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Abstract

In recent years, automata theory has been brought into the realm of category theory
which allowed the generalisation of results and provided new perspectives. With the
introduction of the Ω-automaton, an ω-automaton which arises as a coalgebra, there is
a wide range of directions to explore. Unlike other types of ω-automata, Ω-automata
are deterministic and their acceptance is local. Like deterministic finite automata, they
can be minimised and as they are coalgebraic, we can use categorical techniques to study
them.

We investigate Ω-automata from multiple perspectives and introduce several new tools
along the way. Lassos are studied in more depth giving rise to the Lasso Representation
Lemma which specifies the exact relation between lassos and ultimately periodic words.
We also partially establish the connection between Wilke algebras and Ω-automata, high-
lighting the relationship between language acceptance and language recognition. Us-
ing the already existing Myhill-Nerode theorem for ω-regular languages, we carry out
a strengthening which gives a lower bound for Ω-automata based on the index of the
Nerode congruence we define. Furthermore, we present a Brzozowski construction for
Ω-automata using lasso expressions. This gives new insights into more effective ways of
constructing Ω-automata and brings us closer to the question of size constraints. Finally,
we discuss some minimisation procedures for Ω-automata, in particular the Brzozowski
minimisation algorithm and an algorithm exploiting a dual equivalence.
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Section 1

Introduction

Since its establishment around the middle of the 20th century, automata theory has grown
to become a very wide and important field with its many applications and connections to
other areas ([24]). It is primarily used in theoretical computer science with applications
in formal verification, complexity theory, model checking ([31]) and many more. There
are various types of automata, some of the most widely studied of which are automata
operating on finite words such as deterministic finite automata (DFAs) and nondetermin-
istic finite automata (NFAs). Another class of automata are the so-called ω-automata,
which are automata that operate on infinite words, also called streams.

Over the last decades, the research community has started to bring categorical tools
into the picture to study automata, which by now are considered standard examples of
coalgebras ([28, 4, 3, 17, 16]). Many constructions and algorithms on DFAs have been
translated into the categorical framework giving new perspectives to well-known results.
Some examples include

1. Minimisation: Partition refinement (also known as Hopcroft’s algorithm) and Br-
zozowski minimisation ([1, 7])

2. Soundness and completeness for regular expressions ([16])

3. Myhill-Nerode Theorem ([7, 12])

Some common ω-automata are Büchi, Muller, Rabin and parity automata. They can
be classified according to their acceptance condition and whether they are deterministic
or not. All of the ones listed share a common characteristic for their acceptance condition,
namely that it is non-local in the sense that acceptance is based on the states that are
traversed infinitely often. This makes it difficult to describe them as coalgebras.

A solution to this problem arises through the following fact:

Fact 1.1 ([9]) An ω-regular language is uniquely characterised by its ultimately periodic
fragment, i.e. for ω-regular languages L ,K we have

L = K ⇐⇒ UP(L ) = UP(K )

From this it follows that it is sufficient to accept the ultimately periodic fragment of an
ω-regular language. This gave rise to a multitude of frameworks such as L$-automata ([9]),
families of DFAs (FDFAs) ([2]) and Ω-automata ([11]), the latter of which is presented as
a coalgebra. Having ω-automata which are coalgebraic paves a path towards minimisation
algorithms, a Myhill-Nerode theorem, and also allows us to make connections to other
fields, all within the categorical framework.

In order to portray how well-behaved Ω-automata really are, we argue that in many
ways, Ω-automata behave like DFAs. More specifically, a lot of useful constructions for
DFAs can be adapted to constructions for Ω-automata. As we go through the different
sections, this pattern becomes more and more apparent and provides strong arguments
in favour of studying Ω-automata in more detail.
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Although Ω-automata resemble DFAs in many ways, the constructions we realise are
usually more involved than similar constructions for DFAs. It is for this reason that we
have to develop additional tools such as lasso expressions.

In Section 2, we will introduce the reader to the preliminaries, giving definitions and
fixing some conventions. From this section onwards we address in each section a particular
problem or question about Ω-automata.

Section 3 lays out the categorical foundation for reasoning about Ω-automata through
category theory. Unlike DFAs, the base category for Ω-automata is Set2 whose objects are
pairs of sets and morphisms are pairs of functions. We establish some basic results which
allow us to lift adjunctions and equivalences from Set to Set2. This is useful especially
when tackling minimisation procedures for Ω-automata. The motivation behind this is
that we will lift certain equivalences and adjunctions, which are used in constructions for
DFAs, to Ω-automata.

In Section 4, we reason more about lassos which play a central role throughout the
thesis. On the one hand they provide a great deal of intuition when reasoning about
Ω-automata. On the other hand, they form the basis for tools such as the Lasso Rep-
resentation Lemma and lasso expressions which play an important role in some of the
constructions we undertake. The relation between Ω-automata and lassos can be com-
pared to that of DFAs and finite words.

Section 5 is devoted to the algebraic theory of ω-regular languages. The link between
the algebraic and coalgebraic theory of ω-regular languages has been studied for multiple
types of ω-automata, but not for Ω-automata yet. We provide a construction which turns
an Ω-automaton into a Wilke algebra and show that we can go from language acceptance
to language recognition. Interestingly, we can introduce the construction by analogy to
DFAs.

Section 6 discusses the well-known Myhill-Nerode theorem. This theorem has already
been discussed in [12] but we will undertake some slight changes to strengthen the result.
As for DFAs, we define a Myhill-Nerode equivalence relation but contrary to the classical
equivalence relation, it will be two-sorted. Moreover, for the actual theorem we have
to impose an additional constraint on the ω-language. For the rest the theorems are
analogous in that we get ω-regularity if and only if the index of the equivalence relation
is finite. Moreover, the size of the minimal Ω-automaton accepting an ω-regular language
L is bound from below by the index of the two-sorted equivalence relation.

Section 7 looks at the construction of Ω-automata from ω-regular expressions. The
inspiration for our construction comes from Brzozowski’s construction which gives a pro-
cedure to turn a regular expression into a DFA. We show that for the most part the
construction is straight-forward and pinpoint the main challenge. Solving this challenge
is done by using lasso expressions. We show how to build lasso expressions that are some-
what equivalent to ω-regular expressions and how this can be used to work towards the
construction of a Brzozowski Ω-automaton.

In Section 8 we will look at minimisation procedures for Ω-automata. Some com-
mon minimisation procedures for DFAs such as Brzozowski’s minimisation algorithm and
partition refinement have been framed in categorical terms. We take these results and
lift them to Ω-automata, showing that the minimisation procedures work analogously for
Ω-automata.
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Section 2

Preliminaries

Throughout the thesis, we fix a set of letters Σ called the alphabet. A finite word over Σ
is a map u : n → Σ for some n ∈ N and |u| = n is the length of u. The unique word of
length 0 is called the empty word and denoted ε. An infinite word (or stream) over Σ is a
map α : ω → Σ. The collection of finite, finite non-empty, ultimately periodic and infinite
words is denoted respectively by Σ∗, Σ+, Σup and Σω. We use a, b, c for letters, u, v, w
for finite words and α, β, γ for streams. The concatenation of a finite word u with a finite
word v (resp. infinite word α) is denoted by juxtaposition uv (resp. uα). We denote by
uω the stream obtained by concatenating u with itself infinitely many times. A stream of
the form uω is called periodic, and one of the form uvω is called ultimately periodic. For
a word u and a positive integer k, we write u[k] for the kth symbol of u (starting at 0).
We use u[i . . . j] to denote the substring of u that consists of all the symbols from i to j
included. For a formula ϕ, we write [ϕ] for the function

[ϕ] =

{
1 , if ϕ is true
0 , otherwise.

A language (resp. ω-language) is a subset L ⊆ Σ∗ (resp. L ⊆ Σω). It is called regular
(resp. ω-regular) if it is accepted by an automaton (resp. ω-automaton). We denote
languages by L,K,M and ω-languages by L ,K . We write P(L ) for the periodic, and
UP(L ) for the ultimately periodic fragment of L , i.e.

P(L ) = {α ∈ L | ∃u ∈ Σ+ : α = uω}
UP(L ) = {α ∈ L | ∃u ∈ Σ∗, v ∈ Σ+ : α = uvω}

For a DFA without initial state A = (Q, δ, F ), we write L(A, i) for the language
accepted at i ∈ Q.

Set is the category whose objects are sets and whose morphisms are functions between
sets. We write 2 for the discrete two-element category. For a category C, we write Ĉ for
the category of presheaves on C whose objects are functors F : Cop → Set and whose
morphisms are natural transformations. We denote the final object in Set by 1 = {?}
and the initial set by 0 or ∅. As a convention, we use ! to denote a morphism which is
unique due to a universal property.

Definition 2.1 ([12]) A lasso is a pair (u, v) ∈ Σ∗ × Σ+ repre-
senting the stream uvω. We call u the spoke and v the loop of the
lasso. The collection of lassos is denoted by Σ∗+.

u

v

Before we introduce Ω-automata, we start with a more general type of automaton, the
lasso automaton. Lasso automata operate on lassos as defined above. An Ω-automaton
is a particular kind of lasso automaton which will be defined later on.
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Definition 2.2 ([12]) A lasso automaton is a tuple A = (X,Y, i, ρ, σ, ξ, F ) where

ρ : X → XΣ σ : X → Y Σ ξ : Y → Y Σ,

i ∈ X and F ⊆ Y . We call X the spoke states and Y the loop states. The maps ρ, σ, ξ are
called the spoke, switch and loop transition respectively. The spoke state i is called the
initial state and the collection F of loop states are called the accepting states. Instead of
specifying F , we sometimes give a map χF : Y → 2 where y ∈ F ⇐⇒ χF (y) = 1.

We first give an example of a lasso automaton and show how it operates on a lasso.
Afterwards we will introduce some additional definitions which will help us to formally
define when a lasso is accepted by a lasso automaton.

Let A be the following lasso automaton whereX = {0, 1, 2} and Y = {3, 4, 5, 6, 7}. The
spoke, switch and loop transitions are given by solid, dotted and dashed lines respectively.

0start 1

23

4

5

6

7

a

a

b

b

b b

a

a

a, b

a, b

b
a

a

b

a
b

b

a

a, b

Figure 1: Lasso-automaton A

We consider the following lasso (ab, abab). The idea is that the spoke part of the lasso
is read via the spoke transitions of the lasso automaton. After we are done reading the
spoke part of the lasso, we move on to read the loop part, taking the switch transition
for the first letter and then proceeding via the loop transitions.

So for (ab, abab), we first traverse the spoke part reading ab

0
a→ 1

b→ 0,

which takes us from 0 back to 0. From here we read the loop part abab this time using
the switch and loop transitions

0
a
99K 3

b
99K 4

a
99K 3

b
99K 4.
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As we ended up in an accepting state the lasso (ab, abab) is accepted by A.
Given a spoke state x, we can consider x together with all the y ∈ Y which are

reachable from x just by means of the switch transition and loop transitions. This forms
a DFA called the loop automaton at x which we denote by (A`, x). In the following
diagram we highlight the loop automaton at 0 for A, (A`, 0), in blue.
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a
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b
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a
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The language accepted by the loop automaton at x is called the loop language of x
and is denoted by Loop(x) (or alternatively by L(A`, x)). We make this definition more
precise.

Definition 2.3 ([12]) For a lasso automaton A = (X,Y, i, ρ, σ, ξ, F ), we define the loop
automaton of A to be the DFA A` = (X ] Y, σ : ξ, F ) where (σ : ξ) : X ] Y → Y Σ is the
transition map defined as

σ : ξ(z) =

{
σ(z) , if z ∈ X
ξ(z) , if z ∈ Y.

For a spoke state x ∈ X, we call the initialised DFA (A`, x) the loop automaton at x.
The regular language accepted by (A`, x) is called the loop language at x and denoted
Loop(x).

This definition alone allows us to describe when a lasso of the form (ε, u) is accepted
at some spoke state x. As the spoke part of the lasso is empty, we proceed by reading u
starting at x and using the switch and loop transitions. If we reach an accepting state,
then u is accepted by the loop automaton at x, so u ∈ Loop(x). In other words we have

(ε, u) is accepted at x ⇐⇒ u ∈ Loop(x).
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The other definition we require deals with naturally extending ρ, σ and ξ. Given some
x ∈ X and some a ∈ Σ, then ρ(x)(a) is the spoke state we end up at after reading a from
x. This map can naturally be extended to a map ρ̂ where ρ̂(x)(u) is the state we end up
at after reading an arbitrary finite word u ∈ Σ∗ from x.

Definition 2.4 For δ : Z → ZΣ, we inductively define the map δ̂ : Z → ZΣ∗ by

δ̂(z)(ε) = z δ̂(z)(ua) = δ(δ̂(z, u), a),

and we define δ̃ : Z → ZΣ+

by δ̃(z)(ua) = δ(δ̃(z, u), a).

Definition 2.5 For a map δ : Z1 → ZΣ
2 , we will sometimes use the equivalent map

δ[ : Z1 × Σ → Z2 obtained by uncurrying. If no confusion arises, we will use δ and δ[

interchangeably. For a map τ : Z1 → ZZ3
2 , we define the map τ ] : Z3 → ZZ1

2 as

τ ](z3)(z1) = τ(z1)(z3).

We can now state when a lasso is accepted by a lasso automaton.

Definition 2.6 ([12]) Let A = (X,Y, i, ρ, σ, ξ, F ) be a lasso automaton. A lasso (u, av) ∈
Σ∗+ is accepted by A if ξ̂(σ(ρ̂(i, u), a), v) ∈ F . This is equivalent to the following:

1. av ∈ Loop(ρ̂(i, u)),

2. σ̃ : ξ(ρ̂(i, u), av) ∈ F .

The lasso language accepted by A is given by

Lassos(A, i) = {(u, v) ∈ Σ∗+ | σ̃ : ξ(ρ̂(i, u), v) ∈ F}.

A lasso language is called regular if it is accepted by a finite lasso automaton.

Item (1.) states that av is accepted by the loop automaton at ρ̂(i, u), i.e. at the state
we reach after reading u from the initial state. The second item uses σ̃ : ξ and we included
it because it sometimes allows us to be more concise with our notation (as seen with the
definition of Lassos(A, i)).

Next, we discuss Ω-automata. The lasso automaton A in Figure 1 has a special
property. Let u1v

ω
1 = u2v

ω
2 for u1, u2 ∈ Σ∗ and v1, v2 ∈ Σ+, then

(u1, v1) ∈ Lassos(A, i) ⇐⇒ (u2, v2) ∈ Lassos(A, i).

This property is also called the saturation property [2] and states that for any two lassos
which represent the same ultimately periodic word, they must either be both accepted or
rejected. An Ω-automaton is a lasso automaton which has the saturation property.

Another characterisation of Ω-automata is through the notions of circularity and co-
herence ([11]).

Definition 2.7 ([12]) A regular language L is called circular if for all u ∈ Σ+ we have
u ∈ L ⇐⇒ uk ∈ L for all k ≥ 1. A lasso automaton A is called circular if Loop(x) is
circular for all x ∈ X and it is called coherent if

au ∈ Loop(x) ⇐⇒ ua ∈ Loop(ρ(x, a))
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for a ∈ Σ, u ∈ Σ+. An Ω-automaton is a circular and coherent lasso automaton.

We state an important fact about Ω-automata.

Proposition 2.8 ([11]) For a lasso-automaton A = (X,Y, i, ρ, σ, ξ, χF ) (where all states
are reachable from i), the following are equivalent:

1. Lassos(A, i) = {(u, v) ∈ Σ∗+ | uvω ∈ L } for some ω-regular language L ,

2. A is circular and coherent.

Although we introduced lasso automata as operating primarily on lassos, we can define
what it means for an Ω-automaton to accept streams. The interested reader is referred
to [12, Definition 20]. We do not give this definition as it is not used in the thesis. We
will however state the following proposition

Proposition 2.9 ([12]) Let A = (X,Y, i, ρ, σ, ξ, χF ) be an Ω-automaton and let L(A, i)
be the ω-language accepted by A according to [12, Definition 20], then L(A, i) is ω-regular,
and

Lassos(A, i) = {(u, v) ∈ Σ∗+ | uvω ∈ L(A, i)}.

As briefly touched upon in the introduction, Ω-automata (and lasso automaton for
that matter) arise naturally as coalgebras. When discussing them as such, we usually
omit the initial state and call them Ω-coalgebras. As coalgebras, we have access to the
concepts of Ω-coalgebra morphisms and bisimulations. We will introduce lasso automata
now through coalgebras.

Definition 2.10 ([17]) Let T : C → C be an endofunctor on some category C. A
T -coalgebra is a pair (A, τ) where A is an object in C and τ : A → TA. A map f :
(A, τ)→ (B, τ ′) is a T -coalgebra morphism if f : A→ B is a morphism in C which makes
the following diagram commute:

TA

A

TB

B

	

Tf

τ

f

τ ′

In [11], the authors introduce an endofunctor Ω : 2̂→ 2̂, where they describe objects
of 2̂ as pairs of sets and morphisms between them as pairs of functions. We will get back
to this in Section 3 and show that 2̂ is indeed isomorphic to the product category of Set
with itself. For what follows, we will stick with the original authors and think of 2̂ as the
product category Set× Set which we also write as Set2.

7



Definition 2.11 ([12]) Let Ω : Set2 → Set2 be the endofunctor given by

Ω(X,Y ) = (XΣ × Y Σ, Y Σ × 2),

Ω(f, g) = (f ◦ (−)× g ◦ (−), g ◦ (−)× id2).

Definition 2.12 ([12]) Let A = ((X,Y ), (〈ρ, σ〉 , 〈ξ, χF 〉)) be an Ω-coalgebra. Given
some spoke state i ∈ X, (A, i) is a lasso automaton and we sometimes write A simply as
A = (X,Y, ρ, σ, ξ, F ).

It is easy to see how lasso automata are just pointed Ω-coalgebras (i.e. Ω-coalgebras
with a distinguished initial state) and vice-versa. Given (X,Y ), we have that Ω(X,Y ) =
(XΣ×Y Σ, Y Σ× 2). Specifying a map (X,Y )→ (XΣ×Y Σ, Y Σ× 2) is the same as giving
four maps ρ : X → XΣ,σ : X → Y Σ, ξ : Y → Y Σ and χF : Y → 2.

Definition 2.13 ([12]) Let A = (X,Y, ρ, σ, ξ, χF ) and A′ = (X ′, Y ′, ρ′, σ′, ξ′, χ′F ). An
Ω-coalgebra morphism (f0, f1) : A→ A′ is a pair of morphisms f0 : X → X ′, f1 : Y → Y ′

in Set2 such that the following diagrams commute:

XΣ

X

X ′Σ

X ′

	

f0 ◦ (−)

ρ

f0

ρ′

Y Σ

X

Y ′Σ

X ′

	

f1 ◦ (−)

σ

f0

σ′

Y Σ

Y

Y ′Σ

Y ′

	

f1 ◦ (−)

ξ

f1

ξ′

2

Y

2

Y ′

	

id2

χF

f1

χ′F

Finally, we also define the notion of bisimulation between two Ω-coalgebras.

Definition 2.14 ([12]) Two Ω-automata A = (X,Y, ρ, σ, ξ, F ) and A′ = (X ′, Y ′, ρ′, σ′, ξ′, F ′)
are bisimilar if there exists a pair of relations (Z0, Z1) with Z0 ⊆ X ×X ′, Z1 ⊆ Y × Y ′
such that for all (x, x′) ∈ Z0, (y, y′) ∈ Z1 and a ∈ Σ we have

1. (ρ(x, a), ρ(x′, a)) ∈ Z0,

2. (σ(x, a), σ(x′, a)) ∈ Z1,

3. (ξ(y, a), ξ(y′, a)) ∈ Z1,

4. y ∈ F ⇐⇒ y′ ∈ F ′.

Two lasso automata (A, i) and (A′, i′) are bisimilar, written (A, i) - (A′, i′) if there is a
bisimulation between A,A′ linking i and i′.

We want to point out that bisimulation captures language equivalence for Ω-automata.

Proposition 2.15 ([12]) Let (A, i), (A′, i) be two Ω-automata, then

(A, i) - (A′, i′) ⇐⇒ L(A, i) = L(A′, i′).
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Convention 2.16 Throughout the thesis it will be convenient to refer to some arbitrary
Ω-coalgebra. For that reason we introduce the convention that we may reference to an
arbitary Ω-coalgebra as given below:

A = (X,Y, ρ, σ, ξ, F ).

If we need an initial state, it will be denoted by i. We will usually use x’s for spoke and
y’s for loop states respectively.

Convention 2.17 For the most part of this thesis (apart from section 7), whenever we
talk about arbitrary lassos and Ω-automata, we may without loss of generality assume
that they are reachable, i.e. that all states can be reached from the initial state. The
justification for this is that removing non-reachable states does not impact the language
that is accepted.
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Section 3

The Category Set2

The base category of Ω-coalgebras is the category of presheaves on the discrete two
element category which we denoted 2̂. As we will undertake quite a few constructions in
this category, it will be advantageous to first explore its properties. That being said, the
following results will mostly be used in Section 8 and just form a technical foundation, so
the reader may want to skip the proofs. We assume familiarity with several categorical
concepts such as presheaves, limits, colimits, exponentials, equivalences and adjunctions.

This section will demonstrate, that the category 2̂ is isomorphic to the category Set2

which has as objects pairs of sets and as morphisms pairs of functions. By virtue of
2̂ being a category of presheaves, it follows that we are dealing with a well-behaved
category which, amongst others, is complete, cocomplete and cartesian closed. Moreover,
essentially all constructions can be done pointwise. In the case of limits and colimits
this is again a consequence of us working in a category of presheaves. Moreover, as
the discrete two element category 2 has no non-trivial morphisms, exponentials can be
computed pointwise.

Towards the end of the section we will show that we can lift adjunctions and equiva-
lences from Set to Set2 in a natural way.

Proposition 3.1 The categories Set2 and 2̂ are isomorphic.

Proof. In order to show the claim, we will explicitly construct an isomorphism. Consider
the following two functors:

– I : Set2 → 2̂

1. I(A,B)(0) = A, I(A,B)(1) = B

2. I(f, g)0 = f , I(f, g)1 = g

– J : 2̂→ Set2

1. JF = (F (0), F (1))

2. Jµ = (µ0, µ1)

We claim that I ◦ J = id2̂ and J ◦ I = idSet2 . Starting with the objects, let F be a
presheaf on 2, then

(I ◦ J(F ))(0) = I(F (0), F (1))(0) = F (0)

(I ◦ J(F ))(1) = I(F (1), F (1))(1) = F (1).

Moreover, as 2 has only identity morphisms, (I ◦ J)(F ) = F . Next let (A,B) ∈ Set2,
and let F = I(A,B), then

(J ◦ I)(A,B) = J(F ) = (F (0), F (1)) = (A,B).

As for the morphisms, let σ : F =⇒ G be a natural transformation, then

(I ◦ J)(σ)0 = I(µ0, µ1)0 = µ0

(I ◦ J)(σ)1 = I(µ0, µ1)1 = µ1.
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so (I ◦ J)(µ) = µ. Finally, for (f, g) ∈ Set2
1, let I(f, g) = µ (so µ0 = f, µ1 = g), then

(J ◦ I)(f, g) = J(µ) = (µ0, µ1) = (f, g),

which completes the proof.

Corollary 3.2 Set2 is complete, cocomplete and cartesian closed. Limits and colimits
are computed pointwise, so are exponentials. A morphism is epi (resp. mono) if it is
componentwise epi (resp. mono).

Proof. This follows from the fact that limits and colimits in a category of presheaves are
computed pointwise. Again by the properties of presheaves, we also get completeness and
cocompleteness ([22]).

As it is not true in general that exponentials can be computed pointwise in a presheaf
we will show that exponentials can in fact be computed pointwise in Set2.

Let (X,Y ), (E,E′), (A,B) ∈ Set2. As limits are computed pointwise in a category of
presheaves, we get

(XE , Y E
′
)× (E,E′) = (XE × E, Y E

′
× E′)

(A,B)× (E,E′) = (A× E,B × E′).

Our claim is that the exponential (X,Y )(E,E′) is isomorphic to (XE , Y E
′
). We will

show that (XE , Y E
′
) satisfies the universal property of the exponential. So we have to

show that for each (A,B) and (h1, h2) : (A,B) × (E,E′) → (X,Y ) there is a unique
(H1, H2) : (A,B)→ (XE , Y E

′
) which makes the diagram below commute.

(A× E,B × E′)

(XE × E, Y E′ × E′) (X,Y )

	
(H1 × idE , H2 × idE′)

(h1, h2)

(ev1, ev2)

This is equivalent to showing that the function

(e1, e2) : HomSet2((A,B), (XE , Y E
′
)) −→ HomSet2((A× E,B × E′), (X,Y ))

(H1, H2) 7−→ (ev1 ◦ (H1 × idE), ev2 ◦ (H2 × idE′))

is a bijection. If we show that it is a bijection componentwise then we are done as monos
and epis are computed pointwise and in this case, a map is a bijection if it is both mono
and epi.

Let h1 : A× E → X, define

H1 : A −→ XE

a 7−→ (H1(a) : E → X) : e 7→ h1(a, e),

which shows that e1 is surjective as

ev1 ◦ (H1 × idE)(a, e) = ev1(H1(a), e) = H1(a)(e) = h1(a, e).
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As for the injectivity of e1, let

ev1 ◦ (H1 × idE)(a, e) = ev1 ◦ (H ′1 × idE)(a, e),

then by the definition of ev1 we have

ev1 ◦ (H1 × idE)(a, e) = H1(a, e),

hence
H1(a, e) = H ′1(a, e),

which shows injectivity. The proof for e2 is analogous. It follows that exponentials can
be computed pointwise.

Lemma 3.3 Let C,D be two categories and F1, F2, G1, G2 be four functors

Set C Set D

F1

F2

G1

G2

such that F1 a F2 and G1 a G2, then

F1 ×G1 a F2 ×G2.

Proof. Let F1 a F2 and G1 a G2, so there are natural bijections

mF
A,B : HomC(F1(A), B)→ HomSet(A,F2(B))

mG
A,B : HomD(G1(A), B)→ HomSet(A,G2(B)).

As is standard notation, if two maps f and g correspond to each other under a natural
bijection, we will call them transposes of one another. As we are dealing with two natural
bijections at the same time, we write f

F
= g to mean that f and g are transposes under

mF and similarly write f
G

= g for transposes under mG. We define H1 = F1 × G1 and
H2 = F2 ×G2 and want to show that H1 a H2. We proceed by defining

mA,B : HomC×D(H1(A0, A1), (B0, B1))→ HomSet2((A0, A1), H2(B0, B1)),

where

mA,B(f, g) = (mF
A,B(f),mG

A,B(g)) and m−1
A,B(f ′, g′) = (mF,−1

A,B (f ′),mG,−1
A,B (g′)),

and showing that m is a natural bijection.
Bijectivity follows by how we defined m, in particular, note that

(f, g) = (f
F
, gG) = (f

F
F

, gG
G

) = (f, g).

It remains to show that the naturality condition holds. Let (f, g) : (A′0, A
′
1) →

(A0, A1), (f ′, g′) : (B0, B1)→ (B′0, B
′
1). We show that the following diagram commutes.
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HomC×D(H1(A′0, A
′
1), (B′0, B

′
1))

HomC×D(H1(A0, A1), (B0, B1))

HomSet2((A′0, A
′
1), H2(B′0, B

′
1))

HomSet2((A0, A1), H2(B0, B1))

	

mA′,B′

(f ′, g′) ◦ − ◦H1(f, g)

mA,B

H2(f ′, g′) ◦ − ◦ (f, g)

Let (i, j) : H1(A0, A1)→ (B0, B1), then

(f ′, g′) ◦ (i, j) ◦H1(f, g) =
(
f ′ ◦ i ◦ F1(f), g′ ◦ j ◦G1(g)

)
=
(
f ′ ◦ i ◦ F1(f)

F
, g′ ◦ j ◦G1(g)

G)
=
(
F2(f ′) ◦ iF ◦ f,G2(g′) ◦ jG ◦ g

)
(nat. of mF ,mG)

= H2(f ′, g′) ◦ (i, j) ◦ (f, g),

as required.

Lemma 3.4 Let F1 : Set→ C and F2 : Set→D be two equivalences with weak-inverses
G1 and G2 respectively, then

F1 × F2 : Set2 → C ×D

is an equivalence with weak-inverse G1 ×G2.

Proof. Let F = F1×F2 andG = G1×G2. Since F1, F2 are equivalences with weak-inverses
G1, G2, we have four natural isomorphisms:

σ1 : G1 ◦ F1

∼=
=⇒ idSet ρ1 : F1 ◦G1

∼=
=⇒ idC

σ2 : G2 ◦ F2

∼=
=⇒ idSet ρ2 : F2 ◦G2

∼=
=⇒ idD.

We define the natural transformation σ : G ◦ F =⇒ idSet2 for (A,B) ∈ Set2 by(
σA,B : (G ◦ F )(A,B) −→ (A,B)

)
= (σ1,A, σ2,B).

Similarly, we define a natural transformation ρ : F ◦G =⇒ idC×D for (A,B) ∈ C ×D
by (

ρA,B : (F ◦G)(A,B) −→ (A,B)
)

= (ρ1,A, ρ2,B).

We will show for σ that it is a natural isomorphism, the proof for ρ is analogous. We
have to show that σ is an isomorphism at each component and that it satisfies naturality.
For the first part, we define

σ−1
A,B = (σ−1

1,A, σ
−1
2,B),

and it follows that, for all (A,B) ∈ Set2:

σA,B ◦ σ−1
A,B = (σ1,A ◦ σ−1

1,A, σ2,B ◦ σ−1
2,B) = (idA, idB) = id(A,B)

σ−1
A,B ◦ σA,B = (σ−1

1,A ◦ σ1,A, σ
−1
2,B ◦ σ2,B) = (idG1F1(A), idG2F2(B)) = idGF (A,B).

Let (f, g) : (A,B)→ (A′, B′) in Set2 and consider the following diagram
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(A,B)

GF (A,B)

(A′, B′)

GF (A′, B′)

	

(f, g)

σ(A,B)

GF (f, g)

σ(A′,B′)

This diagram commutes since:

σ(A′,B′) ◦GF (f, g) = σ(A′,B′)(G1F1f,G2F2g)

= (σ1,A′ ◦G1F1f, σ2,B′ ◦G2F2g)

= (f ◦ σ1,A, g ◦ σ2,B)

= (f, g) ◦ σ(A,B).

Hence σ, ρ are natural isomorphisms and F is an equivalence with weak-inverse G.

Proposition 3.5 The functor S : Set2 → Set2 which acts on objects and morphisms
by switching their places (i.e. S(A,B) = (B,A) and S(f, g) = (g, f)) is an isomorphism.

Proof. Clearly S is a functor as

S((f1, g1) ◦ (f2, g2)) = ((g1 ◦ g2), (f1 ◦ f2)) = (g1, f1) ◦ (g2, f2) = S(f1, g1) ◦ S(f2, g2),

S(id(A,B)) = S(idA, idB) = (idB , idA) = id(B,A) = idS(A,B).

We will show that S ◦ S = idSet2 . Let (A,B) ∈ Set2, then

S ◦ S(A,B) = S(B,A) = (A,B).

Similarly, for morphisms (f, g) we get

S ◦ S(f, g) = S(g, f) = (f, g).
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Section 4

Rewriting Lassos

Lassos occupy an important position in the study of Ω-automata. They were introduced
as representatives of ultimately periodic words and the primary object that Ω-coalgebras
operate on. As such, it is important to study their structure and exact relationship with
ultimately periodic words.

More specifically, given some ultimately periodic word uvω, we see that there are
infinitely many lassos that represent it. Intuitively however, we understand that there
is a canonical representative for each ultimately periodic word. This section introduces
some tools to reason about lassos. When do two lassos represent the same ultimately
periodic word? Is there a canonical representative and how do we find it? To answer
these questions, we introduce rewrite rules on the collection of lassos with the purpose of
reducing and simplifying them.

Before defining the rewrite rules, we briefly explain them through an example to gain
some insights into what exactly they do. Notice that

ua(va)(va)(va) . . . is equivalent to u(av)(av)(av) . . .

u(v . . . v︸ ︷︷ ︸
k times

)(v . . . v︸ ︷︷ ︸
k times

)(v . . . v︸ ︷︷ ︸
k times

) . . . is equivalent to uvvvvvvvvvvvvvv . . .

Expressing this in terms of lassos gives:

(ua, va) is equivalent to (u, av)

(u, vk) is equivalent to (u, v) (k ≥ 1).

Indeed these observations form the basis of our two rewrite rules. We will allow to rewrite
the expressions on the left to those on the right.

At this stage, it is useful to see that these two rules relate to circularity and coherence
of Ω-coalgebras, i.e.

(a, va) ∈ Lassos(x) ⇐⇒ (ε, av) ∈ Lassos(x) (Coherence)

(ε, vk) ∈ Lassos(x) ⇐⇒ (ε, v) ∈ Lassos(x) (Circularity)

Throughout this section, we show that our two rewrite rules are strong enough to obtain,
for each ultimately periodic word, a canonical lasso representative. Moreover, we define a
type of lasso equivalence such that two lassos are equivalent exactly when the ultimately
periodic words they represent are the same.

Definition 4.1 We define the following reduction rules on Σ∗+:

a ∈ Σ (ua, va)
(γ1)

(u, av)

(u, vk) (k > 1)
(γ2)

(u, v)

We write (u, v) →γi (u′, v′) if (u, v) reduces to (u′, v′) in one step under γi and we let
→γ =→γ1 ∪→γ2 .
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In order to show that γ always leads to a normal form, we leverage Newman’s Lemma.
This involves showing that the reduction rules are strongly normalising and locally con-
fluent, from which we can deduce that they are confluent and so each lasso reduces to
a unique normal form. As we move through the section we shall remind the reader of
common definitions and Newman’s Lemma, which can all be found in more detail in [29].

Lemma 4.2 The reduction rule γ strongly normalises, i.e. it does not allow for infinite
reduction chains.

Proof. For the reduction rules γ1, γ2, we have that

(u, v)→γ1 (u′, v′) =⇒ |u′| < |u| and |v′| = |v|,
(u, v)→γ2 (u′, v′) =⇒ |u′| = |u| and |v′| < |v|.

So each reduction rule strictly decreases either the spoke or loop part of the lasso and
keeps the other part constant. As the words occurring in a lasso are both finite, we cannot
have an infinite chain of γ-reductions.

Definition 4.3 ([29]) Let R,S be two binary relations on some set X. We say that R
commutes with S if

∀x, y, z ∈ X : (xRy ∧ xSz =⇒ ∃w ∈ X : ySw ∧ zRw).

x

y z

w

R S

S R

Lemma 4.4 The binary relations →γ1 and →γ2 commute.

Proof. Let (u, v), (u1, v1) and (u2, v2) be such that

(u, v)→γ1 (u1, v1) (1)
(u, v)→γ2 (u2, v2) (2)

Then by (1) it follows that there are a ∈ Σ and w ∈ Σ+ such that u = u1a, v = aw and
v1 = wa. By (2) we have u = u2 and that there is some k > 0 such that vk2 = v. As
vk2 = v = aw there is some w′ such that v2 = aw′. This gives us the following:

(u, v) = (u1a, (aw
′)k) (u1, v1) = (u1, w

′(aw′)k−1a) = (u1, (w
′a)k)

(u2, v2) = (u1a, aw
′)
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Now consider (u3, v3) = (u1, w
′a). We have that

(u1, v1) = (u1, (w
′a)k)→γ2 (u1, w

′a)

and

(u2, v2) = (u1a, aw
′)→γ1 (u1, w

′a)

as shown in the diagram to the right. From this
it follows that →γ1 and →γ2 commute.

(u1a, (aw
′)k)

(u1, (w
′a)k) (u1a, aw

′)

(u1, w
′a)

γ1 γ2

γ2 γ1

Definition 4.5 ([29]) Let R be a binary relation on some set X, then

1. R has the diamond property if it commutes with itself.

2. R has the Church-Rosser property, or is confluent, if the transitive-reflexive closure
R∗ has the diamond property.

3. R is locally confluent, or weakly Church-Rosser, if it satisfies

∀x, y, z ∈ X : (xRy ∧ xRz =⇒ ∃w ∈ X : yR∗w ∧ zR∗w).

Lemma 4.6 The binary relation →γ is locally confluent.

Proof. Let (u, v)→γ (u1, v1) and (u, v)→γ (u2, v2). We distinguish three cases.

1. Assume w.l.o.g. that (u, v)→γ1 (u1, v1) and (u, v)→γ2 (u2, v2). This case is covered
by Lemma 4.4.

2. Assume that (u, v)→γ1 (u1, v1) and (u, v)→γ1 (u2, v2), then clearly u = u1a = u2a
for some a ∈ Σ and v1 = v2 = aw for some w with v = wa. Hence (u1, v1) = (u2, v2).

3. Let (u, v) →γ2 (u1, v1) and (u, v) →γ2 (u2, v2), then v = (v1)k1 and v = (v2)k2 for
some k1, k2 > 0. As v = vk11 = vk22 we can find v3, `1 and `2 with v1 = v`13 and v2 =
v`23 . To see this, let k3 be the greatest element of the set {` | ∃w ∈ Σ+ : w` = v},
which must exist as v is finite. Then choose v3 = v[0 . . . (k3 − 1)]. For vi, we must
then have `i = k3

ki
and claim that v`i3 = vi. If not then they would differ at some

position, but (v`i3 )ki = vk33 = v = vkii , which is a contradiction. So it follows that

(u1, v1)→γ2 (u, v3) and (u2, v2)→γ2 (u, v3).

Lemma 4.7 (Newman’s Lemma, [29]) If a binary relation R on some set X is
strongly normalising and locally confluent, then it is confluent.

Definition 4.8 ([29]) A lasso (u, v) ∈ Σ∗+ is a normal form if there does not exist
(u′, v′) ∈ Σ∗+ such that (u, v)→γ (u′, v′).

Corollary 4.9 The binary relation →γ is confluent and every lasso in Σ∗+ reduces to a
unique normal form.
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Proof. This is a direct consequence of Newman’s Lemma.

Definition 4.10 Let ∼γ be the least equivalence relation including →γ .

Lemma 4.11 (Lasso Representation Lemma) Let (u, v), (u′, v′) ∈ Σ∗+, then

(u, v) ∼γ (u′, v′) ⇐⇒ uvω = u′v′ω.

Proof. We show that if (u, v) →γ (u′, v′), then uvω is the same as u′v′ω. To make the
argument more formal, recall that an ultimately periodic word is just a function α : ω → Σ
which is ultimately periodic. Given a lasso (u, v) with |u| = i and |v| = j we can define

uvω : ω −→ Σ

k 7−→ uvω[k] =

{
u[k] , if k < i

v[(k − i)%j] , otherwise

where a%b denotes the remainder of the integer division of a by b. For (ua, va)→γ1 (u, av)
with |u| = i, |v| = j we get the two functions

ua(va)ω[k] =


u[k] , if k < i

a , if k = i

v[(k − (i+ 1))%(j + 1)] , if k > i and (k − (i+ 1)) 6= j (mod j + 1)

a , if k > i and (k − (i+ 1)) = j (mod j + 1)

=


u[k] , if k < i

a , if k ≥ i and k = i (mod j + 1)

v[(k − (i+ 1))%(j + 1)] , if k > i and k 6= i (mod j + 1)

u(av)ω[k] =


u[k] , if k < i

a , if k ≥ i and k = i (mod j + 1)

v[(k − i)%(j + 1)− 1] , otherwise.

This is the same following this observation:

(k − (i+ 1))%(j + 1) = (k − i)%(j + 1)− 1 , for k 6= i (mod j + 1).

The proof for →γ2 is similar.
From this it follows that if (u, v) ∼γ (u′, v′), then they both reduce to the same normal

form (w1, w2) and as the reductions preserve representability, we have uvω = w1w
ω
2 =

u′v′ω.
For the other direction, note that given some ultimately periodic word uvω seen as a

function, we can extract the normal form. Let i be the least element of the set

{` | ∃j ∀k > ` : uvω[k] = uvω[k + j]}.

Next let j be the smallest element of the set

{` | ∀k > i : uvω[k] = uvω[k + `]}.
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From i, j, we can get the normal form. Note that by how we defined i, j, we have that
(uvω[0] . . . uvω[i], uvω[i+1] . . . uvω[i+j]) is a lasso representing uvω. Moreover, it must be
the normal form as otherwise we could reduce it which would contradict the minimality
of i and j. Now assume that uvω = u′v′ω but (u, v) 6∼γ (u′, v′), then (u, v), (u′, v′) would
have to reduce to two distinct normal forms, but this cannot be the case as uvω and u′v′ω
yield the same normal form.

Remark 4.12 In [12], the authors call two lassos (u, v), (u′, v′) bisimilar if and only if
they represent the same ultimately periodic word. In this sense, we may of course think
of lassos themselves as coalgebras, where ∼γ captures bisimilarity of lassos.

Definition 4.13 For an ultimately periodic word uvω, we define its normal form nf(uvω)
to be the normal form of the lasso (u, v).

This is well-defined by the Lasso Representation Lemma 4.11.
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Section 5

Wilke Algebras

Regular languages can be studied, in one part, through the concept of language acceptance
by an automaton. We could call this approach coalgebraic, seeing automata as key
examples of coalgebras, in particular when talking about deterministic finite automata
(DFAs). However, there is also an algebraic approach. We can study regular languages
through monoids or semigroups ([27, Chapter 10],[24]). These two approaches form a
good starting point and so we start this section by discussing DFAs and monoids.1

Given some deterministic finite automaton A = (Q, i, δ, F ), we may consider its tran-
sition map δ : Q→ QΣ, or equivalently look at the map δ] : Σ→ QQ where

δ](a)(q) = δ(q)(a)

and which we can think of as associating to each a ∈ Σ a map f ∈ QQ representing all the
paths in the automaton with label a. We can naturally extend δ] to a map δ̂] : Σ∗ → QQ

where

δ̂](ε) = idQ and δ̂](ua) = δ](a) ◦ δ̂](u).

This reveals that Im(δ̂]) ⊆ QQ can be equipped with a monoid structure (the functions
in the image of δ̂] are closed under function composition and idQ is the identity element)
and that δ̂] is in fact a monoid homomorphism whose domain is the free monoid over
Σ. What makes this structure, which we refer to as T(A) (the transition monoid of A),
so interesting, is that it allows us to talk about regular languages using monoids and
monoid homomorphisms. To make this more explicit, let f : Σ∗ → A be a monoid
homomorphism. A subset L ⊆ Σ∗ is said to be recognised by f if there is some P ⊆ A
such that L = f−1[P ].

In order to see how this relates to language recognition consider L(A) ⊆ Σ∗ and let

P = {f ∈ T(A) | f(i) ∈ F},

then
L(A) = δ̂]−1[P ].

Thus the map δ̂] recognises the regular language accepted by A. This shows that every
language which is accepted by some DFA is also recognised by a monoid homomorphism
into a finite monoid. Fortunately, the converse is true as well, giving us the following fact:

Fact 5.1 ([27]) A regular language L ⊆ Σ∗ is accepted by a deterministic finite automa-
ton if and only if it is recognised by a monoid homomorphism from the free monoid over
Σ to a finite monoid.

Quite naturally, there is an interest in obtaining an algebraic counterpart to the accep-
tance of ω-regular languages by ω-automata. This counterpart is given by ω-semigroups

1We could also have chosen semigroups instead of monoids.
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or Wilke algebras. It is standard to use ω-semigroups but they involve an operation of
infinite arity. Thomas Wilke introduced a different structure, Wilke algebras, whose op-
erations are of finite arity. Furthermore, he showed that every Wilke algebra can uniquely
be extended to an ω-semigroup, and every ω-semigroup can uniquely be equipped with
the structure of a Wilke algebra ([33, 25]). For our purposes we decided to use Wilke
algebras.

For various types of ω-automata such as non-deterministic Büchi automata and Muller
automata, constructions to and from ω-semigroups exist (for a survey see [10, 25], these
texts also give a more detailed introduction to the algebraic theories surrounding ω-regular
languages).

In this section, our aim is to provide a solution to the following problem.

Given an Ω-automaton A, construct a finite Wilke algebra T(A) such that the
ω-regular language L(A) accepted by A is also recognised by a Wilke algebra
homomorphism from the Wilke algebra (Σ+,Σω) to T(A).

We don’t give a solution to the converse of this problem but discuss it at the end of this
section.

Before we start, we introduce some basic definitions. The concept of a Wilke algebra
was originally introduced as a right binoid by Thomas Wilke [33].

Definition 5.2 (Wilke Algebra, [33]) A Wilke algebra is a two-sorted algebra W =
(Wf ,Wi, ·,×,ω ) with

· : Wf ×Wf →Wf × : Wf ×Wi →Wi

(−)
ω

: Wf →Wi,

satisfying ∀u, v, w ∈Wf , β ∈Wi :

(u · v) · w = u · (v · w) (A)
(u · v)× β = u× (v × β) (MA)
u× (v · u)ω = (u · v)ω (Co)
(u · . . . · u︸ ︷︷ ︸
n times

)ω = uω (n > 0) (Ci)

These four equations represent associativity (A), mixed associativity (MA), coherence
(Co) and circularity (Ci) respectively. A Wilke algebra is called complete if every β ∈Wi

is of the form uvω for some u, v ∈Wf .

Definition 5.3 ([33]) A pair of functions (f1, f2) : (Af , Ai) → (Bf , Bi) between two
Wilke algebras A and B is a Wilke algebra homomorphism if, for all u, v ∈ Af , α ∈ Ai:

1. f1(u ·A v) = f1(u) ·B f1(v)

2. f2(u×A α) = f1(u)×B f2(α)

3. f2(uωA) = f1(u)ωB

The conditions express, that f1 respects the product, f1, f2 respect the mixed product
and f2 respects the ω-star.
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Example 5.4 Some examples of Wilke algebras arise naturally over the alphabet Σ:

1. Take Σ+ for the finite sort and Σup for the infinite sort. They form the base set for
a Wilke algebra called the free Wilke algebra over Σ, where the product and mixed
product are given by concatenation and the ω-star is given by concatenating a word
infinitely often with itself. The free Wilke algebra over Σ is denoted by W+,up

Σ , or
as W+,up if Σ is understood.

2. In a similar way, take Σω, then (Σ+,Σω) also forms a Wilke algebra denoted by
W+,ω

Σ (and W+,ω if Σ is understood).

It is not hard to see that W+,up is in fact a complete Wilke algebra while W+,ω is not.

5.1 Transition Wilke Algebra
We would like to remind the reader of our convention 2.16 that we will freely refer to an
arbitrary Ω-coalgebra A = (X,Y, ρ, σ, ξ, F ).

In the transition monoid construction at the start of this section, we looked at a DFA
(Q, i, δ, F ) and the map δ̂] : Σ∗ → QQ which associates to each u ∈ Σ all the paths with
label u. In the case of Wilke algebras and Ω-automata, there are two sorts, a finite and
an infinite one. For the finite sort, we would like a map whose domain is Σ+ and for
the infinite sort a map whose domain is Σup. Naturally, we could follow the transition
monoid example and try to associate to each u ∈ Σ+ all the paths of shape x u→ x′. In
this case the map ρ̃] : Σ+ → XX would take the role of δ̂]. Similarly, for the infinite case
we would like to associate ultimately periodic words vwω to paths of the shape x vwω

−→ y.
Unfortunately, such paths do not exist in Ω-automata. Instead of associating some x ∈ X
to some y ∈ Y , it would be more natural to associate x to a subset P of Y , namely to all

those y such that there is a path x
(v′,w′)−→ y where (v′, w′) is a lasso representative of vwω

(we write x vwω

=⇒ P ). The following diagram illustrates this idea.

x

x′

x

y1 y2 . . . yn

x

P

viw
ω
i = vwω

u
(v1, w1) (vn, wn)

vwω

Figure 2: Visualisation of Paths

As a first suggestion, we may hence take as carrier for our transition Wilke algebra
the sets

Tf = XX and Ti = (2Y )X .

Unfortunately, we were not able to equip (Tf , Ti) with the structure of a Wilke algebra.
We identify two main reasons for this:
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1. the finite sort does not contain enough information to define a map (−)ω : Tf → Ti;

2. in Ti we look at functions whose range consists of all possible subsets of Y , but it
turns out that we would like to only map spoke states to a special subcollection of
subsets of Y , namely those that are ‘nice’.

We first address the second problem as, although the problems don’t seem very con-
nected, it helps us to solve the first problem. For this, we define a notion of ‘niceness’
which is that of an admissible set of final states.

Definition 5.5 Let A = (X,Y, i, ρ, σ, ξ, F ) be an Ω-coalgebra and G ⊆ Y , we write
A[G/F ] for the Ω-coalgebra (X,Y, i, ρ, σ, ξ,G), i.e. where we replaced the set of final
states F by G.

Definition 5.6 Let A = (X,Y, ρ, σ, ξ, F ) be an Ω-coalgebra. A subset G ⊆ Y is called
an admissible set of final states if A[G/F ] is circular and coherent. We denote the set of
admissible subsets of Y by Adm(Y ).

We give a reasoning behind why the admissible sets are nice, but before we do that,
we have to quickly address another issue. We said that each ultimately periodic word
vwω should be mapped to a collection of ‘paths’ of the shape x vwω

=⇒ P as shown in the
diagram above, with P being an arbitrary subset of Y . Now we would like to instead map
x to an admissible subset of Y . How do we choose which admissible set to map it to?

Ideally, if x vwω

=⇒ P , we would like to find some G ∈ Adm(Y ) such that P ⊆ G. A
solution to this problem could be, to look at every admissible subset Gi (i ∈ I) for which
P ⊆ Gi and then map x to the collection {Gi}i∈I . We argue that this collection is indeed
a good choice.

Proposition 5.7 Let A = (X,Y, ρ, σ, ξ, F ) be an Ω-coalgebra. The admissible subsets of
Y form a Boolean algebra, in particular Adm(Y ) is closed under intersection, union and
complement.

Proof. It is easy to check that ∅ and Y are both admissible. If G is admissible then so is
Y \G (the Ω-automaton A[G/F ] is the complement of A[(Y \G)/F ]).

We show that A[G ∩ H/F ] is circular and coherent.Let u ∈ Σ+, v ∈ Σ∗, a ∈ Σ and
x ∈ X, then

σ̃ : ξ(x, u) ∈ G ∩H ⇐⇒ σ̃ : ξ(x, u) ∈ G and σ̃ : ξ(x, u) ∈ H
adm⇐⇒ σ̃ : ξ(x, uk) ∈ G and σ̃ : ξ(x, uk) ∈ H (k > 1)

⇐⇒ σ̃ : ξ(x, uk) ∈ G ∩H (k > 1)

σ̃ : ξ(x, av) ∈ G ∩H ⇐⇒ σ̃ : ξ(x, av) ∈ G and σ̃ : ξ(x, av) ∈ H
adm⇐⇒ σ̃ : ξ(ρ(x, a), ua) ∈ G and σ̃ : ξ(ρ(x, a), ua) ∈ H

⇐⇒ σ̃ : ξ(ρ(x, a), ua) ∈ G ∩H,

which shows that it is circular and coherent. As admissible subsets are closed under
intersection and complement, they are also closed under union.
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To get back to the matter at hand, we initially considered x
vwω

=⇒ P where P ⊆ Y

was arbitrary and changed this to x vwω

=⇒ {Gi}i∈I where all Gi ∈ Adm(Y ) with P ⊆ Gi.
As the admissible subsets form a finite Boolean algebra (for we are mainly interested in
finite Ω-automata), it is in particular complete and so the meet of the {Gi}i∈I is defined
and is the smallest admissible set containing P . Furthermore, the collection {Gi}i∈I is
upwards-closed meaning that the {Gi}i∈I form a principal filter. We can update the Ti
to

Ti =
(

2Adm(Y )
)X

= 2X×Adm(Y ).

Although the admissible sets of accepting states are well-behaved, there is yet another
reason for why we called them ‘nice’ as the following lemma shows.

Lemma 5.8 Let (u, v), (u′, v′) ∈ Σ∗+ be such that (u, v) ∼γ (u′, v′). Assume that x
(u,v)−→ y

and x
(u′,v′)−→ y′, then for any G ∈ Adm(Y ): y ∈ G ⇐⇒ y′ ∈ G.

Proof. If x
(u,v)−→ y and y ∈ G, then uvω ∈ L(A[G/F ], x). Then as (u, v) ∼γ (u′, v′),

x
(u′,v′)−→ y′ and as A[G/F ] is circular and coherent, we have that y′ ∈ G. The other

direction follows by symmetry.

Another way of expressing the above lemma is that, if x vwω

=⇒ P as in figure 2 and if
G ∈ Adm(Y ), then

P ∩G 6= ∅ =⇒ P ⊆ G.

We slightly adapt our notation and write x vwω

=⇒ G to indicate that, no matter what path
with label (v′, w′) such that v′w′ω = vwω we take, we always end up in G. The lemma
then states that if we want to find out if for some admissible set G we have x vwω

=⇒ G, it
is sufficient to take any lasso representative (vi, wi) of vwω and check if for x

(vi,wi)−→ y, we
have that y ∈ G. If so, then no matter what lasso representative we choose, we always
end up in G and so x vwω

=⇒ G.
We promised that this would give a solution to the first problem, i.e. currently our

Tf does not contain enough information to define (−)ω : Tf → Ti. At the moment, Tf
consists of, for each u ∈ Σ+, a collection of paths x u→ x′ ∈ ρ̃](u). Given such a path
x

u→ x′, we essentially want to determine, for a given G ∈ Adm(Y ), whether x uω

=⇒ G.
By Lemma 5.8, it would be sufficient to consider any lasso representative (v, w) of uω and

check if for x
(v,w)−→ y we have y ∈ G. We know that uω has a very nice lasso representative,

namely (ε, u), so our solution is to enrich our Tf to, for each u ∈ Σ+, not only hold paths

of the shape x u→ x′ but also paths of the shape x
(ε,u)−→ y. If we manage to do that, then

for each admissible set G, we can easily check if x uω

=⇒ G by checking if y ∈ G.
We update our Tf to

Tf = XX × Y X × Y Y ,

where XX should be thought of as paths of the shape x u→ x′, Y X as paths of the shape
x

(ε,u)−→ y and Y Y as paths y u→ y′ which are used to define the product ◦ : Tf × Tf → Ti.
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In more detail, the reason why we need Y Y is that later we use this to compose paths of
labels. Having paths in Y then comes in handy and helps us to do just that.

This concludes the presentation of the idea behind the construction. We now turn
towards the more technical side, still referring to diagrams along the way.

Definition 5.9 For an Ω-automaton A = (X,Y, i, ρ, σ, ξ, F ) we define

Af = XX × Y X × Y Y and Ai = 2X×Adm(Y ).

We start by formally defining a map µAf
: Σ → Af , which to each a ∈ Σ associates

all the paths of the shape z a→ z′. By equipping Af with the structure of a semigroup,
we can automatically extend µAf

to a semigroup homomorphism from the free semigroup
over Σ. We remind the reader of the following definition.

Definition 5.10 For a map τ : Z1 → ZZ3
2 , we define the map τ ] : Z3 → ZZ1

2 as

τ ](z3)(z1) = τ(z1)(z3).

Definition 5.11 Given an Ω-automaton A = (X,Y, i, ρ, σ, ξ, F ), we define the map

µAf
: Σ −→ Af
a 7−→ µAf

(a) = (ρ](a), σ](a), ξ](a))

and we write µf if A is understood.

To illustrate how the elements of Af can be composed (other than looking at the
types), we draw a diagram. Let µf (a) = (f1, g1, h1) and µf (b) = (f2, g2, h2) and consider
two states x1, x2 ∈ X such that f1(x1) = x2, then we want

x1 f1(x1)

g1(x1)

◦

x2 f2(x2)

g2(x2)

=

x1 f1(x1) = x2 f2 ◦ f1(x1)

g1(x1)

h2 ◦ g1(x1)

ab

(ε
,a
b)

a

(ε
,a

)

b

(ε
,b

)

Definition 5.12 Let ◦ : Af × Af → Af be given by

(f1, g1, h1) ◦ (f2, g2, h2) = (f2 ◦ f1, h2 ◦ g1, h2 ◦ h1).

Remark 5.13 One interesting feature of ◦, is that in the end result the g2 disappears.
This should not come as a surprise, however, as we stated already in the ideas behind
the construction that we need some additional maps in order to make our construction
easier.
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Proposition 5.14 The pair (Af , ◦) forms a semigroup.

Proof. Let (f1, g1, h1), (f2, g2, h2), (f3, g3, h3) ∈ Af , then

(f1, g1, h1) ◦ ((f2, g2, h2) ◦ (f3, g3, h3)) = (f1, g1, h1) ◦ (f3 ◦ f2, h3 ◦ g2, h3 ◦ h2)

= ((f3 ◦ f2) ◦ f1, (h3 ◦ h2) ◦ g1, (h3 ◦ h2) ◦ h1)

= (f3 ◦ (f2 ◦ f1), h3 ◦ (h2 ◦ g1), h3 ◦ (h2 ◦ h1))

= (f2 ◦ f1, h2 ◦ g1, h2 ◦ h1) ◦ (f3, g3, h3)

= ((f1, g1, h1) ◦ (f2, g2, h2)) ◦ (f3, g3, h3),

as required.

Remark 5.15 One might wonder if (Af , ◦) also forms a monoid. This is in fact not the
case, because the switch transition cannot be defined for the empty word. So the second
component disallows the existence of an identity element (see Definition 5.11).

Proposition 5.16 The map µf : Σ → Af can uniquely be extended to a semigroup
morphism µf : (Σ+, ·)→ (Af , ◦), which is given by

µf (u) = (ρ̃](u), σ̃ : ξ
]
(u), ξ̃](u)),

for u ∈ Σ+.

Proof. The unique extension of µf is obtained by the freeness of the semigroup over Σ.
Showing that µf has the given shape can be done by induction on u ∈ Σ+. We already
have the base case where a ∈ Σ. For the induction case, let ua ∈ Σ+, then

µf (ua) = µf (u) ◦ µf (a)

= (ρ̃](u), σ̃ : ξ
]
(u), ξ̃](u)) ◦ (ρ](a), σ](a), ξ](a))

= (ρ](a) ◦ ρ̃](u), ξ](a) ◦ σ̃ : ξ
]
(u), ξ](a) ◦ ξ̃](u))

= (ρ̃](ua), σ̃ : ξ
]
(ua), ξ̃](ua)).

Before we formally define the mixed product and the ω-star, we provide diagrams
which serve as a reference point. Let µf (u) = (f, g, h) and some p ∈ Ai corresponding
to an ultimately periodic word vwω. Consider x1, x

′
1, x2, x3 ∈ X and G ∈ Adm(Y ), such

that f(x1) = x2, f(x′1) = x3, p(x2, G) = 1 and p(x3, G) = 0. So there is a path from x2

to G with label (v, w), but there is no such path for x3. Then in (f, g, h) ⊗ p, x1 has a
path to G whereas x′1 does not.

x1 f(x1) = x2 x3 = f(x′1) x′1

G

u

vwω

u

vwω
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This can also be expressed as follows:

((f, g, h)⊗ p) (x,G) = 1 ⇐⇒ p(f(x), G) = 1.

For the ω-star operation, we remind ourselves that for µf (u) = (f, g, h) and some
x ∈ X, we have:

x f(x)

g(x)

u

(ε
,u

)

In order to define (f, g, h)ω, we have to know for each x ∈ X and G ∈ Adm(Y )

whether x uω

=⇒ G. By Lemma 5.8, it is hence sufficient to determine whether g(x) ∈ G
(as x

(ε,u)−→ g(x) and (ε, u) is a lasso representative of uω).

Definition 5.17 Given an Ω-automaton A = (X,Y, i, ρ, σ, ξ, F ), we define the following
two operations:

⊗ : Af × Ai −→ Ai
((f, g, h), p) 7−→ (f, g, h)⊗ p = λxG.p(f(x), G),

(−)ω : Af −→ Ai
(f, g, h) 7−→ (f, g, h)ω = λxG.[g(x) ∈ G].

Definition 5.18 For an Ω-automaton A = (X,Y, i, ρ, σ, ξ, F ) we define the two sets:

Tf (A) = µf [Σ+],

Ti(A) = {(f, g, h)⊗ (f ′, g′, h′)ω | (f, g, h), (f ′, g′, h′) ∈ Tf (A)}.

Theorem 5.19 Given an Ω-automaton A = (X,Y, i, ρ, σ, ξ, F ),

T(A) = (Tf (A), Ti(A), ◦,⊗,ω )

is a complete Wilke algebra, called the transition Wilke algebra of A.

Proof. If T(A) is a Wilke algebra, then clearly it is complete by our definition of Ti(A).
To show that it is a Wilke algebra, we show that each of the requirements in Definition
5.2 holds.

Associativity (A): We have shown this in 5.14.

Mixed Associativity (MA): We have to show that, for (f1, g1, h1), (f2, g2, h2) ∈ Tf (A), p ∈
Ti(A):

((f1, g1, h1) ◦ (f2, g2, h2))⊗ p = (f1, g1, h1)⊗ ((f2, g2, h2)⊗ p)
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Computing the left- and right-hand side separately, we find that for all x ∈ X and
G ∈ Adm(Y ):

(((f1, g1, h1) ◦ (f2, g2, h2))⊗ p) (x,G) = ((f2 ◦ f1, h2 ◦ g1, h2 ◦ h1)⊗ p) (x,G)

= p((f2 ◦ f1)(x), G)

((f1, g1, h1)⊗ ((f2, g2, h2)⊗ p)) (x,G) = ((f1, g1, h1)⊗ (λx′G′.p(f2(x′), G′))) (x,G)

= (λx′G′.p(f2(x′), G′)) (f1(x), G)

= p(f2(f1(x)), G)

= p((f2 ◦ f1)(x), G).

Coherence (Co): Given (f1, g1, h1), (f2, g2, h2) ∈ Tf (A) we have to show that

(f1, g1, h1)⊗ ((f2, g2, h2) ◦ (f1, g1, h1))ω = ((f1, g1, h1) ◦ (f2, g2, h2))ω

We again compute both sides separately, for all x ∈ X and G ∈ Adm(Y ):

((f1, g1, h1)⊗ ((f2, g2, h2) ◦ (f1, g1, h1))ω) (x,G)

= ((f1, g1, h1)⊗ (f1 ◦ f2, h1 ◦ g2, h1 ◦ h2)ω) (x,G)

= ((f1, g1, h1)⊗ (λx′G′.[(h1 ◦ g2)(x′) ∈ G′])) (x,G)

= (λx′G′.[(h1 ◦ g2)(x′) ∈ G′]) (f1(x), G)

= [(h1 ◦ g2 ◦ f1)(x) ∈ G]

((f1, g1, h1) ◦ (f2, g2, h2))ω (x,G) = (f2 ◦ f1, h2 ◦ g1, h2 ◦ h1)ω (x,G)

= [(h2 ◦ g1)(x) ∈ G].

It remains to show that for all x ∈ X :

(h2 ◦ g1)(x) ∈ G ⇐⇒ (h1 ◦ g2 ◦ f1)(x) ∈ G.

Without loss of generality, let u, v ∈ Σ+ be such that

f1 = ρ̃](u) g1 = σ̃ : ξ
]
(u) h1 = ξ̃](u)

g2 = σ̃ : ξ
]
(v) h2 = ξ̃](v)

Then the above bi-implication rewrites to

ξ̃(σ̃ : ξ(x, u), v) ∈ G ⇐⇒ ξ̃(σ̃ : ξ(ρ̃(x, u), v), u) ∈ G,

which is equivalent to the coherence condition

(ε, uv) ∈ Lassos(x) ⇐⇒ (u, vu) ∈ Lassos(x)

for the Ω-automaton A[G/F ] and as G is admissible, we are done.

Circularity (Ci): For (f, g, h) ∈ Tf (A) and k > 1 we have to show that

(f, g, h)ω = ((f, g, h)k)ω.
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First, it is easy to see that

(f, g, h)k = (fk, hk−1 ◦ g, hk).

So we get for the two sides that, for each x ∈ X and G ∈ Adm(Y ) :

(f, g, h)ω (x,G) = [g(x) ∈ G]

((f, g, h)k)ω = [(hk−1 ◦ g)(x) ∈ G]

and we have to show that

hk−1(g(x)) ∈ G ⇐⇒ g(x) ∈ G.

Without loss of generality let u ∈ Σ+ be such that g = σ̃ : ξ
]
(u), h = ξ̃](u) which yields

σ̃ : ξ(x, uuk−1) ∈ G ⇐⇒ σ̃ : ξ(x, u) ∈ G.

This is equivalent to the circularity condition

uk ∈ Loop(x) ⇐⇒ u ∈ Loop(x)

for the Ω-automaton A[G/F ] and holds as G is admissible.

5.2 Recognition of Lasso Languages
In this final subsection, we first show that the ultimately periodic fragment of any ω-
regular language accepted by some Ω-automaton A, is also recognised by a Wilke algebra
homomorphism from the free Wilke algebra onto a (finite) Wilke algebra, and more specifi-
cally onto the transition Wilke algebra T(A). We then use some results from [33] to extend
the Wilke algebra morphism and conclude that the ω-regular language is recognised by a
Wilke algebra homomorphism from W+,ω.

Proposition 5.20 The map µ(A) = (µf , µi) : W+,up → T(A) where µf is as in Propo-
sition 5.16 and µi is given by

µi(uv
ω) = λxG.[(u, v) ∈ Lassos(A[G/F ], x)]

is a Wilke algebra homomorphism.

Proof. First, we argue that µi is well-defined. This follows from the fact that we only
consider G ∈ Adm(Y ), so if u′v′ω = uvω, then for all x we have

(u′, v′) ∈ Lassos(A[G/F ], x) ⇐⇒ (u, v) ∈ Lassos(A[G/F ], x).

Next we show that the three conditions from Definition 5.3 hold. The first condition

µf (uv) = µf (u) ◦ µf (v)

holds by 5.16.
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To show the second condition let u ∈ Σ+ and vwω ∈ Σup, then for all x ∈ X and
G ∈ Adm(Y ) we have

µf (u)⊗ µi(vwω) (x,G)

= (ρ̃](u), σ̃ : ξ
]
(u), ξ̃](u))⊗ (λx′G′.[(v, w) ∈ Lassos(A[G′/F ], x′)]) (x,G)

= (λx′G′.[(v, w) ∈ Lassos(A[G′/F ], x′)]) (ρ̃](u)(x), G)

= [(v, w) ∈ Lassos(A[G/F ], ρ̃](u)(x))]

= [(uv,w) ∈ Lassos(A[G/F ], x)]

= µi(uvw
ω) (x,G),

so µi(uvwω) = µf (u) ⊗ µi(vwω). There is one more equation to check. For the third
condition let u ∈ Σ+, then for all x ∈ X and G ∈ Adm(Y ), we have

µi(u
ω) (x,G) = [(ε, u) ∈ Lassos(A[G/F ], x)]

= [σ̃ : ξ
]
(u)(x) ∈ G]

= (ρ̃](u), σ̃ : ξ
]
(u), ξ̃](u))ω (x,G)

= µf (u)ω (x,G).

Thus µi(uω) = µf (u)ω and (µf , µi) is a Wilke algebra homomorphism.

Definition 5.21 ([33]) A Wilke algebra homomorphism (f1, f2) : (Af , Ai) → (Bf , Bi)
recognises L ⊆ Ai if there exists P ⊆ Bi such that

L = f−1
2 [P ].

Theorem 5.22 ([33]) Let L ⊆ Σω be an ω-language, then the following are equivalent:

1. L is ω-regular.

2. UP(L ) is recognised by a Wilke algebra homomorphism from the free Wilke algebra
W+,up into a finite Wilke algebra.

3. L is recognised by a Wilke algebra homomorphism f : W+,ω → S (where S is finite)
having the property that

f(u0)ω = f(u0u1u2 . . .)

for every infinite sequence U = {u0, u1, . . .} of finite words with f(u0) = f(u1) = . . .

Theorem 5.23 Let A be an Ω-automaton and L = L(A), then µ(A) recognises UP(L ).

Proof. Let
P = {p ∈ Ti(A) | p(i, F ) = 1}.

We claim that
UP(L ) = µ−1

i [P ].

Let uvω ∈ UP(L ), so

µi(uv
ω) (i, F ) = [(u, v) ∈ Lassos(A, i)] = 1.
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Hence µi(uvω) ∈ P and uvω ∈ µ−1
i [P ]. For the other inclusion, let uvω ∈ µ−1

i [P ], then
µi(uv

ω) ∈ P , so µi(uvω) (i, F ) = 1. From this it follows that (u, v) ∈ Lassos(A, i) thus
uvω ∈ UP(L ).

Corollary 5.24 Let L be accepted by an Ω-automaton A, then it is recognised by a
Wilke algebra homomorphism from W+,ω to T(A).

Proof. This is a direct consequence of 5.22 (for more details see [33, Corollary 2.9, The-
orem 1.2]).

Before concluding this section, we would like to touch upon the converse problem,
i.e. given a Wilke algebra homomorphism from W+,ω to a finite Wilke algebra, and an
ω-regular language L recognised by said morphism, can we construct an Ω-automaton
which also accepts L ? This direction is discussed extensively for different types of ω-
automata in [25, 10] and seems to be a difficult problem. For instance, constructing a
Muller automaton requires some non-trivial results from semigroup theory. Although
this topic is not investigated in this thesis, we believe it would be a worthwhile topic for
further research.
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Section 6

Myhill-Nerode Theorem

The Myhill-Nerode theorem ([27]) is a very well-known result which characterises the
regularity of languages and gives a strict lower bound on the size of deterministic finite
automata for a given language.

The paper [12] provides a Myhill-Nerode theorem for Ω-automata which characterises
the ω-regular languages as those for which the Myhill-Nerode equivalence relation is of
finite index and which are lasso-determined. However, it does not give a tight lower bound
on the size of Ω-automata.

This section provides a slightly different equivalence relation under which we obtain
a strengthening of the original result which also gives a tight lower bound on the size of
Ω-automata accepting a given ω-regular language.

Definition 6.1 Given a lasso language L, we define the two binary relations ∼0
L⊆ Σ∗×Σ∗

and ∼1
L⊆ Σ∗+ × Σ∗+ as

u1 ∼0
L u2 ⇐⇒ ∀(v, w) ∈ Σ∗+ :

(
(u1v, w) ∈ L ⇐⇒ (u2v, w)ω ∈ L

)
,

(u1, v1) ∼1
L (u2, v2) ⇐⇒ ∀w ∈ Σ+ :

(
(u1, v1w) ∈ L ⇐⇒ (u2, v2w) ∈ L

)
.

Proposition 6.2 Let L be a lasso language, then ∼0
L and ∼1

L are both equivalence
relations.

Proof. Reflexivity, symmetry and transitivity follows by the reflexivity, symmetry and
transitivity of the biconditional.

Definition 6.3 For an Ω-automaton A = (X,Y, i, ρ, σ, ξ, F ), we define two binary rela-
tions ∼0

A⊆ Σ∗ × Σ∗ and ∼1
A⊆ Σ∗+ × Σ∗+ as

u1 ∼0
A u2 ⇐⇒ ρ̂(i, u1) = ρ̂(i, u2),

(u1, v1) ∼1
A (u2, v2) ⇐⇒ σ̃ : ξ(ρ̂(i, u1), v1) = σ̃ : ξ(ρ̂(i, u2), v2).

Proposition 6.4 For an Ω-automaton A, the binary relations ∼0
A and ∼1

A are both
equivalence relations.

Proof. Reflexivity, symmetry and transitivity follow immediately by the reflexivity, sym-
metry and transitivity of equality.

Lemma 6.5 For any regular lasso language L and any Ω-automaton A accepting L, the
binary relations ∼iL are always at least as coarse as the binary relations ∼iA, i.e.

∼0
A ⊆ ∼0

L and ∼1
A ⊆ ∼1

L .

Proof. We start with ∼0
A and ∼0

L. Let u1, u2 ∈ Σ∗ be such that u1 ∼0
A u2, so

ρ̂(i, u1) = ρ̂(i, u2).
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Then for all (v, w) ∈ Σ∗+ we have that

σ̃ : ξ(ρ̂(i, u1v), w) = σ̃ : ξ(ρ̂(i, u2v), w),

(as our automaton is deterministic) and so

(u1v, w) ∈ L ⇐⇒ (u2v, w) ∈ L

as A is circular and coherent. This gives us u1 ∼0
L u2 as required.

Now we proceed with ∼1
A and ∼1

L. Let (u1, v1) ∼1
A (u2, v2), so

σ̃ : ξ(ρ̂(i, u1), v1) = σ̃ : ξ(ρ̂(i, u2), v2).

Then for all w ∈ Σ∗ we have

σ̃ : ξ(ρ̂(i, u1), v1w) = σ̃ : ξ(ρ̂(i, u2), v2w),

and again we have
(u1, v1w) ∈ L ⇐⇒ (u2, v2w) ∈ L,

as A is circular and coherent. Hence (u1, v1) ∼1
L (u2, v2).

Corollary 6.6 If L is a regular lasso language, then both the equivalence classes of ∼0
L

and ∼1
L are of finite index.

Proof. As L is regular, there is some finite Ω-automaton A which accepts L. We may,
w.l.o.g. assume that all states of A are reachable. By 6.5 it is sufficient to show that the
equivalence classes for ∼iA are of finite index. This is clearly the case as the number of
equivalence classes of ∼0

A is bounded by the number of spoke states of A. To see this,
note that there is a one-to-one correspondence between the equivalence classes of ∼0

A and
the spoke states, given by

[u]∼0
A
7→ ρ̂(i, u)

x 7→ {u | ρ̂(i, u) = x}.

Via an analogous argument, it can be shown that the number of equivalence classes of
∼1

A is bounded by the number of loop states.

Definition 6.7 ([12]) An ω-language L is lasso-determined if for every infinite sequence
{vi}i∈ω of nonemtpy words there is an infinite set Y ⊆ ω such that

v0v1v2 . . . ∈ L ⇐⇒ (v0 . . . vj)(vj+1 . . . vk)ω ∈ L ,

for all j, k ∈ Y with j < k.

Proposition 6.8 ([12]) Let L ,K be two ω-languages which are lasso-determined. Then

{(u, v) | uvω ∈ L } = {(u, v) | uvω ∈ K } =⇒ L = K .
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Definition 6.9 Given an ω-language L , we define the two binary relations ∼0
L⊆ Σ∗×Σ∗

and ∼1
L⊆ Σ∗+ × Σ∗+ as

u1 ∼0
L u2 ⇐⇒ ∀(v, w) ∈ Σ∗+ :

(
u1vw

ω ∈ L ⇐⇒ u2vw
ω ∈ L

)
,

(u1, v1) ∼1
L (u2, v2) ⇐⇒ ∀w ∈ Σ+ :

(
u1(v1w)ω ∈ L ⇐⇒ u2(v2w)ω ∈ L

)
.

Proposition 6.10 Let L be an ω-language, then ∼0
L and ∼1

L are both equivalence
relations.

Proof. Reflexivity, symmetry and transitivity follows by the reflexivity, symmetry and
transitivity of the biconditional.

Corollary 6.11 For any ω-regular language L and any Ω-automaton A accepting L ,
the binary relations ∼iL are always at least as coarse as the binary relations ∼iA, i.e.

∼0
A ⊆ ∼0

L and ∼1
A ⊆ ∼1

L .

Proof. Given an ω-regular language L and considering

L = {(u, v) | uvω ∈ L },

it is not hard to see that, in fact, ∼0
L=∼0

L and ∼1
L=∼1

L . Furthermore, any Ω-automaton
accepting L accepts L. The result then follows by Lemma 6.5.

Corollary 6.12 If L is ω-regular, then both the equivalence classes of ∼0
L and ∼1

L are
of finite index.

Proof. This follows in a similar fashion as Corollary 6.6 using Corollary 6.11.

Theorem 6.13 An ω-language L is regular if and only if it is lasso determined and both
∼0

L ,∼1
L are of finite index. Moreover, the size of the smallest Ω-automaton accepting L

is the number of equivalence classes generated by ∼0
L and ∼1

L .

Proof. With regards to ω-regularity, Corollary 6.12 provides the direction from left to
right. For the other direction, we use the equivalence classes generated by ∼0

L and ∼1
L

to construct a finite Ω-automaton accepting L by which it follows that L is ω-regular.
Let

X = Σ∗�∼0
L

and Y = Σ∗+�∼1
L
.

The initial state i is given by the equivalence class [ε]∼0
L

and the final states are given by

F = {[(u, v)]∼1
L
| uvω ∈ L }.

The transitions are given by

ρ([u]∼0
L
, a) = [ua]∼0

L
,

σ([u]∼0
L
, a) = [(u, a)]∼1

L
,

ξ([(u, v)]∼1
L
, a) = [(u, va)]∼1

L
.
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We have to show that this is well-defined. We only show this for the switch transition,
the proof for the other transitions is analogous. Let u1 ∼0

L u2, then for all w ∈ Σ+ we
have in particular that

u1(aw)ω ∈ L ⇐⇒ u2(aw)ω ∈ L ,

and so (u1, a) ∼1
L (u2, a) as required.

In order to show that (X,Y, i, ρ, σ, ξ, F ) is indeed an Ω-automaton, we have to show
that it is circular and coherent. For circularity, we want that for all [u]∼0

L
∈ X, k > 0

and v ∈ Σ+:
v ∈ Loop([u]∼0

L
) ⇐⇒ vk ∈ Loop([u]∼0

L
).

As [u]∼0
L

is reached from the initial state after reading u, we have that

vk ∈ Loop([u]∼0
L

) ⇐⇒ (ε, vk) ∈ Lassos([u]∼0
L

)

⇐⇒ (u, vk) ∈ Lassos([ε]∼0
L

)

⇐⇒ σ̃ : ξ(ρ̂([ε]∼0
L
, u), vk) ∈ F

⇐⇒ σ̃ : ξ([u]∼0
L
, vk) ∈ F

⇐⇒ [(u, vk)]∼0
L
∈ F

⇐⇒ u(vk)ω ∈ L ,

and so

v ∈ Loop([u]∼0
L

) ⇐⇒ uvω ∈ L ⇐⇒ u(vk)ω ∈ L ⇐⇒ vk ∈ Loop([u]∼0
L

).

For coherence, the criterion is

av ∈ Loop([u]∼0
L

) ⇐⇒ va ∈ Loop(ρ([u]∼0
L
, a)),

which via similar reasoning as above is equivalent to

u(av)ω ∈ L ⇐⇒ ua(va)ω ∈ L

and again holds trivially.
We have to show that the Ω-automaton we obtained accepts L . For an arbitrary

lasso (u, v) ∈ Σ∗+ we have

(u, v) ∈ Lassos([ε]∼0
L

) ⇐⇒ σ̃ : ξ(ρ̂([ε]∼0
L
, u), v) ∈ F

⇐⇒ [u, v]∼1
L
∈ F

⇐⇒ uvω ∈ L .

Finally, the result holds as L is lasso determined.
As a final remark, we want to point out that this Ω-automaton has to be minimal by

Corollary 6.12.
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Section 7

Construction of Ω-automata from ω-regular Expressions

Ω-automata are very well-behaved in many ways: they are deterministic, their acceptance
condition is local and they allow for minimisation. We investigate minimisation in the
last section. However, they also have some shortcomings. They are generally of big size
(number of states) and up to now we are missing a direct construction method which
would allow us to obtain an Ω-automaton from an ω-regular expression. This section
deals with the problem of Ω-automaton construction.

In [11, 12], the authors provide a translation from parity and Muller automata to
Ω-automata. This means that, given an ω-regular expression, one would first have to
construct either a parity or Muller automaton and then proceed to translate it to an
Ω-automaton via the constructions provided. This method raises two issues,

1. the construction from parity and Muller automata to Ω-automata is not very effi-
cient, the resulting Ω-automaton is exponential in size of the starting automaton;

2. we first have to come up with a parity or Muller automaton for our ω-regular
expression.

For comparison, in the case of deterministic finite automata, the Brzozowski con-
struction ([8]) provides an elegant solution. Given a regular expression e, it allows for the
construction of a DFA on the fly which accepts the regular language given by e (denoted
by JeK). Unfortunately, the classical construction does not work for ω-regular expres-
sions. In 2015, Thiemann et al. ([30]) generalised the construction by using a variant of
the partial derivative with which they were able to construct a non-deterministic Büchi
automaton from an ω-regular expression. Previous papers attempting to construct ω-
automata from ω-regular expressions focused on deterministic ω-automata with different
acceptance conditions ([26]).

In what follows, we first guide the reader through the classical construction. This
includes a journey through regular expressions and the introduction of some technical
definitions needed to define the Brzozowski automaton. In short, the first subsection
introduces only background material which has been well established.

The second subsection first covers ω-regular expressions as they can be found in the
literature. After that, we describe our course of action and develop the necessary tools,
some of it closely following the classical definitions and construction. Most of our con-
struction is Brzozowski-esque apart from the switch transition. We outline the problems
that arise from the switch transition, and provide a necessary and sufficient criterion
under which we can construct a Brzozowski Ω-automaton.

The last section sheds some more light into the switch transition and provides a
solution for the problems associated with it. This is done by introducing lasso expressions.

7.1 Regular Expressions and the Brzozowski Construction
The purpose of this first subsection is entirely to recapitulate the notions of regular expres-
sions, Kleene algebras and the Brzozowski construction for deterministic finite automata.
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More precisely, we cover the syntax and semantics of regular expressions and introduce all
the concepts needed for the Brzozowski construction which allows us to construct a DFA
from a regular expression. The material introduced throughout this whole subsection can
be found in [8, 19, 27, 20] and is well established.

Let us remind ourselves of some operations which we can define on languages and
ω-languages. These definitions are standard and can be found in any textbook on regular
languages.

Definition 7.1 For L,K ⊆ Σ∗, J ⊆ Σ+ and L ⊆ Σω, we define

K · L = {u · v | u ∈ K, v ∈ L} L∗ =
⋃
k∈N

Lk

K ·L = {u · α | u ∈ K,α ∈ L } Jω = {u1u2 . . . | ui ∈ J}

with L0 = {ε}.

Remark 7.2 If ε ∈ J , then we define Jω = ∅.

Definition 7.3 The set of regular expressions over Σ, R(Σ), is given by the following
grammar:

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e∗

We write R if Σ is understood.

The semantics for our regular expressions is given by regular languages. In order to
define the language semantics, we use Definition 7.1.

Definition 7.4 The language semantics J−K : R → 2Σ∗ for regular expressions is given
recursively:

J0K = ∅ J1K = {ε} JaK = {a}
Je+ fK = JeK ∪ JfK Je · fK = JeK · JfK Je∗K = JeK∗

The following definition introduces the axiomatisation of Kleene algebras. This allows
us to reason about regular expressions. Soundness is needed for the Brzozowski construc-
tion itself, while it is a known fact that this axiomatisation is also complete w.r.t. the
language semantics ([20]).

Definition 7.5 The theory KA of Kleene algebras is axiomatised by the following quasi-
equations:

e+ 0 = e (e+ f) + g = e+ (f + g) (e+ f) · g = e · g + f · g
e+ e = e (e · f) · g = e · (f · g) 1 + e · e∗ = e∗ = 1 + e∗ · e
e+ f = f + e e · (f + g) = e · f + e · g e+ f · g ≤ g =⇒ f∗ · e ≤ g
e · 1 = e = 1 · e e · 0 = 0 = 0 · e e+ f · g ≤ f =⇒ e · g∗ ≤ f

where e ≤ f is an abbreviation for e+ f = f .
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For two regular expressions e, f ∈ R, we write e ≡ f if they are provably equivalent
under KA and we write e 5 f for e+ f ≡ f . A structure K = (K,+, ·,∗ , 0, 1) satisfying
all the above equations is called a Kleene Algebra.

Proposition 7.6 (Soundness and Completeness) Let e, f ∈ R, then

e ≡ f ⇐⇒ JeK = JfK.

For the Brzozowski automaton, we need three things

1. the base set, which is R itself

2. a transition map, called the Brzozowski derivative

3. a set of final states

We show the idea behind the Brzozowski construction by means of an example. Let
Σ = {a, b} and consider the regular expression e = ba∗b. We take e as initial state. The
derivative should be thought of as follows: If we look at the words in JeK and we read a
b, what are we left with? For instance, bab ∈ JeK, so after reading a b, we would have to
still read ab. In more general terms, for any word in JeK, after reading a b, we would still
have to read a word of the shape a∗b. This notion of derivative on regular expressions is
called the Brzozowski derivative.

Now if we read an a, then we will still remain at the state a∗b. In fact, we can read
any finite number of a’s and we would remain in a∗b. Finally, reading a b will lead us
to the state 1 (after reading a b, the empty word is all that remains). The state 1 will
be accepting and in general if an expression contains the empty word we will make it an
accepting state.

The automaton we obtain according to this procedure looks as follows:

ba∗bstart a∗b

0

1
b

a

b

a

a, b

a, b

One can verify for oneself that this DFA accepts the language given by e. For the
Brzozowski automaton, we start by defining the set of accepting states N .

Definition 7.7 We define N as the smallest subset of R which is closed under the
following rules:

1 ∈ N
e ∈ N f ∈ R

e+ f, f + e ∈ N
e, f ∈ N
e · f ∈ N

e ∈ R

e∗ ∈ N
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A standard inductive argument shows that N is characterised by the following property:

ε ∈ JeK ⇐⇒ e ∈ N.

Definition 7.8 (Brzozowski Derivative) The Brzozowski derivative d : R × Σ → R

is defined inductively as:

d(0, a) = 0 d(e+ f, a) = d(e, a) + d(f, a) d(b, a) = [b = a]

d(1, a) = 0 d(e · f, a) = d(e, a) · f + [e ∈ N ] · d(f, a) d(e∗, a) = d(e, a) · e∗

An important result regarding the Brzozowski derivative is the fundamental theorem.
It relates a regular expression to its derivatives. The intuition behind the theorem is
that a regular expression corresponds to the sum of its derivatives modulo some constant.
Although an interesting result in its own right, it is also needed for the Brzozowski
construction when showing that the language accepted by the Brzozowski automaton at
e is equal to JeK.

Theorem 7.9 (Fundamental Theorem) Let e ∈ R, then

e ≡ [e ∈ N ] +
∑
a∈Σ

a · d(e, a).

Having gathered all the necessary components, we are ready to define the Brzozowski
automaton.

Definition 7.10 The Brzozowski automaton is the deterministic automaton

B = (R, d,N).

The next proposition explains why the Brzozowski automaton is so useful. The lan-
guage accepted by the Brzozowski automaton initialised at e is JeK.

Proposition 7.11 Let e ∈ R, then

L(B, e) = JeK.

There is one more technical point left. The Brzozowski automaton initialised at some
regular expression e is in general not finite. This is not a problem, however, as we can
define an equivalence relation which is compatible with the final states and the Brzozowski
derivative. Moreover quotienting the Brzozowski automaton by said equivalence relation
gives us a DFA such that there are only finitely many states reachable from the equivalence
class of e.

Definition 7.12 Let ∼ ⊆ R ×R be the least equivalence relation including

1 · e ∼ e 0 · e ∼ 0 e ∼ e+ e e+ f ∼ f + e (e+ f) + g ∼ e+ (f + g)

We need a technical lemma which shows that ∼ respects final states and the Brzo-
zowski derivative.
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Lemma 7.13 Let e, f ∈ R with e ∼ f , then

1. e ∈ N ⇐⇒ f ∈ N ,

2. ∀a ∈ Σ : d(e, a) ∼ d(f, a).

Due to Proposition 7.13 the following Definition is well-defined.

Definition 7.14 Let B˜ = (R/∼, d˜, N˜ ), where

1. d˜([e]∼, a) = [d(e, a)]∼,

2. [e]∼ ∈ N˜ ⇐⇒ e ∈ N .

The only thing that remains is to show that by taking the quotient, the new automaton
we obtain still accepts the same language. A particularly elegant way of showing this is
by means of bisimulations.

Proposition 7.15 For all e ∈ R :

L(B, e) = L(B˜, [e]∼).

Moreover, the collection of states in B˜ reachable from [e]∼ is finite.

7.2 Brzozowski Construction for Ω-automata
We follow the previous section in constructing an Ω-automaton from an ω-regular ex-
pression. For this we need to specify a set of spoke states, a set of loop states, a set of
accepting states and the three types of transitions (spoke, switch and loop transitions).

For the spoke states we take ω-regular expressions as given in the following definition:

Definition 7.16 ([33]) The set of ω-regular expressions over Σ , Rω(Σ), is given by the
following grammar, where e, f ∈ R with e 6∈ N :

κ, λ := 0ω | κ+ λ | f ⊗ κ | eω

and we write Rω if Σ is understood.

As with regular expressions, we also give semantics for ω-regular expressions, this time
using ω-regular languages.

Definition 7.17 ([33]) The language map J−Kω : Rω → 2Σω

for ω-regular expressions
is defined recursively as:

J0ωKω = ∅ Jκ+ λKω = JκKω ∪ JλKω
Jf ⊗ κKω = JfK · JκKω JeωKω = JeKω

where e, f ∈ R.
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For the loop states of our Ω-automaton, we take regular expressions. For the spoke
and loop transitions there are very natural candidates. For the spoke transition we define
a Brzozowski derivative for ω-regular expressions, whereas the loop transition is just
the Brzozowski derivative for regular expressions. The final states consist exactly of
those regular expressions which contain the empty word. This leaves us with one final
component to define, the switch transition.

The switch transition has to switch from ω-regular expressions to regular expressions.
A clue as to how to define the switch transition is provided by looking at the loop language
of a given spoke state. To remind the reader, we defined the loop automaton at a spoke
state x to be the DFA whose states are given by x and all the loop states y reachable from
x via the switch and loop transitions. The loop language at x is the regular language
accepted by the loop automaton at x. The observation is the following: let Bω denote
the Brzozowski Ω-automaton we would like to construct and let λ ∈ Rω be a spoke state,
then we would like the ω-language accepted at λ to be JλKω and so we require

u ∈ Loop(λ) ⇐⇒ (ε, u) ∈ Lassos(Bω, λ) ⇐⇒ uω ∈ JλKω.

From this it follows that the loop automaton at λ has to accept the following regular
language:

{u ∈ Σ+ | uω ∈ JλKω}.

If we have the regular expression e corresponding to this set, then the loop automaton at
λ is just the classical Brzozowski automaton initialised at e.

In this subsection, we show that under the assumption that we can extract e from λ,
we can construct a Brzozowski Ω-automaton.

. . . λ

e

. . .

. . . . . .

(B, e)
(Loop automaton at λ)

(Spoke Part)

As we build our Brzozowski Ω-automaton, we have to reason not only about regular,
but also about ω-regular expressions. In particular, for certain propositions we require a
soundness result. Hence we introduce an axiomatisation for ω-regular expressions due to
Klaus Wagner ([32]).
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Definition 7.18 ([32]) We define ≡ω as the smallest congruence on Rω such that:

κ+ λ ≡ω λ+ κ e⊗ (κ+ λ) ≡ω e⊗ κ+ e⊗ λ eω ≡ω (e · e∗)ω

(κ+ λ) + µ ≡ω κ+ (λ+ µ) (e+ f)⊗ κ ≡ω e⊗ κ+ f ⊗ κ (e · f)ω ≡ω e⊗ (f · e)ω

e⊗ (f ⊗ κ) ≡ω (e · f)⊗ κ 0⊗ κ ≡ω 0ω

where e, f ∈ R.

In [32], Wagner deduces multiple rules from his axiomatisation. We collect them in
the following lemma.

Lemma 7.19 ([32]) Let e ∈ R, κ ∈ Rω and k ≥ 1, then

e⊗ 0ω ≡ω 0ω eω ≡ω e⊗ eω κ ≡ω κ+ κ 1⊗ κ ≡ω κ
0ω + κ ≡ω κ 0ω ≡ω 0ω eω ≡ω e∗ ⊗ eω eω ≡ω (ek)ω

Proposition 7.20 (Soundness, [32]) Let κ, λ ∈ Rω, then

κ ≡ω λ =⇒ JκKω = JλKω.

Next, we present the ω-Brzozowski derivative dω and the fundamental theorem for dω
and ω-regular expressions. We point out that dω is defined analogously to the standard
Brzozowski derivative.

Definition 7.21 ([30]) Define the function dω : Rω × Σ→ Rω inductively as

dω(0ω, a) = 0ω dω(κ+ λ, a) = dω(κ, a) + dω(λ, a)

dω(e⊗ κ, a) = d(e, a)⊗ κ+ [e ∈ N ]⊗ dω(κ, a) dω(eω, a) = d(e, a)⊗ eω

A fundamental theorem for ω-regular expressions can be found in [30] but it is only
given in terms of semantics, i.e. it states that

JκKω =
⋃
a∈Σ

{a} · Jdω(κ, a)Kω.

We give here the syntactic version, from which the above follows immediately by soundness
(Proposition 7.20).

Theorem 7.22 (Fundamental Theorem for Rω) Let κ ∈ Rω, then

κ ≡ω
∑
a∈Σ

a⊗ dω(κ, a).

Proof. We show the fundamental theorem by induction on the construction of ω-regular
expressions:

κ = 0ω: ∑
a∈Σ

a⊗ dω(0ω, a) =
∑
a∈Σ

a⊗ 0ω ≡ω 0ω
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κ = λ+ µ:

κ = λ+ µ

≡ω
∑
a∈Σ

a⊗ dω(λ, a) +
∑
a∈Σ

a⊗ dω(µ, a) (I.H.)

≡ω
∑
a∈Σ

a⊗ (dω(λ, a) + dω(µ, a)) (Dist.)

=
∑
a∈Σ

a⊗ dω(κ, a) (Defn. dω)

κ = f ⊗ λ:

κ = f ⊗ λ

≡ω

(
[f ∈ N ] +

∑
a∈Σ

a · d(f, a)

)
⊗ λ (Thm. 7.9)

≡ω [f ∈ N ]⊗ λ+
∑
a∈Σ

(a · d(f, a))⊗ λ (Dist.)

≡ω [f ∈ N ]⊗
∑
a∈Σ

a⊗ dω(λ, a) +
∑
a∈Σ

a⊗ (d(f, a)⊗ λ) (I.H. & Ass.)

≡ω
∑
a∈Σ

[f ∈ N ]⊗ (a⊗ dω(λ, a)) +
∑
a∈Σ

a⊗ (d(f, a)⊗ λ) (Dis.)

≡ω
∑
a∈Σ

([f ∈ N ] · a)⊗ dω(λ, a) +
∑
a∈Σ

a⊗ (d(f, a)⊗ λ) (Ass.)

≡ω
∑
a∈Σ

(a · [f ∈ N ])⊗ dω(λ, a) +
∑
a∈Σ

a⊗ (d(f, a)⊗ λ) (a · (0 + 1) ≡ (0 + 1) · a)

≡ω
∑
a∈Σ

a⊗ ([f ∈ N ]⊗ dω(λ, a)) +
∑
a∈Σ

a⊗ (d(f, a)⊗ λ) (Ass.)

≡ω
∑
a∈Σ

a⊗ ([f ∈ N ]⊗ dω(λ, a) + d(f, a)⊗ λ) (Dis.)

=
∑
a∈Σ

a⊗ dω(κ, a) (Defn. dω)
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κ = eω:

κ = eω

≡ω e⊗ eω (Lem. 7.19)

≡ω

(∑
a∈Σ

a · d(e, a)

)
⊗ eω (Thm. 7.9, e 6∈ N)

≡ω
∑
a∈Σ

(a · d(e, a))⊗ eω (Dist.)

≡ω
∑
a∈Σ

a⊗ (d(e, a)⊗ eω) (Ass.)

=
∑
a∈Σ

a⊗ dω(κ, a) (Defn. dω)

This is the point at which we jump back to the switch transition. At the start, we
considered a spoke state λ, and pointed out that the loop automaton at λ has to accept
the following regular language

{u ∈ Σ+ | uω ∈ JλKω}.

This collection is referred to as the pointwise ω-root of JλKω.

Definition 7.23 Let L ⊆ Σω, the pointwise ω-root of L is defined as
.
ω
√

L = {u ∈ Σ+ | uω ∈ L }.

This subsection does not cover how to find a regular expression for the pointwise ω-
root of an ω-regular language. This is looked at in more detail in the following subsection.
Instead, we show that, provided we have a function which computes the regular expres-
sion corresponding to the pointwise ω-root, we can construct our desired Brzozowski
Ω-automaton.

Definition 7.24 For an ω-regular expression κ, we define

dt(κ, a) = d(g, a),

for a ∈ Σ and where g is such that

JgK =
.
ω
√

JκKω.

The switch transition was the last component we needed, allowing us to define the
Brzozowski Ω-coalgebra. Once we show that the Brzozowski Ω-coalgebra with initial state
κ accepts JκKω, it is clear that we succeeded and obtained the Brzozowski Ω-automaton.

Definition 7.25 For an ω-regular expression, we define the Brzozowski Ω-coalgebra
Bω = (Rω,R, dω, dt, d,N).

The following technical lemma is helpful in establishing that the pointed Brzozowski
Ω-coalgebra (Bω, κ) accepts JκKω.
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Lemma 7.26 Let κ be an ω-regular expression and g a regular expression such that
JgK =

.
ω
√

JκKω, then

JgK = L(B, g) = L(Bω,`, κ) = Loop(Bω, κ).

Proof. We show that the two automata B = (R, g, d,N) and Bω,` = (Rω]R, κ, dt : d,N)
(where we only consider the reachable part) are bisimilar. In fact, they are identical with
the exception for g and κ. To see this we show that for all u ∈ Σ+, we have

d̃(g, u) = d̃t : d(κ, u).

The base case is given by the definition of dt. For the induction step, we have

d̃(g, ua) = d(d̃(g, u), a)
(I.H.)

= d(d̃t : d(κ, u), a) = d̃t : d(κ, ua).

As they both have the same final states, they are bisimilar and so they accept the same
regular language.

Theorem 7.27 The structure Bω = (Rω,R, dω, dt, d,N) is an Ω-automaton with

L(Bω, κ) = JκKω.

Proof. We show that for any ω-regular expression κ, the lasso language Lassos(Bω, κ)
consists exactly of the ultimately periodic fragment of JκKω. This is done by induction.

For the base case let v ∈ Σ+ and consider the lasso (ε, v), we want to show that

vω ∈ JκKω ⇐⇒ (ε, v) ∈ Lassos(Bω, κ).

We have that

vω ∈ JκKω ⇐⇒ v ∈
.
ω
√

JκKω (Defn. 7.23)
⇐⇒ v ∈ Loop(Bω, κ) (Lemma 7.26)
⇐⇒ (ε, v) ∈ Lassos(Bω, κ).

For the inductive case, consider the lasso (au, v) ∈ Σ∗+, then

auvω ∈ JκKω ⇐⇒ uvω ∈ Jdω(κ, a)Kω (Sound. & Thm 7.22)
⇐⇒ (u, v) ∈ Lassos(Bω, dω(κ, a)) (I.H.)
⇐⇒ (au, v) ∈ Lassos(Bω, κ).

So L(Bω, κ) = JκKω, and the initialised Ω-coalgebra (Bω, κ) is an Ω-automaton for all
ω-regular expressions κ.

As in the classical case, our Brzozowski Ω-automaton is in general not finite. This is
dealt with in a similar manner as before by defining an equivalence relation and quoti-
enting the Brzozowski Ω-automaton.

Definition 7.28 We overload ∼ and also write ∼ for the smallest equivalence relation
on Rω including

1⊗ κ ∼ κ 0⊗ κ ∼ 0ω κ ∼ κ+ κ κ+ λ ∼ λ+ κ (κ+ λ) + µ ∼ κ+ (λ+ µ)

45



As we already know that the classical Brzozowski DFA quotiented by ∼ has only
finitely many states which are reachable by any given regular expression, we use this to
our advantage. Many of the concepts we defined were analogous to those defined in the
classical setting. Given some ω-regular expression, we could substitute all the ω-stars
for Kleene stars. What we would end up with is a regular expression. Moreover, this
substitution respects the transition functions and the equivalence relations ∼. This later
allows us to deduce that our quotient Ω-automaton must also be finite if we only consider
reachable states.

Definition 7.29 We define the map π : Rω → R inductively:

π(0ω) = 0 π(eω) = e∗

π(κ+ λ) = π(κ) + π(λ) π(f ⊗ κ) = f · π(κ)

Lemma 7.30 The map π is injective.

Proof. We show this by induction on the construction of expressions. For κ = 0ω, given
π(κ) = π(λ) it follows that

0 = π(κ) = π(λ) =⇒ λ = 0ω = κ.

Let κ = eω and π(κ) = π(λ), then

e∗ = π(κ) = π(λ) =⇒ λ = eω = κ.

Let κ = κ1 + κ2 and π(κ) = π(λ), then

π(κ1) + π(κ2) = π(κ) = π(λ).

This implies that λ = λ1 + λ2 and π(κi) = π(λi). By the induction hypothesis we have
κi = λi so κ = λ. Lastly, let κ = f ⊗ κ1 and π(κ) = π(λ), then

f · π(κ1) = π(κ) = π(λ),

so λ = f ⊗ λ1 and π(κ1) = π(λ1). By induction hypothesis κ1 = λ1 and so κ = λ.

We show a technical lemma which states that π respects derivatives and the equiva-
lence relation ∼.

Lemma 7.31 Let κ, λ ∈ Rω, then

1. π(dω(κ, a)) = d(π(κ), a),

2. κ ∼ λ ⇐⇒ π(κ) ∼ π(λ).

Proof. We show (1.) by induction on κ. There are four cases to consider. For the first
case, let κ = 0ω, then

π(dω(0ω, a)) = π(0ω) = 0 = d(0, a) = d(π(0ω), a).
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For the second case, we consider e⊗ κ, then

π(dω(e⊗ κ, a)) = π(d(e, a)⊗ κ+ [e ∈ N ]⊗ dω(κ, a))

= d(e, a) · π(κ) + [e ∈ N ] · π(dω(κ, a))

= d(e, a) · π(κ) + [e ∈ N ] · d(π(κ), a) (I.H.)
= d(e · π(κ), a)

= d(π(e⊗ κ), a).

For the third case, we have

π(dω(κ+ λ, a)) = π(dω(κ, a) + dω(λ, a))

= π(dω(κ, a)) + π(dω(λ, a))

= d(π(κ), a) + d(π(λ), a) (I.H.)
= d(π(κ) + π(λ), a)

= d(π(κ+ λ), a).

And for the remaining case:

π(dω(eω, a)) = π(d(e, a)⊗ eω) = d(e, a) · π(eω) = d(e, a) · e∗ = d(e∗, a) = d(π(eω), a).

With regards to (2.), the proof follows through the following observations:

π(κ+ κ) = π(κ) + π(κ) π(1⊗ κ) = 1 · π(κ) π(0⊗ κ) = 0 · π(κ)

Proposition 7.32 Let κ ∼ λ, then dω(κ, a) ∼ dω(λ, a) for all a ∈ Σ.

Proof. Let κ ∼ λ, then by Lemma 7.31, we have that π(κ) ∼ π(λ). By Lemma 7.13 it
follows that d(π(κ), a) ∼ d(π(λ), a) and again by 7.31 we have π(dω(κ, a)) ∼ π(dω(λ, a))
and finally that dω(κ, a) ∼ dω(λ, a) as required.

Before we can take the quotient there is one more technical difficulty. We would like
to have that κ ∼ λ implies that dt(κ, a) ∼ dt(λ, a) for all a ∈ Σ. As it stands now, and
using completeness (Prop. 7.6), we can show that if κ ∼ λ, then dt(κ, a) ≡ dt(λ, a):

κ ∼ λ =⇒ κ ≡ω λ
=⇒ JκKω = JλKω

=⇒
.
ω
√

JκKω =
.
ω
√

JλKω

=⇒ g ≡ g′
(
JgK =

.
ω
√

JκKω, Jg′K =
.
ω
√

JλKω
)

=⇒ d(g, a) ≡ d(g′, a)

=⇒ dt(κ, a) ≡ dt(λ, a)

This, however, does not imply that dt(κ, a) ∼ dt(λ, a). There is two ways around this
issue. The first solution would be to add additional requirements to how we obtain a
regular expression g from an ω-regular expression κ with JgK =

.
ω
√

JκKω. We could for
instance formalise a function r : Rω → R which maps every ω-regular expression κ
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to r(κ) = g satisfying JgK =
.
ω
√

JκKω and on top of that require r to satisfy additional
properties such as r(κ + λ) = r(κ) + r(λ). The idea is that the additional requirements
would allow us to conclude that dt(κ, a) ∼ dt(λ, a).

A second and less favourable solution is to argue that we do not need this requirement.
The spoke and loop part of the Ω-automaton can namely be quotiented separately. The
issue with this is that we would still have to provide the switch transition. In this case,
we would have to choose from each [κ]∼ equivalence class a representative κ′ and define
dt˜ ([κ]∼, a) = [d(κ′, a)]∼.

For our purposes, we chose the first approach and assume that for κ ∼ λ we also have
dt(κ, a) ∼ dt(λ, a). By Proposition 7.32 and our assumption, the following definition is
well-defined.

Definition 7.33 Let Bω˜ = (Rω/∼,R/∼, dω˜, dt˜ , d˜, N˜ ) and κ ∈ Rω, where

1. dω˜([κ]∼, a) = [dω(κ, a)]∼,

2. dt˜ ([κ]∼, a) = [dt(κ, a)]∼.

We turn to the question of size. The loop part is finite simply by Proposition 7.15, so
we only have to show that the spoke part is also finite. The idea is to turn the spoke part
of Bω˜ into a DFA and then use π and Proposition 7.15 to show that its size is bounded.
All we need to turn the spoke part into a DFA is a set of final states.

Lemma 7.34 Let
Nω = {κ | π(κ) ∈ N}.

If κ ∼ λ, then κ ∈ Nω ⇐⇒ λ ∈ Nω.

Proof. Let κ ∼ λ, by Lemma 7.31 we have that π(κ) ∼ π(λ), then by Lemma 7.13 it
follows that

κ ∈ Nω ⇐⇒ π(κ) ∈ N 7.13⇐⇒ π(λ) ∈ N ⇐⇒ λ ∈ Nω.

Proposition 7.35 Let κ ∈ R, then the size of the DFA (Rω/∼, [κ]∼, dω˜, Nω˜ ) is less than
or equal to that of (R/∼, [π(κ)]∼, d˜, N˜ ) (where we only consider the reachable part in both
automata).

Proof. Consider the map π˜ : Rω/∼ → R/∼ given by π˜([κ]∼) = [π(κ)]∼. This is well-
defined because of Lemma 7.31. We show that this map is a coalgebra morphism (where
the DFAs are seen as coalgebras for the functor T = (−)Σ × 2). This consists of showing
two things:

1. [κ]∼ ∈ Nω˜ ⇐⇒ π˜([κ]∼) ∈ N˜ ,
2. π˜(dω˜([κ]∼, a)) = d˜(π˜([κ]∼), a).

For (1.) we have

[κ]∼ ∈ Nω˜ ⇐⇒ κ ∈ Nω ⇐⇒ π(κ) ∈ N ⇐⇒ [π(κ)]∼ ∈ N˜ ⇐⇒ π˜([κ]∼) ∈ N˜ .
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As for (2.) we have

π˜(dω˜([κ]∼, a)) = π˜([dω(κ, a)]∼)

= [π(dω(κ, a))]∼

= [d(π(κ), a)]∼

= d˜([π(κ)]∼, a)

= d˜(π˜([κ]∼), a).

Finally, π˜ is injective as

π˜([κ]∼) = π˜([λ]∼) =⇒ [π(κ)]∼ = [π(λ)]∼

=⇒ π(κ) ∼ π(λ)

=⇒ κ ∼ λ
=⇒ [κ]∼ = [λ]∼.

Hence the claim follows.

Proposition 7.36 For all κ ∈ Rω:

L(Bω˜ , [κ]∼) = L(Bω, κ).

Moreover, the collection of states in Bω˜ reachable from [κ]∼ is finite.

Proof. We can construct a bisimulation between (Bω˜ , [κ]∼) and (Bω, κ). Let Z0 = {〈κ, [κ]∼〉 |
κ ∈ Rω} and Z1 = {〈e, [e]∼〉 | e ∈ R}. We claim that (Z0, Z1) is a bisimulation. This is
rather straight forward to verify. For the final states, we have

e ∈ N ⇐⇒ [e]∼ ∈ N˜ .
For the spoke transitions, consider the pair 〈λ, [λ]∼〉 ∈ Z0, then

[dω(λ, a)]∼ = dω˜([λ]∼, a),

so 〈dω(λ, a), [dω(λ, a)]∼〉 ∈ Z0. The proofs for dt and d are analogous as they all respect
∼. Finally, by Proposition 7.15 and Proposition 7.35, it follows that there are only finitely
many states in Bω˜ that are reachable from [κ]∼.

7.3 Lasso Expressions
This subsection introduces lasso expressions in order to provide an answer to finding a
regular expression corresponding to the pointwise ω-root of an ω-regular language.

First, we characterise the pointwise ω-root. We show that if a regular language L
contains enough information to obtain from it the periodic fragment of an ω-regular
language L , and if L is sufficiently large, then the root of L (Definition 7.37) corresponds
precisely to the pointwise ω-root of L .

Given some ω-regular expression κ, we use this characterisation to help us find a
regular expression corresponding to the pointwise ω-root of JκKω. This is done by first
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constructing a lasso expression which is equivalent to κ in some sense. Next we lift the
reduction rule γ1 from lassos to lasso expressions, to obtain all the lassos of the form
(ε, u) representing periodic streams. We show that we can get an expression e capturing
the loop part of said expressions and that the language JeK satisfies all the necessary
requirements as laid out by our characterisation.

As we can effectively compute the root of a regular language ([21]), this shows that we
can construct the pointwise ω-root of an ω-regular language. The definition of the root
of a regular language was taken from ([21]). Obtaining the root of a regular language is
also discussed in [13, 15].

Definition 7.37 For a regular language L, we define

1. the pointwise ω-power of L: L
.
ω = {uω | u ∈ L},

2. the root of L :
√
L = {u ∈ Σ+ | ∃k ≥ 1 : uk ∈ L}.

Remark 7.38 We want to mention that for an ω-regular language L , it must necessarily
be the case that

.
ω
√

L is regular. To see this, take an ω-regular language and consider a
finite Ω-automaton accepting it. If i is the initial state, then Loop(i) corresponds to the
pointwise ω-root of L and it is regular as it corresponds to the language accepted by the
loop automaton at i.

Our first proposition gives a characterisation of the pointwise ω-root. Given a regular
language L and an ω-regular language L , it states the constraints under which the root
of L is equivalent to the pointwise ω-root of L .

Proposition 7.39 Let L be a regular language and L an ω-regular language such that

1. L
.
ω ⊆ L ,

2. ∀u ∈ Σ+ :
(
uω ∈ L =⇒ ∃k ≥ 1 : uk ∈ L

)
,

then √
L =

.
ω
√

L .

Proof. We show the left-to-right inclusion first. Let u ∈
√
L, then uk ∈ L for some k ≥ 1

and by the first condition

uω = (uk)ω ∈ L
.
ω =⇒ uω ∈ L ,

and so u ∈
.
ω
√

L .
For the other inclusion, let u ∈

.
ω
√

L , then uω ∈ L and so by the second condition
there is some k ≥ 1 such that uk ∈ L by which it follows that u ∈

√
L.

Given an ω-regular expression κ, our aim is to construct a regular expression e and
then show that JeK satisfies the requirements of Proposition 7.39 by which it follows that
e corresponds to the pointwise ω-root of κ.

We may think of the conditions in Proposition 7.39 as stating in some sense that L
has to cover L . This is a good first intuition as the pointwise ω-root corresponds to the
maximal such regular language as shown by the following proposition:
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Proposition 7.40 Let L be a regular language and L an ω-regular language, then

L
.
ω = L =⇒ L ⊆

.
ω
√

L .

Proof. Let L
.
ω = L and let u ∈ L, then uω ∈ L and so u ∈

.
ω
√

L .

Remark 7.41 One might wonder whether the other inclusion of Proposition 7.40 holds
(i.e.

.
ω
√

L ⊆ L). The following example should make this clearer; Consider the ω-regular
language L = {aω} and the regular language L = {aa}. Clearly L

.
ω = L as

L
.
ω = {(aa)ω} = {aω} = L .

Yet .
ω
√

L = {ak | k ≥ 1} 6= L.

Definition 7.42 A basic lasso expression is an expression of the form (e, f) where e, f
are both regular expressions such that f 6∈ N . A lasso expression is a finite sum of basic
lasso expressions, i.e. if (e, f), (e′, f ′) are basic lasso expressions, then (e, f) + (e′, f ′)
is a lasso expression. Moreover, given a regular expression g and a lasso expression
m = (e1, f1) + . . .+ (en, fn) we define

g · m = g ·
n∑
i=1

(ei, fi) =

n∑
i=1

(g · ei, fi) = (g · e1, f1) + . . .+ (g · en, fn).

We denote the collection of lasso expressions by L.

Definition 7.43 (Semantics) For a lasso expression m =
∑
i(ei, fi) we define

JmK` =
{

(u, v) ∈ Σ∗+ | ∃i : u ∈ JeiK and v ∈ JfiK
}
.

Definition 7.44 A lasso expression m covers an ω-regular expression κ if

1. ∀uvω ∈ JκKω : ∃(u′, v′) ∼γ nf(uvω) : (u′, v′) ∈ JmK`,

2. ∀(u, v) ∈ JmK` : uvω ∈ JκKω.

and we call an ω-regular expression coverable if it can be covered by some lasso expression.

Given an ω-regular expression κ, a lasso expression m covering κ means that for every
ultimately periodic word in κ, there is at least one lasso representative in m. At the same
time, for any lasso in m, the ultimately periodic word corresponding to it has to belong
to κ. In this way, the lasso expression m can be thought of as being equivalent to κ.

This raises the question of whether any ω-regular expression is coverable. We show
that this is indeed the case, which means that lasso expressions are in some sense at least
as expressive as ω-regular expressions. Before we can proof this result, we need some
definitions.

The next definition is taken from [18, Definition 4.5] (which the authors in turn at-
tribute to [14]).
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Definition 7.45 ([18, 14]) We define the splitting relation ∇e of a regular expression
e ∈ R recursively as the smallest set generated by these rules:

a ∈ Σ

1∇aa
` ∇e0 r

` ∇e0+e1 r

` ∇e1 r
` ∇e0+e1 r

` ∇e0 r
` ∇e0·e1 r · e1

` ∇e1 r
e0 · ` ∇e0·e1 r

` ∇e r
e∗ · ` ∇e∗ r · e∗

We slightly modified the definition by omitting two rules, namely

a ∈ Σ

a∇a1

`0∇e0r0 `1∇e1r1

`0‖`1∇e0‖e1r0‖r1

The omission of the left rule is because we construct lasso expressions based on these rules
and so we want to avoid 1 on the right hand side (which is the side corresponding to the
loop expressions). The second rule is omitted because in [18, Definition 4.5] the authors
are working with concurrent Kleene algebras which have a parallel operator ‖ which we
do not consider in this context.

To get a better sense of what the sequential splitting accomplishes, we first state some
of its properties which can also be found in [18] (again modified to our setting). It is
important to point out that our modifications do not have a major impact on this lemma
as concurrent Kleene algebras extend Kleene algebras.

Lemma 7.46 ([18]) Let e ∈ R, then ∇e has the following properties:

1. |∇e| is finite (i.e. it contains only finitely many pairs),

2. if u · v ∈ JeK with v 6= ε, then there are e0, e1 ∈ R such that

– e0∇ee1,

– e0 · e1 5 e,

– u ∈ Je0K and v ∈ Je1K.

Intuitively, if a word u · v ∈ JeK, then we can find a splitting e0 ∇e e1 of e such that
u ∈ Je0K, v ∈ Je1K and e0 · e1 5 e.

Example 7.47 Consider the alphabet Σ = {a, b, c} and the regular expression e =
a∗ · b+ c, then

∇a = {(1, a)} ∇b = {(1, b)} ∇c = {(1, c)}

∇a∗ = {(1 · a∗, a∗ · a)} ∇a∗·b = {(1 · a∗, a∗ · a · b), (a∗, b)}

∇a∗·b+c = {(1, c), (1 · a∗, a∗ · a · b), (a∗, b)}

Now we may take any word u · v ∈ JeK and the lemma says that there is a pair e0∇ee1

with u ∈ Je0K and v ∈ Je1K.
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Given an ω-regular expression κ, we show how to obtain a lasso expression m from κ
and then move on to show that m covers κ.

Definition 7.48 Let h : Rω → L be given by

h(0ω) = (0, 0) h(eω) =
∑

e0∇ee1

(e∗ · e0, e1 · e∗ · e0)

h(f ⊗ κ) = f · h(κ) h(κ+ λ) = h(κ) + h(λ)

Proposition 7.49 Let κ ∈ Rω, then h(κ) covers κ.

Proof. We show the claim by induction on the construction of ω-regular expressions. For
κ = 0ω it is easy to see that (0, 0) covers κ. Next consider κ = eω. Let uvω ∈ JκKω, we
have to show that there is some (u′, v′) ∼γ nf(uvω) such that (u′, v′) ∈ Jh(κ)K`. We have
that JeωKω = JeKω, so uvω ∈ JeKω. This means that there exist {wi}i<ω with wi ∈ JeK
such that

uvω = w0 · w1 · w2 · w3 · . . . .

We can visualise this as

JeK

w0

JeK

w1

JeK

w2

JeK

w3

JeK

w4

JeK

w5

JeK

w6

u v v v v v v v

We are in particular interested in the positions where a v interval overlaps the start of
an JeK interval, given by some wi. Whenever this happens, v gives rise to a sequential
splitting of wi as wi,0 · wi,1 as seen here:

JeK
wi

wi,0 wi,1

v

So every time we have this type of overlap we get a sequential splitting of e, say into
e0,i, e1,i. As ∇e contains only finitely many such sequential splittings, there are two
indices i, j where e0,i = e0,j and e1,i = e1,j . This is visualised below:

JeK
wi

Jei,0K Jei,1K

v

JeK∗

v∗

JeK∗

uv∗

JeK
wj

Jej,0K Jej,1K

v

u′ v′
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Let i be an index as above, for which there is some j where the splitting at i and j
are the same. It is easy to see that there are infinitely many such indices giving rise to
the same splitting. Moreover, we have that

uvω ∈ Je∗ · ei,0 · (ei,1 · e∗ · ei,0)ωKω,

which can be seen in the above visualisation, bearing in mind that ei,0 = ej,0 and ei,1 =
ej,1. From this we can see that there is a lasso (u′, v′) ∼γ nf(uvω) such that

(u′, v′) ∈ J(e∗ · ei,0, ei,1 · e∗ · ei,0)K` ⊆ Jh(eω)K`,

as ei,0∇eei,1. Showing the second requirement is easier. Let (u, v) ∈ Jh(eω)Kω, we have
to show that uvω ∈ JeωKω. By our definition of h, there are e0, e1 with e0∇ee1 such that

u ∈ Je∗ · e0K v ∈ Je1 · e∗ · e0K

and as
vω ∈ Je1 · e∗ · e0Kω = J(e1 · e∗ · e0)ωKω ⊆ Je1 · eωKω,

we have that
uvω ∈ Je∗ · e0 · e1 · eωKω ⊆ JeωKω.

The inclusion follows as e0 · e1 5 e.
The case for κ1 +κ2 follows as h distributes over addition, so given uvω ∈ Jκ1 +κ2Kω,

we have that uvω ∈ JκiKω for some i, then we can use the induction hypothesis to
get that there is some (u′, v′) ∼γ nf(uvω) such that (u′, v′) ∈ Jh(κi)K`. Evidently, we
then also have (u′, v′) ∈ Jh(κ)K`. On the other hand, given some (u, v) ∈ Jh(κ)K`. As
h(κ1 + κ2) = h(κ1) + h(κ2), we have (u, v) ∈ Jh(κi)K` so uvω ∈ JκiKω and uvω ∈ JκKω.

For the remaining case, we consider an ω-regular expression of the shape f ⊗ κ. Let
uvω ∈ Jf ⊗ κKω. Then we can find u′0, u

′
1 and v′ such that u′0 ∈ JfK, u′1v′ω ∈ JκKω and

uvω = u′0u
′
1v
′ω. So there is a lasso (u′′, v′′) ∼γ nf(u′1v′ω) with (u′′, v′′) ∈ Jh(κ)K` by the

induction hypothesis. Then

(u′0u
′′, v′′) ∈ Jf · h(κ)K` = Jh(f ⊗ κ)K`.

Finally, let (u, v) ∈ Jh(f ⊗ κ)K. Then there is u0 ∈ JfK and (u1, v) ∈ Jh(κ)K` such that
u0u1 = u. By the induction hypothesis u1v

ω ∈ JκKω. So we have u0u1v
ω ∈ Jf ⊗ κKω.

We now have a way of getting a covering for an arbitrary ω-regular expression. We
outline the next steps and provide some more visualisations to briefly explain how we
proceed. For this, we need the following definition:

Definition 7.50 We define a reverse map on regular expressions, (−)r : R → R by

0r = 0 1r = 1 ar = a (e+ f)r = er + fr (e · f)r = fr · er (e∗)r = (er)∗

We call er the reverse expression of e.

For an ω-regular expression κ, we want to find a regular expression e such that JeK =.
ω
√

JκKω. By Proposition 7.39, we know that it is sufficient to find a regular expression e′
such that

Je′K
.
ω ⊆ JκKω and ∀u ∈ Σ+ : (uω ∈ JκKω =⇒ ∃k ≥ 1 : uk ∈ Je′K).
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We lay out how to obtain e′ from h(κ). We don’t focus on the second requirement of
Proposition 7.39 for now, but give more details on that later on.

Let h(κ) =
∑n
i=1(fi, gi) and assume that every lasso (u, v) ∈ Jh(κ)K` is in γ1 normal

form. Let M = {(fi, gi) | ε ∈ JfiK} and let

e′ =
∑

(f,g)∈M

g.

The claim is that e′ satisfies the first requirement of Proposition 7.39. This is not hard to
see: if uω ∈ Je′K

.
ω, then we can find v ∈ Je′K with vω = uω, so (ε, v) ∈ Jh(κ)K` and hence

uω = vω ∈ JκKω as h(κ) covers κ.
Of course, we assumed all the lassos in Jh(κ)K` to be γ1-normalised which is not the

case in general. However, we show that it is possible to γ1-normalise all the lassos in
Jh(κ)K. This is done via automata and derivatives.

To better understand the DFA construction we propose, we first have a closer look at
γ1-normalisation. Consider the lasso (uab, vab). Normalising it w.r.t. γ1 gives

(uab, vab)→γ1 (ua, bva)→γ1 (u, abv).

This process can be divided into two independent steps. We first take the derivative on
the right of both the spoke and the loop part (in this case first w.r.t. b, then w.r.t. a).

(uab, vab)
b→ (ua, va)

a→ (u, v).

The second step consists of adding ab to the start of the loop part.

(u, v) −→ (u, abv).

This two-step approach can be visualised as

(uab, vab)

(u, v)

(u, abv)
γ1

ba-deriv. add ab

Figure 3: γ1-normalisation in 2 steps

The states of our DFA consist of lasso expressions. The transition map is a derivative
on the right of both the spoke and lasso part of each basic lasso expression. For the second
step of the process, we have to add something back to the loop part of each basic lasso
expression. This is in general not a word but rather a regular expression. The following
example clarifies the idea.

Example 7.51 Let Σ = {a, b} and consider the ω-regular expression (ab)ω. The lasso
expression h((ab)ω) is equivalent to

((ab)∗, ab(ab)∗) + ((ab)∗a, b(ab)∗a).
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If we use lasso expressions as states and take the derivative on the right for both the
spoke and loop part2, we end up with a DFA of the following shape:

h((ab)ω)start

((ab)∗a, b(ab)∗a)((ab)∗, b(ab)∗)

((ab)∗a, a+ ab(ab)∗a)

a

b

a

b

a

The states of particular interest are those which have a basic lasso expression whose
spoke part contains the empty word, i.e. h((ab)ω) and ((ab)∗, b(ab)∗). We are interested
particularly in those lasso expressions because they contain all the lassos which are γ1-
normalised. Let’s look at ((ab)∗, b(ab)∗). In order to get to this state from the initial
state, we had to take the derivative w.r.t. a, so according to the second step (Figure 3)
we would have to add a to the beginning of the loop expression. However, this is not
the only way to end up at ((ab)∗, b(ab)∗), we could also first take the derivative w.r.t.
aba. What we are hinting at, of course, is that instead of just adding a word, we should
add a regular expression. Note that this regular expression can be found by making
((ab)∗, b(ab)∗) accepting and finding the regular expression of the DFA we obtain. If we
do so, we find a(ba)∗. Lastly, we want to point out that we have to add the reverse
expression. Looking again at Figure 3, we took the ba-derivative but then had to add ab!
Adding the reverse expression to the loop part gives ((ab)∗, (ab)∗ab(ab)∗).

For h((ab)ω), we are only interested in the first term (as the second term does not
have ε in its spoke expression). Applying the same reasoning as above, we add (ab)∗ to
obtain ((ab)∗, (ab)∗ab(ab)∗).

Finally, taking only the loop expressions of the two basic lasso expressions gives

(ab)∗ab(ab)∗ + (ab)∗ab(ab)∗ ≡ (ab)+.

Remark 7.52 One may at this stage also verify that in fact J(ab)+K satisfies the require-
ments in Proposition 7.39 with respect to (ab)ω. In fact it is the case that

.
ω
√

J(ab)ωKω = J(ab)+K.

We now turn to the more technical side. We can define the right derivative we need
just in terms of the reverse map for regular expressions and the Brzozowski derivative.
However, we think it is clearer to spell out the definition in more detail. We define two
right derivatives, one for the spoke and one for the loop part of basic lasso expressions.
The reason for this is that we want to avoid the empty word in the loop expressions.

2for taking derivatives on the loop part, we have to use d(a, a) = 0 so we do not obtain the empty
word

56



Definition 7.53 For a regular expression e ∈ R, we define the right-spoke derivative
dsr : R × Σ→ Σ as

dsr(0, a) = 0 dsr(e+ f, a) = dsr(e, a) + dsr(f, a) dsr(b, a) = [b = a]

dsr(1, a) = 0 dsr(e · f, a) = e · dsr(f, a) + dsr(e, a) · [f ∈ N ] dsr(e
∗, a) = e∗ · dsr(e, a)

The right-loop derivative dlr is defined analogously, with the exception that dlr(b, a) = 0.

Remark 7.54 We will not prove it, but an equivalent definition for dsr is

dsr(e, a) = d(er, a)r.

We combine dsr and dlr into a derivative for lasso expressions.

Definition 7.55 We define dc : L ×Σ→ L as follows. Let m =
∑n
i=0(ei, fi) be a lasso

expression, then

dc(m, a) = dc

(∑
i

(ei, fi), a

)
=
∑
i

(
dsr(ei, a), dlr(fi, a)

)
.

Definition 7.56 For a lasso expression m, we call C(m) = (L,m, dc) the coherence
automaton at m. A lasso expression n =

∑n
i=0(ei, fi) is accepting for C(m) if it is reachable

from m (i.e. there is a path from m to n) and if there is some i such that ε ∈ JeiK and
JfiK 6= ∅. We denote by Acc(C(m)) the set of acceptors for C(m), and let

N(n) = {(ei, fi) | ε ∈ JeiK, JfiK 6= ∅}.

Definition 7.57 Given a lasso expression m and an acceptor n for C(m), we obtain a
DFA

C(m, n) = (L,m, dc, {n}).

Let R(C(m, n)) be a regular expression corresponding to the regular language accepted
by C(m, n).

Remark 7.58 As with the Brzozowski construction we presented in the previous sub-
sections, the automaton C(m, n) might not be finite. However, as the derivatives are
essentially just Brzozowski derivatives and we are looking at pairs of regular expressions,
it should be evident that we can apply the same strategies as before (i.e. define a con-
gruence) to obtain a finite DFA. For clarity and presentation, we will not retrace these
steps.

Definition 7.59 Given a lasso expression m, we define the coherence language of m as
follows:

Coh(m) =
∑

n∈Acc(C(m))

∑
(e,f)∈N(n)

R(C(m, n))r · f.

At this stage it is a good idea to refer back to Example 7.51 and verify that this
corresponds exactly to the approach we outlined. The first sum corresponds to all the
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lasso expressions who contain a basic lasso expression whose spoke expression contains
the empty word (i.e. all the lasso expressions we are interested in). The second sum
considers all the basic lasso expressions whose spoke expression contains the empty word
and finally, instead of just taking the loop expression, we also add the reverse of the
regular language by which we can go from the initial state to this lasso expression.

We promised earlier to also go into the second condition of Proposition 7.39 which
states

∀u ∈ Σ+ : (uω ∈ L =⇒ ∃k ≥ 1 : uk ∈ L),

for a regular language L and an ω-regular language L . We claim that JCoh(h(κ))K
satisfies this condition with respect to JκKω. The reason for this has to do with how we
defined h. In short, looking for instance at h(eω), the regular expressions in the loop
part of each basic lasso expression are of the shape e1e

∗e0 for e0 ∇e e1. Intuitively, this
expression is able to account for any u ∈ Σ+ as in the requirement. This is made more
precise in the following proposition.

Proposition 7.60 Let κ be an ω-regular language, then

(u, v) ∈ Jh(κ)K` =⇒ ∀k ≥ 1 : (u, vk) ∈ Jh(κ)K`.

Proof. We show this by induction on κ. The case κ = 0ω is trivial. For κ = eω, we
defined

h(eω) =
∑

(e0,e1)∈∇e

(e∗ · e0, e1 · e∗ · e0) .

So (u, v) ∈ Jh(eω)K` means there is some (e0, e1) ∈ ∇e such that

u ∈ Je∗ · e0K v ∈ Je1 · e∗ · e0K

It is clear that vk ∈ Je1 · e∗ · e0K for all k ≥ 1 as

(e1 · e∗ · e0) · . . . · (e1 · e∗ · e0)︸ ︷︷ ︸
k times

5 e1 · e∗ · e0

(bearing in mind that e0 · e1 5 e).
The case κ + λ follows as h distributes over +. Finally, for f ⊗ κ it follows as the

multiplication only affects the spoke expressions.

The final step is the main proposition, which states that for an ω-regular expression
κ, the regular expression Coh(h(κ)) satisfies the requirements of Proposition 7.39.

To make the proof easier to follow, we introduce a technical lemma.

Lemma 7.61 Let u ∈ Σ∗, v ∈ Σ+ and m = h(κ) for some ω-regular expression κ. The
following are equivalent:

1. (u, vu) ∈ JmK`,

2. (ε, v) ∈ Jdc(m, ur)K`,

3. uv ∈ JCoh(m)K for some n ∈ Acc(C(m)), (e, f) ∈ N(n) with u ∈ JR(C(m, n))rK and
v ∈ JfK.
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Proof. (1.)⇐⇒ (2.) follows from the definition of dc. (2.) =⇒ (3.) Take n = dc(m, u
r). As

(ε, v) ∈ JnK`, n ∈ Acc(C(m)) and there is some (e, f) ∈ N(n) with v ∈ JfK. Furthermore
as n was reached after reading ur, we have that u ∈ JR(C(m, n))rK, so uv ∈ JCoh(m)K.
(3.) =⇒ (2.) If u ∈ JR(C(m, n))rK, then n = dc(m, u

r). As (e, f) ∈ N(n) and v ∈ JfK, we
have that (ε, v) ∈ JnK` so

(ε, v) ∈ Jdc(m, ur)K`.

Proposition 7.62 Let κ be an ω-regular expression, and e = Coh(h(κ)), then

1. JeK
.
ω ⊆ JκKω,

2. ∀u ∈ Σ+ :
(
uω ∈ JκKω =⇒ ∃k ≥ 1 : uk ∈ JeK

)
.

Proof. We start with the second condition. Let u ∈ Σ+ and let v ∈ Σ+, k ≥ 1 be such
that vk = u and there exists no v′ ∈ Σ+, k′ ≥ 1 such that v = v′k

′
. Then nf(uω) = (ε, v)

and one can show inductively that every lasso which is γ-equivalent to (ε, v) must be of
the form (vk1 · v0, v1 · vk2 · v0) where v0 · v1 = vk3 for some k1, k2, k3. As h(κ) covers κ and
uω ∈ JκKω, we can find a lasso of the shape (vk1 ·v0, v1 ·vk2 ·v0) ∈ Jh(κ)K`. By proposition
7.60,

(vk1 · v0, (v1 · vk2 · v0)k4) ∈ Jh(κ)K`,

and we can choose k4 to be large enough such that (vk1 · v0, (v1 · vk2 · v0)k4)�γ1 (ε, uk5)
for some k5 ≥ 1. The rest follows by Lemma 7.61.

For the first condition, let m = h(κ). We have to show that

JCoh(m)K
.
ω ⊆ JκKω.

Let α ∈ JCoh(m)Kω, then there exists w ∈ JCoh(m)K such that α = wω. As w ∈ JCoh(m)K,
there is some n ∈ Acc(C(m)) and some (e, f) occurring in n such that

w ∈ JR(C(m, n))r · fK.

Hence we can find u, v such that w = uv, v ∈ JfK and u ∈ JR(C(m, n))rK. From which,
by Lemma 7.61, it follows that

(u, vu) ∈ JmK`.

As m covers κ, we have that u(vu)ω = (uv)ω = wω = α ∈ JκKω.

Corollary 7.63 Let κ be an ω-regular expression, then√
JCoh(h(κ))K =

.
ω
√

JκKω.

Proof. This is a direct consequence of Proposition 7.39 and Proposition 7.62.
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Section 8

Minimisation of Ω-automata

A distinguishing feature of Ω-automata is that there is a clear path to minimisation
(reducing the number of states), this is not a given for many other types of ω-automata.
In the previous section, we hinted at the fact that construction methods which convert
Muller and parity automata to Ω-automata result in Ω-automata with a lot of states. To
some extent this is not a problem, as any Ω-automaton can be minimised to a smallest
Ω-automaton accepting the same ω-regular language.

Several papers discuss minimisation of coalgebras in a more abstract setting ([1, 7, 5,
6]). Specifically for Ω-automata, a partition refinement approach is discussed in [12].

This section looks at two other minimisation algorithms for Ω-automata. The first
one is the Brzozowski minimisation algorithm which has been studied extensively for
DFAs and several other types of automata in a categorical framework ([7]). The other
minimisation procedure we look at is minimisation via a dual equivalence, which has
also been studied in conjunction with Brzozowski minimisation to account for a wider
phenomenon ([6, 5]).

8.1 Minimisation via Adjunction
Brzozowski’s minimisation procedure is a fascinating algorithm to minimise arbitrary
DFAs. It works by applying the following two steps twice:

1. apply the reverse powerset construction

2. take the reachable part of the obtained DFA

After having done that one obtains a minimal DFA which accepts the same regular lan-
guage as the DFA one started out with. In [7], the authors give the intuition behind
Brzozowski’s minimisation procedure using algebra and coalgebra. Throughout this sec-
tion, we trace the steps outlined in op. cit., adapting it to our environment. To some
extent, this subsection can be seen as an instantiation of [7]. However, we want to point
out that although the idea remains the same, the actual construction is more involved.

We start by showing that lasso automata have underlying coalgebraic and algebraic
structure. This allows us to define a category LA of lasso automata. For a given lasso
language L we define LA(L) as the full subcategory of LA consisting of those lasso
automata accepting L and show that this category has both an initial and a final object.

Using results from the section on the category Set2, we define a contravariant powerset
functor on Set2 and show that it is self-adjoint. Next we lift this self-adjunction to the
level of LA(L), en route obtaining a reverse powerset construction for lasso automata.

Finally, we show that the Brzozowski minimisation procedure can also be applied to
lasso automata, and hence to Ω-automata.
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8.1.1 Initial A-Algebra, Final Ω-Coalgebra and the Category of Lasso Au-
tomata

A DFA can be seen as a pointed (−)Σ × 2-coalgebra or equivalently as a copointed 1 +
(−) × Σ-algebra, the initial state being characteristically algebraic and the final states
coalgebraic ([7]). Interestingly enough, the transition map can be seen as both through
currying and uncurrying:

δ : Q→ QΣ (coalgebraic) δ[ : Q× Σ→ Q (algebraic)

We already know that lasso automata are pointed Ω-coalgebras, so we provide an
endofunctor on Set2 through which we can see them also as copointed algebras. With
this we define the category of lasso automata LA and for a lasso language L also the full
subcategory LA(L) of LA, whose objects are all the lasso automata accepting L. The
category LA(L) has an initial and a final object.

Definition 8.1 We define the functor A : Set2 → Set2 given by

1. objects: A(A,B) = (1 +A× Σ, A× Σ +B × Σ),

2. morphisms: A(f, g) = (! + f × idΣ, f × idΣ + g × idΣ).

Just like the category of Ω-coalgebras has a final coalgebra, the category of A-algebras
has an initial algebra. We first give its definition and then show that it is initial.

Definition 8.2 We define the A-algebra S =
(
(Σ∗,Σ∗+), (i + a, b + c)

)
where:

i : 1→ Σ∗ with i(?) = ε

a : Σ∗ × Σ→ Σ∗ with a(w, a) = wa

b : Σ∗ × Σ→ Σ∗+ with b(w, a) = (w, a)

c : Σ∗+ × Σ→ Σ∗+ with c((w, v), a) = (w, va)

Proposition 8.3 The A-algebra S is the initial A-algebra. Given some A-algebra A =
((X,Y ), (i+ µ, ν + π)) the unique morphism (f0, f1) : S→ A is given by

f0(ε) := i(?) f1(w, a) := ν(f0(w), a)

f0(wa) := µ(f0(w), a) f1(w, va) := π(f1(w, v), a)

Proof. We first show that (f0, f1) is an A-algebra morphism and then we show that it is
unique.

For the first part, we have to check the following equations:

f0(i(?)) = ι(!(?)) f0(a(w, a)) = µ(f0(w), a)

f1(b(w, a)) = ν(f0(w), a) f1(c((w, v), a)) = π(f1(w, v), a)

This is a rather straight-forward task:

f0(i(?)) = f0(ε) = ι(?) = ι(!(?)),
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f0(a(w, a)) = f0(wa) = µ(f0(w), a),

f1(b(w, a)) = f1(w, a) = ν(f0(w), a),

f1(c((w, v), a)) = f1(w, va) = π(f1(w, v), a).

For uniqueness, assume there is an A-algebra morphism (g0, g1) which hence makes the
above equations true. We show that (g0, g1) = (f0, f1) by induction on the construction
of words and lassos. We start with f0 and g0. For the base case we have

g0(ε) = g0(i(?)) = ι(!(?)) = f0(i(?)) = f0(ε).

For the inductive case we consider the word wa ∈ Σ+, then

g0(wa) = g0(a(w, a)) = µ(g0(w), a)
(I.H.)

= µ(f0(w), a) = f0(a(w, a)) = f0(wa).

This shows that g0 = f0. Next we show that f1 = g1. For the base case consider a lasso
(w, a), where a ∈ Σ, w ∈ Σ∗, then

g1(w, a) = g1(b(w, a)) = ν(g0(w), a)
f0=g0

= ν(f0(w), a) = f1(b(w, a)) = f1(w, a).

Finally, for the inductive step we consider the lasso (w, va) ∈ Σ∗+, then

g1(w, va) = g1(c((w, v), a))

= π(g1(w, v), a)

= π(f1(w, v), a) (I.H.)
= f1(c((w, v), a))

= f1(w, va),

which concludes the proof.

The following is the final Ω-coalgebra whose definition and proof of finality can be
found in [12].

Definition 8.4 The final Ω-coalgebra is given by the structure Z = ((2Σ∗+ , 2Σ∗), (〈α, β〉 , 〈ω, γ〉))
with

α : 2Σ∗+ → (2Σ∗+)Σ with α(L)(a) = {(u, v) ∈ Σ∗+ | (au, v) ∈ L}

β : 2Σ∗+ → (2Σ∗)Σ with β(L)(a) = {u ∈ Σ∗ | (ε, au) ∈ L}
ω : 2Σ∗ → 2 with ω(K) = [ε ∈ K]

γ : 2Σ∗ → (2Σ∗)Σ with γ(K)(a) = {u ∈ Σ∗ | au ∈ K}

and the final map (h0, h1) from an Ω-coalgebra A = ((X,Y ), (〈ρ, σ〉 , 〈ξ, χ〉)) to Z is given
by

h0(x) = Lassos(A, x) h1(y) = L((Y, ξ, χ), y)
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We remarked earlier that the transition map of a DFA can be seen as either algebraic
or coalgebraic via currying and uncurrying. This is just an example of an adjunction
between the functors (−)×Σ and (−)Σ. We show that the same holds for the transition
maps of Ω-coalgebras. As the initial and final states have to be disregarded, we define a
version of A and Ω which does not include initial nor final states respectively and then
show that the functors we obtain are adjoint.

Definition 8.5 We can restrict the functors A,Ω to exclude the specification of initial
and final states and define

Ω∗(X,Y ) = (XΣ × Y Σ, Y Σ) and A†(X,Y ) = (X × Σ, X × Σ + Y × Σ).

Before we show that A† a Ω∗, we define two intermediary functors and show that
those are adjoint. This makes our proof easier. In order to define the two functors, we
need the following lemma which is used to show that our functors are indeed functors.

Lemma 8.6 Let f : A→ A′, g : B → B′, f ′ : A′ → A′′, g′ : B′ → B′′, then

1. (f ′ + g′) ◦ (f + g) = (f ′ ◦ f) + (g′ ◦ g)

2. (f ′ × g′) ◦ (f × g) = (f ′ ◦ f)× (g′ ◦ g)

Proof. Consider the following diagram

A

A′′ +B′′

A′ +B′

A+B

BιA

f ◦ f ′

f ′ + g′

f + g

ιB

g ◦ g′

We claim that f ◦f ′ : A→ A′′ and g ◦g′ : B → B′′ are the unique morphisms which make
this diagram commute. We shall show this for f ◦ f ′, the other follows via symmetric
reasoning. Let a ∈ A, then

(f ′ + g′) ◦ (f + g) ◦ ιA(a) = (f ′ + g′) ◦ ιA′ ◦ f(a) = ιA′′ ◦ f ′ ◦ f(a) = f ′ ◦ f(a).

The proof strategy for (2.) is similar. Note that f × g is defined as follows:

(f × g)(a, b) = (f(a), g(b)).
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Then

(f ′ × g′) ◦ (f × g)(a, b) = (f ′ × g′)(f(a), g(b))

= (f ′(f(a)), g′(g(b)))

= ((f ′ ◦ f)(a), (g′ ◦ g)(b))

= (f ′ ◦ f)× (g′ ◦ g)(a, b).

This gives the required result.

Definition 8.7 Let CR and PL be the following two functors:

– CR : Set2 → Set2

1. CR(A,B) = (A,A+B)

2. CR(f, g) = (f, f + g)

– PL : Set2 → Set2

1. PL(A,B) = (A×B,B)

2. PL(f, g) = (f × g, g)

Proof. We show that CR and PL are both functors, starting with CR. We have to show
that CR preserves composition and the identity morphisms. Let (f, g) : (A,B)→ (A′, B′)
and (f ′, g′) : (A′, B′)→ (A′′, B′′), then

CR(f ′, g′) ◦ CR(f, g) = (f ′, f ′ + g′) ◦ (f, f + g)

= (f ′ ◦ f, (f ′ + g′) ◦ (f + g))

= (f ′ ◦ f, f ′ ◦ f + g′ ◦ g) (Lem. 8.6)
= CR(f ′ ◦ f, g′ ◦ g)

= CR((f ′, g′) ◦ (f, g)).

As for preservation of the identity, we have that

CR(1(A,B)) = CR(1A, 1B)

= (1A, 1A + 1B)

= 1(A,A+B)

= 1CR(A,B).

Hence CR is a functor. The proof for PL follows in a similar fashion, again using Lemma
8.6.

Lemma 8.8 The functor CR is left-adjoint to PL:

CR a PL.

Proof. We construct a natural isomorphism

mA,B : HomSet2((A0, A0 +A1), (B0, B1))
∼=→ HomSet2((A0, A1), (B0 ×B1, B1)).

Let (f, g) : (A0, A0 +A1)→ (B0, B1). By the universal property of the coproduct we can
find unique g0, g1 such that g = g0 + g1 and which make the following diagram commute
(g0 = g�A0

and g1 = g�A1
).
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B1

A0 +A1

A0 A1

g∃!g0

ιA0

∃!g1

ιA1

Define
mA,B(f, g) = mA,B(f, g0 + g1) = (f × g0, g1).

Now let (f, g) : (A0, A1) → (B0 × B1, B1). By the universal property of the product,
we find unique f0, f1 such that f = f0 × f1 and the following diagram commutes (take
fi(a) = πBi

(f(a))).

A0

B0 ×B1

B0 B1

f∃!f0

πB0

∃!f1

πB1

Now define
m−1
A,B(f, g) = m−1

A,B(f0 × f1, g) = (f0, f1 + g).

We again use (f, g) to denote the transpose of (f, g). Then for (f, g) : (A0, A0 + A1) →
(B0, B1) we have

(f, g) = (f, g0 + g1) = (f × g0, g1) = (f, g0 + g1) = (f, g),

and for (f, g) : (A0, A1)→ (B0 ×B1, B1) we have

(f, g) = (f0 × f1, g) = (f0, f1 + g) = (f0 × f1, g) = (f, g).

We give some additional justification for the step (f × g0, g1) = (f, g0 + g1) (the step
(f0, f1 + g) = (f0× f1, g) can be justified in a similar manner). It is sufficient to consider
the following diagram and notice that f × g0 is the unique map which makes the diagram
commute (universal property of the product B0 ×B1).
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B0

B0 ×B1

A0

B1

πB0
πB1

f
∃!f × g0 g0

Finally, we also have to show naturality, so let (f, g) : (A0, A1) → (B0, B1) and
(f ′, g′) : (A′0, A

′
1)→ (B′0, B

′
1). We want to show that the following diagram commutes:

HomSet2((A′0, A
′
0 +A′1), (B′0, B

′
1))

HomSet2((A0, A0 +A1), (B0, B1))

HomSet2((A′0, A
′
1), (B′0 ×B′1, B′1))

HomSet2((A0, A1), (B0 ×B1, B1))

	

mA′,B′

(f ′, g′) ◦ (−) ◦ CR(f, g)

mA,B

PL(f ′, g′) ◦ (−) ◦ (f, g)

Let (i, j) ∈ HomSet2((A0, A0 +A1), (B0, B1)) with j = j1 + j2, then

PL(f ′, g′) ◦ (i, j) ◦ (f, g) = (f ′ × g′, g′) ◦ (i× j1, j2) ◦ (f, g)

= ((f ′ × g′) ◦ (i× j1) ◦ f, g′ ◦ j2 ◦ g)

= (f ′ ◦ i ◦ f × g′ ◦ j1 ◦ f, g′ ◦ j2 ◦ g) (Lem. 8.6)

= (f ′ ◦ i ◦ f, g′ ◦ j1 ◦ f + g′ ◦ j2 ◦ g)

= (f ′ ◦ i ◦ f, g′ ◦ (j1 + j2) ◦ (f + g)) (Lem. 8.6)

= (f ′ ◦ i ◦ f, g′ ◦ j ◦ (f + g))

= (f ′, g′) ◦ (i, j) ◦ (f, f + g)

= (f ′, g′) ◦ (i, j) ◦ CR(f, g).

Having defined our intermediary functors and showed that they form an adjunction,
we move on to show that A† is left-adjoint to Ω∗.

Proposition 8.9 The functor A† is left-adjoint to Ω∗:

A† a Ω∗.

Proof. The following two maps defined on objects can be extended to functors:

E : Set→ Set with E(A) := AΣ,

T : Set→ Set with T (A) := A× Σ.
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We have that T a E (which is just currying and uncurrying) and by Lemma 3.3 we
can lift the adjunction to Set2, i.e. T 2 a E2 where T 2(A,B) = (A × Σ, B × Σ) and
E2(A,B) = (AΣ, BΣ). It is well-known that we can compose the adjunctions T 2 a E2

and CR a PL to obtain
CR ◦ T 2 a E2 ◦ PL

(note that this is also well-typed). Moreover, we observe that E2 ◦ PL ∼= PL ◦ E2, as
((A×B)Σ, BΣ) ∼= (AΣ×BΣ, BΣ). Finally, we have that Ω∗ = PL ◦E2 and A† = CR ◦T 2,
hence

A† a Ω∗.

This shows that a lasso automaton A = (X,Y, i, ρ, σ, ξ, F ) can be seen as both a
pointed Ω-coalgebra ((X,Y ), (〈ρ, σ〉 , 〈ξ, χF 〉)) with initial state i(?) ∈ X and as a co-
pointed A-algebra ((X,Y ), (i+ ρ[, σ[ + ξ[)) with final states F .

Definition 8.10 A lasso automaton is simultaneously a pointed Ω-coalgebra and a co-
pointed A-algebra. We define the category LA whose objects are lasso automata and whose
morphisms are maps which respect both the coalgebra and algebra structure. More for-
mally, given two lasso automata A = (X,Y, i, ρ, σ, ξ, F ) and A′ = (X ′, Y ′, i′, ρ′, σ′, ξ′, F ′),
a map (f, g) : A→ A′ is a lasso automaton morphism if it makes the following diagrams
commute:

(X,Y )

A(X,Y )

(X ′, Y ′)

A(X ′, Y ′)

	((i+ ρ[),
(σ[ + ξ[))

((i′ + ρ′[),
(σ′[ + ξ′[))

(f, g)

A(f, g)

Ω(X,Y )

(X,Y )

Ω(X ′, Y ′)

(X ′, Y ′)

	(〈ρ, σ〉,
〈ξ, χF 〉)

(〈ρ′, σ′〉,
〈ξ′, χF ′〉)

Ω(f, g)

(f, g)

Remark 8.11 We point out that any morphism makes the transition part of the left
diagram commute if and only if it also makes the transition part of the right diagram
commute.

The category LA does not have initial nor final objects. However, restricting our
attention to the full subcategory of LA whose objects are given by all the lasso automata
which accept a given lasso language L gives us a category which has an initial and final
object.

Definition 8.12 Given a lasso language L, we define LA(L) to be the full-subcategory
of LA consisting of those lasso automata accepting L.

Proposition 8.13 Given a lasso language L, the category LA(L) has an initial and a
final object.

Proof. We can turn the initial A-algebra and the final Ω-coalgebra into the initial and
final object in LA(L) by adding final and initial states respectively.
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Let χL : Σ∗+ → 2 be given by χL(u) = [u ∈ L] and define iL : {?} → 2Σ∗+ as
iL(?) = L. We claim that (S, χL) and (Z, iL) are both in LA(L). To see this, let
(u, v) ∈ Σ∗+, then by Definitions 8.2 and 8.4:

(u, v) ∈ Lassos(S, ε) ⇐⇒ b̃ : c(â(ε, u), v) ∈ L
⇐⇒ (u, v) ∈ L,

(u, v) ∈ Lassos(Z, L) ⇐⇒ ε ∈ β̃ : γ(α̂(L, u), v)

⇐⇒ (u, v) ∈ L.

To show that they are both the initial and final object respectively, we have to show that
the unique morphisms we described earlier are unique lasso automata morphisms. Given
some lasso automaton A = (X,Y, i, ρ, σ, ξ, F ) accepting L and letting (f0, f1) : S → A,
(h0, h1) : A→ Z, as defined in Proposition 8.3 and Definition 8.4, it suffices to check the
following two equations:

h0(i(?)) = !(iL(?))

id2(χL(u, v)) = χF (f1(u, v))

For the first equation we have that

h0(i(?)) = h0(i) = Lassos(A, i) = L = iL(?) = !(iL(?)),

and for the second equation, we get

id2(χL(u, v)) = [(u, v) ∈ L] = χF (σ̃ : ξ(ρ̂(i, u), v)) = χF (f1(u, v)).

Uniqueness is also clearly given.

8.1.2 The Two-sorted Contravariant Powerset Functor

In the classical setting, Brzozowski’s minimisation procedure exploits a dual adjunction
between Set and Setop given by the contravariant powerset functor which can be lifted
to the level of coalgebras ([7]). In our setup we can proceed in the same way, though
there are some minor differences.

We first define a two-sorted contravariant powerset functor and show that it is self-
adjoint. This is followed up by lifting it to the level of lasso automata. We show that
our lifting establishes an adjoint situation between the categories LA(L) and LAop(Lr)
(where Lr is the reverse lasso language of L).

With this setup, we can state and prove a Brzozowski type minimisation algorithm
for Ω-automata.

Definition 8.14 The two-sorted contravariant powerset functor
^

P2: Set2 → Set2,op is
given by

1. objects:
^

P2 (A,B) = (2B , 2A),

2. morphisms:
^

P2 (f, g) = (g−1[−], f−1[−]).
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Just like the ordinary contravariant powerset functor,
^

P2 turns epis into monos and
vice-versa which is crucial for the Brzozowski minimisation.

Proposition 8.15 The morphism (f, g) is mono (resp. epi) if and only if
^

P2 (f, g) is
epi (resp. mono).

Proof. As a morphism in Set2 is mono (resp. epi) if and only if it is pointwise mono (resp.
epi), it is sufficient to show that f is mono (resp. epi) iff f−1[−] is epi (resp. mono). This
is a standard fact so we omit the proof.

Corollary 8.16 We can see
^

P2 also as a functor from Set2,op to Set2. As such, it is
self-adjoint, i.e.

^

P2 a
^

P2.

Proof. This follows from two observations

1.
^

P: Set→ Setop is self-adjoint and so we can lift the adjunction to Set2 by Lemma
3.3.

2.
^

P2= S◦
^

P
2

where S is the swap functor defined in Definition 3.5.

Set2 Set2,op Set2,op∼=
^

P
2

^

P2

S

^

P
2

S

^

P2

Our next goal is to lift this adjunction to the category LA(L) for some lasso language

L. We first show how to lift
^

P2 to LA(L). This is done by means of an example. Given
some lasso automaton A, we first look at its A-algebra reduct. So for now, we think of A
as the structure A = ((X,Y ), (i + ξ[, σ[ + ρ[)). Applying

^

P2 to (X,Y ),A(X,Y ) and to
the maps (i+ ξ[, σ[ + ρ[) gives

(1 +X × Σ, X × Σ + Y × Σ)

(X,Y )

(2Y×Σ+X×Σ, 2X×Σ+1)

(2Y , 2X)

^

P2

=⇒(i+ ρ[, σ[ + ξ[) ((ξ[ + σ[)−1, (ρ[ + i)−1)

As 2Y×Σ+X×Σ ∼= (2Y )Σ × (2X)Σ and 2X×Σ+1 ∼= (2X)Σ × 2 and by the universal
properties of the product, we can simplify the right-hand side to
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(2Y×Σ+X×Σ, 2X×Σ+1)

(2Y , 2X)

((2Y )Σ × (2X)Σ, (2X)Σ × 2)

(2Y , 2X)

=⇒((ξ[ + σ[)−1, (ρ[ + i)−1) (〈ξ−1, σ−1〉, 〈ρ−1, i−1〉)

The only remaining piece of the lasso automaton is the final states. We do not apply
the contravariant powerset functor but instead just take the transpose:

(1, 2)

(X,Y )

(1, ∅)

(2Y , 2X)

=⇒(!, χF ) (iF , !)

The map χF : Y → 21 was turned into iF : 1 → 2Y with iF (?) = F and ! : X → 1∅

sent to ! : ∅ → 1X (as 21 ∼= 2, 1∅ = 1 = 1X).
From this we can define the reverse lasso automaton of a lasso automaton.

Definition 8.17 Let A = (X,Y, i, ρ, σ, ξ, F ) be a lasso automaton, we define its reverse
lasso automaton as

Ar = (2Y , 2X , F, ξ−1, σ−1, ρ−1, i−1),

where for δ ∈ {ξ, σ, ρ} we have

δ−1[P ](a) = {z ∈ dom(δ) | δ(z, a) ∈ P},

and i−1[K] = [i ∈ K].

Our lifted two-sorted contravariant powerset functor sends a lasso automaton A to its
reverse lasso automaton Ar. If we take A ∈ LA(L), then where does Ar live? Clearly
Ar ∈ LAop, so we wonder: For which L′ do we have Ar ∈ LAop(L′)? The answer turns
out to be L′ = Lr, i.e. the reverse language of L. In order to formally show this, we
need some additional definitions which allow us to talk, amongst others, of the reverse of
a word.

The next definition is standard, see for instance [27].

Definition 8.18 ([27]) For a word w ∈ Σ+, we write wr for the reverse word, i.e.

(w1 . . . wn)r = wn . . . w1.

Lemma 8.19 For δ ∈ {σ, ξ, ρ}, Q ⊆ Im(δ) and v ∈ Σ+:

δ̃−1[Q](v) = δ̃−1[Q](vr).
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Proof. We prove the claim by induction. For the base case we let v ∈ Σ. In this case

δ̃−1[Q](a) = {z ∈ dom(δ) | δ(z, a) ∈ Q}

= {z ∈ dom(δ) | δ̃(z, a) ∈ Q}

= δ̃−1[Q](a)

= δ̃−1[Q](ar).

For the inductive step let v = au, then

δ̃−1[Q](v) = δ̃−1[Q](au)

= δ̃−1[δ−1[Q](a)](u)

= δ̃−1[δ−1[Q](a)](ur) (I.H.)

= {z ∈ dom(δ) | δ̃(z, ur) ∈ δ−1[Q](a)}

= {z ∈ dom(δ) | δ(δ̃(z, ur), a) ∈ Q}

= {z ∈ dom(δ) | δ̃(z, ura) ∈ Q}

= δ̃−1[Q](ura)

= δ̃−1[Q](vr).

We introduce the notion of the reverse of a lasso language.

Definition 8.20 For a lasso language L, we define its reverse lasso language as

Lr = {(u, av) ∈ Σ∗+ | (vr, aur) ∈ L}.

Just as for regular languages, taking the reverse of a lasso language twice gives back
the original lasso language.

Lemma 8.21 For a lasso language L, we have L = (Lr)r.

Proof. Let (u, av) ∈ Σ∗+, then

(u, av) ∈ L ⇐⇒ (vr, aur) ∈ Lr

⇐⇒ ((ur)r, a(vr)r) ∈ (Lr)r

⇐⇒ (u, av) ∈ (Lr)r.

In order to show that Ar ∈ LAop(Lr), it is sufficient to show that Ar accepts Lr.

Proposition 8.22 Let A = (X,Y, i, ρ, σ, ξ, F ), then

Lassos(A, i)r = Lassos(Ar, F ).
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Proof. Using the definitions and Lemma 8.19, we get

Lassos(Ar, F ) =
{

(u, av) ∈ Σ∗+ | i ∈ ˜σ−1 : ρ−1
(
ξ̂−1 (F, u) , av

)}
=
{

(u, av) ∈ Σ∗+ | i ∈ ρ̃−1
(
σ−1

(
ξ̂−1 (F, u) , a

)
, v
)}

=
{

(u, av) ∈ Σ∗+ | i ∈ ρ̃−1
(
σ−1

(
ξ̂−1 (F, u) , a

)
, vr
)}

=
{

(u, av) ∈ Σ∗+ | ρ̂(i, vr) ∈ σ−1
(
ξ̂−1(F, ur), a

)}
=
{

(u, av) ∈ Σ∗+ | σ(ρ̂(i, vr), a) ∈ ξ̂−1(F, ur)
}

=
{

(u, av) ∈ Σ∗+ | ξ̂(σ(ρ̂(i, vr), a), ur) ∈ F
}

=
{

(u, av) ∈ Σ∗+ | σ̃ : ξ(ρ̂(i, vr), aur) ∈ F
}

=
{

(u, av) ∈ Σ∗+ | (vr, aur) ∈ Lassos(A, i)
}

= Lassos(A, i)r.

Through this observation, we can conclude that Ar ∈ LAop(Lr). So Ar is a lasso
automaton over Set2,op accepting the lasso language Lr. We now formally define the

lifting of
^

P2 to LA, which will also be denoted by
^

P2.

Definition 8.23 We define the functor
^

P2: LA → LAop on objects as
^

P2 (A) = Ar

and on morphisms as
^

P2 (f, g) = (g−1[−], f−1[−]).

Proof. We show that the morphism part of the functor is well-defined. We have to prove
that if (f, g) : A → B is a lasso automaton morphism, then so is (g−1[−], f−1[−]) :
Br → Ar. Let A = (XA, YA, iA, ρA, σA, ξA, FA) and B = (XB , YB , iB , ρB , σB , ξB , FB).
The morphism (f, g) being a lasso automaton morphism means it satisfies the following
equations (for x ∈ XA, y ∈ YA):

iB = f(iA) y ∈ FA ⇐⇒ g(y) ∈ FB

f(ρA(x, a)) = ρB(f(x), a) g(σA(x, a)) = σB(f(x), a) g(ξA(y, a)) = ξB(g(y), a)

In order to show that (g−1, f−1) is a lasso automaton morphism, we have to show that
the following equalities hold (for Q ∈ 2YB , P ∈ 2XB ):

g−1[FB ] = FA iB ∈ Q ⇐⇒ iA ∈ f−1[Q]

g−1[ξ−1
B [Q](a)] = ξ−1

A [g−1[Q]](a) f−1[σ−1
B [Q](a)] = σ−1

A [g−1[Q]](a)

f−1[ρ−1
B [P ](a)] = ρ−1

A [f−1[P ]](a)

We show them row by row starting at the top-left:

y ∈ FA ⇐⇒ g(y) ∈ FB ⇐⇒ y ∈ g−1[FB ]

iB ∈ Q ⇐⇒ f(iA) ∈ Q ⇐⇒ iA ∈ f−1[Q]
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y ∈ g−1[ξ−1
B [Q](a)] ⇐⇒ ξB(g(y), a) ∈ Q ⇐⇒ g(ξA(y, a)) ∈ Q ⇐⇒ y ∈ ξ−1

A [g−1[Q]](a)

x ∈ f−1[σ−1
B [Q](a)] ⇐⇒ σB(f(x), a) ∈ Q ⇐⇒ g(σA(x, a)) ∈ Q ⇐⇒ σ−1

A [g−1[Q]](a)

x ∈ f−1[ρ−1
B [P ](a)] ⇐⇒ ρB(f(x), a) ∈ P ⇐⇒ f(ρA(x, a)) ∈ P ⇐⇒ ρ−1

A [f−1[P ]](a)

This concludes the proof.

Corollary 8.24 The functor
^

P2 seen as a functor on LA is self-adjoint:

^

P2 a
^

P2.

Proof. This follows from Corollary 8.16 and Definition 8.23.

Of particular interest is what happens if we apply
^

P2 to the initial lasso automaton
in LA(L) for some lasso language L. This gives the lasso automaton

Sr = (2Σ∗+ , 2Σ∗ , L, c−1, b−1, a−1, i−1).

whose carrier is the same as that of the final lasso automaton in LAop(Lr). By finality
we get a map, which is in fact the reverse map, for L ⊆ Σ∗+,M ⊆ Σ∗:

L 7→ Lr and M 7→ {ur | u ∈M}.

As this map is an involution, Sr is isomorphic to the final object (c.f. Lemma 8.21).

Corollary 8.25 The reverse of the reverse of an Ω-automaton is again an Ω-automaton.

Proof. Let A be an Ω-automaton with initial state i, then (Ar)r accepts the language
(Lassos((Ar)r, i)r)r = Lassos(A, i) by Proposition 8.22 and so it is again an Ω-automaton
[12].

8.1.3 Brzozowski Minimisation

In this subsection, we introduce a notion of minimality in terms of observability and
reachability ([4]). We then show that an Ω-automaton can be minimised according to
that definition by applying the reverse construction (Definition 8.17) followed by taking
the reachable part twice.

Definition 8.26 ([7, 4]) We call an Ω-automaton A accepting a lasso language L
reachable if the unique morphism from the initial lasso automaton is epi, and observable
if the unique morphism to the final lasso automaton is mono. If an Ω-automaton is both
reachable and observable, then it is minimal.

Remark 8.27 Given an Ω-automaton A with initial state i, we can get a new Ω-
automaton A′ consisting of all the states in A that are reachable from i. The Ω-automaton
A′ accepts the same ω-regular language as A.
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Theorem 8.28 Given an Ω-automaton accepting an ω-regular language L :

1. get the reverse lasso-automaton,

2. take the reachable part (i.e. the Ω-automaton consisting of all the states reachable
from the initial state),

3. apply the reverse construction again,

4. take the reachable part.

The resulting lasso-automaton is a minimal Ω-automaton accepting L .

Proof. Let A be an Ω-automaton accepting a lasso language L, then taking the reachable
reverse lasso-automaton gives a lasso automaton Ar ′ accepting Lr. Moreover, the map
from the initial lasso automaton in LAop(Lr) is surjective. Applying the reverse con-

struction again gives an Ω-automaton which accepts (Lr)r = L and is observable as
^

P2

turns epis into monos. Finally, taking the reachable part again makes the Ω-automaton
also reachable.

8.2 Minimisation via Duality
Another minimisation procedure is given by [6] which uses a dual equivalence instead
of a self-adjunction. Following the same ideas, we construct a dual equivalence between
Ω-coalgebras over FinSet2 and L-algebras over FinBA2 (for a suitable functor L).

This allows us to translate the problem of finding a greatest quotient to that of finding
a minimal subalgebra. This problem in turn can be solved through the use of a coalgebraic
modal logic which naturally arises via relation lifting over Ω-coalgebras.

As with the previous subsection, this subsection can be seen as an instantiation of the
construction from [6]. Similarly, our construction is slightly more involved than the one
found in the original paper.

8.2.1 The Category FinBA2

The category CABA of complete atomic Boolean algebras is dually equivalent to Set.
This can then be lifted to CABA2 and Set2. As we are only interested in finite Ω-
automata, it is sufficient to only consider FinBA2 and FinSet2.

This subsection introduces the category FinBA2 and establishes a dual equivalence
between FinBA2 and FinSet2. Moreover, we define an endofunctor L : FinBA2 →
FinBA2 giving rise to L-algebras. The category of L-algebras is dually equivalent to
that of Ω-coalgebras. We conclude that finding the greatest quotient of an Ω-coalgebra
is equivalent to finding the minimal subalgebra of its dual equivalent.

Definition 8.29 The category FinBA2 has as objects pairs of boolean algebras and as
morphisms pairs of BA-homomorphisms.

Definition 8.30 ([6]) We define the functor At : FinBA→ FinSetop as follows:

1. objects: B 7→ At(B), i.e. the atoms of B,
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2. morphisms: h : A→ B, then At(h) : At(B)→ At(A) with

At(h)(b) =
∧
{a ∈ A | b ≤ h(a)}.

Proposition 8.31 The categories FinSet2 and FinBA2 are dually equivalent.

Proof. We have that FinSet and FinBA are dually equivalent via
^

P and At (see [6]).
Then by Lemma 3.4 we can lift the dual equivalence. The functors involved are

^

P

×
^

P=
^

P
2

and At2.

The next step consists of defining an algebra over FinBA2 which is dually equivalent
to Ω-coalgebras. This requires a functor L : FinBA2 → FinBA2. From [6], we know how
to define L for the second sort, as they show that partially obervable DFAs (PODFAs)
are dually equivalent to finite Boolean algebras with operators (FBAOs).

Definition 8.32 Let L : FinBA2 → FinBA2 be given by

L(B1, B2) =

(⊎
a∈Σ

B1 +
⊎
a∈Σ

B2,
⊎
a∈Σ

B2 + FinBA(1)

)
.

where FinBA(1) denotes the free Boolean algebra generated by the singleton set {?}. The
second sort of this functor is defined precisely as in [6].

We can think of an L-algebra as consisting of two Boolean algebras with operators

(B1, {[a) : B1 → B1 | a ∈ Σ}, {(a) : B2 → B1 | a ∈ Σ},>1,∧1,¬1),

(B2, {(a] : B2 → B2 | a ∈ Σ},X,>2,∧2,¬2),

where all morphisms [a), (a), (a] are Boolean algebra homomorphisms andX is a constant.
This follows from several observations. First of all, by the universal property of the
coproduct, giving a Boolean algebra morphism f :

⊎
a∈ΣB1 → B1 is the same as giving a

family of Boolean algebra morphisms {[a) : B1 → B1}a∈Σ. Analogous observations hold
for the other coproducts, giving {(a)}a∈Σ and {(a]}a∈Σ. Finally, specifying a map from
the free Boolean algebra FinBA(1) to B2 is the same as picking an element from B2, i.e.
we have a constant X ∈ B2.

We write an L-algebra succinctly as a tuple

(B1, B2, {[a)}a∈Σ, {(a)}a∈Σ, {(a]}a∈Σ,X,>i,∧i,¬i),

where i ∈ {1, 2}. Often we simply write >,∧,¬ if no confusion arises.
As already mentioned earlier, [6] provides a proof that the second sort is dually equiv-

alent to the second sort of the Ω-functor. Nevertheless, we replicate this part of the proof
for the sake of uniformity and completeness.

Proposition 8.33 The category of Ω-coalgebras is dually equivalent to that of L-algebras.
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Proof. We first extend
^

P
2

and At2 to two functors L̂, Ô that turn Ω-coalgebras into
L-algebras and vice-versa. For an Ω-coalgebra (X,Y, ρ, σ, ξ, χF ), L̂ turns it into the finite
Boolean algebra

(2X , 2Y , {(ρ](a))−1}a∈Σ, {(σ](a))−1}a∈Σ, {(ξ](a))−1}a∈Σ, F, {X,Y },∩, {X\(−), Y \(−)}).

And given an L-algebra (B1, B2, {[a)}a∈Σ, {(a)}a∈Σ, {(a]}a∈Σ,X,>i,∧i,¬i), Ô turns it
into the Ω-coalgebra

(At(B1),At(B2), µ, ν, π, χX),

where

µ(b1)(a) =
∧
{b′1 ∈ B1 | b1 ≤ [a)(b′1)}, ν(b1)(a) =

∧
{b2 ∈ B2 | b1 ≤ (a)(b2)},

π(b2)(a) =
∧
{b′2 ∈ B2 | b2 ≤ (a](b′2)}, χX(b2) = 1 ⇐⇒ b2 ≤ X.

For the morphisms, L̂ does the same as
^

P
2

and Ô the same as At2.
We explicitly define two natural isomorphisms

δ : IdCoAlg(Ω) =⇒ Ô ◦ L̂ and ε : IdAlg(L) =⇒ L̂ ◦ Ô.

Let A = (X,Y, ρ, σ, ξ, χF ) be an Ω-coalgebra, define δA : A→ Ô ◦ L̂(A) as

δA,0(x) = {x} and δA,1(y) = {y}.

The inverse is given by δ−1
A,i({z}) = z. We have to check that δA is an Ω-coalgebra mor-

phism. We only show the interesting case of the switch transition (the other transitions
follow analogously) and the acceptance condition. For the acceptance, after unravelling
the definitions we have to show that

y ∈ F ⇐⇒ {y} ⊆ F,

which holds trivially. For the switch transition, we have to verify that

ν({x}, a) = {σ(x, a)},

where ν(b1, a) =
∧
{b2 ∈ At(2Y ) | b1 ⊆ (σ](a))−1[b2]}. This is again not hard to show:

ν({x}, a) =
∧
{{y} ∈ At(2Y ) | {x} ⊆ (σ](a))−1[{y}]}

=
∧
{{y} ∈ At(2Y ) | x ∈ (σ](a))−1[{y}]}

=
∧
{{y} ∈ At(2Y ) | σ(x, a) ∈ {y}}

=
∧
{{y} ∈ At(2Y ) | σ(x, a) = y}

= {σ(x, a)}.

For naturality of δ, let (f0, f1) : A → A′ be an Ω-coalgebra morphism, we have to check
that

{f0(x)} =
∧
{{x′} ∈ At(2X

′
) | {x} ⊆ f−1

0 [{x′}]},

{f1(y)} =
∧
{{y′} ∈ At(2Y

′
) | {y} ⊆ f−1

1 [{y′}]}.
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This is indeed the case as∧
{{z′} ∈ At(2Z

′
) | {z} ⊆ f−1

i [{z′}]} =
∧
{{z′} ∈ At(2Z

′
) | fi(z) = z′} = {fi(z)}.

Let B = (B1, B2, {[a)}a∈Σ, {(a)}a∈Σ, {(a]}a∈Σ,X,>i,∧i,¬i) be an L-algebra. We de-
fine εB : B→ L̂ ◦ Ô(B) as

εB,0(b1) = {b′1 ∈ At(B1) | b′1 ≤ b1} and εB,1(b2) = {b′2 ∈ At(B2) | b′2 ≤ b2}

This time the inverse is given by ε−1
B,i(Q) =

∨
Q. We have to show that εB is an L-algebra

morphism and we only show this for the switch maps {(a)}a∈Σ. The check for the constant
X follows immediately from the definitions. For the switch map we have to check that

(ν](a))−1[εB,1(b2)] = εB,0((a)b2).

Unravelling the definitions we get:

(ν](a))−1[εB,1(b2)] = (ν](a))−1[{b′2 ∈ At(B2) | b′2 ≤ b2}]
= {b1 ∈ At(B1) | ν(b1, a) ∈ {b′2 ∈ At(B2) | b′2 ≤ b2}}
= {b1 ∈ At(B1) | ν(b1, a) ≤ b2}

= {b1 ∈ At(B1) |
∧
{b′2 ∈ B2 | b1 ≤ (a)b′2} ≤ b2}

= {b1 ∈ At(B1) | b1 ≤ (a)b2}
= εB,0((a)b2).

The penultimate step follows as∧
{b′2 ∈ B2 | b1 ≤ (a)b′2} ≤ b2 =⇒ b1 ≤ (a)b2,

b1 ≤ (a)b2 =⇒ b2 ∈ {b′2 ∈ B2 | b1 ≤ (a)b′2} =⇒
∧
{b′2 ∈ B2 | b1 ≤ (a)b′2} ≤ b2.

Lastly we need to prove the naturality of ε. Let (f0, f1) : B→ B′. We have to show that

εB′,0(f0(b1)) = (At(f0))−1[εB,0(b1)] and εB′,1(f1(b2)) = (At(f1))−1[εB,1(b2)].

Filling in the definitions, this is equivalent to showing

{b′1 ∈ At(B′1) | b′1 ≤ f0(b1)} = {b′1 ∈ At(B′1) | At(f0)(b′1) ∈ {c ∈ At(B1) | c ≤ b1}},
{b′2 ∈ At(B′2) | b′2 ≤ f1(b2)} = {b′2 ∈ At(B′2) | At(f1)(b′2) ∈ {d ∈ At(B2) | d ≤ b2}}.

We show the first of the two equalities, the other follows analogously.

At(f0)(b′1) ∈ {c ∈ At(B1) | c ≤ b1} ⇐⇒ At(f0)(b′1) ≤ b1
⇐⇒

∧
{c ∈ At(B1) | b′1 ≤ f0(c)} ≤ b1

⇐⇒
∧
{c ∈ At(B1) | b′1 ≤ f0(c)} ≤ b1

⇐⇒ b′1 ≤ f0(b1).

Corollary 8.34 Given an Ω-coalgebra A, and its dual equivalent A′, if B is a minimal
subalgebra of A′, then the dual of B is the greatest quotient of A.

Proof. This is a direct consequence of the dual equivalence we have established.
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8.2.2 Two-sorted Coalgebraic Modal Logic and Minimal Subalgebras

In the previous subsection we established that finding the greatest quotient of an Ω-
coalgebra is equivalent to finding the minimal subalgebra of its dual L-algebra. As in
[6], we show in the next subsection that this subalgebra can be obtained by looking at
definable subsets. The idea is to bring a separation logic into the picture which reflects
the structure of the Ω-coalgebra. By considering only the definable subsets we obtain a
minimal subalgebra.

This subsection introduces the logic we use to find the minimal subalgebra. We start
with a coalgebraic modal logic which arises naturally via relation lifting ([23]) and then
define a separation logic which is equi-expressive and more convenient to work with.

Definition 8.35 ([23]) We define the first and second-sort formulas, Fml1 and Fml2
respectively, of the language MLΩ as follows:

ϕ1, ψ1 ::= ⊥ | ¬ϕ1 | ϕ1 ∨ ψ1 | ∇1α

ϕ2, ψ2 ::= ⊥ | ¬ϕ2 | ϕ2 ∨ ψ2 | ∇2β

with α ∈ FmlΣ1 ×FmlΣ2 and β ∈ FmlΣ2 × 2 (so α = (α1, α2) and β = (β1, i) with α1, α2, β1

functions and i ∈ {0, 1}).

Definition 8.36 ([23]) Given an Ω-coalgebra A = (X,Y, ρ, ξ, σ, χ), x ∈ X and y ∈ Y ,
we define

A, x  ∇1α ⇐⇒ ∀c ∈ Σ : A, ρ(x)(c)  α1(c) and
A, σ(x)(c)  α2(c),

A, y  ∇2β ⇐⇒ ∀c ∈ Σ : A, ξ(y)(c)  β1(c) and χ(y) = i.

The semantics of ¬ϕ,ϕ ∨ ψ are standard.

Proposition 8.37 The language MLΩ is expressive and invariant (for behavioural equiv-
alence and bisimilarity).

Proof. The endofunctor Ω preserves both weak pullbacks and inclusions. Moreover, we
are only considering objects and morphisms in FinSet2 so Ω is image-finite. It follows
that the language MLΩ is both expressive and invariant.

The coalgebraic modal logic MLΩ is not very convenient to work with. So we introduce
a different modal logic and show that it is equi-expressive.

Definition 8.38 We define the following two sorted-modal logic MLSΩ, where the for-
mulas for the first- and second sort are given as

ϕ1, ψ1 ::= ⊥ | ¬ϕ1 | ϕ1 ∨ ψ1 | [a)ϕ1 | (a)ϕ2

ϕ2, ψ2 ::= X | ⊥ | ¬ϕ2 | ϕ2 ∨ ψ2 | (a]ϕ2

where we get, for each a ∈ Σ, three modalities ([a), (a) and (a]) and we write ϕ1, ψ1 ∈ Fml1
and ϕ2, ψ2 ∈ Fml2.
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We next give the semantics for MLSΩ.

Definition 8.39 Given an Ω-coalgebra A = (X,Y, ρ, σ, ξ, χ), x ∈ X, y ∈ Y and c ∈ Σ,
we define

A, x  [c)ϕ1 ⇐⇒ A, ρ(x, c)  ϕ1,

A, x  (c)ϕ2 ⇐⇒ A, σ(x, c)  ϕ2,

A, y  (c]ϕ2 ⇐⇒ A, ξ(y, c)  ϕ2,

A, y  X ⇐⇒ χ(y) = 1.

The semantics of ¬ϕ,ϕ ∨ ψ are standard.

Proposition 8.40 For a finite alphabet Σ, the modal logics MLΩ and MLSΩ are equi-
expressive.

Proof. Consider the function h which translates from MLΩ to MLSΩ. We only give it for
α ∈ FmlΣ1 × FmlΣ2 and β ∈ FmlΣ2 × 2.

h(∇1α) :=
∧
c∈Σ

(
[c)h(α1(c)) ∧ (c)h(α2(c))

)
,

h(∇2β) := [i] ∧
∧
c∈Σ

(c]h(β1(c)).

where we use [i] to mean X if i = 1 and ¬X otherwise. We first show that h respects
the semantics. This can be done by induction and we only look at the case for the cover
modality.

A, x  ∇1α ⇐⇒ ∀c ∈ Σ : A, ρ(x)(c)  α1(c) and A, σ(x)(c)  α2(c)

⇐⇒ ∀c ∈ Σ : A, ρ(x)(c)  h(α1(c)) and A, σ(x)(c)  h(α2(c)) (I.H.)
⇐⇒ ∀c ∈ Σ : A, x  [c)h(α1(c)) and A, x  (c)h(α2(c))

⇐⇒ ∀c ∈ Σ : A, x  [c)h(α1(c)) ∧ (c)h(α2(c))

⇐⇒ A, x 
∧
c∈Σ

([c)h(α1(c)) ∧ (c)h(α2(c))) (as Σ finite)

⇐⇒ A, x  h(∇1α)

A, y  ∇2β ⇐⇒ ∀c ∈ Σ : A, ξ(y)(c)  β1(c) and χ(y) = i

⇐⇒ ∀c ∈ Σ : A, ξ(y)(c)  h(β1(c)) and χ(y) = i (I.H.)
⇐⇒ ∀c ∈ Σ : A, y  (c]h(β1(c)) and χ(y) = i

⇐⇒ A, y  [i] ∧
∧
c∈Σ

(c]h(β1(c)) (as Σ finite)

⇐⇒ A, y  h(∇2β)

This shows that MLSΩ is at least as expressive as MLΩ. To show that they are equi-
expressive, we also provide a translation h′ the other way. Our focus is again on the
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modalities. For [c)ϕ we define h′([c)ϕ) = ∇1α where

α1 = λa.

{
h′(ϕ) , if a = c

¬⊥ , otherwise
α2 = λa.¬⊥

We can employ the same trick for (c), (c]. Checking that h′ respects the semantics is
straight-forward and can be done by induction. The cover modality case goes as follows:

A, x  h′([a)ϕ) ⇐⇒ A, ρ(x, a)  h′(ϕ) and
∀c ∈ Σ, c 6= a : (A, ρ(x, c)  > and A, σ(x, c)  >)

⇐⇒ A, σ(x, a)  h′(ϕ)

⇐⇒ A, σ(x, a)  ϕ (I.H.)
⇐⇒ A, x  [a)ϕ.

8.2.3 Minimisation via Dual Equivalence

In this final part, we introduce the notion of definable sets. Given an Ω-coalgebra A,
we show that we can get a minimal subalgebra of its dual by considering its definable
subsets. Once we have a minimial subalgebra, translating it back to an Ω-coalgebra gives
us the greatest quotient of A as required.

The following definition is standard.

Definition 8.41 Let A = (X,Y, ρ, σ, ξ, χ) be an Ω-coalgebra. A subset P ⊆ X is
definable if there exists ϕ ∈ Fml1 such that for all x ∈ X:

A, x  ϕ ⇐⇒ x ∈ P.

Similarly, we have that a subset Q ⊆ Y is definable if there exists ϕ ∈ Fml2, such that
for all y ∈ Y :

A, y  ϕ ⇐⇒ y ∈ Q.

Proposition 8.42 Let A be an Ω-coalgebra and B its dual L-algebra. Restricting the
carrier of B to the definable subsets gives a minimial L-subalgebra of B.

Proof. We start by showing that restricting the carrier to the definable subsets gives us
an L-algebra. We then show that it is minimal. Let A = (X,Y, ρ, σ, ξ, χF ) and

B = (2X , 2Y , {[a) | a ∈ Σ}, {(a) | a ∈ Σ}, {(a] | a ∈ Σ}, {X},>i,∧i,¬i).

Let D1, D2 be the definable subsets of X and Y respectively. We show that they both
form a Boolean subalgebra. First of all, we note that ∅, X, Y are definable (consider the
formulas ⊥,¬⊥). Next, we show that they are both closed under negation and union.
This is done in a similar way for both sorts, so we only show it for D1. Let Q,Q′ ∈ D1,
we have to show that Q∪Q′ and ¬Q are also definable. Let ϕ define Q and ϕ′ define Q′,
it is easy to see that ϕ ∨ ϕ′ and ¬ϕ define Q ∪Q′ and ¬Q respectively.

From this, we get an L-algebra by restricting the operations to the definable subsets.
We briefly justify that doing so is well-defined. For the constantX, take the subset defined
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by the formula X. The proofs for [a), (a) and (a] being well-defined are analogous, so we
only treat one case here. Let Q ∈ D2, we want to show that (a)[Q] ∈ D1 which is
done by showing that (a)[Q] is definable. As a reminder, we defined (a) : 2Y → 2X as
(a)[Q] = σ−1(a)[Q] = {x ∈ X | σ(x, a) ∈ Q}. Let ϕ define Q. We claim that (a)ϕ defines
(a)[Q]. Let x ∈ (a)[Q], then σ(x, a) ∈ Q and so

x ∈ (a)[Q] ⇐⇒ σ(x, a) ∈ Q ⇐⇒ A, σ(x, a)  ϕ ⇐⇒ A, x  (a)ϕ.

Finally, we want to show that the L-algebra D we obtained by restricting the carrier to
D1, D2 is minimal. This is done by showing that, for any Boolean subalgebra C = (C1, C2)
and L-morphism f : C→ B, there exists a unique g : D→ Cmaking the following diagram
commute:

D

C

B

	

i

g f

We show how to obtain the unique map g. For this, we have to map each Q ∈ Di to some
c ∈ Ci. We do so by induction on MLSΩ-formulas. The top and bottom elements of Di

are mapped to those of the Ci respectively. This covers the sets defined by ⊥ and ¬⊥.
For the formula X, let Q ∈ D2 be defined by X, i.e. Q = X (seen as a constant). As C is
an L-algebra, it has some constant X′ ∈ C2, so we let g(Q) = X′. For the first inductive
case, let Q ∈ Di be defined by ¬ϕ. By our induction hypothesis we have a set Q′ ∈ Di

defined by ϕ such that we already have gi(Q′). Now we map Q to the complement of
gi(Q

′) in Ci. Next consider the formula (a)ϕ which defines some set Q ∈ D1. By our
induction hypothesis we have a set P ∈ D2 defined by ϕ which is mapped to g2(P ).
Finally, we set g(Q) = (a)g2(P ). The case for [a)ϕ, (a]ϕ is analogous. This gives us a
unique L-morphism g.
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Section 9

Conclusion

In this thesis, we established results surrounding Ω-automata. We introduced Ω-automata
as coalgebras and studied their base category Set2, showing how to lift adjunctions and
equivalences from Set to Set2. This was particularly useful in Section 8.

In Section 4, we equipped lassos with a rewrite system and showed that every lasso
has a unique normal form. This led us to prove the Lasso Representation Lemma 4.11
and became a significant tool in later sections.

We showed that from an Ω-automaton, we can construct its transition Wilke algebra.
With the transition Wilke algebra we proved that the ω-regular language accepted by
our Ω-automaton is also recognised by the Wilke algebra homomorphism from the Wilke
algebraW+,ω to the transition Wilke algebra. The converse direction of this result is still
open and of interest. In particular, we think it would be useful to frame the result in
categorical terms.

In Section 6 we strengthened the Myhill-Nerode theorem taken from [12], obtaining a
tight lower bound on the size of Ω-automata accepting a certain ω-regular language based
on the index of our Myhill-Nerode equivalence relation.

Section 7 provided a Brzozowski type construction for Ω-automata from ω-regular
languages. This construction is not entirely constructive as it stands. This section also
provides some fascinating topics for further research. We showed that every ω-regular
language is coverable by a lasso expression (Prop. 7.49). In fact, the lasso expression
we obtain is slightly stronger than that: Let κ be an ω-regular expression, then for any
uvω ∈ JκKω, a majority of the lassos representing uvω will belong to Jh(κ)K`. The question
is, can we construct a lasso expression which is equivalent, so for all uvω ∈ JκKω, we have
that all lassos representing uvω are in Jh(κ)K`. If so, then this would allow a more efficient
construction for Ω-automata. Moreover, we would be able to get size constraints on the
number of states of an Ω-automaton accepting κ.

Finally, we looked at minimisation procedures. This showed that common minimisa-
tion procedures for DFAs can also be applied to Ω-automata with slight modifications.
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