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Abstract

How should we decide on the outcome of an election? Social choice theory
offers many voting rules to answer this question, but also establishes various
impossibility results showing that no single ideal rule exists. During recent
years, researchers have developed a method for using axioms, i.e., desirable
properties for voting rules, to justify or explain why a certain voting outcome is
appropriate in a given scenario. This can be used to argue in favor of or against
a specific voting rule’s behavior and shows that axioms can prescribe which
outcome is to be returned in a certain situation. This thesis is dedicated to
developing a novel decision procedure, Voting by Axioms, that takes decisions
purely based on preselected axioms. That is, in each scenario, the voting rule
returns the outcome that is justified or forced by the axioms that we care most
about. The construction process sheds light on what axioms are and how to
formalize them and we include a thorough analysis of the voting rule as well as
an evaluation and possible generalizations of the framework in this thesis.
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Mathematical Definitions
and Notational Conventions

We will use the following basic mathematical concepts and notational conven-
tions throughout this thesis.

Relations and Orders

• A binary relation R over a set S is a set R ⊆ S × S. We write xRy iff
(x, y) ∈ R.

• A binary relation is reflexive if it satisfies for all x ∈ S that xRx holds.

• A binary relation R is transitive in case for all x, y, z ∈ S, if xRy and yRz
holds, then also xRz is true.

• A (weakly) connected binary relation is such that for any two distinct
elements x ̸= y in S, we have xRy or yRx.

• Call a binary relation R strongly connected or total if any two elements in
S (not necessarily distinct) are comparable, i.e., for all x, y ∈ S we have
xRy or yRx.

• A binary relation R is called irreflexive in case for any x ∈ S, we do not
have xRx.

• A binary relation R is anti-symmetric in case for any two elements x, y ∈
S, if xRy and yRx is the case, then x = y holds.

• A (strict linear) order or ranking is a binary relation that is irreflexive,
transitive and connected.

• We call a binary relation that is reflexive and transitive a (weak) preorder.
An irreflexive and transitive relation is called a strict preorder.

• An order is called partial if we do not assume that it is connected, i.e.,
there could be elements x, y that are incomparable, so neither xRy nor
yRx holds. That is, it is an irreflexive, transitive binary relation.
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• An order is called weak if we do not assume that it is irreflexive and if it is
strongly connected, i.e., there could be elements x, y that we are indifferent
about, so both xRy and yRx holds. This means, it is a transitive, strongly
connected relation or, equivalently, a total preorder.

• The set of all possible (strict) rankings R over a set S is

L(S) := {R ⊆ S × S | R is irreflexive, transitive and connected}.

• For a set S, we denote its maximal elements with regards to a given (weak
or strict) preorder R by

maxR(S) := {x ∈ S | for all y ∈ S, if yRx, then xRy}

If R is irreflexive and connected, i.e., a strict ranking, and S is a finite set,
then this set is always a singleton. By abuse of notation, we denote the
unique maximal element by maxR(S) in this case.

Sets and Functions

• Let P(S) denote the power set of a set S, i.e., the set of all possible subsets
of S. We denote the power set with the empty set removed, i.e., the set
of all non-empty subsets of S, by P+(S) := P(S) \ {∅}.

• The set union of a collection of sets S is defined as
⋃

S := {x ∈ S | S ∈ S}.

• For two sets S, S′, write S ⊔ S′ for their disjoint union, i.e., write this
instead of S ∪ S′ in case S ∩ S′ = ∅ holds.

• We denote the set of functions from a set S to a set S′ by S → S′.

• Notice that we can view a function F : S → S′ as a set of pairs

{(x, F (x)) | x ∈ S} ⊆ S × S′.

This allows us, for two functions F1 : S1 → S′
1 and F2 : S2 → S′

2, with
disjoint domains S1, S2, to define their union F1 ⊔ F2, a function defined
on the union of the two domains S1 ⊔ S2, as the set

{(x, F1(x)) | x ∈ S1} ⊔ {(y, F2(y)) | y ∈ S2}.

• For two sets of functions F1,F2 defined on disjoint domains, i.e., F1 ⊆
S1 → S′

1 and F2 ⊆ S2 → S′
2 with S1∩S2 = ∅, define their product F1⊗F2

as the set of functions {F1⊔F2 : (S1⊔S2) → (S′
1∪S′

2) | (F1, F2) ∈ F1×F2}.

• We can restrict a function F : S1 → S′ to a subdomain S2 ⊆ S1 to obtain
a function F ↾S2

: S2 → S′ given by {(x, F (x)) | x ∈ S2}.
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Chapter 1

Introduction

How does one take decisions as a group? Electing a president, settling on a
restaurant to go to with friends, selecting games to be played at a party —
there are plenty of situations in which a collective decision has to be made. But
how can we do this in a sensible way such that the process is fair and takes the
individual preferences into account? This is the central question in social choice
theory. Many voting rules, ways to decide what the outcome should be, given
the voter’s preferences, have been suggested in this research field. Think of the
Plurality, Antiplurality, Borda or Copeland rules (Zwicker, 2016). But which
one should we use? Social choice scientists answer this question by proposing
a multitude of so-called axioms, desirable properties that a decision procedure
should possess, as a means of assessing and comparing voting rules. These
axioms capture characteristics of a favorable voting rule, so the more of them
are satisfied by a given rule, the better. So then, we should just choose the
voting rule that fulfills all or at least most of these principles. Unfortunately,
social choice research has found various impossibility results stating that many of
the suggested axioms are incompatible, i.e., not satisfiable together. A famous
result by Gibbard (1973) and Satterthwaite (1975), for example, shows that
if there are more than two alternatives, every rule is either manipulable or a
dictatorship. This means that there exists no single best voting rule that has
all properties that we want a decision procedure to exhibit. This is part of the
reason why so many different voting rules exist and are applied in practice.

Thus, to take a collective decision, one seemingly acceptable voting rule
needs to be chosen. This choice might appear arbitrary and policymakers should
be able to explain to the electorate why the picked rule takes good decisions.
Ideally, they would use axioms, norms that are intuitive and socially accepted, to
justify the rule’s behavior. Rather than stating which (few) properties the voting
rule satisfies overall, one should be able to explain in every given situation, why
it is reasonable to go along with the rule’s outcome. Boixel and Endriss (2020)
enable exactly this with their theory about how axioms can justify assigning
a certain outcome in a given situation. More precisely, they say that some
given axioms justify an outcome in case assigning the outcome is a necessary
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consequence of satisfying the axioms. This means that if we want a rule with
the given property, it must return this specific outcome in the given situation,
since, otherwise, it would violate the axioms. In this way, axioms can prescribe
or force a certain behavior of a rule. Thus, instead of picking some voting rule
and using axioms to justify its behavior, as previously suggested, could we not
decide on axioms that we are most interested in first, and determine the outcome
that is forced by the axioms for each scenario directly? This is the objective of
this thesis. We want to use the property of axioms to prescribe a rule’s behavior
to construct a voting rule whose outcomes are fully determined and justified by
underlying axioms. This means, we first settle on axioms or axiom sets that we
care most about, and then define a procedure that, for each possible situation
independently, searches for an outcome justified or forced by the given axioms.
We call this Voting by Axioms. The idea for this kind of voting rule originates
from Boixel and Endriss (2020, Example 3) and will be made precise over the
course of this thesis. Besides motivating and defining the framework and the
voting rule, we are going to analyze them and suggest possible generalizations.

Why is this interesting to look at? In this thesis, we are going to focus on
a voting rule that is grounded in axioms. More precisely, Voting by Axioms is
a procedure such that for each possible voting scenario, its outcome is justified
by axioms that we care about. In this respect, the resulting rule is superior to
standard voting rules, for which we have to search for explanations afterwards
and might not even find justifications in terms of our most liked axioms. In
Voting by Axioms, however, we can control which axioms the rule should be
governed by. It is a way of systematizing the justification of outcomes since
Boixel and Endriss (2020) only look at specific situations whereas the Voting
by Axioms rule is a determined procedure defined for all possible situations.

Another advantage of the voting rule that we are going to construct is that
it can be seen as a way of avoiding impossibility results. Generally, these the-
orems have a bad connotation since they ruin our hope that a distinguished
voting rule with many good properties can exist. They state that certain ax-
ioms together are unsatisfiable, which usually results in discarding or weakening
one or multiple of the axioms. In Voting by Axioms, we generally specify mul-
tiple axioms or axiom sets with a prioritization among them that will be used
to define the voting rule. Therefore, if an axiom set is unsatisfiable, we can
instead consider all its satisfiable subsets and thereby still include all axioms in
our procedure (assuming that all axioms in the set are individually satisfiable).
Thus, although the Voting by Axioms rule cannot satisfy all axioms occurring
in an impossibility result, it can still respect them or factor all of them in.

Further, we can view the Voting by Axioms rule as a method for automat-
ically finding the best justification in each situation. Instead of searching, for
a given scenario and specified axioms, for all possible justifications and then
manually choosing the best one, we can start by listing all axiom sets that we
are interested in and rank them by appeal, and the rule that we are going to
construct will always choose the justification in terms of the best possible axiom
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set. For instance, we could say that every axiom used in a justification comes
with a certain cost, e.g., the cognitive capacity that it takes the listener to com-
prehend the axiom. A natural objective would be to find the justification with
the lowest cost, i.e., which is easiest to deliver to the audience.

Besides the perks that the Voting by Axioms rule itself provides, the con-
struction of the rule and the model that it lives in give valuable insights into
what axioms are and what we demand from a good decision procedure for vot-
ing. First, in order to include axioms as formal objects into the model, we need
to understand their role and significance. Part of this analysis is discussing
multiple ways of classifying axioms, i.e., putting them into categories accord-
ing to their structure, function or complexity. Usually, we view axioms as one
condition that a voting rule either satisfies or does not satisfy. In this thesis,
we change perspective and rather take them to be a multitude of conditions,
so-called instances. Are we only content if we can satisfy all instances of an
axiom or does it suffice if our rule respects most conditions that the axiom im-
poses? For instance, for the Condorcet principle (see Table 2.1), it might suffice
if in the extreme cases, where the vast majority of voters prefers one alternative
in pairwise comparison to every other alternative, this alternative wins solely.
However, in cases where the pairwise contest is close to being tied for most alter-
natives, we have less grounds to impose the Condorcet principle and, therefore,
might accept a breaking of the principle. This yields a more nuanced view on
the satisfiability of axioms.

Even further, we are required to rank and compare axioms, to prioritize with
regards to their normative appeal or cognitive demand. Undergoing this process
will require policymakers to deal with the characteristics of decision procedures
and help them becoming aware of the values they want to protect. For instance,
they need to decide whether to care more about protecting the outcome from
being manipulated or about every voter having the same influence. And is it
worth imposing complex principles that the average voter cannot even wrap
their head around? In this way, the thoughts that go into constructing Voting
by Axioms can shape the societal discussion about voting.

Moreover, we are going to showcase methods that help determining whether
sufficiently many axioms are included in our corpus to justify an outcome in
every possible voting scenario. Thus, Voting by Axioms assists in extracting
problematic situations in which it is hard to decide on an outcome. We can
then look at these scenarios and think about how we would intuitively decide
and whether this follows an overarching principle that we want to require. This
can motivate new definitions of axioms.

And, lastly, the notion of justifying or forcing an outcome yields a new way
of assessing the logical strength or complexity of an axiom. Namely, we can
check for an axiom, in how many scenarios it prescribes an outcome, or to what
extent it predetermines the behavior of a voting rule.

Contribution and Related Work. We are going to define a novel procedure
on how to decide a vote by specifying governing principles first in this thesis. For
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this, we thoroughly discuss what axioms are and how to formalize them. In the
course of this, we come up with methods for making sense of an axiom when we
only know which rules satisfy the axiom, not which thought the axiom expresses.
In particular, we define procedures for determining which scenarios the axiom
speaks about and for extracting all the conditions that an axiom imposes, and
thereby obtain a formulation of the axiom in some language. Based on this, we
define a language-independent hierarchy or classification of axioms. Then, we
carry out a complete social choice theoretic analysis of the defined Voting by
Axioms rule, including an axiomatic and a complexity analysis. We also suggest
metrics for analyzing voting rules and axiom sets, and show how the developed
framework can be generalized.

As previously mentioned, our work is built upon the theory of axiomatic
justification of outcomes in voting by Boixel and Endriss (2020). The idea
to use axioms to argue about or explain the behavior of voting rules originates
from Cailloux and Endriss (2016) who showed how to justify the outcomes of the
Borda rule with axioms. Boixel and Endriss (2020) generalized this and came
up with a formal description of justifications (featuring a normative and an
explanatory component) together with a computation method using constraint
programming for finding such explanations. In further work, the complexity of
this approach was analyzed (Boixel & de Haan, 2021; Peters, Procaccia, Psomas,
& Zhou, 2020) and more feasible methods for finding justifications in terms of
axioms were developed (Boixel, Endriss, & de Haan, 2022; Nardi, Boixel, &
Endriss, 2022). Further, a paper by Suryanarayana, Sarne, and Kraus (2022)
explores in an experiment, what method of justifying social choice mechanism
outcomes is most effective in practice. All this ties in with the growing need
for methods yielding explanations for the behavior or the decisions of intelligent
systems. Explicability is seen as a key factor in building trustworthy systems
(EU High-Level Expert Group on AI, 2019), which is why a whole field of
explainable AI (XAI) emerged (Adadi & Berrada, 2018).

Outline. The second chapter of this thesis focuses on defining the framework
and the Voting by Axioms rule. This includes a presentation of a standard model
for voting theory, a discussion of axioms, debating how to formalize them, what
to do when we only know an axiom’s extension (i.e., the set of rules that satisfy
the axiom) and how to divide them into smaller axioms, called axiom instances,
and ends with a formal definition of the Voting by Axioms rule. In Chapter 3,
we first present criteria for when and ways to find out whether the defined rule
is indeed a well-defined voting rule. Afterwards, we work out conditions for
when the voting rule satisfies some of the underlying axioms and we define a
function measuring to what extent the axioms are satisfied. The last aspect
of the analysis focuses on computational complexity of the defined procedure.
Chapter 4 explores possible extensions or generalizations of the defined model,
for instance allowing for a weak or partial order over the underlying axiom sets
or deriving an order over them from an order over the axioms themselves. The
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conclusion in Chapter 5 summarizes and evaluates the introduced approach and
states future research questions.
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Chapter 2

Constructing the
Framework

In this chapter, we are going to make the idea of voting based on a selection of
axioms precise. In the field of logic, we often aim at formally representing an
existing phenomenon. Whether it is getting to the bottom of what knowledge
and belief are to define epistemic logic, or solving philosophical paradoxes such
as the Lottery Paradox (Kyburg Jr, 1961) with the help of formal descriptions.
This process of going from an intuitive idea to a suitable formal model is involved
and a key contribution of this thesis. In the first step, it requires us to thoroughly
analyze the given phenomenon, to identify the key factors and properties that
a model should reproduce. Next, creativity and out-of-the-box thinking are
needed to come up with formalisms that have one or multiple of the desired
characteristics. As the third step, the proposed models have to be compared
to each other and pitted against the identified requirements. This process is
rarely linear and consists of multiple iterations of the aforementioned, weaving
in insights gathered along the way. In the case of Voting by Axioms, this chiefly
includes stating precisely what axioms are and then constructing a voting rule
within the standard setup for voting that does justice to the idea of being based
on given axioms.

This chapter introduces the standard framework for voting in social choice
theory, discusses the question what axioms and axioms instances are and how
to represent them, and presents the constructed rule for Voting by Axioms.

2.1 Voting Theory

What is studied in voting theory is a decision making process by a group of
agents among multiple alternatives. Voting theory is an integral part of social
choice theory and has widely been studied over the past centuries (Marquis de
Condorcet, 1785; Arrow, 1951; Arrow, Sen, and Suzumura, 2002, 2011). We
want to present a commonly used framework for voting which features ranked
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ballots to capture the voters’ declared preferences and which determines one or
multiple winning alternatives. In this thesis, we adopt a variation of the model
used by Boixel and Endriss (2020). A thorough introduction to the history,
questions and methods of voting theory was written by Zwicker (2016).

In voting, a group of voters provide their preferences over various alternatives
to elect a subset of them. We denote the finite set of all voters (the universe)
by N∗ := {1, . . . , n} and the finite set of alternatives by X := {1, . . . ,m}. The
format for voters to voice their opinion is by ordering the alternatives from best
to worst. So every voter’s preference is represented by a ranking, a strict linear
order, over all alternatives. Therefore, a voter’s ballot is an element of the set
of all possible rankings over X, denoted by L(X).

To systematize voting, we need to be able to tell for each voting scenario,
in which some voters in the universe cast ballots, which alternatives should
win. First, we want to define such voting scenarios. For a specified electorate
N ⊆ N∗, a profile contains one ballot for each voter in the electorate. The set
of all profiles for a given electorate is N → L(X) containing functions R that
assign to each voter i their submitted ranking Ri := R(i). We can express that
in profile R, voter i prefers alternative x over alternative y by writing x Ri y.

1

Further, we will use a compressed notation for rankings, writing voter i’s ballot
as x1x2 . . . xm instead of x1Rix2Ri· · ·Rixm for alternatives xi ∈ X. Suppressing
the electorate in the notation, we can represent profiles in a compact way as
vectors of ballots, e.g.,

1R1 2R1 3

2R2 3R2 1 ≈ (123, 231, 132).

1R3 3R3 2

For a given profile R, we will refer to its electorate by NR. We obtain the set
of all possible profiles, i.e., for all possible electorates,

L(X)+ :=
⋃

N∈P+(N∗)

(N → L(X)).

We want to define procedures that decide for every voting scenario what
the outcome should be. A voting rule is a function F : L(X)+ → P+(X) that
assigns an outcome to every possible profile. Such a rule is irresolute since it
allows for multiple alternatives to win. Notice that we exclude the empty set
from the set of possible outcomes since we want the voting rule to always elect
at least one winner. We use set-theoretic notation and indicate the set of all
voting rules as L(X)+ → P+(X). In the following, we give some examples of
commonly used voting rules (Zwicker, 2016).

Example 1. Positional scoring rules assign a score si to an alternative x when-
ever a voter puts x in the i-th position of their ranking. Under these rules, the

1In social choice theory, some authors denote a weak preference relation by R and its
strict counterpart by P . Since we only consider strict preferences here, we do not follow this
convention and let R be a strict linear order.
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alternatives with the highest cumulative score win. For instance, the plurality
rule assigns 1 point to the highest-ranked alternative and 0 points to all others.
Another example is the Borda rule that awards m−1 points to the highest-ranked
alternative, m − 2 to the second highest, down to 0 points to the lowest-ranked
alternative.

Another class of rules are Condorcet extensions, that is, rules that satisfy the
Condorcet principle (see Table 2.1). For example, the Copeland rule computes
all pairwise majority contests (i.e., for alternatives x, y, it compares |{i ∈ NR |
x Ri y}| to |{i ∈ NR | y Ri x}|) and assigns 1 for each win, 0 for each loss and
some fixed number in [0, 1] whenever a tie occurs. Then, the alternatives with
the highest score win.

In principle, one does not have to restrict oneself to finitely many voters
or alternatives. There are interpretations of an infinite universe as a way of
dealing with uncertainty (represented by infinitely many possible states) among
a set of voters (Mihara, 1997), or as capturing the indefinite future, taking into
account not only voters currently alive but also future generations (Koopmans,
1960). Similarly, one could let voters decide about the width of a street or
the number of years that a law should stay in effect, offering them infinitely
many alternatives to choose from. For the sake of simplicity and since we are
interested in implementing our model, we are going to require, in this thesis,
that all sets are finite.

2.2 Axioms and Axiom Instances

Axioms are the basic ingredient for the voting rule that we want to define. So far
we described them as desirable properties that a decision procedure for voting
should possess. Therefore, usually, we view axioms as principles speaking about
the voting model that we are working with. For our undertaking, however, we
need them to be formal objects within our framework. This section is dedicated
to understanding and describing axioms. This includes presenting multiple ways
to classify them, suggesting intensional and extensional definitions of axioms and
showing how we can split one axiom into multiple smaller ones.

2.2.1 The Nature of Axioms

The axiomatic method is a key technique in the field of social choice theory
to analyze and characterize voting rules (Plott, 1976; Thomson, 2001; Zwicker,
2016). Although they are used frequently, it is rarely scrutinized what exactly
an axiom is. In short, we take it to be a normative, desirable principle that
voting rules should comply with. Plott (1976) offers a more nuanced account
by presenting three perspectives on the nature of axioms.

• First, recall that the role of a voting rule is to uncover the social preference,
that what society wants, from the ballots. This requirement, the concept
of “social preference” in itself, directs demands at what can be considered
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an admissible voting rule. For instance, we expect it to choose the “best”
outcome and want it to respect and be in touch with the individual pref-
erences. In this sense, axioms are “a type of minimal expectation about
system performance.” (Plott, 1976, p.520).

• However, referring to major impossibility theorems such as Arrow’s Theo-
rem (Arrow, 1951), Plott notes that even those minimal requirements are
often not satisfiable together. He states that “[a]lmost anything we say
and/or anyone has ever said about what society wants or should get is
threatened with internal inconsistency” (Plott, 1976, p.512). Accepting
that there is no ideal procedure, the second take on what axioms consti-
tute, is that they should constrain the behavior of voting rules with the
aim of finding acceptable rules rather than exactly corresponding to social
preference.

• We can push this idea further and view axioms as features or parts con-
stituting a voting rule. This third perspective is tied to characterization
results in social choice which express necessary and satisfactory conditions
for a rule to coincide with a specific voting rule or to belong to a certain
class of rules. In this sense, axioms are basic principles from which we can
build up voting rules and that can be used to compare rules to each other.

In the literature, axioms are commonly taken to be intuitive, philosophically,
economically or practically motivated requirements concerning the decision pro-
cedure. They help finding solutions that are desirable in the sense of mirroring
how problems are solved in the real world or how they should be solved (Thom-
son, 2001). For instance, we might want every alternative or candidate to have
a chance to win and to be treated equally. While some considered axioms are
rather technical and mathematically motivated, many others stem from laws,
tradition, history or common sense. Think of anonymity, which represents the
principle “one person, one vote”, or of unanimity, which says that if everyone
most prefers the same alternative, then it should be the sole winner. Thom-
son (2001) extracts eight main functions that axioms perform. These include
guaranteeing efficiency, symmetry, consistency, informational simplicity and im-
plementability.

The following standard axioms serve as examples and will be used on a
number of occasions throughout this thesis. We take F to be a generic voting
rule and consider profiles R,R′ with electorate N , unless otherwise specified.
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Table 2.1: Overview of standard axioms

Anonymity
(ANO)

When renaming the agents, the outcome does not change.

If for some permutation σ : N∗ → N∗, we have NR′ =
σ(NR) and R

′
i = Rσ(i) for all i ∈ NR′ , then F (R′) = F (R).

Neutrality
(NEU)

All alternatives are treated equally.

If for some permutation σ : X → X, we have R′
i = σ(Ri)

for all i ∈ N ,2 then F (R′) = σ(F (R)).

Pareto
Principle
(PAR)

A Pareto dominated alternative (i.e, there is another alter-
native that everyone prefers to the given one) should not be
chosen.

If {i ∈ N | x Ri y} = N for some x, then y ̸∈ F (R).

Unanimity
(UNA)

If all voters rank the same alternative highest, then this
should be the sole winner.

If there is some x∗ such that {i ∈ N | x∗ Ri y} = N for all
y with y ̸= x∗, then F (R) = {x∗}.

Condorcet
Principle
(CON)

If one alternative wins in a pairwise contest against all oth-
ers, it should be the sole winner.

If for some x∗, for all y ∈ X \ {x∗}, we have |{i ∈ N |
x∗ Ri y}| > |N |/2, then F (R) = {x∗}.

Reinforcement
(REI)

If the outcomes of two elections with disjoint electorates
intersect, then the merged election should output the inter-
section.3

If NR ∩NR′ = ∅ and F (R)∩ F (R′) ̸= ∅, then F (R ∪R′) =
F (R) ∩ F (R′).4

Cancellation
(CAN)

If all pairwise contests result in a tie, then all alternatives
should win.

2Here, for a permutation σ : X → X and an order Ri ∈ L(X), denote by σ(Ri) the order
which is given by x σ(Ri) y iff σ−1(x)Ri σ

−1(y).
3Note that, in our model, reinforcement differs from its original formulation by Young

(1974) since we restrict attention to a finite universe and electorates within this universe.
Young’s model, however, comprises infinitely many voters, and so imposes conditions on what
would happen if voters outside our considered universe were to vote. Boixel and Endriss
(2020) give a more detailed comparison of these versions of the axiom.

4Formally, we view the profile functions R and R′ as sets of pairs and by taking their union,
we obtain a profile given by a function NR ⊔NR′ → L(X).
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If |{i ∈ N | x Ri y}| = |{i ∈ N | y Ri x}| for all x, y ∈ X,
then F (R) = X.

Faithfulness
(FAI)

If there is only one voter, then their highest-ranked alter-
native should be the winner.

If N = {i}, then F (R) = {maxRi
(X)}.

Positive
Responsiveness
(PR)

If the support for a winning alternative increases, then it
should become the sole winner.

If x∗ ∈ F (R) and R′ ̸= R is such that for all y, z ∈ X\{x∗},
we have |{i ∈ N | y Ri z}| = |{j ∈ N | y Rj

′ z}| and |{i ∈
N | x∗ Ri y}| ≤ |{j ∈ N | x∗ Rj

′ y}|, then F (R′) = {x∗}.

We introduced axioms as normative principles or desirable properties that
we want a voting rule to satisfy. While this is an intuitive description of the
term “axiom”, we are yet to state precisely what mathematical object(s) should
correspond to this concept. We want to show that this is not a trivial task since
multiple appealing formalizations exist.

2.2.2 Axioms as Formal Objects

One way to formalize axioms is to translate their natural language descriptions
into a formal language. For instance, the anonymity axiom says “All voters
should be treated equally” or shorter “One person, one vote”. We can express
it in first-order logic as the sentence

“∀ bijections σ : N∗ → N∗ ∀R,R′ of same electorate size

(∀i (R′
i = Rσ(i)) → F (R′) = F (R))”.

We will see in Section 3.1.1 that we can even translate axioms into a proposi-
tional language in our framework. This suggests defining axioms as syntactic
objects in some formal language. In logic, we often differentiate between the
intensional and the extensional definition of a concept or object, or in Frege’s
(1892) words between “Sinn” and “Bedeutung”. Whereas the former is based
on the meaning of the term, the latter determines it on grounds of what it
designates or which entities it refers to. In the case of axioms, the intension
is given by the thought that the axiom expresses, i.e., the normative principle
that it captures. This meaning is preserved when defining an axiom in terms of
its formulation in some language. The counterpart is given by the extension of
an axiom, that is, the set of all voting rules satisfying the principle.

Definition 2.1. For an axiom A, its extension (or interpretation) is given by
I(A) := {F ∈ L(X)+ → P+(X) | F satisfies A}. Similarly, for any set of axioms
A, we define I(A) to be the set of all voting rules that satisfy all axioms in A
simultaneously, i.e., I(A) :=

⋂
A∈A I(A).
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An important observation is that two intensionally distinct axioms can have
the same extension. That is, although there are two different motivations or
norms, the rules that satisfy these coincide. For instance, if we consider a model
with only one voter, faithfulness, the Pareto principle and the Condorcet prin-
ciple all coincide. However, their meaning or leading principle is very different:
whereas faithfulness directly speaks about the outcome of one-voter profiles,
the Pareto principle excludes dominated alternatives from the outcome and the
Condorcet principle requires electing the Condorcet winner. So should we say
that these are different axioms? Or should we consider them to be the same?

We will see in Section 2.3 that in the basic definition of justifying or forcing
outcomes and of Voting by Axioms, the only information about an axiom that
we make use of is its extension, the set of rules satisfying the axiom. Thus,
for succinctness and simplicity, an alternative approach is to identify axioms
with their extension, forgetting about their intentional meaning. However, this
conciseness comes at a price. Namely, it is problematic since it presupposes that
we actually know the extension of every axiom. In practice however, especially
when working with a large domain with many voters and alternatives, the set
of possible voting rules becomes huge. Note that the cardinality is given by

|L(X)+ → P+(X)| = |P+(X)||L(X)+| = (2m − 1)(m!+1)n−1.

Therefore, for many axioms, it is infeasible to list all rules that are consistent
with the axiom, not to mention computational difficulties. But if we do not
know the extension of an axiom, we are unable to use it in a framework that
defines axioms extensionally.

But even if we decide to keep the intensional meaning of an axiom in our
formal description, there are still decisions to be taken. We could associate
with each axiom exactly one formula. But which formal language should we use
to express the axiom? Promising candidates are first-order and propositional
logic. If we want to generalize to a setting where the universe N∗ can be
infinite, do we need infinite formulas? To circumvent this, we could break down
a single axiom into many smaller axioms, together forming the whole axiom.
For instance, we could split unanimity into many axioms, one for each profile
in which one candidate has unanimous support, saying that under this specific
profile, the candidate must be the single winner. This means breaking up the
general principle governing the axiom into its individual cases. In this way, we
could also define an axiom as a set of syntactic objects, the set of the axiom’s
instances.

This is one possible motivation for the concept of axiom instances. Before we
dive deeper into what they are and how to define them, we want to present a way
of classifying axioms. We already saw a functional distinction between axioms
due to Thomson (2001). Further, he sets “one-problem axioms”, considering
only one or a few profiles at a time, apart from axioms with “full coverage”,
imposing a condition across the whole domain (Thomson, 2001, p.353). The
most profound account of sorting axioms into groups was given by Fishburn
(2015). He introduces three main categories of axioms: structural, existential
and universal axioms.
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• Structural axioms describe what the domain, i.e., the set of profiles on
which a voting rule is defined, looks like. They are sometimes also called
domain-restricting axioms because we already chose the set L(X)+ as the
function domain, which gets reduced in size by the axiom. This kind of ax-
iom works on a meta-level and concerns the structure of the voting model
rather than imposing requirements on which outcome the rule should re-
turn. Examples are the axiom “There are at least three alternatives” or
“All voters have mutually distinct preferences”. In this thesis, we do not
consider these to be axioms since they have to be hard-wired into the
voting model.

• The second type of axiom are universal axioms. These are axioms that
only contain universal quantifiers, no existential quantifiers. They are of-
ten phrased as conditionals, i.e., “If . . . is the case, then F has the property
. . . ”. This is the most extensive and central class of axioms according
to Fishburn. He subdivides it into intraprofile and interprofile axioms.
The former kind only speaks of one profile at a time whereas the latter
connects multiple profiles. Standard examples of interprofile axioms are
anonymity, neutrality or reinforcement. We can further decompose the
class of intraprofile axioms into active and passive axioms. This is similar
to Thomson’s (2001) differentiation between one-problem and full cover-
age axioms. While active axioms apply only to a subset of all profiles and
are usually of the form “For all profiles such that . . . , it is the case that
. . . ”, passive axioms apply generically to all profiles. Examples for the
former kind are the Condorcet principle or unanimity. A passive axiom,
on the other hand, might say that the rule should be resolute and settle
on a single winning alternative for each profile.

• The remaining axioms, those that contain an existential quantifier, are
named existential axioms. They stipulate the existence of some voter, out-
come or profile with certain properties. Examples are surjectivity, stating
that every possible outcome is chosen under some profile, or the no-dummy
axiom, requiring that for every voter, we can find a profile such that if
they unilaterally change their vote, the outcome changes, i.e., every voter
has some influence.

As we have seen, an axiom need not have implications for all profiles in the
domain. Therefore, with every axiom A, we want to associate a set P(A) of
profiles that it speaks about or affects. If the axiom is given in some formal
language, its definition is straightforward. Nardi (2021) follows this approach
in his thesis. We will see, however, that we can also define it without a syntactic
form at hand. But what do we mean by an axiom “speaking about” a profile
when no underlying language is given? Intuitively, an axiom speaks about a
profile if it imposes some condition on what the outcome under this profile can
be. This means, there should be some outcome that a rule satisfying the axiom
is not allowed to give back (possibly dependent on other profiles’ outcomes).
On the contrary, if an axiom does not speak about a profile, a voting rule
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should be allowed to assign any outcome to it, independent of the other profiles’
outcomes. To summarize, on the set of profiles that an axiom speaks about,
the voting rule’s restriction has to belong to a certain subset of all possible
functions. Further, for any rule in this subset, every possible extension to the
whole domain must also belong to the axiom’s interpretation. This motivates
the following definition. For a set of profiles S, we write Sc for the relative
complement L(X)+ \ S.

Definition 2.2. Let the set of profiles that axiom A speaks about P(A) be the
smallest set of profiles S such that we can view the interpretation I(A) as a
product of a set of functions on S and all functions on its complement, i.e.,
I(A) = F ⊗ (Sc → P+(X)) = {F : L(X)+ → P+(X) | F ↾S ∈ F} for some
F ⊊ (S → P+(X)).

This definition captures that on P(A), the axiom imposes conditions, re-
stricting what the function can be, and on the complement, the voting rule can
be any function. Importantly, it is a property of the product operator that the
outcomes of profiles in P(A) are assigned independently from the outcomes on
profiles that A does not speak about, since any function in F gets extended with
every possible function defined on P(A)c. We need to check that it is always
possible to split the extension into a product of that form and that there is
indeed a single smallest set S achieving this.

Proposition 2.3. The set P(A) is well-defined, i.e., for every axiom A, there
exists a unique smallest set of profiles S such that I(A) = F ⊗ (Sc → P+(X))
for F ⊊ (S → P+(X)).

Proof. We want to show existence and uniqueness of such a set S.
For existence, notice that we can always write the extension of a non-trivial

axiom (i.e., with I(A) ̸= L(X)+ → P+(X)) as a trivial product I(A) ⊗ ∅.
Similarly, for a trivial axiom, we can write its extension as ∅⊗L(X)+ → P+(X).
Thus, there does always exist such a set S ∈ {L(X)+, ∅} that allows to split the
extension into a product.

To prove uniqueness, we show that if two distinct sets S and S′ satisfy
I(A) = F ⊗ (Sc → P+(X)) = F ′ ⊗ (S′c → P+(X)), then their intersection
also has the property of splitting the extension into a product. Without loss of
generality, we may assume that S ∩ S′ ̸= ∅. Because if the sets were disjoint,
then S′ ⊆ Sc would hold. From this, by the product splitting property of S, we
could infer that voting rules in I(A) restricted to S′ could be any function. This
would contradict the definition of S′ being a domain on which the acceptable
functions are a strict subset of all possible functions. So the two sets do indeed
intersect. Notice that for any subdomain of a domain, we can write the set of all
functions on the whole domain as a product of all functions on the subdomain
and on its complement. Therefore, together with (S′ \ S) ⊔ (S ∪ S′)c = Sc, we
have

I(A) = F ⊗ ((S′ \ S) → P+(X))⊗ ((S ∪ S′)c → P+(X))

= F ′ ⊗ ((S \ S′) → P+(X))⊗ ((S ∪ S′)c → P+(X)).
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We can combine these, and use that (S′ \ S) ⊔ (S \ S′) ⊔ (S ∪ S′)c = (S ∩ S′)c,
to find a set F ′′ ⊊ S ∩ S′ → P+(X) such that

I(A) = F ′′ ⊗ ((S′ \ S) → P+(X))⊗ ((S \ S′) → P+(X))⊗ ((S ∪ S′)c → P+(X))

= F ′′ ⊗ ((S ∩ S′)c → P+(X)).

Thus, we have shown that S ∩S′ is such that we can represent the extension of
A as a product of functions as required. From this, it follows that the unique
smallest set with the product splitting property is the intersection of all sets S
that split the interpretation into a product as required.

Given a formal language, we may define the set P(A) as the set of all profiles
occurring in the formal specification of A. This set is always a (not necessarily
strict) superset of the extensionally defined set of profiles that A speaks about.
This is immediate since A can only restrict the outcome under a profile by
including an explicit statement featuring the profile. However, the formal state-
ment of A in the given language may contain redundancies or trivial statements,
e.g., a tautology R = R. The set derived from the language-based definition
of P(A) would include such profiles and is therefore not necessarily minimal.
In this light, the language-independent definition appears to be superior due
to its ability to include only those profile that the axiom does indeed impose
non-trivial conditions on.

For a set of axioms A, we define P(A) to be given by
⋃

A∈A P(A). Notice
that this convention preserves the product splitting property of the set P(·), i.e.,
P(A) is the smallest set of profiles S such that I(A) = F ⊕ (Sc → P+(X)) holds
for some F ⊊ S → P+(X).

In the social choice literature, axioms are often taken do be desiderata, prop-
erties that help set apart good voting rules from bad ones. A large part of results
in the field are so-called impossibility results. They are usually interpreted as
negative results, stating that already a handful of desirable axioms together are
not satisfiable. We want to offer a new perspective on axioms in this thesis.
In Voting by Axioms, instead of requiring that our derived voting rule fully
satisfies all axioms that we decided on, we try to merely fulfill certain necessary
conditions imposed by the axioms. That is to make sure that our rule does
not completely go against the axioms. So rather than focusing on how the rule
behaves globally, we want to ensure that, locally, the requirements that a set
of axioms places on some profile are satisfied. This will be discussed in greater
detail once we formally define the procedure for Voting by Axioms. The shift
in perspective that we suggest is from viewing an axiom as absolute, global,
desirable property that we are only content with if it is satisfied on the whole
domain, towards considering it to be a multitude of conditions applying only to
a subdomain that we aim to fulfill a great part of.

2.2.3 Dividing Axioms into Instances

But how should we change our binary view on (dis-)satisfaction into a more
sensitive measure capturing to what degree a voting rule satisfies a set of ax-
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ioms? The key idea is to break one axiom up into multiple components and then
determining how many of these are satisfied. Thomson (2001) too argues in fa-
vor of considering a multitude of logically independent, concise axioms when
aiming for a positive result. They should not be redundant and “each axiom
should preferably embody only one specific aspect of the general idea” (Thom-
son, 2001, p.339). This is our starting point for defining axiom instances. We
want these to be (atomic) particles, components or substatements of the ax-
iom, together making up the whole axiom. One way to get there is viewing the
axiom as general normative principle and taking every application or actualiza-
tion of this principle to be an instance. For example, anonymity says that if
two profiles are the same modulo renaming of the agents, then the outcomes
should agree. One instance of this principle would be any specific choice of two
profiles, e.g., “F (123, 231, 312) = F (231, 123, 312)”. With this notion at hand,
we can calculate how many instances of an axiom are satisfied by a voting rule.

Notice that it might be difficult to define a general procedure on how to
obtain instances for an axiom due to the different structure and nature of axioms.
Intraprofile axioms yield a natural notion of instance because they look at every
profile in isolation. So for each profile, take the imposed condition to be an
instance. For interprofile axioms, on the other hand, profiles cannot be viewed
independently from each other. It does not make sense to ask whether the
axiom is satisfied on a single profile. Further, this idea might not be suited
for existential axioms. The problem is that they access the whole domain at
once (since one has to check for all profiles whether the negation holds) and,
therefore, do not give rise to a notion of locality or partial satisfaction. If an
existential axiom does contain universal quantification, however, we might be
able to split it up into multiple existential instances.

In the following, we want discuss three ways to define axiom instances: Either
we can require for axioms to be given in terms of their instances, or we can
define axioms syntactically in some language and derive instances from this
representation, or, alternatively, we can define axioms extensionally and define
a procedure for obtaining instances.

The first one of these possibilities is easiest to work with since we leave it to
the user to manually choose the most natural division of axioms into instances.
Similarly, we can view instances as atomic axioms (in the style of algebraic
axioms, see Section 3.2.2) and take axioms to be sets or complex expressions
built up from these instances. In that way, we view instances not as realizations
of general principles, but as building blocks to create axioms from. In both of
these cases, we take instances to be the foundational concept from which we
derive axioms. In the course of this thesis, we will see that it matters that the
separation of axioms into instances is rather fine- than coarse-grained and that
it is comparable for different axioms. Thus, a more systematic approach for
obtaining instances is desirable. This leads us to consider ways of including the
generation of instances for a given axiom into the framework.

Ways to obtain instances from a syntactic object are as follows: For a propo-
sitional formula, transform it into conjunctive normal form (CNF), then take
each disjunctive clause to be an instance. For a first-order formula, transform
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it into prenex normal form, then take each instantiation of the leading uni-
versal quantifiers to be an instance. However, these syntax-based notions of
axiom instances are language-dependent and might not always correspond to
what we would intuitively take to be a particle of the axiom. For example, the
natural propositional logic formulations of reinforcement (see Table 3.1) and of
many existential axioms, e.g., surjectivity, are not in CNF. Although they can
of course be transformed into CNF, we do not expect the resulting formulas to
be intuitive specifications of the axioms.

If an axiom is defined extensionally, i.e., if we only know which rules satisfy
the axiom, we try to deduce its instances as the principles common among all
rules. However, it is not a priori clear how to extract these principles from the
extension. Are these principles not part of the intension, the meaning of an
axiom? Again, for intraprofile axioms, that force an outcome on each profile
that they speak about, this is straightforward since for the associated profiles,
all rules in the extension return the same outcome. It is more difficult to extract
a conditional, speaking about multiple profiles at a time, from the extension.
Consider for instance the axiom “If F (R) = O, then F (R′) = O′”. Its extension
will contain rules that return O given R but also rules that return any other
outcome for R. The first type of rule will return O′ for R′, whereas the second
type can give back any outcome under R′. To uncover the dependency between
the two profiles, we would need to look at the image of (R,R′) under all voting
rules in the axiom’s extension, to find that all outcome tuples are possible
besides (O,O′′), where O′′ ̸= O′. Since an axiom can speak about arbitrarily
many profiles, this means that we need to inspect all possible combinations
of profiles in the domain. So we suggest a procedure for deriving instances
from the extension of an axiom by extracting, step by step, the intraprofile,
two-profile, up to all-profile/existential conditions restricting the outcomes of
voting rules satisfying the axiom. Fix an enumeration of profiles L(X)+ =
{R1, R2, . . . , R|L(X)+|}.

• Given some axiom A, start by, for all profiles Ri, defining instances “The
outcome under Ri lies in A(Ri)”, in case A(Ri) := {F (Ri) | F ∈ I(A)} is
a strict subset of P+(X).

• Next, we consider all pairs of profiles (Ri, Rj) with i < j. If A(Ri, Rj) :=
{(F (Ri), F (Rj)) | F ∈ I(A)} ⊊ A(Ri)× A(Rj), then we add the instance
“For all (O,O′) ∈ (A(Ri) × A(Rj)) \ A(Ri, Rj), if Ri returns O, then
Rj does not return O′”. The idea is that since we already extracted all
intraprofile conditions, we know that the outcome of the pair must lie in
A(Ri)×A(Rj). If we cannot find a voting rule in A’s extension for every of
these outcome pairs, assigning these outcomes to the profiles, this means
that there exist further conditions that A imposes on the pair. Thus, we
add one instance stating that all these outcome pairs should be excluded.

• For any finite tuple of profiles (Ri1 , Ri2 , . . . ), let

A(Ri1 , Ri2 , . . . ) := {(F (Ri1), F (Ri2), . . . ) | F ∈ I(A)}.
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Continue this process by considering larger tuples as follows: For all k ≤
|L(X)+|, consider k-tuples of profiles (Ri1 , . . . , Rik) ∈ (L(X)+)

k
such that

i1 < i2 < · · · < ik. If A(Ri1 , . . . , Rik) is a strict subset of⋂
ℓ≤k

{
(O1, . . . , Ok)

∣∣∣∣ Oℓ ∈ A(Riℓ), (O1, . . . , Oℓ−1, Oℓ+1, . . . Ok) ∈
A(Ri1 , . . . , Riℓ−1

, Riℓ+1
, . . . , Rik)

}
,

then add the instance “For all outcome tuples (O1, . . . Ok) contained in
the big intersection but not in A(Ri1 , . . . , Rik), if Rij 7→ Oj for all j < k,
then Rik does not return Ok”.

This means, we check for a given k-tuple which outcome tuples are still
allowed, taking into account all restrictions already imposed on subtuples.
Notice that the maximum conditions that we have at stage k are all con-
ditions speaking about the behavior on k− 1 many profiles. Now for each
k-tuple, there are

(
k

k−1

)
= k many possibilities to obtain conditions on the

tuple. Thus, for each way of forming the k-tuple out of a (k− 1)-subtuple
and one more profile, we need to check which conditions we can derive from
the (k−1)-tuple on the k-tuple. We want to take all these conditions into
account simultaneously, so the allowed tuples are the ones allowed in all
ways of forming the k-tuple from a (k − 1)-tuple. That is, they lie in the
intersection of all the allowed outcomes w.r.t. some (k− 1)-condition. We
then add one instance that excludes all those outcome tuples that would
be allowed to the best of our current knowledge, but that no voting rule
satisfying A actually returns on the k-tuple.

Notice that when setting k = 2 in the general case, we recover the instances that
we defined for pairs. We will see that this procedure does indeed yield instances
for the axiom A according to some minimal requirements on pages 24 to 25.

Example 2. Consider the reinforcement axiom. This axiom does not impose
any conditions on what outcome(s) a single profile or two profiles together should
return. Thus, REI(R) = L(X)+ for all profiles R, and similarly, REI(R,R′) =
L(X)+ × L(X)+ for all (R,R′). So at stage k = 3, according to our current
knowledge, all outcome triplets would be allowed. However, we see that, given
a triplet of profiles (R1, R2, R3) such that NR3

= NR1
⊔ NR2

, no voting rule
in I(REI) returns a triplet (O1, O2, O3), where O3 ̸= O1 ∩ O2 ̸= ∅. Thus, for
each such profile triplet, we obtain an instance excluding these outcome triplets.
If we consider larger tuples, however, no further restrictions will be imposed,
since the reinforcement axiom only speaks about three profiles at a time. Notice
that each instance corresponds exactly to stating, for one choice of three profiles
where one is the disjoint union of the two others, that if the outcomes of the two
smaller profiles intersect, this intersection should be the outcome of the larger
profile.

Without having settled on what exactly an axiom instance is in general, we
introduce the following notational conventions.
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Definition 2.4. If A′ is an axiom instance of A, we write A′ ◁ A. Further, if
A′ is an instance of some axiom in the axiom set A, we write A′ ◁A.

With an axiom instance A′ we may associate its extension (or interpretation)
I(A′) consisting of all voting rules that satisfy the instance. Further, we write
P(A′) for the set of profiles that the instance speaks about.

We have come to understand that a general definition of axiom instance is
hard to find. So without fixing one particular way of deriving instances, we can
define the following necessary requirements for the definition of axiom instances,
inspired by Boixel and Endriss (2020).

(Axiom) Every axiom instance A′ of an axiom A is an axiom itself.

(Segmentation) The extension of A is equal to the intersection of all in-
stance extensions, i.e., I(A) =

⋂
A′◁A I(A′). In particular,

I(A′) ⊇ I(A) holds.
(Substatement) The set of profiles that A speaks about is the union of

sets of profiles that its instances speak about, i.e., P(A) =⋃
A′◁A P(A′).

Recall that we want the separation of an axiom into instances to be a divi-
sion of the axiom’s statement into multiple parts. The first minimal condition
ensures that axioms and their instances are of the same kind — they both set
conditions for voting rules. The second requirement formalizes the idea that in-
stances split up the original axiom, i.e., they all follow from the axiom and taken
together, they form the whole axiom. Together with (Segmentation), the third
requirement stresses that instances should be parts of the original axiom state-
ment, not just arbitrary weakenings. This is, an instance should only contain
pieces of information and requirements that the axiom itself includes. Rooted
in how we treat axioms phrased in a given formal language, we therefore require
that instances, as substatements of the axiom, talk only about the same or a
subset of the profiles that the original axiom speaks about.

Example 3. We can split unanimity into m axioms, one for each alternative x
saying “If everyone ranks x as their most preferred alternative, then {x} should
be the winning set.”. It would not be acceptable to replace the instance for x = 2
by a disjunction “(The outcome under the profile (12 . . .m) should be {2} and the
outcome under (12 . . .m,m12 . . .m−1) should be {1, 2}), or (if everyone ranks 2
as their most preferred alternative, then {2} should be the winning set)”. Notice
that the disjunctive statement is a weakening of the aforementioned instance for
x = 2, and therefore a weakening of unanimity. We still obtain the extension of
unanimity when intersecting all extensions of the instances since the instance
for x = 1 contradicts the first disjunct. However, unanimity never mentions the
profile (12 . . .m,m12 . . .m − 1) and so, we would not consider the disjunctive
statement an instance of unanimity.
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This shows that (Substatement) does not already follow from (Segmenta-
tion). The crucial point to observe is that, only because one interpretation is a
subset of the other, does not mean that the representation of the extension as
a product of sets of functions stays intact.

Example 3 (continued). For unanimity, we have

P(UNA) = U := {R | ∃x ∈ X ∀i ∀y ̸= x (x Ri y)},

which allows us to write I(UNA) = {funa} ⊗ (Uc → P+(X)), where funa : U →
{{x} | x ∈ X} is the function that satisfies funa(R) = {x} iff xRi y for all i and
all y ̸= x. Consider A′ with I(A′) := I(UNA) ∪ {1}, where 1(R) = {1} for all
R. We clearly have I(UNA) ⊆ I(A′) but note that the extension of A′ can only
be split trivially into I(A′)⊗∅ since adding 1 means speaking about the outcome
on every profile. In other words, P(UNA) = U ̸⊃ L(X)+ = P(A′).

The aforementioned three conditions arise immediately from our conception
of the term “instance” as one out of multiple substatements, together forming
the whole axiom. Additionally, with regards to our framework and the further
use of axiom instances in this thesis, we want to stipulate the following condition
called (Non-Redundancy).

Axiom instances are not redundant, i.e., the set of instances is mini-
mal with respect to the aforementioned three conditions. In particu-
lar, if A′ is a set of instances for A, then for every subset A′′ ⊊ A′, the
extension is strictly bigger than that of A, so I(A′′) ⊋ I(A′) = I(A).

There are weaker conditions that one could consider. For instance, that the
extensions of instances should be mutually distinct or, as suggested by Boixel
and Endriss (2020), that there should only be finitely many instances. Notice
that if we looked at an infinite electorate, it would be quite natural to have
infinitely many instances. To allow for this generalization, we do not adopt
the latter condition. Mutual distinctness ensures computability in our finite
framework since there are only finitely many distinct supersets of an axiom’s
extension, thus only finitely many possible instances. However, recall that we
want to divide an axiom into instances, different parts of the whole statement, in
order to measure partial or gradual satisfaction of an axiom. This is, we want to
count how many parts of an axiom are fulfilled. For this quantitative measure to
be meaningful, it is key that different axiom instances actually capture disjoint
ideas, i.e., that they are redundance-free. This is the reason for imposing this
additional condition.

We want to undergird the validity and relevancy of the minimal requirements
for instances that we put forward by showing that they are satisfied by all
described concrete ways to derive instances.

Suppose we work in a propositional language and take the disjunctive clauses
of a formula in CNF to be the instances. Then, each instance is itself a sentence
in the language, thus, is an axiom. By the semantics of conjunction, a voting
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rule is contained in the extension of the whole axiom whenever it satisfies all dis-
junctive clauses, i.e., whenever it lies in the extension of each instance. Trivially,
since every disjunctive clause is a subformula of the axiom, the instance speaks
only about profiles occurring in the axiom. Thus, all three minimal require-
ments are satisfied. However, if we consider an arbitrary CNF, it may contain
multiple equivalent clauses with the same extension. So, to additionally satisfy
the (Non-Redundancy) requirement, we should take the disjunctive clauses and
derive a minimal subset that has the axiom’s extension to obtain an acceptable
set of instances instead.

Similarly, suppose we work in a first-order language and we take an instance
to be an instantiation of all leading universal quantifiers in the axiom’s formu-
lation. These instantiations are clearly axioms themselves. Since they represent
one way of making the universal quantification true, their extension is a superset
of the axiom’s extension. Lastly, since the universally quantified formula speaks
about all objects of some kind and an instantiation speaks solely about one of
these objects, the set of profiles that the instance speaks about is a subset of the
profiles that the original axiom imposes conditions on. Again, we might need
to disregard certain instantiations to guarantee non-redundancy.

Lastly, recall the extension-based procedure for deriving instances defined
on pages 20 to 21. We want to show that this method indeed yields instances.

• Notice that all expressions that we called instances are indeed axioms
conditioning the outcome of a voting rule.5

• Since we obtained the conditions from analyzing the voting rules in the ex-
tension of the axiom, their extensions are clearly supersets of the extension
of the axiom. Notice also that by considering all possible combinations
of profiles, we exhausted all possible restrictions that the axiom could
impose. Thus, there cannot exist a voting rule that satisfies all derived
instances but not the axiom itself, since this would mean that the voting
rule contradicts a condition imposed by A. But this condition must be
among the instances already. Thus, the requirement (Segmentation) is
met.

• Regarding (Substatement), note that the instances capture exactly when
the axiom disallows a certain outcome to be returned. Thus, an instance
cannot speak about a profile, i.e., restrict what outcome can be assigned,
if the axiom itself does not. Similarly, if the axiom speaks about a profile,
there must be an instance that reflects this since we exhausted all possible
conditions.

• Regarding (Non-Redundancy), notice that we already eliminated redun-
dant conditions by extracting those with fewer profiles first and only check-
ing for additional restrictions when considering larger tuples. This is be-
cause an instance on k profiles corresponds to excluding those outcomes

5Strictly speaking, the axiom and the instances need to be the same kind of formal object.
So if the axiom is defined by its extension, then for each extracted condition, define an instance
to be the set of voting rules satisfying this condition.
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that would be allowed when taking into account all previously imposed
conditions (speaking about up to k − 1 profiles), but that no voting rule
satisfying the axiom actually returns. Clearly, an instance on a smaller
tuple does not imply any of the conditions on a larger tuple (since we
only add an instance if there are strictly less admissible outcomes than
expected from all conditions on smaller tuples). But also, an instance
derived from a tuple does not imply any instance derived from a subtuple
(since we exclude only outcomes that have not been excluded on lower
stages already). Further, we required the tuples to have ascending indices
to not consider the same profile combination multiple times. Thus, the
instances are indeed non-redundant.

A Classification of Axioms. Notice that this method yields a new way of
classifying axioms. Recall that the classification of axioms by Fishburn (2015)
was very vague. Although, intuitively, we can grasp what is meant by a universal
versus an existential axiom, how can we tell what kind of quantification occurs
in an axiom if we do not even have a formal language given? What does it
mean that existential axioms are “based primarily on existential qualifiers”, but
universal axioms may “use such qualifiers in a secondary manner” (Fishburn,
2015, p.180)? We claim that with the given procedure, we can define a sharp
classification of axioms, somewhat similar to Fishburn’s and we introduce a
hierarchy of axioms.

We say that A is a k-profile axiom (or an axiom of rank k) if, in the extension-
based instance division, the last instance is derived from a k-tuple. This means
that no condition imposed by the axiom speaks about more that k profiles at
a time. We want to call 1-profile axioms intraprofile axioms and, similarly, for
k > 1, a k-profile axiom is named interprofile axiom. Importantly, these do not
coincide with Fishburn’s notions.

At first, it might seem that tuples for k < |L(X)+| correspond to Fishburn’s
universal axioms and |L(X)+|-profile axioms correspond to existential axioms,
since if we existentially quantify across the whole domain, we need to guarantee
that, when looking at all profiles, the negation is not true. The problem with
this naming convention of axioms is that we can also have universal axioms
speaking about all profiles, e.g., “If all even-numbered electorate profiles are as-
signed to the same outcome, then the rule is constant”, or axioms existentially
quantifying over a subdomain and therefore only speaking about a subset of all
profiles, e.g., “There exists a profile in which everyone votes the same and for
which all alternatives win”. Thus, the axioms that Fishburn takes to be intra-
and interprofile axioms, obtain the same label in our classification. However,
there can be axioms that Fishburn would not include in these classes, due to
existential quantification, which we still name that way. Note that the suggested
distinction between k-profile axioms for k < |L(X)+| and |L(X)+|-profile ax-
ioms is also somewhat similar to what Thomson (2001) calls one-problem axioms
and full coverage axioms, respectively. Recall that he names those axioms that
do not speak about all profiles one-problem axioms and says that an axiom has
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full coverage whenever it imposes some non-trivial condition on every profile.
Thomson describes the latter kind as those axioms that can possibly uniquely
characterize a voting rule by themselves if they force an outcome on all profiles.
While a |L(X)+|-profile axiom definitely has full coverage, for all other profiles,
the rank of an axiom does not determine whether the axiom is a one-problem
axiom or not. Think for instance of a passive intraprofile axiom in Fishburn’s
classification, which speaks about all profiles, one at a time. This is a full cov-
erage intraprofile axiom. Thus, our classification differs both from Fishburn’s
and Thomson’s approach.

Instead of making our classification dependent on an axiom’s formulation
in some language, in which case well-definedness would depend on logically
equivalent formulas being classified as the same kind of axiom, our hierarchy
is based purely on the axiom’s extension and the behavior of the voting rules
satisfying the axiom. This hierarchy uncovers the structural complexity of an
axiom. The higher the rank of an axiom is, the more interdependencies between
profiles it imposes. In the instance extraction process, we see that axioms with
a higher rank can, in general, be more restrictive, i.e., yield a smaller extension,
than those with lower rank, since they impose additional conditions that were
not expressible in terms of smaller tuples.

In Voting by Axioms, we need 1-profile axioms to establish a set of profiles
that outcomes are forced on. As a next step, we have to include k-profile axioms,
where k is less or equal than the size of the set of profiles that the intraprofile
axioms force an outcome on, for standing a chance at well-definedness. These
axioms of rank k can then lead to forced outcomes on other profiles. If necessary,
we can then also include axioms of higher rank.

Example 4. Consider the following standard axioms.

• Unanimity is a 1-profile axiom since it specifies for all profiles with unan-
imous support independently what the outcome should be.

• Anonymity is a 2-profile axiom specifying for each two profiles that can
be obtained from one another by renaming the agents, that the outcome
should be the same. Technically, this will require for each profile that all
profiles obtained from it by renaming the agents should have the same
outcome. Since there are |N∗|! many possible renamings, the outcome
might prescribe that up |N∗|! many profiles should have the same outcome.
However, this requirement follows from the conditions imposed on pairs.
So if one of the |N∗|! profiles returns a different outcome from the others,
then it already contradicts the condition that paired with one of these other
profiles, it should return the same outcome.

• Surjectivity is a |L(X)+|-profile axiom since for a given outcome, if for any
(|L(X)+| − 1)-tuple of profiles, none of them is assigned to the outcome,
then the remaining profile needs to be assigned to the profile.

We introduced multiple ways of deriving instances from an axiom. We can
alter how fine-grained we want this division into instances to be. The most
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extreme but useless version of this is splitting the axiom into instances that
each exclude exactly one voting rule, i.e., for every F ̸∈ I(A), consider the
instance “The voting rule does not coincide with the rule F”. Notice, however,
that the set of profiles that the instance speaks about is the set of all profiles
in this case. So only if P(A) = L(X)+ is the case, will this be an acceptable
definition of instances with regards to (Substatement).

It seems quite natural to split up instances further and further until we obtain
the smallest substatements of the axiom with respect to the profiles that they
speak about. This means that if we were to divide the instances even further
and thereby strictly reducing the set of occurring profiles, then the resulting
conditions would no longer be weakenings of the original axiom. In the case
of anonymity, for example, it makes sense to split the axiom into instances for
each pair of profiles R,R′, where R′ is obtained from R by renaming the agents,
that express “The outcome under R and R′ must coincide”. The only way to
generate a new instance that speaks about strictly less profiles is a condition
only applying to exactly one of the two profiles, at the same time allowing any
arbitrary outcome under the other of the two profiles. Any rule satisfying this
reduced condition but not assigning the same outcome to both profiles is not
anonymous. Thus, the extension of the reduced condition is not a superset of
the extension of anonymity. So this violates the second minimal requirement,
(Segmentation), for instances.

However, this degree of granularity is not always the most natural one. If the
axiom is existential, for example, we can never split it up into instances that are
not themselves existential and therefore speak about all profiles simultaneously.
Nonetheless, we might want to split the axiom up into instances. If it contains
a universal quantification over outcomes or voters, for instance, we want to
break up the axiom accordingly. Examples are the axioms surjectivity and no-
dummy, which naturally split into “The outcome under some profile is O.” for
every O ∈ P+(X) and “There exist two profiles that only differ in i’s vote that
have different outcomes.” for every voter i, respectively. This is another reason
for why there might not be a general procedure applying to all axioms to derive
instances.

We explored what the term “axiom” refers to in the field of social choice
theory and that we can define axioms either as syntactic objects or purely
extensionally. We saw multiple common examples of axioms and ways to classify
axioms according to their structure or function. Further, we challenged the view
that axioms are normative principles that are either completely satisfied or not.
Instead, we suggested dividing them into multiple axiom instances, of which
only a part can be satisfied. Formalizing the notion of an axiom instance turned
out to be difficult in all generality. We suggested definitions for first-order and
propositional logic and a procedure based on the extension of an axiom. Beyond
that, we worked out necessary requirements as a baseline for deriving instances.
With this deepened understanding of axioms and their instances, we can now
use them as central objects in defining Voting by Axioms.
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2.3 Voting by Axioms

It is the objective of this thesis to define a decision procedure that respects given
axioms. In contrast to first defining a voting rule and then using the axiomatic
method to assess its quality, we want to start by specifying axioms that we care
about and then define a voting rule, profile by profile, returning outcomes that
are justified by these axioms. In this section, we will explain what it means
for an axiom to justify or force an outcome in the sense of Boixel and Endriss
(2020) and, based on this, define a method for deriving a voting rule from a
collection of axiom sets.

The idea behind the justification of outcomes in voting is using axioms to
answer the question why a certain outcome should be assigned in a given situa-
tion. Axioms are normative properties that society decided a reasonable voting
rule should exhibit. Therefore, it is natural to use them as arguments in an
explanation or to pit the behavior of a voting rule against them. We will say
that an axiom justifies picking some outcome if it leaves no other choice, i.e., if
choosing any other outcome would contradict the axiom. In this case, we say
that the axiom forces the outcome and this occurs exactly if all voting rules
satisfying the axiom give back this very outcome for the profile. Hence, if an
axiom forces an outcome, assigning this outcome can be viewed as a necessary
condition in order for the axiom to be satisfied.

Definition 2.5. Given some profile R ∈ L(X)+, an axiom set A with I(A) ̸= ∅
forces (or justifies) an outcome O ∈ P+(X) if for all F ∈ I(A), it holds that
F (R) = O.

For a set of axioms A, we denote the set of profiles that it forces an outcome
on by Forc(A) := {R ∈ L(X)+ | I(A) ̸= ∅ and A forces an outcome on R}.

Whenever we say that an axiom or a set of axioms forces an outcome, we
presuppose that its interpretation is non-empty, even if not explicitly stated.
Note that we give a shortened and simplified account of what it means for axioms
to justify an outcome in this thesis. We only consider what Boixel and Endriss
(2020) call the normative basis of a justification, the set of axioms that forces an
outcome. Additionally, they specify a minimal set of instances of these axioms
that forces the outcome, which corresponds to a precise explanation. Rather
than referring to broad principles, this explanatory component will contain the
precise instances relating to the profile in question. Such a normative basis and
explanation together make up a justification. For a more detailed account, we
refer to the paper by Boixel and Endriss (2020).

Since one set of axioms rarely justifies an outcome on every profile (this
would mean that exactly one rule satisfies all the axioms jointly), we will use a
set of sets of axioms to define the voting rule. So given a collection of sets of
axioms A and a strict ranking ≻ over it, we want to derive a voting rule that
returns outcomes justified by the axioms in A, while using the relation ≻ to
prioritize. The definition is straightforward. Namely, for each profile, assign the
outcome that is forced by the highest-ranked axiom set in the collection that
forces some outcome on the profile.
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Definition 2.6. The Voting by Axioms rule derived from a non-empty collection
of non-empty sets of axioms A and an order ≻ ∈ L(A) over it F(A,≻) assigns
F(A,≻)(R) = O iff there exists some A ∈ A that forces O given R and such that
for all A′ ∈ A with A′ ≻ A, the set of axioms A′ does not force any outcome
given R.

Let us look at an example of how to determine the Voting by Axioms rule.

Example 5. Consider the ordered collection A given by {CAN} ≻ {NEU,FAI} ≻
{ANO,NEU,PR} and a setup with m = 2 alternatives and n = 3 voters. Notice
that CAN only forces an outcome on profiles (12, 21) and (21, 12) (independent
of the electorate). Among the remaining profiles, FAI forces an outcome on all
profiles with only one voter. Neutrality by itself does not force any outcome
and considering FAI and NEU together does not extend the set of profiles that
an outcome is forced on beyond the one-voter profiles. Recall that by May’s
Theorem, ANO, NEU and PR characterize the simple majority rule for two
alternatives. Thus, these axioms force an outcome (namely, the outcome of the
simple majority rule) on all remaining profiles. Thus, the voting rule F(A,≻) is
well-defined. It will assign the following outcomes (this determines the whole
rule since the rule is anonymous):

(12) 7→ {1} (12, 12) 7→ {1} (12, 12, 12) 7→ {1}
(21) 7→ {2} (12, 21) 7→ {1, 2} (12, 12, 21) 7→ {1}

(21, 12) 7→ {1, 2} (12, 21, 21) 7→ {2}
(21, 21) 7→ {2} (21, 21, 21) 7→ {2}

It might be unfeasible in situations with a large corpus of axioms and many
sets thereof to determine a ranking over all sets of axioms. Instead, as a special
case, we can rank the axioms in the corpus and from this generate a ranking
over all possible sets of axioms. That is, for a set of axioms A, we can consider
A = P+(A) and we can lift a given ordering > over the axioms in A to a
ranking ≻ over the non-empty subsets of A, i.e., over A. By slight abuse of
notation, we denote the resulting voting rule by F(A,>). To make use of this, we
need a method to, from a set of axioms A with a ranking over its axioms, i.e.,
> ∈ L(A), derive a ranking ≻ over subsets of A, i.e., ≻ ∈ L(P+(A)). One way
of doing this, introduced by Pattanaik and Peleg (1984), is by saying that one
set of axioms is more desirable than another one if its most preferred axiom is
better than the other set’s highest-ranked one.

Definition 2.7. The lexicographic maximax ranking given A and > is con-
structed as follows. Set {A} ≻ {A′} for all axioms A,A′ ∈ A with A > A′ and
recursively define for A′,A′′ ⊆ A:

A′ ≻ A′′ iff either max>(A′) > max>(A′′)

or

(
max>(A′) = max>(A′′) and(
|A′′| > |A′| = 1 or A′ \ {max>(A′)} ≻ A′′ \ {max>(A′′)}

) )
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We will consider further examples and motivations for lifting rankings over
axioms to rankings over axiom sets in Section 4.1.

This chapter laid the foundation for Voting by Axioms by introducing the
framework that we work in and by motivating our choice of definitions. Next, we
need to check if or when the defined procedure is well-defined and good-natured
and whether it achieves what we want it to.
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Chapter 3

Analyzing Voting by
Axioms

We proposed a method for obtaining a voting rule that justifies its outcomes with
underlying axioms. First, we have to examine whether the suggested definition
actually yields a well-defined voting rule. We will see that this depends on the
collection of axiom sets that we take as a basis. In this chapter, we want to
unfold what well-definedness means in this context and what methods we can
use to test for it. After this, we want to assess to what extent the defined
voting rule succeeds at respecting the chosen axioms, in which cases it has good
properties and how difficult it is to calculate the rule.

3.1 Well-Definedness

In the last chapter, we defined what it means for axioms to force an outcome
on a given profile and used this to define a decision procedure. This was done
profile by profile. More precisely, for every profile, we identified the highest-
ranked axiom set that forces an outcome and then assigned this outcome to
the profile. There are two immediate questions regarding this procedure. Can
we always find some set of axioms in the collection that forces an outcome on
a given profile? Is there always a unique outcome forced by an axiom set or
could there be multiple? Only if we can answer “yes” to both of these questions,
will the described method yield a well-defined voting rule in general. This is, it
determines a function on the set of all profiles, assigning exactly one outcome
to each of them.

Let us turn to the second question first. We claim that if a set of axioms
forces an outcome on a given profile, then it cannot force another outcome on
the same profile. The reason is that forcing an outcome means, by definition,
that all voting rules return the same outcome on the given profile. This can only
be true of one outcome. This can also be seen as an immediate consequence
of the result by Boixel and Endriss (2020, Theorem 1) that there cannot exist
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justifications for different outcomes based on the same axioms. Since forcing
an outcome corresponds to being a normative basis for a justification, we can
conclude the following proposition.

Proposition 3.1. For a given profile R, it is impossible that a set of axioms A
with I(A) ̸= ∅ forces two distinct outcomes O1 and O2.

Proof. For the sake of contradiction, assume that A forces two different out-
comes O1 ̸= O2 ∈ P+(X). This means that I(A) ⊆ {F ∈ L(X)+ → P+(X) |
F (R) = O1} and I(A) ⊆ {F ∈ L(X)+ → P+(X) | F (R) = O2}. Thus, the set
I(A) is a subset of the intersection

{F ∈ L(X)+ → P+(X) | F (R) = O1} ∩ {F ∈ L(X)+ → P+(X) | F (R) = O2}.

Clearly, the intersection of these two sets is empty since O1 ̸= O2. Hence,
I(A) = ∅. This contradicts our assumption of A having a non-empty extension.
Thus, if A forces an outcome given R, it forces exactly one outcome.

This means that, for a fixed profile, if we can find a maximal set according
to ≻ that forces some outcome, it forces exactly one outcome. Notice that if
this was not the case, the rule F(A,≻) would not be well-defined since we would
need to further specify how it should deal with ties, i.e., with the case in which
multiple outcomes are forced by the same set. In this light, we may equivalently
define the Voting by Axioms rule via

F(A,≻)(R) = O iff F (R) = O for any F ∈ I(max≻{A ∈ A | R ∈ Forc(A)}). (∗)

Recall that ≻ is a strict linear order. Since, further, A is finite, there exist a
unique minimal and a unique maximal element. The same holds for any non-
empty subset of A. For this maximal element, which is a set of axioms, we
know by Proposition 3.1, that it forces exactly one outcome given R. Hence,
every function F contained in its interpretation outputs the same outcome on
R. Therefore, the given expression is well-defined and it can easily be seen that
it captures the same condition as given in Definition 2.6.

Next, we turn to the first question. For the voting rule to be well-defined on
the whole domain L(X)+, it remains to check that, or under what conditions,
for all profiles R ∈ L(X)+, we can find a set of axioms A ∈ A that forces some
outcome given R. It is easy to see that this is not the case for every arbitrary
collection of axiom sets.

Example 6. Consider the collection A that only contains the set {UNA}. As
seen earlier, the unanimity axiom UNA only speaks about, i.e., imposes con-
ditions on, profiles where one alternative has unanimous support. That is,
P(UNA) = {R | ∃x ∈ X ∀i∀y ̸= x (x Ri y)}. Since unanimity is an intrapro-
file axiom, prescribing an outcome for every profile that it speaks about, we
deduce that it forces an outcome exactly on all profiles in P(UNA). This means
that on every other profile, the Voting by Axioms rule is undefined due to the
lack of other axiom sets that could force an outcome on the remaining profiles.
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So for which collections is the rule well-defined and how can we efficiently
check for a given collection whether it is? We defined for an axiom set an
associated set of profiles that the axioms force an outcome on, denoted by
Forc(A) (see Definition 2.5). Similarly, for a collection of sets of axioms A,
denote the set of profiles that it forces an outcome on as

Forc(A) :=
⋃
A∈A

Forc(A).

Using this notation, we want to find out when Forc(A) = L(X)+ is the case. In
particular, while the assigned outcomes might differ, whether the derived voting
rule is well-defined only depends on the collection A, not on the order ≻.

Naively, we could verify well-definedness as follows: Compute the set of
profiles on which a set A forces an outcome on Forc(A) for all sets A ∈ A and
then check if every profile R ∈ L(X)+ is contained in one of these sets. We can
improve this by reducing the number of sets of axioms that we need to consider.
Notice that if A1 ⊆ A2 holds, then we have I(A1) ⊇ I(A2). As a result, if both
sets are satisfiable and A1 forces an outcome O on a profile, then A2 also forces
O. Hence, with a decreasing number of axioms, it gets increasingly difficult
to force an outcome due to the rising number of voting rules to be considered.
Conversely, with an increasing number of axioms, we have higher chances of
forcing an outcome, but if we consider too many, the extension jumps to the
empty set, rendering the axioms unsatisfiable together.

Proposition 3.2. If A1 ⊆ A2 and I(A2) ̸= ∅, then Forc(A1) ⊆ Forc(A2).

Proof. Suppose A1 forces O ∈ P+(X) given R. That is, for all F ∈ I(A1) ̸= ∅,
it is the case that F (R) = O. Since A1 ⊆ A2, we have I(A1) ⊇ I(A2). But so
any F ∈ I(A2) ̸= ∅ also satisfies F ∈ I(A1) and, thus, F (R) = O. Hence, A2

forces O given R. In particular, if A1 forces an outcome given R, then so does
A2. Since R was arbitrary, we can conclude Forc(A1) ⊆ Forc(A2).

We can make use of this connection between subsets of axiom sets to remove
redundant sets from the procedure. For a collection of sets of axioms A, consider
its subcollection of sets with non-empty extension {A ∈ A | I(A) ̸= ∅}. We are
interested in its maximal elements with respect to set-inclusion (there might be
multiple ones since it is a partial order) max⊇{A ∈ A | I(A) ̸= ∅}. Then by
Proposition 3.2, we know that

Forc(A) = Forc(max⊇{A ∈ A | I(A) ̸= ∅}).

Recall that the well-definedness of F(A,≻) only depends on the collection and
not on the order. Thus, to check whether some outcome is forced by a set in
the collection for every profile, it suffices to check if there is a forcing set among
the set-inclusion maximal satisfiable sets of the collection. This is especially
relevant in the special case of lifting a ranking over a corpus of axioms to a
ranking over all possible axiom sets. Note that the number of possible sets of
axioms built from the corpus is exponential in number of axioms belonging to
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the corpus. This is a large number, so instead of checking for each of the axiom
sets whether it forces an outcome on a profile, we can restrict attention to the
maximal satisfiable sets.

We can weaken the aforementioned and formulate a necessary but not suffi-
cient condition for well-definedness in terms of profiles that the involved axioms
speak about. Namely, in order for Voting by Axioms to be well-defined, for every
profile, some axiom in the collection should speak about it. Otherwise, no condi-
tion is imposed on the outcome of this profile — in particular, no condition that
would force an outcome. That is, as a first step to check for well-definedness,
we could test whether it holds that

P(A) :=
⋃
A∈A

P(A)︸ ︷︷ ︸
⊇Forc(A)

= L(X)+.

Integral for verifying well-definedness is being able to determine whether a
set of axioms forces an outcome on some profile. While the brute-force approach
to this is checking whether all voting rules satisfying the axioms give back the
same outcome under the profile, this is generally not feasible. Recall that with
large parameters, we obtain an extensive number of possible voting rules, making
it difficult to list all voting rules belonging to an axiom’s extension. Thus, we
want to find ways that are computable and do not make use of an axiom’s
extension to determine whether an outcome is forced. We will present two ways
of implementing the problem in the following — one based in propositional logic
and a more proof-theoretic approach featuring a tableau-type calculus.

There exist also other approaches, e.g., one by Boixel and Endriss (2020)
solving the problem by checking whether a constraint network is satisfiable. In
this, to check whether outcome O is forced on profile R by some axioms, they
use the axiom instances and the statement that the outcome under the profile
is not O as constraints, which means that if the network is unsatisfiable, the
outcome O is forced on the profile by the instances. Due to limited scalability
of this approach, a different method based on graphs was introduced (Nardi,
2021; Nardi et al., 2022). In this, justifications are represented as paths in a
graph, whose nodes are given by profiles that are connected via edges linking
all profiles that an axiom instance speaks about. Since not all paths correspond
to well-formed justifications, the task is to verify if any of the paths starting at
the profile in question indeed represents a justification.

3.1.1 Forcing as Logical Consequence

The first more workable approach for determining whether a set of axioms forces
an outcome on a given profile that we want to consider is translating the ax-
ioms into propositional formulas and examining the logical consequences of the
axioms. The premise of this method is that if a set of axioms justifies or forces
an outcome, then assigning this outcome is a necessary logical consequence of
the axiom. So by means of logic, we should be able to deduce this from the
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axiom’s formal specification. We choose to go with propositional logic since it
is expressive enough to capture voting and axioms and, at the same time, can
easily be implemented for computation. SAT-solvers, which check whether some
propositional formula is satisfiable (Biere, Heule, van Maaren, & Walsh, 2009),
have been successfully employed in the field of computational social choice for
finding new theorems and automatically proving or verifying them. An intro-
duction and review of this method can be found in a book chapter by Geist and
Peters (2017).

Nardi (2021) uses a similar way of formulating axioms in terms of a propo-
sitional language in order to derive an algorithm for generating justifications of
outcomes. Consider the propositional atoms

P := {pR,x | R ∈ L(X)+ and x ∈ X} ∪ {⊤,⊥},

where we interpret pR,x as “alternative x is among the winners, given profile
R”.6 Notice that since we work with a finite universe N∗ and finitely many
alternatives X, there are only finitely many propositional atoms in P . We then
use the standard connectives to build a propositional language for p ∈ P

L ::= p | ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ.

Notice that universal or existential quantification over voters, alternatives,
outcomes and profiles can be expressed by finite conjunctions or disjunctions,
respectively, since there are only finitely many of each of these objects. An
important question is whether every axiom can be expressed in the language L.
This question can be read two ways: Given a formulation of the axiom in a nat-
ural or formal language, is there an appropriate translation to our propositional
language? Or, alternatively, for every possible axiom extension, can we find a
formula in the propositional language that exactly these voting rules satisfy?
The first question is difficult to answer since it depends on what we consider an
“appropriate translation”. Generally, natural language descriptions tend to be
more vague, requiring to use additional concepts when translating into a formal
language. For instance, consider the informal description of anonymity as “all
voters are treated equally” and observe that its formal counterpart makes use
of permutations, specific profiles and their outcomes (see Table 2.1). Focusing
on the latter interpretation of the question, we claim that for each possible ex-
tension, we can find an axiom expressed in terms of the propositional language
L with exactly that extension. More precisely, if we have I(A) given, we may
express the axiom by giving, for each F ∈ I(A), a full characterization in terms
of propositions, i.e.,∨

F∈I(A)

∧
R∈L(X)+

( ∧
x∈F (R)

pR,x ∧
∧

y∈X\F (R)

¬pR,y

)
.

It is immediate that this axiom has the same extension as A since every dis-
junct singles out one voting rule in I(A). In the following, we will assume that

6Instead of using propositional atoms pR,x, we could also use atoms qR,O for O ∈ P+(X),
where pR,x corresponds to

∨
x∈O qR,O, as featured in a paper by Cailloux and Endriss (2016).
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axioms A are formulas in the language L. An encoding of the standard axioms
introduced in Table 2.1 can be found in Table 3.1, all besides REI in CNF.

Table 3.1: Propositional encoding of standard axioms

ANO
∧

R∈L(X)+
∧

σ:N∗1:1→N∗

∧
R′=σ(R)

∧
x∈X(¬pR,x ∨ pR′,x)

7

NEU
∧

R∈L(X)+
∧

σ:X
1:1→X

∧
R′=σ(R)

∧
x∈X(¬pR,x ∨ pR′,σ(x))

7

PAR
∧

y∈X

∧
x∈X\{y}

∧
R:∀i(xRiy)

¬pR,y

UNA
∧

x∈X

∧
R:∀y ̸=x({i|xRiy}=N) outcome(R, {x})

CON
∧

x∈X

∧
R:∀y ̸=x(|{i|xRiy}|>|N |/2) outcome(R, {x})

REI
∧

R,R′∈L(X)+
∧

R′′:NR′′=NR⊔NR′

(∧
y∈X(¬pR,y ∨ ¬pR′,y)

)
∨
(∧

x∈X(¬pR,x∨¬pR′,x∨pR′′,x)∧(¬pR′′,x∨pR,x)∧(¬pR′′,x∨pR′,x)
)

CAN
∧

R:∀x ̸=y({i|xRiy}=|N |/2) outcome(R,X)

FAI
∧

x∈X

∧
R:NR={i},∀y ̸=x(xRiy)

outcome(R, {x})

PR
∧

R∈L(X)+
∧

x∈X

∧
R′∈PR

(
(¬pR,x ∨ pR′,x) ∧

∧
y ̸=x(¬pR,x ∨ ¬pR′,y)

)
,

where PR := {R′ ̸= R | ∀y, z(|{i | y Ri z}| = |{j | y Rj
′ z}| and |{i |

x Ri y}| ≤ |{j | x Rj
′ y}|)}

Note: Please refer to the definition of the formula outcome(R,O) on page 37.

So far we have only specified a language, syntax, an assortment of meaning-
less symbols and given intuitive explanations for how to interpret them. Now,
we want to formally define the semantics for this logic by giving conditions for
when a voting rule F makes a formula φ in L true; denote this by F ⊨ φ.
Equivalently, we could say that F lies in the interpretation of φ, defined by
I(φ) := {F | F ⊨ φ}, the set of voting rules that satisfy φ.

F ⊨ ⊤ always

F ⊨ ⊥ never

F ⊨ pR,x iff x ∈ F (R)

F ⊨ ¬φ iff F ⊭ φ
F ⊨ φ ∨ ψ iff F ⊨ φ or F ⊨ ψ

F ⊨ φ ∧ ψ iff F ⊨ φ and F ⊨ ψ

F ⊨ φ→ ψ iff F ⊨ φ implies F ⊨ ψ

7Please refer to Table 2.1 for the exact meaning of R′ = σ(R) in the two cases where σ is
a permutation of voters or alternatives.
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Given this notion of truth, we can define when a set of formulas Σ logically
entails a formula ψ, write Σ ⊨ ψ. We define this to be the case if all voting
rules F that make all formulas in Σ true, also make ψ true, i.e., whenever F ⊨ φ
is the case for all φ ∈ Σ, then also F ⊨ ψ holds. We call a set of formulas Σ
satisfiable if there exists some F with F ⊨ φ for all φ ∈ Σ, so I(φ) ̸= ∅ or,
equivalently, if Σ ⊭ ⊥.

Next, we want to find a criterion in terms of logical consequence for when
a set of axioms forces an outcome. This should be the case exactly if assigning
the outcome is entailed by the axiom. In other words, a satisfiable set of axioms
A forces an outcome O ∈ P+(X) given R iff A ⊨ outcome(R,O), where

outcome(R,O) :=
∧
x∈O

pR,x ∧
∧

x∈X\O

¬pR,x.

This formula determines for all alternatives x, whether they should win or lose
given R, yielding a unique outcome set O. Thus, for a satisfiable set of axioms
A, we can write

Forc(A) = {R ∈ L(X)+ | A ⊨ outcome(R,O) for some O ∈ P+(X)}.

In this way, one can make use of a SAT-solver to determine whether a set
of axioms A forces an outcome on a given profile R. To this end, we want to
find out if it is possible for a voting rule to satisfy A and not give back O, i.e.,
satisfy ¬outcome(R,O). If the answer to this is “no”, then the outcome O is
forced by A on R. Since a SAT-solver is unaware of the concept of a voting rule,
we still need to encode this as a propositional formula. The constraint here is
that a voting rule is a truth assignment of the propositional atoms, choosing at
least one winner per profile. This corresponds to the formula

atLeastOne :=
∧

R∈L(X)+

∨
x∈X

pR,x.

Thus, for a satisfiable set of axioms A, the formula that we want the SAT-solver
to examine is

atLeastOne ∧
( ∧
A∈A

A
)
∧ ¬outcome(R,O)

for every possible outcome O. By Proposition 3.1, we know that there can at
most be one such O for which the formula is unsatisfiable.

Strictly speaking, this approach still requires us to check for every voting
rule in the extension of an axiom set whether it satisfies some formula. So is
this procedure any better than or different from the brute-force method? Note
that while in the worst case, one needs to check all possible truth assignments
to find out whether a formula is satisfiable, a lot of efforts went into developing
more efficient algorithms for SAT-checking. For instance, many SAT-solvers
require the formula to be in CNF since the simple structure allows for more
basic, efficient algorithms. The first breakthrough came with the DPPL resolu-
tion framework, considerably reducing the number of propositional atoms to be
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checked (Davis, Logemann, & Loveland, 1962; Davis & Putnam, 1960). Other
heuristics have been explored, many of which aim at reducing the search space
of truth assignments as much as possible, or which detect classes of formulas
that a quicker algorithm exists for. Biere et al. (2009) give a detailed account
on the developments of Boolean satisfiability. Taking this into account, we can
conclude that the propositional logic encoding, using a state-of-the-art SAT-
solver, is an efficient way of determining whether the Voting by Axioms rule is
well-defined.

3.1.2 Detecting Forcing via Tableaux

One way of telling whether the Voting by Axioms rule is well-defined is by
computing the sets Forc(A) for sets of axioms A in the collection A. While we
described what these sets contain with help of the logical consequence relation in
a propositional logic in Section 3.1.1 and this is enough to hand the problem over
to a SAT-solver, we now want to describe a more direct, algorithmic, (human)
computable method. Boixel et al. (2022) introduced a calculus based on the
tableau method to prove that a given set of axiom instances explains or justifies
a certain outcome.8 While the authors designed the calculus to find one among
possibly many explanations for assigning a specific outcome, we want to use
the proof system to find out whether a set of axioms forces any outcome on a
profile. In the following, we present a slightly adjusted version of the calculus,
in which we test whether a set of axioms (rather than a set of axiom instances)
forces an outcome.

The main goal of the calculus is to check whether a given set of axioms is
consistent with the requirement that a voting rule must return a specific outcome
under some given profile. To express this, we need to formally represent the
statement that a rule should assign a certain outcome.

Definition 3.3. An outcome statement is a tuple s = (R,O), where R is any
profile in L(X)+ and O is a set of outcomes O ∈ P+(X).

The interpretation (or extension) I(s) of an outcome statement consists of
all voting rules that make the the statement true.

We interpret an outcome statement s as the requirement that a voting rule
should return an outcome inside O for the profile R. Thus, for every rule
F ∈ I(s), we have F (R) ∈ O. We can also consider a set of outcome statements
S and define accordingly

I(S) :=
⋂

(R,O)∈S

{F : L(X)+ → P+(X) | F (R) ∈ O}.

This looks familiar from the propositional logic representation in Section 3.1.1.
Notice that an outcome statement s = (R,O) corresponds exactly to the formula

8A good starting point to learn about tableau calculi for propositional logic is the book
chapter by D’Agostino (1999).
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∨
O∈O outcome(R,O), or equivalently, with the alternative propositional atoms

defined in Footnote 6, to
∨

O∈O qR,O.
The objective of this calculus is to prove that, for some given set of axioms A

and a set of outcomes statements S, the intersection I(A)∩ I(S) is empty. This
means that there is no voting rule satisfying all axioms in A that simultaneously
makes all outcome statements in S true. Boixel et al. (2022) explain how this
can be used to obtain impossibility results, to explain why some voting rule
violates an axiom or to find an explanation for assigning a certain outcome. We
focus on the third use case.

For this, we set S := {(R,P+(X) \ {O})}, which corresponds to checking
whether A forces the outcome O given the profile R. We claim that for a
satisfiable set of axioms A, if I(A) ∩ I(S) = ∅ holds for this choice of S, then A
forces O given R. This, again, is in correspondence to how we proceeded in the
case of propositional logic. Namely, we try to find out whether there is a rule
satisfying A but not assigning the outcome O to profile R. If there is not, i.e., if
A and S are inconsistent, then all voting rules in I(A) must assign O to R, i.e.,
the axioms force the outcome. For this to work out, or more precisely, for being
able to conclude from the inconsistency of A and S that A forces O, it is crucial
that we consider a satisfiable axiom set A (recall from Definition 2.5 that it was
a precondition for forcing that the axiom set is consistent). Although the basic
idea is the same, instead of handing the problem over to a SAT-solver, we will
now describe a calculus to answer this question directly.

A tableau is a rooted tree, in which every node is a set of outcome statements.
There is an initial starting node from which a tree is constructed by repeatedly
applying expansion rules that add one or two new child nodes below one of the
leaf nodes of the current tableau. To show that I(A)∩ I(S) = ∅ holds, we define
the root node to be S0 := S. The expansion rules are going to add outcome
statements that are implied by instances of the axioms in A to the tableau.
We continue this process until a contradiction in the outcome statements is
apparent or until we exhausted all instances. In this way, we logically chain
axiom instances together either until we obtain an argument for why the axioms
imply the outcome statements or until we run into a contradiction, either among
the axioms (this cannot be the case if A is satisfiable) or between the axioms
and one of the outcome statements in the root node. The possible rules to be
applied to a node in the tableau are the following:

• Axiom-driven expansion rule: For any axiom instance A′ ◁A and any
profile R ∈ P(A′), a branch ending in a node S′ can be extended by adding

S′′ := S′ ∪ {(R,O)} with O := {F (R) | F ∈ I(S′) ∩ I(A′)}

as its child node, given that I(S′′) ⊊ I(S′).

• Branching rule: If the leaf node S′ of a branch contains an outcome
statement of the form (R,O1 ⊔ O2) for non-empty sets O1,O2, then we
can add two child nodes to S′, one for each set of outcomes. That is,
we add S′

1 := S′ \ {s} ∪ {(R,O1)} and S′
2 := S′ \ {s} ∪ {(R,O2)} to the
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tableau. To apply this rule, we may assume that S′ contains the trivial
statement (R,P+(X)).

• Simplification rule: If a branch ends in a node S′ that contains multiple
outcome statements for the same profile R, for instance, s1 = (R,O1) and
s2 = (R,O2), then we may add the node S′′ := S′\{s1, s2}∪{(R,O1∩O2)}
to the tableau.

The first rule adds, for a specific profile, the constraints that an axiom instance
in A imposes on it in terms of an outcome statement. It combines the outcome
statements that are already present at the current node with one more condition
implied by A, which might lead to an outcome statement of the form (R, ∅),
if the axiom instance is in contradiction to the present outcome statements.
We call a leaf node inconsistent if it contains at least one such inadmissible
outcome statement. The branching rule makes a case distinction for a present
outcome statement (R,O) by separating the set of allowed outcomes O into two
disjoint subsets. The third rule, in contrast, allows to merge multiple outcome
statements about the same profile and, thereby, helps making inconsistencies
apparent.

We continue applying expansion rules to a tableau until we cannot apply
any rule to any of the leaf nodes anymore. This will happen eventually since
whenever we apply a rule, either the extension strictly decreases from parent
to child node (for the axiom-driven expansion rule and the branching rule) or
the node size, meaning the size of the set of outcome statements corresponding
to the node, decreases (for the simplification rule). Since all sets are finite, we
can only finitely many times apply such rules. If we cannot apply any rules
anymore, we call the tableau saturated. We say that such a tableau is closed if,
for each of its branches, every leaf node is inconsistent. Otherwise, call it open.
For a given set of axioms A and an initial set of outcome statements S, we call
a tableau constructed as above a tableau rooted in S and licensed by A.

In their paper, Boixel et al. (2022) prove that the tableau calculus is correct
for determining whether there is a voting rule satisfying both a given set of
axioms and a given set of outcome statements, i.e., it is a sound and complete
system. In other words, there exists no such voting rule if and only if we
can find a proof (that is, a closed tableau) showing that the intersection of
the interpretations is empty. They also suggest a way of implementing the
procedure using answer set programming (ASP), a declarative programming
paradigm suited for search problems based in logic programming (Brewka, Eiter,
& Truszczyński, 2011).

How can we make use of this proof system in determining whether the Voting
by Axioms rule F(A,≻) is well-defined? In the beginning of Section 3.1, we
concluded that it suffices to compute the set of profiles that an outcome is
forced on Forc(·) for set-inclusion maximal satisfiable sets in A. The strategy
now is to determine the set of profiles that an outcome is forced on for one of the
set-inclusion maximal satisfiable sets A0 by applying the calculus for each profile
R. For one outcome O at a time, we will use S = {(R,P+(X) \ {O})} as root
node to construct a tableau licensed by A0 and check whether it is closed until
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we find an outcome that is forced given R or until we exhausted all outcomes.
We can then continue in the same manner to check for the next set-inclusion
maximal set A1, whether and on which profiles in L(X)+ \Forc(A0) it forces an
outcome. We continue in this fashion until either no non-forced profiles are left
or until we run out of axiom sets Ai ∈ max⊇{A ∈ A | I(A) ̸= ∅} to consider. In
the former case, the rule is well-defined, in the latter, it is not.

This method requires calculating many tableaux and it would be more el-
egant to conflate them into a single tableau. However, with the given system,
this is not possible. Since the tableau checks for satisfiability of statements, it
answers the question whether a voting rule with all considered properties exists
or not. But if we do not want to loop over outcomes to determine whether on
a given profile an axiom set forces an outcome, this is not possible by asking
whether there exists at least one voting rule with certain properties, as just one
single question. Instead, the suitable question to ask is whether there exist at
least two voting rules satisfying the axioms, assigning two different outcomes to
the profile. Thus, even when focusing on a single profile, there is not one voting
rule that can answer the question whether some outcome is forced — this prob-
lem requires inspecting multiple rules. Similarly, since in Voting by Axioms we
look at each profile independently, it is not helpful to check for multiple profiles
at the same time whether a specific outcome combination is forced.

Observe that while we assumed in the calculus that a notion of axiom in-
stance is given, we did not use any information about how exactly axiom in-
stances have been defined or derived. We only assumed that a division of axiom
into instances is fixed and we know their interpretations and which profiles they
speak about. Thus, whatever way of obtaining instances we choose, if we find
a closed tableau for this one, we know, in general, that an outcome is forced by
the set of axioms. We can then use this information and forget about the exact
determination of axiom instances.

This concludes our study of well-definedness of the Voting by Axioms rule.
We have stated precisely what this notion depends on in this setting and offered
two computable methods for checking this. Now, assuming that the rule is well-
defined, we want to examine its behavior and work out conditions for when it
has good properties.

3.2 Axiomatic Analysis

It is now time to analyze the voting rule that we defined. The standard way to
evaluate and compare voting rules is the axiomatic method (Plott, 1976; Thom-
son, 2001; Zwicker, 2016). This means testing for different axioms, whether the
rule satisfies them. Applied to our setting, we are interested in finding out, if or
under what conditions the rule F(A,≻) satisfies axioms occurring in A. Ideally,
the derived rule would satisfy all axioms in the collection or at least all the ones
that were used to force an outcome in the construction of the rule. However,
this will only very rarely be the case. The main problem is that we defined
the rule profile by profile, forgetting about most interprofile conditions that the
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axioms impose. We pointed out that if an axiom forces an outcome, assigning
this outcome is a necessary condition for satisfying the axiom. In other words,
this outcome statement is a weakening of the axiom. In general, this condition
is not satisfactory for a rule to satisfy the original axiom, i.e., it could be a strict
weakening of the axiom. We want to work out in which cases we can deduce
that the Voting by Axioms rule fulfills axioms occurring in the collection of
axiom sets. In principle, F(A,≻) can also satisfy axioms that do not occur in A.
But this cannot be established in general and should rather be checked for a
concrete rule F(A,≻) using the standard tools of the axiomatic method.

3.2.1 Respecting Axiom Instances

The first special case that we want to consider is that of intraprofile axioms.
They work well together with Voting by Axioms since they, too, look at each
profile independently. So in this case, the derived rule does not only respect a
subset of the conditions imposed by the axiom, but it fulfills the whole axiom.

Theorem 3.4. If A is an intraprofile axiom and it is contained in the maximal
forcing set in A according to ≻ for every profile, i.e., if for all R ∈ P(A), we
have A ∈ max≻{A′ ∈ A | R ∈ Forc(A′)}, then F(A,≻) satisfies A.

Proof. Notice that to satisfy an intraprofile axiom, it suffices to check for each
profile that it speaks about in isolation, whether the outcome assigned to it
is among the outcomes permitted by the axiom. For an arbitrary profile R ∈
P(A), we know that A ∈ max≻{A′ ∈ A | R ∈ Forc(A′)}, so by definition of
the Voting by Axioms rule, F(A,≻)(R) = F (R) for every F ∈ I(max≻{A′ ∈
A | R ∈ Forc(A′)}) ⊆ I(A). In particular, there exists some F ∈ I(A) with
F(A,≻)(R) = F (R). This shows that the outcome under the derived voting
rule is admissible with respect to A. Since R was an arbitrary profile that the
axiom speaks about, the same holds across all of P(A). Because the axiom
does not impose any conditions on all other profiles, we conclude that F(A,≻)

satisfies A.

Notice that it is not enough if A is merely contained in the maximal satisfi-
able set of the collection. The reason for this is that an intraprofile axiom does
not necessarily force an outcome on all profiles that it speaks about. Impor-
tantly, if the axiom does not force an outcome on a profile, we cannot infer that
the axiom does not speak about this profile at all. Consider, for instance, the
Pareto principle which says for specific profiles that a certain alternative is not
among the winners. In general, this still allows for multiple different outcomes
to be assigned to the profile. Thus, if we only know that A is contained in the
maximal satisfiable set, then it might happen that this set does not force an
outcome on some profile but another set in the collection that does not contain
A does force an outcome. Then, this outcome is assigned to the profile under
F(A,≻). But this might not be an admissible outcome with respect to A, e.g., if
it contains some alternative that should not win according to A. In this case,
the Voting by Axioms rule would violate the intraprofile axiom A.
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Further, we want to stress that the proposition does, in general, not apply
if we consider an interprofile axiom.

Example 7. Let A be given by {CAN,REI} ≻ {1,REI}, where the axiom
1 says that the voting rule gives back {1} for all profiles. First, notice that
both sets of axioms are satisfiable, by the constant functions assigning X and
{1}, respectively. For this choice of A, the derived rule is well-defined since
the second set of axioms forces an outcome on every profile. Trivially, rein-
forcement is contained in every maximal forcing set. Observe that {CAN,REI}
does not force any outcome on the profiles (213, 132) and (231, 312). There-
fore, F(A,≻)(213, 132) = F(A,≻)(231, 312) = {1}. So then, the intersection
F(A,≻)(213, 132) ∩ F(A,≻)(231, 312) is just {1}. However, by cancellation, the
Voting by Axioms rule F(A,≻) returns X for the profile (213, 132, 231, 312) =
(213, 132)∪ (231, 312), instead of {1}. This shows that the derived function does
not satisfy reinforcement, which is an interprofile axiom, although it is contained
in all sets in the collection.

The issue that we uncovered in the previous example is that for interprofile
axioms, the Voting by Axioms rule only guarantees that on every profile, a
generally feasible outcome is assigned, not how these outcomes relate to each
other. More precisely, for an interprofile instance A′, the Voting by Axioms
rule assigns to each R ∈ P(A′) an outcome O such that F (R) = O for some
F ∈ I(A′). However, it disregards whether the derived rule itself lies in I(A′).
So next, we want to consider a case, in which for all instances of an axiom, we
can guarantee that the Voting by Axioms rule satisfies them.

Theorem 3.5. If for an axiom A it holds that for all instances A′ ◁ A, there
exists some A ∈ A with A′ ◁ A such that for all profiles R ∈ P(A′), we have
max≻{A′ ∈ A | R ∈ Forc(A′)} = A, then the rule F(A,≻) satisfies A.

Proof. In order to tell whether the derived rule F(A,≻) satisfies the axiom A, we
need to check if it satisfies all instances A′◁A. By assumption, we know that for
a given instance A′, there is a set of axiomsA such that for all profiles R ∈ P(A′),
all rules F ∈ I(A) ⊆ I(A′) have the same outcome F (R) = F(A,≻)(R). Fix one
such rule F and observe that a voting rule satisfies some instance A′ if and only
if its restriction to P(A′) satisfies the instance. Since F(A,≻)↾P(A′) = F ↾P(A′) ∈
I(A′), the Voting by Axioms rule satisfies A′. Since A′ ∈ A was an arbitrary
instance, the derived rule F(A,≻) satisfies A.

Again, notice that we did not use any information about axiom instances
besides the minimal requirements defined in Section 2.2. That is, no matter
how exactly we define axiom instances or which way of splitting an axiom into
multiple instances we use, the result holds.

3.2.2 Using Characterization Results

The social choice literature is full of characterization results, e.g., May’s (1952)
Theorem or Young’s (1975) characterization of positional scoring rules. These
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are theorems stating that a voting rule satisfies a certain set of axioms exactly if
it coincides with a specified voting rule or if it lies in some class of rules. In other
words, such a theorem yields necessary and satisfactory conditions for a rule to
agree with one particular voting rule or to belong to a special class of voting
rules. We expect this kind of result to be helpful in the context of Voting by
Axioms since it tells us that the given axioms induce a certain behavior (meaning
that it is more likely that outcomes are forced by the axioms) and that if the
derived rule follows this behavior, it will satisfy the axioms (meaning that it is
more likely to obtain a good rule). In the following, we will show that, under a
few additional conditions, if we give high priority to a characterizing axiom set
in our collection, the derived Voting by Axioms rule will be the characterized
rule or lie in the characterized class.

General Characterization Results. We say that a set of axioms A uniquely
characterizes a voting rule F if I(A) = {F}. It is immediate by Proposition 3.2
that if a set A uniquely characterizes a function F , then any satisfiable superset
of A also characterizes F . First, observe that if A contains a set of axioms
that uniquely characterizes some voting rule, then the derived rule F(A,≻) is
well-defined. This is because this set of axioms forces an outcome on every
profile, so there exists a maximal outcome-forcing set for every profile in the
collection. If we can guarantee that the characterizing set of axioms (or its
supersets) appear(s) sufficiently high in the ranking of A, we can even conclude
that the derived voting rule is precisely the characterized one.

Theorem 3.6. If a set of axioms A uniquely characterizes a voting rule F ,
then for any collection of sets of axioms A, and for any order ≻ ∈ L(A) such
that for every R, we have A ⊆ max≻{A′ ∈ A | R ∈ Forc(A′)}, the derived rule
F(A,≻) is the rule F itself.

Proof. By definition, for each profile R, the function F(A,≻) assigns that outcome
to the profile that is forced by the highest-ranked forcing set in the collection.
Because A is a subset of max≻{A′ ∈ A | R ∈ Forc(A′)}, by Proposition 3.2,
we know that I(max≻{A′ ∈ A | R ∈ Forc(A′)}) ⊆ {F} for every R. Since the
maximal forcing set is satisfiable (this is a precondition of forcing an outcome),
we know that equality must hold. Thus, using the alternative definition from
(∗), we may infer that F(A,≻)(R) = F (R) for every R. This is what we wanted
to show.

Notice that it suffices to assume that A is contained in the highest-ranked
set of the collection that forces some outcome on some profile, i.e., that A ⊆
max≻{A′ ∈ A | Forc(A′) ̸= ∅} holds. That is the case because it implies that
this set uniquely characterizes F and, for each profile, is the highest-ranked
forcing axiom set. Further, we can strengthen this result a little bit. To this end,
call A uniquely and minimally characterizing for F if it uniquely characterizes
F and if it is minimal with this property, i.e., for all A′ ⊊ A, the interpretation
I(A′) contains at least two rules. Notice that there may exist multiple sets
of axioms that all uniquely and minimally characterize the same voting rule
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F . And given some characterizing set of axioms, we can always find at least
one minimally characterizing subset. Recall that what we actually used in the
proof to deduce that the unique function satisfying all axioms in the maximal
forcing sets is F , was that I(max≻{A′ ∈ A | R ∈ Forc(A′)}) ⊆ {F} holds for
all profiles R. We derived this from the assumption that A ⊆ max≻{A′ ∈ A |
R ∈ Forc(A′)} is true. However, it suffices to assume something weaker, namely
that there is some minimally characterizing subset of axioms A′ ⊆ A for F such
that A′ is a subset of max≻{A′ ∈ A | R ∈ Forc(A′)} for all profiles.

We want to note that it is sometimes also possible to go the other way
round. That is, knowing that Voting by Axioms is well-defined, we can in
some cases deduce that the derived rule is uniquely characterized by a set of
axioms. The crucial condition here is that all axioms that we used to define
the outcomes of the rule F(A,≻) must be satisfiable together. This means that
the set containing all these axioms forces an outcome on every profile (since for
every profile, we know that some subset of it does). Thus, if A is such that
Voting by Axioms is well-defined, and further, we consider a ranking ≻ such
that

⋃
R∈L(X)+ max≻{A′ ∈ A | R ∈ Forc(A′)} is satisfiable, then this union

uniquely characterizes the rule F(A,≻).
We now want to look at the case when axioms determine a class of voting

rules. We say that a set of axioms A uniquely characterizes a non-empty class
of rules F , if a rule satisfies all the axioms in A if and only if it belongs to F . In
other words, we require that I(A) = F . In this case, we want to find a condition
telling us when the derived voting rule lies in the class F . The problem here is
that if axioms characterize a class of rules, this does not mean that they force any
outcome on any profile. For instance, the class of positional scoring rules that
Young (1975) characterized only forces an outcome on symmetric profiles. Thus,
on the remaining profiles, other sets in the collection will determine the outcome
of the Voting by Axioms rule, making it improbable for the rule to coincide with
a rule in the characterized class. However, if we include further axioms in the
collection that help single out one voting rule from the characterized class, we
can guarantee that the derived rule lies in the class.

Theorem 3.7. If a set of axioms A uniquely characterizes a class of voting rules
F , then for any collection of sets of axioms A, and for any order ≻ ∈ L(A)
such that for every R, we have A ⊆ max≻{A′ ∈ A | R ∈ Forc(A′)} and the
intersection

⋂
R∈L(X)+ I(max≻{A′ ∈ A | R ∈ Forc(A′)}) is non-empty, F(A,≻)

lies in F .

Let us clarify this statement. The first condition guarantees that, for every
profile, its outcome under the derived rule agrees with the outcome of some
rule in F . The second condition additionally ensures that there is one single
rule that satisfies the axioms max≻{A′ ∈ A | R ∈ Forc(A′)} for all profiles
R ∈ L(X)+ simultaneously. Since, for each profile, one of these sets (supersets
of A) forces an outcome, it means that the union forces an outcome on all
profiles and, thereby, uniquely characterizes one single rule inside of F . This is
exactly the Voting by Axioms rule, so it lies in F . We will now provide the full
formal proof of the statement.
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Proof. Since A ⊆ max≻{A′ ∈ A | R ∈ Forc(A′)} is the case, we also have
I(max≻{A′ ∈ A | R ∈ Forc(A′)}) ⊆ I(A) = F . Thus, taking into account that
the intersection of extensions is nonempty, we can conclude that⋂

R∈L(X)+

I(max≻{A′ ∈ A | R ∈ Forc(A′)}) ∩ F ̸= ∅.

But also notice that rules in
⋂

R∈L(X)+ I(max≻{A′ ∈ A | R ∈ Forc(A′)}) force
an outcome on every profile, thus the intersection is given by {F} for some
F ∈ F . In particular, F ∈ max≻{A′ ∈ A | R ∈ Forc(A′)} for every R. Hence,
by the alternative definition of F(A,≻) given in (∗), we have F(A,≻)(R) = F (R)
for every R, meaning that F(A,≻) = F ∈ F . This concludes the proof.

Similarly as before, we can define minimally characterizing sets of axioms
for a class of rules. This allows us to weaken the assumption that A is a subset
of max≻{A′ ∈ A | R ∈ Forc(A′)} for every profile R to there being some
minimally characterizing subset of axioms A′ ⊆ A for F that is a subset of
max≻{A′ ∈ A | R ∈ Forc(A′)} for every profile.

Notice that Theorem 3.6 can be derived from Theorem 3.7, because if A
characterizes a rule F , this means that is characterizes the class F := {F}. The
second condition of Theorem 3.7 is vacuously satisfied in this case since we have
I(max≻{A′ ∈ A | R ∈ Forc(A′)}) = {F} for every profile.

Domain-restricted Characterization Results. In social choice theory, we
are not always able to provide a full characterization of a voting rule. For
instance, May’s Theorem, which characterizes the simple majority rule, only
applies in case there are exactly two alternatives (May, 1952). Or Moulin (1980)
showed that strategyproofness and the axiom “tops-only” (i.e., a rule only uses
the information which alternative is ranked highest) characterize the class of
min-max voting rules on the domain of single-peaked preferences (Weymark,
2011). We might even want to consider subproblems of voting, e.g., voting on
combinatorial domains such as committee elections or group planning problems
(Lang & Xia, 2016). We want to be able to also make use of such partial
characterization results in the context of Voting by Axioms.

It might occur that a theorem states that a certain rule, defined as a function
on a subset of the whole domain, is the only rule satisfying some particular set
of axioms. We want to use this theorem to deduce what our Voting by Axioms
rule (defined on the whole domain) looks like on this subset of the domain.

For this, we need to make sure that the axioms are phrased in terms of
voting rules defined on the whole domain L(X)+ → P+(X) and that they are
satisfiable on the whole domain. If A is an axiom that only applies to voting rules
defined on a subdomain P ⊆ L(X)+, this can easily be achieved by requiring
for all voting rules in L(X)+ → P+(X) that their restriction to P satisfies A.
For instance, if we view faithfulness as an axiom on the domain of single-voter
profiles, it would say “For all profiles, the highest-ranked alternative wins”. To
make it an axiom on the whole domain, we transform it to “For all single-voter
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profiles, the highest-ranked alternative wins”. In this case, if the original axiom
is satisfiable, so is the axiom constructed on the whole domain. It can also be the
case, however, that the axioms appearing in the partial characterization result
describe principles applying to profiles beyond the subdomain P . In this case, it
is not a priori clear that, only because there is a voting rule satisfying all axioms
on P , any rule would satisfy the axioms across all profiles. For such axioms to
play any role in Voting by Axioms and to force an outcome, we need them to be
satisfiable though. If they are not globally satisfiable, we may use a trick and
replace the axioms by copies of themselves, but only keeping those conditions
that apply to profiles in P . These replacement axioms are then satisfiable on
the whole domain.

Proposition 3.8. Let A with I(A) ̸= ∅ be a set of axioms uniquely characteriz-
ing some voting rule F on a subdomain P ⊆ L(X)+, i.e., {F ′↾P | F ′ ∈ I(A)} =
{F}. If A ∈ A, then Forc(A) ⊇ P is the case. If further, for every R ∈ P , we
have A ⊆ max≻{A′ ∈ A | R ∈ Forc(A′)}, then the derived rule F(A,≻) coincides
with F on P .

The proof is analogous to the one of Theorem 3.6, just restricting attention
to the profiles in P . This is possible since the Voting by Axioms rule is defined
for each profile independently.

We saw that characterization results are very useful to obtain a well-defined
and well-behaving Voting by Axioms rule. But how do we find such results?
We want to show for a subclass of axioms how to obtain an axiom set that
characterizes a voting rule.

Using Algebraic Axioms. An interesting subclass of axioms to consider is
that of algebraic axioms. The main idea is to define basic or atomic axioms,
which are simple and represent the minimal possible restrictions that normative
principles can impose, and to build up more complex axioms from them. Due
to the specific structure that these axioms exhibit, we have a more direct way
of checking whether they force an outcome, given some profile. This idea is due
to Kaminski (2004).

Definition 3.9. There are three kinds of basic algebraic axioms:

• A basic stationary axiom is of the form “The outcome under R is O.” for
some fixed R ∈ L(X)+ and O ∈ P+(X)

• A basic variance axiom says “If R1 is assigned to O1, then R2 is assigned
to O2.” for some fixed R1, R2 ∈ L(X)+ and O1 ̸= O2 ∈ P+(X).

• A basic invariance axiom is given by “If the outcome under R1 is O, then
the same is true for R2.” for some fixed R1, R2 ∈ L(X)+ and O ∈ P+(X).

An algebraic axiom is a set of basic algebraic axioms. Any such axiom that
consists only of basic stationary (variance, invariance) axioms is also called a
stationary (variance, invariance) axiom.
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Notice that axioms featured in the social choice literature that are algebraic
are usually conjunctions of multiple basic algebraic axioms. For instance, una-
nimity is a stationary axiom specifying “For all R such that Ri = x for all voters
i and some x ∈ X, the outcome under R is {x}”. It consists of m · (2n−1) basic
stationary axioms, one for each x and every electorate of every size. We usually
refer to these basic axioms as instances of the compound axiom. Examples for
invariance and variance axioms are anonymity and neutrality, respectively.

We can easily express these axioms in terms of the propositional language
L that we defined in Section 3.1.1. A basic stationary axiom corresponds to
“outcome(R,O)”. A basic variance axiom is formalized as “outcome(R1, O1) →
outcome(R2, O2)” and, similarly, a basic invariance axioms is expressed by
“outcome(R1, O) → outcome(R2, O)”. A complex algebraic axiom then con-
sists of conjunctions of these basic axioms.

Regarding Voting by Axioms, stationary axioms directly stipulate on certain
profiles which outcome should be assigned, thus, they force outcomes. So when
deciding on a collection A, more specifically on a set of axioms A in it, the role
of a stationary axiom is to contribute a set of profiles that an outcome is forced
on. These axioms should be accompanied by (in-)variance axioms since these
can increase the domain of profiles that an outcome is forced on Forc(A) by
applying Modus Ponens. We will now see that if we have enough stationary
axioms to begin with and suitable (in-)variance axioms to extend the forcing of
outcomes across the whole domain, we obtain a uniquely characterizing set of
axioms.

This is the idea behind the following theorem by Kaminski (2004, Theorem 1)
which tells us how to obtain an axiom set (to include in our collection A) that
forces an outcome on every profile. We need the following terminology in order
to phrase it. Observe how any voting rule partitions the set of all profiles into
cells on which the outcome is constant. More precisely, define the partition
imposed by F ∈ L(X)+ → P+(X) as

Part(F ) = {P ⊆ L(X)+ | P = F−1(O) ̸= ∅ for some O ∈ P+(X)}.

For any profile R and a given partition, we denote by [R] the cell in the partition
that R belongs to. We call {R1, . . . , R|Part(F )|} a selection from Part(F ) if it
includes exactly one representative of every cell in the partition.

Theorem 3.10. Let {R1, . . . , Rk} be a selection from Part(F ∗). A set of alge-
braic axioms A uniquely characterizes a voting rule F ∗ if and only if it implies
the following three axioms:

(A1) The outcome under R1 is F ∗(R1)

(A2) For all i = 2, . . . , k, if R1 is assigned to F ∗(R1), then Ri is assigned to
F ∗(Ri)

(A3) For all i = 1, . . . , k and all R ∈ L(X)+ such that R ∈ [Ri], the outcome
under R is the same as under Ri
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In words, the first axiom forces the outcome F ∗(R1) given the profile R1.
The second axiom extends this to say that for all profiles Ri, the outcome F ∗(Ri)
is forced. The third axiom completes this by saying that the function has to be
constant on the cells in Part(F ∗). Together, this forces any rule satisfying the
axioms to be identical to F ∗.

This means that, in particular, if a set of axioms A implies the axioms A1,
A2, A3, then the derived voting rule F(A,≻) is well-defined for all collections
containing either A or a superset of A with non-empty extension. Further, by
Theorem 3.6, if the characterizing axiom set is ranked sufficiently high, we can
deduce that the derived function F(A,≻) is F

∗ itself.
A shortcoming of this theory is that it does not take into account all axioms,

so the class of all algebraic axioms is a strict subclass of all set-theoretic axioms,
given by all possible interpretation sets I(A) ⊆ (L(X)+ → P+(X)). For exam-
ple, the Pareto Principle is not an algebraic axiom since it does not specify full
outcome sets but only says for some alternatives if they should or should not be
among the winners. Further, any axiom that talks about more than two profiles
at once, e.g., reinforcement, is not an algebraic axiom in the defined sense.

One way of generalizing the idea of algebraic axioms is to allow for the
disjunction of basic axioms. In this way, one can allow for axioms of the form
“If . . . , then x is among the winners of R.” This would correspond to the
disjunction of basic stationary axioms for R and all outcomes O that include
x. However, this makes the calculus much more complicated since we need to
make case distinctions. We have seen a systematic approach for how to handle
these statements and how to find out whether a set of axioms forces an outcome,
namely the tableau calculus by Boixel et al. (2022), see Section 3.1.2.

We showed that in rare cases, some of the axioms that we take as a basis
are inherited by the Voting by Axioms rule. This means that, seen as a general
voting rule across the whole domain, it seldom satisfies desirable principles.
Nonetheless, we want to emphasize that we should not only measure the quality
of the rule in terms of satisfaction of global principles. Recall that it is the very
idea behind justifying outcomes by axioms to look at profiles independently and
allow that only a part of the conditions of an axiom is satisfied. So if whether
the Voting by Axioms rule overall satisfies or does not satisfy the underlying
axioms is not suitable for assessing its quality, how else can we measure its
performance?

3.3 Metrics

In this section, we want to present two metrics that help evaluating Voting by
Axioms. The first kind measures to what extent a voting rule satisfies a given
set of axioms, whereas the second one quantifies how close an axiom set is to
forcing an outcome on a given profile.

Satisfaction Metrics. As mentioned earlier, we want to define a notion of
gradual satisfaction. Instead of having a binary measure of satisfaction, we
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want to come up with a more fine-grained metric.9 With the notion of axiom
instances at hand, a natural metric arises. For a given axiom set, a satisfaction
metric measures for each voting rule, to what extent (as a number between 0
and 1) the axioms are satisfied.

We can define a satisfaction metric for a set of axiomsA with axiom instances
A′ such that at least one instance is satisfiable as dsatA : (L(X)+ → P+(X)) →
[0, 1], given by

dsatA (F ) :=
|{A′ ◁A | F ∈ I(A′)}|

|{A′ | A′ ◁A}|
.

This function calculates the ratio between the number of instances that a given
voting rule satisfies and the total number of instances. Notice that dsatA (F ) = 1
is the case if and only if F satisfies A. Further, if we say that every axiom
consists of exactly one instance (namely the axiom itself), then we obtain a
metric stating how many of the axioms are completely satisfied. We can also
let A be a singleton {A} to find out to what extent the axiom A is satisfied by
a rule.

This is a simple approach. However, satisfaction degrees for different sets of
axioms are hard to compare due to different numbers of axiom instances. For
an intraprofile axiom acting on a single profile, for instance, many voting rules
achieve a satisfaction rate of 1 and the co-domain of the metric is just {0, 1}. For
a complex interprofile axiom, on the other hand, the number of axiom instances
can be large, yielding a co-domain extensive in quantity, which makes it harder
for a voting rule to reach a rate of 1. In short, there is a qualitative difference for
a rule to reach a satisfaction score of x ∈ [0, 1] between different sets of axioms.
It is, thus, important to aim for a similar level of granularity across all axioms
in the instances division.

While we proposed a natural way of assessing how much a set of axioms is
satisfied by a rule, is it also a good metric? Besides the described problems of
comparability, the defined metric does not take into account the logical strength
of an axiom instance. If an instance’s extension consists of exactly one voting
rule, then this is an axiom that is very difficult to satisfy. And, conversely, if
most voting rules belong to the extension, this is a sign that the axiom is rather
easy to satisfy. To reflect this in the metric, we might want to give more weight
to the former instance than to the latter. Taking this into account, we could
alternatively define the satisfaction metric as

dsatA (F ) :=

∑
A′◁A,F∈I(A′) |I(A′)c|∑

A′◁A |I(A′)c|
,

where I(A′)c := (L(X)+ → P+(X)) \ I(A′). In this case, again, the instances
that F satisfies are being counted against all instances, but this time weighted
by how difficult it is to satisfy the instance. Here, we presuppose that the fewer

9In mathematics, the term “metric” refers to a bivariate function that measures the distance
between two objects and satisfies the identity of indiscernibles, symmetry and the triangle
inequality. In this thesis, we use the term in an informal way to denote a function that
quantifies how close an object is to achieving a maxim on a scale from 0 to 1.
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rules adhere to an axiom, the more difficult it is to satisfy the axiom. So, the
more rules do not satisfy the instance A′, i.e., are contained in I(A′)c, the harder
it is to satisfy A′. We divide by the sum of all numbers of extension complements
in order to normalize, i.e., so that the weights across all instances still sum up
to 1.

Notice that this definition manages to level out the differences among the
instances of one axiom. However, it still does not ensure comparability between
different axioms. That is, it does not take into account the differences in terms of
logical strength between the axioms. A further improvement could be achieved
by

dsatA (F ) :=
1∑

A∈A |I(A)c|
∑
A∈A

|I(A)c| ·
∑

A′◁A,F∈I(A′) |I(A′)c|∑
A′◁A |I(A′)c|

In this metric, we calculate for each axiom in the axiom set, how many of
its instances are satisfied (where the instances are weighted according to their
logical strength). These scores are then averaged and in this, each axiom, too,
obtains a weight according to its logical strength. The metric still depends
on the choice of how to divide one axiom up into multiple instances though.
That is, although it might balance out differences in strength between different
axioms and instances, how sensitive it is overall depends on how fine-grained
the instance division is. Recall that an axiom with only one instance can reach
a score of 1 much more easily than an axiom with many instances.

So while the precise numbers are not informative, notice that the metric is
still monotonic, i.e., if we fix the instances for axioms, then if one rule satisfies
more instances than another, its satisfaction score is higher. This means that, as
long as we keep the division of axioms into instances constant, we can compare
the performance of multiple rules relative to each other.

Example 8. We want to compute the Voting by Axioms rule derived from
the ranked collection {FAI,ANO} ≻ {CON,NEU} ≻ {CAN} ≻ {1} in a set-
ting with 3 alternatives and 2 voters. For all single-voter profiles, the maximal
forcing set in the collection is {FAI,ANO}, which forces the highest-ranked al-
ternative of the voter to be the single winner. For all other profiles, this axiom
set does not force an outcome, so we need to consider the other axiom sets in
the collection. The second highest-ranked set {CON,NEU} forces the unique
Condorcet winner to be the sole winner, whenever it exists. This leaves profiles
where all pairwise majority contests are tied (e.g., (123, 321)) and profiles in
which two alternatives have the same winning scores under pairwise majority
contests (e.g.,(123, 312)). The cancellation axiom takes care of the first kind
and assigns X to all of them, and the axiom 1, stating that the outcome under
all profiles is {1}, forces an outcome on all remaining profiles. Thus, the Voting
by Axioms rule is well-defined (which it would not be if we excluded the axiom
set {1}!).

Let us calculate the satisfaction scores of the individual axioms. First, no-
tice that faithfulness, anonymity, neutrality, the Condorcet principle and can-
cellation are completely satisfied, i.e., yield a satisfaction score of 1. For the
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intraprofile axiom 1, we can simply count how many of the 48 profiles return
the outcome {1}. There are 4 profiles that faithfulness forces this outcome on,
4 profiles where 1 is the Condorcet winner and there are 18 profiles that the last
axiom set determines the outcome 1 on for the Voting by Axioms rule. This
yields a satisfaction score of 26

48 ≈ 0.54. Note that, in this case, all three def-
initions of the satisfaction metric return the same outcome, if we define one
instance per profile for the axiom 1.

Forcing metrics. Besides measuring, ex post, the performance of the Voting
by Axioms rule, we might also be interested, ex ante, in how to choose good
axiom sets for the collection. One criterion, of course, is that the sets of axioms
should be satisfiable since, otherwise, they cannot force any outcome by defini-
tion. But now suppose that the collection, in its current state, does not force
any outcome on profile R. How can we find an axiom set that does? Trivially,
we can always add a set of axioms that uniquely characterizes some rule to the
collection since it forces an outcome on every profile. But this might involve
introducing new axioms to the collection that we are not really interested in.
How can we alter one of the existing axiom sets to obtain a set that forces an
outcome on R? The strategy is, if we could measure how close a set is to forcing
an outcome, to start with the most promising axiom set and add or strengthen
axioms until the set prescribes an outcome on R, using the metric to guide the
process. This is the motivation behind introducing a metric capturing to what
extent an axiom set restricts what outcome can be assigned to a given profile.

We want to suggest two different ways of gauging how close an axiom set
is to forcing an outcome on a given profile. Both forcing metrics are functions
assigning to each satisfiable axiom set a value in [0, 1]. The first one divides 1
by the number of different admissible outcomes with regards to the axioms on
the given profile. Formally, define it via

dforcR (A) :=
1

|{F (R) | F ∈ I(A)}|
.

Note that we have dforcR (A) = 1 precisely if A forces an outcome given R.
For the second one, let

d′
forc
R (A) :=

max{|S| : S ⊆ I(A), for all F1, F2 ∈ S, we have F1(R) = F2(R)}
|I(A)|

.

If we partition I(A) into cells such that all rules inside a cell assign the same

outcome to R, then the function d′
forc
R takes the ratio of the size of the largest

cell versus the size of the whole extension of A. This expresses, proportionally,
how much support the outcome that the plurality of rules satisfying A return
has. Again, we have d′

forc
R (A) = 1 if and only if A forces an outcome given R.

As mentioned before, if we are looking for a set that forces an outcome on
R, we would first calculate the scores of all axiom sets in the collection under
a forcing metric. We can then pick the one that we need to alter the least in
order to force an outcome, i.e., the one with the highest score, and try to add
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axioms or strengthen present axioms that reduce the extension in size but that
are still compatible with the original axiom set. During this process, we can
always assess how close we are to forcing an outcome by calculating the forcing
metric for the altered axiom set. We continue in this fashion until we reach a
forcing score of 1.

These functions could also be used for other purposes. For instance, we could
use the them to derive characterization results. For instance, we can start with
a promising set of axioms that forces an outcome on many profiles. This set is
close to uniquely characterizing a voting rule, but on a few profiles, it still allows
for multiple outcomes. We can start with one of these profiles and measure how
close the axioms are to forcing an outcome. Dependent on that, we can either
add axioms or strengthen one of the given axioms to force an outcome on this
profile. We can then check for the resulting set, whether it forces an outcome
on all profiles. If not, we repeat the operation. We follow this procedure until
we end up with an axiom set that forces an outcome on every profile. This is
then a uniquely characterizing axiom set for the resulting rule.

3.4 Computational Complexity

In this thesis and in constructing our model, we aimed at keeping problems
feasible to implement and to compute. Now we want see if we succeeded, that
is, we want to shed light on how computationally hard it is to compute the
Voting by Axioms rule. Before taking a closer look, our intuition should tell
us already that this is a difficult undertaking. Let us start by quantifying how
many objects our model contains.

• n voters in the universe, yielding
∑n

k=1

(
n
k

)
= 2n − 1 possible electorates

• m alternatives, yielding 2m − 1 possible outcomes

• m! possible rankings of alternatives, yielding
∑n

k=1

(
n
k

)
m!k = (m!+1)n−1

many possible profiles (each voter in each electorate gets to pick between
m! rankings)

• (2m − 1)((m!+1)n−1) many possible voting rules

• 2(2
m−1)((m!+1)n−1)

many possible axiom extensions

Since most of our procedures work profile by profile, the number of possible
profiles is an important factor for their complexity. The number of profiles
lies in O(m!n), meaning that it grows exponentially in n and factorially in m.
Notice that factorial growth is faster than exponential for large parameters, but
in voting, we usually consider setups with only a few alternatives and a large
electorate. Therefore, the parameter to primarily focus on should be the number
of voters n. To illustrate how problematic exponential and superexponential
complexity is, we calculate the number of profiles for different parameters n
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and m. Since the model itself is complex, we expect long runtimes for our
calculations.

m

n
2 4 6

2 8 80 728

4 624 390624 ≈ 244 · 106

6 519840 ≈ 270 · 109 ≈ 140 · 1015

Table 3.2: Number of profiles depending on n and m

Boixel and de Haan (2021) have analyzed the complexity of checking whether
there exists a justification for a given profile. This problem is closely related
to the question of whether there exists an axiom set that forces an outcome on
a profile, since we search for the normative basis of a justification. However,
they use the full notion of a justification in voting introduced by Boixel and
Endriss (2020) which additionally imposes the condition that, to explain an
outcome, a set of axiom instances must be minimal with the property of forcing
the outcome. That is, Boixel and de Haan determine both the explanation
(the minimal set of instances forcing an outcome) and the normative basis (the
axioms that these instances stem from) of a justification. Another difference
is that they use a many-sorted first-order language, allowing to quantify over
alternatives, voters and profiles, to encode axioms. The authors come to the
conclusion that determining whether some outcome can be justified on a given
profile lies in EXPNP and is NEXP-hard and even verifying whether suggested
instances yield a justification lies in NEXP ∧ coNEXP and is also NEXP-hard.
This sets the tone for this section. We will show that we can slightly improve
on these results in our setting, when searching for forced outcomes instead of
explanatory justifications. However, together with the insights from the previous
paragraph, we expect exponential or superexponential complexity.

We want to break up the task of calculating the Voting by Axioms rule
into multiple subproblems. First, define the problem of finding out, whether
a certain outcome is forced by an axiom on a given profile, i.e., of verifying
whether an axiom set indeed forces a given outcome on a profile.

Check if Outcome is Forced (Check-Forc)

Input : Set of voters N, set of alternatives X, profile R ∈ L(X)+, satis-

fiable axiom A as propositional formula in L, outcome O ∈ P+(X)

Question : Does A force O given R?

Note that this also works for finite sets of axioms A by setting A :=
∧

A′∈AA
′.

Proposition 3.11. Check-Forc is coNP-complete w.r.t. the number of propo-
sitional atoms occurring in the specification of A.
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Proof. To show that a problem is coNP-complete, it suffices to prove that its
complement is NP-complete. Because this means that the dual problem lies
in NP (so the problem is in coNP) and any input for the NP problem can be
transformed in polynomial time into an input for the dual problem (so any coNP-
problem can be solved by taking the inverse outcome of the dual problem with
the transformed input). We denote the dual problem by Check-NotForc,
which answers the question whether the given outcome is not forced by a given
axiom A on a given profile R.

First, we need to show that Check-NotForc belongs to NP. It is enough
to show that it is an instance of an NP-problem, since this means that it
can be computed in polynomial time by a nondeterministic Turing machine.
Recall from Section 3.1.1 that an axiom forces O on R iff atLeastOne ∧ A ∧
¬outcome(R,O) is unsatisfiable. So, to answer Check-NotForc, we need to
solve the problem Sat for the formula atLeastOne∧A∧¬outcome(R,O) and Sat
is an NP-problem with respect to the number of propositional letters occurring
in the given formula. It remains to show that the input to Sat is polynomial
w.r.t. the letters in A. If we show this, then Check-NotForc can be computed
in polynomial time by a nondeterministic Turing machine.

Unfortunately, all profiles occur in the formula atLeastOne. Thus, there are
possibly exponentially or superexponentially many atoms in this formula. To
circumvent this and to obtain a formula polynomial in the letters occurring in
A, we may replace the disjunction over all profiles in atLeastOne with a disjunc-
tion solely over the profiles that A speaks about and over profile R, call this
formula atLeastOne ′. Note that atLeastOne ∧ A ∧ ¬outcome(R,O) is logically
equivalent to atLeastOne ′ ∧ A ∧ ¬outcome(R,O) since A and outcome(R,O)
only impose conditions on the profiles occurring in atLeastOne ′, so the addi-
tional clauses in the original formula atLeastOne are always satisfiable since
we are free to assign whatever outcome we please on these profiles. There-
fore, solving Check-NotForc boils down to solving Sat for atLeastOne ′∧A∧
¬outcome(R,O). Note that there can be at most as many profiles as proposi-
tional letters occurring in A, so there can be at most m · (|Prop(A)|+ 1) many
letters in atLeastOne ′ (this would be the case if all atoms in A correspond to dif-
ferent profiles distinct from the given profile R; note that there exist m atoms
per profile pR,x). Thus, the input to Sat is polynomial with regards to the
number of letters in A, and so, Check-NotForc lies in NP.

For NP-hardness, it suffices to give a polynomial time reduction from an
NP-complete problem to Check-NotForc. Again, consider Sat, which an-
swers the question whether a propositional formula φ is satisfiable. We al-
ready described that Check-NotForc answers the question if the formula
atLeastOne ∧ A ∧ ¬outcome(R,O) is satisifable. So if we manage to express
our formula φ in terms of an axiom and outcome, we are done. Our goal is to
associate the formula φ with a satisfiable axiom A and to choose an outcome
and profile in such a way that φ is satisfiable if and only if A does not force this
outcome on the profile.

To this end, given the propositional letters Prop(φ) = {p1, . . . , pk} occurring
in φ, let m be the smallest number such that m! ≥ k + 1 and set n = 1.
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Our voting model then contains as many profiles as distinct ballots, i.e., m!
many. Fix an enumeration of the profiles L(X)+ = {R1, R2, . . . , Rm!} and
identify the propositional atoms pi with pRi,1 for i = 1, . . . , k. This means that
we can now express φ in terms of the propositional letters pR,x, denote this
formula by Aφ := φ [pi/pRi,1]. In this formula, we replace every occurrence
of a propositional atom pi with pRi,1 for all i = 1, . . . k. So Aφ expresses
whatever A said, but now speaks about whether alternative 1 wins or looses in
profiles R1, . . . , Rk. Consider the formula A := Aφ ∨ outcome(Rk+1, X). Notice
that this formula is always satisfiable because X is an acceptable outcome, so
outcome(Rk+1, X) is satisfiable. We will treat A as our axiom and consider
Check-NotForc for the profile Rk+1 and outcome X (the choice of outcome
is arbitrary).

We claim that Check-NotForc comes out true if and only if Sat comes
out true. Recall that Check-NotForc returns “yes” if A does not force X on
Rk+1, i.e., if A ⊭ outcome(Rk+1, X). This, in turn, is the case iff atLeastOne ∧
A ∧ ¬outcome(Rk+1, X) is satisfiable, that is, there exists a voting rule that
satisfies the axiom A but that does not return X given Rk+1. It remains to
check that the aforementioned conjunction, used to solve Check-NotForc, is
logically equivalent to Aφ. We write ≈ for logical equivalence and obtain

atLeastOne ∧A ∧ ¬outcome(Rk+1, X)

≈ (Aφ ∨ outcome(Rk+1, X)) ∧ (¬outcome(Rk+1, X) ∧ atLeastOne)

≈ (Aφ ∧ ¬outcome(Rk+1, X) ∧ atLeastOne)

∨ (outcome(Rk+1, X) ∧ ¬outcome(Rk+1, X) ∧ atLeastOne)

≈ Aφ ∧ ¬outcome(Rk+1, X) ∧ atLeastOne

Notice that since the propositional letters occurring in Aφ correspond to dif-
ferent profiles, they are independent from one another and, further, the for-
mula is consistent with atLeastOne because Aφ only restricts for alternative 1
whether it should or should not be among the winners. Similarly, the formula
outcome(Rk+1, X) refers only to the profile Rk+1, which renders it indepen-
dent from Aφ, which speaks about profiles R1, . . . , Rk. It remains to realize
that atLeastOne ∧ ¬outcome(Rk+1, X) is always satisfiable, e.g. by assign-
ing the outcome {1} to every profile. Thus, the conjunction (atLeastOne ∧
¬outcome(Rk+1, X)) ∧ Aφ is satisfiable iff Aφ is satisfiable. Since we merely
renamed the propositional letters, this is the case exactly if φ is satisfiable. To-
gether, Check-NotForc for parameters A, Rk+1 and O = X returns “yes”
whenever Sat returns “yes” for φ. This transformation is polynomial since we
only rename the atoms in φ.

We showed that Check-NotForc has NP-membership and is NP-hard,
which together means that it is an NP-complete problem. Therefore, its dual
problem Check-Forc is coNP-complete.

This problem loosely corresponds to the Check-Just problem in Boixel and
de Haan (2021) for the case of quantifier-free formulas which is shown to be DP-
complete, where DP := NP∧coNP. Since we do not need to verify minimality of
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the axiom set with regards to forcing an outcome (which is the NP-component
of the problem), this is in line with our result about coNP-completeness.

We can use this basic subproblem to find out whether an axiom forces any
outcome on a given profile.

Exists Forced Outcome (Exists-Forc)

Input : Set of voters N, set of alternatives X, profile R ∈ L(X)+,

satisfiable axiom A as propositional formula in L
Question : Is there an outcome O ∈ P+(X) such that A forces O given R?

First, notice that this problem does not correspond to what is calledExists-Just
by Boixel and de Haan (2021). Whereas their problem ranges over all instance
sets for a fixed outcome and determines whether there exists some justification
for the outcome on the profile, our problem loops over outcomes to determine
for a given axiom, whether it forces one of them on the profile. The brute-force
algorithm to answer this question is to solve Check-Forc for A and R and
all possible outcomes O until we find a forced outcome or until we exhausted
all outcomes. In the worst case, however, this means solving Check-Forc
2m − 1 many times. This is exponential in the number of alternatives, so in
general hard to compute. Since it is solvable in exponential time by using a
coNP-oracle, Exists-Forc lies in EXPcoNP. Recall, though, that in voting, we
usually work with a small, fixed number of alternatives, rendering this algorithm
feasible in most cases. We might be able to accelerate this by extracting from
the axiom the outcomes that it speaks about, or better, the outcomes that are
allowed by the axiom. We know that the forced outcomes across the domain
must be a subset of these, so this restricts the search space of outcomes. It
might be difficult to obtain this information though. Besides this, we do not
expect there to exist other heuristics that help speed up the process since, if
a specific outcome is not forced, this generally does not tell us anything about
whether another outcome is forced.

The next more complex problem is checking whether Voting by Axioms
is well-defined for a given collection of sets of axioms. This means solving
Exists-Forc for every possible profile and a given collection A.

Check Well-Definedness of Voting by Axioms (Check-WDef)

Input : Set of voters N, set of alternatives X, collection of axiom sets A
each given as one propositional formula in L

Question : Is the rule F(A,≻) well-defined for any ranking ≻ ∈ L(A)?

This problem first requires us to identify the satisfiable sets within the collection.
Then, in the worst case, we need to check for every profile and every satisfiable
axiom set whether the set forces an outcome on the profile. This could be the
case if, for all profiles, only one axiom set forces an outcome. If all sets are
satisfiable, this means that Exists-Forc is called |L(X)+| · |A| many times.
For this problem, we have to check for each profile independently whether an
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outcome is forced, so we cannot change anything about the factor |L(X)+|.
However, recall from Section 3.1 that it suffices to restrict attention to set-
inclusion maximal sets in the collection. Further, as mentioned in Section 3.1,
as a preliminary test, we could check whether every profile is spoken about by
some profile. We might also be able to find heuristics helping to identify the
most promising order of axiom sets for each profile to check Exists-Forc for.
This could be done by checking which axiom sets speak about the profile and
how often. Or we could optimize the order, in which we check the profiles,
ranking them by the number of axioms or instances that speak about them and
going from the least coverage to highest profile coverage, to increase the chances
of finding profiles that no outcome is forced on quickly. Nonetheless, this means
that, in the worst case, if for every axiom set only the last axiom set that we
try out forces an outcome, and only the last outcome that we test is the forced
outcome, we need to call Check-Forc |A| · ((m! + 1)n − 1) · (2m − 1) many
times. This is exponential both in n and m. So even when working with a small
number of alternatives m, the computation of this is hard, because we need to
call a coNP-oracle exponentially many times.

While there might exist quicker algorithms than the brute-force methods
that we presented, due to the high complexity of the framework itself, there do
not exist subexponential algorithms with respect to n for computing the Voting
by Axioms rule. The benefit of looking at each profile independently, however,
is that we do not actually have to calculate the whole rule in advance, but we
could first obtain the ballots and then calculate the outcome for this very profile
only.

We have seen in this chapter that Voting by Axioms does not work for every
possible collection of axioms. We introduced two frameworks that help deter-
mine whether the voting rule is well-defined for a given collection and, further,
stated conditions for when the Voting by Axioms rule satisfies the axioms that
it is based on. We saw that this is rarely the case but for all other cases, we
suggested a metric that helps quantifying, to what extent axioms are satisfied
by the voting rule. Lastly, we analyzed the computational complexity and found
that computing the defined rule is computationally hard.
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Chapter 4

Extensions of the
Framework

In Section 2.3, we presented a simple version of Voting by Axioms based on a
collection of axiom sets A with a strict ranking over it. We chose to require a
complete, strict order because this is easiest to work with since the order yields
a unique maximal axiom set. Supplying such a ranking might not be feasible in
practice though due to bounded rationality and limited cognitive capacity of the
system’s user. First, notice that it is easier for humans to compare axioms rather
than axiom sets. So we want to discuss how we can lift preferences over axioms
to preferences over sets of axioms. Further, if A contains many sets of axioms,
it might be difficult to arrange all of them in a coherent, strict ranking, either
because one finds two sets incomparable or because one is indifferent between
two sets. This is the motivation behind examining what happens in case we are
given a weak or partial order over A. Last, we present an alternative voting rule
that is not based on axioms in the sense that it justifies each profile’s outcome
with the them, but that aims at satisfying the axioms as much as possible.

4.1 Lifting Orders

As motivated before, one reason for considering preferences over axioms rather
than preferences over axiom sets is that comparing sets of objects is a much more
cognitively difficult task for humans. Scontras, Graff, and Goodman (2012) sug-
gest two models of how group comparison might work in humans: either one
compares the objects contained in the groups one by one (point-wise compari-
son), or one uses some aggregation function, e.g., the mean, to assign one overall
value per group that is then compared (collective comparison). In both cases, it
is clear that comparing sets of objects is cognitively more demanding than just
comparing objects themselves. Another motivation arises from viewing Voting
by Axioms as a method to find the best (w.r.t. some criterion) justification
among many for every profile. Instead of just ranking the axioms themselves,
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we can assign a numerical value to each of them, corresponding to its utility,
cost or complexity, and calculate a score for every axiom set. By minimizing this
score, we can then determine the best justification. We will present two types
of liftings in this section, one corresponding loosely to point-wise comparison,
and the other one following the idea of collective comparison.

We have already seen one way of lifting an order over axioms to an order
over sets of axioms in Definition 2.7, the lexicographic maximax ranking, which
aims at optimizing the most preferred axioms in the set. Notice that in this
method, at every stage, we compared one object to another one (namely, the
best axioms of both sets). Therefore, we take this to be a point-wise comparison.
This lifting was proposed by Pattanaik and Peleg (1984) as an extension of
preference orders, that is, a lifting satisfying {A} ≻ {A′} iff A > A′. In their
paper, they characterize this lifting as the unique lifting satisfying neutrality,
dominance, top independence and disjoint independence.10 This is part of a
whole branch of research that defines and axiomatically analyzes extensions of
preference orders, i.e., liftings from rankings over objects to rankings over sets
of objects that respect the object ranking, see the discussion paper by Barberà
et al. (2004). However, when using the lexicographic maximax lifting, some
larger axiom sets are preferred to smaller ones simply because their best axiom is
preferred to the smaller set’s best axiom. In particular, we know that dominance
is satisfied, which entails that if A is strictly preferred to all alternatives in A′,
then A′ ∪ {A} ≻ A′. This also uncovers the downside of this lifting to rank
some larger sets higher. Notice that, in our case, neutrality (i.e., the lifting
treats all alternatives equally), dominance (i.e., adding a very good alternative
is an improvement, adding a very bad one is a worsening) and independence (i.e.,
there are no interdependencies between the axioms influencing the ranking) are
not suitable properties that we want our lifting to satisfy. This is because axioms
are objects that can be logically related to each other and that have different
logical strength, normative appeal as well as different motivations.

Instead, notice that, generally, smaller sets of axioms are preferable if we
view them as explanations of an outcome since larger sets lead to more complex
explanations. In general, we want to use only as many axioms for a justification
as are absolutely needed. We could phrase this as an axiom for liftings called
antimonotonicity w.r.t. set inclusion, requiring that A′ ⊊ A′′ implies A′ ≻ A′′.
This expresses that if we add more axioms to a given justification, the longer
explanation is less desirable. We might also be interested in having a lifting that
satisfies simple top- and bottom monotonicity, i.e., if A > A′ > A′′ holds, then
we have {A,A′′} ≻ {A′, A′′} and {A,A′} ≻ {A,A′′}.11 This says that, given
one axiom, if we have the choice to add one of two other axioms that are either
both more or less preferred than the original axiom, then adding the better one
out of the two is preferable to adding the worse one. In a way, this captures

10We follow the version of the theorem cited in the paper by Barberà, Bossert, and Pattanaik
(2004, Theorem 11).

11These axioms are called type 1 and type 2 simple dominance by Bossert, Xu, and Pattanaik
(2000) originally, but we go with the names given by Barberà et al. (2004).
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that for sets of the same size, we aim at including the best possible axioms in
the set.

We suggest a different lifting that still aims at accommodating as many good
axioms as possible but which gives preference to smaller sets. Therefore, it will
satisfy all three suggested axioms. More precisely, it first groups the axiom
sets by cardinality, ranking smaller sets higher, and within the groups, applies
maximax to determine the order. Denote the axiom ranked on spot i within a
ranking > over an axiom set A′ by A′(i), i.e., there exist i − 1 many axioms
A ∈ A′ such that A > A′(i) and |A′| − i many axioms A ∈ A′ with A′(i) > A.

Definition 4.1. The shortlex maximax ranking given A and > is constructed
as follows. Set {A} ≻ {A′} for all axioms with A > A′ and recursively define

A′ ≻ A′′ iff either |A′| < |A′′|

or
(
|A′| = |A′′| and

∃i ≤ |A′| s.t. (∀j < i (A′(j) = A′′(j)) and A′(i) > A′′(i))
)
.

It is easy to see that the shortlex maximax lifting satisfies both simple top-
and bottom monotonicity since for sets of the same size, it works by comparing
the best axioms in the sets. Further, it satisfies antimonotonicity w.r.t. set
inclusion since it generally prefers smaller sets to larger ones.

Is this the suitable lifting to consider for sets of axioms? This is difficult
to answer in general. One could argue, for instance, that although two axioms
are individually not very desirable, paired together they become acceptable,
and this could violate simple top- or bottom monotonicity. Think, for instance
of anonymity and neutrality that have a similar governing principle, meaning
that if we understood one of them, we easily can make sense of the second
one. Moreover, it could be the case that an explanation using three very simple
axioms is preferable to an explanation using two axioms, one simple and one
very difficult one that most people cannot make sense of. This means, it might
be desirable for the lifting to also satisfy additive representability, i.e., there exist
utility functions u assigning to each axiom a real number such that A′ ≻ A′′ iff∑

A∈A′ u(A) ≥
∑

A∈A′′ u(A) (Barberà et al., 2004). This allows us to attribute
a weight or utility with every axiom, which quantifies how much one axiom is
preferred to another one. This inspires the following kind of lifting based on
cost, the dual concept to utility.

Recall that we motivated Voting by Axioms by claiming that we can use it
to find the best possible justification for each profile. One way of making this
idea precise is by assuming that every axiom comes with some fixed cost, e.g.,
based on its logical strength, its complexity or its cognitive charges. We then
want to aggregate the cost to derive an order on the sets of these axioms. This
time, the goal is to minimize the cost, i.e., only using as many axioms as are
strictly necessary for forcing an outcome.

Formally, suppose A is a set of axioms together with a cost function c : A →
R≥0. For a subset of axioms A′, calculate its cost via c(A′) =

∑
A∈A′ c(A).
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This allows us to derive a non-strict order ⪰ over P+(A), the subsets of A.
This comparison strategy is a collective one since the cost of an axiom set is not
a property of any of the individual axioms, but a compound property.

Definition 4.2. The cost-based ranking for A and c : A → R≥0 is defined for
all non-empty A1,A2 ⊆ A via A1 ⪰ A2 iff c(A1) ≤ c(A2).

Notice that we obtain a weak order from this definition, meaning that there
might be multiple equally preferred sets of axioms. We can add any method
of tie-breaking, e.g., lexicographic tie-breaking, to turn the obtained order into
a strict linear order. Also notice that, instead of summing up the cost of the
individual axioms, one could use other aggregation functions to attribute a value
for comparison to axiom sets. For instance, one could calculate the product of
individual costs for each axiom set.

Example 9. Consider the axioms introduced in Table 2.1. Additionally, let
SUR be the surjectivity axiom, stating that for each outcome in P+(X), we can
find a profile that gets assigned to the outcome. Further, the axiom CON+ is
defined as ”If there is no Condorcet winner, then everyone wins”, where a Con-
dorcet winner is an alternative x that wins every pairwise majority contest. Let
A := {ANO,NEU,PAR,CON,CON+REI,FAI,SUR} and define a cost function

c(ANO) = c(NEU) = c(FAI) = 1,

c(PAR) = c(CON) = c(CON+) = 2,

c(REI) = c(SUR) = 3.

We obtain {CON} ≻ {FAI,REI}. Thus, if we search for a justification for
the profile (123, 132), we find that the Condorcet principle by itself forces the
outcome {1}. This is easier to explain than saying that, by faithfulness, if both
voters were to vote in a separate election, the outcome would be {1} in both
cases, so by reinforcement, the outcome in the joint election must be {1} as
well. This is an example for when Voting by Axioms can help choose the most
economical justification for one specific outcome among many justifications.

This procedure can also help find the justification with lowest cost when jus-
tifications for different outcomes are available. Again, consider a setup with
3 alternatives and 2 voters. Note that if we assume the Condorcet princi-
ple, then surjectivity, together with the Pareto principle, anonymity and neu-
trality, requires that on the profiles without a Condorcet winner, both non-
Pareto-dominated alternatives win, e.g., F (123, 231) = {1, 2}. But CON+ forces
F (123, 231) = X. The Voting by Axioms rule would return X for this profile
since the cost-based ranking yields {CON+} ≻ {CON,ANO,NEU,PAR,SUR}.

In this example, we saw that using a cost-based ranking to find the cheap-
est justification sometimes helps identifying the best justification for a given
outcome among multiple available justifications but, in general, it finds the jus-
tification with the lowest cost out of all justifications of some outcome. This is
a useful mechanism if we truly are only concerned about minimizing the justi-
fication’s cost. If, however, it is the case that, among all available justifications
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for a profile, a great share plead for the same outcome and there is one justi-
fication for another outcome that has lowest cost, the Voting by Axioms rule
would still select the outcome with the cheapest justification. One could ar-
gue, in this case, that since the other outcome is supported by multiple distinct
justifications, there exist more grounds to choosing this outcome.

We saw that, when using the cost-based approach, we generally obtain a
weak preference order, meaning that multiple sets can be equally preferred. Our
suggestion was to simply settle on a tie-breaking algorithm and turn the order
into a strict ranking. In the next section, we want to examine more thoroughly
how to deal with non-strict and partial preference rankings.

4.2 Weak and Partial Orders of Axiom Sets

Recall that in the standard setup for Voting by Axioms, we need to provide a
collection of axiom sets A and a strict ranking over it. This allows us to assign
to a profile that outcome imposed by the single maximal forcing set of axioms
in the collection. While this makes it simple to define a voting rule based on
the collection, notice that, in practice, it can be infeasible to submit a complete,
strict order over all axiom sets. Many axioms have been defined in social choice
theory (e.g., see Plott, 1976) and there are exponentially many possible sets
formed with these axioms. So the sheer quantity can overwhelm the user of
our model. Further, as previously mentioned, it is a difficult task for humans
to compare two sets of objects. So the user might also fail at some instances
and adjudge two sets incomparable. This leads us to loosening the requirements
imposed on the ranking over the collection A.

A strict ranking was defined to be an irreflexive, transitive, connected bi-
nary relation. We can generalize this by also allowing transitive and strongly
connected relations ⪰, that is, total preorders. We call this a weak ranking.
This means that we can compare any two sets of axioms, but we allow for mul-
tiple sets to be equally preferable. The consequence of this is that ties between
multiple maximal forcing axiom sets can occur. These are sets of axioms that
are ranked at least as high as all other sets. In this case, tie-breaking would
solve the problem and the solution would be acceptable in most cases since all
maximal sets are equally preferred and we would be content with any of these.

Qualitatively different from this is the problem of incomplete preferences.
That is, we can allow for the order ≻ on the collection of axiom sets A to be
partial. This means that we drop the connectedness requirement, assuming only
irreflexivity and transitivity. The impact of this is that two sets of axioms A
and A′ in A no longer have to be comparable, so it might be the case that
neither A ≻ A′ nor A′ ≻ A holds. This is expected to happen in practice since
it might be difficult for two disjoint and (seemingly) unrelated sets of axioms
to determine which one is more preferable. A natural measure to compare two
sets of axioms is logical consequence, i.e., testing whether one set’s extension is
contained in the other one’s. If the axiom sets contain independent axioms of
varying logical strength and that are motivated differently (e.g., philosophically
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vs. technically), the user might have difficulties finding grounds to stipulate that
one set is preferred over the other.

The problem that arises from using partial orders is the same as for weak
orders, namely that multiple maximal forcing sets of axioms can exist for one
profile. The key difference, however, is that we can no longer state that they are
equally preferred and that it, therefore, does not matter which one we choose.
The sets that the tie occurs between are the sets that are ranked highest within
one of the connected components of the ordering. The point is that we cannot
prioritize between the different connected components, and thus, cannot easily
arrange the components such that we obtain a strict ranking. In this case,
tie-breaking is not a suitable solution.

Further, notice that we can also combine both of these generalizations and
allow for ⪰ to be any preorder. This means that the order could both be weak
and incomplete.

Let us explore two other ways of handling the tie between multiple maximal
forcing outcomes. One option is to let the derived voting rule F(A,⪰) be irresolute
in the sense that it is a function L(X)+ → P+(P+(X)), possibly returning
multiple sets of outcomes in P+(X). In this case, we define the Voting by
Axioms rule as F(A,⪰)(R) = OR

⪰, where

OR
⪰ := {O | there is A ∈ max⪰{A ∈ A | R ∈ Forc(A)}) that forces O}

Since we already defined voting rules to be irresolute, i.e., they need not always
return exactly one winner, adding another layer of irresoluteness is undesirable.

So, alternatively, we can opt for giving back the set of all possible winners,
that is, all alternatives that occur in an outcome forced by at least one of the
maximal forcing sets of axioms. This means, the derived voting rule is still a
function in L(X)+ → P+(X) and defined via F(A,⪰)(R) =

⋃
OR

⪰, where OR
⪰ is

the set of outcomes forced by ⪰-maximal forcing sets of axioms, as previously
defined. In this context, one can also introduce the notion of a necessary winner,
which is any alternative in X that wins in all outcomes forced by maximal
forcing sets, i.e, which lies in the intersection of OR

⪰. Konczak and Lang (2005)
introduced these notions as solution concepts for incomplete preferences, the
idea being that if we consider extensions of the given ordering, which could be
obtained by further incoming information, a winner is possible if it wins in some
refinement (i.e., at this point it is still possible for the alternative to win), and
it is necessary if it wins in all refinements (i.e., we need not know the complete
preference order to decide this).

Notice that it is even more difficult in this case, to predict the behavior of the
Voting by Axioms rule, than in the standard setting. We can adapt the results
from Section 3.2, e.g., by assuming that the characterizing axiom set is contained
in all maximal forcing sets for Theorem 3.6. However, these theorems will only
rarely be applicable. Notice that all axioms that prescribe what set should be
the outcome under some profile (e.g., all algebraic axioms, see Section 3.2.2) do
not pair well with the idea of possible winners, as this notion merges multiple
outcomes. Thus, such an axiom can only be satisfied if possible and necessary
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winners coincide. On the other hand, axioms that specify that some alternative
should or should not be among the winners of some profile might be compatible
with these notions, e.g., the Pareto principle. This is because if an axiom says
that an alternative should win, it suffices to inspect the necessary winners, and
conversely, for an axiom that says than an alternative should loose, we can
check whether it occurs among the possible winners to check whether the axiom
is satisfied. A simple observation is that if a satisfiable axiom only consists of
instances that exclude an alternative from the outcome under a profile, then if
it is contained in one of the maximal forcing sets for each profile that it speaks
about, the Voting by Axioms rule assigning possible winners satisfies the axiom.
Yet still, for all other axioms it is difficult to conclude, just from the information
that the axiom is contained in some highly-ranked set in the collection, that it
is satisfied by the Voting by Axioms rule.

We can also make use of the concepts of possible and necessary winners for
the purpose of preference elicitation. This describes procedures that incremen-
tally gather information about the user’s or voters’ preferences until there is
enough information to take a clear decision. Boutilier and Rosenschein (2016,
Section 5) present an overview of preference elicitation algorithms and their
complexity. In our case, we explained that it can be a difficult or even unfea-
sible task to supply a strict linear order over the collection of axiom sets A.
Instead of requiring the user to supply a complete order over all sets, the sys-
tem could repeatedly prompt the user to decide for a pair or selection of axiom
sets, which one should be ranked highest, until the constructed (partial) order
is informative enough to determine the derived Voting by Axioms rule.

For this, we will assume that Voting by Axioms is well-defined on the col-
lection A. Remember that this means that on each profile, at least one set in
the collection forces an outcome. The preference elicitation procedure starts by
retrieving a partial and possibly weak order ⪰0 over A from the user (this could
be skipped by setting ⪰0= ∅). We then compute possible and necessary winners
for each profile. Recall that for a preorder ⪰0 over A and for some profile R,
we defined the set of all ⪰0-maximal forced outcomes, given R, as OR

⪰0
. The

possible winners are then given by
⋃
OR

⪰0
, whereas the (possibly empty) set of

necessary winners is defined as
⋂

OR
⪰0

. If the two sets coincide, i.e., if all ⪰0-
maximal forcing axiom sets force the same outcome on R, then we resolved the
tie, we can assign this outcome to the profile and we do not need any additional
information regarding this profile. If there is a profile R on which possible and
necessary winners do not yet coincide, then we ask the user for more information
regarding the ordering of the subcollection max⪰0{A ∈ A | R ∈ Forc(A)}. Ide-
ally, the user would provide a complete, strict ranking over this subcollection.
Alternatively, ask the user to specify their most preferred set in this collection.
The extended order that the user’s input yields is denoted by ⪰1. We proceed
with this method until possible and necessary winners coincide on all profiles.
This will happen eventually since, in the worst case, we continue with this pro-
cedure until we obtain a strict linear order. Then there is exactly one maximal
forcing axiom set for each profile.
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While this is a sensible procedure for preference elicitation, notice that for
each ⪰i, we basically check whether Voting by Axioms is well-defined with this
choice of ranking. With regards to the complexity results from Section 3.4, this
is a computationally hard procedure.

4.3 Towards a Satisfaction-Maximizing Voting
Rule

When hearing the term “Voting by Axioms”, two possible interpretations come
to mind. The first one is what the rule defined in Section 2.3 is based on,
i.e., a voting rule that justifies its outcomes with given axioms. The second one
describes a voting rule that aims at satisfying axioms as much as possible. Notice
that these are two different objectives. Whereas in the first case, we extract
specific intraprofile conditions imposed by the axiom and make sure to satisfy
these, in the second case, we aim to maximize the number of axioms’ conditions
that are satisfied. Recall that for the derived rule F(A,≻), we proceeded profile
by profile. We now want to suggest a procedure that focuses on axiom instances
instead.

On the one hand, this procedure can help us, if we have a set of axioms that
is inconsistent, to find a voting rule that at least satisfies as many of the imposed
conditions as possible. On the other hand, if we start with a satisfiable axiom set,
the method can help us to choose one voting rule from the axioms’ extension that
additionally possesses as many other desirable properties as possible. Again, we
start off with a collection of axiom sets A and a strict ranking ≻ over it. This
time, we proceed set by set, maximizing the number of instances that the rule
satisfies. This means, we start with the highest-ranked axiom set in A and
determine the largest satisfiable subsets of its instances. In the next step, we
refine this by determining the largest satisfiable sets of instances that contain
one of the previously obtained sets of instances and, additionally, maximize the
number of instances from the second-highest axiom set in A that are satisfied.
We continue this procedure for all sets in the collection.

For a collection A with a strict linear order ≻ over it, label the i-th set in
the ranking as A(i), e.g., A(1) = max≻(A). For each set of axioms A, fix a set
of instances Inst(A) := {A′ | A′ ◁A}. We define a partial order over sets based
on their cardinality, i.e., S1 ≥ S2 iff |S1| ≥ |S2|. Formally, the algorithm works
as follows:

• Determine the largest satisfiable subsets of A(1)’s instances, i.e.,

I1 := max≥{A′ ∈ P+(Inst(A(1))) | I(A′) ̸= ∅}.

Note that in general there are multiple maximal sets of instances.

• Next, we determine the biggest satisfiable sets that additionally satisfy
instances from the second-highest-ranked set in the collection. That is,

I2 := max≥{A′ = A1 ∪ A2 | A1 ∈ I1,A2 ∈ P+(Inst(A(2))), I(A′) ̸= ∅}.
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• In general, for k < |A|, we define the next set of instances given Ik as

Ik+1 := max≥{A′ = A1 ∪ A2 |
A1 ∈ Ik,A2 ∈ P+(Inst(A(k + 1))), I(A′) ̸= ∅}.

We continue this method either until |I(A′)| = 1 for all A′ ∈ Ik for some k
(which means that we singled out rules) or until we have iterated through
all sets in the collection.

Note that if the highest-ranked set of axioms is satisfiable, then the derived
rule satisfies all these axioms. In each step, considering the next highest-ranked
axiom set in the collection, we try to additionally impose as many of the set’s
instances as possible. In general, we do not take into account which axiom the
satisfied instances belong to. If we want to try to satisfy the individual axioms
as much as possible, we should include these as singletons in the collection.

With the presented procedure, we might still end up with multiple maximal
instance sets and multiple voting rules contained in their extensions. This is
similar to the situation when our standard Voting by Axioms rule is not well-
defined since on some profile no outcome is forced by any set in the collection.
In this case, there remains a choice to be made. Adding more axiom sets might
help single out one voting rule.

Further, it is important to note that this approach very much depends on the
definition of the axiom instances. The more fine-grained the division of axioms
into instances is, the higher is the degree of satisfaction achievable with the
defined method. This is very similar to what we said about satisfaction metrics
in Section 3.3. Note that the described procedure identifies the rules with the
highest score under the first definition of satisfaction metric. But notice that
if one axiom is split into dozens of instances and another one is divided merely
into two, this could mean that the instances of the second axiom have smaller
extensions and are, thus, harder to satisfy. This will lead to the defined rule
maximizing the number of satisfied instances of the first axiom rather than of
the second one. This is to say that this method may not lead to an optimal
result that maximizes satisfiability and guarantees fairness between all involved
axioms. Nonetheless, it can give some indication to which are the more desirable
rules from within a set of voting rules.
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Chapter 5

Conclusion

Based on the idea that one can take axioms into account for deciding what
the outcome in a given voting scenario should be, we developed a voting rule
that justifies all its outcomes in this manner with preselected axioms (Voting
by Axioms). We started with a standard model from voting theory with ordinal
preferences and a finite number of voters and alternatives. Since we wanted
axioms not only to be objects on a metalevel speaking about the rules in the
model, but rather to be formal objects included in the model, we contemplated
about their nature and possible ways to formalize them. We found that axioms,
in the field of social choice theory, are usually taken to be normative principles
or desirable properties of a decision procedure, which stem from the function
of such a procedure to uncover the social preference of the voters. On the
formal side, we had the choice between an intensional definition, taking axioms
to be formulas in a formal language, or a purely extensional definition, defining
axioms as the set of voting rules that satisfy them. While for constructing
our Voting by Axioms rule we only needed the extension of axioms, we saw
that to split an axiom into instances and for computational feasibility, formal
descriptions of axioms, e.g., in a propositional language, are desirable. However,
we developed methods of making sense of an extensionally given axiom, e.g., by
defining the set of profiles that an axiom speaks about or by stepwise extracting
the conditions that an axiom imposes. Based on the latter, we defined a new,
language-independent hierarchy of axioms.

An important shift of perspective was to not view axioms as principles that
are either completely satisfied or not, but rather to see them as a multitude of
conditions that we try to satisfy as many as possible of. This motivated the
notion of an axiom instance as one part or subcondition of an axiom. Another
perspective on instances was to view them as atomic axioms that we use as
building blocks to construct more complex axioms. Otherwise, we showed that
it is difficult, in general, to define a procedure to recover axiom instances from
a given axiom. The main issue was to find the right degree of granularity, i.e.,
an even division into conditions of similar strength that represent realizations of
the overarching principle. Thus, rather than settling on one definition of axiom
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instances, we defined four necessary conditions that a set of instances for an
axiom should satisfy.

With possible formalizations of axioms and instances at hand, we then de-
fined Voting by Axioms as a rule that, for a given ranked collection of axioms,
returns for every profile that outcome forced by the highest-ranked set in the
collection that forces an outcome on the profile. Our analysis of this voting rule
started by stating conditions for when it is well-defined. We introduced two
systems, viewing forcing as an outcome statement logically following from an
axiom set. One solved this question with a propositional logic encoding of the
axioms, and we suggested using a SAT-solver to detect forcing. The other one
used a tableau calculus to find the answer by constructing tableaux that turn
out open or closed and thereby detect whether an outcome is forced.

Thereafter, we described special cases in which the resulting Voting by Ax-
ioms rule satisfies one or multiple of the axioms in the underlying collection.
Namely, in the case of intraprofile axioms, if all profiles that are connected via
an axiom have the same maximal forcing set, and if an axiom set uniquely char-
acterizing some voting rule appears sufficiently high in the collection. These
are rare cases in which the derived rule globally satisfies desirable properties.
However, we stressed that we are less interested in complete satisfaction of prin-
ciples, and, rather, aim at satisfying certain intraprofile conditions implied by
the axioms, and possibly more instances. To measure how well the rule performs
in this respect, we developed satisfaction metrics that count how many of the
axioms’ instances are satisfied by a rule. Further, we suggested two functions
that measure how close an axiom set is to forcing an outcome on a profile.

As a last step in our analysis, we looked at the computational complexity of
constructing the Voting by Axioms rule for a given ranked collection of axiom
sets. Due to the high complexity of the model itself with exponentially many
profiles and outcomes, we concluded that, although deciding whether some given
outcome is forced by an axiom on a profile is coNP-complete, the more complex
task of building the whole rule lies in EXPcoNP.

After establishing Voting by Axioms, we looked at possible extensions of the
framework catered to theoretical and practical applications of the model. This
included describing how one can derive a ranking over all possible subsets of
an axiom set from an order over the axiom set itself. This was relevant both
to account for cognitive limitations of the system user, and to allow for using
the Voting by Axioms rule to find the best justification among multiple ones.
Another approach to simplifying the user’s task to rank the axiom sets in the
collection was to consider weak or partial rankings. While we introduced the
notion of possible winners to define a procedure in this case, we concluded that
it is difficult to infer from this that the rule satisfies any of the underlying
axioms. Lastly, we suggested a different method of deriving a voting rule from
a collection of axiom sets, this time aiming to satisfy the axioms as much as
possible.
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Evaluation. Did we do justice to our objective of defining a decision proce-
dure governed by axioms? We defined a voting rule that justifies its outcomes
with given axioms. This means isolating each profile and only focusing on con-
ditions imposed by the axioms on this very profile. In this way, we extract
conditions that are necessary for the axioms to be fulfilled, i.e., that are min-
imal requirements for still standing a chance at satisfying the axioms. While
this guarantees a minimal coherence of the voting rule with the axioms, it is
generally not enough to conclude that the rule satisfies the axioms. Therefore,
we obtain a voting rule that is sensible locally on each profile, but whose global
behavior is unpredictable. We saw that, as a result, we only obtain a voting rule
with desirable properties if the axioms themselves completely prescribe a voting
rule’s behavior. In particular, the defined rule is usually not strategyproof or
robust since any change in the profile might lead to a completely different out-
come, forced by a different set of axioms. Thus, from the standard point of view
in social choice, where we determine the quality of a voting rule by how many
and which axioms it satisfies, the Voting by Axioms rule is generally futile.

We escaped this criticism by challenging the criterion of satisfaction of ax-
ioms as the sole indicator for a voting rule’s goodness. Instead, we suggested that
it may already indicate fine quality if a rule satisfies a subset of all conditions im-
posed by an axiom. Not all profiles might even be relevant or realistic in a given
election (e.g., if there exist a lot of possible profiles and voters, it is unlikely that
everyone submits the same ballot) and, as a result, it might not matter so much
how a voting rule behaves on them and whether conditions imposed on them are
satisfied. This justifies restricting attention to a subset of conditions imposed
by an axiom. The major benefit of focusing on these intraprofile conditions,
specifying that an outcome is forced, is that we obtain an explainable, transpar-
ent procedure. For each outcome, by construction, we have a justification with
axioms that we care about available. The voting rule is no longer a black box
governed by some mathematical formula, but a human-understandable process,
grounded in socially accepted normative principles. Besides, the idea behind the
justification of outcomes in voting was a departure from voting rules assessed by
global axioms, focusing instead on decisions in single situations. The axiomatic
results in Section 3.2 tell us exactly when these two approaches coincide, i.e.,
for which axioms the local considerations taken together yield the global view.

Moreover, although we paid attention to keeping the model implementable,
we discovered that computation is hard. Even calculating the outcome of the
Voting by Axioms rule for one specific profile takes exponential time with a
coNP-oracle. We also suggested many notions that make use of the extension of
an axiom, e.g., the set of profiles that an axioms speaks about P(A) (Definition
2.2), the introduced axiom hierarchy (Section 2.2.3) or the satisfaction and
forcing metrics (Section 3.3). This is problematic, as mentioned previously,
since the extension of an axiom, the list of all voting rules satisfying it, is not
an object suitable for implementation. The issue is the large number of profiles
in O(m!n) that yields an even larger number of voting rules. Thus, many of the
mentioned ideas are more of mathematical interest than application-oriented.

However, the key mechanism in Voting by Axioms, detecting whether a
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specified outcome is forced by an axiom on a profile, is coNP-complete and
can be determined by a SAT-solver. This is a well-developed method with
many heuristics that yields an acceptable computation performance. Further,
computing the outcome of the derived voting rule on one profile is feasible as
long as we work with a sufficiently small number of alternatives. Thus, whereas
the extensions and special tools are hard to compute, applying the Voting by
Axioms rule itself has a reasonable runtime.

Future Research. The developed framework prompts further questions. Re-
garding the last point of criticism, it would be interesting to search for extension-
independent algorithms for the aforementioned notions. We have established
upper complexity bounds for Voting by Axioms and argued that likely no sig-
nificantly more efficient algorithm exists. It would still be desirable to prove
a hardness result for Exists-Forc (Section 3.4) and to come up with heuris-
tics for the described problems to obtain algorithms tailored and optimized for
Voting by Axioms.

Further, our axiomatic analysis of the derived rule only took into account the
axioms contained in the collection that the rule is based on. One could develop
other axioms designed especially for Voting by Axioms, e.g., how the rule should
behave if an axiom is added, taken away or exchanged. There might also exist
other special cases, e.g., when restricting attention to a subclass of axioms, in
which we can conclude that the Voting by Axioms rule globally satisfies some
axiom.

We did not settle ultimately on what formal object should correspond to an
axiom and how to define instances for a given axiom. Further research could
compare possible representations of axioms, trying to identify the most suitable
one for Voting by Axioms which is expressive enough to capture all (relevant)
axioms, succinct enough to be easily implementable, for which identifying the
forcing conditions is simple and which, at the same time, yields a natural notion
of axiom instance.

Extensions of the framework were only briefly discussed. Depending on the
use case, other liftings of orders should be taken into account and may be char-
acterized by order lifting axioms. When searching for the best justification in
terms of cost, we saw that the Voting by Axioms rule will assign the outcome
that is forced by the axiom set with lowest cost, even if most axiom sets plead
for a different outcome. For this application especially, one could develop an
algorithm that finds the simplest, yet most backed justification. Besides, our
inspection of weak and partial orders led us to consider possible and necessary
winners. More work in this area could uncover conditions for when the informa-
tion about possible and necessary winners is enough to conclude that the Voting
by Axioms rule satisfies certain axioms. Lastly, the satisfaction-maximizing pro-
cedure rarely singled out one voting rule, so a method needs to be developed on
how to decide among the voting rules remaining at the end of the procedure.

Furthermore, an experiment similar to the one by Suryanarayana et al.
(2022) would be helpful to understand, which justifications are well-understood
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by humans and which impact the choice of the Voting by Axioms rule has on
the voting behavior of the electorate. These insights could help in ranking ax-
iom sets or in defining order liftings, and would give a further indication of the
quality of the Voting by Axioms rule.
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