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• Barlas Oğuz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro
Okhonko, Michael Sejr Schlichtkrull, Sonal Gupta, Yashar Mehdad,
Wen-Tau Yih (2020). ”Unified Open-Domain Question Answering with
Structured and Unstructured Knowledge”. arXiv:2012.14610.

xii



Chapter 1

Introduction

Computer systems around the world curate massive amounts of data, which can
often only be accessed through artificial machine languages. From early experi-
ments like Terry Winograd’s SHRDLU to modern virtual assistants like Amazon’s
Alexa, widening accessibility to these systems through natural language inter-
faces is a long-standing dream. Neural networks have in recent years resulted in
tremendous progress, especially for tasks where the knowledge source takes the
form of English text. State-of-the-art models approach human performance on
the leaderboards, even for challenging datasets like TriviaQA (Joshi et al., 2017;
Zaheer et al., 2020). Models that query against massive collections rather than
single documents are often not far behind (Izacard & Grave, 2020).

Many of the most interesting applications require querying not only against
textual data, but also against various structured sources. Virtual assistants of-
ten operate in environments where the most relevant data comes in the form of
tables, maps, social networks, and various metadata associated to elements in
such structures. Systems operating in medical or scientific contexts must often
process formalised descriptions of, for example, drugs, molecules, or interactions
between proteins. And, as we will explore in this thesis in Chapters 3 and 4,
knowledge bases like Freebase and Wikidata enable large-scale applications by
storing millions upon millions of relational facts in the form of graph vertices and
edges. Building models capable of querying against many forms of data has been
shown to result in increased performance, even for datasets constructed with the
aim of querying only against text (Sun et al., 2018; Sun et al., 2019b; Oğuz et al.,
2020).

In this thesis, we investigate the construction of effective neural network mod-
els for natural language processing that incorporate structured information. We
focus on two common forms of structure, knowledge bases and tables, and ex-
periment with these in various NLP contexts. We study neural encoders for
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2 Chapter 1. Introduction

such structural objects, investigating how best to build these models, and how to
interpret their predictions once they are trained.

When we began this project in 2016, a new class of models for directly en-
coding structured data had just started to pick up steam – graph neural net-
works (Gori et al., 2005; Scarselli et al., 2009; Kipf & Welling, 2017; Gilmer
et al., 2017). Graph neural networks (GNNs) held the promise of incorporat-
ing structured sources into neural network systems in full end-to-end fashion.
This stood in contrast to other contemporary models, which at the time mostly
translated natural language into formal executable queries in machine languages
like SPARQL or SQL (Berant & Liang, 2014; Reddy et al., 2014; Berant &
Liang, 2015). With similarities to successful prior techniques for tree-structured
data (Tai et al., 2015), GNNs seemed ideal for pushing the performance of models
for querying against structured data to new heights. We set out to tailor variants
of GNNs to NLP, and to deploy these models to directly integrate structured
sources into NLP models.

We initially applied GNNs to model relational graphs for link prediction (see
Chapter 3 as well as Schlichtkrull et al. (2018)), with promising results. Armed
with techniques for applying GNNs to relational data, we then moved to the full
natural language querying setting. As time and experience would prove, this
was a much more difficult prospect – especially as the black-box nature of large
neural networks made it difficult to understand and analyse the behaviour of our
trained models. Modelling knowledge base question answering with GNNs is not
an insurmountable challenge, as we demonstrate in Chapter 4. Furthermore, as
later shown in Sun et al. (2018) and Sun et al. (2019b), applying GNNs can lead
to state-of-the-art results on this task with a few tricks. Nevertheless, we decided
to focus on two additional endeavours. First, the development of a technique for
interpreting trained GNNs, to facilitate a less frustrating development process.
Second, the investigation of a deceptively simple, rapidly rising competitor for
modelling certain specific kinds of structured data: heuristic transformation into
textual form, followed by modelling with large pretrained transformers (Chen et
al., 2020; Yin et al., 2020).

Here, we chronicle our efforts towards effective neural modelling of structure
within natural language processing; our initial development of models for link
prediction, our experiences with knowledge base question answering, and our
experiments with linearisation as well as with interpretability. We focus on graph-
structured data, with a foray into table modelling to experiment with linearisation
in Chapter 5. We develop novel graph neural network techniques suitable for
modelling large knowledge bases, and investigate their strengths and weaknesses
for different tasks; in Chapter 3 purely for modelling the knowledge base, and in
Chapter 4 for querying the knowledge base in combination with a neural reader.
We also investigate in Chapter 6 how users and developers can interpret and
understand the predictions made by such models.
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1.1 Objectives and Scope

At the start of our journey in 2016, graph neural networks were very much in
an infant state. However, between several task-specific architectures (Duvenaud
et al., 2015; Li et al., 2016b), performant but slower graph spectral convolu-
tions (Bruna et al., 2014; Henaff et al., 2015), and the initial publication of Kipf
and Welling’s (2017) graph convolutional networks, the field was warming up.
We initially intended to directly apply Kipf and Welling’s (2017) framework to
natural language querying against knowledge bases. In this, we were thwarted
by the inability of existing models to move beyond simple graphs to the directed,
multirelational case. As such, we found it necessary to begin by addressing the
modelling of such graphs.

In the first chapter of this thesis, and in Schlichtkrull et al. (2018), we there-
fore extend Kipf and Welling (2017) to directed, multirelational graphs. We do
not yet introduce natural language at this state. Instead, we apply our model to
relational link prediction. That is, assessing the likelihood of a given fact being
inferable from the facts already existing in a knowledge base. We use the GNN
as an encoder, summarising the information in the neighbourhood of a vertex
through a learnable function. We couple this with a factorisation model from the
literature, acting as a decoder by scoring the likelihood of edges based on vertex
embeddings produced by the GNN. Through this, we produce a model that, at
the time of our experiments, attained state-of-the-art performance. We further-
more investigate which aspects of the problem our GNN-based approach models
especially well.

Armed with a GNN architecture suitable for modelling relational data, we
proceed in Chapter 4 to make our attempt on a GNN-based approach to the full
knowledge base question answering problem. We experiment with and compare
different variants of relational GNN-architectures, as well as two different strate-
gies for modeling the problem. We base these on the strategy of combining an
LSTM encoding the question with a GNN encoding the knowledge base. Through
a thorough series of ablation tests, we probe our models to investigate what is
necessary to develop a GNN for this task; we find, similar to the concurrent work
by Sun et al. (2018), that the very high ratio of edges to vertices in real-world
knowledge bases can overwhelm GNNs if not addressed through e.g. induced
sparsity.

As we have mentioned, several recent papers (Chen et al., 2020; Yin et al.,
2020) have reported successes using an alternative strategy for modelling specific
kinds of structured data. In situations where the structure contains a pattern
clear enough to interpret heuristically – tables, for example – an effective ap-
proach is implicit modelling by linearising the structure and treating it as text,
rather than explicit modelling with a suitable neural network architecture. In
Chapter 5, we experiment with such a technique as well. The problem we tar-
get is open-domain fact verification over tables – that is, verifying whether given
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facts are true or not, based on massive collections of tables. We demonstrate
that linearisation is an effective strategy for modelling tables, allowing us to
build the first open-domain table fact verification model. Through linearisation
and modelling with RoBERTa (Liu et al., 2019), our model demonstrates open-
domain performance exceeding even the previous closed-domain state of the art.
We furthermore experiment with various strategies for improving performance by
exploiting features of existing datasets, and finally apply our model to a truly
large-scale setting: Querying against all tables on Wikipedia.

Throughout our process of experimentation, we realised that a significant
barrier to the development of strong GNN-based models is the difficulty in un-
derstanding why certain models work while others break. Indeed, as has also been
the experience elsewhere (Zaheer et al., 2017; Xu et al., 2019), seemingly small
implementation differences can in some cases drastically change performance.
Unfortunately, the nature of GNNs as highly complex, nonlinear functions often
prevents researchers from understanding the inner workings of such models; in
other words, they are black boxes (see Belinkov and Glass (2019)). To remedy
this, we develop in Chapter 6, and in Schlichtkrull et al. (2020b) a technique for
interpreting graph neural networks. Specifically, we investigate how to provide
– in a tractable and faithful manner – rationales for the predictions of a given
GNN. We make comparisons to recent related work, showing that our method
performs favourably. We furthermore apply our technique to analyse two GNN-
based models from the NLP literature.

1.2 Contributions

The primary contributions of this thesis can be summarised as follows:

(I) We introduce a method for relational link prediction in knowledge bases.
Our approach combines Relational Graph Convolutional Networks (R-GCN),
a novel GNN-based encoder, with a factorisation decoder from the litera-
ture. R-GCN achieves strong performance on standard benchmarks, with
especially large gains for modelling high-degree neighbourhoods and low-
frequency relations. While our focus is on relational link prediction, R-
GCNs can potentially be applied to incorporate any graph-structured data
in neural NLP models.

(II) We develop and experiment with GNN-based approaches to factoid question
answering, introducing novel models based either on choosing individual an-
swer vertices or on choosing the most likely path to the answer. In addition
to R-GCN, we furthermore introduce a gated extension, Gated Relational
Graph Neural Networks (GR-GNN), especially suitable for entity-based fac-
toid question answering.
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(III) We introduce the first model for open-domain fact verification over tables,
proposing a method that exhibits open-domain performance exceeding the
previous closed-domain state of the art. Our technique relies on named
entity recognition to identify entities in claims, TF-IDF to retrieve relevant
tables from the knowledge source, and an attention-based strategy for fusing
the information of several tables encoded with RoBERTa (Liu et al., 2019).

(IV) We propose GraphMask, an interpretation technique for GNNs applicable
potentially to any end-to-end neural network model which incorporates a
GNN as a component. GraphMask shows which edges are useful for a
GNN, and at which layer they are used. We apply our technique to artificial
data to showcase how we address shortcomings in existing methods. We
furthermore to perform two case studies where we analyse two models from
the NLP literature.





Chapter 2

Background

In this thesis, we address the modeling of complex structures with neural networks
for natural language processing. The term “structure” has come to possess several
different connotations within the literature – here, we focus specifically on graphs
and tables. In what follows, we will give an introduction to the techniques we
use to model said structures. We will later introduce additional background
pertaining to the details of specific chapters where necessary, including details of
the knowledge sources we work with.

The primary models used in this thesis are Graph Neural Networks (GNNs),
neural models designed to encode and process graph-structured data. To properly
define GNNs, we begin in Section 2.1 with a brief introduction to neural networks
as a class of models. We then give a thorough discussion of the graph neural net-
work framework in Section 2.2, introducing this class of models and summarizing
the relevant literature. We furthermore discuss two popular subclasses of GNNs
commonly used to facilitate efficient implementation. Finally, as we also rely on
neural networks for sequence modeling in some parts of our work, we introduce
these in Section 2.3.

2.1 Neural Networks

Neural Networks (NNs) are differentiable functions composed of simple build-
ing blocks, learned through backpropagation (Werbos, 1982). Neural networks
take many forms, with the compositional nature allowing practitioners to develop
unique modules suitable for dealing with various tasks and inputs. To give a very
general definition, we can say that:

7



8 Chapter 2. Background

2.1.1. Definition. A neural network Fθ with parameters θ = θ1, ..., θl is a
differentiable composite function Fθ = f (1) ◦ ... ◦ f (k) such that f (m) is either
an affine transformation with parameters θn or some intermediate function.

That is, the parameterised building blocks are affine transformations, which are
combined in various ways to produce complex, nonlinear functions. Since the
learnable parameters originate from affine transformations f(h) = W (n)x + b(n)

such that θn = W (n), b(n), parameters are also commonly referred to as weights and
biases. Some larger, composite building blocks often reoccur in stacked fashion
within the network. It is common to refer to these as layers.

The classical case of neural networks is the Multilayer Perceptron (MLP), in
which the components are simply affine transformations interspersed with non-
linear ”activation functions”, e.g. sigmoids or Rectified Linear Units. In our
work, we often use MLPs to transform the output of some complex network into
a low-dimensional prediction.

2.1.2. Definition. A multilayer perceptron Fθ is a neural network with pa-
rameters θ = θ1, ..., θL and L layers such that Fθ is composed only of affine
transformations interspersed with nonlinear activations:

Fθ = σ ◦ f (L)
θL
◦ ... ◦ σ ◦ f (1)

θ1

where f (l)(x) = W (l)x+ b(l), and σ is an activation function.

2.2 Graph Neural Networks

Graph neural networks (GNNs) are a class of neural network models developed for
the processing of graph-structured data. Formally, a GNN is a layered neural net-
work architecture which takes as input a graph G = 〈V , E ,R〉 (i.e., nodes, edges,
and relation types), along with a set of initial features F 0. Among these initial
features are a set of vertex embeddings H(0) ∈ V ×Rd providing a n-dimensional
encoding h

(0)
v for every vertex v. The GNN then computes, in layerwise fashion,

new contextualized vertex embeddings H(l) ∈ V ×Rm for each layer l, taking into
account the neighbourhood surrounding each vertex. By feeding the embeddings
H(l) into the network to compute H(l+1), every new layer is capable of encoding
information from wider contexts than the previous one. GNNs as such provide
contextualized vertex features for downstream prediction tasks, learnable in a
fully differentiable fashion.

At every layer k, a GNN computes a representation h
(k)
v for every vertex v ∈ V

based on the vertex representations H(k−1) computed at the previous layer. To
incorporate information about edges and other vertices in the local neighbour-
hood, this computation takes the form of a message passing step. That is, every
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vertex communicates information about itself to adjacent vertices. In applica-
tions with directed graphs, messages are commonly sent along both directions of
every edge (see e.g. Marcheggiani and Titov (2017), Schlichtkrull et al. (2018),
and Kampffmeyer et al. (2019)). Then, the direction is treated as a feature δ ∈ ∆,
where ∆ = {←,→}. The message passing step of a graph neural network is as

such defined at layer k through a learnable message function M
(k)
θ :

2.2.1. Definition. A message function at layer k with learned parameters θ
is a function M

(k)
θ : Rdv × Rdv ×R×∆→ Rdm .

Through the message function at each layer, the graph neural network computes
a message for every edge. Formally:

2.2.2. Definition. Given an edge e = (u, r, v, δ) with source node u, target

node v, relation type r, and direction δ, the message m
(k)
e associated with

(u, r, v, δ) at layer k is defined as:

m(k)
e = M

(k)
θ

(
h(k−1)
u , h(k−1)

v , r, δ
)

In addition to the message passing step, the graph neural network also performs
an aggregation step to combine the information of multiple messages. The ag-
gregation step is defined through a learnable aggregation function. Aggregation
relies on the concept of the neighbourhood edge set NG(v) of the vertex v, which
is defined as follows:

2.2.3. Definition. The neighbourhood edge set NG(v) of the vertex v in the
graph G = 〈V , E ,R〉 is the set of ingoing edges to v:

NG(v) = {(s, r, t, δ) ∈ E | t = v}

The graph neural network then defines a learnable aggregation function A
(k)
π such

that:

2.2.4. Definition. An aggregation function at layer k with learned parame-
ters π is a function A

(k)
π : Rdv × P(Rdv) → Rdv where P(Rdm) is the powerset

of Rdm .

That is, it is a function which aggregates a set of dm-dimensional vectors on the
basis of another dv-dimensional vector. The aggregation step can then be defined
for each vertex, and the whole computation of the graph neural network can be
recursively specified as:
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(a) (b)

Figure 2.1: Graph neural networks are defined through (a) a learnable message

function M
(k)
θ computing a message me for every edge e, and (b) a learnable

aggregation function A
(k)
π combining the messages in the neighbour set NG(v) to

produce higher-layer embeddings for the vertex v.

2.2.5. Definition. Given a vertex v with encoding h
(k−1)
v at layer k − 1, the

encoding h
(k)
v is computed as:

h(k)
v = A(k)

π

(
h(k−1)
v ,

{
m(k)
e : (u, r, v, δ) ∈ NG(v)

})
This very general definition of graph neural networks captures the full class

of models represented within the framework. The terminology introduced here
is based on neural message passing as developed by Gilmer et al. (2017). Their
formulation is itself an attempt to unify several earlier models which restrict
either message passing or aggregation to particular families of functions, e.g.
graph convolutional networks (Kipf & Welling, 2016) and interaction networks
(Battaglia et al., 2016).

GNNs were first introduced in Gori et al. (2005) and Scarselli et al. (2009) as an
extension of the earlier, very general recursive neural network framework (Goller
& Kuchler, 1996; Frasconi et al., 1998). These were later instantiated for spe-
cific applications and updated with modern training practices in Duvenaud et
al. (2015) and Li et al. (2016b). Concurrently, Bruna et al. (2014) and Henaff
et al. (2015) introduced slower – but more generally applicable – variants based
on spectral graph theory. Models more closely resembling modern GNNs were
proposed in Niepert et al. (2016), Defferrard et al. (2016), and Kipf and Welling
(2017), with the latter being the forefather of the computationally efficient sub-
class known as graph convolutional networks (see below).

In NLP, Socher et al. (2011) applied recursive neural networks for parsing tree-
structured representations in text and images – syntax trees and scene graphs.
Subsequently, Tai et al. (2015) improved greatly on these results through the
introduction of Tree-LSTMs, a combination of Long Short-Term Memory Net-
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works (Hochreiter & Schmidhuber, 1997) and recursive neural networks. Tree-
LSTMs can be seen as a subclass of GNNs designed for trees rather than general
graphs.

In the years since we started working with GNNs, the framework has ex-
ploded with variety in structure as well as in application.1 Subfamilies have been
proposed to handle unseen vertices at test time (Hamilton et al., 2017), select
relevant messages through attention mechanisms (Veličković et al., 2018), enable
deeper GNNs by updating only select dimensions of vertex embeddings (Beck
et al., 2018), infer relation- and entity-types on the fly (Sun et al., 2019a), and
many other uses. We refer the reader to Wu et al. (2020) for a comprehensive
survey.

The full graph message passing framework is highly useful for reasoning about
graph neural networks. It is furthermore necessary when designing algorithms
that function for all GNNs, rather than any particular subset (e.g. our interpre-
tation technique GraphMask, which we introduce in Chapter 6). Nevertheless,
several subclasses of GNNs are very useful for their lower computational or space
complexity, or their ease of implementation. Here, we will discuss two such sub-
families, graph convolutional networks and incidence matrix networks.

2.2.1 Graph Convolutional Networks

Graph convolutional networks2 (GCNs) are a class of graph neural networks first
introduced by Kipf and Welling (2017). GCNs take advantage of sparse ma-
trix multiplication with the adjacency matrix to perform very efficient message
passing. Formally, this corresponds to defining message passing and aggregation
as:

M
(k)
θ = σ(Wθh

(k−1)
u ),

A(k+1)
π = Wselfh

(k)
v +

1

Nv

∑
(u,r,v,δ)∈NG(v)

m(k+1)
e

where σ is an activation function such as the Rectified Linear Unit, and Nv is
a normalization constant associated with v (typically the number of incoming
edges). This can be expressed very efficiently in terms of matrix multiplication,
as we do below in Definition 2.2.6.

1 At time of writing, PyTorch Geometric (Fey & Lenssen, 2019), one of the most popular GNN
libraries, implements GNN variants from 72 different papers.

2 It is worth noting that the terms graph convolutional network and graph neural network are
sometimes used interchangeably. Nevertheless, some GNNs, such as the variant of Graph-
SAGE (Hamilton et al., 2017) which uses an LSTM as the aggregation function, explictly
move beyond convolution. We choose to use the term graph convolutional network to denote
the subclass introduced under that name by Kipf and Welling (2017).
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2.2.6. Definition. Given a normalized adjacency matrix A′, the embedding
matrix H(k+1) of all vertices at layer (k + 1) in a graph convolutional network
is:

H(k+1) = A′σ(W (k+1)H(k)) + σ(WselfH
(k))

Certain additional modifications beyond normalization are often made to the
adjacency matrix. For example, it is common to also add self-loops to the matrix
to efficiently reuse lower-layer embedding matrices without having to explicitly
compute self-connections through Wself . This is commonly done by defining the
modified adjacency matrix as:

A′ = D−1A+ IN

where D−1 is the inverse degree matrix and IN the identity matrix.
GNNs expressible within the graph convolutional network scheme are fast to

compute and easy to implement, since they require only a single sparse matrix
multiplication beyond standard neural network operators. As multiplication with
a sparse adjacency matrix requires one computational step per edge, the compu-
tational complexity is simply O(|E|). Furthermore, as the only storage required
is the embeddings of source and target vertices, the space complexity is O(|V|).
These models have been employed to apply GNNs in situations where the number
of edges would make more complex formulations intractable (e.g. De Cao et al.
(2019)).

2.2.2 Incidence Matrix Networks

The GCN framework, while highly efficient, does come with a significant draw-
back. Following Definition 2.2.6, all messages are constructed on the basis of
vertices, through the matrix multiplication W (k+1)H(k). As such, it is difficult to
implement models which perform different computations for different edges that
share a source node. This is relevant for example if those edges have different re-
lation types, and the message passing function as a consequence defines different
computations for them.

In Chapter 3, we extend the GCN framework to labeled, directed graphs. Our
extension requires different steps of GCN computation as described in Definition
2.2.6 for every relation type in the dataset, because different weight matrices are
used. If the set of relations is small, this can be efficiently computed as separate
instantiations of graph convolutional network updates; if the set of relations is
large, this can become prohibitively expensive.

In such cases, it is simpler to instead compute two sparse matrix multiplica-
tions – one step to distribute information to messages, and one step to distribute
messages to target vertices. While this scheme has not been formally stated as
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GCNs were in Kipf and Welling (2017), it is a common way3 to circumvent the
limitations of GCNs without resorting to the full graph message passing frame-
work. As the latter is only necessary for a few models, e.g. the variant of Graph-
SAGE (Hamilton et al., 2017) which uses an LSTM as the aggregation function,
this two-step scheme captures most commonly used GNNs. Since this subclass of
GNNs is expressed through multiplication with an incidence matrix, we introduce
the term Incidence Matrix Network (IMN) to describe it.

The incidence matrix and inverse incidence matrix necessary to define such
models describe how vertices and edges in the graph relate. Formally:

2.2.7. Definition. Given a directed graph G with vertices V = v1, ..., vn and
edges E = e1, ..., em, the incidence matrix I ∈ R|E|×|V| and inverse incidence
matrix Î ∈ R|V|×|E| are defined such that

Iij =

{
1 if vj is the target vertex of ei

0 otherwise

Îji =

{
1 if vj is the source vertex of ei

0 otherwise

Computing an individual message for every edge can be efficiently done through
sparse multiplication with the inverse incidence matrix, especially if the embed-
ding of the target vertex is excluded. This can be accomplished by modifying the
message passing step from Definition 2.2.2 as follows:

2.2.8. Definition. In an incidence matrix network, the message matrix M̂ (k+1)

associated with edges at layer k is defined given the embedding matrix H(k)

edges with relation types R = r1, ..., rm and directions δ̂ = δ1, ..., δm as:

M̂ (k) = M
(k)
θ

(
IH(k−1), R, δ̂

)

Aggregation can then be efficiently computed by summation over the incoming
messages, in similar fashion to how GCNs sum over adjacent vertices:

3 Libraries for graph neural networks often implicitly implement the incidence matrix network
scheme (see for example PyTorch Geometric (Fey & Lenssen, 2019)), as it strikes a good
balance between speed and expressibility. It is furthermore easy to implement efficiently
through the scatter and gather operations.
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2.2.9. Definition. In an incidence matrix network the embedding matrix
H(k+1) at layer k + 1 is defined as:

H(k+1) = ÎM̂ (k+1)

As with GCNs, self-loops and normalization can be efficiently handled by appro-
priately scaling the incidence and inverse incidence matrices.

IMNs require two steps of sparse matrix multiplication, each with a compu-
tational complexity of O(|E|); this is similar to the single sparse matrix mul-
tiplication step required for GCNs. However, IMNs must store every message
individually, as opposed to simply storing vertex embeddings. The space com-
plexity is therefore O(|E|+ |V|). As the number of edges for many graphs is much
greater than the number of vertices, this can be prohibitive compared to GCNs.

2.3 Sequence Modelling

In addition to graphs, several of the tasks we examine also require models to
incorporate sequences. This is necessary to handle raw text and other similarly
unstructured data. In Chapter 4 we model questions for a question answering
task, and in Chapter 5 statements and linearised tables for a fact verification task.
Modeling sequences plays an important role in NLP, as sentences are sequences
of tokens.

The classical neural approach is to use Recurrent Neural Networks (RNNs),
specifically Long Short-Term Memory networks (LSTMs). These have been ap-
plied with great success in tasks ranging from translation (Sutskever et al., 2014)
to dependency parsing (Kiperwasser & Goldberg, 2016). RNNs operate by re-
cursively applying a neural network function to the elements of the sequence,
computing output yt for the token at position t using the output yt−1 of the prior
token along with an input xt at position t. In this manner, RNNs compute a
sequence of outputs (y1, ..., yt) given a sequence of inputs (x1, ...xt). LSTMs are
a specific variant designed to prevent vanishing gradients (Hochreiter & Schmid-
huber, 1997). They track a cell-state ct and output a hidden state ht for ev-
ery timestep t. These hidden states can then be further processed into outputs
through e.g. an MLP.

2.3.1. Definition. A Long Short-Term Memory unit is a recursive function
LSTMθ : Rdi × Rdh × Rdc → Rdh × Rdc with parameters θ such that:

ct = σ(WfI + bf ) · ct−1 + σ(WiI + bi) · tanh(WcI + bc),

ht = σ(WoI + bo) · tanh(ct),

LSTMθ(x, ht−1, ct−1) = (ht, ct)
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where σ is the sigmoid function, and · represents element-wise multiplication.

We use LSTMs to model questions in Chapter 4.

In recent years, LSTMs have been overtaken for many tasks by another class
of models – transformers (Vaswani et al., 2017). In Chapter 5, we rely on such a
model for parsing tables. Like RNNs, transformers compute sequences of vecto-
rial token embeddings (h1, ..., ht) given sequences of input (x1, ...xt).

4 However,
unlike RNNs, this computation relies on learned weighted averages rather than
recurrence to produce output for each position.

The idea of using learned weighted averages to summarize sequences began
in machine translation with Bahdanau et al. (2014) and Luong et al. (2015),
and was originally used as a component of RNN-type models. In these models,
attention was proposed as a learnable method for computing alignment between
different elements. Vaswani et al. (2017) introduced the transformer, wherein
stacked layers of attention replace the RNN entirely. The specific type of attention
function used for the transformer architecture is known as scaled dot-product
attention. A simple neural network produces for each position t in the sequence
a query Qt, a key Kt, and a value Vt. Then, the dot product of the key and
the query are used to compute a weighting, according to which the values are
averaged.

2.3.2. Definition. Scaled dot-product attention is a function A : Rl×d ×
Rl×d × Rl×d → Rl×d such that

A(Q,K, V ) = σ

(
QKᵀ

√
d

)
V

where σ is the softmax function.

Rather than rely on a single alignment score for each pair of tokens, trans-
formers rely on multiple heads computing scaled dot-product attention in parallel.
The outputs are then concatenated and linearly transformed into the expected
dimensions. This allows the model to learn to perform multiple different functions
at each layer, and to combine information from different parts of the sequence.

2.3.3. Definition. Multi-head attention is a function A : Rl×d × Rl×d ×
Rl×d → Rl×d such that

MultiHead(Q,K, V ) = WO[head1, ..., headh],

headi = A(QWQ
i , KW

K
i , V W

V
i )

4 We note that transformers have been successfully applied to non-sequential data as well, such
as images (Parmar et al., 2018). For the purposes of this thesis, however, we can restrict
ourselves to the sequential case.
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The transformer intersperses attention functions, affine transformations, and
layer normalization (Ba et al., 2016) to produce contextualized embeddings for
the sequences.

2.3.4. Definition. A transformer is a neural network Fθ composed of atten-
tion layers a1, ..., ak, multi-layer perceptron layers m1, ...mk, and layer normal-
izations l1, ..., lk combined such that

Fθ = lk ◦mk ◦ ak ◦ ... ◦ lk ◦mk ◦ ak

We refer the reader to Vaswani et al. (2017) for further details.
While developed independently of graph neural networks, transformers can

be seen as a special case of graph neural networks applied to the fully connected
graph. From that perspective, transformers implicitly learn which edges are rel-
evant through attention. The matrix multiplication between V and the softmax-
scaled attention scores in Definition 2.3.2 correspond to multiplication between
prior vertex embeddings (e.g. V ) and an adjacency matrix scaled by learnable
factors.

That is, given a graph GS = 〈V , E〉 for the sequence S such that V contains
the tokens of S and E all possible edges between any two vertices, scaled dot-
product attention is equivalent to a layer of the GNN-architecture introduced
in Veličković et al. (2018). The difference between the transformer and their
model then lies only in the details of how transformations and layer normalization
between attention steps are used. By exploiting this equivalence, some of the
ideas developed in this thesis (e.g. GraphMask) could then be applied to the
transformer architecture.

2.3.1 Pretrained Language Models

A recently popularized method for high-performance modeling of natural lan-
guage sequences is to pretrain sequences models on large datasets gathered from
the Internet. These models can then be applied as sequence encoding compo-
nents in task-specific neural networks. In Chapters 4 and 5, we make use of such
models.

We model questions in the question answering task in Chapter 4 using so-
called ELMo-embeddings (Peters et al., 2018). ELMo (shorthand for Embeddings
from Language Models) relies on bidirectional LSTM-embeddings of sentences,
trained as the name suggests with a language modeling objective. That is, given
a sequence of N tokens (t1, t2, ..., tN), ELMo learns a forward language model
which expresses the probability of token tk given the history (t1, ..., tk−1):

p(t1, t2, ..., tN) =
N∏
k=1

p(tk|t1, ..., tk−1) (2.1)
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and a backward model which expresses the probability of token tk given the future
(tk+1, ..., tN):

p(t1, t2, ..., tN) =
N∏
k=1

p(tk|tk+1, ..., tN) (2.2)

ELMo uses L-layer bidirectional LSTMs to learn these probabilities, training
on a massive corpus such as the One Billion Word Benchmark (Chelba et al.,
2013). These pretrained LSTMs can then be applied to produce contextualized
embeddings of the words in sentences for concrete NLP tasks, such as the question
answering task in Chapter 4. When applied, the embeddings are finetuned by
updating the parameters of a linear combination between the L layers.

Since the initial publication of ELMo, the use and variety of such pretrained
encoders have increased explosively. An important step was the development of
BERT (Devlin et al., 2019), which replaced the LSTM in ELMo with a trans-
former. Furthermore, since BERT no longer relies on a model which reads the
input sentence token-by-token, the authors also replaced the classical language
modeling objective described above in Equations 2.1 and 2.2 with the more appro-
priate Masked Language Modeling objective (also known as the Cloze task (Tay-
lor, 1953)). That is, BERT masks some set of input tokens at random, and then
predicts those masked tokens given the rest. The tokens (t1, t2, ..., tN) are ran-
domly split into two sets Tmasked and Tclear, and the objective is to predict the
former given the latter:

p(Tmasked) =
∏

t∈Tmasked

p(t|Tclear) (2.3)

The variety of BERT-inspired pretrained encoders is so large that some au-
thors have referred to the study of their respective strengths and weaknesses as
”BERTology” (Rogers et al., 2021). In Chapter 5, we employ one such variant –
RoBERTa (Liu et al., 2019) – to encode statements and linearised tables for our
fact verification task. RoBERTa does not change the BERT model itself; rather,
the authors carefully tune the hyperparameters and expand the training corpus
from a size of 16GB to 160GB.

By themselves, the language models we have discussed here construct LSTM-
or transformer-based embeddings of individual sequence elements. That is, given
a sequence of inputs t1, ..., tN , they produce embeddings h1, ..., hN where ht ∈
Rd for every ht. A common use case, however, is to embed entire sentences.
In these cases, a special token t0 is commonly added to the sequence, and the
corresponding embedding h0 is used to represent the entire sentence.





Chapter 3

Graph Neural Networks for
Relational Link Prediction

3.1 Introduction

An important form of graph-structured information for systems to draw on are
Knowledge Bases (KBs). Relational data – that is, data representing relations
between subjects and objects – is abundant in the world, and knowledge bases
organise collections of such data into a format that can be queried and used for
many tasks. Knowledge bases enable a wide variety of applications both within
and without NLP, including question answering (Yao & Van Durme, 2014; Bao
et al., 2014; Seyler et al., 2015; Hixon et al., 2015; Bordes et al., 2015; Dong et al.,
2015) and information retrieval (Kotov & Zhai, 2012; Dalton et al., 2014; Xiong
& Callan, 2015b, 2015a). We note that the words knowledge base and knowledge
graph are often used interchangeably.

The amount of information stored in real-world knowledge bases is massive,1

and difficult to tractably model. Previous techniques often rely on approximations
modelling entities through random walks in their neighbourhoods (Perozzi et al.,
2014), or through pretrained embeddings storing information about entities (Yang
et al., 2015). While such techniques often perform well, they can struggle to
exploit the structure of the underlying graph fully – random walks are unlikely to
cover a neighbourhood fully, and techniques relying on pretraining cannot filter
the information encoded in a vertex embedding to focus on what is relevant for

1 For example, Freebase (Bollacker et al., 2008) contains approximately 1.9 billion triples,
DBPedia (Auer et al., 2007) 3.2 billion, YAGO (Rebele et al., 2016) 1.2 billion, and Wiki-
data (Vrandečić & Krötzsch, 2014) a continuously growing 4.9 billion. These overlap, in part
due to the ongoing efforts to import Freebase into Wikidata, and Wikidata into DBPedia and
YAGO.

19
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University of
Amsterdam

Johannes
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Figure 3.1: A fragment of a knowledge base. The nodes are entities, the edges are
relations labeled with relation types. Similarly, the nodes are labeled with entity
types (e.g. university). The edge and the entity type shown in red represent
missing information to be inferred.

any particular task. An important step towards enabling modern NLP systems
to better use the information stored in knowledge bases is therefore to develop
stronger methods for modelling this information.

Graph neural networks (see our review in Section 2.2) represent a promis-
ing approach to encoding vertices. Through learned weights and normalisations,
GNNs can ensure that the right information is encoded in each vertex. By relying
on neighbourhood structure rather than static embeddings, GNNs can also trans-
fer to parts of the graph unseen during training. This is important for real-world
cases of massive graphs, where training can only realistically happen on a subset
of the vertices and edges (e.g. Freebase, which we rely on in this chapter as well
as in Chapter 4). Transferring to unseen vertices and edges is also necessary for
any real-world knowledge base, since they continuously update.

Even the largest real-world knowledge bases remain incomplete, despite the
massive efforts invested in their maintenance. Indeed, the constant discovery
of new entities and new relational facts, along with the need for human effort
to manually enter facts into knowledge bases, virtually guarantees that no such
database will ever be complete. Luckily, automatic reasoning can facilitate the
recovery of missing information. This is done by inferring what should be in the
knowledge base on the basis of what is in the knowledge base. The prediction of
such information is the main focus of statistical relational learning. There is a clear
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correspondence between automatically using knowledge bases and automatically
completing knowledge bases, as both tasks require similar modelling strategies.
As such, statistical relational learning is a good starting point when developing
techniques to model knowledge bases.

Two fundamental tasks within the statistical relational learning setting are
link prediction, the discovery of binary facts representing a relation between two
entities, and node classification, the discovery of unary facts describing a single
entity. In the example in Figure 3.1, the knowledge that Van der Waals worked
at the University of Amsterdam could let a model infer that he likely lived in
the Netherlands. Similarly, the knowledge that he won a Nobel Prize in physics
could let a model infer that he likely was a physicist by profession.

The neighbourhood structure of each vertex as such contains important infor-
mation for both of these tasks. In Figure 3.1, explicitly encoding the relationship
between Van der Waals and the University of Amsterdam when modelling ei-
ther would allow models to make inferences on this basis. In this chapter and
in Schlichtkrull et al. (2018), we introduce a graph neural network method for
knowledge base completion.2 Here, we focus on the link prediction task, and we
direct the reader to Schlichtkrull et al. (2018) for the node classification task. We
attempt to answer the following research questions:

1. Can graph neural network encoders improve the modelling of entities in
knowledge bases for relational link prediction?

2. Which aspects of relational graph structure do graph neural networks capture
better than baseline techniques?

The link prediction model we introduce here consists of a GNN encoder based
on Graph Convolutional Networks (Kipf & Welling, 2017) for entities, paired
with a decoder that predict edges from vector representations of vertices. The
original GCN framework performs well for modelling graph structure, but is not
directly applicable to labelled, directed graphs like knowledge bases. We extend
GCNs through the simple approach of using separate weights and normalisation
constants for each direction and relation type. Since this drastically increases the
number of weights and hence the complexity of the model, we also introduce a
technique to ensure sparsity in the weights. This is done by only allowing non-
zero weights in blocks around the diagonals of the weight matrices. Inspired by
prior work on relational link prediction, we use the DistMult (Yang et al., 2015)
factorization to decode potential edges. All parameters are trained using a novel
graph autoencoder loss.

2 This chapter is based on our ESWC 2018 publication, Schlichtkrull et al. (2018). The first
two authors contributed equally to this publication. My contribution was the part address-
ing relational link prediction presented in this thesis, while Thomas Kipf contributed the
corresponding part addressing node classification.
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Our primary contributions in this chapter are the extension of graph neural
networks to relational data for link prediction, as well as a sparsity constraint
that reduces the number of parameters and allows the application of our model
to large multirelational graphs. We validate our model on the FB15k-237 dataset,
and report results also for the previously used FB15k and WN18 datasets. We
publish the code for our experiments at https://github.com/MichSchli/Relatio
nPrediction.

3.2 Background

For the purposes of relational link prediction as explored in this chapter,3 we may
think of a knowledge base as a directed, labeled multigraph G = (V , E ,R) with
vertices (entities) vi ∈ V and labeled edges (relations) (vi, r, vj) ∈ E , where r ∈ R
is a relation type. We explicitly add inverse relations to the set of total relations
R, i.e. for every edge (vi, r, vj) in the knowledge base we also include a separate
edge (vj, rinverse, vi) in R. We do not include node labels or address the problem
of node classification here – we refer the reader to Schlichtkrull et al. (2018) for
details on how to address that task.

Relational link prediction is the automatic discovery of new facts, e.g. new
triples (subject, relation, object) which can be inferred to be missing from the
knowledge base. That is, rather than the full set of edges E , we are given only
an incomplete subset Ê . The task is to assign scores f(vi, r, vj) to possible edges

(vi, r, vj) /∈ Ê in order to determine how likely those edges are to belong to E .
Previous work on link prediction for knowledge bases has focused primarily

on factorisation techniques. In these, scores of possibly missing edges are com-
puted by decomposing into factors originating from the subject, the relation type,
and the object. As we elaborate on in Section 3.3, our approach incorporates a
previously existing factorization technique – DistMult (Yang et al., 2015) – as
the decoder. DistMult is a special, simplified case of the earlier RESCAL fac-
torization (Nickel et al., 2011). DistMult tends empirically to be more effective
than the original RESCAL in the context of multirelational knowledge bases.
RESCAL computes scores through a simple bilinear product; DistMult does the
same, under the additional assumption that the weight matrix is diagonal. That
is, a triple (s, r, o) representing a subject s, a relation type r, and an object o is
scored through decomposition into individual factors originating from s, r, and
o.

3 It should be noted that real-world knowledge bases are somewhat more complicated, owing to
the existence of so-called Compound Value Types – intermediary vertices representing n-ary
relations. For further discussion, see Chapter 4.

https://github.com/MichSchli/RelationPrediction
https://github.com/MichSchli/RelationPrediction
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3.2.1. Definition. Given a triple (s, r, o), embeddings ev ∈ Rd for every ver-
tex v, and a diagonal matrix Rr ∈ Rd×d for every relation r, the DistMult score
of (s, r, o) is defined as

f(s, r, o) = eᵀsRreo

Numerous alternative factorizations have been proposed and studied in the con-
text of relational link prediction, including both (bi-)linear and nonlinear tech-
niques (e.g. Bordes et al. (2013), Socher et al. (2013), Chang et al. (2014), Nickel
et al. (2016), and Trouillon et al. (2016)). Many of these approaches can be re-
garded as modifications to or special cases of classic tensor decomposition meth-
ods such as canonical polyadic decomposition (Hitchcock, 1927), as discussed in
Balazevic et al. (2019). For a comprehensive overview of tensor decomposition
literature, we refer the reader to Kolda and Bader (2009).

The incorporation of paths between KB entities has previously received con-
siderable attention. We can roughly classify the prior work into (1) methods
creating auxiliary triples, which are then added to the learning objective of a
factorisation model (Guu et al., 2015; Garcia-Duran et al., 2015); (2) approaches
using paths (or walks) as features when predicting edges (Lin et al., 2015); and
(3) doing both at the same time (Neelakantan et al., 2015; Toutanova et al.,
2016). The first direction is largely orthogonal to ours, as we would also expect
improvements from adding similar terms to our objective (in other words, extend-
ing our decoder). The second research line is more comparable; R-GCNs provide
a computationally cheaper alternative to these path-based models. Direct com-
parison is somewhat complicated, as path-based methods typically use different
datasets (e.g. precomputed, sub-sampled sets of walks from a knowledge base).

Concurrently with our work, Marcheggiani and Titov (2017) introduced a
GNN operating in syntactic dependency graphs. Their model encodes relation
labels by conditioning only the bias term and a scalar gate on the relation type
when computing messages. Like us, they introduce additional features δ ∈ ∆
where ∆ = {←,→} to represent edge direction and use different weight matrices
for different directions. This parameterisation is not sufficiently expressive to
model highly multirelational knowledge bases.

3.3 Methods

As we have mentioned, relational link prediction denotes automatic likelihood
evaluation for (subject, relation, object)-triples thought to be missing from a
knowledge base. Formally, scores f(vi, r, vj) must be assigned to new edges
(vi, r, vj) that do not – but could – belong to E . Most existing approaches to link
prediction (for example, tensor and neural factorization methods such as Bordes
et al. (2013), Lin et al. (2015), Yang et al. (2015), and Trouillon et al. (2016))
address the problem by embedding every entity vi ∈ V as a real-valued vector
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ei, and subsequently computing scores through a learned function f(ei, r, ej). We
build on this approach by contextualizing entity representations through a graph
neural network.

3.3.1 Relational Graph Convolutional Networks

To model entity neighbourhoods, we extend the Graph Convolutional Networks4

(GCNs) of Kipf and Welling (2017) to directed, labeled graphs. Recall that
in GCNs, the message-propagation and message-aggregation steps of the graph
neural network are jointly defined as a single matrix multiplication step:

h
(l+1)
i = σ

(∑
j∈Ni

1

ci
W (l)h

(l)
j +W

(l)
0 h

(l)
i

)
, (3.1)

where h
(l)
i ∈ Rd

(l)
is the hidden state of node vi in the l-th layer of the neural

network, with d(l) being the dimensionality of this layer’s representations. σ(·)
denotes a non-linear activation function such as the linear rectifier ReLU(·) =
max(0, ·) and ci is a problem-specific normalization constant that can either be
learned or chosen in advance. Ni denotes the set of neighbour indices of node i.

To extend this model to multirelational, directed graphs we instantiate sep-
arate weights and biases for every relation at every layer, along with separate
normalization constants. We furthermore introduce an additional feature δ ∈ ∆
where ∆ = {←,→} to represent the direction of edges. To send messages along
both directions of edges, we add for every edge (u, r, v, δ) ∈ R an additional edge
(u, r, v, δ̂) to the graph where δ̂ is the opposite direction of δ. This allows the
propagation and aggregation steps to take into account the type and direction of
edges. We refer to our extension as a Relational Graph Convolutional Network,
or R-GCN. Formally:

3.3.1. Definition. Let hli ∈ Rd
(l)

be the embedding of the vertex vi at the

l-th layer. Then, the R-GCN step fl : V × Rd(l+1) → V × Rd(l) at layer l takes
the form:
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where N r

i denotes the neighbour indices of node i connected to i by edges of
type r.

4 See Section 2.2 for a thorough discussion of the graph neural network framework, including
Graph Convolutional Networks.
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Figure 3.2: R-GCN per-layer update for a single graph node (in light red). Ac-
tivations from neighboring nodes (light blue) are first summarized individually
by relation type, and subsequently summarized in total. A similar operation is
performed on the previous embedding of the node in question via a self-loop.
The resulting sum is passed through an activation function (e.g. the ReLU) to
construct a new embedding. This per-node update is computed in parallel with
shared parameters across the whole graph.

By stacking layers of R-GCN updates, we can compute learned, contextualised
embeddings of vertices for potentially any graph – see Figure 3.2.

We note that the R-GCN framework as expressed in Definition 3.3.1 can be
efficiently implemented through the GCN-formulation discussed in Section 2.2.
This is done by computing a separate propagation step for each relation type.
Since the total number of edges (and thus the total number of messages over
all propagation steps) is unchanged, the time complexity remains O(|E|). How-
ever, as an update for every vertex must be stored for every relation type, the
space complexity grows to O(|R||V|). This can be circumvented using an IMN-
formulation, resulting in a space complexity of O(|V| + |E|). If the number of
relation types is large, this may be preferable.

Real-world knowledge bases are massive in size, which can make the cost of
executing an R-GCN step prohibitively expensive. To alleviate this problem, we
introduce a sparsity constraint for our relational graph convolutional networks
reliant on restricting weights to only take non-zero values in block matrices sur-
rounding the diagonal; that is, each W

(l)
r is represented as a block-diagonal matrix

diag(Q
(l)
1r , . . . , Q

(l)
Br). In addition to reducing the computational complexity of the

GNN, this parameterisation is also more compact and hence easier to learn. It



26 Chapter 3. Graph Neural Networks for Relational Link Prediction

can be seen as a parallel to the reduction in the decoder from full matrices in
RESCAL (Nickel et al., 2011) to diagonal matrices in DistMult (Yang et al.,
2015).

3.3.2. Definition. Let Q
(l)
1r , . . . , Q

(l)
Br be a set of square matrices such that

Q
(l)
br ∈ R(d(l+1)/B)×(d(l)/B). Then, the weight matrix W

(l)
r corresponding to rela-

tion r at layer l is expressed as:

W (l)
r =

B⊕
b=1

Q
(l)
br .

where
⊕

represents the direct sum.

Block decomposition can be seen as a sparsity constraint on the weight matrices
for each relation type. The block decomposition structure implements an intuition
that latent features can be grouped into sets of variables, which are more tightly
coupled within groups than across groups. This reduces the number of parameters
needed to learn for highly multirelational data.

Our full graph encoder consists of L layers of R-GCN as defined in 3.3.1,
with the output of each layer being the input to the next. We compute the
initial representation h0

i of each vertex vi by passing a unique one-hot vector for
each node in the graph (if no other features are present) through a single linear
transformation. While we only consider the featureless approach in this work and
in Schlichtkrull et al. (2018), we note that it was shown in Kipf and Welling (2017)
that GCNs can also benefit from pre-defined feature vectors (e.g. a bag-of-words
description of a document associated with a specific node).

To improve the training of our R-GCN encoder, we further extend the model
with residual connections (He et al., 2016) between each stacked layer. Prelimi-
nary experiments suggested that this extension – although not necessary to reach
strong performance – stabilised training and facilitated faster learning.

3.3.2 Link Prediction

We model the link prediction problem through a graph auto-encoder model, com-
prised of an entity encoder and a scoring function (decoder). The encoder maps
each entity vi ∈ V to a real-valued vector ei ∈ Rd. The decoder reconstructs
edges of the graph relying on the vertex representations; in other words, it scores
(subject, relation, object)-triples through a function s : Rd × R × Rd → R. As
mentioned, existing approaches from the literature often consist purely of a scor-
ing function s′ : E × R × E → R; these can be considered a special case of our
framework where the encoder is replaced with a learnable embedding matrix.
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Figure 3.3: The structure of our link prediction model. Contextualized embed-
dings for each entity are constructed through successive R-GCN layers, and the
top-layer embeddings h(k) are subsequently used in a factorization model to score
edges. During training, the encoder sees only a partial graph (shown in black).
The full graph (shown in red) is then reconstructed.

Our work distinguishes itself by parameterising the encoder in order to con-
textualise each entity embedding. Instead of a single, real-valued vector ei for
every vi ∈ V optimized directly in training, we compute representations through
an R-GCN encoder with ei = h

(k)
i , similar to the graph auto-encoder model in-

troduced in Kipf and Welling (2016) for unlabeled, undirected graphs. During
training, we drop edges from the underlying graph and as such learn to recon-
struct the neighbourhood around each vertex. The structure of this model can
be seen in Figure 3.3.

In our experiments, we use the DistMult factorization (Yang et al., 2015) as the
scoring function. DistMult is known to perform well on standard link prediction
benchmarks when used on its own, and the strict sparsity constraint in the decoder
is beneficial for reducing the complexity of the model. Following Definition 3.2.1,
every relation r ∈ R is associated with a diagonal matrix Rr ∈ Rd×d, and every
vertex v ∈ V is associated with an embedding ev. We simply let ev be the top-
layer encoding of v produced by our R-GCN. As such, a triple (s, r, o) is scored
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as
f(s, r, o) = h(k)ᵀ

s Rrh
(k)
o . (3.2)

As in previous work on factorization (Yang et al., 2015; Trouillon et al., 2016),
we estimate the model through negative sampling. For each observed example,
we sample ω = 10 negative ones. We sample by randomly corrupting either the
subject or the object of each positive example. We optimize for a cross-entropy
loss to push the model to score observable triples higher than the negative ones:

L = − 1

(1 + ω)|Ê |

∑
(s,r,o,y)∈T

y log σ
(
f(s, r, o)

)
+(1−y) log

(
1−σ

(
f(s, r, o)

))
, (3.3)

where T is the total set of real and corrupted triples, σ is the logistic sigmoid
function, and y is an indicator set to y = 1 for positive triples and y = 0 for
negative ones.

To train our model in the aforementioned graph auto-encoder setup, we begin
by sampling a large neighbourhood of K to encode – this is necessary to train
our model on larger datasets. In our experiments, we choose neighbourhoods of
size K = 40.000. We perform the sampling by an iterative process. We randomly
select an edge, and subsequently continue to pick edges adjacent to any that has
already been selected. We stop this process when no more edges can be selected,
or when K edges have been selected. We include these edges in the decoder with
a probability δ = 1.0, and in the encoder with a probability τ = 0.5 (selected on
development data). This ensures that the model encounters examples at training
time where edges that are present in the decoder as positive samples are not in
the encoder. We then pick relations to use for Equation 3.3 from among those
chosen for the decoder. Using this edge dropout objective makes our training
regime similar to that of denoising autoencoders (Vincent et al., 2008). As we
discuss in Section 3.4, the use of edge dropout is crucial for training our model.

3.4 Experiments

To evaluate the performance of our model and judge the effectiveness of our
R-GCN encoder, we carry out experiments on several datasets from the litera-
ture. We focus primarily on the challenging FB15k-237 dataset introduced by
Toutanova and Chen (2015). This is a fragment of the Freebase (Bollacker et al.,
2008) knowledge base constructed for link prediction.

The train, validation, and test split in FB15k-237 are subsets of those in-
troduced for the FB15k-dataset by Bordes et al. (2013). For completeness, we
also include results for that dataset, as well as for the WordNet fragment also
introduced in the same paper (WN18). However, as demonstrated by Toutanova
and Chen (2015), those datasets are not realistic representations of real-world
inference tasks as many test triplets (s, r, o) have an inverse triplet (o, r−1, s) that
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Dataset WN18 FB15K FB15k-237

Entities 40,943 14,951 14,541
Relations 18 1,345 237
Train edges 141,442 483,142 272,115
Val. edges 5,000 50,000 17,535
Test edges 5,000 59,071 20,466

Table 3.1: Number of entities and relations (i.e. relation types) along with the
number of edges per split for the two datasets.

appears in the training data; this allows data leakage from the training to the
test set. While FB15k and WN18 do allow some reasoning about the relative
performance of models, we can only fully investigate whether our model yields
improvements for more complex inferences by evaluating R-GCN on the FB15k-
237 dataset. Characteristics of the three datasets are summarized in Table 3.1.

As is standard in the literature, we provide results using two evaluation met-
rics: mean reciprocal rank (MRR) and Hits at n (H@n). Both are ranking met-
rics that compare the rank of positive triplets with respect to potential negative
triplets under a local closed-world assumption (Bordes et al., 2013). That is, they
compute scores for all possible triplets, and compute the rank of the triples in
the test dataset relative to all other triples.

Formally, for every test triplet t = f(s, r, o), we compute the score x of
that triplet. Then, we find the rank of t with respect to the set of scores
A = {f(x, r, o)|x ∈ V}, and compute evaluation measurements on that basis.
We repeat this process as a separate measurement for the inverse set of scores
B = {f(x, r, o)|o ∈ V}. Following Bordes et al. (2013), there are two separate
ways of computing these methods – the raw setting and the filtered setting. In the
raw setting, all potential triplets are included in A and B; in the filtered setting,
triplets that already occur in the train, test, or validation set are excluded. We
report both filtered and raw MRR (with filtered MRR typically considered more
reliable), and filtered Hits at 1, 3, and 10.

3.4.1 Evaluation

We achieved the best results with a normalization constant defined as ci,r = ci =∑
r |N r

i | — in other words, a predefined rather than a learned normalization
factor, and applied across relation types. This relation-wise normalisation can
be seen as a middle ground between mean- and sum-pooling. We found block
decomposition to perform best with blocks of dimension 5 × 5. For FB15k-237
where complex reasoning about neighbourhoods is more beneficial, we found a
two-layer R-GCN encoder with 500-dimensional embeddings to work best. For
FB15k and WN18, we achieved the best performance using a single layer and
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200-dimensional embeddings.

We regularise the encoder through edge dropout as discussed in the previous
section, applied before normalisation. We use an edge dropout probability of
τ = 0.5. In our experiments, the use of edge dropouts was crucial to obtain good
performance. This is because of how the edges used for embedding vertices in the
encoder and those used as positive samples in the decoder are selected at training
time. If these are chosen from the same set, the model can learn to make positive
predictions only for this set. If these are chosen from entirely distinct sets, the
model can learn to make negative predictions only for this set. As the graph
used by the encoder is the training set, models without edge dropout tend to
learn solutions that make either entirely positive or entirely negative predictions
for the test set. Using τ = 0.5 strikes a good balance – half the edges used as
positive examples in each batch occur in the encoder, the other half do not.

We furthermore apply regular dropouts to the self-loop connection with a
probability 0.2, to encourage reliance on long-distance propagation. Following
previous best practices for DistMult (Yang et al., 2015), we apply l2 regularization
to the decoder with a penalty of 0.01. We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.01. For the baseline and the other factorisations, we
found the parameters from Trouillon et al. (2016) – apart from the dimensionality
on FB15k-237 – to work best. Owing to the large storage cost necessary for our
graph autoencoder objective, we used CPUs rather than GPUs to train the model.
The full training process took approximately 72 hours, with early stopping after
10.000 updates.

The natural baseline for our experiments is to directly optimise the DistMult
decoder (Yang et al., 2015) without any encoder. This corresponds to a version of
our model using fixed entity embeddings, rather than the R-GCN. We furthermore
compare against several other factorization models from the literature: TransE
(Bordes et al., 2013), HolE (Nickel et al., 2016), ComplEx (Trouillon et al., 2016),
and CP (Hitchcock, 1927). At the time our initial paper Schlichtkrull et al.
(2018) was published, TransE was the best performing model on FB15k-237,
and ComplEx and HolE were the best performing models on FB15k and WN18,
respectively.

TransE is a simple system wherein triples are modelled as the sum of the
embeddings of the subject, the relation, and the object. ComplEx generalises
DistMult to the complex domain (more appropriate for modelling asymmetric re-
lations), while HolE replaces the vector-matrix product with circular correlation.
CP is a classic benchmark that is often included for the link prediction task.
It is important to note that improvements in the decoders employed by these
three are orthogonal to our improved encoder, and combination systems could be
constructed.

We also include results for an ensemble of our model and the DistMult base-
line, observing that the strengths of the two systems may be complementary. We
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MRR Hits @

Model Raw Filtered 1 3 10

LinkFeat - 0.063 - - 0.087

DistMult 0.100 0.191 0.106 0.207 0.376
R-GCN (basis) 0.117 0.194 0.102 0.208 0.399
R-GCN (block) 0.158 0.248 0.153 0.258 0.414
R-GCN+ 0.156 0.249 0.151 0.264 0.417

CP 0.080 0.182 0.101 0.197 0.357
TransE 0.144 0.233 0.147 0.263 0.398
HolE 0.124 0.222 0.133 0.253 0.391
ComplEx 0.109 0.201 0.112 0.213 0.388

Table 3.2: Results on FB15k-237, a reduced version of FB15k with infrequent
and near-duplicate relations removed. CP, TransE, and ComplEx were evaluated
using the code published for Trouillon et al. (2016).

define

f(s, r, t)R-GCN+ = αf(s, r, t)R-GCN + (1− α)f(s, r, t)DistMult. (3.4)

The mixing ratio α was set to 0.4, chosen empirically on development data. For
the ensemble components in R-GCN+, we employ half-sized models to ensure a
fair comparison.

In Table 3.2, we show the results for FB15k-237.5 The block diagonal de-
composition of our R-GCN model outperforms the DistMult baseline by a large
margin of 29.8%, highlighting the importance of a good encoder model. The
R-GCN model also performs favourably against other factorisations, despite the
comparatively low result for the DistMult decoder when used without an encoder.
TransE performs surprisingly well, outperforming both CP, DistMult, and Com-
plEx, suggesting that the use of a task-specific decoder choice for R-GCN could,
in future work, lead to improved performance.

In Schlichtkrull et al. (2018), we also introduced an alternative to block de-
composition, which performed better for node classification. Instead of represent-
ing relation-specific weights through |R| block-diagonal sparsified matrices, that
scheme uses weights composed from learned weighted sums over B basis matrices
such that B << |R|. In Table 3.2, we compare our block decomposition against

5 Our numbers are not directly comparable to those reported by Toutanova and Chen (2015), as
they use pruning both for training and testing (see their sections 3.3.1 and 4.2). Their pruning
scheme includes a relation-specific hyperparameter t. The values for this hyperparameter are
not given in the paper. As this pruning scheme is therefore not fully specified, and as their
code is not available, we could not fully replicate their set-up.
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FB15k WN18

MRR Hits @ MRR Hits @

Model Raw Filtered 1 3 10 Raw Filtered 1 3 10

LinkFeat - 0.779 - - 0.804 - 0.938 - - 0.939

DistMult 0.248 0.634 0.522 0.718 0.814 0.526 0.813 0.701 0.921 0.943
R-GCN 0.251 0.651 0.541 0.736 0.825 0.553 0.814 0.686 0.928 0.955
R-GCN+ 0.262 0.696 0.601 0.760 0.842 0.561 0.819 0.697 0.929 0.964

CP* 0.152 0.326 0.219 0.376 0.532 0.075 0.058 0.049 0.080 0.125
TransE* 0.221 0.380 0.231 0.472 0.641 0.335 0.454 0.089 0.823 0.934
HolE** 0.232 0.524 0.402 0.613 0.739 0.616 0.938 0.930 0.945 0.949
ComplEx* 0.242 0.692 0.599 0.759 0.840 0.587 0.941 0.936 0.945 0.947

Table 3.3: Performance for our models and baselines on the full FB15k and WN18
datasets. Results marked (*) taken from Trouillon et al. (2016). Results marked
(**) taken from Nickel et al. (2016).

this basis decomposition scheme. For link prediction on FB15k-237, block de-
composition performs much better – basis decomposition fails to outperform the
TransE baseline, while block decomposition achieved results that outperformed
all contemporary models. Interestingly, this difference does not exist for the full
FB15k (see Table 3.3); we theorise that block decomposition is helpful primarily
when more complex relation-specific reasoning is required.

Table 3.2 includes results for the simple LinkFeat baseline introduced in
Toutanova and Chen (2015). In that model, pairs of entities are modelled through
|R| indicator features representing whether an edge of type r connects those enti-
ties. Then, a simple classifier is used to score triples on that basis. For FB15k-237,
where no data leakage through explicit inverse relations occurs, this baseline does
not perform well; however, for FB15k and WN18 this baseline outperforms all
existing methods. Despite this, these datasets continue to be used in the litera-
ture. For that reason, we include in Table 3.3 results for our methods on FB15k
and WN18, along with results for the LinkFeat baseline.

As can be seen, LinkFeat performs better than any other method on FB15k,
and the best alternative does not significantly outperform LinkFeat on WN18.
With that said, R-GCN does present a competitive alternative to other methods
on these datasets as well, especially in the R-GCN+ setting where an ensemble
of a DistMult and an R-GCN model is employed. The complementary nature of
R-GCN and DistMult is as such very clear in this setting.

3.4.2 Analysis

While we have seen that R-GCN and pure DistMult in some settings perform
very different and highly complementary types of inference, it is unclear where
this disparity originates from. A notable strength of R-GCN is that our relation-
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Figure 3.4: Mean reciprocal rank (MRR) for R-GCN ( ) and DistMult ( )
on the FB15k-237 validation data as a function of the node degree (average of
subject and object).

wise normalisation scheme equalises the importance of different relations. This
can be helpful for high-degree vertices, where the contributions of a few edges
with infrequent relation types can become overshadowed by the contributions
of many edges with frequent relation types. In Figure 3.4, we plot the perfor-
mance of DistMult and R-GCN as functions of the average degree of the subject
and object in each triple. As can be seen, DistMult performs slightly better for
low-degree vertices, and R-GCN performs better for high-degree vertices. This
is intuitively reasonable, as DistMult must compress entire neighbourhoods into
singular vectors through gradient updates with equal priority given to each rela-
tion type. In contrast, R-GCN can instead learn a graph convolutional function
to do so, normalising over relation types separately so that low-frequency types
are not excluded.

An interesting question is what exactly the R-GCN encodes when it constructs
vertex embeddings. In Figure 3.5 we plot the relative performance of DistMult
and R-GCN on FB15k-237, separated according to the minimum distance in the
encoded graph (e.g. the training set) between the source and target vertices. We
note that Toutanova and Chen (2015) removed from FB15k-237 all node pairs
connected by a single train edge; as such, only self-connections and longer distance
connections are present.

As the figure shows, the R-GCN model performs better when the subject and
object are close in the encoder graph, and the DistMult model performs better
when the subject and object are far apart. One explanation may be that the
explicit encoding R-GCN performs allows the model to reason about the relation
between the two vertices, whereas it does not rely as heavily on implicit similar-
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Figure 3.5: Performance on FB15k-237 of our R-GCN model compared to the
baseline DistMult model, split according to minimum distance between source
and target vertex.

ities between vertex neighbourhoods. Since the R-GCN model only employs two
layers of convolution, long-distance relations cannot be captured through explicit
reasoning, and such relations are therefore harder to model.

This observation raises the question of why the R-GCN/DistMult ensemble
leads to performance improvements on FB15k, but not on FB15k-237. Toutanova
and Chen (2015) suggested that two separate types of one-hop relations were
removed from FB15k during their process of creating FB15k-237: Implicit inverse
relations that result in data leakage, and legitimate one-hop connections. One
simple explanation for this observation could be that the decoder-only model is
better at exploiting the data leakage.

There is a large disparity between the frequency with which common and rare
relations appear in the dataset. This can present a problem for models, as it
is difficult to learn inference patterns for rare relations. Our R-GCN encoder
allows for an increased capacity for reasoning about the relationship between
vertices, and could as such alleviate this problem. In Figure 3.6, we plot the
performance of our model versus the DistMult baseline as a function of the rank of
the relation being queried. For DistMult, performance degrades when modelling
rarer relations; R-GCN mitigates this issue, and in fact performs slightly better
for rarer relations.

Taken together, R-GCN as such excels for high-degree vertices, to encode
relations between entities that are close (but not directly connected), and to
memorise predictive information for low-frequency relations. R-GCN learns to
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Figure 3.6: Mean reciprocal rank (MRR) for DistMult (left) and R-GCN (right)
on the FB15k-237 dataset as a function of the rank of the relation. While perfor-
mance degrades for DistMult on rare relations, R-GCN performs well across the
entire dataset. Performance smoothed over bags of size 10.

collect and summarise information from the local neighbourhood around a vertex,
and to filter relevant and irrelevant information when the neighbourhood is large.
Because the model relies strongly on information and relations present in the local
neighbourhood, it struggles to capture relations exactly when the two vertices
being encoded are further apart than the few hops allowed by two layers of R-
GCN; further layers of R-GCN may alleviate this problem, but as with other
neural networks deeper models can be harder to train.

3.5 Subsequent Work

Since our initial publication on R-GCNs (Schlichtkrull et al., 2018), variants have
found application to many different domains. Closest to our work is Berg et al.
(2017), wherein an encoder based on our R-GCN was directly combined with a
bilinear scoring function to model and complete recommendation graphs. Many
subsequent applications similar to our technique combine GNN encoders with
other neural network components for different tasks, whereas the entire setup
combining GNN encoders and factorisation decoders for relational link predic-
tion has not seen the same degree of application. In NLP, models similar to
R-GCN have been employed to encode syntactic graphs for machine transla-
tion (Bastings et al., 2017), extending the concurrent GNN for semantic role
labelling by Marcheggiani and Titov (2017). GNNs have also been applied to
model coreference- and cooccurrence graphs for a variety of question answering
tasks (Sun et al., 2018; De Cao et al., 2019). GNNs combining relation-based mod-
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Model MRR Hits@1 Hits@3 Hits@10

Ours 0.249 0.151 0.264 0.417

ConvE (Dettmers et al., 2018) 0.325 0.237 0.356 0.501
RotatE (Sun et al., 2019d) 0.297 0.205 0.328 0.480
TuckER (Balazevic et al., 2019) 0.358 0.266 0.394 0.544
A2N (Bansal et al., 2019) 0.317 0.232 0.348 0.486
DAGN (Wang et al., 2020b) 0.369 0.275 0.409 0.563

Table 3.4: Results on FB15k-237 for several works subsequent to our publica-
tion (Schlichtkrull et al., 2018).

elling with gates (Li et al., 2016b) or attention functions (Veličković et al., 2018)
have become increasingly popular as a means of representing graph-structured
data, with the use of relation-specific weights for gates being a common approach.

Relational link prediction has also seen strong improvements since our publica-
tion of Schlichtkrull et al. (2018), both on the decoder-side and the encoder-side.
In Table 3.4, we report the results of several subsequent papers. Convolutional
models as introduced in Dettmers et al. (2018) have proven especially perfor-
mant, with stable results across many datasets. Recent papers have produced
even stronger decoders, such as TuckER (Balazevic et al., 2019). Fundamen-
tally, these improvements are orthogonal to the results we have presented – our
R-GCN encoder could be combined with any decoder. However, newer models of-
ten rely on very high-dimensional embeddings. This can represent a challenge for
GNN-based models, because the message passing step has a memory footprint of
O(|V|+|E|) (see Definition 2.2.2) – at least for the popular IMN-implementations.
That is, the memory footprint is proportional to the number of edges. Factori-
sation algorithms only require memory proportional to the number of vertices,
which is often much smaller.

Nevertheless, several recent papers have demonstrated strong improvements
from the use of encoders. A2N (Bansal et al., 2019) employs a single layer
of attention-based aggregation to construct a contextualized embedding for the
source vertex s, given a query (s, r, ?). Their approach is comparable to a single
layer of Veličković et al.’s (2018) attention-based GNN, although crucially their
attention function is conditional on the target relation r in addition to the graph
structure. Wang et al. (2020b) introduce DAGN, a more complex graph model
which constructs attention-based embeddings of vertices not only conditional on
the neighbour set, but also on other vertices in the graph. As in our work, A2N
and DAGN pair the graph encoder with DistMult acting as a decoder.
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3.6 Conclusion

We have introduced Relational Graph Convolutional Network (R-GCN) encoders
for link prediction, a family of graph neural networks which incorporate rela-
tion type and direction when computing entity representations. By encoding
neighbourhoods with R-GCN, we have demonstrated strong performance im-
provements on relational link prediction, specifically for the FB15k-237 dataset.
Along with our model, we have introduced a block decomposition scheme, which
allows our technique to be applied also to large graphs with many different rela-
tion types.

Reflecting on the two research questions we set out to explore in this chapter,
it is clear that benefits can be gained from explicitly modelling entities with
graph neural networks. Performance gains primarily occur for complex inference
problems, and when very specific information is needed to make predictions –
high-degree vertices and infrequent relations, where the necessary information
can be drowned out. The use of a GNN encoder does come with a drawback for
vertices too far apart, because the GNN struggles to capture their relationship.
Within the neighbourhood defined by the k layers of convolution around either
vertex, the performance gain from GNNs is much stronger.

The experiments we have carried out here demonstrate the value of explicitly
encoding vertices in semantic graphs – especially for tasks requiring infrequently
appearing information, or for gathering rich information from few-hop neighbour-
hoods. The strong results for modelling relational data with GNNs are promising
for our intention to apply these models for question answering over knowledge
graphs, which we explore in Chapter 4.





Chapter 4

Graph Neural Networks for Factoid
Question Answering

4.1 Introduction

One of the most fundamental problems in NLP is automatic answering of natural
language questions. This problem is known as question answering (QA). Several
distinct forms of QA have been studied in the literature, separated by the nature
of the knowledge source, which is used to answer questions. Answering questions
on the basis of knowledge bases represents an important setting, because the im-
mense amounts of information curated in KBs are often highly relevant. Further-
more, because of the need to formulate queries against KBs in machine language,
this information is not easily accessible to humans. Accurately retrieving and
processing information from KBs to answer natural language queries opens up a
host of practical applications, from virtual assistants to search algorithms.

In the previous chapter, we introduced a model for relational link prediction
in knowledge bases. In that setting, we aimed to build a model which, given a
potential triplet (s, r, t), scored the likelihood of that triplet based on the KB.
Such methods can answer queries formulated as triplets (s, r, ·) missing a target
vertex vt ∈ V by ranking potential target vertices. It is a small step from a
formalized query (s, r, ·) to a natural language query Q, expressing a request for
information concerning an entity vs ∈ V , to be answered with another entity
vt ∈ V . Conceptually, it is tempting to think of the difference between the two
settings as simply the substitution of a relational for a textual query. Were that
the case, we could directly apply the model from Chapter 3 to factoid question
answering.

39
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Figure 4.1: In factoid question answering, natural language questions are an-
swered by interfacing with a knowledge base and selecting answers from among
the entities. Our models use LSTMs to encode the questions, GNN-propagation
to encode the relations between candidate answers and question entities, and
finally entity- or relation-based scoring to choose answers.

Of course, many real-world questions are too complex for this simplistic scheme.
They involve multiple entities (e.g. ”which years did Michael work at the Uni-
versity of Amsterdam?”), and a single entity is often not sufficient to give a full
answer; a system may need to answer with multiple entities, or with a textual
answer that does not involve entities at all. The much more expansive setting
where the query and the answer take the form of sets of entities vs ⊂ V and
vt ⊂ V is a well-studied problem known as factoid question answering.

The most common strategy for tackling factoid question answering is seman-
tic parsing ; that is, the translation of the question into a formal query language,
which is then used to access the knowledge base. Semantic parsing has led to
impressive advances in factoid question answering, for example in Berant and
Liang (2014), Reddy et al. (2014), and Berant and Liang (2015). However, se-
mantic parsing is fundamentally limited by the need to either annotate datasets of
valid formal queries or rely on automatically generated denotations. Furthermore,
earlier models1 have struggled to incorporate the knowledge base as contextual in-
formation for parsing decisions. Modelling the knowledge base with graph neural
networks, as such, represents a promising alternative.

In this chapter, we attempt to apply graph neural networks to the factoid
question answering problem. There are two immediately obvious strategies we
could choose for applying GNNs to factoid QA. The simplest would be to model

1 In the time since we conducted our research, methods have been introduced to incorporate
relations from the knowledge source as features in semantic parsing models. Notably, Bogin
et al. (2019) and Wang et al. (2020a) demonstrated significant gains on the Spider dataset
using respectively GNNs and a relation-aware attention mechanism to model the knowledge
source.



4.2. Background 41

vertices as we do in Chapter 3, and classify vertices as answers on that basis. That
is, we could use a GNN to obtain a contextualized vector representation of every
vertex. Then, we could make an individual decision for every vertex based on the
corresponding vector as to whether that vertex constitutes (part of) an answer
to the query. A slightly different strategy would be to instead use the GNN to
obtain contextualized vector representations of paths in the graph. We could then
return as an answer every vertex that is reachable from mentioned entities in the
query, following paths with a specific sequence of relation types. These paths can
be seen as analogous to the central path discussed in Yih et al. (2015). We refer
to these two strategies as entity-based and relation-based modeling.

We introduce several models for both the entity-based and the relation-based
setting, and investigate their respective strengths and differences. We seek to
answer the following research questions:

1. Can graph neural network encoders yield benefits for question answering by
modelling entities and relations in the knowledge base?

2. Is entity-based or relation-based modelling the more suitable strategy, and
which graph neural network models work best in either setting?

The models we introduce combine LSTMs for understanding the question with
GNNs for understanding the knowledge base. We experiment with two different
problem formulations, showing that different GNNs lead to strong performance in
each setting. We furthermore explore several choices enabling GNNs to operate
in large knowledge bases, including the use of gated messages. To this end, we
introduce a novel GNN variant relying on gates to choose which edges to rely on
and L1 regularization to induce sparsity.

Our primary contribution in this chapter is the aforementioned exploration
of different models and GNN encoders for factoid QA. We validate our models
on the WebQuestions dataset. The experiments we present here were carried out
in 2018, making ours one of the earliest attempts to address the problem. Since
then, several concurrent and subsequent works have been published. In addition
to our experiments, we also include a discussion of these in Section 4.5, using the
nowadays more popular WebQuestionsSP dataset.

4.2 Background

In this chapter, we address the problem of factoid question answering. Formally,
we are given a set of examples each consisting of a natural language question
Q = w1, w2, ..., wn, as well as a knowledge graph G = (V , E ,R).2 The task is to
predict for each example a set of answer entities Va ⊂ V . We furthermore have

2 Recall from Section 3.2 that a knowledge graph is defined as a directed, labeled multigraph
G = (V, E ,R) with vertices (entities) vi ∈ V and labeled edges (relations) (vi, r, vj) ∈ E ,
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access to a set of question entities Vq ⊂ V , linking the question to the knowledge
graph. Each question entity v ∈ Vq is associated with a mention, i.e. a span of
words mv = wvi , ..., w

v
j in the question.

Factoid question answering has been the subject of much research in the form
of semantic parsing, where natural language questions are converted into logical
forms to be executed against a knowledge base (Zelle & Mooney, 1996; Zettle-
moyer & Collins, 2005; Wong & Mooney, 2007; Kwiatkowksi et al., 2010). Despite
significant efforts to scale these methods to realistic knowledge bases (Berant et
al., 2013), they remain hard to apply due to the difficulty of obtaining labelled
training examples with complete parses (Berant & Liang, 2014). For this reason,
recent years have seen substantial amounts of research dedicated to developing
factoid question answering models that do not rely on labelled semantic parses
at training time.

A significant problem is that existing labelled data only covers a small fraction
of the possible questions a system might be tasked with answering; however, para-
phrasing can be used to breach the gap. This was the topic of Berant and Liang
(2014), which paraphrased queries to ease parsing. A similar approach was taken
in Kwiatkowski et al. (2013), where malformed or under-specified queries result-
ing from parsing questions too far from the training domain were “paraphrased”
into executable queries.

This lack of supervised training pairs was also addressed in Berant et al.
(2013), wherein the authors proposed a strategy for learning from denotations
(that is, answer sets in the knowledge base). In their approach, candidate logi-
cal forms for the question are sampled in the question entities’ neighbourhoods.
Then, a simple log-linear model scores these candidate forms. At training time,
the correctness of a generated logical statement can be evaluated simply by exe-
cuting it against the knowledge base to see whether the returned entities match
the answer set. As such, only question-answer pairs are necessary for learning.
This approach was further extended in Reddy et al. (2014), where the problem
was reformulated as matching between a CCG-parse of the sentence and the can-
didate graphs.

Selecting a best path to match the question from the knowledge graph is a
strategy that reappears in several highly-performant systems. Yih et al. (2015),
the state-of-the-art model for the dataset we experiment on, begins from a best
path (or core inferential chain in their terminology) and grows a semantic parse
from that. Xu et al. (2016) selects a best path directly for inference, extending
their classifier with additional textual information. Similarly, Dong et al. (2015)
score all paths from the question entities to candidate answers with a CNN,
selecting a best possible path in place of selecting an answer. This idea of making

where r ∈ R is a relation type. As mentioned, this definition does not fully encompass real-
world knowledge bases, because it only covers binary relations. We address this deficiency in
Section 4.3.1.
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inference based on a path (rather than individually per vertex) features in our
model as relation-based prediction.

Another approach that addresses the problem is slot-filling (Bast & Hauss-
mann, 2015; Yao, 2015). The question entities are matched to one of several
logical templates, and the template is populated using the question entities. This
limits the parsing problem’s scope by reducing it to a search for the best match
among the patterns observed at training time, simplifying the problem.

4.3 Methods

As we have mentioned, factoid QA can be formalised as follows. Given is a natural
language question Q = w1, w2, ..., wn as well as a knowledge base G = (V , E ,R),
linked through a set question entities Vq ⊂ V each with a corresponding mention
span of words mv = wvi , ..., w

v
j . Then, the task is to produce answers in the form of

sets of entities. In this chapter, we experiment with different graph neural network
models (see our review in Section 2.2) for encoding knowledge bases in factoid
QA. Common to our various models is a general structure wherein we encode
the questions into vectors. We then use those vectors as initial embeddings for
the question entities in a GNN, letting the information in the question propagate
through the knowledge base via message passing. Finally, we answer the question
based on the top-layer vertex representations.

To encode the question, we begin by vectorizing each word using either Glo-
VE (Pennington et al., 2014) or ELMo (Peters et al., 2018). For every word
wi, we obtain a corresponding embedding f(wi). To indicate the various entities
present in the question, we concatenate an indicator variable mi to each word
embedding such that mi = 1 if wi ∈ mv for some question entity v, and mi = 0
otherwise. We then process the concatenated question word embeddings through
a bidirectional LSTM (Hochreiter & Schmidhuber, 1997), obtaining high-level
embeddings f ∗(wi) of each word wi. Finally, we construct an embedding sv for
each question entity v by concatenating the high-level embeddings of the first and
the last word in the corresponding mention span; that is, sv = [f ∗(wvi ), f

∗(wvj )].

4.3.1 Graph Neural Networks for Freebase

In the experiments we perform in this chapter, the knowledge base used to answer
questions is Freebase (Bollacker et al., 2008). To address the particularities of that
knowledge base, we develop two specialised GNN variants: A simple extension of
the R-GCN from Chapter 3, and a more expressive gated GNN.

The vertices of Freebase consists of entity vertices e1, ..., en and compound
value type vertices c1, ..., cn. Compound value types represent complex, n-ary
relations. Formally, given an instantiation of a complex relation r with m argu-
ments, e.g. r(e1, ..., em), each argument ek is connected to a compound value type
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Figure 4.2: An example of a ternary relation expressed through a compound
value type c. A GNN operating in Freebase must be designed to incorporate
propagation through such relations.

c through an edge of type r.k. An example can be seen in Figure 4.2.
Binary Freebase relations are treated simply as arcs between the two argu-

ments. This distinction can be problematic for GNN models, as hops through
compound value types require twice as many GNN layers. As such, because
depth influences the difficulty of learning, naive models tend to overprioritise
binary relations. To prevent this, we first modify the binary relations into ar-
tificial compound value types by replacing every relation (ei, r, ej) between two
entity vertices with two relations (ei, r.1, c) and (c, r.2, ej) such that c is a novel
compound value type vertex – see also the example in Figure 4.3.

With 1.9 billion entries, it is difficult to tractably learn to encode the full
Freebase with a GNN. Thankfully, factoid question answering does not necessitate
encoding the full Freebase. Because the task is to retrieve information related
to the question entities, the answer is likely to be found within their immediate
neighbourhood. As such, for a question Q with question entities Vq ⊂ V , we use
only the vertices and edges within k hops of any question entity v ∈ Vq. For our
experiments, we chose 1 ≤ k ≤ 3 empirically. We refer to this subgraph as GQ.

To initialize our GNN models, we begin by defining the initial vertex embed-
dings H(0) as discussed in Section 2.2. As mentioned, we inject information from
the question into the GNN through these. We use the mention embeddings ob-
tained through the LSTM, sv. All other vertices are initialized with zeros. That
is:

h(0)
v =

{
sv if v ∈ Vq.
0 otherwise.

(4.1)

Past work on factoid question answering (Reddy et al., 2014) has shown that
most questions can be answered with a small fragment of the knowledge base –
a few edges connecting the question to the answers, and a few auxiliary edges
as extra evidence. As such, many of the edges in the knowledge base will be
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Figure 4.3: An example of a binary relation transformed to be expressed through a
compound value type. We preprocess the Freebase subgraphs our models operate
in such that all direct relations between entities become compound value types.

superfluous when attempting to answer a given question. Indeed, the information
they encode will often be unrelated to the question. In addition to the R-GCN
introduced in Chapter 3, we therefore experiment with a gated model that can
learn to ignore edges.

We refer to this model as Gated Relational Graph Neural Network (GR-GNN).
We note that our GR-GNN differs from popular prior work on gated GNNs (Li
et al., 2016b; Beck et al., 2018), as the primary gating mechanism is applied to
messages during propagation rather than to vertex embeddings after aggregation.
This edge-wise gating strategy was previously applied for semantic role labeling in
Marcheggiani and Titov (2017). As opposed to R-GCN, we do not use individual
weight matrices for each relation type. Instead, we embed relation types and di-
rection as additional feature vectors when constructing messages. We furthermore
condition each message on a question embedding S, obtained as the output of the
final state of the LSTM. While increasing performance, this formulation prevents
us from implementing the model as a GCN (see Section 2.2.1).

4.3.1. Definition. A Gated Relational Graph Neural Network (GR-GNN)
is a graph neural network parameterized through a set of layerwise weights
W

(l)
g ∈ R3d×1 and W

(l)
m ∈ R3d×d at layer l, as well as an embedding function

E : R× {←,→} → Rd.

We express the GR-GNN through a gated instantiation of the message func-
tion (see Definition 2.2.1). While we experiment with various aggregation func-
tions, sum-pooling is the most natural (and the best performing) for GR-GNN.

4.3.2. Definition. Let h
(l)
v ∈ Rd be the embedding of the vertex v at layer

l, and r and δ be the relation type and direction of an edge e = (u, r, v, δ).
Furthermore, let E(r,δ) ∈ Rd be the embedding vector of r and δ. Then, the

GR-GNN message m
(l)
e associated with e is defined as:

m(l)
e = σ(W (l)

g [h(l)
u , E(r,δ), S]) · ReLU(W (l)

m [h(l)
u , E(r,δ), S])

where σ is the sigmoid function.
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As we also did for R-GCN, we connect layers with residual connections (He
et al., 2016). Similarly to our previous experience with R-GCN, such connec-
tions did not directly improve performance, but stabilised training and strongly
decreased the number of training updates necessary to reach an optimum. GR-
GNN can be efficiently implemented as an incidence matrix network as described
in Section 2.2.2, keeping the complexity low.

As mentioned, a benefit of using gates is the ability for the model to choose
not to use superfluous edges. It can be beneficial to directly encourage the model
to close gates. We introduce an L1-penalty term for doing so. As we later show
(see Section 4.4), this penalty is crucial for reaching high performance.

4.3.3. Definition. Let h
(l)
v ∈ Rd be the embedding of the vertex v at layer

l, and r and δ be the relation type and direction of an edge e = (u, r, v, δ).
Furthermore, let E(r,δ) ∈ Rd be the embedding vector of r and δ. Then the
L1-penalty of the GR-GNN at layer is defined as:

L
(l)
1 =

∑
(u,r,v,δ)∈E

σ(W (l)
g [h(l)

u , E(r,δ), S])

where σ is the sigmoid function.

4.3.2 Entity-based models

An intuitively simple strategy for choosing a set of answer vertices is to score
each vertex individually, and then choose all vertices with scores above a certain
threshold. This parallels our approach to modelling relational link prediction in
Chapter 3, where we learned a score for each vertex in order to select the most
suitable answer. Here, however, a question can have potentially many answers.

4.3.4. Definition. Entity-based factoid question answering is the task of
computing, given a question Q with an associated graph GQ = V , E ,R, the
probability pv(a|Q,GQ) for every vertex v ∈ V of v being an answer to Q.

We address this by learning individual binary probability distributions pv(a|Q,GQ)
for each vertex v, representing the probability of v being a member of the answer
set Va. We compute this distribution on the basis of the GNN-encoding of v at
the top layer of the GNN, htopv , as well as the sentence embedding S:

pv(a|Q,GQ) = σ(f([htopv , S])) (4.2)

where f is an MLP. We then predict an answer set containing every entity with
a probability above some threshold chosen on validation data.
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As we did for R-GCN (see Equation 3.3), we learn the vertex scores using
negative sampling. For every question Q, we sample ω = 10 potential answers
V −a from the immediate neighbourhood GQ in addition to the set of actual answers
Va. We combine these into a set of evaluated vertices Vl = Va∪V −a . We introduce
an indicator yv such that yv = 1 iff v ∈ Va. For each question Q, we then compute
a loss term as:

L = − 1

(1 + ω)

∑
v∈Vl

yv log pv(a|Q,GQ) + (1− yv) log
(
1− pv(a|Q,GQ))

)
(4.3)

4.3.3 Relation-based models

In Yih et al. (2015), strong performance was achieved through the assumption
that there exists a core inferential chain connecting the question to the answer
in at most two hops (or one hop, if the middle vertex is not a CVT). This
core inferential chain connects most potential answers to the question. A decent
strategy is accordingly to assume that all such entities and only those entities
should be returned as answers.

Following this idea, we experiment with a model that performs predictions
based on relations rather than individual entities. We predict a triple containing a
mentioned entity and two relation types (e.g. person.name and person.occupation,
in Figure 4.2), and return all entities from the database matching this pattern
as answers. We enumerate for each question sentence Q a set of triples on the
form CQ = (m, r1, r2), each consisting of a mention m and a hyperpath r1, r2 (e.g.
a compound pass through an artificial or natural CVT-vertex). We then choose
from among these to answer the question.

4.3.5. Definition. Relation-based factoid question answering is the task of
computing, given a question Q with mentions M and an associated graph GQ =
V , E ,R, the probability distribution p(C = CQ|Q,GQ). Here, CQ = (m, r1, r2)
is a precomputed optimal hyperpath from a mentioned entity m ∈ M to an
answer to Q.

We encode each possible mention m simply by reusing the embedding sm
obtained through the LSTM. To encode the relation types r1 and r2, we employ
the GNN. We encode r1 as the mean embedding e(r1) of all entities v1 such that
(m, r1, v1) ∈ E , and r2 as the mean embedding e(r2) of all entities v2 such that
(m, r1, k) ∈ E and (k, r2, v2) ∈ E for some entity k. We then learn a probability
distribution over these triples:

p(C = CQ|Q,GQ) = σ(f([sm, e(r1), e(r2), S])) (4.4)

where σ is a the softmax function and f is an MLP.
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Method Mean F1

Berant and Liang (2014) 39.9
Dong et al. (2015) 40.8
Reddy et al. (2014) 41.3
Yao (2015) 44.3
Bast and Haussmann (2015) 49.4
Berant and Liang (2015) 49.7
Yih et al. (2015) 52.5
Reddy et al. (2016) 50.3
Xu et al. (2016) 47.1

Entity-based baseline 34.1
Entity-based GR-GNN 45.6

Relation-based baseline 44.8
Relation-based GR-GNN 47.4

Table 4.1: Results from the literature plus results for some of our various systems.
First section contains comparable background results, the second section contains
our results with entity-prediction models, and the third section our results with
relation-prediction models. For both types of models, we also include results for
a baseline that leaves out the GNN; equivalent to a zero-layer GR-GNN model.

We again employ negative sampling, selecting a set C− of negative triples for
each question. We then use a categorical cross entropy loss over this set to learn
to score triples:

Lr =
∑

C∈C−∪{CQ}

y(CQ) log p(C = CQ|Q,GQ) (4.5)

4.4 Experiments

We test our models on the WebQuestions dataset introduced in Berant et al.
(2013). WebQuestions is a dataset of 3,778 training and 2,032 test questions
to be answered using Freebase as a knowledge source. The questions were not
originally tagged with named entities linked directly to the knowledge base, but
it has become standard practise to reuse the excellent entity linking provided in
Yih et al. (2015); we do so as well. For comparability, we use the same Freebase
dump as in Reddy et al. (2016). We report results in terms of mean per-example
F1-score, as in prior work. That is, for each example, we compute the F1-score
between the generated answer set and the gold answer set. We then compute the
dataset-level mean as the evaluation metric.
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Model Mean F1

Full entity-based model 45.6
- Gates 41.3
- L1 45.0
- ELMo 44.7

Table 4.2: Ablation test for our entity-based model. We report results disabling
the gates from the GNN-model introduced in Section 4.3, as well as the gated
GNN with and without L1-regularization. We furthermore report results using
GloVe-embeddings rather than contextualized ELMo-embeddings for modeling
the question.

In Table 4.1, we compare the respective performance of our strongest entity-
prediction and relation-prediction models to several works from the literature.
As discussed in Section 4.3, our formulation relies on ELMo-embeddings for en-
coding the question, followed by several layers of graph neural networks. In both
cases, two-layer models yielded the highest performance. For the entity-based
model, the gated relational GNN introduced in Definitions 4.3.1 and 4.3.2 with
L1-regularization performed the best; for the relation-based model, we achieved
the highest performance with a simple R-GCN as discussed in Chapter 3. We
scaled the L1-term by a factor 0.01, chosen as a hyperparameter on a held-out
portion of the training set (as the original WebQuestions dataset does not contain
a development set). Our models were trained using Adam (Kingma & Ba, 2015)
with a learning rate of 0.001. Our models were trained on a single Titan X GPU,
requiring approximately 48 hours of computation for the entity-based model, and
36 hours for the relation-based model.

With a mean F1-score of 47.4, our strongest model does not quite reach
the state-of-the-art semantic parsing result of Yih et al. (2015). Nevertheless,
our GNN-based approach represents a competitive alternative architecture. We
achieve the best results with the relation-based strategy, gaining 1.8 points F1-
score compared to the best entity-based system. In conjunction with the strong
performance of Yih et al. (2015) – which as discussed relies on a “core inferen-
tial chain” not dissimilar from our relation-based approach – this suggests that
the idea of answering through such a structure is a good way of modelling the
problem.

Interestingly, the best-performing graph encoder for the relation-based strat-
egy (e.g. R-GCN) is much simpler than for the entity-based strategy (e.g. GR-
GNN) – there are no gates, and no L1-regularization. In Tables 4.2 and 4.3, we
perform ablation tests to further investigate which components are necessary to
achieve high performance.

For the entity-based model, Table 4.2 contains results dropping respectively
the gates or the sparsity-inducing L1 regularization. We also include results
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Model Mean F1

Full relation-based model 47.4
GR-GNN 41.8
GR-GNN + L1 43.1
- ELMo 46.5

Table 4.3: Ablation test for our relation-based model. As the gated GNN in
this setting actually hampers performance, we compare the simple R-GCN used
in Table 4.1 to versions using the GR-GNN-model introduced in Section 4.3
with and without L1-regularization. We furthermore report results using GloVe-
embeddings rather than contextualized ELMo-embeddings for modeling the ques-
tion.

replacing the contextualized ELMo-embeddings in the encoder with GloVe em-
beddings (Pennington et al., 2014). We find that gates are highly beneficial for
the model, especially when accompanied by the sparsity-inducing penalty. Allow-
ing the model to choose selectively which edges to send messages along as such
appears to be crucial. We furthermore find that the ELMo-embeddings add a
small improvement to the model.

For the relation-based model, the use of gates does not seem to give the same
benefits. Indeed, as the ablation tests in Table 4.3 show, the simpler R-GCN with-
out gates actually performs much better than the more complex gated version.
As with the entity-based model, L1-regularization does seem to improve the per-
formance of the gated model – this further supports our hypothesis that sparsity
is advantageous for GNNs operating on knowledge bases. However, the simpler
model here yields even greater performance. Together with the marginal benefits
of the second layer (see Figure 4.4), this may suggest that the relation-based ap-
proach for this dataset requires less complexity to model. Another explanation
could be that the GR-GNN gates in the entity-based model capture essentially
the same information as the hyperpath for the relation-based model – a central
path from the mentioned entities to the answer.

An important question is the number of GNN-layers required to model factoid
question answering. For both the entity-based and the relation-based models, we
achieved the best performance (e.g. the performance reported in Table 4.1) with
two layers; and there was only a 1.2-point performance difference between the two
models. Interestingly, this difference increases drastically with fewer layers. In
Figure 4.4 we plot the performance of the two models as a function of the number
of GNN-layers. While both models benefit from additional layers (up to a point),
the gain from adding multiple layers in the entity-based model is massive. This
is not entirely unsurprising in the case of the 0-layer baseline, as the entity-based
model without layers cannot situate unseen entities in relation to the question
entities at all. Therefore, it is only for entities that occur during the training set
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Figure 4.4: Mean F1-score for our best-performing entity-based ( ) and
relation-based ( ) factoid question answering models on the WebQuestions test
data as a function of the number of GNN-layers used.

Model Mean F1

Entity-based, mean-pooling 42.3
Entity-based, relation-wise normalization 43.7
Entity-based, sum-pooling 45.6

Relation-based, mean-pooling 46.1
Relation-based, relation-wise normalization 47.4
Relation-based, sum-pooling 44.6

Table 4.4: Performance of our entity-based (top) and relation-based (bottom)
models with mean-pooling, relation-wise normalization, and sum-pooling.

that performance above random can be expected. However, the gap between the
one- and two-layer cases can only be explained by the model successfully using
two-hop information.

In Chapter 3, we introduced a relation-wise normalization scheme for our R-
GCN model. For the experiments in that chapter, relation-wise normalization was
necessary to achieve strong performance. Since our work on R-GCN, subsequent
research (Xu et al., 2019) has demonstrated that all forms of mean- and max-
pooling for GNNs limit the expressivity of the GNN; instead, their results suggest
the use of sum-pooling. Sum-pooling is also problematic, as it may result in
embeddings of high-degree vertices having substantial variance. We mentioned in
Section 3.4 that our relation-wise normalization can be seen as a middle ground
between mean- and sum-pooling. However, it still fundamentally suffers from the
same issues as mean-pooling when it comes to expressivity.
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In Table 4.4, we perform experiments with the various models introduced
in this chapter under different normalization schemes. As previously, we use
the GR-GNN for the entity-based approach and the R-GCN for the relation-
based approach. We found it necessary to use relation-wise normalization for
the relation-based model, and do away entirely with normalization (e.g. use
sum-pooling) for the entity-based model. Interestingly, when training an entity-
based model without gates, sum-pooling and relation-wise normalization perform
on par (42.3% and 42.4%, respectively). This suggests that normalization and
gating can perform the same variance-reducing function, ensuring that the em-
beddings of high-degree vertices do not explode. This is intuitively reasonable, as
messages with closed gates do not contribute to the variance of the target vertex’
embedding. In contrast, messages with open gates make the same contribution
as messages with no gates.

4.5 Subsequent Work

Since our experiments, factoid QA has seen several important developments. Fo-
cus has shifted from WebQuestions to the WebQuestionsSP subset, developed in
Yih et al. (2016). WebQuestionsSP provides a SPARQL-query exactly answering
each question, and filters out any questions not answerable through SPARQL.
This stronger supervisory setting can be used to achieve higher performance for
the STAGG-model (Yih et al., 2015), which held the state-of-the-art result on
the original WebQuestions.

Concurrently with our efforts to develop GNN-models for factoid QA, Sun
et al. (2018) introduced GRAFT-Net, a GNN-based system for WebQuestion-
sSP. GRAFT-Net was developed to combine information from knowledge graphs
and text, and also functions well in settings where a large part of the knowl-
edge graph has been replaced with textual documents. GRAFT-Net was further
developed into PullNet (Sun et al., 2019b). In Table 4.5, we compare several sub-
sequent results, including GRAFT-Net and PullNet. We also include results with
the REINFORCE-based Neural Symbolic Machines (Liang et al., 2017). Unfor-
tunately, two disparate evaluation metrics are in use for WebQuestionsSP, and
several papers report only one of the two – this complicates comparisons.

In our experiments in this chapter, inducing sparsity through gates yielded
strong improvements for the entity-based approach. An unfortunate consequence
of relying on gates to reduce the number of edges is that the training complexity
is unaffected. As the Freebase fragments we rely on here are large, this slows
down training – indeed, our best-performing models require several days of GPU-
accelerated training. GRAFT-Net and PullNet address this problem by pruning
the graph before training through two different strategies. GRAFT-Net prunes
the graph with Personalized PageRank (Haveliwala, 2003), retaining only the top
E entities reachable from the question entities Vq. PullNet takes this one step
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Model Hits@1 Mean F1

STAGG - 66.8
GRAFT-Net only KB 66.7 62.4
GRAFT-Net 67.8 60.4
PullNet 68.1 -
NSM - 69.0

T5 (text + tables + KB) 79.1 -

STAGG (w/ strong supervision) - 71.7

Table 4.5: Results on WebQuestionsSP subsequent to our work. We include
results for STAGG (Yih et al., 2015), the state-of-the-art model for WebQuestions
at the time of our experiments. We then report results for GRAFT-Net with and
without extra textual data (Sun et al., 2018), the followup work PullNet (Sun
et al., 2019b), as well as Neural Symbolic Machines (Liang et al., 2017). We
furthermore include results from T5 pretrained for QA over text, tables, and
knowledge bases (Oğuz et al., 2020), as well as a version of STAGG trained with
annotated semantic parse labels (Yih et al., 2016).

further, learning which entities to prune. PullNet iteratively grows the graph
through a process where a frontier is scored using a GNN. The highest-valued
entities are added to a set of retained entities, and a new frontier is constructed.
The model is trained to find entities on the shortest path between the question
and the answer. In both cases, this pruning increases performance and decreases
complexity drastically.

GRAFT-Net and PullNet both rely on GNNs similar to our R-GCN to encode
graph fragments. In the case of GRAFT-Net, the encoder is further extended to
also include a term conditioned on a PageRank score. The line of work wherein
GNNs are used to model graph fragments for factoid QA was also explored in
Sorokin and Gurevych (2018) using a novel version of WebQuestionsSP relying
on WikiData rather than Freebase as the knowledge source. Their experiments
relied on a gated GNN, which demonstrated strong performance in comparison
to baselines.

A promising line of related research involves transforming other question an-
swering problems into factoid QA by constructing artificial graphs between po-
tential answer candidates (De Cao et al., 2019; Tu et al., 2019). This allows
the use of GNN models to very effectively solve multi-hop question answering
problems. The graphs used are typically coreference- and cooccurrence-graphs,
or knowledge base fragments used to enrich textual documents.

Very recently, Oğuz et al. (2020) have demonstrated that large pretrained
language models (see our discussion in Section 2.3.1) can be applied to linearised
representations of knowledge graph fragments, enabling unified models to learn
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from and perform question answering over many sources. Combining text, tables,
and knowledge base triples, strong performance is reached on many datasets,
including state of the art results on WebQuestions and WebQuestionsSP. Their
results indicate that the inclusion of structured knowledge sources – that is, tables
and knowledge bases – can complement textual knowledge sources and lead to
improvements also for more traditional textual question answering scenarios.

4.6 Conclusion

We have introduced two GNN-based models for factoid question answering, re-
lying either on choosing individual vertices or choosing a best path to answer
natural language questions. Although our models do not surpass the strong se-
mantic parsing baseline of Yih et al. (2015), we do demonstrate performance close
to contemporary models from the literature. Our models rely on a gated graph
neural network with a sparsity-inducing L1-penalty. We demonstrate that the
addition of the penalty term improves performance, showing the importance of
reducing the number of edges used for decisionmaking in GNN-based QA systems.
This finding is further backed by the results of e.g. Sun et al. (2018), Sun et al.
(2019b), wherein pruning through either PageRank or a secondary model is used
to achieve high performance.

Regarding the research questions we set out to answer, we see clear benefits
from the application of GNNs to factoid question answering, although the end
result of our experiments is a promising alternative with performance close to
or similar to existing techniques rather than an improvement. Relation-based
modelling seems to lead to superior results, perhaps due to the implicit modelling
of a “central path” as also used by Yih et al. (2015). Interestingly, concurrent
and subsequent work (Sun et al., 2018; Sun et al., 2019b) relies on entity-based
modelling, suggesting an avenue for future improvement on those techniques.

In the process of developing GNNs for factoid QA, we encountered several
obstacles. A major problem was the difficulty in understanding why certain vari-
ants outperformed others, and which aspects of the problem a given solution
addressed. To a large extent, this was due to the nature of GNNs as highly
complex, nonlinear, “black-box”-models (Belinkov & Glass, 2019). In Chapter 5,
we focus on developing a technique for understanding and interpreting the pre-
dictions of trained GNN models, inspired in part by our experiences with the
development of models for factoid QA.



Chapter 5

Open Fact Verification Over Tables

5.1 Introduction

Verifying whether statements are true or false based on a trusted knowledge source
is a fundamental NLP problem, closely related to question answering. This task
has important applications to automated fact checking (Vlachos & Riedel, 2014)
and other tasks in computational journalism (Cohen et al., 2011; Flew et al.,
2012). The problem has been extensively investigated under different conditions
including entailment and natural language inference (Dagan et al., 2005; Bowman
et al., 2015) as well as claim verification (Vlachos & Riedel, 2014; Alhindi et al.,
2018; Thorne & Vlachos, 2018). Despite this, little attention has been devoted
to the setting where the trusted body of evidence is structured – that is, where
it consists of tabular or graph-structured data.

In previous chapters, we have focused on modelling structured data as graphs
with GNNs. For many forms of such data – knowledge bases, social networks,
geographical maps – modelling the structure as a relational graph and encoding
that through a GNN is a very natural approach. Indeed, relational graphs are a
very general approach to modelling structure, applicable to most situations. In
certain special cases, the elements of the structure can be assigned a linear order.
This enables the use of an alternative modelling scheme commonly referred to as
linearisation.

Linearisation works by defining a heuristic for mapping from structure to
sequence (see the example in Figure 5.1). Then, one of the many high-performing
sequence models from the literature can be applied. In the case of tables, it is
simple to order the elements of the structure linearly: rows can be enumerated,
columns can be enumerated, and cells accordingly can also be enumerated. Recent
work on table modelling has demonstrated very strong results using pretrained
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row 1 is </s>: Title

Title Established Parent Company
Daily Mail 1896 DMGT
Mail on Sunday 1982 DMGT
... ... ...
Daily Express 1900 Reach
Sunday Mirror 1915 Reach
Sunday People 1881 Reach

is Daily Mail Established is;

Figure 5.1: An example of linearisation. Structured data (a table, in this case) is
converted to an unstructured form through a predefined heuristic. Subsequently,
high-performing models for unstructured data can be applied to model the infor-
mation.

transformer-based1 models to encode linearised tables (Chen et al., 2020; Yin
et al., 2020). In this chapter we explore the use of such models as an alternative
to GNNs for encoding structure, focusing specifically on fact verification for the
open domain.

Traditionally, fact verification and question answering are defined in two dif-
ferent settings: the open and the closed domain (Chen et al., 2017). In the closed
domain, each statement or question is associated with a single document (or a
small collection of documents). This document is then guaranteed to contain in-
formation to verify the statement or answer the question. In the open domain, the
system must first retrieve appropriate evidence from a larger knowledge source.
While both settings are highly beneficial for the development of models, only
the open domain accurately reflects the necessities of real-world fact verification
tasks.

Recently, two large-scale datasets were introduced for claim verification over
structured tables (Chen et al., 2020; Gupta et al., 2020). These represent the first
large-scale structured fact verification environments available to the community;
unfortunately, they are both designed as closed-domain tasks. At first glance, one
might expect closed-domain datasets to not be easily transferable to the open set-
ting – potentially, many queries could be too context-dependent to be answerable
without reference to a specific table. For example, if the claim in Figure 5.2 had
been “some companies own multiple newspapers” or even “some companies occur
multiple times as owners”, retrieval would not be possible. Thankfully, in the
dataset we use (Chen et al., 2020), the majority of the claims are sufficiently

1 See also Section 2.3, where we discuss how transformers can be seen as a special case of graph
neural networks operating in the fully connected graph.
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context-independent to be understood without knowing which table they were
constructed with reference to. The existence of a reference table for every claim
does, however, present a unique opportunity to exploit an additional signal at
training time, which we seek to benefit from.

In this chapter and in Schlichtkrull et al. (2020a), we investigate fact verifi-
cation over tables in the open setting. We take inspiration from similar work on
unstructured data (Chen et al., 2017; Nie et al., 2019; Karpukhin et al., 2020;
Lewis et al., 2020), proposing a two-step model which combines non-parametric,
retrieval-based memory with a neural reader operating on top of retrieved tables.
Drawing on preliminary work in open question answering over tables (Sun et al.,
2016), we perform retrieval based on simple heuristic modelling of individual table
cells. While highly performant in terms of hits-at-N, a more sophisticated model
is ultimately needed to bridge the gap between the top-rated retrieved table and
the best table located in the k top-rated tables. For that reason, we combine this
simple heuristic with a joint reranking-and-verification model, performing fusion
of k evidence documents in the verification component. This is similar to the
approach also suggested for question answering in Izacard and Grave (2020). We
attempt to answer the following research questions:

1. Can neural models be applied to efficiently encode tables for querying in
open-domain fact verification tasks?

2. How can the existence of large-scale closed-domain datasets be exploited to
improve open-domain performance?

3. Will our models still yield performance improvements if applied to query
against a Wikipedia-scale dataset rather than the much smaller 16, 573 evi-
dence tables available in TabFact?

We introduce a novel model for fact verification over multiple tables, consist-
ing of a RoBERTa (Liu et al., 2019) encoder for linearised tables, and a cross-
attention module fusing evidence documents. Combined with a heuristic TF-IDF
retriever, our system demonstrates strong open-domain performance exceeding
even the previous closed-domain state of the art (outside of Eisenschlos et al.
(2020), which includes intermediary pretraining on additional synthetic data).
When combined with an oracle retriever for a single table, our encoder sets a new
closed-domain state of the art. We furthermore propose two strategies with cor-
responding loss functions for exploiting closed-domain fact verification datasets
in the open setting. These respectively either increase verification accuracy, or
enable the model to better identify when the TF-IDF retriever has failed to find
appropriate evidence. We finally present additional results using a highly realistic
setting where tables are retrieved from the full Wikipedia dump.

Our primary contribution in this chapter is the introduction of effectively
the first system for open-domain table fact verification. The two loss functions
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The Daily Express and the Sunday Mirror are
owned by the same company.

True

Title Established Parent Company
Daily Mail 1896 DMGT
Mail on Sunday 1982 DMGT
... ... ...
Daily Express 1900 Reach
Sunday Mirror 1915 Reach
Sunday People 1881 Reach

Title 2019 Election party support
Daily Mail Conservative Party
Mail on Sunday Conservative Party
... ...
The Sun Conservative Party
Daily Mirror Labour Party
Sunday Mirror Labour Party

Figure 5.2: Example claim to be evaluated against two retrieved tables. Named
entities represent a strong baseline for retrieval, but ultimately a more complex
model is required to distinguish highly similar tables.

represent a secondary contribution enabling our high performance. We test our
model on TabFact dataset (Chen et al., 2020), reporting results with retrieval
from the 16, 573 TabFact tables. We also compare against a version of our model
using an oracle to retrieve the closed-domain gold table. Additionally, we test our
system with retrieval from approximately 3 million tables automatically gathered
from Wikipedia. We furthermore include a thorough ablation study.

5.2 Background

Fact verification is the task of automatically determining the truth value of a given
claim q based on some trusted body of evidence. This evidence could be a single
document in the closed-domain setting, or a large collection of documents in the
open setting. For our purposes, each document is a table t, and the collection
of documents in the open setting is as such a database of tables T . This is the
setting studied in the closed domain by the recently introduced large-scale dataset
of Chen et al. (2020).
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Automated fact verification as an NLP problem was first studied in Vlachos
and Riedel (2014). Since then, tremendous gains have been accomplished, thanks
in large part to the FEVER shared task (Thorne & Vlachos, 2018). Unfortu-
nately, the majority of the existing literature has studied fact verification only
over unstructured, textual documents. This is in contrast to question answer-
ing, where semantic parsing over tables is well-studied (e.g. Pasupat and Liang
(2015), Khashabi et al. (2016), and Yu et al. (2018)).

Two recent papers have proposed large-scale table fact verification datasets
to fill this niche: Chen et al. (2020) and Gupta et al. (2020). These also include
neural models for encoding tables; in fact, the BERT-based encoder introduced
in the former is the closest related work to the model presented in this chapter.
A few subsequent papers have introduced models for these datasets. In Zhong
et al. (2020), a logic-based fact verification system was introduced to improve
the model presented in the initial TabFact paper (Chen et al., 2020). Yang et
al. (2020) builds on the program induction model also introduced in Chen et al.
(2020), using a GNN to verify generated programs. Finally, Herzig et al. (2020)
and Eisenschlos et al. (2020) introduced a BERT-based model for various table
semantic tasks, extending BERT with additional position embeddings denoting
columns and rows.

Outside of fact verification, a few papers have proposed general-purpose neu-
ral encoders for tables. The closest to our work is Yin et al. (2020). In their
paper, a pretrained BERT-based encoder for tables is introduced and demon-
strated to yield strong improvements on several semantic parsing tasks. Chen
et al. (2019) introduced a model to automatically predict and compare column
headers for tables in order to find semantically synonymous schema attributes.
Similarly, Zhang and Balog (2019) introduced an autoencoder for predicting table
relatedness.

Operating in the Open Domain

Whether for fact verification or question answering, the systems we have so far
discussed operate in the closed domain. For the open domain, attention has
mostly been on unstructured, textual data. Early work resulted in several highly
sophisticated full pipeline systems (Brill et al., 2002; Ferrucci et al., 2010; Sun et
al., 2015). These inspired the influential DrQA model (Chen et al., 2017), which
like many later systems – including ours – relies on a simple heuristic retrieval
model, and a complex reading model. Recent work (Karpukhin et al., 2020; Lewis
et al., 2020) has built on this approach, developing fast learned retrieval models
through dot-product indexing (Johnson et al., 2019), and increasingly advanced
pretrained transformer-models for reading. At present, unfortunately, a technique
for fast maximum inner product search over structured data is not available.

Several strategies have previously been proposed for retrieving tables in dif-
ferent contexts. For question answering, Sun et al. (2016) used string matching
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between aliases of linked entities to search millions of tables crawled from the
Web. Similarly, Jauhar et al. (2016) demonstrated strong results with a Lucene
index and a Markov Logic Network-based model for answering scientific questions.
Recently, Chakrabarti et al. (2020a) and Chakrabarti et al. (2020b) developed an
improved model for table retrieval, combining neural representations of the table
and the query with a BM25 index.

Concurrently with our work, Chen et al. (2021) have introduced a BERT-based
model to perform question answering over open collections of data, including ta-
bles. Like ours, their model consists of separate retriever- and reader-components.
Their retriever is an iterative two-step process that first generates a candidate pool
through BM-25 scores, then refines it through a BERT-based scorer. Their best-
performing reader employs a long-range sparse attention transformer (Ravula et
al., 2020) to jointly summarize all retrieved data. As in our case, their model
demonstrates significant improvements from using multiple retrieved tables.

Retrieving tables for use by a verification component is furthermore related to
table search. Here, a line of research employs various means to rerank the tables
returned by search engines or SQL querying. Cafarella et al. (2008) and Cafarella
et al. (2009) employed keyphrase-based table retrieval by reranking a list of tables
returned by a search engine. Pimplikar and Sarawagi (2012) demonstrated strong
improvements using a graphical model to perform retrieval based on co-occurrence
statistics, table metadata, and column headers. In Ghasemi-Gol and Szekely
(2018), non-parametric clustering was employed as a strong heuristic for table
retrieval. Zhang and Balog (2018) introduced a ranking method based on mapping
available features into several semantic spaces. Recently, Zhang et al. (2019)
introduced a neural method for table retrieval and completion using word- and
entity-embeddings of table elements.

5.3 Methods

Formally, the open table fact verification problem can be described as follows.
Given a claim q and a collection of tables T , the task is to determine whether
q is true or false. This corresponds to modeling a binary verdict variable v by
p(v|q, T ). This is in contrast to the closed setting, where a single table tq ∈ T is
given, and the task is to model p(v|q, tq). Since there are large available datasets
for the closed setting (Chen et al., 2020; Gupta et al., 2020), it is reasonable to ex-
ploit an “optimal” table tq during training; however, at test time, this information
may not be available.

We follow a two-step methodology that is often adopted in the open-domain
setting for unstructured data (Chen et al., 2017; Nie et al., 2019; Karpukhin
et al., 2020; Lewis et al., 2020) to our setting. Namely, given a claim q, we
retrieve a set of evidence tables Dq ⊂ T , and subsequently model p(v|q,Dq) in
place of p(v|q, T ). We use a TF-IDF based heuristic to retrieve tables, which we
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then linearise and subsequently encode using RoBERTa (Liu et al., 2019), a large
pretrained language model of the sort we discussed in Section 2.3.1. We introduce
our retrieval and verification processes in the following sections.

5.3.1 Entity-based Retrieval

We begin by designing a strategy for retrieving an appropriate table or subset
of tables to answer a given query. For question answering over tables, Sun et al.
(2016) demonstrated strong performance on retrieval of candidate tables using
entity linking information, following the intuition that many table cells contain
entities. We take inspiration from these results. In their setting, claim entities
are linked to Freebase entities, and string matching on the alias list is used to
match entities to cells. To avoid linking claim entities to a knowledge base, we
instead use only textual strings from the claim to represent entities, and perform
approximate matching through dot products of bi- and tri-gram TF-IDF vectors.

We first compute TF-IDF vectors z(c1
t ), ..., z(cmt ) for every table t ∈ T with

cells c1
t , ..., c

m
t . Then, we identify the named entities e1

q, ..., e
n
q within the query q.

For our experiments, Chen et al. (2020) provided named entity spans for TabFact
as part of their LPA-model, and we reuse those.2 We compute TF-IDF vectors
z(e1

q), ..., z(enq ) for the surface forms of those entities. We then use these to con-
struct table-level scores for every t ∈ T . Since we are approximating entity linking
between claim entities and cells, we let the score between an entity and a table be
the best match between that entity and any cell in the table, using the dot product
between entity-vectors and cell-vectors to represent relatedness.

5.3.1. Definition. The retrieval score of a table t with respect to a query q
is defined as the sum of the best retrieval score between each query entity and
the table:

score(q, t) =
n∑
i=1

m
max
j=1

z(eiq)
ᵀ · z(cjt)

That is, we compute for every entity the best match in the table, and score
the table as the sum over the best matches. To construct the set of evidence
tables Dq, we then retrieve the top-k highest-scoring tables. Our choice to use
bi- and tri-gram TF-IDF as the retrieval strategy was determined empirically –
see Section 5.4 for experimental comparisons.

2 In the absence of named entity tags, named entity spans would first need to be found through
an off-the-shelf named entity recognizer, e.g. SpaCy (Honnibal et al., 2020). A vulnerability
of our approach is as such that errors can propagate from the named entity recognizer.
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<s> The Daily Express . </s> row 1 is </s>

<s> The Daily Express . </s> row 1 is

<s> The Daily Express . </s> row 1 is

: title

</s>: established

</s>: name

Roberta-Large

Roberta-Large

Roberta-Large

<s> embedding

<s> embedding

<s> embedding

Cross Attention

Cross Attention

Cross Attention

Claim
Truth

Table
Choice

Claim
Truth

Claim
Truth

Figure 5.3: A diagram of our model, using the joint reranking- and verification
approach described in Section 5.3.3. Linearised tables are encoded separately
with RoBERTa. Then, cross-attention is used to contextualize each individual
table with respect to the others. Finally, the model jointly predicts truth value
and table selection.

5.3.2 Neural Verification

After we have retrieved a small set of evidence tablesDq ⊂ T , the task is to predict
the truth value of the claim q given this set of tables. That is, to model p(v|q,Dq).
To this end, we employ a late fusion strategy based on a pretrained language
model (see Section 2.3.1). Given a query q with a ranked list of k retrieved
tables Dq = (d1

q, ..., d
k
q), we begin by linearising each table. We then encode each

linearised table as a vector with RoBERTa (Liu et al., 2019). Given a vector
embedding of each table in Dq, we then contextualize these table embeddings
through cross-attention between the representations. Finally, we predict the truth
value of the claim given these contextualized table embeddings. A diagram of this
process can be seen in Figure 5.3.

Our linearisation scheme follows Chen et al. (2020). We first perform sub-
table selection by excluding columns not linked to entities in the query. Here, we
reuse the entity linking obtained during the retrieval step, and retain only the
three columns in which cells received the highest retrieval scores. We linearise
each row separately, encoding entries and table headers. Suppose r is a row with
cell entries c1, c2, ..., cm in a table, where the corresponding column headers are
h1, h2, ..., hm. Row number r is then mapped to “row r is : h1 is c1 ; h2 is c2;
... ; hm is cm .” An example of this linearisation scheme can also be seen in
Figure 5.1. We construct a final linearisation Lq,t for each query-table pair q, t by
prepending the query to the filtered table linearisation.

5.3.2. Definition. The linearisation Lq,t of a table t with respect to a query
q is the sequence of tokens defined as [CLS], q1, ...qn, [SEP ], t1, ..., tm, [EOS]
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Table 1 Table 2 Table k. . .

Table 1 Cross-attention

Σweighted

f(dq
1)

f*(dq
1)

Figure 5.4: After each retrieved evidence table is embedded with RoBERTa as a
table embeddings f(dkq), our model uses a cross-attention to contextualize each ta-
ble with respect to the others. A learned attention function constructs a weighted
sum of the embeddings on the basis of f(dkq), and the result is concatenated to
f(dkq) resulting in a contextualized table embedding f ∗(dkq).

where q1, ..., qn is the sequence of tokens in q and t1, ..., tm is the sequence of
tokens resulting from mapping the subtable consisting of the three highest-
scored columns in t to textual form.

We then encode each Lq,t with RoBERTa, and obtain contextualised RoBERTa-
embeddings f(dkq) ∈ Rn for every table as the final-layer embedding of the CLS-
token (see Section 2.3.1. We construct the sequence of embeddings f(d1

q), ..., f(dkq)
for all k tables. We furthermore define a tensor F (Dq) combining these.

5.3.3. Definition. The table evidence vectors f(d1
q), ..., f(dkq) for a query q

with retrieved tables Dq = d1
q, ..., d

k
q is the RoBERTa-embedding of the CLS-

tokens of Lq,d1q , ..., Lq,dkq . The evidence embedding tensor F (Dq) is the stacking

[f(d1
q)

ᵀ, ..., f(dkq)
ᵀ]ᵀ of the corresponding table evidence vectors.

When the model attempts to judge whether to rely on a given table for ver-
ification, other highly-scored tables represent useful contextual information. For
example, in Figure 5.2, newspapers may be more likely to share political leanings
if they also share an owner. Nevertheless, each table embedding f(dkq) is con-
structed independently of the other retrieved tables in Dq. As such, the model
cannot take these contextual clues into account.

To remedy this, we introduce a cross-attention layer between all tables cor-
responding to the same query (see Figure 5.4). We apply a single multi-head
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attention transformation3 to the evidence embedding tensor F (Dq), performing
cross-attention between the rows corresponding to individual tables. We subse-
quently concatenate the result to the original evidence embedding tensor. That
is, we compute an attention score for head h from table i to table j with query q
as:

αhij = σ

(
W h
Qf(diq)(W

h
Kf(djq))

T√
dim(K)

)
(5.1)

where σ is the softmax function, and WQ and WK represent linear transformations
to respectively queries and keys. We then compute an attention vector for that
head as:

Ahi =
∑
j∈Dq

αijW
h
V f(djq) (5.2)

We finally construct contextualized table representations through concatenation
as:

5.3.4. Definition. Given a table embedding tensor F (Dq), the contextualized
table embedding f ∗(dkq) of table k is defined as:

f ∗(dkq) = [f(dkq), A
1
k, ..., A

h
k]

We subsequently use F ∗(Dq), e.g. the evidence tensor corresponding to f ∗(d1
q),

..., f ∗(dkq), for downstream predictions. We note that our approach can be viewed
as an extension of the Table-BERT algorithm introduced in Chen et al. (2020) to
the multi-table setting, using an attention function to fuse the information from
different tables.

5.3.3 Training & Testing

At training time, relying on a closed-setting dataset allows us to identify which
tables contain appropriate information for answering each query (e.g., the table
against which the claim is to be checked in the closed setting). Although this
information is not available at test time, we can construct a training regime that
allows us to exploit it to improve model performance, as well as obtain a test-
time indicator that an appropriate table has not been retrieved. We identify and
experiment with two different approaches to modelling this problem. The first
option is to jointly model the choice of table and the truth value of the claim. We
refer to this as joint reranking and verification. The second option is to model
for each table a choice between indicating that the claim is true, that the claim is

3 See Section 2.3 for our introduction to attention. We also refer the reader to Vaswani et al.
(2017) for an extended discussion of the mechanism. As with the transformer, this attention
layer can be seen within the GNN framework as a single step of GAT-propagation (Veličković
et al., 2018) in the fully connected graph between all tables.
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false, or that no information about the claim is given. We refer to this as ternary
verification. In Section 5.4, we demonstrate how the former leads to increased
performance on verification, while the latter gives access to a strong predictor for
cases where no appropriate table has been retrieved to verify the query.

Joint reranking and verification For the joint reranking and verification
approach, we assume that a single best table ts for answering each query exists.
This best table can then be used to learn a ranking function. We model this
as choosing the right table from Dq, e.g. through a categorical variable s that
indicates which table should be selected. We then learn a joint probability of
s and the truth value of the claim v over the tables. Assuming that s and v
are independent, p(s, v|q,Dq) is also a categorical distribution with one correct
outcome that can be optimized for (that is, one correct pair of table and truth
value).

5.3.5. Definition. With the joint reranking and verification objective, the
joint probability of choosing the most appropriate table s and the truth value
of the claim v is defined as

p(s, v|q,Dq) = σ(W (F ∗(Dq)s)v)

where W : R2n → R2 is an MLP and σ is the softmax function.

At training time, we obtain one cross-entropy term corresponding to p(s, v|q,Dq)
for each query. At test time, we can marginalize over s to obtain a final truth
value:

pv(v|q,Dq) =
∑
t∈Dq

p(v, s = t|q,Dq) (5.3)

This formulation has the additional benefit of also allowing us to make a predic-
tion on which table matches the query. We can do so by marginalizing over v:

ps(s|q,Dq) =
∑

vq∈{true,false}

p(s, v = vq|q,Dq) (5.4)

This loss is only well-defined so long as the gold table ts appears in Dq. As such,
when we train the model, we replace Dq with an alternative set D∗q . If ts ∈ Dq, we
simply let D∗q = Dq. If ts /∈ Dq, we construct D∗q by substituting the lowest-scored
table in Dq according to our retrieval system with ts.

Ternary verification At test time, there may be cases where a table refuting
or verifying the fact has not been retrieved. That is, it may be the case that no
relevant table exists in Dq. For some applications, it could be useful to identify
these cases. We therefore design an alternative variant of our system better suited
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for this scenario. Intuitively, each table can represent three outcomes – the query
is true, the query is false, or the table is irrelevant. We can model this through a
ternary variable i.

5.3.6. Definition. With the ternary verification objective, the probability i
of choosing whether a given table t indicates that the query is true, indicates
that the query is false, or gives no indication either way is defined as:

p(i|q, t,Dq) = σ(W ′(F ∗(Dq)t)i)

where W ′ : R2n → R3 is an MLP and σ is the softmax function.

During training, we then assign true or false to the gold table depending on
the truth of the query, and irrelevant to every other table. We then use the
mean cross-entropy over the tables associated with each query as the loss for
each example. At test time, we compute the truth value v of each query as:∑

t∈Dq

p(i = true|q, t) >
∑
t∈Dq

p(i = false|q, t) (5.5)

5.4 Experiments

We apply our model to the TabFact dataset (Chen et al., 2020), which consists of
92,283 training, 12,792 validation, and 12,792 test queries to be validated against
16,573 tables. The task is to classify, for each claim, whether it is true or false
given the knowledge source. To benchmark our open-domain models, we begin by
performing evaluation in the closed domain. This enables us to construct upper
and lower bounds for the performance of our open-domain model. As an upper
bound, we can compare to using a single table retrieved through an oracle – that
is, the equivalent of the closed-domain setting. As a lower bound, we can use the
highest-ranked table according to our TF-IDF retriever, with no reranking. The
evaluation metric is simply prediction accuracy.

5.4.1 Evaluating Retrieval

We choose the retrieval strategy empirically, settling on bi- and tri-gram TF-IDF
as the best-performing option among those we tested. To address the compara-
tive performance of this choice, we compute and rank in Table 5.1 the retrieval
scores obtained through our strategy on the TabFact validation set, using sev-
eral alternative strategies. In addition to entity-level bi- and tri-gram TF-IDF,
we try using bi- and trigram TF-IDF vectors for all words in the claim (rather
than just the entities), word-level TF-IDF vectors for entities, and entity-level ex-
act matching. Our bi- and tri-gram TF-IDF strategy yields by far the strongest
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Dataset H@1 H@3 H@5 H@10

Claim-level word TF-IDF 41.7 54.2 59.0 65.3
Claim-level (2,3)-gram TF-IDF 34.7 45.5 50.2 56.8
Entity-level exact match 48.2 57.9 64.2 67.3
Entity-level word TF-IDF 56.0 65.6 74.1 81.2
Entity-level (1,2,3)-gram TF-IDF 62.3 75.2 80.1 86.1

Entity-level (2,3)-gram TF-IDF 69.6 78.8 82.3 86.6

Table 5.1: Retrieval accuracy for our entity-based TF-IDF retrieval along with
several baselines for the TabFact validation set, computed using all 16,573 Tab-
Fact tables.

performance. Interestingly, the exclusion of unigrams from the TF-IDF vectors
slightly increases performance.

5.4.2 Evaluating Verification

In Table 5.2, we compare our approach to the closed-setting system from Chen
et al. (2020), as well as to several recent models from the literature (Zhong et al.,
2020; Yang et al., 2020; Eisenschlos et al., 2020). We include results with both
losses as discussed in Section 5.3, using varying numbers of tables.

With an accuracy of 75.1%, we obtain the best open-domain results with
our model using the joint reranking-and-verification loss and five tables. We
see performance improvements when increasing the number of tables, both from
one to three and from three to five, although increasing the number of retrieved
tables to ten decreases performance. In the closed domain, the 77.6% accuracy
our model achieves is a significant improvement over the 74.4% the strongest
comparable baseline reached. This may be due to our use of RoBERTa, which
has previously been found to yield improvements for linearised tables (Gupta et
al., 2020). As expected, the joint loss, which trains the model to focus on one
particular table, performs better than the ternary loss (see Section 5.3.3).

Relying purely on TF-IDF for retrieval – that is, using our system with only
one retrieved table – yields a performance of 73.2%. This represents a surprisingly
small decrease of 4.6% accuracy compared to the closed setting, given that an
incorrect table is provided in approximately a third of all cases (see Table 5.1). We
suspect that many of the claims which the closed-setting model fails to correctly
classify are difficult cases, for which the retriever also fails. To make sure we are
not seeing the effect of false negatives (e.g. tables that are not the gold table,
but which nevertheless have the information to verify the claim), we train and
test the model in a setting where one retrieved table is used, but the gold table
is removed from the retrieval results. Here, the model achieves an accuracy of
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Model Test Simple Complex Small

Chen et al. (2020) 65.1 79.1 58.2 68.1
Zhong et al. (2020) 71.7 85.4 65.1 74.3
Yang et al. (2020) 74.4 88.3 67.6 76.2
Eisenschlos et al. (2020)* 81.0 92.3 75.6 83.9
Ours (Oracle retrieval) 77.6 88.9 72.1 79.4

Ours (1 retrieved table) 73.2 86.7 67.8 76.6
Ours (Ternary loss, 3 tables) 73.5 86.9 68.1 76.9
Ours (Ternary loss, 5 tables) 73.7 87.1 67.9 76.5
Ours (Ternary loss, 10 tables) 73.1 86.5 67.9 77.3
Ours (Joint loss, 3 tables) 73.8 87.0 68.3 78.1
Ours (Joint loss, 5 tables) 75.1 87.8 69.5 77.8
Ours (Joint loss, 10 tables) 73.8 86.9 68.1 76.9

Table 5.2: Prediction accuracy of our RoBERTa-based model on the official splits
from the TabFact dataset. We include closed-domain performance of several
models from the literature, as well as the performance of our model in both the
closed and the open domain, using both proposed loss functions. The first section
of the table contains closed-domain results, the second open-domain. * employs
intermediary pretraining on additional synthetic data.

only 56.2%. We furthermore experiment with a system trained and tested using a
random table rather than a retrieved table; with a performance drop to 53.1, we
find that the information in the retrieved table is indeed what drives the model
(rather than e.g. RoBERTa weights).

Hyperparameters Our model uses RoBERTa (Liu et al., 2019) to encode each
table into vectors. For the cross-attention function, we choose empirically to use
two attention heads. We use an MLP consisting of a linear transformation to
h = 3072 hidden units, followed by tanh-activation and linear projection to the
output space. During training, we employ dropouts with probability 0.1 before
each linear transformation in the MLP.

We train the model using Adam (Kingma & Ba, 2015) with a learning rate
of 5e−6. We use a linear learning rate schedule, warming up over the first 30000
batches. We use a batch size of 32. Training was done on 8 NVIDIA Tesla V100
Volta GPUs (with 32GB of memory) and completed in approximately 36 hours.

5.4.3 Analysis

To understand how our model derives improvement from the addition of more
tables, we compute in Table 5.3 the performance of our reranking-and-verification
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Model R@1 R@2-3 R@4-5

Oracle retrieval 80.6 74.1 75.0

1 table 80.6 55.6 53.9
3 tables 78.8 66.7 58.2
5 tables 79.4 73.1 71.7

Table 5.3: Peformance of our RoBERTa-based model on the parts of the TabFact
test set where our TF-IDF retriever assigns the gold table rank respectively 1,
2-3, or 4-5.

model when TF-IDF returns the correct table at rank 1, rank 2-3, or rank 4-5.
Immediately, we notice a much stronger improvement from using multiple tables
when TF-IDF fails to identify the gold table correctly. This is natural, as those
are exactly the cases where our model (as opposed to the baseline) has access to
the appropriate information to verify or refute the claim.

Interestingly, using three tables improves on using one table even when the
gold table is not included among the top three (from 53.9% to 58.2%), and using
five tables improves on using three tables also when the gold table is included
among the top three (from 66.7% to 73.1%). Manual inspection reveals than our
model in many cases can rely on correlations between tables, even when TF-IDF
has not retrieved the gold table – if a sports team loses games in three tables,
then that may give a higher probability of that team also losing in an unretrieved,
hypothetical fourth table. To test this, we apply the model in a setting where
we retrieve the top five tables excluding the gold table, and a setting where we
use five random tables. Using highly scored (but wrong) tables, we achieve a
performance of 59.4%, a significant improvement on the 53.1% we achieve using
random tables. This supports our hypothesis that other good tables can provide
useful background context for verification.

It is worth noting that reliance on such information, while increasing model
performance, may also increase the degree to which the model makes inference
based on inexactness or bias. Depending on the application, correlations between
information in various tables may not be a desirable basis for verifying facts. Re-
turning to the example in Figure 5.2, inferring ownership on the basis of political
affiliation when no other information is available may increase accuracy on aver-
age, but it can also lead to erroneous or biased decisions (indeed, for the claim in
the example, the prediction would be wrong).

Our best-performing model from Table 5.2 relies on two innovations: the
cross-attention function, which contextualizes each table in relation to the other
retrieved table for that claim, and the joint reranking-and-verification loss. In
Table 5.4, we evaluate the model without either of these. Leaving the attention
function out is simple – we use the RoBERTa-embeddings f(dkq) for each table
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Model Accuracy

Full model 75.1
- Attention 73.6
- Joint objective 72.9
- Both 71.2

Table 5.4: Ablation study for our model, performing verification with the five-
table version on the TabFact test set. We remove respectively our cross-attention
function, the reranking component in the loss, and both.

Model H@1 H@3 H@5

TF-IDF 69.6 78.8 82.3
Reranking only 69.9 78.9 82.3
Ours (no attention) 67.4 78.3 82.3
Ours (attention) 70.9 79.4 82.3

Table 5.5: Ranking performance on the TabFact validation set, using either our
TF-IDF retriever alone or reranking with our model. We test a version of our
model using only a reranking loss, as well as joint-loss model with and without
attention.

directly for predictions. For testing our loss without reranking, we assume a
uniform distribution over the tables. As can be seen, the combination of both
is strictly necessary to obtain strong performance. Indeed, without our joint
objective, the model performs worse than simply applying the baseline model to
the top table returned by TF-IDF as in Table 5.2.

In Section 5.3, we introduced our model as a joint system for fact verification
and evidence reranking. A benefit of our formulation is the ability to reason
about the ability of our model to rerank by marginalizing over the truth value of
the claim, following Equation 5.4. In Table 5.5, we compare the table retrieval
ranking performance of our joint model to a model only trained for reranking, as
well as to the TF-IDF baseline.

As can be seen, our joint loss provides a slight performance improvement
when the attention component is included. Interestingly, the joint-loss model
performs better than a system trained purely for reranking — this highlights the
complementary nature of the reranking and verification tasks.

An interesting question is which role attention plays in our model. As can be
seen from Tables 5.4 and 5.5, our cross-attention module is necessary to achieve
high performance – without it, the model struggles to identify which table should
be used for verification. To investigate the function of attention, we plot in Figure
5.5 the strength of the cross-attention between each table for our five-table model.
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(b) Head 1, R@2-3
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(c) Head 1, R@4-5
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(d) Head 2, R@1

1 0.30 0.21 0.19 0.15 0.16

2 0.19 0.22 0.19 0.18 0.18

3 0.22 0.23 0.24 0.18 0.16

4 0.17 0.18 0.18 0.29 0.17

5 0.16

1

0.18

2

0.17

3

0.17

4

0.26

5

A
tt
e
n
ti
o
n

F
ro

m

Attention To

(e) Head 2, R@2-3
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(f) Head 2, R@4-5

Figure 5.5: Confusion matrices for the cross-attention between each pair of tables
for the five-table version of our model. Each head is represented separately, and
individual figures are included for the parts of the dataset where our TF-IDF
retriever assigns the gold table rank respectively 1, 2-3, or 4-5.

We produce separate plots for the two attention heads, as well as for each of the
splits used in Table 5.3 representing the parts of the dataset where our TF-IDF
retriever assigns the gold table rank respectively 1, 2-3, or 4-5.

For both attention heads, the attention function has clearly distinct behaviour
when the gold table is retrieved as top 1; the degree to which that table attends to
itself is much greater. We suspect that this is because of “easy” cases, where the
attention function is used to separate a clearly identifiable “appropriate” table
from the other tables. In harder cases, the model uses the attention focus to
compare information across tables. To test this, we run the model in a setting
where four random tables are used along with the gold table. In that setting, the
division is even clearer. For the gold table, respectively 86 and 82 percent of the
attention for the two heads is on average focused on itself; for the four random
tables, the attention is evenly distributed over all tables except the gold table.

To distinguish the two heads, we in general see the first head exhibit a pattern
of behaviour where each table assigns the majority of attention to itself — espe-
cially when that table is the gold table. The second head seemingly encodes a
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Figure 5.6: Precision-recall curve for determining whether a set of five retrieved
tables in the TabFact validation set contains the gold table, using respectively
entropy of the reranking scores with our joint loss ( ) or the maximum prob-
ability of some table being the gold table with our ternary loss, ( ). We also
include a most frequent class baseline ( ).

slightly more even spread over the retrieved tables, perhaps representing general
context more than an attempt to identify the gold table.

In realistic settings, some claims will not be directly answerable from any
retrieved table. This could be because of inexactness in the retrieval algorithm,
or because the trusted corpus of tables does not contain the information that
a user is querying for. In such cases, it can be valuable to inform the user
explicitly – giving false verifications or refutations when sufficient information
is not available may mislead users and decrease trust in the verification system.
To model a scenario where information may not always be present, we create a
classification task wherein the model must predict for all examples whether the
gold table is among the k documents in Dq.

Using the ternary loss, we can directly obtain the probability of each table
containing appropriate information to verify the claim from our model. We do so
by computing (1− p(It = irrelevant|q, t)). We can estimate the suitability of the
best retrieved table for verifying the claim as max

t
(1−p(It = irrelevant|q, t)), and

apply a threshold τ1 to classify Dq as suitable or unsuitable. For the joint loss,
a more indirect approach is necessary. Intuitively, if our model is too uncertain
about which retrieved table contains the information to answer the query, there
is a high likelihood that no suitable table has been retrieved. For our joint
objective, we can model this directly – this case occurs exactly when the entropy
of the reranking component Hs(s|q,Dq) after marginalizing over the truth value
of the claim exceeds some threshold τ2.

We compare these strategies in Figure 5.6, obtaining Precision-Recall curves
by measuring at varying τ1 and τ2. We find that while both approaches out-
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Model Accuracy

RoBERTa only 52.1
Ours (1 table) 53.6
Ternary loss, 3 tables 55.8
Ternary loss, 5 tables 57.5
Joint loss, 3 tables 56.1
Joint loss, 5 tables 58.1

Table 5.6: Performance of our RoBERTa-based model on the TabFact test set,
using all Wikipedia tables rather than just the TabFact tables as a backend.

perform the most frequent class baseline by a significant margin, the ternary
loss performs better than the joint loss. As such, the choice between the two
losses represents a tradeoff between raw performance and the ability to identify
verifications made based on missing or incomplete information.

5.4.4 Wikipedia-scale Verification

In our experiments so far, we have relied on the 16,573 TabFact tables as a
knowledge source. The tables selected for TabFact were taken from WikiTa-
bles (Bhagavatula et al., 2013), and filtered to exclude “overly complicated and
huge tables” (Chen et al., 2020). Moving beyond the scope of that dataset, a
fully open fact verification system should be able to verify claims over even larger
collections of tables — for example, the full set of tables available from Wikipedia.
To make a preliminary exploration of that larger-scale setting, we include in Ta-
ble 5.6 the performance of our approach evaluated using roughly 3 million tables
automatically extracted from Wikipedia.

As can be seen, our approach improves on the naive strategy of using a sin-
gle table and a closed-domain verification component also in this more complex
setting. To verify that the inference happens based on the retrieved tables and
not simply the RoBERTa-weights, we include the performance of a model that
simply uses classification on top of a RoBERTa-encoding of the claim. As previ-
ously, our joint-loss model with five retrieved tables performs the strongest. We
note that it is unclear whether the performance we observe here originates from
correlations obtained through background information (as we saw earlier when
the retriever failed to find the appropriate TabFact table), or due to verification
against a single entirely appropriate table happening, but at a lower rate than
when using TabFact.
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5.5 Conclusion

We have introduced an attention-based model for fact verification over open col-
lections of tables, along with two separate strategies for handling reranking and
verification through the same model. Our approach achieves performance on par
with the current state of the art for the closed setting on the TabFact dataset,
with larger performance gains the more tables we include. When using an ora-
cle to retrieve a reference table, our RoBERTa-based approach to fact verification
also represents a new state of the art for the closed setting. Finally, we have made
an initial foray into Wikipedia-scale open domain table fact verification, demon-
strating improvements from using multiple tables also when evaluating with a full
set of Wikipedia tables as a knowledge source.

Our results indicate that the use of multiple tables can provide contextual
clues to the model even when those tables do not explicitly verify or refute the
claim, because they can provide evidence for the probability of the claim. This is
a double-edged sword, as reliance on such clues can increase model performance
while also induce faulty claims of truthfulness due to inaccuracy or bias. As
such, care will be needed to disentangle the positive and negative aspects of this
phenomenon in future work.

Reflecting on our research questions, it is clear that linearisation followed by
language modelling represents a highly effective means of encoding tables for fact
verification, including for settings with multiple retrieved tables. The existence
of datasets labelled with ”correct” tables to judge claims are highly beneficial for
training open-domain models, as we have demonstrated; introducing a reranking
objective into the loss significantly improves performance. The combination of
attention over multiple tables and our novel training objective enables verification
in the difficult setting wherein the entirety of Wikipedia is used as a knowledge
source, even without retraining.

Through the use of large pretrained language models, linearisation remains an
effective alternative to semantic parsing strategies as well as to the GNN-based
models we have explored in previous chapters. Interestingly, the class of models
which enables this development, transformers, can (as we discuss in Section 2.3)
themselves be seen as a form of GNNs operating in the fully connected graph
between all tokens in the analysed linearisation.



Chapter 6

Interpreting Graph Neural
Networks

6.1 Introduction

In the previous chapters, we have explored how graph neural networks can be
included as part of NLP models to process graph-structured data. In parallel
with our work, GNNs have been applied with great results to many NLP tasks,
including relation extraction (Zhang et al., 2018; Zhu et al., 2019; Sun et al.,
2019a; Guo et al., 2019), question answering (Sorokin & Gurevych, 2018; Sun
et al., 2018; De Cao et al., 2019), syntactic and semantic parsing (Marcheggiani
& Titov, 2017; Bogin et al., 2019; Ji et al., 2019), summarisation (Fernandes
et al., 2019), machine translation (Bastings et al., 2017) and abusive language
detection (Mishra et al., 2019). While graph neural networks have yielded strong
improvements in all these cases, the complexity of real-world applications often
makes it difficult to understand on what basis predictions are made.

Although stronger performance is in itself a useful aim, the inability for hu-
man analysts to understand why predictions are made is a problematic side-
effect. Such opaqueness prevents users from trusting model predictions (Kim,
2015; Ribeiro et al., 2016a), makes it hard to determine if models exhibit harmful
biases (Sun et al., 2019c; Holstein et al., 2019), and prevents researchers from
detecting model or data deficiencies, as well as from performing error analy-
sis (Gururangan et al., 2018; Kaushik & Lipton, 2018). The latter is especially
important for GNNs, where seemingly small implementation differences have been
shown to make or break models (Zaheer et al., 2017; Xu et al., 2019).

In NLP it is furthermore often desirable to know which linguistic information
a given model encodes, and how that encoding happens (Jumelet & Hupkes, 2018;
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University of
Amsterdam

Johannes
Van der Waals

employed_by

1910 Nobel Prize 
for Physics

The Netherlands

located_in

awarded

:country

:university

:award

lived_in

Figure 6.1: Likely useful and superfluous edges from the example in Figure 3.1.
When predicting whether Van der Waals lived in the Netherlands (dotted, black
edge), knowing that he won a Nobel prize (red edge) is unlikely to be informative,
whereas knowing that he worked at the University of Amsterdam (green edges)
is. A well-trained GNN might as such ignore the former while relying heavily on
the latter.

Giulianelli et al., 2018; Goldberg, 2019). Since GNNs are often used exactly to
encode linguistic structures, the difficulty in understanding their predictions can
impede such analysis. As such, it is highly desirable to develop interpretability
techniques for graph neural networks.

In this chapter and in Schlichtkrull et al. (2020b), we develop an interpretabil-
ity technique1 for GNNs. We are interested especially in determining which parts
of the input graph a given GNN relies on – see for example Figure 6.1. We are
furthermore interested in developing such analysis quantitatively on the level of
an entire dataset. We therefore focus on developing a post-hoc analysis method
for GNNs. To give satisfying answers to common questions about the behaviour
of GNNs, we believe our technique should:

1. be able to identify relevant paths across layers, as paths are one of the most
natural ways of presenting GNN reasoning patterns to users;

2. be sufficiently tractable to apply to modern GNN-based NLP models;

3. be as faithful (Jacovi & Goldberg, 2020) as possible, providing insights into
how the model truly arrives at the prediction.

1 The concept of interpretability has varying definitions – we refer the reader to Section 6.2 for
an outline of how we understand the concept, and to Lipton (2016) for further discussion.
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There are different aspects of graph neural networks which a researcher might
be interested in interpreting. Depending on the circumstances, the most relevant
aspect to investigate might be how vertices are used, which roles different weights
play, or which edges are used to propagate information across the graph. Here,
we focus primarily on understanding how edges are used. We do so under the
condition that it should also be possible to extract relevant paths. We attempt
to answer the following research questions:

1. How can we tractably provide rationales for the predictions of a given graph
neural network?

2. How can we ensure that our technique is faithful, and measure the relative
faithfulness of different techniques?

A straightforward way to determine which parts of the input (for example, a
set of edges) play a role in predictions is to use erasure search (Li et al., 2016a;
Feng et al., 2018). In that approach, attribution happens by searching for a
maximal subset of input elements that can be entirely removed without affecting
model predictions. Complete removal guarantees that the model ignores all infor-
mation about the discarded elements, and elements that can safely be removed
can be said to be superfluous.

This contrasts with approaches which use heuristics to define feature impor-
tance, for example attention-based techniques (Serrano & Smith, 2019; Jain &
Wallace, 2019) or back-propagation techniques (Bach et al., 2015; Sundararajan
et al., 2017). These techniques do not guarantee that the model completely ig-
nores low-scored features, attracting criticism in recent years (Nie et al., 2018;
Sixt et al., 2019; Jain & Wallace, 2019). The trust placed by the community
in erasure search is reflected in the literature, where other methods are often
motivated as approximations of erasure (Baehrens et al., 2010; Simonyan et al.,
2014), or through new attribution techniques being evaluated using erasure search
as ground truth (Serrano & Smith, 2019; Jain & Wallace, 2019).

Applied to GNNs, erasure search would involve searching for the largest sub-
graph, which can be completely discarded. In addition to a strong measure of
faithfulness and the benefit of conceptual simplicity, discrete attributions would
also simplify the comparison of relevance between paths – the important paths
are those for which all edges are included. This contrasts with continuous attribu-
tion to edges, where it is not straightforward to extract and visualize important
paths. Furthermore, as opposed to techniques based on artificial gradients (Pope
et al., 2019; Xie & Lu, 2019; Schwarzenberg et al., 2019), erasure search would
provide implementation invariance (Sundararajan et al., 2017). This is important
in NLP, as models commonly use highly parametrized decoders on top of GNNs,
e.g. Koncel-Kedziorski et al. (2019).

While arguably satisfying criteria (1) and (3) in our desiderata, erasure search
unfortunately fails on tractability as every single combination of removed features
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must be evaluated. In practical scenarios, this is infeasible. Even approximations,
which remove one feature at a time (Zintgraf et al., 2017) and underestimate their
contribution due to saturation (Shrikumar et al., 2017), remain prohibitively
expensive.

Our GraphMask aims at meeting the above desiderata by achieving the same
benefits as erasure search in a scalable manner. That is, our method makes easily
interpretable hard choices on whether to retain or discard edges. GraphMask
finds edges that have no relevance to model predictions, while remaining tractable
and model-agnostic (Ribeiro et al., 2016b). GraphMask can be understood as
a differentiable form of subset erasure. Instead of finding an optimal subset to
erase for every given example, we learn an erasure function that predicts for every
edge (u, v, r, δ) at every layer k whether that edge should be retained. Given an

example graph G, our method returns for each layer k a subgraph G(k)
S such that

we can faithfully claim that no edges outside G(k)
S influence the predictions of the

model. To enable gradient-based optimization for our erasure function, we rely
on sparse stochastic gates (Louizos et al., 2018; Bastings et al., 2019).

In erasure search, optimization happens individually for each example. This
can result in a form of overfitting where even non-superfluous edges are aggres-
sively pruned, because a similar prediction could be made using an alternative
smaller subgraph; we refer to this problem as hindsight bias. This flaw is shared
with the interpretability technique for GNNs closest to ours, GNNExplainer (Ying
et al., 2019). Because our model relies on a parametrized erasure function rather
than an individual per-edge choice, we can address this issue by amortizing pa-
rameter learning over a training dataset through a process similar to the readout
bottleneck introduced in (Schulz et al., 2020). As we demonstrate in Section 6.4,
this strategy avoids hindsight bias.

Our primary contribution in this chapter is the introduction of GraphMask,
a novel interpretation technique for GNNs, potentially applicable to any end-to-
end neural model with a GNN as a component. We use experiments on syn-
thetic data to demonstrate the shortcomings of the closest existing methods, and
we show how our method addresses those shortcomings and improves faithful-
ness. We furthermore use GraphMask to analyse GNN models for two NLP
tasks: semantic role labeling (Marcheggiani & Titov, 2017) and multi-hop ques-
tion answering (De Cao et al., 2019). We publish the code for our experiments
at https://github.com/MichSchli/GraphMask.

6.2 Background

In recent years, the high performance of neural network models has resulted
in applications to a wide variety of different domains. While the technological
artefacts resulting from this process have enabled a variety of beneficial systems,
they have also, in many cases, created unintended, often harmful, and sometimes

https://github.com/MichSchli/GraphMask
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very surprising consequences (O’Neil, 2016). A potential remedy to this problem
is model interpretability – that is, the deliberate crafting of techniques that enable
human analysts to understand the behaviour of models.

Model interpretability is a diverse concept with several, distinct meanings.
Different papers have suggested different conceptions of what makes machine
learning artefacts interpretable. Suggestions include models which users can trust
to follow the expectations of some underlying, well-understood paradigm (Ribeiro
et al., 2016b), models whose underlying mechanistic function can be grasped fully
by human experts (Lou et al., 2013), models which uncover and present causal
relationships in data (Athey & Imbens, 2015), or models which – like human
experts – can convincingly and faithfully explain their behaviour (Ridgeway et
al., 1998).2 In this paper, we focus on explanations; as such, we use the concepts
interpretability and explainability interchangeably. We refer the reader to Lipton
(2016) for a more thorough discussion.

Following Lipton (2016), there are two different schools of thought regard-
ing how explanations for model behaviour should come about. Models can be
constructed so that they are inherently transparent, or models can be treated
as black-box systems and paired with secondary techniques to generate post-hoc
explanations. For GNNs, there are several popular attempts to employ various
gate- or attention-functions to build inherently interpretable models (Veličković
et al., 2018; Neil et al., 2018; Xie & Grossman, 2018). Unfortunately, the perfor-
mance of these models is often subpar compared to models developed purely for
performance, and they are therefore seldomly employed in real-world situations
where the need for interpretability is the greatest.

The concept of an explanation is somewhat nebulous, and there is no answer
which is satisfactory for every task. Should an explanation describe the relative
importance of weights? Of input features? Should it give causal relations between
phenomena in the modelled domain, or is it enough to point towards which input
elements result in a given decision?

Prior work on interpretability for GNNs focuses on one particular component
of the input space – the graph itself. The interpretable GNN variants presented
in e.g. Veličković et al. (2018), Neil et al. (2018), and Xie and Grossman (2018)
all return explanations where scalar gates 0 ≤ σ ≤ 1 represents the relative im-
portance of messages. Previous approaches to post-hoc interpretability similarly
focus on assigning continuous scores to measure the relative importance of vertex
features and messages (Pope et al., 2019; Xie & Lu, 2019; Schwarzenberg et al.,
2019; Baldassarre & Azizpour, 2019; Schnake et al., 2020). We choose to follow
this line of thought, and focus on determining the relative importance of each
message sent for a given example. However, as previously discussed, we restrict

2 Note that these concepts overlap – models with mechanistic functions that are simple enough
that humans can directly follow their reasoning do inherently also present explanations for
their behaviour, and the presence of faithful explanations engenders user trust.
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Figure 6.2: A degenerate rationale for the task of counting whether the graph
contains more red or blue vertices, with predictions being made on the basis of
a GNN encoding of the square vertex. The explanation R contains a single blue
vertex and no red vertices. A perfectly optimized underlying model, however,
would count all red and blue vertices to make predictions.

ourselves to generating binary rather than continuous scores for edges – this more
restricted form of the task is also known as rationale generation. We focus on
generating message-wise explanations, which we define as follows:

6.2.1. Definition. A message-wise explanation of a prediction ŷ for a graph
neural network over a graph G = {V , E ,R} is a function fŷ : E ×K → R where
f(e, k) represents the relative importance of the edge e at layer k.

Given a technique for generating explanations, it is important to understand
whether the importance scores assigned to each edge actually reflect the behaviour
of the analysed model. The degree to which an explanation reflects the underlying
behaviour is referred to as faithfulness. Explanations that match the underlying
behaviour are accordingly termed faithful, while explanations that do not accu-
rately represent model behaviour are termed degenerate. Faithfulness has been
the topic of several recent papers, with multiple definitions of the concept (Yu
et al., 2019; Jacovi & Goldberg, 2020). We refer to Jacovi and Goldberg (2020)
for a detailed discussion. It is difficult to quantifiably measure the faithfulness
of any given technique. However, researchers can rely on counterexamples to
test whether explanations produced for well-known problems are faithful (see e.g.
Wiegreffe and Pinter (2019)).

The central problem of faithfulness is that real-world models are complex
– we seek to design interpretability techniques to understand their behaviour,
but without understanding their behaviour, we cannot evaluate and compare the
relative performance of any given technique. In the work which this chapter is
based on (Schlichtkrull et al., 2020b) as well as in De Cao et al. (2020), we attempt
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to address this problem by introducing simple, synthetic tasks for which there is
only one possible way for perfectly optimised models to behave. As such, if a
model perfectly solves the task, it must follow a predefined gold standard. We
test our technique following this approach in Section 6.4. We discuss faithfulness
and our approach to the concept in further depth in Section 6.8, relating our
experiments to the literature.

6.2.1 The Hard Concrete Distribution

Our proposed interpretability technique represents a differentiable form of ratio-
nale generation, inspired by subset erasure. To ensure binary attribution scores,
we need a probability distribution that allows us to learn to sample exact val-
ues of either 0 or 1. At the same time, this distribution must be differentiable
to avoid training with REINFORCE (Williams, 1992) or biased straight-through
estimators (Maddison et al., 2017; Jang et al., 2017).

To this end, we employ the hard concrete distribution introduced in Louizos
et al. (2018). This distribution assigns density to continuous outcomes in the
open interval (0, 1), and non-zero mass to exactly 0 and 1. As this can be done
via differentiable reparameterization (Kingma & Welling, 2014; Rezende et al.,
2014), we can employ gradient optimisation to learn the parameters of the hard
concrete distribution.

The concrete distribution was initially introduced to facilitate regularisation
of sampled values with the L0 loss, an intuitively simple strategy for prioritising
the sampling of exact zeros.

6.2.2. Definition. Given a hypothesis defined through a set of parameters θ,
the L0 loss of that hypothesis is

‖θ0‖ =

|θ|∑
j=1

1[R6=0](θj)

Through the reparametrization trick, the hard concrete distribution allows us to
express the L0 loss as an expectation

|θ|∑
j=1

1[R6=0](θj) =

|θ|∑
j=1

Epπ(θj) [θj 6= 0] , (6.1)

where π are the parameters of the hard concrete distribution. The gradient for
this expectation can then be estimated via Monte Carlo sampling without the
need for REINFORCE and without introducing biases.

A Hard Concrete distribution (also known as a stretched and rectified Bi-
nary Concrete) distribution is obtained by applying an affine transformation to
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the Binary Concrete distribution (Maddison et al., 2017; Jang et al., 2017) and
rectifying its samples in the interval [0, 1]. Like the binary concrete, the hard
concrete is parameterised by a location parameter γ ∈ R and temperature pa-
rameter τ ∈ R>0. The distribution is then stretched, and samples are rectified
within the interval [0, 1].

6.2.3. Definition. The Hard Concrete distribution is a distribution param-
eterised by a location parameter γ ∈ R and temperature parameter τ ∈ R>0.
Given a uniformly distributed random variable u ∼ U(0, 1), samples from a
Hard Concrete distribution can be obtained as

s = σ ((log u− log(1− u) + γ) /τ)

z = min (1,max (0, s · (l − r) + r))

where σ is the Sigmoid function σ(x) = (1 + e−x)−1.

We refer the reader to Louizos et al. (2018) for further discussion of this distri-
bution, and specifically to Appendix B for information about the density of the
resulting distribution and its cumulative density function.

6.3 Methods

To ensure that our interpretation framework is generally applicable to any graph
neural network, we base it on the full graph message passing definition introduced
in Section 2.2 (see Definitions 2.2.2 and 2.2.5). Recall that the propagation of
information through a graph neural network – regardless of the choice of aggre-
gation function – can be expressed through a message passing step, describing
information flow from vertex along an edge e = (u, r, v, δ) at layer k:

m(k)
e = M

(k)
θ

(
h(k−1)
u , h(k−1)

v , r, δ
)
.

Our goal is to detect which messages m
(k)
e at layer k can be ignored without

affecting model predictions. We refer to these messages and the corresponding
edges (at that specific layer) as superfluous. Conceptually, our aim is then to
identify these superfluous edges given a trained graph neural network.

GNNs can be highly sensitive to changes in the graph structure. A GNN
trained on graphs where all vertices v have degree d(v) � n for some integer
n may become unstable if applied to a graph where some vertices have degree
d(v) � n. This is because the model has not seen examples with low-degree
vertices during training, and as such may give strange or nonsensical predictions
for these examples. Hence, dropping edges without affecting predictions can be
difficult.
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Original model Gated model

Figure 6.3: GraphMask: Vertex hidden states and messages at layer k (left) are
fed to a classifier g that predicts a mask z(`). We use this to mask the messages of
the kth layer and re-compute the forward pass with modified node states (right).
The classifier g is trained to mask as many hidden states as possible without
changing the output of the gated model.

Nevertheless, many edges in that graph may be superfluous for all purposes
other than maintaining neighbourhood statistics such as degree or local linearity.
For that reason, it is not enough to search for edges which can be dropped –
instead, we search for edges which, through a binary choice z

(k)
e , can be replaced

with a learned baseline b(k).

6.3.1. Definition. A mock-message m̃
(k)
e for the edge e = (u, r, v, δ) is ob-

tained by replacing the original message m
(k)
e by a learned baseline b(k) through

some binary indicator z
(k)
e ∈ {0, 1}:

m̃(k)
e = z(k)

e ·m(k)
e + b(k) · (1− z(k)

e )

By learning a constant baseline for all edges within a given layer, our method
can mimic neighbourhood statistics without actually propagating information.
We use superfluity to denote messages and edges which can be replaced with
such “mock-messages”, rather than the less informative set of edges that can be
dropped entirely.

Conceptually, the search for a subset that generates the same prediction can
be understood as a form of subset erasure (Li et al., 2016a; Feng et al., 2018).
Unfortunately, erasure breaks with the desiderata we proposed in two important
ways. First, since it involves searching over all the possible candidates that could
be dropped, it is not tractable. Second, since the search happens individually for
each example, there is a danger of hindsight bias. That is, the search algorithm
finds a minimal set of features that could produce the given prediction, but which
is not faithful to how the model originally behaved (as confirmed in our experi-

ments, Section 6.4). To overcome those issues, we compute z
(k)
e through a simple

function, learned once for every task across data points:

6.3.2. Definition. Given vertex embeddings h
(k−1)
u , h

(k−1)
v ∈ Rd of vertices
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u and v along with a message m
(k)
e ∈ Rd for an edge e = (u, r, v, δ), the

GraphMask indicator function is a function gπ : Rd×Rd×Rd → {0, 1} with
learned parameters π:

z(k)
e = gπ(h(k−1)

u , h(k−1)
v ,m(k)

e )

Learning one set of parameters π for an entire dataset is helpful in two ways.
First, it allows us to use the training set for the original model to choose π,
ensuring that the examples we test GraphMask on are not seen during training.
Second, each z

(k)
e for a given example is computed relying only on information

also available to the original model when computing the corresponding message
m

(k)
e . Crucially, neither the original prediction nor the label for that example can

be used to compute z
(k)
e ; the explainer has no lookahead.3 These two aspects, by

design, work to prevent hindsight bias. We refer to this strategy as amortization.
The alternative to this strategy is to choose the parameters π independently

for each gate, without any parameter sharing across gates. In that case, opti-
mization would be performed directly on the analyzed (i.e. test) example. We
refer to this strategy as the non-amortized version of GraphMask. In that case
it would be wasteful to use a neural network gπ(h

(k)
u , h

(k)
v ,m

(k)
e ) to compute the

gate for m
(k)
e . Instead, we directly optimize the parameters of the Hard Con-

crete relaxation, discussed in Section 6.2.1. We demonstrate in Section 6.4 that
this version of GraphMask, unlike the amortized approach, is susceptible to
hindsight bias.

We compute the parameters π through a simple multilayer perceptron. We
first derive a representation q

(k)
e of an edge e at layer k simply through concate-

nation:
q(k)
e = [h(k)

u , h(k)
v ,m(k)

e ] (6.2)

We then compute the scalar location parameters γ
(k)
e for the hard concrete dis-

tribution based on q
(k)
e :

γ(k)
e = W

(k)
2 ReLU(LN(W

(k)
1 q(k)

e )) (6.3)

where LN represents Layer Normalization.
As we have previously discussed (see Section 2.2), it is common4 to replace the

full graph message passing framework with the faster – but slightly less expressive
– Graph Convolutional Networks (GCNs). In that case, aggregation and message
passing is done through matrix multiplication between the vertex embeddings
matrix H(k) and a (normalized, relation-specific) adjacency matrix Âr:

H(k) = ÂrH
(k−1)W (k)

3 The readout function in Schulz et al. (2020) violates this constraint.
4 An example of this is the question answering model by De Cao et al. (2019), which we analyse

with GraphMask in Section 6.5.
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Applying the computation of q
(k)
e from Equation 6.2 within that scheme would

be prohibitively expensive, as q
(k)
e would need to be computed for every possible

combination of u and v rather than just those actually connected by edges. The
complexity would as such rise to O(|V|2) rather than O(|V|+ |E|), which for large
graphs can be problematic.

To apply our method in such cases, we also develop a faster alternative compu-
tation of γ

(k)
e based on a bilinear product. In this case, rather than enumerating

all possible messages, we rely purely on the source and target vertex embeddings
h

(k)
u and h

(k)
v . Taking inspiration from our previous work on R-GCN (see Chapter

3), we compute an alternative matrix-form γ̂(k) as:

γ̂(k) = Ŵ (k)
r ReLU(LN(Ŵ

(k)
1 H(k)))H(k) > (6.4)

where Ŵ
(k)
r is unique to the relation r. We sample relation-specific matrix-form

gates Ẑ
(k)
r , and apply these using an alternate – but equivalent – version of Defi-

nition 6.3.1 to derive a representation matrix H̃(k) for the vertices in the masked
model: ∑

r

(Ẑ(k)
r Âr)H

(k−1)W (k) + ((J − Ẑ(k)
r )Âr)B

(k) (6.5)

where J represents the all-one matrix. In our experiments, we rely on the
adjacency-list formulation for SRL in Section 6.6 and the adjacency-matrix for-
mulation for QA in Section 6.5.

After g is trained, to analyse a data point with GraphMask, we first execute
the original model over that data point to obtain h

(k)
u , h

(k)
v , and m

(k)
e . We then

compute gates for every edge at every layer, and execute a masked version of the
model as shown in Figure 6.3. For the first layer, the messages of the original
model are gated according to Definition 6.3.1 to obtain mock-messages. For subse-
quent layers, we aggregate mock-messages using Definition 2.2.5 to obtain vertex
embeddings h

′(k)
v , which we then use to obtain the next set of mock-messages.

Note that the only learned parameters of GraphMask are the parameters π
of the erasure function and the learned baseline vectors b(1), . . . , b(k) – the param-
eters of the original model are kept constant. As long as the prediction relying on
the sparsified graph is the same as when using the original one, we can interpret
masked messages as superfluous.

6.3.1 Parameter estimation

Given a GNN f of L layers, a graph G, and input embeddings X (e.g., initial node

vectors or additional inputs), our task is to identify a set GS = {G(1)
S , . . . ,G(L)

S } of

informative sub-graphs such that G(k)
S ⊆ G ∀k ∈ 1, . . . , L. We search for a graph

with the minimal number of edges while maintaining f(GS,X ) ≈ f(G,X ).5 We

5 With f(GS ,X ) we denote a forward pass where for each layer the graph may vary where for
f(G,X ) the graph G is the same across layers.
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can cast this, quite naturally, in the language of constrained optimization and
employ a method that enables gradient descent such as Lagrangian relaxation.
In general, however, it is not possible to guarantee equality between f(G,X ) and
f(GS,X ) since f is a smooth function, and as therefore a minimal change in its
input cannot produce the exact same output. As such, we introduce i) a diver-
gence D?[f(G,X )‖f(GS,X )] to measure how much the two outputs differ, and ii)
a tolerance level β ∈ R>0 within which differences are regarded as acceptable.
The choice of D? depends on the structure of the output of the original model. A
practical way to minimize the number of non-zeros predicted by g is minimizing
the L0 ‘norm’ (i.e., the total number of edges that are not masked). Accordingly,
we formally define our objective function as:

6.3.3. Definition. The GraphMask objective is defined as:

max
λ

min
π,b

∑
G,X∈D

 L∑
k=1

∑
(u,r,v,δ)∈E

1[R 6=0](z
(k)
e )

+ λ (D?[f(G,X )‖f(GS,X )]− β)

where 1 is the indicator function and λ ∈ R≥0 denotes the Lagrange multiplier.

Unfortunately, this objective is not differentiable, since i) L0 is discontinuous
and has zero derivatives almost everywhere and ii) outputting a binary value
needs a discontinuous activation, e.g. the step function. This is problematic for
gradient-based optimization. A solution is to address the objective in expectation
and employ either score function estimation i.e. REINFORCE (Williams, 1992),
biased straight-through estimators (Maddison et al., 2017; Jang et al., 2017), or
sparse relaxation to binary variables (Louizos et al., 2018; Bastings et al., 2019).
We choose the latter since it exhibits low variance compared to REINFORCE
and is an unbiased estimator.

As we have mentioned in Section 6.2.1, we use the Hard Concrete distribu-
tion, a mixed discrete-continuous distribution on the closed interval [0, 1]. This
distribution assigns a non-zero probability to exactly zero while it also admits
continuous outcomes in the unit interval. An unbiased and low variance gradient
can be computed via the reparameterization trick (Kingma & Welling, 2014). We
refer to Section 6.2.1 and further to Louizos et al. (2018) for details. Attribu-
tion scores correspond to the expectation of sampling non-zero masks, since any
non-zero value can leak information. In our experiments GraphMask converges
to a distribution where scores in expectation assume near-binary values. The L0

loss in Equation 6.3.3 as such becomes an expectation:

L∑
k=1

∑
(u,r,v,δ)∈E

1[R6=0](z
(k)
e ) =

L∑
k=1

∑
(u,r,v,δ)∈E

E
pπ(z

(k)
e |G,X )

[
z(k)
e 6= 0

]
, (6.6)

In our experiments, we found a constant temperature τ = 1/3 to work well.
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Message specific location parameters γ
(k)
e are computed as specified in the previous

section. We found it practical to shift the initial location using a bias c = 2, e.g.
rather than directly using γ

(k)
e in Definition 6.2.3 we substitute γ

(k)
e + c. This

places the model in an initial state where all gates are open, which is essential
for learning.

When training GraphMask, we found it helpful to employ a regime wherein
gates are progressively added to layers, starting from the top. For a model with
K layers, we begin by adding gates only for layer k, and train the parameters for
these gates for δ iterations. We then add gates for the next layer k − 1, train all
sets of gates for another δ iterations, and continue downwards in this manner.

We found it necessary to use separate optimizers and learning for the La-
grangian λ parameter and for the parameters of GraphMask. Thus, we employ
Adam (Kingma & Ba, 2015) with initial learning rate 1e − 4 for GraphMask,
and RMSProp (Tieleman & Hinton, 2012) with learning rate 1e − 2 for λ. For
the tolerance parameter β, we found β = 0.03 to perform well for all tasks.

As GraphMask executes the model which it analyses, training- and run-
time depends on the complexity of that model. At training time, GraphMask
requires a single forward pass to compute gate values, followed by a backward
pass through the sparsified model. Thus, every iteration requires at most twice
the computation time as an equivalent iteration using the investigated model.

6.3.2 Integrated Gradients for Graphs

In our experiments in subsequent sections, we compare GraphMask to several
different techniques from the literature. Among these, we include a variant of
integrated gradients (Sundararajan et al., 2017). Applying this interpretability
technique to identify relevant edges in graphs is nontrivial, and as such we intro-
duce our approach here. We refer the reader to Sundararajan et al. (2017) for a
detailed discussion of the original approach. Integrated gradients considers the
straight-line path between a feature x and a baseline x′, and assigns scores by
accumulating gradients at all points along that path.

6.3.4. Definition. The attribution score of a feature xi with baseline x′i for
a neural network F is defined as:

IntegratedGradientsi(x) = (xi − x′i)
1∫

α=0

δF (x′ + α(x− x′))
δxi

For graphs, we take the simplistic approach of defining scalar variables ẑke
by which the message on the edge e = (u, r, v, δ) at layer k is multiplied, and
interpolating between ẑke = 1 and ẑke = 0. We compute attribution scores through
integrated gradients for each ẑke , using 0 as a baseline. The attribution score of e
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is then the integrated gradient score of the pseudo-gate ẑke . That is, we assume
that the problem can be modelled as interpolating between edges being “fully
present” and “fully absent” through “partially present” states.

We note that it is nontrivial to extend this approach to multi-layer GNNs,
since “partially present” edges in upper layers affect gradient flow and thus attri-
bution to lower layers during interpolation. For the simple single-layer model we
apply in Section 6.4 this does not present any complications. However, this flaw
greatly hinders interpretability for multi-layer graph neural networks.

Furthermore, as we have previously discussed, the zero-vector may not be an
appropriate baseline for general GNNs as it changes the degree statistics of the un-
derlying graph. This could harm the performance of integrated gradients (Sturm-
fels et al., 2020). For the experiment in Sections 6.4, we have constructed the
synthetic dataset such that any highly performant model must develop robustness
with regards to changing degree statistics, and as such we avoid this complication.
For real-world data, this would not necessarily be the case.

6.3.3 Information Bottleneck for Graphs

A related attribution technique to ours is the information bottleneck approach
proposed by Schulz et al. (2020). Their technique involves computing individual
soft sigmoidal gates ξhi for each dimension i of the hidden state h of a CNN to
attribute importance. Gated vectors are replaced with sampled values from a
Gaussian distribution with mean and variance computed over all examples in the
dataset for each hidden state. The KL divergence between the dataset distribution
and the distribution obtained by interpolating between that distribution and the
observed value through the gate is used as regularization to promote sparsity.

In Section 6.4, we include also results for an adaptation of Schulz et al. (2020)
to the problem of attributing importance to messages in a graph neural network.
To apply the information bottleneck approach for our setting, we do the following.
First, instead of individual gates ξmi for each dimension of the message m, we use
a single gate ξm. We use their Readout Bottleneck approach, which can be seen
as a parallel to our amortization strategy (that is, our strategy of learning the
parameters π of our erasure function from Equation 6.3.2 on the entire training
set rather than individually for each test example). We predict logits for each gate
by conditioning on the source and target embeddings, as well as on the message
itself, similar to how we compute parameters for GraphMask. This contrasts
with the original approach of using 1x1-convolutions over the depth dimension –
conditioning on “downstream” messages in the GNN could cause hindsight bias.
Training is done with the KL-divergence based loss introduced in Schulz et al.
(2020). Finally, we compute the mean and variance of the Gaussian noise used as
a baseline (and for the loss) in their approach using all messages in the same layer
over the entire training dataset. We found using the entire training data to collect
statistics to work better than collecting statistics individually per example.
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Figure 6.4: In our synthetic task, a model predicts whether there are more black
edges (→) than blue edges. (→). Erasure search, GNNExplainer, and non-
amortized GraphMask overfit by retaining only a single black edge (top left).
Integrated gradients and the information bottleneck approach give unsatisfying
results as all edges have attribution. Only amortized GraphMask correctly
assigns attribution to and only to black and blue edges.

6.4 Avoiding Degeneration

Interpretability techniques searching for minimal sets of useful features are typi-
cally optimized to find the smallest such set for every example (Li et al., 2016a;
Ying et al., 2019). However, the smallest set of features that could lead a model
to produce a certain prediction is not necessarily that which the model actually
relied on. That solution may be a degenerate – that is, not faithful – explanation.
If the desired result is known and an extensive search is employed, the optimizer
can exploit model behaviour to find minimal (degenerate) explanations through
a process similar to an adversarial attack (Kurakin et al., 2016). Knowing the
desired outcome, the optimizer can pick very specific combinations of features to
produce it. We refer to this problem as hindsight bias.
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For the real NLP problems we address in Sections 6.5 and 6.6, the models
and data are too complex for a human gold standard for faithfulness to be de-
fined (Jacovi & Goldberg, 2020). To illustrate the hindsight bias problem and
demonstrate how GraphMask overcomes it, we therefore introduce a synthetic
task for which a clearly defined ground-truth attribution is known.

The task is defined as follows: a star graph G with a single centroid vertex v0,
leaf vertices v1, ..., vn, and edges (v1, v0), ..., (vn, v0) is given, and every edge (u, v)
is assigned one of several colours cu,v ∈ C. Then, given a query 〈x, y〉 ∈ C × C,
the task is to predict whether the number of edges assigned x is greater than
number of edges assigned y. We generate a total of 6.000 examples randomly
with 6 to 12 leaves, using 5.000 for training and 500 respectively to validate and
test. We solve the task with a simple one-layer R-GCN (see Chapter 3) with
vertex embeddings h(0) initialized as the concatenation of a one-hot-encoding of
x and a one-hot-encoding of y.

The trained model perfectly classifies every example. We know precisely which
edges are useful for a given example – those which match the two colours being
counted in that example. The GNN must count all instances of both to compute
the maximum, and no other edges should affect the prediction. We can therefore
define a gold standard for faithfulness on this basis: for x > y, all edges of type
x and y should be retained, and all others should be discarded.

Since the task is simple counting, the GNN can be made to predict that
x > y by dropping everything other than a single edge of type x (since 1 > 0).
Conversely, the model can be forced to predict x ≯ y by dropping every edge
(since 0 ≯ 0). If the optimizer is simply searching for a minimal number of edges
to produce a desired outcome, it can therefore always find a solution with at most
one edge. However, that solution would not be faithful.

For this simple task, we can compute empirical estimates of faithfulness using
the aforementioned gold standard. In Table 6.1, we compare GraphMask to
four baselines: subset erasure search (Li et al., 2016a), integrated gradients (Sun-
dararajan et al., 2017), an information bottleneck approach (Schulz et al., 2020),
and GNNExplainer (Ying et al., 2019). Neither integrated gradients nor the in-
formation bottleneck approach were designed for graphs, and as such we adapt
them for this setting (see Sections 6.3.2 and 6.3.3 for details). Since GNNEx-
plainer and the information bottleneck strategy do not make hard predictions,
we define any gate σi where σi > t for some threshold t as open, and all other
gates as closed. Similarly, for integrated gradients, we normalize attributions to
the interval [−1; 1], take the absolute value, and apply a threshold t. We select
t ∈ {0.1, ..., 0.9} to maximize F1 score on validation data.6

Only the amortized version of our method approximately replicates the gold

6 It is important to note that selecting a threshold t to distinguish useful and superfluous edges
sharply is only possible because our synthetic task provides a gold standard. Otherwise, a
validation set for faithfulness could not be constructed. Choosing an appropriate threshold
to maximize faithfulness on the validation set would therefore not be possible on real data.
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Method Prec. Recall F1

Erasure search* 100.0 16.7 28.6
Integrated Gradients 88.3 93.5 90.8
Information Bottleneck 55.3 51.5 52.6
GNNExplainer 100.0 16.8 28.7
Ours (non-amortized) 96.7 26.2 41.2

Ours (amortized) 98.8 100.0 99.4

Table 6.1: Comparison using the faithfulness gold standard on the toy task. *as
in Li et al. (2016a).

standard. In fact, erasure search, GNNExplainer, and non-amortized Graph-
Mask recall only a fraction of the non-superfluous edges. Visually inspecting the
assigned scores (see Figure 6.4), we see that erasure search, GNNExplainer, and
non-amortized GraphMask all reach the same low-penalty solution with perfect
model performance – when x > y a single edge of type x is preserved, and when
x ≯ y all edges are dropped. This is a degenerate interpretation, and it occurs
due to hindsight bias.

With amortization, GraphMask must find a set of parameters that produces
good solutions purely based on the sent messages; it is impossible to ”look ahead”
to determine whether a message in the future will be useful. As such, overfitting
due to hindsight bias does not occur – decisions are made irrespective of hindsight,
and degeneration is prevented.

The example also demonstrates a flaw of integrated gradients and the infor-
mation bottleneck approach on this task. Edges in relevant colours are often the
highest scored, but the magnitudes of the scalar attribution scores vary greatly
across examples with different numbers of edges. As such, a single threshold t
cannot be defined to always distinguish between useful and superfluous edges even
on this simple task. On real data, where a development set for selecting t would
not be available, it would be extremely difficult to interpret these continuous
attribution scores.

6.5 Question Answering

We now apply GraphMask (amortized) to analyze predictions for a real model.
In this setting, due to the complexity of real tasks, no human gold standard for
attribution can be constructed (Jacovi & Goldberg, 2020). We choose the GNN-
based model for multi-hop QA presented in De Cao et al. (2019), evaluated on
WikiHop (Welbl et al., 2018). The task is, given a question and a set of context
documents, to find the entity within the context that best answers the question.
Nodes in the GNN graph correspond to mentions of entities within the question
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Retained edges Acc.

100% (Orig. model) 59.0
27% (GraphMask) 58.6
20.25% 55.2
13.5% 52.8
6.25% 47.7
0% 45.2

Table 6.2: Performance of the question answering model using the original input
graphs, using the subgraphs retained after masking with GraphMask, and using
only a randomly selected 0/25/50/75/100% of the edges retained after masking
with GraphMask. Dropping the edges marked superfluous by our technique
does not impact performance; dropping the remaining edges, even if only a ran-
domly selected 25% of them, significantly hurts the model.

and context, and four types of edges between those are introduced: string match
(MATCH), document-level co-occurrence (DOC-BASED), coreference resolution
(COREF), and, finally, the absence of any other edge (COMPLEMENT).

The model consists of a two-layer BiLSTM reading the question, and three
layers of R-GCN (Schlichtkrull et al., 2018) with shared parameters. Node rep-
resentations at the bottom layer are obtained by concatenating the question rep-
resentation to embeddings for the mention in question. Here, we focus on their
GloVe-based model. Finally, the mention representations are combined into entity
representations through max-pooling.

GraphMask replicates the performance of the original model with a perfor-
mance change of −0.4% accuracy. 27% of edges are retained, with the majority
occurring in the bottom layer (see also Table 6.5). To ensure that the choice of
superfluous edges is not just a consequence of the random seed, i.e. to verify the
stability of our method, we compute Fleiss’ Kappa scores between each individ-
ual measurement of z

(k)
u,v across 5 different seeds. We find high agreement with

κ = 0.65. Dropping just a random 25% of these retained edges greatly harms
performance (see Table 6.2).

For comparison, if we do not amortize to provide resilience against hindsight
bias, the retained edges are different. In that case, only 0.4% of retained edges
occur in the bottom layer, compared to 91.0% in the top layer. Similarly, GN-
NExplainer and Integrated Gradients also assign only a fraction of their total
attribution score to the bottom layer, respectively 4.3% and 11.3% of their total
attribution score – see Figure 6.5.

As we see in Table 6.3, dropping the bottom layer yields a much larger per-
formance decrease (-26%) than dropping the top layer (-7%). This is at odds
with the predicted attributions. For GNNExplainer, manual inspection reveals
this to be a product of hindsight bias. Very specific configurations of top-layer
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(b) Layer 1
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(c) Layer 2

Figure 6.5: Mean percentage of messages assigned attribution scores above a
certain level in the question answering model, separated by layer. We report
scores for GNNExplainer ( ), Integrated Gradients ( ), and GraphMask
( ).
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Layers discarded Acc.

Full model 59.0
- layer 0 33.1
- layer 1 41.6
- layer 2 52.0

Table 6.3: Performance of the question answering model with all edges in each
individual GNN layer dropped.

Model k = 0 k = 1 k = 2

GNNExplainer 4.3 11.9 83.8
Int. Grad. 11.3 33.0 55.7
GraphMask 51.6 28.8 19.6

Table 6.4: Mean percentage of the total attribution score allocated to each layer
for the question answering model, according to GNNExplainer, Integrated Gra-
dients, and GraphMask.

edges (in most cases, retaining only edges where the predicted answer is the tar-
get) generate the same predictions as the original model. This mirrors a common
pathology of erasure search for QA over text, where the answer span and nothing
else is selected as an explanation (Feng et al., 2018).

For Integrated Gradients, the low scoring of the bottom layer is a result of
long-distance information (e.g. information from edges and vertices far from the
predicted answer, which must travel through half-open pseudo-gates in the other
layers to reach the predicted answer) being systematically underestimated as we
discussed in Section 6.3. This prevents meaningful comparisons of attribution
scores between layers.

Another approach is to compare the proportion of the total attribution score
that different techniques assign to each layer; ideally, this should reflect that
layer’s importance. In Table 6.4, we compute the mean percentage of the total
score assigned to messages in each layer. As in Figure 6.5, we see GNNExplainer
and Integrated Gradients assign low levels of attribution to the bottom layer, at
odds with the empirical performance loss from excluding that layer. This again
indicates that the baselines are unlikely to be faithful.

6.5.1 Analysis

In Table 6.5, we investigate which edge types are used across the three layers of the
model. De Cao et al.’s (2019) ablation test suggested that COREF edges provide
marginal benefit to the model; our analysis does not entirely agree. Investigating
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Edge Type k = 0 k = 1 k = 2

MATCH (8.1%) 9.4% 11.1% 8.9%
DOC-BASED (13.2%) 5.9% 17.7% 10.7%
COREF (4.2%) 4.4% 0% 0%
COMPLEMENT (73.5%) 31.9% 0% 0%

Total (100%) 51.6% 28.8% 19.6%

Table 6.5: Retained edges for De Cao et al.’s (2019) question answering GNN by
layer (k) and type.

further, we see that only 2.3% of the retained COREF edges overlap with MATCH
edges (compared to 32.4% for the entire dataset). In other words, the system
relies on COREF edges only in harder cases not handled by the surface MATCH
heuristic. The role COMPLEMENT edges play is interesting as well: this class
represents the majority of non-superfluous edges in the bottom layer, but is always
superfluous in subsequent layers. The model relies on an initial propagation-step
across these edges, perhaps to pool context before any other inference.

De Cao et al.’s (2019) model concatenates a representation of the question
to every node in the graph before running GNN. As such, one might expect
edges connecting mentions of the question entity to the rest of the graph to be
superfluous. This, however, is not the case – at least one such edge is retained in
92.7% of all cases, and in 84.1% of cases that edge occurs in the bottom layer. We
hypothesize that the model relies on GNN to see whether other mentions share
a surface form or co-occur with mentions of the question entity, and, if not, how
they otherwise connect to those. To investigate this, we measure the percentage
of retained edges at each layer that occur on paths originating from question
entities.

We find that the proportion of non-superfluous edges which occur on paths
from mentions of the question increases drastically by layer, from 11.8% at layer
0, to 42.7% at layer 1, and culminating in 73.8% in the top layer. A mention
corresponding to the predicted answer is in 99.7% of examples the target of some
retained edge. However, the chance that the predicted entity is connected to the
question (72.1%) is near-identical to that of the average candidate entity (69.2%).
As such, the GNN is responsible not only for propagating evidence to the pre-
dicted answer through the graph, but also for propagating evidence to alternate
candidates. The majority of paths take one of two forms – a COMPLEMENT
edge followed by either a MATCH or a DOC-BASED edge (22%), or a COMPLE-
MENT edge followed by two MATCH or DOC-BASED edges (52%). MATCH
and DOC-BASED edges in the bottom layer tend to represent self-contained one-
hop paths rather than being the first edge on a longer, non-superfluous path.
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Figure 6.6: Subgraph of retained edges (21% of the original) for the question
“record label Phi”. → is DOC-BASED,→ is COMPLEMENT, and→ is MATCH
where edge labels indicate in which layer GraphMask retains such edge.

Relations used by De Cao et al. (2019) are symmetric (e.g., a coreference works
in both directions). A distinct feature of the subgraphs retained by GraphMask
for this model is that pairs of an edge and its inverse are both judged to be either
superfluous or non-superfluous (individually in each layer). In Figure 6.6, this
can be seen for the DOC-BASED edges in layer 2 between Japan and Johnny &
Associates. Indeed, 49% of retained edges in layer 0, 98% of retained edges in
layer 1, and 79% of retained edges in layer 2 have their inverses also retained.
In other words, “undirected” message exchange between mentions, resulting in
enriched mention representations, appears crucial.

6.6 Semantic Role Labeling

The second model we analyse is the GNN-based SRL system of Marcheggiani and
Titov (2017). The task here is to identify arguments of a given predicate and as-
sign them to semantic roles; see the labels below the sentence in Figure 6.9. Their
GNN operates over automatically predicted syntactic dependency trees, allowing
for information flow in both directions between syntactic dependents and their
heads. Their model encodes sentences through a stacked BiLSTM, upon which
the encoded tokens are passed through two GNN-layers in the corresponding syn-
tactic dependency tree. By analysing which dependency arcs play a role in the
decision-making of the model, we can investigate which syntactic features encode
semantic information not derivable by the LSTM.

We investigate both their best-performing model, which includes a BiLSTM
and one layer of a GNN, and their GNN-only model.7 For LSTM+GNN, the

7 In Marcheggiani and Titov (2017), the best GNN-only model used three layers of GNN; with
our reimplementation, a two-layer GNN performed better. Our reimplementation performed
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Retained edges F1

100% (Orig. model) 87.1
4% (GraphMask) 86.6
3% 83.1
2% 74.3
1% 68.9
0% 63.8

(a) SRL: LSTM+GNN

Retained edges F1

100% (Orig. model) 83.8
16% (GraphMask) 83.1
12% 74.4
8% 66.1
4% 58.9
0% 56.5

(b) SRL: GNN-Only

Table 6.6: Performance of the two SRL models using the original input graphs,
using the subgraphs retained after masking with GraphMask, and using only
a randomly selected 0/25/50/75/100% of the edges retained after masking with
GraphMask. Dropping the edges marked superfluous by our technique does
not impact performance; dropping the remaining edges, even if only a randomly
selected 25% of them, significantly hurts the model.

masked model has a minuscule performance change of −0.62% F1 and retains
only 4% of the messages. The GNN-only model has a similarly small perfor-
mance change of −0.79% F1 and retains 16% of messages. Fleiss’ Kappa scores
between GraphMask with 5 different seeds indicate a substantial agreement of
respectively κ = 0.79 and κ = 0.74 for the full and GNN-only models.

The GNN employed by Marcheggiani and Titov (2017) uses scalar, sigmoidal
gates on every message. A naive method for interpreting this model could be
to employ those values. However, sigmoidal gates do not necessarily reflect the
importance of individual messages to the model; they may instead provide scaling
as a component in the model. On development data, the mean gate takes the
value 0.16, with a standard deviation of σ = 0.07. We evaluate the model with
every edge where the corresponding gate value is more than one σ below the mean
dropped, and find that performance decreases by 16.1% F1 score even though only
42% of edges are removed. Thus, we see that these gates act as scaling rather than
reflecting the contribution of each edge to the prediction (see also Appendix B
for soft gate values for the example in Figure 6.9). This matches the intuition
from Jain and Wallace (2019) that gates do not necessarily indicate attribution.

6.6.1 Analysis

We first investigate which dependency types the GNN relies on. We show a
plot that summarizes our finding in Figure 6.7. The behaviour differs strongly
for nominal and verbal predicates – NMOD dominates for nominals, whereas
SBJ and OBJ play the largest roles for verbal predicates. This is unsurprising,

on par with the original.
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Retained edges
Type Length GNN-only LSTM+GNN

0 1 2 0 1

V 1 (5755) 0.01 0.99 - 0.01 0.99
2 (1104) 0.07 0.74 0.19 0.10 0.90
≥ 3 (10904) 0.74 0.22 0.04 0.79 0.21

N 1 (3336) 0.02 0.98 - 0.01 0.99
2 (2935) 0.30 0.25 0.45 0.89 0.11
≥ 3 (3251) 0.56 0.32 0.12 0.73 0.27

Table 6.7: Percentages of paths with either 0, 1, or 2 edges retained, split by path
length and predicate type, for the two models. For the LSTM+GNN model, at
most one edge can be included per path as only a single GNN layer is employed.
In parenthesis we report the supporting number of edges.

because these edges often directly connect the predicate to the predicted roles.
Even where this is not the case – see rebound in the example in Figure 6.9 – these
edges connect the predicted tokens to tokens close to the predicate, which the
model can easily reach with the LSTM. Interestingly, several frequent relations
(occurring in > 10% of examples) are entirely superfluous – these include P,
NAME, COORD, CV, CONJ, HYPH, SUFFIX, and POSTHON. For the LSTM-
GNN model, we find that 88% of retained edges directly target predicted roles
(e.g. rebound). The remaining 12% almost always target tokens that function as
roles for other predicates in the same sentence (e.g. which).8

Marcheggiani and Titov’s (2017) original findings suggest that the GNN is
especially useful for predicting roles far removed from the predicate, where the
LSTM is less reliable for propagating information. One way in which the GNN
could accomplish this is by using paths in the graph; either relying on the entire
path, or partially relying on the last several edges in the path. This is consistent
with the literature (Johansson & Nugues, 2008; Roth & Lapata, 2016), where
dependency paths connecting predicate and argument represent strong features
for SRL. To investigate this, we plot in Figure 6.8 the percentage of paths from
predicate to a predicted argument such that a subpath (i.e. at least one edge)
ending in the predicted argument was retained.

For the LSTM+GNN model, we find that the reliance on paths decreases
as the distance to the predicate increases, but only for nominal predicates. For
the GNN-only model, we see the opposite: reliance on paths increases as the
distance to the predicate increases. We report in Table 6.7 the proportion of edges
retained on paths of varying length between the predicate and predicted roles.

8 Note though that Marcheggiani and Titov’s (2017) GNN model ‘knows’ which predicate it
needs to focus on, as its position is marked in the BiLSTM input.
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Figure 6.7: Distribution over edge types for retained edges (left) and probability
of keeping each edge type (right); in both cases split by nominal (N) and verbal
(V) predicates; edge types are a dependency function including computation di-
rectionality: flow from the head (–>), or flow to the head (<–). Excludes edges
that occur in less than 10 % cases, and edges judged superfluous in more than 99
% cases.

Immediately noticeable is the fact that practically all direct connections between
the predicate and the role are kept – this is unsurprising, as those edges constitute
the most immediate indication of their syntactic relationship. Second, we note
that longer paths are very often useful in both models – however, at a lower rate
for nominal predicates in the LSTM+GNN model. In that particular case, the
LSTM therefore seems to capture the information present in other vertices and
edges on the paths. In contrast, in all other cases, the GNN complements the
LSTM by connecting predicate and argument.

6.7 Related Work

Several recent papers have focused on developing interpretability techniques for
GNNs. The closest to ours is GNNExplainer (Ying et al., 2019), wherein a soft
erasure function for edges is learned individually for each example. Unlike our
method (and erasure search), GNNExplainer cannot guarantee that gated edges
do not affect predictions. Furthermore, as we show in our experiments (Sec-
tion 6.4), separate optimisation for each example results in overfitting through
hindsight bias which compromises faithfulness. Pope et al. (2019) and Xie and
Lu (2019) explore gradient-based methods, including gradient heatmaps, Grad-
CAM, and Excitation Backpropagation. Schwarzenberg et al. (2019), Baldassarre
and Azizpour (2019), and Schnake et al. (2020) apply Layerwise Relevance Prop-
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Figure 6.8: Percentage of paths used in predictions as a function of the distance
between the predicate and the predicted role for the LSTM+GNN model (on the
left) and the GNN only model (on the right).

agation (Bach et al., 2015) to the GNN setting, and Voita et al. (2019) employ
the technique to analyse transformers.

These methods represent an alternative to GraphMask, but as we have
noted their faithfulness is questionable (Nie et al., 2018; Sixt et al., 2019; Jain &
Wallace, 2019), and the lack of implementation invariance (Sundararajan et al.,
2017) is problematic (see Appendix A). Furthermore, significant engineering is
still required to develop these techniques for certain GNNs, e.g. networks with
attention as the aggregation function (Veličković et al., 2018). Another popular
approach is to treat attention or gate scores as a measure of importance (Ser-
rano & Smith, 2019). However, even leaving questionable faithfulness (Jain &
Wallace, 2019) aside, many GNNs use neither gates nor attention. For those
that do (Marcheggiani & Titov, 2017; Veličković et al., 2018; Neil et al., 2018;
Xie & Grossman, 2018), the gates – as we demonstrate in Section 6.6 – are not
necessarily informative.

Outside of graph-specific methods, one line of research involves decomposing
the output into a part attributed to a specific subset of features and a part at-
tributed to the remaining features (Shapley, 1953; Murdoch et al., 2019; Singh
et al., 2019; Jin et al., 2020). For GNNs, the complexity for realistic use cases
(e.g. the thousands of edges per example in De Cao et al. (2019)) is prohibitive.
LIME (Ribeiro et al., 2016a) like us relies on a trained erasure model, but inter-
prets local models instead of global models. Local models cannot trivially identify
useful paths or long-distance dependent pairs of edges, and, as also pointed out
in Ying et al. (2019), LIME cannot be easily applied for large general graphs. Sim-
ilarly, it is unclear how to retrieve relevant paths with integrated gradients (Sun-
dararajan et al., 2017), especially for deep GNNs and large graphs.
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Figure 6.9: Example analysis on SRL from the GNN+LSTM model (superfluous
arcs are excluded).
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Masking messages in GraphMask can be equivalently thought of as adding
a certain type of noise to these messages. Therefore, GraphMask can be cate-
gorised as belonging to the recently introduced class of perturbation-based meth-
ods (Guan et al., 2019; Taghanaki et al., 2019; Schulz et al., 2020) which equate
feature importance with sensitivity of the prediction to the perturbations of that
feature. The closest to our model is Schulz et al. (2020), wherein the authors
like us apply a secondary, trained model to predict the relevancy of a feature in
a given layer. Unlike us, this trained model has “lookahead”, i.e. access to layers
above the studied layer, making their model vulnerable to hindsight bias. Their
approach uses soft gates on individual hidden state dimensions to interpolate be-
tween hidden states and Gaussian noise, in order to detect important features for
CNNs on an image processing task. They make independent Gaussian assump-
tions on the features to derive their objective. We adapted their method to GNNs
and used it as a baseline in our experiments.

In parallel with the work which this chapter is based on (Schlichtkrull et al.,
2020b), Luo et al. (2020) have developed an interpretability technique for GNNs
relying on edge masking. Their approach utilises a mutual information objective
like GNNExplainer (Ying et al., 2019), along with local classifiers choosing as
we do for GraphMask whether to retain or discard edges on the basis of bi-
nary concrete variables. We have also introduced a similar differentiable masking
approach to post-hoc analysis for transformers in De Cao et al. (2020), where
we used sparse stochastic gates and L0 regularisation to determine which input
tokens can be dropped, conditioning on various hidden layers.

6.8 On Faithfulness

As we mentioned in Section 6.2, faithfulness is still not a concept with a single,
well-defined meaning in the community. Jacovi and Goldberg (2020) argues that
the concept, intuitively, denotes accurate representation of the reasoning process
behind model predictions. Furthermore, the authors suggest that the noise in-
herent to machine learning methods virtually guarantees that no technique will
be perfectly faithful for every example. That is, singular counterexamples to any
given technique’s faithfulness can often be found via adversarial attack. As such,
faithfulness should not be seen as a binary property, but rather a graded criterion
by which techniques can be more or less faithful than competitors.

In this chapter, we have attempted to follow Jacovi and Goldberg’s (2020)
definition. That is, we have treated faithfulness as a graded criterion measur-
ing the degree to which techniques accurately represent the reasoning of the
underlying models. We have argued for the comparatively high faithfulness of
GraphMask in several ways. First, we have used a synthetic task with a single,
well-defined solution that perfectly optimised models must implement. Second,
we have used the degree to which real-world models’ predictions change when
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relying on GraphMask explanations rather than full graphs. Third, we have
argued that explanations for the QA task investigated in Section 6.5 require re-
taining the bottom layer of the GNN, and that only GraphMask does so by a
satisfying degree. Here, we shall attempt to relate our approach to the literature.

6.8.1 Our Investigations

Our comparison of different techniques under the controlled settings of Section 6.4
follows the trend discussed in Jacovi and Goldberg (2020) to address faithfulness
through falsification by counterexample (see also Jain and Wallace (2019) and
Wiegreffe and Pinter (2019)). In addition to necessitating a graded definition
of faithfulness, Jacovi and Goldberg (2020) also argued that noise problematises
the use of singular counterexamples. We have attempted to correct for this by
testing on many generated examples rather than a single handpicked example.
This allows us to reason about faithfulness on the dataset-level by measuring
F1-score (see Table 6.1).

We find a clear trend where GraphMask for this task produces more faithful
explanations than competitors. However, with a score of 99.4%, there are a
few examples for which GraphMask fails. Nevertheless, GraphMask clearly
performs better than the alternatives. Similarly, integrated gradients with a score
of 90.8% clearly outperforms erasure search with its score of 28.6%. However,
examples could be picked where neither produces faithful explanations. This
supports Jacovi and Goldberg’s (2020) claims about singular counterexamples
and the need to conceptualise faithfulness as graded rather than binary.

Another approach to faithfulness is to set theoretical criteria which faithful
techniques must follow. Techniques can then be tested to determine whether
these criteria are met. Three such criteria were given in Yu et al. (2019), while
a few were discussed in Jacovi and Goldberg (2020). It is important to note
that the lack of a general definition of faithfulness means that the community
does not agree on any particular criterion’s validity. Nevertheless, one criterion
reoccurs commonly: interpretations that produce different predictions than the
analysed model are not faithful (see Corollary 1.2 in Jacovi and Goldberg (2020),
the Comprehensiveness Condition from Yu et al. (2019)). This is related to the
line of research which measures the fidelity of explanations, e.g. the accuracy
of predictions using interpretations rather than full inputs (Sushil et al., 2018;
Lakkaraju et al., 2019).

In Sections 6.5 and 6.6, we measure the performance of the QA and SRL
models with the full graphs, as well as with only the edges retained after masking
with GraphMask. In both cases, dropping edges marked superfluous does not
harm performance. As such, GraphMask passes this test, replicating predic-
tions with high fidelity. We furthermore experimented with randomly dropping
the remaining edges, in addition to those marked superfluous. For both tasks,
even dropping a random 25% significantly reduces performance. This line of in-
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quiry is related to the recently proposed strategy for measuring the faithfulness of
explanations for models over text by gradually replacing the most salient words
with mask tokens (DeYoung et al., 2020; Atanasova et al., 2020).

The third argument we make about faithfulness is based on observations of
the average attribution assigned to entire layers in the QA task (see Figure 6.5).
We note that dropping the bottom layer results in a large performance loss, but
alternatives to our technique mark that layer as unimportant on average. This
represents another form of dataset-level counterexample, where specific details
can be inferred about the behaviour of a given model and used to reason about
faithfulness. Such counterexamples can be difficult to find, and as such are not a
reliable way of testing for faithfulness across different tasks – however, when they
occur, they are valuable evidence.

6.8.2 Formal Criteria for Faithfulness

In Jacovi and Goldberg (2020), the authors called for the development of formal
definitions of faithfulness. Yu et al. (2019) present an early attempt to formu-
late a complete, theoretical definition of the concept. They do so through the
aforementioned three criteria – sufficiency, comprehensiveness, and compactness.
Their definition is limited to rationale generation (e.g. techniques that produce
binary attribution scores). As GraphMask falls under this category, we can
compare our technique to their definition.

Their first condition, sufficiency, represents the simple intuition that a ra-
tionale R which produces different predictions than the full set of input ele-
ments X must be missing some essential information. Formally, sufficiency as-
serts that the probability distribution of the output space must be unchanged:
pY (·|R) = pY (·|X). This reflects the notion of fidelity discussed above, although
sufficiency is much more restrictive – it is a binary rather than a graded criterion,
and it measures the distribution of the output space rather than the maximum
likelihood prediction. Because of this, we consider the condition too limited to
serve as a test. We note, however, that the second part of our training objec-
tive (see Definition 6.3.3), the divergence D?[f(G,X )‖f(GS,X )], corresponds to
optimizing for sufficiency.

Yu et al.’s (2019) second condition, comprehensiveness, is introduced to iden-
tify degenerate rationales. Formally, the condition states thatH(Y |Rc) ≥ H(Y |R)
+h for some constant h. That is, the entropy of the output space using the com-
plement rationale (e.g. every element of the full input set X not in R) must
be much greater than the entropy of the output space using the rationale itself.
For graph models where the presence of some input elements (e.g. the edge to
the square vertex in Example 6.2) are necessary for other input elements to be-
come predictive, this condition is not sufficient to avoid degeneration. In the
example, trivial solutions at the second hop can encode Y without violating com-
prehensiveness – even degenerate rationales which contain the first-hop vertex
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(coloured white) will be more informative than their complements, as meaningful
predictions cannot be made without that vertex.

The final condition introduced by Yu et al. (2019) is compactness. Intuitively,
faithful explanations should not contain any superfluous information. They state
this condition as a requirement of sparsity, e.g. |R| ≤ s for some threshold s. As-
suming that the rationale can be ordered, they furthermore include a requirement
of consecutiveness as

∑
i

|Ri − Ri− 1| ≤ t for some threshold t. While the latter

is not relevant to graph models, we optimize for sparsity as well as sufficiency.

This is done through the first part of our objective, e.g.
L∑
k=1

∑
(u,v)∈E

1[R 6=0](z
(k)
e ).

We furthermore measure the degree to which GraphMask produces sparse ex-
planations for the QA and SRL tasks, finding that large parts of the input space
can indeed be discarded.

6.9 Conclusion

We introduced GraphMask, a post-hoc interpretation method potentially ap-
plicable to any GNN model. By learning end-to-end differentiable hard gates for
every message and amortizing over the training data, GraphMask is faithful
to the studied model, scalable to modern GNNs, and capable of identifying both
how edges and paths influence predictions. We applied our method to analyze
the predictions of two NLP models from the literature – a semantic role label-
ing model, and a question answering model. GraphMask uncovers which edge
types these models rely on, and how they employ paths when making predictions.
While these findings themselves reveal interesting details of the inner workings
of popular models, they also provide an illustration of types of analysis enabled
by GraphMask. Here we have focused on NLP applications, where there is a
strong demand for interpretability techniques applicable to graph-based models
injecting linguistic and structural priors.

Returning to the research questions we set out to answer, we see that Graph-
Mask – and, by extension, erasure search by differentiable masking – provides a
tractable means of interpreting the predictions of trained GNNs. We have demon-
strated the effectiveness of our technique for NLP, leaving applications to other
domains for future work. To reason about the faithfulness of GraphMask, we
have introduced a synthetic task with a known gold standard for faithfulness.
Such tasks allow the use of both theoretical and empirical arguments to compare
different interpretability techniques; in future work, batteries of such tests could
be used to provide even stronger arguments.

In previous chapters, we have experimented with GNNs for various NLP tasks.
Between the R-GCN of Chapter 3 and the GR-GNN of Chapter 4, we have seen
very different architectures perform well for different tasks. We have previously
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mentioned the difficulty in understanding why specific variants perform better
than others in certain situations, owing to the black-box nature of these highly
complex, nonlinear models. GraphMask and other interpretability techniques
represent a means for researchers to more effectively study and compare the in-
ferences learned by different architectures.



Chapter 7

Conclusions

In this thesis, we set out to investigate the modelling of structured data with
specialised neural network architectures for natural language processing. We
conducted experiments using graph neural networks (GNNs) to address the need
for neural models capable of incorporating graphs, focusing primarily on knowl-
edge bases. Within that context, we experimented with relational link prediction
in Chapter 3, and with factoid question answering in Chapter 4. We further-
more investigated in Chapter 5 the use of linearisation and large language models
as an alternative. Finally, in Chapter 6, we developed an interpretability tech-
nique for graph neural networks. We summarise here the main findings of our
investigations.

To address link prediction in knowledge bases in Chapter 3, we introduced
Relational Graph Convolutional Network (R-GCN), a family of graph neural net-
works which incorporate relation type and direction when computing entity rep-
resentations. We paired R-GCN encoders with DistMult, a decoder from the
literature, constructing a novel approach to relational link prediction with strong
performance. We attempted to answer the following research questions:

1. Can graph neural network encoders improve the modelling of entities in
knowledge bases for relational link prediction?

2. Which aspects of relational graph structure do graph neural networks capture
better than baseline techniques?

We applied our model to the challenging FB15k-237 dataset (Toutanova &
Chen, 2015), demonstrating strong performance gains compared to contemporary
systems. Among other baselines, we saw our system compare favourably to the
pure DistMult algorithm without a GNN-encoder. As such, it is clear that the use
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of a GNN-encoder improved the modelling of entities. We saw these improvements
primarily play a role for complex inference problems, and when very specific
information was needed to make predictions — for modelling high-degree vertices,
and for predicting links with infrequent relation types.

Explicitly encoding vertices with our R-GCN did present a drawback for ver-
tices separated by many edges in the graph, as a GNN with k layers can only
model the k-neighbourhood of each vertex. For vertices separated by k or fewer
edges, the GNN resulted in large performance gains; for vertices further apart,
the factorisation baseline performed better. As such, GNNs excel at capturing
complex relationships between vertices within limited neighbourhoods defined by
the number of layers in the model.

Our experiments with relational link prediction gave a clear indication of the
value of explicitly encoding vertices with GNNs in semantic graphs. Furthermore,
the use of models combining contextualised GNN-based vertex embeddings with
a decoder represents a promising development for modelling relational link pre-
diction. We picked up the former thread in Chapter 4, where we applied GNNs
to knowledge base question answering; the latter has been picked up by several
recent papers demonstrating new, promising results with encoder-decoder models
for relational link prediction (Bansal et al., 2019; Wang et al., 2020b).

We experimented in Chapter 4 with various architectures and modelling choices
for factoid question answering, based on the idea of modelling local neighbour-
hoods around mentioned entities with GNNs. We introduced systems modelling
the problem as picking the right entity or the right relation, as well as a novel
GNN-architecture – GR-GNN – using gates and an L0 regularisation term to focus
only on relevant edges. We sought to answer the following research questions:

1. Can graph neural network encoders yield benefits for question answering by
modelling entities and relations in the knowledge graph?

2. Is entity-based or relation-based modelling the more suitable strategy, and
which graph neural network models work best in either setting?

We tested our models on the WebQuestions dataset (Berant et al., 2013).
Our models achieved performance comparable to (although not quite beating)
contemporary state-of-the-art methods. Ablation tests demonstrated clear bene-
fits from the use of GNNs and the use of multiple GNN-layers. Our experiments
indicate that GNN-based encoders represent a promising alternative to semantic
parsers or other similar approaches.

Relation-based modelling resulted in stronger performance than entity-based
modelling, as well as faster training. We theorised that this improvement stems
in part from the implicit modelling of a singular primary relation answering each
question, corresponding to the ”central paths” employed by Yih et al. (2015).
Interestingly, very different GNN architectures performed well for relation-based
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and entity-based modelling – for the former, we achieved the best performance
with the R-GCN of Chapter 3; for the latter, with our novel GR-GNN.

We also included an overview of several developments in factoid QA concurrent
or subsequent to our own research. Notably, the line of work including GRAFT-
Net (Sun et al., 2018) and PullNet (Sun et al., 2019b), which also employ graph
neural network encoders. Their experiments indicate that much stronger benefits
can be gained from GNN-based models if the underlying graphs are filtered to
include only the most relevant edges – this matches our experience with the
necessity of our sparsity-inducing L0 term.

In the process of developing GNNs for factoid QA, we struggled to understand
why certain architectures outperformed others, and in what the strengths and
weaknesses of different models lay. This, in part, inspired our later development
in Chapter 6 of a post-hoc interpretability tool for GNNs, in order to circumvent
the black-box nature of these highly complex, nonlinear models.

In Chapter 5, we experimented with an alternative to GNNs for modelling
structured data – linearisation and encoding with a pretrained language model.
We focused on a task with little prior research, open-domain fact verification over
collections of tables, and introduced a novel attention-based architecture address-
ing the problem. Inspired by recent work for unstructured data, we proposed a
two-step model that combines non-parametric, heuristic retrieval with a neural
reader fusing evidence from several retrieved tables. We attempted to answer the
following research questions:

1. Can neural models be applied to efficiently encode tables for querying in
open-domain fact verification tasks?

2. How can the existence of large-scale closed-domain datasets be exploited to
improve open-domain performance?

3. Will our models still yield performance improvements if applied to query
against a Wikipedia-scale dataset rather than the limited knowledge sources
of existing datasets?

We conducted experiments with our system using the recently introduced
TabFact dataset (Chen et al., 2020), with our open-domain model achieving per-
formance on pair with the current state of the art for the closed domain. When
applied to the closed domain, our model furthermore represents a new state of
the art. As such, it is clear that linearisation and language modeling represents a
highly performant approach to encoding tables for NLP tasks. This also matches
the recent finding by Gupta et al. (2020), wherein linearisation and a RoBERTa-
based encoder also yielded strong performance for table encoding.

We introduced two strategies for exploiting the existence of large closed-
domain datasets to improve performance in the open domain, both reliant on
modelling a choice of relevant tables along with the truth values of claims. In
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our experiments, we demonstrated that introducing a reranking objective and
jointly modelling that alongside truth value significantly improves performance.
We furthermore demonstrated how these strategies provide a means of determin-
ing, at test time, whether sufficient relevant information has been retrieved for
any judgement of truth value to be trustworthy.

In the challenging setting where retrieval is performed against the entirety of
Wikipedia rather than just the TabFact tables, our model still performed well.
By combining our joint reranking- and verification-objective with a model making
decisions based on multiple retrieved tables, we demonstrated significant gains.
We note that these results are preliminary, owing to the novelty of the task; nev-
ertheless, our approach improved greatly upon simple baselines such as modelling
only a single retrieved table.

Through the use of large pretrained language models, linearisation remains
an effective alternative to semantic parsing strategies, as well as to the GNN-
based models we have explored in previous chapters. This is not a phenomenon
unique to table modelling. Indeed, for factoid question answering, recent models
employing similar approaches (Oğuz et al., 2020) compare favourably both to
semantic parsing (Yih et al., 2015) and to the GNN-based strategies we have
mentioned (Sun et al., 2018; Sun et al., 2019b).

The graph neural network models which have occupied much of our attention
throughout this thesis are complex, and it is often difficult to understand the
inferences that lead to specific predictions being made. In Chapter 6, we intro-
duced GraphMask, a post-hoc interpretability technique for GNNs designed to
alleviate this problem. We attempted to answer the following research questions:

1. How can we tractably provide rationales for the predictions of a given graph
neural network?

2. How can we ensure that our technique is faithful, and measure the relative
faithfulness of different techniques?

GraphMask produces rationales consisting of a binary choice between use-
fulness and superfluity for every message sent by the GNN. This allows researchers
to construct arguments about which a particular GNN uses edges, vertices, and
paths. The choices are predicted through local models learning end-to-end dif-
ferentiable hard gates for every message, amortised over the training data; this
process ensures tractability and faithfulness. We demonstrated the effectiveness
of this approach by analysing the predictions of two NLP models from the liter-
ature – a semantic role labelling model, and a question answering model.

We introduced a synthetic task with a perfectly optimised model to reason
about different interpretability techniques’ faithfulness. Using a simple task with
a predefined solution, we constructed a gold standard for faithfulness. This al-
lowed us to present both theoretical and empirical arguments comparing Graph-
Mask to several alternatives; for this simple task, GraphMask was the only
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approach to demonstrate near-perfect faithfulness. The use of small, focused
synthetic tasks represents a promising direction through which the relative faith-
fulness of models can be compared.

In the last several years, the approach to structural modelling within NLP has
changed drastically. Graph neural networks have grown from an infant state with
few, specialised applications to become a regularly used architecture with many
variants. During that same period, large pretrained language models based on
the attention mechanism have come to dominate the field. While it is undeniable
that much work is necessary to understand either in fullness – their strengths and
weaknesses, their promises and prospective dangers – we hope that the experi-
ments, discussions, and techniques presented within this thesis have contributed
positively towards that end. With the ubiquity of structured data in the world,
the development of processes to model such data is among the most important
steps that must be taken to bring NLP beyond today’s capabilities. We believe
the models and techniques explored here lay the groundwork for further research
into this topic.





Appendix A

Implementation invariance for
GNNs

In Section 6.7, we mentioned Layerwise Relevance Propagation (LRP) as an al-
ternative to our strategy for interpreting GNNs. We mentioned that – as also
discussed in Sundararajan et al. (2017) – LRP can be problematic as it is not im-
plementation invariant. Here, we include an example showing attribution scores
with LRP for two functionally equivalent GNN models. The differences in learned
weights result in different predictions of edge importance, despite identical inputs
and predictions.
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Initial State GNN Layer 1

MLP version 2

MLP version 1

LRP with f

LRP with gLRP with g

LRP with f

GNN

MLP

Figure A.1: Attributions for two functionally equivalent networks. We give a
graph as an input to a GNN (on the left) where x is the edge from the top-left
node to the central right node. The GNN update rule is simply aggregation with
a sum over the neighbour nodes and no activation function. After one GNN layer
we apply a MLP (on the right) which is implemented with two functionally equiv-
alent networks f(t1, t2) and g(t1, t2) (exactly the same as in the counterexample
provided in Figure 7 in Sundararajan et al. (2017)). Since LRP is not imple-
mentation invariant, it will produce two different attributions for the node t (i.e.,
t′ and t′′), and as a consequence of the propagation rule (Schwarzenberg et al.,
2019), the attribution to x will also be affected (i.e., x′ and x′′).
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SRL Example with Soft Gates
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Figure B.1: The example analysis from Figure 6.9, using the analysis heuristic
where edges with soft gate values more than one standard deviation below the
mean are discarded. Directions are combined into one arc.
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Samenvatting

Gestructureerde gegevens komen veelvuldig in de wereld voor, evenals de NLP-
toepassingen waarmee gepoogd wordt conclusies te trekken over dergelijke gege-
vens. Ondanks hun succes hebben moderne neurale netwerkmodellen vaak moeite
om gestructureerde informatie op te nemen. In dit proefschrift, Het Opnemen
van Structuur in Neurale Modellen voor Taalverwerking, onderzoeken wij hoe ef-
fectieve neurale netwerkmodellen kunnen worden gebouwd om gestructureerde
gegevens op te nemen voor de interpretatie van natuurlijke taal. Een natuurli-
jke vorm van weergave van gestructureerde informatie is door middel van grafen.
De onlangs gëıntroduceerde Graph Neural Networks (GNN’s) bieden voor neurale
netwerken de mogelijkheid om conclusies te trekken over grafen door middel van
leerbare message passing functies. Als eerste introduceren we het effectief eerste
GNN-model dat geschikt is voor de gerichte multirelationele gegevens die worden
aangetroffen in de gangbare vormen van gestructureerde gegevens die relevant
zijn voor NLP toepassingen, zoals kennisbanken (KB’s). We bestuderen encoders
van structuur voor relational link prediction, question answering en fact verifica-
tion. Een grote uitdaging is de niet-interpreteerbare, black-box-aard van dergelijke
encoders. Om dit probleem te verkleinen introduceren wij een nieuwe techniek
voor het interpreteren van de voorspellingen van GNN’s. Wij presenteren onze
inspanningen in vier hoofdstukken:

1. Voor het voorspellen van relationele verbanden in kennisbanken voeren we
Relational Graph Convolutional Network (R-GCN) encoders in. R-GCN’s
zijn een nieuwe variant van GNN’s die geschikt zijn voor het modelleren
van de gerichte, multirelationele gegevens die men in kennisbanken aantreft.
Door onze R-GCN-encoder te combineren met een factorisatiedecoder uit
de literatuur, bereikten we op het moment van publicatie state-of-the-
art prestaties op de FB15k-237-dataset. Ons model presteert vooral goed
voor gecompliceerde gevolgtrekkingen met knooppunten van hoge graad en
zeldzame relaties.
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2. We introduceren twee op GNN gebaseerde modellen voor factoid question
answering over KB’s. Deze modellen zijn gebaseerd op het kiezen van ofwel
individuele antwoordknooppunten, of een beste pad naar het antwoord.
Naast de in Hoofdstuk 3 gëıntroduceerde R-GCN stellen we een variant voor
die gates gebruikt om de te gebruiken kanten van de graaf te beperken. Bij
deze keuze moedigen we spaarzaamheid aan door middel van een L1-boete.
De verbetering, die het gevolg is van ijlheid van de graaf, laat zien hoe
op GNN gebaseerde modellen profiteren van het wegfilteren van overtollige
kanten.

3. We introduceren een nieuw model voor fact verification over open verza-
melingen van tabellen, waarbij we een RoBERTa-encoder voor gelineariseer-
de tabellen combineren met een cross-attention-mechanisme voor het samen-
voegen van bewijsstukken. Linearisatie is een belangrijk alternatief voor
het modelleren van structuur bij grafen. Wanneer we opereren in het open
domein, bereikt onze aanpak prestaties die vergelijkbaar zijn met de huidige
state-of-the-art in het gesloten domein; wanneer we opereren in het gesloten
domein, resulteert onze aanpak in een nieuwe state-of-the-art. Verder vo-
eren we twee nieuwe strategieën in voor het exploiteren van datasets met
een gesloten domein om de prestaties in het open domein te verbeteren.
Deze strategieën zijn gebaseerd op doelen die gezamenlijk claim truth en
evidence reranking modelleren.

4. Onze ervaring laat zien dat interpreteerbaarheid een belangrijke kwestie
ist voor GNN’s (en voor transformers, zoals gebruikt in hoofdstuk 5). We
stellen Graph Mask voor, een nieuwe post-hoc interpretatietechniek voor
GNN-gebaseerde modellen. Door end-to-end differentieerbare nul-één-poor-
ten voor elk bericht te leren, produceert Graph Mask getrouwe, schaalbare
en eenvoudig te begrijpen verklaringen voor hoe GNN’s tot specifieke voor-
spellingen komen. We testen onze aanpak op een synthetische taak met een
bekende gouden standaard voor trouw. Hiermee tonen we aan dat Graph
Mask gunstig afsteekt bij de huidige alternatieven. Daarnaast passen we
onze techniek toe om de voorspellingen van twee NLP-modellen uit de lit-
eratuur te analyseren: een semantic role labeling-model en een question
answering-model.



Abstract

Structured data is abundant in the world, as is the multitude of NLP applica-
tions seeking to perform inferences over such data. Despite their success, modern
neural network models often struggle to incorporate structured information. In
this thesis, Incorporating Structure into Neural Models for Language Processing,
we investigate how to build effective neural network models to incorporate struc-
tured data for natural language understanding. Graphs are a natural form of
representation for structural information, and the recently proposed Graph Neu-
ral Networks (GNNs) allow neural networks to perform inference over graphs
through learnable message passing functions. We begin by introducing effectively
the first GNN model suitable for the directed, multirelational data found in com-
mon forms of structured data relevant to NLP applications, such as knowledge
bases (KBs). We study structural encoders for relational link prediction, question
answering, and fact verification. A significant challenge is the uninterpretable,
black-box nature of such encoders. To alleviate this problem, we introduce a novel
technique for interpreting the predictions of GNNs. Our efforts are presented in
four chapters:

1. We propose Relational Graph Convolutional Network (R-GCN) encoders for
relational link prediction in knowledge bases. R-GCNs are a novel variant
of GNNs suitable for modeling the directed, multirelational data found in
KBs. By combining our R-GCN encoder with a factorization decoder from
the literature, we achieved state-of-the-art performance on the FB15k-237
dataset at the time of publication. Our model performs especially well for
complicated inferences involving high-degree vertices and rare relations.

2. We introduce two GNN-based models for factoid question answering over
KBs, relying either on choosing individual answer vertices or on choosing a
best path to the answer. In addition to the R-GCN introduced in Chapter 3,
we propose a variant that uses gates to limit which edges are used. We
encourage sparsity in this choice through an L1-penalty. The improvement
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derived from sparsity demonstrates how GNN-based models benefit from
filtering out superfluous edges.

3. We introduce a novel model for fact verification over open collections of
tables, combining a RoBERTa-encoder for linearised tables with a cross-
attention mechanism for fusing evidence documents. Linearisation repre-
sents an important alternative to graphs for modeling structure. When
operating in the open domain, our approach achieves performance on par
with the current closed-domain state of the art; when operating in the closed
domain, our approach sets a new state of the art. We also introduce two
novel strategies for exploiting closed-domain datasets to improve perfor-
mance in the open domain, relying on objectives which jointly model claim
truth and evidence reranking.

4. As our experience shows, interpretability is an important issue for GNNs
(and for transformers, as used in Chapter 5). We propose GraphMask, a
novel post-hoc interpretation technique for GNN-based models. By learn-
ing end-to-end differentiable zero-one gates for every message, Graph-
Mask produces faithful, scalable, and easily understood explanations for
how GNNs arrive at specific predictions. We test our approach on a syn-
thetic task with a known gold standard for faithfulness, demonstrating that
GraphMask compares favourably to current alternatives. We furthermore
apply our technique to analyze the predictions of two NLP models from the
literature -– a semantic role labeling model, and a question answering model.
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