheme) that fit into this new game. We will argue that for any
adversary, changing the game or scheme does not significantly affect the winning
probability. After these hybrid steps, we will have reduced the adversary to an ad-
versary for the somewhat homomorphic scheme TC, which we already know to be
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Figure 5.6: The hybrid indistinguishability game HybA,S (λ), which is a slight variation on
VerGameA,S (λ) from Figure 5.3.

IND-VER. This will complete the argument that TCL is IND-VER.

Game 5.6.8 (Hybrid game HybA,S (λ)). For an adversary A= (A1,A2,A3), a scheme
S, and security parameter λ, HybA,S (λ) is the game in Figure 5.6.

In comparison to Game 5.4.5 (see Figure 5.3), three new wires are added in this
hybrid game: a classical wire from S.Enc to S.VerDec, and a classical and quantum
wire from S.KeyGen to S.VerDec. We will later adjust TCL to use these wires to bypass
the adversary4; TCL as defined above does not use them. Therefore, for any efficient
adversary, Pr[VerGameA,TCL(λ) = 1] = Pr[HybA,TCL(λ) = 1].

Recall that all adversaries are QPTs, i.e., quantum polynomial-time uniform algo-
rithms. Given two hybrid games H1, H2, and a QPT adversary A, define the advantage

AdvHybH2
H1

(A,λ) := ∣∣Pr[HybA,H1
(λ) = 1]−Pr[HybA,H2

(λ) = 1]
∣∣ . (5.36)

The goal will be to show that for each new hybrid, the advantage of the previous
hybrid over the new one is negligible in λ.

4The quantum wire from S.KeyGen to S.VerDec will not be used in this chapter. It will be relevant for
the proof of Theorem 6.4.13 in the next chapter, which is why we include it in the definition of Game 5.6.8.
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Hybrid 1: Removing the classical MAC

In TCL, the initial keys to the QOTP can only become known to VerDec through the
adversary. We thus use a MAC to make sure these keys cannot be altered. Without this
authentication, the adversary could, e.g., homomorphically use π̃ to flip only those
bits in x̃ that correspond to nontrap qubits, thus applying X to the plaintext. For the
same reason, all classical information in the evaluation key must be authenticated.

In the first hybrid, we argue that the winning probability of a QPTA inHybA,TCL(λ)
is at most negligibly higher than in HybA,TCL′ (λ). TCL′ is a modified version of TCL,
where the initial keys are sent directly from KeyGen and Enc to VerDec (via the ex-
tra wires in Figure 5.6). More precisely, in TCL′.KeyGen and TCL′.Enc, whenever
MAC.Sign(HE.Enc(x)) or MAC.Sign(x) is called, the message x is also sent directly to
TCL′.VerDec. Moreover, instead of decrypting the classically authenticated messages
sent by the adversary, TCL′.VerDec uses the information it received directly from
TCL′.KeyGen and TCL′.Enc. It still checks whether the computation log provided by
the adversary contains these values at the appropriate locations and whether theMAC
signature is correct. The following fact is then a direct consequence of the EUF-CMA
property of MAC.

Lemma 5.6.9. For any QPT A, AdvHybTCL′
TCL (A,λ) É negl(λ).

Proof. Before VerDec is called, the games HybA,TCL(λ) and HybA,TCL′ (λ) are com-
pletely identical: adversaries A1 and A2 receive the same inputs in both games, and
therefore produce the same outputs. We thus only need to argue that TCL.VerDec
and TCL′.VerDec have the same output distribution.

Given that the input from A2 to VerDec is identical in both games, the only way
for the output of VerDec to differ, is if there is a signed message that passes MAC.Ver,
but decrypts to a different value (in TCL) than the value that is sent through the side
channel (in TCL′). If such a value exists with nonnegligible probability, then we can
define an adversary to the EUF-CMA security game5 based on A1,A2, as follows.

The new adversary A′ runs Game 5.6.8 (see Figure 5.6) until right before VerDec,
using the adversaries A1 and A2 as subroutines. A′ takes on the role of challenger,
and computes the key generation, potential swap, and encryption herself. Any time
the key generation or encryption requires A′ to sign a message, she simply queries
her EUF-CMA challenger for a signature. When A2 produces an output, the log
contains several different signed messages (which would normally be checked by
TCL.VerDec, and then decrypted for their values). A′ randomly selects one of those
signed messages, and outputs it.

5In the EUF-CMA (“existentially unforgeable under chosen message attacks”) game, an adversary is
allowed to request a polynomial number of signatures for messages that he chooses. He wins if he is able
to produce a message m∗, together with a valid signature, such that m∗ was not in the list of queried
messages [KL14].
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If A2 is able to produce at least one corrupted signed message with nonnegligible
probability, then A′ will pick that one (out of polynomially many options) with non-
negligible probability. In other words, if there is a nonnegligible difference between
the winning probabilities in HybA,TCL(λ) and HybA,TCL′ (λ), then A′ can beat the
EUF-CMA game with nonnegligible probability.

Hybrid 2: Removing the computation log

In TCL and TCL′, the adversary (homomorphically) keeps track of the keys to the
QOTP and stores encryptions of all intermediate values in the computation log. When-
ever VerDec needs to know the value of a key (for example to check a trap or to decrypt
the final output state), the relevant entry in the computation log is decrypted.

In TCL′, however, the plaintext initial values to the computation log are available
to VerDec, as they are sent through the classical side channels. This means that
whenever VerDec needs to know the value of a key, instead of decrypting an entry to
the computation log, it can be computed by “shadowing” the computation log in the
clear.

For example, suppose the log contains the encryptions b̃1, b̃2 of two initial bits,
and specifies the homomorphic evaluation of XOR, resulting in b̃ where b = b1 ⊕b2.
If one knows the plaintext values b1 and b2, then one can compute b1 ⊕b2 directly,
instead of decrypting the entry b̃ from the computation log.

We now define a second hybrid, TCL′′, which differs from TCL′ exactly in this way:
VerDec still verifies the authenticated parts of the log, checks whether the compu-
tation log matches the structure of c, and checks whether it is syntactically correct.
However, instead of decrypting values from the log (as it does in Steps 5 and 6a), it
computes those values from the plaintext initial values, by following the computation
steps that are claimed in the log. By correctness of classical FHE, we then have the
following.

Lemma 5.6.10. For any QPT A, AdvHybTCL′′
TCL′ (A,λ) É negl(λ).

Proof. Let s be the (plaintext) classical information that forms the input to the clas-
sical computations performed by the adversary: initial QOTP keys, secret keys and
permutations, measurement results, et cetera. Let f be the function that the adversary
computes on it in order to arrive at the final keys and logical measurement results. By
correctness of HE, we have that

Pr
[
HE.Decsk

(
HE.Eval fevk

(
HE.Encpk(s)

)) 6= f (s)
]
É negl(λ). (5.37)

Thus, the probability that TCL′.VerDec and TCL′′.VerDec use different classical val-
ues (decrypting from the log vs. computing from the initial values) is negligible. Since
this is the only place where the two schemes differ, the output of the two VerDec
functions will be identical, except with negligible probability. Thus A will either win
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in both HybA,TCL′ (λ) and HybA,TCL′′ (λ), or lose in both, again except with negligible
probability.

Hybrid 3: Removing all classical FHE

In TCL′′, the entire computation log is ignored, and all classical functionality has
been redirected to VerDec, which receives the relevant information directly from
KeyGen and Enc. The adversary still receives homomorphic encryptions of all rele-
vant information, and is supposed to compute on them, because the log is checked
for syntactical consistency. However, VerDec does not decrypt and use the resulting
values. This fact allows us to link TCL′′ to a final hybrid, TCL∗, where all classical
information is replaced with zeros before encrypting. That is, in TCL∗.Enc, signed
encryptions of zeros are appended (instead of signed encryptions of x, z), and in
TCL∗.KeyGen, the evaluation key contains an encryption of zero instead of an en-
cryption of π.

Lemma 5.6.11. For any QPT A, AdvHybTCL∗
TCL′′ (A,λ) É negl(λ).

Proof. We prove the statement by reduction to q-IND-CPA security of the classical
scheme HE. Technically, one would have to do this in two steps, via yet another
hybrid: first by replacing the encryptions of x, z keys inside Enc with encryptions of
zeros, then the encryptions of magic states and π inside KeyGen. In this proof, we
focus on the first step, by assuming that TCL∗ still encrypts normally during KeyGen.
The second step would work in very much the same way.

Let A = (A1,A2,A3) be an adversary for the game HybA,TCL′′ (λ). Note that
we may interpret A as an adversary for HybA,TCL∗ (λ) as well, since the games are
syntactically identical. We will define an adversary A′ = (A′

1,A′
2) for the public-

key game PubKcpa−mult
A′,HE

(λ). This adversary will simulate the game HybA,TCL′′ (λ) or

HybA,TCL∗ (λ): which game is simulated is unknown to A′, and depends on a random

choice s ∈ {0,1} of the challenger for PubKcpa−mult
A′,HE

(λ).

We define the adversary A′ in two parts (see also Figure 5.7):

A′
1 receives a classical public key pk and evaluation key evk from her challenger. She

runs TCL.KeyGen, using pk,evk instead of the output of HE.KeyGen. Note that
sk is not actually used during KeyGen: for the encryptions, the classical secret
key is not relevant. We can safely set it to a dummy string for now. A′

1 feeds the
generated evaluation key to A1, and sends the generated secret key (π,k,sk,pk)
to A′

2 via their side channel. A1 outputs a challenge plaintext.

A′
1 flips a bit r ∈R {0,1}. If r = 1, she swaps out the challenge plaintext for an all-

zero state (see Figure 5.6). The remaining state on the message wire is encrypted
using TCL.Enc, except that A′

1 does not run HE.Encpk herself. Instead, she
sends the one-time-pad keys x, z to her own challenger for encryption. That
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A′,HE

(λ), defined in terms of A. The first

part (A′
1) receives an evaluation key evk from HE.KeyGen(1λ) (not shown). The encryption

of the challenge plaintext in the X register is broken up into three parts: a quantum one-time

pad (“QOTP”, part of A′
1), a classical encryption by the challenger (Ξs

HE
= Ξcpa−mult,s

HE
, see

Game 5.2.8), and the part that applies the MAC to the classical encryptions and concatenates
it with the quantum state (“finish TCL.Enc”, part of A′

2). The adversary A′
2 outputs s = 1

whenever r ′ = r .
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challenger selects a secret bit s ∈ {0,1}, and either encrypts the actual values x, z
(if s = 1), or the all-zero message (if s = 0). A′

1 sends the plaintext keys x, z to
A′

2.

A′
2 receives the classically encrypted one-time-pad keys (or zeros) from the chal-

lenger, and uses them to finish the encryption of the challenge submitted by A1.
The result is passed on to A2, who produces an output ciphertext, circuit, and
log. A′

2 checks these using TCL∗.VerDec (or TCL′′.VerDec, which is identical).
Here, we note that this VerDec function does not use the classical secret key sk,
so it is fine that A′

2 does not actually know it.

A′
2 continues the verification game, applying the circuit to the swapped-out

register, and potentially deleting it, before swapping it back in if r = 1. The
result is sent to A3, who outputs a guess r ′. If the guess is correct (r ′ = r ), then
A′

2 outputs her own guess s′ := 1. If not, she outputs s′ := 0.

By the q-IND-CPA security of HE, we know that this newly defined adversary
cannot have a high success probability of guessing s′ correctly. That is,

Pr[PubKcpa−mult
A′,HE

(λ) = 1] É 1

2
+negl(λ). (5.38)

We analyze the probability Pr[PubKcpa−mult
A′,HE

(λ) = 1] by breaking it up into the two
possible values for s, which both occur with equal probability. If s = 1, the simulated
game is HybA,TCL′′ (λ). A′ will correctly output s′ = 1 if and only if A correctly guesses
the value r . On the other hand, if s = 0, the simulated game is HybA,TCL∗ (λ): in that
case, A′ will output the correct answer s′ = 0 if and only if A loses, i.e., incorrectly
guesses r .

Thus,

Pr[PubKcpa−mult
A′,HE

(λ) = 1] (5.39)

= Pr[s = 1] ·Pr[HybA,TCL′′ (λ) = 1]+Pr[s = 0] ·Pr[HybA,TCL∗ (λ) = 0] (5.40)

= 1

2
·Pr[HybA,TCL′′ (λ) = 1]+ 1

2

(
1−Pr[HybA,TCL∗ (λ) = 1]

)
. (5.41)

Combining the above derivation with Equation (5.38), the statement follows.
We briefly comment on the next step of this proof: removing the classical en-

cryptions inside KeyGen. It is similar to the proof above: one can define another
adversary for the q-IND-CPA indistinguishability experiment similarly to A′, except
that she submits her challenge plaintexts during KeyGen instead of during Enc. The
challenger then decides (based on the choice of s) whether to encrypt the classical
information in the evaluation key, or to replace it with zeros. During encryption, the
newly defined adversary will always encrypt zeros. With the same argument as above
(using q-IND-CPA security of HE), it can be argued that no adversary can perform
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significantly better when it is given “meaningful” encryptions in the evaluation key
than when it is given encryptions of zeros.

Proof of main theorem

Considering TCL∗ in more detail, we can see that it is actually very similar to TC. This
similarity allows us to prove the following lemma, which is the last ingredient for the
proof of verifiability of TCL.

Lemma 5.6.12. For any QPT A, Pr[HybA,TCL∗ (λ) = 1] É 1
2 +negl(λ).

Proof. To see the similarity with TC, consider the four algorithms of TCL∗.
In TCL∗.KeyGen, a permutation π is sampled, and magic states for P and H are

generated. For all generated quantum states, random keys for QOTPs are sampled,
and the states are encrypted using TC.Enc with these keys as secret keys. No classical
FHE is present anymore. Thus, TTP∗.KeyGen can be viewed as TC.KeyGen, followed
by TC.Enc on the magic states.

TCL∗.Enc is identical to TC.Enc, only the keys to the quantum one-time pad are
sampled on the fly and sent to TCL∗.VerDec via a classical side-channel, whereas
TC.VerDec receives them as part of the secret key. Since the keys are used exactly
once and not used anywhere else besides in Enc and VerDec, this difference does not
affect the outcome of the game.

TCL∗.Eval only needs to evaluate “simple” circuits consisting of CNOT, classically
controlled Paulis, computational-basis measurements and Hadamard-basis measure-
ments. For the execution of any other gate, it suffices to apply a “simple” circuit to the
encrypted data and encrypted magic states.

TCL∗.VerDec does two things: (1) it syntactically checks the provided computa-
tion log, and (2) it runs TC.VerDec to verify that the evaluation procedure correctly
applied the circuit of CNOTs and measurements.

An execution of HybA,TCL∗ (λ) for any A corresponds to the two-round VER in-
distinguishability game (see Definition 5.5.4) for TC as follows. Let A= (A1,A2,A3)
be a polynomial-time adversary for the game HybA,TCL∗ (λ). Define an additional
QPT A0 that produces magic states into the register X1. The above analysis shows
that the adversary A′ = (A0,A1,A2,A3) can be viewed as an adversary for the VER-2
indistinguishability game VerGame2

A′,TC(λ) and wins whenever HybA,TCL∗ (λ) = 1.
The other direction does not hold: A loses the hybrid indistinguishability game if
TCL∗.VerDec rejects check (1), but accepts check (2) (see above). In this case, A′
would still win the VER-2 indistinguishability game. Hence,

Pr[HybA,TCL∗ (λ) = 1] É Pr[VerGame2
A′,TC(λ) = 1]. (5.42)

Lemma 5.5.6 yields Pr[VerGame2
A′,TC(λ) = 1] É 1/2+negl(λ), and the result follows.

Now we finally have all the ingredients we need to prove our main theorem:
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Theorem 5.6.13. The vQHE scheme TCL satisfies SEM-VER.

Proof. From Lemmas 5.6.9 to 5.6.11, we can conclude that for any polynomial-time
quantum adversary A,

Pr[VerGameA,TCL(λ) = 1] − Pr[HybA,TCL∗ (λ) = 1] É negl(λ), (5.43)

since the sum of a constant number of negligible terms is itself negligible.
By Lemma 5.6.12, which reduces verifiability of TCL∗ to (two-round) verifiability

of TC, we have that Pr[HybA,TCL∗ (λ) = 1] É 1/2+negl(λ).
It follows that Pr[VerGameA,TCL(λ) = 1] É 1/2+negl(λ), i.e., that TCL is IND-VER.

By Lemma 5.4.8, TCL is also SEM-VER.

5.7 Conclusion

In this chapter, we laid the groundwork for (verifiable) quantum homomorphic en-
cryption by presenting schemes that can evaluate any (polynomial-size) Clifford cir-
cuit on an encrypted input quantum state. In the nonverifiable setting, we discussed
the existing scheme CL, and showed that it can be adapted to a circuit-private version
simply by having the evaluator apply an extra Pauli at the end of the computation.

For the verifiable setting, we set up a new framework by defining a semantic
version of secure verifiability (SEM-VER), in addition to a game-based one (IND-VER).
The two definitions are equivalent, but it is desirable to have them both. On the one
hand, the semantic definition better reflects the functionality that we are trying to
achieve, and allows replacing any secure vQHE scheme with the ideal functionality
when composing it with other functionalities. On the other hand, the game-based
definition is easier to deal with in reduction proofs, of which we have seen many in
this chapter.

We also discussed compactness in the verifiable setting: while compactness usu-
ally requires that the running time of the decryption function is independent of the
evaluated circuit, this requirement seems too harsh in a setting where the decryption
function is also supposed to verify the circuit: in particular, it should probably at least
be able to read out the circuit description. We solved this apparent contradiction by
allowing the decryption function to run a classical verification procedure that is al-
lowed to depend on the circuit size, but should not help in decrypting the output state.
It may be possible to further reduce the complexity of this verification function by
only checking a small number of random positions in the computation log, similarly
to a probabilistically checkable proof [AS98].

In this chapter we also presented a specific scheme, TCL, instantiating our vQHE
definition for Clifford circuits. It combines ideas from the nonverifiable scheme CL
with the trap code for authenticating quantum data. The security of TCL relies on the
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security of a building-block scheme, TC, which is information-theoretically secure
but not compact.

The obvious next step is to expand the schemes CL and TCL to be able to deal with
arbitrary efficient quantum circuits. Doing so will be the focus of the next chapter.
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6.1 Introduction

In Chapter 5, we saw how to encrypt quantum states in such a way that Clifford
operations can be performed homomorphically on the ciphertexts, both without and
with verification. The obvious open question is whether it is possible to construct
quantum fully homomorphic encryption, that allows the evaluation (and verification)
of an arbitrary polynomial-size quantum circuit. This question boils down to defining
an evaluation procedure for the non-Clifford gate T. If, in the spirit of the Clifford
scheme CL (described in Section 5.3), the evaluator simply applies the gate T to the
input ciphertext, the result is

TXaZb ∣∣ψ〉=PaXaZbT
∣∣ψ〉

. (6.1)

Although this state contains the desired logical state T
∣∣ψ〉

, it is not a quantum-one-
time-pad encryption of it: depending on the value of the encryption key a, the output
state may contain an unwanted phase P. This unwanted phase is notoriously hard to
get rid of: the evaluator does not (and should not!) know the value a, but rather only
holds an encryption ã, which it produced using classical FHE. Therefore, she cannot
remove the Pa . However, she also cannot continue with the computation (not even
to evaluate Clifford circuits) until the possible phase is removed, because it does not
commute nicely with most gates.

Broadbent and Jeffery [BJ15] proposed two different approaches for extending
the Clifford scheme CL, accomplishing homomorphic encryption for circuits with a
limited number of T gates. These two schemes use different methods to remove the
conditional phase Pa , which we briefly discuss here.

In the schemeEPR, some entanglement is accumulated in a special register during
every evaluation of a T gate, and stored there until it can be resolved in the decryption
phase. Essentially, the decrypting party can removePa “after the fact” by manipulating
the entangled states. Because the decryption procedure handles the corrections, the
scheme is not compact: the complexity of decryption scales quadratically with the
number of T gates in the evaluated circuit.

The scheme AUX also extends CL, but handles T gates in a different manner.
The evaluator is supplied with auxiliary quantum states, stored in the evaluation key.
These states allow him to evaluate T gates and immediately remove any phase error
that may have occurred. In this way, the decryption procedure remains very efficient,
and the scheme is compact. Unfortunately, the required auxiliary states grow doubly
exponentially in size with respect to the T depth of the circuit, rendering AUX useful
only for circuits with constant T depth.

6.1.1 Contributions

We show how to extend CL (and later TCL) so that it allows evaluation of a polynomial
number of T gates. In both schemes presented in this chapter, the client constructs
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input-independent quantum states, which we call gadgets. The gadgets are stored in
the evaluation key, and aid in the evaluation of a T gate. The complexity of the key
generation scales with the circuit size, but the decryption function is independent of
it: thus, the schemes are compact. For an overview of the homomorphic-encryption
schemes discussed in this dissertation, see Figure A on page 289.

T-gate gadget (Section 6.2). Every T gate requires exactly one evaluation gadget to
correct the potential phase error Pa . The size of a gadget depends only on (a certain
form of) the space complexity of the decryption function of the underlying classical
FHE scheme. This relation turns out to be very convenient, as classical FHE schemes
are often optimized with respect to the complexity of the decryption operation (in
order to make them bootstrappable).

The quantum part of the gadget consists of EPR pairs, which are prepared in a way
that depends on the secret key of the classical FHE scheme. The evaluator can teleport
the encrypted qubit “through the gadget” [GC99; BFK09; BJ15; BY20] in a way that
depends on ã, in order to remove the unwanted phase. Some classical information is
provided with the gadget that allows the evaluator to homomorphically update the
encryption keys after the teleportation steps.

On a high level, the use of an evaluation gadget corresponds to an instantaneous
nonlocal quantum computation1 where one party holds the secret key of the classical
FHE scheme, and the other party holds the input qubit and a classical encryption of
the key to the quantum one-time pad. Together, this information determines whether
an inverse phase gate P† needs to be performed on the qubit or not. Speelman [Spe16]
shows how to perform such computations with a bounded amount of entanglement.
Speelman’s techniques are crucial to our construction and are the reason why the
garden-hose complexity [BFSS13] of the decryption procedure of the classical FHE is
related to the size of our gadgets.

Quantum fully homomorphic encryption (Section 6.3). We define the first quan-
tum fully-homomorphic-encryption scheme, which we call TP (for teleportation).
The scheme is secure against chosen-plaintext attacks by quantum adversaries (q-
IND-CPA). Furthermore, TP does not depend on a specific classical FHE scheme,
hence any advances in classical FHE can directly improve our scheme. Our require-
ments for the classical FHE scheme are quite modest: we only require the classical
scheme to have a space-efficient decryption procedure and to be secure against quan-
tum adversaries. In particular, no circular-security assumption is required. Since we
supply at most a polynomial number of evaluation gadgets, our scheme TP is leveled
homomorphic by construction, and we can simply switch to a new classical key after
every evaluation gadget. In fact, the Clifford gates in the quantum evaluation circuit

1This term is not related to the term “instantaneous quantum computation” [SB08], but refers to a
specific form of nonlocal quantum computation where all parties have to act simultaneously.
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only require additive operations from the classical homomorphic scheme, while each
T gate needs a fixed (polynomial) number of multiplications. Hence, we do not actu-
ally require fully homomorphic classical encryption, but leveled fully homomorphic
schemes suffice.

Our scheme TP is related to AUX in that extra resources for removing errors are
stored in the evaluation key. In sharp contrast to AUX, the size of the evaluation key
in TP only grows linearly in the number of T gates in the circuit (and polynomially in
the security parameter), allowing our scheme to be leveled fully homomorphic. Any
circuit containing polynomially many T gates can be efficiently evaluated.

Subsequently to the results presented in this chapter, schemes have been designed
for quantum fully homomorphic encryption that are less demanding for the client.
We discuss these follow-up works in Section 6.7.1.

Quantum fully homomorphic encryption with verification (Section 6.4). We con-
struct another scheme, called TTP, which extends the verifiable scheme TCL to a
quantum fully-homomorphic-encryption scheme with verification (vQFHE). The
server can certify the correct usage of the gadgets through its classical computation
log. Just like TCL, the verification of this computation log is completely classical.
Circuits with a classical output can be verified completely classically.

The scheme TTP admits verified evaluation of arbitrary polynomial-size quantum
circuits. The scheme combines techniques and ideas from CL, TCL, and TTP. The
main technical ingredients are (1) classical FHE with decryption in LOGSPACE [BV14],
(2) the trap code for computing on authenticated quantum data, and (iii.) the T-gate
gadgets that were originally designed for TP.

Applying a T gate in TTP requires an encoded magic state (just like P and H did in
TCL), plus an encoded gadget to correct a potential phase error P. The key generator
supplies both of these resources via the evaluation key.

Application: quantum one-time programs (Section 6.5). A one-time program (or
OTP) is a device which implements a circuit, but self-destructs after the first use. OTPs
are impossible without hardware assumptions, even with quantum states, but OTPs
that implement quantum circuits (qOTP) can be built from classical OTPs (cOTPs)
based on hardware assumptions [BGS13]. As a first application of verifiable QFHE,
we give another simple construction of qOTPs. Our construction is weaker, since
it requires a computational assumption. On the other hand, it is conceptually very
simple and serves to demonstrates the power of verification. In our construction, the
qOTP for a quantum circuit c is simply a (vQFHE) encryption of c together with a
cOTP for verifying the universal circuit. To use the resulting qOTP, the user attaches
their desired input, homomorphically evaluates the universal circuit, and then plugs
their computation log into the cOTP to retrieve the final decryption keys.
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Practical considerations (Section 6.6). As a concrete example, we instantiate our
scheme with the classical FHE scheme by Brakerski and Vaikuntanathan [BV14],
which has decryption in NC1 ⊆ LOGSPACE, and is believed to be quantum secure.
This results in gadgets that consist of a number of qubits which is polynomial in the
security parameter, for a polynomial that is potentially smaller than the polynomial
given by our generic construction.

Furthermore, we describe how the key generator for TP can generate the T-
gate gadgets using a limited set of available quantum operations, provided it has an
(untrusted) source or EPR pairs.

6.2 The T-gate gadget

Recall that when a T gate is applied to a state XaZb
∣∣ψ〉

, an unwanted phase error may
occur, since TXaZb =PaXaZbT. The evaluating party only knows the encrypted value
ã, not a itself, and therefore is not easily able to remove the error Pa before continuing
the computation. In this section, we show how the client (generating the key) can
create a gadget state Γ(sk) that depends on the secret key sk, but not on a. During the
computation, the evaluator can use the quantum state Γ(sk) in a way dictated by ã to
get rid of the phase error.

The construction of our T-gate gadget depends on results in the garden-hose
model and instantaneous nonlocal quantum computation, which we explain in Sec-
tions 6.2.1 and 6.2.2. In Section 6.2.3, we specify the structure of the gadget. After
usage, the error Pa is removed, but the one-time pad may have changed. In Sec-
tion 6.2.4, we discuss how the evaluator can update the key homomorphically.

6.2.1 Garden-hose complexity

The garden-hose model is a model of communication complexity introduced by
Buhrman, Fehr, Schaffner and Speelman to study position-based quantum cryp-
tography [BFSS13]. In brief, the garden-hose model involves two parties: Alice, with
input x, and Bob, with input y . Alice and Bob want to jointly compute a function
f (x, y) without communicating. They do share a number of one-to-one pipes be-
tween them, which they are allowed to connect on their respective sides. Alice also
has a water tap, which she connects to one of the pipes. The way that Alice and Bob
connect their pipes may depend on their local inputs x and y . Whenever f (x, y) = 0,
the water should exit at an open pipe on Alice’s side, and whenever f (x, y) = 1, the
water should exit on Bob’s side. For an example of a garden-hose computation for the
XOR function, see Figure 6.1.

The garden-hose complexity G H( f ) of a function f is the minimal number of
shared pipes needed for Alice and Bob to correctly compute the function for all inputs
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in Alice

Bob

x = 0, y = 0

in Alice

Bob

x = 0, y = 1

in Alice

Bob

x = 1, y = 0

in Alice

Bob

x = 1, y = 1

Figure 6.1: The garden-hose protocol for the function f (x, y) = x⊕y , for all four possible inputs
(x, y) ∈ {0,1}2. The snaky lines represent the pipes, and the smooth curved lines represent the
connections that Alice (top) and Bob (bottom) make between their pipes. The node marked
“in” is Alice’s tap, which she always connects to one of the pipes. Note that Alice’s strategy does
not depend on y , and Bob’s strategy does not depend on x. The water ends up on Alice’s side
whenever x ⊕ y = 0. The depicted protocol demonstrates that G H(⊕) É 3.
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x and y . For some specific functions, such as equality, majority, parity, and bitwise in-
ner product, concrete garden-hose computation protocols are known [Spe11; BFSS13;
CSWX14; Mar14; KP14], giving an upper bound on their garden-hose complexity. The
following theorem provides us with a general way of transforming space-efficient
algorithms into garden-hose protocols:

Theorem 6.2.1 ([BFSS13, Theorem 2.12]). If f : {0,1}n × {0,1}n → {0,1} is LOGSPACE
computable, then GH( f ) is polynomial in n.

Since the garden-hose complexity is defined in a nonuniform way, the strategies
of the players are not necessarily easily computable. However, by inspection of the
original proof of Theorem 6.2.1, we see that the players effectively have to list all
configurations for the Turing machine for f , and connect them according to the
machine’s transition function. For a LOGSPACE function on a fixed input size, a
player therefore only has to perform a polynomial-time computation to determine
the strategy for a specific input.

6.2.2 Instantaneous nonlocal quantum computation

Speelman combined the garden-hose model with techniques from secure delegated
computation [Bro16] to construct a new protocol for instantaneous nonlocal quantum
computation [Spe16]. Here, Alice and Bob want to perform a unitary operation on
a joint quantum state, using only pre-shared entanglement and a single round of
classical communication. This new protocol breaks a wider class of schemes for
position-based quantum cryptography, but one of its subprotocols also serves as a
building block for the T-gate gadgets described in this chapter.

In the subtask, Alice and Bob want to apply the Clifford gate P† to a state held by
Alice, conditioned on the value of f (x, y). Speelman showed that this is possible (up
to a Pauli error) using a number of EPR pairs that is proportional to the garden-hose
complexity of f :

Lemma 6.2.2 ([Spe16, Lemma 3, part 1]). Assume Alice has a single qubit with state
P f (x,y)

∣∣ψ〉
, for binary strings x, y ∈ {0,1}n , where Alice knows x and Bob knows y. Then

there exists an instantaneous protocol without any communication which uses 2GH( f )
pre-shared EPR pairs after which a known qubit of Alice is in the state Xg (x̂,ŷ)Yh(x̂,ŷ)

∣∣ψ〉
.

Here x̂ depends only on x and the measurement outcomes of Alice, and ŷ depends on y
and the measurement outcomes of Bob.

We explain the intuition behind the construction in Lemma 6.2.2: Alice and Bob
essentially execute the garden-hose protocol for f , but with two extra ingredients.

The first ingredient is a close correspondence between garden-hose protocols
(when Alice and Bob share pipes) and teleporting qubits back and forth (when they
share EPR pairs). The pipes correspond to EPR pairs, and the connections to Bell mea-
surements [BFSS13]. Say that Bob’s garden-hose protocol instructs him to connect
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Alice

Bob

s t ⇒
Alice

Bob

s t

m ∈ {0,1}2

Figure 6.2: An entanglement-swapping measurement. The two snaky lines on the left-hand

side now represent EPR pairs s and t , which are in the joint state
∣∣Φ+〉⊗2. Bob measures one

qubit of s and one qubit of t in the Bell basis, obtaining measurement a two-bit measurement
outcome m. He discards the measured qubits (depicted in gray on the right-hand side). The
two remaining qubits on Alice’s side are in the state Xm[1]Zm[2]

∣∣Φ+〉
.

pipes s and t . Instead, he measures his halves of the EPR pairs s and t in the Bell basis.
As a result, Alice’s two halves of the pairs s and t are now fully entangled: Bob has
effectively teleported his half of the pair s to Alice, through the pair t . This teleporta-
tion, sometimes called entanglement swapping, is analogous to Bob connecting the
pipes s and t , which essentially creates a direct water connection between Alice’s two
ends of those pipes. See Figure 6.2. Which of the four Bell states is formed, depends
on the two-bit outcome of Bob’s measurement, describing the X and Z teleportation
corrections.

Alice and Bob can execute a full garden-hose protocol by measuring pairs of EPR
halves at all locations where they have connected pipes. The input qubit P f (x,y)

∣∣ψ〉
plays the role of Alice’s tap: she teleports it through the EPR half corresponding to
the pipe that should be connected to the tap. As a result, the qubit ends up at one of
the unmeasured locations on Alice’s side (if f (x, y) = 0) or Bob’s side (if f (x, y) = 1).
Bob applies an inverse phase gate P† to all of his unmeasured locations, so that the
qubit is in the state

∣∣ψ〉
(up to a Pauli error), regardless of whose side it ends up in.

The uncorrected Pauli on the qubit is a function of all the teleportation measurement
results, and depends on the commutation relation between P and the Pauli group.
The problem is, of course, that Alice and Bob do not know who holds the qubit, and at
which location.

The second ingredient is a trick inspired by results on the garden-hose model
by Klauck and Podder [KP14]. The trick ensures that the qubit ends up at a known
location on Alice’s side, at the cost of needing 2GH( f ) EPR pairs rather than GH( f ).
Using the second set of GH( f ) EPR pairs (or pipes), Alice and Bob run the reverse of
the garden-hose protocol (see Figure 6.3): every EPR half on which no measurement is
performed is connected through measurement with the EPR half at the same position
in a second copy of the protocol. Only the EPR pair that Alice is supposed to connect
to the tap remains unmeasured: this is where the qubit ends up, after following its
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in
out

P†

1 2 3 3’ 2’ 1’

Alice

Bob

Figure 6.3: Two copies of the garden-hose protocol for the XOR function with inputs x = y = 0.
The tap for the forward protocol is labeled “in”, and the qubit that should be connected to
a tap for the backward protocol (displayed in mirror here) is labeled “out”. The dotted lines
represent the Bell measurements that connect the two protocols: all unmeasured EPR pairs i
in the forward protocol are connected to the corresponding pair i ′ in the backward protocol
via Bell measurement. Additionally, Bob adds a correction P† on the unmeasured qubits in
the forward protocol before measuring. In this case, since x ⊕ y = 0, the qubit does not pass
through the P† gate.

path through the garden-hose protocol, a possible P correction, and the same path
backwards. The output qubit is in the state Xg (x̂,ŷ)Yh(x̂,ŷ)

∣∣ψ〉
, where the Pauli error

Xg (x̂,ŷ)Yh(x̂,ŷ) now also depends on the outcomes of the measurements on the second
set of EPR pairs.

6.2.3 Gadget construction

We are ready to specify the structure of the gadget for the T gate. In the language of
Sections 6.2.1 and 6.2.2, Bob corresponds to the party that creates the gadget, so he
has knowledge of the secret key sk. Alice corresponds to the party using the gadget, so
she has access to ã and a state Pa

∣∣ψ〉
, where HE.Decsk(ã) = a. Note that for simplicity

of notation, we have absorbed the Pauli XaZb into the state
∣∣ψ〉

.
The function f that Alice and Bob will execute together is HE.Dec: they each know

part of the input (sk, ã), and Lemma 6.2.2 guarantees the existence of an instantaneous
protocol so that at the end of the protocol, Alice holds the state Xa′

Zb′ ∣∣ψ〉
, where a′

and b′ are functions of sk, ã, and Alice and Bob’s measurement outcomes.
A crucial observation is that since the protocol is instantaneous (i.e., there is no

communication between Alice and Bob during the protocol), the order of the actions
does not matter: Bob can perform his part of the protocol (Bell measurements and
application of P† gates) before Alice even starts her first measurement. Using this ob-
servation, Bob (the key generator) can generate a gadget state as follows: he prepares
2GH(HE.Dec) EPR pairs, and executes his part of the instantaneous-computation
protocol on the halves of each pair. Note that all halves on Bob’s side are measured.
The remaining halves, which correspond to Alice’s side of the protocol, constitute
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P†

sk = 0:

P†

sk = 1:

Figure 6.4: The two possible gadgets for a decryption function Dec(sk,c) := sk⊕c . (For more re-
alistic decryption functions, there will be more than two possible keys, and therefore more than
two possible gadget structures.) Depending on the value of sk, the key generator measures ac-
cording to Bob’s garden-hose protocol for y = 0 (top) or y = 1 (bottom) in Figure 6.1. The snaky
lines represent random Bell pairs (the type of Bell pairs is determined by Bob’s measurement out-
comes). In this example, g (0) = ({(1,3), (2,5), (4,6)},010,0), and g (1) = ({(1,6), (2,3), (4,5)},100,1).
The top case (sk = 0) corresponds to Bob’s measurements in Figure 6.3.

the gadget state. See Figure 6.4. During the computation, Alice (the evaluator) can
execute her half of the protocol to remove the phase gate from a qubit she holds.

More specifically, let m = GH(HE.Dec), i.e., 2m is the number of EPR pairs re-
quired for the instantaneous protocol. Let {(s1, t1), (s2, t2), . . . , (sm , tm)} be the set of
disjoint pairs in [2m] that specify which connecting measurements Bob should make
according to his part of the protocol. Let p ∈ {0,1}m be a string that specifies which of
the first m pairs (i.e., the pairs involved in the “forward” garden-hose protocol) should
receive a P† correction. Then, we can define

g (sk) := (
{(s1, t1), (s2, t2), . . . , (sm , tm)}, p,sk

)
(6.2)

to be the tuple consisting of the connection instructions, phase-gate positions, and
secret key. The tuple g (sk) is the classical information that determines the structure
of the gadget, as a function of the secret key sk. The length of g (sk) is not dependent
on the value of the secret key, but only on the garden-hose complexity of HE.Dec and
the security parameter λ.

After Bob (the key generator) prepares and measures the EPR pairs according to
the information in g (sk), the resulting quantum state is of the form

γx,z
(
g (sk)

)= (
XxZz

(
P†

)p ⊗ I⊗m
)(⊗

i

∣∣Φ+〉〈
Φ+∣∣

si ti

)(
PpZzXx ⊗ I⊗m)

, (6.3)

where the single-qubit gates are applied to the si qubits, i.e., the first qubit of each
entangled pair. The values x, z ∈ {0,1}m depend on the measurement outcomes of
Bob, and are uniformly random.
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This quantum state is a collection of maximally entangled pairs, some with an
extra inverse phase gate applied. No matter the choice of gadget structure, averaging
over all possible x, z gives the completely mixed state on 2m qubits:

1

22m

∑
x,z∈{0,1}m

γx,z
(
g (sk)

)= I22m

22m . (6.4)

This property will be important in the security proof: intuitively, it shows that these
gadgets do not reveal any information about sk whenever x and z are not revealed to
Alice.

The entire gadget is given by the state γx,z
(
g (sk)

)
, plus the classical information x,

z, and g (sk). All classical information is homomorphically encrypted under a public
key pk′:

Γpk′ (sk) :=
∣∣∣HE.Encpk′

(
g (sk)

)〉〈
HE.Encpk′

(
g (sk)

)∣∣∣⊗
1

22m

∑
x,z∈{0,1}m

∣∣∣HE.Encpk′ (x, z)
〉〈

HE.Encpk′ (x, z)
∣∣∣⊗γx,z

(
g (sk)

)
. (6.5)

Since the gadget depends on the secret key sk, simply encrypting this information
using the public key pk corresponding to sk would not be secure, unless we assume
that HE.Dec is circularly secure. In order to avoid the requirement of circular security,
we will always use a fresh, independent key pk′ to encrypt this information. The
evaluator will have to do some recrypting before he is able to use this information, but
otherwise using independent keys does not complicate the construction much. More
details on how the evaluation procedure deals with the different keys are provided in
Protocol 6.3.2.

The size of the quantum sate γx,z
(
g (sk)

)
depends on the garden-hose complexity

of the classical decryption function HE.Dec. If it is in LOGSPACE (as most are), then
Theorem 6.2.1 states that the size of the state is polynomial:

Lemma 6.2.3. If HE.Dec is computable by a Turing machine that uses space O(logλ),
where λ is the security parameter, then the number of qubits in γx,z

(
g (sk)

)
is polyno-

mial in λ.

When Alice (the evaluator) is ready to use the gadget, she uses the value ã to
compute her garden-hose strategy, a list of m disjoint measurement pairs of elements
in {0,1,2, . . . ,2m}. The labels 1 through 2m refer to the qubits that make up the gadget
(the “pipes”), and 0 is the label of the input qubit with the possible phase error. All but
a single qubit will be measured: the remaining qubit will be the corrected qubit in the
state Xa′

Zb′ ∣∣ψ〉
. We will call the (classical) function that computes the list of Alice’s

Bell measurements TP.GenMeasurement(ã).
Intuitively, after the evaluator has performed the measurements, the “path” the

qubit has taken through the gadget state includes one of the pairs with an inverse
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phase gate whenever HE.Decsk(ã) = 1, and avoids all such pairs when HE.Decsk(ã) =
0.

6.2.4 Key update

After using the gadget, the evaluator has the following classical information: en-
crypted initial one-time pad keys (ã, b̃), the encrypted gadget structure �g (sk), the key
generator’s encrypted measurement outcomes (x̃, z̃), a list of Bell measurements from
TP.GenMeasurement(ã), and a list of outcomes of these m measurements, which
we call c,d ∈ {0,1}m . We sketch how the evaluator can homomorphically compute
encryptions of the new keys a′ and b′. Using those ciphertexts, the evaluator can
continue the homomorphic quantum computation.

The first step is to encrypt the Bell measurements and their outcomes, so that all
classical information is encrypted. For now, we will ignore the fact that different pieces
of information may be encrypted under different public keys: later (Equation (6.10)),
we will see that the evaluator is able to “recrypt” some pieces of information so
that everything is encrypted under the same key. Once we are in that situation, the
evaluator can homomorphically compute the update function, which we describe
now.

The update function tracks the path of the qubit through the gadget, resolving
the teleportations that involve the qubit one by one. Even though the measurements
were not performed in this order, we can consider them to be for the sake of the
teleportation corrections.

Let a,b be variables that hold the current key to the one-time pad at every step
of the algorithm: they are initialized as a ← a and b ← b. Let q ∈ {0,1} be the variable
that stores whether or not the qubit currently has an extra phase gate, initialized as
q ← a. Let r ∈ {0,1,2, . . . ,2m} be the variable that contains the current location of the
qubit, initialized as r ← 0. That is, we view the current state as being PqXaZb

∣∣ψ〉
at

location r. These values are updated step by step.
In every odd step, we find the pair in TP.GenMeasurement(ã) of the form (r, s) or

(s,r) for some other location s. If this is the i th pair, the measurement outcome is
given by c[i ] and d [i ]. This teleportation step changes the current state to

Xc[i ]Zd [i ]PqXaZb ∣∣ψ〉=PqXa⊕c[i ]Zb⊕d [i ]⊕q·c[i ] ∣∣ψ〉
, (6.6)

so we update the values as a ← a⊕c[i ], b ← b⊕d [i ]⊕q·c[i ], and r ← s. Note that the key
update contains a multiplication here, which has to be performed homomorphically.

In every even step, we do the same thing, except that we look for the pair (r, s)
or (s,r) in the list in g (sk), and for the measurement outcome in the strings x, z.
Additionally, we check whether an inverse phase gate was applied in the string p. The
quantum state after the teleportation step equals

Xx[ j ]Zz[ j ](P†)p[ j ]PqXaZb ∣∣ψ〉=Xx[ j ]Zz[ j ]Pp[ j ]PqXaZb+p[ j ] ∣∣ψ〉
(6.7)



204 Chapter 6. Quantum homomorphic encryption for general circuits

=Pp[ j ]+q (mod 2)Xa+x[ j ]Zb+z[ j ]+p[ j ]·(1+q)+x[ j ]·(p[ j ]+q) ∣∣ψ〉
. (6.8)

For rewriting, we used the fact that P2 = Z and that P† = PZ, together with the
commutation relations ZP = PZ and XP = PXZ. We therefore update q ← p[ j ]+q
(mod 2), a ← a+x[ j ], b ← b+ z[ j ]+p[ j ] · (1+q[ j ])+x[ j ] · (p[ j ]+q[ j ]), and r ← s.

The path of the qubit is traced through a total of 2m steps. The final one-time-pad
keys a′ and b′ equal the value of a and b after the last step.

6.3 TP: a fully homomorphic scheme

Our scheme TP (for teleportation) is an extension of the scheme CL (see Section 5.3):
the quantum state is encrypted using a quantum one-time pad, and Clifford gates
are evaluated simply by performing the gate on the encrypted state and then ho-
momorphically updating the encrypted keys to the pad. Our new scheme TP, like
AUX, includes additional resource states (the T-gate gadgets from Section 6.2) in
the evaluation key. These gadgets can be used to immediately correct any P errors
that might be present after the application of a T gate. The size of the evaluation key
thus grows linearly with the upper bound t on the number of T gates in the circuit:
for every T gate, the evaluation key contains one gadget, along with some classical
information on how to use that gadget.

Key generation

The gadgets are generated during the key generation phase. Because the gadget
structure depends on the secret key, we encrypt the classical information describing
each gadget under a fresh public key. Using the classical HE.KeyGen as a subroutine
to create multiple classical homomorphic key sets, we generate a classical secret and
public key, and a classical-quantum evaluation key that contains t gadgets, allowing
evaluation of a circuit containing up to t T gates. Every gadget depends on a different
secret key, and its classical information is always encrypted using the next public key.

The key-generation procedure gets an extra parameter, t , which describes the
number of T-gate gadgets it should produce. Since t gives an upper bound on the
number of T gates that can be evaluated, the resulting scheme TP is leveled.

Protocol 6.3.1 (TP.KeyGen(1λ,1t )). Given inputs 1λ (for a security parameter λ)
and 1t (for an upper bound on the number of T gates t ), do the following:

1. For i = 0 to t , execute (pki ,ski ,evki ) ← HE.KeyGen(1λ) to obtain t + 1
independent classical homomorphic key sets.

2. Set the public key to be the tuple (pki )t
i=0.
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3. Set the secret key to be skt .

4. For i = 1 to t : create the gadget Γpki
(ski−1) as described in Section 6.2.3.

5. Set the evaluation key to be the set of all gadgets created in the previ-
ous step (including their encrypted classical information), plus the tuple
(evki )t

i=0. The resulting evaluation key is the quantum state

t⊗
i=1
Γpki

(ski−1)⊗
t⊗

i=0
|evki 〉〈evki | . (6.9)

To deal with multiple classical key sets (pki ,ski ,evki ), we use the notation x̃[i ] to make
it clear under which key the value x is encrypted. It is important to note that (e.g.)
pki does not refer to the i th bit of the public key, but to the i th public key: in case we
want to refer to the i th bit of some string s, we use the notation s[i ].

When working with multiple key sets, it will often be necessary to transform an
already encrypted message x̃[i ] into an encryption x̃[ j ] using a different key set j 6= i .
We define the completely classical procedure HE.Reci→ j that can always be used for

this recryption task as long as we have access to an encrypted version s̃ki
[ j ]

of the old
secret key ski . Effectively, HE.Reci→ j homomorphically evaluates the decryption of
x̃[i ]:

HE.Reci→ j (x̃[i ]) :=HE.EvalHE.Dec
evk j

(
s̃ki

[ j ]
,HE.Encpk j

(x̃[i ])
)
. (6.10)

Encryption

The encryption procedure TP.Enc is identical to CL.Enc (see Protocol 5.3.1), using
the first public key pk0 for the encryption of the one-time-pad keys. We restate it here
for completeness.

Every input qubit is encrypted separately with a quantum one-time pad, and the
pad key is (classically) encrypted and appended to the quantum encryption:

ρ 7→ 1

4

∑
a,b∈{0,1}

XaZbρZbXa ⊗ ∣∣HE.Encpk0
(a,b)

〉〈
HE.Encpk0

(a,b)
∣∣ . (6.11)

Evaluation

Like CL, evaluation proceeds gate-by-gate. For measurements and Clifford gates,
the evaluation procedure is identical to CL.Eval described in Protocol 5.3.1. At any
point during the computation, the evaluator knows under which public key pki
the classical information about the one-time pad is encrypted (initially, i = 0). She
updates the keys homomorphically under pki . After a Clifford-gate evaluation, the
classical information is encrypted under the same public key pki .
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Before the evaluation of the i th T gate, the classical information is encrypted
under pki−1. During the evaluation, the gadget Γpki

(ski−1) is consumed. Afterwards,
all classical information is encrypted under the next public key pki .

Protocol 6.3.2 (TP.EvalT). This protocol describes the execution of the i th T
gate. Given a qubit XaZbρZbXa , encrypted keys ã[i−1], b̃[i−1], and a gadget
Γpki

(ski−1), do the following:

1. Apply T to the qubit to obtain the state PaXaZbTρT†ZbXa
(
P †

)a
.

2. Run M ←TP.GenMeasurement(ã[i−1]) to obtain a list M of measurement
instructions for the garden-hose gadget (see Section 6.2.3). Perform the
Bell measurements, yielding outcomes c,d ∈ {0,1}m (where m is the num-
ber of measurements).

3. Compute the encryptions c̃ [i ], d̃ [i ] ←HE.Encpki
(c,d).

4. Recrypt the one-time-pad keys a and b into ã[i ], b̃[i ], using the ciphertext�ski−1
[i ]

contained in Γpki
(ski−1).

5. Using classical information encrypted under pki , homomorphically com-

pute the updated keys ã′[i ]
, b̃′[i ]

, as described in Section 6.2.4.

At the end of the evaluation of some circuit c containing i É t T gates, the evaluator
holds a one-time-pad encryption of Φc

(
ρ
)
, together with the keys to the pad, clas-

sically encrypted under the i th key. The last step is to recrypt (in t − i steps) this
classical information into the t th (final) key.

Decryption

The decryption procedure is identical to CL.Dec. For each qubit, HE.Decskt is run
twice in order to retrieve the keys to the quantum pad. The correct Pauli operator
can then be applied to the quantum state (or only the X correction for measurement
outcomes) in order to obtain the desired output stateΦc

(
ρ
)
.

6.3.1 Correctness and compactness

Correctness of the scheme TP follows from correctness of the evaluation procedures
for the individual gates are. For Clifford gates and measurements, the argument is the
same as for the scheme CL. For the T gate, correctness relies on the correctness of the
garden-hose protocol underlying the T-gate gadget. If the garden-hose protocol is
correct, the phase error is always correctly removed, as argued in Section 6.2.
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Furthermore, since the decryption procedure is fairly straightforward, we can
show that TP is compact:

Lemma 6.3.3. If HE is compact, then TP is compact.

Proof. By compactness of HE, there exists a polynomial p(λ) such that for any func-
tion f , the complexity of applying HE.Dec to the output of HE.Eval f is at most p(λ).
Since the keys to the quantum one-time pad of any wire are two single bits (a,b)
encrypted with the classical HE scheme, decrypting the keys for one wire requires
at most 2p(λ) steps. Obtaining the qubit then takes at most two steps more for
(conditionally) applying Xa and Zb . The classical and quantum decryption are re-
peated individually for every wire. The total number of steps is polynomial in λ and
independent of the quantum circuit c, so we conclude that TP is compact.

Although TP is compact in the sense of Definition 5.2.4, there is an important
footnote to place here: in a delegated-computation setting, the amount of work that
the client has to do is still dependent on the size of the circuit, because the client has
to create (quantum) gadgets of significant size for every T gate. However, TP still has
two main advantages over the trivial noncompact scheme (where the client performs
all the computation during decryption).

First, the creation of the T-gate gadgets does not require a universal quantum
computer. In particular, the client does not need the ability to perform T gates. In
Section 6.6.2, we discuss the client’s resources in more detail.

Second, moving the computational burden from decryption to key generation
makes it independent of the input data. Keeping the decryption simple gives it more
potential to be used in applications such as obfuscation [BR14]. In fact, in Chapter 7,
the simplicity of decryption will be crucial to constructing a circuit that cannot be
obfuscated.

6.3.2 Security

In this section, we show that TP is q-IND-CPA secure, i.e., no polynomial-time quan-
tum adversary can tell the difference between an encryption of a real message and
an encryption of |0〉〈0|, except with probability negligible in the security parameter
(see Definition 5.2.9). Similarly to the proof sketch in Section 5.3 and the proof of
Lemma 5.6.11, we use a reduction argument to relate the probability of distinguishing
between two encryptions to the probability of distinguishing two classical encryptions
under the scheme HE, which is known to be small.

The reduction argument, repeated t times, allows us to replace gadget states
(containing sensitive information about the secret key) with fully mixed states, one by
one. Doing so upper bounds the security error for TP by the error of that scheme with
a fully mixed evaluation key: essentially, we will have arrived at the Clifford scheme
CL, which is already known to be q-IND-CPA secure whenever HE is.
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We start by defining a sequence of variations on the TP scheme. For ` ∈ {0, . . . , t },
let TP(`) be identical to TP, except for the key-generation procedure: TP(`).KeyGen
replaces, for every i > `, all classical information accompanying the i th gadget with
the all-zero string before encrypting it.

Write gi := g (ski−1) for the classical information accompanying the i th gadget.
Then TP(`).KeyGen(1λ,1t ) outputs

t⊗
i=0

|evki 〉〈evki |⊗
⊗̀
i=1
Γpki

(ski−1)⊗
t⊗

i=`+1

(∣∣HE.Encpki
(0|gi |)

〉〈
HE.Encpki

(0|gi |)
∣∣⊗

1

22m

∑
xi ,zi∈{0,1}m

∣∣HE.Encpki
(0m ,0m)

〉〈
HE.Encpki

(0m ,0m)
∣∣⊗γxi ,zi (gi )

)
. (6.12)

As noted in Section 6.2.3, the length of the classical information gi does not depend
on ski−1 itself, so a potential adversary cannot gain any information about ski−1 just
from this encrypted string.

Intuitively, one can view TP(`) as the scheme that provides only ` usable gadgets
in the evaluation key. Note that TP(t ) =TP. In TP(0), only the classical evaluation keys
remain, together with encryptions of zeros and the completely mixed state instead of
γxi ,zi (gi ) (cf. Equation (6.4)).

As a step towards the security of TP, we show that in the quantum CPA indis-
tinguishability experiment, any efficient adversary interacting with TP(`) only has
negligible advantage with respect to the same experiment interacting with TP(`−1).
That is, the encrypted classical information g`, x`, z` does not give a significant ad-
vantage.

Lemma 6.3.4. If HE is q-IND-CPA secure, then for any quantum polynomial-time
adversary A= (A1,A2), there exists a negligible function negl such that for all 1 É `É t ,

Pr[PubKcpa

A,TP(`) (λ) = 1]−Pr[PubKcpa

A,TP(`−1) (λ) = 1] É negl(λ).

Proof. The difference between schemes TP(`) and TP(`−1) lies in whether the gadget
state γx`,z` (g`) is supplemented with its classical information g̃`, x̃`, z̃`, or just with
an encryption of 0|g`|+2m .

Let A= (A1,A2) be an adversary for the game PubKcpa

A,TP(`) (λ) for any ` (note that

the input/output structure is the same for all games). We will define an adversary

A′ = (A′
1,A′

2) for PubKcpa−mult
A′,HE

(λ) that, for a random choice of `, either simulates the

game PubKcpa

A,TP(`) (λ) or PubKcpa

A,TP(`−1) (λ). Which game is simulated will depend on

some s ∈R {0,1} that is unknown to A′ herself. Using the assumption that HE is q-IND-
CPA secure, we are able to argue that A′ cannot recognize which of the two schemes
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was simulated, and this fact allows us to bound the difference in success probabilities
between the security games of TP(`) and TP(`−1). Crucially, because A′ does not
depend on ` (it only selects a random ` internally), the negligible function negl will
also be independent of `. Such a randomizing argument is a standard technique to
get rid of the dependence on ` [KL14].

The adversary A′ acts as follows (see also Figure 6.5):

A′
1 selects a random value ` ∈ [t ]. She then starts simulating the indistinguishability

game using A as an adversary. A′
1 takes care of most of the key-generation

procedure: she generates the classical key sets 0 through `− 1 herself, gen-
erates the random strings x1, z1, . . . , x`, z`, and then constructs the gadgets
γx1,z1 (g1), . . . ,γx`,z` (g`) and their classical information g1, . . . , g`. She encrypts
the classical information using the appropriate public keys. Only g`, x` and z`
are left unencrypted: instead of encrypting these strings herself using a gener-
ated key pk`, A′

1 sends the strings for encryption to the challenger. Whether
the challenger really encrypts g`, x` and z`, or replaces the strings with a string
of zeros, determines which of the two schemes is simulated (TP(`) or TP(`−1)).
A′ is unaware of the random choice s of the challenger.

The adversary A′
1 also generates the extra padding inputs that correspond to the

already-removed gadgets `+1 up to t . Since these gadgets consist of all-zero
strings encrypted with independently chosen public keys that are not used
anywhere else, together with a completely mixed quantum state, the adversary
can generate them without needing any extra information.

A′
2 feeds the evaluation key and public key, just generated by A′

1, to A1 in order to
obtain a chosen message in the register X (plus the auxiliary register R). She
then picks a random r ∈R {0,1} and erases the state in X if and only if r = 0. She
encrypts the result according to the TP.Enc procedure (using the public key
(pki )t

i=0 received from A′
1), and gives the encrypted state, plus R, to A2, who

outputs r ′ in an attempt to guess r . A′
2 outputs s′ = 1 if and only if the guess by

A was correct, i.e., r ′ = r .

Because HE is q-IND-CPA secure, the probability that A′ wins PubKcpa−mult
A′,HE

(λ), i.e.,

that s′ = s, is at most 1/2+negl(λ). For each choice of `, there are two scenarios in
which A′ wins the game:

• s = 1 and A guesses r correctly: If s = 1, the game that is being simulated is
PubKcpa

A,TP(`) (λ). If A wins the simulated game (r = r ′), then A′ will correctly

output s′ = 1. (If A loses, then A′ outputs 0, and loses as well).

• s = 0 and A does not guess r correctly: If s = 0, the game that is being simulated
is PubKcpa

A,TP(`−1) (λ). If A loses the game (r 6= r ′), then A′ will correctly output

s′ = 0. (If A wins, then A′ outputs 1 and loses).
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Figure 6.5: A strategy for the game PubKcpa−mult
A′,HE

(λ), using an adversary A for PubKcpa

A,TP(`) (λ)

as a subroutine. All the wires going into A1 together form the evaluation key and public key
for TP(`) or TP(`−1), depending on s. Note that Ξcpa,r

TP
= Ξcpa,r

TP(`) = Ξ
cpa,r

TP(`−1) , so A′
2 can run

either one of these independently of s (i.e., without having to query the challenger). The “create
padding” subroutine generates dummy gadgets for `+1 up to t , as described in the definition
of A′

1.
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From the above, we conclude that the winning probability of A′ is

E
`∈R [t ]

(
Pr[s = 1] ·Pr[PubKcpa

A,TP(`) (λ) = 1]+Pr[s = 0] ·Pr[PubKcpa

A,TP(`−1) (λ) = 0]
)

(6.13)

É1

2
+negl(λ), (6.14)

from which it follows that

t∑
`=1

1

t

(
1

2
Pr[PubKcpa

A,TP(`) (λ) = 1]+ 1

2

(
1−Pr[PubKcpa

A,TP(`−1) (λ) = 1]
))

É 1

2
+negl(λ),

(6.15)

and therefore, for all ` ∈ [t ],

Pr[PubKcpa

A,TP(`) (λ) = 1]−Pr[PubKcpa

A,TP(`−1) (λ) = 1] É 2t ·negl(λ). (6.16)

As long as t , the number of t gates in the circuit, is polynomial in λ, the bound is still
negligible (and independent of `).

By applying Lemma 6.3.4 iteratively, t times in total, we are able to conclude that
the advantage of an adversary interacting with TP(t ) over one interacting with TP(0)

is also negligible:

Corollary 6.3.5. If t is polynomial in λ, then for any quantum polynomial-time ad-
versary A= (A1,A2),

Pr[PubKcpa

A,TP(t ) (λ) = 1]−Pr[PubKcpa

A,TP(0) (λ) = 1] É negl(λ).

For Corollary 6.3.5, it is important that the negligible difference between the
winning probabilities for TP(`) and TP(`−1) is independent of ` (see Lemma 6.3.4).
Then we can conclude that this negligible function, multiplied by a polynomial, is still
negligible.

Using Corollary 6.3.5, we can finally state and prove the main result of this section:

Theorem 6.3.6. If HE is q-IND-CPA secure, then TP is q-IND-CPA secure for circuits
containing up to polynomially (in λ) many T gates.

Proof. The scheme TP(0) is very similar to CL in terms of its key generation and en-
cryption steps. The evaluation key consists of several classical evaluation keys, plus
some completely mixed states and encryptions of 0 which we can safely ignore be-
cause they are not related to the encrypted message. In both schemes, the encryption
of a qubit is a quantum one-time pad together with the encrypted keys. The only
difference is that in TP(0), the public key and evaluation key form a tuple containing a
list of public/evaluation keys that are independent of the encryption (in addition to
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pk0 and evk0 which are used for the encryption of the quantum one-time pad). These
keys do not provide any advantage (in fact, the adversary could have generated them
herself by repeatedly running HE.KeyGen(1λ,1t )). Therefore, we can safely ignore
these keys as well.

Because of the similarity between CL and TP(0), the exact same proof as in Sec-
tion 5.3 shows that TP(0) is q-IND-CPA secure. That is, for any A,

Pr[PubKcpa

A,TP(0) (λ) = 1] É 1

2
+negl(λ). (6.17)

Combining this result with Corollary 6.3.5, it follows that

Pr[PubKcpa
A,TP

(λ) = 1] É Pr[PubKcpa

A,TP(0) (λ) = 1]+negl(λ) (6.18)

É 1

2
+negl(λ)+negl(λ). (6.19)

Since the sum of two negligible functions is itself negligible, the statement follows.

6.3.3 Circuit privacy

As argued in Section 5.3.1, the Clifford scheme CL can straightforwardly be adapted to
provide circuit privacy in the semi-honest setting. The same adaptation (randomizing
the output data with an additional quantum one-time pad before returning the output
to the client) will give circuit privacy to TP as well.

To show circuit privacy, we need to argue that the recryptions into different classi-
cal key sets do not degrade the privacy of the computation:

Lemma 6.3.7. Suppose HE has statistical circuit privacy in the semi-honest setting,
and let the simulator SHE be as in Definition 5.2.6. Then for any security parameter λ, t
polynomial in λ, list of classical functions f0, f1, . . . , ft , list of key sets (pki ,evki ,ski )t

i=1
generated by HE.KeyGen(1λ), and input x, the statistical distance between

HE.Eval ft

evkt

(
HE.Rec(t−1)→t (· · ·HE.Eval f1

evk1
(HE.Rec0→1(HE.Eval f0

evk0
(HE.Encpk0

(x)))))
)

and

SHE

(
1λ,pkt ,evkt , ft (· · · f1( f0(x)))

)
is negligible in λ.

Proof. Since HE.Rec(t−1)→t = HE.Eval
HE.Decskt−1
evkt

◦HE.Encpkt
by definition, we have

that

HE.Eval ft

evkt

(
HE.Rec(t−1)→t (· · · (HE.Encpk0

(x)))
)

(6.20)
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= HE.Eval
ft ◦HE.Decskt−1
evkt

(
HE.Encpkt

(· · · (HE.Encpk0
(x)))

)
(6.21)

≈negl(λ) SHE

(
1λ,pkt ,evkt , ft (HE.Decskt−1 (· · · (HE.Encpk0

(x))))
)

, (6.22)

which, by correctness of HE, is statistically indistinguishable from

SHE

(
1λ,pkt ,evkt , ft ( ft−1( ft−2(· · · f1(x))))

)
(6.23)

as long as t is polynomial in λ. By the triangle inequality, the statement of the lemma
follows.

Using the above lemma, we can show that the adapted scheme TP′ (which adds
an additional quantum one-time pad at the end of the evaluation) has circuit privacy
whenever the underlying classical scheme does.

Lemma 6.3.8. If HE has circuit privacy in the semi-honest setting, then TP′ does too.

Proof. The proof is identical to the proof of Theorem 5.3.2. For the approximation
step from Equation (5.14) to Equation (5.15), we use Lemma 6.3.7.

6.4 TTP: a fully homomorphic scheme with verification

In this section, we introduce our candidate scheme for verifiable quantum fully
homomorphic encryption (vQFHE), which integrates the T-gate gadget into the
verifiable Clifford scheme TCL (see Section 5.6). We will define the scheme, and prove
its correctness, compactness, privacy, and secure verifiability. In many ways, TTP is
similar to TCL: where appropriate, we will refer back to Section 5.6 for details on the
definitions and proofs.

The setup (underlying CSS code, classical MAC, and classical FHE scheme) is the
same as for TCL, with one difference: we now require that the classical homomorphic-
encryption scheme has decryption in LOGSPACE, to ensure that the T-gate gadgets
remain polynomial.

Key generation

In addition to encoded magic states for P and H, the key generation will produce
encoded magic states for T, and encoded error-correction gadgets (see Section 6.2).

For the gadget state γx,z , we can assume that the qubits labeled “in” and “out”
are independent of the inputs sk and ã. This property can be enforced at the cost
of an extra constant number of qubits in the gadget, as follows. In the garden-hose
game, we add two extra pipes at the start: the first pipe is always connected to the
tap by Alice, and connected to the second pipe by Bob. Alice can then connect the
second pipe to whichever pipe she would normally have connected the tap to. For
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the “out” qubit, we can use the same construction, adding two extra pipes so that the
water always flows out of the same location. In the garden-hose gadget, this alteration
amounts to two extra EPR pairs: one for “in”, one for “out”.

The above assumption allows us to consistently break a gadget state γ into three
parts: γin (the single input qubit), γmid, and γout (the single output qubit). We will
write TTP.GadgetGen for the algorithm that, given a secret key sk, generates the
quantum gadget (γin,γmid,γout) plus the accompanying classical information g (sk),
according to the specifications in Section 6.2.3. To create the full gadget state Γpk′ (sk)

from this, one would have to encrypt (γin,γmid,γout) with a one-time pad, and encrypt
the pad keys and g (sk) with a classical FHE scheme. In TTP, this encryption will work
differently, because we want to add authentication (in the form of the trap code and
a classical MAC). The qubits in γmid will be encrypted using different (independent)
permutations from all other states in TTP.KeyGen.

Protocol 6.4.1 (TTP.KeyGen). Given a security parameter λ and gate parame-
ters p,h, t , do the following:

1. Sample classical keys as

k ←MAC.KeyGen, (6.24)

π← S3n , (6.25)

(ski ,pki ,evki ) ←HE.KeyGen (for i = 0, . . . , t ). (6.26)

2. Set sk := (π,k,sk0, . . . ,skt ,pk0) to be the secret key.

3. For i ∈ [p], let µP
i ←TTP.Encsk(P |+〉) be the encrypted magic state for P.

For TTP.Enc, see below.

4. For i ∈ [h], let µH
i ← TTP.Encsk

(
1p
2

(H⊗ I) (|00〉+ |11〉)
)

be the encrypted

magic state for H.

5. For i ∈ [t ], let µT
i ←TTP.Encsk(T |+〉) be the encrypted magic state for T.

6. For i ∈ [t ], create the error-correction gadget Γi as follows:

(a) Sample a fresh permutation πi ←R S3n .

(b) Compute (gi ,γin
i ,γmid

i ,γout
i ) ←TTP.GadgetGen(ski−1), as described

above.

(c) ComputeΓi ←TTP.Encsk(γin
i ,γout

i )⊗TTP.Enc(πi ,k,sk0,...,skt ,pki )(γ
mid
i )⊗

MAC.Signk (HE.Encpki
(gi ,πi )).
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7. Let keys ←MAC.Signk (pk0, . . . ,pkt ,evk0, . . . ,evkt ,HE.Encpk0
(π)) be the au-

thenticated list of keys. The secret information π is encrypted before it is
signed.

8. Output the secret key sk = (π,k,sk0, . . . ,skt ,pk0), along with the quantum
evaluation key (keys,µP

1 , . . . ,µP
p ,µH

1 , . . . ,µH
h ,µT

1 , . . . ,µT
t ,Γ1, . . . ,Γt ).

Encryption

Encryption works in the same way as TCL.Enc (see Protocol 5.6.2): one-time pad keys
are sampled, and the quantum state is encoded under the trap code using those keys.
A signed encryption of the pad keys is appended. Note that by default, the classical
public key pk0 is used for encrypting the pad keys, given how the encryption key sk is
defined in Protocol 6.4.1. During certain parts of the gadget generation, however, we
give a different encryption key to TTP.Enc, containing the i th public key pki (instead
of pk0), and the independent permutation πi (instead of the global permutation π).
See Step 6c of Protocol 6.4.1.

Evaluation

The evaluation of Clifford gates and computational-basis measurements is the same
as in the verifiable Clifford scheme TCL (see Protocols 5.6.3 to 5.6.6). The only dif-
ference is that, as in TP, the public key may switch. After the i th T gate, all classical
information is recrypted into pki (initially, it is encrypted under pk0). The evaluator
always knows under which public key the computation is currently running.

The evaluation of a T gate requires an encrypted magic state and encrypted error-
correction gadget as a resource, which are both part of the evaluation key.

Recall the circuit for magic-state computation of a T gate from Section 2.4.4:

ρ

T |+〉〈+|T† •

c

PcXc TρT†
(6.27)

This circuit is much more complicated than the magic-state computation for a P
or H gate, since it requires the application of a classically-controlled phase correction
P, which is not a Pauli. We will accomplish this using the error-correction gadget Γi .

First, we remark on some subtleties regarding the encrypted classical information
surrounding the gadget. Since the structure of Γi depends on the classical secret key
ski−1, the classical information about Γi is encrypted under the (independent) public
key pki (see Protocol 6.4.1). This observation will play a crucial role in our proof that
TTP satisfies IND-VER, in Section 6.4.2.
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The usage of different key sets also means that, at some point during the evaluation
of a T gate, all classically encrypted information needs to be recrypted from the
(i −1)st into the i th key set. This can be done because s̃ki−1 is included in the classical
information gi in Γi . See also Equation (6.10).

Protocol 6.4.2 (TTP.EvalT). Given a ciphertext qubit σ̃ (with encrypted one-
time pad keys x̃, z̃), an encrypted T-magic state µT

i , a gadget Γi , and an evalua-
tion key containing π̃, evki−1, evki , pki−1, pki , do the following:

1. Run TTP.EvalCNOT (see Protocol 5.6.6) to perform a CNOT between µT
i

(control) and σ̃ (target). The classically encrypted information is under
pki−1. Call the resulting qubits σ̃1 (control, with keys x̃1

[i−1] and z̃1
[i−1])

and σ̃2 (target, with keys x̃2
[i−1] and z̃2

[i−1]), and the classical computation
log log1.

2. RunTTP.EvalMeasurement (see Protocol 5.6.3) to perform a measurement
on σ̃2. The classically encrypted information is still under pki−1. Call the
encrypted measurement result b̃[i−1], and the classical computation log
log2.

3. Recrypt all classically encrypted information (except b̃[i−1]) from key set
i −1 into key set i . Call the classical computation log log3.

4. Run M ← TTP.GenMeasurement(b̃[i−1]) to obtain a list M of measure-
ment instructions for the garden-hose gadget (see Section 6.2.3). Evaluate
the Bell measurements (including the measurement between σ̃1 and the
“tap” qubit γin

i ) according to M . Note that these are not physical Bell mea-
surements, but executions of TTP.Eval for a CNOT, computational-basis
measurement, and Hadamard-basis measurement. Call the (encrypted)
measurement results c̃ [i ], d̃ [i ] ∈ {0,1}3n·m , where m is the number of mea-
surements in the list M . Call the classical computation log log4.

5. Homomorphically compute the updated keys x̃ ′[i ]
, z̃ ′[i ]

for the qubit γout
i

that now contains the data qubit, using the measurement outcomes c̃, d̃ ,
and the structural information in g̃ (i ). The key updates happen as de-
scribed in Section 6.2.4, but transversally for each physical qubit. Call the
classical computation log log5.

6. Output the remaining unmeasured qubit (γ̃out
i ), the updated one-time pad

keys, and the computation log (log1, . . . , log5).
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Decryption

Finally, verified decryption is the same as TCL.VerDec: some classical checks are
performed (MAC-verification, internal consistency of the computation log, and con-
sistency between the log and the claimed circuit), after which all unmeasured traps are
checked and the remaining qubits are decoded. TTP.VerDec follows Protocol 5.6.7,
except that HE.Dec uses the t th secret key skt to decode the one-time pad keys.

6.4.1 Correctness, compactness, and privacy

Correctness of TTP relies mostly on the correctness of the Clifford scheme TCL:
after all, TTP is an extension of TCL (see Figure A on page 289). For the T gate,
Clifford operations are (homomorphically) executed on an encoded magic state and
correction gadget: correctness for this part of the protocol follows from the correct
evaluation of those Clifford operations (i.e., correctness of TCL), the correctness of
the garden-hose gadget (argued in Section 6.2), and the correctness of magic-state
computation. The only detail that should be addressed is the fact that part of the
gadget is encoded under a different permutation. To see that this different encoding
does not pose a problem, note that no two-qubit gate is ever evaluated between
qubits that are encoded under different permutations: the data qubit (encoded under
the global permutation π) is teleported in via γin

i (also encoded under π), while the

Bell measurements within γmid
i are all evaluated between qubits under the local

permutation πi . The trap code only requires the permutations on two logical qubits
to match if a two-qubit gate is evaluated on those two qubits.

Compactness (as in Definition 5.4.3) is satisfied by the same argument as for TCL,
since the definition of VerDec remains unchanged.

TTP provides privacy in the sense of q-IND-CPA security: like TCL, it satisfies the
private-key version of Definition 5.2.9. This property can again be shown by reduction
to the q-IND-CPA property of HE. For TTP, the reduction is slightly nontrivial since
the structure of the error-correction gadgets depends on the classical secret key.
Similarly to the proof of Lemma 6.3.4, the reduction can be done in steps, where
first the security of the encryptions under pkt is applied (no gadget depends on
skt ). After that, the quantum part of the gadget Γt (which depends on skt−1) looks
completely mixed from the point of view of the adversary. Next, we can apply security
of the encryptions under pkt−1, and repeat the process. After all encryptions of the
quantum-one-time-pad keys are removed, the encryption of a state appears fully
mixed. We omit the details here.

6.4.2 Secure verifiability

To show that TTP is IND-VER (and therefore also SEM-VER), we will again rely on
Game 5.6.8, the hybrid indistinguishability game (Figure 5.3). This time, we will utilize
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the quantum wire that runs from KeyGen to VerDec: it will serve to send (variations
of) the error-correction gadgets directly to VerDec, bypassing the adversary.

Similarly to the proof of Lemma 6.3.4, we will remove the error-correction gadgets
one by one, in t rounds total. This time, however, we need to be more careful, because
we do not want to affect the acceptance probability of VerDec too much. Thus,
we need to make sure to replace the ski -dependent gadget with a “gadget” that is
independent of the secret key, but still removes the unwanted phase P.

Apart from removing the gadgets, the proof structure will be very similar to that of
the verifiability of TCL: we will first remove the classical MAC, then the computation
log, then the gadgets, and finally all classical FHE encryptions.

Hybrid 1: Removing the classical MAC

Define TTP′ analogously to TCL′: all information that is signed under the classical
MAC (in KeyGen and Enc, including the gadget structure) is sent directly to VerDec
via the classical side channels. VerDec uses this side-channel information instead
of the signed information (but still checks the validity of the classical signatures it
receives from the adversary).

Lemma 6.4.3. For any QPT A, AdvHybTTP′
TTP (A,λ) É negl(λ).

Proof. Identical to the proof of Lemma 5.6.9: by reduction to the fact that MAC is
existentially unforgeable under chosen-message attacks (EUF-CMA).

Hybrid 2: Removing the computation log

Define TTP′′ analogously to TCL′′: The one-time-pad decryption keys are computed
by VerDec on a plaintext level, based on the initial encryption keys of the input state
and the measurement results throughout the computation. VerDec still checks the
consistency of the classical log, and whether the operations in the classical log match
the claimed circuit.

Lemma 6.4.4. For any QPT A, AdvHybTTP′′
TTP′ (A,λ) É negl(λ).

Proof. Analogous to the proof of Lemma 5.6.10: by reduction to the correctness of HE.
Because TTP′′ uses t +1 different classical encryption keys, we need to generalize
Equation (5.37) as follows:

Pr
[
HE.Decskt (HE.Eval fevk0,...,evkt

(HE.Encpk0
(s))) 6= f (s)

]
É negl(λ). (6.28)

In the above expression, we slightly abuse notation and write HE.Evalevk0,...,evkt to
include the t recryption steps that are performed during TTP.Eval. As long as the
number of T gates, and thus the number of recryptions, is polynomial in λ, the
expression holds.
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PHE.Encpk`+1
(00 · · ·0) +

γin
`

γmid
`

γout
`

Figure 6.6: In TTP(`)
1 , all classically encrypted information for the `th gadget is replaced by

zeros. The quantum state remains the same as in TTP, depicted here as a simplified structure.
The actual state γmid

`
will be much larger than four qubits.

More hybrids: Removing gadgets

We continue by defining a sequence of hybrid schemes based on TTP′′. In 4t steps,
we will move all error-correction functionality from the gadgets to VerDec. Doing
so will result in the adversary having no information about the classical secret keys
(which are involved in constructing these gadgets). This will allow us to eventually
reduce the security of TTP to that of TC.

We remove the gadgets back-to-front, starting with the final gadget. Every gadget
is removed in four steps. For all 1 É `É t , define the hybrids TTP(`)

1 , TTP(`)
2 , TTP(`)

3 ,

and TTP(`)
4 (and TTP(t+1)

4 :=TTP′′) as follows:

1. TTP(`)
1 is the same as TTP(`+1)

4 , except for the generation of the state Γ` (Step 6

of Protocol 6.4.1). In TTP(`)
1 , all classical information encrypted under pk` is

replaced with encryptions of zeros. In particular, for i = `, Step 6c is adapted to

Γi ←TTP′′.Encsk(γin
i ,γout

i )⊗TTP′′.Enc′(πi ,k,sk0,...,skt ,pki )(γ
mid
i )⊗

MAC.Sign(HE.Encpki
(00 · · ·0)), (6.29)

where TTP′′.Enc′ also appends a signed encryption of zeros, that is, the encryp-
tion TTP′′.Enc′(π,k,sk0,...,skt ,pk)(σ) equals∑

x,z∈{0,1}3m

(
TC.Encπ,x,z (σ)⊗MAC.Signk (HE.Encpk(00 · · ·0))

)
. (6.30)

See Figure 6.6 for a pictorial representation of the adapted gadget. There are
two important remarks. First, the encryption of input states (and the gadgets
i < `) is still performed using TTP′′.Enc, so the classical information is still
encrypted. Second, whenever classical information is removed in KeyGen or
Enc′, it is still sent to VerDec through the classical side channel. Hence, the
structural and encryption information about Γ` is kept from the adversary, and
instead is directly sent (only) to the verification procedure. Whenever VerDec
needs this information, it is taken directly from this trusted source, and the
all-zero string sent by the adversary will be ignored.
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gadget

to VerDec

P

HE.Encpk`+1
(00 · · ·0) +

γin
`

γmid
`

γout
`

Figure 6.7: In TTP(`)
2 , the quantum state that constitutes the `th gadget is replaced with halves

of EPR pairs. The other halves are sent to VerDec, where Bell measurements and the phase gate
P are applied after evaluation.

2. TTP(`)
2 is the same as TTP(`)

1 , except that for the `th gadget, the procedure
TTP.PostGadgetGen is called instead of TTP.GadgetGen (Step 6b of Proto-
col 6.4.1) (see also Figure 6.7):

Protocol 6.4.5 (TTP.PostGadgetGen). Given a secret key ski−1, do the
following:

(a) Let gi ← 0|g (ski−1)|.

(b) Populate (γin
i ,γmid

i ,γout
i ) with halves of EPR pairs. Send the other

halves to VerDec via the side channel.

Protocol 6.4.5 produces a “gadget” in which all qubits are replaced with halves of
EPR pairs. These halves still get encrypted in Step 6c of Protocol 6.4.1. All other
halves of these EPR pairs are sent to VerDec through the provided quantum
side channel. TTP(`)

2 .VerDec has access to the structural information g` (as
this is sent via the classical side information channel from KeyGen to VerDec)
and performs the necessary Bell measurements to recreate γin

`
, γmid

`
and γout

`
after the adversary has interacted with the EPR pair halves. Effectively, this
postpones the generation of the gadget structure to decryption time. Of course,
the measurement outcomes are taken into account by VerDec when calculating
updates to the quantum one-time pad. As we will see in the description of
TTP(`)

4 , all corrections that follow the `th gadget are unaffected by the fact
that the server cannot hold the correct information about these postponed
measurements (not even in encrypted form).

3. TTP(`)
3 is the same as TTP(`)

2 , except that gadget generation for the `th gadget
is handled by TTP.FakeGadgetGen instead of TTP.PostGadgetGen (see Fig-
ure 6.8):
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|0〉 |0〉 |0〉 |0〉
gadget

to VerDec

P

HE.Encpk`+1
(00 · · ·0) +

γin
`

γmid
`

γout
`

Figure 6.8: In TTP(`)
3 , all of γmid

`
is replaced with dummy qubits. VerDec verifies the Bell

measurements performed on these dummy qubits, and performs them on the top halves of the

corresponding EPR pairs. Like in TTP(`)
2 , VerDec also performs Bell measurements and a P

gate on the lower halves.

Protocol 6.4.6 (TTP.FakeGadgetGen). Given a secret key ski−1, do the
following:

(a) Let gi ← 0|g (ski−1)|.

(b) Populate (γin
i ,γmid

i ,γout
i ) with halves of EPR pairs. Send the other

halves to VerDec via the side channel.

(c) Send γmid to VerDec as well, returning the fake gadget with γmid

replaced with zeros, as (gi ,γin
i , |00 · · ·0〉〈00 · · ·0|γout

i ).

This algorithm prepares, instead of halves of EPR pairs, |0〉-states of the ap-
propriate dimension for γmid

`
. (Recall that this dimension does not depend on

sk`−1). For γin
`

and γout
`

, halves of EPR pairs are still generated, as in TTP(`)
2 .

Via the side channel, the full EPR pairs for γmid
`

are sent to VerDec. As in the
previous hybrids, the returned gadget is encrypted in TTP.KeyGen.

TTP(`)
3 .VerDec verifies that the adversary performed the correct Bell measure-

ments on the fake `th gadget by calling TC.VerDec. If this procedure accepts,
TTP(`)

3 .VerDec performs the same Bell measurements on the halves of the EPR

pairs received from TTP(`)
3 .KeyGen (and subsequently performs the Bell mea-

surements that depend on g` on the other halves, as in TTP(`)
2 ). Effectively,

TTP(`)
3 .VerDec thereby performs the entire garden-hose protocol for HE.Dec

on its own, removing the phase error in the process.
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|0〉 |0〉 |0〉 |0〉
gadget

to VerDec

P?

HE.Encpk`+1
(00 · · ·0) +

γin
`

γmid
`

γout
`

Figure 6.9: InTTP(`)
4 , the state that the evaluator receives is exactly equal to the state inTTP(`)

3
(see Figure 6.8). The only difference is the wayVerDec applies theP gate (conditionally): instead
of emulating the gadget usage, VerDec directly computes whether or not a phase needs to be
applied, and performs the teleportation measurement on γin

`
and γout

`
accordingly.

4. TTP(`)
4 is the same as TTP(`)

3 , except that VerDec (instead of performing the
Bell measurements of the gadget protocol) uses its knowledge of the initial
QOTP keys and all intermediate measurement outcomes to compute whether
or not a phase correction is necessary after the `th T gate. TTP(`)

4 .VerDec then

performs this phase correction on the EPR half entangled with γin
`

, followed by
a Bell measurement with the EPR half entangled with γout

`
. See Figure 6.9.

The first `−1 gadgets in TTP(`)
1 through TTP(`)

4 are always functional gadgets, as
in TTP. The last t −` gadgets are all completely replaced by dummy states, and their
functionality is completely outsourced to VerDec. In four steps, the functionality of
the `th gadget is also transferred to VerDec. It is important to replace only one gadget
at a time, because replacing a real gadget with a fake one breaks the functionality of
the gadgets that occur later in the evaluation: the encrypted classical information
held by the server does not correspond to the question of whether or not a phase
correction is needed. By completely outsourcing the phase correction to VerDec, as
is done for all gadgets after the `th one in all TTP(`)

i schemes, we ensure that this
incorrect classical information does not influence the outcome of the computation.
Hence, correctness is maintained throughout the hybrid transformations.

We now show, in four separate lemmas, that these transformations of the scheme
do not significantly affect the adversary’s winning probability in the hybrid indistin-
guishability game.

Lemma 6.4.7. For any QPT A, there exists a negligible function negl such that for all
1 É `É t ,

AdvHyb
TTP(`+1)

4

TTP(`)
1

(A,λ) É negl(λ). (6.31)
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Proof sketch. In TTP(`+1)
4 , no information about sk(`) is sent to the adversary. In the

original TTP scheme, the structure of the quantum state Γ`+1 depended on it, but this
structure has been replaced with dummy states in several steps in TTP`+1

2 through
TTP`+1

4 .
This is fortunate, since if absolutely no secret-key information is present, we are

able to bound the difference in winning probability between HybA,TTP(`+1)
4

(λ) and

HybA,TTP`
1

(λ) by reducing it to the q-IND-CPA security of the classical homomorphic-

encryption scheme HE.
The proof is closely analogous to the proof of Lemma 6.3.4, and involves defining

an adversary A′ against the q-IND-CPA game that picks a random ` and simulates
either HybA,TTP(`)

1
(λ) or HybA,TTP(`+1)

4
(λ) for a given adversary A. Depending on

whether that game is lost or won, A′ will guess which of the two games she just
simulated. Since the probability that she guesses correctly is negligibly close to 1/2,
there cannot (on average over `) be a significant difference in winning probabilities
between the two games.

Using the same derivation as in the proof of Lemma 6.3.4, we can conclude that for
all A and all `, the advantage of A in the game for TTP(`+1)

1 over TTP(`)
4 is negligible.

This negligible function is independent of `.

Lemma 6.4.8. For 1 É `É t and any QPT A, AdvHyb
TTP(`)

2

TTP(`)
1

(A,λ) = 0.

Proof. In TTP(`)
1 , the `th error-correction gadget consists of a number of EPR pairs

arranged in a certain order, as described by the garden-hose protocol for HE.Dec.
For example, this protocol may dictate that the i th and j th qubit of the gadget must
form an EPR pair

∣∣Φ+〉
together. This can alternatively be achieved by creating two

EPR pairs, placing half of each pair in the i th and j th position of the gadget state,
and performing a Bell measurement on the other two halves. This creates a Bell pair
XaZb

∣∣Φ+〉
in positions i and j , where a,b ∈ {0,1} describe the outcome of the Bell

measurement.
From the point of view of the adversary, it does not matter whether these Bell

measurements are performed during KeyGen, or whether the halves of EPR pairs
are sent to VerDec for measurement. Because the key to the quantum one-time pad
of the `th gadget is not sent to the adversary at all, the same state is created with
a completely random Pauli in either case. Of course, the teleportation correction
Paulis of the form XaZb need to be taken into account when updating the keys to the
quantum one-time pad on the data qubits after the gadget is used. VerDec has all the
necessary information to do this, because it observes the measurement outcomes,
and computes the key updates itself (instead of decrypting the final keys from the
computation log).

Thus, with the extra key update steps inTTP(`)
2 .VerDec, the inputs to the adversary

are exactly the same in the games of TTP(`)
1 and TTP(`)

2 .
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Lemma 6.4.9. For any QPT A, there exists a negligible function negl such that for all
1 É `É t ,

AdvHyb
TTP(`)

3

TTP(`)
2

(A,λ) É negl(λ).

Proof. We show this bound by reducing the difference in winning probabilities be-
tween TTP(`)

2 and TTP(`)
3 to the IND-VER security of the somewhat-homomorphic

scheme TC. Intuitively, because TC is IND-VER, if TTP(`)
2 accepts the adversary’s

claimed circuit of Bell measurements on the EPR pair halves, the effective map on
those EPR pairs is the claimed circuit. Therefore, we might just as well ask VerDec to
apply this map, as we do in TTP(`)

3 , to get the same output state. If TTP(`)
2 rejects the

adversary’s claimed circuit on those EPR pair halves, then TTP(`)
3 should reject too.

This is why we let the adversary act on an encrypted dummy state of |0〉s.
Let A= (A1,A2,A3) be a set of QPT algorithms on the appropriate registers, so

that we can consider it as an adversary for the hybrid indistinguishability game
for either TTP(`)

2 or TTP(`)
3 , for any ` (see Game 5.6.8 and Figure 5.6). The in-

put/output wires to the adversary in both these games are identical, so we can evaluate
Pr[HybA,TTP(`)

2
(λ) = 1] and Pr[HybA,TTP(`)

3
(λ) = 1] for the same A.

Now define an adversary A′ = (A′
1,A′

2,A′
3) for the IND-VER game against TC,

VerGameA′,TC(λ), as follows:

A′
1 samples ` ∈R [t ]. She runs TTP(`)

2 .KeyGen until right before she is supposed to
call TTP.GadgetGen(sk`−1), in the `th iteration of that loop. Up to this point,
TTP(`)

2 .KeyGen is identical to TTP(`)
3 .KeyGen. It has generated real gadgets Γ1

through Γ`−1, and has not yet used the freshly sampled permutationπ`. A′
1 now

sets g` to be the all-zero string, and generates halves of EPR pairs for γin
`

, γmid
`

and γout
`

. She sends γmid
`

to the challenger via the register X , and everything
else (including sk) to A′

2 via the side register R.

A′
2 continues TTP(`)

2 .KeyGen, using the response from the challenger instead of

encrypting γmid
`

herself. Again, this part of the key-generation procedure is

identical for TTP(`)
2 and TTP(`)

3 . Call the resulting evaluation key ρevk. A′
2

starts playing the hybrid indistinguishability game with A, as follows:

1. Flip a bit r ∈ {0,1}.

2. Send ρevk to A1. If r = 0, encrypt the response of A1 using the secret key
sk generated by A′

1. If r = 1, encrypt a |0〉 state of appropriate dimension
instead. Note that for this encryption, the permutation π` is also not
needed.

3. Send the resulting encryption, along with the side info from A1, to A2.
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4. On the output of A2, start running TTP(`)
2 .VerDec until the actions on the

`th gadget need to be verified. Since the permutation on the state γmid
`

is
unknown to A′

2 (it was sent to the challenger for encryption), she cannot
verify this part of the computation.

5. Instead, send the relevant part of the computation log to the challenger
for verification, along with the relevant part of the claimed circuit (the Bell
measurements on the gadget state), and the relevant qubits, all received
from A2.

6. In the meantime, send the rest of the working memory to A′
3 via register

R ′.

A′
3 continues the simulation of the hybrid game with A, as follows:

1. If the challenger rejects, output |⊥〉〈⊥|⊗ |rej〉〈rej|.
2. If the challenger accepts, then we know that the challenger applies the

claimed subcircuit to the quantum state it did not encrypt (either |0〉 or
γmid
`

, depending on the bit the challenger flipped), and possibly swaps
this state back in (again depending on which bit it flipped). Continue the
TTP(`)

2 .VerDec computation for the rest of the computation log.

3. Send the result (the output quantum state, the claimed circuit, and the
accept/reject flag) to A3, and call its output bit r ′.

The adversary A′
3 then outputs 0 if r = r ′, and 1 otherwise.

Recall from Game 5.6.8 (see Figure 5.6) that the challenger flips a coin (let us call
the outcome s ∈ {0,1}) to decide whether to encrypt the quantum state provided by
A′, or to swap in an all-zero dummy state before encrypting. Keeping this in mind
while inspecting the definition of A′, one can see that whenever s = 0, A′ takes the
role of challenger in the game HybA,TTP(`)

2
(λ) with A, and whenever s = 1, she plays

HybA,TTP(`)
3

(λ). Now let us consider when the newly defined adversary A′ wins the

VER indistinguishability game for TC. If s = 0, A′ needs to output a bit s′ = 0 to win.
This happens, by definition of A′, if and only if A wins the game HybA,TTP(`)

2
(λ) (i.e.,

r = r ′). On the other hand, if s = 1, A′ needs to output a bit s′ = 1 to win. This happens,
by definition of A′, if and only if A loses the game HybA,TTP(`)

3
(λ) (i.e., r 6= r ′). Thus

the winning probability of A′ is:

Pr[VerGameA′,TC(λ) = 1] (6.32)

= E
`

(
Pr[s = 0] ·Pr[HybA,TTP(`)

2
(λ) = 1]+Pr[s = 1] ·Pr[HybA,TTP(`)

3
(λ) = 0]

)
(6.33)

= E
`

(
1

2
Pr[HybA,TTP(`)

2
(λ) = 1]+ 1

2

(
1−Pr[HybA,TTP(`)

3
(λ) = 1]

))
(6.34)
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= 1

2
+ 1

2
E
`

(
Pr[HybA,TTP(`)

2
(λ) = 1]−Pr[HybA,TTP(`)

3
(λ) = 1]

)
. (6.35)

From the IND-VER property of TC (see Lemma 5.5.6) we know that Equation (6.32) is
at most 1/2+negl(λ). From this, and the fact that t is polynomial in λ, the statement of
the lemma follows.

Lemma 6.4.10. For any QPT A, there exists a negligible function negl such that for all
1 É `É t ,

AdvHyb
TTP(`)

4

TTP(`)
3

(A,λ) É negl(λ).

Proof. Let f (s) be the bit that, after the `th T gate, determines whether or not a
phase correction is necessary. Here, s is all the relevant starting information (such
as quantum-one-time-pad keys, gadget structure, permutations, measurement out-
comes, and applied circuit), and f is some function that determines the X key on the
relevant qubit right before application of the T gate.

In TTP(`)
3 , a phase correction after the `th T gate is applied conditioned on the

outcome of

HE.Decsk`−1
(HE.Eval fevk0,...,evk`−1

(HE.Encpk0
(s))), (6.36)

because the garden-hose computation in the gadget computes the classical decryp-
tion. In the above expression, we again slightly abuse notation: as in the proof of
Lemma 6.4.4, we include recryption steps in HE.Evalevk0,...,evk`−1

. As long as t is poly-
nomial in λ, we have for all `É t , by correctness of HE,

Pr
[
HE.Decsk`−1

(HE.Eval fevk0,...,evk`−1
(HE.Encpk0

(s))) 6= f (s)
]
É negl(λ). (6.37)

In TTP(`)
4 , the only difference from TTP(`)

3 is that, instead of performing the garden-
hose computation on the result of the classical homomorphic-evaluation procedure,
the phase correction is applied directly by VerDec, conditioned on f (s). The prob-
ability that in TTP(`)

4 , a phase is applied (or not) when in TTP(`)
3 it is not (or is), is

negligible.

Final hybrid: Removing all classical FHE

In TTP(1)
4 , all of the error-correction gadgets have been removed from the evaluation

key, and the error-correction functionality has been redirected to VerDec completely.
Effectively, TTP(1)

4 .KeyGen samples a permutation π, generates a lot of magic states
(for P, H and T) and encrypts them using TC.Encπ, after which the keys to the quan-
tum one-time pad used in that encryption are homomorphically encrypted under pk0.
The adversary receives those encrypted values, and uses them in its homomorphic
classical computation. However, since the computation contains fake gadgets, the
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homomorphically computed output one-time-pad keys will not be correct. VerDec
uses the information sent via its side channels to compute the correct keys (but still
checks the log for syntactical consistency).

The final step is to define a hybrid TTP∗, similarly to TCL∗, where all classical
information is replaced with zeros before encrypting. The adversary is allowed to
act on those encryptions, but while its homomorphic computations are syntactically
checked in the log, VerDec does not decrypt and use the resulting values. This allows
us to link TTP(1)

4 to a final hybrid, TTP∗, where all classical information is replaced
with zeros before encrypting.

Lemma 6.4.11. For any QPT A, AdvHybTTP∗
TTP(1)

4

(A,λ) É negl(λ).

Proof. Identical to the proof of Lemma 5.6.11: by reduction to q-IND-CPA security of
the classical scheme HE.

Proof of main theorem

Just like TCL∗, the scheme TTP∗ is very similar to TC. This similarity allows us to
bound the success probability of any adversary in the hybrid indistinguishability
game for TTP∗.

Considering TTP∗ in more detail, we can see that it is actually very similar to TC.
This allows us to prove the following lemma, which is the last ingredient for the proof
of verifiability of TTP.

Lemma 6.4.12. For any QPT A, Pr[HybA,TTP∗ (λ) = 1] É 1/2+negl(λ).

Proof. Identical to the proof of Lemma 5.6.12: by observing the similarities be-
tween TTP∗ and TC (the presence of EPR pair halves does not affect the corre-
spondence between these two schemes), and using the fact that TC is IND-VER-2
(Definition 5.5.4).

Putting together Lemmas 6.4.3, 6.4.4 and 6.4.7 to 6.4.12, we are able to prove the
main result of this section:

Theorem 6.4.13. The vQFHE scheme TTP satisfies SEM-VER.

Proof. From Lemmas 6.4.3, 6.4.4 and 6.4.7 to 6.4.11, we may conclude that if t (the
number of T gates in the circuit) is polynomial in λ (the security parameter), then for
any polynomial-time adversary A,

Pr[VerGameA,TTP(λ) = 1] − Pr[HybA,TTP∗ (λ) = 1] É negl(λ), (6.38)

since the sum of polynomially many negligible terms is negligible (it is important to
note that there is only a constant number of different negligible terms involved). By
Lemma 6.4.12, which reduces verifiability of TTP∗ to verifiability of TC, it follows that
Pr[VerGameA,TTP(λ) = 1] É 1/2+negl(λ), i.e., that TTP is IND-VER. By Lemma 5.4.8,
TTP is also SEM-VER.
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6.5 Application: quantum one-time programs

We briefly sketch an application of a vQFHE scheme like TTP to one-time programs.
A classical one-time program (or cOTP2 is an idealized object which can be used to
execute a function once, but then self-destructs. In the case of a quantum OTP (or
qOTP), the program executes a quantum channelΦ. In the usual formalization,Φ has
two inputs and is public. One party (the sender) creates the qOTP by fixing one input,
and the qOTP is executed by a receiver who selects the other input. To recover the
intuitive notion of one-time programs, chooseΦ to be a universal circuit. Following
the approach of Broadbent et al. [BGS13], we thus consider the ideal functionality of a
qOTP.

Definition 6.5.1 (Ideal quantum one-time programs [BGS13, Functionality 3]). The
ideal functionality FOTP

Φ for a channelΦX Y →Z is the following:

1. Create: given register X from the sender, store X and send create to the receiver.

2. Execute: given register Y from the receiver, return Φ applied to X Y to the
receiver. Delete any trace of its execution.

As in the work of Broadbent et al. [BGS13], we only allow corrupting receivers;
unlike that work, we consider computational (rather than statistical) security. The
achieved result is therefore slightly weaker. The construction within our vQFHE
framework is however much simpler, and shows how applications can be constructed
using vQFHE as a black box.

The construction

Choose a vQFHE scheme S = (KeyGen,Enc,Eval,VerDec) satisfying SEM-VER. For
simplicity, we first describe the classical input/output case, i.e., the circuit begins
and ends with classical registers only. Let c be such a circuit, for the map ΦX Y →Z .
On Create, the sender generates keys (sk,ρevk) ←KeyGen and encrypts his input σX

using sk. The sender also generates a cOTP for the public, classical function VerDec,
choosing the circuit and key inputs to be c and sk; the input field for the computation
log is left open for the receiver to select. The qOTP is then the triple

Ξc := (
ρevk,Encsk(σX ),cOTPVerDec(c,sk, ·)) .

On Execute, the receiver computes as follows. The receiver’s (classical) input Y to-
gether with the (public) circuit c defines a homomorphic computation on the cipher-
text Enck (σX ), which the receiver can perform using Eval and ρevk. Since c has only

2The abbreviations “cOTP” and “qOTP” in this section should not be confused with the abbreviation
(Q)OTP for (quantum) one-time pad.
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classical outputs, the receiver measures the final state completely. At the end of that
computation, the receiver holds the (completely classical) output of the computation
log from Eval. The receiver plugs the log into OTPVerDec(c,sk, ·), which produces the
decrypted output.

We handle the case of arbitrary circuits c (with quantum input and output) as
follows. Following the ideas of Broadbent et al. [BGS13], we augment the above qOTP
with two auxiliary quantum states: an “encrypt-through-teleport” gadget σV1V2

in , and

a “decrypt-through-teleport” gadget σW1W2
out . These are maximally entangled states

with the appropriate map (encrypt or decrypt) applied to one half (V2 or W2). The
receiver uses teleportation through the V1 register to encrypt their input register Y
before evaluating, and places the teleportation measurements into the computation
log. After evaluation, the receiver uses the W1 register to teleport the ciphertext out,
combining the teleportation measurements with the output of cOTPVerDec(c,sk) to
compute the final quantum-one-time-pad decryption keys.

Security sketch

Starting with a QPT adversarial receiver A which attacks the real functionality (that
contains an ideal cOTP), we construct a QPT simulator S which attacks the ideal
functionality with similar success probability. We split A into A1 (receive input,
output the cOTP query and side information) and A2 (receive result of cOTP query
and side information, produce final output). The simulator S will generate its own
keys, and provide fake gadgets that will trick A into teleporting its input to S , who will
then use that input on the ideal functionality.

The simulator, upon receiving the “create” message, generates (sk,ρevk) ←KeyGen
and encrypts a dummy input |0〉〈0|X via Encsk. Instead of the encryption gadgetσV1V2

in ,
S provides half of a maximally entangled state in register V1 and likewise in register
V2. The other halves V ′

1 and V ′
2 of these entangled states are kept by S . The same is

done in place of the decryption gadget σW1W2
out , with S keeping W ′

1 and W ′
2. Then S

runs A1 with input ρevk,Encsk(|0〉〈0|X ) and registers Y V1V2W1W2. It then executes
VerDecsk on the output (i.e., the cOTP query) of A1 to see if she correctly followed the
Eval protocol. If she did not, then S aborts; otherwise, S plugs register V ′

1 into the
ideal functionality, and teleports the output into register W2. Before responding to A2,
it corrects the one-time pad keys appropriately using its teleportation measurements.

6.6 Practical considerations

In a setting where a less powerful client wants to delegate some quantum computation
to a more powerful server, it is important to minimize the amount of effort required
from the client. In delegated quantum computation, the complexity of a protocol
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can be measured by, among other things, the total amount of communication be-
tween client and server, the number of rounds of communication, and the quantum
resources available to the client, such as possible quantum operations and memory
size.

The constructions in this chapter rely heavily on classical homomorphic encryp-
tion. Although implementations of homomorphic encryption are starting to ap-
pear [DS15; CLP17; DM17; HS20], they still tend to have a fairly large computational
overhead. In addition to that, our quantum homomorphic-encryption schemes TP
and TTP require the creation of polynomial-size gadget states, for which there is a
priori no bound on the polynomial.

In this section, we describe some considerations on the efficiency of the schemes
TP and TTP. In Section 6.6.1, we describe how to construct the error-correcting
gadgets for a specific classical homomorphic-encryption scheme. In Section 6.6.2, we
describe how a client can generate the error-correcting gadgets for TP using only the
SWAP operation and Paulis, if he has an (untrusted) source of EPR pairs.

6.6.1 Gadget construction from LWE

The classical FHE scheme by Brakerski and Vaikuntanathan [BV14] is well-suited for
our construction, and its decryption function is representative for a much wider class
of schemes which are based on the hardness of the learning-with-errors problem.
Based on its decryption function, we construct gadgets for TP and TTP. Of course,
we already know how to construct the gadgets using the garden-hose complexity
of the decryption function (Theorem 6.2.1), but in this section we give an explicit,
potentially more efficient construction.

Let λ be the security parameter, and let p be the modulus of the integer ring over
which the scheme from Brakerski and Vaikuntanathan [BV14] operates.

The ciphertext c is given by a pair (v, w), with v ∈Zλp and w ∈Zp . The secret key s

is an element of Zk
p . The decryption into a plaintext m involves computation of an

inner product over the ring Zp ,

m = (w −〈v,s〉) (mod p) (mod 2). (6.39)

Brakerski and Vaikuntanathan are able to ensure that the modulus p is small, i.e.,
polynomial in λ, before encryption. Below, we present an explicit construction for this
case of small modulus p. In case the modulus is superpolynomially large, constructing
the gadget explicitly appears to be much harder, but we can still apply Theorem 6.2.1
to convert the decryption circuit, which has depth O(logλ+ loglog p) [BV14, Lemma
4.5], to obtain a polynomial-size gadget. In that case, we do not exploit the specific
structure of the decryption function to construct a more efficient gadget.

For the rest of this section, take the modulus p to be polynomial in λ. We describe
a series of small “permutation gadgets” that move an arbitrary qubit to a location,
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Figure 6.10: A single permutation gadget for p = 7 and q = 2. This gadget effectively adds
2 modulo 7 to the position of the input qubit. All 2p = 14 qubits in the gadget are given to
the evaluator. She connects it to other subgadgets, in a way dictated by the values in v, by
performing Bell measurements between each iout of the depicted gadget and iin of the next
gadget. If the depicted gadget is connected to another subgadget with p = 7 and, e.g., q = 1, the
result is a permutation gadget for p = 7 and q = 3.

depending on whether m = 0 or m = 1. By appending the reverse of this construction
as in Section 6.2.3, one can turn these into a gadget which applies an inverse phase
gate whenever m = 1.

We rewrite Equation (6.39) in terms of binary arithmetic [BV14, Section 4.5]. Let
s[i ][ j ] denote the j th bit of the i th entry of s, so that the inner product can be written
as

w −〈v,s〉 (mod p) = w −
λ∑

i=1
v[i ]s[i ] (mod p)

= w −
λ∑

i=1

log2 p∑
j=0

v[i ][ j ] ·2 j ·s[i ] (mod p) (6.40)

A permutation gadget is now a subgadget of size 2p, parametrized by a number
q ∈Zp . Label the first p qubits by 0in to (p −1)in, and the second p qubits by 0out to
(p −1)out. The gadget simply creates EPR pairs between xin and (x +q (mod p))out,
for all x ∈ Zp . Such a gadget can effectively simulate addition with q over Zp . See
Figure 6.10.

For each i from 1 to λ, and each j from 0 to log2 p, we create a permutation gadget,
labeled by (i , j ), for the number 2 j · s[i ], representing the λ log2 p terms in Equa-
tion (6.40). Each of the terms in that sum contributes to the total, or not, depending
on the bit v[i ][ j ] of the ciphertext.

The evaluator uses the collection of permutation gadgets in the following way.
She performs a Bell measurement between the input qubit and the 0in qubit of the
first gadget such that v[i ][ j ] = 1. Then, she connects all output qubits (0out through
(p −1)out) of this gadget to all the input qubits of the next gadget for which v[i ][ j ] = 1.

After teleporting her qubit through all gadgets, the qubit will be exactly at the
location zout of the final gadget the evaluator used, where zout =∑λ

i=1 v[i ]s[i ] (mod p).
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The evaluator does not know at which of the p locations the qubit is, but she can
apply an inverse phase gate to those positions z for which w − z = 1 (mod 2).

Finally, we reverse the entire construction to route the unknown qubit back to a
known location, as in Section 6.2.3. The size of the total gadget is then bounded by
4λp log2 p.

6.6.2 Constructing gadgets using limited quantum resources

The nonverifiable scheme TP gives rise to a three-round delegated quantum com-
putation protocol in a setting where the client can perform only Pauli and SWAP
operations. TP.Enc and TP.Dec already only require local application of Pauli op-
erators to a quantum state, but TP.KeyGen is more involved because of the gadget
construction. However, when supplied with a set of EPR pairs from the server (or any
other untrusted source), the client can generate the quantum evaluation key for TP
using only Pauli and swap operations. Even if the server produces some other state
than the claimed list of EPR pairs, the client can prevent the leakage of information
about her input by encrypting the input with random Pauli operations.

The gadget Γpk′ (sk) is essentially a list of 2m random Bell pairs (some of which

have an extra P† ⊗ I applied to them), where the qubits are ordered in some way that
depends on sk. If the key generator is supplied with a list of 2m EPR pairs

∣∣Φ+〉
, and as

many pairs (I⊗P†)
∣∣Φ+〉

, he can create the gadget by swapping some of the qubits, and
applying random Pauli operations (using X and Z gates) on every pair. Any unused
pairs are discarded.

If the (potentially malicious) supplier of these pairs follows the protocol and
sends actual EPR pairs to the key generator, the above procedure suffices to hide all
information about sk. However, if the supplier acts maliciously, he may send two
qubits to the key generator claiming that they form an EPR pair, while in reality he is
keeping some form of entanglement with one or both of the qubits. We need to make
sure that even in this case, where the supplier actively tries to gather information
about sk, this information remains private.

The key generator, upon receiving the (real or fake) EPR pairs, can apply inde-
pendently selected random Pauli transformations on every qubit. If the qubits really
formed EPR pairs, it would suffice to apply a random Pauli to only one of the two
qubits in the pair, but by applying this transformation to both qubits, any entangle-
ment that a malicious supplier might hold with any of them becomes completely
useless. Since any swap of two qubits consists of threeCNOT gates that commute with
the Pauli’s, the state after swapping the qubits into the correct order is still completely
mixed. Hence, no information about sk is revealed to the supplier.

For the scheme TTP, although the above strategy suffices to ensure privacy, it
does not guarantee that the outcome of the evaluation will be correct. The scheme
TTP loses its advantage over TP, especially since we would have to ask the untrusted
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supplier to supply CSS-encoded EPR pairs, and CSS-encoded magic states.
Alternatively, TP can be regarded as a two-round delegated-quantum-computa-

tion protocol in a setting where the client can perform arbitrary Clifford operations,
but is limited to a constant-sized quantum memory, given that HE.Dec is in NC1. In
that case, Barrington’s theorem [Bar89] tells us that the measurements in the garden-
hose model are fairly “local” (i.e., do not connect pipes that are very far away), and
that the gadgets can be constructed ten qubits at a time [DSS16]. By decomposing the
permutations in the construction of Barrington’s theorem into 2-cycles, the quantum
memory can even be reduced to only four qubits. The client sends these small parts
of the gadgets to the server as they are completed. Because communication remains
one-way until all gadgets have been sent, this staggered sending can be regarded as a
single round of communication.

The verifiable scheme TTP can also be reduced to a constant-size version by
combining the above gadget-generation strategy with the constant-memory trap code
(see Section 3.3.3). The IND-VER security error is then reduced from negligible to
inverse polynomial, but the privacy error remains negligible.

6.7 Conclusion

This chapter was centered around the “T-gate gadget”, a quantum state that aids
in the homomorphic evaluation of a T gate by removing a potential phase error
from the ciphertext. The T-gate gadgets appeared in both the nonverifiable QFHE
scheme TP, and the vQFHE scheme TTP. The gadget construction is based on a new
and interesting connection between the area of instantaneous nonlocal quantum
computation and quantum homomorphic encryption. Speelman’s techniques, based
on the garden-hose model, have turned out to be crucial for our construction.

The structure of the evaluation key is fairly modular, consisting of exactly one
gadget for everyT gate. The evaluation of aT gate does not cause errors to accumulate
on the quantum state. TP is very compact in the sense that the state of the system
after the evaluation of a T gate has the same form as after the initial encryption,
except for any classical changes caused by the classical FHE evaluation. This kind
of compactness also implies that individual evaluation gadgets can be supplied “on
demand” by the holder of the secret key. Once an evaluator runs out of gadgets, the
secret key holder can simply supply more of them.

TP is the first quantum homomorphic-encryption scheme that is compact and
allows evaluation of circuits with polynomially many T gates in the security parameter,
i.e., arbitrary polynomial-size circuits. Assuming that the number of wires involved in
the evaluation circuit is also polynomially related to the security parameter, we may
consider TP to be leveled fully homomorphic. The scheme is based on an arbitrary
classical FHE scheme, and any computational assumptions needed for the classical
scheme are also required for security of TP. However, since TP uses the classical
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FHE scheme as a black box, any FHE scheme can be plugged in to change the set of
computational assumptions.

We also presented a new quantum-cryptographic primitive: quantum fully-ho-
momorphic encryption with verification (vQFHE). Using the trap code for quan-
tum authentication [BGS13] and the garden-hose gadgets, we constructed a vQFHE
scheme TTP which satisfies (1) correctness, (2) compactness, (3) secure verifiability,
(4) q-IND-CPA privacy, and (5) authentication.

In terms of applications, TP can be appreciated as a constant-round scheme
for blind delegated quantum computation, using computational assumptions. The
server can evaluate a universal quantum circuit on the encrypted input, consisting of
the client’s quantum input and a (classical) description of the client’s circuit. In this
context, it is desirable to minimize the quantum resources needed by the client. We
argued that our scheme can still be used for constant-round blind delegated quantum
computation if we limit either the client’s quantum memory or the types of quantum
operations the client can perform.

As another application, we can instantiate TP with a classical multi-key FHE
scheme that allows for multiple clients to encrypt (and later jointly decrypt) their
inputs to a joint computation. In a paper subsequent to this work, Goyal details how
this can be done, and how the multi-key QFHE can provide multi-party quantum
computation in certain settings [Goy18].

Adding verification immediately yields new applications of QFHE, e.g., allowing
users of a “quantum cloud service” to certify the server’s computations. Furthermore,
we showed that verifiable QFHE leads to a simple construction of quantum one-time
programs (qOTPs). In this construction, the qOTP for a functionalityΦc consists of an
evaluation key and a classical one-time program which performs vQFHE verification
forΦc only.

6.7.1 Future directions

We leave open several interesting directions for applications of (v)QFHE. Classically,
FHE has many applications [ABF+13; BR14], and defining and constructing their
appropriate analogues would be a valuable addition to the field of quantum cryp-
tography. Multi-party computation has already been constructed form QFHE in a
limited security setting [Goy18], and can potentially be generalized. We also consider
it likely that our new techniques will be useful in other contexts such as quantum
indistinguishability obfuscation [AF16].

Since the construction ofTPdescribed in Section 6.3 first appeared online [DSS16],
the required computational power has been greatly reduced: Mahadev showed that
nonverifiable quantum fully homomorphic encryption is possible with a purely clas-
sical client [Mah18a]. The required computational assumptions were later relaxed to
a more standard version of learning with errors [Bra18]. Mahadev’s protocol, and its
main ingredient of trapdoor claw-free function families, has proven useful in many re-
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lated applications [BCM+18; BKVV20]. In a context where verification is not required,
it is preferable to use these new classical-client schemes [Mah18a; Bra18], as opposed
to the TP scheme. In fact, in Chapter 7, we will do exactly that.

In the context of verification, however, the scheme TTP presented in this chapter
is currently still the only known homomorphic one. Significant progress has been
made in the domain of verification of quantum computation (see also the discussion
in Section 5.1), but unresolved questions remain: it is still unknown whether verifiable
quantum homomorphic encryption is possible with a classical client, or whether
there exist vQFHE schemes where verification can be done publicly (i.e., without the
secret decryption key).
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7.1 Introduction

The obfuscation of a circuit is an object, typically another circuit, that allows a user
to evaluate the functionality of the original circuit without learning any additional
information about the structure of the circuit. Obfuscation is useful for publishing
software without revealing the code, but it also has more fundamental applications in
cryptography. For example, the strongest notion called virtual black-box obfuscation
can transform any private-key encryption scheme into a public-key scheme, and
transform public-key schemes into fully-homomorphic schemes. Unfortunately, this
strongest notion turns out to be impossible for general circuits [BGI+01] – at least, if
we require the obfuscation of a circuit to be a circuit itself.

The classical impossibility result leaves open an intriguing possibility: what if the
obfuscation of a (classical) circuit is allowed to be a quantum state? Could a quantum
state capture all the information about a functionality, allowing a user to produce
correct outputs, without revealing all that information? This possibility seems hopeful,
due to the unrevealing nature of quantum states. However, in this work, we show that
virtual-black-box obfuscating classical circuits into quantum states is not possible.

Barak et al. defined the obfuscating property of virtual black-box (vbb) obfus-
cators as follows: any information that an adversary can learn about a circuit from
its obfuscation can also be learned by a simulator that does not have access to the
obfuscation, but only to an oracle for the circuit’s functionality [BGI+01]. In this
definition, the crucial difference between the adversary and the simulator is that the
adversary has access to a short representation of the circuit (namely, the obfuscation),
whereas the simulator only has access to an input/output interface that implements
the functionality. Some circuit classes allow the adversary to exploit this difference
by using the obfuscation as an input value to the circuit itself. Those circuit classes
are unobfuscatable in the vbb sense, rendering vbb obfuscation impossible for the
general class of circuits in P [BGI+01].

In more detail, the impossibility proof from Barak et al. [BGI+01] relies on point
functions, which output zero everywhere except at a single input value α, where they
output a string β. The circuits in the unobfuscatable class can, depending on the
input, do all of the following: (1) apply that point function, (2) return an encryption of
α, (3) homomorphically evaluate a gate, or (4) check whether a ciphertext decrypts to
β. An adversary holding the obfuscation is able to divide it into single gates, and can
use those to homomorphically evaluate option (1), thereby converting a ciphertext
for α into a ciphertext for β. That way, the adversary can tell whether she is holding
an obfuscation with a point function from α to β, or one with the all-zero function.
(In the second case, the homomorphic evaluation would yield a ciphertext for zero,
rather than one for β. This distinction can be tested using option (4).) A simulator,
only having access to the input/output behavior, cannot perform the homomorphic
evaluation, because it cannot divide the functionality into single gates.
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The above construction rules out the existence of an obfuscator that maps classical
circuits to classical circuits. It leaves open the possibility of an obfuscator that maps
classical circuits to quantum states: such a quantum state, together with a fixed public
“interpreter map”, could be used to evaluate the obfuscated circuit. The possibility of
quantum obfuscation was the object of study for Alagic and Fefferman [AF16], who
attempted to port the classical impossibility proof to the quantum setting. In doing
so, they encountered two issues:

Homomorphic evaluation. The interpreter map, that runs the obfuscation state on
a chosen input, is a quantum map. It will likely have quantum states as interme-
diate states of the computation, so in order to homomorphically run the point
function, one needs the ability to evaluate quantum gates on quantum cipher-
texts. Functionality (3) described above would become a quantum functionality,
and the unobfuscatable circuit class will thus need to contain quantum circuits
to perform homomorphic evaluation steps.

Reusability. In the construction by Barak et al. [BGI+01], the obfuscated circuit needs
to be used multiple times: for example, each homomorphic gate evaluation
requires a separate call to the obfuscated circuit. If the obfuscation is a (classical
or quantum) circuit, this poses no problem, but if it is a quantum state, multiple
uses are not guaranteed.

These two issues limit the extent of the impossibility results in the quantum setting:
it is only known to be impossible to vbb obfuscate quantum circuits into reusable
obfuscated states (e.g., quantum circuits) [AF16].

After it became clear [BGI+01] that obfuscating all classical circuits is impossible,
efforts were made to construct obfuscators for smaller, but still nontrivial, classes
of circuits. Successful constructions have been found for several classes of evasive
functions, such as point functions [Wee05; CD08] and compute-and-compare func-
tions [WZ17; GKW17]. Currently, no quantum obfuscators are known for circuit
classes that cannot be classically obfuscated.

7.1.1 Contributions

We strengthen the impossibility of virtual-black-box obfuscation of classical circuits
by showing that classical circuits cannot be obfuscated into quantum states. We
assume the existence of classical-client quantum fully homomorphic encryption
and classical obfuscation of compute-and-compare functions. Both of these can be
constructed from the learning-with-errors (LWE) assumption [Mah18a; Bra18; WZ17;
GKW17]. The compute-and-compare construction requires the strongest assumption
in terms of the LWE parameters.

Theorem (informal). If LWE is hard for quantum algorithms, then it is impossible
to quantum vbb obfuscate the class of polynomial-size classical circuits (even with
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nonnegligible correctness and security error, and even if the obfuscation procedure is
inefficient).

Our result, proven in Section 7.5, uses roughly the same proof strategy as previous
works [BGI+01; AF16], but overcomes the two main issues described above as follows:

Homomorphic evaluation. Previous constructions rely on the obfuscator to imple-
ment the homomorphic evaluations, by obfuscating the functionality “decrypt,
then apply a gate, then re-encrypt”. However, by now, we know how to build
quantum fully-homomorphic encryption schemes directly [Mah18a; Bra18],
based on the learning-with-errors (LWE) assumption. Thus, in our construction,
we can remove the homomorphic gate evaluation from the obfuscated circuits:
the adversary can do the homomorphic evaluation of the point function herself,
using a quantum fully-homomorphic encryption scheme. With the homomor-
phic evaluation removed from it, the class of circuits that we prove impossible
to obfuscate can remain classical.

This solution introduces a slight complication: part of the functionality of the
circuit we construct is now to return the public evaluation key. However, unless
one is willing to make an assumption on the circular security of the homomor-
phic encryption, the size of this key (and therefore the size of the circuit) scales
with the size of the circuit that needs to be homomorphically evaluated. To get
rid of this inconvenient dependence, our unobfuscatable circuit returns the
public key in small, individual blocks that can be independently computed. We
argue that any classical-key quantum fully-homomorphic encryption scheme
has public keys that can be decomposed in this way.

Reusability. The circuits that we consider are classical and deterministic. Therefore,
if the interpreter map is run on an obfuscation state ρ for a circuit C , plus a
classical input x, then by correctness, the result is (close to) a computational-
basis state |C (x)〉. This output can be copied out to a separate wire without
disturbing the state, and the interpreter map can be reversed, recovering the
obfuscation ρ to be used again. If the interpreter map is not unitary, then it
can be run coherently (i.e., keeping purification registers around instead of
measuring wires), and this coherent version can be reversed as long as the
purification registers are not measured.

At one point in our proof, we will need to run the interpreter map homomor-
phically on (an encryption of) ρ and x. This may result in a superposition of
different ciphertexts for C (x), which cannot cleanly be copied out to a separate
wire without entangling that wire with the output. Thus, recovering ρ is not
necessarily possible after the homomorphic-evaluation step.

We circumvent this problem by making sure that the homomorphic evaluation
occurs last, so that ρ is not needed anymore afterwards. This reordering is
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achieved by classically obfuscating the part of the circuit that checks whether
a ciphertext decrypts to the value β. That way, this functionality becomes a
constant output value that a user can request and store before performing the
homomorphic evaluation, and use afterwards. To obfuscate the decryption
check, we use a classical vbb obfuscator for compute-and-compare functions,
which relies on a variant of the LWE assumption [WZ17; GKW17].

Our impossibility result compares to the classical impossibility result [BGI+01] as
follows. First, as mentioned, we extend the realm of impossible obfuscators to include
obfuscators that produce a quantum state, rather than a classical circuit. Second,
the classical impossibility result is unconditional, whereas we require the (standard)
assumption that LWE is hard for quantum adversaries. It may be possible to relax
this assumption if ρ can be recovered after the homomorphic evaluation (see Sec-
tion 7.6.1). Third, the class of classical circuits that cannot be obfuscated is slightly
different: in our work, it does not have the homomorphic-evaluation functionality
built into it, and is therefore arguably simpler, strengthening the impossibility re-
sult. However, we stress that in both works, the unobfuscatable circuit class itself is
somewhat contrived: the main implication is that its superclass P is unobfuscatable.

As an intermediate result, we show in Section 7.4 that it is impossible to vbb obfus-
cate even just the class of classical multi-bit-output point functions into a quantum
state, if the adversary and simulator have access to auxiliary classical information
that contains an encryption of the nonzero input value α and a vbb obfuscation of a
function depending on the secret key for that encryption.

Theorem (informal). If LWE is hard for quantum algorithms, then it is impossible to
quantum vbb obfuscate multi-bit-output point functions and the all-zero function un-
der the presence of classical dependent auxiliary information (even with nonnegligible
soundness and security error).

At first glance, that may seem to contradict the constructions of vbb obfuscation of
point functions [WZ17; GKW17], which are secure even in the presence of dependent
auxiliary information. The crucial difference is that those constructions only allow a
limited dependency of the auxiliary information, whereas in our impossibility proof,
the dependence is slightly stronger. This subtle difference seems to indicate that the
gap between possibility and impossibility of vbb obfuscation is closing.

Independently of this work, Ananth and La Placa [AL20] have concurrently shown
the general impossibility of quantum copy-protection, thereby also ruling out quan-
tum obfuscation of classical circuits. Their techniques are very similar to ours, but
their adversary is somewhat more powerful in the sense that it is able to completely
de-obfuscate the program given non-black-box access. They also present some pos-
itive results in their work. Their result relies on the same LWE assumption as ours,
but in addition they require that the underlying homomorphic-encryption scheme is
circularly secure. We avoid circularity by introducing a notion of decomposable public
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keys for homomorphic encryption. This technique could potentially be used to re-
move the circularity assumption from the copy-protection impossibility result [AL20]
as well.

7.2 Preliminaries

In this section, we describe several preliminaries that are specific to this chapter. We
give the formal definition of (virtual-black-box) obfuscation of circuits, specify the
variant of quantum homomorphic encryption we will employ, define compute-and-
compare functions, and discuss how to recover the input of a quantum computation
in case the output is (close to) classical.

7.2.1 Classical and quantum virtual-black-box obfuscation

We consider so-called circuit obfuscators: the functionalities to be hidden are repre-
sented by circuits. A virtual-black-box circuit obfuscator hides the functionality in
such a way that the obfuscation looks like a “black box”: the only way to get informa-
tion about its functionality is to evaluate it on an input and observe the output.

Definition 7.2.1 ([BGI+01, Definition 2.2]). A classical virtual black-box obfuscator
for the circuit class F is a probabilistic algorithm O such that

1. (polynomial slowdown) For every circuit C ∈F , |O(C )| = poly(|C |);

2. (functional equivalence) For every circuit C ∈F , the string O(C ) describes a
circuit that computes the same function as C ;

3. (virtual black-box) For any PPT adversary A, there exists a PPT simulator S such
that for all circuits C ∈F ,∣∣Pr[A(O(C )) = 1]−Pr

[
SC (1|C |) = 1

]∣∣É negl(|C |).

As a variation on the third requirement, one may assume that some auxiliary
information (which may depend on the circuit C ) is present alongside the obfuscation
O(C ). In that case, a simulator with access to that auxiliary information should still
be able to simulate the adversary’s output distribution:

Definition 7.2.2 ([GK05, Definition 3]). A classical virtual black-box obfuscator w.r.t.
dependent auxiliary input for a circuit class F is a probabilistic algorithm O that
satisfies Definition 7.2.1, with the “virtual black-box” property redefined as follows:

3. (virtual black-box) For any PPT adversary A, there exists a PPT simulator S such
that for all circuits C ∈F and all strings aux ∈ {0,1}poly(|C |) (which may depend
on C ), ∣∣Pr[A(O(C ),aux) = 1]−Pr

[
A(SC (1|C |,aux)) = 1

]∣∣É negl(|C |).
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In the quantum setting, we consider quantum obfuscators for classical circuit
classes: that is, the obfuscation O(C ) may be a quantum state. We adapt the defini-
tion of quantum obfuscators for quantum circuits by Alagic and Fefferman [AF16,
Definition 5].

Definition 7.2.3. A quantum virtual black-box obfuscator for the classical circuit
class F is a quantum algorithm O and a QPT J (the “interpreter”) such that

1. (polynomial expansion) For every circuit C ∈F , O(C ) is an m-qubit quantum
state with m = poly(n);

2. (functional equivalence) For every circuit C ∈F and every input x,

‖J (O(C )⊗|x〉〈x|)−|C (x)〉〈C (x)|‖tr É negl(|C |);

3. (virtual black-box) For every QPT adversary A, there exists a QPT simulator S
(with superposition access to its oracle) such that for all circuits C ∈F ,∣∣Pr[A(O(C )) = 1]−Pr[SC (1|C |) = 1]

∣∣É negl(|C |).

There are a few differences with the classical definition. First, the obfuscation
is a quantum state, and not a (classical or quantum) circuit. Second, due to the
probabilistic nature of quantum computation, we allow a negligible error in the
functional equivalence. Third, the simulator is slightly more powerful because of its
superposition access to the functionality of C : a query performs the unitary operation
specified by |x〉 |z〉 7→ |x〉 |z ⊕C (x)〉. Note that a quantum adversary can always use
a (classical or quantum) obfuscation to compute the obfuscated functionality on a
superposition of inputs, obtaining a superposition of outputs. For this reason, the
simulator gets superposition access to its oracle in the quantum setting. Throughout
this chapter, all oracles supplied to quantum algorithms allow for superposition
access.

We can again strengthen the virtual black-box property to include (classical or
quantum) dependent auxiliary information: this auxiliary string or state would be pro-
vided to both the adversary and the simulator, in the same way as in Definition 7.2.2.

7.2.2 Classical-client quantum fully homomorphic encryption

From the learning-with-errors assumption, it is possible to construct secure QFHE
schemes where all client-side operations (key generation, encryption, and decryption)
are classical [Mah18a; Bra18]. We slightly adapt Definition 5.2.7 to reflect the fact that
ciphertexts are classical. In this chapter, we do not make a distinction between the
public key and evaluation key: any information that is necessary for the evaluation is
contained in the public key.
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Definition 7.2.4. A quantum fully homomorphic encryption scheme QFHE consists
of four algorithms, as follows:

• Key Generation: (pk,sk) ←QFHE.KeyGen(1λ) produces a public key pk and a
secret key sk, given a security parameter λ. This is a classical PPT algorithm.

• Encryption: c ←QFHE.Encpk(m) encrypts a single-bit message m ∈ {0,1}. For

multi-bit messages m ∈ {0,1}`, we write QFHE.Encpk(m) for the bit-by-bit en-
cryption. This algorithm is in general QPT, but it only uses a classical random
tape, and furthermore whenever m is classical, so is the encryption algorithm.

• Decryption: m′ =QFHE.Decsk(c) decrypts a ciphertext c into a single-bit mes-
sage m′, using the secret key sk. If c is a ciphertext for a multi-bit message, we
write QFHE.Decsk(c) for the bit-by-bit decryption. Again this is QPT in general,
but it is classical if c is classical.

• Homomorphic evaluation: c ′ ←QFHE.Evalpk(C ,c) takes as input the public
key, a classical description of a BQP circuit C with ` input wires and `′ output
wires, and a bit-by-bit encrypted ciphertext c encrypting ` bits. It produces a c ′,
a sequence of `′ output ciphertexts. This is a QPT algorithm.

Similarly to the schemes described in Chapters 5 and 6, classical-client QFHE
schemes [Mah18a; Bra18] encrypt a message m using a quantum one-time-pad with
random keys a,b ∈ {0,1}, attaching classical FHE ciphertexts of the one-time pad keys:

QFHE.Encpk (m) =XaZb |m〉⊗ ∣∣FHE.Encpk(a),FHE.Encpk(b)
〉

. (7.1)

Note that since m is a classical message, this ciphertext can be classically represented
as the tuple (

m ⊕a,FHE.Encpk(a),FHE.Encpk(b)
)

, (7.2)

so that encryption may be seen as a classical procedure. Conversely, a classical
ciphertext m̃ ← FHE.Encpk(m) can easily be turned into a valid quantum ciphertext by
preparing the state |0〉⊗ ∣∣m̃,FHE.Encpk(0)

〉
, which decrypts to m. Thus, it is possible

to freely switch back and forth between quantum and classical ciphertexts, as long as
the message is known to be classical.

Extending the encryption procedure from Equation (7.1) to a general quantum
state

∣∣ψ〉
, rather than a computational-basis state |m〉, yields the encryption proce-

dure CL.Enc (see Section 5.3) with quantum ciphertexts. We will use this encryption
of quantum states when we supply the encryption of a quantum-state obfuscation as
the input to a homomorphic evaluation.
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Bootstrapped FHE. Recall Definition 5.2.5, specifying leveled (Q)FHE schemes: the
key generation algorithm receives an additional parameter d , and outputs a key set
that is suitable for the evaluation of circuits up to depth d . Importantly, the length of
sk and the complexity of decryption are independent of d .

We assume, without loss of generality, that the randomness tape used by KeyGen
is always of length λ. (If it is not, the length of the randomness tape can be stretched
using a pseudorandom generator.)

A common way to construct leveled FHE is via the bootstrapping technique sug-
gested by Gentry [Gen09]. Gentry showed that given a base scheme with homo-
morphic capacity greater than its decryption depth, it is possible to create a leveled
scheme with the following properties.

Definition 7.2.5 (Leveled bootstrapped FHE). A leveled bootstrapped (Q)FHE is con-
structed using a “base scheme” with key-generation algorithm SubKeyGen(1λ) (and
corresponding encryption, decryption and evaluation algorithms), as follows. The
key-generation algorithm KeyGen(1λ,1d ) is of the form:

1. Run SubKeyGen(1λ) with fresh randomness d +1 times to generate sub-keys
(ski ,pki ) for i = 0, . . . ,d .

2. Compute c∗i ←Encpki
(ski−1) for all i = 1, . . . ,d .

3. Output pk := (
pk0, (pk1,c∗1 ), . . . , (pkd ,c∗d )

)
, and sk := skd .

The decryption algorithm of the bootstrapped scheme is the same as that of the
base scheme, and for encryption, only pk0 is needed.

7.2.3 Point functions and compute-and-compare functions

The class of compute-and-compare functions, as well as its subclass of point functions,
plays an important role in this chapter. We define these function classes now.

Definition 7.2.6 (Point function). Let y ∈ {0,1}n . The point function Py is defined by

Py (x) :=
{

1 if x = y

0 otherwise.
(7.3)

The value y is called the target value. Point functions are a special type of compute-
and-compare function, where the function f is the identity:

Definition 7.2.7 (Compute-and-compare function). Let f : {0,1}m → {0,1}n and y ∈
{0,1}n . The compute-and-compare function CC f ,y is defined by

CC f ,y (x) :=
{

1 if f (x) = y

0 otherwise.
(7.4)
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One can also consider point functions or compute-and-compare functions with multi-
bit output: in that case, the function outputs either some string z (instead of 1), or the
all-zero string (instead of 0). We denote such functions with Py,z and CC f ,y,z .

7.2.4 Recovering the input of a quantum circuit

We will consider (efficient) quantum operations as (polynomial-size) circuits, consist-
ing of the following set of basic operations: unitary gates from some fixed constant-
size gate set, measurements in the computational basis, and initialization of auxiliary
wires in the |0〉 state.

While unitary gates are always reversible by applying their transpose (U †U = I
for any unitary U ), measurement gates may not be, as they can possibly collapse
a state. However, we can effectively delay all measurements in a circuit C until the
very end, as follows. Define UC as the unitary that computes C coherently: that is, for
every computational-basis measurement in C on some wire w , UC performs a CNOT
operation from w onto a fresh auxiliary target wire initialized in the state |0〉. The
circuit C is now equivalent to the following operation: initialize all auxiliary target
wires in the |0〉 state1, apply the unitary UC , and measure all auxiliary target wires in
the computational basis.

In this work, we will encounter circuits C which, for specific inputs, yield a spe-
cific state in the computational basis with very high probability. In the proof of the
following lemma, we specify how to use coherent computation in order to learn the
output value while preserving the input quantum state. It is similar to Aaronson’s
“Almost As Good As New Lemma” [Aar04].

Lemma 7.2.8. Let C be a quantum circuit. There exists an input-recovering circuit
Crec such that for all inputs ρin, the following holds: if

∥∥C (ρin)−|x〉〈x|∥∥tr É ε for some
classical string x and some ε> 0, then∥∥Crec(ρin)− (

ρin ⊗|x〉〈x|)∥∥tr É 2ε.

Proof. The input-recovering circuit Crec will consist of running C coherently, copying
out the output register, and reverting the coherent computation of C . Suppose the
circuit C contains k measurement gates, ` initializations of wires in the |0〉 state, and
outputs of length n. Define Crec as:

1. Run UC on input ρin ⊗
∣∣0`〉〈0`

∣∣⊗ ∣∣0k
〉〈

0k
∣∣M

, where UC is the unitary that coher-
ently executes C , and M is the register that contains the auxiliary wires for the
coherent measurements.

1If, apart from the targets of the aforementioned CNOTs, the circuit C contains any other wires that are
initialized in the |0〉 state inside the circuit, those wires are also considered part of the input of the unitary
UC . They should be initialized to |0〉 here as well.
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2. Copy the wires that are supposed to contain the output C (ρin) into a register Y ,
initialized to |0n〉〈0n |, using CNOTs.

3. Run U †
C to recover the original input, and discard any auxiliary wires.

To see that Crec acts as promised, let ρin, x, and ε be such that
∥∥C (ρin)−|x〉〈x|∥∥tr É ε. If

ε is small, the CNOT in Step 2 does not create a lot of entanglement, since the control
wires are (close to) the computational-basis state |x〉〈x|. The output is therefore
(almost) perfectly copied out.

More formally, let ρout denote the state after the application of UC , that is,

ρout ⊗
∣∣0n〉〈

0n∣∣Y : =UC

(
ρin ⊗

∣∣∣0`〉〈
0`

∣∣∣⊗ ∣∣∣0k
〉〈

0k
∣∣∣M ⊗

)
U †

C ⊗ ∣∣0n〉〈
0n∣∣Y (7.5)

= ∑
m,m′∈{0,1}k

αmα
∗
m′σm,m′ ⊗|m〉〈m′∣∣M ⊗ ∣∣0n〉〈

0n∣∣Y , (7.6)

where the αm ∈C are normalization factors, and σm,m′ are density matrices.
Note that if we trace out the M and Y registers, the remaining state is C (ρin). By

the assumption that
∥∥C (ρin)−|x〉〈x|∥∥tr É ε for some string x, it follows that∥∥∥∥∥ρout −

∑
m,m′∈{0,1}k

αmα
∗
m′ |x〉〈x|⊗ |m〉〈m′∣∣M

∥∥∥∥∥
tr

É ε. (7.7)

For the remaining steps, we use the fact that no unitary can increase the trace distance
between two quantum states.

Applying the CNOTs in Step 2 results in a state ρ′
out such that∥∥∥∥∥ρ′

out −
∑

m,m′∈{0,1}k

αmα
∗
m′ |x〉〈x|⊗ |m〉〈m′∣∣M ⊗|x〉〈x|Y

∥∥∥∥∥
tr

É ε, (7.8)

and therefore
∥∥ρ′

out −ρout ⊗|x〉〈x|Y ∥∥
tr É 2ε. Finally, applying U †

C on both sides and

discarding the k +` auxiliary wires, we get
∥∥Crec(ρin)−ρin ⊗|x〉〈x|Y ∥∥

tr É 2ε.

The specification of Crec is independent of the specific input state ρin. However,
Crec cannot necessarily recover all possible inputs ρin, only those that lead to an
almost-classical output.

7.3 (Q)FHE with decomposable public keys

For the purpose of our result in Section 7.5, we will need to obfuscate a class of
circuits that allow to (quantumly) homomorphically evaluate operations of arbitrary
polynomial depth. We nevertheless wish to rely only on leveled FHE for the sake of
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minimizing our assumptions. Therefore, we will later define a class of circuits that
are a priori polynomially bounded in size, but which are capable of encapsulating
public-key generation of a leveled scheme for an arbitrary polynomial depth d . Recall
that in a leveled scheme, even just the length of pk may depend on d .

To achieve a circuit size independent of d , we define the notion of (Q)FHE schemes
with decomposable public key. Intuitively, in such a scheme, the public key can be
generated by first generating a sequence of blocks, each of some size independent
of d . These blocks can then be combined into the actual pk of the scheme. Crucially,
the generation of the blocks can be done in parallel, and the complexity of generating
each block (given the security parameter and the random tape) is independent of
d . In other words, a decomposable public key can be generated on the fly, involv-
ing small “chunks” of computation that are independent of d . Formally, we recall
Definition 5.2.5, and define decomposability as follows.

Definition 7.3.1 (Decomposable public key). A leveled (Q)FHE scheme has a decom-
posable public key if there exists a polynomial K = K (λ,d) and a polynomial-time
deterministic function BlockGen(1λ, i ,r,r ′) (where r,r ′ ∈ {0,1}λ) that generates classi-
cal strings (“blocks”) ci such that the following holds:

1. Correctness: there exists a QPT Assemble such that for all λ,d ,r, and r ′ (letting
K = K (λ,d)) it holds that

Assemble(c0,c1,c2, . . . ,cK ) = pk,

where (pk,sk) =KeyGen(1λ,1d ,r ), and ci =BlockGen(1λ, i ,r,r ′) for all i .

2. Simulatability: there exists a QPT simulator S such that for all d and r ,

S(1λ,pk)
c≈ (c0,c1,c2, . . . ,cK ),

where (pk,sk) =KeyGen(1λ,d ,r ), and the distribution on (c0,c1,c2, . . . ,cK ) on
the right-hand side is generated by selecting a uniformly random r ′, and then
for all i , setting ci =BlockGen(1λ, i ,r,r ′).

We emphasize that in Definition 7.3.1, the randomness strings r and r ′ are the
same for every run of BlockGen. The reason for this choice is twofold. First, with our
final goal in mind of obfuscating the BlockGen functionality, we want to avoid having
to specify K independent randomness strings (as that would considerably increase
the size of the circuit to obfuscate). Second, most FHE schemes require some form of
correlation to exist between the different blocks. Thinking of r and r ′ as short random
seeds for a PRF, this correlation can be realized by running the PRF on the same inputs
(see, for example, Section 7.3.1).
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7.3.1 Instantiation from bootstrapped schemes

Existing QFHE schemes are based on bootstrapping [Mah18a; Bra18] (see Defini-
tion 7.2.5). Without affecting security, we can assume that the randomness for the
SubKeyGen is sampled using a PRF. That is, the random tape r of KeyGen is used as
a seed for a PRF, and for the i th execution of SubKeyGen, we use the randomness
PRFr (i ).

For bootstrapped schemes using a PRF, decomposability follows immediately by
definition. In this case, we do not even need the extra randomness r ′ and can sim-
ply setBlockGen(1λ, i ,r,r ′) to be the process that evaluates PRFr (i−1) and PRFr (i ) to
generate random tapes forSubKeyGen, uses this randomness to generate (ski−1,pki−1)
and (ski ,pki ), generates c∗i based on these values, and outputs (pki ,c∗i ). In addition,
for i = 0, it simply computes PRFr (0), and uses the resulting randomness to generate
pk0.

Lemma 7.3.2. Bootstrapping-based leveled QFHE schemes with keys generated from a
PRF have decomposable public keys.

Proof. Define K (λ,d) := d , and c0 := pk0. For i > 0, define the blocks ci , which are
generated by BlockGen(1λ, i ,r,r ′), as follows:

ci := (
pki ,c∗i =Encpki

(ski−1)
)

, where (pki ,ski ) ← SubKeyGen(1λ,PRFr (i )),

(pki−1,ski−1) ← SubKeyGen(1λ,PRFr (i −1)).
(7.9)

Note that for public keys of this form, BlockGen does not make use of the additional
randomness r ′.

The assembly function Assemble(c0,c1, . . . ,cd ) is a straightforward concatenation
of all the blocks: Assemble(c0,c1, . . . ,cd ) := (c0,c1, . . . ,cd ).

Simulatability as in Definition 7.3.1 is also easily satisfied: a simulator S , for a
public key pk and index i , reads out the pair (pki ,c∗i ). It can thereby exactly produce
the list (c0,c1, . . . ,cd ).

7.3.2 Instantiation from any leveled (Q)FHE

We now observe that we can instantiate a (Q)FHE with decomposable public keys
from any leveled scheme, even ones that are not bootstrapped.

Decomposing the public key of a general QFHE scheme is done via garbled cir-
cuits [Yao86; App17], as we will briefly outline here.

A block ci corresponds to a single garbled gate of the circuit for KeyGen. That is,
BlockGen(1λ, i ,r,r ′) returns a garbling of the i th gate2 of KeyGen(1λ,d ,r ), using r ′ as

2The total number of blocks, K (λ,d), will be the number of gates in KeyGen(1λ,1d ,r ). Since the number
of gates is polynomial in λ, it suffices for the length of the PRF seed r ′ to be linear in λ.
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a PRF seed to generate sufficient randomness for the garbling. A separate block (e.g.,
c0) contains the required encoding/decoding information to use the garbled circuit.
To assemble the public key, a user concatenates all garbled gates, and evaluates the
garbled circuit to obtain the output pk. Conversely, by the privacy property of garbled
circuits [BHR12], a simulator given only the security parameter λ and the output pk
of the garbled circuit, can reproduce a garbled circuit that is indistinguishable from
the actual garbled circuit. It can then return the gates of that simulated garbled circuit
as the blocks ci .

Any result relying on the decomposability of the public key of a non-bootstrapping
based QFHE scheme of course also relies on any computational assumptions required
for the security of the garbled-circuit construction.

7.4 Impossibility with respect to dependent auxiliary in-
formation

In this section, we show impossibility of virtual-black-box quantum obfuscation of
classical point functions under dependent auxiliary information. It sets the stage
for our main result, Theorem 7.5.1, where we incorporate the auxiliary information
into the circuit, constructing a circuit class which is unobfuscatable even without the
presence of any auxiliary information. Although the result in the current section is
perhaps less surprising, the proof contains the most important technical details of
our work.

The impossibility result requires two cryptographic primitives, both of which can
be built from the hardness of LWE: (1) quantum fully homomorphic encryption with
classical client-side operations ([Mah18a; Bra18], see Section 7.2.2), and (2) classical
vbb obfuscation of compute-and-compare functions [WZ17; GKW17]. Our result
therefore holds under the assumption that LWE is hard. The least favorable LWE
parameters are required for the obfuscation of compute-and-compare functionalities,
and are discussed in Section 7.4.1.

In Section 7.4.1, we describe the classical obfuscator for compute-and-compare
functions that we use. We will apply it to a specific class of compute-and-compare
functions with a specific type of auxiliary information. In Section 7.4.2, we use this
specific application to define a class of circuits and auxiliary-information strings
that is unobfuscatable in the quantum vbb sense. The impossibility proof follows in
Section 7.4.3.

7.4.1 Classical obfuscation of compute-and-compare functions

Under the assumption that LWE (with polynomial dimension and exponential modu-
lus in the security parameter λ) is hard, it is possible to classically obfuscate compute-
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and-compare functions [WZ17; GKW17]. We will write “LWE*” to denote their specific
variant of the LWE assumption. We note that LWE is known to be at least as hard
as worst-case lattice problems [Reg05; PRS17]. In particular, the aforementioned
parameter regime LWE* translates to the worst-case hardness of the Gap Shortest
Vector Problem (GapSVP) with sub-exponential approximation factor (in the dimen-
sion of the lattice). There is currently no known super-polynomial quantum speedup
for GapSVP, and the best known quantum (and classical) algorithms require sub-
exponential running time.

Wichs and Zirdelis [WZ17] achieve so-called distributional virtual-black-box ob-
fuscation of compute-and-compare functions CC f ,y , assuming that the target value y
has sufficient pseudo-entropy given a description of the function f . The obfuscation
is even secure in the presence of (dependent) auxiliary information, so long as the
pseudo-entropy of the target value remains high, even conditioned on this auxiliary
information.

In our construction, we provide a classically-obfuscated compute-and-compare
function as auxiliary information to a quantum obfuscation. We will require that the
target value of the compute-and-compare function is sufficiently random, even given
the rest of the auxiliary information (including the quantum obfuscation).

More specifically, for any leveled quantum homomorphic-encryption scheme
(KeyGen, Enc, Eval, Dec), fixed bit string α, depth parameter d , and a classical obfus-
cation procedure O(·), define a distribution ensemble {Dα,d

λ
}λ∈N that samples

(pk, α̃,osk,β) ← Dα,d
λ

as (pk,sk) ←KeyGen(1λ,1d ),

α̃←Encpk(α),

β←R {0,1}λ ,

osk,β←O
(
CCDecsk ,β

)
, (7.10)

where CCDecsk ,β is a compute-and-compare function as in Definition 7.2.7. For each
α, d , and λ, the target value β is chosen independently of all other information: its
pseudo-entropy is λ, even conditioned on α̃ and Decsk. Therefore, there exists an
obfuscation procedure for this class of compute-and-compare programs that has
distributional indistinguishability in the following sense:

Lemma 7.4.1 (Application of [WZ17, Theorem 5.2]). Under the LWE* assumption,
there exists a classical obfuscation procedure OCC(·) and a (nonuniform) simulator S
such that for all α and d,

(pk, α̃,osk,β)
c≈ (pk, α̃,S(1λ,params)),

where (pk, α̃,osk,β) ← Dα,d
λ

using OCC(·) as the obfuscation procedure O(·), and params
is some information that is independent of sk and β (e.g., it may contain the size of the
circuit and/or λ).
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In the rest of this chapter, OCC(·) will implicitly be the obfuscation procedure used
in the distributions Dα,d

λ
.

We note that strictly speaking, the proof of Lemma 7.4.1 only contains a classical
reduction from the hardness of distinguishing the aforementioned distributions to
the hardness of solving LWE. However, proofs by (either Karp or Turing) classical
polynomial-time reduction from A to B imply that any solver for A can be translated
into a solver for B with comparable complexity. So in particular, if the solver for A
runs in quantum polynomial time, then so will the resulting solver for B . Therefore,
Lemma 7.4.1 holds for quantum distinguishers as well.

As a consequence of Lemma 7.4.1, we show that it is hard to guess the value of
α, given only a ciphertext α̃ for α, and an obfuscation of the compute-and-compare
function. Intuitively, since the information α is completely independent of the target
value β, the obfuscation effectively hides the secret key sk that would be necessary to
learn α.

Lemma 7.4.2. Under the LWE* assumption, there exists a negligible function negl(·)
such that for any QPT algorithm A and any d,

Pr[A(pk, α̃,osk,β) =α] É negl(λ). (7.11)

Here, the probability is over α←R {0,1}λ, (pk, α̃,osk,β) ← Dα,d
λ

, and the execution of A.

Proof. The result follows almost directly from Lemma 7.4.1, except that we want to
bound the probability that A outputs the multi-bit string α, whereas Lemma 7.4.1
only deals with algorithms with a single-bit output.

To bridge the gap, define an algorithm A′
α that runs A on its input, and compares

the output of A to α: if they are equal, A′
α outputs 1; otherwise, it outputs 0.

For any fixed value of α, we have

Pr[A(pk, α̃,osk,β) =α] = Pr[A′
α(pk, α̃,osk,β) = 1] (7.12)

(∗)≈ Pr[A′
α(pk, α̃,S(1λ,params)) = 1] (7.13)

= Pr[A(pk, α̃,S(1λ,params)) =α]. (7.14)

The approximation (*) follows from Lemma 7.4.1, and holds up to a difference of
negl(λ).

To complete the proof, note that S(1λ,params) depends neither on α nor on sk.
Thus, randomizing over α again, and invoking privacy of the encryption, we get

Pr[A(pk, α̃,osk,β) =α] ≈ Pr[A(pk, α̃,S(1λ,params)) =α] (7.15)

É negl(|α|) = negl(λ). (7.16)
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We have thus established that, even in the presence of an obfuscated compute-
and-compare function that depends on the secret key, encryptions remain secure (in
the one-way sense). For this security to hold, it is important that the target value β is
sufficiently independent of the plaintext α.

7.4.2 An unobfuscatable circuit class

In this subsection, we define the class of circuits and auxiliary-information strings that
we will prove unobfuscatable. Like Barak et al. [BGI+01], we will exploit the idea that
access to an object (circuit or quantum state) that allows the evaluation of a function
is more powerful than mere black-box access to the functionality: in particular, it
allows the homomorphic evaluation of the function. For this argument to work, it is
important that the function is not easily learnable through black-box access. We will
use point functions, as in [BGI+01]: with black-box access only, it is hard to tell the
difference between a point function and the all-zero function Zλ : {0,1}λ→ {0λ}, that
always returns the all-zero string of length λ.

The circuits in the unobfuscatable class will be accompanied by auxiliary informa-
tion containing the public key (suitable for homomorphic evaluations up to depth
d), an encryption of α, and a classical obfuscation of the compute-and-compare
function that decrypts its input and compares the plaintext to β. The depth parame-
ter d is not fixed a priori: instead, different values of d are included into the class
of possible auxiliary-information strings. For any obfuscator (OQ (·),J ), there is a
(polynomial-size) auxiliary-information string included in the class that contains a
public key suitable for homomorphically evaluating J .

Consider the class
⋃

d∈[2λ]

(
Cpoint
λ,d ∪Czero

λ,d

)
of circuits plus auxiliary information,

where

Cpoint
λ,d :=

{
(Pα,β, (pk, α̃,osk,β))

∣∣∣ α ∈ {0,1}λ, (pk, α̃,osk,β) ∈ supp(Dα,d
λ

)
}

, (7.17)

Czero
λ,d :=

{
(Zλ, (pk, α̃,osk,β))

∣∣∣ α ∈ {0,1}λ, (pk, α̃,osk,β) ∈ supp(Dα,d
λ

)
}

. (7.18)

The class Cpoint
λ,d contains all λ-bit point functions, together with an encryption of the

point input α, and a function that checks whether a ciphertext decrypts to the target
value β. Czero

λ,d contains the all-zero function Zλ (which is itself a point function), but
still with auxiliary information for the possible values of α and β.

Suppose that some quantum obfuscation (OQ (·)),J ) exists. We define a QPT
algorithm A, which expects an obfuscation ρ =OQ (Pα,β) (or OQ (Zλ)), together with
the classical auxiliary information aux= (pk, α̃,osk,β)). On general inputs ρ and aux=
(key,ctxt,obf) of this form, let A do as follows:

1. Run QFHE.Evalkey
(
J ,Enckey(ρ)⊗|ctxt〉〈ctxt|) to homomorphically evaluate

the interpreter algorithm J . Let q be the depth of the circuit for J : because
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the interpreter is efficient, q = poly(λ). If d Ê q , ρ =OQ (Pα,β), key = pk, and
ctxt = α̃, then this step results in an encryption of β with high probability. If
d Ê q , ρ =OQ (Zλ), key = pk, and ctxt = α̃, then it results in an encryption of
0λ. (Note that we use classical and quantum ciphertexts for the QFHE scheme
interchangeably here: see Section 7.2.2 for a justification.) If d < q , then the
public evaluation key is insufficient for the evaluation of J : in that case, output
0 and abort the computation.

2. Run obf on the output of the previous step. If obf = osk,β, this will indicate
whether the previous step resulted in a ciphertext for β (in that case, output 1)
or not (in that case, output 0).

If d > q , then the length of the auxiliary information may be superpolynomial in λ,
and the runtime of the above algorithm A may not be polynomial in λ. If d < q , then A

fails to tell the difference between an element from Cpoint
λ,d and Czero

λ,d . However, for our
impossibility result, it suffices that A has the following intended behavior for d = q .
(But note that we cannot define our circuit class to contain only circuits with d = q ,
since q depends on the specific obfuscator.)

A will almost certainly output 1 when given an element from Cpoint
λ,q , because

of the functional equivalence of the quantum and classical obfuscations, and the
correctness of the homomorphic evaluation. Similarly, when given an element from

Czero
λ,q −Cpoint

λ,q , it will almost certainly output 0. Formally, for all α,β ∈ {0,1}λ− {0λ}, and

letting d = q ,

Pr
[

A(OQ (Pα,β),pk, α̃,osk,β) = 1
]Ê 1−negl(λ), (7.19)

Pr
[

A(OQ (Zλ),pk, α̃,osk,β) = 1
]É negl(λ). (7.20)

The vastly different output distribution of A when given an obfuscation of a point
function versus the zero function are due the fact that A has an actual representation
of the function to feed into the interpreter J . In the proof in the next subsection, we
will see that a simulator, with only black-box access to these functionalities, will not
be able to make that distinction.

7.4.3 Impossibility proof

We are now ready to state and prove the impossibility theorem for quantum obfus-
cation of classical circuits with dependent auxiliary input. We reiterate that the two
assumptions (quantum FHE and compute-and-compare obfuscation) can be realized
under the LWE* assumption.

Theorem 7.4.3 (Impossibility of quantum obfuscation w.r.t. auxiliary input). Sup-
pose that a classical-client quantum fully homomorphic encryption scheme QFHE
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exists that satisfies Definition 7.2.4, and a classical obfuscation procedure OCC(·) for
compute-and-compare functionalities exists that satisfies Lemma 7.4.1. Then any (not

necessarily efficient) quantum obfuscator (OQ (·),J ) for the class
⋃

d∈[2λ]

(
Cpoint
λ,d ∪Czero

λ,d

)
satisfying conditions 1 (polynomial expansion) and 2 (functional equivalence) from
Definition 7.2.3 cannot be virtual black-box under the presence of classical dependent
auxiliary input, i.e., cannot satisfy condition 3 from Definition 7.2.3 where both A and
S get access to a classical string aux (which may depend on C ).

It may seem that the class
⋃

d∈[2λ]

(
Cpoint
λ,d ∪Czero

λ,d

)
, consisting of point functions,

is classically obfuscatable using OCC(·) from [WZ17; GKW17]. That obfuscation is
secure if α (which is the target value if we view Pα,β as the multi-bit output compute-
and-compare function CCid,α,β) is unpredictable given the auxiliary information
aux= (pk, α̃,osk,β). On the surface, that seems to be the case: only an encryption of
α is available in the auxiliary information. However, the secret key sk is present as
part of the compute-and-compare function CCDecsk ,β. That function is obfuscated,
but the obfuscation is not secure in the presence of (an obfuscation of) Pα,β. Thus,
the compute-and-compare obfuscation results [WZ17; GKW17] almost apply to the

class
⋃

d∈[2λ]

(
Cpoint
λ,d ∪Czero

λ,d

)
, but not quite. Hence we are able to prove impossibility

of obfuscating it, which we do below.

Proof. The proof structure is similar to the classical impossibility proof [BGI+01],
and is by contradiction: assume that a quantum obfuscation (OQ (·),J ) for the class⋃

d∈[2λ]

(
Cpoint
λ,d ∪Czero

λ,d

)
does exist that satisfies all three conditions. We will show that

the output distribution of the algorithm A defined in Section 7.4.2 is approximately
the same for every element of the class, contradicting Equations (7.19) and (7.20).

By the assumption of the existence of a secure quantum obfuscation (OQ (·),J ),
there exists a simulator S such that

∣∣∣Pr[A(OQ (Pα,β),aux) = 1]−Pr[SPα,β (1λ,aux) = 1]
∣∣∣É negl(λ), and (7.21)∣∣∣Pr[A(OQ (Zλ),aux) = 1]−Pr[SZλ (1λ,aux) = 1]
∣∣∣É negl(λ). (7.22)

Here, the probability is taken over α←R {0,1}λ and aux = (pk, α̃,OCC(CCDecsk ,β)) ←
Dα,q
λ

, where q = poly(λ) is the depth of the circuit for J . Note that S does not depend
on α, β, sk, or pk.

In the remainder of this proof we show that for any S (independent of α, β, sk,
pk), ∣∣∣Pr[SPα,β (1λ,aux) = 1]−Pr[SZλ (1λ,aux) = 1]

∣∣∣É negl(λ), (7.23)
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from which it can be concluded that∣∣Pr[A(OQ (Pα,β),aux) = 1]−Pr[A(OQ (Zλ),aux) = 1]
∣∣É negl(λ). (7.24)

Since Equations (7.19) and (7.20) imply that this difference must be at least 1−negl(λ),
Equation (7.24) yields a contradiction.

To show that Equation (7.23) holds, i.e., to bound the difference in output prob-
abilities of S when given an oracle for Pα,β versus an oracle for Zλ, we employ the
one-way to hiding lemma (Lemma 2.4.4). It says that there exists a QPT algorithm B
such that∣∣∣Pr[SPα,β (1λ,aux) = 1]−Pr[SZλ (1λ,aux) = 1]

∣∣∣É 2d ′ ·
√

Pr[B Zλ (1λ,aux) =α], (7.25)

where d ′ = poly(λ) is the query depth of S . However, by Lemma 7.4.2, the probability
that B outputs α when given the auxiliary information aux= (pk, α̃,osk,β) is negligible

in λ. Granting B access to the zero-oracle and the additional input 1λ does not
increase this probability, since the value of λ can already be deduced from aux.

We can thus conclude that the difference in Equation (7.25) is negligible, and
Equation (7.23) holds, as desired.

We end this section with a few remarks: we describe some variants and generalizations
of Theorem 7.4.3 which almost immediately follow from the presented proof.

Remark. The proof for Theorem 7.4.3 also works if we replace OCC(CCDecsk ,β) inside

the distributions Dα,d
λ

with OQ (CCDecsk ,β), the quantum obfuscation we get from
the assumption. This adaptation renders a quantum obfuscator for point functions
impossible with respect to dependent auxiliary quantum input: a slightly weaker state-
ment, but it does not require the existence of a classical obfuscator for compute-and-
compare programs. In particular, the required LWE parameters are better, because we
only need the assumption of quantum fully homomorphic encryption.

Remark. Even a quantum obfuscator (OQ (·),J ) for
⋃

d∈[2λ]

(
Cpoint
λ,d ∪Czero

λ,d

)
with non-

negligible errors in the functional equivalence and/or the virtual-black-box property
would lead to a contradiction in the proof of Theorem 7.4.3. Concretely, let ε f de-
note the error for functional equivalence, and εs denote the error for security in the
virtual-black-box sense (they are both negl(|C |) = negl(λ) in Definition 7.2.3). The
impossibility proof works for any values of ε f ,εs such that ε f + εs É 1/2 − 1/poly(λ). So
in particular, even a quantum obfuscator with small constant (instead of negligible)
errors in both conditions cannot exist.

7.5 Impossibility without auxiliary information

In this section, we will show that quantum virtual-black-box obfuscation of classical
circuits is impossible even when no auxiliary information is present. We will rely
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heavily on the class constructed in Section 7.4, essentially showing how the auxiliary
information can be absorbed into the obfuscated circuit. As a result, the unobfus-
catable circuit class itself becomes perhaps less natural, but still consists of classical
polynomial-size circuits. Thus, our theorem implies impossibility of quantum vbb
obfuscation of the class of all efficient classical circuits.

We would like to consider circuits of the following form:

Cα,β,aux(b, x) :=
{
aux= (pk, α̃,osk,β) if b = 0

Pα,β(x) if b = 1,
(7.26)

where (pk, α̃,osk,β) is generated from Dα,d
λ

, as in Section 7.4. The input bit b is a choice
bit: if it is set to 1, the function Pα,β (or Zλ) is evaluated on the actual input x, whereas
if it is set to 0, the auxiliary information is retrieved.

The idea would then be to retrieve the auxiliary information, followed by a homo-
morphic evaluation of the branch for b = 1. There is a problem with this approach,
however: since the auxiliary information aux contains the public evaluation key pk,
the circuit C grows with the length of pk. But as the circuit grows, a (non-circularly-
secure) QFHE scheme may require a larger depth parameter d , and thereby a longer
pk, to perform all evaluation steps, which then causes the circuit to grow, et cetera.

To get around this issue, the unobfuscatable circuit will generate the public key
step-by-step, in a construction inspired by Canetti et al. [CLTV15]. We will assume
that the public key of the leveled QFHE scheme is decomposable in the sense of
Definition 7.3.1.

Given a scheme with a decomposable public key, we redefine the unobfuscatable
circuit class as follows. Instead of returning the entire public key at once, the circuit
allows the user to request individual blocks ci , up to some depth d . An honest user
can run the circuit K +1 = K (d ,λ)+1 times to obtain pk = Assemble(c0,c1, . . . ,cK ).
Again, the depth d will not be fixed a priori, although it will be (exponentially) upper
bounded: the circuit will only be able to handle inputs i where |i | Éλ. Thus, only up
to 2λ blocks ci can be retrieved.

Ĉα,β,d ,r,r ′,α̃,osk,β
(b, x) :=


(α̃,osk,β) if b = 0,

BlockGen(1λ, x,r,r ′) if b = 1 and x É K (d ,λ),

⊥ if b = 1 and x > K (d ,λ),

Pα,β(x) if b = 2.

(7.27)

or

Ĉ ′
α,β,d ,r,r ′,α̃,osk,β

(b, x) :=


(α̃,osk,β) if b = 0,

BlockGen(1λ, x,r,r ′) if b = 1 and x É K (d ,λ),

⊥ if b = 1 and x > K (d ,λ),

Zλ(x) if b = 2.

(7.28)
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The first input b is now a choice trit: depending on its value, a different branch of the
circuit is executed.

We alter the distribution Dα,d
λ

from Equation (7.10), so that it does not explicitly
generate the public key anymore. That information is now generated on-the-fly by
setting b = 1. The public and secret key are deterministically computed using r
to generate the auxiliary information (α̃,osk,β) for b = 0. Consider the distribution

ensemble {Dα,d ,r
λ

}λ∈N, where

(α̃,osk,β) ← Dα,d ,r
λ

as (pk,sk) =KeyGen(1λ,1d ,r ),

α̃←Encpk(α),

β←R {0,1}λ,

osk,β← CCDecsk ,β. (7.29)

Note that the value of d does not influence the size of α̃ or osk,β (and thereby the
circuit size of Ĉ or Ĉ ′).

We can then define the following parametrized circuit classes:

Ĉpoint
λ,d :=

{
Ĉα,β,d ,r,r ′,α̃,osk,β

∣∣∣ α ∈ {0,1}λ,r,r ′ ∈ {0,1}λ, (α̃,osk,β) ∈ supp(Dα,d ,r
λ

)
}

, (7.30)

Ĉzero
λ,d :=

{
Ĉ ′
α,β,d ,r,r ′,α̃,osk,β

∣∣∣ α ∈ {0,1}λ,r,r ′ ∈ {0,1}λ, (α̃,osk,β) ∈ supp(Dα,d ,r
λ

)
}

. (7.31)

Define the circuit class Ĉpoint
λ

∪ Ĉzero
λ

, where Ĉpoint
λ

:=⋃
d :K (d ,λ)É2λ Ĉ

point
λ,d and similarly

Ĉzero
λ

:=⋃
d :K (d ,λ)É2λ Ĉzero

λ,d . Note that in all circuits in this class, the “auxiliary informa-
tion” (α̃,osk,β) is fixed. Hence, when the obfuscation of the compute-and-compare
function is requested by setting b = 0, the circuit always returns the same obfuscation
that depends on the same secret key sk.

Similarly to the setting with auxiliary input, there exists a QPT algorithm A′ that

has significantly different output distributions when given a circuit from Ĉpoint
λ,d versus

a circuit from Ĉzero
λ,d , for the right value of d . On an input state ρ, we define A′ as

follows:

1. Run Jrec
(
ρ, |b = 0〉〈b = 0|⊗ ∣∣0λ〉〈

0λ
∣∣), where Jrec is the input-recovering ver-

sion of the interpreter circuit (see Lemma 7.2.8). If ρ is an obfuscation of a
circuit in Ĉpoint ∪ Ĉzero, this will result in a state (negligibly close to) ρ⊗|α̃〉〈α̃|⊗∣∣osk,β

〉〈
osk,β

∣∣. Measure the second and third registers to obtain α̃ and osk,β.

2. Let q be the depth of the interpreter circuit J . Because the interpreter should
be efficient, q = poly(λ). Sequentially run Jrec(ρ, |b = 1〉〈b = 1| ⊗ |i 〉〈i |) for all
0 É i É K = K (q,λ) to obtain (c0,c1, . . . ,cK ), and compute the public evaluation
key pk =Assemble(c0,c1, . . . ,cK ), suitable for homomorphic evaluations of up
to depth q . Note that the key pk is only revealed in its entirety if the given circuit
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has parameter d = q . If d < q , A′ will notice that ⊥ is returned for some queries,
and outputs 0 at this point.

3. Run QFHE.Evalpk
(
J ,Encpk(ρ)⊗ ∣∣Encpk(b = 2)

〉〈
Encpk(b = 2)

∣∣⊗|α̃〉〈α̃|). As in
Section 7.4.2, this will result in a ciphertext for β (if ρ was an obfuscation of a

circuit in Ĉpoint
λ

) or a ciphertext for 0λ (if ρ was an obfuscation of a circuit in

Ĉzero
λ

), provided that d = q .

4. Run osk,β on the output of the previous step. Doing so will indicate whether the
previous step resulted in a ciphertext for β or not. If yes, output 1; otherwise,
output 0.

Let (OQ (·),J ) be an obfuscator. The algorithm A′, when given a random obfus-

cated circuit from Ĉpoint
λ,q , will almost certainly output 1, where q is the depth of J . At

the same time, an element from Ĉzero
λ,q − Ĉpoint

λ,q will almost certainly result in the output

0. More formally, for all α,r ∈ {0,1}λ and d = q ,

Pr
[

A′(OQ (Ĉα,β,d ,r,r ′,α̃,osk,β
)) = 1

]
Ê 1−negl(λ), (7.32)

Pr
[

A′(OQ (Ĉ ′
α,β,d ,r,r ′,α̃,osk,β

)) = 1
]
É negl(λ). (7.33)

The probability is taken over Dα,d ,r
λ

, r ′, and the internal randomness of A′. Com-
pare these inequalities to Equations (7.19) and (7.20).

We are now ready to state our main theorem.

Theorem 7.5.1 (Impossibility of quantum obfuscation). Suppose that a classical-
client quantum fully homomorphic encryption scheme QFHE exists that satisfies Defi-
nitions 7.2.4 and 7.3.1, and a classical obfuscation procedure OCC(·) for compute-and-
compare functionalities exists that satisfies Lemma 7.4.1. Then any (not necessarily

efficient) quantum obfuscator (OQ (·),J ) for the class Ĉpoint
λ

∪Ĉzero
λ

satisfying conditions
1 (polynomial expansion) and 2 (functional equivalence) from Definition 7.2.3 cannot
be virtual black-box, i.e., cannot satisfy condition 3 from Definition 7.2.3.

Corollary 7.5.2. If the LWE* assumption holds, the class of classical polynomial-
size circuits cannot be quantum virtual-black-box obfuscated in the sense of Defi-
nition 7.2.3.

Proof of Theorem 7.5.1. We again prove the statement by contradiction, assuming

that there does exist an obfuscator (OQ (·),J ) that securely obfuscates Ĉpoint
λ

∪ Ĉzero
λ

.
Let q be the depth of J , so that K (q,λ) is the number of blocks ci of the evaluation

key required by A′ to successfully distinguish between an element of Ĉpoint
λ,q and of

Ĉzero
λ,q .
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By the assumption that (OQ (·),J ) is secure, there must exist a simulator S0 such
that for all α,r ∈ {0,1}λ (and setting d = q),∣∣∣∣Pr[A′(OQ (Ĉα,β,q,r,r ′,α̃,osk,β

)) = 1]−Pr[S
Ĉα,β,q,r,r ′ ,α̃,osk,β

0 (1λ) = 1]

∣∣∣∣É negl(λ), (7.34)∣∣∣∣∣Pr[A′(OQ (Ĉ ′
α,β,q,r,r ′,α̃,osk,β

)) = 1]−Pr[S
Ĉ ′
α,β,q,r,r ′ ,α̃,osk,β

0 (1λ) = 1]

∣∣∣∣∣É negl(λ). (7.35)

The probabilities are taken over (α̃,osk,β) ← Dα,d ,r
λ

and r ′ ←R {0,1}λ, and the internal
randomness of A′ and S0.

The output distribution of S0 can be exactly simulated by another simulator, S1,
that only has access to an oracle for Pα,β or Zλ, and gets the auxiliary information pk,
α̃, and osk,β as input. S1 can simply run S0, simulating each oracle query using its
own oracle, auxiliary input, or a combination thereof. If (part of) the query of S0 is
for some block ci , S1 can use the decomposability of pk to compute the individual
blocks. We formally show the existence of such an S1 in Corollary 7.5.4 below.

We can thus conclude that for all α,r ∈ {0,1}λ,∣∣∣Pr[A′(OQ (Ĉα,β,q,r,r ′,α̃,osk,β
)) = 1]−Pr[SPα,β

1 (1λ, α̃,osk,β,pk) = 1]
∣∣∣É negl(λ), (7.36)∣∣∣Pr[A′(OQ (Ĉ ′

α,β,q,r,r ′,α̃,osk,β
)) = 1]−Pr[SZλ

1 (1λ, α̃,osk,β,pk) = 1]
∣∣∣É negl(λ). (7.37)

Again, the probabilities are over Dα,d ,r
λ

and r ′, A′, and S1.
However, by Equation (7.23) in the proof of Theorem 7.4.3, the output distribution

of S1 can only differ negligibly between the two different oracles. Thus, we have∣∣∣Pr[A′(OQ (Ĉα,β,q,r,r ′,α̃,osk,β
)) = 1]−Pr[A′(OQ (Ĉ ′

α,β,q,r,r ′,α̃,osk,β
)) = 1]

∣∣∣É negl(λ). (7.38)

This contradicts our observation that on input Dα,β,k,q,aux, A′ will almost always
output 1, whereas on input Dα,β,k,q,aux, it will almost always output 0.

This contradicts our observation in Equations (7.32) and (7.33) that on input
Ĉα,β,q,r,r ′,α̃,osk,β

, A′ will almost always output 1, whereas on input Ĉ ′
α,β,q,r,r ′,α̃,osk,β

, it

will almost always output 0.

We end this chapter with an auxiliary lemma, and its corollary that was used in
the proof of Theorem 7.5.1.

Lemma 7.5.3. Let g : {0,1}m → {0,1}n for m,n ∈ N, and let y ∈ {0,1}n . Let f : {0,1}×
{0,1}m → {0,1}n be defined by

f (b, x) :=
{

y if b = 0

g (x) if b = 1.
(7.39)
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Then for every QPT A, there exists a simulator S such that for all f , g of the form
described above, and all input states ρ:

Pr[A f (ρ) = 1] = Pr[Sg (ρ, y) = 1]. (7.40)

Proof. Recall that since A and S are quantum algorithms, they access their oracles
in superposition: that is, A has access to the map defined by |x〉 |z〉 7→ |x〉 ∣∣z ⊕ f (x)

〉
,

and S has access to the map defined by |x〉 |z〉 7→ |x〉 ∣∣z ⊕ g (x)
〉

. The simulator S runs
A on input ρ, and simulates any oracle calls to f (on inputs registers B X and output
register Z ) using two oracle calls to g . It only needs to prepare an auxiliary register in
the state |0n〉, and run the following circuit:

B • X • X

X
g g

|0n〉 •
Z∣∣y
〉 •

(7.41)

To see that this circuit exactly simulates a query to f on B X Z , consider an arbitrary
query state ∑

i
αi |bi , xi 〉B X |zi 〉Z ∣∣ϕi

〉R , (7.42)

where R is some purifying register. The state on B X Z R (plus the two auxiliary registers
containing |0n〉 and

∣∣y
〉

) after the above circuit is executed, is equal to∑
i
αi |bi , xi 〉X B ∣∣0n〉∣∣zi ⊕b · g (xi )⊕ (1−b) · y

〉Z ∣∣y
〉∣∣ϕi

〉R (7.43)

= ∑
i
αi |bi , xi 〉X B ∣∣0n〉∣∣zi ⊕ f (xi )

〉Z ∣∣y
〉∣∣ϕi

〉R , (7.44)

which is exactly the state that would result from a direct query to f .

Corollary 7.5.4. Let Ĉpoint
λ

be as in Equation (7.30), and q be as in the definition of
A′ below it. Then for any QPT S0, there exists a QPT simulator S1 such that for all
α,r ∈ {0,1}λ,∣∣∣∣Pr[S

Ĉα,β,q,r,r ′ ,α̃,osk,β

0 (1λ) = 1]−Pr[SPα,β

1 (1λ, α̃,osk,β,pk) = 1]

∣∣∣∣É negl(λ). (7.45)

A similar statement holds for circuits from Ĉzero
λ

.
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Proof. The statement is proven via an intermediate simulator S2. This simulator is
constructed by repeated application of Lemma 7.5.3, so that for all α,r ,∣∣∣∣Pr[S

Ĉα,β,q,r,r ′ ,α̃,osk,β

0 (1λ) = 1]−Pr[SPα,β

2 (1λ, α̃,osk,β,c0,c1,c2, . . . ,cK ,⊥) = 1]

∣∣∣∣É negl(λ),

(7.46)

where K = K (q,λ) as in Definition 7.3.1. On the right-hand side, the probability is
additionally over a random choice of r ′ (resulting in the sequence (c0,c1,c2, . . . ,cK )),
representing the internal randomness of S2.

Next, we apply the simulatability property of Definition 7.3.1. It states that there
exists a simulator S3 that, given a public key, can generate the distribution over
(c0,c1,c2, . . . ,cK ) itself. Define

SPα,β

1 (1λ, α̃,osk,β,pk) :=SPα,β

2 (1λ, α̃,osk,β,S3(pk),⊥), (7.47)

and the corollary follows.

7.6 Conclusion

In this chapter, we answered an open question posed by Alagic and Fefferman [AF16]
in the negative: under the assumption that a variant of the learning-with-errors
problem is hard for quantum computers, it is not possible to quantumly vbb obfuscate
the general class of classical circuits.

We achieved this impossibility result by adapting Barak et al.’s proof for the classi-
cal case. We observed that even if the obfuscation is a quantum state, and therefore
in principle not reusable, we can use it to evaluate the obfuscated multiple (unen-
crypted) inputs, since the output is almost deterministic. This reusability trick does
not work if the output is the result of a homomorphic evaluation: although the plain-
text is deterministic, the ciphertext may not be. We used a classical obfuscation of
compute-and-compare functions to ensure that the homomorphic evaluation can
happen last, so that reusability is not required.

We showed impossibility in two steps: first, we showed that it is impossible to
obfuscate compute-and-compare functions in the presence of dependent auxiliary
information. Then, to move the auxiliary information inside the circuit class, we used
the fact that the public key of a classical-client QFHE scheme is decomposable into
blocks of size independent of the evaluation depth.

7.6.1 Future directions

The strongest assumption in our work is the existence of the classical vbb obfuscator
for compute-and-compare functions, which relies on a variant of LWE. It is necessary
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because the QFHE evaluation may destroy the obfuscation state when the superposi-
tion of output ciphertexts is measured. However, it is not clear if this measurement
actually destroys any information on the plaintext level, since the plaintext value is
deterministic. Thus, it may be possible to recover the (plaintext) obfuscation state
after the QFHE evaluation. In that case, it is not necessary to classically obfuscate the
compute-and-compare function: it can simply be part of the quantum-obfuscated
functionality.

Other open questions are about possibilities rather than impossibilities. What
circuit classes can be vbb obfuscated into quantum states? Is quantum vbb obfus-
cation stronger than classical vbb obfuscation, in the sense that it can obfuscate
circuit classes that classical vbb cannot? Also, the weaker notion of indistinguishabil-
ity obfuscation (iO) (also introduced by Barak et al. [BGI+01]) is not affected by our
impossibility result: it may still be possible to classically or quantumly iO obfuscate
classical functionalities. Could such a construction be lifted into the quantum realm,
so that we can (quantum) iO obfuscate quantum functionalities?
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Figure A: Overview of quantum homomorphic-encryption schemes discussed in Chapters 5
and 6. The table lists their abbreviations (in boldface), intended meaning (in quotes), location
within this dissertation, and several key properties.





Samenvatting

Deze dissertatie verkent de mogelijkheden en onmogelijkheden om quantumberekenin-
gen veilig te delegeren en distribueren. We bouwen concrete protocollen voor ver-
scheidene quantumcryptografische primitieven (quantumberichtauthenticatie, meer-
partijenquantumberekening en verifieerbare homomorfische quantumencryptie),
maar laten ook zien dat één ander primitief onmogelijk te verwezenlijken blijkt in
algemene zin (quantumobfuscatie als virtuele zwarte doos).

Voor de primitieven die we wel kunnen verwezenlijken, moeten we vaak aan-
names doen over de computationele vermogens van de aanvaller en diens quantum-
computer. Zulke computationele aannames zijn nodig, omdat de varianten van de
gewenste primitieven informatietheoretisch onmogelijk zijn. Desondanks zijn onze
protocollen informatietheoretische uitbreidingen van hun klassieke varianten: de
enige computationele aannames zijn ook al nodig om de klassieke primitieven te
kunnen realiseren. Het voordeel van deze aanpak is dat alle vorderingen in klassieke
en post-quantumcryptografie ook direct van invloed zijn op onze protocollen.

Bij alle cryptografische primitieven die in deze dissertatie worden bestudeerd,
speelt verificatie een cruciale rol. Of een client nu de uitkomst wil controleren van een
berekening die hij heeft uitbesteed aan een onbetrouwbare server, of dat een speler
in een meerpartijenprotocol de eerlijkheid van de andere spelers wil monitoren: de
eerlijke partij heeft altijd een mechanisme nodig om zich ervan te verzekeren dat de
oneerlijke partijen niet af kunnen wijken van het protocol, zonder dat dit opvalt.

In Hoofdstuk 3 bekijken we een belangrijke bouwsteen voor verifieerbare quan-
tumberekeningen: de quantumberichtauthenticatiecode. Hoewel die normaal gespro-
ken wordt gebruikt om ervoor te zorgen dat een bericht niet kan worden aangepast
nadat het is verstuurd, kan een berichtauthenticatiecode ook worden toegepast om
één bepaalde operatie af te dwingen op het bericht: dit staat bekend als (quan-
tum)berekening op geauthenticeerde data, ook wel (Q)CAD. We bestuderen de relatie
tussen een eigenschap die (strong) purity testing heet, en het vermogen van een code
om de integriteit te waarborgen van de cijfertext, in plaats van alleen van de klare
tekst. Verder karakteriseren we de gevallen waarin de encryptiesleutel kan worden
hergebruikt. We geven een overzicht van bestaande quantumauthenticatiecodes en
bouwen twee nieuwe variaties op de zogenoemde trap code, een authenticatiecode
die specifiek geschikt is voor QCAD. Eén van deze nieuwe variaties is strong purity
testing, en realiseert cijfertekstauthenticatie met sleutelhergebruik. De andere variatie
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verschaft slechts inverse-polynomiale veiligheid, maar het versleutelen kan worden
gedaan met een quantumgeheugen van constante grootte. De constructies in dit
hoofdstuk zijn informatietheoretisch.

In Hoofdstuk 4 geven we een protocol voor meerpartijenquantumberekening,
waarbij een aantal spelers een gezamenlijke quantumberekening doen, terwijl ze hun
invoeren geheim willen houden van de andere spelers. Voorheen waren er slechts
protocollen bekend als een strikte minderheid van de spelers oneerlijk was, of als
er in totaal slechts twee spelers waren. Wij generaliseren het tweespelerprotocol tot
een veilig protocol voor meerpartijenquantumberekeningen voor k spelers (voor elk
aantal k), en we bewijzen dat het veilig is tot k −1 samenspannende aanvallers. Om
efficiëntie te bereiken, ontwikkelen we een nieuw publiekelijk verificatieprotocol
voor de Cliffordauthenticatiecode en een testprotocol voor magischetoestandinvo-
eren. Ons protocol steunt op klassieke meerpartijenberekening en de bijbehorende
computationele aannames.

In Hoofdstuk 5 bestuderen we homomorfische quantumencryptie, waarbij een
minder sterke client een Cliffordcircuit kan uitbesteden aan een sterkere server. Er
bestaat al een simpel protocol, gebaseerd op klassieke homomorfische encryptie; wij
laten zien dat het circuits geheimhoudt. Bij theoretische toepassingen van klassieke
(vol)homomorfische encryptie is het vaak noodzakelijk dat de client de berekening kan
verifiëren tijdens het ontsleutelen. We definiëren een nieuw primitief, “verifieerbare
homomorfische quantumencryptie”, gaan nauwkeurig na welk soort compactheid in
deze context kan worden verwacht, en geven twee equivalente veiligheidsdefinities:
een semantische en een spelgebaseerde. We bouwen een protocol voor verifieerbare
homomorfische quantumencryptie dat het mogelijk maakt om, op noninteractieve
wijze, Cliffordberekeningen te delegeren en verifiëren. De verificatie is bijna helemaal
klassiek; voor berekeningen die met een klassieke toestand beginnen en eindigen, is
deze zelfs volledig klassiek.

In Hoofdstuk 6 breiden we de resultaten van Hoofdstuk 5 uit naar volhomo-
morfishe quantumencryptie, door een procedure te ontwerpen waarmee de niet-
Cliffordpoort T geëvalueerd kan worden. Met behulp van technieken van onmiddeli-
jke nonlocale quantumberekening, construeren we een “T-poortgadget”, een quan-
tumtoestand die de geheime sleutel niet onthult, maar tegelijkertijd wel de server
in staat stelt om tijdens de berekening fouten te corrigeren die afhangen van die
geheime sleutel. De grootte van dit gadget hangt af van de ruimtecomplexiteit van de
ontsleutelfunctie van het onderliggende klassieke homomorfische-encryptieschema.
Het resulterende protocol verschaft geheimhouding tegen aanvallen met gekozen
klare teksten (CPA). We laten zien hoe dit protocol kan worden uitgebreid om ook
verifieerbaarheid, in de zin van het vorige hoofdstuk, te verschaffen. Als een eerste
applicatie van het verifieerbare protocol beschrijven we hoe eenmalige quantumpro-
gramma’s kunnen worden geconstrueerd van klassieke eenmalige programma’s en
volhomomorfische quantumencryptie.
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In Hoofdstuk 7 laten we zien dat het, onder een variant van de learning-with-
errorsaanname, onmogelijk is om klassieke circuits naar quantumtoestanden te ob-
fusceren. Obfuscatie als virtuele zwarte doos is een sterk cryptografisch primitief:
het versleutelt een circuit terwijl de volledige invoer-/uitvoerfunctionaliteit wordt
behouden. Een opmerkelijk resultaat van Barak et al. [BGI+01] zegt dat een algemene
obfusceerder die klassieke circuits naar klassieke circuits obfusceert niet kan bestaan.
Een veelbelovende denkrichting, die dit onmogelijkheidsresultaat omzeilt, was om
klassieke circuits naar quantumtoestanden te obfusceren, omdat die mogelijk beter
in staat zijn om informatie over het geobfusceerde circuit te verbergen. Wij laten
zien dat deze quantumvariant op obfuscatie als virtuele zwarte doos in het algemeen
onmogelijk is voor klassieke circuits. Al doende laten we zien dat, als er klassieke
hulpinvoeren aanwezig zijn die afhangen van het circuit, quantumobfuscatie als
virtuele zwarte doos zelfs niet mogelijk is voor de kleine klasse van klassieke punt-
functies.





Abstract

This dissertation explores the possibilities and impossibilities of securely delegating
and distributing quantum computations. We construct explicit protocols for several
quantum-cryptographic primitives (quantum message authentication, multi-party
quantum computation, and verifiable quantum homomorphic encryption), but show
that one other primitive is impossible to achieve in general (quantum virtual black-box
obfuscation).

For the primitives that we do realize, we often need to make assumptions on the
computational power of the adversary’s quantum computer. Such computational as-
sumptions are necessary because the variants of the primitives that we wish to achieve
are impossible information-theoretically. Nonetheless, our protocols are information-
theoretic upgrades from their classical variants: the only computational assumptions
are those that are already required to achieve the classical primitives. The advantage
of this approach is that advances in classical and post-quantum cryptography directly
influence our protocols as well.

In all of the cryptographic primitives studied in this dissertation, verification plays
a crucial role. Whether a client wants to check the outcome of a computation he
delegated to an untrustworthy server, or whether a player in a multi-party protocol
wants to monitor the honesty of the other players in the protocol, an honest party
always needs some kind of mechanism to ensure that the dishonest parties are not
deviating from the protocol without being noticed.

In Chapter 3, we consider an important building block for verifiable quantum
computation: the quantum authentication code. Although traditionally used to en-
sure that a message cannot be altered after it is sent, authentication codes can also be
used to enforce a specific operation to be applied to the message: this is known as
(quantum) computing on authenticated data, or (Q)CAD. We study the relation be-
tween a property called (strong) purity testing and the ability of a code to preserve the
integrity of a ciphertext rather than just the plaintext, and furthermore characterize
in which cases the encryption key can be recycled. We give an overview of existing
quantum authentication codes, and construct two new variations on the so-called
“trap code”, an authentication code that is especially suited for QCAD. One of these
new variations is strong purity testing, achieving ciphertext authentication with key
recycling. The other variation only achieves inverse polynomial security, but encoding
can be done using only a constant-size quantum memory. The constructions in this
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chapter are information-theoretically secure.

In Chapter 4, we give a protocol for multi-party quantum computation, where
a number of players perform a joint quantum computation, but want to keep their
inputs private from the other players. Previously, protocols were only known if strictly
less than half of the players was dishonest, or if there were only two players in total.
We generalize the two-player protocol to devise a secure protocol for multi-party
quantum computation for any number of players k, and prove it secure against up to
k −1 actively colluding adversaries. To achieve efficiency, we develop a novel public
verification protocol for the Clifford authentication code, and a testing protocol for
magic-state inputs. Our protocol relies on classical multi-party computation and the
computational assumptions that come with it.

In Chapter 5, we study quantum homomorphic encryption, which allows a less
powerful client to outsource a Clifford circuit to a more powerful server. A simple
scheme, based on classical homomorphic encryption, already exists for this task; we
show that it has circuit privacy. In theoretical applications of classical (fully) homo-
morphic encryption, it is often necessary for the client to verify the correctness of
the computation at decoding time. We define a new primitive of “verifiable quantum
homomorphic encryption”, carefully consider what kind of compactness should be
expected in this context, and give two equivalent definitions of security: a semantic
one, and a game-based one. We construct a protocol for verifiable quantum homo-
morphic encryption, enabling Clifford computations to be delegated and verified in a
noninteractive manner. Verification is almost entirely classical; for computations that
start and end with classical states, it is completely classical.

In Chapter 6, we extend the results from Chapter 5 to quantum fully homomor-
phic encryption by devising a procedure to evaluate the non-Clifford gate T. Using
techniques from instantaneous nonlocal quantum computation, we construct “T-
gate gadgets”, quantum states that do not reveal the secret encryption key, but at the
same time allow the server to correct errors that depend on that secret key during the
evaluation. The size of the gadget depends on the space complexity of the decryption
function of the underlying classical homomorphic-encryption scheme. The resulting
scheme provides privacy against quantum chosen-plaintext attacks. We show how to
extend it to provide verifiability, in the sense defined in the previous chapter, as well.
As a first application of the verifiable scheme, we describe how to construct quantum
one-time programs from classical one-time programs and verifiable quantum fully
homomorphic encryption.

In Chapter 7, we show that, under a variant of the learning-with-errors assump-
tion, it is impossible to obfuscate classical circuits into quantum states. Virtual black-
box obfuscation is a strong cryptographic primitive: it encrypts a circuit while main-
taining its full input/output functionality. A remarkable result by Barak et al. [BGI+01]
shows that a general obfuscator that obfuscates classical circuits into classical circuits
cannot exist. A promising direction that circumvents this impossibility result was to
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obfuscate classical circuits into quantum states, which would potentially be better ca-
pable of hiding information about the obfuscated circuit. We show that this quantum
variant of virtual black-box obfuscation of classical circuits is generally impossible.
On the way, we show that under the presence of dependent classical auxiliary input,
even the small class of classical point functions cannot be quantum virtual black-box
obfuscated.
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