

How Close Does It Get?

From Near-Optimal Network Algorithms

to Suboptimal Equilibrium Outcomes

ILLC Dissertation Series DS-2022-04

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: https://www.illc.uva.nl/

This research has been carried out in the Networks and Optimization group at the
Centrum Wiskunde & Informatica in Amsterdam, The Netherlands, supported
by the Netherlands Organisation for Scientific Research (NWO) through the
Gravitation grant NETWORKS-024.002.003.

Cover design by Remco Wetzels - remcowetzels.nl

Printed and bound by Ipskamp printing

ISBN: 978–94–6421–825–1

Copyright © 2022 by Ruben Brokkelkamp

mailto:illc@uva.nl
https://www.illc.uva.nl/

How Close Does It Get?

From Near-Optimal Network Algorithms

to Suboptimal Equilibrium Outcomes

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. G.T.M. ten Dam

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit

op woensdag 21 september 2022, te 11.00 uur

door

Klaas Ruben Brokkelkamp

geboren te Amsterdam

Promotiecommisie

Promotor: prof. dr. G. Schäfer Universiteit van Amsterdam
Copromotor: prof. dr. U. Endriss Universiteit van Amsterdam

Overige leden: dr. E. Markakis Athens University of Economics
and Business

prof. dr. M. Uetz University of Twente
dr. ir. R.A. Sitters Vrije Universiteit Amsterdam
prof. dr. K.R. Apt Universiteit van Amsterdam
dr. R. de Haan Universiteit van Amsterdam
prof. dr. D. Grossi Universiteit van Amsterdam
prof. dr. J.A. Ellis-Monaghan Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

Acknowledgments ix

1 Introduction 1

2 Preliminaries 11
2.1 Basic Notation and Definitions . 11
2.2 Networks . 12
2.3 Algorithms . 14
2.4 Algorithmic Game Theory . 22
2.5 Mechanism Design . 28

3 Approximate Pricing in Networks 33
3.1 Introduction . 33

3.1.1 Our Contributions . 35
3.1.2 Related Work . 37

3.2 Preliminaries . 38
3.2.1 Network Pricing Problems 40
3.2.2 Observations and Assumptions 40

3.3 Flow Maximization Problem . 41
3.3.1 Changing the Costs of Few or Almost All Edges 42
3.3.2 Changing the Costs of ⌧ Edges 43

3.4 Revenue Maximization Problem 48
3.4.1 Changing the Cost of One Edge 48
3.4.2 Changing the Costs of ⌧ Edges 49
3.4.3 Changing the Costs of All Edges 52

3.5 Conclusion . 59

v

4 Shortest Paths and Centrality in Uncertain Networks 61
4.1 Introduction . 61

4.1.1 Our Contributions . 64
4.1.2 Related Work . 65

4.2 Preliminaries . 67
4.2.1 Hardness of the Problem 68
4.2.2 Benchmark: Filtering and Verification 70

4.3 Proposed Solution . 71
4.3.1 Two-Phase Algorithm . 72
4.3.2 Extension to Top-k MPSPs 76
4.3.3 Accuracy Guarantees . 76
4.3.4 Extensions . 82

4.4 MPSP-Betweenness Centrality . 83
4.5 Experimental Results . 87

4.5.1 Experimental Setup . 87
4.5.2 Results on Synthetic Networks 87
4.5.3 Results on Road Networks 90
4.5.4 Effect of Each Phase on the Performance 91
4.5.5 Parameter Sensitivity Analysis 93
4.5.6 Single-Source and Single-Target Queries 95
4.5.7 Case Studies . 95

4.6 Conclusion . 100

5 The Price of Anarchy of Related Machine Scheduling 101
5.1 Introduction . 101

5.1.1 Our Contributions . 103
5.1.2 Related Work . 104

5.2 Preliminaries . 105
5.2.1 Optimal Schedule . 105
5.2.2 Related Machine Scheduling Game 107

5.3 Best-Known Bounds . 108
5.3.1 Upper Bounds . 108
5.3.2 Lower Bound . 109

5.4 An Attempt at Improving the Pure Price of Anarchy Bound . . . 110
5.5 Improved Lower Bound Instances 123
5.6 Conclusion . 127

6 Corruption in Auctions 129
6.1 Introduction . 129

6.1.1 Capturing Corruption with Hybrid Auctions 130
6.1.2 Our Contributions . 133
6.1.3 Related Work . 135

6.2 Preliminaries . 137

vi

6.2.1 Standard Auction Formats 137
6.2.2 Approximate First-Price Auctions 138
6.2.3 Equilibrium Notions and the Price of Anarchy 139

6.3 Capturing Corruption with �-FPA 140
6.3.1 Corruption in Auctions . 140
6.3.2 Hybrid Auction Scheme 141
6.3.3 Other Corruption Models 142
6.3.4 Adapted Smoothness Notion 143

6.4 Overbidding . 145
6.5 No Overbidding . 148

6.5.1 Multi-Unit Auction . 148
6.5.2 Single-Item �-HYA . 152

6.6 Conclusion . 161

7 Greater Flexibility in Mechanism Design Through Altruism 163
7.1 Introduction . 163

7.1.1 Our Contributions . 165
7.1.2 Related Work . 166

7.2 Preliminaries . 167
7.3 Modeling Other-Regarding Preferences 168

7.3.1 Utility Model with Other-Regarding Preferences 168
7.3.2 Characterization of Truthful Mechanisms 169
7.3.3 Design template . 171

7.4 Minimizing Payments . 172
7.5 A Case Study: Altruism . 175

7.5.1 Two Altruism Models and Design Objectives 175
7.5.2 Mechanisms for Altruistic Players 176
7.5.3 Discussion . 179

7.6 Impact of Altruism . 180
7.6.1 Bilateral Trade . 180
7.6.2 Funding a Public Project 181
7.6.3 Minimizing Payments . 184

7.7 Conclusion . 186

Bibliography 189

Samenvatting 204

Summary 206

vii

Acknowledgments

The first person I want to express my gratitude to is my promotor, Guido Schäfer.
Guido, thank you so much for supervising, guiding, educating, motivating, enter-
taining, supporting, and helping me over the last four years. You were always a
bottomless pit of new ideas when we got stuck and your enthusiasm and positive
attitude have always been a great motivation. I think I can count on one hand
the number of meetings in which we did not laugh. I have learned a great deal
from you over the years. Many many thanks for everything!

I would like to thank all members of my doctorate committee, Vangelis
Markakis, Marc Uetz, René Sitters, Krzysztof Apt, Ronald de Haan, Davide
Grossi, and Jo Ellis-Monaghan, for taking the time to read and approve my thesis.
A special mention to Krzysztof who, ten years ago, supervised the second-year
project in the bachelor mathematics at the UvA of Mees (one of my paranymphs)
and me, resulting in our first paper, and here we are together again.

Thank you, Lex Schrijver, for being my copromotor when the project started,
and thank you, Ulle Endriss, for being so kind to take on this role as it comes to
an end.

For all the research meetings, blackboard and whiteboard sessions, and dis-
cussions online and offline I thank my coauthors: Guido, Yllka (also for inviting
me to collaborate on the research that is presented in Chapter 4), Sven, Andries,
Arkaprava, Arijit, Francesco, and Sjir.

The Networks & Optimization group of CWI has been a great place to carry
out research. Thanks to all my office mates throughout the years: Pieter, Dylan,
Yorgos, Dario, Jan-Hendrik, Willem, Sophie, and Arthur for the silence when it
was time to concentrate and the chats and laughs when it was time to relax. And
to the other group members: Monique, Daniel, Nikhil, Neil, Sophie, Lucas, Luis,

ix

Andries, Samarth, Sander, Sander, Sven, Danish, Yllka, Simon, Irving Christian,
Marek, Makrand, Akshay, Corby, Arthur, Lex, and Krzysztof. Next to being a
group of extremely skilled researchers, I found N&O always very gezellig : someone
knocking on the door at 11:59 so that we can have lunch at 12:00 all together,
walking to the coffee machine to keep on chatting after lunch, table tennis and
foosball sessions in the afternoons pre-covid (unfortunately, I am a bit ashamed
to admit that I have not kept the tradition alive post-lockdowns, but hopefully
this is a trigger for the new members to start it up again), and the coffee chats
during the lockdowns with the fun little presentations have all contributed to a
great atmosphere.

It has been a lot of fun being part of the CWI PhD activity committee with
many members throughout the years: Arjan, Vlad, Hema, Isabella, Mathé, Este-
ban, Mark, Jan, Carl, Max, Sanne, Nikhil, Shane, Ludo, Sebastian, and (unofficial
member) Dick. We have entertained and connected many CWI colleagues with
all our gaming nights, table tennis, chess and foosball tournaments, barbecues,
scavenger hunt, pub quizzes and many more events, but for me, the most fun were
the online and offline meetings and get-togethers we have had with the committee,
thanks for that!

I want to thank all the support staff of CWI and in particular Susanne, not
only for all your secretarial duties but also for winning the N&O jeu de boules
(pétanque for the non-dutchies) tournament together with Sander and me.

Also, a big thanks to all the people I have met and talked to at CWI during
the (activity committee) events, Praethuys, intense foosball matches, or just in
the hallways.

My PhD project was part of the Networks project through which I have
attended many Networks training weeks and Networks (PhD) days. Thanks to all
the Networks members who have made these events so enjoyable.

Buiten werk ben ik ook veel mensen dankbaar die door de jaren heen voor de
nodige afleiding hebben gezorgd.

Jan, Mees en Raymond, de programmeerwedstrijden waar we als team unsigned
long long aan mee hebben gedaan waren stuk voor stuk memorabel en ik keek
er iedere keer maanden van te voren al naar uit. Dank voor alle uurtjes samen
stuiteren achter onze laptops.

Lara, Luuk, Mees, Tristan en Zerline, dank voor alle avonden gezelligheid met
het meest middelmatige pubquizteam van Amsterdam: team Onderhond.

Didier, dank voor alle keren dat je me naar buiten heb gesleept om een rondje
te fietsen of hard te lopen en voor het organiseren van de wiskunde kerstdiners.

Amir, dank voor alle rondjes die we gewandeld hebben en de goede gesprekken.
Iedereen in de Exfam, de Misschien, de OG’s en de Kiss all kleppers groepen,

en iedereen die hier niet onder valt maar wel in deze acknowledgments thuishoort,
enorm bedankt voor alle feestjes, spelletjes, rondjes fietsen, verjaardagen, festivals,
kerstdiners, muziek, wintersporten, uitjes, borrels en andere evenementen die het

x

leven zo leuk maken.
Mees, ondertussen is het alweer twaalf jaar geleden dat we samen aan de

dubbele bachelor wiskunde & informatica aan de UvA begonnen. Naast dat je
een ontzettend slim persoon bent waar ik al sinds de eerste dag dat we elkaar
ontmoetten tegenop kijk, ben je bovenal een superleuk mens. Ik ben heel erg blij
dat we na al die jaren nog goede vrienden zijn en dat je mijn paranimf wilde zijn.

Cara Isabella, sono incredibilmente felice di averti incontrata al CWI e che
il mio scudo “non esco con i colleghi” non abbia potuto bloccarti. Sono molto
grato di poter sempre contare su di te per il supporto e l’aiuto, anche quando stai
attraversando un momento difficile. Mi diverto molto con te e imparo molto da te.
Non vedo l’ora di tanti altri inverni in cui cercherò di tenere il passo con te sulle
piste, di fare molti più sudoku insieme, di perfezionare le nostre paste, di ballare
tante altre volte insieme fino al sorgere del sole e di scoprire la prossima fase della
vita insieme. Ti amo.

Lieve Papa, Mama, Rona, Abel en Joram, ontzettend bedankt dat jullie er
altijd voor me zijn, voor alle goede zorgen, en dat jullie het hebben van een fijne
familie zo vanzelfsprekend en makkelijk maken. Ik hou van jullie.

xi

Chapter 1

Introduction

The five chapters in this thesis cover a wide range of topics, and although the
meaning of close and it varies in the different parts, the following question connects
all of them:

How Close Does It Get?

Algorithms. Using computers, we are able to optimize all kinds of things in
our lives. For example, a navigation app computes for us the fastest route to get
to our destination, and a fitness watch tells us how long we need to rest before
we should do our next set of intense exercises. Moreover, behind the scenes, even
more things get optimized: the delivery routes of trucks, the timetable of the
trains, the number of transistors on a computer chip, the maintenance work of
the railways such that response teams are also quickly present when an incident
occurs, and many more things.

A computer usually follows more or less the same procedure for solving most
optimization problems: it takes some input, does some calculations, and produces
output. For example, to compute the shortest route to a destination, the computer
takes as input the road network, the starting location, and the destination. Then,
after some computations, it outputs a route. Likewise, to create a work schedule,
the computer takes as input the availability of employees and an overview of how
much personnel is needed and when. Then, it does some computations and outputs
a schedule. Such a procedure that consists of taking input, doing calculations,
and producing output is called an algorithm.

If we use an algorithm to solve an optimization problem, such as finding
the shortest route, we would like to have the optimal output as fast as possible.
However, in many cases, as fast as possible can still take a very long time because
there can be too many possibilities to consider, and we do not know of any
smart trick to speed up the computation. Therefore, instead of always requiring

1

2 Chapter 1. Introduction

an optimal solution, it is often good enough to have an algorithm that returns
solutions that are near-optimal or an algorithm that returns solutions that are
optimal most of the time. Algorithms that run fast and for which we can prove
that they always return solutions that are near-optimal are called approximation
algorithms. Algorithms that return solutions that are optimal most of the time
are called Monte Carlo algorithms.

Network Pricing. The international tax system can be seen as a network of
countries that are connected by tax treaties. Multinationals send profits through
this network and use the paths on which they have to pay the least taxes. Regularly,
there are news headlines in the media in which the Netherlands is called a tax
heaven (Dekker and Kreling, 2022; NOS, 2014, 2019; Waard, 2011). However,
the Netherlands is not a tax heaven in the sense that it is a (temporary) final
destination for multinationals to store profits, but it is used as an intermediate
host in tax avoidance schemes. The Netherlands is a so-called conduit country
(Lejour, Riet, and Möhlmann, 2019; Riet and Lejour, 2013). An indicator of
countries being conduit countries is the betweenness centrality (Freeman, 1977) of
a country in this international tax network (Polak, 2014; Riet and Lejour, 2018).
On a high level, the betweenness centrality of a country is proportional to how
often a country occurs as an intermediate stop in the cheapest paths of all money
flows in the network. A natural optimization question from the perspective of
a country is what it can do to increase its betweenness centrality. By changing
its tax rates, a country can become more attractive as an intermediate country,
possibly attracting jobs in the financial sector. However, increasing betweenness
centrality is not the only conceivable objective. Countries earn tax revenue on the
money flows, and although lowering tax rates most likely increases the money flow,
it may not outweigh the loss in revenue. Another natural question is, therefore,
what a country can do to maximize its revenue.

We model this as a fundamental network optimization problem: countries
correspond to nodes, bilateral tax treaties to edges with tax rates, and money
flows to commodities that consist of a source node, a destination node, and a
demand. We select a special node u that is able to change the tax rates on its
outgoing edges to maximize the flow going through it or to maximize its revenue.
A country might have limited resources and be unable to put effort into changing
all the outgoing tax rates, so we also introduce a parameter ⌧ that indicates on
how many edges it can change the tax rate. We show that it is highly unlikely
that there exists an algorithm that solves this general problem efficiently. We even
show that it is highly unlikely that there exists an algorithm that can efficiently
approximate the optimal solution within certain factors. However, for special
cases, we give polynomial-time algorithms or approximation algorithms.

How close does it get? The approximation guarantees that our algorithms
achieve are essentially the best possible given the inapproximability results.

3

Shortest Paths in Uncertain Networks. In a deterministic network, there
is a clear candidate for what a shortest path is. For a source and destination
node, one can consider all possible paths from the source to the destination node
and take the one of shortest length. However, this definition does not extend to
networks in which edges are sometimes unavailable. For example, the connection
between two access points can fail in a telecommunications network, and in a road
network, accidents can temporarily block a street. One way to model this is by
assigning to each edge a probability with which the edge is present. It is still
possible to determine a shortest path in this network when all edges are available.
However, this path is not very useful if it exists with only a small probability.
Therefore, we study the notion of the Most Probable Shortest Path (MPSP): the
path that has the highest probability of being the shortest path.

We show that it is highly unlikely that there exists an algorithm that efficiently
computes the probability that a given path is the shortest path. To still be able
to find the MPSP, we develop an efficient sampling-based algorithm that tries to
compute it.

How close does it get? We prove that the algorithm returns the correct path
with high probability. On top of that, we conduct extensive experiments to show
that our method works well in practice.

Machine Scheduling Game. In the problem of maximizing betweenness or
revenue, we took the perspective of a single country. Of course, every country in the
network can use the same procedure to optimize its revenue, but when one country
changes its tax rate, this also affects the other countries. The field of algorithmic
game theory is concerned with analyzing settings in which individuals or entities
(‘players’) make selfish decisions that affect the other players in the ‘game’. We
study selfish behavior in related machine scheduling. In the optimization version
of related machine scheduling, we want to schedule a set of jobs, each having a
certain processing time, on machines, each with a speed. The time it takes to
process a job on a machine is its processing time divided by the speed of the
machine, and machines can only process one job at a time. This situation arises
naturally on, for example, a supercomputer with many processors of different
speeds.

We are interested in minimizing the sum of completion times. If there is just
a single machine, the sum of completion times is minimized when the jobs are
processed in order from shortest to longest processing time. Therefore, a simple
greedy algorithm for the setting with multiple machines iterates through the jobs
from shortest to longest and schedules them on a machine that minimizes their
completion time.

An example of a run of the simple greedy algorithm on an instance with four
jobs with processing times 1, 1, 2, and 4 and three machines with speeds 1, 1, and
2 (ties broken in favor of machine 3) is visualized in Figure 1.1(a). This schedule

4 Chapter 1. Introduction

1 (1)

2 (1)

3 (2) 1 1 2 4

(a)

1 (1) 1

2 (1) 1

3 (2) 2 4

(b)

Figure 1.1: Related machine scheduling example

has a sum of completion times of 1
2 + 1 + 2 + 4 = 71

2 , while the optimal schedule
(displayed in Figure 1.1(b)) has a sum of completion times of 6 which is a factor 5

4
less than the simple greedy schedule.

In the game-theoretic version of related machine scheduling, every job is
controlled by a player, and they are interested in minimizing the completion
time of their own job. On each machine, the jobs are processed in order from
shortest to longest, but players are free to choose on which machine their job
will be scheduled. A schedule in which no player has an incentive to unilaterally
deviate to another machine is also displayed in Figure 1.1(a) and is called a Nash
equilibrium (if a job would select one of the other machines, their completion time
would be the same). The cost of the Nash equilibrium is a factor 5

4 worse than the
optimum. Quantifying this inefficiency (also called the price of anarchy) caused
by self-interested behavior is a fundamental problem in algorithmic game theory.

Interestingly, for the related machine scheduling game, the approximation
guarantee of the simple greedy algorithm and the price of anarchy is the same.
Hence, answering the question of how close the approximation algorithm gets to
optimal is equivalent to answering the question of how large the price of anarchy
is.

How close does it get? Resolving this question is difficult and requires new
insights. We outline a technique that approaches the problem from the price of
anarchy perspective, which is able to recover already known bounds and might be
strong enough to get better bounds.

Corrupt Auctions. We are interested in auctions in which one or multiple
identical items are sold. The bidders have private valuations for the items that
are unknown to the other bidders and the auctioneer. In a first-price auction,
the bidders submit bids, and the items are allocated to the highest bidders. The
winning bidders pay their bid to receive the items. Bidders try to maximize their
utility, which is their valuation for the items they receive minus what they have
to pay.

The auctioneer is often not the owner of the items on sale. Auction houses or
auction websites host auctions on behalf of clients who lack the expertise to do so

5

themselves. The client would like to obtain a good price for the items, while the
auctioneer is interested in maximizing their own gains from hosting the auction.
This misalignment can lead to the auctioneer manipulating the auction for their
own benefit.

Corruption in auctions, where an auctioneer engages in bid rigging with one
(or several) of the bidders, occurs rather frequently in practice, especially in the
public sector (e.g., in construction and procurement auctions1). For example, in
1999, the procurement auction for the construction of the new Berlin Brandenburg
airport had to be rerun after investigations revealed that the initial winner was
able to change the bid after they had illegally acquired information about the
application of one of their main competitors (The Wall Street Journal, 1999).
As another example, in 1993, the New York City School Construction Authority
caused a scandal when an investigation revealed that they used a simple (but
effective) bid-rigging scheme in a procurement auction setting (Olmstead, 1993):

“In what one investigator described as a nervy scheme, that worker
would unseal envelopes at a public bid opening, saving for last the
bid submitted by the contractor who had paid him off. At that point,
knowing the previous bids, the authority worker would misstate the
contractor’s bid, ensuring that it was low enough to secure the contract
but as close as possible to the next highest bid so that the contractor
would get the largest possible price.”

We capture corruption in a basic model in which the auctioneer approaches
the winners of the auction with the offer to lower their bid to the highest losing
bid in return for a fraction of the gains as a bribe. Bidders possibly change their
strategic behavior when they know corruption is happening, and we are interested
in quantifying the effect of corruption on the social welfare.

We study the price of anarchy of the corrupt auction with respect to the social
welfare of various equilibrium notions, ranging from pure Nash equilibria to coarse
correlated equilibria, as a function of the size of the bribe.

How close does it get? When players are allowed to overbid, we obtain a
tight bound on the coarse correlated price of anarchy. Under a no overbidding
assumption, we prove (almost) tight bounds for various equilibrium notions and
variants of the corrupt auction.

Altruism in Mechanism Design. On a high level, mechanism design is
concerned with guiding decision-making in a group context. Without incentives,
selfishness can motivate an individual to over- or understate their actual preferences
for the possible alternatives. By providing the right incentives, individuals are

1In a procurement auction the roles of buyer and seller are reversed. Instead of a single seller
and multiple buyers there is a single buyer selecting the best option among multiple sellers.

6 Chapter 1. Introduction

nudged towards revealing their true preferences, which in turn can be used to make
the best decision for the group as a whole. The incentives are often in the form of
payments by or to the participants. An example of a mechanism in which players
are incentivized to reveal their true preferences is the single-item second-price
auction, in which the highest bidding bidder wins the item and pays an amount
equal to the second-highest bid. In a first-price auction in which the winner pays
their bid, there is always the stimulus to bid a bit lower (but hopefully above
the second-highest bid) to save some money, while in a second-price auction, this
stimulus is taken away.

Mechanism design relies heavily on the self-interest hypothesis, which is the
assumption that individuals make decisions driven by purely selfish motives. We
made this assumption in the related machine scheduling game and also for the
corrupt auction. In fact, most models in mathematical economics rely on this
assumption. Assuming that participants are selfish often simplifies analysis and,
in many settings where this assumption is valid, it enables strong predictions for
the outcomes of economic situations. However, various empirical studies show
that individuals do not always act self-interestedly (Andreoni and Miller, 2002;
Charness and Rabin, 2002; Kahneman, 2011). The field of behavioral economics
is dedicated to studying when decisions of individuals or institutions vary from
what would be the ‘rational’ choice.

If being fully selfish is on one end of the spectrum, being fully altruistic is
on the other end of the spectrum. Many people are somewhere in between: they
care about themselves but are also partially altruistic towards others. Taking into
account that some individuals are partially altruistic might change the incentives
that are needed to nudge the participants to reveal their true preferences. We
consider incentives that come in the form of payments, and so we are interested
in the question: what are the effects of (partial) altruism on the payments in
mechanism design? We show that altruism leads to a wider range of possible
payment functions that incentivize (partially) altruistic individuals to reveal their
true preferences.

In an auction, the seller is usually interested in the revenue, so asking for
substantial payments from the participants makes sense. As a result, money flows
from the participants to some third party. However, often decisions have to be
made in a group that would like the money to stay among the participants. An
example is a group of siblings who have inherited a house from their parents. Only
a single sibling can live in the house, and the parents want the sibling who wants
it the most to live in the house. If one sibling has to buy the others out, as little
money as possible should be spent on a third party, but the siblings should still
be incentivized to reveal truthfully how much they want the house.

How close does it get? We show that mechanisms that are not designed with
altruism in mind can be converted into ones that do and, in the process, make
sure that there is less money going to a third party.

7

About This Thesis

The work presented in this thesis is the result of research carried out in the
Networks and Optimization group at Centrum Wiskunde & Informatica (CWI)
in Amsterdam, the Netherlands. The PhD position was funded by the Nether-
lands Organization for Scientific Research (NWO) through the Gravitation-grant
NETWORKS-024.002.003.

Outline and Publications

Unless mentioned otherwise, the authors contributed equally to the papers men-
tioned in this subsection.

Chapter 2. We start with a chapter introducing the notation and most of
the concepts needed to understand the results in the remaining chapters. It is
divided in five subsections: basic notation and definitions, networks, algorithms,
algorithmic game theory and mechanism design.

Chapter 3. The research in this chapter originated in the MSc thesis of Sven Po-
lak (2014) and was extended and improved resulting in the following publication:

• Ruben Brokkelkamp, Sven C. Polak, Guido Schäfer, and Yllka Velaj (2019).
“Approximate Pricing in Networks: How to Boost the Betweenness and
Revenue of a Node”. In: 30th International Symposium on Algorithms
and Computation, ISAAC 2019, December 8-11, 2019, Shanghai University
of Finance and Economics, Shanghai, China. Edited by Pinyan Lu and
Guochuan Zhang. Volume 149. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 13:1–13:15. doi: 10.4230/LIPIcs.ISAAC.2019.13

In this chapter we introduce and study two new pricing problems in networks.
Suppose we are given a directed graph G = (V,E) with non-negative edge
costs (ce)e2E, k commodities (si, ti, wi)i2[k] and a designated node u 2 V . Each
commodity i 2 [k] is represented by a source-target pair (si, ti) 2 V ⇥ V and
a demand wi > 0, specifying that wi units of flow are sent from si to ti along
shortest si, ti-paths (with respect to (ce)e2E). The demand of each commodity is
split evenly over all shortest paths. Assume we can change the edge costs of some
of the outgoing edges of u, while the costs of all other edges remain fixed; we also
say that we price (or tax) the edges of u.

We study the problem of pricing the edges of u with respect to the following
two natural objectives: (i) max-flow : maximize the total flow passing through
u, and (ii) max-revenue: maximize the total revenue (flow times tax) through u.
Both variants have various applications in practice. For example, the max flow
objective is equivalent to maximizing the betweenness centrality of u, which is one
of the most popular measures for the influence of a node in a (social) network.

https://doi.org/10.4230/LIPIcs.ISAAC.2019.13

8 Chapter 1. Introduction

We prove that, except for some special cases, both problems are NP-hard and
inapproximable in general and therefore resort to approximation algorithms. We
derive approximation algorithms for both variants and show that the derived
approximation guarantees are best possible.

Chapter 4. The work presented in this chapter is based on the following paper:

• Arkaprava Saha, Ruben Brokkelkamp, Yllka Velaj, Arijit Khan, and Francesco
Bonchi (2021). “Shortest Paths and Centrality in Uncertain Networks”.
In: Proceedings of the VLDB Endowment 14.7, pages 1188–1201. doi:
10.14778/3450980.3450988

where the first two authors carried out the majority of the research.
In this chapter, we look at uncertain graphs, i.e., graphs in which every edge

has some probability of existence. In these graphs, we are interested in finding the
path between two nodes with the highest probability of being the shortest path.
This path is called the most probable shortest path. We show that it is #P-hard
to compute the probability that a given path is the shortest path. To still have
some reasonable approximation, we develop a sampling-based Monte Carlo type
algorithm that is able to quickly find a most probable shortest path. Based on this
notion of a shortest path we also define a new betweenness centrality measure and
give a sampling-based algorithm for computing it. We do extensive experiments
on sensor networks, road networks and brain networks to show the effectiveness
and usefulness of our solution.

Chapter 5. This chapter is based on unpublished work. It is the result of
discussions and cooperation with Guido Schäfer. It contains some (minor) new
results and serves as a bridge between Chapters 3 and 4, which have a more
optimization perspective, and Chapters 6 and 7, in which game theory plays a
role. We look at the problem of related machine scheduling and, in particular,
into analyzing the pure price of anarchy. The best-known upper bounds for the
price of anarchy are proved using smoothness, a powerful technique to get bounds
on the price of anarchy which extend up to coarse correlated equilibria. However,
for identical machine scheduling, it is known that there is a gap between the pure
price of anarchy and the mixed price of anarchy. Therefore, smoothness cannot
be used to get a tight bound on the pure price of anarchy.

We do not know yet if this gap also exists for related machine scheduling, but
if it does, we need specialized techniques tailored for pure Nash equilibria. We
outline how a variation of the primal-dual method by Bilò can be used to approach
this problem. It easily recovers the (already known) bound of 2 using only a
seemingly small subset of its possibilities. Unfortunately, we did not succeed in
proving a better bound, but we conjecture that the technique as such is powerful
enough to solve this problem. We hope this chapter serves as inspiration and as a

https://doi.org/10.14778/3450980.3450988

9

basis for future work. Further, we provide better lower bounds on the pure price
of anarchy for a fixed number of machines and jobs than previously known in the
literature.

Chapter 6. This chapter is based on the following paper:

• Andries van Beek, Ruben Brokkelkamp, and Guido Schäfer (2022). “Cor-
ruption in Auctions: Social Welfare Loss in Hybrid Multi-Unit Auctions”.
In: 21st International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2022, Auckland, New Zealand, May 9-13, 2022. Edited by
Piotr Faliszewski, Viviana Mascardi, Catherine Pelachaud, and Matthew E.
Taylor. International Foundation for Autonomous Agents and Multiagent
Systems, pages 1283–1291. doi: 10.5555/3535850.3535993

In this chapter, we initiate the study of the social welfare loss caused by corrupt
auctioneers, both in single-item and multi-unit auctions. In our model, the
auctioneer may collude with the winning bidders by letting them lower their
bids in exchange for a (possibly bidder-dependent) fraction � of the surplus. We
consider different corruption schemes. In the most basic one, all winning bidders
lower their bid to the highest losing bid. We show that this setting is equivalent to
a �-hybrid auction in which the payments are a convex combination of first-price
and second-price payments. More generally, we consider corruption schemes that
can be related to �-approximate first-price auctions (�-FPA), where the payments
recover at least a �-fraction of the first-price payments. Our goal is to obtain
a precise understanding of the robust price of anarchy of such auctions. If no
restrictions are imposed on the bids, we prove a bound on the robust price of
anarchy of �-FPA, which is tight (over the entire range of �) for the single-item
and the multi-unit auction setting. On the other hand, if the bids satisfy the
no-overbidding assumption, a more fine-grained landscape of the price of anarchy
emerges, depending on the auction setting and the equilibrium notion. Albeit
being more challenging, we derive (almost) tight bounds for both auction settings
and several equilibrium notions, basically leaving open some (small) gaps for the
coarse-correlated price of anarchy only.

Chapter 7. The research in this chapter originated in the MSc thesis of Sjir Hoei-
jmakers (2014) and was extended and improved resulting in the following submis-
sion:

• Ruben Brokkelkamp, Sjir Hoeijmakers, and Guido Schäfer (2022). “Greater
Flexbility in Mechanism Design Through Altruism”. In: International
Symposium on Algorithmic Game Theory. Springer

We study the problem of designing truthful mechanisms for players that are
(partially) altruistic. Our approach is to extend the standard utility model by

https://doi.org/10.5555/3535850.3535993

10 Chapter 1. Introduction

encoding other-regarding preferences of the players into the utility functions. By
doing so, we leave the original domain where VCG mechanisms can be applied
directly.

We derive a characterization of the class of truthful mechanisms under the new
model, crucially exploiting the specific form of the other-regarding preferences.
We also derive sufficient conditions for truthfulness which we then exploit to
derive mechanisms for two specific models of altruism and with respect to two
natural social welfare objectives. As it turns out, altruistic dispositions lead to
the positive effect that the designer needs to extract smaller payments from the
players to ensure truthfulness. Further, we investigate the effect of redistribution
mechanisms that can redistribute the payments among the players. Also, here,
it turns out that altruism has a positive effect in the sense that the payments
needed to guarantee truthfulness can be further reduced.

Finally, we illustrate our theoretical results by applying them to well-studied
mechanism design problems such as the public project problem and the multi-unit
auction problem. Among other results, we show that the problem of funding a
public project can be resolved by our mechanism even for moderate altruistic
dispositions, while this is impossible in the standard utility setting.

Other. During the PhD the author has also contributed to the following papers

• Ruben Brokkelkamp, Raymond van Venetië, Mees J. de Vries, and Jan Wes-
terdiep (2020). “PACE Solver Description: tdULL”. in: 15th International
Symposium on Parameterized and Exact Computation, IPEC 2020, Decem-
ber 14-18, 2020, Hong Kong, China (Virtual Conference). Edited by Yixin
Cao and Marcin Pilipczuk. Volume 180. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 29:1–29:4. doi: 10.4230/LIPIcs.IPEC.2020.29

• Alex Kuiper, Michel Mandjes, Jeroen de Mast, and Ruben Brokkelkamp
(2021). “A flexible and optimal approach for appointment scheduling in
healthcare”. In: Decision Sciences. doi: https://doi.org/10.1111/deci.
12517

https://doi.org/10.4230/LIPIcs.IPEC.2020.29
https://doi.org/https://doi.org/10.1111/deci.12517
https://doi.org/https://doi.org/10.1111/deci.12517

Chapter 2

Preliminaries

This chapter contains an introduction to most of the concepts needed to understand
the content of this thesis. It is not a full overview of the respective areas, but
it highlights notions used in later chapters. The section on algorithms is mainly
based on the book by Cormen et al. (2009) with parts from Williamson and
Shmoys (2011). We refer to those books for the interested reader that needs more
details. For additional background on the algorithmic game theory and mechanism
design sections, we refer to Nisan et al. (2007).

2.1 Basic Notation and Definitions

We use N to denote the set of positive integers and R to denote the set of real
numbers. When restricting to the non-negative reals, we write R�0. For an integer
n 2 N we define [n] for the set {1, 2, . . . , n}.

Let X : ⌦! R be a real-valued random variable that maps from some sample
space ⌦ to R. We denote its expectation by E[X]. We write x ⇠ X if x is a
sample drawn according to the probability distribution underlying X.

Definition 2.1.1. Let N be a finite set and let z : 2N ! R be a function, mapping
every subset S ✓ N to a real value z(S). The function z is called

(i) non-negative if z(S) � 0 for all S ✓ N ,

(ii) monotone if z(S)  z(T) for every S ✓ T ✓ N ,

(iii) submodular if for all sets S ✓ T ✓ N and every element e 2 N \ T it holds
that z(S [{e})� z(S) � z(T [{e})� z(T).

11

12 Chapter 2. Preliminaries

1 2

3

1 2

34

Figure 2.1: Two examples of graphs

2.2 Networks

A network or graph G = (V,E) consists of a set of nodes V and a set of edges
E ✓ V ⇥ V . An edge e 2 E can be directed or undirected. If e is an undirected
edge connecting nodes u and v we write e = {u, v}, while if it is a directed edge
going from u to v we write e = (u, v) and sometimes uv. Examples of both a
directed and an undirected graph can be found in Figure 2.1. In this thesis, we
usually consider directed graphs unless mentioned otherwise.

We use the notation �
+(u) to refer to the set of all outgoing edges of u, i.e.,

�
+(u) = {(u, v) 2 E}, and define d

+(u) = |�
+(u)| as the outdegree of u.

Given two nodes s, t 2 V , we use two different ways interchangeably to
denote a path P from s to t. The first option is that we represent P by an
ordered sequence of edges P = (e1, e2, . . . , en) such that ei = (ui, ui+1) 2 E and
u1 = s, un+1 = t. Observe that the path goes from edge ei through node ui+1 to
edge ei+1. The second option is that we represent P by an ordered sequences
of nodes P = (u1, u2, . . . , un+1) where u1 = s, un+1 = t and (ui, ui+1) 2 E for all
i 2 [n]. If ui 6= uj for all i 6= j, i.e., the path does not contain any cycles, we call
the path P simple. When we refer to the internal nodes of a path P , we mean
the nodes u2, u3, . . . , un, i.e., the nodes of the path without the endpoints, and we
write Int(P) to denote this set. The first node s = u1 is called the source node,
and the last node t = un+1 is called the destination or terminal node. For two
paths P = (e1, . . . , (u, v)) and Q = ((v, w), . . . , en) such that the last node of P
is the same as the first node in Q we write P ·Q = (e1, . . . , (u, v), (v, w), . . . , en)
for their concatenation. Finally, we define the empty path, i.e., the path without
edges, by P�.

We often assign numbers to the edges, which define, for example, weights
or costs of the edges. We usually write (ce)e2E where ce 2 R is the number
assigned to edge e. The length or cost of a path P = (e1, e2, . . . , en) with respect
to the edge costs (ce)e2E is the sum of the cost of the edges and is denoted by
c(P) =

P
ei2P cei . We define c(P�) = 0, and we also define a special empty path

P1 with c(P1) =1, which will simplify exposition.
For two nodes s, t 2 V , we define P(G, s, t) to be the set of all paths from s

to t. If there is no path from s to t then P(G, s, t) = ;. By �(G, c, s, t), we denote
the distance from s to t. If there is a path from s to t that contains a cycle of

2.2. Networks 13

negative cost we define �(G, c, s, t) = �1, otherwise

�(G, c, s, t) =

(
minP2P(G,s,t) c(P) if P(G, s, t) 6= ;

1 if P(G, s, t) = ;.

A shortest path from s to t is a path P 2 P(G, s, t) with cost �(G, c, s, t), i.e.,
c(P) = �(G, c, s, t). Next, by SP(G, c, s, t) we denote the set of all shortest paths
from s to t in G with respect to c. For both �, P and SP we omit G and/or c

as an argument, e.g., �(s, t) and SP(G, s, t), if it is clear from the context which
graph and cost function are used.

For a directed graph G = (V,E) with costs (ce)e2E, we denote by ⇡(G, c, s, t)
the number of shortest paths from s to t, i.e., ⇡(G, c, s, t) = |SP(G, c, s, t)|. For
a node v 2 V we use ⇡v(G, c, s, t) for the number of shortest paths from s to t

going through v. Also here, we drop the arguments G and c if they are clear from
the context. The betweenness centrality (Freeman, 1977) of a node v 2 V is then
defined as

bG(v) =
1

|V |(|V |� 1)

X

(s,t)2V⇥V

s 6=v 6=t,⇡(s,t) 6=0

⇡v(s, t)

⇡(s, t)
. (2.1)

If there is a unique shortest path between all pairs of nodes in the graph, the
betweenness centrality of a node v indicates which fraction of those shortest paths
has v as an internal node. If there are multiple shortest paths from a node s

to t, the internal nodes of those paths get a contribution to their betweenness
proportional to the number of shortest paths of which they are an internal node.

1

2

3

4

1

1 1

1

2

Figure 2.2: Example graph betweenness centrality

Example 2.2.1. Consider the graph in Figure 2.2. We have V = [4] and E =
{(1, 3), (2, 1), (2, 3), (3, 4), (4, 2). Each edge is labeled with its respective cost. The
shortest paths are shown in Table 2.1: the cell in row r and column c contains
the shortest paths from node r to node c. For example, to go from node 2 to 4
there are two paths of length 3 which is the minimum length. Hence, �(2, 4) = 3.
One path is 2! 3! 4 and the other path is 2! 1! 3! 4. This implies that
⇡(2, 4) = 2, ⇡3(2, 4) = 2 and ⇡1(2, 4) = 1.

14 Chapter 2. Preliminaries

1! 3! 4! 2 1! 3 1! 3! 4

2! 1
2! 3 2! 3! 4

2! 1! 3 2! 1! 3! 4

3! 4! 2! 1 3! 4! 2 3! 4

4! 2! 1 4! 2
4! 2! 3

4! 2! 1! 3

Table 2.1: Shortest paths in betweenness centrality example

By doing the calculations, we obtain bG(1) = 1
12 ·

3
2 = 1

8 , bG(2) = bG(3) =
bG(4) =

1
12 · 3 = 1

4 . Hence, nodes 2, 3, 4 have an equal betweenness centrality
while the betweenness of node 1 is lower.

2.3 Algorithms

An algorithm is a well-defined computational procedure that takes input, performs
a sequence of computational steps, and produces some output. As such, it can
be used to solve well-specified computational problems. A computational problem
consists of an input/output relationship. For example, for the sorting problem, in
which we want to sort a list of numbers, this looks as follows:

Problem Sorting Problem
Input: List L = [L[1], L[2], . . . , L[n]] of n numbers.
Output: A permutation [L[⇡1], L[⇡2], . . . , L[⇡n]] of the input numbers such that

L[⇡1]  L[⇡2]  . . .  L[⇡n], where ⇡ is a permutation of [n].

An input is also called an instance. If an algorithm produces the correct output
for every possible input that adheres to the input specifications, we say that the
algorithm solves the problem.

Example 2.3.1. An algorithm to solve the problem of sorting a list of numbers
can be found in Algorithm 1. It is called insertion sort, and it is an algorithm
that is inspired by how we sort a set of cards in hand: from left to right, one takes
out the next card and inserts it at the spot such that all cards up to that card are
sorted. In Algorithm 1, this is done in an analogous way by swapping numbers
with the preceding numbers in the list until it is in the correct spot.

Example 2.3.2. A more elaborate algorithm that is used to solve the problem of
finding a shortest path between two nodes in a graph is Dijkstra’s Shortest Path

2.3. Algorithms 15

Algorithm 1 Insertion Sort
Input: List L = [L[1], L[2], . . . , L[n]] of n numbers.
Output: A sorted list L

1: for i = 1! n do
2: j i /* Insert L[i] into the sorted sequence L[1..i� 1] */
3: while j > 1 and L[j � 1] > L[j] do
4: swap L[j] and L[j � 1]
5: j j � 1
6: end while
7: end for
8: return L

Algorithm (Dijkstra, 1959). Its pseudocode can be found in Algorithm 2. This
algorithm leverages the fact that a subpath of a shortest path is also a shortest
path. It starts by assigning a path of length 1 to every node other than s, which
is assigned the empty path. Then, it repeatedly selects the unvisited node u with
the shortest distance to s. From u, it scans all unvisited neighboring nodes and
checks for each neighbor v if the path via u is shorter than the path currently
stored in P[v]. If so, it updates P[v]. One can show that when a node u is selected
in Line 11 of Algorithm 2 there does not exist a shorter path from s to v than
P[v]. The algorithm keeps selecting unvisited nodes u with the shortest distance
to s until node t is reached, or a node u is selected that is not connected to s.
The latter implies that t is also not connected to s.

Running Time

To compare two algorithms that solve the same problem, we can compare the
resources that the algorithms require. Generally, we are most interested in the
computational time that algorithms need, but sometimes memory or communica-
tion bandwidth requirements are important. One way of comparing the running
times of algorithms is by trying them out on a large set of inputs and timing how
long they take. If we run both algorithms on the same computer and have a set
of inputs representative of the practical use case, this can be a perfectly valid way
of making a comparison. Often, we want to make a more ‘theoretical’ comparison,
in which we abstract the practical implementation details away.

We use a generic model of computation: a random-access machine (RAM).
Based on operations that are normally found in real computers the RAM model
contains the following operations: arithmetic (add, subtract, multiply, divide,
remainder, floor, ceiling), data movement (load, store, copy), and control (con-
ditional and unconditional branch, subroutine call and return). We assume that
each operation takes constant time.

To store data, the model contains the data types integer and floating-point.

16 Chapter 2. Preliminaries

Algorithm 2 Dijkstra’s Shortest Path Algorithm
Input: Graph G = (V,E), source s, target t, edge lengths (ce)e2E.
Output: A shortest path from s to t

1: u s

2: visited {s}

3: P[v] P1 8v 2 V /* to store the shortest path from s to v */
4: P[s] = P�

5: while u 6= t and P[u] 6= P1 do
6: for all e = (u, v) 2 E with v /2 visited do
7: if c(P[u]) + ce < c(P[v]) then
8: P[v] P[u] · (e)
9: end if

10: end for
11: u argminv2V \visited c(P[v]) /* The closest unvisited node */
12: visited visited [{u}

13: end while
14: return P[t]

The latter is used to store real numbers. We assume that the size of the data to
store one number, called a word, is big enough to fit the numbers in the input but
is bounded by a constant, i.e., if the input has size n, then a word has size c ln(n)
for some constant c � 1. Then, arithmetic operations take constant time, and a
word cannot store an arbitrary amount of information.

The running time of an algorithm is expressed as a function of the input size.
Let n denote the size of the input. Think, for example, of the number of nodes in
a graph or the number of elements in a list. Determining the exact running time
of an algorithm is usually not worth the effort. Suppose the exact running time of
an algorithm is 12n2 + 6n+ 92. If n grows, the smaller order terms get dominated
by the n

2 term, and the same holds for the 12 in front of the n
2. We mainly care

about the asymptotic behavior of an algorithm: what happens if the size of the
input grows large. So we ‘hide’ the lower order terms and the coefficients and
write 12n2 + 6n+ 92 = O(n2). More formally:

Definition 2.3.3. Let f and g be two real-valued functions. We write

f(n) = O(g(n))

if there exist c > 0 and n0 > 0 such that

0  f(n)  c · g(n) for all n � n0.

Note that f and g do not have to match on the highest order term, for example,
3n = O(n), but also 3n = O(n2). To asymptotically lower bound functions there
is a similar concept.

2.3. Algorithms 17

Definition 2.3.4. Let f and g be two real-valued functions. We write

f(n) = ⌦(g(n))

if there exist c > 0 and n0 > 0 such that

0  c · g(n)  f(n) for all n � n0.

Example 2.3.5. The insertion sort algorithm in Algorithm 1 iterates through
the list (n iterations), and for every iteration i, it does at most i� 1 swaps. The
running time of insertion sort is bounded by O(n2).

Example 2.3.6. Suppose we use Algorithm 2 on a graph G = (V,E, (ce)e2E)
with n = |V | nodes. With the right data structures, we can bound the running
time of Algorithm 2 by O(n2): Lines 1, 2, and 4 take constant time, while Line 3
takes O(n) time. Each node is visited at most once, and so the while loop (Line 5)
has at most n iterations. Since a node is connected to at most n� 1 other nodes,
the for loop (Line 6) has at most n iterations. Instead of storing the whole path
from s to v in P[v] we can store only the last edge that is used to end up at v,
and, afterward, recursively construct the whole path so that Line 8 takes O(1)
time (constant time). Finally, using a priority queue based on a Fibonacci heap,
we can execute Line 11 in O(log(n)) time. Hence, in total the algorithm takes
time O(n (n+ log(n)) = O(n2).1

To determine the running time in Examples 2.3.5 and 2.3.6 we used a worst-
case perspective. If a list is reversely sorted, insertion sort takes time O(n2), while
if the list is already sorted it only takes time O(n). When analyzing running times
of algorithms in this thesis, we are always interested in the worst-case running
time, i.e., the longest running time for any input of size n.

We are interested in algorithms that are efficient in the worst case. By an
efficient algorithm, we denote an algorithm that runs in polynomial time in the
input size.

Definition 2.3.7. An algorithm runs in polynomial time if there exists a constant
c 2 N, independent of the input size, such that for inputs of size n, the running
time of the algorithm is O(nc).

This contrasts with algorithms that run in super-polynomial time, such as
those that run in exponential time: O(2n), for example.

1Observe that if the graph has a small number of edges, the for loop in Line 6 does not have
many iterations. In fact, for every edge, there is at most one iteration. We can give a more
precise upper bound on the running time of Algorithm 2. If the graph has n nodes and m edges,
the running time is O(m+ n log(n)).

18 Chapter 2. Preliminaries

Complexity

With the tools in the previous subsection, we can analyze the running time of
algorithms. We ended the subsection by stating that we are interested in efficient
algorithms. However, an efficient algorithm might not exists for some given
problem. We need a way to compare the difficulty of problems.

The two problems we discussed in Examples 2.3.5 and 2.3.6 are of a different
nature. The sorting problem requires us to transform the input, while the second
one requires us to find the best solution among many feasible solutions. The latter
is an optimization problem and, in particular, a minimization problem. In this
thesis, we mostly study optimization problems.

Definition 2.3.8. An optimization problem ⇧ is a triple (I, F, C):

• I is a set of instances.

• F (I) denotes a set of feasible solutions for an instance in I 2 I.

• C(I, x) denotes the cost or value of a feasible solution x 2 F (I).

The optimization problem ⇧ is a minimization problem if the goal is to find a
feasible solution x 2 F (I) for an instance I 2 I such that

C(I, x)  C(I, x0) for all x0
2 F (I).

The optimization problem ⇧ is a maximization problem if the goal is to find a
feasible solution x 2 F (I) for an instance I 2 I such that

C(I, x) � C(I, x0) for all x0
2 F (I).

We are interested in these optimization problems. However, the predominant
way to compare problems makes use of decision problems. A decision problem is
a problem for which the output is limited to two options, either yes or no. The
instances for which the output is yes are called yes-instances ; similarly, instances
for which the output is no are called no-instances. An optimization problem can
easily be converted into a decision problem by introducing an extra input number
K. For a minimization problem ⇧ = (I, F, C), we can define the following related
decision problem:

Problem Decision problem related to minimization problem
Input: An instance I 2 I of a minimization problem ⇧ = (I, F, C), a number K
Output: yes, if there is an x 2 F (I) with C(I, x)  K, otherwise no.

A maximization problem has a similar related decision problem in which the
inequality is reversed.

2.3. Algorithms 19

Note that the remaining definitions in this section will be stated in a slightly
informal way, which is enough for our purposes. For formal definitions using
formal-language theory, see, for example, Cormen et al. (2009).

A way to show that a decision problem B is ‘more difficult‘ than a decision
problem A is by proving that if we can solve B efficiently, then we can solve A

efficiently. If we then come up with a polynomial-time algorithm that solves B,
we have actually solved both problems efficiently. To prove this, we make use of
the notion of a reduction:

Definition 2.3.9. (informal). A decision problem A is polynomial-time reducible
to a decision problem B if there exists a polynomial-time algorithm that transforms
yes-instances of A into yes-instances of B and no-instances of A into no-instances
of B.

Suppose A is polynomial-time reducible to B, and we have an algorithm that
solves B in polynomial time. Then we also have an algorithm that solves A in
polynomial time by first transforming an instance of A into an instance of B and
then using the polynomial-time algorithm for B.

We define two important classes of decision problems: P and NP. The first is
the class of decision problems that can be solved efficiently.

Definition 2.3.10. (informal). A decision problem is a member of the complexity
class P if there exists a polynomial-time algorithm that solves it.

For the complexity class NP, we need the notion of verifiability. Consider the
problem of finding a shortest path from node s to node t in a graph. The related
decision problem asks whether there exists an s, t-path of length at most K. If,
for some instance, we were somehow given a path P of length at most K. We
can verify in polynomial time if this path is a so-called certificate showing that
the instance is a yes-instance by checking if P connects s and t and has cost at
most K. The class NP consists of decision problems of which yes-instances have
a polynomial-size certificate that can be verified by a polynomial-time verification
algorithm. The polynomial size and time are with respect to the instance size.

Definition 2.3.11. (informal). A decision problem is a member of the complexity
class NP if the following holds: (i) there exists a polynomial-time verification
algorithm V , and (ii) an instance of this decision problem is a yes-instance if and
only if there exists a polynomial-size certificate for this instance which can be
verified by V .

Any decision problem that is a member of P is also a member of NP, thus
P ✓ NP. However, we do not know if NP is a strict superset of P or if they are
equal.2

2This is one of the Millenium Prize Problems of the Clay Mathematics Institute (Carlson,
Jaffe, and Wiles, 2006)

20 Chapter 2. Preliminaries

There are problems of which we know that they are a member of NP and that
any problem in NP is polynomial-time reducible to it. If we can solve one of these
problems in polynomial time, we can solve all problems in NP in polynomial time.
These problems are called NP-complete.

Definition 2.3.12. (informal). A problem ⇧ 2 NP is called NP-complete if all
problems in NP are polynomial-time reducible to ⇧.

Suppose we have an NP-complete problem B and suppose we can polynomial-
time reduce it to a decision problem A in NP. Then, any problem in NP can
be polynomial-time reduced to A by first reducing it to B and then using the
reduction to A. The composition of two polynomial-time reductions is also a
polynomial-time reduction. So, A is also NP-complete.

The first problem that was shown to be NP-complete is the boolean satisfiability
problem (SAT) (Cook, 1971; Levin, 1973). SAT asks to determine if a boolean
formula is satisfiable, i.e., if there exists a truth assignment of the literals such that
the formula evaluates to true. Since then, a lot of problems have been shown to be
NP-complete by polynomial-time reductions from known NP-complete problems.

There are more problems than just the NP-complete problems for which it
holds that if we can solve them in polynomial time, then we can solve all problems
in NP in polynomial time. First, we need the notion of oracle access. If an
algorithm has oracle access to a decision or optimization problem ⇧, the RAM
model gets extended with an extra operation that runs in constant time: solving
⇧.

Definition 2.3.13. (informal). A problem ⇧ is called NP-hard3 if there exists a
polynomial-time algorithm for an NP-complete problem ⇧0 when the algorithm
has oracle access to ⇧.

Suppose there exists a polynomial-time algorithm A for an NP-hard problem ⇧,
then there exists a polynomial-time algorithm for the corresponding NP-complete
problem ⇧0 by taking the algorithm from the definition and replacing the oracle
access by A. Since we now have a polynomial-time algorithm for an NP-complete
problem, all problems in NP have a polynomial-time algorithm.

All NP-complete problems are NP-hard. If a problem is NP-hard, then we do
not know for sure that a polynomial-time algorithm does not exist, but it also
means that until now, nobody has found a polynomial-time algorithm for any
NP-hard problem yet (and there are a lot of them (Crescenzi and Kann, 2000;
Garey and Johnson, 1979)).

3Note that an NP-hard problem can also be an optimization problem.

2.3. Algorithms 21

Algorithm 3 Approximation Algorithm for Vertex Cover
Input: Undirected Graph G = (V,E).
Output: A set of vertices covering all edges
1: S ;

2: while E is not empty do
3: Pick {u, v} 2 E

4: S S [{u, v}

5: E E \ {{w, z} 2 E | w = u or w = v}

6: end while
7: return S

Approximation Algorithms

If we assume P 6= NP, then for the optimization problems that are NP-hard,
there cannot exist a polynomial-time algorithm that solves them. However, if we
relax the requirement of optimality a bit and only require that the solutions are
near-optimal, it is sometimes possible to get an efficient algorithm.

Definition 2.3.14. (Approximation algorithm). Let ⇧ = (I, F, C) be a maxi-
mization (minimization resp.) problem. Let OPT(I) be the value or cost of an
optimal solution for an instance I 2 I. An algorithm ALG is an ↵-approximation
algorithm for ⇧ with ↵  1 (↵ � 1 resp.) if for every instance I of ⇧ it computes
a feasible solution of cost ALG(I) � ↵OPT(I) (ALG(I)  ↵OPT(I) resp.) in
time that is polynomially bounded in the input size of I.

Example 2.3.15. Consider the Vertex Cover problem: given an undirected graph
G = (V,E), what is the size of the smallest set of vertices S that covers every
edge, i.e., every edge has an endpoint in S?

Algorithm 3 iteratively takes an edge {u, v} from E, adds both endpoints to
S, and removes all edges from E with endpoint u or v.

Let us analyze the size of the set that Algorithm 3 returns. For every two
vertices added to S in Line 4, the optimal solution must include at least one.
Hence, for any instance I, it holds that

OPT(I) �
1

2
ALG(I) =) ALG(I)  2OPT(I).

Therefore, we conclude that Algorithm 3 is a 2-approximation algorithm for the
vertex cover problem.

It is possible to have a reduction for maximization problems that preserves
approximation guarantees.

Definition 2.3.16. Let ⇧ and ⇧0 be two maximization problems. We say that
there is an L-reduction with parameters a, b > 0 from ⇧ to ⇧0 if

22 Chapter 2. Preliminaries

(i) for each instance I of ⇧, we can construct in polynomial time an instance I
0

of ⇧0,

(ii) OPT(I 0)  a · OPT(I),

(iii) given a solution of cost Z 0 for I 0, we can derive in polynomial time a solution
of cost Z for I such that

OPT(I)� Z  b · (OPT(I 0)� Z
0).

In particular, the definition above implies that if there is an L-reduction with
parameters a and b from ⇧ to ⇧0 and ⇧0 admits an ↵-approximation algorithm,
then there is a (1� ab(1� ↵))-approximation algorithm for ⇧ (Williamson and
Shmoys, 2011).

Similar to showing that problems are NP-hard, we can also show for some
problems that approximating the optimal solution within a certain factor is NP-
hard. If for a maximization (minimization resp.) problem, it is NP-hard to
approximate it within a factor ↵� ✏ (↵+ ✏ resp.) for any ✏ > 0 we say that the
problem is ↵-inapproximable.

2.4 Algorithmic Game Theory

The formal definition of a strategic game is the following:

Definition 2.4.1. A game � in strategic form consists of

• a set of players N = [n].

• a strategy set Si for each player i 2 N .

• a cost function ci : S1 ⇥ · · ·⇥ Sn ! R for each player i.

We write S = S1 ⇥ · · · ⇥ Sn. A vector s = (s1, . . . , s) 2 S is called a strategy
profile. A game is called finite if S is finite.

We assume that all players know the cost functions and strategies of all other
players: they have full information. Often, we want to let one player change their
strategy. As a notational shorthand, we write s�i = (s1, . . . , si�1, si+1, . . . , sn)
for the strategy profile without the strategy of player i. Similarly S�i = ⇥j 6=iSj.
Further, we denote by (s0

i
, s�i) the strategy profile where player i plays some

strategy s
0
i
and the other n� 1 players play their strategy in s�i.

When players have a cost function, we take the perspective that players want
to minimize their cost function. When we want to take the perspective of players
maximizing some function, then we usually have utility functions ui instead of
the cost functions ci. In this section, we keep the minimization perspective, and
minimizing negative costs can be identified with maximizing utility.

2.4. Algorithmic Game Theory 23

@
@@
1

2

Silent

Betray

Silent Betray

1 3

1 0

0 2

3 2

(a) Prisoner’s Dilemma

@
@@
1

2

H

T

H T

�1 1

1 �1

1 �1

�1 1

(b) Matching Pennies

Figure 2.3: Two examples of strategic games.

Example 2.4.2. Two examples of games in strategic form with two players are
given in Figure 2.3. The strategies of player 1 are the row names, and the strategies
of player 2 are the column names. Note that both players have the same strategy
set. The cost function of player 1 is defined by the numbers in the bottom left of
the cells, while the numbers in the top right are the costs of player 2.

In the Prisoner’s Dilemma, two members of a criminal gang are arrested and
are both offered a deal: if they betray the other while the other stays silent, they
will walk away without sentence while the other has to serve three years in prison.
However, if they both choose to betray, they will both serve two years in prison,
and if they both stay silent, they will both serve one year in prison.

In Matching Pennis, there are two players, both with a coin that can show
Heads or Tails. Player 1 would like to see that both coins show the same side, i.e.,
both H or both T, while player 2 would like to see different sides.

Example 2.4.3. The cost function can also be a bit more elaborate. Suppose
we have m machines (all with speed 1) and n jobs with processing times p1 

p2  . . .  pn. Every job is controlled by a player. The player controls on which
machine the job is scheduled.

There are various possible cost functions. One option is that a job is only
finished when all jobs on the machine are finished. Every job then incurs a cost
equal to the sum of processing times of the jobs on that machine. Another option
is that on each machine, jobs are scheduled from shortest to longest processing
time, and the cost of a job is the time it gets completed.

We can represent a strategy profile as in Figure 2.4, where the numbers in
the rectangles indicate the index of the job, and the size represents its processing
time.

Equilibria

We are interested in the stable outcomes of games. In the Prisoner’s Dilemma, as
defined in Figure 2.3(a), it does not matter for player 2 if player 1 chooses Silent

24 Chapter 2. Preliminaries

or Betray, it is always in their best interest to play Betray. The same holds for
player 1.

Definition 2.4.4. Let � be a game. Let si, ti 2 Si be two strategies of player i.
Strategy si (weakly) dominates ri if for all s�i 2 S�i

ci(si, s�i) � ci(ri, s�i).

and for at least one s�i this inequality is strict. The strategy si strictly dominates
ri if the above inequality is strict for all s�i 2 S�i.

A strategy si 2 Si is (weakly) dominating if it (weakly) dominates all other
strategies ri 2 Si. A strategy profile s 2 S consisting of only (weakly) dominating
strategies is called a (weakly) dominant strategy equilibrium.

In the Prisoner’s Dilemma (Betray,Betray) is a dominant strategy equilib-
rium.

Consider the machine scheduling instance in Figure 2.4 where the cost of a job
is the sum of processing times of jobs on that machine

1 1 2

2 3 4

Figure 2.4: Machine scheduling example

If job 3 or 4 (currently cost 4) switches to machine 1, there is no gain as
they will have the same cost. For jobs 1 and 2 there is also no incentive to
change machines as that will increase their cost. So again we are in some sort of
equilibrium. But, job 4 choosing machine 2 is not a weakly dominant strategy
because if the other three jobs are already on machine 2 choosing machine 1 is
the better strategy.

The game is actually in a pure Nash Equilibrium: no player has an incentive
to unilaterally deviate from their strategy.

Definition 2.4.5. A pure Nash Equilibrium (PNE) is a strategy profile s 2 S

such that for every player i

ci(s)  ci(s�i, s
0
i
) for all s0

i
2 Si.

Write PNE(�) for the set of all pure Nash equilibria of a strategic game �.

So, in the Prisoner’s Dilemma, the strategy profile (Betray, Betray) is a PNE
(any weakly dominant equilibrium is also a PNE), and in the machine scheduling
game, the strategy profile (1, 1, 2, 2), where players 1 and 2 choose machine 1 and
players 3 and 4 choose machine 2 is a PNE. However, the Matching Pennies game

2.4. Algorithmic Game Theory 25

@
@@
1

2

Stop

Go

Stop Go

0 0

0 �1

�1 99

0 99

Figure 2.5: Traffic Light game

in Figure 2.3(b) does not have a PNE. Player 1 wants to play the same strategy as
player 2, while player 2 wants to play a different strategy from player 1. Instead,
we can allow players to randomize their strategy.

Let �i be a probability distribution over Si for all i. We call �i a mixed strategy
for player i and write � = (�1, . . . , �n) for the mixed strategy profile. This strategy
profile is the product distribution of the individual mixed strategies: players are
randomizing independently of each other. Write Es⇠�[ci(s)] for the expected cost
of player i when all the players randomize their strategy according to �.

Definition 2.4.6. A mixed Nash Equilibrium (MNE) is a randomized strategy
profile � = (�1, . . . , �n) such that for every player i

Es⇠�[ci(s)]  Es�i⇠��i [ci(s�i, s
0
i
)] for all s0

i
2 Si.

Write MNE(�) for the set of all mixed Nash equilibria of a strategic game �.

Observe that every pure Nash equilibrium is a mixed Nash equilibrium where
every player plays a single strategy with probability 1.

A strategy profile in which no player wants to unilaterally deviate in the
Matching Pennies game is when both players play both strategies with probability
1
2 .

As we saw for Matching Pennies, a pure Nash equilibrium does not always
exist. However, for mixed Nash equilibria, Nash (1951) showed that any finite
strategic game has at least one.

Theorem 2.4.7. ((Nash, 1951)). Any finite game has a mixed Nash equilibrium

In a mixed strategy profile, every player is randomizing independently. This
does not always give us enough freedom to express any strategy profile that might
be considered stable. For example, take a look at the Traffic Light game in
Figure 2.5, in which two cars are approaching an intersection and can choose to
either Stop or Go.

There are two pure Nash equilibria (Stop, Go) and (Go, Stop), but in both,
one of the cars has cost 0 (while the other has cost �1). If we allow mixed Nash

26 Chapter 2. Preliminaries

equilibria, then, next to the two pure Nash equilibria, there is also the strategy
profile where both players choose Stop with probability 99/100, and Go with
probability 1/100. Both players have a cost of 0, and more importantly, there is a
probability of 1/10000 to get a crash.

Preferably, we would like the strategy profile in which the strategies (Stop, Go)
and (Go, Stop) are both played with probability 0.5, to be a stable outcome. But,
this is impossible with a mixed strategy profile: if players randomize independently
and they have to randomize both over Stop and Go, the strategies (Stop, Stop),
and (Go, Go) will also get positive probability.

What about a traffic light? When one car has a green light, the other car will
surely stop for its red light. This analog is what is achieved with the definition of
a correlated equilibrium.

Definition 2.4.8. Let � be a probability distribution over S = S1 ⇥ · · · ⇥ Sn.
The profile � is called a correlated equilibrium (CE) if for every player i and for
every deviation function mi : Si ! Si it holds that

Es⇠�[ci(s)]  Es⇠�[ci(s�i,mi(si))].

Write CE(�) for the set of all correlated equilibria of a strategic game �.

For all strategy profiles s ⇠ � that suggest player i to play si, it is in player i’s best
interest to play si instead of some other strategy mi(si). Consider the correlated
equilibrium which selects both (Stop, Go) and (Go, Stop) with probability 1

2 in the
Traffic Light game. If player 1 observes Stop, then they know player 2 observed
Go, and so it is in their best interest to Stop.

Finally, there is the concept of a coarse correlated equilibrium. In this case, a
player is allowed to do a fixed deviation instead of a deviation that depends on
the draw of the distribution. It arises when we approach the game from an online
learning perspective. If players use a no-regret strategy they will start playing
some mixed strategy. Taking the average over time of all the mixed strategies
is approximately a coarse correlated equilibrium (Hannan, 1957; Roughgarden,
2016).

Definition 2.4.9. Let � be a probability distribution over S = S1 ⇥ · · · ⇥ Sn.
The profile � is called a coarse correlated equilibrium (CCE) if for every player i
it holds that

Es⇠�[ci(s)]  Es�i⇠��i [ci(s�i, s
0
i
)] for all si 2 Si.

Write CCE(�) for the set of all coarse correlated equilibria of a strategic game �.

Since any pure Nash equilibrium is also a mixed Nash equilibrium, any mixed
Nash equilibrium is also a correlated equilibrium, and any correlated equilibrium
is also a coarse correlated equilibrium, we have the following chain of inclusions:

PNE(�) ✓ MNE(�) ✓ CE(�) ✓ CCE(�). (2.2)

2.4. Algorithmic Game Theory 27

Inefficiency

A central question in algorithmic game theory is how inefficient equilibria are.
For example, in the machine scheduling instance, we observed that the strategy
profile in Figure 2.4 is a Nash equilibrium. The last job finishes at time 4. What
if jobs 1 and 3 are scheduled on one machine and jobs 2 and 4 on the other? Then
the last job finishes at time 3. The ‘cost’ of letting players play strategically is a
factor 4

3 larger than the optimal cost.
To compare strategy profiles on a global level, we need a social cost function:

SC : S1 ⇥ · · · ⇥ Sn ! R. A socially optimal outcome is then a strategy profile
minimizing the social cost function. We denote the socially optimal outcome by
s⇤, and in the remainder of this section, we assume SC(s⇤) > 0.

Given a strategic game �, the pure price of anarchy (PNE-PoA) is the largest
relative gap between the social cost of a pure Nash equilibrium and the optimal
social cost.
Definition 2.4.10. For a strategic game � with PNE(�) 6= ;, we define the pure
price of anarchy as

PNE-PoA(�) =
maxs2PNE(�) SC(s)

SC(s⇤)
.

We do not have to restrict ourselves to the set of pure Nash equilibria. We
analogously define the price of anarchy for mixed, correlated and coarse correlated
equilibria.
Definition 2.4.11. Let X 2 {PNE,MNE,CE,CCE}. For a strategic game �
with X(�) 6= ; we define the X-PoA as

X-PoA(�) =
maxs2X(�) SC(s)

SC(s⇤)
.

Assuming that X(�) 6= ; for X 2 {PNE,MNE,CE,CCE}, we can use (2.2)
to see that the following chain of inequalities holds:

PNE-PoA(�)  MNE-PoA(�)  CE-PoA(�)  CCE-PoA(�).

Often, we are interested in the price of anarchy of a class of games. In particular,
we are interested in the worst-case price of anarchy. Let G be a class of games.
For example, the class of all machine scheduling games, any number of jobs, any
number of machines, and any processing times of the jobs. The price of anarchy
with respect to X 2 {PNE,MNE,CE,CCE} of this class of games is

X-PoA(G) = sup
�2G

X-PoA(�).

A cost-minimization game is a game in strategic form together with a social
cost function that is the sum of the individual costs, i.e., SC(s) =

P
i2N ci(s). A

powerful technique to prove bounds on the price of anarchy in cost-minimization
games is smoothness (Roughgarden, 2015).

28 Chapter 2. Preliminaries

Definition 2.4.12. A cost-minimization game � is (�, µ)-smooth, with � > 0,
µ < 1, if for every two strategy profiles s, s⇤ 2 S it holds that

X

i2N

ci(s
⇤
i
, s�i)  � · SC(s⇤) + µ · SC(s).

If a cost-minimization game is (�, µ)-smooth, then for a pure Nash equilibrium s
and optimal strategy profile s⇤ we have

SC(s) =
X

i2N

ci(s)



X

i2N

ci(s
⇤
i
, s�i)

 � · SC(s⇤) + µ · SC(s), (2.3)

where we first make use of the definition of SC(s), secondly apply the pure Nash
equilibria conditions for every player, and finally, use the assumption that the
game is (�, µ)-smooth. Rewriting this implies

SC(s)

SC(s⇤)


�

1� µ
.

Hence, the pure price of anarchy is at most �

1�µ
.

The robust price of anarchy is the best price of anarchy bound that can be
proved via the smoothness technique.

Definition 2.4.13. The robust price of anarchy of a cost-minimization game � is

RPoA(�) = inf

⇢
�

1� µ
| � is (�, µ)-smooth,� > 0, µ < 1

�
.

We required the inequality in (2.3) to hold for every combination of s, s⇤, not only
for a pure Nash equilibrium and optimal solution. This extra requirement makes
it possible to extend the price of anarchy bound up to coarse correlated equilibria,
which Roughgarden (2015) did in the proof of the following extension theorem.

Theorem 2.4.14. (Roughgarden, 2015). For every cost-minimization game �

CCE-PoA(�)  RPoA(�).

2.5 Mechanism Design

In algorithmic game theory, we are given a game and try to analyze its outcomes.
In mechanism design, we start with preferable outcomes and try to design the

2.5. Mechanism Design 29

game such that it ends up in one of these outcomes. It is therefore also sometimes
called reverse game theory.

In this thesis, we are mostly interested in mechanisms in which we can use
money to create incentives. We have a set of alternatives A and a set of n players
N = [n]. Each player i 2 N has a valuation function vi : A! R which specifies
how much the player values the various alternatives. For each player i there is
a set Vi ✓ RA that contains all the possible valuation functions for player i. We
define V = V1 ⇥ · · ·⇥ Vn.

Definition 2.5.1. A (direct-revelation)4 mechanism M = (f,p) consists of a
social choice function f : V ! A and payments functions p1, . . . , pn : V ! R.

The players reveal some bid bi 2 Vi (which may be different from their actual
vi). Let b = (b1, . . . , bn). Then the mechanism chooses some alternative f(b) and
specifies an amount of money pi(b) that each player has to pay (or receive if pi(b)
is negative). The utility that player i obtains is given by

ui(b) = vi(f(b))� pi(b).

This utility function is called quasilinear.
The social welfare of a mechanism is the overall valuation obtained by the

bidders, i.e.,
SW(b) =

X

i2N

vi(f(b)).

Complete and Incomplete Information. We are mainly interested in the
complete information setting in which each player knows the utility functions
and possible valuations of all players, but the private valuation of each player
is unknown to the others. In, for example, the incomplete information model
of Harsanyi (1967) the valuation function vi of player i is drawn from Vi according
to some probability distribution ⇡i : Vi ! [0, 1]. Let ⇡ = ⇡1⇥ · · · ⇡n be the product
distribution of ⇡1, · · · , ⇡n. The distribution ⇡ is publicly known, but the drawn
valuations profiles v1, . . . , vn are private information. The players can use this
knowledge to determine their bidding strategy. Some results in this thesis can be
extended to this incomplete information setting, and we will mention it when this
is the case. But, as mentioned, we are mainly interested in a prior-free setting
where the prior distribution of the agent’s valuation function is unknown.

4A general mechanism does not need to be direct. There can be multiple rounds of interaction
between the players and the mechanism designer. At first glance, one may believe this gives
much more flexibility. However, due to the revelation principle (Myerson, 1981), we know that
if for a social choice function f there exists a general mechanism such that f is implemented
in dominant strategies, i.e., the players make optimal strategic decisions and the mechanism
selects the outcome it would have picked knowing the players’ private information, then there
also exists a truthful (defined below) direct-revelation mechanism that implements f . So we will
only consider direct-revelation mechanisms.

30 Chapter 2. Preliminaries

Most of the mechanisms we consider are auctions. In particular, sealed-bid
auctions. In a sealed-bid auction, the players submit their bids privately to the
auctioneer such that the other players do not learn about the bid before they
submit their own bid. It is possible that after the auction completes, bids are
published for verification purposes.

Example 2.5.2. Consider a sealed-bid single-item auction with n players. The
set of alternatives for this auction is A = N , where outcome i 2 A implies that
player i receives the item. Each player only values winning and has a value of
0 for not winning. Instead of a valuation function vi we have a value vi 2 R
denoting the value that player i has for winning the item. The players submit bids
b = (b1, . . . , bn), and the social choice function f chooses the outcome i

⇤, where i
⇤

is the index of the player with the highest bid in b. The winning player has to
pay some value p. Hence, if player i wins and has to pay p, their utility is vi � p,
while if player i does not win, they have a utility of 0.

To maximize the social welfare, the item should end up with the player who
values it the highest. But we do not know the vi’s, we only know what the players
disclose to the mechanism, i.e., the bi’s. Yet, we still want a mechanism that
cannot be strategically manipulated and makes sure we select the player with the
highest vi. We can use the payments to incentivize the players to do what we
want.

Suppose the winning player has to pay what they bid. If the second-highest
bid was strictly smaller than the highest bid, the winner had an incentive to report
a bid that is smaller than their actual valuation. But, of course, the winning
bidder does not know what the second-highest bid will be. A way to incentivize
the winning bidder to still bid their actual valuation is to charge the highest losing
bid as payment.

This is also known as the Vickrey (second-price) auction and it has the following
nice property.

Proposition 2.5.3. Consider a sealed-bid single-item auction where the payment
of the winner is equal to the second-highest bid. For every b 2 V and every vi 2 Vi

it holds that ui(vi, b�i) � ui(b).

This property, where the utility of player i is maximized by revealing their
true valuation is called truthfulness (or incentive-compatible, or strategyproofness).
More generally:

Definition 2.5.4. A mechanism M = (f,p) is called truthful if for each player i
with valuation function vi 2 Vi, for all b 2 V it holds that

vi(f(vi, b�i))� pi(vi, b�i) = ui(vi, b�i) � ui(b) = vi(f(bi, b�i))� pi(bi, b�i).

Another desirable property is that it is never better for a player to not
participate in the auction at all. We capture this by requiring that a player never
has to pay more than their bid.

2.5. Mechanism Design 31

Definition 2.5.5. A mechanism M = (f, p) is called individually rational (IR) if
for all possible reported valuation functions b 2 V it holds that pi(b)  bi(f(b)).

Depending on the situation, it makes sense that players do not receive money
from the mechanism. If that is true, we call the mechanism pay-only or say that
it has the no positive transfers property.

Definition 2.5.6. A mechanism M = (f, p) has the no positive transfers (NPT)
property if for all possible reported valuation functions b 2 V it holds that
pi(b) � 0.

A family of mechanisms that are truthful and maximize social welfare is the
family of Vickrey-Clarke-Groves mechanisms:

Definition 2.5.7. A mechanism M = (f,p) is called a Vickrey-Clarke-Groves
(VCG) mechanism if the following two conditions are satisfied:

1. f(b) 2 argmaxa2A
P

i2N bi(a);

2. for every player i 2 N there is a function hi : V�i ! R such that

pi(b) = hi(b�i)�
X

j 6=i

bj(f(b)).

VCG mechanisms allow for different instantiations of functions hi to define
the payments of the players. However, if the valuation functions are non-negative
and one additionally insists on satisfying both NPT and IR, then there remains a
unique payment rule due to Clarke (1971): A VCG mechanism (f,p) implements
the Clarke pivot rule if for every player i 2 N we have that hi(b�i) =

P
j 6=i

bj(a�i),
where a

�i
2 argmaxa2A

P
j 6=i

bj(a) is an alternative that maximizes the social
welfare if player i would not be present.

The following is due to (Clarke, 1971; Groves, 1973; Vickrey, 1961).

Proposition 2.5.8. Every VCG mechanism is truthful. The VCG mechanism
that uses the Clarke pivot rule satisfies NPT. Further, if all valuation functions of
the players are non-negative, then it also satisfies IR.

Inefficiency of Mechanisms

Consider the first-price auction. Although it is not truthful, it is used a lot in
practice. Because it is used, it is important to understand the inefficiencies that
arise.

If the mechanism M = (f, p) is fixed we can view this is a game where every
player i wants to maximize their utility ui, and their strategy set is Si = Vi.

32 Chapter 2. Preliminaries

The definitions of PNE, MNE, CE and CCE carry over from the cost mini-
mization setting except that inequalities are reversed. For example, a bid vector
b 2 V is a PNE if for all i 2 N

ui(bi, b�i) � ui(b
0
i
, b�i) for all b0

i
2 Vi.

We prefer to keep the price of anarchy a number that is at least 1 and thus, for
X 2 {PNE,MNE,CE,CCE} it is defined as

X-PoA(M) =
SW(b⇤)

minb2X(M) SW(b)
,

where b⇤ 2 V is a bidding profile maximizing the social welfare.

Example 2.5.9. Consider a single-item second-price auction with two players.
Player 1 has a value of v1 = 1 while player 2 has a value of v2 = ✏ (for some
small ✏ > 0) for winning the item. The optimal social welfare of 1 is achieved
when player 1 wins with, for example, the bidding profile b⇤ = (1, ✏). Consider
the bidding profile b = (✏, 1). Player 2 wins and pays ✏ for a utility of ✏� ✏ = 0.
While player 1 loses and has a utility of 0. The social welfare is ✏. Both players
have no incentive to deviate. Hence,

PNE-PoA =
SW(b⇤)

minb2PNE SW(b)
�

1

✏
.

Letting ✏! 0, gives us an instance with PNE-PoA!1.

To prevent this pathological example often a no-overbidding assumption is
made. In a single-item auction, this means that bi  vi for all i 2 N . Assuming
the no-overbidding assumption the price of anarchy of a single item second-price
auction is 1. In Chapter 6 we will see the effect of the no-overbidding assumption
on multi-unit auctions.

Chapter 3

Approximate Pricing in Networks

3.1 Introduction

One of the most prominent ways to quantify which nodes are more ‘important’
than others in a network is with betweenness centrality (Freeman, 1977). The
more frequently a node appears as an intermediate node on the shortest paths
between all pairs of nodes in the network, the higher its betweenness centrality.
In many applications, it is useful to know which nodes have a high betweenness
centrality. For example, in a telecommunications network, the nodes with high
betweenness centrality will have more information passing through them, giving
them more control. In social networks, the nodes with high betweenness centrality
correspond to highly influential people (Das, Samanta, and Pal, 2018). In the
international tax treaty network, betweenness centrality can be used to identify
conduit countries, i.e., intermediary countries on a route via which corporations
send their money (Polak, 2014; Riet and Lejour, 2018).

Depending on what the network represents, it can be beneficial for a node to
put effort into increasing its betweenness centrality. For example, if a country
is able to increase the amount of money that is sent through it in a worldwide
financial network, it can attract more jobs in the financial sector. When a person
in a social network improves their betweenness centrality, they become more
influential and therefore more appealing to advertisers. One way of increasing the
betweenness centrality of a node is by inserting edges (Bergamini et al., 2018).
Another one, on which we focus in this chapter, is to change the cost of edges in
the network.

The latter approach is well-motivated. For example, when an airport lowers
its fees for airlines to use the airport, this can attract more flights and thus more
passengers who will spend more on shopping. But, clearly, if the loss in airport fees

33

34 Chapter 3. Approximate Pricing in Networks

is higher than the increase in revenue from the shopping, then lowering the prices
is not worth it. The same holds for a country lowering taxes in an international
tax treaty network: lowering the tax rate increases the money flowing through the
country, possibly attracting more jobs, but if the tax income goes down too much,
it is not profitable. In these settings, one wants to maximize revenue instead of
betweenness centrality.

In this chapter, we take the perspective of a single node in a network. In the
network, there are various commodities and each commodity has a certain flow
demand that needs to be transported from a source to a destination node. We
view this as a (multi-commodity) flow that sends flow from source nodes to their
respective destination nodes along shortest paths. If there are multiple shortest
paths from a source to a destination node the flow splits uniformly. Suppose a
designated node u can change the cost of its outgoing edges. Changing the costs
will change (part of) the shortest paths, and this will indirectly redirect (part of)
the flows going through the network. For every outgoing edge, the node u earns
revenue equal to the cost of that edge multiplied by the amount of flow going
through it. The node u either wants to maximize the flow going through it or
maximize its revenue.

To get intuition for the context, we take a look at the following example:

s1

u

s2

t1

t2

7
3

3
4

3

4

(a) Example graph

u

t1

t2
0

0

(b) Optimal costs

for maximizing flow

u

t1

t2
1

3

(c) Optimal costs for

maximizing revenue

Example 3.1.1. Consider the graph in Figure 3.1(a). Suppose we have two
commodities of weight one. One starts in s1 and ends in t1 and the other starts in
s2 and ends in t2.

Currently, both s1, t1-paths for the first commodity have equal costs, so the
flow splits evenly. For the second commodity, taking the edge that goes directly
from s2 to t2 is the cheaper option.

Node u can change the cost of the edges (u, t1) and (u, t2). It is easy to verify
that setting the cost of both edges to 0 maximizes the flow going through u, while
setting the cost of (u, t1) to 31 and of (u, t2) to 1 maximizes the revenue.

1For reasons outlined in Section 3.2.2 the costs are assumed to be integers.

3.1. Introduction 35

In the example above, we could change both outgoing edges, but we might
only have the resources to change the cost of one edge. In that case, we have
the extra difficulty of choosing on which edge we want to change the cost. Let ⌧

be the number of edges for which we are allowed to change the cost. For both
objectives and for different values of ⌧ we get different results. Depending on
whether ⌧ is one, equal to the outdegree of u or some number in between, we show
that some versions are polynomial-time solvable while others are NP-hard. In the
latter case, we resort to approximation algorithms.

We study approximation algorithms because they give us a tool to find near-
optimal solutions in polynomial time for problems for which we do not expect
an optimal polynomial-time algorithm to exist, such as, for example, NP-hard
problems. Approximation algorithms complement hardness results perfectly as
they take the same worst-case perspective. They can both serve as a mathemati-
cally rigorous basis on which to study heuristic algorithms and give inspiration
for heuristics that can be used in practice. For a more elaborate exposition on
why one wants to study approximation algorithms, we refer to Williamson and
Shmoys (2011).

We do not only prove NP-hardness but also show that some versions are
inapproximable for various approximation ratios. The approximation factors of
the approximation algorithms we derive (almost) match the inapproximability
factors, showing that our algorithms are essentially best possible in terms of
approximation guarantees.

3.1.1 Our Contributions
We introduce and study the following Network Pricing Problem (NPP): We
are given a directed graph G = (V,E) with non-negative edge costs (ce)e2E, k
commodities (si, ti, wi)i2[k], a designated node u 2 V and a natural number ⌧ .
Each commodity i 2 [k] is represented by a source-target pair (si, ti) 2 V ⇥ V

and demand (or weight) wi > 0, specifying that wi units of flow are sent from
si to ti along the shortest si, ti-paths (with respect to (ce)e2E). The weight wi

of each commodity i is split evenly over all the shortest si, ti-paths. Let d
+(u)

denote the number of outgoing edges of u. Suppose we can change the costs of
⌧ outgoing edges of u with 1  ⌧  d

+(u), while the costs of all other edges
remain fixed; we also say that we price (or tax) the edges of u. Our goal is to
optimally price ⌧ outgoing edges of u such that (i) the total flow passing through
u is maximized (FLOW-NPP), or (ii) the total revenue (i.e., flow times tax)
through u is maximized (REV-NPP).

As it turns out, the problems behave rather differently in terms of hardness
and approximability, depending on the objective under consideration and the
parameter ⌧ . More specifically, our main findings are as follows:

1. We show that FLOW-NPP can be solved in polynomial time when a constant

36 Chapter 3. Approximate Pricing in Networks

number of edges or almost all edges of u can be priced.

2. In contrast, we prove that FLOW-NPP is NP-hard and (1 � 1/e)-
inapproximable (even for the special case of unit demands) if ⌧ is part
of the input. Further, we show that a natural greedy algorithm achieves an
approximation guarantee of (1� 1/e) (which is best possible).

3. We show that REV-NPP can be solved in polynomial time if only one
edge can be priced. On the other hand, REV-NPP becomes NP-hard and
(1 � 1/e)-inapproximable if ⌧ is part of the input. We also show that the
greedy algorithm might perform arbitrarily badly in this case.

4. We prove that already in the unit demand setting, REV-NPP is highly
inapproximable if all outgoing edges of u can be priced; more specifically, we
prove that the problem is both 1/d+(u)1/2�"-inapproximable and 1/ log1�✏(k)
in this case.

5. In light of this intractability result, we derive algorithms for the following
special cases of REV-NPP.

• First, we show that the single-commodity case is polynomial-time
solvable. This result also constitutes an important building block for
our uniform pricing algorithms (i.e., all edges are priced the same).

• Then, we focus on the unit demand setting and derive a (tight) Hk-
approximate uniform pricing algorithm.

6. Finally, we show that our uniform pricing algorithm extends to the gen-
eral setting and provides a max{1/d+(u), 1/k}-approximation algorithm for
REV-NPP.

Our results for FLOW-NPP mostly follow by using standard arguments for
submodular function maximization. In contrast, we need to establish several new
ideas and exploit structural insights to derive our results for REV-NPP (which
constitute the main technical contributions of this chapter).

We conclude with some (preliminary) experimental findings on an international
tax treaty network based on real data. Our experiments indicate that our uniform
pricing algorithm computes tax rates that would significantly increase the current
tax revenue of the Netherlands (by a factor 68) and is at least within 51% of
the optimal revenue (which is much better than the worst-case approximation
guarantee suggests).

3.1. Introduction 37

3.1.2 Related Work

The problem of increasing the centrality of a node in a network has been widely in-
vestigated for different centrality measures. For example, boosting the popularity of
web pages by increasing their page rank has been studied intensively (Avrachenkov
and Litvak, 2006; Olsen and Viglas, 2014), with a particular focus on “fooling”
search engines (e.g., through link farming (Wu and Davison, 2005)). The problem
has also been considered for other centrality measures such as closeness central-
ity (Crescenzi, D’Angelo, et al., 2015, 2016), betweenness centrality (Bergamini
et al., 2018), coverage centrality (D’Angelo, Olsen, and Severini, 2019), eccen-
tricity (Demaine and Zadimoghaddam, 2010; Perumal, Basu, and Guan, 2013),
average distance (Meyerson and Tagiku, 2009) and some measures related to the
number of paths passing through a given node (Ishakian et al., 2012). Below,
we give a few representative references only; most of these works focus on edge
additions to increase the centrality.

Meyerson and Tagiku (2009) give a constant-factor approximation algorithm
for the problem of minimizing the average shortest-path distance between all pairs
of nodes by adding shortcut edges. Several algorithms are proposed by Papagelis,
Bonchi, and Gionis (2011) and Parotsidis, Pitoura, and Tsaparas (2015) and
are experimentally shown to perform well in practice. Bauer et al. (2012) study
the problem of minimizing the average number of hops in shortest paths. They
prove that the problem cannot be approximated within a logarithmic factor and
provide respective approximation algorithms. Bilò, Gualà, and Proietti (2012)
and Demaine and Zadimoghaddam (2010) consider the problem of minimizing the
diameter of a graph and provide constant factor approximation algorithms.

The problem of maximizing revenue by pricing the edges of a graph has been
studied in several works. These problems are known under different names, such as
the network (or highway) pricing problem (Brotcorne et al., 2011; Labbe, Marcotte,
and Savard, 1998), but also as Stackelberg network pricing games (Briest, Hoefer,
and Krysta, 2012; Roch, Savard, and Marcotte, 2005).

Labbe, Marcotte, and Savard (1998) use a bilevel optimization model for taxing
a given subset of the edges in a network to maximize the revenue that the leader
receives from the followers. Among other results, they prove that the problem is
NP-hard for single-commodity instances, exploiting negative edge costs and lower
bound restrictions on the taxes. In subsequent work, Roch, Savard, and Marcotte
(2005) improve upon this result and show NP-hardness for non-negative edge costs
and no lower bound restrictions. They also provide an approximation algorithm
for the single-commodity case.

Briest, Hoefer, and Krysta (2012) consider the following Stackelberg setting:
There are several buyers who are interested in buying certain (pre-determined)
subgraphs of the network and a seller (network owner) who can price a given subset
of the edges. Once the seller fixes the prices, the buyers purchase the cheapest
subgraph they are interested in. The goal is to maximize the total revenue obtained

38 Chapter 3. Approximate Pricing in Networks

from the buyers. The authors show that a uniform price for all edges guarantees
the seller a revenue within logarithmic factor of the optimal revenue for unweighted
followers. A more specific problem was considered by Briest, Chalermsook, et al.
(2010), where each buyer i is interested in purchasing a subgraph that contains
a shortest si, ti-path. Other special cases were considered by Gamzu and Segev
(2010), Grandoni and Rothvoss (2016), and Guruswami et al. (2005).

In general, there is a vast literature on the problem of pricing multiple items so
as to maximize the revenue obtained from (possibly budget-constrained) buyers.
There is a close connection between our problem and the problem of determining
envy-free prices (Guruswami et al., 2005) because envy-freeness naturally corre-
sponds to choosing the cheapest available option. Especially, we exploit known
hardness results for the special cases of the unit-demand pricing problem and the
single-minded pricing problem (see (Briest, 2008; Chalermsook, Laekhanukit, and
Nanongkai, 2013; Guruswami et al., 2005)) to establish the inapproximability
results of our (more restrictive) network pricing problem.

Our problem differs from the ones mentioned above because (i) the seller
corresponds to a given node u who can set the prices of its outgoing edges only,
and (ii) the revenue that u obtains depends on the proportion of the demand of
each commodity routed along shortest paths through u.

3.2 Preliminaries

We formally define the Network Pricing Problems considered in this chapter.
Suppose we are given a directed graph G = (V,E) with non-negative edge costs
(ce)e2E, k � 1 commodities (si, ti, wi)i2[k], a designated node u 2 V , and a
natural number ⌧ . Each commodity i 2 [k] is specified by a source-target pair
(si, ti) 2 V ⇥ V with si 6= ti and a demand (or weight) wi > 0. The interpretation
here is that each commodity i 2 [k] sends a total of wi units of flow from the source
node si to the target node ti. The demand wi is split evenly along all (simple2)
shortest si, ti-paths with respect to the edge costs (ce)e2E (formal definitions are
given below). We assume that for each commodity i 2 [k], si, ti 6= u and there is
at least one si, ti-path that passes through u. This assumption is without loss of
generality as otherwise the commodity is irrelevant (as will become clear below)
and can be removed.

We introduce some more notation. Let n and m be the number of nodes and
edges of G, respectively. Recall that by ⇡(x, y) we denote the number of shortest
x, y-paths with respect to (ce)e2E. For ease of notation, for every commodity
i 2 [k], we use ⇡

i = ⇡(si, ti) to refer to the number of shortest si, ti-paths. Further,
we define ⇡

i

u
as the number of shortest si, ti-paths that pass through node u 2 V ,

2Recall that a path is said to be simple if it does not contain any cycles. Throughout the
chapter, whenever we refer to a shortest path we implicitly mean a simple shortest path.

3.2. Preliminaries 39

where si, ti 6= u. Given an outgoing edge e = (u, v) 2 E of u, we denote by ⇡
i

e
the

number of shortest si, ti-paths that pass through e. Observe that ⇡i

u
=
P

e2�+(u) ⇡
i

e
.

We can now define the flow that passes through the outgoing edges of u: Recall
that the demand wi of each commodity i 2 [k] is assumed to be split evenly over
all shortest si, ti-paths. Formally, the flow f

i

e
of an outgoing edge e = (u, v) of

commodity i is defined as f
i

e
= wi · ⇡

i

e
/⇡

i. The total flow passing through node u

with respect to commodity i is then

f
i

u
=

X

e2�+(u)

f
i

e
=

X

e2�+(u)

wi ·
⇡
i

e

⇡i
= wi ·

⇡
i

u

⇡i
.

Further, we define fe =
P

i2[k] f
i

e
as the total flow on edge e. The total flow of

node u is then defined as

fu =
X

e2�+(u)

fe =
X

i2[k]

X

e2�+(u)

f
i

e
=
X

i2[k]

wi ·
⇡
i

u

⇡i
=
X

i2[k]

f
i

u
.

Another notion that is of interest in this chapter is the following one: The total
revenue of node u is defined as

ru =
X

e2�+(u)

fe · ce =
X

i2[k]

X

e2�+(u)

f
i

e
· ce =

X

i2[k]

X

e2�+(u)

wi ·
⇡
i

e

⇡i
· ce.

To get intuition we will show some of the above values by means of an example.

1

2

3

4

5

6

7

8

5 9 3

6 4 5

8 7 3
2 6 6

Figure 3.2: Example graph

Example 3.2.1. Consider the graph in Figure 3.2. Suppose we have two com-
modities (s1, t1, w1) = (1, 8, 3), (s2, t2, w2) = (2, 7, 2).

Then, ⇡1 = ⇡(1, 8) = 4 as the shortest path has a length of 17 and there are
four of them. Two of the four paths go through node 5, so ⇡

1
5 = 2. Also, ⇡1

{5,8} = 2
because two paths go through edge {5, 8}.

As commodity 1 has a weight of 3, we can compute f
1
5 = 3 · 2

4 = 3
2 .

It can be verified that f 2
5 = 2 · 1

1 = 2. So, the total flow going through node 5
is f5 =

3
2 + 2 = 7

2 .
Focusing on an edge, f 1

{3,5} =
3
4 and f

2
{3,5} = 2. Thus f{3,5} =

11
8 .

40 Chapter 3. Approximate Pricing in Networks

We can also compute the revenue of node 3. Edge (3, 5) has a flow of 11
8

yielding 9 ·
11
8 = 99

8 while edge (3, 6) has a flow of 3
4 giving 7 ·

3
4 = 21

4 . Hence,
together this adds up to r3 =

99
8 + 21

4 = 141
8 .

Suppose we can change the costs of ⌧ 2 [d+(u)] outgoing edges of u; we also
say that we can price (or tax) ⌧ outgoing edges of u. How would we set the edge
costs such that the total flow (or revenue) of u is maximized? More precisely,
our goal is to determine a set S ✓ �

+(u) with |S|  ⌧ and non-negative costs
c̄S = (c̄e)e2S for the edges in S such that fu (or ru) with respect to the combined
edge costs (c̄S, c�S) is maximized, where we use c�S = (ce)e2E\S to refer to the
(original) costs of the edges in E \ S that remain unchanged. For convenience, we
also write c̄e = c̄{e}. We also write pS when we set the cost of all edges in S to
p 2 R [{1}. We use fu(c̄S) and ru(c̄S) to refer to the total flow and revenue of
u, respectively, with respect to (c̄S, c�S).

3.2.1 Network Pricing Problems
This gives rise to the following two optimization problems:

NETWORK PRICING PROBLEM (NPP)

Given: A directed graph G = (V,E) with non-negative edge costs (ce)e2E, k
commodities (si, ti, wi)i2[k], a designated node u 2 V and a number
⌧ 2 [d+(u)].

Goal: Determine a set S ✓ �
+(u) with |S|  ⌧ and edge costs c̄S = (c̄e)e2S

such that fu(c̄S) is maximized (FLOW-NPP), or ru(c̄S) is maximized
(REV-NPP)

Note that if the commodities correspond to all possible node pairs of the graph
(not involving u as a source or target node) and wi = 1 for all i, then the flow
through u is the betweenness centrality of u scaled by n(n � 1). In particular,
in this case, FLOW-NPP can be interpreted as the problem of maximizing the
betweenness centrality of u.

In our discussion below, we distinguish the following three cases:

1. ⌧ = 1: We are allowed to change the cost of only one outgoing edge of u.

2. 1 < ⌧ < d
+(u): We are allowed to change the cost of ⌧ outgoing edges of u.

3. ⌧ = d
+(u): We are allowed to change the cost of all the outgoing edges of u.

3.2.2 Observations and Assumptions
We continue with some basic observations. A pathological case we want to avoid
in REV-NPP is that we can charge arbitrarily high costs.

3.3. Flow Maximization Problem 41

Assumption 3.2.2. For every commodity i 2 [k] there is at least one si, ti-path
that does not pass through u.

s u t
1

2

?

Figure 3.3: Example graph

Throughout the chapter, we assume that the edge costs are non-negative
integers (as they may correspond to monetary units, percentages of a fixed
precision, etc.).3 The following example shows that this assumption is needed if
one wants to be able to determine edge costs that realize the optimal revenue.
Consider the instance depicted in Figure 3.3 and assume that there is a unit
demand to be sent from s to t. Suppose we can impose an arbitrary non-negative
rational cost c̄e 2 Q�0 on the edge e = (u, t). If we set c̄e = 1, then the revenue
of u becomes 1

2 . Otherwise, if we set c̄e = 1� " for a small rational " > 0, then
the revenue of u is 1� ". It follows that REV-NPP does not admit an optimal
solution.

Finally, we need to be able to efficiently compute how the flow splits. If there
are zero cost cycles this may become infeasible because the problem of counting
the number of simple s, t-paths in a directed graph is #P -complete (Valiant, 1979).
We thus make the following assumption:

Assumption 3.2.3. The edge costs (ce)e2E are non-negative integers and the
graph does not contain any zero cost cycles, even if all outgoing edges of u are set
to zero.

Making Assumption 3.2.3, it is not hard to see that we can compute all relevant
flows (as defined above) in polynomial time by running an adapted version of
Dijkstra’s shortest path algorithm (Dijkstra, 1959) for each commodity i 2 [k]:
In addition to the distance label that Dijkstra’s algorithm maintains for each
node v 2 V , we also keep track of the number of shortest paths that can reach v.
Throughout the chapter we use this fact without stating it explicitly.

3.3 Flow Maximization Problem

In this section, we consider the problem FLOW-NPP. We settle the three cases
(C1)–(C3) completely for this problem.

3All our results continue to hold if the edge costs are of the form p ·Z�0 for some real number
p > 0. In particular, this covers most practically relevant scenarios where one is bound to a
finite number of decimals.

42 Chapter 3. Approximate Pricing in Networks

3.3.1 Changing the Costs of Few or Almost All Edges
We first prove the following intuitive monotonicity property for the flow fu through
u: If the cost of a single outgoing edge of u decreases, then the flow through u

does not decrease. This property will turn out to be crucial below.

Lemma 3.3.1. Consider an edge e = (u, v) 2 �
+(u) and assume that the edge

cost ce is decreased to c̄e < ce. Then fu(c̄e) � fu(ce).

Proof: Let c = (ce)e2E and c̄ = (c̄e, c�e) be the original and modified edge costs,
respectively. Fix a commodity i 2 [k] and consider the flow f

i

u
(ce) = f

i

u
passing

through u with respect to c. We have

f
i

u
(ce) =

wi · ⇡
i

u

⇡i
=

wi · ⇡
i

u

⇡
i

u
+ ⇡i

u

, (3.1)

where ⇡
i

u
denotes the number of shortest si, ti-paths not passing through node u.

Note that if the cost of e decreases, then for commodity i the cost of the shortest
si, ti-path either decreases or stays the same. In the former case, all shortest
si, ti-paths must pass through edge e and therefore through node u. This implies
that f

i

u
(c̄e) = wi � f

i

u
(ce).

In the latter case, there are two possible scenarios. (i) There is no shortest
si, ti-path passing through edge e with respect to c̄. Then there is no shortest path
passing through e with respect to c either, because for every path P containing e it
holds that c(P) � c(P). Thus, f i

u
(c̄e) = f

i

u
(ce). (ii) There is at least one shortest

si, ti-path passing through edge e with respect to c̄. Then each shortest si, ti-path
not passing through u remains a shortest path (recall that we assume that the
cost of the shortest si, ti-path remains the same). Thus, ⇡i

u
does not change. On

the other hand, ⇡i

u
(with respect to c̄) increases. Using (3.1) together with the

fact that x/y  (x+ z)/(y + z) for any x, z � 0, y > 0 and x  y, it follows that
f
i

u
(c̄e) > f

i

u
(ce).

We conclude that for each i 2 [k] it holds that f
i

u
(c̄e) � f

i

u
(ce). By summing

over all commodities, we obtain

fu(c̄e) =
X

i2[k]

f
i

u
(c̄e) �

X

i2[k]

f
i

u
(ce) = fu(ce).

2

Using Lemma 3.3.1, it is clear what we should do if we can price a subset
S ✓ �

+(u) of edges: Simply set the cost of each edge e 2 S to zero to maximize
the flow through u. We summarize this observation in the following corollary.

Corollary 3.3.2. Suppose we can change the costs of the edges in S ✓ �
+(u).

Then setting c̄e = 0 for every e 2 S maximizes the flow fu of u.

3.3. Flow Maximization Problem 43

Proof: The proof follows by induction on the size of S and Lemma 3.3.1. 2

Note that this takes away the difficulty of determining optimal costs for the
edges in S. What remains is how to find the right subset of edges S to be priced.
Exploiting this insight, we can prove the following theorem:

Theorem 3.3.3. FLOW-NPP can be solved optimally in polynomial time if
⌧ = O(1) or ⌧ = d

+(u)�O(1).

Proof: Let S ✓ �
+(u) be an arbitrary subset of ⌧ outgoing edges of u. By

Corollary 3.3.2, we maximize the flow fu through u by setting c̄e = 0 for every
edge e 2 S. By iterating over all possible subsets of size ⌧ and choosing the one
that maximizes fu(c̄S), we obtain an optimal solution.

The time needed to compute fu(c̄S) for a fixed set S ✓ �
+(u) is at most

O(mn+ n
2 log n) because we have to run Dijkstra’s algorithm at most n times.

Assume that ⌧ = � or ⌧ = d
+(u)� � for some constant �. The number of such

sets is then ✓
d
+(u)

⌧

◆
< d

+(u)�  n
�
.

The overall running time is thus polynomial in n and m (� is a constant). 2

3.3.2 Changing the Costs of ⌧ Edges
We consider the cases of (C2) which are not captured by Theorem 3.3.3. Then
the above approach of enumerating all possible subsets fails to provide an efficient
algorithm. In fact, below we show that FLOW-NPP is NP-hard to approximate
within a factor 1�1/e, even in the unit demand setting (i.e., wi = 1 for all i 2 [k]).

Inapproximability

Theorem 3.3.4. Assuming P 6= NP, there is no ↵-approximation algorithm with
↵ > 1 � 1/e for FLOW-NPP with O(1) < ⌧ < d

+(u) � O(1), even in the unit
demand setting.

We recall the definition of the Maximum Set Coverage Problem, which will be
used in our reductions.

Problem 3.3.5. (Maximum Set Coverage Problem (MSC)). Given a finite set
of elements U = {e1, . . . , e⌫}, a collection of subsets S = {S1, . . . , Sµ} with Sj ✓ U

for every j 2 [µ], and an integer l, find a subcollection of sets S
0
✓ S with |S

0
|  l

such that the total number of covered elements cov(S 0) := |[Sj2S0 Sj| is maximized.

44 Chapter 3. Approximate Pricing in Networks

s u

v1

v2

vµ

e1

e2

e⌫

1

2

2

2

1

1

3

Figure 3.4: Illustration of instance used in the reduction

Proof: Below we derive an L-reduction from MSC to FLOW-NPP with a = b =
1. As a consequence, an ↵-approximation algorithm for FLOW-NPP provides an
↵-approximation algorithm for MSC. Given that it is NP-hard to approximate
MSC by a factor better than 1� 1/e (Feige, 1998), we conclude that there is no
↵-approximation algorithm for FLOW-NPP with ↵ > 1� 1/e, unless P = NP.

Let I = (U ,S, l) be an instance of MSC. We construct an instance I
0 =

(G, (ce)e2E, (si, ti, wi)i2[k], u, ⌧) of FLOW-NPP as follows: Let the set of vertices
of G be V = {s, u, v1, . . . , vµ} [{e1, . . . , e⌫}, where each vertex vj, j 2 [µ],
corresponds to a set Sj 2 S and each vertex ei, i 2 [⌫], corresponds to the
respective element in U . The set of edges E and the respective edge costs (ce)e2E
are defined as follows (see Figure 3.4 for an illustration):

• There is an edge (s, u) of cost 1.

• For every vj, j 2 [µ], there is an edge (u, vj) of cost 2.

• For every ei 2 U and j 2 [µ] such that ei 2 Sj, there is an edge (vj, ei) of
cost 1.

• For every ei 2 U , there is an edge (s, ei) of cost 3.

Finally, we let ⌧ = l and define a commodity (s, ei, wi) with demand wi = 1
for every i = 1, . . . , ⌫; in particular, there are k = ⌫ commodities. Clearly, this
reduction can be done in time O(µ⌫) and thus Property (i) of Definition 2.3.16 is
satisfied.

Next, we show that the optimal solution values for instances I and I
0 are the

same; in particular, this proves Property (ii) of Definition 2.3.16 for a = 1. Let c̄D
with D ✓ �

+(u), |D|  ⌧ , be an optimal solution for instance I
0 of FLOW-NPP.

3.3. Flow Maximization Problem 45

Recall that by Corollary 3.3.2 we can assume without loss of generality that c̄e = 0
for all e 2 D. Note that by construction for every commodity i 2 [k] the demand of
wi = 1 passes through u if and only if there exists an edge (u, vj) 2 D with ei 2 Sj .
Define a subcollection S

0 for instance I of MSC as S
0 = {Sj 2 S : (u, vj) 2 D}.

Note that |S
0
|  ⌧ = l and thus S

0 is a feasible solution for I. Further, by the
above, the total flow fu(c̄D) through u is equal to the number of elements cov(S 0)
covered by S

0. We conclude that

OPT(I 0) = fu(c̄D) = cov(S 0)  OPT(I). (3.2)

Now, let S
0, |S 0

|  l, be an optimal solution for instance I of MSC. We define a
solution c̄D for instance I

0 of FLOW-NPP as c̄D = 0D with D = {(u, vj) 2 E :
Sj 2 S

0
}. Then c̄D is feasible for I 0. By following the same arguments as above, it

is not hard to see that

OPT(I) = cov(S 0) = fu(c̄D)  OPT(I 0). (3.3)

Combining (3.2) and (3.3) shows that OPT(I) = OPT(I 0) as claimed.
It remains to show Property (iii) of Definition 2.3.16. Consider an arbitrary

solution c̄D with D ✓ �
+(u), |D|  ⌧ , for instance I

0 of FLOW-NPP. Let the
total flow through u be Z 0 = fu(c̄D). Note that the flow through u does not change
if we remove from D all edges e with c̄e � 2. We can therefore assume without loss
of generality that c̄e 2 {0, 1} for all e 2 D. Define S

0 = {Sj 2 S : (u, vj) 2 D}

and let Z = cov(S 0). Clearly, S 0 is a feasible solution for instance I of MSC and
can be derived in polynomial time. Note that Property (iii) holds with b = 1 if we
can show that Z � Z

0 because OPT(I) = OPT(I 0) (as shown above).
Fix some ei with i 2 [k]. First, we consider the contribution of commodity

i to Z
0. Define Ri = {(u, vj) 2 E : ei 2 Sj} as the set of relevant edges of ei.

We distinguish three cases: Case 1: none of the edges (u, vj) 2 Ri belongs to D.
Then i contributes zero to Z

0 (because the shortest s, ei-path has cost 3 and does
not pass through u). Case 2: c̄e = 0 for some edge e = (u, vj) 2 Ri \D. Then i

contributes the entire demand wi = 1 to Z
0 (because all shortest s, ei-paths have

cost 2 and pass through u). Case 3: c̄e = 1 for all edges e = (u, vj) 2 Ri \ D.
Then i contributes at least half of the demand wi = 1 to Z

0 (because there is at
least one shortest s, ei-path of cost 3 passing through u).

Next, consider the contribution of element ei to the value Z of the MSC

instance I. In Case 1, ei contributes 0 to Z. On the other hand, ei contributes 1
to Z in Cases 2 and 3 (because ei is covered by S

0). We conclude that Z � Z
0. 2

Greedy Algorithm

Next, we derive a (1 � 1/e)-approximation algorithm for FLOW-NPP, which
is best possible by Theorem 3.3.4. Our algorithm exploits a well-known result

46 Chapter 3. Approximate Pricing in Networks

Algorithm 3.1: Greedy algorithm for FLOW-NPP

1 S = ;
2 for i = 1, . . . , ⌧ do
3 Let emax 2 argmax{fu(0S[{e}) : e 2 �

+(u) \ S}
4 S = S [{emax}

5 return S

by Nemhauser, Wolsey, and Fisher (1978) for the maximization of submodular
functions.

The Submodular Function Maximization Problem is defined as follows: Given a
finite set N , a non-negative, monotone, and submodular function z : 2N ! R and
an integer l, find a set S ✓ N such that |S|  l and z(S) is maximum. Nemhauser,
Wolsey, and Fisher (1978) proved that the following natural greedy algorithm
exhibits an approximation ratio of 1� 1/e for this problem: Start with the empty
set S = ; and repeatedly add an element of maximal marginal gain to S, i.e., an
element j 2 N \ S that maximizes z(S [{j})� z(S), until S contains l elements.

Applied to our setting, the greedy algorithm iteratively selects ⌧ edges, where
in each iteration it sets to zero the cost of an edge e = (u, v) that gives the largest
marginal increase in the flow passing through node u. A more detailed description
of the algorithm is given in Algorithm 3.1.

Theorem 3.3.6. The greedy algorithm provides a (1 � 1/e)-approximation for
FLOW-NPP.

The proof of Theorem 3.3.6 follows directly from Lemma 3.3.7 below, which
shows that fu(0S) (if considered as a set function) is non-negative, monotone, and
submodular, and using the result of Nemhauser et al. (Nemhauser, Wolsey, and
Fisher, 1978).

Lemma 3.3.7. Define z(S) = fu(0S) for every S ✓ �
+(u). The function z is

non-negative, monotone, and submodular.

Proof: Clearly, z(S) � 0 by definition. Also, note that for each S ⇢ �
+(u) and

for each edge e 2 �
+(u) \ S, z(S [{e}) = fu(0S[{e}) � fu(0S) = z(S), which

follows directly from Lemma 3.3.1. Thus, z is monotone.
We now show that z is submodular, i.e., for every S ✓ T ✓ �

+(u) and for each
edge e 2 �

+(u) such that e /2 T , we need to show that

z(S [{e})� z(S) = fu(0S[{e})� fu(0S)

� fu(0T[{e})� fu(0T) = z(T [{e})� z(T). (3.4)

Below we prove the following inequality for each commodity i 2 [k]:

f
i

u
(0S[{e})� f

i

u
(0S) � f

i

u
(0T[{e})� f

i

u
(0T). (3.5)

3.3. Flow Maximization Problem 47

Inequality (3.4) then follows because
P

i2[k] f
i

u
= fu.

Fix some commodity i 2 [k]. We denote by �A(·, ·) the shortest path distances
in G with respect to the edge costs (0A, c�A) (i.e., after setting the costs of the
edges in A to zero). Note that for each edge e = (u, v) 2 �

+(u) we have
�S(si, u) = �T (si, u). (3.6)

If �T (v, ti) < �S(v, ti) then all shortest paths (in �T) from v to ti pass through u.
So in this case �T (v, ti) = �T (v, u) + �T (u, ti). But �T (v, u) > 0 because after
setting ce to zero, no zero cycles arise (by assumption). So �T (v, ti) > �T (u, ti),
and setting ce to zero creates no extra shortest si, ti-paths passing through u,
which implies that fu(0T[{e}) = fu(0T), so (3.5) is satisfied. Therefore, we assume
from now on that

�S(v, ti) = �T (v, ti). (3.7)
If �S(si, ti) > �S(si, u) + �S(v, ti), then all shortest si, ti-paths will pass through u

after setting ce to zero. This means that f
i

u
(0T[{e}) = f

i

u
(0S[{e}) = wi. We

conclude that (3.5) holds because f
i

u
(0T) � f

i

u
(0S) by Lemma 3.3.1.

So we may assume �S(si, ti)  �S(si, u) + �S(v, ti), and hence
�T (si, ti)  �S(si, ti)  �S(si, u) + �S(v, ti) = �T (si, u) + �T (v, ti), (3.8)

where the inequality follows since T ◆ S, and the last equality follows from (3.6)
and (3.7).

• If the inequality �T (si, ti)  �T (si, u)+ �T (v, ti) in (3.8) is strict, then setting
ce = 0 after setting the cost of edges in T to zero has no effect on the flow
passing through the node, i.e., f i

u
(0T[{e})� f

i

u
(0T) = 0, and (3.5) is satisfied.

• If equality holds throughout in (3.8), then �S(si, ti) = �S(si, u)+�S(v, ti) and
�T (si, ti) = �T (si, u) + �T (v, ti), so the number of shortest paths through u

increases by ⇡
i

e
by setting ce = 0, both after setting the cost of edges in S

and T to zero. Therefore

f
i

u
(0S[{e}) =

f
i

u
(0S) · ⇡i(S) + wi⇡

i

e

⇡i
e
+ ⇡i(S)

,

which gives

f
i

u
(0S[{e})� f

i

u
(0S) =

wi⇡
i

e
� f

i

u
(0S) · ⇡i

e

⇡i
e
+ ⇡i(S)

=
⇡
i

e
(wi � f

i

u
(0S))

⇡i
e
+ ⇡i(S)

. (3.9)

Similarly, we obtain

f
i

u
(0T[{e})� f

i

u
(0T) =

⇡
i

e
(wi � f

i

u
(0T))

⇡i
e
+ ⇡i(T)

. (3.10)

Now, by noting that wi � f
i

u
(0T)  wi � f

i

u
(0S) and that ⇡

i(T) � ⇡
i(S)

(since �T (si, ti) = �S(si, ti)), (3.9) and (3.10) imply that (3.5) holds.
2

48 Chapter 3. Approximate Pricing in Networks

3.4 Revenue Maximization Problem

We turn to the problem REV-NPP. While case (C1) can be solved optimally the
problem becomes much more challenging for cases (C2) and (C3). In particular,
as we show below obtaining constant factor approximation algorithms is infeasible,
even if we can price all outgoing edges of u (case (C3)).

3.4.1 Changing the Cost of One Edge
We consider the case of REV-NPP(C1), i.e., if we can change the cost of one
outgoing edge only. We prove the following theorem.

Theorem 3.4.1. REV-NPP(C1) can be solved optimally in polynomial time.

We first show that we can efficiently compute the optimal cost for the edge
e = (u, v) if the other costs stay fixed; see Lemma 3.4.2 below.

Fix an outgoing edge e = (u, v) 2 �
+(u) of u. Define the threshold price of

commodity i 2 [k] as

✓i := �E\{e}(si, ti)� �(si, u)� �(v, ti). (3.11)

Intuitively, ✓i is the price that we can impose on edge e to equalize the costs of the
shortest si, ti-paths passing through e with those that are not passing through e.

The following structural result on the optimal costs is crucial.

Lemma 3.4.2. Fix an outgoing edge e = (u, v) 2 �
+(u) of u. We can then

determine the cost c̄e of e maximizing the revenue ru(c̄e) of u in polynomial time.

Proof: Let c̄
⇤
e

be some optimal cost that maximizes ru(c̄⇤e). We first claim that
there exists some optimal cost c̄e with c̄e 2 T , where

T =

✓ [

i2[k]

{✓i � 1, ✓i}

◆
[{1}.

If c̄⇤
e
> max{✓i : i 2 [k]} there is no flow passing through e. We obtain the

same by setting c̄e =1 2 T and thus ru(c̄e) = ru(c̄⇤e), which is optimal. Suppose
now that c̄

⇤
e
 max{✓i : i 2 [k]} and c̄

⇤
e
/2 T . Let L = {i 2 [k] : ✓i < c̄

⇤
e
} and

U = {i 2 [k] : ✓i � 1 > c̄
⇤
e
}. Note that L [U = [k]. For the commodities in

L there is no flow passing through e, while for the commodities in U the entire
flow passes through e. By setting c̄e = min{✓i � 1 : i 2 U} the flows do not
change while c̄e > c̄

⇤
e
. Because U 6= ; we have ru(c̄e) > ru(c̄⇤e), contradicting the

optimality of c̄⇤
e
. Hence there is an optimal cost c̄e in T .

Determining T takes at most 3k shortest path calculations. If all costs are
fixed, we can compute the revenue by k shortest path calculations. Exploiting
that |T |  2k+1, we can thus simply try all values in T and choose c̄e as the cost

3.4. Revenue Maximization Problem 49

s u

v1

v2

vµ

e1

e2

e⌫

0

µ+ 2

µ+ 2

µ+ 2

0

0

µ+ 1

Figure 3.5: Illustration of instance used in the reduction

that gives the largest revenue. 2

Proof of Theorem 3.4.1: For every outgoing edge of u, i.e., for all u 2 �
+(u),

we use Lemma 3.4.2 to compute the optimal cost and revenue for that edge in
polynomial time. Taking the maximum solves the Theorem. 2

3.4.2 Changing the Costs of ⌧ Edges
We turn to case (C2) of REV-NPP. As we show, this problem is hard to
approximate:

Theorem 3.4.3. Assuming P 6= NP, there is no ↵-approximation algorithm with
↵ > 1 � 1/e for REV-NPP(C2) with 1 < ⌧ < d

+(u), even in the unit demand
setting.

Proof: Below we derive an L-reduction from MSC to REV-NPP with a = µ and
b = 1

µ
. As a consequence, an ↵-approximation algorithm for REV-NPP provides

an ↵-approximation algorithm for MSC. Given that it is NP-hard to approximate
MSC by a factor better than 1� 1/e (Feige, 1998), we conclude that there is no
↵-approximation algorithm for REV-NPP with ↵ > 1� 1/e, unless P = NP.

Let I = (U ,S, l) be an instance of MSC. We construct an instance I
0 =

(G, (ce)e2E, (si, ti, wi)i2[k], u, ⌧) of REV-NPP as follows: Let the set of vertices
of G be V = {s, u, v1, . . . , vµ} [{e1, . . . , e⌫}, where each vertex vj, j 2 [µ],
corresponds to a set Sj 2 S and each vertex ei, i 2 [⌫], corresponds to an element
in U . The set of edges E and the respective edge costs (ce)e2E are defined as
follows (see Figure 3.5 for an illustration):

50 Chapter 3. Approximate Pricing in Networks

• There is an edge (s, u) of cost 0.

• For every vj, j 2 [µ], there is an edge (u, vj) of cost µ+ 2.

• For every ei 2 U and j 2 [µ] such that ei 2 Sj, there is an edge (vj, ei) of
cost 0.

• For every ei 2 U , there is an edge (s, ei) of cost µ+ 1.

Finally, we let ⌧ = l and define a commodity (s, ei, wi) with demand wi = 1
for every i = 1, . . . , ⌫; in particular, there are k = ⌫ commodities. Clearly, this
reduction can be done in polynomial time O(µ⌫), which proves Property (i) of
Definition 2.3.16.

Next, we show that the optimal solution values for instances I and I
0 differ by

a factor µ. Let c̄D with D ✓ �
+(u), |D|  ⌧ , be an optimal solution for instance

I
0 of REV-NPP.

We first argue that we can assume that c̄e � µ for all e 2 D. Suppose that
c̄e = µ + 1 for some e 2 D. If there is no flow passing through e, i.e., fe = 0,
then setting c̄e = µ+ 2 will neither change the flow nor decrease the revenue. If
there is some flow passing through e for some commodity i 2 [k], i.e., f i

e
> 0, then

using c̄e = µ instead strictly increases the revenue for this commodity. To see this,
note that the revenue gained by commodity i through edges of cost µ+ 1 is at
most ⌧

⌧+1(µ+ 1). By setting c̄e to µ we obtain a revenue of µ which is an increase
because ⌧

⌧+1(µ+ 1) < µ

µ+1(µ+ 1) = µ. Note that this argument holds for every
commodity i independently. We can thus conclude that c̄e = µ or c̄e � µ+ 2.

Define a subcollection S
0 for instance I of MSC as

S
0 = {Sj 2 S : (u, vj) 2 D, c̄(u,vj) = µ}.

Note that |S
0
|  ⌧ = l and thus S

0 is a feasible solution for I. Further, each
element in cov(S 0) corresponds to a commodity i for which the entire demand
wi = 1 is sent through u and we thus obtain a revenue of µ. We conclude that
the optimal revenue is

OPT(I 0) = µ · cov(S 0)  µ · OPT(I). (3.12)

This proves Property (ii) of Definition 2.3.16 for a = µ.
It remains to show Property (iii) of Definition 2.3.16 with b = 1

µ
. First, let S 0,

|S
0
|  l, be an optimal solution for I. We define a solution c̄D for I

0 as c̄D = µD

with D = {(u, vj) 2 E : Sj 2 S
0
}. Then c̄D is feasible for I

0 and it is immediate
that

OPT(I) = cov(S 0) 
1

µ
· OPT(I 0). (3.13)

Combining (3.12) and (3.13) proves OPT(I 0) = µ · OPT(I). Using this equality
all we need to show to fulfill Property (iii) is that given a solution with revenue Z

0

for I 0 we can convert it in polynomial time into a solution for I with value Z �
Z

0

µ
.

3.4. Revenue Maximization Problem 51

Consider an arbitrary solution c̄D with D ✓ �
+(u), |D|  ⌧ , for instance I

0

of REV-NPP. Let the total revenue be Z
0. Define S

0 = {Sj 2 S : (u, vj) 2
D, c̄(u,vj)  µ} and let Z = cov(S 0). The revenue that we obtain from each
commodity is at most µ and thus Z �

Z
0

µ
, proving Property (iii) for b = 1

µ
. 2

One could hope that a greedy approach similar to the one used for
FLOW-NPP(C2) would work here as well, but unfortunately, this is not the case.
In fact, the objective function is not submodular and the natural greedy algorithm
can perform arbitrarily bad.

s u v2

v1

v3

t

t1

t2

tN

1

5

5

5

0

0

0

1

1

1

1

1

1

1

Figure 3.6: Instance showing that the greedy algorithm performs badly

Example 3.4.4. Consider the instance depicted in Figure 3.6 and suppose ⌧ = 2.
Furthermore there are N + 1 commodities (s, t, 1) and (s, ti, 1) for i 2 [N]. The
revenue that u receives in the initial configuration is zero. The greedy approach
will first set edge c̄(u,v1) to 2. This leads to a total increase of revenue of 2. After
that, the greedy approach will either change c̄(u,v2) or c̄(u,v3) yielding no additional
revenue, so the total received revenue is 2. But setting both c̄(u,v2) and c̄(u,v3) to 2
will give a total revenue of 2N . Therefore the gap between the optimal solution
and the greedy solution can be arbitrarily large.

The above example might suggest that this situation does not occur if the costs
of all outgoing edges of u would be 1 to begin with. However, even then the
objective function is not submodular as the following theorem shows.

52 Chapter 3. Approximate Pricing in Networks

s1

s2

u

v1

v2

v3

t1

t2

c (u
,v1

)

c(u,v2)

c
(u
,v
3)

Edge e ce Edge e ce

(s1, u) 1 (s2, u) 1
(s1, v1) 7 (s2, v1) 5
(s1, v2) 6 (s2, v2) 4
(s1, v3) 5 (s2, v3) 8
(s1, t1) 7 (s2, t1) 5
(s1, t2) 7 (s2, t2) 8
(v1, t1) 1 (v1, t2) 8
(v2, t1) 6 (v2, t2) 4
(v3, t1) 4 (v2, t2) 4

Figure 3.7: Counterexample to submodularity

Theorem 3.4.5. The objective function of REV-NPP when starting with c�+(u) =
1�+(u) is not submodular.

Proof: We show that there exists a pair of sets S ✓ T ✓ �
+(u) and an element

e 2 �
+(u) \ T such that ru(c̄S[{e})� ru(c̄S) < ru(c̄T[{e})� ru(c̄T).

Consider the graph in Figure 3.7. Our goal is to maximize the revenue of
node u by changing the cost of the edges in �

+(u). Let S = {(u, v3)}, T =
{(u, v3), (u, v1)} and e = (u, v2). For the left hand side of the inequality, we notice
that ru(c̄S[{e}) = 13 which is obtained by setting c̄(u,v3) = 3 and c̄(u,v2) = 2. This is
the optimal solution if we are allowed to change the cost of these two edges. ru(c̄S),
instead, is equal to 8 and it is obtained by setting c̄(u,v3) = 2 which is optimal
because if we set it to 3 or to a higher value we lose the flow for commodity (s2, t1)
(it will go through edge (s2, t1) of cost 5).

For the right hand side, by setting c̄(u,v1) = 3, c̄(u,v3) = 3 and c̄(u,v2) = 2 we
have ru(c̄T[{e}) = 23.5, while for ru(c̄T) we obtain 17.5 with c̄(u,v1) = 3, c̄(u,v3) =
2. Therefore, 13 � 8 < 23.5 � 17.5 proving that our objective function is not
submodular. 2

3.4.3 Changing the Costs of All Edges
In this section, we consider the case (C3) of REV-NPP, where we can change
the costs of all outgoing edges of u. We first present our inapproximability results
and then turn to our approximation algorithms.

Inapproximability

The main result that we prove in this section is that, under certain computational
hardness assumptions, REV-NPP(C3) is hard to approximate within a factor

3.4. Revenue Maximization Problem 53

s u

e1

e2

e⌫

v1

v2

vµ

0

2 ·B1 + 1 0

0

Figure 3.8: Illustration of the instance used in the proof of Theorem 3.4.6

of ⌦(1/ log1�"(k)) and ⌦(1/d+(u)1/2�"), already in the unit demand setting. In
particular, note that we obtain two different asymptotic lower bounds on the
attainable approximation factors in terms of (i) the number of commodities k,
and (ii) the outdegree d

+(u) of u, respectively.

Theorem 3.4.6. The following hardness results hold for REV-NPP(C3), even
in the unit demand setting.

• Assuming that NP * ZPTIME(2log1/✏(k))), REV-NPP(C3) is
⌦(1/ log1�✏(k))-inapproximable for any ✏ > 0.

• Assuming the Exponential Time Hypothesis, REV-NPP(C3) is
⌦
�
1/d+(u)1/2�✏

�
-inapproximable for any ✏ > 0.

Our reduction is based on the following Unit-Demand Min-Buying Pricing
Problem (UDPmin) (Chalermsook, Laekhanukit, and Nanongkai, 2013):

Problem 3.4.7. (Unit-Demand Min-Buying Pricing (UDPmin)). We are given a
set of ⌫ items I = {e1, . . . , e⌫} and a set of µ buyers B = {b1, . . . , bµ}. Every
buyer bi 2 B has some budget Bi 2 Z�0 and a set Si ✓ I of items she is interested
in. Given prices p : I ! Z�0 for the items, buyer bi will buy an item e 2 Si whose
price p(e) is minimum, but only if p(e)  Bi. from argmine2Si p(e) but only if
mine2Si p(e)  Bi. The goal is to find prices that maximize the total revenue, i.e.,

X

bi2B

min{p(e) : e 2 Si and p(e)  Bi},

where we define the minimum of an empty set to be zero.

Proof of Theorem 3.4.6: We describe a polynomial-time reduction that
transforms a given instance I of UDPmin to an instance I

0 of REV-NPP such

54 Chapter 3. Approximate Pricing in Networks

that every solution of I 0 can be converted to a solution of I, thereby losing at
most a factor 2 in objective value. As a consequence, the existence of an ↵-
approximation algorithm for REV-NPP implies a 1

2↵-approximation algorithm
for UDPmin. Chalermsook, Laekhanukit, and Nanongkai (2013) showed that
UDPmin is ⌦(1/log1�"(µ))-inapproximable and ⌦(1/⌫1/2�")-inapproximable under
the respective hardness assumptions stated above. As in our reduction, we have
k = µ and d

+(u) = ⌫, the stated inapproximability results for REV-NPP follow.
Let I = (I,B, (Si)bi2B, (Bi)bi2B) be an instance of UDPmin. We construct an

instance I
0 = (G, (ce)e2E, (si, ti, wi)i2[k], u, ⌧) of REV-NPP as follows: Let k = µ,

d
+(u) = ⌫ and let the set of vertices of G be V = {s, u, v1, . . . , vµ} [{e1, . . . , e⌫},

where each vertex vj, j 2 [µ], corresponds to the set Sj, j 2 [k] in I and ej 2 I

corresponds to its counterpart in I. The set of edges E and the respective edge
costs (ce)e2E are defined as follows (see Figure 3.8 for an illustration):

• There is an edge (s, u) of cost 0.

• For every ei 2 I, there is an edge (u, ei) that needs to be priced.

• For every ei 2 I and j 2 [k] such that ei 2 Sj, there is an edge (ei, vj) of
cost 0.

• For every Sj, j 2 [k], there is an edge (s, vj) of cost 2 · Bj + 1.

Finally, we have k commodities (s, vj, wj) with demand wj = 1 for every j 2 [k].
Clearly, this reduction can be done in polynomial time.

First note that OPT(I 0) � 2OPT(I) since taking the optimal prices p in I and
using the prices c̄(u,ei) = 2p(ei) for all i 2 [N] in I

0 will give a revenue of 2OPT(I)
for I 0. If buyer bi bought item ej for price p(ej) in I, then the flow of commodity j

will go through (u, ej), or is split over edges all with cost 2p(ej). in I
0 contributing

2p(ej) to the revenue.
Consider an optimal solution c̄ for I 0 with revenue Z

0. We will convert this into
a solution p for I with revenue Z such that Z � Z

0
/4. Note that we may assume

that Bj � 1 for all j 2 [k]: if Bj = 0 the buyer cannot contribute anything to the
revenue so we can ignore them. Then it holds that Z 0

�
P

i2[k] 2minj2[k]{Bj} � 2k,
which is the revenue we would get by setting all prices to 2minj2[k]{Bj}. Now, let
c̄
0 be a modified c̄ given by

c̄
0
e
=

(
c̄e � 1 if e 2 �

+(u) and c̄e is odd,
c̄e otherwise.

By this modification, we lose at most k revenue. Thus we have Z
0
� k � Z

0
/2

revenue remaining. Observe that all prices are even and thus f
i

u
2 {0, 1} for all

i 2 [k]. Using prices p(ei) = c̄(u,ei)/2 for i 2 [⌫] in I yields a revenue Z of at least
Z

0
/4.

3.4. Revenue Maximization Problem 55

To conclude, if Z 0
� ↵ · OPT(I 0) then 4Z � Z

0
� ↵ · OPT(I 0) � 2↵ · OPT(I)

implying Z � ↵/2 · OPT(I) which proves the theorem. 2

Approximation algorithms

We next present our approximation algorithms. We first consider some special
cases and turn to the general case of REV-NPP(C3) at the end of this section.

Special case: single commodity. We consider the problem of REV-NPP(C3)

for a single commodity only, i.e., k = 1. In this case, we can assume without loss
of generality that w1 = 1. Our goal is thus to determine c̄�+(u) = (c̄e)e2�+(u) to
maximize the revenue

ru(c̄�+(u)) =
X

e2�+(u)

f
1
e
· c̄e = w1

X

e2�+(u)

⇡
1
e

⇡1
· c̄e =

X

e2�+(u)

⇡
1
e

⇡1
· c̄e.

For every edge e = (u, v) 2 �
+(u), define the value

h(v) := �E\�+(u)(s1, t1)� �(s1, u)� �(v, t1).

Intuitively, h(v) is the largest uniform price that we can impose on all outgoing
edges of u such that the edge e = (u, v) is still part of a shortest s1, t1-path. We
define ✓ as the maximum over all these uniform prices:

✓ = max
(u,v)2�+(u)

h(v). (3.14)

The next theorem basically proves that imposing a uniform price of either
✓ � 1 or ✓ is optimal.

Theorem 3.4.8. REV-NPP(C3) with a single commodity only (i.e., k = 1) can
be solved optimally in polynomial time.

Proof: Let ✓ be as defined in (3.14). If ✓  0, then no revenue can be obtained
and we stop. If ✓ > 0, we compute the revenue obtained by setting all costs
uniformly to either ✓ � 1 or ✓:

ru((✓ � 1)�+(u)) = ✓ � 1

ru(✓�+(u)) = ✓ ·
1
⇡1 ·

X

e=(u,v)2�+(u):
h(v)=✓

⇡
1
e
.

We argue that the maximum of the two is the optimal revenue.
Let c̄ be a cost achieving optimal revenue. When c̄e > ✓ for some e 2 �

+(u)
it holds that fe = 0, so we can assume that there is an optimum where c̄e  ✓

56 Chapter 3. Approximate Pricing in Networks

Algorithm 3.2: Uniform Price Algorithm
1 C = ;
2 foreach commodity i 2 [k] do
3 Compute the uniform price ✓i as defined in (3.14) when considering

commodity i only.
4 Let ✓

⇤
i
2 {✓i � 1, ✓i} be the price that achieves higher revenue for

commodity i when all edges are priced uniformly.
5 C = C [{✓

⇤
i
}

6 return argmax{ru(p�+(u)) : p 2 C}

for all e 2 �
+(u). If there is an optimum for which c̄e  ✓ � 1 for all e 2 �

+(u)
then the maximum revenue we can get is ✓ � 1, which is actually attained by
setting all c̄e to ✓ � 1. Suppose the optimum is larger than ✓ � 1. Then there
must be some e

0
2 �

+(u) with c̄e0 = ✓ and strictly positive flow. If there is some
other edge for which c̄e < ✓ that gets flow then this contradicts e

0 getting flow.
Thus e cannot have flow in which case we could also set c̄e = ✓. Thus there is an
optimum solution where c̄e = ✓ for all e 2 �

+(u). So, the maximum of ru(✓�+(u))
and ru((✓ � 1)�+(u)) achieves the optimal revenue as claimed.

Finally, observe that the values of h(v) and ru(✓�+(u)) and ru((✓ � 1)�+(u)) can
all be computed in polynomial time. 2

Uniform demands. We exploit the fact that for a single commodity we are
able to find optimal uniform costs in polynomial time to derive an approximation
algorithm for REV-NPP(C3) in the uniform demand setting (i.e., if all wi are
the same).

If there is more than one commodity we can run the procedure described in
the proof of Theorem 3.4.8 for every commodity i 2 [k] separately (as if it were
the only commodity in the network) to obtain a set of possible prices. We prove
below that among these prices there is one uniform price that guarantees a good
revenue. The resulting uniform price algorithm is summarized in Algorithm 3.2.

Theorem 3.4.9. Algorithm 3.2 is a 1/Hk-approximation algorithm for
REV-NPP(C3) when all demands are uniform.

Proof: We can assume without loss of generality that all demands are 1. Let
✓
⇤
i

be the optimal price for commodity i 2 [k] as determined in the proof of
Theorem 3.4.8 and let f i

u
be the flow of commodity i going through u when using

prices c̄�+(u) = (✓⇤
i
)�+(u).

Assume that the commodities are ordered such that ✓⇤1 � ✓
⇤
2 � . . . � ✓

⇤
k

and if
i < j and ✓

⇤
i
= ✓

⇤
j

then f
i

u
� f

j

u
. So, first we order on ✓

⇤
i

and if the ✓
⇤
i

are equal

3.4. Revenue Maximization Problem 57

then we order on f
i

u
. Let � be the number of unique values among the ✓

⇤
i
. Let

i1 = 1 and define ij for 2  j  � recursively as the index of the first entry that
is strictly smaller than ✓

⇤
ij�1

. For convenience let i�+1 = k + 1.
Let p be the uniform price output by Algorithm 3.2. The algorithm tries prices

✓
⇤
i

and because we have unit demands and by the ordering of the commodities we
know that for i 2 {ij, . . . , ij+1 � 1}, it holds that

p � ✓
⇤
i
·

✓
(ij � 1) +

ij+1�1X

`=ij

f
`

u

◆
, which implies ✓

⇤
i


p

(ij � 1) +
Pij+1�1

`=ij
f `
u

.

(3.15)
Let OPT be the maximum attainable revenue. If we single out the income from
one commodity we cannot expect to do better than when we just consider that
commodity. Hence,

OPT 
kX

i=1

✓
⇤
i
f
i

u
=

�X

j=1

ij+1�1X

i=ij

✓
⇤
i
f
i

u


�X

j=1

ij+1�1X

i=ij

p · f
i

u

(ij � 1) +
Pij+1�1

`=ij
f `
u

(3.16)



�X

j=1

ij+1�1X

i=ij

p

(ij � 1) + (i� (ij � 1))
=

�X

j=1

ij+1�1X

i=ij

p

i
=

kX

i=1

p

i
= Hk · p.

The second inequality follows from (3.15). For the third inequality, we make use
of the fact that f i⇤

u
 1 and that we sorted the commodities in such a way that if

i < j and ✓
⇤
i
= ✓

⇤
j

we have f
i⇤
u
� f

j⇤
u

. Thus there are at least i� (ij � 1) terms for
which the ✓

⇤-value is equal but the f -value is at least as large. 2

To verify that we could not have done a better job in the analysis of Theo-
rem 3.4.9.

Theorem 3.4.10. The analysis of the approximation ratio in Theorem 3.4.9 is
tight.

Proof: We give an instance that shows that the analysis of Theorem 3.4.9 is
tight. Consider the graph G in Figure 3.9(a). There are k commodities (si, ti, 1)
for i 2 [k].

For every commodity (si, ti, 1), i 2 [k], there is one path through u and
one alternative path. The latter having a cost of k!

i
+ 1. The optimal costs

are c̄(u,vi) = k!
i
, then all flow goes through u for the highest possible revenue

ru =
P

i2[k]
k!
i
= k! ·Hk. For uniform costs we clearly want to choose a cost among

{
k!
i
: i 2 [k]} since any lower value can be raised to a value inside this set to get

a strict improvement. We notice that, for every cost in this set, the revenue is
i ·

k!
i
= k!. Therefore, the approximation ratio of this example is k!·Hk

k! = Hk, and
it is tight. 2

58 Chapter 3. Approximate Pricing in Networks

u

v1

vi

vk

t1

ti

tk

s1

si

sk

c (u
,v1

)

c(u,vi)

c
(u
,v
k)

0

0

0

0

0

0

k!
1 + 1

k!
i
+ 1

k!
n
+ 1

(a) Example with wi = 1

u

v1

vi

vk

t1

ti

tk

s1

si

sk

c (u
,v1

)

c(u,vi)

c
(u
,v
k)

0

0

0

0

0

0

101 + 1

10i + 1

10k + 1

(b) Example with wi = 10k�i

Figure 3.9: Examples showing that the approximation ratios in Theorem 3.4.9
and Theorem 3.4.11 are tight

General demands. Finally, we turn to REV-NPP(C3) with general demands.
As it turns out, a simple adaptation of the uniform price algorithm (Algorithm 3.2)
achieves approximation ratios that are (asymptotically) best possible: We modify
Algorithm 3.2 by replacing line 5 with C = C [{✓i � 1, ✓i}.

Theorem 3.4.11. The modified version of Algorithm 3.2 is a max{1/k, 1/d+(u)}-
approximation algorithm for REV-NPP(C3).

Proof: We first prove that the modified algorithm is a 1/k-approximation algo-
rithm for REV-NPP(C3). Note that it is sufficient to only consider the prices that
are used in the original version of Algorithm 3.2. We follow the same reasoning as
in Theorem 3.4.9.

Let ✓
⇤
i

and f
i⇤
u

, i 2 [k], be as in the proof of Theorem 3.4.9. We note that
p � ✓

⇤
i

P
i

`=1 f
`⇤
u

, which implies that ✓
⇤
i
 p/

P
i

`=1 f
`⇤
u

. Thus,

OPT 
kX

i=1

✓
⇤
i
· f

i⇤
u


kX

i=1

p · f
i⇤
uP

i

`=1 f
`⇤
u



kX

i=1

p = k · p. (3.17)

Next, we show that the modified version of Algorithm 3.2 is also a 1/d+(u)-
approximation algorithm. Let c̄⇤ be the optimal prices achieving a revenue of OPT.
If we consider the revenue that is contributed by each e 2 �

+(u), there is at least
one e

⇤
2 �

+(u) that contributed at least OPT/d
+(u), i.e., fe⇤ · c̄⇤e⇤ � OPT/d

+(u).
Consider c̄e = c̄

⇤
e⇤ for all e 2 �

+(u). The flow fe⇤ will not go down because of
e 2 �

+(u) such that c̄⇤
e
< c̄

⇤
e⇤ . Some of fe⇤ may go to e 2 �

+(u) such that c̄⇤
e
� c̄

⇤
e⇤

but if this happens we will still earn at least c̄⇤
e⇤ on it. Hence the revenue for c̄e is

at least fe⇤ · c̄
⇤
e⇤ � OPT/d

+(u).
Fix c̄e = c̄

⇤
e⇤ for all e 2 �

+(u). Let F = {i 2 [k] : f i

u
> 0}, i.e., all commodities

that have some positive flow going through u, and so we earn some revenue on
them. Let ✓i be the uniform price of commodity i as defined in (3.14). Note that

3.5. Conclusion 59

c̄
⇤
e
 min{✓i : i 2 F}. If c̄⇤

e
� min{✓i � 1 : i 2 F} then we are done because

then the approximation algorithm will try a price that yields at least OPT/d
+(u)

revenue. Suppose c̄
⇤
e
< min{✓i � 1 : i 2 F}. Then f

i

u
/wi = 1 for all i 2 F and

when raising c̄e to min{✓i� 1 : i 2 F} for all e 2 d
+(u) the flows for commodities

i 2 F will not change while the revenue increases. Hence the approximation
algorithm tries a price which yields a revenue of at least OPT/d

+(u). We conclude
that Algorithm 3.2 is a 1/d+(u)-approximation algorithm. 2

Theorem 3.4.12. The analysis of the approximation ratio in Theorem 3.4.11 is
tight.

Proof: We give an instance that shows that the analysis of Theorem 3.4.11 is
tight. Consider the graph G in Figure 3.9(b). There are k commodities (si, ti, 1)
for i 2 [k], and wi = 10k�i.

In this case, the optimum is clearly attained by setting c̄(u,vi) = 10i for all i 2 [k]
resulting in ru =

P
i2[k] 10

i
· 10k�i = k · 10k. If we have a uniform cost, then this

will clearly be a value in [i2[k]{10i, 10i+1}. For a uniform cost of the form 10i the
revenue is ru = 10i ·

P
j�i

10k�j =
P

j�i
10k+i�j = O(10k) and for a uniform cost of

the form 10i+1 the revenue is ru = 1
2(10

i+1)·10k�i+(10i+1)·
P

j>i
10k�j = O(10k).

Hence the uniform costs are off by a factor of O(k). 2

3.5 Conclusion

A motivating scenario for this research was figuring out how a country should
change its tax rates in order to maximize its revenue. Computing the optimum is
an intractable problem, but we can use our results to compute an optimal uniform
tax. We perform a small experiment on real-world data to test the performance
of the uniform price algorithm. We use data from (Riet and Lejour, 2014, 2018),
which also provides estimates of the volumes that are sent from one country to
another (based on the sizes of their economies). The data contains 108 countries
(nodes), 8777 tax treaties (edges), and 11342 commodities. A visualization of
the data can be found in Figure 3.10(a). The colored countries are part of the
data set, and the colors red, orange, yellow, and green indicate a low to high
betweenness centrality. The blue lines are the 20 highest-weight commodities.
In this scenario, we need to find “money-transfer” paths such that the total tax
paid by the companies is as low as possible.4 We run our experiments with
“The Netherlands” as node u. The results are summarized in Figure 3.10. If the
Netherlands would change its outgoing tax rate to 6.7% for all treaties, it would

4The tax rates are percentages, while our machinery works with additive shortest paths. To
overcome this issue, we use a standard trick and apply � log(·) on all rates.

60 Chapter 3. Approximate Pricing in Networks

ALB

DZA

AGO

ARG

ABW

AUS

AUT

AZE

BHS
BHR

BRB

BLR

BMU

BWA

BRA

BRN

BGR

CAN

CYM

CHL

CHN

COL

CRI CUR

CYP

CZE

DNK

DOM

ECU

EGY

GNQ

EST

FIN

FRA

GAB

DEU

GRC

GRN

HKG

ISL

IND

IDN

IRL
IMN

ISR

ITA

JAM

JPN

JRY

JOR

KAZ

KOR

KWT

LVA

LBN

LBY

LIE

LTU

LUX

MAC

MYS

MLT

MUS

MEX

MNG

NAM

NLD
BEL

NZL

NGA

NOR

OMN

PAK

PAN

PER

PHL

POL

PRT

PRI

QAT

ROM

RUS

SAU

YUG

SYC

SGP

SVK
SVNHUN
HRV

ZAF

ESP

SUR

SWE

CHE

TWN

THA

TTO

TUN

TUR

UKR

ARE

GBR

USA

URY

VEN

VIR

VGB

(a) World map
5

Revenue

Original 0.0246140
Uniform Pricing 1.6748451
Optimum (UB) 3.2994390

Optimal Uniform Tax 6.70%

⇥68

⇥0.51

(b) Results

Figure 3.10: Outcome of experiments

potentially increase its revenue by a factor 68. Further, the optimal uniform tax
revenue is even within 51% of the optimum (upper bound as in (3.17)) and thus
much better than suggested by Theorem 3.4.11.

We settle most cases of FLOW-NPP and REV-NPP in this chapter, but a
case that is not completely settled is REV-NPP(C2). Although we show that it
is inapproximable within a factor 1� 1/e, case (C3) seems to suggest that it may
even be harder.

The experiment shows that the uniform price algorithm can give much better
solutions than one would expect when considering the approximation factor. Why
this is the case is a good starting point for further research. The graph structure
could play a role, or the commodities could have certain characteristics that make
the problem easier. As mentioned in the introduction, approximation algorithms
can serve as a basis for heuristics. One suggestion for a heuristic is to first apply
a uniform price algorithm and then locally improve the solution. Then, one starts
with a decent solution and can iteratively improve.

An interesting way to look at our problem is from a game theory perspective.
Now that we know what one node will do (approximately), what will happen if
the nodes correspond to strategic players? Will they settle into a stable scenario
where everybody gets some revenue, or will it end in a “price war” where the
revenue of each player becomes zero?

5Made by Sven Polak.

Chapter 4

Shortest Paths and Centrality
in Uncertain Networks

4.1 Introduction

Computing the shortest path between two nodes in a network is a well-studied
fundamental graph problem with numerous applications, including route planning,
network routing protocols, computer games, and pathfinding in social networks.
In the preliminaries, we have seen that Dijkstra’s algorithm can be used to solve
the shortest path problem. However, there are many other algorithms like, for
example, Bellman-Ford (Bellman, 1958; Ford Jr, 1956), which can compute a
shortest path in a graph with negative edge weights (but no negative cycles), the
A

⇤ search algorithm that uses heuristics to speed up Dijkstra’s algorithm (Hart,
Nilsson, and Raphael, 1968), an algorithm improving the running time if the cost
on the edges is bounded (Ahuja et al., 1990), and there is a whole line of work on
algorithms that use preprocessing to speed up computations (Delling et al., 2009).

In a deterministic network, all edges are always available, but in many situa-
tions, the availability of edges in a network is uncertain. For example, in a wireless
network, a connection can fail between two access points in the network, and in a
road network, an accident can cause a road to be closed off for a while. In terms
of the underlying graph, this means that the edge corresponding to the failing
connection or the road with an accident is unavailable at that moment in time.

A way to model an uncertain network is by a graph in which each edge has a
probability of existence. Given two nodes s and t in an uncertain network, we
can ask the question: what is the shortest path between these two nodes? If we
compute a shortest path when all edges are available, it might turn out that,
in a realization of the graph, some edges in the path are unavailable. In this
chapter, we introduce the notion of Most Probable Shortest Path (MPSP). The

61

62 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

MPSP between two nodes is the path that has the highest probability of being
the shortest path. Here the probability is taken over all possible realizations of
the graph. A formal definition will be given in Section 4.2.

Computing MPSPs is useful in many applications. Road networks can be
modeled as uncertain graphs because of unexpected traffic jams (Hua and Pei,
2010). Instead of taking the distance-wise shortest route, a driver might want
to take a longer route if it means there is a smaller chance of having issues
along the way. MPSPs are also useful in routing over wireless sensor networks,
where links between sensor nodes have a probability of failure: In this context,
many applications not only require the shortest route, but also one with a high
precision (Ghosh et al., 2007; Khan, Bonchi, Gionis, et al., 2014), such as being
shortest with high probability. Brain networks are often represented as weighted
uncertain graphs, where nodes are the brain regions of interest (ROIs), edges
indicate potential co-activation between ROIs, edge distance represents the physical
distance between ROIs, and edge probability indicates the strength of the co-
activation signal (Craddock et al., 2013). Finding MPSPs between different ROIs
of the brain could differentiate healthy brains from those with diseases, such
as autism (Di Martino et al., 2010; García Domínguez et al., 2013). In our
experiments, we present two case studies of MPSPs on sensor networks and brain
networks.

To get some intuition for the problem, we take a look at an example.

s t

w

x

y

z

1, 0.05

2, 0.15
3, 0.25

4, 0.95

1, 0.05

2, 0.15
3, 0.25

4, 0.95

Path P Length P(Sht
s
(P))

P1 : (s, w, t) 2 0.0025
P2 : (s, x, t) 4 0.0224
P3 : (s, y, t) 6 0.0609
P4 : (s, z, t) 8 0.8250

Figure 4.1: Example of paths in an uncertain graph: P(Sht
s
(P)) denotes the

probability that path P is the shortest path from s to t.

Example 4.1.1. Each edge in the uncertain graph in Figure 4.1 is annotated with
its length and its probability of existence (which is independent of the existence of
the other edges). The table contains for all s, t-paths its length, and its probability
of being the shortest path. The probability that a path is the shortest path is
equal to the probability that it exists multiplied by the probability that none of the
shorter paths exist. For source node s and target node t, the path P1 = (s, w, t)
is the shortest (when all edges are available). However, this path only has a very

4.1. Introduction 63

small probability of existence of 0.0025. The longest path P4 = (s, z, t) has a
probability of existence of 0.952 = 0.9025, and because the probability that none
of the three shorter paths exists is approximately 0.914 path P4 has a probability
of about 0.825 of being the shortest path.

In the previous chapter, we have already seen that it can be useful to know
which nodes are the most central nodes in a network. The same arguments carry
over to uncertain networks. Different centrality measures give different rankings of
the nodes, and it depends on the situation which one is more useful. For uncertain
graphs, examples of centrality measures that have been studied are expected
betweenness centrality (Pfeiffer and Neville, 2011), where the centrality of a node
is a weighted average of the centralities in the different realizations of the graph,
and a centrality based on a notion of possible shortest paths (Wang and Lin,
2019), where they try to incorporate an approximation of the probabilities that
paths are shortest paths in the centrality definition. We define a new centrality
notion based on our most probable shortest paths that gives another ranking of
the nodes that is fast to compute.

A common approach to finding shortest paths in uncertain networks is by
means of a filtering and verification framework. A filtering approach used by Zou,
Peng, and Zhao (2011) enumerates paths between the two given nodes in increas-
ing order of length when all edges are available until a termination criterion is
satisfied. Among the candidate paths generated, a sampling method is applied to
approximately measure each candidate path’s probability of being the shortest
path. However, it can happen that the MPSP is not one of the shortest few paths
when all edges are available (as also illustrated in Example 4.1). In fact, in general,
there can be an exponential number of paths shorter than the MPSP, and these
would all have to be enumerated before the MPSP is included in the candidate
set. Thus, we ask the question:

Can we quickly include the MPSP in the candidate set without enu-
merating all paths shorter than the MPSP?

To address this, we combine Monte Carlo sampling with Dijkstra’s algorithm
(referred to as DIJKSTRA+MC). From the source node, we run Dijkstra’s algo-
rithm, and an edge in the current possible world is sampled only upon request from
Dijkstra’s algorithm. That is, when a node is reached via Dijkstra’s algorithm,
its outgoing edges are sampled according to their probabilities, and only the
sampled edges are considered for choosing the next node. As formally proved in
Section 4.3.3, our method only needs a small number of DIJKSTRA+MC runs to
include the MPSP in the candidate set with high probability. For intuition about
our strategy, we again take a look at the graph from Figure 4.1.

Example 4.1.2. In Figure 4.1, there are four paths from s to t. The path P4

(the longest path) is the MPSP. Enumerating paths in increasing order of length,

64 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

requires us to enumerate all paths to include path P4. On the other hand, a run
of DIJKSTRA+MC has a probability of 0.825 of returning path P4, hence with
only two runs of DIJKSTRA+MC there is a probability of 1� (1� 0.825)2 = 0.969
of returning path P4. The probability that path P4 is not included even decreases
exponentially in the number of runs. By introducing a small probability of failure
the number of iterations can be halved in this instance.

After we have generated a candidate set, we use Luby-Karp sampling (Karp,
Luby, and Madras, 1989) to estimate for every path in the candidate set the
probability that that path is the shortest path. As input, this algorithm takes
a path and a set of shorter paths, and, by smartly reducing the universe from
which it samples, it does not need many iterations for good approximations. In
the setting where the set of shorter paths is actually the set of all shorter paths,
this technique has been used previously (Zou, Peng, and Zhao, 2011). We find
that even when the set of shorter paths is not exhaustive but reasonably large, it
still works very well.

The sampling-based approach used here is different from the approach used in
the previous chapter. In the previous chapter, we showed that our algorithms effi-
ciently compute feasible solutions that provide a certain approximation guarantee.
We are not able to do this for the algorithm we propose in this chapter. Because
we show that the problem of computing the probability that a given path is the
shortest path is #P-hard, it is highly unlikely that a polynomial-time algorithm
exists. For deterministic filtering algorithms, it is often not too difficult to come
up with a worst-case instance in which they have to enumerate a large number of
paths. To overcome the issue of having to enumerate a large number of paths, we
use a (randomized) Monte Carlo algorithm. By using a Monte Carlo algorithm,
we introduce a small probability of failure and, in return, get a fast algorithm.
Repeatedly running the algorithm makes the probability of error arbitrarily small.
Because the algorithm is randomized and because we do not have good bounds
on both the length and the probability of the optimal solution, we cannot prove
approximation factors. However, we are able to prove that, with high probability,
our algorithm returns the correct path. Also, we conducted extensive experiments
showing that our method is fast in practice.

4.1.1 Our Contributions
In this chapter, we first study the fundamental problem of computing shortest-
path queries in uncertain networks, and then we build on top of it a measure of
betweenness centrality. The notion of shortest path in an uncertain graph should
consider not only the length of a path but also the probability of existence of
all edges on the path. Specifically, given an uncertain graph G, a source node s,
and a target node t our goal is to find the path P from s to t with the highest
probability of being the shortest path, i.e., the probability with which P exists

4.1. Introduction 65

and no path shorter than P exists. We refer to such a path as the Most Probable
Shortest Path (MPSP) from s to t.

1. We show that computing the MPSP is a hard problem. More specifically,
we show that computing the probability that a given path is the shortest
path is #P-hard. Next to this, we make observations that give intuition
about why computing an MPSP is harder than computing a normal shortest
path. A subpath of an MPSP does not also need to be an MPSP and the
concatenation of two MPSPs is not guaranteed to be an MPSP.

2. We develop an efficient sampling-based algorithm to compute the MPSP.
We provide probabilistic guarantees that the algorithm returns the correct
path.

3. Next to computing an MPSP, we show how we can modify the algorithm to
solve the following generalizations of the problem:

• Finding the top-k most probable shortest paths.
• Finding the MPSPs for multiple destinations from a single source

(single-source multi-target) and its counterpart finding the MPSPs from
multiple sources to a single destination (multi-source single-target).

• Finding the MPSP in uncertain multi-graphs, graphs where there can
be multiple edges between the same nodes.

4. Using the notion of MPSP, we define a betweenness centrality measure and
develop efficient sampling strategies to compute the top-k central nodes.
Again, with probabilistic guarantees on returning the correct set.

5. Finally, we conduct extensive experiments.

• We show scalability over large-scale datasets and performance improve-
ments against state-of-the-art methods (Cheng, Yuan, Wang, et al.,
2014; Zou, Peng, and Zhao, 2011).

• We do case studies on sensor and brain networks showing the usefulness
of MPSPs.

4.1.2 Related Work
Uncertain networks, i.e., graphs where each edge is associated with a probability
of existence, have received a great deal of attention thanks to their expressivity
and applicability in many real-world contexts. Following the bulk of the literature
on uncertain graphs (Ball, 1986; Jin et al., 2011; Khan, Bonchi, Gullo, et al., 2018;
Khan, Ye, and Chen, 2018; Potamias et al., 2010; Valiant, 1979; Yuan, Chen, and
Wang, 2010; Zou, Peng, and Zhao, 2011) we adopt the well-established possible

66 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

world semantics and assume that each edge has a probability of existence that
is independent of the other edges. Researchers have studied k-nearest neighbors
queries (Li et al., 2018; Potamias et al., 2010) where one, given a node, searches
for the k nodes closest to that node given some metric, reachability queries (Ke,
Khan, and Quan, 2019) where one tries to determine whether two nodes are
connected via a path, and clustering (Han et al., 2019) where one wants to
partition the nodes in k subsets such that the connection probability within
clusters is maximized, to mention a few. Uncertainty in a network might arise due
to noisy measurements (Aggarwal and Yu, 2009), edge prediction models (Liben-
Nowell and Kleinberg, 2003), and explicit manipulation of edges, e.g., for privacy
purposes (Boldi et al., 2012).

Shortest-path queries (Bonchi et al., 2014; Eppstein, 1998; Johnson, 1977) are
one of the fundamental graph primitives with a plethora of applications, e.g., in
traffic routing or finding functional pathways in biological networks. A critical
application of shortest paths is the computation of betweenness centrality (Brandes,
2001; Freeman, 1977; Mahmoody, Tsourakakis, and Upfal, 2016; Riondato and
Kornaropoulos, 2016), a measure of the importance of a node in a network based
on its effectiveness in connecting pairs of other nodes via shortest paths.

Several variants of shortest-path queries over uncertain graphs have been
studied in the literature. There is a line of work (Cheng, Yuan, Chen, et al., 2015;
Cheng, Yuan, Wang, et al., 2014; Yuan, Chen, and Wang, 2010) that investigates
threshold-based shortest-path queries in uncertain graphs, i.e., the problem of finding
all paths having shortest-path probability larger than a predefined threshold. In
particular, Cheng, Yuan, Chen, et al. (2015) and Cheng, Yuan, Wang, et al. (2014)
consider a different uncertain graph model with correlation. The work closest to
ours is probably by Zou, Peng, and Zhao (2011), which considers MPSP queries
as we do, but it does not provide any hardness result nor any accuracy guarantee.

In (Zou, Peng, and Zhao, 2011), similarly to (Cheng, Yuan, Chen, et al.,
2015; Yuan, Chen, and Wang, 2010), a filtering and verification framework is
used. The sampling method for the verification part is based on the Luby-Karp
algorithm (Karp, Luby, and Madras, 1989). To improve upon the filtering step
in this framework we combine Monte Carlo sampling with Dijkstra’s algorithm
(DIJKSTRA+MC). The idea of DIJKSTRA+MC has been extensively used in
probabilistic reachability queries (Jin et al., 2011; Ke, Khan, and Quan, 2019; Khan,
Bonchi, Gionis, et al., 2014) and for the influence maximization problem (Borgs
et al., 2014; Tang, Xiao, and Shi, 2014) where one tries to find a set of nodes
that maximizes the expected set of nodes reached according to some probabilistic
cascading rule.

The work by Cheng, Yuan, Wang, et al. (2014), discussed before, also employs
a form of DIJKSTRA+MC followed by the Horvitz-Thompson unequal probability
estimator, to compute the probability of being the shortest path, without any
guarantees. While we employ DIJKSTRA+MC for effective and faster candidate
generation, we then apply the Luby-Karp sampling to find the MPSP in this

4.2. Preliminaries 67

candidate set. Unlike Cheng, Yuan, Wang, et al. (2014), we provide probabilistic
guarantees for our method, and we also experimentally demonstrate the superiority
of our approach over the one of Cheng, Yuan, Wang, et al. (2014).

4.2 Preliminaries

Let G = (V,E, (ce)e2E, (pe)e2E) be a probabilistic (or uncertain) directed graph,
where ce 2 R�0 is a non-negative edge length, and pe 2 (0, 1] assigns a probability
of existence to each edge e 2 E. We adopt the well-established possible world
semantics (Ball, 1986; Jin et al., 2011; Khan, Bonchi, Gullo, et al., 2018; Khan, Ye,
and Chen, 2018; Potamias et al., 2010; Valiant, 1979; Yuan, Chen, and Wang, 2010;
Zou, Peng, and Zhao, 2011) and assume that edge probabilities are independent of
each other: the uncertain graph G is interpreted as a probability distribution over
the 2|E| deterministic graphs (possible worlds) G = (V,EG, (ce)e2E) 2 G (when
writing 2 G we interpret G as the set of all possible realizations of G) obtained by
sampling each edge e 2 E independently at random with probability pe. That is,
the probability of observing the possible world G = (V,EG, (ce)e2E) with EG ✓ E

is:

P(G) =
Y

e2EG

pe

Y

e2E\EG

(1� pe). (4.1)

In an uncertain graph G = (V,E, (ce)e2E, (pe)e2E), let P(G, s, t) denote the
set of all paths from s to t when all edges in E are present. Given a path
P = (e1, e2, . . . , en), the event that P exists (resp. does not exist) is denoted by
X(P) (resp. X(P)), and observe the relation P

�
X(P)

�
=
Q

n

i=1 pei = 1�P
�
X(P)

�
.

Given two paths P,Q with possibly overlapping edges we write P \Q for the set
of edges that are present in P but not in Q. The definition of X then extends
in the obvious way by P(X(P \Q)) =

Q
e2P\Q pe. We also denote by Sh

t

s
(P) the

event that P happens to be a shortest path from s to t, whose probability is:

P(Sht
s
(P)) =

X

G2G

P(G) · [P2SP(G,s,t)], (4.2)

where [.] is the indicator function.
The main problem studied in this chapter requires finding the path that has

the maximum probability of being a shortest path.

Problem 4.2.1. (Most Probable Shortest Path (MPSP)). Given an uncertain
graph G = (V,E, (ce)e2E, (pe)e2E) and two nodes s, t 2 V , find a most proba-
ble shortest path (MPSP) from s to t. Formally:

MPSP(G, s, t) 2 arg max
P2P(G,s,t)

P(Sht
s
(P)). (4.3)

68 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

In this chapter, we denote by M(G, s, t) the set of MPSPs from s to t, and by
M(G) the set of all MPSPs between all pairs of nodes, i.e,.

M(G) =
[

(s,t)2V⇥V

M(G, s, t).

4.2.1 Hardness of the Problem
One reason that makes Problem 4.2.1 challenging is that even computing the
probability of being the shortest path between two given nodes, for a given path,
is hard.

Theorem 4.2.2. Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E) and a
path P 2 P(G, s, t), the problem of computing the probability of P being a shortest
path from s to t in G is #P-hard.

Proof: We prove the #P-hardness by polynomial-time reduction from the s, t-
connectedness problem, which is known to be #P-hard (Valiant, 1979). Given
a (deterministic) graph G = (V,E) and two nodes s and t, the goal of the s, t-
connectedness problem is to find the number of subgraphs of G in which there is
a path from s to t.

Consider an arbitrary instance of the s, t-connectedness problem with in-
puts G = (V1, E1) and two nodes s, t 2 V1. Let n = |V1|. The deter-
ministic graph G is converted to an uncertain graph G = (V1 [V2, E1 [

E2, (ce)e2E1[E2 , (pe)e2E1[E2), where V2 = {v1, v2, . . . , vn} is a set of n new nodes
and E2 = {(s, v1), (v1, v2), (v2, v3), . . . , (vn�1, vn), (vn, t)}. In other words, G is
augmented with a new path P = ((s, v1), (v1, v2), . . . , (vn, t)) from s to t. We
define ce = 1 8e 2 E1 [E2 and

pe =

(
1
2 if e 2 E1

1 if e 2 E2.

We make three observations.

(i) Every possible world G
0
2 G for which P(G0) > 0 contains the path P and

has P(G0) =
�
1
2

�|E1|.

(ii) There is a bijection between the set of subgraphs of G and the set of possible
worlds of G that exist with positive probability. A subgraph G

00 = (V 00
, E

00)
of G can be mapped to the possible world G

0 = (V 00
[V2, E

00
[E2, (ce)e2E00[E2)

of G. This mapping is clearly one-to-one since V
00
\ V2 = � and E

00
\E2 = �

by definition. To see why it is onto, note that any possible world of G, that
exists with positive probability, must contain all edges in E2, since pe = 1
8e 2 E2. Hence, given a possible world G

0 = (V 0
, E

0
, (ce)e2E0) of G, there

exists a subgraph G
00 = (V 0

\ V2, E
0
\ E2, (ce)e2E0\E2) which is the pre-image

of G0 under the mapping.

4.2. Preliminaries 69

(iii) For a subgraph G
00 = (V 00

, E
00) of G and its corresponding possible world

G
0 = (V 00

[V2, E
00
[E2, (ce)e2E00[E2) of G, P is the shortest path from s to t

in G
0 if and only if s and t are disconnected in G

00. The ‘if ’ part is trivial.
The ‘only if ’ part follows since c(P) = n+ 1 and c(P 0)  n� 1, where P

0

denotes any path from s to t in G
00.

Putting together the above observations, we obtain the following:

P(Sht
s
(P)) =

X

G02G

P(G0) · [P2SP(G0,s,t)]

= 1�
X

G02G

P(G0) · [P 62SP(G0,s,t)]

= 1�

✓
1

2

◆|E1| X

G02G ^P(G0)>0

[P 62SP(G0,s,t)].

From observation (iii), the summation term in the last line is exactly the number
of subgraphs of G in which the nodes s and t are connected. Thus, a solution
to our problem on G provides a solution to the s, t-connectedness problem on G.
This reduction involves O(n) node and edge additions to G, and hence takes time
polynomial in the size of G. 2

In addition to #P-hardness, there are some other properties of MPSPs that
make our problem hard. Many of the classical properties of shortest paths over
deterministic graphs no longer hold for MPSPs in uncertain graphs. Firstly, the
concatenation of two MPSPs does not have to be an MPSP. Secondly, the subpath
of an MPSP is also not necessarily an MPSP. We demonstrate these properties
next, using the uncertain graph G in Figure 4.2.

s t

w

u v
10, 0.1

2, 0.9 10, 0.9

4, 0.9

3, 0.4 5, 0.6
Path P c(P) P(Sht

s
(P))

P1 : (s, u, w, t) 18 0.024
P2 : (s, u, v, w, t) 21 0.029
P3 : (s, u, v, t) 22 0.035

Figure 4.2: An example to demonstrate properties of MPSP

Observation 4.2.3. Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E), an
MPSP P 2M(G), and a subpath Q of P , it is possible that Q /2M(G).

Consider the path P3 = (s, u, v, t) 2 M(G, s, t) and its subpath (v, t). The
probabilities of being the shortest path from v to t are P(Sht

v
(v, w, t)) = 0.540 (if

it exists it is the shortest paths) and P(Sht
v
(v, t)) = 0.414 (the probability that

70 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

this edge exists while the alternative path (v, w, t) does not) , so that (v, t) is not
even the MPSP from v to t. The observation follows.

Recall that given two paths P = (e1, . . . , (u, v)) and Q = ((v, w), . . . , en), the
concatenation of P and Q, denoted by P · Q, is defined as the path P · Q =
(e1, . . . , (u, v), (v, w), . . . , en). Note that the concatenation of two paths P and Q

is defined only when the target node of P is the same as the source node of Q. The
next observation states that the concatenation of two MPSPs is not necessarily
an MPSP.

Observation 4.2.4. Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E) and
two MPSPs P,Q 2M(G), such that the target node of P is the same as the source
node of Q, it is possible that P ·Q /2M(G).

Notice that since P = (s, u, v) is the only path from s to v, it is clear that
M(G, s, v) = {(s, u, v)}. Also, as shown in Observation 4.2.3, Q = (v, w, t) 2
M(G, v, t). However, P ·Q = (s, u, v, w, t) = P2 /2M(G, s, t) and hence P ·Q /2

M(G).

4.2.2 Benchmark: Filtering and Verification
Before we outline our new approach we start by shortly discussing the current
state-of-the-art algorithm by Zou, Peng, and Zhao (2011). In our experiments
(Section 4.5) we use their approach as a benchmark. The algorithm consists of
two steps: generating a set of candidate paths containing the MPSP, and using
Luby-Karp sampling to find the MPSP in this set.

For step 1, given a source s and a target t, Yen’s algorithm1 (Yen, 1971) is
used to progressively generate s, t-paths P1, P2, P3, . . . in non-decreasing order of
length, when all edges are available until some stopping criterion is met. On a
high level, the stopping criterion is as follows. For any i, using paths P1, . . . , Pi,
a lower bound LB(Pi) (possibly consisting of multiple combined lower bounds)
and an upper bound UB(Pi) on the probability that the path Pi is the shortest
path, i.e., on Sh

t

s
(Pi), is computed. The upper bound is monotonically decreasing

in i. If some path Pi is the shortest path with probability at most ✏, all paths Pj

generated after path i (j > i) will have a probability of being the shortest path
that is smaller than ✏. Hence, if the probability for path i is too low, then it is
also too low for paths Pj with j > i. More formally, if UB(Pi) < ✏ for some ✏ > 0,
UB(Pj) < ✏ for all j > i. For including paths in the candidate set, the algorithm
continues to generate paths until UB(Pi+1) < maxj2[i]{LB(Pj)} for some i or

1Yen’s algorithm generates paths in non-decreasing order of length. It starts by determining
a shortest path (e.g., by using Dijkstra’s algorithm). Then it alternates between two phases.
Phase 1: it generates new paths by explicitly excluding already found paths and it adds them to
a pool of candidates. Phase 2: the shortest path from the pool is the next shortest path, and it
goes back to phase 1

4.3. Proposed Solution 71

until all possible paths have been found. If some path is the shortest path with
at least some probability, then we can ignore all paths that are the shortest path
with at most that probability. This gives the candidate set {P1, . . . , Pi}.

Step 2 consists of running the Luby-Karp algorithm (Karp, Luby, and Madras,
1989) to approximate the probability that each path in the candidate set is the
MPSP. It returns the path with the highest such probability. The pseudocode of
the Luby-Karp algorithm is given in Algorithm 6 and more details in Subsection
4.3.1.

Two shortcomings of step 1 have an influence on the performance of this
method. First, the number of candidates generated can be very large, even
exponential in the input size. The lower bound on the probability of being the
shortest path is actually the maximum of two different lower bounds in (Zou, Peng,
and Zhao, 2011). For both lower bounds LB it holds that LB(Pj)  P(X(Pj)).
The upper bound on the probability of path Pi being the shortest path is computed
as UB(Pi) = 1 �

P
i�1
j=1 LB(Pj). If the probability of existence of the MPSP is

low, then the probability of existence of the other shorter paths will generally also
be low. Hence, the upper bound will decrease very slowly, and it can take a lot of
time before the candidate generation terminates.

The second shortcoming is the computational cost of the candidate generation.
Assume that we generate k paths before the candidate generation terminates.
Yen’s algorithm has time complexity O(k|V |(|E| + |V | log |V |)). As mentioned
in the first shortcoming, the number of candidates k can become very large, and
even if it is small, we have the |V ||E| factor. Empirically (Section 4.5) we find
that the candidate generation does not finish within reasonable time for our larger
datasets.

4.3 Proposed Solution

We propose a two-phase algorithm to find the MPSP between two nodes in an
uncertain graph. In the first phase, we compute paths that are candidates for
being the MPSP (via DIJKSTRA+MC), and in the second phase, we approximate
the probability of each candidate path being the shortest path (via Luby-Karp
algorithm). Our method is described in Section 4.3.1 and theoretical guarantees
on the quality of the returned path are provided in Section 4.3.3.

The idea of DIJKSTRA+MC is simple, yet effective and efficient for candidate
generation as we argued in Example 4.1.2 (Section 4.1). Our novel algorithmic
contributions include pairing up DIJKSTRA+MC with the Luby-Karp algorithm
for ultimately finding the MPSP approximately, with probabilistic guarantees.
Empirical results attest that our algorithm has better accuracy and scalability
over the benchmark (Zou, Peng, and Zhao, 2011) (Section 4.2.2), and over more
advanced sampling approaches, e.g., Horvitz-Thompson unequal probability esti-
mator (Section 4.5.4). Among other novel algorithmic contributions, we extend

72 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

Algorithm 4 Approximating the MPSP from s to t

Input: Uncertain graph G = (V,E, (ce)e2E, (pe)e2E), source s, target t, positive
integers m and N

Output: An (approximate) MPSP from s to t

1: CP � /* Phase 1 */
2: for i = 1 to m do
3: P Algorithm 5(G, s, t) /* DIJKSTRA+MC */
4: if P 6= P1 then
5: CP CP [{P}

6: end if
7: end for
8: CP.sort(in non-decreasing order of length) /* Phase 2 */
9: for i = 1 to |CP | do

10: p̂(CP [i]) Algorithm 6 (G, s, t, CP [i], CP [1 : (i� 1)], N)
11: /* Luby Karp */
12: end for
13: return argmaxP2CP [p̂(P)]

our method to find the top-k MPSPs for k > 1 (Section 4.3.2), single-source
and single-target MPSP queries (Section 4.3.4), and to compute the MPSPs in
uncertain multi-graphs (Section 4.3.4). Our final technical contribution is to
define a novel MPSP-BTW as a concrete application (Section 4.4); we then develop
efficient sampling strategies to compute the top-k central nodes, with theoretical
quality guarantees.

4.3.1 Two-Phase Algorithm

Algorithm 4 contains pseudocode for our algorithm which consists of two phases.

Phase 1: DIJKSTRA+MC

Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E) and a pair of nodes (s, t) 2
V ⇥ V , the first phase involves computing paths that are candidates for being the
MPSP from s to t. This is done by performing m independent runs of Dijkstra’s
algorithm on G, where m is a hyperparameter (lines 2 to 7 of Algorithm 4).
Dijkstra’s algorithm on an uncertain graph is similar to the classic algorithm
on deterministic graphs except that when the algorithm reaches a node in the
uncertain graph, its outgoing edges are sampled according to their respective
probabilities (Algorithm 5). At any stage, only the sampled edges are considered

4.3. Proposed Solution 73

Algorithm 5 Candidate Generation with DIJKSTRA+MC
Input: Uncertain graph G = (V,E, (ce)e2E, (pe)e2E), source s, target t
Output: A path from s to t

1: u s

2: visited {s}

3: P[v] P1 8v 2 V /* to store the shortest path from s to v */
4: while u 6= t and P[u] 6= P1 do
5: for all e = (u, v) 2 E with v /2 visited do
6: /* If we find a shorter path to v, store it with probability pe */
7: if c(P[u]) + ce < c(P[v]) then
8: With probability pe, P[v] P[u] · (e)
9: end if

10: end for
11: u argminv2V \visited c(P[v]) /* The closest unvisited node */
12: visited visited [{u}

13: end while
14: return P[t]

for choosing the next node. This is equivalent to running Dijkstra’s algorithm2 on
a possible world G 2 G. If t is reachable from s in the sampled possible world,
then the Dijkstra’s algorithm on G results in an s, t-path which is added to the
set of candidate paths denoted by CP . Otherwise, if t is not reachable, then P1
is returned.

Phase 2: Probability Approximation

In the second phase, the Luby-Karp algorithm (Algorithm 6) is employed to
compute an approximation of the probability of each candidate path being the
shortest s, t-paths in G. Intuitively, given a path P and some other shorter
paths P1, . . . , Pn from s to t, along with a hyperparameter N , the algorithm first
estimates the probability p̂ of existence of any of the paths shorter than P by
generating N suitable possible worlds via Monte Carlo sampling, and then it
returns the value (1� p̂) · P

�
X(P)

�
as an estimate of P(Sht

s
(P)).

We elaborate in more detail on why Algorithm 6 returns a good estimate. Fix
a path P and assume P1, . . . , Pn are all the paths shorter than P . Note that

P(Sht
s
(P)) = P(X(P)) · P(\i2[n]X(Pi) | X(P))

= P(X(P)) · (1� P([i2[n]X(Pi) | X(P)).

2
In Algorithm 5, instead of DIJKSTRA+MC, one may employ YEN+MC. Yen’s algorithm (Yen, 1971) reports

the top-l (l � 1) shortest s, t-paths in each possible world, thereby generating more candidate paths, and possibly

improving the quality of the returned MPSPs. However, we empirically found that increasing the value of l

results in a very small increase in quality but a very large increase in running time. Thus we choose the default

value l = 1, which is the same as running DIJKSTRA+MC.

74 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

Algorithm 6 Luby-Karp: Estimate P(Sht
s
(P)) for a path P from s to t

Input: Uncertain graph G = (V,E, (ce)e2E, (pe)e2E), source s, target t, s, t-paths
P and {P1, . . . , Pn} shorter than P , positive integer N

Output: An estimate of P(Sht
s
(P))

1: C 0, S
P

n

i=1 P
�
X(Pi \ P)

�

2: for r = 1 to N do
3: Sample i 2 [1, n] with probability P

�
X(Pi\P)

�

S

4: Sample G = (V,EG, (ce)e2E) 2 G such that (Pi [P) ✓ EG

5: if 8(j < i)[(Pj \ P) * EG] then
6: C C + 1
7: end if
8: end for
9: p̂

C

N
· S

10: return (1� p̂) · P
�
X(P)

�

The variable p̂ will be an estimate of P([i2[n]X(Pi) | X(P)). A naive way to
estimate the probability would be to sample worlds G 2 G in which P exists and
count how often at least one of the Pi exists. However, if the probability we want
to estimate is (exponentially) small this requires an (exponentially) large number
of iterations for accurate estimates (Karp, Luby, and Madras, 1989). Instead, we
use a biased estimator on a smaller universe in which we know that P and at least
one of the Pi exist. Doing this requires fewer iterations for a good estimate.

Let Ĝ be the set of possible realizations of G in which both P and at least one
Pi for i 2 [n] exist. Consider the sets

T = {(G,Pi) | G 2 Ĝ, i 2 [n]},

T
0 = {(G,Pi) | G 2 Ĝ, i is the smallest index for which Pi exists in G}.

We are interested in the quantity
X

(G,Pi)2T 0

P(G | X(P)) =
X

G2Ĝ

P(G | X(P)) = P([i2[n],X(Pi) | X(P))

where the first equality follows because there can only be one Pi with the smallest
index in G. Each table cell in Table 4.3 corresponds to an element in T . We have
put an x in cell (Gj, Pi) if Pi exists in Gj and an x

0 if Pi is the path with the
smallest index that exists in Gj.

Let S =
P

i2[n] P(X(Pi \ P)) be a normalizing factor. Lines three and four in
Algorithm 6 consist of the following sample steps

1. Sample i with probability P(X(Pi\P))
S

.

2. Sample G = (V,EG) 2 G such that Pi [P ✓ EG.

4.3. Proposed Solution 75

P1 P2 . . . Pn

G1 x
0

. . . x

G2 x
0

x . . .

...
Gk . . . x

0

Figure 4.3: Table for illustrating the set T

Element (Gj, Pi) is sampled with probability

P(sample (Gj, Pi)) = P(sample Pi) · P(sample Gj | X(Pi) \X(P))

=
P(X(Pi \ P))

S
· P(sample Gj | X(Pi) \X(P))

=
P(Gj | X(P)) · P(X(Pi) | sampled Gj,X(P))

S

=
P(Gj | X(P))

S
.

The third probability follows from Bayes’ Theorem and the last equality because
we know that Pi exists in Gj.

Because there is exactly one element of T 0 per row in Table 4.3 the probability
that we sample an element of T 0 is

X

(G,Pi)2T 0

P(sample (G,Pi)) =
X

(G,Pi)2T 0

P(G | X(P))

S

=
1

S

X

G2Ĝ

P(G | X(P))

=
P([i2[n]X(Pi) | X(P))

S
.

Lines five to seven in Algorithm 6 verify whether the sampled element is in T
0.

If Cr is the random variable that is one if iteration r raises C by one and 0 otherwise
then C =

P
N

r=1 Ci. The discussion above has shown that E[Ci] =
P([i2[n]X(Pi)|X(P))

S
.

Hence, by linearity of expectation

E[p̂] = E

S ·

C

N

�
= S ·

N · P([i2[n]X(Pi) | X(P))

N · S
= P([i2[n]X(Pi) | X(P)).

We discuss in Section 4.3.3 how many iterations are needed for a good approx-
imation.

Notice that in order to approximate the probability of a path P being the
shortest path in G, the Luby-Karp algorithm, as described in (Zou, Peng, and
Zhao, 2011), requires as input all the paths that are shorter than P . Although the

76 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

set of candidate paths computed after m runs of Algorithm 5 does not necessarily
include all such paths, we shall show in Section 4.3.3 that we can still provide
good approximation guarantees.

Time Complexity

In Phase 1, we perform m Dijkstra’s runs on the uncertain graph G, which has time
complexity O

�
m(|E|+ |V | log |V |)

�
. However, due to sampling of edges, Dijkstra

is run on a smaller graph than the original uncertain graph, thus practically it
is even more efficient. In Phase 2, first we need to sort (at most) m distinct
candidate paths. This step requires O(m logm) time. Then, we run Algorithm 6
for each candidate path. For sampling the possible world in line four of Algorithm
6, observe that we can assume that all edges in Pi [P are included and for the
remaining edges in the graph (actually only the edges that are in one of P1, . . . , Pn)
we flip a coin. Because we do m DIJKSTRA+MC runs we know that n  m. If |P |

is an upper bound on the number of edges in a path we can do the bookkeeping
for lines five to seven in time O(m|P |). With N the number of Monte Carlo runs
the Luby-Karp algorithm runs in time O(N(|E|+m|P |)). Therefore, the overall
time complexity of our method is: O

�
m
�
N(|E|+m|P |) + |V | log |V |+ logm

��
.

Space Complexity

Both DIJKSTRA+MC and Luby-Karp have low memory footprints, and do not
have much additional overhead other than storing the graph, which is O(|E|+ |V |)
via adjacency list. Additionally, DIJKSTRA+MC generates at most m candidate
paths, which require at most O(m|E|) storage, but practically it is less since
a path generally has fewer than |E| edges. Thus, the space complexity of our
method is O(m|E|+ |V |).

4.3.2 Extension to Top-k MPSPs
The method presented in Section 4.3.1 can be easily extended to compute the
top-k MPSPs where k > 1. We notice that if the number of candidate paths is
smaller than or equal to k, we return all the candidate paths. Otherwise, we
modify Algorithm 4 so that it stores every candidate path P and the estimate of
P(Sht

s
(P)) in decreasing order of the probabilities, and then it returns the top-k

elements.
We provide theoretical guarantees that with high probability, the true top-k

shortest paths are the ones returned by our algorithm.

4.3.3 Accuracy Guarantees
As a first step, notice that an s, t-path P is returned after one run of Algorithm 5
if and only if Algorithm 5 samples a possible world of G in which P is a shortest

4.3. Proposed Solution 77

path from s to t. Thus, the probability of the former is equal to that of the latter,
which, by definition, is equal to P(Sht

s
(P)). Extending this to m runs of Algorithm

5, denoting by CP the set of all (candidate) paths returned, for any given path P ,
we have P(P 2 CP) = 1� (1� P(Sht

s
(P)))m.

Further extending to k paths, the probability of any given set {P1, . . . , Pk} of
k s, t-paths being included in CP is, by the union bound,

P({P1, . . . , Pk} ✓ CP) = P(^k
i=1(Pi 2 CP))

= 1� P(_k
i=1(Pi 62 CP))

� 1�
X

Pi2{P1,...,Pk}

P(Pi /2 CP)

= 1�
X

Pi2{P1,...,Pk}

(1� Sh
t

s
(Pi))

m
.

(4.4)

A key observation is that, for an MPSP P , P(P 2 CP) is very high for a
reasonably large value of P(Sht

s
(P)), even for small m. For example, consider the

MPSP P4 in the graph in Figure 4.1 for which P(Sht
s
(P4)) = 0.825. Setting m = 20

yields P(P4 2 CP) > 0.999. Also, in our experiments, the path P returned by our
method for most of the synthetic networks and the road networks for the smaller
hop queries satisfies P(Sht

s
(P)) > 0.06, and hence P(P 2 CP) > 0.7 with m = 20.

One can always (exponentially) boost the probabilities by raising m.
Before proceeding, we define some useful notations that we use throughout the

remainder of the section. Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E), a
source node s, a target node t, a set of s, t-paths CP , and any path P 2 CP , we
use the following notation:

• A(P) is the set of all paths in G that are shorter than P .

• C(P) is the set of all paths in CP shorter than P , i.e., CP \A(P).

• M(P) = A(P) \C(P).

• pne

�
P,C(P)

�
denotes the probability that P exists and no path in C(P)

exists, i.e., P
�
X(P)

�⇥
1� P

�S
Q2C(P) X(Q \ P)

�⇤
3 where Q \ P is the set of

all edges in Q that are not in P . Clearly, pne

�
P,A(P)

�
= P(Sht

s
(P)).

• pm

�
P,C(P)

�
is the sum over all paths Q shorter than P and missing from

CP of the probability that Q is the shortest s, t-path and that P exists, i.e.,P
Q2M(P) P(Shts(Q) ^X(P)).

• p̂
�
P,C(P)

�
is the output of Alg. 6 (G, s, t, P , C(P), N).

3Observe that because the edges are sampled independently it holds that P
�S

Q2C(P) X(Q \

P)
�
= P

�S
Q2C(P) X(Q) | X(P)

�
. In this section, we regularly use this idea that excluding the

edges in P is in some sense the same as conditioning on the existence of P

78 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

Even if the true top-k MPSPs are included in CP , the probability of them
being the paths finally returned depends on the quality of the approximation
computed in Algorithm 6 for every single path in CP . Fortunately, there is a
guarantee on this quality (Karp, Luby, and Madras, 1989; Zou, Peng, and Zhao,
2011).

Theorem 4.3.1. (Karp, Luby, and Madras, 1989; Zou, Peng, and Zhao, 2011).
Consider an uncertain graph G = (V,E, (ce)e2E, (pe)e2E), a source node s and
a target node t, a set of s, t-paths CP , and a path P 2 CP . p̂

�
P,C(P)

�
is an

accurate estimate of pne

�
P,C(P)

�
with high probability. More formally, for all

✏ 2 [0, 2],

P
⇣ ��p̂

�
P,C(P)

�
� pne

�
P,C(P)

��� � ✏

⌘
 2 exp

✓
�

N✏
2

4|C(P)|

◆
. (4.5)

However, as mentioned in Section 4.3.1, the quality of approximating P(Sht
s
(P))

could be hampered because the set CP computed after m runs of Algorithm 5
may not include all paths shorter than the path in question. We shall show that,
even then, the approximation made by Algorithm 6 is very accurate with high
probability. To this end, we first provide a lower and an upper bound on the
difference in probability of being the shortest path resulting from missing out on
some shorter paths.

Theorem 4.3.2. Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E), a source
node s and a target node t, let CP denote a set of paths from s to t. Consider a
path P 2 CP . Then

0  pne

�
P,C(P)

�
� P(Sht

s
(P))  pm

�
P,C(P)

�
. (4.6)

Proof: We have, by definition, the following:

pne

�
P,C(P)

�
= P

�
X(P)

�
2

41� P

0

@
[

Q2C(P)

X(Q \ P)

1

A

3

5 ,

P(Sht
s
(P)) = P

�
X(P)

�
2

41� P

0

@
[

Q2A(P)

X(Q \ P)

1

A

3

5 .

Let us define:

DA = P

0

@
[

Q2A(P)

X(Q \ P)

1

A , DC = P

0

@
[

Q2C(P)

X(Q \ P)

1

A .

4.3. Proposed Solution 79

This means that

pne

�
P,C(P)

�
� P(Sht

s
(P))

= P
�
X(P)

�
2

4P

0

@
[

Q2A(P)

X(Q \ P)

1

A� P

0

@
[

Q2C(P)

X(Q \ P)

1

A

3

5

= P
�
X(P)

�
·
�
DA �DC

�
. (4.7)

By definition, C(P) ✓ A(P). Thus it holds that DA � DC � 0. Now, observe
that any path Q 2 A(P) is shorter than P . Since A(P) contains all paths in G

that are shorter than P , the set of all paths in A(P) shorter than Q is exactly
equal to that of all paths in G that are shorter than Q, which is, by definition,
equal to A(Q). Hence,

DA = P

0

@
[

Q2A(P)

X(Q \ P)

1

A

=
X

Q2A(P)

2

4P
�
X(Q \ P)

�
8
<

:1� P

0

@
[

R2A(Q)

X
�
(R \ P) \Q

�
1

A

9
=

;

3

5 . (4.8)

By similar reasoning, the set of all paths in C(P) shorter than Q is exactly equal
to C(Q). Hence,

DC = P

0

@
[

Q2C(P)

X(Q \ P)

1

A

=
X

Q2C(P)

2

4P
�
X(Q \ P)

�
8
<

:1� P

0

@
[

R2C(Q)

X
�
(R \ P) \Q

�
1

A

9
=

;

3

5

�

X

Q2C(P)

2

4P
�
X(Q \ P)

�
8
<

:1� P

0

@
[

R2A(Q)

X
�
(R \ P) \Q

�
1

A

9
=

;

3

5 , (4.9)

where (4.9) follows because C(Q) ✓ A(Q) by definition. Note that (4.8) and
(4.9) are summations of the same term across all paths Q in A(P) and C(P)
respectively. Since C(P) ✓ A(P) and A(P) \C(P) = M(P) by definition,

DA �DC 

X

Q2M(P)

2

4P
�
X(Q \ P)

�
8
<

:1� P

0

@
[

R2A(Q)

X
�
(R \ P) \Q

�
1

A

9
=

;

3

5 .

(4.10)

80 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

Plugging (4.10) into (4.7), and using DA �DC � 0 we have

0  pne

�
P,C(P)

�
� P(Sht

s
(P))

= P
�
X(P)

�
·
�
DA �DC

�

 P
�
X(P)

� X

Q2M(P)

2

4P
�
X(Q \ P)

�
8
<

:1� P

0

@
[

R2A(Q)

X
�
(R \ P) \Q

�
1

A

9
=

;

3

5

=
X

Q2M(P)

P(Sht
s
(Q) ^X(P))

= pm

�
P,C(P)

�
,

where the second to last equality follows because the expression in the sum is the
probability that Q exists and no path shorter than Q exists and the last equality
follows by definition. This completes the proof. 2
Note that from (4.4), we can say that for every s, t-path missing from CP (not

returned in any run of Algorithm 5), it is highly likely that the probability of
that path being the shortest s, t-path is extremely small. Thus, if P is the path
returned by Algorithm 4, the sum of the shortest path probabilities of all paths
shorter than P and missing from CP is also very small, and hence pm

�
P,C(P)

�
,

which also includes the condition that P exists, is even smaller.
Using Theorems 4.3.1 and 4.3.2, we can provide a quality guarantee for

Algorithm 6 on a single path even with some shorter paths missing.

Theorem 4.3.3. Consider an uncertain graph G = (V,E, (ce)e2E, (pe)e2E), a
source node s and a target node t, a set CP of s, t-paths, and a path P 2 CP .
Then, p̂

�
P,C(P)

�
is an accurate estimate of P(Sht

s
(P)) with high probability. More

formally, for all ✏ 2 [0, 1],

P
⇣
p̂
�
P,C(P)

�
� P(Sht

s
(P))� pm

�
P,C(P)

�
� ✏

⌘
 exp

✓
�

N✏
2

4|C(P)|

◆
, (4.11)

P
⇣
p̂
�
P,C(P)

�
� P(Sht

s
(P))  �✏

⌘
 exp

✓
�

N✏
2

4|C(P)|

◆
. (4.12)

Proof: Note that pm

�
P,C(P)

�
� pne

�
P,C(P)

�
+ P(Sht

s
(P)) is at least 0 from

Theorem 4.3.2; and is also at most 1 since pm

�
P,C(P)

�
 1, pne

�
P,C(P)

�
�

P(Sht
s
(P)) � 0. Thus ✏ + pm

�
P,C(P)

�
� pne

�
P,C(P)

�
+ P(Sht

s
(P)) 2 [0, 2].

4.3. Proposed Solution 81

Applying Theorem 4.3.1 gives

P
⇣
p̂
�
P,C(P)

�
� P(Sht

s
(P))� pm

�
P,C(P)

�
� ✏

⌘

= P
⇣
p̂
�
P,C(P)

�
� pne

�
P,C(P)

�
� ✏+ pm

�
P,C(P)

�

� pne

�
P,C(P)

�
+ P(Sht

s
(P))

⌘

 exp

0

B@�
N

⇣
✏+ pm

�
P,C(P)

�
� pne

�
P,C(P)

�
+ P(Sht

s
(P))

⌘2

4|C(P)|

1

CA

 exp

✓
�

N✏
2

4|C(P)|

◆
.

By a similar logic on pne

�
P,C(P)

�
� P(Sht

s
(P)), Theorem 4.3.1 gives

P
✓
p̂
�
P,C(P)

�
� P(Sht

s
(P))  �✏

◆

= P
⇣
p̂
�
P,C(P)

�
� pne

�
P,C(P)

�
 �✏� pne

�
P,C(P)

�
+ P(Sht

s
(P))

⌘

 exp

0

B@�
N

⇣
✏+ pne

�
P,C(P)

�
� P(Sht

s
(P))

⌘2

4|C(P)|

1

CA  exp

✓
�

N✏
2

4|C(P)|

◆
,

which proves the theorem. 2

We can now show that if the gap between the probability of the kth and the
(k + 1)st most probable shortest path is sufficiently big we return the top k paths
with high probability.

Theorem 4.3.4. Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E), a source
node s, a target node t, an integer k, let P1, . . . , Pk+1 denote the true top k + 1
MPSPs (in order) from s to t. Then, P1, . . . , Pk are indeed the paths returned by
our method with high probability. Formally, let

mid =
1

2
[P(Sht

s
(Pk)) + P(Sht

s
(Pk+1)) + pm(Pk+1,C(Pk+1))].

Further, let CP be the set of candidate paths returned by Algorithm 5 and define
for each P 2 CP :

dP =

(
P(Sht

s
(P))�mid if P 2 {P1, . . . , Pk},

mid� P(Sht
s
(P))� pm(P,C(P)) otherwise,

82 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

and assume that dP � 0. This assumption is reasonable since, as noted earlier,
pm(P,C(P)) is very small. Then the following holds:

P(Alg. 4 returns P1, . . . , Pk) � P({P1, . . . , Pk} ✓ CP)
Y

P2CP


1� exp

✓
�

Nd2
P

4|C(P)|

◆�

Proof: We compute

P(Alg. 4 returns P1, . . . , Pk)

� P({P1, . . . , Pk} ✓ CP)·
Y

P2{P1,...,Pk}

P(p̂(P,C(P)) > mid) ·
Y

P2CP\{P1,...,Pk}

P(p̂(P,C(P)) < mid)

= P({P1, . . . , Pk} ✓ CP) ·
Y

P2{P1,...,Pk}

[1� P(p̂(P,C(P))  mid)] ·

Y

P2CP\{P1,...,Pk}

[1� P(p̂(P,C(P)) � mid)]

= P({P1, . . . , Pk} ✓ CP) ·
Y

P2{P1,...,Pk}

⇥
1� P

�
p̂(P,C(P))� P(Sht

s
(P))  �dP

�⇤
·

Y

P2CP\{P1,...,Pk}

⇥
1� P

�
p̂(P,C(P))� P(Sht

s
(P))� pm(P,C(P)) � dP

�⇤

� P({P1, . . . , Pk} ✓ CP)
Y

P2CP


1� exp

✓
�

Nd
2
P

4|C(P)|

◆�
.

In the first inequality we make use of the fact that the scenario where Algorithm 6
returns a probability that is greater than mid for every path in {P1, . . . , Pk} and
lower than mid for every path in CP \{P1, . . . , Pk} is just a subset of the scenarios
in which the algorithm returns {P1, . . . , Pk}. Because for every path the Monte
Carlo rounds for estimating p̂(P,C) are independent we can split the probability
in a product. In the last equality, we make use of the definition of dP and in the
last inequality we invoke Theorem 4.3.3. 2

4.3.4 Extensions
Single-Source and Single-Target MPSPs

Our approach for generating the MPSP from a single source to a single target can
be easily extended to compute MPSPs from a single source to all other nodes in
the graph. Phase 1 continues running DIJKSTRA+MC on the entire graph until all
edges are sampled, or no new target nodes can be reached. Phase 2 runs separately
for each individual target (i.e., each source-target pair). A similar strategy can be
applied for computing MPSPs to a single target from all other nodes: we need to

4.4. MPSP-Betweenness Centrality 83

use the same method on the graph with the edges reversed. Since Phase 1 is not
run separately for each source-target pair, this helps to reduce the running time
of this phase from |V | times that of a single source-target pair to a smaller value.
This is demonstrated empirically in Section 4.5.6.

Extension to Uncertain Multi-Graphs

An uncertain multi-graph is a quadruple (V,E, (ce)e2E, (pe)e2E), where V is a
set of nodes and E ✓ V ⇥ V is a set of directed edges with lengths (ce) and
probabilities of existence (pe), such that every pair of nodes can be connected
by zero, one, or more edges, called parallel edges, with a distinct combination of
length and probability of existence. This more general data model can be used,
e.g., for a probability distribution of travel times on a segment of a road network,
depending on the traffic conditions.

Given a pair of nodes (s, t) 2 V ⇥V , a (simple) path in an uncertain multi-graph
is an ordered sequence of edges (e1, e2, . . . , en) where ei = (ui, ui+1, wi, pi) 2 E,
u1 = s, un+1 = t and ui 6= uj for i 6= j. Our algorithm, described in Section 4.3.1,
can be easily adapted to find MPSPs in uncertain multi-graphs. The main
difference lies in the generation of the candidate paths. In Phase 1, when we
reach a node in the uncertain graph, its outgoing edges are sampled with their
respective probabilities, and only one sampled edge from the current node to each
adjacent node (having the minimum length among all sampled edges from the
current node to that adjacent node) is considered for updating the paths in line 8
of Algorithm 5.

4.4 MPSP-Betweenness Centrality

We define MPSP betweenness centrality (MPSP-BTW) in uncertain graphs and
design an efficient sampling strategy to approximate the centrality of every node
quickly, with theoretical guarantees.

In the preliminaries we have seen that in a deterministic directed graph
G = (V,E, (ce)e2E), the betweenness centrality of a node v 2 V is defined as

bG(v) =
1

|V |(|V |� 1)

X

(s,t)2V⇥V

s 6=v 6=t,⇡(s,t) 6=0

⇡v(s, t)

⇡(s, t)
, (4.13)

where ⇡(s, t) denotes the number of shortest paths from s to t, and ⇡v(s, t) the
number of such paths P that contain v as an internal node.

In our work, we naturally extend this definition to betweenness centrality in
an uncertain graph G = (V,E, (ce)e2E, (pe)e2E) for most probable shortest paths
by replacing ⇡(s, t) with |M(G, s, t)| (recall that M(G, s, t) is the set of MPSPs
from s to t) and ⇡v(s, t) with |Mv(G, s, t)|, where Mv(G, s, t) consists of the paths
P 2M(G, s, t) that have v as an internal node.

84 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

Definition 4.4.1. (MPSP-BTW). In an uncertain graph G =
(V,E, (ce)e2E, (pe)e2E), we define the betweenness centrality of a node v 2 V

based on most probable shortest paths as

bG(v) =
1

|V |(|V |� 1)

X

(s,t)2V⇥V

s 6=v 6=t,M(G,s,t) 6=;

|Mv(G, s, t)|

|M(G, s, t)|
. (4.14)

A different definition of betweenness centrality for uncertain graphs is given in
(Pfeiffer and Neville, 2011; Wang and Lin, 2019) and it is referred to as expected
betweenness centrality (EXP-BTW). The EXP-BTW of a node is the weighted
average of its betweenness over all possible worlds:

EG⇠G[bG(v)] =
X

G2G

P(G)bG(v). (4.15)

Either of these notions can be meaningful, depending on the application. For
instance, the notion of EXP-BTW is worth studying when the application concerns
the broadcasting of a message from one node to another, in which the message
can be propagated over different possible paths. On the other hand, the notion of
MPSP-BTW gives a more accurate picture when the application concerns routing
or route recommendation, in which the path(s) need to be fixed beforehand and
we can only use a single path to go from the origin to the destination.

In our experiments in Section 4.5.7, we see that these different notions of
betweenness yield slightly different rankings when ordering the nodes based on
their betweenness values. Moreover, by exploiting the results in Section 4.4, we
are able to compute the MPSP-BTW much faster than the EXP-BTW.

Efficient s, t-pairs Sampling

The naive method of computing the MPSP-BTW of a node by considering all
the s, t-pairs and then computing the MPSPs is infeasible for large uncertain
graphs. Moreover, designing an efficient algorithm for this task is challenging in
our setting. As observed in Section 4.2.1, in uncertain graphs, a sub-path of an
MPSP is not necessarily an MPSP. Therefore, we cannot decompose a shortest
path into two smaller shortest sub-paths or concatenate two shortest sub-paths to
get a larger shortest path. For these reasons, we can neither apply optimization
techniques such as those exploited in Brandes’ algorithm (Brandes, 2001), nor
apply techniques based on node sampling where a small set of nodes is sampled
and their contributions to the betweenness centralities are accumulated to estimate
the betweenness of other nodes (Bader et al., 2007; Chehreghani, 2014; Geisberger,
Sanders, and Schultes, 2008).

Therefore, we design a novel algorithm based on an efficient s, t-path sampling
strategy instead of node sampling. In the following, for simplicity, we assume that

4.4. MPSP-Betweenness Centrality 85

Algorithm 7 Approximating MPSP-BTW
Input: Uncertain graph G = (V,E, (ce)e2E, (pe)e2E), number of samples r, posi-

tive integers m and N .
Output: b̂G : V ! R.
1: b̂G(v) 0 8v 2 V .
2: for i = 1 to r do
3: Sample distinct nodes s and t

4: P Algorithm 4(G, s, t, m, N) /* Approximating the MPSP */
5: for all v 2 Int(P) do
6: b̂G(v) b̂G(v) +

1
r

7: end for
8: end for
9: return b̂G

there is only one MPSP for every pair of nodes. Especially in complex networks,
this is a reasonable assumption. Thanks to this assumption, choosing an MPSP
uniformly at random is equivalent to finding the unique MPSP between them
using Algorithm 4. However, if there are multiple MPSPs for a pair of nodes, we
can identify all of them using our top-k approach in Section 4.3.2, and then select
one among them uniformly at random.

Our proposed method, whose pseudocode is shown in Algorithm 7, samples
r s, t-pairs, for each of which it computes the MPSP P and then increments the
betweenness centrality of every internal node of P by 1

r
. The main question that

now arises is: How many samples are needed to produce an accurate estimate of
the betweenness centrality of every node with high probability? In the remainder of
this section, we provide an answer to this question. Specifically, given ✏, � > 0, we
find a lower bound on the number of samples r so that, with probability at least
1� �, the difference between the approximate and the exact centrality of every
node is at most ✏.

Following the ideas in (Mahmoody, Tsourakakis, and Upfal, 2016), we can
obtain the following lower bound on the required number of samples.

Theorem 4.4.2. Given an uncertain graph G = (V,E, (ce)e2E, (pe)e2E) and ✏, � >

0, assuming that Algorithm 4 returns the correct MPSP and that there is a
unique MPSP between every pair of nodes, the output of Algorithm 7 when using
r �

1
2✏2 ln

2|V |
�

samples satisfies

P(|b̂G(v)� bG(v)| < ✏ 8v 2 V) > 1� �.

Proof: For a fixed node v 2 V , let Xi(v) for i = 1, . . . , r be a random variable
which is 1 if node v is an internal node of the MPSP of sample i and 0 otherwise.
We will show that E[Xi(v)] = bG(v) for all i. The probability of sampling s 6= t 2 V

is 1
|V |(|V |�1) and as we assumed there is a unique MPSP between every pair of

86 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

nodes it holds that |Mv(G, s, t)| 2 {0, 1} depending on whether v lies on the
MPSP from s to t or not. So,

E[Xi(v)] =
X

s 6=t

1

|V |(|V |� 1)
|Mv(G, s, t)|

=
1

|V |(|V |� 1)

X

s 6=t:|M(G,s,t)| 6=0

|Mv(G, s, t)|

|M(G, s, t)|

= bG(v).

Notice that b̂G(v) =
1
r

P
r

i=1 Xi(v) for all v 2 V and that the Xi(v) for i =
1, . . . , r are independent and identically distributed. By linearity of expectation,

E[b̂G(v)] = E
"
1

r

rX

i=1

Xi(v)

#
=

1

r

rX

i=1

E[Xi(v)] =
1

r
r · bG(v) = bG(v).

Using the union bound over all nodes v 2 V and then Hoeffding’s inequality4, we
obtain

P(9v 2 V : |b̂G(v)� bG(v)| � ✏) 
X

v2V

P(|b̂G(v)� bG(v)| � ✏)

 |V | · 2 exp
�
�2r✏2

�
.

Plugging in r �
1
2✏2 ln

2|V |
�

yields the result. 2

Computational Complexity

The space and time complexities of Algorithm 7 are dominated by those of
Algorithm 1 (line 4 of Algorithm 7). Hence, it follows from Section 4.3.1 that the
complexities are: O(m|E|+ |V |) and O(rm(|E|+ |V | log |V |+logm)), respectively.

Parallel Implementation

In Algorithm 7, the computations performed on the r sampled s, t-pairs are
independent of each other. Hence, these computations can be implemented in
parallel, e.g., via multiple threads. We experimentally demonstrate the effect of
the number of threads on the running time of our algorithm in Section 4.5.7.

4If X1, X2, . . . , Xn are independent and identically distributed random variables each taking
values in [0, 1] and X̄ = 1

n

Pn
i=1 Xi, it holds that P[|X̄ �E[X]| � ✏] < 2e�2n✏2 (Hoeffding, 1963).

4.5. Experimental Results 87

4.5 Experimental Results

We assess the efficiency and effectiveness of our proposal and compare it against
previous work (Cheng, Yuan, Wang, et al., 2014; Zou, Peng, and Zhao, 2011) on
synthetic networks (Section 4.5.2) and on road networks (Section 4.5.3). We also
analyze the effect of each phase of our method on the performance (Section 4.5.4),
parameter sensitivity analysis (Section 4.5.5), and single-source and single-target
queries (Section 4.5.6). Finally, we present use cases on sensor networks (Sec-
tion 4.5.7) and brain networks (Section 4.5.7), and application to computing
network centrality (Section 4.5.7).

4.5.1 Experimental Setup
Experiments are conducted on a single core (except when testing our parallel
implementation) of a server with a 3.7 GHz Xeon processor, and 256 GB RAM.
Our C++ code is available at (Saha et al., 2020).

Queries

For each uncertain graph, we generate four categories of source-target pairs as
queries. The first three categories constitute randomly chosen node pairs that
are 2, 4, and 6 hops away. The last category comprises pairs of randomly chosen
connected nodes. Under each category, we consider 100 different s, t-pairs. The
result for each category is an average over these 100 queries.

Parameters

• # DIJKSTRA+MC-runs in Phase 1 (m): A small m is sufficient for our
purpose (Section 4.3.3). We vary m 2 {5, 10, 20, 50, 100}, with the default
value 20.

• # Monte Carlo-samples in Phase 2 (N): We vary N 2 {101, 102, 103, 104,
105}, with the default value 103.

• Top-k MPSPs: We vary k 2 {1, 5, 10}, with the default value 1.

4.5.2 Results on Synthetic Networks
We generate synthetic, uncertain (directed) graphs according to two classic models.
(i) The Erdős-Rényi (ER) model (Erdős and Rényi, 1959) generates a random
graph with |V | nodes and |E| directed edges chosen uniformly at random from
|V |(|V |� 1) possible edges; (ii) The Barabási-Albert (BA) model (Barabási and
Albert, 1999) generates a graph with |V | nodes and |E| edges satisfying a power
law (in)degree distribution. Starting with a single node and no edge, a new node

88 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

is added in every time step along with |E|/|V | edges directed from the new node
to an existing node, such that the probability of choosing an existing node i (as
target), with its current in-degree di, is proportional to di.

For both models, we vary |V | in {0.01M, 0.1M, 1M, 5M, 10M}, and for every
value of |V |, we vary the value of |E|/|V | in {2, 6, 10}. In each synthetic graph,
the probability of every edge is a uniform random number in the interval (0, 1],
and the length of every edge is a uniform random integer in the interval (0, 1000].

Figure 4.4 reports quality comparison (expressed as the probability of the
returned path being a shortest path) against the benchmark method (Zou, Peng,
and Zhao, 2011). Given that the candidate generation phase (Section 4.2.2) of (Zou,
Peng, and Zhao, 2011) does not finish in one hour for our synthetic datasets, to
make the comparison feasible, we place an upper limit on the candidate generation
time of (Zou, Peng, and Zhao, 2011). Notice that increasing this time limit leads
to more candidate paths, hence the possibility of higher-quality returned paths is
also increased. However, once an MPSP is included in the candidate set, increasing
the time threshold further would not lead to better-quality solutions.

Following this observation, if T denotes the candidate generation time of
our method for a given query, we compare the effectiveness of our algorithm
against three variants of the benchmark, when we terminate the benchmarks
candidate generation at time cT , with c 2 {0.1, 1, 2}. We denote these three
sets of benchmarks as BL0.1, BL1, BL2, as shown in Figure 4.4. Intuitively,
BL2 could result in higher-quality returned paths compared to those via BL0.1
and BL1, however at the cost of higher running time, i.e., about 2-times higher
running time than BL1 and 20-times more than BL0.1. BL2 is also about 2-times
more time-consuming than ours.

Quality results in Figure 4.4 show that in most cases our method outperforms
all variants of the benchmark. For 6-hop and random queries over larger ER
graphs, the probability of being a shortest path of our solution is up to one order
of magnitude better than those returned by the benchmarks (Figures 4.4(c) and
4.4(d))). Moreover, BL2 often results in a slightly higher probability of being
the shortest path of the returned path compared to the other two variants of the
benchmark: BL0.1 and BL1.

We show the efficiency of our method in Figure 4.5 for different query categories.
Since the time limit of the benchmark is set by us, we do not compare its running
time with that of ours. We observe that our running times are less sensitive to
different query categories. However, the running times in ER graphs are some
orders of magnitude larger than those in BA graphs. This can be attributed
based on how these graphs are constructed: each node in BA graphs has an
out-degree at most 10. On the other hand, in ER graphs, there are several nodes
with out-degrees more than 15-20. This implies that Dijkstra’s algorithm visits
higher out-degree nodes a lot more in ER graphs, requiring longer running times.

4.5. Experimental Results 89

0.01M0.1M 1M 5M 10M
10�4

10�3

10�2

10�1

100

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

Ours
BL0.1
BL1
BL2

(a) 2-hop queries, ER graphs

0.01M0.1M 1M 5M 10M
10�4

10�3

10�2

10�1

100

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

(b) 4-hop queries, ER graphs

0.01M0.1M 1M 5M 10M
10�4

10�3

10�2

10�1

100

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

Ours
BL0.1
BL1
BL2

(c) 6-hop queries, ER graphs

0.01M0.1M 1M 5M 10M
10�4

10�3

10�2

10�1

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

(d) Random queries, ER graphs

0.01M0.1M 1M 5M 10M
0

0.1

0.2

0.3

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

Ours
BL0.1
BL1
BL2

(e) 2-hop queries, BA graphs

0.01M0.1M 1M 5M 10M
0

0.05

0.1

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

(f) 4-hop queries, BA graphs

0.01M0.1M 1M 5M 10M
0

0.02

0.04

0.06

0.08

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

Ours
BL0.1
BL1
BL2

(g) 6-hop queries, BA graphs

0.01M0.1M 1M 5M 10M
0

0.05

0.1

|V |

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

(h) Random queries, BA graphs

Figure 4.4: Quality comparison (expressed as the probability P(Sht
s
(P)) of the

returned path P of being a shortest path on synthetic graphs with |E|/|V | = 10

90 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

0.01M0.1M 1M 5M 10M
10�2

10�1

100

101

102

|V |

Q
ue

ry
an

sw
er

in
g

tim
e

(s
ec

on
ds

)

2 hop
4 hop
6 hop
Random

(a) ER graphs

0.01M0.1M 1M 5M 10M
0

0.5

1

1.5

2

|V |Q
ue

ry
an

sw
er

in
g

tim
e

(m
ill

ise
co

nd
s)

(b) BA graphs

Figure 4.5: Running time on synthetic graphs with |E|/|V | = 10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Edge Probability

C
D

F Rome
Porto
SF
Brno

City |V | |E| Origin
Brno 1.9M 4.0M a

Porto 1.8M 3.7M b

Rome 4.0M 8.0M c

SF 3.0M 6.2M d

a(Ptošek, Rapant, and Martinovič, 2018)
b(Moreira-Matias et al., 2013)
c(Amici et al., 2014)
d(Piorkowski, Sarafijanovic-Djukic, and

Grossglauser, 2009)

Figure 4.6: Properties of road networks

4.5.3 Results on Road Networks

We construct uncertain (directed) graphs from four real-world road networks
obtained via OpenStreetMap (OpenStreetMap contributors, 2020), along with
recorded taxi trajectory data for each network (see the table in Figure 4.6). The
nodes denote locations, while the edges denote road segments. The length of an
edge is measured as its spatial length. We map-match every trajectory to the
corresponding map using the open-source software OSRM (Luxen and Vetter,
2011), obtaining the road segments involved in each trajectory along with the
speed on each segment. However, there are road segments in each network that
are not traversed by any trajectory. We synthetically assign a speed to each such
segment following Costa et al. (2015), by sampling from a normal distribution
with mean equal to the speed limit on that segment and standard deviation equal
to a quarter of the mean. Since commuters are more likely to prefer those roads on
which they can travel at a higher speed, we assign the probability of an edge (road

4.5. Experimental Results 91

segment) proportional to its average speed across all trajectories. The number of
nodes, edges, and distribution of the edge probabilities in the resultant graphs are
shown in Figure 4.6.

In our experiments on road networks, varying time thresholds for the benchmark
does not result in any quality difference. This is because the road networks are
sparse, and the MPSP is often the shortest path in the deterministic version of
the network. Hence, we terminate the benchmarks candidate generation as soon
as only the first s, t-path is obtained, which is essentially the shortest s, t-path
considering the deterministic version of the network. We refer to this variant of
the benchmark as BL-1st-Path.

Figures 4.7(b), 4.7(d), and 4.7(f) compare the quality of our method with
respect to the benchmark. Both methods return similar results in terms of quality.
As stated earlier, the returned path (by both methods) for almost every query is
also the shortest path in the certain version of the graph. Notice that the entries
in the 6-hop query category are vacant for the Porto and Rome road networks.
This implies that for these graphs, running DIJKSTRA+MC in the 6-hop category
resulted in an empty path. This can be attributed to the fact that the edge
probabilities of these graphs are smaller compared to those of the other graphs,
which is evident from Figure 4.6. In general, due to sparseness of road networks
and relatively smaller edge probabilities, MPSP queries are more meaningful here
for nearby s, t-pairs (e.g., find the MPSP to the nearest gas station, or restaurant).

On the other hand, our method takes up to 2-3 orders of magnitude less
time than the benchmark, as shown in Figures 4.7(a), 4.7(c), and 4.7(e). This
is because the benchmark approach essentially uses Dijkstra’s algorithm on the
certain version of the graph to retrieve the shortest path, which has to visit every
node closer to the source than the target. In contrast, DIJKSTRA+MC in our
candidate generation may end up not visiting many nodes since the corresponding
edges are not sampled.

4.5.4 Effect of Each Phase on the Performance
Our method (Section 4.3.1) consists of two phases: DIJKSTRA+MC for efficient
candidate paths generation (Phase 1), followed by the Luby-Karp algorithm to
select the MPSP among them (Phase 2). We analyze the benefits of both phases
by comparing the two-phased method against a method based only on Phase 1,
followed by a selection by majority, i.e., the path that has been sampled most
times by DIJKSTRA+MC is returned as the candidate MPSP.

Table 4.1 shows that the two-phased method never produces worse-quality
results, and can return better MPSPs for up to 59% of the queries. A possible
explanation for this result is the following. Assume that there are two s, t-paths
P1 and P2 such that the probability of P1 of being the shortest path is slightly
higher than that of P2. Then, it could happen that P2 is sampled a larger number
of times (i.e., with a higher frequency) than P1, due to the randomness of the

92 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

Brno SF Porto Rome
10�2

10�1

100

101

102

103

Q
ue

ry
an

sw
er

in
g

tim
e

(m
s)

Ours
BL-1st-Path

(a) 2-hop query, running time

Brno SF Porto Rome
0

0.05

0.1

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

Ours
BL-1st-Path

(b) 2-hop query, solution quality

Brno SF Porto Rome
10�2

10�1

100

101

102

103

Q
ue

ry
an

sw
er

in
g

tim
e

(m
s)

Ours
BL-1st-Path

(c) 4-hop query, running time

Brno SF Porto Rome
0

0.005

0.01

0.015

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

Ours
BL-1st-Path

(d) 4-hop query, solution quality

Brno SF
10�2

10�1

100

101

102

Q
ue

ry
an

sw
er

in
g

tim
e

(m
s)

Ours
BL-1st-Path

(e) 6-hop query, running time

Brno SF
0

0.0005

0.001

0.0015

0.002

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

Ours
BL-1st-Path

(f) 6-hop query, solution quality

Figure 4.7: Results on road networks

4.5. Experimental Results 93

Query type % of queries our method finds better MPSPs
vs. Phase 1 + Majority vs. Phase 1 + HT-estimator

2-hop 36% 12%
4-hop 59% 5%

Random 11% 6%

Table 4.1: Percentage of queries our method finds better MPSPs compared to (a)
only Phase 1 of our method (DIJKSTRA+MC) followed by selection via majority,
and (b) Phase 1 of our method followed by HT-estimator Cheng, Yuan, Wang,
et al., 2014. ER graph with |V | = 104, |E| = 105.

DIJKSTRA+MC sampling. Then, according to majority, the estimate for P2 is
higher than that of P1. However, the Luby-Karp algorithm in our second phase
does not care about the sampling frequency at all; it only needs to know if P1 and
P2 are present in the sampled candidate set (at least once), thereby reporting the
correct MPSP. These results demonstrate the usefulness of Phase 2.

We also compare with the case in which Phase 1 is augmented with an unequal
probability estimator, e.g., Horvitz-Thompson (HT) inspired by Cheng, Yuan,
Wang, et al. (2014). Recall (Section 4.1.2) that Cheng, Yuan, Wang, et al. (2014)
deal with a different problem (i.e., threshold-based shortest-path queries) and
adopts a different uncertain data model. However, their heuristic approach can
be adapted for our purposes. Although the HT-estimator is useful in reducing
the variance of DIJKSTRA+MC sampling, the Luby-Karp algorithm in our second
phase still outperforms it, for the reason stated above. In particular, our method
never produces worse results and it produces better MPSPs for up to 12% of the
queries.

4.5.5 Parameter Sensitivity Analysis
Impact of m and N

We vary the number m 2 {5, 10, 20, 50, 100} of DIJKSTRA+MC runs (Phase
1), and the number of Monte Carlo samples N 2 {101, 102, 103, 104, 105} for the
Luby-Karp algorithm (Phase 2). The results are shown in Figure 4.8. We show
the results of 4-hop queries on the ER graph with |V | = 104 and |E| = 105, but
other graph sizes showed similar results. For DIJKSTRA+MC, we observe that
increasing m until its default value (m = 20) steadily increases the probability of
the returned paths being the shortest path. This indicates that we need about
m = 20 runs of DIJKSTRA+MC to include the MPSP in the candidate set. For
the Luby-Karp algorithm, on the other hand, increasing N until its default value
(N = 103) shows a fluctuation of the probabilities of being the shortest path that
are returned, implying that the sampling method has not converged yet. The
returned probabilities of being the shortest path stabilize around these default

94 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

parameter values. We further notice that increasing these parameter values beyond
their default values of m = 20 (resp. N = 103) returns probabilities of being the
shortest path of paths (resp. Luby-Karp algorithm) having nearly the same value,
but the running time is significantly increased. This justifies the selection of our
default parameter values.

5 10 20 50 100

0.095

0.1

0.105

0.11

m

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th

0.05

0.1

0.15

0.2

Q
ue

ry
an

sw
er

in
g

tim
e

(s
ec

on
ds

)

Quality
Time

(a) Variation of m (N = 103)

10 50 100 500 100010000100000
0.08

0.1

0.12

N

SP
pr

ob
ab

ili
ty

of
re

tu
rn

ed
pa

th
0.04

0.06

0.08

Q
ue

ry
an

sw
er

in
g

tim
e

(s
ec

on
ds

)

Quality
Time

(b) Variation of N (m = 20)

Figure 4.8: Running times and quality of returned paths; ER graph with |V | =
104, |E| = 105; 4-hop queries.

Top-k MPSPs

We find the top-k MPSPs with k 2 {1, 5, 10}. The results for k = 1 have already
been shown in Figures 4.4 and 4.5. For k 2 {5, 10}, the running times are nearly
the same as that with k = 1; thus, we only show the probability of being the
shortest path of our solution (averaged over the k paths returned for each query)
in Figure 4.9. Notice that our algorithm returns better top-k paths compared to
the benchmark.

2 hop 4 hop 6 hop Random
0

0.002

0.004

0.006

0.008

Query categoryAv
g.

SP
pr

ob
.

of
re

tu
rn

ed
to

p-
k

pa
th

s

Ours
BL2

2 hop 4 hop 6 hop Random
0

0.001

0.002

0.003

0.004

Query categoryAv
g.

SP
pr

ob
.

of
re

tu
rn

ed
to

p-
k

pa
th

s

Figure 4.9: Quality of our solution for the top-k MPSPs; ER graph with |V | = 105,
|E| = 106, k = 5 (left) and k = 10 (right)

4.5. Experimental Results 95

4.5.6 Single-Source and Single-Target Queries
Figure 4.10 (left) shows the running times of single-source multi-target queries
(Section 4.3.4) on ER graphs. The y-axis is logarithmic and the query answering
time is the aggregated time required for both phases 1 and 2. We find that the
running time of Phase 2 is much higher than that of Phase 1. However, the running
time of Phase 1 is increased by a small factor because Dijkstra is not run separately
for an individual target. Our Phase 1 is several orders of magnitude faster than
Phase 1-Naive, which is running Phase 1 separately for each target node. Figure
4.10 (right) shows similar improved efficiency for multi-source single-target queries.

0.01M0.1M 1M 5M 10M
10�2

102

106

1010

|V |

Q
ue

ry
an

sw
er

in
g

tim
e

(s
ec

on
ds

)

Phase 1
Phase 2
Phase 1 - Naive

0.01M0.1M 1M 5M 10M
10�2

102

106

1010

|V |

Q
ue

ry
an

sw
er

in
g

tim
e

(s
ec

on
ds

)

Figure 4.10: Running time of single-source (left) and single-target (right) queries;
ER graphs with |E|/|V | = 10

4.5.7 Case Studies
Sensor Network

Intel Lab Data (Madden, 2004) is a collection of sensor communication data with
54 sensors deployed in the Intel Berkeley Research Lab between Feb. 28 and Apr.
5, 2004. The probabilities on (directed) edges denote the percentages of messages
from a sender successfully reached to a receiver. The edge length is the spatial
distance (in meters) between the coordinates of the two sensors.

We show MPSPs from node 48 to node 22 in Figure 4.11. We observe that the
MPSP is the sixth shortest path in the certain version of the graph. The first few
shortest paths have smaller probabilities of existence, showcasing the usefulness of
MPSPs in uncertain graphs.

Brain Networks

A brain network can be defined as a weighted uncertain graph, where nodes
are brain regions of interest (ROIs), (bi-directed) edges indicate co-activation

96 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

between ROIs, edge distance represents the physical distance between ROIs,
and edge probability indicates the strength of the co-activation signal (i.e., the
pairwise Pearson correlation between the time series of each pair of ROIs). We
use a publicly available dataset from the Autism Brain Imaging Data Exchange
(ABIDE) project (Craddock et al., 2013). The dataset contains data of 52 Typically
Developed (TD) children and 49 children suffering from Autism Spectrum Disorder
(ASD) whose age is at most nine years (Kojaku and Masuda, 2019; Lanciano,
Bonchi, and Gionis, 2020; Masuda, Kojaku, and Sano, 2018; Tzourio-Mazoyer
et al., 2002): each subject corresponds to a graph of 116 nodes (ROIs).

We aggregate the information of the groups ASD and TD in two summary un-
certain graphs GASD and GTD, respectively. GASD and GTD are weighted uncertain
graphs, defined over the same set of nodes as the original graphs, while the weight
and probability of each edge are the average of the respective values of the same
edge in every graph in the ASD and TD groups.

In Figures 4.12 and 4.13, we show the MPSPs for six s, t-pairs of both GTD

(left) and GASD (right). Consider the pink path in Figure 4.12 from the inferior
frontal gyrus, opercular part (IFGoperc.L) to the cerebellum (CRBL1). The MPSP
in GTD is a path with two hops over a longer distance, compared to that in GASD

with 6 shorter hops. This is consistent with the results of different works in
neuroscience (Di Martino et al., 2010; Noonan, Haist, and Müller, 2009) indicating
that ASD is characterized by underconnectivity between distant brain regions
and overconnectivity between closer ones. Moreover, children with ASD have
brains that are overly connected compared to typically developed children (García
Domínguez et al., 2013; Keown et al., 2013; Supekar et al., 2013). In addition,
the hemispheres in ASD group are more symmetrical than those of the TD
group (Postema et al., 2019). We highlight this in Figure 4.13: the MPSPs in
the left and right cerebral hemispheres of the brain are indeed more similar and
symmetrical in children with autism, while in the TD group the paths can cross
the hemispheres and also span the same regions. Our consistent findings underline
the importance of MPSPs in uncertain graphs.

Network Centrality

We run experiments to demonstrate the application of MPSP in computing
the betweenness centrality of nodes in an uncertain graph. We compare the
top-k most central nodes according to three centrality computation methods
already introduced in Section 4.4 and another centrality measure called PSP-BTW:
(1) MPSP-BTW with sampled s, t-pairs, (2) MPSP-BTW with all s, t-pairs, (3)
expected betweenness centrality (Pfeiffer and Neville, 2011; Wang and Lin, 2019)
(by sampling possible worlds and using (Riondato and Kornaropoulos, 2016) for
every sampled world) , and (4) PSP-BTW (Wang and Lin, 2019).

The notion of PSP-BTW was introduced as a fast approximation for
EXP-BTW (Wang and Lin, 2019). It tries to approximate expected between-

4.5. Experimental Results 97

Figure 4.11: Case study on sensor network. Paths from node 48 to node 22 in the
sensor network. The node sequences of the top 6 shortest paths (in ascending order
of length) are (48, 1, 22), (48, 2, 1, 22), (48, 7, 6, 22), (48, 7, 6, 21, 22), (48, 2, 21, 22),
(48, 20, 22). The 6th shortest path, shown in red, is the MPSP.

ness by ignoring the correlation on the existence of paths. As this method is
supposed to be efficient we include it to benchmark the efficiency of our algorithm.

We first run these methods on six different brain graphs (randomly selected
from 52 TD brains), each with 116 nodes. Following Riondato and Kornaropoulos
(2016) we set ✏ = 0.05 and � = 0.1 for all the methods when required. For every
method, we compute the betweenness centrality of all nodes and rank them in
descending order of centrality. Given a value of k 2 {10, 20, 50}, for each of
the

�
4
2

�
= 6 possible pairs of methods, we compare the similarity of the sets of

top-k nodes returned by both methods using the overlap coefficient. The overlap
coefficient of two sets A and B, each of size k, is defined as |A\B|

k
. We report these

results averaged over six graphs in Figure 4.14(a). For every value of k, methods
1 and 2 (both deal with MPSP-BTW) produce very similar results showing that
our sampling based method yields good approximation. The overlap with other
methods is a bit lower indicating that there is a slight difference in the top-k
nodes produced by each method.

Next, to assess the efficiency and scalability of our method, we compute the
centrality ranking for the six brain graphs (|V | = 116), a Twitter graph (|V | =
6.3M, |E| = 11.1M), and the ER graphs with |V | 2 {0.01M, 0.1M, 1M} and
|E| = 10|V |. Twitter (Leskovec and Krevl, 2014) is a social network where users
post new tweets or retweet those of other users. This data is used to construct a

98 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

Figure 4.12: MPSPs for the TD group (left) and ASD group (right) of the brain
networks. Each of the 4 MPSPs is represented by edges of the same color.

directed graph in which nodes are users and edges are retweets. Each edge has
a weight of one, and the probability is given by: 1� exp (�t/µ), where t is the
number of retweets between the corresponding users. We set µ = 10.

The sequential running times are shown in Figure 4.14(b). A missing bar
means that the run did not terminate within a day. It turns out that only our
method (0) terminates within a reasonable time for all graphs. Notice that even for
the 1M node graph, our method finishes within 17 hours. Although the Twitter
graph (6.3M nodes) is larger than the ER graph with 1M nodes, the running time
on the Twitter graph is less than that on the ER graph, because the former is
more sparse.

Finally, we run the parallel implementation of our method (method 1) on our
two largest graphs: Twitter (|V | = 6.3M, |E| = 11.1M) and the ER graph with
|V | = 10M and |E| = 100M. All 40 cores of the server are used and up to 40
threads are employed for parallelization via POSIX threads. Figure 4.14(c) shows
that increasing the number of threads leads to shorter running times. With 40
threads, centrality computation on Twitter (|V | = 6.3M, |E| = 11.1M) requires
only 11 minutes, and on ER (|V | = 10M, |E| = 100M), it finishes in 18 hours.
These results demonstrate good parallelizability and scalability of our algorithm
over large graphs.

4.5. Experimental Results 99

Figure 4.13: MPSPs for the TD group (left) and ASD group (right) of the brain
networks. Each of the 2 MPSPs is represented by edges of the same colour.

1v2 1v3 1v4 2v3 2v4 3v4
0

0.2

0.4

0.6

0.8

1

Methods compared

O
ve

rla
p

co
effi

ci
en

t k = 10
k = 20
k = 50

(a) Top-k central node similarity

1 2 3 4

101

103

105

107

Method

Q
ue

ry
an

sw
er

in
g

tim
e

(s
ec

on
ds

)

|V | = 116 |V | = 0.01M
|V | = 0.1M |V | = 1.0M
|V | = 6.3M

(b) Running time (sequential)

Threads Twitter, |V | = 6.3M,|E| = 11.1M ER, |V | = 10M,|E| = 100M
1 6 520.65 sec > 2 days
10 930.98 sec > 2 days
20 795.91 sec 125 603.60 sec
40 666.76 sec 61 668.80 sec

(c) Parallelization: Our method (method 1)’s running time

Figure 4.14: Centrality results; 4 methods are described in Section 4.5.7

100 Chapter 4. Shortest Paths and Centrality in Uncertain Networks

4.6 Conclusion

In this chapter, we investigated the problem of finding the Most Probable Short-
est Path (MPSP) between two nodes in an uncertain graph. We proved that
computing the probability that a path is the shortest path is #P-hard, and also
derived some other properties of MPSPs that make our problem challenging. Our
proposed solution proceeds in two phases: sampling of candidate paths using
DIJKSTRA+MC, followed by approximating the probability of being the shortest
path of each candidate path using the Luby-Karp algorithm. We proved probabilis-
tic guarantees on our algorithm returning the correct path and have extended the
algorithm to find the top-k MPSPs. Based on the notion of MPSP we defined a
new centrality measure and proposed an algorithm for efficiently approximating it.
Finally, we did extensive experiments on both synthetic and real-world networks
to validate the performance of our algorithm and the usefulness of MPSPs.

The previous state-of-the-art (Zou, Peng, and Zhao, 2011) took the edge
lengths as a basis for candidate generation, while we have immediately involved
the edge probabilities in this phase of the algorithm. This change of perspective
has yielded promising results, and we hope it serves as inspiration for future work.
Where we have kept the value of m constant throughout experiments, it seems
that a more extensive candidate generation could be useful for bigger graphs. It
is an interesting question if the best m can be determined dynamically based on
the input.

Finally, our algorithm consists of two phases, and in both phases, a Monte
Carlo algorithm is used. In phase 1, one can increase m to make the probability
that the top-k paths are not all included in the candidate set arbitrarily small. In
phase 2, one can increase N to make the probability that the algorithm does not
return the top-k paths arbitrarily small. That the combined algorithm is also a
Monte Carlo algorithm could be made more concrete by showing what is needed
in Theorem 4.3.4 to make sure dP � 0.

Chapter 5

The Price of Anarchy of
Related Machine Scheduling

5.1 Introduction

Consider the situation in which there are more tasks than processors on a super-
computer. Or more planes than runways in an airport. Or more jobs in a job shop
than there are machines. In each of the situations, we have to make a schedule such
that all activities are allocated over the limited resources. Supercomputers consist
of various types of processors, and on a faster processor, tasks are completed faster.
We are interested in this setting, in which the problem consists of scheduling a set
of jobs, each having a processing time, on a set of machines, each having a speed.
The time it takes to process a job is its processing time divided by the speed of
the machine it is scheduled on, and a job starts being processed after the jobs in
front of it have been processed. Each job will have a completion time and we are
interested in minimizing the sum of completion times. Dividing by the number of
jobs gives the average time a job is in the system, which is why this quantity is also
called the mean flow time. Using the 3-field scheduling notation (Graham, Lawler,
et al., 1979) this problem is denoted by Q||

P
Cj. An algorithm that produces

decent but not necessarily optimal solutions is the Ibarra-Kim algorithm (Ibarra
and Kim, 1977). It sorts the jobs from smallest to largest and greedily schedules
the next job on the machine that minimizes its completion time.

In the traditional setting, a central decision-maker has full control over the
jobs. However, with the rise of distributed systems, there is not always a central
decision-maker. In fact, there are multiple parties with access to the same system,
and each of them is interested in optimizing their own objective. In machine
scheduling, we can model this as follows. Suppose each job is controlled by a
different player. Each player wants to minimize the completion time of their job.

101

102 Chapter 5. The Price of Anarchy of Related Machine Scheduling

1 (1)

2 (1)

3 (2) 1 1 2 4

(a) Nash schedule

1 (1) 1

2 (1) 1

3 (2) 2 4

(b) Optimal schedule

Figure 5.1: Machine scheduling example

On a single machine, the total completion time is minimized when scheduling jobs
in non-decreasing order (more details below). Given that this is the local policy,
players only need to select which machine will process their job. We are interested
in the maximal ratio of the sum of completion times when players are in a Nash
equilibrium and the optimal sum of completion times. In other words, what is the
price of anarchy of this game?

Since Koutsoupias and Papadimitriou (1999) introduced this notion, the study
of the price of anarchy in all types of settings has been a growing field of research.
Examples of settings include routing in networks, scheduling, and auctions (Rough-
garden, Syrgkanis, and Tardos, 2017). It is now a standard way of quantifying the
inefficiency caused by selfish behavior.

We take a look at an example to get more intuition.

Example 5.1.1. Consider an instance with three machines and four jobs. Two
machines have a speed of 1, and one machine has a speed of 2. There are two jobs
with processing time 1, a job with processing time 2, and a job with processing
time 4. In Figure 5.1(a) we have depicted a Nash schedule (or a schedule produced
by a run of the Ibarra-Kim greedy algorithm) and in Figure 5.1(b) an optimal
schedule. The three rows indicate the machines, where the machine number and
speed of the machine (within parentheses) are written on the left. The rectangles
represent jobs, and the numbers inside indicate their processing time.

In the Nash schedule, the first job clearly prefers the fast machine as it will have
a completion time of 1

2 . The other three jobs would have the same completion time
if they switched to another machine and therefore have no incentive to deviate.

5.1. Introduction 103

The total completion time of the Nash schedule is

1

2
+

1 + 1

2
+

1 + 1 + 2

2
+

1 + 1 + 2 + 4

2
=

15

2
.

As we will see in Section 5.2.1 the schedule in Figure 5.1(b) is a schedule minimizing
the sum of completion times. The total completion time of this schedule is

1

1
+

1

1
+

2

2
+

2 + 6

2
= 6.

The Nash schedule in Figure 5.1 can be verified to be the Nash schedule with the
highest sum of completion times, and so the price of anarchy of this instance is

15
2

6
=

5

4
.

It can be shown that the approximation factor of the Ibarra-Kim algorithm
and the pure price of anarchy of the related machine scheduling game are actually
the same and it is somewhere in between e

e�1 and 2 (Hoeksma and Uetz, 2019).
Studying one is therefore equivalent to studying the other but from a different
perspective. The upper bound of 2 is proved using a variant on the smoothness
technique discussed in the preliminaries called semi-smoothness. As with smooth-
ness, bounds proved by semi-smoothness extend all the way to coarse correlated
equilibria. If we restrict our scheduling instances to instances where all machines
have the same speed (without loss of generality equal to one), it is known that the
pure price of anarchy is 1 (Conway, Maxwell, and Miller, 1967), while the robust
price of anarchy is 3

2 �
1
2m , where m is the number of machines, and this is tight

for mixed Nash equilibria (Rahn and Schäfer, 2013). If the separation between the
pure price of anarchy and the mixed price of anarchy were also there for related
machine scheduling, then the semi-smoothness technique is not strong enough to
give a tight bound on the pure price of anarchy, and we need other tools.

A technique that is able to capture the specifics of pure Nash equilibria is a
primal-dual method developed by Bilò (2018). First, it tries to capture finding
the worst-case Nash equilibria into a linear program. Secondly, it leverages strong
duality by finding a feasible solution for the dual program which gives a bound
on the value of the primal program. This in turn also gives a bound on the pure
price of anarchy.

5.1.1 Our Contributions
This chapter contains the following contributions:

1. We outline how the primal-dual method can be used in the context of related
machine scheduling and show, for example, how we can easily reobtain the
bound of 2 by exemplifying a feasible dual solution.

104 Chapter 5. The Price of Anarchy of Related Machine Scheduling

2. We show how our first attempt is not strong enough to improve the upper
bound as it cannot prove a pure price of anarchy of 1 for identical machine
scheduling and e

e�1 for related machine scheduling.

3. But, we also give a stronger program which gives more flexibility for proving
better bounds. We use it to prove that the processing times in the Hoeksma-
Uetz lower bound instance are, in fact, worst-case with respect to the Nash
and optimal schedules.

4. The e

e�1 lower bound of Hoeksma and Uetz (2019) is for instances where
the number of machines and jobs goes to infinity. For a fixed number
of jobs n and machines m we give a procedure to find instances with a
slightly improved lower bound compared to what was previously known in
the literature.

The initial goal of this research was to prove that the pure price of anarchy for
related machine scheduling is e

e�1 or find evidence that it is not. Unfortunately,
we have not succeeded, but we hope that this chapter gives more insights and
contributes as a ‘push in the back’ for future work.

5.1.2 Related Work
There is a lot of work done on scheduling games in which the social cost is equal
to the makespan, i.e., the latest moment a job finishes, of the schedule. These
games are also called load balancing games. When Koutsoupias and Papadimitriou
introduced the coordination ratio, now known as the price of anarchy, they looked
at a game that can be seen as a scheduling game while minimizing makespan (Kout-
soupias and Papadimitriou, 1999). For various variants of the game, tight bounds
on the price of anarchy have been obtained (Awerbuch et al., 2006; Czumaj and
Vöcking, 2007; Gairing et al., 2010).

For the sum of completion times as social cost on related machines, the best-
known upper bound on the price of anarchy is 2 (Hoeksma and Uetz, 2019). If
we fix the number of jobs to n and machines to m this bound can be slightly
improved to 2� 2

(n+m)(n+1) (Zhang et al., 2019). A lower bound on the price of
anarchy when allowing instances of any size is e

e�1 (Hoeksma and Uetz, 2019). For
two machines, the best-known lower bound is 1.875... (Zhang et al., 2019).

In the related machine setting there is still a gap between e

e�1 and 2. But, for
unrelated machines, where each job has a possibly different processing time per
machine, the price of anarchy is 4 and this is tight (Cole et al., 2015; Correa and
Queyranne, 2012). For identical machines, the pure price of anarchy is 1, while the
robust price of anarchy is 3

2 �
1
2m and this is tight for mixed Nash equilibria (Rahn

and Schäfer, 2013).
The primal-dual method by Bilò (2018) has been especially powerful when

applied to congestion games. Writing down a linear program, finding a fitting

5.2. Preliminaries 105

for the dual, and some calculus results in the best-known bounds for various
types of cost functions. It is mainly used for bounding the pure price of anarchy,
but there are settings in which an extension theorem can lift this bound up to
coarse-correlated equilibria.

5.2 Preliminaries

In related machine scheduling, we have a set of n jobs N = [n] and a set of
m machines M = [m]. Each job j 2 N has a processing time pj and each
machine i 2 M has a speed si. We assume, without loss of generality, that
p1  p2  . . .  pn and s1  s2  . . .  sn. The time it takes to process job j on
machine i is pj

si
. A schedule consists of an assignment x 2 [m]n of every job to

a machine. On a single machine, jobs are scheduled in non-decreasing order of
processing times and ties are broken consistently on index. This order is called
shortest processing time first (SPT).

Given a schedule x the completion time of a job is given by

Cj(x) =
X

k2N
kj

xk=xj

pk

sxk

=
1

sxj

X

k2N
kj

xk=xj

pk.

If it is clear that k iterates over N we do not always write it explicitly. The sum
of completion times (also called the mean flow time) is then

SC(x) =
X

j2N

Cj(x) =
X

j2N

X

kj
xk=xj

pk

sxk

.

For a schedule x, a machine i and a job j let

zi(x, j) = |{k 2 N |k > j, xk = i}| (5.1)

be the number of jobs that are processed after job j under x if job j would be
scheduled on machine i. Observe that we can rewrite the sum of completion times
as

SC(x) =
X

j2N

zxj(x, j) + 1

sxj

· pj.

Every job j contributes pj

sxj
for itself and once for every job that is scheduled after

it to the sum of completion times.

5.2.1 Optimal Schedule
Suppose we have an instance with only one machine. Without loss of generality
assume that the speed of this machine is one. Assume the jobs are processed in

106 Chapter 5. The Price of Anarchy of Related Machine Scheduling

Algorithm 8 MFT Algorithm
Input: n jobs with processing times p1  . . .  pn, m machines with speeds

s1, . . . , sm

Output: A schedule x⇤ minimizing the sum of completion times
1: zi 0 for all i 2 [m]
2: for j = n to 1 do /* From longest to shortest processing time */
3: Assign job j to a machine i with minimal zi+1

si

4: x
⇤
j
 i

5: zi zi + 1
6: end for
7: return x⇤

order of a permutation ⇡ : [n]! [n], i.e., job j is the ⇡(j)th job being processed.
The sum of completion times with respect to ⇡ is

X

j2N

X

k2N
⇡(k)⇡(j)

pk =
X

j2N

(n+ 1� ⇡(j))pj.

This expression is minimized when the processing time of the job with the ith
longest processing time is matched to the ith smallest coefficient. This is exactly
the result when scheduling the jobs in SPT order.

The idea of matching the highest coefficient to the shortest job can also be
extended to multiple machines. For m machines we can compute nm coefficients:
for each machine i, compute 1

si
,
2
si
, . . . ,

n

si
. If job j is assigned to the coefficient

k

si
that means it will be scheduled on machine i and that there are still k � 1

jobs coming after it so that it contributes k

si
· pj to the sum of completion times.

To minimize the sum of completion times, the jobs with the largest processing
times need to be matched to the smallest coefficients. More specifically, the ith
smallest coefficient needs to be matched to the job with the ith longest processing
time. The Mean Flowtime Algorithm (MFT) algorithm (Algorithm 8) does exactly
this (Horowitz and Sahni, 1976). Note that if there are coefficients with the
same value, then the jobs matched to these coefficients can be permuted without
changing the contribution to the sum of completion times. It is not hard to
see that based on the way ties are broken (in line 3 of Algorithm 8) the MFT
algorithm can produce any optimal schedule.

Theorem 5.2.1. ((Horowitz and Sahni, 1976)). The Mean Flow Time Algorithm
produces an optimal schedule for related machine scheduling and any optimal
schedule can be produced by the MFT algorithm with the proper tie-breaking rule.

5.2. Preliminaries 107

5.2.2 Related Machine Scheduling Game
We can analyze related machine scheduling also in a game-theoretic context. A
related machine scheduling game � consists of n players, each player j 2 N = [n]
controls a job j with processing time pj. The strategy set for every player is
equal to M , i.e., the players can assign their job to exactly one of the machines.
The cost of a player in a strategy profile x 2M

N , in which player j has chosen
machine xj, is the completion time of their job

cj(x) = Cj(x).

The social cost we want to minimize is the sum of completion times

SC(x) =
X

j2N

Cj(x) =
X

j2N

X

kj
xk=xj

pk

sxk

.

In this context a pure Nash equilibrium is a strategy profile x 2M
N that satisfies

for every player j 2 N

1

sxj

X

kj
xk=xj

pk = cj(x)  cj(i,x�j) =
1

si

0

B@pj +
X

k<j

xk=i

1

CA for all i 2M,

and the pure price of anarchy is defined as

PoA(�) = sup
x2PNE(�)

SC(x)

SC(x⇤)
,

where x⇤
2M

N is a strategy profile minimizing SC(x⇤).
Because on every machine the jobs are processed in order of index, the cost

of player j only depends on the strategies of players 1 up to j. The Ibarra-
Kim algorithm is an approximation algorithm for the optimization version of the
related machine scheduling problem that schedules jobs in non-decreasing order
of processing times, assigning each job to the machine on which it will have the
minimal completion time. Also here, the completion time of job j only depends
on the schedule of the first j jobs. Just like the MFT algorithm can produce
all optimal schedules based on how ties are broken, the Ibarra-Kim algorithm
(Algorithm 9) can produce all Nash schedules (Ibarra and Kim, 1977) based on
how ties are broken (in line 3 of Algorithm 9).

Theorem 5.2.2. (Heydenreich, Müller, and Uetz, 2007; Immorlica et al., 2009).
The set of pure Nash equilibria for the related machine scheduling game is precisely
the set of solutions that can be generated by the Ibarra-Kim algorithm depending
on how ties are broken

Studying the price of anarchy of the related machine scheduling game is
therefore equivalent to studying the approximation factor of the Ibarra-Kim
algorithm for related machine scheduling.

108 Chapter 5. The Price of Anarchy of Related Machine Scheduling

Algorithm 9 Ibarra-Kim algorithm
Input: n jobs with processing times p1  . . .  pn, m machines with speeds

s1, . . . , sm

Output: A Nash schedule x
1: `i 0 for all i 2 [m]
2: for j = 1 to n do
3: Assign job j to a machine i with minimal `i + pj

si

4: xj i

5: `i `i +
pj

si

6: end for
7: return x

5.3 Best-Known Bounds

The best-known bounds on the price of anarchy for related machine scheduling
with SPT as local scheduling policy are proven using the smoothness frame-
work (Roughgarden, 2015) which we already introduced in the preliminaries.

The notion can sometimes be relaxed a bit without losing on its implications.
One way is called semi-smoothness and it makes specific use of properties of an
optimal solution (Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier,
et al., 2015; Lucier and Paes Leme, 2011).

Definition 5.3.1. A cost-minimization game is called (�, µ)-semi-smooth with
� � 0, µ < 1 if there exists a (mixed) strategy profile � such that for an optimal
strategy profile x⇤ and any other strategy profile x it holds that

E
"
X

j2N

cj(�j,x�j)

#
 � · C(x⇤) + µ · C(x).

Just like with normal smoothness, if a game is (�, µ)-semi-smooth we get a bound
of �

1�µ
on the price of anarchy which extends all the way to coarse correlated

equilibria.

5.3.1 Upper Bounds
Using semi-smoothness Hoeksma and Uetz (2019) proved an upper bound on the
robust price of anarchy of 2. As � they take an optimal solution x⇤ and show that

X

j2N

cj(x
⇤
j
,x�j)  2 · C(x⇤).

They rewrite the left-hand side as
X

j2N

cj(x
⇤
j
,x�j) =

X

j2N

pj

sx⇤
j

+
X

j2N

zxj(x
⇤
, j) ·

pj

sxj

. (5.2)

5.3. Best-Known Bounds 109

First, we note that the first term in (5.2) is upper bounded by C(x⇤) as the
completion time of a job is at least the time it takes to process it (plus jobs that
may be processed before it).

To bound the second term Hoeksma and Uetz (2019) give the following
characterization of optimal strategy profiles.

Theorem 5.3.2. ((Hoeksma and Uetz, 2019)). A schedule x⇤ is optimal if and
only if

z`(x⇤
, j)

s`


zi(x⇤
, j) + 1

si
for all i, `.

Using this theorem the second term in (5.2) is bounded by
X

j2N

zxj(x
⇤
, j) ·

pj

sxj



X

j2N

⇣
zx⇤

j
(x⇤

, j) + 1
⌘
·
pj

sx⇤
j

= C(x⇤). (5.3)

So, (5.2) is upper bounded by 2 · C(x⇤).
Later Zhang et al. (2019) improved this bound slightly by observing that for

the nth term the bound in (5.3) is too crude as zi(x⇤
, n) = 0 for all machines i.

As pn

sx⇤n
�

2
(n+m)(n+1)C(x⇤) the better bound of 2� 2

(n+m)(n+1) follows.

5.3.2 Lower Bound
The best-known lower bound is given by Hoeksma and Uetz (2019).

Example 5.3.3. (Hoeksma-Uetz instances). The instances are parametrized by
two integers m and s. An instance consists of m machines of which one has speed
s while the rest has speed 1. The instance has n = m+ s� 1 jobs. The processing
time of job j is defined as

pj =

(
1 if j  s� 1�

s

s�1

�j�s if j � s.

Observe that for j = s the processing time is actually 1, so we also could have
put the transition between s to s+ 1.

Scheduling all jobs on the fastest machine is a Nash equilibrium. In an
optimal schedule, the first m � 1 jobs are scheduled alone on a slow machine
and the remaining jobs are scheduled on the fast machine. An example with
m = 5, s = 3, n = 7 can be found in Figure 5.2.

The Nash schedule has a total completion time of (s� 1)
��

s

s�1

�m
�

1
2

�
while

for the optimal schedule it is (s� 1)
⇣�

s

s�1

�m
�
�

s

s�1

�m�s
⌘
. The price of anarchy

of this instance is, therefore, at least

(s� 1)
��

s

s�1

�m
�

1
2

�

(s� 1)
⇣�

s

s�1

�m
�
�

s

s�1

�m�s
⌘ =

�
s

s�1

�s
�

1
2

�
s

s�1

��(m�s)

�
s

s�1

�s
� 1

. (5.4)

110 Chapter 5. The Price of Anarchy of Related Machine Scheduling

Nash

1 (1)

2 (1)

3 (1)

4 (1)

5 (3) 1 1 1 3
2

�
3
2

�2 �
3
2

�3 �
3
2

�4

Optimal

1 (1) 1

2 (1) 1

3 (1) 1

4 (1) 3
2

5 (3)
�
3
2

�2 �
3
2

�3 �
3
2

�4

Figure 5.2: Nash and optimal schedule for Hoeksma-Uetz instance with 5 machines
and 7 jobs

First sending m to infinity and then s gives a lower bound on the price of anarchy
of e

e�1 because
�

s

s�1

�s
! e.

5.4 An Attempt at Improving the Pure Price of

Anarchy Bound

The upper bounds we discussed in the previous section are robust price of anarchy
bounds: they not only prove bounds on the pure price of anarchy but extend to
the coarse correlated price of anarchy. From the identical machine setting it is
known, however, that there is a separation between the pure price of anarchy,
which is 1, and the mixed price of anarchy, which is 3

2 �
1
2m . If there also exists

a separation for the related machine scheduling setting we need techniques that
enable us to prove this. One method that is able to capture specifics of pure
Nash equilibria, which has been especially powerful for congestion games, is the

5.4. An Attempt at Improving the Pure Price of Anarchy Bound 111

primal-dual method introduced by Bilò (2018).
On a high level, Bilò’s primal-dual method applied to related machine schedul-

ing games works as follows. Given a class of games G (e.g., the class of re-
lated machine scheduling games with m machines, n jobs, and machine speeds
s1  . . .  sm), where each game in the class is defined by a set of parameters
(e.g., the processing times of the jobs), together with a social cost function C

we are interested in the game � 2 G, Nash equilibrium x and optimal strategy
profile x⇤ such that C(x)/C(x⇤) is maximized. Suppose we are given a Nash
equilibrium x and optimal strategy profile x⇤ and suppose we can write down a
linear program LP (x,x⇤) that maximizes C(x) over the set of parameters while
the parameters are constrained by C(x⇤) being normalized to one and x must be a
Nash equilibrium. Note that, here it is assumed that one can globally and linearly
scale down the parameters defining the game such that C(x⇤) is one. Weak duality
implies that a feasible solution for the dual with some objective value � gives an
upper bound on the primal program of � which is a bound on C(x). Since C(x⇤)
is 1, this is also a bound on the price of anarchy. If one can find a dual fitting
with objective value � for Nash equilibrium x and optimal strategy profile x⇤ for
which one can argue that they are worst-case this gives a bound on the price of
anarchy for the whole class of games. Another way is to have a procedure that for
every Nash equilibrium and every optimal strategy profile provides a dual fitting
procedure with objective value at most �. We will formalize this latter approach
for the related machine scheduling setting below.

A First Attempt

In our first attempt, we take as input to our linear program a Nash schedule x,
an optimal strategy profile x⇤, and machine speeds s = (s1, . . . , sm). We optimize
over the processing times of the jobs. Following smoothness, we only add the
constraint that a player has no incentive to change their strategy to the one they
play in the optimal strategy profile.

We obtain the following linear program

LP (x⇤
,x, s) = max

p1,p2,...,pn

C(x) s.t. (5.5)

C(x⇤) = 1 (5.6)
cj(x)� cj(x

⇤
j
,x�j)  0 8j 2 N : xj 6= x

⇤
j

(5.7)
pj � pj+1  0 8j 2 [n� 1] (5.8)

�pj  0 8j 2 N, (5.9)

where we maximize the cost of a Nash equilibrium x while satisfying con-
straints (5.6)–(5.9). Constraint (5.6) normalizes the sum of completion times
of the optimal schedule to 1. No player has an incentive to deviate from the
machine in the Nash strategy profile to the machine in the optimal strategy profile

112 Chapter 5. The Price of Anarchy of Related Machine Scheduling

because of constraint (5.7). Lastly, constraints (5.8) and (5.9) make sure that the
processing are non-decreasing and non-negative.

Filling in the definitions of the cost functions yields

LP (x⇤
,x, s) = max

p1,p2,...,pn

X

j

1

sxj

X

kj
xk=xj

pk s.t. (5.10)

X

j

1

sx⇤
j

X

kj

x
⇤
k=x

⇤
j

pk = 1 (5.11)

1

sxj

0

B@pj +
X

k<j
xk=xj

pk

1

CA�
1

sx⇤
j

0

BB@pj +
X

k<j

xk=x
⇤
j

pk

1

CCA  0 8j 2 N : xj 6= x
⇤
j

(5.12)

pj � pj+1  0 8j 2 [n� 1] (5.13)
�pj  0 8j 2 N.

This linear program has a dual linear program. For the constraint (5.11) we
introduce the variable �. For each of the constraints in (5.12) we introduce yj

for each j 2 N and for the constraints in (5.13) we have variables z1, z2, . . . , zn�1.
For notational convenience, we define z0 = zn = 0. Observe that if xj = x

⇤
j

there
is no Nash constraint while we have introduced a variable yj. This is also merely
a notational convenience as the corresponding variables cancel in the constraints
below.

Dual(x⇤
,x, s) = min � s.t. (5.14)

� ·
1

sx⇤
k

X

j�k

x
⇤
j=x

⇤
k

1 +
1

sxk

X

j�k
xj=xk

yj �
1

sx⇤
k

yk�

1

sxk

X

j>k

x
⇤
j=xk

yj + zk � zk�1 �
1

sxk

X

j�k
xj=xk

1 8k 2 N

yj � 0 8j 2 N

zk � 0 8k 2 [n� 1].

The procedure we envision is outlined in the following theorem.

Theorem 5.4.1. Consider a related machine scheduling game with m machines
and n jobs. If, for every Nash equilibrium x, optimal strategy profile x⇤ and
machine speeds s = (s1, . . . , sm), there exist �

0
, y1, . . . , yn, z1, . . . , zn�1, that are

feasible for (5.14) with �
0
 � for some constant �. Then, the price of anarchy

for related machine scheduling with m machines and n jobs is at most �.

5.4. An Attempt at Improving the Pure Price of Anarchy Bound 113

Proof: Consider a machine scheduling game with m machines with speeds
s = (s1, . . . , sm) and n jobs with processing times p1  . . .  pn and assume
s1, . . . , sm, p1, . . . , pn are such that this game has the maximal price of anarchy of
any related machine scheduling game with m machines and n jobs.

Let x⇤ be an optimal strategy profile of this game and let x be the worst-case
Nash equilibrium, i.e., the Nash equilibrium with the highest sum of completion
times.

Let p0
j
= pj

C(x⇤) for each j 2 N . Let C 0(x) and C
0(x⇤) be the sum of completion

times with respect to p
0
1, . . . , p

0
n

of x and x⇤, respectively. Observe that p01, . . . , p0n
are feasible for LP (x⇤

,x, s) (by assumption, (5.12) is satisfied for p1, . . . , pn and
the scaling of the processing times does not change that) and therefore

C
0(x)  LP (x⇤

,x, s). (5.15)

By the theorem statement, there exist �0
, y1, . . . , yn, z1, . . . , zn�1 that are feasi-

ble for the dual program (5.14). Hence, by weak duality, the objective value of
the primal program LP (x⇤

,x, s) is at most �0. Putting it all together gives

C(x)

C(x⇤)
=

C
0(x)

C 0(x⇤)
= C

0(x)  LP (x⇤
,x, s)  �

0
 �.

By assumption, this is the instance with the maximal price of anarchy and so
we can conclude that any related machine scheduling game with n jobs and m

machines has a price of anarchy at most �. 2

We can now easily recover the bound of 2 on the pure price of anarchy for any
related machine scheduling game (of any size).

Theorem 5.4.2. The pure price of anarchy of any related machine scheduling
game is at most 2.

Proof: We will verify that � = 2, yj = 1, zj = 0 for all j is a feasible solution for
the dual (for all possible s,x⇤ and x). With this solution we get

2 ·
1

sx⇤
k

X

j�k

x
⇤
j=x

⇤
k

1 +
1

sxk

X

j�k
xj=xk

1�
1

sx⇤
k

yk �
1

sxk

X

j>k

x
⇤
j=xk

1 + zk � zk�1 �
1

sxk

X

j�k
xj=xk

1.

(5.16)

114 Chapter 5. The Price of Anarchy of Related Machine Scheduling

Using the notation defined in (5.1), the left hand side rewrites to

2·
zx⇤

k
(x⇤

, k) + 1

sx⇤
k

+
zxk

(x, k) + 1

sxk

�
1

sx⇤
k

�
zxk

(x⇤
, k)

sxk

� 2 ·
zx⇤

k
(x⇤

, k) + 1

sx⇤
k

+
zxk

(x, k) + 1

sxk

�
1

sx⇤
k

�
zx⇤

k
(x⇤

, k) + 1

sx⇤
k

=
zx⇤

k
(x⇤

, k) + 1

sx⇤
k

+
zxk

(x, k) + 1

sxk

�
1

sx⇤
k

�
zxk

(x, k) + 1

sxk

.

where the first inequality follows from Theorem 5.3.2 and the second inequality
from the fact that zx⇤

k
(x⇤

, k) � 0. We end up with the right hand side of (5.16)
and thus the constraints are satisfied and the dual has objective value 2. Invoking
Theorem 5.4.1 completes the proof. 2

Not Strong Enough

Example 5.4.3. Consider the instance depicted in Figure 5.3. There are 2
machines of speed 1 and 3 jobs. The numbers written inside the boxes are the
indices of the jobs. Let x = (2, 1, 1) be the schedule where job 1 is alone on
machine 2 and jobs 2 and 3 are scheduled on machine 1. Also let x⇤ = (1, 2, 1).
Now, jobs 1 and 3 are on machine 1, while job 2 is alone on machine 2. Note
that these are feasible Nash and optimal schedules when all three jobs have a
processing time of 1.

x

1 (1) 2 3

2 (1) 1

x⇤

1 (1) 1 3

2 (1) 2

Figure 5.3: Schedules in Example 5.4.3.

The dual for this instance becomes

min � s.t.
� · 2� y2 + z1 � 1

� · 1 + z2 � z1 � 2

� · 1� z2 � 1.

5.4. An Attempt at Improving the Pure Price of Anarchy Bound 115

Summing the last two constraints gives 2� � z1 � 3. As z1 � 0, this implies
that � �

3
2 . While we know that the pure price of anarchy for identical machine

scheduling is 1.

Also for related machine scheduling this formulation is not as strong as we
would like it to be. Take the machine speeds, Nash and optimal schedule from the
lower bound instance in Example 5.3.3, i.e., machine m has speed s and all the
other machines have speed 1, x⇤ = (1, 2, . . . ,m,m, . . . ,m) and x = (m, . . . ,m).
An optimal dual fitting is given by

� =
5s+ 1

3s+ 1
�

s� 1

3s+ 1
·

✓
s� 1

s

◆m�s�1

(5.17)

zj =
j(s� j)

2s
for 1  j  s� 1 (5.18)

ys+j = 1�
1

2
·

✓
s� 1

s

◆j

for 1  j  m� s� 2 (5.19)

(yj for s+ 1  j  m� 2)

ym�1 =
(s+ 2)2 � 3

3s+ 1
�

s(s+ 3)

2(3s+ 1)

✓
s� 1

s

◆m�s�1

(5.20)

zn�j = (� � 1) ·
j(j + 1)

2s
for 1  j  s (5.21)

(zj for n� 1 � j � m� 1),

where the remaining variables are 0.

Theorem 5.4.4. The dual fitting (5.17)–(5.21) is optimal.

In the proofs of Theorems 5.4.4 and 5.4.6 we regularly use the following identities,
which follow from the closed-form formula for a geometric sum.

Fact 5.4.5. For k 2 N and s > 1 it holds that:

kX

j=1

✓
s

s� 1

◆j

= s

 ✓
s

s� 1

◆k

� 1

!
,

kX

j=1

✓
s� 1

s

◆j

= (s� 1)

1�

✓
s� 1

s

◆k
!
.

Proof of Theorem 5.4.4: Recall the constraints (5.14) in the dual

� ·
1

sx⇤
k

X

j�k

x
⇤
j=x

⇤
k

1+
1

sxk

X

j�k
xj=xk

yj�
1

sx⇤
k

yk�
1

sxk

X

j>k

x
⇤
j=xk

yj+zk�zk�1 �
1

sxk

X

j�k
xj=xk

1 8k 2 [n].

116 Chapter 5. The Price of Anarchy of Related Machine Scheduling

First, we verify that these constraints are satisfied.
We make a few observations. For all k we have sxk

= s. Note that jobs
with index k  m� 1 are alone on a slow machine in the optimal schedule and
thus sx⇤

k
= 1 while for k � m it holds that sxk

= s. Furthermore, zj = 0 for
s  j  m � 1 and yj = 0 for j  s and j � m. And n = m + s � 1. Next, it
holds that

X

j�k:xj=xk

1 = n+ 1� k,

X

j�k:x⇤
j=x

⇤
k

1 =

(
1 if k  m� 1

n+ 1� k if k � m.

We verify the constraints for all values of k. For k � m the constraint becomes

�
n+ 1� k

s
+ zk � zk�1 �

n+ 1� k

s
.

As zk = (� � 1) (n�k)(n�k+1)
2s we have

(� � 1)

✓
n+ 1� k

s
+

(n� k)(n� k + 1)

2s
�

(n� k + 1)(n� k + 2)

2s

◆
� 0,

which is actually an equality, and so the inequality is satisfied.
We precompute

� +
1

s
ym�1 =

5s+ 1

3s+ 1
�

s� 1

3s+ 1
·

✓
s� 1

s

◆m�s�1

+

(s+ 2)2 � 3

s(3s+ 1)
�

s+ 3

2(3s+ 1)

✓
s� 1

s

◆m�s�1

=
(3s+ 1)(2s+ 1)

s(3s+ 1)
�

3s+ 1

2(3s+ 1)

✓
s� 1

s

◆m�s�1

=
2s+ 1

s
�

1

2

✓
s� 1

s

◆m�s�1

.

For k = m� 1 the constraint becomes (recall n = m+ s� 1 and so n+1� k =
s+ 1)

� +
1

s
ym�1 � ym�1 + zm�1 �

s+ 1

s
.

5.4. An Attempt at Improving the Pure Price of Anarchy Bound 117

Using the result for � + 1
s
ym�1 and filling in zm�1 yields

()
2s+ 1

s
�

1

2

✓
s� 1

s

◆m�s�1

+ (� � 1)
s+ 1

2
�

s+ 1

s
� ym�1

() 1�
1

2

✓
s� 1

s

◆m�s�1

+ �
s+ 1

2
�

s+ 1

2
� ym�1

()

1�
1

2

✓
s� 1

s

◆m�s�1

+
(5s+ 1)(s+ 1)

2(3s+ 1)

�
(s� 1)(s+ 1)

2(3s+ 1)
·

✓
s� 1

s

◆m�s�1

�
s+ 1

2

� ym�1

()
s
2 + 4s+ 1

3s+ 1
�

s(s+ 3)

2(3s+ 1)
·

✓
s� 1

s

◆m�s�1

� ym�1,

which is exactly the definition of ym�1 and thus an equality.
Let s+ 1  k  m� 2.

� +
1

s
ym�1 +

1

s

m�2X

j=k

yj � yk �
n+ 1� k

s

()

2s+ 1

s
�

1

2

✓
s� 1

s

◆m�s�1

+
1

s

m�2X

j=k

1�

1

2

✓
s� 1

s

◆j�s
! � m+ s� k

s
+ yk

()

2s+ 1

s
�

1

2

✓
s� 1

s

◆m�s�1

+
m� 1� k

s

�
1

2

 ✓
s� 1

s

◆k�s

�

✓
s� 1

s

◆m�s�1
! �

m+ s� k

s
+ yk

()
2s+ 1

s
+

m� 1� k

s
�

1

2

✓
s� 1

s

◆k�s

�
m+ s� k

s
+ yk

() 1�
1

2

✓
s� 1

s

◆k�s

� yk.

Lastly, we check the constraints for k  s. Making use of the above computa-

118 Chapter 5. The Price of Anarchy of Related Machine Scheduling

tions for k = s+ 1 we precompute

� +
1

s
ym�1 +

1

s

m�2X

j=s+1

yj = 1�
s� 1

2s
+

m� 1

s

=
m

s
+

s� 1

2s
.

For k  s the constraint becomes

� +
1

s
ym�1 +

1

s

m�2X

j=s+1

y1,j + zk � zk�1 �
m+ s� k

s

()
m

s
+

s� 1

2s
+

k(s� k)

2s
�

(k � 1)(s+ 1� k)

2s
�

m+ s� k

s
,

which holds with equality.
For optimality we will give a primal solution which has � as objective value.

Since this is the objective value of the dual strong duality implies that both
solutions are optimal. Let

p
0
j
=

8
><

>:

1 for j  s�
s

s�1

�j�s for s+ 1  j  m� 1�
s

s�1

�m�s�1 for m  j,

and let pj =
p
0
j

C0(x⇤) . By the scaling we know that (5.11) is satisfied and because
s � 2 the processing times are non-decreasing. The jobs for which xj 6= x

⇤
j

and so
for which we have to verify (5.12) are the jobs with j  m� 1. For jobs 1, . . . , s
we see that their completion time is

Cj(x) =
1

C 0(x⇤)

jX

k=1

1

s
=

1

C 0(x⇤)

j

s
 pj,

which is less than their completion time on a slow machine. For jobs s+1, . . . ,m�1
it holds that

Cj(x) =
1

s

jX

k=1

pj

=
1

C 0(x⇤)

1

s

s+

jX

k=1

✓
s

s� 1

◆k�s
!

=
1

C 0(x⇤)

1

s

s+ s

 ✓
s

s� 1

◆j�s

� 1

!!

=
1

C 0(x⇤)

✓
s

s� 1

◆j�s

= pj.

5.4. An Attempt at Improving the Pure Price of Anarchy Bound 119

Hence these processing times are indeed a feasible solution to the primal. It
remains to determine the objective value.

The cost of Nash with respect to p
0
1, . . . , p

0
n

is

C
0(x) =

nX

j=1

C
0
j
(x)

=
sX

j=1

C
0
j
(x) +

m�1X

j=s+1

C
0
j
(x) +

m+s�1X

j=m

C
0
j
(x)

=
1

s

sX

j=1

j +
m�1X

j=s+1

✓
s

s� 1

◆j�s

+
1

s

m+s�1X

j=m

(1 + j + 1�m)

✓
s

s� 1

◆m�s�1

=
s+ 1

2
+ s

 ✓
s

s� 1

◆m�s�1

� 1

!
+

1

s

sX

j=1

(1 + j)

✓
s

s� 1

◆m�s�1

=
s+ 1

2
+ s

 ✓
s

s� 1

◆m�s�1

� 1

!
+

5s+ 1

2

✓
s

s� 1

◆m�s�1

=
5s+ 1

2

✓
s

s� 1

◆m�s�1

�
s� 1

2
.

And the cost of x⇤ with respect to p
0
1, . . . , p

0
n

is

C
0(x⇤) =

nX

j=1

C
0
j
(x⇤)

=
sX

j=1

C
0
j
(x⇤) +

m�1X

j=s+1

C
0
j
(x⇤) +

m+s�1X

j=m

C
0
j
(x⇤)

=
sX

j=1

1 +
m�1X

j=s+1

✓
s

s� 1

◆j�s

+
1

s

m+s�1X

j=m

(j + 1�m)

✓
s

s� 1

◆m�s�1

= s+ s

 ✓
s

s� 1

◆m�s�1

� 1

!
+

1

s

sX

j=1

j

✓
s

s� 1

◆m�s�1

= s

✓
s

s� 1

◆m�s�1

+
3s+ 1

2

✓
s

s� 1

◆m�s�1

=
3s+ 1

2

✓
s

s� 1

◆m�s�1

.

Hence,

C(x)

C(x⇤)
=

C
0(x)

C 0(x⇤)
=

5s+ 1

3s+ 1
�

s� 1

3s+ 1

✓
s� 1

s

◆m�s�1

. (5.22)

120 Chapter 5. The Price of Anarchy of Related Machine Scheduling

Thus, the primal and dual objective values are the same, and therefore we know
that the solutions are optimal. 2

Equation (5.22) gives an upper bound on the price of anarchy of 5
3 for this

particular Nash schedule and optimal strategy profile when sending m and s to
infinity, while we know that the upper bound can be as small as e

e�1 .

Stronger Formulation

To strengthen our formulation we not only add the Nash condition that a job
cannot move from its Nash machine to the optimal machine, but we also add the
Nash condition for all other machines.

LP (x⇤
,x, s) = max

p1,p2,...,pn

X

j

X

kj
xk=xj

1

sxk

pk s.t.

X

j

1

sx⇤
j

X

kj:x⇤
k=x

⇤
j

pk = 1

1

sxj

0

B@pj +
X

k<j
xk=xj

pk

1

CA�
1

si

pj +

X

k<j:xk=i

pk

!
 0 8i 2M, j 2 N

pj � pj+1  0 8j 2 N

�pj  0 8j 2 N.

The dual of this primal program is

Dual(x⇤
,x, s) = min � s.t. (5.23)

� ·
1

sx⇤
k

X

j�k

x
⇤
j=x

⇤
k

1 +
X

i

0

B@
1

sxk

0

B@
X

j�k
xj=xk

yij

1

CA�
1

si
yik

1

CA (5.24)

�
1

sxk

X

j>k

yxkj
+ zk � zk�1 �

1

sxk

X

j�k
xj=xk

1 8k 2 N

yij � 0 8i 2M, j 2 N

(5.25)
zk � 0 8k 2 [n� 1].

(5.26)

If we put the machine speeds, Nash, and optimal schedule from Example 5.3.3

5.4. An Attempt at Improving the Pure Price of Anarchy Bound 121

in here. We can find the following optimal dual fitting:

� =

�
s

s�1

�s
�

1
2

�
s�1
s

�m�s

�
s

s�1

�s
� 1

(5.27)

zj =
j(s� j)

2s
for 1  j  s� 1 (5.28)

y1,s+j = 1�
1

2
·

✓
s� 1

s

◆j

for 1  j  m� s (5.29)

(yj for s+ 1  j  m)

y1,n+1�j = (� � 1)

 ✓
s

s� 1

◆j

� 1

!
for 1  j  n�m = s� 1 (5.30)

(yj for n � j � m+ 1),

and the remaining variables are set to 0. Observe that (5.29) and (5.30) coincide
for y1,m.

Theorem 5.4.6. The dual fitting (5.27)–(5.30) is optimal.

Proof: The Hoeksma-Uetz instance in Example 5.3.3 has exactly this � as price
of anarchy (see (5.4)). Moreover, we know that the processing times, scaled down
by a factor C(x⇤) are feasible for the primal with objective value �. Hence, we
only have to verify that the solution is feasible and strong duality implies that it
is optimal.

Observe that

� � 1 =
1� 1

2

�
s�1
s

�m�s

�
s

s�1

�s
� 1

.

Consider k � m. Job k will both in the Nash schedule and in the optimal
schedule be on the fastest machine. Removing all variables that are 0, the
constraint (5.24) simplifies to

� ·
1

s

X

j�k

1 +
1

s

X

j�k

y1,j � y1,k �
1

s

X

j�k

1

()
1

s

X

j�k

(y1,j + (� � 1)) � y1,k

()
1

s

n+1�kX

j=1

(� � 1)

✓
s

s� 1

◆j

� (� � 1)

 ✓
s

s� 1

◆n�k�1

� 1

!

()
1

s

n+1�kX

j=1

✓
s

s� 1

◆j

�

✓
s

s� 1

◆n�k�1

� 1,

122 Chapter 5. The Price of Anarchy of Related Machine Scheduling

which is an equality by Fact 5.4.5.
Let s + 1  k  m � 1. The job will be on a slow machine in the optimal

schedule. The constraint becomes

� +
1

s

X

j�k

y1,j � y1,k �
1

s

X

j�k

1

() � +
1

s

m�1X

j=k

(y1,j � 1) +
1

s

m+s�1X

j=m

(y1,j � 1) � y1,k

() � �
1

2s

m�1X

j=k

✓
s� 1

s

◆j�s

+
1

s

sX

j=1

(� � 1)

 ✓
s

s� 1

◆j

� 1

!
� 1 � y1,k

()

� �
1

2

 ✓
s� 1

s

◆k�s

�

✓
s� 1

s

◆m�s
!

+ (� � 1)

✓✓✓
s

s� 1

◆s

� 1

◆
� 1

◆
� 1

� y1,k

() �
1

2

 ✓
s� 1

s

◆k�s

�

✓
s� 1

s

◆m�s
!

+ 1�
1

2

✓
s

s� 1

◆m�s

� y1,k

() 1�
1

2

✓
s� 1

s

◆k�s

� y1,k,

which is an equality.
Finally, k  s. Making use of the calculations above for k = s + 1 we note

that for all k  s

� +
1

s

X

j�k

(y1,j � 1) = � +
1

s

nX

j=s+1

(y1,j � 1)�
s+ 1� k

s

= 1�
1

2

✓
s� 1

s

◆
�

s+ 1� k

s

=
2k � s� 1

s
.

Recalling that z0 = 0 the constraint becomes

� +
1

s

X

j�k

y1,j + zk � zk�1 �
1

s

X

j�k

1

() � +
1

s

X

j�k

(y1,j � 1) + zk � zk�1 � 0

()
2k � 1� s

2s
+ zk � zk�1 � 0

()
2k � 1� s

2s
+

k(s� k)

2s
�

(k � 1)(s+ 1� k)

2s
� 0,

5.5. Improved Lower Bound Instances 123

x

1 (1) 1 4 5

2 (1) 2 3

x⇤

1 (1) 1 3 5

2 (1) 2 4

Figure 5.4: Non-negative y variables are necessary.

x

1 (1) 1 3 5

2 (1) 2 4

x⇤

1 (1) 1 4 5

2 (1) 2 3

Figure 5.5: Non-negative z variables are necessary.

which is an equality. Thus the fitting is feasible and as mentioned because the
(scaled) processing times from the Hoeksma-Uetz instance give a primal solution
with the same objective value strong duality implies that it is optimal. 2

Now we have that the dual has objective value � 
e

e�1 coinciding with the
price of anarchy bound we knew. We can conclude that the processing times
in Example 5.3.3 are worst-case for these machine speeds, Nash schedule, and
optimal schedule.

We have not been able to find a dual fitting independent of x and x⇤ smaller
than 2, but we also have not been able to find instances for which the objective
value is greater than e

e�1 , leaving the possibility open that the technique is strong
enough to prove a bound of e

e�1 using this technique. We conjecture that this is
indeed possible.

Observations. In Theorem 5.4.2 we only made use of the y variables to prove a
bound of 2. The instances in Figures 5.4 and 5.5 show that for proving a tight
bound we need to use both the y and the z variables. They both consist of 5 jobs
with processing time 1. The number in the jobs is their index. If we force yij = 0
for all i, j the objective value of the instance in Figure 5.4 is 3/2. While if we
force zj = 0 for all j in the instance in Figure 5.5 the objective value is 4/3. The
objective values were obtained by running an LP solver.

5.5 Improved Lower Bound Instances

In this section, we outline a procedure to construct lower bound instances that, for
any n and m, have a greater price of anarchy than the Hoeksma-Uetz instances

124 Chapter 5. The Price of Anarchy of Related Machine Scheduling

m = 5, n = 11, s = 2.4677

1 (1) 6

2 (1) 1 7

3 (1) 2 8

4 (1) 3 9

5 (s) 45 10 11

Figure 5.6: Optimal schedule for instance with seven machines and 30 jobs.

(Example 5.3.3) and for 2 machines have a higher price of anarchy than the
instance by Zhang et al. (2019). To our knowledge, these are the best-known
bounds in the literature.

Define instances parametrized by n,m, s > 1 with m machines all having speed
1, except for the last one, which has speed s, and n jobs. The processing times
are defined as

pj =

(
1 if j = 1

max
n
pj�1,

Pj�1
k=1 pk

s�1

o
for j � 2.

We verify that all jobs being processed on the fastest machine is a Nash schedule.
Consider job j, its completion time is

pj +
P

j�1
k=1 pk

s
=

1
s�1

P
j�1
k=1 pk +

P
j�1
k=1 pk

s
=

P
j�1
k=1 pk

s� 1
=

pj

s� 1
,

which would be the same completion time if they unilateraly move to any of the
other machines with speed 1.

If the machine speeds and the processing times are fixed the MFT algorithm
(Algorithm 8) can quickly compute an optimal schedule. An example for m =
5, n = 11 and s = 2.4677 is displayed in Figure 5.6.

For a fixed n,m we can numerically find an s maximizing the price of anarchy.
Figure 5.7 show the price of anarchy curve as a function of s for n = 20 jobs and
m = 2 or m = 5 machines.

Some results are displayed in Table 5.1. For the Hoeksma-Uetz instance the
speeds must be an integer between 2 and m � 1, and after the speed has been
fixed the number of jobs is equal to n = m + s � 1. If n 6= 250 in the table we
have displayed the n which maximizes the price of anarchy of the Hoeksma-Uetz
instance for that fixed number of machines m.

We improve the price of anarchy lower bound for fixed n and m. Moreover,

5.5. Improved Lower Bound Instances 125

1 1.5 2 2.5 3
1

1.1

1.2

s

P
oA

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.1

1.2

1.3

1.4

s

Figure 5.7: Price of anarchy of improved lower bound instance as a function of s
with n = 20 jobs. On the left with m = 2 machines and on the right with m = 5
machines.

for a fixed number of machines we increase the price of anarchy lower bound even
more. But, note that all bounds are still below e

e�1 ⇡ 1.5819....
For m = 2, the Hoeksma-Uetz instance gives a trivial instance, but Zhang

et al. (2019) came up with an instance with m = 2, n = 7, s = 1.5737 that reaches
a price of anarchy of 1.1875. We improve this bound to 1.188.

Finally, note that the n = 250 is rather arbitrary, but taking n larger does not
change the price of anarchy for the first four decimals.

126 Chapter 5. The Price of Anarchy of Related Machine Scheduling

m n s Our PoA HU-PoA
2 7 1.5738 1.1875 1.1875 (Zhang)
2 250 1.58605 1.1880
3 4 1.70710 1.2612 1.25
3 250 1.70704 1.2641
4 5 2.19192 1.2999 1.2916
4 250 2.41553 1.3162
5 7 2.51793 1.3461 1.3274
5 250 2.56646 1.3513
10 13 3.5767 1.4296 1.4216
10 250 4.34235 1.4323
20 25 5.5838 1.4870 1.4839
20 250 6.452366 1.4909
50 61 11.4583 1.5344 1.5332
50 250 12.45967 1.5363
100 119 19.47601 1.5545 1.5541
100 250 20.54459 1.5556

Table 5.1: Price of anarchy bounds for lower bound instances

5.6. Conclusion 127

5.6 Conclusion

In this chapter, we have seen how the approximation factor of an approximation
algorithm and the price of anarchy of a game can be closely related. We have
introduced a variant of the primal-dual method of Bilò applied to related machine
scheduling games and outlined how it can be used to prove bounds on the pure
price of anarchy for related machine scheduling. Although we found dual fittings
for the Hoeksma-Uetz instance, we have not been able to find a procedure that
works in general. Understanding the different roles of the y and z variables in the
dual will probably give a hint on how the procedure should look like. However, we
have not been able to do this, even when restricting to identical machines. On the
other hand, we also have not found (numerical) evidence yet that the technique is
not strong enough. Following Hoeksma and Uetz (2019), we conjecture that the
pure price of anarchy is (asymptotically) below 2. We conjecture that it is e

e�1
and that our dual-fitting approach should be able to prove this. However, if one
has ideas for better lower-bound instances, solving the LP with a solver is an easy
way to test them.

Chapter 6

Corruption in Auctions

6.1 Introduction

Hosting an auction is not something anyone can do. One can lack the facilities,
time, or expertise to organize one, and so, often, dedicated auctioneers are recruited
to organize auctions on behalf of a client. For example, individual sellers usually
involve auction houses or auction websites when they want to sell particular objects
(such as real estate, cars, artwork, etc.). In private companies, the responsible
finance officers are typically in charge of handling the procurement auctions1.
Similarly, government procurement is usually carried out by some entity that acts
on behalf of the government. The dilemma in such settings is that the incentives of
the seller and the auctioneer do not align in general: while the seller is interested
in extracting the highest payments for the objects (or getting service at the lowest
cost), the agent primarily cares about maximizing their own gains from hosting
the auction. Although undesirably, this misalignment leads (unavoidably) to
fraudulent schemes which might be used by the auctioneer to manipulate the
auction to their own benefit.

Corruption in auctions, where an auctioneer engages in bid rigging with one
(or several) of the bidders, occurs rather frequently in practice, especially in the
public sector (e.g., in construction and procurement auctions). For example, in
1999, the procurement auction for the construction of the new Berlin Brandenburg
airport had to be rerun after investigations revealed that the initial winner was
able to change the bid after they had illegally acquired information about the
application of one of their main competitors (The Wall Street Journal, 1999).

1A procurement auction is in some sense the opposite of a standard auction. Instead of a
single seller and multiple buyers, there is a single buyer picking the best option among multiple
sellers.

129

130 Chapter 6. Corruption in Auctions

As another example, in 1993, the New York City School Construction Authority
caused a scandal when an investigation revealed that they used a simple (but
effective) bid-rigging scheme in a procurement auction setting (Olmstead, 1993):

“In what one investigator described as a nervy scheme, that worker
would unseal envelopes at a public bid opening, saving for last the
bid submitted by the contractor who had paid him off. At that point,
knowing the previous bids, the authority worker would misstate the
contractor’s bid, insuring that it was low enough to secure the contract
but as close as possible to the next highest bid so that the contractor
would get the largest possible price.”

This kind of bid rigging, where the winning bid “magically” aligns with the
highest losing bid, is also known as magic number cheating (Ingraham, 2005). We
refer the reader to (Lengwiler and Wolfstetter, 2010; Menezes and Monteiro, 2006)
(and the references therein) for several other bid-rigging examples. Despite the
fact that this form of corruption occurs frequently in practice, its negative impact
is still poorly understood theoretically and only a few studies exist (mostly in the
economics literature, see the related work section).

Our goal is to initiate the study of the social welfare loss caused by corrupt
auctioneers in fundamental auction settings. We focus on a basic model that
captures the magic number cheating mentioned above and generalizations thereof.
Clearly, more sophisticated bid-rigging models are conceivable, and we hope that
our work will trigger some future work along these lines.

6.1.1 Capturing Corruption with Hybrid Auctions
Consider the single-item auction setting, and suppose the auctioneer runs a sealed-
bid first-price auction. After receipt of all bids, the auctioneer approaches the
highest bidder with the offer that they can lower their bid to the second-highest
bid in exchange for a bribe. If the highest bidder agrees, they win the auction
and pay the second-highest bid for the items plus the corresponding bribe to the
auctioneer. If the highest bidder disagrees, they still win the auction but pay their
bid for the item according to the first-price auction format. We assume that the
bribe to be paid to the auctioneer is a pre-determined fraction � 2 [0, 1] of the
savings of the highest bidder, i.e., the auctioneer’s bribe amounts to � times the
difference between the highest and second-highest bid.

To get more intuition for the scheme, we take a look at an example.

6.1. Introduction 131

bids

b1

b2

b3

...
bn

Example 6.1.1. Consider a single-item auction with n bidders.
Assume that the bidders submit bids b1 > b2 > . . . > bn. The
auctioneer receives the (sealed) bids and concludes that bidder
1 is the winner. The auctioneer approaches bidder 1 and offers
to announce that bidder 1 has bid b2 + ✏ (for some small ✏ > 0).
If they accept they will have to pay b1 � (b2 + ✏) less to receive
the item and the auctioneer expects a � fraction of it as a bribe.
In the end, bidder 1 pays only

b2 + ✏+ �(b1 � (b2 + ✏)) = �b1 + (1� �)b2 + (1� �)✏.

If ✏ is small enough, this is less than b1 which is the payment of
player 1 if they would not participate in the corruption scheme.

Note that ✏ can be chosen arbitrarily small such that b2 + ✏ gets arbitrarily
close to b2. In this chapter, we assume that ✏ goes to zero and we say that the
auctioneer offers the winning bidder to lower their bid to the second-highest bid.
Another way of looking at it is that for ✏ = 0, it becomes a tie-breaking issue, and
we assume ties are broken in favor of the winner.

In a multi-unit auction, k identical items are up for auction and each bidder
submits a non-increasing bid vector which contains their marginal bids for the
first up to kth item. The k items are assigned to the k highest marginal bids.
If a player submits multiple high marginal bids, it is possible they are allocated
multiple items (more details below). In this setting, the procedure described
above is adapted accordingly by offering the winning bidders to lower their bids
to the highest losing bid. Observe that the payment scheme described above
essentially reduces to the winning bidders paying a convex combination of � times
their bids and (1� �) times the highest losing bid. As we will argue below, this
setting is tantamount to studying a hybrid auction (�-HYA), where the items
are assigned to the highest bidders (according to the respective single-item or
multi-unit auction scheme) and the payments are a convex combination of the
first-price and the second-price payments. By varying the parameter � 2 [0, 1],
�-HYA thus interpolates between the respective second-price auction (� = 0) and
the first-price auction (� = 1) schemes.

More elaborate corruption schemes are, of course, conceivable. For example,
the auctioneer might ask for a fixed amount rather than a fraction of the gains.
Or, to avoid setting all bids to the magic number, the auctioneer may want
to announce different (bribed) bids for every winning bidder. To capture more
general corruption schemes, we also study what we term �-approximate first-price
auctions (�-FPA) in this chapter. Basically, these auctions implement a payment
scheme that recovers at least a fraction of � 2 [0, 1] of the first-price payment

132 Chapter 6. Corruption in Auctions

0 0.5 1

2

4

6

(a)
0 0.5 1

1.5

2

2.5

3

(b)

0 0.5 1
1

2

3

(c)
0 0.5 1

1

2

3

(d)

Figure 6.1: Overview of our upper bounds on the PoA (y-axis) for �-FPA and
�-HYA, respectively, as a function of � (x-axis). (a) CCE-PoA for multi-unit
�-FPA with overbidding (Theorem 6.4.1). (b) CCE-PoA for multi-unit �-FPA

without overbidding (Theorems 6.4.1 & 6.5.3). (c) CCE-PoA for single-item
�-HYA without overbidding (Theorems 6.4.1, 6.5.3 & 6.5.5). (d) CCE-PoA for
single-item �-HYA without overbidding and n = 2 bidders (Theorems 6.5.5, 6.5.6
& 6.5.7).

rule (formalized below). The �-HYA also belongs to this class. Not only does
this capture more elaborate bribing schemes, it also handles the situation where
some bidders have moral objections against partaking in such a scheme and do not
accept the bribe. Additionally, this also enables us to capture corruption schemes
with heterogeneous bidders, i.e., where the auctioneer handles a different �i for
each bidder i.

In our view, the corruption settings described above serve as suitable moti-
vations to analyze the resulting auctions �-HYA and �-FPA. But, at the same
time, we feel that the study of such hybrid auction formats is interesting in its
own right, purely from an auction design perspective. For example, tight bounds
on the price of anarchy (as a function of �) provide insights on which payment
rule should ideally be used to reduce the inefficiency.

6.1. Introduction 133

6.1.2 Our Contributions
We study the inefficiency of equilibria of �-FPA and �-HYA, both in the single-
item and multi-unit auction setting. More specifically, our goal is to obtain a
precise understanding of the (robust) price of anarchy (PoA) (Koutsoupias and
Papadimitriou, 1999; Roughgarden, 2015; Syrgkanis and Tardos, 2013). We opt
for the price of anarchy notion here because it is one of the most appealing and
widely accepted measures to assess the efficiency of equilibria, especially in the
context of social welfare analysis. We focus on the analysis of the robust price of
anarchy under the complete information setting, incorporating equilibrium notions
ranging from pure Nash equilibria (PNE) to coarse correlated equilibria (CCE).
Moreover, we analyze the price of anarchy, distinguishing between the cases when
bidders can overbid and when they cannot overbid their actual valuations for the
items.

The main results that we obtain in this chapter are summarized below (see
Figure 6.1 for an overview). Without any restrictions on the bids, we obtain the
following result:

1. We prove an upper bound of (1/�) · e1/�/(e1/� � 1) on the coarse correlated
PoA (CCE-PoA) of any �-FPA in the multi-unit auction setting when
bidders can overbid; see Figure 6.1(a). Our upper bound follows from a
suitable adaptation of the smoothness technique for multi-unit auctions (de
Keijzer et al., 2013; Syrgkanis and Tardos, 2013). Further, by means of a
single-item �-HYA, we prove a matching lower bound over the entire range
� 2 [0, 1]. As a result, our bound settles the CCE-PoA of �-FPA exactly
for both the single-item and multi-unit auction setting over the entire range
of � 2 [0, 1].

A standard assumption that often needs to be made to derive meaningful
bounds on the POA is that the bidders cannot overbid (see also related work
section). Under the no-overbidding assumption, a more fine-grained landscape of
the price of anarchy emerges:

2. We show that the pure PoA (PNE-PoA) of �-HYA in the multi-unit auction
setting is 1 for � 2 (0, 1). This result is complemented by PNE-PoA = 2.1885
for � = 0 (Birmpas et al., 2019) and PNE-PoA = 1 for � = 1 (de Keijzer
et al., 2013). Notice that this reveals an interesting transition at � = 0.

3. We prove that the CCE-PoA of any �-FPA in the multi-unit auction setting
is upper bounded by

�(1� �)W�1

✓
�

1

e(2��)/(1��)

◆
,

for � / 0.607 where W is the Lambert-W function. Combined with our
upper bound (first contribution above) for � > 0.607 (i.e. with overbidding),
we obtain the combined bound depicted in Figure 6.1(b).

134 Chapter 6. Corruption in Auctions

4. We prove that the correlated PoA (CE-PoA) of �-HYA in the single-item
auction setting is 1 for every � 2 (0, 1). This result together with CE-PoA =
1 for � = 1 (Feldman, Lucier, and Nisan, 2016) and our next result, shows
that CE-PoA = 1 for the entire range � 2 [0, 1].

5. We show that the CCE-PoA of �-HYA in the single-item auction setting
with n bidders is bounded as indicated in Figure 6.1(c). Concretely, we prove
an upper bound of 1/(1 � �) and combine it with the multi-unit bounds
from Figure 6.1(b).

6. We show that the CCE-PoA of �-HYA in the single-item auction setting
with n = 2 bidders is bounded as indicated in Figure 6.1(d). This bound
is derived by combining three different upper bounds, one of which the
1/(1� �) bound from Figure 6.1(c). Technically, this is the most challenging
part of the chapter as we use the cumulative distribution functions (CDF)
of equilibrium bids directly to derive these bounds.

Implications

Altogether, our bounds provide a rather complete picture of the PoA of �-FPA

and, in particular, �-HYA, for different equilibrium notions both in the single-
item and the multi-unit auction setting and with and without overbidding. If
the bidders can overbid, then our (tight) bound on the CCE-PoA (Figure 6.1(a))
shows that the PoA increases from a small constant e/(e � 1) to infinity as �

decreases from 1 to 0. Thinking about �-HYA, we feel that this makes sense
intuitively. As � approaches 0, the auctioneer only withholds a small fraction of
the surplus and the bidders are thus incentivized to exploit the corruption (as it
comes at a low cost). In contrast, as � approaches 1, the auctioneer charges a
significant fraction of the surplus, and while the bidders still have good reasons to
participate in the corruption (explained below), they exploit it less drastically as
it comes at a large cost.

Our bounds reveal that there is a substantial difference in the PoA depending
on whether or not bidders can overbid; e.g., compare the bounds depicted in (a)
and (b) (multi-unit setting), or (a) and (c) (single-item setting) in Figure 6.1. In
general, it is not well-understood how the no-overbidding assumption influences
the PoA of auctions; this question also relates to the price of undominated anarchy
studied by Feldman, Lucier, and Nisan (2016) (see related work below). Our
bounds shed some light on this question for �-FPA.

Technical Merits

Our upper bounds for �-FPA are based on an adapted smoothness notion that
relates directly to the highest marginal winning bids (i.e., first-price payments). In
particular, our smoothness argument does not exploit the second-price payments

6.1. Introduction 135

of �-HYA at all. As it turns out, this allows us to derive tight bounds for �-HYA

and, more generally, for �-FPA when bidders can overbid. On a high level, our
results thus reveal that the (approximate) first-price payments are the determining
component of such composed payment schemes. This triggers some interesting
questions for future research.

In contrast, when overbidding is not allowed it becomes crucial to exploit the
second-price payments of �-HYA to obtain improved bounds. The price of anarchy
of both the first-price auction and the second-price auctions is well understood
in the single-item setting. However, it is not straightforward to extend these
bounds to the combined payment scheme of �-HYA. In fact, to prove our bounds
in Theorem 6.5.6 and Theorem 6.5.7, we exploit constraints on the CDF of the
first-price payments which are imposed by the CCE conditions; but, additionally,
we have to get a grip on the CDF of the second-price payments. We need several
new insights (and a somewhat involved numerical analysis) to derive these bounds.

Extensions

Although we focus on the complete information setting in this chapter, most of
our bounds can be lifted to the incomplete information setting as introduced
by Harsanyi (1967), where players have private valuation functions drawn from
a common prior. Several of our upper bounds are based on an adapted smooth-
ness approach for multi-unit auctions, which extends (basically) directly to this
incomplete information setting and (mixed) Bayes-Nash equilibria.2 All bounds
displayed in Figure 1(a–c) remain valid for Bayes-Nash equilibria as well.

6.1.3 Related Work
There is a large body of research in economics studying collusion among bidders
in auctions (see, e.g., (Graham and Marshall, 1987; McAfee and McMillan, 1992)
for some standard references). Collusion between the auctioneer and the bidders
in the form of bid rigging (as considered in this chapter) has also been studied
in the literature, but less intensively. Most existing works study certain aspects
of equilibrium outcomes (e.g., equilibrium structure, auctioneer surplus, seller
revenue, optimal bribe schemes, etc.); for an overview of the existing works along
these lines, see (Lengwiler and Wolfstetter, 2010; Lengwiler and Wolfstetter, 2000;
Menezes and Monteiro, 2006) and the references therein.

The specific bid-rigging model that we consider here was first studied
by Menezes and Monteiro (2006) and a slight generalization thereof by Leng-
wiler and Wolfstetter (2000), both for the single-item auction setting. These works
consider a Bayesian setting where the valuations are independent draws from a

2More specifically, these extensions can be proven along similar lines of arguments as in (de
Keijzer et al., 2013), where smoothness is used to bound the Bayes-Nash PoA of (standard)
multi-unit auctions.

136 Chapter 6. Corruption in Auctions

common distribution function. Menezes and Monteiro (2006) prove the existence
of symmetric equilibrium bidding strategies and derive an optimal bribe function
for the auctioneer. The authors also study a fixed-price bribe scheme, where the
auctioneer charges a fixed amount that is independent of the gained surplus.

Subsequently, Lengwiler and Wolfstetter (2010) study a more complex bid-
rigging scheme for the single-item auction setting, where the auctioneer additionally
offers the second-highest bidder to increase their bid. To the best of our knowledge,
none of the existing works studied the price of anarchy of corrupt auctions.

Studying the price of anarchy in auctions has recently received a lot of attention;
we refer to the survey paper by Roughgarden, Syrgkanis, and Tardos (2017) for an
overview. A lot of work has gone into deriving bounds on the price of anarchy for
various auction formats, both in the complete and incomplete information setting.
The smoothness notion, originally introduced by Roughgarden (2015) to analyze
the robust price of anarchy of strategic games, turned out to be very useful in an
auction context as well. Syrgkanis and Tardos (2013) build upon this notion and
provide a powerful (smoothness-based) toolbox for the analysis of a broad range
of auctions that fall into their composition framework.

With respect to the multi-unit auction setting, de Keijzer et al. (2013) use
an adapted smoothness approach to derive bounds on the PoA of Bayes-Nash
equilibria for the first-price and the second-price multi-unit auction (mostly
focusing on the setting with no overbidding). Our bounds coincide with theirs for
the extreme points � = 0 and � = 1. For the more general class of subadditive
valuations, the PoA of Bayes-Nash equilibria for the first-price multi-unit auction
is 2, which follows from (de Keijzer et al., 2013) and (Christodoulou et al.,
2016). Birmpas et al. (2019) recently settled the PNE-PoA of the second-price
multi-unit auction and show that it is 2.1885.

Our bounds on the CCE-PoA are also based on a smoothness approach. We
use an adapted smoothness notion (inspired by (de Keijzer et al., 2013; Syrgkanis
and Tardos, 2013)) to derive our bounds, both in the overbidding and the no-
overbidding setting. Interestingly, our smoothness proofs crucially exploit that
the payments recover at least a fraction of � of the first-price payments (but never
exceed them). As a side result, Syrgkanis and Tardos (2013) also derive a first
bound on the CE-PoA for �-HYA in the single-item auction setting; our bound
(significantly) improves on theirs and exploits some additional ideas.

The PoA of the first-price and second-price auction has been investigated
intensively for both the single-item and the multi-unit auction setting. An
assumption that often needs to be made to derive meaningful bounds is that
the bidders cannot overbid. For example, it is folklore that the PNE-PoA of
the second-price single-item auction is unbounded if the bidders can overbid.
On the other hand, it is one if bidders cannot overbid. In the second-price
single-item auction, overbidding is a dominated strategy for each bidder, and the
no-overbidding assumption thus emerges naturally. But this might not be true in
general. For example, for the second-price multi-unit auction, this analogy breaks

6.2. Preliminaries 137

already. We refer to Feldman, Fu, et al. (2013) for a more general discussion of
the no-overbidding assumption.

In general, the impact that the no-overbidding assumption has on the price of
anarchy is not well-understood. This aspect also relates to the price of undominated
anarchy studied by Feldman, Lucier, and Nisan (2016). The authors prove a
clear separation for the PoA in single-item first-price auctions: While the CE-
PoA is 1 (even with overbidding), the CCE-PoA increases to 1.229 (without
overbidding) and e/(e � 1) (with overbidding). A similar separation holds for
the multi-unit auction setting and the uniform price auction, where the PNE-
PoA is (e� 1)/e (without overbidding) (Markakis and Telelis, 2015) and 2.1885
(with overbidding) (Birmpas et al., 2019). Our results contribute to this line of
research also because we show that the PoA might improve significantly under
the no-overbidding assumption.

6.2 Preliminaries

6.2.1 Standard Auction Formats

We focus on the description of the multi-unit auction setting; the single-item
auction setting follows as a special case (choosing k = 1 below). In the multi-
unit auction setting, there are k � 1 identical items (or goods) that we want
to sell to n � 2 bidders (or players). We identify the set of bidders N with
[n] = {1, . . . , n}. Each bidder i has a non-negative and non-decreasing valuation
function vi : {0, . . . , k}! R�0 with vi(0) = 0, where vi(j) specifies i’s valuation
for receiving j items. We assume that for each bidder i 2 N the valuation function
vi is submodular or, equivalently, that the marginal valuations are non-increasing,
i.e., for every j 2 [k � 1], vi(j) � vi(j � 1) � vi(j + 1) � vi(j). The valuation
function vi is assumed to be private information, i.e., it is only known to bidder
i themselves. We use v = (v1, . . . , vn) to denote the profile (or vector) of the
valuation functions of the bidders. We assume that the bidders submit their bids
according to the following standard format : Each bidder i submits a bid vector
bi = (bi(1), . . . , bi(k)) of k non-negative and non-increasing marginal bids, i.e.,
bi(j) specifies the additional amount i is willing to pay for receiving j instead of
j�1 items. The overall amount that i bids for receiving q items is thus

P
q

j=1 bi(j).
For k = 1 we write bi = bi(1).

Consider a multi-unit auction setting and suppose the auctioneer uses an
auction mechanism M to determine an assignment of the items and the respective
payments of the bidders. Each bidder submits their bid vector bi to the mechanism.
Based on the bidding profile b = (b1, . . . , bn), the mechanism M orders the sub-
mitted marginal bids non-increasingly (breaking ties in an arbitrary but consistent
way) and assigns the k items to the bidders who submitted the k highest marginal
bids (according to this order). We use �j(b) to refer to the j-th lowest winning

138 Chapter 6. Corruption in Auctions

(marginal) bid in b, i.e., �k(b) � . . . � �1(b). We use x(b) = (x1(b), . . . , xn(b)) to
refer to the resulting allocation, where xi(b) specifies the number of items that
bidder i receives; xi(b) = 0 if i does not receive any item. Each bidder i who
receives at least one item is called a winner.

There are two standard payment schemes that determine for each winner i the
respective payment pi(b); we adopt the convention that pi(b) = 0 for each bidder
i who is not a winner.

• First-price payment scheme: Every bidder i pays their bid for the received
items, i.e., pi(b) =

P
xi(b)
j=1 bi(j).

• Second-price payment scheme: Every bidder i pays the highest losing bid
p̄(b) for each received item, i.e., pi(b) = xi(b)p̄(b).

Suppose we fix the payment scheme of mechanism M according to one of these
schemes. We refer to mechanism M with the first-price payment or the second-
price payment scheme, respectively, as FP-Auction or SP-Auction.3

The utility u
vi
i
(b) of bidder i is defined as the total valuation minus the payment

for receiving xi(b) items, i.e., uvi
i
(b) = vi(xi(b))� pi(b); note that u

vi
i
(b) = 0 by

definition if bidder i is not a winner. Whenever vi is clear from the context, we
simply denote the utility of bidder i by ui(b). We assume that each bidder strives
to maximize their utility.

Finally, recall some standard assumptions that we use throughout this chapter;
we adopt the convention that the first two must always be satisfied by a mechanism.

1. No positive transfers (NPT): The payment of each bidder i is non-negative,
i.e., pi(b) � 0.

2. Individual rationality (IR): The payment of each bidder i does not exceed
their bid, i.e., pi(b) 

P
xi(b)
j=1 bi(j).

3. No overbidding (NOB): The bid vector of each bidder i does not exceed
their valuations, i.e., for every q 2 [k],

P
q

j=1 bi(j)  vi(q).

6.2.2 Approximate First-Price Auctions
In this chapter, we also consider auctions with first-price approximate payment
schemes. The allocation is still determined as above, but the payment scheme
is relaxed as follows: We say that a mechanism M with payment rule p =
(p1(b), . . . , pn(b)) is a �-approximate first-price auction (�-FPA) for some � 2 [0, 1]
if it always recovers at least a fraction of � of the first-price payments, i.e., for every
bidding profile b,

P
i2N pi(b) � �

P
k

j=1 �j(b). Further, if for every bidding profile

3We remark that in the multi-unit auction setting these auctions are usually referred to as
discriminatory price auction and uniform price auction; however, here we stick to the given
naming convention to align it with the common terminology of the single-item auction setting.

6.2. Preliminaries 139

b it holds that
P

i2N pi(b) 
P

k

j=1 �j(b) then we call the mechanism first-price
dominated. Note that every mechanism that satisfies individual rationality must
be first-price dominated.

6.2.3 Equilibrium Notions and the Price of Anarchy
In this subsection, we briefly recall the definitions of the different equilibrium
notions, the social welfare, and the price of anarchy that are used in this chapter.

Equilibrium Notions

A bidding profile b = (b1, . . . , bn) is a pure Nash equilibrium (PNE) if no bidder
has an incentive to deviate unilaterally; more formally, b is a PNE if for every
bidder i and every bidding profile b0

i
of i it holds that ui(b) � ui(b0i, b�i). Here we

use the standard notation b�i to refer to the bid vector b with the ith component
being removed; (b0

i
, b�i) then refers to the bid vector b with the ith component

being replaced by b0
i
.

We also consider randomized bid vectors. Suppose bidder i chooses their bid
vectors randomly according to a probability distribution �i, independently of the
other bidders. Let � =

Q
i2N �i be the respective product distribution. Then �

is a mixed Nash equilibrium (MNE) if for every bidder i and every bid vector b0
i
it

holds that Eb⇠�[ui(b)] � Eb⇠�[ui(b0i, b�i)]. We may also allow correlation among
the bidders. Let � be a joint distribution over bidding profiles of the bidders. Then
� is a correlated equilibrium (CE) if for every bidder i 2 N and for every deviation
function mi(bi) it holds that Eb⇠�[ui(b)] � Eb⇠�[ui(mi(bi), b�i)]. Intuitively,
conditional on bid vector bi being realized, i has no incentive to deviate to any
other bid vector mi(bi). The most general equilibrium notion that we consider
in this chapter is defined as follows: Let � be a joint distribution over bidding
profiles of the bidders. Then � is a coarse correlated equilibrium (CCE) if for
every bidder i and every bid vector b0

i
it holds that Eb⇠�[ui(b)] � Eb⇠�[ui(b0i, b�i)].

Below, we also use PNE(v), MNE(v), CE(v) and CCE(v) to refer to the sets of
pure, mixed, correlated and coarse correlated equilibria with respect to a valuation
profile v = (v1, . . . , vn), respectively.

Inefficiency of Equilibria

We define the social welfare of a bidding profile b = (b1, . . . , bn) as the overall val-
uation obtained by the bidders, i.e., SW(b) =

P
i2N vi(xi(b)). Note that although

social welfare is defined independently of the payments, we can equivalently write
SW (b) =

P
i2N ui(b) + pi(b). The expected social welfare of a joint distribution

� over bidding profiles is then defined as E[SW(�)] = Eb⇠�[SW(b)]. We use
x⇤(v) to refer to an assignment that maximizes the social welfare with respect to
the valuation functions v = (v1, . . . vn); i.e., SW(x⇤(v)) =

P
i2N vi(x⇤

i
(v)) is the

140 Chapter 6. Corruption in Auctions

maximum social welfare achievable for the bidders. The assignment x⇤(v) is also
called a social optimum.

The price of anarchy is defined as the maximum ratio of the social welfare
of the social optimum and the (expected) social welfare of an equilibrium. Let
X be a placeholder that refers to one of the equilibrium notions above, i.e.,
X 2 {PNE,MNE,CE,CCE}. More formally, given a valuation profile v =
(v1, . . . , vn), the price of anarchy with respect to X (or X-PoA for short) is
defined as X-PoA(v) = sup�2X(v) SW(x⇤(v))/E[SW(�)]. The price of anarchy of
an auction format then refers to the worst-case price of anarchy over all possible
valuation profiles, i.e., X-PoA = supv X-PoA(v). We use PNE-PoA, MNE-PoA,
CE-PoA and CCE-PoA to refer to the respective price of anarchy notions.

6.3 Capturing Corruption with �-FPA

We give a formal description of the model that we consider and elaborate on
its relation to the �-hybrid auction. We also introduce the adapted smoothness
approach.

6.3.1 Corruption in Auctions

Suppose the bidders submit their bid vectors b = (b1, . . . , bn) in a “sealed manner”,
i.e., at first only the auctioneer sees the bidding profile b.4 After receipt of
the bidding profile b, the auctioneer runs a first-price multi-unit auction (see
Section 6.2) to obtain the respective assignment x(b) = (x1(b), . . . , xn(b)) and
payments p(b) = (p1(b), . . . , pn(b)) but does not reveal this outcome yet. The
auctioneer then approaches each winning bidder i individually with the offer that
they can lower all their xi(b) winning bids to the highest losing bid p̄(b) (while
receiving the same number of items), in exchange for a fixed fraction � 2 [0, 1]
of the surplus gained by i. The bidder can either reject or accept this offer. If
bidder i rejects the offer, the allocation xi(b) and respective payment pi(b) remain
unmodified. If bidder i accepts the offer, they receive the xi(b) items at a reduced
price of p̄(b) each, but additionally pay a fee f

�

i
of � times the surplus to the

auctioneer; more formally, the total payment of a winning bidder i who accepts
the offer is

p
�

i
(b) = xi(b)p̄(b) + f

�

i
(b) where f

�

i
(b) = �

xi(b)X

j=1

(bi(j)� p̄(b)).

4It is important to realize though that the final bids, which might not necessarily correspond
to the submitted ones, might have to be revealed eventually because the bidders might want to
verify the “soundness” of the outcome of the auction.

6.3. Capturing Corruption with �-FPA 141

We also refer to this setting as the �-corrupt auction.5
Note that the change in the bid vector of player i conforms to the imposed

bidding format, i.e., the modified marginal bids of bidder i are still non-negative
and non-increasing.

Dominant Strategy to Accept Offer

We show that it is a dominant strategy for every winning bidder to always accept
the offer of the auctioneer (independent of �).
Proposition 6.3.1. Fix some � 2 [0, 1] and consider a
�-corrupt auction. We can assume without loss of generality that each winning
bidder always accepts the offer of the auctioneer.

Proof: Observe that the total payment to be made by a winning bidder i who
accepts the offer becomes

p
�

i
(b) = xi(b)p̄(b) + f

�

i
(b) = �

xi(b)X

j=1

bi(j) + (1� �)xi(b)p̄(b). (6.1)

Clearly, each winning bid j of i satisfies bi(j) � p̄(b). Thus, p�
i
(b) 

P
xi(b)
j=1 bi(j) =

pi(b), where pi(b) is the payment that i would have to pay when rejecting the
offer. In fact, this inequality is strict unless all winning bids of i are equal to p̄(b)
or � = 1. In both these cases, the offer made by the auctioneer does not have any
effect for i (as there is no surplus generated in the former case and no difference in
the final payment of i in the latter case). Said differently, each winning bidder can
only benefit from accepting the offer. Observe also that the above arguments hold
for every winning bidder independently of what the other bidders do. Further,
the final allocation remains invariant (assuming a consistent tie-breaking rule).
We conclude that it is a dominant strategy for every winning bidder to accept the
offer of the auctioneer. 2
Subsequently, we assume that each winning bidder always accepts the offer.

6.3.2 Hybrid Auction Scheme
We introduce our novel hybrid auction scheme, which we term �-hybrid auction
(or �-HYA for short): �-HYA uses the same allocation rule as in the multi-unit
auction setting (see Section 6.2), but uses a convex combination of the first-price
and second-price payment scheme (parameterized by �), i.e.,

p
�

i
(b) = �

xi(b)X

j=1

bi(j) + (1� �)xi(b)p̄(b). (6.2)

5As the final payments are dependent on �, we (implicitly) assume that the bidders are
aware of this parameter when considering the complete information setting here (much alike it
is assumed that the bidders know the used payment scheme in other auction formats).

142 Chapter 6. Corruption in Auctions

Said differently, �-HYA interpolates between SP-Auction (� = 0) and
FP-Auction (� = 1) as � varies from 0 to 1. It is immediate that every
�-HYA is a �-FPA. We also use p

�(b) to refer to the above payment in the
single-item auction setting.

The following proposition follows immediately from the discussion in sec-
tion 6.3.1 and allows us to focus on the PoA of �-HYA to study �-corrupt auctions.

Proposition 6.3.2. Fix some � 2 [0, 1]. Then the �-corrupt auction and �-HYA

admit the same set of equilibria and have identical social welfare objectives. There-
fore, the price of anarchy for both these settings is the same.

6.3.3 Other Corruption Models

In our basic bid-rigging model introduced above all winning bidders lower their bids
to the highest losing bid. While this magic number bidding phenomenon has been
observed in real-life for single-item auctions (as mentioned in the introduction), it
might seem somewhat awkward in the multi-unit auction setting. We, therefore,
consider more general corruption schemes that also capture non-uniform bid
rigging.

A Non-Uniform Bid-Rigging Scheme for �-HYA

As before, the bidders submit their bid vectors b = (b1, . . . , bn) to the auctioneer
who runs a first-price multi-unit auction. The auctioneer then approaches each
winning bidder i individually with the offer that they can lower their xi(b) winning
bids. However, in contrast to the basic model, the auctioneer and bidder i agree
to “camouflage” their bid rigging by bidding the highest losing bid p̄(b) plus a
fraction ↵ 2 [0, 1] of the surplus bi(j) � p̄(b) for each j 2 [xi(b)]. Note that
this maintains the relative order among the winning bids and the magic number
cheating becomes less obvious (as the winning bids fluctuate more). The remaining
surplus of (1 � ↵)(bi(j) � p̄(b)) is then split, where the auctioneer withholds a
fraction of � 2 [0, 1]. As before, bidder i can either reject or accept the offer. But,
also here, it is not hard to see that accepting the offer is a dominant strategy. The
total payment of a winning bidder i is then

p
(↵, �)
i

(b) =
xi(b)X

j=1

(p̄(b) + ↵(bi(j)� p̄(b))) + f
(↵, �)
i

(b), where

f
(↵, �)
i

(b) = �

xi(b)X

j=1

(1� ↵)(bi(j)� p̄(b)).

6.3. Capturing Corruption with �-FPA 143

After simplifying, we obtain

p
(↵, �)
i

(b) = (↵ + �(1� ↵))
xi(b)X

j=1

bi(j) + (1� ↵� �(1� ↵))xi(b)p̄(b).

If we define � = ↵ + � � ↵�, the above payments p
(↵, �)
i

are equivalent to p
�

i

as defined in (6.2). Note also that this mapping satisfies � 2 [0, 1] for every
↵, � 2 [0, 1]. Said differently, given ↵, � 2 [0, 1] the price of anarchy of the above
non-uniform bid-rigging scheme is determined by the price of anarchy of �-HYA

with � = ↵ + � � ↵�.

Non-Uniform Bid Rigging Schemes for �-FPA

Most of our upper bounds hold for the more general class of �-FPA. These
auctions capture several additional corruption settings. For example, suppose
some bidders never accept the offer of the auctioneer (say due to moral objections)
and their payments thus remain the first-price payments. While this setting is not
covered by �-HYA, it is covered by �-FPA. As another example, if the auctioneer
handles a different fraction �i for each bidder i, the resulting auction is �-FPA
with � = mini2N �i.

6.3.4 Adapted Smoothness Notion
We introduce our adapted smoothness notion (based on the ones given in (de
Keijzer et al., 2013; Syrgkanis and Tardos, 2013)) to derive upper bounds on the
coarse correlated price of anarchy of �-hybrid auction.

Recall that for a bidding profile b, we let �j(b) refer to the jth lowest winning
bid under b.

Definition 6.3.3. A mechanism M for the multi-unit auction setting is (�, µ)-
smooth for some � > 0 and µ � 0 if for every valuation profile v and for each
bidder i 2 N there exists a (possibly randomized) deviation �0

i
such that for every

bidding profile b we have

X

i2N

Eb0i⇠�0
i
[ui(b

0
i
, b�i)] � �SW(x⇤(v))� µ

kX

j=1

�j(b).

In essence, this definition comes close to the weak smoothness definition
in (Syrgkanis and Tardos, 2013), but relates more directly to the winning bids in
the multi-unit auction setting. A similar definition is also used in (de Keijzer et al.,
2013), but there it is imposed on a per-player basis and used for the Bayesian
setting.

144 Chapter 6. Corruption in Auctions

Theorem 6.3.4. Let M be a �-FPA which is (�, µ)-smooth. Then CCE-PoA 
max{1, 1 + µ� �}/�, where we need that the no-overbidding assumption holds if
µ > �.

Proof: Fix a valuation profile v and let � be a coarse correlated equilibrium.
Consider some player i and let �0

i
be the (randomized) deviation of bidder i as

given by the smoothness definition. Exploiting the coarse correlated equilibrium
condition for i, we have for every (deterministic) bid vector b0

i
that Eb⇠�[ui(b)] �

Eb⇠�[ui(b0i, b�i)] and thus also

Eb⇠�[ui(b)] � Eb⇠�[Eb0i⇠�0
i
[ui(b

0
i
, b�i)]]. (6.3)

Using this, we obtain

E[SW(�)] =
X

i2N

Eb⇠� [ui(b) + pi(b)] (6.4)

�

X

i2N

Eb⇠�

⇥
Eb0i⇠�0

i
[ui(b

0
i
, b�i)] + pi(b)

⇤

� �SW(x⇤(v)) + (� � µ)Eb⇠�

"
kX

j=1

�j(b)

#
, (6.5)

where the first inequality follows from (6.3) and the second inequality holds because
of the smoothness definition and because M is first-price �-approximate.

We distinguish two cases:
Case 1: µ  �. Using (6.5), we obtain E[SW(�)] � �SW(x⇤(v)) and thus

PoA(v)  1/�.
Case 2: µ > �. Exploiting that the no-overbidding assumption holds in

this case, we get that
P

k

j=1 �j(b) 
P

i2N vi(xi(b)). Using (6.5), we obtain
E[SW(�)] � �SW(x⇤(v))+(��µ)E[SW(�)]. Rearranging terms yields PoA(v) 
(1 + µ� �)/�. Combining both cases proves the claim. 2

We will use the above smoothness definition in combination with the following
lemma, which we import from (de Keijzer et al., 2013) (adapted to our setting).

Lemma 6.3.5. (Lemma 3 in (de Keijzer et al., 2013)). Let M be a mechanism
that is first-price dominated and let ↵ > 0 be fixed arbitrarily. Then for every
valuation profile v and for every bidder i there exists a randomized deviation �0

i

such that for every bidding profile b we have

Eb0i⇠�0
i
[ui(b

0
i
, b�i)] � ↵

✓
1�

1

e1/↵

◆
vi(x

⇤
i
(v))� ↵

x⇤
i (v)X

j=1

�j(b). (6.6)

We can now prove Theorem 6.3.6.

6.4. Overbidding 145

Theorem 6.3.6. Let ↵ > 0 be fixed arbitrarily. The coarse correlated price of
anarchy of any �-FPA is

CCE-PoA 
max{1, 1 + ↵� �}

↵(1� e�1/↵)
, (6.7)

where we need that the no-overbidding assumption holds if ↵ > �.

Proof: We use both Lemma 6.3.5 and Theorem 6.3.4.
Note that

P
i2N
Px⇤

i (v)
j=1 �j(b) 

P
k

j=1 �j(b). Hence, by summing inequality
(6.6) over all players, we obtain that the mechanism is (↵(1� e

�1/↵),↵)-smooth.
The claimed bound now follows from Theorem 6.3.4. 2

6.4 Overbidding

We derive a tight bound on the coarse correlated price of anarchy of �-FPA for
� > 0 in the multi-unit auction setting when bidders can overbid. Interestingly,
tightness is already achieved by a single-item �-HYA. It is known that the price
of anarchy is unbounded for SP-Auction (� = 0). The bound is displayed in
Figures 6.1(a) and 6.2. We give a sketch of the proof of Theorem 6.4.1 below.

Theorem 6.4.1. Consider a multi-unit �-FPA and suppose that bidders can
overbid. For � 2 (0, 1], the coarse correlated price of anarchy is CCE-PoA 

1
�(1�e�1/�)

. Further, this bound is tight, even for single-item �-HYA.

Proof:

Upper bound: This bound is based on Theorem 6.3.6. Since bidders can
overbid in this setting, we restrict to the part of equation (6.7) that does not
require the no-overbidding assumption, namely ↵  �, with

CCE-PoA 
1

↵ (1� e�1/↵)
.

To minimize this upper bound for any given � 2 [0, 1], consider its derivative with
respect to ↵,

�
1

↵2(1� e�1/↵)2

✓
1� e

�1/↵
� ↵

1

↵2
e
�1/↵

◆
= �

1� (1 + 1
↵
)e�1/↵

↵2(1� e�1/↵)2
.

As (1 + 1/↵)e�1/↵
< 1 for all ↵ > 0, the derivative is negative for all ↵ > 0.

Therefore, the bound is minimized by maximizing ↵ 2 (0, �]. Substituting ↵ = �

for any � 2 (0, 1] yields the upper bound.

146 Chapter 6. Corruption in Auctions

0 0.5 1

2

4

6

Figure 6.2: CCE-PoA for multi-unit �-FPA with overbidding (Theorem 6.4.1)

Tight lower bound: This bound can be proven to be tight for all � 2 (0, 1] by
generalizing an example used by Syrgkanis (2014) to provide a lower bound on the
CCE-PoA for the first-price single-item auction: Consider a single-item auction
with two bidders and using the �-hybrid pricing rule as defined above. We have
v1 = v for some v > 0 and v2 = 0. If both bidders bid 0, the tie is broken in favor
of bidder 2, whereas bidder 1 wins the auction if bidders tie with any positive bid.
We construct a coarse correlated equilibrium for any � 2 (0, 1], with a welfare loss
that matches the upper bound.

Let t be a random variable with support [0, (1 � e
�1/�)v] whose cumulative

distribution function (CDF) F and density function f (which is well-defined for
any t 2 (0, (1� e

�1/�)v]), respectively, are given as

F (t) = (1� �) +
v

v � t
�e

�1/� and f(t) =
v

(v � t)2
�e

�1/�
.

Note that F has an atom at 0 with mass (1� �) + �e
�1/�.

Consider a bidding profile � = (t, t). Since ties are broken in favor of bidder 2
for t = 0, they win with probability (1� �) + �e

�1/�, which yields

SW(x⇤(v))

E[SW(�)]
=

v

(1� F (0))v
=

1

1� (1� �)� �e�1/�
=

1

� (1� e�1/�)
.

It remains to show that � is a CCE. For bidder 2, this is quite obvious, since
they either win by bidding 0, or lose if t > 0. Given any positive bid from bidder
1, the payment would be strictly greater than v2 = 0, meaning bidder 2 could
never profitably deviate.

For bidder 1, we show that for any � 2 (0, 1], any deviation to a fixed bid
b1 = b with b 2 (0, (1�e

�1/�)v] leads to an expected utility of at most Eb⇠�[u1(b)].
To start with � itself, note that bidder 1 wins whenever t > 0, and since both

6.4. Overbidding 147

bidders bid t, we have a payment of �t+ (1� �)t = t. Recalling that v1 = v, we
get

Eb⇠�[u1(b)] =

Z (1�e
�1/�)v

0

(v � t)f(t)dt

=

Z (1�e
�1/�)v

0

v

v � t
�e

�1/�
dt

= v�e
�1/� [� ln(v � t)](1�e

�1/�)v
0

= v�e
�1/�

�
ln(v)� ln(e�1/�

v)
�

= v�e
�1/� 1

�
= ve

�1/�
.

If bidder 1 deviates to b, they win the item if b � t, and for each t 2 (0, b] bidder
1 pays �b+ (1� �)t. Hence, the expected utility of bidder 1 becomes

Et⇠F (t)[u1(b, t)] =

Z
b

0

(v � �b� (1� �)t)f(t)dt.

To facilitate the calculations, note that
Z

b

0

tf(t)dt = �ve
�1/�

Z
b

0

t

(v � t)2
dt

= �ve
�1/�


v

v � t
+ ln(v � t)

�b

0

=

✓
v

v � b
� 1

◆
�ve

�1/� + ln

✓
v � b

v

◆
�ve

�1/�

and Z
b

0

f(t)dt = F (b)� F (0) =

✓
v

v � b
� 1

◆
�e

�1/�
.

Using this, we get

Et⇠F (t)[u1(b, t)] = (v � �b)

Z
b

0

f(t)dt� (1� �)

Z
b

0

tf(t)dt

= (v � �b� (1� �)v)

✓
v

v � b
� 1

◆
�e

�1/�

� (1� �) ln

✓
v � b

v

◆
�ve

�1/�

= �(v � b)

✓
v

v � b
� 1

◆
�e

�1/�

� (1� �) ln

✓
v � b

v

◆
�ve

�1/�

= b�
2
e
�1/�
� (1� �) ln

✓
v � b

v

◆
�ve

�1/�
.

148 Chapter 6. Corruption in Auctions

Since 0 < b < v, note that � ln
�
v�b

v

�
is increasing in b. Since � 2 (0, 1], this

implies the entire function above is increasing in b. Hence, it can be upper bounded
by substituting the upper bound of the support: b = (1� e

�1/�)v. This yields

Et⇠F (t)[u1(b, t)]  (1� e
�1/�)v�2

e
�1/�
� (1� �) ln

�
e
�1/�

�
�ve

�1/�

=
�
(1� e

�1/�)�2 + (1� �)
�
ve

�1/�

=
�
(1� e

�1/�)�2 + (1� �)
�
Eb⇠�[u1(b)].

Therefore, Et⇠F (t)[u1(b, t)]  Eb⇠�[u1(b)] for any b 2 (0, (1� e
�1/�)v] if

(1� e
�1/�)�2 + (1� �)  1 () �(1� e

�1/�)  1,

which holds for any � 2 (0, 1] as required. This shows that bidder 1 does not
have any profitable deviation in the interval (0, (1 � e

�1/�)v]. Finally, since
b = (1 � e

�1/�)v already gives F (b) = 1, any higher bid will only lead to a
(strictly) higher payment (since � > 0), thereby being (strictly) worse than
bidding b = (1� e

�1/�)v. Hence, deviations to a bid higher than this upper bound
of the support of F (t) need not be considered.

Concluding, � is a CCE for which the ratio of the social welfare of the social
optimum and the expected social welfare of � exactly coincides with the upper
bound derived in the previous section. 2

6.5 No Overbidding

6.5.1 Multi-Unit Auction
In the previous section, we have completely settled the coarse correlated price of
anarchy of �-FPA when overbidding is allowed. We see that especially when �

gets small this has an extremely negative effect on the price of anarchy. In this
section, we will investigate how these bounds improve under the no-overbidding
assumption (NOB as defined above). It is a standard assumption to make and we
will see that it leads to a significant improvement of the price of anarchy bounds,
most notably for lower values of �.

We can show that pure Nash equilibria of �-HYA without overbidding are al-
ways efficient for all � 2 (0, 1]. For coarse correlated equilibria, we can significantly
improve the upper bound derived in Theorem 6.4.1 for � / 0.607.

Pure Price of Anarchy

The pure price of anarchy of �-HYA without overbidding has been analyzed before
for � = 0 and � = 1: Birmpas et al. (2019) show that the PNE-PoA is 2.1885 for
the second-price multi-unit auction (� = 0), while de Keijzer et al. (2013) show

6.5. No Overbidding 149

0 0.5 1
1

2

3

�

Figure 6.3: PNE-PoA of �-HYA without overbidding (Theorem 6.5.1)

that the PNE-PoA is 1 for the first-price multi-unit auction (� = 1). As it turns
out, for �-HYA the PNE-PoA stays at 1 almost over the entire range, the only
exception being at � = 0 where it is 2.1885 for �-HYA by the result of Birmpas
et al. (2019) (see Figure 6.3).

Theorem 6.5.1. Pure Nash equilibria of �-HYA without overbidding are always
efficient, i.e., PNE-PoA = 1, for all � 2 (0, 1).

This theorem follows from a minor adaption of a result by de Keijzer et al.
(2013), who show that pure Nash equilibria are always efficient for � = 1. For
completeness, we also write down the proof for our setting. We start with the
following lemma.

Lemma 6.5.2. Let b be a pure Nash equilibrium in a given �-HYAwith � 2 (0, 1)
and with k items. Let d be the highest losing bid, i.e., d = max{bi(j) | i 2 N, j 2

[k], j > xi(b)}. Then, for every bidder i 2 N :

(i) if xi(b) > 0 it holds that bi(j) = d for all j 2 [xi(b)],

(ii) ` · d  vi(xi(b))� vi(xi(b� `) for all ` 2 [xi(b)],

(iii) vi(xi(b) + `)� vi(xi(b))  ` · d for all ` 2 [k � xi(b)].

Proof:

(i) Let c be the highest winning bid, i.e., c = max{bi(j) | i 2 N, j  xi(b)}.
Clearly, c � d. Suppose c > d. Let i be a winning player that wins an item
by bidding c. When changing their bid to c+d

2 they are still a winner and

150 Chapter 6. Corruption in Auctions

because � 2 (0, 1) they will pay less, improving their utility. This contradicts
b being a pure Nash equilibrium, hence c = d. If the highest winning bid is
equal to the highest lowest bid then all winning bids must be equal to d.

(ii) Suppose that for some i and ` it holds that

` · d > vi(xi(b))� vi(xi(b� `).

This means that player i gets a utility of vi(xi(b))� vi(xi(b� `)) for the last
` won items while paying ` · d for them. If player i now changes their bid to
bi(j) = 0 for j � xi(b) � ` + 1 their utility goes up by ` · d � (vi(xi(b)) �
vi(xi(b� `)) > 0 which contradicts the pure Nash equilibrium conditions.

(iii) Suppose that for some i and ` it holds that

vi(xi(b) + `)� vi(xi(b) > ` · d. (6.8)

In this case if player i changes bi(j) to d + ✏ for 1  j  xi(b) + `. For
the items they already won they will pay � · ✏ · xi(b) more and for the new
items they will pay ` · (� · (d+ ✏) + (1� �) · d) = ` · d+ ` · � · ✏ while gaining
vi(xi(b) + `)� vi(xi(b)) in utility. This totals to

vi(xi(b) + `)� vi(xi(b)� ` · d� ✏ · � · (xi(b) + `).

Since (6.8) is strict, we can choose ✏ small enough so that this gets positive
contradicting the pure Nash equilibrium conditions.

2

This lemma is the main ingredient for proving Theorem 6.5.1.

Proof of Theorem 6.5.1: Let b⇤ be a bid vector obtaining optimal social
welfare and let b be a pure Nash equilibrium. Let d be as in Lemma 6.5.2.
X

i2N

vi(xi(b))�
X

i2N

vi(x
⇤
i
(b))

=
X

i2N :xi(b)>xi(b⇤)

vi(xi(b))� vi(xi(b
⇤))�

X

i2N :xi(b)<xi(b⇤)

vi(xi(b
⇤))� vi(xi(b))

�

X

i2N :xi(b)>xi(b⇤)

(xi(b)� xi(b
⇤)) · d�

X

i2N :xi(b)<xi(b⇤)

(xi(b
⇤)� xi(b)) · d

= 0,

where the inequality follows from points (ii) and (iii) in Lemma 6.5.2 and the last
equality from the fact that

P
i2N xi(b) =

P
i2N xi(b⇤).

2

6.5. No Overbidding 151

0 0.5 1
1.5

2

2.5

3

�

Figure 6.4: CCE-PoA for multi-unit �-FPA without overbidding (Theorems 6.4.1
& 6.5.3).

Coarse Correlated Price of Anarchy

Theorem 6.5.3. Consider a multi-unit �-FPA and suppose that bidders cannot
overbid. For � / 0.607, the coarse correlated price of anarchy is

CCE-PoA  �(1� �)W�1

✓
�

1

e(2��)/(1��)

◆
. (6.9)

Combining the improved bound of Theorem 6.5.3 with the bound of The-
orem 6.4.1 yields the upper bound displayed in Figures 6.1(b) and 6.4 for all
� 2 [0, 1]. In particular, we obtain CCE-PoA  �W�1(�e�2) ⇡ 3.146 for � = 0
and CCE-PoA  e/(e� 1) ⇡ 1.582 for � = 1.

Proof: Similar to the proof of Theorem 6.4.1, we choose some ↵ > 0 to optimize
the upper bound on the price of anarchy in Theorem 6.3.6 for any given � 2 [0, 1].
As argued in the proof of Theorem 6.4.1, it is optimal to use ↵ = � when restricting
to ↵  �. Using the no-overbidding assumption, we can also set ↵ � � and obtain

CCE-PoA 
1 + ↵� �

↵ (1� e�1/↵)
. (6.10)

This upper bound is minimized for

↵ = �
1

W�1 (�e�(2��)/(1��)) + 2��

1��

, (6.11)

where W�1 is the lower branch of the Lambert W function. Substituting this into
(6.10), we obtain the upper bound in (6.9). Importantly, the optimized bound

152 Chapter 6. Corruption in Auctions

in (6.9) is only valid if we have ↵ � �, which does not hold for the entire range
� 2 [0, 1] if we use (6.11). More concretely, we have ↵ � � for all �  0.607...
only. Thus, for �  0.607... we can use (6.9) to bound the price of anarchy. For
� � 0.607... the best we can do is to choose ↵ = � and obtain the same CCE-PoA
bound as in Theorem 6.4.1. 2

6.5.2 Single-Item �-HYA

We can further improve the price of anarchy bounds for single-item �-HYA. It
allows us to make more direct use of the payments giving us more control. We
start with the general n-player setting, for which we show that the single-item
�-HYA is fully efficient up to correlated equilibria. For coarse correlated equilibria,
we then derive a strong bound for low values of �, namely CCE-PoA  1/(1� �).
This bound can in turn be complemented by the bound we derived for multi-unit
auctions. Finally, to improve upon this multi-unit bound for the higher range
of �, we derive two technically more involved bounds that work specifically in a
two-player setting.

We need some more notation. Given a bid vector b, let HB(b) = maxi bi
and SB(b) denote the highest and second-highest bid in b, respectively, and let
HB�i(b) = maxj 6=i bj be the highest bid excluding bid bi. For a randomized bid
vector �, let HB(�) be the random variable equal to the highest bid when the bids
are distributed according to �. We sometimes write E[HB(�)] for Eb⇠�[HB(b)]
(similarly for SB(�) and HB�i(�)).

Correlated Price of Anarchy

We prove that �-HYA is fully efficient for all � 2 (0, 1] up to correlated equilibria.
We extend a result in (Feldman, Lucier, and Nisan, 2016), which only does it for
� = 1. Below we show that for � = 0 even coarse correlated equilibria are always
efficient so that Theorem 6.5.4 in fact holds for all � 2 [0, 1].

Theorem 6.5.4. Consider a single-item �-HYA and suppose that bidders cannot
overbid. Then, the correlated price of anarchy of �-HYA is 1 for all � 2 (0, 1].

Proof: Without loss of generality assume that player 1 has the highest valuation
v1. Assume towards contradiction that the CE-PoA is not 1. Then, there must
be a player i for which vi < v1 who has a positive probability of winning. Let
b
⇤ = inf{b | P(HB(�) < b) > 0}. Since we assume that players cannot overbid,

we know that b⇤  vi < v1.
First, suppose b

⇤ = vi. Then P(HB(�) < vi) = 0. If player 1 bids (vi + v1)/2
if we draw b ⇠ � for which b1 < b

⇤ (in case ties are broken in favor of player 1)
or if b1  b

⇤ (in case ties are broken in favor of player i) then player 1 strictly
increases their utility. This contradicts the correlated equilibrium assumption.

6.5. No Overbidding 153

Thus we can assume b
⇤
< vi. Define b̃ = (b⇤ + vi)/2. Fix a bid b such that

b
⇤
< b < b̃. By assumption we have P(HB(�) < b) > 0. Either player 1 or player i

must win by bidding not higher than b with probability at most P(HB(�) < b)/2.
Let it be player i (otherwise just fill in 1 for i in what follows).

Consider the following deviating strategy for player i: bid (b̃ + b)/2 if we
draw b ⇠ � for which bi  b and bi otherwise. For bi > b nothing changes and
so the utility stays the same. Next, consider bi  b. Player i already won with
probability at most P(HB(�) < b)/2. Now that they bid higher note that the
second bid part of the price does not change while the highest bid part goes up by
at most �((b̃+ b)/2� b

⇤) On the other hand player i will gain (lower bounding the
second-highest bid by the highest bid) at least P(HB(�) < b)/2 · (vi � (b̃+ b)/2).
Net, the utility of player j increases by at least

P(HB(�) < b)

2

vi �

b̃+ b

2

!
�

b̃+ b

2
� b

⇤

!!
>

P(HB(�) < b)

2

⇣
vi + b

⇤
� 2b̃

⌘
= 0,

where we use that b < b̃. Again, we find a contradiction with the CE conditions.
Hence, there cannot be a player i with vi < v1 having a positive probability of
winning implying that the price of anarchy must be 1. 2

Coarse Correlated Price of Anarchy

It is known that the coarse correlated price of anarchy for the first-price auction
is approximately 1.229 (Feldman, Lucier, and Nisan, 2016), which implies that
the result of Theorem 6.5.4 does not extend to coarse correlated equilibria. We
derive the following bound which is good for small values of �.

Theorem 6.5.5. Consider a single-item �-HYA and suppose that bidders cannot
overbid. Then, the coarse correlated price of anarchy of �-HYA is at most 1/(1��)
for all � 2 [0, 1).

Proof: Let player 1 be the player with the highest valuation v1, and if there are
multiple players with the highest valuation the player for whom ties are broken in
favor when bidding v1. Let � be a coarse correlated equilibrium. We have

Eb⇠�[SW(b)] = Eb⇠�[u1(b)] + Eb⇠�

X

i 6=1

ui(b) + p
�(b)

�
. (6.12)

Define E as the event that player 1 wins the auction with respect to �, and let
Ē be the complement event that player 1 does not win the auction with respect to
�.

154 Chapter 6. Corruption in Auctions

0 0.5 1
1

1.5

2

2.5

3

�

Figure 6.5: CCE-PoA for single-item �-HYA without overbidding (Theo-
rems 6.4.1, 6.5.3 & 6.5.5).

Suppose player 1 deviates to v1. Then player 1 wins under (v1, b�1) because
either they are the single highest bid or ties are broken in their favor by assumption
and no player overbids; note that this holds independently for E and Ē . By the
CCE conditions, we thus have

Eb⇠�[u1(b)] � Eb⇠�[u1(v1, b�1)]

= (1� �)v1 � (1� �)Eb⇠� [HB�1(b)] .

Substituting this inequality in (6.12), we obtain

Eb⇠�[SW(b)] � (1� �)v1 � (1� �)Eb⇠� [HB�1(b)]

+ Eb⇠�

X

i 6=1

ui(b) + p
�(b)

�
.

The proof thus follows if we can show that

Eb⇠�

X

i 6=1

ui(b) + p
�(b)

�
� (1� �)Eb⇠� [HB�1(b)] . (6.13)

Case 1: Suppose b 2 E . Then player 1 wins the auction with respect to b and we
have X

i 6=1

ui(b) + p
�(b) = �b1 + (1� �)HB�1(b) � HB�1(b).

Case 2: Suppose b 2 Ē . Then some other player i
0
6= 1 wins the auction with

respect to b and we have

ui0(b) + p
�(b) = vi0 � p

�(b) + p
�(b) = vi0 � bi0 = HB�1(b),

6.5. No Overbidding 155

where last inequality holds because i
0 does not overbid and the last equality holds

because i
0 being the highest bidder implies that bi0 = HB�1(b). This concludes

the proof. 2

Any upper bound for the multi-unit auction setting of course also holds for the
single-item setting. By combining the bounds of Theorem 6.4.1, Theorem 6.5.3,
and Theorem 6.5.5, we obtain the upper bound displayed in Figures 6.1(c) and
6.5 for the coarse correlated price of anarchy in the single-item auction setting.

Coarse Correlated Price of Anarchy for 2-player Auctions

We now present a more fine-grained picture of the coarse correlated price of
anarchy for the 2-player setting. Ultimately, the upper bound for CCE-PoA for
two players becomes a combination of three upper bounds, as represented by
the three colors in Figures 6.1(d) and 6.6. We already derived the bound we
use for small values of � in Theorem 6.5.5, corresponding to the green graph in
the figure. To derive the two remaining bounds, we use an approach inspired
by Feldman, Lucier, and Nisan (2016). The extra difficulty we have is bounding
the second-price component. The first-price component has a direct relation with
winning the auction and so we can use the CCE conditions to bound it while
the second-price component is more difficult to get a grip on. These bounds
significantly improve on the bounds of Theorem 6.4.1 and Theorem 6.5.3.

First, we tackle the interval � 2 [12 , 1]. Note that for � = 1 this bound coincides
with the (tight) bound in (Feldman, Lucier, and Nisan, 2016).

Theorem 6.5.6. Consider a 2-player single-item �-HYA and suppose that bidders
cannot overbid. For � 2 [12 , 1], the coarse correlated price of anarchy of �-HYA

is upper bounded by the blue graph in Figures 6.1(d) and 6.6 (with CCE-PoA
 1.295... for � = 0.5 and CCE-PoA  1.229... for � = 1).

Proof: Without loss of generality we assume that player 1 has a valuation of 1
and player 2 has a valuation of v  1. Fix � and consider some coarse correlated
equilibrium �. Let ↵ = E[u1(�)] be the utility of player 1 and � = E[u2(�)] be
the utility of player 2 in �. The maximum social welfare is clearly 1, namely when
player 1 wins all the time. Lower bounding the expected welfare of an arbitrary
� translates into an upper bound on the price of anarchy. We have

E[SW(�)] � ↵ + � + E[p�(�)] = ↵ + � + �E[HB(�)] + (1� �)E[SB(�)].

We try to find the v,↵, and � that minimize this expression and this will then
give a lower bound on the expected social welfare. Let FX be the cumulative
distribution function of the random variable X where X 2 {HB,HB�1,HB�2, SB}.
Then by the CCE conditions, and the fact that a CDF is always bounded by 1,

156 Chapter 6. Corruption in Auctions

we know that

FHB�1(�)(x)  min

⇢
↵

1� x
, 1

�
, FHB�2(�)(x)  min

⇢
�

v � x
, 1

�
, (6.14)

FHB(�)(x)  min

⇢
↵

1� x
,

�

v � x
, 1

�
. (6.15)

For example, if FHB�1(�) >
↵

1�x
and player 1 changes their bid to x their utility

will be strictly greater than ↵

1�x
· (1 � x) = ↵ which is more than their current

utility contradicting the CCE conditions.
Also, note that ↵ � 1� v because player 1 bidding v + ✏ will yield a utility of

at least 1� v � ✏ for any positive ✏. The other player is not allowed to bid above
v, thus player 1 always wins when bidding v + ✏.

Observe that for n = 2 players the following chain of equalities holds

FSB(�)(x) = P(SB(�)  x)

= P(min(HB�1(�),HB�2(�))  x)

= P(HB�1(�)  x) + P(HB�2](�)  x)� P(HB(�)  x)

= FHB�1(�)(x) + FHB�2(�)(x)� FHB(�)(x). (6.16)

Let us get a more explicit expression for the expected payment using (6.16)

E[p�(�)] = �E[HB(�)] + (1� �)E[SB(�)]

= �

Z 1

0

1� FHB(�)(x)dx+ (1� �)

Z 1

0

1� FSB(�)(x)dx (6.17)

= �

Z 1

0

1� FHB(�)(x)dx+ (1� �)·

Z 1

0

1� FHB�1(�)(x)� FHB�2(�)(x) + FHB(�)(x)dx

= (2� � 1)

Z 1

0

1� FHB(�)(x)dx+

(1� �)
2X

i=1

Z 1

0

1� FHB�i(�)(x)dx.

Using the two bounds in (6.14) we can lower bound the two integrals in the
summation

Z 1

0

1� FHB�1(�)(x)dx �

Z 1�↵

0

1�
↵

1� x
dx = 1� ↵ + ↵ ln(↵),

Z 1

0

1� FHB�2(�)(x)dx �

Z
v��

0

1�
�

v � x
dx = v � � + � ln(�/v).

6.5. No Overbidding 157

If � � 1
2 then 2� � 1 � 0 and so we can use (6.15) to lower bound the integral on

the left by
Z 1

0

1� FHB(�)(x)dx �

Z 1

0

1�min

⇢
↵

1� x
,

�

v � x
, 1

�
dx.

We split up in two cases.

Case 1: � � v↵. Then �

v�x
�

↵

1�x
for all x 2 [0, v] and so

Z 1

0

1�min

⇢
↵

1� x
,

�

v � x
, 1

�
dx =

Z 1�↵

0

1�
↵

1� x
dx = 1�↵+↵ ln(↵), (6.18)

giving a lower bound on expected welfare of

E[SW(�)] � ↵ + � + (2� � 1)(1� ↵ + ↵ ln(↵))

+ (1� �) (1� ↵ + ↵ ln(↵) + v � � + � ln(�/v)) .

Using that v � 1� ↵ and � � v↵ � ↵(1� ↵) this is lower bounded by

1 + ↵(1� ↵) ln(↵) + �↵(1� ↵ + ↵ ln(↵)). (6.19)

Case 2: � < v↵. First �

v�x
is smaller than ↵

1�x
until x = ✓ = ↵v��

↵��
when �

v�x
takes

over. In this case the integral is bounded from below by
Z 1

0

1�min

⇢
↵

1� x
,

�

v � x
, 1

�
dx �

Z
✓

0

1�
�

v � x
dx+

Z 1�↵

✓

1�
↵

1� x
dx =

↵ ln

✓
↵� �

1� v

◆
+ 1� ↵ + � ln

✓
�(1� v)

v(↵� �)

◆
,

which gives a lower bound on the expected social welfare of

E[SW(�)] � ↵ + � (6.20)

+ (2� � 1)

✓
↵ ln

✓
↵� �

1� v

◆
+ 1� ↵ + � ln

✓
�(1� v)

v(↵� �)

◆◆

+ (1� �) (1� ↵ + ↵ ln(↵) + v � � + � ln(�/v)) .

The derivative with respect to v is

(2� � 1)
↵v � �

(1� v)v
+ (1� �)(1� �/v).

For � < v↵ this is positive and thus the minimum is attained when v is smallest,
i.e., v = 1� ↵. Substituting that in (6.20) gives

158 Chapter 6. Corruption in Auctions

E[SW(�)] � ↵ + �

+ (2� � 1)

✓
↵ ln

✓
↵� �

↵

◆
+ 1� ↵ + � ln

✓
�↵

(1� ↵)(↵� �)

◆◆

+ (1� �)

✓
1� ↵ + ↵ ln(↵) + 1� ↵� � + � ln

✓
�

1� ↵

◆◆

= 1 + �� + (2� � 1)(↵� �) ln(↵� �)

+ (2� 3�)↵ ln(↵) + (2� � 1)� ln(↵) (6.21)
+ �� ln(�)� �� ln(1� ↵).

Note that filling in � = ↵(1� ↵) yields the same revenue as in (6.19). Changing
� < v↵ to �  v↵ = ↵(1 � ↵) subsumes case 1. So we only have to find the
minimum in case 2.

The derivative of (6.21) with respect to � is

(2� � 1) ln

✓
↵

↵� �

◆
+ � ln

✓
�

1� ↵

◆
+ 1.

This becomes 0 when

ln

✓
↵
2��1

�
�

(↵� �)2��1(1� ↵)�

◆
= �1 ()

�
�

(↵� �)2��1
�

(1� ↵)�

e↵2��1
= 0.

For fixed ↵ the expression on the left is negative for � close to 0, and positive
for � close to ↵. Also the second derivative with respect to � is always positive
on [0, �]. Thus we can use binary search to quickly find � satisfying the equality.
Call this �↵.6

Then we have

E[SW(�)] � 1 + ��↵ + (2� � 1)(↵� �↵) ln(↵� �↵)

+ (2� 3�)↵ ln(↵) + (2� � 1)�↵ ln(↵)

+ ��↵ ln(�↵)� ��↵ ln(1� ↵).

For � = 1/2 we compute �↵ = (1 � ↵)/e2 and then the social welfare is
minimized for ↵ = e

�1�1/e2
⇡ 0.3213... with value 0.7716.... While for � = 1

we have �↵ = ↵(1� ↵)/(1 � ↵ + e↵) where the social welfare is minimized for
↵ ⇡ 0.2743... with value 0.8135.... In both cases (6.21) becomes a unimodal
function. Plotting (6.21) for various values of ↵, when doing binary search to find
�↵ as a subroutine, suggests that this is the case for all �. Making this assumption
we can use a ternary search on ↵ with a binary search to find �↵ as a subroutine

6�↵ may violate the case assumption that �  v↵ but removing this restriction can only
decrease the minimum value of the expected social welfare.

6.5. No Overbidding 159

0 0.5 1
1

1.5

2

2.5

3

(d)

Figure 6.6: CCE-PoA for single-item �-HYA without overbidding and n = 2
bidders (Theorems 6.5.5, 6.5.6 & 6.5.7).

to quickly find the minimum. Finally, taking 1 over this value gives us an upper
bound on the price of anarchy, presented as the blue graph in Figures 6.1(d)
and 6.6. 2

The previous theorem holds for � 2 [12 , 1]. With a similar proof template,
making use of an upper bound on the highest bid, we can derive an upper bound
on the coarse correlated price of anarchy for the lower to mid-range of �

Theorem 6.5.7. Consider a 2-player single-item �-HYA and suppose that bidders
cannot overbid. For � 2 (0.217..., 12], the coarse correlated price of anarchy of
�-HYA is upper bounded by the orange graph in Figures 6.1(d) and 6.6 (with
CCE-PoA  1.515... for intersection point � = 0.339... and CCE-PoA  1.295...
for � = 0.5).

Proof: For � 2 [0, 1/2], note that in the final equality of (6.17), we have
(2� � 1)  0. To lower bound the social welfare, we should therefore upper bound
the expected highest bid. For this, note that due to the fact that players cannot
overbid, player 2 never bids higher than v. Therefore, for any � > 0, any bid of
player 1 that is (strictly) above v is (strictly) dominated by bidding v instead7.
Using this, it is clear that E[HB(�)]  v. Again using (6.14) to lower bound the

7Formally, player 1 should bid v+ ✏ for any ✏ > 0. Since ✏ can be an arbitrarily small number,
we ignore it in the remainder of the proof for notational convenience.

160 Chapter 6. Corruption in Auctions

two rightmost integrals, we get

�E[HB(�)] + (1� �)E[SB(�)]

� (2� � 1)

Z 1

0

1� FHB(�)(x)dx

+ (1� �)

✓Z 1

0

1� FHB�1(�)(x)dx+

Z 1

0

1� FHB�2(�)(x)dx

◆

� (2� � 1)v + (1� �)(1� ↵ + ↵ ln(↵) + v � � + � ln(�/v)),

so that

E[SW(�)] � ↵ + � + (2� � 1)v (6.22)
+ (1� �)(1� ↵ + ↵ ln(↵) + v � � + � ln(�/v))

= �(↵ + � + v) + (1� �)(1 + ↵ ln(↵) + � ln(�)� � ln(v)).

The derivative of this bound with respect to � equals

� + (1� �)(1 + ln(�)� ln(v)) = 1 + (1� �) ln(�/v).

Note that this derivative is equal to zero for � = ve
�1/(1��), and that it is positive

for greater � and negative for smaller �. Therefore, the bound attains its minimum
at � = ve

�1/(1��). Substituting this � in (6.22) yields

E[SW(�)] � �(↵ + (1 + e
� 1

1��)v) (6.23)

+ (1� �)(1 + ↵ ln(↵) + ve
� 1

1�� ln(e�
1

1��)

= �(↵ + (1 + e
� 1

1��)v) + (1� �)(1 + ↵ ln(↵))� ve
� 1

1�� .

Next, we take the derivative of (6.23) with respect to v, which gives

�(1 + e
� 1

1��)� e
� 1

1�� = � � (1� �)e�
1

1�� .

This derivative is positive for all � > 0.21781 . . . , so for all � 2 (0.21781 . . . , 1/2],
we minimize the upper bound by setting v to its lowest admissible value, being
v = 1� ↵ (due to the CCE condition that ↵ � 1� v).

Substituting the optimal parameter settings � = ve
�1/(1��) = (1 � ↵)e�1/(1��)

gives the following social welfare bound

E[SW(�)] � �(↵ + (1� ↵)(1 + e
� 1

1��)) + (1� �)(1 + ↵ ln(↵))�

(1� ↵)e�
1

1��

= 1� (1� �)(1� ↵)e�
1

1�� + (1� �)↵ ln(↵), (6.24)

6.6. Conclusion 161

as a function of ↵ only, which we optimize by setting its derivative with respect
to ↵ equal to zero. This yields

(1� �)e�
1

1�� + (1� �)(1 + ln(↵)) = 0 () ln(↵) = �1� e
� 1

1��

() ↵ = e
�1�e

�1/(1��)
.

To facilitate the simplification of the formula of the final bound, we first substitute
only ln(↵) in (6.24), after which ↵ itself is substituted in the final step. We get

E[SW(�)] � 1� (1� �)e�
1

1�� + (1� �)↵e�
1

1��+

(1� �)↵(�1� e
� 1

1��)

= 1� (1� �)e�
1

1�� � (1� �)↵

= 1� (1� �)(e�
1

1�� + e
�1�e

�1/(1��)
). (6.25)

We divide 1 by (6.25) to get the upper bound on the price of anarchy presented
as the orange graph in Figures 6.1(d) and 6.6. 2

Extensions to n players:

We can modify the procedure in Theorems 6.5.6 and 6.5.7 to work for n players,
producing a different graph for every n. Observe that a more general version of
(6.16) holds:

FSB(�)(x) =
nX

i=1

FHB�i(�)(x)� (n� 1)FHB(�)(x)



2X

i=1

FHB�i(�)(x)� (n� 1)FHB(�)(x). (6.26)

We can use this to bound the second-highest bid. Doing a similar analysis as
in Theorem 6.5.6 gives us a procedure that works for � 2

⇥
n�1
n
, 1
⇤

and similarly
Theorem 6.5.7 yields a procedure for � 2

�
0.217..., n�1

n

⇤
. We obtain bounds which

are always tight at � = 1 for any n, but the higher n the faster the bound goes up
when � gets away from 1, and already for n = 4 the multi-unit bound lies below
what the extension of Theorem 6.5.7 can give us.

6.6 Conclusion

Our bound on the CCE-PoA of �-FPA is tight over the entire range of � 2 [0, 1]
if players can overbid, both in the single-item and multi-unit auction setting.
Although our bounds on the CCE-PoA are already rather low if players cannot

162 Chapter 6. Corruption in Auctions

overbid, further improvements might still be possible. For various equilibrium
notions, there are open questions, in particular for �-FPA. We have a tight bound
for PNE-PoA and an upper bound for CCE-PoA, but where we have a bound of 1
on the CE-PoA for single-item �-HYA we do not have anything for �-FPA. For
single-item �-HYA up until CE-PoA is settled, but the CCE-PoA upper bound
can probably be pushed down a bit. A starting point to get better bounds for
single-item �-HYA (with n players) is by getting a better grip on the CDF of the
second-highest bid in a CCE. Where the bounds on the highest bid carry over
from the 2-player setting to the n-player setting, they do not for the second-highest
bid. The idea in (6.26) is too weak to yield any good results. We consider these
challenging open problems for future work.

On a more conceptual level, in this chapter, we considered a basic bid-rigging
model where the auctioneer colludes with the winning bidders only. It will be
very interesting to study the price of anarchy of more complex bid-rigging models;
for example, the model introduced by Lengwiler and Wolfstetter (2010) (ideally
generalized to the multi-unit auction setting), where the corrupt auctioneer not
only approaches winners and offers them to lower their bid, but also approaches
losers with the offer to raise their bid, might be a natural next step.

Instead of going to more complicated bid-rigging settings, one can also change
the type of auction that is analyzed. The big-rigging examples we gave in the
introduction were both procurement auctions, but we analyzed normal auctions.
A natural direction to take is to analyze corruption in procurement auctions.

Another direction for future work is to study corruption in a mechanism design
context. We have not done that in this chapter because we were interested in the
effect of corruption on a first-price auction, one that is widely used in practice.
So, opting for price of anarchy analysis was the more logical choice. However,
it might be possible to create mechanisms in which the incentives to employ a
bid-rigging scheme are taken away.

Chapter 7

Greater Flexibility in Mechanism Design
Through Altruism

7.1 Introduction

The self-interest hypothesis is an assumption that is made in most models in
mathematical economics. It is the assumption that individuals make decisions
driven by purely selfish motives. Mechanism design, in particular, relies heavily on
the assumption that individuals act self-interestedly. On a high level, mechanism
design is concerned with guiding decision-making in a group context. Without
incentives, egoism can motivate an individual to over- or understate their actual
preferences for the possible alternatives. By providing the right incentives individ-
uals are nudged towards revealing their true preferences that in turn can be used
to make the best decision for the group as a whole. Often, payments by or to the
participants are used as incentives.

In the preliminaries, we have already seen a family of mechanisms in which
participants are incentivized to reveal their true preference: the VCG mechanism.
We recall the Vickrey auction in the following example.

Example 7.1.1. Consider a single-item auction in which n bidders with valuations
v1, . . . , vn participate. The set of alternatives A consists of n elements, each element
assigning the item to another player. The social choice function f : V ! A chooses
the alternative in which the item is assigned to the highest-bidding player. Given
that the players submit bids b = (b1, . . . , bn) the winner pays the second-highest
bid, while the rest pays nothing. In Definition (2.5.7) (VCG mechanism) this
corresponds to

hi(b�i) = [b�i]1 for all i 2 N,

163

164 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

where [x]j is the j-th highest value in x. And so the payment functions are

pi(b) = [b�i]1 �
X

j 6=i

bj(f(b)) for all i 2 N.

In an auction, the seller is usually interested in obtaining some revenue, so it
makes sense to ask for substantial payments from the participants. As a result,
there is money flowing from the participants to some third party. However, often
decisions have to be made in a group that would like the money to stay among
the participants. An example is a group of housemates that needs to decide who
is allowed to use a shared car on a particular day. An example of a mechanism
(due to Bailey (1997) and Cavallo (2006)) where less money is going to a third
party is the following:

Example 7.1.2. We will take the same model as in Example 7.1.1 but change
the payments a bit. Let

hi(b�i) = [b�i]1 �
[b�i]2
n

for all i 2 N,

such that the payments are defined as

pi(b) = [b�i]1 �
[b�i]2
n
�

X

j 6=i

bj(f(b)).

Without loss of generality, assume b1 � b2 � b3 � . . . � bn. Then player 1 wins
and pays b2 �

b3
n
. Player 2 receives b3

n
and the remaining players receive b2

n
. The

sum of payments in this example is only 2 · b2�b3
n

compared to b2 in Example 7.1.1.
Because it is a VCG mechanism it is truthful (Proposition 2.5.8). But, since

there are now participants receiving money from the mechanism it does not satisfy
NPT.

Certainly, the assumption that individuals or entities act self-interestedly
applies in many economic settings, and because it simplifies analysis, it enables
us to predict behavior in many economic situations. However, various empirical
studies show that individuals do not act solely self-interestedly and that the self-
interest hypothesis often does not apply (Andreoni and Miller, 2002; Charness and
Rabin, 2002; Kahneman, 2011). The field of behavioral economics is specifically
dedicated to studying how the decisions of individuals and institutions vary from
what would be the ‘rational’ or ‘optimal’ choice.

If the preferences of individuals are fully aligned with the interests of the group,
there is no need for a mechanism to guide the decision-making. Where being
fully selfish is on one end of the spectrum, being fully altruistic is on the other
end of the spectrum. Many people are somewhere in between: they care about
themselves but are also partially altruistic towards others. Taking into account

7.1. Introduction 165

that some individuals are partially altruistic might change the incentives that the
participants need to reveal their true preferences. Because the incentives come in
the form of payments, we are interested in the question: What are the effects of
(partial) altruism on the payments in mechanism design?

7.1.1 Our Contributions
The main contributions in this chapter are as follows:

1. We introduce a general utility model incorporating the other-regarding
preferences of players. Our approach is to adapt the standard utility model by
adding to each player’s utility an extra term that represents their dispositions
towards the other players.

2. By adding these other-regarding preferences, the utilities of the players
become interdependent. As a consequence, the general class of VCG mech-
anisms cannot be straightforwardly applied to our setting. However, we
are able to derive a characterization of truthful mechanisms in our new
utility model with other-regarding preferences. The key to deriving our
characterization is to exploit the specific form of the disposition functions.

3. Unfortunately, this characterization does not provide us with a “recipe” of
how to obtain truthful mechanisms. We, therefore, establish a sufficient
condition for truthfulness. We also derive sufficient and necessary conditions
for when the resulting mechanisms satisfy the no positive transfer (NPT) and
individual rationality (IR) properties. This also serves as a design template
for our mechanisms.

4. We then address the question of how the payments can be redistributed
among the players (while maintaining truthfulness) such that the overall
payments are minimized. In general, we cannot expect that such redistribu-
tion mechanisms are strongly budget-balanced (i.e., the sum of the payments
equals zero). We, therefore, use a relation of individual dominance between
mechanisms, introduced by Guo, Markakis, et al. (2013), and provide a
characterization of such redistribution mechanisms for our new utility model.

5. We then consider two specific models of altruism that are captured by our
utility model with other-regarding preferences in combination with two
natural social welfare objectives. We derive truthful mechanisms satisfying
NPT and IR for all four settings. As it turns out, the altruistic dispositions
of the players provide us with some additional flexibility in choosing the
payments. A common property is that as the degree of altruism of a player
increases, the designer needs to pay them less to have them reveal their
private valuations.

166 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

6. We demonstrate the usefulness of our mechanisms by applying them to some
fundamental problems in mechanism design: For the bilateral trade problem,
we show that our truthful mechanism can be run without any subsidy (if
the involved players are sufficiently altruistic), while this is impossible when
using VCG payments. In case of the public-project problem, we show that
our mechanism allows us to overcome some pathological deficiencies that
are unavoidable in the standard setting. In fact, even a modest degree of
altruism turns out to be sufficient to resolve the problem positively. Finally,
we show that any mechanism that does not take altruism into account can
be converted into a mechanism that does, and at the same time uses lower
payments, where the gain is proportional to the altruism levels of the players.

Altogether, our results provide some evidence that altruism can only help in
the mechanism design setting considered here. This is in contrast to some previous
works (although in a purely strategic setting) showing that altruism may also have
a negative impact on equilibrium outcomes (Buehler et al., 2011; Caragiannis,
Kaklamanis, Kanellopoulos, Kyropoulou, and Papaioannou, 2010; Chen et al.,
2014).

7.1.2 Related Work
There are different types of other-regarding preferences. In this chapter, we
focus mainly on altruism. Other types are spite (in some sense the opposite of
altruism), reciprocity (Kozlovskaya and Nicolò, 2019) and inequity aversion (Fehr
and Schmidt, 1999). For more information on the different types of other-regarding
preferences, we refer to Fehr and Fischbacher (2002).

There is a relatively small but steady interest in incorporating altruism into
algorithmic game theory (see for instance (Apt and Schäfer, 2014; Buehler et al.,
2011; Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, and Papaioannou,
2010; Chen et al., 2014; De Marco and Morgan, 2011; Hoefer and Skopalik, 2013;
Kerkmann and Rothe, 2021; Nguyen et al., 2016; Rahn and Schäfer, 2013; Rothe,
2021)). However, in mechanism design, there are only a few references we can
point to.

Brandt and Weiß (2001) argue that in many situations, entities sacrifice a
bit of profit to ‘hurt’ their competitors. They show that in the presence of
spiteful bidders, the second-price auction is not truthful anymore and design
equilibrium strategies for their model. Tang and Sandholm (2012) are concerned
with finding mechanisms that maximize revenue in the presence of spiteful or
altruistic bidders in an incomplete information setting. In their model, the other-
regarding preferences have a specific shape, a constant times the utility of the other
players, where the utility is a random variable depending on the distributions of the
valuations. Interestingly, bidders have to pay even if the seller keeps the item and
get subsidized when another player wins. Kucuksenel (2012) also models altruism

7.2. Preliminaries 167

according to a player-oriented model in a Bayesian setting. He characterizes a
class of mechanisms that are interim efficient : they lead to utility-wise Pareto
efficient outcomes. In, to our knowledge, unpublished work, Cavallo (2012) studies
a regret-based model of altruism wherein participants are willing to give up to an
↵ fraction of their personal utility for the good of the group. In an incomplete
information and all-or-nothing setting, he proposes mechanisms that are strongly
budget-balanced, i.e., the sum of payments is 0, when the players are ‘mildly
altruistic’.

A simple yet effective way to redistribute a large portion of the surplus on the
payments can be done by the Bailey-Cavallo redistribution function (Bailey, 1997;
Cavallo, 2006). Other ways to redistribute payments are studied by Guo and
Conitzer (2009, 2010) and Moulin (2009). To be able to compare redistribution
functions, we need an order. In the setting of non-deficit Groves mechanisms, Guo,
Markakis, et al. (2013) define two partial orders and give characterizations of the
maximal elements.

7.2 Preliminaries

We are given a finite set N = {1, . . . , n} of n � 1 players and a finite set A of
alternatives to choose from. Each player i 2 N has a private valuation function
vi : A ! R which specifies their preferences over the set of alternatives A,
independently of the other players’ preferences. Note that the valuation function
vi is considered to be private information, i.e., only known to player i themselves.
Given an alternative a 2 A, we say that vi(a) is the valuation of player i for
alternative a. We define Vi as the set of all possible valuation functions of player
i. Unless stated otherwise, we assume that Vi ✓ RA is unrestricted and commonly
known. Define V = V1 ⇥ · · ·⇥ Vn.

Suppose there is a central designer (e.g., principal, government) who wants
to determine a socially desirable outcome, taking the preferences of the players
into account. Each player i 2 N expresses their preferences over the available
alternatives by reporting a valuation function bi 2 Vi (not necessarily equal to their
private valuation function vi). The designer then utilizes a mechanism to decide on
an outcome. A (direct revelation) mechanism M = (f,p) is specified by a social
choice function f : V ! A and a vector of payment functions p = (p1, . . . , pn) with
pi : V ! R for all i 2 N . Given the reported valuation functions b = (b1, . . . , bn),
the mechanism determines an alternative f(b) and for each player i 2 N a payment
pi(b) to be made to the designer.

We assume that each player wants to maximize a given utility function. In
the standard utility model, each player i 2 N has a quasi-linear utility function
defined as u

s

i
(b) = vi(f(b)) � pi(b). The goal of the designer is to determine

an alternative that maximizes a given design objective D : V ⇥ A ! R, i.e.,
f(b) 2 argmaxa2A D(b, a). A commonly used design objective is to maximize the

168 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

social welfare, i.e., the sum of the valuations of all players; formally, Dsw(b, a) =P
i2N bi(a). For any design objective considered in this paper, we assume that we

can decompose D(b, a) =
P

i2N di(bi, a) for functions di : Vi ⇥ A! R. Then, we
write D�i(b, a) = D�i(b�i, a) =

P
j2N\{i} dj(bj, a).

A mechanism M = (f,p) is truthful if for every player i 2 N , for any vector of
reported valuations b 2 V , we have that ui(vi, b�i) � ui(bi, b�i). In other words,
a truthful mechanism ensures that for each player i it is always at least as good
to report their private valuation vi than any other valuation, independent of what
the other players report. Another desirable property of a mechanism is that it
never makes payments to the players. A mechanism M satisfies the no positive
transfers (NPT) property if for every player i 2 N and all b 2 V we have that
pi(b) � 0. Sometimes, we only require that the sum of payments is non-negative,
i.e.,

P
i2N pi(b) � 0 for all b 2 V , then we call the mechanism non-deficit. Finally,

every player should be guaranteed to receive a non-negative utility if they report
their valuations truthfully. A mechanism M satisfies the individual rationality
(IR) property if for every player i 2 N and for all reported valuations b�i 2 V�i

of the other players, ui(vi, b�i) � 0.

7.3 Modeling Other-Regarding Preferences

7.3.1 Utility Model with Other-Regarding Preferences
We propose a general utility model capturing that players may care about other
players (both in the positive and negative sense).

Definition 7.3.1. Suppose we are given a function gi : Rn�1
⇥Rn

! R for every
player i 2 N modeling their other-regarding preferences. The utility u

gi
i

of player
i 2 N in the utility model with other-regarding preferences is then defined as

u
gi
i
(b) = vi(f(b))� pi(b) + gi(b�i(f(b)),p(b)).

Observe that the function gi does not depend on the private valuations of the
other players (which would be infeasible). This reflects the intuition that the
other-regarding preferences of a player originate from beliefs about the experiences
of others rather than from their true experiences.1

In the definition, the other-regarding preferences are allowed to depend on the
payments. This makes it very general, but in proofs, this poses an extra challenge
and so for some results below we make the following assumption.

1Intuitively, the function gi of player i can be viewed as being dependent on the reported
valuation functions b�i of the other players and the payment functions p. Formally, however,
gi only depends on the respective values of these functions under the outcome (f(b),p(b))
determined by the mechanism M = (f,p) when run on b.

7.3. Modeling Other-Regarding Preferences 169

Assumption 7.3.2. The other-regarding preferences gi do not depend on the
payments and therefore only depend on b�i(f(b)) for all i 2 N .

We will see in Section 7.5 that there are natural models where the other-regarding
preferences do not depend on the payments.

7.3.2 Characterization of Truthful Mechanisms
Theorem 7.3.3. A mechanism M = (f,p) is truthful in the utility model with
other-regarding preferences if and only if it satisfies the following two conditions:

1. For every player i 2 N the difference between the other-regarding preferences
gi and the payment pi only depends on the chosen alternative f(b) and b�i

(but not on bi itself), i.e., there is a function µi : A⇥ V�i ! R such that

pi(b)� gi(b�i(f(b)),p(b)) = µi(f(b), b�i).

2. The alternative chosen by M satisfies for every player i 2 N that

f(bi, b�i) 2 arg max
a2A(b�i)

(bi(a)� µi(a, b�i)),

where A(b�i) = {f(b0
i
, b�i) : b0

i
2 Vi} refers to the image of f(·, b�i).

Proof: We first prove the if part. Consider a player i 2 N and fix b�i 2 V�i

arbitrarily. Define ā = f(vi, b�i) and a = f(bi, b�i) as the alternatives chosen by
M when i reports their private valuation function vi truthfully and when i reports
an arbitrary valuation function bi, respectively.

By the first condition of the statement, we have

u
gi
i
(vi, b�i) = vi(ā)� µi(ā, b�i) and u

gi
i
(bi, b�i) = vi(a)� µi(a, b�i). (7.1)

By the second condition, the alternative ā chosen by M for (vi, b�i) satisfies

vi(ā)� µi(ā, b�i) � vi(a)� µi(a, b�i). (7.2)

Combining (7.1) and (7.2) proves truthfulness.
Now we prove the only-if part of the first condition. Consider a player i 2 N

and fix an arbitrary b�i 2 V�i. For notational convenience, we define mi(bi, b�i)
as a shorthand for

mi(bi, b�i) = pi(bi, b�i)� gi(b�i(f(bi, b�i)),p(bi, b�i)),

for bi 2 Vi, The utility of player i can then be written as u
gi
i
(bi, b�i) =

vi(f(bi, b�i))�mi(bi, b�i). Suppose there are two valuation functions bi, b
0
i
2 Vi

170 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

of player i such that f(bi, b�i) = f(b0
i
, b�i) and mi(bi, b�i) < mi(b0i, b�i). Then by

identifying the private valuation function vi of i with b
0
i
, we obtain

u
gi
i
(vi, b�i) = vi(f(b

0
i
, b�i))�mi(b

0
i
, b�i)

< vi(f(bi, b�i))�mi(bi, b�i) = u
gi
i
(bi, b�i),

which contradicts the truthfulness of M . Thus mi(bi, b�i) = mi(b0i, b�i) whenever
f(bi, b�i) = f(b0

i
, b�i). This proves the existence of a function µi only depending

on f(b) and b�i as claimed.
Finally, we prove the only-if part of the second condition. Again, consider a

player i 2 N and fix an arbitrary b�i 2 V�i. Suppose there is some bi 2 Vi such
that f(bi, b�i) is not a maximizer of the expression. Let a

0
2 A(b�i) be such a

maximizer, i.e.,
a
0
2 arg max

a2A(b�i)
(bi(a)� µi(a, b�i)).

By the definition of A(b�i), we have a0 = f(b0
i
, b�i) for some b0

i
2 Vi. By identifying

the private valuation function vi of i with bi and defining ā = f(bi, b�i), we obtain

u
gi
i
(vi, b�i) = bi(ā)� µi(ā, b�i) < bi(a

0)� µi(a
0
, b�i) = u

gi
i
(b0

i
, b�i),

which contradicts the truthfulness of M . 2

It might be difficult to know what the other-regarding preferences look like
for a specific player i. When making assumption 7.3.2 this is not very important.
Even when we design a mechanism assuming different other-regarding preferences
it is still truthful.

Corollary 7.3.4. Let gi, g
0
i

be other-regarding preferences for which Assump-
tion 7.3.2 holds. Suppose we have a truthful mechanism with respect to g

0
i
. Then

the mechanism is also truthful with respect to gi.

Proof: For a truthful mechanism with respect to g
0
i
, Theorem 7.3.3 implies that

there exists a µ
0
i
(f(b), b�i) such that

pi(b)� g
0
i
(b�i) = µ

0
i
(f(b), b�i).

Let µi(fb), b�i) = µ
0
i
(fb), b�i)� gi(b�i) + g

0
i
(b�i), then also

pi(b)� gi(b�i) = µi(f(b), b�i),

showing that we still have a truthful mechanism. 2

7.3. Modeling Other-Regarding Preferences 171

7.3.3 Design template
Theorem 7.3.3 gives a characterization of truthful mechanisms but does not provide
us with a “recipe” of how to obtain such mechanisms for a given design objective
D.

Theorem 7.3.5. Fix a design objective D. A mechanism M = (f,p) is truthful
in the utility model with other-regarding preferences if the following two conditions
are satisfied:

1. f(b) 2 argmaxa2A D(b, a).

2. For every player i 2 N there exist functions hi, �i : V�i ! R such that

pi(b) = hi(b�i) + gi(b�i(f(b)),p(b))� �i(b�i) ·D�i(b�i, f(b)).

Proof: If pi(b) = hi(b�i) + gi(b�i(f(b)),p(b))� �i(b�i) ·D�i(b�i, f(b)) then

pi(b)� gi(b�i(f(b)),p(b)) = hi(b�i)� �i(b�i) ·D�i(b�i, f(b)).

Let
µi(f(b), b�i) = hi(b�i)� �i(b�i) ·D�i(b�i, f(b)),

and we see that the conditions of Theorem 7.3.3 are satisfied. 2

We are interested in knowing when a mechanism satisfies NPT and IR. For
mechanisms following our recipe, we can quickly characterize what conditions the
functions hi have to satisfy.

Proposition 7.3.6. Let M = (f,p) be a mechanism as defined in Theorem 7.3.5.
Then M satisfies NPT if and only if for every player i 2 N and any b 2 V ,

hi(b�i) � �i(b�i) ·D�i(b�i, f(b))� gi(b�i(f(b)),p(b)).

Further, M satisfies IR if and only if for every player i 2 N and any b 2 V ,

hi(b�i)  �i(b�i) ·D�i(b�i, f(vi, b�i)) + vi(f(vi, b�i)).

Proof: Immediate from the definitions of NPT and IR. 2

If we insist both on NPT and IR the above proposition shows that in principle
there is leeway in choosing hi of about vi(f(vi, b�i))+gi(b�i(f(b)),p(b)); however,
recall that hi may only depend on b�i and we might thus be unable to exploit the
full range. Further, Proposition 7.3.6 shows that if the valuation functions can be
negative then we cannot guarantee both NPT and IR. In fact, the same holds if
gi(b�i(f(b)),p(b)) is allowed to be negative.

What effect does not knowing gi exactly have on individual rationality? When
making Assumption 7.3.2 this does not pose a problem, as long as we underestimate
it.

172 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

Proposition 7.3.7. Let gi, g0i be a other-regarding preferences for which Assump-
tion 7.3.2 holds, such that gi(b�i(f(b))) � g

0
i
(b�i(f(b))) for all b. Let M = (f,p)

be a mechanism as in Theorem 7.3.5 with respect to g
0
i
for player i that is individ-

ually rational. The mechanism with respect to gi is also truthful and individually
rational.

Proof: We have

ui(b) = vi(f(b))� pi(b) + gi(b�i(f(b)).

By assumption vi(f(b))� pi(b) + g
0
i
(b�i(f(b)) � 0. Observe that

ui(b) = vi(f(b))� pi(b) + gi(b�i(f(b)) � vi(f(b))� pi(b) + g
0
i
(b�i(f(b)) � 0.

2

7.4 Minimizing Payments

As shown in the previous section, there is leeway in choosing hi. There are
situations in which extracting higher payments is preferred. Often, when a seller
sells an item via an auction, they want to extract the highest payments possible.
On the other hand, there are situations in which it is desirable to keep as much
of the payments within the group of participants. For example, suppose siblings
inherit a house from their parents, but only one of the siblings can live in the
house. The parents wanted the house to go to the sibling desiring the house the
most. They need a mechanism in which the siblings reveal their true preferences
and the payments are used to buy the other siblings out. On top of that, they
do not want to spend much on a third party. Especially in these situations, one
can argue that higher altruism levels are more plausible as the players are more
familiar with each other. In Section 7.6.3 we will use the results from this section
to observe that incorporating altruism can significantly reduce the surplus of the
payments of the mechanism.

Insisting on both IR and NPT, and wanting to use a mechanism that follows
the recipe from Theorem 7.3.5, Proposition 7.3.6 restricts us to payment functions
that satisfy

hi(b�i) � �i(b�i) ·D�i(b�i, f(b))� gi(b�i(f(b)),p(b)).

In Theorem 7.3.5 the payments depend on the other-regarding preferences,
which in turn can depend on the payments. To avoid issues with recursive
definitions, we make Assumption 7.3.2 in this section.

7.4. Minimizing Payments 173

Under Assumption 7.3.2, we can easily find the payment functions that mini-
mize the sum of payments

P
i
pi(b) =

P
i
hi(b�i) + gi(b�i(f(b)))�D�i(b�i, f(b))

while satisfying NPT:

hi(b�i) = sup
b
0
i

�i(b�i) ·D�i(b�i, f(b
0
i
, b�i))� gi(b�i(f(b))), (7.3)

where we define b0 = (b0
i
, b�i). If it is clear what b

0
i

is, we use this notation
throughout this section.

The examples with the siblings inheriting a house and the housemates sharing
a car show that there is no need to insist on NPT in general. In fact, in those
situations, we would rather have the payments redistributed over the players so
that as little money as possible is wasted on a third party. Unfortunately, in many
settings it is impossible to have a strongly budget-balanced mechanism, i.e., the
sum of payments is 0 (Mas-Colell, Whinston, Green, et al., 1995; Myerson and
Satterthwaite, 1983). As we cannot aim for strong budget balance in general, we
would like to minimize the amount we cannot redistribute.

Not insisting on NPT makes us much more flexible. However, we do not want
to subsidize the mechanism, and thus we keep the requirement that the mechanism
should be non-deficit, i.e.,

P
i
pi(b) � 0 for all b.

Guo, Markakis, et al. (2013) characterized Groves mechanisms that are un-
dominated in terms of the amount of money flowing from the mechanism to
the auctioneer. We will extend this to the mechanisms with other-regarding
preferences.

We say that a non-deficit mechanism with payment vector p collectively
dominates a non-deficit mechanism with payment vector p0 if for all b :

P
i
pi(b) P

i
p0
i
(b) and there is at least one b for which this inequality is strict. Getting

characterizations for payments that are collectively undominated is difficult. We
can, however, relax this requirement a bit.
Definition 7.4.1. A non-deficit mechanism with payment vector p is said to
individually dominate a non-deficit mechanism with payment vector p0 if for all b
and i

pi(b)  p0
i
(b),

and there is at least one b and i for which pi(b) < p0
i
(b).

Individual domination defines a partial order on mechanisms. The maximal
elements in this order are interesting because they are the mechanisms in which
no player can improve without making another player worse off.

We closely follow Guo, Markakis, et al. (2013) to characterize non-deficit and
individually undominated mechanisms that follow the recipe of Theorem 7.3.5.
Lemma 7.4.2. A mechanism M = (f,p) satisying the recipe from Theorem 7.3.5
is non-deficit if and only if for all i and b�i

hi(b�i) � sup
b
0
i

X

j

(�j(b
0
�j
)·D�j((b

0
�j
, f(b0)))�gj(b

0
�j
(f(b0))))�

X

j 6=i

hj(b
0
�j
). (7.4)

174 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

Proof: For a mechanism to be non-deficit we need
P

i
pi(b) � 0 for any b. Fix

some b and an i. Suppose a mechanism satisfies equation 7.4 then we know that

hi(b�i) � sup
b
0
i

X

j

�
�j(b

0
�j
) ·D�j((b

0
�j
, f(b0)))� gj(b

0
�j
(f(b0)))

�
�

X

j 6=i

hj(b
0
�j
)

�

X

j

(�j(b�j) ·D�j(b�j, f(b))� gj(b�j(f(b))))�
X

j 6=i

hj(b�j).

Rewriting yields
X

j

hj(b�j) + gj(b�j(f(b)))� �j(b�j) ·D�j(b�j, f(b)) � 0.

As the left hand side is exactly the sum of payments we have proved the if direction.
Suppose a mechanism is non-deficit, then

P
i
pi(b) � 0 for all b, thus also

X

j

hj(b�j) + gj(b�j(f(b)))� �j(b�j) ·D�j(b, f(b)) � 0.

Fix some arbitrary i, we can rewrite

hi(b�i) �
X

j

�j(b�j) ·D�j(b, f(b))� gj(b�j(f(b)))�
X

j 6=i

hj(b�j),

and because this holds for any bi, this also holds for the supremum. 2

Theorem 7.4.3. A mechanism M = (f,p) following the recipe from Theo-
rem 7.3.5 is individually undominated if and only if for all i and b�i

hi(b�i) = sup
b
0
i

X

j

�
�j(b

0
�j
) ·D�j(b

0
�j
(f(b0)))� gj(b

0
�j
(f(b0)))

�
�

X

j 6=i

hj(b
0
�j
).

(7.5)

Proof: For both implications, we prove the contrapositive. Since an individually
undominated mechanism must be non-deficit we know by the previous lemma that
the equality must be greater or equal. Suppose it is a strict inequality for some
i, b̃�i, i.e., there exists a � > 0 such that

hi(b̃�i)�
⇣
sup
b
0
i

X

j

�
�j(b̃

0
�j
) ·D�j(b̃

0
�j
, f(b̃0))� gj(b̃

0
�j
(f(b̃0)))

�

�

X

j 6=i

hj(b̃
0
�j
)
⌘
= � > 0.

(7.6)

Define

h
0
j
(b�j) =

(
hi(b̃�i)� � if i = j and b�j = b̃�i

hj(b�j) otherwise,
(7.7)

7.5. A Case Study: Altruism 175

and let
p0
i
(b) = h

0
i
(b�i) + gi(b�i(f(b)))� �i(b�i) ·D�i(b�i, f(b)).

If we can verify that p0 is non-deficit then it individually dominates p. This
is clear because we have shifted h

0
i
(b̃) exactly by the amount of slack there was,

namely �, and the rest remained unchanged. As the mechanism with respect to h

was non-deficit, it is also with respect to h
0.

For the other implication. Suppose p is individually dominated by p0, then
there exist i and b such that pi(b) > p0

i
(b). In particular,

pi(b) = hi(b�i) + gi(b�i(f(b)))� �i(b�i) ·D�i(b�i, f(b))

> h
0
i
(b�i) + gi(b�i(f(b)))� �i(b�i) ·D�i(b�i, f(b))

= p0
i
(b).

As gi and �i(b�i) ·D�i are the same on both sides of the inequality this actually
implies hi(b�i) > h

0
i
(b�i).

Write

� = sup
b
0
i

X

j

�
�j(b�j) ·D�j((b

0
i
, b�i), f(b

0
i
, b�i))�gj(b�j(f(b

0
i
, b�i)))

�
�

X

j 6=i

hj(b
0
�j
).

But then

h
0
i
(b�i)� � > h

0
i
(b�i)� � � 0,

showing that (7.5) is not satisfied for p.
2

7.5 A Case Study: Altruism

7.5.1 Two Altruism Models and Design Objectives
We consider two models of altruism that are instantiations of the utility model
with other-regarding preferences. We assume that each player i 2 N is equipped
with an altruism level ↵i 2 [0, 1] which interpolates between a ‘purely selfish’
(↵i = 0) and a ‘fully altruistic’ (↵i = 1) attitude.2

2Note that although our focus here is on altruism levels in the range [0, 1], some results also
hold for other cases such as spiteful players (↵i < 0) or players that care about others more than
about themselves (↵i > 1), but we do not mention it explicitly.

176 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

Definition 7.5.1. Given an altruism level ↵i 2 [0, 1] for every player i 2 N , in
the welfare-oriented model the utility u

w

i
: V ! R of player i 2 N is defined as:

u
w

i
(v) = vi(f(b))� pi(b) + ↵i

X

j 6=i

bj(f(b)).

In the welfare-oriented model each player i receives a fraction of ↵i of the
reported valuations of all other players. Note that i fully cares about their own
payment. Altruism here corresponds to a willingness to contribute to the creation
of value in the form of valuations of alternatives.

Definition 7.5.2. Given an altruism level ↵i 2 [0, 1] for every player i 2 N , in
the omnistic model the utility u

o

i
: V ! R of a player i 2 N is given by:

u
o

i
(b) = vi(f(b))� pi(b) + ↵i

pi(b) +

X

j 6=i

bj(f(b))

!
.

In the omnistic model each player i cares about every other player the same
way as in the welfare-oriented model. The difference, however, is that player i

perceives their payment pi to the designer as being discounted by a fraction of
(1� ↵i) (although they pay pi eventually). Put differently, i enjoys a fraction of
↵i of the payment pi that the designer receives from them. This is also the reason
why we call this the ‘omnistic’ model (omnes = all/everybody).

We derive mechanisms for these models with respect to the following two
design objectives:

D
sw(b, a) =

X

i2N

bi(a) and D
ow(b, a) =

X

i2N

✓
1 +

X

k 6=i

↵k

◆
bi(a).

The design objective D
sw is the classical social welfare objective. In our

context, it captures situations where the designer only cares about the sum of the
individual valuations of the players, disregarding the positive perceptions that
they receive from other players. Intuitively, here the utility functions serve merely
as a means to model the positive attitudes of players towards others.

The design objective Dow models situations in which the designer takes both the
individual valuations of the players and their positive other-regarding preferences
towards others into account. Note that this objective is equal to the sum of all
valuations that the players receive (directly or indirectly). We refer to it as the
omnistic welfare objective.

7.5.2 Mechanisms for Altruistic Players
We derive truthful mechanisms for the welfare-oriented and omnistic model (re-
ferred to as w and o for short) with respect to both the social and omnistic welfare

7.5. A Case Study: Altruism 177

(m,D) payment function and altruism-adjusted Clarke pivot rule

(w,Dsw)

pi(b) = hi(b�i)� (1� ↵i)
P

j 6=i
bj(f(b))

hi(b�i) = (1� ↵i + ci)
P

j 6=i
bj(a�i)

a
�i
2 argmax

a2A

P
j 6=i

bj(a)

(o,Dsw)

pi(b) =
1

1� ↵i

hi(b�i)�
P

j 6=i
bj(f(b))

hi(b�i) = (1� ↵i + ci)
P

j 6=i
bj(a�i)

a
�i
2 argmax

a2A

P
j 6=i

bj(a)

(w,Dow)

pi(b) = hi(b�i)�
P

j 6=i

⇣
1+

P
k 6=j ↵k

1+
P

k 6=i ↵k
� ↵i

⌘
bj(f(b))

hi(b�i) =
P

j 6=i

⇣
1+

P
k 6=j ↵k

1+
P

k 6=i ↵k
� ↵i + ci

⌘
bj(a�i)

a
�i
2 argmax

a2A

P
j 6=i

�
1 +

P
k 6=j,i

↵k � ↵i

P
k 6=i

↵k

�
bj(a)

(o,Dow)

pi(b) = hi(b�i)�
1

1� ↵i

P
j 6=i

⇣
1+

P
k 6=j ↵k

1+
P

k 6=i ↵k
� ↵i

⌘
bj(f(b))

hi(b�i) =
1

1� ↵i

P
j 6=i

⇣
1+

P
k 6=j ↵k

1+
P

k 6=i ↵k
� ↵i + ci

⌘
bj(a�i)

a
�i
2 argmax

a2A

P
j 6=i

�
1 +

P
k 6=j,i

↵k � ↵i

P
k 6=i

↵k

�
bj(a)

Table 7.1: Definition of the payment function of the AAVCG mechanisms and its
altruism-adjusted Clarke pivot rule, depending on the altruism model and design
objective. The parameter ci can be fixed arbitrarily in the range [0,↵i]

objective. In order to keep the presentation concise, we introduce the following
generic definition of adjusted VCG mechanisms. The respective payment functions
p are stated in Table 7.1.

Definition 7.5.3. Let m 2 {w, o} refer to an altruism model as defined above
and let D 2 {D

sw
, D

ow
} be a design objective. A mechanism M

m,D = (f,p) is
called an altruism-adjusted VCG mechanism (AAVCG) with respect to altruism
model m and design objective D if the following two conditions are satisfied:

1. f(b) 2 argmaxa2A D(b, a).

2. For every player i 2 N and some function hi : V�i ! R, the payment
function pi(b) is defined as in Table 7.1.

Similarly, we give a generic definition of an altruism-adjusted Clarke pivot rule
for these mechanisms. The respective definitions of the functions hi are stated in
Table 7.1.

178 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

Definition 7.5.4. We say that an AAVCG mechanism M
m,D = (f,p) with

respect to altruism model m and design objective D implements the altruism-
adjusted Clarke pivot rule if for every player i 2 N there is some ci 2 [0,↵i] such
that the function hi is as defined in Table 7.1.

With the help of Theorem 7.3.5 and Proposition 7.3.6, we can show that the
four AAVCG mechanisms as specified in Table 7.1 are truthful and satisfy NPT
and IR.

Theorem 7.5.5. Every AAVCG mechanisms M
m,D = (f,p) with respect to

altruism model m and design objective D is truthful. Further, M
m,D satisfies

NPT and IR if it implements the altruism-adjusted Clarke pivot rule.

Proof: We will check for every combination that it fits the design template from
Theorem 7.3.5.

For both models with the social welfare objective we use �i(b�i) = 1.

(w, sw): We verify

pi(b) = hi(b�i)� (1� ↵i)
X

j 6=i

bj(f(b))

= hi(b�i) + ↵i

X

j 6=i

bj(f(b))�
X

j 6=i

bj(f(b))

= hi(b�i) + gi(b�i(f(b)))� 1 ·D�i(b�i, f(b)).

(o, sw): For this combination we see

pi(b) =
1

1� ↵i

hi(b�i)�
X

j 6=i

bj(f(b))

() (1� ↵i)pi(b) = hi(b�i)� (1� ↵i)
X

j 6=i

bj(f(b))

() pi(b) = hi(b�i) + ↵ipi(b) + ↵i

X

j 6=i

bj(f(b))�
X

j 6=i

bj(f(b))

() pi(b) = hi(b�i) + gi(b�i(f(b)),p(b))� 1 ·
X

j 6=i

bj(f(b)),

and thus it fits the criteria of Theorem 7.3.5.
For both the models with the omnistic welfare we take �i(b�i) =

1
1+

P
k 6=i ↵k

.

7.5. A Case Study: Altruism 179

(w, ow): Then

pi(b) = hi(b�i)�
X

j 6=i

1 +

P
k 6=j

↵k

1 +
P

k 6=i
↵k

� ↵i

!
bj(f(b))

= hi(b�i) + ↵i

X

j 6=i

bj(f(b))�
X

j 6=i

1 +
P

k 6=j
↵k

1 +
P

k 6=i
↵k

bj(f(b))

= hi(b�i) + ↵i

X

j 6=i

bj(f(b))�
1

1 +
P

k 6=i
↵k

X

j 6=i

1 +

X

k 6=j

↵k

!
bj(f(b))

= hi(b�i) + gi(b�i(f(b)))� �i(b�i)D�i(b�i, f(b)).

(o, ow) : Finally,

pi(b) =
1

1� ↵i

hi(b�i)�
X

j 6=i

1 +

P
k 6=j

↵k

1 +
P

k 6=i
↵k

� ↵i

!
bj(f(b))

() (1� ↵i)pi(b) = hi(b�i)� (1� ↵)
X

j 6=i

1 +

P
k 6=j

↵k

1 +
P

k 6=i
↵k

� ↵i

!
bj(f(b))

() pi(b) =

hi(b�i) + ↵ipi(b) + ↵i

X

j 6=i

bj(f(b))�

X

j 6=i

1 +
P

k 6=j
↵k

1 +
P

k 6=i
↵k

bj(f(b))

() pi(b) =

hi(b�i) + ↵i

X

j 6=i

bj(f(b)) + pi(b)

!
�

1

1 +
P

k 6=i
↵k

X

j 6=i

1 +

X

k 6=j

↵k

!
bj(f(b))

() pi(b) = hi(b�i) + gi(b�i(f(b)),p(b))� �i(b�i)D�i(b�i, f(b)).

Hence, we see that all four combinations fit the criteria of Theorem 7.3.5 and so
they are truthful. 2

7.5.3 Discussion
We discuss a few main properties of the mechanisms introduced above.

First note that the two AAVCG mechanisms for the social welfare objective
reduce to the standard VCG mechanism (Definition 2.5.7) if the players are entirely
selfish, i.e., ↵i = 0 for all i. This is to be expected because in this case both

180 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

the welfare-oriented model and the omnistic model reduce to the standard utility
model.

Further, these mechanisms nicely capture the intuition that altruism counters
the negative effect of egoistic predispositions: As the altruism level of a player i
increases, the designer needs to pay them less to have them want to reveal the
truth about their valuation functions. And in fact, as we would expect the players
require no extra incentive at all when they are fully altruistic (↵i = 1 for all i).

Observe that the altruism-adjusted Clarke pivot gives rise to a family of
mechanisms (parametrized by ci 2 [0,↵i] for all i). The size of this set grows with
the altruism levels ↵i of the players. This flexibility can be exploited to extract
smaller payments from the players.

The altruism-adjusted Clarke pivot rule has a particularly nice representation
in the omnistic model with respect to the social welfare objective, i.e., for every
ci 2 [0,↵i]

pi(b) =

✓
1 +

ci

1� ↵i

◆X

j 6=i

bj(a
�i)�

X

j 6=i

bj(f(b)), (7.8)

where a
�i is as defined in Table 7.1.

Note that by choosing ci = 0 for every i, the resulting AAVCG mechanism
reduces to the standard VCG mechanism with the Clarke pivot rule. In particular,
this means that for this setting the standard VCG mechanism (not taking care of
any other-regarding preferences) is truthful.

7.6 Impact of Altruism

First, we apply our altruism-adjusted VCG mechanism derived in the previous
section to classical problems in mechanism design, bilateral trade, and funding of a
public project. Using standard VCG for these problems results in a mechanism with
undesirable properties. If the players are sufficiently altruistic, these undesirable
properties get resolved. Next, we show that we can convert a standard VCG
mechanism into an altruism-adjusted VCG mechanism with smaller payments.
The more altruistic the players, the lower the payments.

7.6.1 Bilateral Trade

A buyer is interested in some object and values it at vb, while some seller has the
object and values it at vs. We want a mechanism in which the players reveal their
true preferences. In a mechanism design context this is modeled as follows:

(i) The set of alternatives is A = {trade, no-trade}.

7.6. Impact of Altruism 181

(ii) The buyer has valuation function vb defined as

vb(trade) = vb

vb(no-trade) = 0.

(iii) The seller has valuation function vs defined as

vs(trade) = �vs
vs(no-trade) = 0.

The seller has a negative value for the trade because they will give away the item
when a trade happens. By using standard VCG and insisting on no payments when
there is no trade we will see that the mechanism needs to be subsidized, which is
undesirable. Requiring that no payments are made when there is no trade implies
that if vb < vs, then ps((vb, vs)) = hs(vb)� 0 = 0 and pb((vb, vs)) = hb(vs)� 0 = 0
implying that hs(vb) = hb(vs) = 0. But when a trade happens i.e., if vb � vs,
then ps((vb, vs)) = 0� vb = �vb and pb((vb, vs)) = 0��vs = vs. Hence the seller
receives vb, while the buyer pays vs. Thus, if vb > vs the mechanism needs to be
subsidized. It is of course very undesirable that a third party has to subsidize the
mechanism to make the players reveal their true preferences.

In contrast, suppose the buyer has an altruism level of �↵b (the seller has a
negative valuation for trading, so the negative altruism level of the buyer reflects
the belief that the seller loses more value than what they report), and the seller of
↵s, then using the AAVCG mechanism in the welfare-oriented model we deduce
in the same way that hs = hb = 0 but now we charge the buyer (1 + ↵b)vs and
the seller gets (1� ↵s)vb if the trade happens. Hence, if

(1 + ↵b)vs � (1� ↵s)vb,

the mechanism runs without the need of subsidizing it. And the greater the
altruism levels of the players, the more likely that this happens.

7.6.2 Funding a Public Project
In the public project problem a contractor (e.g., government) considers undertaking
a public project (e.g., building a bridge) at a commonly known cost C. Each
player i 2 N (e.g., citizen) reports a value bi that the realization of the project is
worth to them (not necessarily equal to their private value vi). Given the bids
b = (b1, . . . , bn), the contractor determines whether the project is realized and
what the contribution pi(b) of every player i 2 N is. Here the project is realized
if and only if it can be funded by the players, i.e.,

P
i2N pi(b) � C.

This models a very realistic situation. It would be desirable that the theory of
mechanism design provides us with a mechanism that ensures that the project

182 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

is undertaken when it should be undertaken, i.e., when the actual value created
by the realization of the project is at least C; formally,

P
i2N vi � C. This is

precisely what a truthful mechanism maximizing social welfare would achieve.
Unfortunately, the only instances of the public project problem that can be solved
in the standard mechanism design setting are trivial ones.

Formally, the public project problem in a mechanism design context can be
defined as follows (after Clarke (1971)):

(i) The set of alternatives is A = {yes, no}.

(ii) The set of players consists of N = {1, . . . , n} and a special player 0, repre-
senting the contractor.

(iii) Player i = 0 has a singleton valuation set Vi = {vi} with vi(yes) = �C for
some C 2 R+ and vi(no) = 0.

(iv) Every player i 2 N has a valuation set Vi such that for every vi 2 Vi we have
vi(yes) = wi for some wi 2 R+ and vi(no) = 0.

(v) The design objective is the social welfare D
sw.

Note that player i = 0 is essentially a dummy player as they do not have
any choice other than reporting their valuation function truthfully. Also, their
valuation is �C (reflecting that the realization of the project incurs a cost to
them). In particular, they cannot be asked to contribute anything to the project.

Why standard mechanism design fails. The VCG mechanism with the
Clarke pivot rule is known to be the only truthful mechanism that satisfies
individual rationality (given the social welfare design objective); see, e.g., Nisan
et al., 2007. In order to understand how this mechanism determines the payments
in the public project problem, we need the following concept: Given the bids
b 2 V , a player i 2 N is called pivotal if

P
j
bj � C but

P
j 6=i

bj < C; otherwise,
i is non-pivotal. In other words, a pivotal player is essential to make the project
fundable.

The following proposition characterizes when a project is funded:

Proposition 7.6.1. ((Nisan et al., 2007)). Using the VCG mechanism with the
Clarke pivot rule, the public project in the standard utility model is funded if and
only if

1. bi � C for some i 2 N and bj = 0 for all j 2 N , j 6= i, or

2.
P

i2N bi = C.

7.6. Impact of Altruism 183

Proof: The payment of each player i is C�
P

j 6=i
bj if i is pivotal and 0 otherwise.

The if part for the first condition follows because in this case every player i

with non-zero bi is pivotal and thus

X

i2N

pi(b) =
X

i2N

✓
C �

X

j 6=i

bj

◆
= nC � (n� 1)

X

i2N

bi = C.

The if part of the second condition follows because the pivotal player i pays C.
For the only-if part we assume that both conditions do not hold. Only pivotal

players have positive payment, thus if there are none then the project cannot
be funded. Hence, we may assume there is at least one pivotal player i. Their
payment is C �

P
j 6=i

bj . To have the project funded the remaining players should
pay at least

P
j 6=i

bj . As condition 1 does not hold, we know that this is a positive
amount. A player pays never more than their bid, but to reach

P
j 6=i

bj all players
should pay their bid. This only happens if every player is pivotal, which is
impossible by our assumption that condition 2 does not hold. 2

As a consequence, a public project is only funded if there is exactly one player
who benefits from it, or if there is no benefit at all but just a break-even between
the value created and the investment costs incurred.

We next show how altruism helps to escape the above dilemma. More specif-
ically, we consider the omnistic model and use the VCG mechanism with the
altruism-adjusted Clarke pivot rule (7.8) with ci = ↵i for all i.

Proposition 7.6.2. Let Np be the set of pivotal players, and Nn the set of non-
pivotal players. Using the VCG mechanism with the altruism-adjusted Clarke pivot
rule (choosing ci = ↵i for all i), the public project in the omnistic model is funded
if and only if

X

i2Np

C �

X

j 6=i

bj

!
+
X

i2Nn

↵i

1� ↵i

X

j 6=i

bj � C

!
� C.

Proof: The payment is given by

pi(b) =
1

1� ↵i

X

j 6=i

vj(a
�i) + v0(a

�i)

!
�

X

j 6=i

vj(f(b))� v0(f(b)).

If i is a pivotal player and f(b) = yes then

pi(b) = 0�
X

j 6=i

bj + C = C �

X

j 6=i

bj,

184 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

while if i is non-pivotal then

pi(b) =
1

1� ↵i

X

j 6=i

bj � C

!
�

X

j 6=i

bj + C

=
↵i

1� ↵i

X

j 6=i

bj � C

!
.

Hence the sum of the payments is

X

i

pi(b) =
X

i2Np

C �

X

j 6=i

bj

!
+
X

i2Nn

↵i

1� ↵i

X

j 6=i

bj � C

!
,

and this has to be at least C to have the project funded. 2
What does Proposition 7.6.2 tell us? First of all, we see that the project is more

likely to be fully funded when it is more profitable for the group to undertake
it. For the pivotal players, the higher the contribution of the other players, the
higher C �

P
j 6=i

bj, and for the non-pivotal players it is clear that the more
profitable the project is the higher

P
j 6=i

bj � C. This relation is rather satisfying,
especially if one compares it with the results for the standard utility model (where,
paradoxically, the larger the net benefits of the project are, the less likely it is
that it will be funded).

Secondly, we observe that altruism of non-pivotal players always has a positive
effect on the likelihood of funding the project and this effect is amplified when
the altruism levels of the (non-pivotal) players with small valuation is large. This
effect becomes even more apparent if one considers uniform altruism levels (↵i = ↵

for all i) and only non-pivotal players. The condition of Proposition 7.6.2 simplifies
to

↵

✓X

j2N

bj � C

◆
�

C

n� 1
.

Also, note that the number of players n is positively related to the likelihood of
funding the project.

7.6.3 Minimizing Payments
In this section, we assume that Assumption 7.3.2 holds. Given a mechanism where
we do not take altruism into account but where players are actually altruistic,
we will transform it into a mechanism with a smaller total payment. Consider
welfare-oriented other-regarding preferences. Let every player i have an altruism
level of ↵i. Define ↵ = mini ↵i. Suppose we have some non-deficit mechanism
satisfying the requirements of Theorem 7.3.5 with � = 1 without taking the
other-regarding preferences into account, i.e., gi = 0 (one can think of standard

7.6. Impact of Altruism 185

VCG). Hence, we have hi(b�i) such that for pi(v) = hi(b�i)�D�i(b�i, f(b)) the
mechanism is non-deficit. Lemma 7.4.2 implies that

hi(b�i) � sup
b
0
i

X

j

D�j(b
0
�j
, f(b0))�

X

j 6=i

hj(b
0
�i
). (7.9)

Let gi(b�i(f(b))) = ↵i

P
j 6=i

bj(f(b)). And let g
0
i
(b�i(f(b))) = ↵

P
j 6=i

bj(f(b)).
First note that g0

i
(b�i(f(b))) = ↵ ·D�i(b�i, f(b)) and also observe that by choice

of ↵ it holds that g
0
i
(b�i(f(b)))  gi(b�i(f(b))). This will allow us to invoke

Proposition 7.3.7 below.
We manipulate equation (7.9) by multiplying both sides by (1� ↵)

(1� ↵)hi(b�i) � sup
b
0
i

X

j

(1� ↵)D�j(b
0
�j
, f(b0))�

X

j 6=i

(1� ↵)hj(b
0
�i
)

= sup
b
0
i

X

j

D�j(b
0
�j
, f(b0))� g

0
j
(b0�j

(f(b0)))�
X

j 6=i

(1� ↵)hj(b
0
�i
).

Thus, substituting (1�↵)hi by h
0
i
, shows that h0

i
satisfies Lemma 7.4.2 and so the

mechanism with respect to h
0
i
is non-deficit.

Because g
0
i
 gi Proposition 7.3.7 tells us that our mechanism is also IR and

truthfulness follows from Theorem 7.3.5.
We take a look at the payments. First, observe that

p
0
i
(b) = h

0
i
(b�i) + g

0
j
(b�i(f(b)))�D�j(b�i, f(b))

= (1� ↵)hi(b�i)� (1� ↵)D�j(b�i, f(b)) = (1� ↵)pi(b).

And so if ↵ > 0, every player pays or receives a factor (1� ↵) less, and also the
total payment

P
i
p
0
i
(b) = (1� ↵)

P
�i

pi(b) is reduced by a factor (1� ↵).
We can take any VCG mechanism that does not take altruism into account and

convert it into one that does and automatically has payments that are reduced by
a factor (1� ↵).

Example 7.6.3. (Multi-Unit Auction). Consider a multi-unit auction with k

identical goods. At most one item will be allocated to each player3.
Standard VCG without other-regarding preferences charges the highest losing

bid to all players. We can capture this in the welfare-oriented model with the
classical social welfare objective by setting ↵i = 0 for all i 2 N and hi(b�i) =P

k

j=1[b�i]j. Let ↵ = mini2N ↵i where ↵i is the altruism level of player i. If we
require NPT we can take ci = 0 for all i to minimize payments and obtain

hi(b�i) = (1� ↵)
kX

j=1

[b�i]j.

3Note that this is different from the multi-unit auction in Chapter 6 where multiple items
could be allocated to a single bidder.

186 Chapter 7. Greater Flexibility in Mechanism Design Through Altruism

As also the second part of the payment (see Table 7.1) is multiplied by (1�↵) the
total payments are a factor (1� ↵) lower than in standard VCG without altruism.

Not insisting on NPT (but still requiring the mechanism to be non-deficit)
allows us to do better. Already in the standard VCG setting, we can apply
the Bailey-Cavallo redistribution function (Bailey, 1997; Cavallo, 2006). This
corresponds to

hi(b�i) =

kX

j=1

[b�i]j �
k

n
[b�i]k+1

!
,

significantly reducing the sum of payments to

X

i

pi(b) =
kX

j=1

[b]j � k · [b]k+1.

Applying the theory from this subsection we can take

hi(b�i) = (1� ↵)

kX

j=1

[b�i]j �
k

n
[b�i]k+1

!
,

and still have a non-deficit, individually rational and truthful mechanism saving a
factor (1� ↵) on the payments:

X

i2N

pi(b) = (1� ↵)

kX

j=1

[b]j � k · [b]k+1

!
.

It is even true that the last mechanism is individually undominated. Taking
b
0
i
= [b�i]k+1 in the supremum of equation (7.5) will result in equality. For example

for k = 1 and i = 1 we have
X

j

D�j(b�1, [b�1]2) = (1� ↵)(n� 1)[b�1]1

and X

j 6=1

hj(b
0
�j
) = (1� ↵)

✓
(n� 2)[b0�j

]1 +
[b0�j

]2
n

◆
.

Note that [b�j]1 = [b�1]1 and [b0�j
]2 = [b�1]2. Taking the difference is equal to

h1(b�1). This equality can be verified for all k and i.

7.7 Conclusion

We have introduced a general utility model that incorporates other-regarding
preferences with the specific aim of modeling altruism. In addition to characterizing

7.7. Conclusion 187

truthful mechanisms in this model, we provide a recipe for obtaining them. With
this recipe, we propose two different ways of modeling altruism and give case
studies in which these models allow us to explain how the classic mechanism
design problems of bilateral trade and funding of a public project become feasible.
Of course, more other-regarding preferences are conceivable, and we hope that our
framework gives an easy tool to come up with truthful mechanisms with respect
to those other-regarding preferences.

Following Guo, Markakis, et al. (2013), we have characterized what individually
undominated mechanisms look like in our model. Moreover, we have shown that
any VCG mechanism not taking altruism into account can be converted into a
truthful mechanism that does take altruism into account with lower payments.

Under some assumptions, we have seen that it is possible to have truthful
mechanisms based on the ‘wrong’ other-regarding preferences. Because the other-
regarding preferences are an integral part of the characterization of individually
undominated mechanisms, it is not possible to compare mechanisms with different
other-regarding preferences. It would be nice to be able to characterize mechanisms
that are undominated irrespective of the exact other-regarding preferences, as
long as the mechanisms are truthful and non-deficit.

Another interesting next step is to see if it is possible to come up with
mechanisms that are strongly budget-balanced. A starting point is looking into
how Cavallo (2012) leverages the flexibility that altruism gives for this purpose.

Finally, on a conceptual level, we hope that there will be more research into
how altruism can be incorporated into mechanism design.

Bibliography

Aggarwal, Charu C and Philip S Yu (2009). “A Survey of Uncertain Data Al-
gorithms and Applications”. In: IEEE Transactions on Knowledge and Data
Engineering 21.5, pages 609–623 (cited on page 66).

Ahuja, Ravindra K, Kurt Mehlhorn, James Orlin, and Robert E Tarjan (1990).
“Faster algorithms for the shortest path problem”. In: Journal of the ACM
37.2, pages 213–223 (cited on page 61).

Amici, Raul, Marco Bonola, Lorenzo Bracciale, Antonello Rabuffi, Pierpaolo Loreti,
and Giuseppe Bianchi (2014). “Performance assessment of an epidemic protocol
in VANET using real traces”. In: Procedia Computer Science 40, pages 92–99
(cited on page 90).

Andreoni, James and John Miller (2002). “Giving according to GARP: An experi-
mental test of the consistency of preferences for altruism”. In: Econometrica
70.2, pages 737–753 (cited on pages 6, 164).

Apt, Krzysztof R and Guido Schäfer (2014). “Selfishness level of strategic games”.
In: Journal of Artificial Intelligence Research 49, pages 207–240 (cited on
page 166).

Avrachenkov, Konstantin and Nelly Litvak (2006). “The Effect of New Links
on Google Pagerank”. In: Stochastic Models 22.2, pages 319–331 (cited on
page 37).

Awerbuch, Baruch, Yossi Azar, Yossi Richter, and Dekel Tsur (2006). “Tradeoffs in
worst-case equilibria”. In: Theoretical Computer Science 361.2-3, pages 200–209
(cited on page 104).

Bader, David A., Shiva Kintali, Kamesh Madduri, and Milena Mihail (2007).
“Approximating betweenness centrality”. In: Algorithms and Models for the
Web-Graph, pages 124–137 (cited on page 84).

189

190 Bibliography

Bailey, Martin J (1997). “The demand revealing process: to distribute the surplus”.
In: Public Choice 91.2, pages 107–126 (cited on pages 164, 167, 186).

Ball, Michael O. (1986). “Computational complexity of network reliability analysis:
An overview”. In: IEEE Transactions on Reliability 35.3, pages 230–239 (cited
on pages 65, 67).

Barabási, Albert-László and Réka Albert (1999). “Emergence of scaling in random
networks”. In: Science 286.5439, pages 509–512 (cited on page 87).

Bauer, Reinhard, Gianlorenzo D’Angelo, Daniel Delling, Andrea Schumm, and
Dorothea Wagner (2012). “The Shortcut Problem - Complexity and Algorithms”.
In: Journal of Graph Algorithms and Applications 16.2, pages 447–481 (cited
on page 37).

Beek, Andries van, Ruben Brokkelkamp, and Guido Schäfer (2022). “Corruption
in Auctions: Social Welfare Loss in Hybrid Multi-Unit Auctions”. In: 21st
International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2022, Auckland, New Zealand, May 9-13, 2022. Edited by Piotr
Faliszewski, Viviana Mascardi, Catherine Pelachaud, and Matthew E. Taylor.
International Foundation for Autonomous Agents and Multiagent Systems,
pages 1283–1291. doi: 10.5555/3535850.3535993 (cited on page 9).

Bellman, Richard (1958). “On a routing problem”. In: Quarterly of applied mathe-
matics 16.1, pages 87–90 (cited on page 61).

Bergamini, Elisabetta, Pierluigi Crescenzi, Gianlorenzo D’Angelo, Henning Meyer-
henke, Lorenzo Severini, and Yllka Velaj (2018). “Improving the Betweenness
Centrality of a Node by Adding Links”. In: ACM Journal of Experimental
Algorithmics 23 (cited on pages 33, 37).

Bilò, Davide, Luciano Gualà, and Guido Proietti (2012). “Improved approximability
and non-approximability results for graph diameter decreasing problems”. In:
Theoretical Computer Science 417, pages 12–22 (cited on page 37).

Bilò, Vittorio (2018). “A unifying tool for bounding the quality of non-cooperative
solutions in weighted congestion games”. In: Theory of Computing Systems
62.5, pages 1288–1317 (cited on pages 103, 104, 111).

Birmpas, Georgios, Evangelos Markakis, Orestis Telelis, and Artem Tsikiridis
(2019). “Tight Welfare Guarantees for Pure Nash Equilibria of the Uniform
Price Auction”. In: Theory of Computing Systems 63.7, pages 1451–1469. doi:
10.1007/s00224-018-9889-7 (cited on pages 133, 136, 137, 148, 149).

Boldi, Paolo, Francesco Bonchi, Aristides Gionis, and Tamir Tassa (July 2012).
“Injecting uncertainty in graphs for identity obfuscation”. In: Proceedings of the
VLDB Endowment 5.11, pages 1376–1387. doi: 10.14778/2350229.2350254
(cited on page 66).

Bonchi, Francesco, Aristides Gionis, Francesco Gullo, and Antti Ukkonen (2014).
“Distance oracles in edge-labeled graphs”. In: Proceedings of the 17th Interna-
tional Conference on Extending Database Technology, pages 547–558 (cited on
page 66).

https://doi.org/10.5555/3535850.3535993
https://doi.org/10.1007/s00224-018-9889-7
https://doi.org/10.14778/2350229.2350254

Bibliography 191

Borgs, Christian, Michael Brautbar, Jennifer Chayes, and Brendan Lucier (2014).
“Maximizing social influence in nearly optimal time”. In: Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 946–957
(cited on page 66).

Brandes, Ulrik (2001). “A faster algorithm for betweenness centrality”. In: Journal
of Mathematical Sociology 25.2, pages 163–177 (cited on pages 66, 84).

Brandt, Felix and Gerhard Weiß (2001). “Antisocial agents and Vickrey auctions”.
In: International Workshop on Agent Theories, Architectures, and Languages.
Springer, pages 335–347 (cited on page 166).

Briest, Patrick (2008). “Uniform Budgets and the Envy-Free Pricing Problem”. In:
Automata, Languages and Programming, pages 808–819 (cited on page 38).

Briest, Patrick, Parinya Chalermsook, Sanjeev Khanna, Bundit Laekhanukit, and
Danupon Nanongkai (2010). “Improved Hardness of Approximation for Stack-
elberg Shortest-Path Pricing”. In: Internet and Network Economics, pages 444–
454 (cited on page 38).

Briest, Patrick, Martin Hoefer, and Piotr Krysta (Apr. 1, 2012). “Stackelberg
Network Pricing Games”. In: Algorithmica 62.3, pages 733–753. doi: 10.1007/
s00453-010-9480-3 (cited on page 37).

Brokkelkamp, Ruben, Sjir Hoeijmakers, and Guido Schäfer (2022). “Greater Flex-
bility in Mechanism Design Through Altruism”. In: International Symposium
on Algorithmic Game Theory. Springer (cited on page 9).

Brokkelkamp, Ruben, Sven C. Polak, Guido Schäfer, and Yllka Velaj (2019). “Ap-
proximate Pricing in Networks: How to Boost the Betweenness and Revenue
of a Node”. In: 30th International Symposium on Algorithms and Compu-
tation, ISAAC 2019, December 8-11, 2019, Shanghai University of Finance
and Economics, Shanghai, China. Edited by Pinyan Lu and Guochuan Zhang.
Volume 149. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–
13:15. doi: 10.4230/LIPIcs.ISAAC.2019.13 (cited on page 7).

Brokkelkamp, Ruben, Raymond van Venetië, Mees J. de Vries, and Jan Wes-
terdiep (2020). “PACE Solver Description: tdULL”. In: 15th International
Symposium on Parameterized and Exact Computation, IPEC 2020, December
14-18, 2020, Hong Kong, China (Virtual Conference). Edited by Yixin Cao and
Marcin Pilipczuk. Volume 180. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 29:1–29:4. doi: 10.4230/LIPIcs.IPEC.2020.29 (cited on
page 10).

Brotcorne, Luce, F. Cirinei, Patrice Marcotte, and Gilles Savard (May 1, 2011).
“An exact algorithm for the network pricing problem”. In: Discrete Optimization
8.2, pages 246–258. doi: 10.1016/j.disopt.2010.09.003 (cited on page 37).

Buehler, Russell, Zachary Goldman, David Liben-Nowell, Yuechao Pei, Jamie
Quadri, Alexa Sharp, Sam Taggart, Tom Wexler, and Kevin Woods (2011).
“The price of civil society”. In: International Workshop on Internet and Network
Economics. Springer, pages 375–382 (cited on page 166).

https://doi.org/10.1007/s00453-010-9480-3
https://doi.org/10.1007/s00453-010-9480-3
https://doi.org/10.4230/LIPIcs.ISAAC.2019.13
https://doi.org/10.4230/LIPIcs.IPEC.2020.29
https://doi.org/10.1016/j.disopt.2010.09.003

192 Bibliography

Caragiannis, Ioannis, Christos Kaklamanis, Panagiotis Kanellopoulos, Maria Ky-
ropoulou, Brendan Lucier, Renato Paes Leme, and Éva Tardos (2015). “Bound-
ing the inefficiency of outcomes in generalized second price auctions”. In:
Journal of Economic Theory 156, pages 343–388 (cited on page 108).

Caragiannis, Ioannis, Christos Kaklamanis, Panagiotis Kanellopoulos, Maria Ky-
ropoulou, and Evi Papaioannou (2010). “The impact of altruism on the effi-
ciency of atomic congestion games”. In: International Symposium on Trustwor-
thy Global Computing. Springer, pages 172–188 (cited on page 166).

Carlson, James A, Arthur Jaffe, and Andrew Wiles (2006). The Millennium Prize
Problems (cited on page 19).

Cavallo, Ruggiero (2006). “Optimal decision-making with minimal waste: Strat-
egyproof redistribution of VCG payments”. In: Proceedings of the fifth in-
ternational joint conference on Autonomous agents and multiagent systems,
pages 882–889 (cited on pages 164, 167, 186).

— (2012). “Efficient Auctions with Altruism”. Published online at http://rc.

ftml.net.user.fm/papers/cavallo-altru.pdf (cited on pages 167, 187).
Chalermsook, Parinya, Bundit Laekhanukit, and Danupon Nanongkai (2013).

“Independent Set, Induced Matching, and Pricing: Connections and Tight
(Subexponential Time) Approximation Hardnesses”. In: Proceedings of the
2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 370–379. doi: 10.1109/FOCS.2013.47 (cited on pages 38, 53, 54).

Charness, Gary and Matthew Rabin (2002). “Understanding social preferences
with simple tests”. In: The quarterly journal of economics 117.3, pages 817–869
(cited on pages 6, 164).

Chehreghani, M. H. (2014). “An efficient algorithm for approximate betweenness
centrality computation”. In: The Computer Journal 57.9, pages 1371–1382
(cited on page 84).

Chen, Po-An, Bart De Keijzer, David Kempe, and Guido Schäfer (2014). “Altruism
and its impact on the price of anarchy”. In: ACM Transactions on Economics
and Computation 2.4, pages 1–45 (cited on page 166).

Cheng, Yu-Rong, Ye Yuan, Lei Chen, and Guo-Ren Wang (2015). “Threshold-
based shortest path query over large correlated uncertain graphs”. In: Journal
of Computer Science and Technology 30.4, pages 762–780 (cited on page 66).

Cheng, Yurong, Ye Yuan, Guoren Wang, Baiyou Qiao, and Zhiqiong Wang (2014).
“Efficient sampling methods for shortest path query over uncertain graphs”.
In: International Conference on Database Systems for Advanced Applications,
pages 124–140 (cited on pages 65, 66, 67, 87, 93).

Christodoulou, George, Annamária Kovács, Alkmini Sgouritsa, and Bo Tang
(2016). “Tight Bounds for the Price of Anarchy of Simultaneous First-Price
Auctions”. In: ACM Transactions on Economics and Computation 4.2. doi:
10.1145/2847520 (cited on page 136).

Clarke, Edward H (1971). “Multipart pricing of public goods”. In: Public choice,
pages 17–33 (cited on page 31).

http://rc.ftml.net.user.fm/papers/cavallo-altru.pdf
http://rc.ftml.net.user.fm/papers/cavallo-altru.pdf
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1145/2847520

Bibliography 193

Cole, Richard, José R Correa, Vasilis Gkatzelis, Vahab Mirrokni, and Neil Olver
(2015). “Decentralized utilitarian mechanisms for scheduling games”. In: Games
and Economic Behavior 92, pages 306–326 (cited on page 104).

Conway, R.W., W.L Maxwell, and L.W. Miller (1967). Theory of Scheduling.
Addison Wesley, Reading, Mass. (cited on page 103).

Cook, Stephen A (1971). “The complexity of theorem-proving procedures”. In:
Proceedings of the third annual ACM symposium on Theory of computing,
pages 151–158 (cited on page 20).

Cormen, Thomas H, Charles E Leiserson, Ronald L Rivest, and Clifford Stein
(2009). Introduction to algorithms. MIT press (cited on pages 11, 19).

Correa, José R and Maurice Queyranne (2012). “Efficiency of equilibria in restricted
uniform machine scheduling with total weighted completion time as social cost”.
In: Naval Research Logistics (NRL) 59.5, pages 384–395 (cited on page 104).

Costa, Camila F., Mario A. Nascimento, José A.F. Macêdo, Yannis Theodoridis,
Nikos Pelekis, and Javam Machado (2015). “Optimal time-dependent sequenced
route queries in road networks”. In: Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 1–4 (cited on page 90).

Craddock, Cameron et al. (2013). “The neuro bureau preprocessing initiative:
Open sharing of preprocessed neuroimaging data and derivatives”. In: Frontiers
in Neuroinformatics. doi: 10.3389/conf.fninf.2013.09.00041 (cited on
pages 62, 96).

Crescenzi, Pierluigi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj
(2015). “Greedily improving our own centrality in a network”. In: Proceedings
of 14th International Symposium on Experimental Algorithms. Volume 9125,
pages 43–55 (cited on page 37).

— (2016). “Greedily Improving Our Own Closeness Centrality in a Network”. In:
ACM Trans. Knowl. Discov. Data 11.1, 9:1–9:32 (cited on page 37).

Crescenzi, Pierluigi and Viggo Kann, editors (2000). A compendium of NP opti-
mization problems. url: https://www.csc.kth.se/tcs/compendium (cited
on page 20).

Czumaj, Artur and Berthold Vöcking (2007). “Tight bounds for worst-case equilib-
ria”. In: ACM Transactions on Algorithms 3.1, pages 1–17 (cited on page 104).

D’Angelo, Gianlorenzo, Martin Olsen, and Lorenzo Severini (2019). “Coverage
centrality maximization in undirected networks”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Volume 33. 01, pages 501–508 (cited on
page 37).

Das, Kousik, Sovan Samanta, and Madhumangal Pal (2018). “Study on centrality
measures in social networks: a survey”. In: Social network analysis and mining
8.1, pages 1–11 (cited on page 33).

de Keijzer, Bart, Evangelos Markakis, Guido Schäfer, and Orestis Telelis (2013).
“Inefficiency of Standard Multi-unit Auctions”. In: Proceedings of the European

https://doi.org/10.3389/conf.fninf.2013.09.00041
https://www.csc.kth.se/tcs/compendium

194 Bibliography

Symposium on Algorithms, pages 385–396 (cited on pages 133, 135, 136, 143,
144, 148, 149).

De Marco, Giuseppe and Jacqueline Morgan (2011). “Altruistic behavior and
correlated equilibrium selection”. In: International Game Theory Review 13.04,
pages 363–381 (cited on page 166).

Dekker, Wilco and Tom Kreling (Jan. 28, 2022). Hoe werd Nederland een be-
lastingparadijs (en hoe komen we er vanaf)? De Volkskrant. url: https:
//www.volkskrant.nl/nieuws-achtergrond/hoe-werd-nederland-een-

belastingparadijs- en- hoe- komen- we- er- vanaf~b53dce58/ (cited on
page 2).

Delling, Daniel, Peter Sanders, Dominik Schultes, and Dorothea Wagner (2009).
“Engineering route planning algorithms”. In: Algorithmics of large and complex
networks. Springer, pages 117–139 (cited on page 61).

Demaine, Erik D. and Morteza Zadimoghaddam (2010). “Minimizing the Diameter
of a Network Using Shortcut Edges”. In: Proceedings of 12th Scandinavian Sym-
posium and Workshop on Algorithm Theory (SWAT). Volume 6139, pages 420–
431 (cited on page 37).

Di Martino, Adriana, Clare Kelly, Rebecca Grzadzinski, Xi-Nian Zuo, Maarten
Mennes, María Mairena, Catherine Lord, Francisco Castellanos, and Michael
Milham (Dec. 2010). “Aberrant striatal functional connectivity in children
with autism”. In: Biological Psychiatry 69.9, pages 847–56. doi: 10.1016/j.
biopsych.2010.10.029 (cited on pages 62, 96).

Dijkstra, Edsger W. (Dec. 1959). “A Note on Two Problems in Connexion with
Graphs”. In: Numer. Math. 1.1, pages 269–271. doi: 10.1007/BF01386390
(cited on pages 15, 41).

Eppstein, David (1998). “Finding the k shortest paths”. In: SIAM Journal on
Computing 28.2, pages 652–673 (cited on page 66).

Erdős, Paul and Alfréd Rényi (1959). “On random graphs”. In: Publicationes
Mathematicae Debrecen 6, pages 290–297 (cited on page 87).

Fehr, Ernst and Urs Fischbacher (2002). “Why social preferences matter–the
impact of non-selfish motives on competition, cooperation and incentives”. In:
The economic journal 112.478, pages C1–C33 (cited on page 166).

Fehr, Ernst and Klaus M Schmidt (1999). “A theory of fairness, competition, and
cooperation”. In: The quarterly journal of economics 114.3, pages 817–868
(cited on page 166).

Feige, Uriel (1998). “A Threshold of lnn for Approximating Set Cover”. In: J. of
the ACM 45.5, pages 634–652 (cited on pages 44, 49).

Feldman, Michal, Hu Fu, Nick Gravin, and Brendan Lucier (2013). “Simultaneous
auctions are (almost) efficient”. In: Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 201–210 (cited on page 137).

Feldman, Michal, Brendan Lucier, and Noam Nisan (2016). “Correlated and
coarse equilibria of single-item auctions”. In: Proceedings of the International

https://www.volkskrant.nl/nieuws-achtergrond/hoe-werd-nederland-een-belastingparadijs-en-hoe-komen-we-er-vanaf~b53dce58/
https://www.volkskrant.nl/nieuws-achtergrond/hoe-werd-nederland-een-belastingparadijs-en-hoe-komen-we-er-vanaf~b53dce58/
https://www.volkskrant.nl/nieuws-achtergrond/hoe-werd-nederland-een-belastingparadijs-en-hoe-komen-we-er-vanaf~b53dce58/
https://doi.org/10.1016/j.biopsych.2010.10.029
https://doi.org/10.1016/j.biopsych.2010.10.029
https://doi.org/10.1007/BF01386390

Bibliography 195

Conference on Web and Internet Economics (WINE). Springer, pages 131–144
(cited on pages 134, 137, 152, 153, 155).

Ford Jr, Lester R (1956). Network flow theory. Technical report. Rand Corp Santa
Monica Ca (cited on page 61).

Freeman, Linton C. (1977). “A Set of Measures of Centrality Based on Betweenness”.
In: Sociometry 40.1, pages 35–41 (cited on pages 2, 13, 33, 66).

Gairing, Martin, Thomas Lücking, Marios Mavronicolas, and Burkhard Monien
(2010). “Computing Nash equilibria for scheduling on restricted parallel links”.
In: Theory of Computing Systems 47.2, pages 405–432 (cited on page 104).

Gamzu, Iftah and Danny Segev (2010). “A Sublogarithmic Approximation for High-
way and Tollbooth Pricing”. In: Proceedings of 37th International Colloquium
Conference on Automata, Languages and Programming. Berlin, Heidelberg,
pages 582–593 (cited on page 38).

García Domínguez, Luis, Jim Stieben, José Luis Pérez Velázquez, and Stuart
Shanker (Oct. 2013). “The imaginary part of coherency in autism: Differences
in cortical functional connectivity in preschool children”. In: PLOS ONE 8.10,
pages 1–13. doi: 10.1371/journal.pone.0075941 (cited on pages 62, 96).

Garey, Michael R and David S Johnson (1979). Computers and intractability.
Volume 174. freeman San Francisco (cited on page 20).

Geisberger, Robert, Peter Sanders, and Dominik Schultes (2008). “Better approxi-
mation of betweenness centrality”. In: Proceedings of the Meeting on Algorithm
Engineering and Expermiments. San Francisco, California, pages 90–100 (cited
on page 84).

Ghosh, Joy, Hung Q. Ngo, Seokhoon Yoon, and Chunming Qiao (2007). “On a
routing problem within probabilistic graphs and its application to intermittently
connected networks”. In: IEEE INFOCOM 2007-26th IEEE International
Conference on Computer Communications, pages 1721–1729 (cited on page 62).

Graham, Daniel A. and Robert C. Marshall (1987). “Collusive Bidder Behavior
at Single-Object Second-Price and English Auctions”. In: Journal of Political
Economy 95.6, pages 1217–1239 (cited on page 135).

Graham, Ronald Lewis, Eugene Leighton Lawler, Jan Karel Lenstra, and AHG Rin-
nooy Kan (1979). “Optimization and approximation in deterministic sequencing
and scheduling: a survey”. In: Annals of discrete mathematics. Volume 5. Else-
vier, pages 287–326 (cited on page 101).

Grandoni, Fabrizio and Thomas Rothvoss (Jan. 1, 2016). “Pricing on Paths:
A PTAS for the Highway Problem”. In: SIAM Journal on Computing 45.2,
pages 216–231. doi: 10.1137/140998846 (cited on page 38).

Groves, Theodore (1973). “Incentives in teams”. In: Econometrica: Journal of the
Econometric Society, pages 617–631 (cited on page 31).

Guo, M., Vangelis Markakis, Krzysztof Apt, and Vincent Conitzer (2013). “Un-
dominated Groves Mechanisms”. In: Journal of Artificial Intelligence Research
46, pages 129–163 (cited on pages 165, 167, 173, 187).

https://doi.org/10.1371/journal.pone.0075941
https://doi.org/10.1137/140998846

196 Bibliography

Guo, Mingyu and Vincent Conitzer (2009). “Worst-case optimal redistribution
of VCG payments in multi-unit auctions”. In: Games and Economic Behavior
67.1, pages 69–98 (cited on page 167).

— (2010). “Optimal-in-expectation redistribution mechanisms”. In: Artificial In-
telligence 174.5-6, pages 363–381 (cited on page 167).

Guruswami, Venkatesan, Jason D. Hartline, Anna R. Karlin, David Kempe,
Claire Kenyon, and Frank McSherry (2005). “On Profit-maximizing Envy-
free Pricing”. In: Proceedings of Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. Philadelphia, PA, USA, pages 1164–1173 (cited on
page 38).

Han, Kai, Fei Gui, Xiaokui Xiao, Jing Tang, Yuntian He, Zongmai Cao, and
He Huang (2019). “Efficient and effective algorithms for clustering uncertain
graphs”. In: Proceedings of the VLDB Endowment 12.6, pages 667–680 (cited
on page 66).

Hannan, James (1957). “Approximation to Bayes risk in repeated play”. In: Con-
tributions to the Theory of Games 3.2, pages 97–139 (cited on page 26).

Harsanyi, John C. (1967). “Games with Incomplete Information Played by
“Bayesian” Players, Parts I, II and III.” In: Management Science 14.3, 159–182,
320–334, and 486–502 (cited on pages 29, 135).

Hart, Peter E, Nils J Nilsson, and Bertram Raphael (1968). “A formal basis for
the heuristic determination of minimum cost paths”. In: IEEE transactions on
Systems Science and Cybernetics 4.2, pages 100–107 (cited on page 61).

Heydenreich, Birgit, Rudolf Müller, and Marc Uetz (2007). “Games and mechanism
design in machine scheduling—an introduction”. In: Production and operations
management 16.4, pages 437–454 (cited on page 107).

Hoefer, Martin and Alexander Skopalik (2013). “Altruism in atomic congestion
games”. In: ACM Transactions on Economics and Computation 1.4, pages 1–21
(cited on page 166).

Hoeffding, W. (1963). “Probability Inequalities for Sums of Bounded Random
Variables”. In: J. American Stat. Association 58, pages 13–30 (cited on page 86).

Hoeijmakers, Sjir (2014). How Altruism Changes Mechanism Design. MSc thesis,
Tilburg University, The Netherlands (cited on page 9).

Hoeksma, Ruben and Marc Uetz (2019). “The price of anarchy for utilitarian
scheduling games on related machines”. In: Discrete Optimization 31, pages 29–
39. doi: https://doi.org/10.1016/j.disopt.2018.08.001 (cited on
pages 103, 104, 108, 109, 127).

Horowitz, Ellis and Sartaj Sahni (1976). “Exact and approximate algorithms for
scheduling nonidentical processors”. In: Journal of the ACM 23.2, pages 317–
327 (cited on page 106).

Hua, Ming and Jian Pei (2010). “Probabilistic path queries in road networks:
Traffic uncertainty aware path selection”. In: Proceedings of the 13th Interna-
tional Conference on Extending Database Technology, pages 347–358 (cited on
page 62).

https://doi.org/https://doi.org/10.1016/j.disopt.2018.08.001

Bibliography 197

Ibarra, Oscar H and Chul E Kim (1977). “Heuristic algorithms for scheduling
independent tasks on nonidentical processors”. In: Journal of the ACM 24.2,
pages 280–289 (cited on pages 101, 107).

Immorlica, Nicole, Li (Erran) Li, Vahab S. Mirrokni, and Andreas S. Schulz
(Apr. 2009). “Coordination mechanisms for selfish scheduling”. In: Theoretical
Computer Science 410.17, pages 1589–1598. doi: 10.1016/j.tcs.2008.12.
032 (cited on page 107).

Ingraham, Allan (2005). “A Test for Collusion between a Bidder and an Auctioneer
in Sealed-Bid Auctions”. In: Contributions in Economic Analysis & Policy 4.
doi: 10.2202/1538-0645.1448 (cited on page 130).

Ishakian, Vatche, Dóra Erdös, Evimaria Terzi, and Azer Bestavros (2012). “A
Framework for the Evaluation and Management of Network Centrality”. In:
Proceedings of 12th SIAM International Conference on Data Mining, pages 427–
438 (cited on page 37).

Jin, Ruoming, Lin Liu, Bolin Ding, and Haixun Wang (2011). “Distance-constraint
reachability computation in uncertain graphs”. In: Proceedings of the VLDB
Endowment 4.9, pages 551–562 (cited on pages 65, 66, 67).

Johnson, Donald B. (1977). “Efficient algorithms for shortest paths in sparse
networks”. In: Journal of the ACM 24.1, pages 1–13 (cited on page 66).

Kahneman, Daniel (2011). Thinking, fast and slow. Macmillan (cited on pages 6,
164).

Karp, Richard M., Michael Luby, and Neal Madras (1989). “Monte-Carlo approxi-
mation algorithms for enumeration problems”. In: Journal of Algorithms 10.3,
pages 429–448 (cited on pages 64, 66, 71, 74, 78).

Ke, Xiangyu, Arijit Khan, and Leroy Lim Hong Quan (2019). “An in-depth
comparison of s-t reliability algorithms over uncertain graphs”. In: Proceedings
of the VLDB Endowment 12.8, pages 864–876. doi: 10.14778/3324301.

3324304 (cited on page 66).
Keown, Christopher, Patricia Shih, Aarti Nair, Nick Peterson, Mark Mulvey, and

Ralph-Axel Müller (2013). “Local functional overconnectivity in posterior brain
regions is associated with symptom severity in autism spectrum disorders”. In:
Cell Reports 5, pages 567–572. doi: 10.1016/j.celrep.2013.10.003 (cited
on page 96).

Kerkmann, Anna Maria and Jörg Rothe (2021). “Altruism in coalition formation
games”. In: Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 347–353 (cited
on page 166).

Khan, A., F. Bonchi, A. Gionis, and F. Gullo (2014). “Fast reliability search in
uncertain graphs”. In: Proceedings of the 17th International Conference on
Extending Database Technology, pages 535–546 (cited on pages 62, 66).

Khan, Arijit, Francesco Bonchi, Francesco Gullo, and Andreas Nufer (2018). “Con-
ditional reliability in uncertain graphs”. In: IEEE Transactions on Knowledge
and Data Engineering 30.1, pages 2078–2092 (cited on pages 65, 67).

https://doi.org/10.1016/j.tcs.2008.12.032
https://doi.org/10.1016/j.tcs.2008.12.032
https://doi.org/10.2202/1538-0645.1448
https://doi.org/10.14778/3324301.3324304
https://doi.org/10.14778/3324301.3324304
https://doi.org/10.1016/j.celrep.2013.10.003

198 Bibliography

Khan, Arijit, Yuan Ye, and Lei Chen (2018). On Uncertain Graphs. Volume 10.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers (cited
on pages 65, 67).

Kojaku, Sadamori and Naoki Masuda (2019). “Constructing networks by fil-
tering correlation matrices: A null model approach”. In: Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 475.2231,
page 20190578. doi: 10.1098/rspa.2019.0578 (cited on page 96).

Koutsoupias, Elias and Christos Papadimitriou (1999). “Worst-Case Equilibria”.
In: Proceedings of the Symposium on Theoretical Aspects of Computer Science,
pages 404–413 (cited on pages 102, 104, 133).

Kozlovskaya, Maria and Antonio Nicolò (2019). “Public good provision mecha-
nisms and reciprocity”. In: Journal of Economic Behavior & Organization 167,
pages 235–244 (cited on page 166).

Kucuksenel, Serkan (2012). “Behavioral mechanism design”. In: Journal of Public
Economic Theory 14.5, pages 767–789 (cited on page 166).

Kuiper, Alex, Michel Mandjes, Jeroen de Mast, and Ruben Brokkelkamp (2021).
“A flexible and optimal approach for appointment scheduling in healthcare”.
In: Decision Sciences. doi: https://doi.org/10.1111/deci.12517 (cited
on page 10).

Labbe, Martine, Patrice Marcotte, and Gilles Savard (Dec. 1998). “A Bilevel Model
of Taxation and Its Application to Optimal Highway Pricing”. In: Management
Science 44.12, pages 1608–1622 (cited on page 37).

Lanciano, Tommaso, Francesco Bonchi, and Aristides Gionis (2020). “Explainable
classification of brain networks via contrast subgraphs”. In: Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Virtual Event, CA, USA. doi: 10.1145/3394486.3403383
(cited on page 96).

Lejour, Arjan M., Maarten van ‘t Riet, and Jan Möhlmann (2019). Doorsluisland
NL doorgelicht. CPB Policy Brief (cited on page 2).

Lengwiler, Yvan and Elmar Wolfstetter (2010). “Auctions and corruption: An
analysis of bid rigging by a corrupt auctioneer”. In: Journal of Economic
Dynamics and Control 34.10, pages 1872–1892. doi: 10.1016/j.jedc.2010.
03.002 (cited on pages 130, 135, 136, 162).

Lengwiler, Yvan and Elmar G. Wolfstetter (2000). Auctions and Corruption.
CESifo Working Paper Series 401. CESifo. url: https://ideas.repec.org/
p/ces/ceswps/%5C_401.html (cited on page 135).

Leskovec, Jure and Andrej Krevl (June 2014). SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data (cited on
page 97).

Levin, Leonid Anatolevich (1973). “Universal sequential search problems”. In:
Problemy peredachi informatsii 9.3, pages 115–116 (cited on page 20).

Li, Xiaodong, Reynold Cheng, Yixiang Fang, Jiafeng Hu, and Silviu Maniu
(Mar. 2018). “Scalable evaluation of k-NN queries on large uncertain graphs”.

https://doi.org/10.1098/rspa.2019.0578
https://doi.org/https://doi.org/10.1111/deci.12517
https://doi.org/10.1145/3394486.3403383
https://doi.org/10.1016/j.jedc.2010.03.002
https://doi.org/10.1016/j.jedc.2010.03.002
https://ideas.repec.org/p/ces/ceswps/%5C_401.html
https://ideas.repec.org/p/ces/ceswps/%5C_401.html
http://snap.stanford.edu/data

Bibliography 199

In: Proceedings of the 21st International Conference on Extending Database
Technology. Vienna, Austria, pages 181–192. doi: 10.5441/002/edbt.2018.
17. url: https://hal.archives-ouvertes.fr/hal-01955609 (cited on
page 66).

Liben-Nowell, David and Jon Kleinberg (2003). “The link prediction problem for
social networks”. In: Proceedings of the Twelfth ACM International Confer-
ence on Information and Knowledge Management. New Orleans, LA, USA,
pages 556–559. doi: 10.1145/956863.956972 (cited on page 66).

Lucier, Brendan and Renato Paes Leme (2011). “GSP auctions with correlated
types”. In: Proceedings of the 12th ACM conference on Electronic commerce,
pages 71–80 (cited on page 108).

Luxen, Dennis and Christian Vetter (2011). “Real-time routing with Open-
StreetMap data”. In: Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 513–516
(cited on page 90).

Madden, Samuel (2004). Intel lab data. url: http://db.csail.mit.edu/

labdata/labdata.html (cited on page 95).
Mahmoody, Ahmad, Charalampos E. Tsourakakis, and Eli Upfal (2016). “Scalable

Betweenness Centrality Maximization via Sampling”. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1765–1773 (cited on pages 66, 85).

Markakis, Evangelos and Orestis Telelis (2015). “Uniform Price Auctions: Equilibria
and Efficiency”. In: Theory of Computing Systems 57.3, pages 549–575. doi:
10.1007/s00224-014-9537-9 (cited on page 137).

Mas-Colell, Andreu, Michael Dennis Whinston, Jerry R Green, et al. (1995).
Microeconomic theory. Volume 1. Oxford university press New York, pages 861–
862 (cited on page 173).

Masuda, Naoki, Sadamori Kojaku, and Yukie Sano (July 2018). “Configuration
model for correlation matrices preserving the node strength”. In: Physical
Review E 98 (1), page 012312. doi: 10.1103/PhysRevE.98.012312 (cited on
page 96).

McAfee, Randolph and John McMillan (1992). “Bidding Rings”. In: American
Economic Review 82.3, pages 579–99 (cited on page 135).

Menezes, Flavio M. and Paulo Klinger Monteiro (2006). “Corruption and auctions”.
In: Journal of Mathematical Economics 42.1, pages 97–108. doi: 10.1016/j.
jmateco.2005.04.002 (cited on pages 130, 135, 136).

Meyerson, Adam and Brian Tagiku (2009). “Minimizing average shortest path
distances via shortcut edge addition”. In: Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 272–285 (cited
on page 37).

Moreira-Matias, Luis, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and
Luis Damas (2013). “Predicting taxi–passenger demand using streaming data”.

https://doi.org/10.5441/002/edbt.2018.17
https://doi.org/10.5441/002/edbt.2018.17
https://hal.archives-ouvertes.fr/hal-01955609
https://doi.org/10.1145/956863.956972
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://doi.org/10.1007/s00224-014-9537-9
https://doi.org/10.1103/PhysRevE.98.012312
https://doi.org/10.1016/j.jmateco.2005.04.002
https://doi.org/10.1016/j.jmateco.2005.04.002

200 Bibliography

In: IEEE Transactions on Intelligent Transportation Systems 14.3, pages 1393–
1402 (cited on page 90).

Moulin, Hervé (2009). “Almost budget-balanced VCG mechanisms to assign
multiple objects”. In: Journal of Economic theory 144.1, pages 96–119 (cited
on page 167).

Myerson, Roger B (1981). “Optimal auction design”. In: Mathematics of operations
research 6.1, pages 58–73 (cited on page 29).

Myerson, Roger B and Mark A Satterthwaite (1983). “Efficient mechanisms for
bilateral trading”. In: Journal of economic theory 29.2, pages 265–281 (cited
on page 173).

Nash, J.F. (1951). “Non-cooperative Games”. In: Annals of Mathematics 54.2,
pages 286–295 (cited on page 25).

Nemhauser, George L., Laurence A. Wolsey, and Marshall L. Fisher (1978). “An
analysis of approximations for maximizing submodular set functions–I”. In:
Mathematical Programming 14.1, pages 265–294 (cited on page 46).

Nguyen, Nhan-Tam, Anja Rey, Lisa Rey, Jörg Rothe, and Lena Schend (2016).
“Altruistic hedonic games”. In: Proceedings of the 2016 International Confer-
ence on Autonomous Agents & Multiagent Systems, pages 251–259 (cited on
page 166).

Nisan, N., T. Roughgarden, E. Tardos, and V.V. Vazirani (2007). Algorithmic
Game Theory. Cambridge University Press. url: https://books.google.nl/
books?id=YCu2alSw0w8C (cited on pages 11, 182).

Noonan, Sarah, Frank Haist, and Ralph-Axel Müller (Feb. 2009). “Aberrant
functional connectivity in autism: Evidence from low-frequency BOLD signal
fluctuations”. In: Brain Research 1262, pages 48–63. doi: 10.1016/j.brainres.
2008.12.076 (cited on page 96).

NOS (Nov. 6, 2014). Nederland is een aantrekkelijk belastingland. NOS (cited on
page 2).

— (Mar. 26, 2019). Nederland is een belastingparadijs. NOS (cited on page 2).
Olmstead, Larry (Apr. 1993). “2 Managers Held in Bidding Scheme at School

Agency”. In: The New York Times. url: https://www.nytimes.com/1993/
04/21/nyregion/2- managers- held- in- bidding- scheme- at- school-

agency.html (cited on pages 5, 130).
Olsen, Martin and Anastasios Viglas (2014). “On the approximability of the link

building problem”. In: Theoretical Computer Science 518, pages 96–116 (cited
on page 37).

OpenStreetMap contributors (2020). Planet dump retrieved from
https://planet.osm.org. https://www.openstreetmap.org (cited on page 90).

Papagelis, Manos, Francesco Bonchi, and Aristides Gionis (2011). “Suggesting
Ghost Edges for a Smaller World”. In: Proceedings of 20th ACM International
Conference on Information and Knowledge Management, pages 2305–2308
(cited on page 37).

https://books.google.nl/books?id=YCu2alSw0w8C
https://books.google.nl/books?id=YCu2alSw0w8C
https://doi.org/10.1016/j.brainres.2008.12.076
https://doi.org/10.1016/j.brainres.2008.12.076
https://www.nytimes.com/1993/04/21/nyregion/2-managers-held-in-bidding-scheme-at-school-agency.html
https://www.nytimes.com/1993/04/21/nyregion/2-managers-held-in-bidding-scheme-at-school-agency.html
https://www.nytimes.com/1993/04/21/nyregion/2-managers-held-in-bidding-scheme-at-school-agency.html
%20https://www.openstreetmap.org%20

Bibliography 201

Parotsidis, Nikos, Evaggelia Pitoura, and Panayiotis Tsaparas (2015). “Select-
ing Shortcuts for a Smaller World”. In: Proceedings of SIAM International
Conference on Data Mining. Chapter 4, pages 28–36 (cited on page 37).

Perumal, Senni, Prithwish Basu, and Ziyu Guan (2013). “Minimizing Eccentric-
ity in Composite Networks via Constrained Edge Additions”. In: Military
Communications Conference, pages 1894–1899 (cited on page 37).

Pfeiffer, Joseph John and Jennifer Neville (2011). “Methods to determine node
centrality and clustering in graphs with uncertain structure”. In: Fifth Interna-
tional AAAI Conference on Weblogs and Social Media, pages 590–593 (cited
on pages 63, 84, 96).

Piorkowski, Michal, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser (2009).
CRAWDAD Dataset epfl/mobility (v. 2009-02-24). https://crawdad.org/
epfl/mobility/20090224/cab (cited on page 90).

Polak, Sven Carel (2014). Algorithms for the Network Analysis of Bilateral Tax
Treaties. MSc. thesis, University of Amsterdam, The Netherlands (cited on
pages 2, 7, 33).

Postema, Merel et al. (Dec. 2019). “Altered structural brain asymmetry in autism
spectrum disorder in a study of 54 datasets”. In: Nature Communications 10.
doi: 10.1038/s41467-019-13005-8 (cited on page 96).

Potamias, Michalis, Francesco Bonchi, Aristides Gionis, and George Kollios (2010).
“K-nearest neighbors in uncertain graphs”. In: Proceedings of the VLDB En-
dowment 3.1-2, pages 997–1008 (cited on pages 65, 66, 67).

Ptošek, Vit, Lukáš Rapant, and Jan Martinovič (2018). Floating Car Data Collec-
tion for Processing and Benchmarking. Version 1.0. url: https://doi.org/
10.5281/zenodo.2250119 (cited on page 90).

Rahn, Mona and Guido Schäfer (2013). “Bounding the Inefficiency of Altru-
ism through Social Contribution Games”. In: Web and Internet Economics,
pages 391–404 (cited on pages 103, 104, 166).

Riet, Maarten van ‘t and Arjan M. Lejour (2013). Nederland belastingparadijs?
Nederland doorsluisland! CPB Policy Brief (cited on page 2).

— (2014). Ranking the Stars: Network Analysis of Bilateral Tax Treaties. CPB
Discussion Paper (cited on page 59).

— (2018). “Optimal tax routing: Network analysis of FDI diversion”. In: Inter-
national Tax and Public Finance 25.5, pages 1321–1371 (cited on pages 2, 33,
59).

Riondato, Matteo and Evgenios M. Kornaropoulos (2016). “Fast approximation
of betweenness centrality through sampling”. In: Data Mining and Knowledge
Discovery 30.2, pages 438–475 (cited on pages 66, 96, 97).

Roch, Sébastien, Gilles Savard, and Patrice Marcotte (2005). “An approximation
algorithm for Stackelberg network pricing”. In: Networks 46.1, pages 57–67
(cited on page 37).

https://crawdad.org/epfl/mobility/20090224/cab
https://crawdad.org/epfl/mobility/20090224/cab
https://doi.org/10.1038/s41467-019-13005-8
https://doi.org/10.5281/zenodo.2250119
https://doi.org/10.5281/zenodo.2250119

202 Bibliography

Rothe, Jörg (2021). “Thou shalt love thy neighbor as thyself when thou playest:
altruism in game theory”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Volume 35. 17, pages 15070–15077 (cited on page 166).

Roughgarden, Tim (2015). “Intrinsic Robustness of the Price of Anarchy”. In:
Journal of the ACM 62.5. doi: 10.1145/2806883 (cited on pages 27, 28, 108,
133, 136).

— (2016). Twenty lectures on algorithmic game theory. Cambridge University
Press (cited on page 26).

Roughgarden, Tim, Vasilis Syrgkanis, and Eva Tardos (2017). “The price of anarchy
in auctions”. In: Journal of Artificial Intelligence Research 59, pages 59–101
(cited on pages 102, 136).

Saha, Arkaprava, Ruben Brokkelkamp, Yllka Velaj, Arijit Khan, and Francesco
Bonchi (2020). Our Code and Data. https://github.com/ArkaSaha/MPSP-
Centrality (cited on page 87).

— (2021). “Shortest Paths and Centrality in Uncertain Networks”. In: Proceedings
of the VLDB Endowment 14.7, pages 1188–1201. doi: 10.14778/3450980.
3450988 (cited on page 8).

Supekar, Kaustubh, Lucina Q. Uddin, Amirah Khouzam, Jennifer Phillips, William
D. Gaillard, Lauren E. Kenworthy, Benjamin E. Yerys, Chandan J. Vaidya,
and Vinod Menon (2013). “Brain hyperconnectivity in children with autism
and its links to social deficits”. In: Cell Reports 5.3, pages 738–747. doi:
https://doi.org/10.1016/j.celrep.2013.10.001 (cited on page 96).

Syrgkanis, Vasilis (2014). “Efficiency of mechanisms in complex markets”. PhD
thesis. Cornell University (cited on page 146).

Syrgkanis, Vasilis and Eva Tardos (2013). “Composable and efficient mechanisms”.
In: Proceedings of the forty-fifth annual ACM symposium on Theory of com-
puting, pages 211–220 (cited on pages 133, 136, 143).

Tang, Pingzhong and Tuomas Sandholm (2012). “Optimal auctions for spiteful
bidders”. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (cited
on page 166).

Tang, Youze, Xiaokui Xiao, and Yanchen Shi (2014). “Influence maximization:
Near-optimal time complexity meets practical efficiency”. In: Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data,
pages 75–86 (cited on page 66).

The Wall Street Journal (Aug. 1999). “State Governments Consider Reopening
Bidding for Berlin Airport”. In: The Wall Street Journal. url: https://www.
wsj.com/articles/SB935028690392278172 (cited on pages 5, 129).

Tzourio-Mazoyer, Nathalie, Brigitte Landeau, Dimitri Papathanassiou, Fabrice
Crivello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Jo-
liot (2002). “Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain”.
In: NeuroImage 15.1, pages 273–289. doi: https://doi.org/10.1006/nimg.
2001.0978 (cited on page 96).

https://doi.org/10.1145/2806883
https://github.com/ArkaSaha/MPSP-Centrality
https://github.com/ArkaSaha/MPSP-Centrality
https://doi.org/10.14778/3450980.3450988
https://doi.org/10.14778/3450980.3450988
https://doi.org/https://doi.org/10.1016/j.celrep.2013.10.001
https://www.wsj.com/articles/SB935028690392278172
https://www.wsj.com/articles/SB935028690392278172
https://doi.org/https://doi.org/10.1006/nimg.2001.0978
https://doi.org/https://doi.org/10.1006/nimg.2001.0978

Bibliography 203

Valiant, Leslie (Aug. 1979). “The Complexity of Enumeration and Reliability
Problems”. In: SIAM Journal on Computing 8.3, pages 410–421. doi: 10.
1137/0208032 (cited on pages 41, 65, 67, 68).

Vickrey, William (1961). “Counterspeculation, auctions, and competitive sealed
tenders”. In: The Journal of finance 16.1, pages 8–37 (cited on page 31).

Waard, P. de (Oct. 14, 2011). Nederland belastingparadijs voor veel multinationals.
De Volkskrant (cited on page 2).

Wang, Chenxu and Ziyuan Lin (2019). “An efficient approximation of betweenness
centrality for uncertain graphs”. In: IEEE Access 7, pages 61259–61272 (cited
on pages 63, 84, 96).

Williamson, David P. and David B. Shmoys (2011). The Design of Approximation
Algorithms. Cambridge University Press (cited on pages 11, 22, 35).

Wu, Baoning and Brian D. Davison (2005). “Identifying link farm spam pages”. In:
Proceedings of 14th International Conference on World Wide Web, pages 820–
829 (cited on page 37).

Yen, Jin Y. (1971). “Finding the k shortest loopless paths in a network”. In:
Management Science 17.11, pages 712–716 (cited on pages 70, 73).

Yuan, Ye, Lei Chen, and Guoren Wang (2010). “Efficiently answering probability
threshold-based shortest path queries over uncertain graphs”. In: International
Conference on Database Systems for Advanced Applications, pages 155–170
(cited on pages 65, 66, 67).

Zhang, Long, Yuzhong Zhang, Donglei Du, and Qingguo Bai (2019). “Improved
price of anarchy for machine scheduling games with coordination mechanisms”.
In: Optimization Letters 13.4, pages 949–959 (cited on pages 104, 109, 124,
125).

Zou, Lei, Peng Peng, and Dongyan Zhao (2011). “Top-K possible shortest path
query over a large uncertain graph”. In: International Conference on Web
Information Systems Engineering, pages 72–86 (cited on pages 63, 64, 65, 66,
67, 70, 71, 75, 78, 87, 88, 100).

https://doi.org/10.1137/0208032
https://doi.org/10.1137/0208032

Samenvatting

De vijf hoofdstukken in deze thesis zijn verbonden door de volgende vraag:

Hoe dichtbij komt het?

In Hoofdstuk 3 bestuderen we twee prijsproblemen in netwerken. Gegeven is
een gerichte graaf met kosten op de lijnen, een verzameling met grondstoffen en
een speciaal punt u. Elke grondstof bestaat uit een stroom die getransporteerd
moet worden van een beginpunt naar een eindpunt in het netwerk. De stroom
gebruikt hiervoor het kortste pad en als er meerdere kortste paden zijn, verdeelt
de stroom zich uniform over deze paden. Het speciale punt u kan de kosten van
een aantal van zijn uitgaande lijnen aanpassen. Daarmee heeft het invloed op
de kortste paden in het netwerk en indirect op hoe de stromen door het netwerk
gaan. Het punt u is of geïnteresseerd in het maximaliseren van de stroom die
door het punt u heen gaat, of in het maximaliseren van de inkomsten van zijn
uitgaande lijnen. De inkomsten van u van een uitgaande lijn is de hoeveelheid
stroom die door de lijn gaat, vermenigvuldigt met de kosten van de lijn. De
inkomsten van u is de som van de inkomsten van zijn uitgaande lijnen. We
bewijzen dat het probleem niet alleen NP-moeilijk is maar ook dat de optimale
oplossing moeilijk is te benaderen voor beide optimalisatiedoelen. Ondanks deze
negatieve resultaten voor het algemene probleem ontwikkelen we efficiënte optimale
en benaderingsalgoritmen voor speciale gevallen. Hoe dichtbij komt het? We laten
zien dat de benaderingsalgoritmen de best mogelijke benaderingsfactoren hebben,
gegeven de negatieve resultaten.

In Hoofdstuk 4 kijken we naar het Meest Waarschijnlijk Kortste Pad (MWKP)
in een onzeker netwerk. We modelleren een onzeker netwerk door aan iedere lijn
een kans te geven waarmee die lijn bestaat. We laten zien dat het berekenen van
de kans dat een gegeven pad het kortste pad is een #P-moeilijk probleem is. Om
het MWKP te vinden, ontwikkelen we een Monte Carlo-achtig algoritme dat met
grote waarschijnlijkheid snel het MWKP vindt. Gebaseerd op deze notie van een
kortste pad definiëren we een nieuw soort betweenness centrality en we geven
een gerandomiseerd algoritme dat hem snel kan berekenen. Hoe dichtbij komt
het? Met hoge kans produceert ons algoritme het MWKP en we doen uitgebreide
experimenten om de prestaties van het algoritme in de praktijk te testen.

204

Samenvatting 205

In Hoofdstuk 5 bekijken we het roosteren van taken, elke met een verwerkings-
tijd, op een verzameling van machines, elk met een snelheid. De tijd die het duurt
om een taak te verwerken op een machine is de verwerkingstijd van de taak gedeeld
door de snelheid van de machine. Een simpel algoritme bekijkt de taken van
klein naar groot en roostert iedere taak op de machine die zorgt voor de laagste
doorlooptijd (nadat de korte taken al geroosterd zijn). De benaderingsfactor van
dit algoritme en de prijs van anarchie van de speltheoretische variant, waarin
iedere taak wordt beheerd door een speler die de doorlooptijd van zijn eigen taak
wil minimaliseren, van dit probleem zijn hetzelfde. Het exact bepalen van de
prijs van anarchie is een moeilijk probleem en vereist nieuwe technieken. Hoe
dichtbij komt het? We beschrijven een techniek gebaseerd op een primal-dual
methode die de beste bekende grens kan herbewijzen en de potentie heeft om
tot sterkere grenzen te komen. We ontwikkelen ook instanties die een hogere
ondergrens hebben voor een vast aantal taken en machines.

In Hoofdstuk 6 bestuderen we een gesloten eerste prijs veiling voor meerdere
identieke objecten. Er is een corrupte veilingmeester die de winnende bieders
benadert met het aanbod om hun bod te verlagen tot het hoogste verliezende bod.
Ter compensatie verwacht hij een steekpenning die gelijk is aan een �-fractie van
de winst. We laten zien dat het bestuderen van deze veiling equivalent is aan het
bestuderen van een �-hybride veiling waarin de prijs een convexe combinatie is
van het bod en het hoogste verliezende bod. Daarnaast bekijken we ook veilingen
waarin de prijs die de bieders moeten betalen ten minste een �-fractie is van de
hoogste winnende biedingen. Voor deze veilingen bekijken we het verlies in het
sociale welzijn dat wordt veroorzaakt door de corrupte veilingmeester. Hoe dichtbij
komt het? We leiden matchende boven- en ondergrenzen op de grof gecorreleerde
prijs van anarchie af. Vervolgens doen we de aanname dat spelers niet mogen
overbieden en bewijzen meer grenzen op de prijs van anarchie voor verschillende
equilibrium concepten en speciale versies van de veiling.

In Hoofdstuk 7 ontwerpen we waarheidsgetrouwe mechanismen voor spelers
die (gedeeltelijk) altruïstisch zijn. We breiden het standaard nutsmodel uit met
functies die de voorkeuren voor de andere spelers beschrijven. Door de uitbreiding
kan het VCG mechanisme niet worden toegepast. We geven een karakterisatie
van waarheidsgetrouwe mechanismen in het nieuwe model. Vervolgens beschrijven
we een recept voor waarheidsgetrouwe mechanismen en gebruiken het om twee
specifieke modellen met altruïsme te definiëren. Voor spelers met altruïstische
motieven zijn er lagere prijzen nodig om ze de waarheid te laten vertellen. We
laten onder andere zien dat met de altruïstische modellen het probleem van het
financieren van een publiek project mogelijk is waar dit zonder altruïsme tegen
obstakels oploopt. Verder kijken we naar wat er mogelijk is bij het herverdelen
van de betalingen als de spelers altruïstische motieven hebben. Hoe dichtbij komt
het? We laten zien dat mechanismen die geen rekening houden met altruïstische
motieven kunnen worden getransformeerd in mechanismen die dat wel doen en er
tegelijkertijd voor zorgen dat er minder geld de deelnemersgroep verlaat.

Summary

The five chapters in this thesis are connected by the following question:

How Close Does It Get?

In Chapter 3, we study two pricing problems in networks. We are given a
directed graph with edge costs, a set of commodities, and a designated node u.
Each commodity has a flow demand that needs to be transported from a source
node to a destination node, and it uses shortest paths to do so. If there are
multiple shortest paths, the flow splits uniformly. The node u can change the
cost of at most a given number of its outgoing edges, which affects the shortest
paths in the network and, indirectly, the flows. The node u is interested in either
maximizing the flow that goes through it or maximizing the revenue it earns on
the flow going through its outgoing edges. The revenue on an outgoing edge of u
is equal to the amount of flow going through it times the cost of that edge. The
revenue of u is the sum of the revenues of its outgoing edges. We prove that the
problem is not only NP-hard but also highly inapproximable in general for both
objectives. However, we develop efficient optimal and approximation algorithms
for special cases. How close does it get? We show that the guarantees of the
approximation algorithms are best possible given our inapproximability results.

In Chapter 4, we look into the notion of the Most Probable Shortest Path
(MPSP) in an uncertain network. We model an uncertain network by assigning
a probability to each edge with which that edge is available. We show that
computing the probability that a path is the shortest path is #P-hard. To
compute the MPSP we develop a sampling-based Monte Carlo-type algorithm
to quickly find the MPSP. Based on this notion of shortest path, we also define

206

Summary 207

a new betweenness centrality measure and give a sampling-based algorithm for
computing it. How close does it get? We show that with high probability, our
algorithm returns the MPSP and we conduct extensive experiments to assess its
performance in practice.

In Chapter 5, we consider the problem of related machine scheduling in which
a set of jobs, each with a processing time, must be scheduled on a set of machines,
each with a speed. The time it takes to process a job on a machine is the processing
time of the job divided by the speed of the machine. The greedy algorithm that
schedules the jobs from shortest to longest on the machine on which it completes
earliest has an approximation guarantee equal to the price of anarchy of the game-
theoretic version of this problem. In the game, each job is controlled by a player
that is interested in minimizing the completion time of their own job. Finding
a tight bound on the price of anarchy is a difficult problem and requires new
techniques. How close does it get? We outline a technique based on a primal-dual
method that is able to recover the best-known bound and has the potential to
yield better bounds. Further, we provide better lower-bound instances for a fixed
number of jobs and machines.

In Chapter 6, we study a first-price multi-unit auction in which a corrupt
auctioneer approaches winning bidders with the offer to lower their bid to the
highest losing bid in exchange for a bribe that is equal to a �-fraction of the
gains. We show that this auction is equivalent to a �-hybrid auction in which the
payments are a convex combination of first-price and second-price payments. We
also consider a more general �-approximate first-price auction where the payments
recover at least a �-fraction of the first-price payments. We study the social
welfare loss that is caused by the corrupt auctioneer as a function of �. How
close does it get? We derive tight coarse correlated price of anarchy bounds if
players are allowed to overbid. Then, we make a no-overbidding assumption and
prove more (almost) tight bounds on the price of anarchy for various equilibrium
concepts and specific versions of the auction.

In Chapter 7, we study the problem of designing truthful mechanisms for
players that are (partially) altruistic. We model this by extending the standard
utility model with other-regarding preferences. Unfortunately, VCG cannot be
applied here anymore. We derive characterizations of truthful mechanisms in
the new model, exploiting the specific form of the other-regarding preferences.
Next, we give a recipe for truthful mechanisms and use it to define two specific
models of altruism. Because of the altruistic dispositions, smaller payments are
needed to incentivize participants to reveal their true preferences. We show that
by using one of our altruistic models, the public project problem can be resolved
for moderate altruism levels. Further, we look into redistributing the surplus
among the participants in the presence of altruistic players. How close does it
get? We show that mechanisms that do not take altruism into account can be
transformed into ones that do and, in the process, make sure that less money
leaves the group of participants.

Titles in the ILLC Dissertation Series:

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities,
and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning
Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

ILLC DS-2016-10: Paula Henk
Nonstandard Provability for Peano Arithmetic. A Modal Perspective

ILLC DS-2017-01: Paolo Galeazzi
Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio
The Logic of Kant’s Temporal Continuum

ILLC DS-2017-03: Matthijs Westera
Exhaustivity and intonation: a unified theory

ILLC DS-2017-04: Giovanni Cinà
Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama
Computational Modelling of Artificial Language Learning: Retention, Recogni-
tion & Recurrence

ILLC DS-2017-09: Miloš Stanojević
Permutation Forests for Modeling Word Order in Machine Translation

ILLC DS-2018-01: Berit Janssen
Retained or Lost in Transmission? Analyzing and Predicting Stability in Dutch
Folk Songs

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author
gender and literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating Affordances: Intentionality in self-organizing brain-body-
environment systems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Ex-
ploiting Differences and Similarities Between Languages in Machine Transla-
tion

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computa-
tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-
pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum programs

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications

ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of
attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

ILLC DS-2020-06: Dieuwke Hupkes
Hierarchy and interpretability in neural models of language processing

ILLC DS-2020-07: Ana Lucia Vargas Sandoval
On the Path to the Truth: Logical & Computational Aspects of Learning

ILLC DS-2020-08: Philip Schulz
Latent Variable Models for Machine Translation and How to Learn Them

ILLC DS-2020-09: Jasmijn Bastings
A Tale of Two Sequences: Interpretable and Linguistically-Informed Deep
Learning for Natural Language Processing

ILLC DS-2020-10: Arnold Kochari
Perceiving and communicating magnitudes: Behavioral and electrophysiological
studies

ILLC DS-2020-11: Marco Del Tredici
Linguistic Variation in Online Communities: A Computational Perspective

ILLC DS-2020-12: Bastiaan van der Weij
Experienced listeners: Modeling the influence of long-term musical exposure
on rhythm perception

ILLC DS-2020-13: Thom van Gessel
Questions in Context

ILLC DS-2020-14: Gianluca Grilletti
Questions & Quantification: A study of first order inquisitive logic

ILLC DS-2020-15: Tom Schoonen
Tales of Similarity and Imagination. A modest epistemology of possibility

ILLC DS-2020-16: Ilaria Canavotto
Where Responsibility Takes You: Logics of Agency, Counterfactuals and Norms

ILLC DS-2020-17: Francesca Zaffora Blando
Patterns and Probabilities: A Study in Algorithmic Randomness and Com-
putable Learning

ILLC DS-2021-01: Yfke Dulek
Delegated and Distributed Quantum Computation

ILLC DS-2021-02: Elbert J. Booij
The Things Before Us: On What it Is to Be an Object

ILLC DS-2021-03: Seyyed Hadi Hashemi
Modeling Users Interacting with Smart Devices

ILLC DS-2021-04: Sophie Arnoult
Adjunction in Hierarchical Phrase-Based Translation

ILLC DS-2021-05: Cian Guilfoyle Chartier
A Pragmatic Defense of Logical Pluralism

ILLC DS-2021-06: Zoi Terzopoulou
Collective Decisions with Incomplete Individual Opinions

ILLC DS-2021-07: Anthia Solaki
Logical Models for Bounded Reasoners

ILLC DS-2021-08: Michael Sejr Schlichtkrull
Incorporating Structure into Neural Models for Language Processing

ILLC DS-2021-09: Taichi Uemura
Abstract and Concrete Type Theories

ILLC DS-2021-10: Levin Hornischer
Dynamical Systems via Domains: Toward a Unified Foundation of Symbolic
and Non-symbolic Computation

ILLC DS-2021-11: Sirin Botan
Strategyproof Social Choice for Restricted Domains

ILLC DS-2021-12: Michael Cohen
Dynamic Introspection

ILLC DS-2021-13: Dazhu Li
Formal Threads in the Social Fabric: Studies in the Logical Dynamics of
Multi-Agent Interaction

ILLC DS-2022-01: Anna Bellomo
Sums, Numbers and Infinity: Collections in Bolzano’s Mathematics and Phi-
losophy

ILLC DS-2022-02: Jan Czajkowski
Post-Quantum Security of Hash Functions

ILLC DS-2022-03: Sonia Ramotowska
Quantifying quantifier representations: Experimental studies, computational
modeling, and individual differences

	Acknowledgments
	Introduction
	Preliminaries
	Basic Notation and Definitions
	Networks
	Algorithms
	Algorithmic Game Theory
	Mechanism Design

	Approximate Pricing in Networks
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Network Pricing Problems
	Observations and Assumptions

	Flow Maximization Problem
	Changing the Costs of Few or Almost All Edges
	Changing the Costs of k Edges

	Revenue Maximization Problem
	Changing the Cost of One Edge
	Changing the Costs of tau Edges
	Changing the Costs of All Edges

	Conclusion

	Shortest Paths and Centrality in Uncertain Networks
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Hardness of the Problem
	Benchmark: Filtering and Verification

	Proposed Solution
	Two-Phase Algorithm
	Extension to Top-k mpsps
	Accuracy Guarantees
	Extensions

	MPSP-Betweenness Centrality
	Experimental Results
	Experimental Setup
	Results on Synthetic Networks
	Results on Road Networks
	Effect of Each Phase on the Performance
	Parameter Sensitivity Analysis
	Single-Source and Single-Target Queries
	Case Studies

	Conclusion

	The Price of Anarchy of Related Machine Scheduling
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Optimal Schedule
	Related Machine Scheduling Game

	Best-Known Bounds
	Upper Bounds
	Lower Bound

	An Attempt at Improving the Pure Price of Anarchy Bound
	Improved Lower Bound Instances
	Conclusion

	Corruption in Auctions
	Introduction
	Capturing Corruption with Hybrid Auctions
	Our Contributions
	Related Work

	Preliminaries
	Standard Auction Formats
	Approximate First-Price Auctions
	Equilibrium Notions and the Price of Anarchy

	Capturing Corruption with FPA
	Corruption in Auctions
	Hybrid Auction Scheme
	Other Corruption Models
	Adapted Smoothness Notion

	Overbidding
	No Overbidding
	Multi-Unit Auction
	Single-Item HYA

	Conclusion

	Greater Flexibility in Mechanism Design Through Altruism
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Modeling Other-Regarding Preferences
	Utility Model with Other-Regarding Preferences
	Characterization of Truthful Mechanisms
	Design template

	Minimizing Payments
	A Case Study: Altruism
	Two Altruism Models and Design Objectives
	Mechanisms for Altruistic Players
	Discussion

	Impact of Altruism
	Bilateral Trade
	Funding a Public Project
	Minimizing Payments

	Conclusion

	Bibliography
	Samenvatting
	Summary

